Sample records for affective loop experiences

  1. Affective loop experiences: designing for interactional embodiment.

    PubMed

    Höök, Kristina

    2009-12-12

    Involving our corporeal bodies in interaction can create strong affective experiences. Systems that both can be influenced by and influence users corporeally exhibit a use quality we name an affective loop experience. In an affective loop experience, (i) emotions are seen as processes, constructed in the interaction, starting from everyday bodily, cognitive or social experiences; (ii) the system responds in ways that pull the user into the interaction, touching upon end users' physical experiences; and (iii) throughout the interaction the user is an active, meaning-making individual choosing how to express themselves-the interpretation responsibility does not lie with the system. We have built several systems that attempt to create affective loop experiences with more or less successful results. For example, eMoto lets users send text messages between mobile phones, but in addition to text, the messages also have colourful and animated shapes in the background chosen through emotion-gestures with a sensor-enabled stylus pen. Affective Diary is a digital diary with which users can scribble their notes, but it also allows for bodily memorabilia to be recorded from body sensors mapping to users' movement and arousal and placed along a timeline. Users can see patterns in their bodily reactions and relate them to various events going on in their lives. The experiences of building and deploying these systems gave us insights into design requirements for addressing affective loop experiences, such as how to design for turn-taking between user and system, how to create for 'open' surfaces in the design that can carry users' own meaning-making processes, how to combine modalities to create for a 'unity' of expression, and the importance of mirroring user experience in familiar ways that touch upon their everyday social and corporeal experiences. But a more important lesson gained from deploying the systems is how emotion processes are co-constructed and experienced

  2. Affective loop experiences: designing for interactional embodiment

    PubMed Central

    Höök, Kristina

    2009-01-01

    Involving our corporeal bodies in interaction can create strong affective experiences. Systems that both can be influenced by and influence users corporeally exhibit a use quality we name an affective loop experience. In an affective loop experience, (i) emotions are seen as processes, constructed in the interaction, starting from everyday bodily, cognitive or social experiences; (ii) the system responds in ways that pull the user into the interaction, touching upon end users' physical experiences; and (iii) throughout the interaction the user is an active, meaning-making individual choosing how to express themselves—the interpretation responsibility does not lie with the system. We have built several systems that attempt to create affective loop experiences with more or less successful results. For example, eMoto lets users send text messages between mobile phones, but in addition to text, the messages also have colourful and animated shapes in the background chosen through emotion-gestures with a sensor-enabled stylus pen. Affective Diary is a digital diary with which users can scribble their notes, but it also allows for bodily memorabilia to be recorded from body sensors mapping to users' movement and arousal and placed along a timeline. Users can see patterns in their bodily reactions and relate them to various events going on in their lives. The experiences of building and deploying these systems gave us insights into design requirements for addressing affective loop experiences, such as how to design for turn-taking between user and system, how to create for ‘open’ surfaces in the design that can carry users' own meaning-making processes, how to combine modalities to create for a ‘unity’ of expression, and the importance of mirroring user experience in familiar ways that touch upon their everyday social and corporeal experiences. But a more important lesson gained from deploying the systems is how emotion processes are co-constructed and

  3. Closed-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.

    1997-01-01

    ABSTRACT Closed-loop HIRF experiments were performed on a fault tolerant flight control computer (FCC) at the NASA Langley Research Center. The FCC used in the experiments was a quad-redundant flight control computer executing B737 Autoland control laws. The FCC was placed in one of the mode-stirred reverberation chambers in the HIRF Laboratory and interfaced to a computer simulation of the B737 flight dynamics, engines, sensors, actuators, and atmosphere in the Closed-Loop Systems Laboratory. Disturbances to the aircraft associated with wind gusts and turbulence were simulated during tests. Electrical isolation between the FCC under test and the simulation computer was achieved via a fiber optic interface for the analog and discrete signals. Closed-loop operation of the FCC enabled flight dynamics and atmospheric disturbances affecting the aircraft to be represented during tests. Upset was induced in the FCC as a result of exposure to HIRF, and the effect of upset on the simulated flight of the aircraft was observed and recorded. This paper presents a description of these closed- loop HIRF experiments, upset data obtained from the FCC during these experiments, and closed-loop effects on the simulated flight of the aircraft.

  4. Flight Testing of the Capillary Pumped Loop 3 Experiment

    NASA Technical Reports Server (NTRS)

    Ottenstein, Laura; Butler, Dan; Ku, Jentung; Cheung, Kwok; Baldauff, Robert; Hoang, Triem

    2002-01-01

    The Capillary Pumped Loop 3 (CAPL 3) experiment was a multiple evaporator capillary pumped loop experiment that flew in the Space Shuttle payload bay in December 2001 (STS-108). The main objective of CAPL 3 was to demonstrate in micro-gravity a multiple evaporator capillary pumped loop system, capable of reliable start-up, reliable continuous operation, and heat load sharing, with hardware for a deployable radiator. Tests performed on orbit included start-ups, power cycles, low power tests (100 W total), high power tests (up to 1447 W total), heat load sharing, variable/fixed conductance transition tests, and saturation temperature change tests. The majority of the tests were completed successfully, although the experiment did exhibit an unexpected sensitivity to shuttle maneuvers. This paper describes the experiment, the tests performed during the mission, and the test results.

  5. Posttest examination of Sodium Loop Safety Facility experiments. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, J.W.

    In-reactor, safety experiments performed in the Sodium Loop Safety Facility (SLSF) rely on comprehensive posttest examinations (PTE) to characterize the postirradiation condition of the cladding, fuel, and other test-subassembly components. PTE information and on-line instrumentation data, are analyzed to identify the sequence of events and the severity of the accident for each experiment. Following in-reactor experimentation, the SLSF loop and test assembly are transported to the Hot Fuel Examination Facility (HFEF) for initial disassembly. Goals of the HFEF-phase of the PTE are to retrieve the fuel bundle by dismantling the loop and withdrawing the test assembly, to assess the macro-conditionmore » of the fuel bundle by nondestructive examination techniques, and to prepare the fuel bundle for shipment to the Alpha-Gamma Hot Cell Facility (AGHCF) at Argonne National Laboratory.« less

  6. Mitigating Communication Delays in Remotely Connected Hardware-in-the-loop Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cale, James; Johnson, Brian; Dall'Anese, Emiliano

    Here, this paper introduces a potential approach for mitigating the effects of communication delays between multiple, closed-loop hardware-in-the-loop experiments which are virtually connected, yet physically separated. The method consists of an analytical method for the compensation of communication delays, along with the supporting computational and communication infrastructure. The control design leverages tools for the design of observers for the compensation of measurement errors in systems with time-varying delays. The proposed methodology is validated through computer simulation and hardware experimentation connecting hardware-in-the-loop experiments conducted between laboratories separated by a distance of over 100 km.

  7. Mitigating Communication Delays in Remotely Connected Hardware-in-the-loop Experiments

    DOE PAGES

    Cale, James; Johnson, Brian; Dall'Anese, Emiliano; ...

    2018-03-30

    Here, this paper introduces a potential approach for mitigating the effects of communication delays between multiple, closed-loop hardware-in-the-loop experiments which are virtually connected, yet physically separated. The method consists of an analytical method for the compensation of communication delays, along with the supporting computational and communication infrastructure. The control design leverages tools for the design of observers for the compensation of measurement errors in systems with time-varying delays. The proposed methodology is validated through computer simulation and hardware experimentation connecting hardware-in-the-loop experiments conducted between laboratories separated by a distance of over 100 km.

  8. Closed Loop Experiment Manager (CLEM)-An Open and Inexpensive Solution for Multichannel Electrophysiological Recordings and Closed Loop Experiments.

    PubMed

    Hazan, Hananel; Ziv, Noam E

    2017-01-01

    There is growing need for multichannel electrophysiological systems that record from and interact with neuronal systems in near real-time. Such systems are needed, for example, for closed loop, multichannel electrophysiological/optogenetic experimentation in vivo and in a variety of other neuronal preparations, or for developing and testing neuro-prosthetic devices, to name a few. Furthermore, there is a need for such systems to be inexpensive, reliable, user friendly, easy to set-up, open and expandable, and possess long life cycles in face of rapidly changing computing environments. Finally, they should provide powerful, yet reasonably easy to implement facilities for developing closed-loop protocols for interacting with neuronal systems. Here, we survey commercial and open source systems that address these needs to varying degrees. We then present our own solution, which we refer to as Closed Loop Experiments Manager (CLEM). CLEM is an open source, soft real-time, Microsoft Windows desktop application that is based on a single generic personal computer (PC) and an inexpensive, general-purpose data acquisition board. CLEM provides a fully functional, user-friendly graphical interface, possesses facilities for recording, presenting and logging electrophysiological data from up to 64 analog channels, and facilities for controlling external devices, such as stimulators, through digital and analog interfaces. Importantly, it includes facilities for running closed-loop protocols written in any programming language that can generate dynamic link libraries (DLLs). We describe the application, its architecture and facilities. We then demonstrate, using networks of cortical neurons growing on multielectrode arrays (MEA) that despite its reliance on generic hardware, its performance is appropriate for flexible, closed-loop experimentation at the neuronal network level.

  9. Open-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer

    NASA Technical Reports Server (NTRS)

    Koppen, Daniel M.

    1997-01-01

    During the third quarter of 1996, the Closed-Loop Systems Laboratory was established at the NASA Langley Research Center (LaRC) to study the effects of High Intensity Radiated Fields on complex avionic systems and control system components. This new facility provided a link and expanded upon the existing capabilities of the High Intensity Radiated Fields Laboratory at LaRC that were constructed and certified during 1995-96. The scope of the Closed-Loop Systems Laboratory is to place highly integrated avionics instrumentation into a high intensity radiated field environment, interface the avionics to a real-time flight simulation that incorporates aircraft dynamics, engines, sensors, actuators and atmospheric turbulence, and collect, analyze, and model aircraft performance. This paper describes the layout and functionality of the Closed-Loop Systems Laboratory, and the open-loop calibration experiments that led up to the commencement of closed-loop real-time flight experiments.

  10. Loop-the-Loop: An Easy Experiment, A Challenging Explanation

    NASA Astrophysics Data System (ADS)

    Asavapibhop, B.; Suwonjandee, N.

    2010-07-01

    A loop-the-loop built by the Institute for the Promotion of Teaching Science and Technology (IPST) was used in Thai high school teachers training program to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. We took videos using high speed camera to record the motions of a spherical steel ball moving down the aluminum inclined track at different released positions. The ball then moved into the circular loop and underwent a projectile motion upon leaving the track. We then asked the teachers to predict the landing position of the ball if we changed the height of the whole loop-the-loop system. We also analyzed the videos using Tracker, a video analysis software. It turned out that most teachers did not realize the effect of the friction between the ball and the track and could not obtain the correct relationship hence their predictions were inconsistent with the actual landing positions of the ball.

  11. Promoter-Terminator Gene Loops Affect Alternative 3'-End Processing in Yeast.

    PubMed

    Lamas-Maceiras, Mónica; Singh, Badri Nath; Hampsey, Michael; Freire-Picos, María A

    2016-04-22

    Many eukaryotic genes undergo alternative 3'-end poly(A)-site selection producing transcript isoforms with 3'-UTRs of different lengths and post-transcriptional fates. Gene loops are dynamic structures that juxtapose the 3'-ends of genes with their promoters. Several functions have been attributed to looping, including memory of recent transcriptional activity and polarity of transcription initiation. In this study, we investigated the relationship between gene loops and alternative poly(A)-site. Using the KlCYC1 gene of the yeast Kluyveromyces lactis, which includes a single promoter and two poly(A) sites separated by 394 nucleotides, we demonstrate in two yeast species the formation of alternative gene loops (L1 and L2) that juxtapose the KlCYC1 promoter with either proximal or distal 3'-end processing sites, resulting in the synthesis of short and long forms of KlCYC1 mRNA. Furthermore, synthesis of short and long mRNAs and formation of the L1 and L2 loops are growth phase-dependent. Chromatin immunoprecipitation experiments revealed that the Ssu72 RNA polymerase II carboxyl-terminal domain phosphatase, a critical determinant of looping, peaks in early log phase at the proximal poly(A) site, but as growth phase advances, it extends to the distal site. These results define a cause-and-effect relationship between gene loops and alternative poly(A) site selection that responds to different physiological signals manifested by RNA polymerase II carboxyl-terminal domain phosphorylation status. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Closed Loop Experiment Manager (CLEM)—An Open and Inexpensive Solution for Multichannel Electrophysiological Recordings and Closed Loop Experiments

    PubMed Central

    Hazan, Hananel; Ziv, Noam E.

    2017-01-01

    There is growing need for multichannel electrophysiological systems that record from and interact with neuronal systems in near real-time. Such systems are needed, for example, for closed loop, multichannel electrophysiological/optogenetic experimentation in vivo and in a variety of other neuronal preparations, or for developing and testing neuro-prosthetic devices, to name a few. Furthermore, there is a need for such systems to be inexpensive, reliable, user friendly, easy to set-up, open and expandable, and possess long life cycles in face of rapidly changing computing environments. Finally, they should provide powerful, yet reasonably easy to implement facilities for developing closed-loop protocols for interacting with neuronal systems. Here, we survey commercial and open source systems that address these needs to varying degrees. We then present our own solution, which we refer to as Closed Loop Experiments Manager (CLEM). CLEM is an open source, soft real-time, Microsoft Windows desktop application that is based on a single generic personal computer (PC) and an inexpensive, general-purpose data acquisition board. CLEM provides a fully functional, user-friendly graphical interface, possesses facilities for recording, presenting and logging electrophysiological data from up to 64 analog channels, and facilities for controlling external devices, such as stimulators, through digital and analog interfaces. Importantly, it includes facilities for running closed-loop protocols written in any programming language that can generate dynamic link libraries (DLLs). We describe the application, its architecture and facilities. We then demonstrate, using networks of cortical neurons growing on multielectrode arrays (MEA) that despite its reliance on generic hardware, its performance is appropriate for flexible, closed-loop experimentation at the neuronal network level. PMID:29093659

  13. Complex astrophysical experiments relating to jets, solar loops, and water ice dusty plasma

    NASA Astrophysics Data System (ADS)

    Bellan, P. M.; Zhai, X.; Chai, K. B.; Ha, B. N.

    2015-10-01

    > Recent results of three astrophysically relevant experiments at Caltech are summarized. In the first experiment magnetohydrodynamically driven plasma jets simulate astrophysical jets that undergo a kink instability. Lateral acceleration of the kinking jet spawns a Rayleigh-Taylor instability, which in turn spawns a magnetic reconnection. Particle heating and a burst of waves are observed in association with the reconnection. The second experiment uses a slightly different setup to produce an expanding arched plasma loop which is similar to a solar corona loop. It is shown that the plasma in this loop results from jets originating from the electrodes. The possibility of a transition from slow to fast expansion as a result of the expanding loop breaking free of an externally imposed strapping magnetic field is investigated. The third and completely different experiment creates a weakly ionized plasma with liquid nitrogen cooled electrodes. Water vapour injected into this plasma forms water ice grains that in general are ellipsoidal and not spheroidal. The water ice grains can become quite long (up to several hundred microns) and self-organize so that they are evenly spaced and vertically aligned.

  14. Research on phase locked loop in optical memory servo system

    NASA Astrophysics Data System (ADS)

    Qin, Liqin; Ma, Jianshe; Zhang, Jianyong; Pan, Longfa; Deng, Ming

    2005-09-01

    Phase locked loop (PLL) is a closed loop automatic control system, which can track the phase of input signal. It widely applies in each area of electronic technology. This paper research the phase locked loop in optical memory servo area. This paper introduces the configuration of digital phase locked loop (PLL) and phase locked servo system, the control theory, and analyses system's stability. It constructs the phase locked loop experiment system of optical disk spindle servo, which based on special chip. DC motor is main object, this system adopted phase locked servo technique and digital signal processor (DSP) to achieve constant linear velocity (CLV) in controlling optical spindle motor. This paper analyses the factors that affect the stability of phase locked loop in spindle servo system, and discusses the affection to the optical disk readout signal and jitter due to the stability of phase locked loop.

  15. Size, but not experience, affects the ontogeny of constriction performance in ball pythons (Python regius).

    PubMed

    Penning, David A; Dartez, Schuyler F

    2016-03-01

    Constriction is a prey-immobilization technique used by many snakes and is hypothesized to have been important to the evolution and diversification of snakes. However, very few studies have examined the factors that affect constriction performance. We investigated constriction performance in ball pythons (Python regius) by evaluating how peak constriction pressure is affected by snake size, sex, and experience. In one experiment, we tested the ontogenetic scaling of constriction performance and found that snake diameter was the only significant factor determining peak constriction pressure. The number of loops applied in a coil and its interaction with snake diameter did not significantly affect constriction performance. Constriction performance in ball pythons scaled differently than in other snakes that have been studied, and medium to large ball pythons are capable of exerting significantly higher pressures than those shown to cause circulatory arrest in prey. In a second experiment, we tested the effects of experience on constriction performance in hatchling ball pythons over 10 feeding events. By allowing snakes in one test group to gain constriction experience, and manually feeding snakes under sedation in another test group, we showed that experience did not affect constriction performance. During their final (10th) feedings, all pythons constricted similarly and with sufficiently high pressures to kill prey rapidly. At the end of the 10 feeding trials, snakes that were allowed to constrict were significantly smaller than their non-constricting counterparts. © 2016 Wiley Periodicals, Inc.

  16. Hard real-time closed-loop electrophysiology with the Real-Time eXperiment Interface (RTXI)

    PubMed Central

    George, Ansel; Dorval, Alan D.; Christini, David J.

    2017-01-01

    The ability to experimentally perturb biological systems has traditionally been limited to static pre-programmed or operator-controlled protocols. In contrast, real-time control allows dynamic probing of biological systems with perturbations that are computed on-the-fly during experimentation. Real-time control applications for biological research are available; however, these systems are costly and often restrict the flexibility and customization of experimental protocols. The Real-Time eXperiment Interface (RTXI) is an open source software platform for achieving hard real-time data acquisition and closed-loop control in biological experiments while retaining the flexibility needed for experimental settings. RTXI has enabled users to implement complex custom closed-loop protocols in single cell, cell network, animal, and human electrophysiology studies. RTXI is also used as a free and open source, customizable electrophysiology platform in open-loop studies requiring online data acquisition, processing, and visualization. RTXI is easy to install, can be used with an extensive range of external experimentation and data acquisition hardware, and includes standard modules for implementing common electrophysiology protocols. PMID:28557998

  17. The experience sampling method: Investigating students' affective experience

    NASA Astrophysics Data System (ADS)

    Nissen, Jayson M.; Stetzer, MacKenzie R.; Shemwell, Jonathan T.

    2013-01-01

    Improving non-cognitive outcomes such as attitudes, efficacy, and persistence in physics courses is an important goal of physics education. This investigation implemented an in-the-moment surveying technique called the Experience Sampling Method (ESM) [1] to measure students' affective experience in physics. Measurements included: self-efficacy, cognitive efficiency, activation, intrinsic motivation, and affect. Data are presented that show contrasts in students' experiences (e.g., in physics vs. non-physics courses).

  18. Novel design methods for magnetic flux loops in the National Compact Stellarator Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomphrey, N.; Lazarus, E.; Zarnstorff, M.

    2007-05-15

    Magnetic pickup loops on the vacuum vessel (VV) can provide an abundance of equilibrium information for stellarators. A substantial effort has gone into designing flux loops for the National Compact Stellarator Experiment (NCSX) [Zarnstorff et al., Plasma Phys. Controlled Fusion 43, A237 (2001)], a three-field period quasi-axisymmetric stellarator under construction at the Princeton Plasma Physics Laboratory. The design philosophy, to measure all of the magnetic field distributions normal to the VV that can be measured, has necessitated the development of singular value decomposition algorithms for identifying efficient loop locations. Fields are expected to be predominantly stellarator symmetric (SS)--the symmetry ofmore » the machine design--with toroidal mode numbers per torus (n) equal to a multiple of 3 and possessing reflection symmetry in a period. However, plasma instabilities and coil imperfections will generate non-SS fields that must also be diagnosed. The measured symmetric fields will yield important information on the plasma current and pressure profile as well as on the plasma shape. All fields that obey the design symmetries could be measured by placing flux loops in a single half-period of the VV, but accurate resolution of nonsymmetric modes, quantified by the condition number of a matrix, requires repositioning loops to equivalent locations on the full torus. A subarray of loops located along the inside wall of the vertically elongated cross section was designed to detect n=3, m=5 or 6 resonant field perturbations that can cause important islands. Additional subarrays included are continuous in the toroidal and poloidal directions. Loops are also placed at symmetry points of the VV to obtain maximal sensitivity to asymmetric perturbations. Combining results from various calculations which have made extensive use of a database of 2500 free-boundary VMEC equilibria, has led to the choice of 225 flux loops for NCSX, of which 151 have distinct

  19. Fabrication techniques for superconducting readout loops

    NASA Technical Reports Server (NTRS)

    Payne, J. E.

    1982-01-01

    Procedures for the fabrication of superconducting readout loops out of niobium on glass substrates were developed. A computer program for an existing fabrication system was developed. Both positive and negative resist procedures for the production of the readout loops were investigated. Methods used to produce satisfactory loops are described and the various parameters affecting the performance of the loops are analyzed.

  20. Ileal loop ureteroileostomy in patients with neurogenic bladder. Personal experience with 54 patients.

    PubMed

    Kambouris, A A; Allaben, R D; Carpenter, W S; Shumaker, E J

    1976-02-01

    (1) In a six year experience with ileal loops in patients with neurogenic bladder, 49% of the patients were paralyzed, 30% had multiple sclerosis, and 91% had recurrent or persistent urinary tract infection. Reflux, incontinence, retention, and bladder calculi were additional indications for supravesical urinary diversions. (2) All loops were performed in a similar manner, most of them placed retroperitoneally, and a vigorous program of postoperative care was followed. There were no postoperative deaths, and a moderate number of complications occurred in 51.8% of the patients. (3) The participation of the enterostomal therapist is the preparation of the patient and in the immediate and long-term stomal care has been invaluable and is strongly recommended.

  1. Switch loop flexibility affects substrate transport of the AcrB efflux pump

    DOE PAGES

    Muller, Reinke T.; Travers, Timothy; Cha, Hi-jea; ...

    2017-10-05

    The functionally important switch-loop of the trimeric multidrug transporter AcrB separates the access and deep drug binding pockets in every protomer. This loop, comprising 11 amino acid residues, has been shown to be crucial for substrate transport, as drugs have to travel past the loop to reach the deep binding pocket and from there are transported outside the cell via the connected AcrA and TolC channels. It contains four symmetrically arranged glycine residues suggesting that flexibility is a key feature for pump activity. Upon combinatorial substitution of these glycine residues to proline, functional and structural asymmetry was observed. Proline substitutionsmore » on the PC1 proximal side completely abolished transport and reduced backbone flexibility of the switch loop, which adopted a conformation restricting the pathway towards the deep binding pocket. Here, two phenylalanine residues located adjacent to the substitution sensitive glycine residues play a role in blocking the pathway upon rigidification of the loop, since the removal of the phenyl rings from the rigid loop restores drug transport activity.« less

  2. Switch loop flexibility affects substrate transport of the AcrB efflux pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Reinke T.; Travers, Timothy; Cha, Hi-jea

    The functionally important switch-loop of the trimeric multidrug transporter AcrB separates the access and deep drug binding pockets in every protomer. This loop, comprising 11 amino acid residues, has been shown to be crucial for substrate transport, as drugs have to travel past the loop to reach the deep binding pocket and from there are transported outside the cell via the connected AcrA and TolC channels. It contains four symmetrically arranged glycine residues suggesting that flexibility is a key feature for pump activity. Upon combinatorial substitution of these glycine residues to proline, functional and structural asymmetry was observed. Proline substitutionsmore » on the PC1 proximal side completely abolished transport and reduced backbone flexibility of the switch loop, which adopted a conformation restricting the pathway towards the deep binding pocket. Here, two phenylalanine residues located adjacent to the substitution sensitive glycine residues play a role in blocking the pathway upon rigidification of the loop, since the removal of the phenyl rings from the rigid loop restores drug transport activity.« less

  3. Thermodynamics-hydration relationships within loops that affect G-quadruplexes under molecular crowding conditions.

    PubMed

    Fujimoto, Takeshi; Nakano, Shu-ichi; Sugimoto, Naoki; Miyoshi, Daisuke

    2013-01-31

    We systematically investigated the effects of loop length on the conformation, thermodynamic stability, and hydration of DNA G-quadruplexes under dilute and molecular crowding conditions in the presence of Na(+). Structural analysis showed that molecular crowding induced conformational switches of oligonucleotides with the longer guanine stretch and the shorter thymine loop. Thermodynamic parameters further demonstrated that the thermodynamic stability of G-quadruplexes increased by increasing the loop length from two to four, whereas it decreased by increasing the loop length from four to six. Interestingly, we found by osmotic pressure analysis that the number of water molecules released from the G-quadruplex decreased with increasing thermodynamic stability. We assumed that base-stacking interactions within the loops not only stabilized the whole G-quadruplex structure but also created hydration sites by accumulating nucleotide functional groups. The molecular crowding effects on the stability of G-quadruplexes composed of abasic sites, which reduce the stacking interactions at the loops, further demonstrated that G-quadruplexes with fewer stacking interactions within the loops released a larger number of water molecules upon folding. These results showed that the stacking interactions within the loops determined the thermodynamic stability and hydration of the whole G-quadruplex.

  4. The diversity of H3 loops determines the antigen-binding tendencies of antibody CDR loops.

    PubMed

    Tsuchiya, Yuko; Mizuguchi, Kenji

    2016-04-01

    Of the complementarity-determining regions (CDRs) of antibodies, H3 loops, with varying amino acid sequences and loop lengths, adopt particularly diverse loop conformations. The diversity of H3 conformations produces an array of antigen recognition patterns involving all the CDRs, in which the residue positions actually in contact with the antigen vary considerably. Therefore, for a deeper understanding of antigen recognition, it is necessary to relate the sequence and structural properties of each residue position in each CDR loop to its ability to bind antigens. In this study, we proposed a new method for characterizing the structural features of the CDR loops and obtained the antigen-binding ability of each residue position in each CDR loop. This analysis led to a simple set of rules for identifying probable antigen-binding residues. We also found that the diversity of H3 loop lengths and conformations affects the antigen-binding tendencies of all the CDR loops. © 2016 The Protein Society.

  5. Loop Analysis of Causal Feedback in Epidemiology: An Illustration Relating To Urban Neighborhoods and Resident Depressive Experiences

    PubMed Central

    2008-01-01

    The causal feedback implied by urban neighborhood conditions that shape human health experiences, that in turn shape neighborhood conditions through a complex causal web, raises a challenge for traditional epidemiological causal analyses. This article introduces the loop analysis method, and builds off of a core loop model linking neighborhood property vacancy rate, resident depressive symptoms, rate of neighborhood death, and rate of neighborhood exit in a feedback network. I justify and apply loop analysis to the specific example of depressive symptoms and abandoned urban residential property to show how inquiries into the behavior of causal systems can answer different kinds of hypotheses, and thereby compliment those of causal modeling using statistical models. Neighborhood physical conditions that are only indirectly influenced by depressive symptoms may nevertheless manifest in the mental health experiences of their residents; conversely, neighborhood physical conditions may be a significant mental health risk for the population of neighborhood residents. I find that participatory greenspace programs are likely to produce adaptive responses in depressive symptoms and different neighborhood conditions, which are different in character to non-participatory greenspace interventions. PMID:17706851

  6. Affective Productions of Mathematical Experience

    ERIC Educational Resources Information Center

    Walshaw, Margaret; Brown, Tony

    2012-01-01

    In underscoring the affective elements of mathematics experience, we work with contemporary readings of the work of Spinoza on the politics of affect, to understand what is included in the cognitive repertoire of the Subject. We draw on those resources to tell a pedagogical tale about the relation between cognition and affect in settings of…

  7. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  8. THE ROLE OF AFFECTIVE EXPERIENCE IN WORK MOTIVATION

    PubMed Central

    SEO, MYEONG-GU; BARRETT, LISA FELDMAN; BARTUNEK, JEAN M.

    2005-01-01

    Based on psychological and neurobiological theories of core affective experience, we identify a set of direct and indirect paths through which affective feelings at work affect three dimensions of behavioral outcomes: direction, intensity, and persistence. First, affective experience may influence these behavioral outcomes indirectly by affecting goal level and goal commitment, as well as three key judgment components of work motivation: expectancy judgments, utility judgments, and progress judgments. Second, affective experience may also affect these behavioral outcomes directly. We discuss implications of our model. PMID:16871321

  9. The Projectile Inside the Loop

    ERIC Educational Resources Information Center

    Varieschi, Gabriele U.

    2006-01-01

    The loop-the-loop demonstration can be easily adapted to study the kinematics of projectile motion, when the moving body falls inside the apparatus. Video capturing software can be used to reveal peculiar geometrical effects of this simple but educational experiment.

  10. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2014-01-01

    A loop heat pipe must start successfully before it can commence its service. The start-up transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe start-up behaviors. Topics include the four start-up scenarios, the initial fluid distribution between the evaporator and reservoir that determines the start-up scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power start-up, and methods to enhance the start-up success. Also addressed are the thermodynamic constraint between the evaporator and reservoir in the loop heat pipe operation, the superheat requirement for nucleate boiling, pressure spike and pressure surge during the start-up transient, and repeated cycles of loop start-up andshutdown under certain conditions.

  11. Incidental experiences of affective coherence and incoherence influence persuasion.

    PubMed

    Huntsinger, Jeffrey R

    2013-06-01

    When affective experiences are inconsistent with activated evaluative concepts, people experience what is called affective incoherence; when affective experiences are consistent with activated evaluative concepts, people experience affective coherence. The present research asked whether incidental feelings of affective coherence and incoherence would regulate persuasion. Experiences of affective coherence and incoherence were predicted and found to influence the processing of persuasive messages when evoked prior to receipt of such messages (Experiments 1 and 3), and to influence the confidence with which thoughts generated by persuasive messages were held when evoked after presentation of such messages (Experiments 2 and 3). These results extend research on affective coherence and incoherence by showing that they exert a broader impact on cognitive activity than originally assumed.

  12. Regulative Loops, Step Loops and Task Loops

    ERIC Educational Resources Information Center

    VanLehn, Kurt

    2016-01-01

    This commentary suggests a generalization of the conception of the behavior of tutoring systems, which the target article characterized as having an outer loop that was executed once per task and an inner loop that was executed once per step of the task. A more general conception sees these two loops as instances of regulative loops, which…

  13. Closed-Loop Neuromorphic Benchmarks

    PubMed Central

    Stewart, Terrence C.; DeWolf, Travis; Kleinhans, Ashley; Eliasmith, Chris

    2015-01-01

    Evaluating the effectiveness and performance of neuromorphic hardware is difficult. It is even more difficult when the task of interest is a closed-loop task; that is, a task where the output from the neuromorphic hardware affects some environment, which then in turn affects the hardware's future input. However, closed-loop situations are one of the primary potential uses of neuromorphic hardware. To address this, we present a methodology for generating closed-loop benchmarks that makes use of a hybrid of real physical embodiment and a type of “minimal” simulation. Minimal simulation has been shown to lead to robust real-world performance, while still maintaining the practical advantages of simulation, such as making it easy for the same benchmark to be used by many researchers. This method is flexible enough to allow researchers to explicitly modify the benchmarks to identify specific task domains where particular hardware excels. To demonstrate the method, we present a set of novel benchmarks that focus on motor control for an arbitrary system with unknown external forces. Using these benchmarks, we show that an error-driven learning rule can consistently improve motor control performance across a randomly generated family of closed-loop simulations, even when there are up to 15 interacting joints to be controlled. PMID:26696820

  14. A prototype heat pipe heat exchanger for the capillary pumped loop flight experiment

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Yun, Seokgeun; Kroliczek, Edward J.

    1992-01-01

    A Capillary Pumped Two-Phase Heat Transport Loop (CAPL) Flight Experiment, currently planned for 1993, will provide microgravity verification of the prototype capillary pumped loop (CPL) thermal control system for EOS. CAPL employs a heat pipe heat exchanger (HPHX) to couple the condenser section of the CPL to the radiator assembly. A prototype HPHX consisting of a heat exchanger (HX), a header heat pipe (HHP), a spreader heat pipe (SHP), and a flow regulator has been designed and tested. The HX transmits heat from the CPL condenser to the HHP, while the HHP and SHP transport heat to the radiator assembly. The flow regulator controls flow distribution among multiple parallel HPHX's. Test results indicated that the prototype HPHX could transport up to 800 watts with an overall heat transfer coefficient of more than 6000 watts/sq m-deg C. Flow regulation among parallel HPHX's was also demonstrated.

  15. Studying DNA Looping by Single-Molecule FRET

    PubMed Central

    Le, Tung T.; Kim, Harold D.

    2014-01-01

    Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA. PMID:24998459

  16. Studying DNA looping by single-molecule FRET.

    PubMed

    Le, Tung T; Kim, Harold D

    2014-06-28

    Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA.

  17. Closed-Loop Deep Brain Stimulation for Refractory Chronic Pain

    PubMed Central

    Shirvalkar, Prasad; Veuthey, Tess L.; Dawes, Heather E.; Chang, Edward F.

    2018-01-01

    Pain is a subjective experience that alerts an individual to actual or potential tissue damage. Through mechanisms that are still unclear, normal physiological pain can lose its adaptive value and evolve into pathological chronic neuropathic pain. Chronic pain is a multifaceted experience that can be understood in terms of somatosensory, affective, and cognitive dimensions, each with associated symptoms and neural signals. While there have been many attempts to treat chronic pain, in this article we will argue that feedback-controlled ‘closed-loop’ deep brain stimulation (DBS) offers an urgent and promising route for treatment. Contemporary DBS trials for chronic pain use “open-loop” approaches in which tonic stimulation is delivered with fixed parameters to a single brain region. The impact of key variables such as the target brain region and the stimulation waveform is unclear, and long-term efficacy has mixed results. We hypothesize that chronic pain is due to abnormal synchronization between brain networks encoding the somatosensory, affective and cognitive dimensions of pain, and that multisite, closed-loop DBS provides an intuitive mechanism for disrupting that synchrony. By (1) identifying biomarkers of the subjective pain experience and (2) integrating these signals into a state-space representation of pain, we can create a predictive model of each patient's pain experience. Then, by establishing how stimulation in different brain regions influences individual neural signals, we can design real-time, closed-loop therapies tailored to each patient. While chronic pain is a complex disorder that has eluded modern therapies, rich historical data and state-of-the-art technology can now be used to develop a promising treatment. PMID:29632482

  18. Combining Charge Couple Devices and Rate Sensors for the Feedforward Control System of a Charge Coupled Device Tracking Loop.

    PubMed

    Tang, Tao; Tian, Jing; Zhong, Daijun; Fu, Chengyu

    2016-06-25

    A rate feed forward control-based sensor fusion is proposed to improve the closed-loop performance for a charge couple device (CCD) tracking loop. The target trajectory is recovered by combining line of sight (LOS) errors from the CCD and the angular rate from a fiber-optic gyroscope (FOG). A Kalman filter based on the Singer acceleration model utilizes the reconstructive target trajectory to estimate the target velocity. Different from classical feed forward control, additive feedback loops are inevitably added to the original control loops due to the fact some closed-loop information is used. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability. The bandwidth of the Kalman filter is the major factor affecting the control stability and close-loop performance. Both simulations and experiments are provided to demonstrate the benefits of the proposed algorithm.

  19. A comparative approach to closed-loop computation.

    PubMed

    Roth, E; Sponberg, S; Cowan, N J

    2014-04-01

    Neural computation is inescapably closed-loop: the nervous system processes sensory signals to shape motor output, and motor output consequently shapes sensory input. Technological advances have enabled neuroscientists to close, open, and alter feedback loops in a wide range of experimental preparations. The experimental capability of manipulating the topology-that is, how information can flow between subsystems-provides new opportunities to understand the mechanisms and computations underlying behavior. These experiments encompass a spectrum of approaches from fully open-loop, restrained preparations to the fully closed-loop character of free behavior. Control theory and system identification provide a clear computational framework for relating these experimental approaches. We describe recent progress and new directions for translating experiments at one level in this spectrum to predictions at another level. Operating across this spectrum can reveal new understanding of how low-level neural mechanisms relate to high-level function during closed-loop behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Design and Testing of a Cryogenic Capillary Pumped Loop Flight Experiment

    NASA Technical Reports Server (NTRS)

    Bugby, David C.; Kroliczek, Edward J.; Ku, Jentung; Swanson, Ted; Tomlinson, B. J.; Davis, Thomas M.; Baumann, Jane; Cullimore, Brent

    1998-01-01

    This paper details the flight configuration and pre-flight performance test results of the fifth generation cryogenic capillary pumped loop (CCPL-5). This device will fly on STS-95 in October 1998 as part of the CRYOTSU Flight Experiment. This flight represents the first in-space demonstration of a CCPL; a miniaturized two-phase fluid circulator for thermally linking cryogenic components. CCPL-5 utilizes N2 as the working fluid and has a practical operating range of 75-110 K. Test results indicate that CCPL-5, which weighs about 200 grams, can transport over 10 W of cooling a distance of 0.25 m (or more) with less than a 5 K temperature drop.

  1. Design and Testing of a Cryogenic Capillary Pumped Loop Flight Experiment

    NASA Technical Reports Server (NTRS)

    Bugby, David C.; Kroliczek, Edward J.; Ku, Jentung; Swanson, Ted; Tomlinson, B. J.; Davis, Thomas M.; Baumann, Jane; Cullimore, Brent

    1998-01-01

    This paper details the flight configuration and pre-flight performance test results of the fifth generation cryogenic capillary pumped loop (CCPL-5). This device will fly on STS-95 in October 1998 as part of the CRYOTSU Flight Experiment. This flight represents the first in-space demonstration of a CCPL, a miniaturized two-phase fluid circulator for thermally linking cryogenic cooling sources to remote cryogenic components. CCPL-5 utilizes N2 as the working fluid and has a practical operating range of 75-110 K. Test results indicate that CCPL-5, which weighs about 200 grams, can transport over 10 W of cooling a distance of 0.25 m (or more) with less than a 5 K temperature drop.

  2. Harwell high pressure heat transfer loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, A.W.; Keeys, R.K.F.

    1967-12-15

    A detailed description is presented of the Harwell (Chemical Engineering and Process Technology Division) high pressure, steam-water heat transfer loop; this description is aimed at supplementing the information given in reports on individual experiments. The operating instructions for the loop are given in an appendix. (auth)

  3. Run-time parallelization and scheduling of loops

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Mirchandaney, Ravi; Crowley, Kay

    1991-01-01

    Run-time methods are studied to automatically parallelize and schedule iterations of a do loop in certain cases where compile-time information is inadequate. The methods presented involve execution time preprocessing of the loop. At compile-time, these methods set up the framework for performing a loop dependency analysis. At run-time, wavefronts of concurrently executable loop iterations are identified. Using this wavefront information, loop iterations are reordered for increased parallelism. Symbolic transformation rules are used to produce: inspector procedures that perform execution time preprocessing, and executors or transformed versions of source code loop structures. These transformed loop structures carry out the calculations planned in the inspector procedures. Performance results are presented from experiments conducted on the Encore Multimax. These results illustrate that run-time reordering of loop indexes can have a significant impact on performance.

  4. Closed-loop control of renal perfusion pressure in physiological experiments.

    PubMed

    Campos-Delgado, D U; Bonilla, I; Rodríguez-Martínez, M; Sánchez-Briones, M E; Ruiz-Hernández, E

    2013-07-01

    This paper presents the design, experimental modeling, and control of a pump-driven renal perfusion pressure (RPP)-regulatory system to implement precise and relatively fast RPP regulation in rats. The mechatronic system is a simple, low-cost, and reliable device to automate the RPP regulation process based on flow-mediated occlusion. Hence, the regulated signal is the RPP measured in the left femoral artery of the rat, and the manipulated variable is the voltage applied to a dc motor that controls the occlusion of the aorta. The control system is implemented in a PC through the LabView software, and a data acquisition board NI USB-6210. A simple first-order linear system is proposed to approximate the dynamics in the experiment. The parameters of the model are chosen to minimize the error between the predicted and experimental output averaged from eight input/output datasets at different RPP operating conditions. A closed-loop servocontrol system based on a pole-placement PD controller plus dead-zone compensation was proposed for this purpose. First, the feedback structure was validated in simulation by considering parameter uncertainty, and constant and time-varying references. Several experimental tests were also conducted to validate in real time the closed-loop performance for stepwise and fast switching references, and the results show the effectiveness of the proposed automatic system to regulate the RPP in the rat, in a precise, accurate (mean error less than 2 mmHg) and relatively fast mode (10-15 s of response time).

  5. Run-time parallelization and scheduling of loops

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Mirchandaney, Ravi; Crowley, Kay

    1990-01-01

    Run time methods are studied to automatically parallelize and schedule iterations of a do loop in certain cases, where compile-time information is inadequate. The methods presented involve execution time preprocessing of the loop. At compile-time, these methods set up the framework for performing a loop dependency analysis. At run time, wave fronts of concurrently executable loop iterations are identified. Using this wavefront information, loop iterations are reordered for increased parallelism. Symbolic transformation rules are used to produce: inspector procedures that perform execution time preprocessing and executors or transformed versions of source code loop structures. These transformed loop structures carry out the calculations planned in the inspector procedures. Performance results are presented from experiments conducted on the Encore Multimax. These results illustrate that run time reordering of loop indices can have a significant impact on performance. Furthermore, the overheads associated with this type of reordering are amortized when the loop is executed several times with the same dependency structure.

  6. Interactions among poverty, gender, and health systems affect women's participation in services to prevent HIV transmission from mother to child: A causal loop analysis.

    PubMed

    Yourkavitch, Jennifer; Hassmiller Lich, Kristen; Flax, Valerie L; Okello, Elialilia S; Kadzandira, John; Katahoire, Anne Ruhweza; Munthali, Alister C; Thomas, James C

    2018-01-01

    Retention in care remains an important issue for prevention of mother-to-child transmission (PMTCT) programs according to WHO guidelines, formerly called the "Option B+" approach. The objective of this study was to examine how poverty, gender, and health system factors interact to influence women's participation in PMTCT services. We used qualitative research, literature, and hypothesized variable connections to diagram causes and effects in causal loop models. We found that many factors, including antiretroviral therapy (ART) use, service design and quality, stigma, disclosure, spouse/partner influence, decision-making autonomy, and knowledge about PMTCT, influence psychosocial health, which in turn affects women's participation in PMTCT services. Thus, interventions to improve psychosocial health need to address many factors to be successful. We also found that the design of PMTCT services, a modifiable factor, is important because it affects several other factors. We identified 66 feedback loops that may contribute to policy resistance-that is, a policy's failure to have its intended effect. Our findings point to the need for a multipronged intervention to encourage women's continued participation in PMTCT services and for longitudinal research to quantify and test our causal loop model.

  7. N-Loop Learning: Part II--An Empirical Investigation

    ERIC Educational Resources Information Center

    Simonin, Bernard L.

    2017-01-01

    Purpose: Through a survey of firm's experiences with strategic alliances and a structural equation modeling approach, the aim of this study is to stimulate further interest in modeling and empirical research in the area of N-loop learning. Although the concepts of single-loop and double-loop learning, in particular, are well established in the…

  8. DNA looping by FokI: the impact of twisting and bending rigidity on protein-induced looping dynamics

    PubMed Central

    Laurens, Niels; Rusling, David A.; Pernstich, Christian; Brouwer, Ineke; Halford, Stephen E.; Wuite, Gijs J. L.

    2012-01-01

    Protein-induced DNA looping is crucial for many genetic processes such as transcription, gene regulation and DNA replication. Here, we use tethered-particle motion to examine the impact of DNA bending and twisting rigidity on loop capture and release, using the restriction endonuclease FokI as a test system. To cleave DNA efficiently, FokI bridges two copies of an asymmetric sequence, invariably aligning the sites in parallel. On account of the fixed alignment, the topology of the DNA loop is set by the orientation of the sites along the DNA. We show that both the separation of the FokI sites and their orientation, altering, respectively, the twisting and the bending of the DNA needed to juxtapose the sites, have profound effects on the dynamics of the looping interaction. Surprisingly, the presence of a nick within the loop does not affect the observed rigidity of the DNA. In contrast, the introduction of a 4-nt gap fully relaxes all of the torque present in the system but does not necessarily enhance loop stability. FokI therefore employs torque to stabilise its DNA-looping interaction by acting as a ‘torsional’ catch bond. PMID:22373924

  9. Phonological loop affects children's interpretations of explicit but not ambiguous questions: Research on links between working memory and referent assignment.

    PubMed

    Meng, Xianwei; Murakami, Taro; Hashiya, Kazuhide

    2017-01-01

    Understanding the referent of other's utterance by referring the contextual information helps in smooth communication. Although this pragmatic referential process can be observed even in infants, its underlying mechanism and relative abilities remain unclear. This study aimed to comprehend the background of the referential process by investigating whether the phonological loop affected the referent assignment. A total of 76 children (43 girls) aged 3-5 years participated in a reference assignment task in which an experimenter asked them to answer explicit (e.g., "What color is this?") and ambiguous (e.g., "What about this?") questions about colorful objects. The phonological loop capacity was measured by using the forward digit span task in which children were required to repeat the numbers as an experimenter uttered them. The results showed that the scores of the forward digit span task positively predicted correct response to explicit questions and part of the ambiguous questions. That is, the phonological loop capacity did not have effects on referent assignment in response to ambiguous questions that were asked after a topic shift of the explicit questions and thus required a backward reference to the preceding explicit questions to detect the intent of the current ambiguous questions. These results suggest that although the phonological loop capacity could overtly enhance the storage of verbal information, it does not seem to directly contribute to the pragmatic referential process, which might require further social cognitive processes.

  10. In-Space technology experiments program. A high efficiency thermal interface (using condensation heat transfer) between a 2-phase fluid loop and heatpipe radiator: Experiment definition phase

    NASA Technical Reports Server (NTRS)

    Pohner, John A.; Dempsey, Brian P.; Herold, Leroy M.

    1990-01-01

    Space Station elements and advanced military spacecraft will require rejection of tens of kilowatts of waste heat. Large space radiators and two-phase heat transport loops will be required. To minimize radiator size and weight, it is critical to minimize the temperature drop between the heat source and sink. Under an Air Force contract, a unique, high-performance heat exchanger is developed for coupling the radiator to the transport loop. Since fluid flow through the heat exchanger is driven by capillary forces which are easily dominated by gravity forces in ground testing, it is necessary to perform microgravity thermal testing to verify the design. This contract consists of an experiment definition phase leading to a preliminary design and cost estimate for a shuttle-based flight experiment of this heat exchanger design. This program will utilize modified hardware from a ground test program for the heat exchanger.

  11. Decay-less kink oscillations in coronal loops

    NASA Astrophysics Data System (ADS)

    Anfinogentov, S.; Nisticò, G.; Nakariakov, V. M.

    2013-12-01

    Context. Kink oscillations of coronal loops in an off-limb active region are detected with the Imaging Assembly Array (AIA) instruments of the Solar Dynamics Observatory (SDO) at 171 Å. Aims: We aim to measure periods and amplitudes of kink oscillations of different loops and to determinate the evolution of the oscillation phase along the oscillating loop. Methods: Oscillating coronal loops were visually identified in the field of view of SDO/AIA and STEREO/EUVI-A: the loop length was derived by three-dimensional analysis. Several slits were taken along the loops to assemble time-distance maps. We identified oscillatory patterns and retrieved periods and amplitudes of the oscillations. We applied the cross-correlation technique to estimate the phase shift between oscillations at different segments of oscillating loops. Results: We found that all analysed loops show low-amplitude undamped transverse oscillations. Oscillation periods of loops in the same active region range from 2.5 to 11 min, and are different for different loops. The displacement amplitude is lower than 1 Mm. The oscillation phase is constant along each analysed loop. The spatial structure of the phase of the oscillations corresponds to the fundamental standing kink mode. We conclude that the observed behaviour is consistent with the empirical model in terms of a damped harmonic resonator affected by a non-resonant continuously operating external force. A movie is available in electronic form at http://www.aanda.org

  12. Perception as a closed-loop convergence process.

    PubMed

    Ahissar, Ehud; Assa, Eldad

    2016-05-09

    Perception of external objects involves sensory acquisition via the relevant sensory organs. A widely-accepted assumption is that the sensory organ is the first station in a serial chain of processing circuits leading to an internal circuit in which a percept emerges. This open-loop scheme, in which the interaction between the sensory organ and the environment is not affected by its concurrent downstream neuronal processing, is strongly challenged by behavioral and anatomical data. We present here a hypothesis in which the perception of external objects is a closed-loop dynamical process encompassing loops that integrate the organism and its environment and converging towards organism-environment steady-states. We discuss the consistency of closed-loop perception (CLP) with empirical data and show that it can be synthesized in a robotic setup. Testable predictions are proposed for empirical distinction between open and closed loop schemes of perception.

  13. Misremembering Past Affect Predicts Adolescents' Future Affective Experience During Exercise.

    PubMed

    Karnaze, Melissa M; Levine, Linda J; Schneider, Margaret

    2017-09-01

    Increasing physical activity among adolescents is a public health priority. Because people are motivated to engage in activities that make them feel good, this study examined predictors of adolescents' feelings during exercise. During the 1st semester of the school year, we assessed 6th-grade students' (N = 136) cognitive appraisals of the importance of exercise. Participants also reported their affect during a cardiovascular fitness test and recalled their affect during the fitness test later that semester. During the 2nd semester, the same participants rated their affect during a moderate-intensity exercise task. Affect reported during the moderate-intensity exercise task was predicted by cognitive appraisals of the importance of exercise and by misremembering affect during the fitness test as more positive than it actually was. This memory bias mediated the association between appraising exercise as important and experiencing a positive change in affect during the moderate-intensity exercise task. These findings highlight the roles of both cognitive appraisals and memory as factors that may influence affect during exercise. Future work should explore whether affect during exercise can be modified by targeting appraisals and memories related to exercise experiences.

  14. Misremembering Past Affect Predicts Adolescents’ Future Affective Experience during Exercise

    PubMed Central

    Karnaze, Melissa M.; Levine, Linda J.; Schneider, Margaret

    2018-01-01

    Purpose Increasing physical activity among adolescents is a public health priority. Because people are motivated to engage in activities that make them feel good, this study examined predictors of adolescents’ feelings during exercise. Method During the first semester of the school year, we assessed sixth grade students’ (N = 136) cognitive appraisals of the importance of exercise. Participants also reported their affect during a cardiovascular fitness test, and recalled their affect during the fitness test later that semester. During the second semester, the same participants rated their affect during a moderate-intensity exercise task. Results Affect reported during the moderate-intensity exercise task was predicted by cognitive appraisals of the importance of exercise, and by misremembering affect during the fitness test as more positive than it actually was. This memory bias mediated the association between appraising exercise as important and experiencing a positive change in affect during the moderate-intensity exercise task. Conclusion These findings highlight the roles of both cognitive appraisals and memory as factors that may influence affect during exercise. Future work should explore whether affect during exercise can be modified by targeting appraisals and memories related to exercise experiences. PMID:28494196

  15. Charge and Geometry of Residues in the Loop 2 β Hairpin Differentially Affect Agonist and Ethanol Sensitivity in Glycine Receptors

    PubMed Central

    Perkins, Daya I.; Trudell, James R.; Asatryan, Liana; Alkana, Ronald L.

    2012-01-01

    Recent studies highlighted the importance of loop 2 of α1 glycine receptors (GlyRs) in the propagation of ligand-binding energy to the channel gate. Mutations that changed polarity at position 52 in the β hairpin of loop 2 significantly affected sensitivity to ethanol. The present study extends the investigation to charged residues. We found that substituting alanine with the negative glutamate at position 52 (A52E) significantly left-shifted the glycine concentration response curve and increased sensitivity to ethanol, whereas the negative aspartate substitution (A52D) significantly right-shifted the glycine EC50 but did not affect ethanol sensitivity. It is noteworthy that the uncharged glutamine at position 52 (A52Q) caused only a small right shift of the glycine EC50 while increasing ethanol sensitivity as much as A52E. In contrast, the shorter uncharged asparagine (A52N) caused the greatest right shift of glycine EC50 and reduced ethanol sensitivity to half of wild type. Collectively, these findings suggest that charge interactions determined by the specific geometry of the amino acid at position 52 (e.g., the 1-Å chain length difference between aspartate and glutamate) play differential roles in receptor sensitivity to agonist and ethanol. We interpret these results in terms of a new homology model of GlyR based on a prokaryotic ion channel and propose that these mutations form salt bridges to residues across the β hairpin (A52E-R59 and A52N-D57). We hypothesize that these electrostatic interactions distort loop 2, thereby changing agonist activation and ethanol modulation. This knowledge will help to define the key physical-chemical parameters that cause the actions of ethanol in GlyRs. PMID:22357974

  16. Edge-on dislocation loop in anisotropic hcp zirconium thin foil

    NASA Astrophysics Data System (ADS)

    Wu, Wenwang; Xia, Re; Qian, Guian; Xu, Shucai; Zhang, Jinhuan

    2015-10-01

    Edge-on dislocation loops with 〈 a 〉 -type and 〈 c 〉 -type of Burgers vectors can be formed on prismatic or basel habit planes of hexagonal close-packed (hcp) zirconium alloys during in-situ ion irradiation and neutron irradiation experiments. In this work, an anisotropic image stress method was employed to analyze the free surface effects of dislocation loops within hcp Zr thin foils. Calculation results demonstrate that image stress has a remarkable effect on the distortion fields of dislocation loops within infinite medium, and the image energy becomes remarkable when dislocation loops are situated close to the free surfaces. Moreover, image forces of the 1 / 2 〈 0001 〉 (0001) dislocation loop within (0001) thin foil is much stronger than that of the 1 / 3 〈 11 2 bar 0 〉 (11 2 bar 0) dislocation loop within (11 2 bar 0) thin foil of identical geometrical configurations. Finally, image stress effect on the physical behaviors of loops during in-situ ion irradiation experiments is discussed.

  17. IN-PILE CORROSION TEST LOOPS FOR AQUEOUS HOMOGENEOUS REACTOR SOLUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, H.C.; Jenks, G.H.; Bohlmann, E.G.

    1960-12-21

    An in-pile corrosion test loop is described which is used to study the effect of reactor radiation on the corrosion of materials of construction and the chemical stability of fuel solutions of interest to the Aqueous Homogeneous Reactor Program at ORNL. Aqueous solutions of uranyl sulfate are circulated in the loop by means of a 5-gpm canned-rotor pump, and the pump loop is designed for operation at temperatures to 300 ts C and pressures to 2000 psia while exposed to reactor radiation in beam-hole facilities of the LITR and ORR. Operation of the first loop in-pile was begun in Octobermore » 1954, and since that time 17 other in-pile loop experiments were completed. Design criteria of the pump loop and its associated auxiliary equipment and instrumentation are described. In-pile operating procedures, safety features, and operating experience are presented. A cost summary of the design, fabrication, and installation of the loop and experimental facillties is also included. (auth)« less

  18. Phonological loop affects children’s interpretations of explicit but not ambiguous questions: Research on links between working memory and referent assignment

    PubMed Central

    Murakami, Taro; Hashiya, Kazuhide

    2017-01-01

    Understanding the referent of other’s utterance by referring the contextual information helps in smooth communication. Although this pragmatic referential process can be observed even in infants, its underlying mechanism and relative abilities remain unclear. This study aimed to comprehend the background of the referential process by investigating whether the phonological loop affected the referent assignment. A total of 76 children (43 girls) aged 3–5 years participated in a reference assignment task in which an experimenter asked them to answer explicit (e.g., “What color is this?”) and ambiguous (e.g., “What about this?”) questions about colorful objects. The phonological loop capacity was measured by using the forward digit span task in which children were required to repeat the numbers as an experimenter uttered them. The results showed that the scores of the forward digit span task positively predicted correct response to explicit questions and part of the ambiguous questions. That is, the phonological loop capacity did not have effects on referent assignment in response to ambiguous questions that were asked after a topic shift of the explicit questions and thus required a backward reference to the preceding explicit questions to detect the intent of the current ambiguous questions. These results suggest that although the phonological loop capacity could overtly enhance the storage of verbal information, it does not seem to directly contribute to the pragmatic referential process, which might require further social cognitive processes. PMID:29088282

  19. Osmotic mechanism of the loop extrusion process

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tetsuya; Schiessel, Helmut

    2017-09-01

    The loop extrusion theory assumes that protein factors, such as cohesin rings, act as molecular motors that extrude chromatin loops. However, recent single molecule experiments have shown that cohesin does not show motor activity. To predict the physical mechanism involved in loop extrusion, we here theoretically analyze the dynamics of cohesin rings on a loop, where a cohesin loader is in the middle and unloaders at the ends. Cohesin monomers bind to the loader rather frequently and cohesin dimers bind to this site only occasionally. Our theory predicts that a cohesin dimer extrudes loops by the osmotic pressure of cohesin monomers on the chromatin fiber between the two connected rings. With this mechanism, the frequency of the interactions between chromatin segments depends on the loading and unloading rates of dimers at the corresponding sites.

  20. Perception as a closed-loop convergence process

    PubMed Central

    Ahissar, Ehud; Assa, Eldad

    2016-01-01

    Perception of external objects involves sensory acquisition via the relevant sensory organs. A widely-accepted assumption is that the sensory organ is the first station in a serial chain of processing circuits leading to an internal circuit in which a percept emerges. This open-loop scheme, in which the interaction between the sensory organ and the environment is not affected by its concurrent downstream neuronal processing, is strongly challenged by behavioral and anatomical data. We present here a hypothesis in which the perception of external objects is a closed-loop dynamical process encompassing loops that integrate the organism and its environment and converging towards organism-environment steady-states. We discuss the consistency of closed-loop perception (CLP) with empirical data and show that it can be synthesized in a robotic setup. Testable predictions are proposed for empirical distinction between open and closed loop schemes of perception. DOI: http://dx.doi.org/10.7554/eLife.12830.001 PMID:27159238

  1. Formation of chromosomal domains in interphase by loop extrusion

    NASA Astrophysics Data System (ADS)

    Fudenberg, Geoffrey

    While genomes are often considered as one-dimensional sequences, interphase chromosomes are organized in three dimensions with an essential role for regulating gene expression. Recent studies have shown that Topologically Associating Domains (TADs) are fundamental structural and functional building blocks of human interphase chromosomes. Despite observations that architectural proteins, including CTCF, demarcate and maintain the borders of TADs, the mechanisms underlying TAD formation remain unknown. Here we propose that loop extrusion underlies the formation TADs. In this process, cis-acting loop-extruding factors, likely cohesins, form progressively larger loops, but stall at TAD boundaries due to interactions with boundary proteins, including CTCF. This process dynamically forms loops of various sizes within but not between TADs. Using polymer simulations, we find that loop extrusion can produce TADs as determined by our analyses of the highest-resolution experimental data. Moreover, we find that loop extrusion can explain many diverse experimental observations, including: the preferential orientation of CTCF motifs and enrichments of architectural proteins at TAD boundaries; TAD boundary deletion experiments; and experiments with knockdown or depletion of CTCF, cohesin, and cohesin-loading factors. Together, the emerging picture from our work is that TADs are formed by rapidly associating, growing, and dissociating loops, presenting a clear framework for understanding interphase chromosomal organization.

  2. Closed-loop conductance scanning tunneling spectroscopy: demonstrating the equivalence to the open-loop alternative.

    PubMed

    Hellenthal, Chris; Sotthewes, Kai; Siekman, Martin H; Kooij, E Stefan; Zandvliet, Harold J W

    2015-01-01

    We demonstrate the validity of using closed-loop z(V) conductance scanning tunneling spectroscopy (STS) measurements for the determination of the effective tunneling barrier by comparing them to more conventional open-loop I(z) measurements. Through the development of a numerical model, the individual contributions to the effective tunneling barrier present in these experiments, such as the work function and the presence of an image charge, are determined quantitatively. This opens up the possibility of determining tunneling barriers of both vacuum and molecular systems in an alternative and more detailed manner.

  3. A kinase-dependent feedforward loop affects CREBB stability and long term memory formation.

    PubMed

    Lee, Pei-Tseng; Lin, Guang; Lin, Wen-Wen; Diao, Fengqiu; White, Benjamin H; Bellen, Hugo J

    2018-02-23

    In Drosophila , long-term memory (LTM) requires the cAMP-dependent transcription factor CREBB, expressed in the mushroom bodies (MB) and phosphorylated by PKA. To identify other kinases required for memory formation, we integrated Trojan exons encoding T2A-GAL4 into genes encoding putative kinases and selected for genes expressed in MB. These lines were screened for learning/memory deficits using UAS-RNAi knockdown based on an olfactory aversive conditioning assay. We identified a novel, conserved kinase, Meng-Po ( MP , CG11221 , SBK1 in human), the loss of which severely affects 3 hr memory and 24 hr LTM, but not learning. Remarkably, memory is lost upon removal of the MP protein in adult MB but restored upon its reintroduction. Overexpression of MP in MB significantly increases LTM in wild-type flies showing that MP is a limiting factor for LTM. We show that PKA phosphorylates MP and that both proteins synergize in a feedforward loop to control CREBB levels and LTM. key words: Drosophila, Mushroom bodies, SBK1, deGradFP, T2A-GAL4, MiMIC.

  4. SpalLoop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian; Wright, Ian

    Boiler tubes in steam power plants experience tube blockages due to exfoliation of oxide grown on the inner side of the tubes. In extreme cases, significant tube blockages can lead to forced power plant outages. It is thus desired to predict through modeling the amount of tube blockage in order to inform power plant operators of possible forced outages. SpalLoop solves for the stress-strain equations in an axisymmetric geometry, tracking the stress/strain evolution during boiler operation including outages for the entire boiler tube length. At each operational outage, i.e., temperature excursions down to room temperature, the amount of exfoliated areamore » for the entire tube loop is estimated the amount of tube blockage is predicted based assumed blockage geometry and site. The SpaLLoop code contains modules developed for oxide growth, stress analysis, tube loop geometry, blockage area by taking into account the following phenomena and features, (a) Plant operation schedule with periodic alternate full-load and partial-load regimes and shut-downs, i.e., temperature excursions from high-load to room temperature, (b) axisymmetric formulation for cylindrical tubes, (c) oxide growth in a temperature gradient with multiple oxide layers, (d) geometry of a boiler tube with a single tube loop or two tube loops, (e) temperature variation along the tube length based on hot gas temperature distribution outside the tube and inlet steam temperature, (f) non-uniform oxide growth along the tube length according to the local steam tube temperature, (g) exfoliated area module: at each operational outage considered, the amount of exfoliated area and exfoliated volume along the tube is estimated, (h) blockage module: at each operational outage considered, the exfoliated volume/mass for each tube loop is estimated from which the amount of tube blockage is predicted based on given blockage geometry (length, location, and geometry). The computer program is written in FORTRAN90. Its

  5. A magnetohydrodynamic theory of coronal loop transients

    NASA Technical Reports Server (NTRS)

    Yeh, T.

    1982-01-01

    The physical and geometrical characteristics of solar coronal loop transients are described in an MHD model based on Archimedes' MHD buoyancy force. The theory was developed from interpretation of coronagraphic data, particularly from Skylab. The brightness of a loop is taken to indicate the electron density, and successive pictures reveal the electron enhancement in different columns. The forces which lift the loop off the sun surface are analyzed as an MHD buoyancy force affecting every mass element by imparting an inertial force necessary for heliocentrifugal motion. Thermal forces are responsible for transferring the ambient stress to the interior of the loop to begin the process. The kinematic and hydrostatic buoyancy overcome the gravitational force, and a flux rope can then curve upward, spiralling like a corkscrew with varying cross section around the unwinding solar magnetic field lines.

  6. Iterative LQG Controller Design Through Closed-Loop Identification

    NASA Technical Reports Server (NTRS)

    Hsiao, Min-Hung; Huang, Jen-Kuang; Cox, David E.

    1996-01-01

    This paper presents an iterative Linear Quadratic Gaussian (LQG) controller design approach for a linear stochastic system with an uncertain open-loop model and unknown noise statistics. This approach consists of closed-loop identification and controller redesign cycles. In each cycle, the closed-loop identification method is used to identify an open-loop model and a steady-state Kalman filter gain from closed-loop input/output test data obtained by using a feedback LQG controller designed from the previous cycle. Then the identified open-loop model is used to redesign the state feedback. The state feedback and the identified Kalman filter gain are used to form an updated LQC controller for the next cycle. This iterative process continues until the updated controller converges. The proposed controller design is demonstrated by numerical simulations and experiments on a highly unstable large-gap magnetic suspension system.

  7. Unbiased, scalable sampling of protein loop conformations from probabilistic priors.

    PubMed

    Zhang, Yajia; Hauser, Kris

    2013-01-01

    Protein loops are flexible structures that are intimately tied to function, but understanding loop motion and generating loop conformation ensembles remain significant computational challenges. Discrete search techniques scale poorly to large loops, optimization and molecular dynamics techniques are prone to local minima, and inverse kinematics techniques can only incorporate structural preferences in adhoc fashion. This paper presents Sub-Loop Inverse Kinematics Monte Carlo (SLIKMC), a new Markov chain Monte Carlo algorithm for generating conformations of closed loops according to experimentally available, heterogeneous structural preferences. Our simulation experiments demonstrate that the method computes high-scoring conformations of large loops (>10 residues) orders of magnitude faster than standard Monte Carlo and discrete search techniques. Two new developments contribute to the scalability of the new method. First, structural preferences are specified via a probabilistic graphical model (PGM) that links conformation variables, spatial variables (e.g., atom positions), constraints and prior information in a unified framework. The method uses a sparse PGM that exploits locality of interactions between atoms and residues. Second, a novel method for sampling sub-loops is developed to generate statistically unbiased samples of probability densities restricted by loop-closure constraints. Numerical experiments confirm that SLIKMC generates conformation ensembles that are statistically consistent with specified structural preferences. Protein conformations with 100+ residues are sampled on standard PC hardware in seconds. Application to proteins involved in ion-binding demonstrate its potential as a tool for loop ensemble generation and missing structure completion.

  8. Unbiased, scalable sampling of protein loop conformations from probabilistic priors

    PubMed Central

    2013-01-01

    Background Protein loops are flexible structures that are intimately tied to function, but understanding loop motion and generating loop conformation ensembles remain significant computational challenges. Discrete search techniques scale poorly to large loops, optimization and molecular dynamics techniques are prone to local minima, and inverse kinematics techniques can only incorporate structural preferences in adhoc fashion. This paper presents Sub-Loop Inverse Kinematics Monte Carlo (SLIKMC), a new Markov chain Monte Carlo algorithm for generating conformations of closed loops according to experimentally available, heterogeneous structural preferences. Results Our simulation experiments demonstrate that the method computes high-scoring conformations of large loops (>10 residues) orders of magnitude faster than standard Monte Carlo and discrete search techniques. Two new developments contribute to the scalability of the new method. First, structural preferences are specified via a probabilistic graphical model (PGM) that links conformation variables, spatial variables (e.g., atom positions), constraints and prior information in a unified framework. The method uses a sparse PGM that exploits locality of interactions between atoms and residues. Second, a novel method for sampling sub-loops is developed to generate statistically unbiased samples of probability densities restricted by loop-closure constraints. Conclusion Numerical experiments confirm that SLIKMC generates conformation ensembles that are statistically consistent with specified structural preferences. Protein conformations with 100+ residues are sampled on standard PC hardware in seconds. Application to proteins involved in ion-binding demonstrate its potential as a tool for loop ensemble generation and missing structure completion. PMID:24565175

  9. Exploring Online Game Players' Flow Experiences and Positive Affect

    ERIC Educational Resources Information Center

    Chiang, Yu-Tzu; Lin, Sunny S. J.; Cheng, Chao-Yang; Liu, Eric Zhi-Feng

    2011-01-01

    The authors conducted two studies to explore online game players' flow experiences and positive affect. Our findings indicated that online game are capable of evoking flow experiences and positive affect, and games of violent or nonviolent type may not arouse players' aggression. The players could be placed into four flow conditions: flow,…

  10. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya

    2008-01-01

    This paper presents the development of the Thermal Loop experiment under NASA's New Millennium Program Space Technology 8 (ST8) Project. The Thermal Loop experiment was originally planned for validating in space an advanced heat transport system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers. Details of the thermal loop concept, technical advances and benefits, Level 1 requirements and the technology validation approach are described. An MLHP breadboard has been built and tested in the laboratory and thermal vacuum environments, and has demonstrated excellent performance that met or exceeded the design requirements. The MLHP retains all features of state-of-the-art loop heat pipes and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. In addition, an analytical model has been developed to simulate the steady state and transient operation of the MHLP, and the model predictions agreed very well with experimental results. A protoflight MLHP has been built and is being tested in a thermal vacuum chamber to validate its performance and technical readiness for a flight experiment.

  11. Ideal affect in daily life: implications for affective experience, health, and social behavior.

    PubMed

    Tsai, Jeanne L

    2017-10-01

    Over the last decade, researchers have increasingly demonstrated that ideal affect-the affective states that people value and ideally want to feel-shapes different aspects of daily life. Here I briefly review Affect Valuation Theory (AVT), which integrates ideal affect into existing models of affect and emotion by identifying the causes and consequences of variation in ideal affect. I then describe recent research that applies AVT to the valuation of negative states as well as more complex states, examines how ideal affect shapes momentary affective experience, suggests that ideal affect has both direct and indirect effects on health, and illustrates that people's ideal affect shapes how they judge and respond to others. Finally, I discuss the implications of cultural and individual differences in ideal affect for clinical, educational, work, and leisure settings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Radiation Enhanced Absorption of Frank Loops by Nanovoids in Cu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Youxing; Zhang, Xinghang; Wang, Jian

    Neutron and heavy ion irradiation generally induces voids in metallic materials, and continuous radiations typically result in void swelling and mechanical failure of the irradiated materials. Recent experiments showed that nanovoids in nanotwinned copper could act as sinks for radiation-induced Frank loops, significantly mitigating radiation damage [Y. Chen et al., Nat. Commun. 6:7036 (2015)]. In this paper, we report on structural evolution of Frank loops under cascades and address the role of nanovoids in absorbing Frank loops in detail by using molecular dynamics simulations. Results show that a stand-alone Frank loop is stable under cascades. When Frank loops are adjacentmore » to nanovoids, the diffusion of a group of atoms from the loop into nanovoids is accomplished via the formation and propagation of dislocation loops. The loop-nanovoid interactions result in the shrinkage of the nanovoids and the Frank loops.« less

  13. Radiation Enhanced Absorption of Frank Loops by Nanovoids in Cu

    DOE PAGES

    Chen, Youxing; Zhang, Xinghang; Wang, Jian

    2016-11-01

    Neutron and heavy ion irradiation generally induces voids in metallic materials, and continuous radiations typically result in void swelling and mechanical failure of the irradiated materials. Recent experiments showed that nanovoids in nanotwinned copper could act as sinks for radiation-induced Frank loops, significantly mitigating radiation damage [Y. Chen et al., Nat. Commun. 6:7036 (2015)]. In this paper, we report on structural evolution of Frank loops under cascades and address the role of nanovoids in absorbing Frank loops in detail by using molecular dynamics simulations. Results show that a stand-alone Frank loop is stable under cascades. When Frank loops are adjacentmore » to nanovoids, the diffusion of a group of atoms from the loop into nanovoids is accomplished via the formation and propagation of dislocation loops. The loop-nanovoid interactions result in the shrinkage of the nanovoids and the Frank loops.« less

  14. Water Stream "Loop-the-Loop"

    ERIC Educational Resources Information Center

    Jefimenko, Oleg

    1974-01-01

    Discusses the design of a modified loop-the-loop apparatus in which a water stream is used to illustrate centripetal forces and phenomena of high-velocity hydrodynamics. Included are some procedures of carrying out lecture demonstrations. (CC)

  15. Thumb-loops up for catalysis: a structure/function investigation of a functional loop movement in a GH11 xylanase

    PubMed Central

    Paës, Gabriel; Cortés, Juan; Siméon, Thierry; O'Donohue, Michael J.; Tran, Vinh

    2012-01-01

    Dynamics is a key feature of enzyme catalysis. Unfortunately, current experimental and computational techniques do not yet provide a comprehensive understanding and description of functional macromolecular motions. In this work, we have extended a novel computational technique, which combines molecular modeling methods and robotics algorithms, to investigate functional motions of protein loops. This new approach has been applied to study the functional importance of the so-called thumb-loop in the glycoside hydrolase family 11 xylanase from Thermobacillus xylanilyticus (Tx-xyl). The results obtained provide new insight into the role of the loop in the glycosylation/deglycosylation catalytic cycle, and underline the key importance of the nature of the residue located at the tip of the thumb-loop. The effect of mutations predicted in silico has been validated by in vitro site-directed mutagenesis experiments. Overall, we propose a comprehensive model of Tx-xyl catalysis in terms of substrate and product dynamics by identifying the action of the thumb-loop motion during catalysis. PMID:24688637

  16. A Robust Inner and Outer Loop Control Method for Trajectory Tracking of a Quadrotor

    PubMed Central

    Xia, Dunzhu; Cheng, Limei; Yao, Yanhong

    2017-01-01

    In order to achieve the complicated trajectory tracking of quadrotor, a geometric inner and outer loop control scheme is presented. The outer loop generates the desired rotation matrix for the inner loop. To improve the response speed and robustness, a geometric SMC controller is designed for the inner loop. The outer loop is also designed via sliding mode control (SMC). By Lyapunov theory and cascade theory, the closed-loop system stability is guaranteed. Next, the tracking performance is validated by tracking three representative trajectories. Then, the robustness of the proposed control method is illustrated by trajectory tracking in presence of model uncertainty and disturbances. Subsequently, experiments are carried out to verify the method. In the experiment, ultra wideband (UWB) is used for indoor positioning. Extended Kalman Filter (EKF) is used for fusing inertial measurement unit (IMU) and UWB measurements. The experimental results show the feasibility of the designed controller in practice. The comparative experiments with PD and PD loop demonstrate the robustness of the proposed control method. PMID:28925984

  17. Investigation of Low Power Operation in a Loop Heat Pipe

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Powers, Edward I. (Technical Monitor)

    2001-01-01

    This paper presents test results of an experimental study of low power operation in a loop heat pipe. The main objective was to demonstrate how changes in the vapor void fraction inside the evaporator core would affect the loop behavior, The fluid inventory and the relative tilt between the evaporator and the compensation chamber were varied so as to create different vapor void fractions in the evaporator core. The effect on the loop start-up, operating temperature, and capillary limit was investigated. Test results indicate that the vapor void fraction inside the evaporator core is the single most important factor in determining the loop operation at low powers.

  18. Loop technique.

    PubMed

    Seeburger, Joerg; Noack, Thilo; Winkfein, Michael; Ender, Joerg; Mohr, Friedrich Wilhelm

    2010-01-01

    The loop technique facilitates mitral valve repair for leaflet prolapse by implantation of Gore-Tex neo-chordae. The key feature of the technique is a premade bundle of four loops made out of one suture. The loops are available in different lengths ranging from 10 to 26 mm. After assessment of the ideal length of neo-chordae with a caliper the loops are then secured to the body of the papillary muscle over an additional felt pledget. In the following step, the free ends of the loops are distributed along the free margin of the prolapsing segment using one additional suture for each loop.

  19. Examining the relationship between immediate serial recall and immediate free recall: common effects of phonological loop variables but only limited evidence for the phonological loop.

    PubMed

    Spurgeon, Jessica; Ward, Geoff; Matthews, William J

    2014-07-01

    We examined the contribution of the phonological loop to immediate free recall (IFR) and immediate serial recall (ISR) of lists of between one and 15 words. Following Baddeley (1986, 2000, 2007, 2012), we assumed that visual words could be recoded into the phonological store when presented silently but that recoding would be prevented by concurrent articulation (CA; Experiment 1). We further assumed that the use of the phonological loop would be evidenced by greater serial recall for lists of phonologically dissimilar words relative to lists of phonologically similar words (Experiments 2A and 2B). We found that in both tasks, (a) CA reduced recall; (b) participants recalled short lists from the start of the list, leading to enhanced forward-ordered recall; (c) participants were increasingly likely to recall longer lists from the end of the list, leading to extended recency effects; (d) there were significant phonological similarity effects in ISR and IFR when both were analyzed using serial recall scoring; (e) these were reduced by free recall scoring and eliminated by CA; and (f) CA but not phonological similarity affected the tendency to initiate recall with the first list item. We conclude that similar mechanisms underpin ISR and IFR. Critically, the phonological loop is not strictly necessary for the forward-ordered recall of short lists on both tasks but may augment recall by increasing the accessibility of the list items (relative to CA), and in so doing, the order of later items is preserved better in phonologically dissimilar than in phonologically similar lists. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  20. Statistical Characteristic of Global Tropical Cyclone Looping Motion

    NASA Astrophysics Data System (ADS)

    Shen, W.; Song, J.; Wang, Y.

    2016-12-01

    Statistical characteristic of looping motion of tropical cyclones (TCs) in the Western North Pacific (WPAC), North Atlantic (NATL), Eastern North Pacific (EPAC), Northern Indian Ocean (NIO), Southern Indian Ocean (SIO) and South Pacific (SPAC) basins are investigated by using IBTrACS archive maintained by NOAA. From global perspective, about ten percent TCs experience a looping motion in the above six basins. The southern hemisphere (SH) including SIO and SPAC basins have higher looping percentage than the northern hemisphere (NH), while the EPAC basin has the least looping percentage. The interannual variation of the number of looping TCs are significantly correlated with that of total TCs in the NATL, SIO and SPAC basins, while there are no correlations between the EPAC and NIO basins. The numbers of looping TCs have a higher percentage in the early and late cyclone season in the NH rather than the peak period of cyclone season, while the SIO and SPAC basins have the higher looping percentage in the early and late cyclone season, respectively. The looping motion of TCs mainly concentrates on the scale of tropical depression to category 2 and has its peak value on the scale of tropical storm. The looping motion appears more frequently and has a higher percentage at the pre-mature stage than the post-mature stage of TCs in most basins except EPAC. Comparing the intensity and intensity variation caused by the looping motion, the weaker TCs tend to intensify after looping, while the more intense ones weaken.

  1. Shortening a loop can increase protein native state entropy.

    PubMed

    Gavrilov, Yulian; Dagan, Shlomi; Levy, Yaakov

    2015-12-01

    Protein loops are essential structural elements that influence not only function but also protein stability and folding rates. It was recently reported that shortening a loop in the AcP protein may increase its native state conformational entropy. This effect on the entropy of the folded state can be much larger than the lower entropic penalty of ordering a shorter loop upon folding, and can therefore result in a more pronounced stabilization than predicted by polymer model for loop closure entropy. In this study, which aims at generalizing the effect of loop length shortening on native state dynamics, we use all-atom molecular dynamics simulations to study how gradual shortening a very long or solvent-exposed loop region in four different proteins can affect their stability. For two proteins, AcP and Ubc7, we show an increase in native state entropy in addition to the known effect of the loop length on the unfolded state entropy. However, for two permutants of SH3 domain, shortening a loop results only with the expected change in the entropy of the unfolded state, which nicely reproduces the observed experimental stabilization. Here, we show that an increase in the native state entropy following loop shortening is not unique to the AcP protein, yet nor is it a general rule that applies to all proteins following the truncation of any loop. This modification of the loop length on the folded state and on the unfolded state may result with a greater effect on protein stability. © 2015 Wiley Periodicals, Inc.

  2. The effects of spaceflight on open-loop and closed-loop postural control mechanisms: human neurovestibular studies on SLS-2

    NASA Technical Reports Server (NTRS)

    Collins, J. J.; De Luca, C. J.; Pavlik, A. E.; Roy, S. H.; Emley, M. S.; Young, L. R. (Principal Investigator)

    1995-01-01

    Stabilogram-diffusion analysis was used to examine how prolonged periods in microgravity affect the open-loop and closed-loop postural control mechanisms. It was hypothesized that following spaceflight: (1) the effective stochastic activity of the open-loop postural control schemes in astronauts is increased; (2) the effective stochastic activity and uncorrelated behavior, respectively, of the closed-loop postural control mechanisms in astronauts are increased; and (3) astronauts utilized open-loop postural controls schemes for shorter time intervals and smaller displacements. Four crew members and two alternates from the 14-day Spacelab Life Sciences 2 Mission were included in the study. Each subject was tested under eyes-open, quiet-standing conditions on multiple preflight and postflight days. The subjects' center-of-pressure trajectories were measured with a force platform and analyzed according to stabilogram-diffusion analysis. It was found that the effective stochastic activity of the open-loop postural control schemes in three of the four crew members was increased following spaceflight. This result is interpreted as an indication that there may be in-flight adaptations to higher-level descending postural control pathways, e.g., a postflight increase in the tonic activation of postural muscles. This change may also be the consequence of a compensatory (e.g., "stiffening") postural control strategy that is adopted by astronauts to account for general feeling of postflight unsteadiness. The crew members, as a group, did not exhibit any consistent preflight/postflight differences in the steady-state behavior of their closed-loop postural control mechanisms or in the functional interaction of their open-loop and closed-loop postural control mechanisms. These results are interpreted as indications that although there may be in-flight adaptations to the vestibular system and/or proprioceptive system, input from the visual system can compensate for such changes

  3. Innovative hybrid pile oscillator technique in the Minerve reactor: open loop vs. closed loop

    NASA Astrophysics Data System (ADS)

    Geslot, Benoit; Gruel, Adrien; Bréaud, Stéphane; Leconte, Pierre; Blaise, Patrick

    2018-01-01

    Pile oscillator techniques are powerful methods to measure small reactivity worth of isotopes of interest for nuclear data improvement. This kind of experiments has long been implemented in the Mineve experimental reactor, operated by CEA Cadarache. A hybrid technique, mixing reactivity worth estimation and measurement of small changes around test samples is presented here. It was made possible after the development of high sensitivity miniature fission chambers introduced next to the irradiation channel. A test campaign, called MAESTRO-SL, took place in 2015. Its objective was to assess the feasibility of the hybrid method and investigate the possibility to separate mixed neutron effects, such as fission/capture or scattering/capture. Experimental results are presented and discussed in this paper, which focus on comparing two measurements setups, one using a power control system (closed loop) and another one where the power is free to drift (open loop). First, it is demonstrated that open loop is equivalent to closed loop. Uncertainty management and methods reproducibility are discussed. Second, results show that measuring the flux depression around oscillated samples provides valuable information regarding partial neutron cross sections. The technique is found to be very sensitive to the capture cross section at the expense of scattering, making it very useful to measure small capture effects of highly scattering samples.

  4. A Culture-Behavior-Brain Loop Model of Human Development.

    PubMed

    Han, Shihui; Ma, Yina

    2015-11-01

    Increasing evidence suggests that cultural influences on brain activity are associated with multiple cognitive and affective processes. These findings prompt an integrative framework to account for dynamic interactions between culture, behavior, and the brain. We put forward a culture-behavior-brain (CBB) loop model of human development that proposes that culture shapes the brain by contextualizing behavior, and the brain fits and modifies culture via behavioral influences. Genes provide a fundamental basis for, and interact with, the CBB loop at both individual and population levels. The CBB loop model advances our understanding of the dynamic relationships between culture, behavior, and the brain, which are crucial for human phylogeny and ontogeny. Future brain changes due to cultural influences are discussed based on the CBB loop model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Speed-accuracy trade-off in skilled typewriting: decomposing the contributions of hierarchical control loops.

    PubMed

    Yamaguchi, Motonori; Crump, Matthew J C; Logan, Gordon D

    2013-06-01

    Typing performance involves hierarchically structured control systems: At the higher level, an outer loop generates a word or a series of words to be typed; at the lower level, an inner loop activates the keystrokes comprising the word in parallel and executes them in the correct order. The present experiments examined contributions of the outer- and inner-loop processes to the control of speed and accuracy in typewriting. Experiments 1 and 2 involved discontinuous typing of single words, and Experiments 3 and 4 involved continuous typing of paragraphs. Across experiments, typists were able to trade speed for accuracy but were unable to type at rates faster than 100 ms/keystroke, implying limits to the flexibility of the underlying processes. The analyses of the component latencies and errors indicated that the majority of the trade-offs were due to inner-loop processing. The contribution of outer-loop processing to the trade-offs was small, but it resulted in large costs in error rate. Implications for strategic control of automatic processes are discussed. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  6. 75 FR 16732 - Action Affecting Export Privileges; Aqua-Loop Cooling Towers, Co.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... Regulations by facilitating or coordinating the export of approximately 174 rolls of hog hair filter media... about September 28, 2004, Aqua-Loop ordered or financed approximately 174 rolls of hog hair filter media... coordinating the export of approximately 185 rolls of hog hair filter media, part number HHB6O 130 and valued...

  7. P53-miR-191-SOX4 regulatory loop affects apoptosis in breast cancer.

    PubMed

    Sharma, Shivani; Nagpal, Neha; Ghosh, Prahlad C; Kulshreshtha, Ritu

    2017-08-01

    miRNAs have emerged as key participants of p53 signaling pathways because they regulate or are regulated by p53. Here, we provide the first study demonstrating direct regulation of an oncogenic miRNA, miR-191-5p, by p53 and existence of a regulatory feedback loop. Using a combination of qRT-PCR, promoter-luciferase, and chromatin-immunoprecipitation assays, we show that p53 brings about down-regulation of miR-191-5p in breast cancer. miR-191-5p overexpression brought about inhibition of apoptosis in breast cancer cell lines (MCF7 and ZR-75) as demonstrated by reduction in annexin-V stained cells and caspase 3/7 activity, whereas miR-191-5p down-regulation showed the opposite. We further unveiled that SOX4 was a direct target of miR-191-5p. SOX4 overexpression was shown to increase p53 protein levels in MCF7 cells. miR-191-5p overexpression brought about down-regulation of SOX4 and thus p53 levels, suggesting the existence of a regulatory feedback loop. Breast cancer treatment by doxorubicin, an anti-cancer drug, involves induction of apoptosis by p53; we thus wanted to check whether miR-191-5p affects doxorubicin sensitivity. Interestingly, Anti-miR-191 treatment significantly decreased the IC50 of the doxorubicin drug and thus sensitized breast cancer cells to doxorubicin treatment by promoting apoptosis. Overall, this work highlights the importance of the p53-miR-191- SOX4 axis in the regulation of apoptosis and drug resistance in breast cancer and offers a preclinical proof-of-concept for use of an Anti-miR-191 and doxorubicin combination as a rational approach to pursue for better breast cancer treatment. © 2017 Sharma et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  8. Renormalization of loop functions for all loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, R.A.; Neri, F.; Sato, M.

    1981-08-15

    It is shown that the vacuum expectation values W(C/sub 1/,xxx, C/sub n/) of products of the traces of the path-ordered phase factors P exp(igcontour-integral/sub C/iA/sub ..mu../(x)dx/sup ..mu../) are multiplicatively renormalizable in all orders of perturbation theory. Here A/sub ..mu../(x) are the vector gauge field matrices in the non-Abelian gauge theory with gauge group U(N) or SU(N), and C/sub i/ are loops (closed paths). When the loops are smooth (i.e., differentiable) and simple (i.e., non-self-intersecting), it has been shown that the generally divergent loop functions W become finite functions W when expressed in terms of the renormalized coupling constant and multipliedmore » by the factors e/sup -K/L(C/sub i/), where K is linearly divergent and L(C/sub i/) is the length of C/sub i/. It is proved here that the loop functions remain multiplicatively renormalizable even if the curves have any finite number of cusps (points of nondifferentiability) or cross points (points of self-intersection). If C/sub ..gamma../ is a loop which is smooth and simple except for a single cusp of angle ..gamma.., then W/sub R/(C/sub ..gamma../) = Z(..gamma..)W(C/sub ..gamma../) is finite for a suitable renormalization factor Z(..gamma..) which depends on ..gamma.. but on no other characteristic of C/sub ..gamma../. This statement is made precise by introducing a regularization, or via a loop-integrand subtraction scheme specified by a normalization condition W/sub R/(C-bar/sub ..gamma../) = 1 for an arbitrary but fixed loop C-bar/sub ..gamma../. Next, if C/sub ..beta../ is a loop which is smooth and simple except for a cross point of angles ..beta.., then W(C/sub ..beta../) must be renormalized together with the loop functions of associated sets S/sup i//sub ..beta../ = )C/sup i//sub 1/,xxx, C/sup i//sub p/i) (i = 2,xxx,I) of loops C/sup i//sub q/ which coincide with certain parts of C/sub ..beta../equivalentC/sup 1//sub 1/. Then W/sub R/(S/sup i//sub ..beta../) = Z/sup i

  9. The desensitization gate of inhibitory Cys-loop receptors

    NASA Astrophysics Data System (ADS)

    Gielen, Marc; Thomas, Philip; Smart, Trevor G.

    2015-04-01

    Cys-loop neurotransmitter-gated ion channels are vital for communication throughout the nervous system. Following activation, these receptors enter into a desensitized state in which the ion channel shuts even though the neurotransmitter molecules remain bound. To date, the molecular determinants underlying this most fundamental property of Cys-loop receptors have remained elusive. Here we present a generic mechanism for the desensitization of Cys-loop GABAA (GABAARs) and glycine receptors (GlyRs), which both mediate fast inhibitory synaptic transmission. Desensitization is regulated by interactions between the second and third transmembrane segments, which affect the ion channel lumen near its intracellular end. The GABAAR and GlyR pore blocker picrotoxin prevented desensitization, consistent with its deep channel-binding site overlapping a physical desensitization gate.

  10. Multiday Fully Closed Loop Insulin Delivery in Monitored Outpatient Conditions

    ClinicalTrials.gov

    2014-04-29

    To Demonstrate That the Closed Loop System Can be Used Safely Over a Few Consecutive Days.; To Assess Effectiveness in Maintaining Patients' Glucose Levels in the Target Range of 70 to 180 mg/dl, Measured by Blood Glucose Sensor.; To Evaluate the User Experience With a Closed Loop System

  11. The free-energy cost of interaction between DNA loops.

    PubMed

    Huang, Lifang; Liu, Peijiang; Yuan, Zhanjiang; Zhou, Tianshou; Yu, Jianshe

    2017-10-03

    From the viewpoint of thermodynamics, the formation of DNA loops and the interaction between them, which are all non-equilibrium processes, result in the change of free energy, affecting gene expression and further cell-to-cell variability as observed experimentally. However, how these processes dissipate free energy remains largely unclear. Here, by analyzing a mechanic model that maps three fundamental topologies of two interacting DNA loops into a 4-state model of gene transcription, we first show that a longer DNA loop needs more mean free energy consumption. Then, independent of the type of interacting two DNA loops (nested, side-by-side or alternating), the promotion between them always consumes less mean free energy whereas the suppression dissipates more mean free energy. More interestingly, we find that in contrast to the mechanism of direct looping between promoter and enhancer, the facilitated-tracking mechanism dissipates less mean free energy but enhances the mean mRNA expression, justifying the facilitated-tracking hypothesis, a long-standing debate in biology. Based on minimal energy principle, we thus speculate that organisms would utilize the mechanisms of loop-loop promotion and facilitated tracking to survive in complex environments. Our studies provide insights into the understanding of gene expression regulation mechanism from the view of energy consumption.

  12. Exercise Experiences and Changes in Affective Attitude: Direct and Indirect Effects of In Situ Measurements of Experiences

    PubMed Central

    Sudeck, Gorden; Schmid, Julia; Conzelmann, Achim

    2016-01-01

    Objectives: The purpose of this study was to examine the relationship between exercise experiences (perceptions of competence, perceived exertion, acute affective responses to exercise) and affective attitudes toward exercise. This relationship was analyzed in a non-laboratory setting during a 13-weeks exercise program. Materials and Methods: 56 women and 49 men (aged 35–65 years; Mage = 50.0 years; SD = 8.2 years) took part in the longitudinal study. Affective responses to exercise (affective valence, positive activation, calmness) as well as perceptions of competence and perceived exertion were measured at the beginning, during, and end of three exercise sessions within the 13-weeks exercise program. Affective attitude toward exercise were measured before and at the end of the exercise program. A two-level path analysis was conducted. The direct and indirect effects of exercise experiences on changes in affective attitude were analyzed on the between-person level: firstly, it was tested whether perceptions of competence and perceived exertion directly relate to changes in affective attitude. Secondly, it was assessed whether perceptions of competence and perceived exertion indirectly relate to changes in affective attitudes—imparted via the affective response during exercise. Results and Conclusion: At the between-person level, a direct effect on changes in affective attitude was found for perceptions of competence (β = 0.24, p < 0.05). The model revealed one significant indirect pathway between perceived exertion and changes in affective attitude via positive activation: on average, the less strenuous people perceive physical exercise to be, the more awake they will feel during exercise (β = -0.57, p < 0.05). Those people with higher average levels of positive activation during exercise exhibit more improvements in affective attitudes toward exercise from the beginning to the end of the 13-weeks exercise program (β = 0.24, p < 0.05). Main study results

  13. Debiasing affective forecasting errors with targeted, but not representative, experience narratives.

    PubMed

    Shaffer, Victoria A; Focella, Elizabeth S; Scherer, Laura D; Zikmund-Fisher, Brian J

    2016-10-01

    To determine whether representative experience narratives (describing a range of possible experiences) or targeted experience narratives (targeting the direction of forecasting bias) can reduce affective forecasting errors, or errors in predictions of experiences. In Study 1, participants (N=366) were surveyed about their experiences with 10 common medical events. Those who had never experienced the event provided ratings of predicted discomfort and those who had experienced the event provided ratings of actual discomfort. Participants making predictions were randomly assigned to either the representative experience narrative condition or the control condition in which they made predictions without reading narratives. In Study 2, participants (N=196) were again surveyed about their experiences with these 10 medical events, but participants making predictions were randomly assigned to either the targeted experience narrative condition or the control condition. Affective forecasting errors were observed in both studies. These forecasting errors were reduced with the use of targeted experience narratives (Study 2) but not representative experience narratives (Study 1). Targeted, but not representative, narratives improved the accuracy of predicted discomfort. Public collections of patient experiences should favor stories that target affective forecasting biases over stories representing the range of possible experiences. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Surface NMR imaging with simultaneously energized transmission loops

    NASA Astrophysics Data System (ADS)

    Irons, T. P.; Kass, A.; Parsekian, A.

    2016-12-01

    Surface nuclear magnetic resonance (sNMR) is a unique geophysical technique which allows for the direct detection of liquid-phase water. In saturated media the sNMR response also provides estimates of hydrologic properties including porosity and permeability. The most common survey deployment consists of a single coincident loop performing both transmission and receiving. Because the sNMR method is relatively slow, tomography using coincident loops is time-intensive. Surveys using multiple receiver loops (but a single transmitter) provide additional sensitivity; however, they still require iterating transmission over the loops, and do not decrease survey acquisition time. In medical rotating frame imaging, arrays of transmitters are employed in order to decrease acquisition time, whilst optimizing image resolving power-a concept which we extend to earth's field imaging. Using simultaneously energized transmission loops decreases survey time linearly with the number of channels. To demonstrate the efficacy and benefits of multiple transmission loops, we deployed simultaneous sNMR transmission arrays using minimally coupled loops and a specially modified instrument at the Red Buttes Hydrogeophysics Experiment Site-a well-characterized location near Laramie, Wyoming. The proposed survey proved capable of acquiring multiple-channel imaging data with comparable noise levels to figure-eight configurations. Finally, the channels can be combined after acquisition or inverted simultaneously to provide composite datasets and images. This capability leverages the improved near surface resolving power of small loops but retains sensitivity to deep media through the use of synthetic aperature receivers. As such, simultaneously acquired loop arrays provide a great deal of flexibility.

  15. Two-loop hard-thermal-loop thermodynamics with quarks

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Petitgirard, Emmanuel; Strickland, Michael

    2004-08-01

    We calculate the quark contribution to the free energy of a hot quark-gluon plasma to two-loop order using hard-thermal-loop (HTL) perturbation theory. All ultraviolet divergences can be absorbed into renormalizations of the vacuum energy and the HTL quark and gluon mass parameters. The quark and gluon HTL mass parameters are determined self-consistently by a variational prescription. Combining the quark contribution with the two-loop HTL perturbation theory free energy for pure glue we obtain the total two-loop QCD free energy. Comparisons are made with lattice estimates of the free energy for Nf=2 and with exact numerical results obtained in the large-Nf limit.

  16. Thermoelectric Converter for Loop Heat Pipe Temperature Control: Experience and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura

    2010-01-01

    This paper describes the theoretical background and implementation methodology of using a thermoelectric converter (TEC) for operating temperature control of a loop heat pipe (LHP). In particular, experimental results from ambient and thermal vacuum tests of an LHP are presented for illustrations. The most commonly used state-of-the-art method to control the LHP operating temperature is to cold bias its compensation chamber (CC) and use an electrical heater to maintain the CC at the desired set point temperature. Although effective, this approach has its shortcomings in that the electrical heater can only provide heating to the CC, and the required power can be large under certain conditions. An alternative method is to use a TEC, which is capable of providing both heating and cooling to the CC. In this method, one side of the TEC is attached to the CC, and the other side is connected to the evaporator via a thermal strap. Using a bipolar power supply and a control algorithm, a TEC can function as a heater or a cooler, depending on the direction of the current flow. Extensive ground tests of several LHPs have demonstrated that a TEC can provide very tight temperature control for the CC. It also offers several additional advantages: (1) The LHP can operate at temperatures below its natural operating temperature at low heat loads; (2) The required heater power for a TEC is much less than that for an electrical heater; and (3) It enhances the LHP start-up success. Although the concept of using a TEC for LHP temperature control is simple, there are many factors to be considered in its implementation for space applications because the TEC is susceptible to the shear stress and yet has to sustain the dynamic load under the spacecraft launch environment. The added features that help the TEC to withstand the dynamic load will inevitably affect the TEC thermal performance. Some experiences and lessons learned are addressed in this paper.

  17. MHD Modeling of Coronal Loops: the Transition Region Throat

    NASA Technical Reports Server (NTRS)

    Guarrasi, M.; Reale, F.; Orlando, S.; Mignone, A.; Klimchuk, J. A.

    2014-01-01

    Context. The expansion of coronal loops in the transition region may considerably influence the diagnostics of the plasma emission measure. The cross-sectional area of the loops is expected to depend on the temperature and pressure, and might be sensitive to the heating rate. Aims. The approach here is to study the area response to slow changes in the coronal heating rate, and check the current interpretation in terms of steady heating models. Methods. We study the area response with a time-dependent 2D magnetohydrodynamic (MHD) loop model, including the description of the expanding magnetic field, coronal heating and losses by thermal conduction, and radiation from optically thin plasma. We run a simulation for a loop 50 Mm long and quasi-statically heated to about 4 millikelvin. Results. We find that the area can change substantially with the quasi-steady heating rate, e.g., by approx. 40% at 0.5 millikelvin as the loop temperature varies between 1 millikelvin and 4 millikelvin, and, therefore, affects the interpretation of the differential emission measure vs. temperature (DEM(T)) curves.

  18. Mechanical testing and finite element analysis of orthodontic teardrop loop.

    PubMed

    Coimbra, Maria Elisa Rodrigues; Penedo, Norman Duque; de Gouvêa, Jayme Pereira; Elias, Carlos Nelson; de Souza Araújo, Mônica Tirre; Coelho, Paulo Guilherme

    2008-02-01

    Understanding how teeth move in response to mechanical loads is an important aspect of orthodontic treatment. Treatment planning should include consideration of the appliances that will meet the desired loading of the teeth to result in optimized treatment outcomes. The purpose of this study was to evaluate the use of computer simulation to predict the force and the torsion obtained after the activation of tear drop loops of 3 heights. Seventy-five retraction loops were divided into 3 groups according to height (6, 7, and 8 mm). The loops were subjected to tensile load through displacements of 0.5, 1.0, 1.5, and 2.0 mm, and the resulting forces and torques were recorded. The loops were designed in AutoCAD software(2005; Autodesk Systems, Alpharetta, GA), and finite element analysis was performed with Ansys software(version 7.0; Swanson Analysis System, Canonsburg, PA). Statistical analysis of the mechanical experiment results was obtained by ANOVA and the Tukey post-hoc test (P < .01). The correlation test and the paired t test (P < .05) were used to compare the computer simulation with the mechanical experiment. The computer simulation accurately predicted the experimentally determined mechanical behavior of tear drop loops of different heights and should be considered an alternative for designing orthodontic appliances before treatment.

  19. Behaviour of fractional loop delay zero crossing digital phase locked loop (FR-ZCDPLL)

    NASA Astrophysics Data System (ADS)

    Nasir, Qassim

    2018-01-01

    This article analyses the performance of the first-order zero crossing digital phase locked loops (FR-ZCDPLL) when fractional loop delay is added to loop. The non-linear dynamics of the loop is presented, analysed and examined through bifurcation behaviour. Numerical simulation of the loop is conducted to proof the mathematical analysis of the loop operation. The results of the loop simulation show that the proposed FR-ZCDPLL has enhanced the performance compared to the conventional zero crossing DPLL in terms of wider lock range, captured range and stable operation region. In addition, extensive experimental simulation was conducted to find the optimum loop parameters for different loop environmental conditions. The addition of the fractional loop delay network in the conventional loop also reduces the phase jitter and its variance especially when the signal-to-noise ratio is low.

  20. Single-molecule manipulation reveals supercoiling-dependent modulation of lac repressor-mediated DNA looping

    PubMed Central

    Normanno, Davide; Vanzi, Francesco; Pavone, Francesco Saverio

    2008-01-01

    Gene expression regulation is a fundamental biological process which deploys specific sets of genomic information depending on physiological or environmental conditions. Several transcription factors (including lac repressor, LacI) are present in the cell at very low copy number and increase their local concentration by binding to multiple sites on DNA and looping the intervening sequence. In this work, we employ single-molecule manipulation to experimentally address the role of DNA supercoiling in the dynamics and stability of LacI-mediated DNA looping. We performed measurements over a range of degrees of supercoiling between −0.026 and +0.026, in the absence of axial stretching forces. A supercoiling-dependent modulation of the lifetimes of both the looped and unlooped states was observed. Our experiments also provide evidence for multiple structural conformations of the LacI–DNA complex, depending on torsional constraints. The supercoiling-dependent modulation demonstrated here adds an important element to the model of the lac operon. In fact, the complex network of proteins acting on the DNA in a living cell constantly modifies its topological and mechanical properties: our observations demonstrate the possibility of establishing a signaling pathway from factors affecting DNA supercoiling to transcription factors responsible for the regulation of specific sets of genes. PMID:18310101

  1. Kinetics of Internal-Loop Formation in Polypeptide Chains: A Simulation Study

    PubMed Central

    Doucet, Dana; Roitberg, Adrian; Hagen, Stephen J.

    2007-01-01

    The speed of simple diffusional motions, such as the formation of loops in the polypeptide chain, places one physical limit on the speed of protein folding. Many experimental studies have explored the kinetics of formation of end-to-end loops in polypeptide chains; however, protein folding more often requires the formation of contacts between interior points on the chain. One expects that, for loops of fixed contour length, interior loops will form more slowly than end-to-end loops, owing to the additional excluded volume associated with the “tails”. We estimate the magnitude of this effect by generating ensembles of randomly coiled, freely jointed chains, and then using the theory of Szabo, Schulten, and Schulten to calculate the corresponding contact formation rates for these ensembles. Adding just a few residues, to convert an end-to-end loop to an internal loop, sharply decreases the contact rate. Surprisingly, the relative change in rate increases for a longer loop; sufficiently long tails, however, actually reverse the effect and accelerate loop formation slightly. Our results show that excluded volume effects in real, full-length polypeptides may cause the rates of loop formation during folding to depart significantly from the values derived from recent loop-formation experiments on short peptides. PMID:17208979

  2. Utilisation of the magnetic sensor in a smartphone for facile magnetostatics experiment: magnetic field due to electrical current in straight and loop wires

    NASA Astrophysics Data System (ADS)

    Septianto, R. D.; Suhendra, D.; Iskandar, F.

    2017-01-01

    This paper reports on the result of a research into the utilisation of a smartphone for the study of magnetostatics on the basis of experiments. The use of such a device gives great measurement result and thus it can replace magnetic sensor tools that are relatively expensive. For the best experimental result, firstly the position of the magnetic sensor in the smartphone has to be considered by way of value mapping of a magnetic field due to permanent magnet. The magnetostatics experiment investigated in this research was the measurement of magnetic field due to electrical currents in two shapes of wire, straight and looped. The current flow, the distance between the observation point and the wire, and the diameter of the loop were the variable parameters investigated to test the smartphone’s capabilities as a measurement tool. To evaluate the experimental results, the measured data were compared with theoretical values that were calculated by using both an analytical and a numerical approach. According to the experiment results, the measured data had good agreement with the results from the analytical and the numerical approach. This means that the use of the magnetic sensor in a smartphone in physics experiments is viable, especially for magnetic field measurement.

  3. Combined line-of-sight error and angular position to generate feedforward control for a charge-coupled device-based tracking loop

    NASA Astrophysics Data System (ADS)

    Tang, Tao; Cai, Huaxiang; Huang, Yongmei; Ren, Ge

    2015-10-01

    A feedforward control based on data fusion is proposed to enhance closed-loop performance. The target trajectory as the observed value of a Kalman filter is recovered by synthesizing line-of-sight error and angular position from the encoder. A Kalman filter based on a Singer acceleration model is employed to estimate the target velocity. In this control scheme, the control stability is influenced by the bandwidth of the Kalman filter and time misalignment. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability, which shows that the Kalman filter is the major factor that affects the control stability. The feedforward control proposed here is verified through simulations and experiments.

  4. The iso-response method: measuring neuronal stimulus integration with closed-loop experiments

    PubMed Central

    Gollisch, Tim; Herz, Andreas V. M.

    2012-01-01

    Throughout the nervous system, neurons integrate high-dimensional input streams and transform them into an output of their own. This integration of incoming signals involves filtering processes and complex non-linear operations. The shapes of these filters and non-linearities determine the computational features of single neurons and their functional roles within larger networks. A detailed characterization of signal integration is thus a central ingredient to understanding information processing in neural circuits. Conventional methods for measuring single-neuron response properties, such as reverse correlation, however, are often limited by the implicit assumption that stimulus integration occurs in a linear fashion. Here, we review a conceptual and experimental alternative that is based on exploring the space of those sensory stimuli that result in the same neural output. As demonstrated by recent results in the auditory and visual system, such iso-response stimuli can be used to identify the non-linearities relevant for stimulus integration, disentangle consecutive neural processing steps, and determine their characteristics with unprecedented precision. Automated closed-loop experiments are crucial for this advance, allowing rapid search strategies for identifying iso-response stimuli during experiments. Prime targets for the method are feed-forward neural signaling chains in sensory systems, but the method has also been successfully applied to feedback systems. Depending on the specific question, “iso-response” may refer to a predefined firing rate, single-spike probability, first-spike latency, or other output measures. Examples from different studies show that substantial progress in understanding neural dynamics and coding can be achieved once rapid online data analysis and stimulus generation, adaptive sampling, and computational modeling are tightly integrated into experiments. PMID:23267315

  5. Run-time parallelization and scheduling of loops

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Mirchandaney, Ravi; Baxter, Doug

    1988-01-01

    The class of problems that can be effectively compiled by parallelizing compilers is discussed. This is accomplished with the doconsider construct which would allow these compilers to parallelize many problems in which substantial loop-level parallelism is available but cannot be detected by standard compile-time analysis. We describe and experimentally analyze mechanisms used to parallelize the work required for these types of loops. In each of these methods, a new loop structure is produced by modifying the loop to be parallelized. We also present the rules by which these loop transformations may be automated in order that they be included in language compilers. The main application area of the research involves problems in scientific computations and engineering. The workload used in our experiment includes a mixture of real problems as well as synthetically generated inputs. From our extensive tests on the Encore Multimax/320, we have reached the conclusion that for the types of workloads we have investigated, self-execution almost always performs better than pre-scheduling. Further, the improvement in performance that accrues as a result of global topological sorting of indices as opposed to the less expensive local sorting, is not very significant in the case of self-execution.

  6. Sex differences in the neural correlates of affective experience

    PubMed Central

    Moriguchi, Yoshiya; Touroutoglou, Alexandra; Dickerson, Bradford C.

    2014-01-01

    People believe that women are more emotionally intense than men, but the scientific evidence is equivocal. In this study, we tested the novel hypothesis that men and women differ in the neural correlates of affective experience, rather than in the intensity of neural activity, with women being more internally (interoceptively) focused and men being more externally (visually) focused. Adult men (n = 17) and women (n = 17) completed a functional magnetic resonance imaging study while viewing affectively potent images and rating their moment-to-moment feelings of subjective arousal. We found that men and women do not differ overall in their intensity of moment-to-moment affective experiences when viewing evocative images, but instead, as predicted, women showed a greater association between the momentary arousal ratings and neural responses in the anterior insula cortex, which represents bodily sensations, whereas men showed stronger correlations between their momentary arousal ratings and neural responses in the visual cortex. Men also showed enhanced functional connectivity between the dorsal anterior insula cortex and the dorsal anterior cingulate cortex, which constitutes the circuitry involved with regulating shifts of attention to the world. These results demonstrate that the same affective experience is realized differently in different people, such that women’s feelings are relatively more self-focused, whereas men’s feelings are relatively more world-focused. PMID:23596188

  7. Varietal Loops

    NASA Image and Video Library

    2016-09-15

    A series of active regions stretched along the right side of the sun exhibited a wide variety of loops cascading above them (Sept. 12-14, 2016). The active region near the center has tightly coiled loops, while the region rotating over the right edge has some elongated and some very stretched loops above it. The loops are actually charged particles spiraling along magnetic field lines, observed here in a wavelength of extreme ultraviolet light. Near the middle of the video the Earth quickly passes in front of a portion of the sun as viewed by SDO. http://photojournal.jpl.nasa.gov/catalog/PIA16997

  8. Protein-mediated loops in supercoiled DNA create large topological domains

    PubMed Central

    Yan, Yan; Ding, Yue; Leng, Fenfei; Dunlap, David; Finzi, Laura

    2018-01-01

    Abstract Supercoiling can alter the form and base pairing of the double helix and directly impact protein binding. More indirectly, changes in protein binding and the stress of supercoiling also influence the thermodynamic stability of regulatory, protein-mediated loops and shift the equilibria of fundamental DNA/chromatin transactions. For example, supercoiling affects the hierarchical organization and function of chromatin in topologically associating domains (TADs) in both eukaryotes and bacteria. On the other hand, a protein-mediated loop in DNA can constrain supercoiling within a plectonemic structure. To characterize the extent of constrained supercoiling, 400 bp, lac repressor-secured loops were formed in extensively over- or under-wound DNA under gentle tension in a magnetic tweezer. The protein-mediated loops constrained variable amounts of supercoiling that often exceeded the maximum writhe expected for a 400 bp plectoneme. Loops with such high levels of supercoiling appear to be entangled with flanking domains. Thus, loop-mediating proteins operating on supercoiled substrates can establish topological domains that may coordinate gene regulation and other DNA transactions across spans in the genome that are larger than the separation between the binding sites. PMID:29538766

  9. Efficiently computing exact geodesic loops within finite steps.

    PubMed

    Xin, Shi-Qing; He, Ying; Fu, Chi-Wing

    2012-06-01

    Closed geodesics, or geodesic loops, are crucial to the study of differential topology and differential geometry. Although the existence and properties of closed geodesics on smooth surfaces have been widely studied in mathematics community, relatively little progress has been made on how to compute them on polygonal surfaces. Most existing algorithms simply consider the mesh as a graph and so the resultant loops are restricted only on mesh edges, which are far from the actual geodesics. This paper is the first to prove the existence and uniqueness of geodesic loop restricted on a closed face sequence; it contributes also with an efficient algorithm to iteratively evolve an initial closed path on a given mesh into an exact geodesic loop within finite steps. Our proposed algorithm takes only an O(k) space complexity and an O(mk) time complexity (experimentally), where m is the number of vertices in the region bounded by the initial loop and the resultant geodesic loop, and k is the average number of edges in the edge sequences that the evolving loop passes through. In contrast to the existing geodesic curvature flow methods which compute an approximate geodesic loop within a predefined threshold, our method is exact and can apply directly to triangular meshes without needing to solve any differential equation with a numerical solver; it can run at interactive speed, e.g., in the order of milliseconds, for a mesh with around 50K vertices, and hence, significantly outperforms existing algorithms. Actually, our algorithm could run at interactive speed even for larger meshes. Besides the complexity of the input mesh, the geometric shape could also affect the number of evolving steps, i.e., the performance. We motivate our algorithm with an interactive shape segmentation example shown later in the paper.

  10. Daily Affective Experiences Predict Objective Sleep Outcomes among Adolescents

    PubMed Central

    Tavernier, Royette; Choo, Sungsub B; Grant, Kathryn; Adam, Emma K

    2015-01-01

    Summary Adolescence is a sensitive period for changes in both sleep and affect. Although past research has assessed the association between affect and sleep among adolescents, few studies have examined both trait (typical) and day-to-day changes in affect, and fewer still have specifically examined negative social evaluative emotions (NSEE; e.g., embarrassment) in relation to sleep. We examined both between- and within-person variations in daily affect in relation to four objectively-measured sleep outcomes (sleep hours, sleep latency, sleep efficiency, and length of wake bouts) among adolescents. Participants (N = 77 high school students, 42.9% female; M = 14.37 years) wore an actiwatch and completed daily diaries for 3 days. Results of hierarchical linear models (controlling for age, gender, race, ethnicity, parental employment status, income, puberty, and caffeine) indicated that NSEE and high arousal affective experiences generally predicted poor sleep outcomes, whereas low arousal affective experiences were associated with good sleep outcomes. Specifically, at the person level, adolescents reporting higher NSEE had shorter average sleep hours, and those experiencing higher anxiety-nervousness had longer wake bouts. In addition, individuals experiencing more dysphoria (sad, depressed, lonely) had longer average sleep hours and shorter wake bouts, while those experiencing more calmness had shorter sleep latencies. At the within person level, individuals had longer sleep latencies following days that they had experienced high arousal positive affect (e.g., excitement) and had longer wake bouts following days they had experienced more NSEE. Results highlight the detrimental effects of NSEE and high arousal affective states for adolescent sleep. PMID:26365539

  11. MHD modeling of coronal loops: the transition region throat

    NASA Astrophysics Data System (ADS)

    Guarrasi, M.; Reale, F.; Orlando, S.; Mignone, A.; Klimchuk, J. A.

    2014-04-01

    Context. The expansion of coronal loops in the transition region may considerably influence the diagnostics of the plasma emission measure. The cross-sectional area of the loops is expected to depend on the temperature and pressure, and might be sensitive to the heating rate. Aims: The approach here is to study the area response to slow changes in the coronal heating rate, and check the current interpretation in terms of steady heating models. Methods: We study the area response with a time-dependent 2D magnetohydrodynamic (MHD) loop model, including the description of the expanding magnetic field, coronal heating and losses by thermal conduction, and radiation from optically thin plasma. We run a simulation for a loop 50 Mm long and quasi-statically heated to about 4 MK. Results: We find that the area can change substantially with the quasi-steady heating rate, e.g., by ~40% at 0.5 MK as the loop temperature varies between 1 MK and 4 MK, and, therefore, affects the interpretation of the differential emission measure vs. temperature (DEM(T)) curves. The movie associated to Fig. 4 is available in electronic form at http://www.aanda.org

  12. DC servomechanism parameter identification: a Closed Loop Input Error approach.

    PubMed

    Garrido, Ruben; Miranda, Roger

    2012-01-01

    This paper presents a Closed Loop Input Error (CLIE) approach for on-line parametric estimation of a continuous-time model of a DC servomechanism functioning in closed loop. A standard Proportional Derivative (PD) position controller stabilizes the loop without requiring knowledge on the servomechanism parameters. The analysis of the identification algorithm takes into account the control law employed for closing the loop. The model contains four parameters that depend on the servo inertia, viscous, and Coulomb friction as well as on a constant disturbance. Lyapunov stability theory permits assessing boundedness of the signals associated to the identification algorithm. Experiments on a laboratory prototype allows evaluating the performance of the approach. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  13. RNA polymerase II trigger loop residues stabilize and position the incoming nucleotide triphosphate in transcription

    PubMed Central

    Huang, Xuhui; Wang, Dong; Weiss, Dahlia R.; Bushnell, David A.; Kornberg, Roger D.; Levitt, Michael

    2010-01-01

    A structurally conserved element, the trigger loop, has been suggested to play a key role in substrate selection and catalysis of RNA polymerase II (pol II) transcription elongation. Recently resolved X-ray structures showed that the trigger loop forms direct interactions with the β-phosphate and base of the matched nucleotide triphosphate (NTP) through residues His1085 and Leu1081, respectively. In order to understand the role of these two critical residues in stabilizing active site conformation in the dynamic complex, we performed all-atom molecular dynamics simulations of the wild-type pol II elongation complex and its mutants in explicit solvent. In the wild-type complex, we found that the trigger loop is stabilized in the “closed” conformation, and His1085 forms a stable interaction with the NTP. Simulations of point mutations of His1085 are shown to affect this interaction; simulations of alternative protonation states, which are inaccessible through experiment, indicate that only the protonated form is able to stabilize the His1085-NTP interaction. Another trigger loop residue, Leu1081, stabilizes the incoming nucleotide position through interaction with the nucleotide base. Our simulations of this Leu mutant suggest a three-component mechanism for correctly positioning the incoming NTP in which (i) hydrophobic contact through Leu1081, (ii) base stacking, and (iii) base pairing work together to minimize the motion of the incoming NTP base. These results complement experimental observations and provide insight into the role of the trigger loop on transcription fidelity. PMID:20798057

  14. TREAT Neutronics Analysis of Water-Loop Concept Accommodating LWR 9-rod Bundle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Connie M.; Woolstenhulme, Nicolas E.; Parry, James R.

    Abstract. Simulation of a variety of transient conditions has been successfully achieved in the Transient Reactor Test (TREAT) facility during operation between 1959 and 1994 to support characterization and safety analysis of nuclear fuels and materials. A majority of previously conducted tests were focused on supporting sodium-cooled fast reactor (SFR) designs. Experiments evolved in complexity. Simulation of thermal-hydraulic conditions expected to be encountered by fuels and materials in a reactor environment was realized in the development of TREAT sodium loop experiment vehicles. These loops accommodated up to 7-pin fuel bundles and served to simulate more closely the reactor environment whilemore » safely delivering large quantities of energy into the test specimen. Some of the immediate TREAT restart operations will be focused on testing light water reactor (LWR) accident tolerant fuels (ATF). Similar to the sodium loop objectives, a water loop concept, developed and analyzed in the 1990’s, aimed at achieving thermal-hydraulic conditions encountered in commercial power reactors. The historic water loop concept has been analyzed in the context of a reactivity insertion accident (RIA) simulation for high burnup LWR 2-pin and 3-pin fuel bundles. Findings showed sufficient energy could be deposited into the specimens for evaluation. Similar results of experimental feasibility for the water loop concept (past and present) have recently been obtained using MCNP6.1 with ENDF/B-VII.1 nuclear data libraries. The old water loop concept required only two central TREAT core grid spaces. Preparation for future experiments has resulted in a modified water loop conceptual design designated the TREAT water environment recirculating loop (TWERL). The current TWERL design requires nine TREAT core grid spaces in order to place the water recirculating pump under the TREAT core. Due to the effectiveness of water moderation, neutronics analysis shows that removal of seven

  15. Sub-Poissonian light and photocurrent shot-noise suppression in closed opto-electronic loop

    NASA Technical Reports Server (NTRS)

    Masalov, A. V.; Putilin, A. A.; Vasilyev, Michael V.

    1994-01-01

    We examine experimentally photocurrent noise reduction in the opto-electronic closed loop. Photocurrent noise density 12.5 dB below the shot-noise was observed. So large suppression was not reached in previous experiments and cannot be explained in terms of an ordinary sub-Poissonian light in the loop. We propose the concept of anticorrelation state for the description of light in the loop.

  16. Thermal Vacuum Testing of a Helium Loop Heat Pipe for Large Area Cryocooling

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Robinson, Franklin

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  17. Experience affects the outcome of agonistic contests without affecting the selective advantage of size

    PubMed Central

    Kasumovic, Michael M.; Elias, Damian O.; Punzalan, David; Mason, Andrew C.; Andrade, Maydianne C. B.

    2009-01-01

    In the field, phenotypic determinants of competitive success are not always absolute. For example, contest experience may alter future competitive performance. As future contests are not determined solely on phenotypic attributes, prior experience could also potentially alter phenotype–fitness associations. In this study, we examined the influence of single and multiple experiences on contest outcomes in the jumping spider Phidippus clarus. We also examined whether phenotype–fitness associations altered as individuals gained more experience. Using both size-matched contests and a tournament design, we found that both winning and losing experience affected future contest success; males with prior winning experience were more likely to win subsequent contests. Although experience was a significant determinant of success in future contests, male weight was approximately 1.3 times more important than experience in predicting contest outcomes. Despite the importance of experience in determining contest outcomes, patterns of selection did not change between rounds. Overall, our results show that experience can be an important determinant in contest outcomes, even in short-lived invertebrates, and that experience alone is unlikely to alter phenotype–fitness associations. PMID:20161296

  18. Experience affects the outcome of agonistic contests without affecting the selective advantage of size.

    PubMed

    Kasumovic, Michael M; Elias, Damian O; Punzalan, David; Mason, Andrew C; Andrade, Maydianne C B

    2009-06-01

    In the field, phenotypic determinants of competitive success are not always absolute. For example, contest experience may alter future competitive performance. As future contests are not determined solely on phenotypic attributes, prior experience could also potentially alter phenotype-fitness associations. In this study, we examined the influence of single and multiple experiences on contest outcomes in the jumping spider Phidippus clarus. We also examined whether phenotype-fitness associations altered as individuals gained more experience. Using both size-matched contests and a tournament design, we found that both winning and losing experience affected future contest success; males with prior winning experience were more likely to win subsequent contests. Although experience was a significant determinant of success in future contests, male weight was approximately 1.3 times more important than experience in predicting contest outcomes. Despite the importance of experience in determining contest outcomes, patterns of selection did not change between rounds. Overall, our results show that experience can be an important determinant in contest outcomes, even in short-lived invertebrates, and that experience alone is unlikely to alter phenotype-fitness associations.

  19. Chromatin loops as allosteric modulators of enhancer-promoter interactions.

    PubMed

    Doyle, Boryana; Fudenberg, Geoffrey; Imakaev, Maxim; Mirny, Leonid A

    2014-10-01

    The classic model of eukaryotic gene expression requires direct spatial contact between a distal enhancer and a proximal promoter. Recent Chromosome Conformation Capture (3C) studies show that enhancers and promoters are embedded in a complex network of looping interactions. Here we use a polymer model of chromatin fiber to investigate whether, and to what extent, looping interactions between elements in the vicinity of an enhancer-promoter pair can influence their contact frequency. Our equilibrium polymer simulations show that a chromatin loop, formed by elements flanking either an enhancer or a promoter, suppresses enhancer-promoter interactions, working as an insulator. A loop formed by elements located in the region between an enhancer and a promoter, on the contrary, facilitates their interactions. We find that different mechanisms underlie insulation and facilitation; insulation occurs due to steric exclusion by the loop, and is a global effect, while facilitation occurs due to an effective shortening of the enhancer-promoter genomic distance, and is a local effect. Consistently, we find that these effects manifest quite differently for in silico 3C and microscopy. Our results show that looping interactions that do not directly involve an enhancer-promoter pair can nevertheless significantly modulate their interactions. This phenomenon is analogous to allosteric regulation in proteins, where a conformational change triggered by binding of a regulatory molecule to one site affects the state of another site.

  20. Loop-the-Loop: Bringing Theory into Practice

    ERIC Educational Resources Information Center

    Suwonjandee, N.; Asavapibhop, B.

    2012-01-01

    During the Thai high-school physics teacher training programme, we used an aluminum loop-the-loop system built by the Institute for the Promotion of Teaching Science and Technology (IPST) to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. There were 27 high-school teachers from three provinces,…

  1. The grape berry-specific basic helix-loop-helix transcription factor VvCEB1 affects cell size.

    PubMed

    Nicolas, Philippe; Lecourieux, David; Gomès, Eric; Delrot, Serge; Lecourieux, Fatma

    2013-02-01

    The development of fleshy fruits involves complex physiological and biochemical changes. After fertilization, fruit growth usually begins with cell division, continues with both cell division and expansion, allowing fruit set to occur, and ends with cell expansion only. In spite of the economical importance of grapevine, the molecular mechanisms controlling berry growth are not fully understood. The present work identified and characterized Vitis vinifera cell elongation bHLH protein (VvCEB1), a basic helix-loop-helix (bHLH) transcription factor controlling cell expansion in grape. VvCEB1 was expressed specifically in berry-expanding tissues with a maximum around veraison. The study of VvCEB1 promoter activity in tomato confirmed its specific fruit expression during the expansion phase. Overexpression of VvCEB1 in grape embryos showed that this protein stimulates cell expansion and affects the expression of genes involved in cell expansion, including genes of auxin metabolism and signalling. Taken together, these data show that VvCEB1 is a fruit-specific bHLH transcription factor involved in grape berry development.

  2. Negative affect, interpersonal perception, and binge eating behavior: An experience sampling study.

    PubMed

    Ambwani, Suman; Roche, Michael J; Minnick, Alyssa M; Pincus, Aaron L

    2015-09-01

    Etiological and maintenance models for disordered eating highlight the salience of negative affect and interpersonal dysfunction. This study employed a 14-day experience sampling procedure to assess the impact of negative affect and interpersonal perceptions on binge eating behavior. Young adult women (N = 40) with recurrent binge eating and significant clinical impairment recorded their mood, interpersonal behavior, and eating behaviors at six stratified semirandom intervals daily through the use of personal digital assistants. Although momentary negative affect was associated with binge eating behavior, average levels of negative affect over the experience sampling period were not, and interpersonal problems moderated the relationship between negative affect and binge eating. Interpersonal problems also intensified the association between momentary interpersonal perceptions and binge eating behavior. Lagged analyses indicated that previous levels of negative affect and interpersonal style also influence binge eating. The study findings suggest there may be important differences in how dispositional versus momentary experiences of negative affect are associated with binge eating. Results also highlight the importance of interpersonal problems for understanding relationships among negative affect, interpersonal perception, and binge eating behavior. These results offer several possibilities for attending to affective and interpersonal functioning in clinical practice. © 2015 Wiley Periodicals, Inc.

  3. "It Is Definitely a Game Changer": A Qualitative Study of Experiences with In-home Overnight Closed-Loop Technology Among Adults with Type 1 Diabetes.

    PubMed

    Hendrieckx, Christel; Poole, Lucinda A; Sharifi, Amin; Jayawardene, Dilshani; Loh, Margaret M; Horsburgh, Jodie C; Bach, Leon A; Colman, Peter G; Kumareswaran, Kavita; Jenkins, Alicia J; MacIsaac, Richard J; Ward, Glenn M; Grosman, Benyamin; Roy, Anirban; O'Neal, David N; Speight, Jane

    2017-07-01

    This qualitative study explored trial participants' experiences of four nights of in-home closed loop. Sixteen adults with type 1 diabetes, who completed a randomized crossover trial, were interviewed after four consecutive nights of closed-loop. Interviews were audio recorded, transcribed, and analyzed with a coding framework developed to identify the main themes. Participants had a mean age of 42 ± 10 years, nine were women; mean diabetes duration was 27 ± 7 years, and all were using insulin pumps. Overall, first impressions were positive. Participants found closed-loop easy to use and understand. Most experienced more stable overnight glucose levels, although for some these were similar to usual care or higher than they expected. Compared with their usual treatment, they noticed the proactive nature of the closed-loop, being able to predict trends and deliver micro amounts of insulin. Most reported technical glitches or inconveniences during one or more nights, such as transmission problems, problematic connectivity between devices, ongoing alarms despite addressing low glucose levels, and sensor inaccuracy. Remote monitoring by the trial team and their own hypoglycemic awareness contributed to feelings of trust and safety. Although rare, safety concerns were raised, related to feeling unsure whether the system would respond in time to falling glucose levels. This study provides relevant insights for implementation of closed-loop in the real world. For people with diabetes who are less familiar with technology, remote monitoring for the first few days may provide reassurance, strengthen their trust/skills, and make closed-loop an acceptable option for more people with type 1 diabetes.

  4. Energy Conversion Loop: A Testbed for Nuclear Hybrid Energy Systems Use in Biomass Pyrolysis

    NASA Astrophysics Data System (ADS)

    Verner, Kelley M.

    Nuclear hybrid energy systems are a possible solution for contemporary energy challenges. Nuclear energy produces electricity without greenhouse gas emissions. However, nuclear power production is not as flexible as electrical grids demand and renewables create highly variable electricity. Nuclear hybrid energy systems are able to address both of these problems. Wasted heat can be used in processes such as desalination, hydrogen production, or biofuel production. This research explores the possible uses of nuclear process heat in bio-oil production via biomass pyrolysis. The energy conversion loop is a testbed designed and built to mimic the heat from a nuclear reactor. Small scale biomass pyrolysis experiments were performed and compared to results from the energy conversion loop tests to determine future pyrolysis experimentation with the energy conversion loop. Further improvements must be made to the energy conversion loop before more complex experiments may be performed. The current conditions produced by the energy conversion loop are not conducive for current biomass pyrolysis experimentation.tion.

  5. Sequence-structure relationships in RNA loops: establishing the basis for loop homology modeling.

    PubMed

    Schudoma, Christian; May, Patrick; Nikiforova, Viktoria; Walther, Dirk

    2010-01-01

    The specific function of RNA molecules frequently resides in their seemingly unstructured loop regions. We performed a systematic analysis of RNA loops extracted from experimentally determined three-dimensional structures of RNA molecules. A comprehensive loop-structure data set was created and organized into distinct clusters based on structural and sequence similarity. We detected clear evidence of the hallmark of homology present in the sequence-structure relationships in loops. Loops differing by <25% in sequence identity fold into very similar structures. Thus, our results support the application of homology modeling for RNA loop model building. We established a threshold that may guide the sequence divergence-based selection of template structures for RNA loop homology modeling. Of all possible sequences that are, under the assumption of isosteric relationships, theoretically compatible with actual sequences observed in RNA structures, only a small fraction is contained in the Rfam database of RNA sequences and classes implying that the actual RNA loop space may consist of a limited number of unique loop structures and conserved sequences. The loop-structure data sets are made available via an online database, RLooM. RLooM also offers functionalities for the modeling of RNA loop structures in support of RNA engineering and design efforts.

  6. Loran digital phase-locked loop and RF front-end system error analysis

    NASA Technical Reports Server (NTRS)

    Mccall, D. L.

    1979-01-01

    An analysis of the system performance of the digital phase locked loops (DPLL) and RF front end that are implemented in the MINI-L4 Loran receiver is presented. Three of the four experiments deal with the performance of the digital phase locked loops. The other experiment deals with the RF front end and DPLL system error which arise in the front end due to poor signal to noise ratios. The ability of the DPLLs to track the offsets is studied.

  7. LOOP CALCULUS AND BELIEF PROPAGATION FOR Q-ARY ALPHABET: LOOP TOWER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CHERTKOV, MICHAEL; CHERNYAK, VLADIMIR

    Loop calculus introduced in [1], [2] constitutes a new theoretical tool that explicitly expresses symbol Maximum-A-Posteriori (MAP) solution of a general statistical inference problem via a solution of the Belief Propagation (BP) equations. This finding brought a new significance to the BP concept, which in the past was thought of as just a loop-free approximation. In this paper they continue a discussion of the Loop Calculus, partitioning the results into three Sections. In Section 1 they introduce a new formulation of the Loop Calculus in terms of a set of transformations (gauges) that keeping the partition function of the problemmore » invariant. The full expression contains two terms referred to as the 'ground state' and 'excited states' contributions. The BP equations are interpreted as a special (BP) gauge fixing condition that emerges as a special orthogonality constraint between the ground state and excited states, which also selects loop contributions as the only surviving ones among the excited states. In Section 2 they demonstrate how the invariant interpretation of the Loop Calculus, introduced in Section 1, allows a natural extension to the case of a general q-ary alphabet, this is achieved via a loop tower sequential construction. The ground level in the tower is exactly equivalent to assigning one color (out of q available) to the 'ground state' and considering all 'excited' states colored in the remaining (q-1) colors, according to the loop calculus rule. Sequentially, the second level in the tower corresponds to selecting a loop from the previous step, colored in (q-1) colors, and repeating the same ground vs excited states splitting procedure into one and (q-2) colors respectively. The construction proceeds till the full (q-1)-levels deep loop tower (and the corresponding contributions to the partition function) are established. In Section 3 they discuss an ultimate relation between the loop calculus and the Bethe-Free energy variational

  8. DNA Looping Facilitates Targeting of a Chromatin Remodeling Enzyme

    PubMed Central

    Yadon, Adam N; Singh, Badri Nath; Hampsey, Michael; Tsukiyama, Toshio

    2013-01-01

    Summary ATP-dependent chromatin remodeling enzymes are highly abundant and play pivotal roles regulating DNA-dependent processes. The mechanisms by which they are targeted to specific loci have not been well understood on a genome-wide scale. Here we present evidence that a major targeting mechanism for the Isw2 chromatin remodeling enzyme to specific genomic loci is through sequence-specific transcription factor (TF)-dependent recruitment. Unexpectedly, Isw2 is recruited in a TF-dependent fashion to a large number of loci without TF binding sites. Using the 3C assay, we show that Isw2 can be targeted by Ume6- and TFIIB-dependent DNA looping. These results identify DNA looping as a previously unknown mechanism for the recruitment of a chromatin remodeling enzyme and defines a novel function for DNA looping. We also present evidence suggesting that Ume6-dependent DNA looping is involved in chromatin remodeling and transcriptional repression, revealing a mechanism by which the three-dimensional folding of chromatin affects DNA-dependent processes. PMID:23478442

  9. Livermore Compiler Analysis Loop Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornung, R. D.

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizations and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermoremore » Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.« less

  10. Pathways to happiness are multidirectional: Associations between state mindfulness and everyday affective experience.

    PubMed

    Blanke, Elisabeth S; Riediger, Michaela; Brose, Annette

    2018-03-01

    Mindfulness is commonly defined as a multidimensional mode of being attentive to, and aware of, momentary experiences while taking a nonjudgmental and accepting stance. These qualities have been linked to 2 different facets of affective well-being: being attentive is proposed to lead to an appreciation of experiences as they are, and thus to positive affect (PA). Accepting unpleasant experiences in a nonjudgmental fashion has been hypothesized to reduce negative affect (NA). Alternatively, however, attention may increase both positive and negative affectivity, whereas nonjudgmental acceptance may modify how people relate to their experiences. Previous research has considered such differential associations at the trait level, although a mindful mode may be understood as a state of being. Using an experience-sampling methodology (ESM) with smartphones, the present research therefore links different state mindfulness facets to positive and NA in daily life. Seventy students (50% female, 20-30 years old) of different disciplines participated in the study. Based on multidimensional assessments of self-reported state mindfulness and state affect, the findings corroborate the hypotheses on the differential predictive value of 2 mindfulness facets: Participants experienced more PA when they were attentive to the present moment and less NA when they nonjudgmentally accepted momentary experiences. Furthermore, only nonjudgmental acceptance buffered the impact of daily hassles on affective well-being. The study contributes to a more fine-grained understanding of the within-person mechanisms relating mindfulness to affective well-being in daily life. Future interventions may be able to enhance different aspects of affective well-being by addressing specific facets of mindfulness. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. Restriction enzyme cutting site distribution regularity for DNA looping technology.

    PubMed

    Shang, Ying; Zhang, Nan; Zhu, Pengyu; Luo, Yunbo; Huang, Kunlun; Tian, Wenying; Xu, Wentao

    2014-01-25

    The restriction enzyme cutting site distribution regularity and looping conditions were studied systematically. We obtained the restriction enzyme cutting site distributions of 13 commonly used restriction enzymes in 5 model organism genomes through two novel self-compiled software programs. All of the average distances between two adjacent restriction sites fell sharply with increasing statistic intervals, and most fragments were 0-499 bp. A shorter DNA fragment resulted in a lower looping rate, which was also directly proportional to the DNA concentration. When the length was more than 500 bp, the concentration did not affect the looping rate. Therefore, the best known fragment length was longer than 500 bp, and did not contain the restriction enzyme cutting sites which would be used for digestion. In order to make the looping efficiencies reach nearly 100%, 4-5 single cohesive end systems were recommended to digest the genome separately. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Digital accumulators in phase and frequency tracking loops

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami; Statman, Joseph I.

    1990-01-01

    Results on the effects of digital accumulators in phase and frequency tracking loops are presented. Digital accumulators or summers are used extensively in digital signal processing to perform averaging or to reduce processing rates to acceptable levels. For tracking the Doppler of high-dynamic targets at low carrier-to-noise ratios, it is shown through simulation and experiment that digital accumulators can contribute an additional loss in operating threshold. This loss was not considered in any previous study and needs to be accounted for in performance prediction analysis. Simulation and measurement results are used to characterize the loss due to the digital summers for three different tracking loops: a digital phase-locked loop, a cross-product automatic frequency tracking loop, and an extended Kalman filter. The tracking algorithms are compared with respect to their frequency error performance and their ability to maintain lock during severe maneuvers at various carrier-to-noise ratios. It is shown that failure to account for the effect of accumulators can result in an inaccurate performance prediction, the extent of which depends highly on the algorithm used.

  13. Similarity Metrics for Closed Loop Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.; Yang, Lee C.; Bedrossian, Naz; Hall, Robert A.

    2008-01-01

    To what extent and in what ways can two closed-loop dynamic systems be said to be "similar?" This question arises in a wide range of dynamic systems modeling and control system design applications. For example, bounds on error models are fundamental to the controller optimization with modern control design methods. Metrics such as the structured singular value are direct measures of the degree to which properties such as stability or performance are maintained in the presence of specified uncertainties or variations in the plant model. Similarly, controls-related areas such as system identification, model reduction, and experimental model validation employ measures of similarity between multiple realizations of a dynamic system. Each area has its tools and approaches, with each tool more or less suited for one application or the other. Similarity in the context of closed-loop model validation via flight test is subtly different from error measures in the typical controls oriented application. Whereas similarity in a robust control context relates to plant variation and the attendant affect on stability and performance, in this context similarity metrics are sought that assess the relevance of a dynamic system test for the purpose of validating the stability and performance of a "similar" dynamic system. Similarity in the context of system identification is much more relevant than are robust control analogies in that errors between one dynamic system (the test article) and another (the nominal "design" model) are sought for the purpose of bounding the validity of a model for control design and analysis. Yet system identification typically involves open-loop plant models which are independent of the control system (with the exception of limited developments in closed-loop system identification which is nonetheless focused on obtaining open-loop plant models from closed-loop data). Moreover the objectives of system identification are not the same as a flight test and

  14. Fast flux locked loop

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  15. Daily affective experiences predict objective sleep outcomes among adolescents.

    PubMed

    Tavernier, Royette; Choo, Sungsub B; Grant, Kathryn; Adam, Emma K

    2016-02-01

    Adolescence is a sensitive period for changes in both sleep and affect. Although past research has assessed the association between affect and sleep among adolescents, few studies have examined both trait (typical) and day-to-day changes in affect, and fewer still have specifically examined negative social evaluative emotions (e.g. embarrassment) in relation to sleep. Both between- and within-person variations in daily affect were examined in relation to four objectively-measured sleep outcomes (sleep hours; sleep latency; sleep efficiency; and length of wake bouts) among adolescents. Participants (N = 77 high-school students; 42.9% female; M = 14.37 years) wore an actiwatch and completed daily-diaries for 3 days. The results of hierarchical linear models (controlling for age, gender, race, ethnicity, parental employment status, income, puberty and caffeine) indicated that negative social evaluative emotions and high-arousal affective experiences generally predicted poor sleep outcomes, whereas low-arousal affective experiences were associated with good sleep outcomes. Specifically, at the person level, adolescents reporting higher negative social evaluative emotions had shorter average sleep hours, and those experiencing higher anxiety–nervousness had longer wake bouts. In addition, individuals experiencing more dysphoria (sad, depressed, lonely) had longer average sleep hours and shorter wake bouts, while those experiencing more calmness had shorter sleep latencies. At the within-person level, individuals had longer sleep latencies following days that they had experienced high-arousal positive affect (e.g. excitement), and had longer wake bouts following days they had experienced more negative social evaluative emotions. The results highlight the detrimental effects of negative social evaluative emotions and high-arousal affective states for adolescent sleep. © 2015 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European

  16. How Stereotypes Affect Current Collegiate Female Athletes' Athletic Experiences

    ERIC Educational Resources Information Center

    James, Melissa

    2017-01-01

    Stereotype discrimination affects female athletes' athletic experiences. Studies have been conducted of former collegiate female athletes' perceptions of the lesbian stereotype found that they were discriminated against because of their sport participation. These limit the recalling of thoughts and experience from the female athletes' playing…

  17. More Intense Experiences, Less Intense Forecasts: Why People Overweight Probability Specifications in Affective Forecasts

    PubMed Central

    Buechel, Eva C.; Zhang, Jiao; Morewedge, Carey K.; Vosgerau, Joachim

    2014-01-01

    We propose that affective forecasters overestimate the extent to which experienced hedonic responses to an outcome are influenced by the probability of its occurrence. The experience of an outcome (e.g., winning a gamble) is typically more affectively intense than the simulation of that outcome (e.g., imagining winning a gamble) upon which the affective forecast for it is based. We suggest that, as a result, experiencers allocate a larger share of their attention toward the outcome (e.g., winning the gamble) and less to its probability specifications than do affective forecasters. Consequently, hedonic responses to an outcome are less sensitive to its probability specifications than are affective forecasts for that outcome. The results of 6 experiments provide support for our theory. Affective forecasters overestimated how sensitive experiencers would be to the probability of positive and negative outcomes (Experiments 1 and 2). Consistent with our attentional account, differences in sensitivity to probability specifications disappeared when the attention of forecasters was diverted from probability specifications (Experiment 3) or when the attention of experiencers was drawn toward probability specifications (Experiment 4). Finally, differences in sensitivity to probability specifications between forecasters and experiencers were diminished when the forecasted outcome was more affectively intense (Experiments 5 and 6). PMID:24128184

  18. More intense experiences, less intense forecasts: why people overweight probability specifications in affective forecasts.

    PubMed

    Buechel, Eva C; Zhang, Jiao; Morewedge, Carey K; Vosgerau, Joachim

    2014-01-01

    We propose that affective forecasters overestimate the extent to which experienced hedonic responses to an outcome are influenced by the probability of its occurrence. The experience of an outcome (e.g., winning a gamble) is typically more affectively intense than the simulation of that outcome (e.g., imagining winning a gamble) upon which the affective forecast for it is based. We suggest that, as a result, experiencers allocate a larger share of their attention toward the outcome (e.g., winning the gamble) and less to its probability specifications than do affective forecasters. Consequently, hedonic responses to an outcome are less sensitive to its probability specifications than are affective forecasts for that outcome. The results of 6 experiments provide support for our theory. Affective forecasters overestimated how sensitive experiencers would be to the probability of positive and negative outcomes (Experiments 1 and 2). Consistent with our attentional account, differences in sensitivity to probability specifications disappeared when the attention of forecasters was diverted from probability specifications (Experiment 3) or when the attention of experiencers was drawn toward probability specifications (Experiment 4). Finally, differences in sensitivity to probability specifications between forecasters and experiencers were diminished when the forecasted outcome was more affectively intense (Experiments 5 and 6).

  19. Two-loop mass splittings in electroweak multiplets: Winos and minimal dark matter

    NASA Astrophysics Data System (ADS)

    McKay, James; Scott, Pat

    2018-03-01

    The radiatively-induced splitting of masses in electroweak multiplets is relevant for both collider phenomenology and dark matter. Precision two-loop corrections of O (MeV ) to the triplet mass splitting in the wino limit of the minimal supersymmetric standard model can affect particle lifetimes by up to 40%. We improve on previous two-loop self-energy calculations for the wino model by obtaining consistent input parameters to the calculation via two-loop renormalization-group running, and including the effect of finite light quark masses. We also present the first two-loop calculation of the mass splitting in an electroweak fermionic quintuplet, corresponding to the viable form of minimal dark matter (MDM). We place significant constraints on the lifetimes of the charged and doubly-charged fermions in this model. We find that the two-loop mass splittings in the MDM quintuplet are not constant in the large-mass limit, as might naively be expected from the triplet calculation. This is due to the influence of the additional heavy fermions in loop corrections to the gauge boson propagators.

  20. Getting in (and out of) the loop: regulating higher order telomere structures.

    PubMed

    Luke-Glaser, Sarah; Poschke, Heiko; Luke, Brian

    2012-01-01

    The DNA at the ends of linear chromosomes (the telomere) folds back onto itself and forms an intramolecular lariat-like structure. Although the telomere loop has been implicated in the protection of chromosome ends from nuclease-mediated resection and unscheduled DNA repair activities, it potentially poses an obstacle to the DNA replication machinery during S-phase. Therefore, the coordinated regulation of telomere loop formation, maintenance, and resolution is required in order to establish a balance between protecting the chromosome ends and promoting their duplication prior to cell division. Until recently, the only factor known to influence telomere looping in human cells was TRF2, a component of the shelterin complex. Recent work in yeast and mouse cells has uncovered additional regulatory factors that affect the loop structure at telomeres. In the following "perspective" we outline what is known about telomere looping and highlight the latest results regarding the regulation of this chromosome end structure. We speculate about how the manipulation of the telomere loop may have therapeutic implications in terms of diseases associated with telomere dysfunction and uncontrolled proliferation.

  1. Introduction to Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  2. The Large Hydrophilic Loop of Presenilin 1 Is Important for Regulating γ-Secretase Complex Assembly and Dictating the Amyloid β Peptide (Aβ) Profile without Affecting Notch Processing*

    PubMed Central

    Wanngren, Johanna; Frånberg, Jenny; Svensson, Annelie I.; Laudon, Hanna; Olsson, Fredrik; Winblad, Bengt; Liu, Frank; Näslund, Jan; Lundkvist, Johan; Karlström, Helena

    2010-01-01

    γ-Secretase is an enzyme complex that mediates both Notch signaling and β-amyloid precursor protein (APP) processing, resulting in the generation of Notch intracellular domain, APP intracellular domain, and the amyloid β peptide (Aβ), the latter playing a central role in Alzheimer disease (AD). By a hitherto undefined mechanism, the activity of γ-secretase gives rise to Aβ peptides of different lengths, where Aβ42 is considered to play a particular role in AD. In this study we have examined the role of the large hydrophilic loop (amino acids 320–374, encoded by exon 10) of presenilin 1 (PS1), the catalytic subunit of γ-secretase, for γ-secretase complex formation and activity on Notch and APP processing. Deletion of exon 10 resulted in impaired PS1 endoproteolysis, γ-secretase complex formation, and had a differential effect on Aβ-peptide production. Although the production of Aβ38, Aβ39, and Aβ40 was severely impaired, the effect on Aβ42 was affected to a lesser extent, implying that the production of the AD-related Aβ42 peptide is separate from the production of the Aβ38, Aβ39, and Aβ40 peptides. Interestingly, formation of the intracellular domains of both APP and Notch was intact, implying a differential cleavage activity between the ϵ/S3 and γ sites. The most C-terminal amino acids of the hydrophilic loop were important for regulating APP processing. In summary, the large hydrophilic loop of PS1 appears to differentially regulate the relative production of different Aβ peptides without affecting Notch processing, two parameters of significance when considering γ-secretase as a target for pharmaceutical intervention in AD. PMID:20106965

  3. Unexpected Extra-renal Effects of Loop Diuretics in the Preterm Neonate

    PubMed Central

    Cotton, Robert; Suarez, Sandra; Reese, Jeff

    2012-01-01

    The loop diuretics furosemide and bumetanide are commonly used in neonatal intensive care units (NICUs). Furosemide, due to its actions on the ubiquitous NKCC1 co-transporter and its promotion of prostanoid production and release, also has non-diuretic effects on vascular smooth muscle, airways, the ductus arteriosus, and theoretically the gastrointestinal tract. Loop diuretics also affect the central nervous system through the inhibitory neurotransmitter, GABA. Conclusion The loop diuretics have a variety of biological effects that are potentially harmful as well as beneficial. Care should be taken with the use of these agents since the range of their effects may be broader than the single action sought by the prescribing physician. PMID:22536874

  4. Adherence of Escherichia coli O157:H7 to epithelial cells in vitro and in pig gut loops is affected by bacterial culture conditions

    PubMed Central

    Yin, Xianhua; Feng, Yanni; Wheatcroft, Roger; Chambers, James; Gong, Joshua; Gyles, Carlton L.

    2011-01-01

    The objectives of this study were to determine the effect of bacterial culture conditions on adherence of enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain 86-24 in vivo to pig enterocytes and to compare the results with adherence in vitro to cultured HEp-2 and IPEC-J2 cells. Growth of O157:H7 in MacConkey broth (MB) resulted in almost no adherence to both HEp-2 and IPEC-J2 cells; prior exposure of the bacteria to pH 2.5 reduced adherence. There was greater adherence by bacteria from static cultures than by those from shaken cultures and by bacteria cultured in brain–heart infusion (BHI) plus NaHCO3 (BHIN) than by bacteria cultured in BHI. In contrast, in pig ileal loops, bacteria cultured in MB adhered well to enterocytes, and prior exposure to pH 2.5 had no effect on adherence. Among several media tested for their effect on bacterial adherence in the pig intestine, MB and BHIN proved to be the best. Bacterial adherence was dose-dependent and was more extensive in the ileum than in the colon. This study demonstrated that there are remarkable differences between culture conditions that promote adherence of an EHEC O157:H7 strain in vitro and in vivo, that culture conditions profoundly affect adherence to epithelial cells in vitro and in vivo, and that pig ileal loops are better suited to adherence studies than are colon loops. PMID:21731177

  5. OPE for super loops

    NASA Astrophysics Data System (ADS)

    Sever, Amit; Vieira, Pedro; Wang, Tianheng

    2011-11-01

    We extend the Operator Product Expansion for Null Polygon Wilson loops to the Mason-Skinner-Caron-Huot super loop dual to non MHV gluon amplitudes. We explain how the known tree level amplitudes can be promoted into an infinite amount of data at any loop order in the OPE picture. As an application, we re-derive all one loop NMHV six gluon amplitudes by promoting their tree level expressions. We also present some new all loops predictions for these amplitudes.

  6. A hidden oncogenic positive feedback loop caused by crosstalk between Wnt and ERK pathways.

    PubMed

    Kim, D; Rath, O; Kolch, W; Cho, K-H

    2007-07-05

    The Wnt and the extracellular signal regulated-kinase (ERK) pathways are both involved in the pathogenesis of various kinds of cancers. Recently, the existence of crosstalk between Wnt and ERK pathways was reported. Gathering all reported results, we have discovered a positive feedback loop embedded in the crosstalk between the Wnt and ERK pathways. We have developed a plausible model that represents the role of this hidden positive feedback loop in the Wnt/ERK pathway crosstalk based on the integration of experimental reports and employing established basic mathematical models of each pathway. Our analysis shows that the positive feedback loop can generate bistability in both the Wnt and ERK signaling pathways, and this prediction was further validated by experiments. In particular, using the commonly accepted assumption that mutations in signaling proteins contribute to cancerogenesis, we have found two conditions through which mutations could evoke an irreversible response leading to a sustained activation of both pathways. One condition is enhanced production of beta-catenin, the other is a reduction of the velocity of MAP kinase phosphatase(s). This enables that high activities of Wnt and ERK pathways are maintained even without a persistent extracellular signal. Thus, our study adds a novel aspect to the molecular mechanisms of carcinogenesis by showing that mutational changes in individual proteins can cause fundamental functional changes well beyond the pathway they function in by a positive feedback loop embedded in crosstalk. Thus, crosstalk between signaling pathways provides a vehicle through which mutations of individual components can affect properties of the system at a larger scale.

  7. Emotionalized learning experiences: Tapping into the affective domain.

    PubMed

    Green, Zane Asher; Batool, Sadia

    2017-06-01

    The experimental study was undertaken to examine the effect of emotionalized learning experiences on the academic achievement of students at Preston University. The major objectives of the study were to identify the effect of teaching methods on students' academic achievement and to evaluate the relationship between affective learning conditions and students' academic achievement. Based on four intact semesters, the population of the study comprised 140 students from the Bachelors of Business Administration Program. The whole population was considered as the sample. The control group (28 students) was taught through the interactive lecture method, whereas, the experimental group 1 (35 students), experimental group 2 (46 students) and experimental group 3 (31 students) were taught through the activity method, reflective learning method and cooperative learning method respectively. Results indicated a significant difference between the pretest and posttest scores obtained in the achievement test as a result of the effect of teaching methods used for offering the emotionalized learning experiences. There was also a significant relationship between affective leaning conditions and students' academic achievement. Furthermore, it was found that students' academic achievement in the affective domain was highest with regard to workshops 1, 2 and 3. It was concluded that the emotionalized learning experiences offered to the students via the four teaching methods helped students in enhancing their knowledge, changing their attitudes and developing their skills with regard to living a happy, healthy and meaningful life. However, the reflective learning method proved to be the most suitable followed by the interactive lecture method, the cooperative learning method and the activity method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Contest experience and body size affect different types of contest decisions.

    PubMed

    Chen, Yu-Ju; Hsu, Yuying

    2016-11-01

    This study examined the relative importance of contest experience and size differences to behavioral decisions over the course of contests. Using a mangrove rivulus fish, Kryptolebias marmoratus, we showed that although contest experience and size differences jointly determined contest outcomes, they affected contestants' interactions at different stages of contests. Contest experience affected behavioral decisions at earlier stages of contests, including the tendency and latency to launch attacks, the tendency to escalate contests into mutual attacks and the outcome of non-escalated contests. Once contests were escalated into mutual attacks, the degree of size difference affected the fish's persistence in escalation and chance of winning, but contest experience did not. These results support the hypothesis that contest experience modifies individuals' estimation of their fighting ability rather than their actual strength. Furthermore, (1) in contests between two naïve contestants, more than 60 % of fish that were 2-3 mm smaller than their opponent escalated the contest to physical fights, even though their larger opponents eventually won 92 % of escalated fights and (2) fish with a losing experience were very likely to retreat in the face of an opponent 2-3 mm smaller than them without escalating. The result that a 2-3 mm size advantage could not offset the influence of a losing experience on the tendency to escalate suggests that, as well as depending on body size, the fish's physical strength is influenced by other factors which require further investigation.

  9. Effects of loop detector installation on the Portland cement concrete pavement lifespan : case study on I-5.

    DOT National Transportation Integrated Search

    2010-08-01

    The installation of loop detectors in portland cement concrete pavement (PCCP) may shorten affected panel life, thus prematurely worsening the condition of the overall pavement. This study focuses on the performance of those loop embedded panels (LEP...

  10. Simulations of Solar Jets Confined by Coronal Loops

    NASA Technical Reports Server (NTRS)

    Wyper, P. F.; De Vore, C. R.

    2016-01-01

    Coronal jets are collimated, dynamic events that occur over a broad range of spatial scales in the solar corona. In the open magnetic field of coronal holes, jets form quasi-radial spires that can extend far out into the heliosphere, while in closed-field regions the jet outflows are confined to the corona. We explore the application of the embedded-bipole model to jets occurring in closed coronal loops. In this model, magnetic free energy is injected slowly by footpoint motions that introduce twist within the closed dome of the jet source region, and is released rapidly by the onset of an ideal kink-like instability. Two length scales characterize the system: the width (N) of the jet source region and the footpoint separation (L) of the coronal loop that envelops the jet source. We find that both the conditions for initiation and the subsequent dynamics are highly sensitive to the ratio L/N. The longest-lasting and most energetic jets occur along long coronal loops with large L/N ratios, and share many of the features of open-field jets, while smaller L/N ratios produce shorter-duration, less energetic jets that are affected by reflections from the far-loop footpoint. We quantify the transition between these behaviors and show that our model replicates key qualitative and quantitative aspects of both quiet Sun and active-region loop jets. We also find that there connection between the closed dome and surrounding coronal loop is very extensive: the cumulative reconnected flux at least matches the total flux beneath the dome for small L/N, and is more than double that value for large L/N.

  11. SIMULATIONS OF SOLAR JETS CONFINED BY CORONAL LOOPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyper, P. F.; DeVore, C. R., E-mail: peter.f.wyper@nasa.gov, E-mail: c.richard.devore@nasa.gov

    Coronal jets are collimated, dynamic events that occur over a broad range of spatial scales in the solar corona. In the open magnetic field of coronal holes, jets form quasi-radial spires that can extend far out into the heliosphere, while in closed-field regions the jet outflows are confined to the corona. We explore the application of the embedded-bipole model to jets occurring in closed coronal loops. In this model, magnetic free energy is injected slowly by footpoint motions that introduce twist within the closed dome of the jet source region, and is released rapidly by the onset of an idealmore » kink-like instability. Two length scales characterize the system: the width (N) of the jet source region and the footpoint separation (L) of the coronal loop that envelops the jet source. We find that both the conditions for initiation and the subsequent dynamics are highly sensitive to the ratio L/N. The longest-lasting and most energetic jets occur along long coronal loops with large L/N ratios, and share many of the features of open-field jets, while smaller L/N ratios produce shorter-duration, less energetic jets that are affected by reflections from the far-loop footpoint. We quantify the transition between these behaviors and show that our model replicates key qualitative and quantitative aspects of both quiet Sun and active-region loop jets. We also find that the reconnection between the closed dome and surrounding coronal loop is very extensive: the cumulative reconnected flux at least matches the total flux beneath the dome for small L/N, and is more than double that value for large L/N.« less

  12. Does Double Loop Learning Create Reliable Knowledge?

    ERIC Educational Resources Information Center

    Blackman, Deborah; Connelly, James; Henderson, Steven

    2004-01-01

    This paper addresses doubts concerning the reliability of knowledge being created by double loop learning processes. Popper's ontological worlds are used to explore the philosophical basis of the way that individual experiences are turned into organisational knowledge, and such knowledge is used to generate organisational learning. The paper…

  13. Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review

    DOE PAGES

    Wang, Ping; Means, Nicholas; Shekhawat, Dushyant; ...

    2015-09-24

    Chemical-looping technology is one of the promising CO 2 capture technologies. It generates a CO 2 enriched flue gas, which will greatly benefit CO 2 capture, utilization or sequestration. Both chemical-looping combustion (CLC) and chemical-looping gasification (CLG) have the potential to be used to generate power, chemicals, and liquid fuels. Chemical-looping is an oxygen transporting process using oxygen carriers. Recently, attention has focused on solid fuels such as coal. Coal chemical-looping reactions are more complicated than gaseous fuels due to coal properties (like mineral matter) and the complex reaction pathways involving solid fuels. The mineral matter/ash and sulfur in coalmore » may affect the activity of oxygen carriers. Oxygen carriers are the key issue in chemical-looping processes. Thermogravimetric analysis (TGA) has been widely used for the development of oxygen carriers (e.g., oxide reactivity). Two proposed processes for the CLC of solid fuels are in-situ Gasification Chemical-Looping Combustion (iG-CLC) and Chemical-Looping with Oxygen Uncoupling (CLOU). The objectives of this review are to discuss various chemical-looping processes with coal, summarize TGA applications in oxygen carrier development, and outline the major challenges associated with coal chemical-looping in iG-CLC and CLOU.« less

  14. Closed-loop Separation Control Using Oscillatory Flow Excitation

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Juang, Jer-Nan; Raney, David L.; Seifert, Avi; Pack, latunia G.; Brown, Donald E.

    2000-01-01

    Design and implementation of a digital feedback controller for a flow control experiment was performed. The experiment was conducted in a cryogenic pressurized wind tunnel on a generic separated configuration at a chord Reynolds number of 16 million and a Mach number of 0.25. The model simulates the upper surface of a 20% thick airfoil at zero angle-of-attack. A moderate favorable pressure gradient, up to 55% of the chord, is followed by a severe adverse pressure gradient which is relaxed towards the trailing edge. The turbulent separation bubble, behind the adverse pressure gradient, is then reduced by introducing oscillatory flow excitation just upstream of the point of flow separation. The degree of reduction in the separation region can be controlled by the amplitude of the oscillatory excitation. A feedback controller was designed to track a given trajectory for the desired degree of flow reattachment and to improve the transient behavior of the flow system. Closed-loop experiments demonstrated that the feedback controller was able to track step input commands and improve the transient behavior of the open-loop response.

  15. Molecular Recognition of 6′-N-5-Hexynoate Kanamyin A and RNA 1×1 Internal Loops Containing CA Mismatches

    PubMed Central

    Tran, Tuan; Disney, Matthew D.

    2011-01-01

    In our previous study to identify the RNA internal loops that bind an aminoglycoside derivative, we determined that 6′-N-5-hexynoate kanamycin A prefers to bind 1×1 nucleotide internal loops containing C•A mismatches. In this present study, the molecular recognition between a variety of RNAs that are mutated around the C•A loop and the ligand was investigated. Studies show that both loop nucleotides and loop closing pairs affect binding affinity. Most interestingly, it was shown that there is a correlation between the thermodynamic stability of the C•A internal loops and ligand affinity. Specifically, C•A loops that had relatively high or low stability bound the ligand most weakly whereas loops with intermediate stability bound the ligand most tightly. In contrast, there is no correlation between the likelihood that a loop forms a C-A+ pair at lower pH and ligand affinity. It was also found that a 1×1 nucleotide C•A loop that bound to the ligand with the highest affinity is identical to the consensus site in RNAs that are edited by adenosine deaminases acting on RNA type 2 (ADAR2). These studies provide a detailed investigation of factors affecting small molecule recognition of internal loops containing C•A mismatches, which are present in a variety of RNAs that cause disease. PMID:21207945

  16. Language Experience Affects Grouping of Musical Instrument Sounds

    ERIC Educational Resources Information Center

    Bhatara, Anjali; Boll-Avetisyan, Natalie; Agus, Trevor; Höhle, Barbara; Nazzi, Thierry

    2016-01-01

    Language experience clearly affects the perception of speech, but little is known about whether these differences in perception extend to non-speech sounds. In this study, we investigated rhythmic perception of non-linguistic sounds in speakers of French and German using a grouping task, in which complexity (variability in sounds, presence of…

  17. Heat Load Sharing in a Capillary Pumped Loop with Multiple Evaporators and Multiple Condensers

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2005-01-01

    This paper describes the heat load sharing function among multiple parallel evaporators in a capillary pumped loop (CPL). In the normal mode of operation, the evaporators cool the instruments by absorbing the waste heat. When an instruments is turned off, the attached evaporator can keep it warm by receiving heat from other evaporators serving the operating instruments. This is referred to as heat load sharing. A theoretical basis of heat load sharing is given first. The fact that the wicks in the powered evaporators will develop capillary pressure to force the generated vapor to flow to cold locations where the pressure is lower leads to the conclusion that heat load sharing is an inherent function of a CPL with multiple evaporators. Heat load sharing has been verified with many CPLs in ground tests. Experimental results of the Capillary Pumped Loop 3 (CAPL 3) Flight Experiment are presented in this paper. Factors that affect the amount of heat being shared are discussed. Some constraints of heat load sharing are also addressed.

  18. The Impact of Experience on Affective Responses during Action Observation.

    PubMed

    Kirsch, Louise P; Snagg, Arielle; Heerey, Erin; Cross, Emily S

    2016-01-01

    Perceiving others in action elicits affective and aesthetic responses in observers. The present study investigates the extent to which these responses relate to an observer's general experience with observed movements. Facial electromyographic (EMG) responses were recorded in experienced dancers and non-dancers as they watched short videos of movements performed by professional ballet dancers. Responses were recorded from the corrugator supercilii (CS) and zygomaticus major (ZM) muscles, both of which show engagement during the observation of affect-evoking stimuli. In the first part of the experiment, participants passively watched the videos while EMG data were recorded. In the second part, they explicitly rated how much they liked each movement. Results revealed a relationship between explicit affective judgments of the movements and facial muscle activation only among those participants who were experienced with the movements. Specifically, CS activity was higher for disliked movements and ZM activity was higher for liked movements among dancers but not among non-dancers. The relationship between explicit liking ratings and EMG data in experienced observers suggests that facial muscles subtly echo affective judgments even when viewing actions that are not intentionally emotional in nature, thus underscoring the potential of EMG as a method to examine subtle shifts in implicit affective responses during action observation.

  19. Estimating loop length from CryoEM images at medium resolutions.

    PubMed

    McKnight, Andrew; Si, Dong; Al Nasr, Kamal; Chernikov, Andrey; Chrisochoides, Nikos; He, Jing

    2013-01-01

    De novo protein modeling approaches utilize 3-dimensional (3D) images derived from electron cryomicroscopy (CryoEM) experiments. The skeleton connecting two secondary structures such as α-helices represent the loop in the 3D image. The accuracy of the skeleton and of the detected secondary structures are critical in De novo modeling. It is important to measure the length along the skeleton accurately since the length can be used as a constraint in modeling the protein. We have developed a novel computational geometric approach to derive a simplified curve in order to estimate the loop length along the skeleton. The method was tested using fifty simulated density images of helix-loop-helix segments of atomic structures and eighteen experimentally derived density data from Electron Microscopy Data Bank (EMDB). The test using simulated density maps shows that it is possible to estimate within 0.5 Å of the expected length for 48 of the 50 cases. The experiments, involving eighteen experimentally derived CryoEM images, show that twelve cases have error within 2 Å. The tests using both simulated and experimentally derived images show that it is possible for our proposed method to estimate the loop length along the skeleton if the secondary structure elements, such as α-helices, can be detected accurately, and there is a continuous skeleton linking the α-helices.

  20. Multiple Flow Loop SCADA System Implemented on the Production Prototype Loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baily, Scott A.; Dalmas, Dale Allen; Wheat, Robert Mitchell

    2015-11-16

    The following report covers FY 15 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production prototype gas flow loop. The goal of this effort is to expand the existing system to include a second flow loop with a larger production-sized blower. Besides testing the larger blower, this system will demonstrate the scalability of our solution to multiple flow loops.

  1. Decaying and decayless transverse oscillations of a coronal loop

    NASA Astrophysics Data System (ADS)

    Nisticò, G.; Nakariakov, V. M.; Verwichte, E.

    2013-04-01

    Aims: We investigate kink oscillations of loops observed in an active region with the Atmospheric Imaging Assembly (AIA) instrument on board the Solar Dynamics Observatory (SDO) spacecraft before and after a flare. Methods: The oscillations were depicted and analysed with time-distance maps, extracted from the cuts taken parallel or perpendicular to the loop axis. Moving loops were followed in time with steadily moving slits. The period of oscillations and its time variation were determined by best-fitting harmonic functions. Results: We show that before and well after the occurrence of the flare, the loops experience low-amplitude decayless oscillations. The flare and the coronal mass ejection associated to it trigger large-amplitude oscillations that decay exponentially in time. The periods of the kink oscillations in both regimes (about 240 s) are similar. An empirical model of the phenomenon in terms of a damped linear oscillator excited by a continuous low-amplitude harmonic driver and by an impulsive high-amplitude driver is found to be consistent with the observations. Two movies are available in electronic form at http://www.aanda.org

  2. Shielded dual-loop resonator for arterial spin labeling at the neck.

    PubMed

    Hetzer, Stefan; Mildner, Toralf; Driesel, Wolfgang; Weder, Manfred; Möller, Harald E

    2009-06-01

    To construct a dual-loop coil for continuous arterial spin labeling (CASL) at the human neck and characterize it using computer simulations and magnetic resonance experiments. The labeling coil was designed as a perpendicular pair of shielded-loop resonators made from coaxial cable to obtain balanced circular loops with minimal electrical interaction with the lossy tissue. Three different excitation modes depending on the phase shift, Deltapsi, of the currents driving the two circular loops were investigated including a "Maxwell mode" (Deltapsi = 0 degrees ; ie, opposite current directions in both loops), a "quadrature mode" (Deltapsi = 90 degrees ), and a "Helmholtz mode" (Deltapsi = 180 degrees ; ie, identical current directions in both loops). Simulations of the radiofrequency field distribution indicated a high inversion efficiency at the locations of the carotid and vertebral arteries. With a 7-mm-thick polypropylene insulation, a sufficient distance from tissue was achieved to guarantee robust performance at a local specific absorption rate (SAR) well below legal safety limits. Application in healthy volunteers at 3 T yielded quantitative maps of gray matter perfusion with low intersubject variability. The coil permits robust labeling with low SAR and minimal sensitivity to different loading conditions.

  3. Sensory feedback in prosthetics: a standardized test bench for closed-loop control.

    PubMed

    Dosen, Strahinja; Markovic, Marko; Hartmann, Cornelia; Farina, Dario

    2015-03-01

    Closing the control loop by providing sensory feedback to the user of a prosthesis is an important challenge, with major impact on the future of prosthetics. Developing and comparing closed-loop systems is a difficult task, since there are many different methods and technologies that can be used to implement each component of the system. Here, we present a test bench developed in Matlab Simulink for configuring and testing the closed-loop human control system in standardized settings. The framework comprises a set of connected generic blocks with normalized inputs and outputs, which can be customized by selecting specific implementations from a library of predefined components. The framework is modular and extensible and it can be used to configure, compare and test different closed-loop system prototypes, thereby guiding the development towards an optimal system configuration. The use of the test bench was demonstrated by investigating two important aspects of closed-loop control: performance of different electrotactile feedback interfaces (spatial versus intensity coding) during a pendulum stabilization task and feedforward methods (joystick versus myocontrol) for force control. The first experiment demonstrated that in the case of trained subjects the intensity coding might be superior to spatial coding. In the second experiment, the control of force was rather poor even with a stable and precise control interface (joystick), demonstrating that inherent characteristics of the prosthesis can be an important limiting factor when considering the overall effectiveness of the closed-loop control. The presented test bench is an important instrument for investigating different aspects of human manual control with sensory feedback.

  4. Vortex Loops at the Superfluid Lambda Transition: An Exact Theory?

    NASA Technical Reports Server (NTRS)

    Williams, Gary A.

    2003-01-01

    A vortex-loop theory of the superfluid lambda transition has been developed over the last decade, with many results in agreement with experiments. It is a very simple theory, consisting of just three basic equations. When it was first proposed the main uncertainty in the theory was the use Flory scaling to find the fractal dimension of the random-walking vortex loops. Recent developments in high-resolution Monte Carlo simulations have now made it possible to verify the accuracy of this Flory-scaling assumption. Although the loop theory is not yet rigorously proven to be exact, the Monte Carlo results show at the least that it is an extremely good approximation. Recent loop calculations of the critical Casimir effect in helium films in the superfluid phase T < Tc will be compared with similar perturbative RG calculations in the normal phase T > Tc; the two calculations are found to match very nicely right at Tc.

  5. N -loop running should be combined with N -loop matching

    NASA Astrophysics Data System (ADS)

    Braathen, Johannes; Goodsell, Mark D.; Krauss, Manuel E.; Opferkuch, Toby; Staub, Florian

    2018-01-01

    We investigate the high-scale behavior of Higgs sectors beyond the Standard Model, pointing out that the proper matching of the quartic couplings before applying the renormalization group equations (RGEs) is of crucial importance for reliable predictions at larger energy scales. In particular, the common practice of leading-order parameters in the RGE evolution is insufficient to make precise statements on a given model's UV behavior, typically resulting in uncertainties of many orders of magnitude. We argue that, before applying N -loop RGEs, a matching should even be performed at N -loop order in contrast to common lore. We show both analytical and numerical results where the impact is sizable for three minimal extensions of the Standard Model: a singlet extension, a second Higgs doublet and finally vector-like quarks. We highlight that the known two-loop RGEs tend to moderate the running of their one-loop counterparts, typically delaying the appearance of Landau poles. For the addition of vector-like quarks we show that the complete two-loop matching and RGE evolution hints at a stabilization of the electroweak vacuum at high energies, in contrast to results in the literature.

  6. Unmixing Magnetic Hysteresis Loops

    NASA Astrophysics Data System (ADS)

    Heslop, D.; Roberts, A. P.

    2012-04-01

    Magnetic hysteresis loops provide important information in rock and environmental magnetic studies. Natural samples often contain an assemblage of magnetic particles composed of components with different origins. Each component potentially carries important environmental information. Hysteresis loops, however, provide information concerning the bulk magnetic assemblage, which makes it difficult to isolate the specific contributions from different sources. For complex mineral assemblages an unmixing strategy with which to separate hysteresis loops into their component parts is therefore essential. Previous methods to unmix hysteresis data have aimed at separating individual loops into their constituent parts using libraries of type-curves thought to correspond to specific mineral types. We demonstrate an alternative approach, which rather than decomposing a single loop into monomineralic contributions, examines a collection of loops to determine their constituent source materials. These source materials may themselves be mineral mixtures, but they provide a genetically meaningful decomposition of a magnetic assemblage in terms of the processes that controlled its formation. We show how an empirically derived hysteresis mixing space can be created, without resorting to type-curves, based on the co-variation within a collection of measured loops. Physically realistic end-members, which respect the expected behaviour and symmetries of hysteresis loops, can then be extracted from the mixing space. These end-members allow the measured loops to be described as a combination of invariant parts that are assumed to represent the different sources in the mixing model. Particular attention is paid to model selection and estimating the complexity of the mixing model, specifically, how many end-members should be included. We demonstrate application of this approach using lake sediments from Butte Valley, northern California. Our method successfully separates the hysteresis loops

  7. Costas loop lock detection in the advanced receiver

    NASA Technical Reports Server (NTRS)

    Mileant, A.; Hinedi, S.

    1989-01-01

    The advanced receiver currently being developed uses a Costas digital loop to demodulate the subcarrier. Previous analyses of lock detector algorithms for Costas loops have ignored the effects of the inherent correlation between the samples of the phase-error process. Accounting for this correlation is necessary to achieve the desired lock-detection probability for a given false-alarm rate. Both analysis and simulations are used to quantify the effects of phase correlation on lock detection for the square-law and the absolute-value type detectors. Results are obtained which depict the lock-detection probability as a function of loop signal-to-noise ratio for a given false-alarm rate. The mathematical model and computer simulation show that the square-law detector experiences less degradation due to phase jitter than the absolute-value detector and that the degradation in detector signal-to-noise ratio is more pronounced for square-wave than for sine-wave signals.

  8. High-resolution retinal imaging through open-loop adaptive optics

    NASA Astrophysics Data System (ADS)

    Li, Chao; Xia, Mingliang; Li, Dayu; Mu, Quanquan; Xuan, Li

    2010-07-01

    Using the liquid crystal spatial light modulator (LC-SLM) as the wavefront corrector, an open-loop adaptive optics (AO) system for fundus imaging in vivo is constructed. Compared with the LC-SLM closed-loop AO system, the light energy efficiency is increased by a factor of 2, which is helpful for the safety of fundus illumination in vivo. In our experiment, the subjective accommodation method is used to precorrect the defocus aberration, and three subjects with different myopia 0, -3, and -5 D are tested. Although the residual wavefront error after correction cannot to detected, the fundus images adequately demonstrate that the imaging system reaches the resolution of a single photoreceptor cell through the open-loop correction. Without dilating and cyclopleging the eye, the continuous imaging for 8 s is recorded for one of the subjects.

  9. Effect of supercoiling on formation of protein-mediated DNA loops

    NASA Astrophysics Data System (ADS)

    Purohit, P. K.; Nelson, P. C.

    2006-12-01

    DNA loop formation is one of several mechanisms used by organisms to regulate genes. The free energy of forming a loop is an important factor in determining whether the associated gene is switched on or off. In this paper we use an elastic rod model of DNA to determine the free energy of forming short (50-100 basepair), protein mediated DNA loops. Superhelical stress in the DNA of living cells is a critical factor determining the energetics of loop formation, and we explicitly account for it in our calculations. The repressor protein itself is regarded as a rigid coupler; its geometry enters the problem through the boundary conditions it applies on the DNA. We show that a theory with these ingredients is sufficient to explain certain features observed in modulation of in vivo gene activity as a function of the distance between operator sites for the lac repressor. We also use our theory to make quantitative predictions for the dependence of looping on superhelical stress, which may be testable both in vivo and in single-molecule experiments such as the tethered particle assay and the magnetic bead assay.

  10. Unexpected extra-renal effects of loop diuretics in the preterm neonate.

    PubMed

    Cotton, Robert; Suarez, Sandra; Reese, Jeff

    2012-08-01

    The loop diuretics furosemide and bumetanide are commonly used in neonatal intensive care units (NICUs). Furosemide, because of its actions on the ubiquitous Na(+) -K(+) -2Cl(-) isoform cotransporter and its promotion of prostanoid production and release, also has non-diuretic effects on vascular smooth muscle, airways, the ductus arteriosus and theoretically the gastrointestinal tract. Loop diuretics also affect the central nervous system through modulation of the GABA-A chloride channel.   The loop diuretics have a variety of biological effects that are potentially harmful as well as beneficial. Care should be taken with the use of these agents because the range of their effects may be broader than the single action sought by the prescribing physician. © 2012 The Author(s)/Acta Paediatrica © 2012 Foundation Acta Paediatrica.

  11. Closing loop base pairs in RNA loop-loop complexes: structural behavior, interaction energy and solvation analysis through molecular dynamics simulations.

    PubMed

    Golebiowski, Jérôme; Antonczak, Serge; Fernandez-Carmona, Juan; Condom, Roger; Cabrol-Bass, Daniel

    2004-12-01

    Nanosecond molecular dynamics using the Ewald summation method have been performed to elucidate the structural and energetic role of the closing base pair in loop-loop RNA duplexes neutralized by Mg2+ counterions in aqueous phases. Mismatches GA, CU and Watson-Crick GC base pairs have been considered for closing the loop of an RNA in complementary interaction with HIV-1 TAR. The simulations reveal that the mismatch GA base, mediated by a water molecule, leads to a complex that presents the best compromise between flexibility and energetic contributions. The mismatch CU base pair, in spite of the presence of an inserted water molecule, is too short to achieve a tight interaction at the closing-loop junction and seems to force TAR to reorganize upon binding. An energetic analysis has allowed us to quantify the strength of the interactions of the closing and the loop-loop pairs throughout the simulations. Although the water-mediated GA closing base pair presents an interaction energy similar to that found on fully geometry-optimized structure, the water-mediated CU closing base pair energy interaction reaches less than half the optimal value.

  12. Teachers' Affective Well-being and Teaching Experience: The Protective Role of Perceived Emotional Intelligence.

    PubMed

    Fernández-Berrocal, Pablo; Gutiérrez-Cobo, María J; Rodriguez-Corrales, Juan; Cabello, Rosario

    2017-01-01

    Teaching is a highly emotional and demanding profession. Developing emotional well-being among teachers will benefit not only the teachers themselves, but also their students. Previous studies have shown the protective role of emotional intelligence (EI) as well as inconsistencies in the years of teaching experience variable on positive and negative work-specific variables. The aim of the present study was to analyze how EI and years of teaching experience are related to affective well-being in teachers. Further, we analyze the moderator role of perceived EI on the link between level of teaching experience and affective well-being. For these purpose, 524 teachers from different Spanish public schools took part in the study. They first completed the Trait Meta-Mood Scale-24 (TMMS-24) for measuring perceived EI, which evaluates three scales: Attention to one's Feelings (Attention), Emotional Clarity (Clarity), and Mood Repair (Repair). Secondly, they completed the Positive and Negative Affect Schedule (PANAS) for affective well-being, which measures Positive Affect (PA) and Negative Affect (NA). Finally, teachers indicated their years of teaching experience. The results revealed that teaching experience and attention variables are counterproductive in determining lower PA and higher NA, respectively. Clarity and Repair appeared to be a significant determinant of PA and NA, with higher Clarity and Repair determining higher PA and lower NA. Moderator analyses showed how teaching experience significantly decreased PA in teachers who had average or low levels of Repair, but not for those with higher levels of this variable, emphasizing the important role of Repair as a protector of affective well-being in teachers. Limitations and future areas for research are discussed.

  13. Teachers’ Affective Well-being and Teaching Experience: The Protective Role of Perceived Emotional Intelligence

    PubMed Central

    Fernández-Berrocal, Pablo; Gutiérrez-Cobo, María J.; Rodriguez-Corrales, Juan; Cabello, Rosario

    2017-01-01

    Teaching is a highly emotional and demanding profession. Developing emotional well-being among teachers will benefit not only the teachers themselves, but also their students. Previous studies have shown the protective role of emotional intelligence (EI) as well as inconsistencies in the years of teaching experience variable on positive and negative work-specific variables. The aim of the present study was to analyze how EI and years of teaching experience are related to affective well-being in teachers. Further, we analyze the moderator role of perceived EI on the link between level of teaching experience and affective well-being. For these purpose, 524 teachers from different Spanish public schools took part in the study. They first completed the Trait Meta-Mood Scale-24 (TMMS-24) for measuring perceived EI, which evaluates three scales: Attention to one’s Feelings (Attention), Emotional Clarity (Clarity), and Mood Repair (Repair). Secondly, they completed the Positive and Negative Affect Schedule (PANAS) for affective well-being, which measures Positive Affect (PA) and Negative Affect (NA). Finally, teachers indicated their years of teaching experience. The results revealed that teaching experience and attention variables are counterproductive in determining lower PA and higher NA, respectively. Clarity and Repair appeared to be a significant determinant of PA and NA, with higher Clarity and Repair determining higher PA and lower NA. Moderator analyses showed how teaching experience significantly decreased PA in teachers who had average or low levels of Repair, but not for those with higher levels of this variable, emphasizing the important role of Repair as a protector of affective well-being in teachers. Limitations and future areas for research are discussed. PMID:29312074

  14. Thermal Vacuum Testing of a Multi-Evaporator Miniature Loop Heat Pipe

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Nagano, Hosei

    2008-01-01

    Under NASA's New Millennium Program Space Technology 8 Project, four experiments are being developed for future small system applications requiring low mass, low power, and compactness. GSFC is responsible for developing the Thermal Loop experiment, which is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and condensers. The objective is to validate the operation of an MLHP, including reliable start-ups, steady operation, heat load sharing, and tight temperature control over the range of 273K to 308K. An MLHP Breadboard has been built and tested for 1200 hours under the laboratory environment and 500 hours in a thermal vacuum chamber. Results of the TV tests are presented here.

  15. Coupled dual loop absorption heat pump

    DOEpatents

    Sarkisian, Paul H.; Reimann, Robert C.; Biermann, Wendell J.

    1985-01-01

    A coupled dual loop absorption system which utilizes two separate complete loops. Each individual loop operates at three temperatures and two pressures. This low temperature loop absorber and condenser are thermally coupled to the high temperature loop evaporator, and the high temperature loop condenser and absorber are thermally coupled to the low temperature generator.

  16. Molecular dynamics study of the interaction between nanoscale interstitial dislocation loops and grain boundaries in BCC iron

    NASA Astrophysics Data System (ADS)

    Gao, N.; Perez, D.; Lu, G. H.; Wang, Z. G.

    2018-01-01

    Atomic simulations are used to investigate the interaction between nanoscale interstitial dislocation loops and grain boundaries (GBs), the subsequent evolution of the GBs' structures, and the resulting impact on mechanical properties, in BCC iron. The interaction between loops and GBs - Σ 3 { 111 } and Σ 3 { 112 } - is affected by the angle (θ) between the Burgers vector and the normal to the GB plane, as well as by the distribution of free volume (FV) and stress. Loops can be totally absorbed by Σ 3 { 111 } boundaries, while the interaction with Σ 3 { 112 } boundaries is found to change the Burgers vector and habit plane after absorption, but to otherwise leave the loop intact, resulting in selective absorption. When θ =90o , no absorption occurs in Σ 3 { 112 } . The stress accumulation induced by the absorption affects the local mechanical properties of GBs. In nanocrystalline iron sample, a similar phenomenon is also observed, resulting in rearrangement of GBs and grain growth.

  17. Falcon: a highly flexible open-source software for closed-loop neuroscience.

    PubMed

    Ciliberti, Davide; Kloosterman, Fabian

    2017-08-01

    Closed-loop experiments provide unique insights into brain dynamics and function. To facilitate a wide range of closed-loop experiments, we created an open-source software platform that enables high-performance real-time processing of streaming experimental data. We wrote Falcon, a C++ multi-threaded software in which the user can load and execute an arbitrary processing graph. Each node of a Falcon graph is mapped to a single thread and nodes communicate with each other through thread-safe buffers. The framework allows for easy implementation of new processing nodes and data types. Falcon was tested both on a 32-core and a 4-core workstation. Streaming data was read from either a commercial acquisition system (Neuralynx) or the open-source Open Ephys hardware, while closed-loop TTL pulses were generated with a USB module for digital output. We characterized the round-trip latency of our Falcon-based closed-loop system, as well as the specific latency contribution of the software architecture, by testing processing graphs with up to 32 parallel pipelines and eight serial stages. We finally deployed Falcon in a task of real-time detection of population bursts recorded live from the hippocampus of a freely moving rat. On Neuralynx hardware, round-trip latency was well below 1 ms and stable for at least 1 h, while on Open Ephys hardware latencies were below 15 ms. The latency contribution of the software was below 0.5 ms. Round-trip and software latencies were similar on both 32- and 4-core workstations. Falcon was used successfully to detect population bursts online with ~40 ms average latency. Falcon is a novel open-source software for closed-loop neuroscience. It has sub-millisecond intrinsic latency and gives the experimenter direct control of CPU resources. We envisage Falcon to be a useful tool to the neuroscientific community for implementing a wide variety of closed-loop experiments, including those requiring use of complex data structures and real

  18. Falcon: a highly flexible open-source software for closed-loop neuroscience

    NASA Astrophysics Data System (ADS)

    Ciliberti, Davide; Kloosterman, Fabian

    2017-08-01

    Objective. Closed-loop experiments provide unique insights into brain dynamics and function. To facilitate a wide range of closed-loop experiments, we created an open-source software platform that enables high-performance real-time processing of streaming experimental data. Approach. We wrote Falcon, a C++ multi-threaded software in which the user can load and execute an arbitrary processing graph. Each node of a Falcon graph is mapped to a single thread and nodes communicate with each other through thread-safe buffers. The framework allows for easy implementation of new processing nodes and data types. Falcon was tested both on a 32-core and a 4-core workstation. Streaming data was read from either a commercial acquisition system (Neuralynx) or the open-source Open Ephys hardware, while closed-loop TTL pulses were generated with a USB module for digital output. We characterized the round-trip latency of our Falcon-based closed-loop system, as well as the specific latency contribution of the software architecture, by testing processing graphs with up to 32 parallel pipelines and eight serial stages. We finally deployed Falcon in a task of real-time detection of population bursts recorded live from the hippocampus of a freely moving rat. Main results. On Neuralynx hardware, round-trip latency was well below 1 ms and stable for at least 1 h, while on Open Ephys hardware latencies were below 15 ms. The latency contribution of the software was below 0.5 ms. Round-trip and software latencies were similar on both 32- and 4-core workstations. Falcon was used successfully to detect population bursts online with ~40 ms average latency. Significance. Falcon is a novel open-source software for closed-loop neuroscience. It has sub-millisecond intrinsic latency and gives the experimenter direct control of CPU resources. We envisage Falcon to be a useful tool to the neuroscientific community for implementing a wide variety of closed-loop experiments, including those

  19. Impact of alloy composition on one-dimensional glide of small dislocation loops in concentrated solid solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Shi; Bei, Hongbin; Robertson, Ian M.

    2017-06-08

    One-dimensional glide of loops during ion irradiation at 773 K in a series of Ni-containing concentrated solid solution alloys has been observed directly during experiments conducted inside a transmission electron microscope. It was found that the frequency of the oscillatory motion of the loop, the loop glide velocity as well as the loop jump distance were dependent on the composition of the alloy and the size of the loop. Loop glide was most common for small loops and occurred more frequently in the less complex alloys, being highest in Ni, then NiCo, NiFe and NiCoFeCr. As a result, no measurablemore » loop glide occurred in the NiCoCr, NiCoFeCrMn and NiCoFeCrPd alloys.« less

  20. Multiple states and hysteresis in a two-layer loop current type system

    NASA Astrophysics Data System (ADS)

    Kuehl, J.; Sheremet, V.

    2017-12-01

    Rotating table experiments are considered of a two-layer loop current type or gap-leaping system. Such experiments are representative of oceanic regions including the Kuroshio current crossing the Luzon Strait, the Gulf of Mexico Loop Current, the Northeast Chanel of the Gulf of Maine where Scotian shelf water leaps directly from Browns bank to Georges Bank and more. Systems such as these are known to admit two dominant states: leaping across the gap or penetrating into the gap forming a loop current. Which state the system will assume and when transitions between states will occur are open problems. We show that such systems admit multiple steady states with hysteresis when the strength of the current is varied. When the state of the system is viewed in a parameter space representing inertia and vorticity constraint, the system is found to be characterized by a cusp topology of solutions. The existence of such dynamics in two-layer quasi-geostrophic systems has significant implications for oceanographic predictability.

  1. Cool Transition Region Loops Observed by the Interface Region Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Huang, Zhenghua; Xia, Lidong; Li, Bo; Madjarska, Maria S.

    2015-09-01

    We report on the first Interface Region Imaging Spectrograph (IRIS) study of cool transition region loops, a class of loops that has received little attention in the literature. A cluster of such loops was observed on the solar disk in active region NOAA11934, in the Si iv 1402.8 Å spectral raster and 1400 Å slit-jaw images. We divide the loops into three groups and study their dynamics. The first group comprises relatively stable loops, with 382-626 km cross-sections. Observed Doppler velocities are suggestive of siphon flows, gradually changing from -10 km s-1 at one end to 20 km s-1 at the other end of the loops. Nonthermal velocities of 15 ˜ 25 km s-1 were determined. Magnetic cancellation with a rate of 1015 Mx s-1 is found at the blueshifted footpoints. These physical properties suggest that these loops are impulsively heated by magnetic reconnection, and the siphon flows play an important role in the energy redistribution. The second group corresponds to two footpoints rooted in mixed-magnetic-polarity regions, where magnetic cancellation with a rate of 1015 Mx s-1 and explosive-event line profiles with enhanced wings of up to 200 km s-1 were observed. In the third group, interaction between two cool loop systems is observed. Evidence for magnetic reconnection between the two loop systems is reflected in the explosive-event line profiles and magnetic cancellation with a rate of 3× {10}15 Mx s-1 observed in the corresponding area. The IRIS has provided opportunity for in-depth investigations of cool transition region loops. Further numerical experiments are crucial for understanding their physics and their roles in the coronal heating processes.

  2. Substituting Tyr138 in the active site loop of human phenylalanine hydroxylase affects catalysis and substrate activation.

    PubMed

    Leandro, João; Stokka, Anne J; Teigen, Knut; Andersen, Ole A; Flatmark, Torgeir

    2017-07-01

    Mammalian phenylalanine hydroxylase (PAH) is a key enzyme in l-phenylalanine (l-Phe) metabolism and is active as a homotetramer. Biochemical and biophysical work has demonstrated that it cycles between two states with a variably low and a high activity, and that the substrate l-Phe is the key player in this transition. X-ray structures of the catalytic domain have shown mobility of a partially intrinsically disordered Tyr 138 -loop to the active site in the presence of l-Phe. The mechanism by which the loop dynamics are coupled to substrate binding at the active site in tetrameric PAH is not fully understood. We have here conducted functional studies of four Tyr 138 point mutants. A high linear correlation ( r 2 = 0.99) was observed between their effects on the catalytic efficiency of the catalytic domain dimers and the corresponding effect on the catalytic efficiency of substrate-activated full-length tetramers. In the tetramers, a correlation ( r 2 = 0.96) was also observed between the increase in catalytic efficiency (activation) and the global conformational change (surface plasmon resonance signal response) at the same l-Phe concentration. The new data support a similar functional importance of the Tyr 138 -loop in the catalytic domain and the full-length enzyme homotetramer.

  3. Hard-thermal-loop perturbation theory to two loops

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Braaten, Eric; Petitgirard, Emmanuel; Strickland, Michael

    2002-10-01

    We calculate the pressure for pure-glue QCD at high temperature to two-loop order using hard-thermal-loop (HTL) perturbation theory. At this order, all the ultraviolet divergences can be absorbed into renormalizations of the vacuum energy density and the HTL mass parameter. We determine the HTL mass parameter by a variational prescription. The resulting predictions for the pressure fail to agree with results from lattice gauge theory at temperatures for which they are available.

  4. Both Direct and Vicarious Experiences of Nature Affect Children's Willingness to Conserve Biodiversity.

    PubMed

    Soga, Masashi; Gaston, Kevin J; Yamaura, Yuichi; Kurisu, Kiyo; Hanaki, Keisuke

    2016-05-25

    Children are becoming less likely to have direct contact with nature. This ongoing loss of human interactions with nature, the extinction of experience, is viewed as one of the most fundamental obstacles to addressing global environmental challenges. However, the consequences for biodiversity conservation have been examined very little. Here, we conducted a questionnaire survey of elementary schoolchildren and investigated effects of the frequency of direct (participating in nature-based activities) and vicarious experiences of nature (reading books or watching TV programs about nature and talking about nature with parents or friends) on their affective attitudes (individuals' emotional feelings) toward and willingness to conserve biodiversity. A total of 397 children participated in the surveys in Tokyo. Children's affective attitudes and willingness to conserve biodiversity were positively associated with the frequency of both direct and vicarious experiences of nature. Path analysis showed that effects of direct and vicarious experiences on children's willingness to conserve biodiversity were mediated by their affective attitudes. This study demonstrates that children who frequently experience nature are likely to develop greater emotional affinity to and support for protecting biodiversity. We suggest that children should be encouraged to experience nature and be provided with various types of these experiences.

  5. Multiprotein DNA Looping

    NASA Astrophysics Data System (ADS)

    Vilar, Jose M. G.; Saiz, Leonor

    2006-06-01

    DNA looping plays a fundamental role in a wide variety of biological processes, providing the backbone for long range interactions on DNA. Here we develop the first model for DNA looping by an arbitrarily large number of proteins and solve it analytically in the case of identical binding. We uncover a switchlike transition between looped and unlooped phases and identify the key parameters that control this transition. Our results establish the basis for the quantitative understanding of fundamental cellular processes like DNA recombination, gene silencing, and telomere maintenance.

  6. Design strategies for dynamic closed-loop optogenetic neurocontrol in vivo

    NASA Astrophysics Data System (ADS)

    Bolus, M. F.; Willats, A. A.; Whitmire, C. J.; Rozell, C. J.; Stanley, G. B.

    2018-04-01

    Objective. Controlling neural activity enables the possibility of manipulating sensory perception, cognitive processes, and body movement, in addition to providing a powerful framework for functionally disentangling the neural circuits that underlie these complex phenomena. Over the last decade, optogenetic stimulation has become an increasingly important and powerful tool for understanding neural circuit function, owing to the ability to target specific cell types and bidirectionally modulate neural activity. To date, most stimulation has been provided in open-loop or in an on/off closed-loop fashion, where previously-determined stimulation is triggered by an event. Here, we describe and demonstrate a design approach for precise optogenetic control of neuronal firing rate modulation using feedback to guide stimulation continuously. Approach. Using the rodent somatosensory thalamus as an experimental testbed for realizing desired time-varying patterns of firing rate modulation, we utilized a moving average exponential filter to estimate firing rate online from single-unit spiking measured extracellularly. This estimate of instantaneous rate served as feedback for a proportional integral (PI) controller, which was designed during the experiment based on a linear-nonlinear Poisson (LNP) model of the neuronal response to light. Main results. The LNP model fit during the experiment enabled robust closed-loop control, resulting in good tracking of sinusoidal and non-sinusoidal targets, and rejection of unmeasured disturbances. Closed-loop control also enabled manipulation of trial-to-trial variability. Significance. Because neuroscientists are faced with the challenge of dissecting the functions of circuit components, the ability to maintain control of a region of interest in spite of changes in ongoing neural activity will be important for disambiguating function within networks. Closed-loop stimulation strategies are ideal for control that is robust to such changes

  7. Closed-Loop Control Better than Open-Loop Control of Profofol TCI Guided by BIS: A Randomized, Controlled, Multicenter Clinical Trial to Evaluate the CONCERT-CL Closed-Loop System

    PubMed Central

    Zhang, Xuena; Wu, Anshi; Yao, Shanglong; Xue, Zhanggang; Yue, Yun

    2015-01-01

    Background The CONCERT-CL closed-loop infusion system designed by VERYARK Technology Co., Ltd. (Guangxi, China) is an innovation using TCI combined with closed-loop controlled intravenous anesthesia under the guide of BIS. In this study we performed a randomized, controlled, multicenter study to compare closed-loop control and open-loop control of propofol by using the CONCERT-CL closed-loop infusion system. Methods 180 surgical patients from three medical centers undergone TCI intravenous anesthesia with propofol and remifentanil were randomly assigned to propofol closed-loop group and propofol opened-loop groups. Primary outcome was global score (GS, GS = (MDAPE+Wobble)/% of time of bispectral index (BIS) 40-60). Secondary outcomes were doses of the anesthetics and emergence time from anesthesia, such as, time to tracheal extubation. Results There were 89 and 86 patients in the closed-loop and opened-loop groups, respectively. GS in the closed-loop groups (22.21±8.50) were lower than that in the opened-loop group (27.19±15.26) (p=0.009). The higher proportion of time of BIS between 40 and 60 was also observed in the closed-loop group (84.11±9.50%), while that was 79.92±13.17% in the opened-loop group, (p=0.016). No significant differences in propofol dose and time of tracheal extubation were observed. The frequency of propofol regulation in the closed-loop group (31.55±9.46 times/hr) was obverse higher than that in the opened-loop group (6.84±6.21 times/hr) (p=0.000). Conclusion The CONCERT-CL closed-loop infusion system can automatically regulate the TCI of propofol, maintain the BIS value in an adequate range and reduce the workload of anesthesiologists better than open-loop system. Trial Registration ChiCTR ChiCTR-OOR-14005551 PMID:25886041

  8. Loop-loop interactions govern multiple steps in indole-3-glycerol phosphate synthase catalysis

    PubMed Central

    Zaccardi, Margot J; O'Rourke, Kathleen F; Yezdimer, Eric M; Loggia, Laura J; Woldt, Svenja; Boehr, David D

    2014-01-01

    Substrate binding, product release, and likely chemical catalysis in the tryptophan biosynthetic enzyme indole-3-glycerol phosphate synthase (IGPS) are dependent on the structural dynamics of the β1α1 active-site loop. Statistical coupling analysis and molecular dynamic simulations had previously indicated that covarying residues in the β1α1 and β2α2 loops, corresponding to Arg54 and Asn90, respectively, in the Sulfolobus sulfataricus enzyme (ssIGPS), are likely important for coordinating functional motions of these loops. To test this hypothesis, we characterized site mutants at these positions for changes in catalytic function, protein stability and structural dynamics for the thermophilic ssIGPS enzyme. Although there were only modest changes in the overall steady-state kinetic parameters, solvent viscosity and solvent deuterium kinetic isotope effects indicated that these amino acid substitutions change the identity of the rate-determining step across multiple temperatures. Surprisingly, the N90A substitution had a dramatic effect on the general acid/base catalysis of the dehydration step, as indicated by the loss of the descending limb in the pH rate profile, which we had previously assigned to Lys53 on the β1α1 loop. These changes in enzyme function are accompanied with a quenching of ps-ns and µs-ms timescale motions in the β1α1 loop as measured by nuclear magnetic resonance studies. Altogether, our studies provide structural, dynamic and functional rationales for the coevolution of residues on the β1α1 and β2α2 loops, and highlight the multiple roles that the β1α1 loop plays in IGPS catalysis. Thus, substitution of covarying residues in the active-site β1α1 and β2α2 loops of indole-3-glycerol phosphate synthase results in functional, structural, and dynamic changes, highlighting the multiple roles that the β1α1 loop plays in enzyme catalysis and the importance of regulating the structural dynamics of this loop through noncovalent

  9. Family Transmission of Work Affectivity and Experiences to Children

    ERIC Educational Resources Information Center

    Porfeli, Erik J.; Wang, Chuang; Hartung, Paul J.

    2008-01-01

    Theory and research suggest that children develop orientations toward work appreciably influenced by their family members' own expressed work experiences and emotions. Cross-sectional data from 100 children (53 girls, 47 boys; mean age = 11.1 years) and structural equation modeling were used to assess measures of work affectivity and experiences…

  10. Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.

    PubMed

    Zhu, Yanhe; Zheng, Tianjiao; Jin, Hongzhe; Yang, Jixing; Zhao, Jie

    2015-01-01

    Unlike traditional rigid actuators, the significant features of Series Elastic Actuator (SEA) are stable torque control, lower output impedance, impact resistance and energy storage. Recently, SEA has been applied in many exoskeletons. In such applications, a key issue is how to realize the human-exoskeleton movement coordination. In this paper, double closed-loop cascade control for lower limb exoskeleton with SEA is proposed. This control method consists of inner SEA torque loop and outer contact force loop. Utilizing the SEA torque control with a motor velocity loop, actuation performances of SEA are analyzed. An integrated exoskeleton control system is designed, in which joint angles are calculated by internal encoders and resolvers and contact forces are gathered by external pressure sensors. The double closed-loop cascade control model is established based on the feedback signals of internal and external sensor. Movement experiments are accomplished in our prototype of lower limb exoskeleton. Preliminary results indicate the exoskeleton movements with pilot can be realized stably by utilizing this double closed-loop cascade control method. Feasibility of the SEA in our exoskeleton robot and effectiveness of the control method are verified.

  11. Power in the loop real time simulation platform for renewable energy generation

    NASA Astrophysics Data System (ADS)

    Li, Yang; Shi, Wenhui; Zhang, Xing; He, Guoqing

    2018-02-01

    Nowadays, a large scale of renewable energy sources has been connecting to power system and the real time simulation platform is widely used to carry out research on integration control algorithm, power system stability etc. Compared to traditional pure digital simulation and hardware in the loop simulation, power in the loop simulation has higher accuracy and degree of reliability. In this paper, a power in the loop analog digital hybrid simulation platform has been built and it can be used not only for the single generation unit connecting to grid, but also for multiple new energy generation units connecting to grid. A wind generator inertia control experiment was carried out on the platform. The structure of the inertia control platform was researched and the results verify that the platform is up to need for renewable power in the loop real time simulation.

  12. A Conversion of Wheatstone Bridge to Current-Loop Signal Conditioning for Strain Gages

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F.

    1995-01-01

    Current loop circuitry replaced Wheatstone bridge circuitry to signal-condition strain gage transducers in more than 350 data channels for two different test programs at NASA Dryden Flight Research Center. The uncorrected test data from current loop circuitry had a lower noise level than data from comparable Wheatstone bridge circuitry, were linear with respect to gage-resistance change, and were uninfluenced by varying lead-wire resistance. The current loop channels were easier for the technicians to set up, verify, and operate than equivalent Wheatstone bridge channels. Design choices and circuit details are presented in this paper in addition to operational experience.

  13. Speed-Accuracy Trade-Off in Skilled Typewriting: Decomposing the Contributions of Hierarchical Control Loops

    ERIC Educational Resources Information Center

    Yamaguchi, Motonori; Crump, Matthew J. C.; Logan, Gordon D.

    2013-01-01

    Typing performance involves hierarchically structured control systems: At the higher level, an outer loop generates a word or a series of words to be typed; at the lower level, an inner loop activates the keystrokes comprising the word in parallel and executes them in the correct order. The present experiments examined contributions of the outer-…

  14. Near-Native Protein Loop Sampling Using Nonparametric Density Estimation Accommodating Sparcity

    PubMed Central

    Day, Ryan; Lennox, Kristin P.; Sukhanov, Paul; Dahl, David B.; Vannucci, Marina; Tsai, Jerry

    2011-01-01

    Unlike the core structural elements of a protein like regular secondary structure, template based modeling (TBM) has difficulty with loop regions due to their variability in sequence and structure as well as the sparse sampling from a limited number of homologous templates. We present a novel, knowledge-based method for loop sampling that leverages homologous torsion angle information to estimate a continuous joint backbone dihedral angle density at each loop position. The φ,ψ distributions are estimated via a Dirichlet process mixture of hidden Markov models (DPM-HMM). Models are quickly generated based on samples from these distributions and were enriched using an end-to-end distance filter. The performance of the DPM-HMM method was evaluated against a diverse test set in a leave-one-out approach. Candidates as low as 0.45 Å RMSD and with a worst case of 3.66 Å were produced. For the canonical loops like the immunoglobulin complementarity-determining regions (mean RMSD <2.0 Å), the DPM-HMM method performs as well or better than the best templates, demonstrating that our automated method recaptures these canonical loops without inclusion of any IgG specific terms or manual intervention. In cases with poor or few good templates (mean RMSD >7.0 Å), this sampling method produces a population of loop structures to around 3.66 Å for loops up to 17 residues. In a direct test of sampling to the Loopy algorithm, our method demonstrates the ability to sample nearer native structures for both the canonical CDRH1 and non-canonical CDRH3 loops. Lastly, in the realistic test conditions of the CASP9 experiment, successful application of DPM-HMM for 90 loops from 45 TBM targets shows the general applicability of our sampling method in loop modeling problem. These results demonstrate that our DPM-HMM produces an advantage by consistently sampling near native loop structure. The software used in this analysis is available for download at http

  15. Fiber lasers with loop reflectors.

    PubMed

    Urquhart, P

    1989-09-01

    The theory of homogeneously broadened four level fiber lasers, which use fiber loops as distributed reflective elements, is examined. Such cavities can be made entirely from rare earth doped fiber. The amplifying characteristics of doped fiber loops are examined. The threshold pump power and the loop reflectivity necessary to optimize the lasing output power from an oscillator formed from two loops in series are predicted.

  16. Loop-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Slagle, Frank D.; Notestein, John E.

    1984-01-01

    The present invention is directed to a combustion apparatus in the configuration of a oblong annulus defining a closed loop. Particulate coal together with a sulfur sorbent such as sulfur or dolomite is introduced into the closed loop, ignited, and propelled at a high rate of speed around the loop. Flue gas is withdrawn from a location in the closed loop in close proximity to an area in the loop where centrifugal force imposed upon the larger particulate material maintains these particulates at a location spaced from the flue gas outlet. Only flue gas and smaller particulates resulting from the combustion and innerparticle grinding are discharged from the combustor. This structural arrangement provides increased combustion efficiency due to the essentially complete combustion of the coal particulates as well as increased sulfur absorption due to the innerparticle grinding of the sorbent which provides greater particle surface area.

  17. Verbal short-term memory in Down's syndrome: an articulatory loop deficit?

    PubMed

    Vicari, S; Marotta, L; Carlesimo, G A

    2004-02-01

    Verbal short-term memory, as measured by digit or word span, is generally impaired in individuals with Down's syndrome (DS) compared to mental age-matched controls. Moving from the working memory model, the present authors investigated the hypothesis that impairment in some of the articulatory loop sub-components is at the base of the deficient maintenance and recall of phonological representations in individuals with DS. Two experiments were carried out in a group of adolescents with DS and in typically developing children matched for mental age. In the first experiment, the authors explored the reliance of these subjects on the subvocal rehearsal mechanism during a word-span task and the effects produced by varying the frequency of occurrence of the words on the extension of the word span. In the second experiment, they investigated the functioning of the phonological store component of the articulatory loop in more detail. A reduced verbal span in DS was confirmed. Neither individuals with DS nor controls engaged in spontaneous subvocal rehearsal. Moreover, the data provide little support for defective functioning of the phonological store in DS. No evidence was found suggesting that a dysfunction of the articulatory loop and lexical-semantic competence significantly contributed to verbal span reduction in subjects with DS. Alternative explanations of defective verbal short-term memory in DS, such as a central executive system impairment, must be considered.

  18. Simulating Coronal Loop Implosion and Compressible Wave Modes in a Flare Hit Active Region

    NASA Astrophysics Data System (ADS)

    Sarkar, Aveek; Vaidya, Bhargav; Hazra, Soumitra; Bhattacharyya, Jishnu

    2017-12-01

    There is considerable observational evidence of implosion of magnetic loop systems inside solar coronal active regions following high-energy events like solar flares. In this work, we propose that such collapse can be modeled in three dimensions quite accurately within the framework of ideal magnetohydrodynamics. We furthermore argue that the dynamics of loop implosion is only sensitive to the transmitted disturbance of one or more of the system variables, e.g., velocity generated at the event site. This indicates that to understand loop implosion, it is sensible to leave the event site out of the simulated active region. Toward our goal, a velocity pulse is introduced to model the transmitted disturbance generated at the event site. Magnetic field lines inside our simulated active region are traced in real time, and it is demonstrated that the subsequent dynamics of the simulated loops closely resemble observed imploding loops. Our work highlights the role of plasma β in regards to the rigidity of the loop systems and how that might affect the imploding loops’ dynamics. Compressible magnetohydrodynamic modes such as kink and sausage are also shown to be generated during such processes, in accordance with observations.

  19. Bandwidth controller for phase-locked-loop

    NASA Technical Reports Server (NTRS)

    Brockman, Milton H. (Inventor)

    1992-01-01

    A phase locked loop utilizing digital techniques to control the closed loop bandwidth of the RF carrier phase locked loop in a receiver provides high sensitivity and a wide dynamic range for signal reception. After analog to digital conversion, a digital phase locked loop bandwidth controller provides phase error detection with automatic RF carrier closed loop tracking bandwidth control to accommodate several modes of transmission.

  20. Out of mind, out of heart: attention affects duration of emotional experience.

    PubMed

    Freund, Alexandra M; Keil, Andreas

    2013-01-01

    It has been suggested that the extent to which a person maintains attention to pleasant versus unpleasant aspects of a given stimulus has an effect on the self-reported affective state. This assumption was empirically tested in two experiments. In Study 1, participants received the instruction either to focus on a positive emotion-eliciting event (winning a tournament chess game) or to focus their attention on an affectively neutral distraction task (describing drawings). Study 2 used negative performance feedback in a cognitive task to induce unpleasant affect and included three experimental groups (waiting condition, continuing with the same cognitive task, distraction by a different cognitive task). Results converged to show that distracting attention away from the emotion-eliciting event leads to a shorter duration of the emotional experience. These findings support the attention-focus hypothesis.

  1. Explaining Warm Coronal Loops

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.; Karpen, Judy T.; Patsourakos, Spiros

    2008-01-01

    One of the great mysteries of coronal physics that has come to light in the last few years is the discovery that warn (- 1 INK) coronal loops are much denser than expected for quasi-static equilibrium. Both the excess densities and relatively long lifetimes of the loops can be explained with bundles of unresolved strands that are heated impulsively to very high temperatures. Since neighboring strands are at different stages of cooling, the composite loop bundle is multi-thermal, with the distribution of temperatures depending on the details of the "nanoflare storm." Emission hotter than 2 MK is predicted, but it is not clear that such emission is always observed. We consider two possible explanations for the existence of over-dense warm loops without corresponding hot emission: (1) loops are bundles of nanoflare heated strands, but a significant fraction of the nanoflare energy takes the form of a nonthermal electron beam rather then direct plasma heating; (2) loops are bundles of strands that undergo thermal nonequilibrium that results when steady heating is sufficiently concentrated near the footpoints. We present numerical hydro simulations of both of these possibilities and explore the observational consequences, including the production of hard X-ray emission and absorption by cool material in the corona.

  2. Local Navon letter processing affects skilled behavior: a golf-putting experiment.

    PubMed

    Lewis, Michael B; Dawkins, Gemma

    2015-04-01

    Expert or skilled behaviors (for example, face recognition or sporting performance) are typically performed automatically and with little conscious awareness. Previous studies, in various domains of performance, have shown that activities immediately prior to a task demanding a learned skill can affect performance. In sport, describing the to-be-performed action is detrimental, whereas in face recognition, describing a face or reading local Navon letters is detrimental. Two golf-putting experiments are presented that compare the effects that these three tasks have on experienced and novice golfers. Experiment 1 found a Navon effect on golf performance for experienced players. Experiment 2 found, for experienced players only, that performance was impaired following the three tasks described above, when compared with reading or global Navon tasks. It is suggested that the three tasks affect skilled performance by provoking a shift from automatic behavior to a more analytic style. By demonstrating similarities between effects in face recognition and sporting behavior, it is hoped to better understand concepts in both fields.

  3. How training and experience affect the benefits of autonomy in a dirty-bomb experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David J. Bruemmer; Curtis W. Nielsen; David I. Gertman

    2008-03-01

    A dirty-bomb experiment conducted at the INL is used to evaluate the effectiveness and suitability of three different modes of robot control. The experiment uses three distinct user groups to understand how participants’ background and training affect the way in which they use and benefit from autonomy. The results show that the target mode, which involves automated mapping and plume tracing together with a point and click tasking tool, provides the best performance for each group. This is true for objective performance such as source detection and localization accuracy as well as subjective measures such as perceived workload, frustration andmore » preference. The best overall performance is achieved by the Explosive Ordinance Disposal group which has experience in both robot teleoperation and dirty bomb response. The user group that benefits least from autonomy is the Nuclear Engineers that have no experience with either robot operation or dirty bomb response. The group that benefits most from autonomy is the Weapons of Mass Destruction Civil Response Team that has extensive experience related to the task, but no robot training.« less

  4. The impact of sensorimotor experience on affective evaluation of dance

    PubMed Central

    Kirsch, Louise P.; Drommelschmidt, Kim A.; Cross, Emily S.

    2013-01-01

    Past research demonstrates that we are more likely to positively evaluate a stimulus if we have had previous experience with that stimulus. This has been shown for judgment of faces, architecture, artworks and body movements. In contrast, other evidence suggests that this relationship can also work in the inverse direction, at least in the domain of watching dance. Specifically, it has been shown that in certain contexts, people derive greater pleasure from watching unfamiliar movements they would not be able to physically reproduce compared to simpler, familiar actions they could physically reproduce. It remains unknown, however, how different kinds of experience with complex actions, such as dance, might change observers' affective judgments of these movements. Our aim was to clarify the relationship between experience and affective evaluation of whole body movements. In a between-subjects design, participants received either physical dance training with a video game system, visual and auditory experience or auditory experience only. Participants' aesthetic preferences for dance stimuli were measured before and after the training sessions. Results show that participants from the physical training group not only improved their physical performance of the dance sequences, but also reported higher enjoyment and interest in the stimuli after training. This suggests that physically learning particular movements leads to greater enjoyment while observing them. These effects are not simply due to increased familiarity with audio or visual elements of the stimuli, as the other two training groups showed no increase in aesthetic ratings post-training. We suggest these results support an embodied simulation account of aesthetics, and discuss how the present findings contribute to a better understanding of the shaping of preferences by sensorimotor experience. PMID:24027511

  5. Transition to Quantum Turbulence and the Propagation of Vortex Loops at Finite Temperatures

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shinji; Adachi, Hiroyuki; Tsubota, Makoto

    2011-02-01

    We performed numerical simulation of the transition to quantum turbulence and the propagation of vortex loops at finite temperatures in order to understand the experiments using vibrating wires in superfluid 4He by Yano et al. We injected vortex rings to a finite volume in order to simulate emission of vortices from the wire. When the injected vortices are dilute, they should decay by mutual friction. When they are dense, however, vortex tangle are generated through vortex reconnections and emit large vortex loops. The large vortex loops can travel a long distance before disappearing, which is much different from the dilute case. The numerical results are consistent with the experimental results.

  6. Space Maintenance with an Innovative "Tube and Loop" Space Maintainer (Nikhil Appliance).

    PubMed

    Srivastava, Nikhil; Grover, Jyotika; Panthri, Prerna

    2016-01-01

    Despite the best efforts in prevention, premature loss of primary teeth continues to be a common problem in pediatric dentistry, resulting in disruption of arch integrity and adversely affecting the proper alignment of permanent successors. Space maintainers (SMs) are special appliances used for maintaining space created due to premature loss of primary teeth. Band and loop SM is mostly indicated for the premature loss of single primary molar, but this appliance has a number of limitations both for operators and for patients. Presented in this article is an innovative "Tube and Loop" SM (Nikhil appliance) which offers several advantages over the conventional band and loop SM. It is not only easy and quick to fabricate but can also be completed in a single sitting and cumbersome steps like impression making and laboratory procedures namely soldering are eliminated. How to cite this article: Srivastava N, Grover J, Panthri P. Space Maintenance with an Innovative "Tube and Loop" Space Maintainer (Nikhil Appliance). Int J Clin Pediatr Dent 2016;9(1):86-89.

  7. RCD+: Fast loop modeling server.

    PubMed

    López-Blanco, José Ramón; Canosa-Valls, Alejandro Jesús; Li, Yaohang; Chacón, Pablo

    2016-07-08

    Modeling loops is a critical and challenging step in protein modeling and prediction. We have developed a quick online service (http://rcd.chaconlab.org) for ab initio loop modeling combining a coarse-grained conformational search with a full-atom refinement. Our original Random Coordinate Descent (RCD) loop closure algorithm has been greatly improved to enrich the sampling distribution towards near-native conformations. These improvements include a new workflow optimization, MPI-parallelization and fast backbone angle sampling based on neighbor-dependent Ramachandran probability distributions. The server starts by efficiently searching the vast conformational space from only the loop sequence information and the environment atomic coordinates. The generated closed loop models are subsequently ranked using a fast distance-orientation dependent energy filter. Top ranked loops are refined with the Rosetta energy function to obtain accurate all-atom predictions that can be interactively inspected in an user-friendly web interface. Using standard benchmarks, the average root mean squared deviation (RMSD) is 0.8 and 1.4 Å for 8 and 12 residues loops, respectively, in the challenging modeling scenario in where the side chains of the loop environment are fully remodeled. These results are not only very competitive compared to those obtained with public state of the art methods, but also they are obtained ∼10-fold faster. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Fragmentation of cosmic-string loops

    NASA Technical Reports Server (NTRS)

    York, Thomas

    1989-01-01

    The fragmentation of cosmic string loops is discussed, and the results of a simulation of this process are presented. The simulation can evolve any of a large class of loops essentially exactly, including allowing fragments that collide to join together. Such reconnection enhances the production of small fragments, but not drastically. With or without reconnections, the fragmentation process produces a collection of nonself-intersecting loops whose typical length is on the order of the persistence length of the initial loop.

  9. Research on the Dynamic Hysteresis Loop Model of the Residence Times Difference (RTD)-Fluxgate

    PubMed Central

    Wang, Yanzhang; Wu, Shujun; Zhou, Zhijian; Cheng, Defu; Pang, Na; Wan, Yunxia

    2013-01-01

    Based on the core hysteresis features, the RTD-fluxgate core, while working, is repeatedly saturated with excitation field. When the fluxgate simulates, the accurate characteristic model of the core may provide a precise simulation result. As the shape of the ideal hysteresis loop model is fixed, it cannot accurately reflect the actual dynamic changing rules of the hysteresis loop. In order to improve the fluxgate simulation accuracy, a dynamic hysteresis loop model containing the parameters which have actual physical meanings is proposed based on the changing rule of the permeability parameter when the fluxgate is working. Compared with the ideal hysteresis loop model, this model has considered the dynamic features of the hysteresis loop, which makes the simulation results closer to the actual output. In addition, other hysteresis loops of different magnetic materials can be explained utilizing the described model for an example of amorphous magnetic material in this manuscript. The model has been validated by the output response comparison between experiment results and fitting results using the model. PMID:24002230

  10. Is Long-Term Structural Priming Affected by Patterns of Experience with Individual Verbs?

    ERIC Educational Resources Information Center

    Kaschak, Michael P.; Borreggine, Kristin L.

    2008-01-01

    Several recent papers have reported long-term structural priming effects in experiments where previous patterns of experience with the double object and prepositional object constructions are shown to affect later patterns of language production for those constructions. The experiments reported in this paper address the extent to which these…

  11. Suppressing Transients In Digital Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1993-01-01

    Loop of arbitrary order starts in steady-state lock. Method for initializing variables of digital phase-locked loop reduces or eliminates transients in phase and frequency typically occurring during acquisition of lock on signal or when changes made in values of loop-filter parameters called "loop constants". Enables direct acquisition by third-order loop without prior acquisition by second-order loop of greater bandwidth, and eliminates those perturbations in phase and frequency lock occurring when loop constants changed by arbitrarily large amounts.

  12. Elementary Teachers' Experiences of Departmentalized Instruction and Its Impact on Student Affect

    ERIC Educational Resources Information Center

    Minott, Robert Charles

    2016-01-01

    The purpose of this qualitative dissertation was to explore the lived experiences of departmentalized elementary teachers, Grades 1-3, and how they addressed their students' affective needs. The main research question of the study was how do elementary school teachers perceive departmentalized instruction and describe their experiences of this…

  13. Closing the tau loop: the missing tau mutation

    PubMed Central

    McCarthy, Allan; Lonergan, Roisin; Olszewska, Diana A.; O’Dowd, Sean; Cummins, Gemma; Magennis, Brian; Fallon, Emer M.; Pender, Niall; Huey, Edward D.; Cosentino, Stephanie; O’Rourke, Killian; Kelly, Brendan D.; O’Connell, Martin; Delon, Isabelle; Farrell, Michael; Spillantini, Maria Grazia; Rowland, Lewis P.; Fahn, Stanley; Craig, Peter; Hutton, Michael

    2015-01-01

    Frontotemporal lobar degeneration comprises a group of disorders characterized by behavioural, executive, language impairment and sometimes features of parkinsonism and motor neuron disease. In 1994 we described an Irish-American family with frontotemporal dementia linked to chromosome 17 associated with extensive tau pathology. We named this disinhibition-dementia-parkinsonism-amyotrophy complex. We subsequently identified mutations in the MAPT gene. Eleven MAPT gene splice site stem loop mutations were identified over time except for 5’ splice site of exon 10. We recently identified another Irish family with autosomal dominant early amnesia and behavioural change or parkinsonism associated with the ‘missing’ +15 mutation at the intronic boundary of exon 10. We performed a clinical, neuropsychological and neuroimaging study on the proband and four siblings, including two affected siblings. We sequenced MAPT and performed segregation analysis. We looked for a biological effect of the tau variant by performing real-time polymerase chain reaction analysis of RNA extracted from human embryonic kidney cells transfected with exon trapping constructs. We found a c.915+15A>C exon 10/intron 10 stem loop mutation in all affected subjects but not in the unaffected. The c.915+15A>C variant caused a shift in tau splicing pattern to a predominantly exon 10+ pattern presumably resulting in predominant 4 repeat tau and little 3 repeat tau. This strongly suggests that the c.915+15A>C variant is a mutation and that it causes frontotemporal dementia linked to chromosome 17 in this pedigree by shifting tau transcription and translation to +4 repeat tau. Tau (MAPT) screening should be considered in families where amnesia or atypical parkinsonism coexists with behavioural disturbance early in the disease process. We describe the final missing stem loop tau mutation predicted 15 years ago. Mutations have now been identified at all predicted sites within the ‘stem’ when the

  14. Both Direct and Vicarious Experiences of Nature Affect Children’s Willingness to Conserve Biodiversity

    PubMed Central

    Soga, Masashi; Gaston, Kevin J.; Yamaura, Yuichi; Kurisu, Kiyo; Hanaki, Keisuke

    2016-01-01

    Children are becoming less likely to have direct contact with nature. This ongoing loss of human interactions with nature, the extinction of experience, is viewed as one of the most fundamental obstacles to addressing global environmental challenges. However, the consequences for biodiversity conservation have been examined very little. Here, we conducted a questionnaire survey of elementary schoolchildren and investigated effects of the frequency of direct (participating in nature-based activities) and vicarious experiences of nature (reading books or watching TV programs about nature and talking about nature with parents or friends) on their affective attitudes (individuals’ emotional feelings) toward and willingness to conserve biodiversity. A total of 397 children participated in the surveys in Tokyo. Children’s affective attitudes and willingness to conserve biodiversity were positively associated with the frequency of both direct and vicarious experiences of nature. Path analysis showed that effects of direct and vicarious experiences on children’s willingness to conserve biodiversity were mediated by their affective attitudes. This study demonstrates that children who frequently experience nature are likely to develop greater emotional affinity to and support for protecting biodiversity. We suggest that children should be encouraged to experience nature and be provided with various types of these experiences. PMID:27231925

  15. Study of the Open Loop and Closed Loop Oscillator Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imel, George R.; Baker, Benjamin; Riley, Tony

    This report presents the progress and completion of a five-year study undertaken at Idaho State University of the measurement of very small worth reactivity samples comparing open and closed loop oscillator techniques.The study conclusively demonstrated the equivalency of the two techniques with regard to uncertainties in reactivity values, i.e., limited by reactor noise. As those results are thoroughly documented in recent publications, in this report we will concentrate on the support work that was necessary. For example, we describe in some detail the construction and calibration of a pilot rod for the closed loop system. We discuss the campaign tomore » measure the required reactor parameters necessary for inverse-kinetics. Finally, we briefly discuss the transfer of the open loop technique to other reactor systems.« less

  16. Study of the open loop and closed loop oscillator techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Benjamin; Riley, Tony; Langbehn, Adam

    This paper presents some aspects of a five year study undertaken at Idaho State University of the measurement of very small worth reactivity samples comparing open and closed loop oscillator techniques. The study conclusively demonstrated the equivalency of the two techniques with regard to uncertainties in reactivity values, i.e., limited by reactor noise. As those results are thoroughly documented in recent publications, in this paper we will concentrate on the support work that was necessary. For example, we describe in some detail the construction and calibration of a pilot rod for the closed loop system. We discuss the campaign tomore » measure the required reactor parameters necessary for inverse-kinetics. Finally, we briefly discuss the transfer of the open loop technique to other reactor systems. (authors)« less

  17. Cross-Species Affective Neuroscience Decoding of the Primal Affective Experiences of Humans and Related Animals

    PubMed Central

    Panksepp, Jaak

    2011-01-01

    Background The issue of whether other animals have internally felt experiences has vexed animal behavioral science since its inception. Although most investigators remain agnostic on such contentious issues, there is now abundant experimental evidence indicating that all mammals have negatively and positively-valenced emotional networks concentrated in homologous brain regions that mediate affective experiences when animals are emotionally aroused. That is what the neuroscientific evidence indicates. Principal Findings The relevant lines of evidence are as follows: 1) It is easy to elicit powerful unconditioned emotional responses using localized electrical stimulation of the brain (ESB); these effects are concentrated in ancient subcortical brain regions. Seven types of emotional arousals have been described; using a special capitalized nomenclature for such primary process emotional systems, they are SEEKING, RAGE, FEAR, LUST, CARE, PANIC/GRIEF and PLAY. 2) These brain circuits are situated in homologous subcortical brain regions in all vertebrates tested. Thus, if one activates FEAR arousal circuits in rats, cats or primates, all exhibit similar fear responses. 3) All primary-process emotional-instinctual urges, even ones as complex as social PLAY, remain intact after radical neo-decortication early in life; thus, the neocortex is not essential for the generation of primary-process emotionality. 4) Using diverse measures, one can demonstrate that animals like and dislike ESB of brain regions that evoke unconditioned instinctual emotional behaviors: Such ESBs can serve as ‘rewards’ and ‘punishments’ in diverse approach and escape/avoidance learning tasks. 5) Comparable ESB of human brains yield comparable affective experiences. Thus, robust evidence indicates that raw primary-process (i.e., instinctual, unconditioned) emotional behaviors and feelings emanate from homologous brain functions in all mammals (see Appendix S1), which are regulated by higher

  18. Cross-species affective neuroscience decoding of the primal affective experiences of humans and related animals.

    PubMed

    Panksepp, Jaak

    2011-01-01

    The issue of whether other animals have internally felt experiences has vexed animal behavioral science since its inception. Although most investigators remain agnostic on such contentious issues, there is now abundant experimental evidence indicating that all mammals have negatively and positively-valenced emotional networks concentrated in homologous brain regions that mediate affective experiences when animals are emotionally aroused. That is what the neuroscientific evidence indicates. The relevant lines of evidence are as follows: 1) It is easy to elicit powerful unconditioned emotional responses using localized electrical stimulation of the brain (ESB); these effects are concentrated in ancient subcortical brain regions. Seven types of emotional arousals have been described; using a special capitalized nomenclature for such primary process emotional systems, they are SEEKING, RAGE, FEAR, LUST, CARE, PANIC/GRIEF and PLAY. 2) These brain circuits are situated in homologous subcortical brain regions in all vertebrates tested. Thus, if one activates FEAR arousal circuits in rats, cats or primates, all exhibit similar fear responses. 3) All primary-process emotional-instinctual urges, even ones as complex as social PLAY, remain intact after radical neo-decortication early in life; thus, the neocortex is not essential for the generation of primary-process emotionality. 4) Using diverse measures, one can demonstrate that animals like and dislike ESB of brain regions that evoke unconditioned instinctual emotional behaviors: Such ESBs can serve as 'rewards' and 'punishments' in diverse approach and escape/avoidance learning tasks. 5) Comparable ESB of human brains yield comparable affective experiences. Thus, robust evidence indicates that raw primary-process (i.e., instinctual, unconditioned) emotional behaviors and feelings emanate from homologous brain functions in all mammals (see Appendix S1), which are regulated by higher brain regions. Such findings suggest

  19. Experimental Study of a Nitrogen Natural Circulation Loop at Low Heat Flux

    NASA Astrophysics Data System (ADS)

    Baudouy, B.

    2010-04-01

    A natural convection circulation loop in liquid nitrogen, i.e. an open thermosiphon flow configuration, has been investigated experimentally near atmospheric pressure. The experiments were conducted on a 2 m high loop with a copper tube of 10 mm inner diameter uniformly heated over a length of 0.95 m. Evolution of the total mass flow rate of the loop and the pressure difference along the tube are described. We also report the boiling curves where single phase and two-phase flows are identified with increasing heat flux. We focus our heat transfer analysis on the single phase regime where mixed convection is encountered. A heat transfer coefficient correlation is proposed. We also examine the boiling incipience as a function of the tube height.

  20. Detection of Heating Processes in Coronal Loops by Soft X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kawate, Tomoko; Narukage, Noriyuki; Ishikawa, Shin-nosuke; Imada, Shinsuke

    2017-08-01

    Imaging and Spectroscopic observations in the soft X-ray band will open a new window of the heating/acceleration/transport processes in the solar corona. The soft X-ray spectrum between 0.5 and 10 keV consists of the electron thermal free-free continuum and hot coronal lines such as O VIII, Fe XVII, Mg XI, Si XVII. Intensity of free-free continuum emission is not affected by the population of ions, whereas line intensities especially from highly ionized species have a sensitivity of the timescale of ionization/recombination processes. Thus, spectroscopic observations of both continuum and line intensities have a capability of diagnostics of heating/cooling timescales. We perform a 1D hydrodynamic simulation coupled with the time-dependent ionization, and calculate continuum and line intensities under different heat input conditions in a coronal loop. We also examine the differential emission measure of the coronal loop from the time-integrated soft x-ray spectra. As a result, line intensity shows a departure from the ionization equilibrium and shows different responses depending on the frequency of the heat input. Solar soft X-ray spectroscopic imager will be mounted in the sounding rocket experiment of the Focusing Optics X-ray Solar Imager (FOXSI). This observation will deepen our understanding of heating processes to solve the “coronal heating problem”.

  1. Fighting experience affects fruit fly behavior in a mating context

    NASA Astrophysics Data System (ADS)

    Teseo, Serafino; Veerus, Liisa; Mery, Frédéric

    2016-06-01

    In animals, correlations exist among behaviors within individuals, but it is unclear whether experience in a specific functional context can affect behavior across different contexts. Here, we use Drosophila melanogaster to investigate the effects of conflict-induced behavioral modifications on male mating behavior. In D. melanogaster, males fight for territories and experience a strong winner-loser effect, meaning that winners become more likely to win subsequent fights compared to losers, who continue to lose. In our protocol, males were tested for courtship intensity before and after fighting against other males. We show that male motivation to copulate before fights cannot predict the fight outcomes, but that, afterwards, losers mate less than before and less than winner and control males. Contrarily, winners show no differences between pre- and post-fight courtship intensity, and do not differ from control males. This suggests that the physiological modifications resulting from fight outcomes indirectly affect male reproductive behavior.

  2. Observational constraints on loop quantum cosmology.

    PubMed

    Bojowald, Martin; Calcagni, Gianluca; Tsujikawa, Shinji

    2011-11-18

    In the inflationary scenario of loop quantum cosmology in the presence of inverse-volume corrections, we give analytic formulas for the power spectra of scalar and tensor perturbations convenient to compare with observations. Since inverse-volume corrections can provide strong contributions to the running spectral indices, inclusion of terms higher than the second-order runnings in the power spectra is crucially important. Using the recent data of cosmic microwave background and other cosmological experiments, we place bounds on the quantum corrections.

  3. Human-In-The-Loop Experimental Research for Detect and Avoid

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria; Munoz, Cesar; Hagen, George; Narkawicz, Anthony; Upchurch, Jason; Comstock, James; Ghatas, Rania; Vincent, Michael; Chamberlain, James

    2015-01-01

    This paper describes a Detect and Avoid (DAA) concept for integration of UAS into the NAS developed by the National Aeronautics and Space Administration (NASA) and provides results from recent human-in-the-loop experiments performed to investigate interoperability and acceptability issues associated with these vehicles and operations. The series of experiments was designed to incrementally assess critical elements of the new concept and the enabling technologies that will be required.

  4. Fire weather and fire behavior in the 1966 loop fire

    Treesearch

    C.M. Countryman; M.A. Fosberg; R.C. Rothermel; M.J. Schroeder

    1968-01-01

    Southern California regularly experiences a wind condition known as the Santa Ana winds. This paper describes the phenomenon and the effects it had on fire behavior during the 1966 Loop Fire in the Angeles National Forest, which claimed the lives of 12 fire fighters.

  5. Chemical Looping Technology: Oxygen Carrier Characteristics.

    PubMed

    Luo, Siwei; Zeng, Liang; Fan, Liang-Shih

    2015-01-01

    Chemical looping processes are characterized as promising carbonaceous fuel conversion technologies with the advantages of manageable CO2 capture and high energy conversion efficiency. Depending on the chemical looping reaction products generated, chemical looping technologies generally can be grouped into two types: chemical looping full oxidation (CLFO) and chemical looping partial oxidation (CLPO). In CLFO, carbonaceous fuels are fully oxidized to CO2 and H2O, as typically represented by chemical looping combustion with electricity as the primary product. In CLPO, however, carbonaceous fuels are partially oxidized, as typically represented by chemical looping gasification with syngas or hydrogen as the primary product. Both CLFO and CLPO share similar operational features; however, the optimum process configurations and the specific oxygen carriers used between them can vary significantly. Progress in both CLFO and CLPO is reviewed and analyzed with specific focus on oxygen carrier developments that characterize these technologies.

  6. Development of closed loop roll control for magnetic balance systems

    NASA Technical Reports Server (NTRS)

    Covert, E. E.; Haldeman, C. W.; Ramohalli, G.; Way, P.

    1982-01-01

    This research was undertaken with the goal of demonstrating closed loop control of the roll degree of freedom on the NASA prototype magnetic suspension and balance system at the MIT Aerophysics Laboratory, thus, showing feasibility for a roll control system for any large magnetic balance system which might be built in the future. During the research under this grant, study was directed toward the several areas of torque generation, position sensing, model construction and control system design. These effects were then integrated to produce successful closed loop operation of the analogue roll control system. This experience indicated the desirability of microprocessor control for the angular degrees of freedom.

  7. Transverse Oscillations of Coronal Loops

    NASA Astrophysics Data System (ADS)

    Ruderman, Michael S.; Erdélyi, Robert

    2009-12-01

    On 14 July 1998 TRACE observed transverse oscillations of a coronal loop generated by an external disturbance most probably caused by a solar flare. These oscillations were interpreted as standing fast kink waves in a magnetic flux tube. Firstly, in this review we embark on the discussion of the theory of waves and oscillations in a homogeneous straight magnetic cylinder with the particular emphasis on fast kink waves. Next, we consider the effects of stratification, loop expansion, loop curvature, non-circular cross-section, loop shape and magnetic twist. An important property of observed transverse coronal loop oscillations is their fast damping. We briefly review the different mechanisms suggested for explaining the rapid damping phenomenon. After that we concentrate on damping due to resonant absorption. We describe the latest analytical results obtained with the use of thin transition layer approximation, and then compare these results with numerical findings obtained for arbitrary density variation inside the flux tube. Very often collective oscillations of an array of coronal magnetic loops are observed. It is natural to start studying this phenomenon from the system of two coronal loops. We describe very recent analytical and numerical results of studying collective oscillations of two parallel homogeneous coronal loops. The implication of the theoretical results for coronal seismology is briefly discussed. We describe the estimates of magnetic field magnitude obtained from the observed fundamental frequency of oscillations, and the estimates of the coronal scale height obtained using the simultaneous observations of the fundamental frequency and the frequency of the first overtone of kink oscillations. In the last part of the review we summarise the most outstanding and acute problems in the theory of the coronal loop transverse oscillations.

  8. Effect of proline and glycine residues on dynamics and barriers of loop formation in polypeptide chains.

    PubMed

    Krieger, Florian; Möglich, Andreas; Kiefhaber, Thomas

    2005-03-16

    Glycine and proline residues are frequently found in turn and loop structures of proteins and are believed to play an important role during chain compaction early in folding. We investigated their effect on the dynamics of intrachain loop formation in various unstructured polypeptide chains. Loop formation is significantly slower around trans prolyl peptide bonds and faster around glycine residues compared to any other amino acid. However, short loops are formed fastest around cis prolyl bonds with a time constant of 6 ns for end-to-end contact formation in a four-residue loop. Formation of short loops encounters activation energies in the range of 15 to 30 kJ/mol. The altered dynamics around glycine and trans prolyl bonds can be mainly ascribed to their effects on the activation energy. The fast dynamics around cis prolyl bonds, in contrast, originate in a higher Arrhenius pre-exponential factor, which compensates for an increased activation energy for loop formation compared to trans isomers. All-atom simulations of proline-containing peptides indicate that the conformational space for cis prolyl isomers is largely restricted compared to trans isomers. This leads to decreased average end-to-end distances and to a smaller loss in conformational entropy upon loop formation in cis isomers. The results further show that glycine and proline residues only influence formation of short loops containing between 2 and 10 residues, which is the typical loop size in native proteins. Formation of larger loops is not affected by the presence of a single glycine or proline residue.

  9. Cardiac Dysfunction, Congestion and Loop Diuretics: their Relationship to Prognosis in Heart Failure.

    PubMed

    Pellicori, Pierpaolo; Cleland, John G F; Zhang, Jufen; Kallvikbacka-Bennett, Anna; Urbinati, Alessia; Shah, Parin; Kazmi, Syed; Clark, Andrew L

    2016-12-01

    Diuretics are the mainstay of treatment for congestion but concerns exist that they adversely affect prognosis. We explored whether the relationship between loop diuretic use and outcome is explained by the underlying severity of congestion amongst patients referred with suspected heart failure. Of 1190 patients, 712 had a left ventricular ejection fraction (LVEF) ≤50 %, 267 had LVEF >50 % with raised plasma NTproBNP (>400 ng/L) and 211 had LVEF >50 % with NTproBNP ≤400 ng/L; respectively, 72 %, 68 % and 37 % of these groups were treated with loop diuretics including 28 %, 29 % and 10 % in doses ≥80 mg furosemide equivalent/day. Compared to patients with cardiac dysfunction (either LVEF ≤50 % or NT-proBNP >400 ng/L) but not taking a loop diuretic, those taking a loop diuretic were older and had more clinical evidence of congestion, renal dysfunction, anaemia and hyponatraemia. During a median follow-up of 934 (IQR: 513-1425) days, 450 patients were hospitalized for HF or died. Patients prescribed loop diuretics had a worse outcome. However, in multi-variable models, clinical, echocardiographic (inferior vena cava diameter), and biochemical (NTproBNP) measures of congestion were strongly associated with an adverse outcome but not the use, or dose, of loop diuretics. Prescription of loop diuretics identifies patients with more advanced features of heart failure and congestion, which may account for their worse prognosis. Further research is needed to clarify the relationship between loop diuretic agents and outcome; imaging and biochemical measures of congestion might be better guides to diuretic dose than symptoms or clinical signs.

  10. The Structure of Coronal Loops

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro K.

    2009-01-01

    It is widely believed that the simple coronal loops observed by XUV imagers, such as EIT, TRACE, or XRT, actually have a complex internal structure consisting of many (perhaps hundreds) of unresolved, interwoven "strands". According to the nanoflare model, photospheric motions tangle the strands, causing them to reconnect and release the energy required to produce the observed loop plasma. Although the strands, themselves, are unresolved by present-generation imagers, there is compelling evidence for their existence and for the nanoflare model from analysis of loop intensities and temporal evolution. A problem with this scenario is that, although reconnection can eliminate some of the strand tangles, it cannot destroy helicity, which should eventually build up to observable scales. we consider, therefore, the injection and evolution of helicity by the nanoflare process and its implications for the observed structure of loops and the large-scale corona. we argue that helicity does survive and build up to observable levels, but on spatial and temporal scales larger than those of coronal loops. we discuss the implications of these results for coronal loops and the corona, in general .

  11. Optical phase-locked loop (OPLL) for free-space laser communications with heterodyne detection

    NASA Technical Reports Server (NTRS)

    Win, Moe Z.; Chen, Chien-Chung; Scholtz, Robert A.

    1991-01-01

    Several advantages of coherent free-space optical communications are outlined. Theoretical analysis is formulated for an OPLL disturbed by shot noise, modulation noise, and frequency noise consisting of a white component, a 1/f component, and a 1/f-squared component. Each of the noise components is characterized by its associated power spectral density. It is shown that the effect of modulation depends only on the ratio of loop bandwidth and data rate, and is negligible for an OPLL with loop bandwidth smaller than one fourth the data rate. Total phase error variance as a function of loop bandwidth is displayed for several values of carrier signal to noise ratio. Optimal loop bandwidth is also calculated as a function of carrier signal to noise ratio. An OPLL experiment is performed, where it is shown that the measured phase error variance closely matches the theoretical predictions.

  12. LoopX: A Graphical User Interface-Based Database for Comprehensive Analysis and Comparative Evaluation of Loops from Protein Structures.

    PubMed

    Kadumuri, Rajashekar Varma; Vadrevu, Ramakrishna

    2017-10-01

    Due to their crucial role in function, folding, and stability, protein loops are being targeted for grafting/designing to create novel or alter existing functionality and improve stability and foldability. With a view to facilitate a thorough analysis and effectual search options for extracting and comparing loops for sequence and structural compatibility, we developed, LoopX a comprehensively compiled library of sequence and conformational features of ∼700,000 loops from protein structures. The database equipped with a graphical user interface is empowered with diverse query tools and search algorithms, with various rendering options to visualize the sequence- and structural-level information along with hydrogen bonding patterns, backbone φ, ψ dihedral angles of both the target and candidate loops. Two new features (i) conservation of the polar/nonpolar environment and (ii) conservation of sequence and conformation of specific residues within the loops have also been incorporated in the search and retrieval of compatible loops for a chosen target loop. Thus, the LoopX server not only serves as a database and visualization tool for sequence and structural analysis of protein loops but also aids in extracting and comparing candidate loops for a given target loop based on user-defined search options.

  13. Coronal loops and active region structure

    NASA Technical Reports Server (NTRS)

    Webb, D. F.; Zirin, H.

    1981-01-01

    Synoptic H-alpha Ca K, magnetograph and Skylab soft X-ray and EUV data were compared for the purpose of identifying the basic coronal magnetic structure of loops in a 'typical' active region and studying its evolution. A complex of activity in July 1973, especially McMath 12417, was emphasized. The principal results are: (1) most of the brightest loops connected the bright f plage to either the sunspot penumbra or to p satellite spots; no non-flaring X-ray loops end in umbrae; (2) short, bright loops had one or both ends in regions of emergent flux, strong field or high field gradients; (3) stable, strongly sheared loop arcades formed over filaments; (4) EFRs were always associated with compact X-ray arcades; and (5) loops connecting to other active regions had their bases in outlying plage of weak field strength in McM 417 where H-alpha fibrils marked the direction of the loops

  14. Dislocation dynamics simulations of interactions between gliding dislocations and radiation induced prismatic loops in zirconium

    NASA Astrophysics Data System (ADS)

    Drouet, Julie; Dupuy, Laurent; Onimus, Fabien; Mompiou, Frédéric; Perusin, Simon; Ambard, Antoine

    2014-06-01

    The mechanical behavior of Pressurized Water Reactor fuel cladding tubes made of zirconium alloys is strongly affected by neutron irradiation due to the high density of radiation induced dislocation loops. In order to investigate the interaction mechanisms between gliding dislocations and loops in zirconium, a new nodal dislocation dynamics code, adapted to Hexagonal Close Packed metals, has been used. Various configurations have been systematically computed considering different glide planes, basal or prismatic, and different characters, edge or screw, for gliding dislocations with -type Burgers vectors. Simulations show various interaction mechanisms such as (i) absorption of a loop on an edge dislocation leading to the formation of a double super-jog, (ii) creation of a helical turn, on a screw dislocation, that acts as a strong pinning point or (iii) sweeping of a loop by a gliding dislocation. It is shown that the clearing of loops is more favorable when the dislocation glides in the basal plane than in the prismatic plane explaining the easy dislocation channeling in the basal plane observed after neutron irradiation by transmission electron microscopy.

  15. Coronal Loops: Observations and Modeling of Confined Plasma.

    PubMed

    Reale, Fabio

    Coronal loops are the building blocks of the X-ray bright solar corona. They owe their brightness to the dense confined plasma, and this review focuses on loops mostly as structures confining plasma. After a brief historical overview, the review is divided into two separate but not independent parts: the first illustrates the observational framework, the second reviews the theoretical knowledge. Quiescent loops and their confined plasma are considered and, therefore, topics such as loop oscillations and flaring loops (except for non-solar ones, which provide information on stellar loops) are not specifically addressed here. The observational section discusses the classification, populations, and the morphology of coronal loops, its relationship with the magnetic field, and the loop stranded structure. The section continues with the thermal properties and diagnostics of the loop plasma, according to the classification into hot, warm, and cool loops. Then, temporal analyses of loops and the observations of plasma dynamics, hot and cool flows, and waves are illustrated. In the modeling section, some basics of loop physics are provided, supplying fundamental scaling laws and timescales, a useful tool for consultation. The concept of loop modeling is introduced and models are divided into those treating loops as monolithic and static, and those resolving loops into thin and dynamic strands. More specific discussions address modeling the loop fine structure and the plasma flowing along the loops. Special attention is devoted to the question of loop heating, with separate discussion of wave (AC) and impulsive (DC) heating. Large-scale models including atmosphere boxes and the magnetic field are also discussed. Finally, a brief discussion about stellar coronal loops is followed by highlights and open questions.

  16. Comparison of closed loop model with flight test results

    NASA Technical Reports Server (NTRS)

    George, F. L.

    1981-01-01

    An analytic technique capable of predicting the landing characteristics of proposed aircraft configurations in the early stages of design was developed. In this analysis, a linear pilot-aircraft closed loop model was evaluated using experimental data generated with the NT-33 variable stability in-flight simulator. The pilot dynamics are modeled as inner and outer servo loop closures around aircraft pitch attitude, and altitude rate-of-change respectively. The landing flare maneuver is of particular interest as recent experience with military and other highly augmented vehicles shows this task to be relatively demanding, and potentially a critical design point. A unique feature of the pilot model is the incorporation of an internal model of the pilot's desired flight path for the flare maneuver.

  17. Variables affecting learning in a simulation experience: a mixed methods study.

    PubMed

    Beischel, Kelly P

    2013-02-01

    The primary purpose of this study was to test a hypothesized model describing the direct effects of learning variables on anxiety and cognitive learning outcomes in a high-fidelity simulation (HFS) experience. The secondary purpose was to explain and explore student perceptions concerning the qualities and context of HFS affecting anxiety and learning. This study used a mixed methods quantitative-dominant explanatory design with concurrent qualitative data collection to examine variables affecting learning in undergraduate, beginning nursing students (N = 124). Being ready to learn, having a strong auditory-verbal learning style, and being prepared for simulation directly affected anxiety, whereas learning outcomes were directly affected by having strong auditory-verbal and hands-on learning styles. Anxiety did not quantitatively mediate cognitive learning outcomes as theorized, although students qualitatively reported debilitating levels of anxiety. This study advances nursing education science by providing evidence concerning variables affecting learning outcomes in HFS.

  18. Feasibility of overnight closed-loop control based on hourly blood glucose measurements.

    PubMed

    Patte, Caroline; Pleus, Stefan; Galley, Paul; Weinert, Stefan; Haug, Cornelia; Freckmann, Guido

    2012-07-01

    Safe and effective closed-loop control (artificial pancreas) is the ultimate goal of insulin delivery. In this study, we examined the performance of a closed-loop control algorithm used for the overnight time period to safely achieve a narrow target range of blood glucose (BG) concentrations prior to breakfast. The primary goal was to compare the quality of algorithm control during repeated overnight experiments. Twenty-three subjects with type 1 diabetes performed 2 overnight experiments on each of three visits at the study site, resulting in 138 overnight experiments. On the first evening, the subject's insulin therapy was applied; on the second, the insulin was delivered by an algorithm based on subcutaneous continuous glucose measurements (including meal control) until midnight. Overnight closed-loop control was applied between midnight and 6 a.m. based on hourly venous BG measurements during the first and second nights. The number of BG values within the target range (90-150 mg/dl) increased from 52.9% (219 out of 414 measurements) during the first nights to 72.2% (299 out of 414 measurements) during the second nights (p < .001, χ²-test). The occurrence of hypoglycemia interventions was reduced from 14 oral glucose interventions, the latest occurring at 2:36 a.m. during the first nights, to 1 intervention occurring at 1:02 a.m. during the second nights (p < .001, χ²-test). Overnight controller performance improved when optimized initial control was given; this was suggested by the better metabolic control during the second night. Adequate controller run-in time seems to be important for achieving good overnight control. In addition, the findings demonstrate that hourly BG data are sufficient for the closed-loop control algorithm tested to achieve appropriate glycemic control. © 2012 Diabetes Technology Society.

  19. The effect of proximity on open-loop accommodation responses measured with pinholes.

    PubMed

    Morrison, K A; Seidel, D; Strang, N C; Gray, L S

    2010-07-01

    Open-loop accommodation levels were measured in 41 healthy, young subjects using a Shin-Nippon SRW-5000 autorefractor in the three viewing conditions: a small physical pinhole pupil (SP), an optically projected pinhole in Maxwellian view (MV) and in the dark (DF). The target viewed through the pinholes was a high-contrast letter presented at 0 D vergence in a +5 D Badal lens system. Overall, results showed that SP open-loop accommodation levels were significantly higher than MV and DF levels. Subjects could be divided into two distinct subgroups according to their response behaviour: responders to the proximal effect of the small physical pinhole (SP accommodation > MV accommodation) and non-responders to the proximal effect of the small physical pinhole (SP accommodation approximately MV accommodation). Correlation analysis demonstrated that open-loop accommodation for both pinhole conditions was correlated with DF for the responders, while for the non-responders SP and MV accommodation were correlated, but were not related to DF accommodation. This suggests that under open-loop conditions some individuals' accommodation levels are mainly affected by proximal and cognitive factors (responders) while others are guided primarily by the presence of the more distal target (non-responders). In conclusion, MV reduces the proximal effect of the physical pinhole and produces open-loop accommodation responses which are more consistent than SP and DF responses.

  20. Mass and energy supply of a cool coronal loop near its apex

    NASA Astrophysics Data System (ADS)

    Yan, Limei; Peter, Hardi; He, Jiansen; Xia, Lidong; Wang, Linghua

    2018-03-01

    and after the possible heating phase, the intensity changes in the optically thin (Si IV) and optical thick line (C II) are mainly contributed by the density variation without significant heating. Conclusions: We therefore provide evidence for the heating of an envelope loop that is affected by accelerating upflows, which are probably launched by magnetic reconnection between small-scale magnetic flux tubes underneath the envelope loop. This study emphasizes that in the complex upper atmosphere of the Sun, the dynamics of the 3D coupled magnetic field and flow field plays a key role in thermalizing 1D structures such as coronal loops. An animation associated to Fig. 1 is available at http://https://www.aanda.org

  1. Probing the Production of Extreme-ultraviolet Late-phase Solar Flares Using the Model Enthalpy-based Thermal Evolution of Loops

    NASA Astrophysics Data System (ADS)

    Dai, Yu; Ding, Mingde

    2018-04-01

    Recent observations in extreme-ultraviolet (EUV) wavelengths reveal an EUV late phase in some solar flares that is characterized by a second peak in warm coronal emissions (∼3 MK) several tens of minutes to a few hours after the soft X-ray (SXR) peak. Using the model enthalpy-based thermal evolution of loops (EBTEL), we numerically probe the production of EUV late-phase solar flares. Starting from two main mechanisms of producing the EUV late phase, i.e., long-lasting cooling and secondary heating, we carry out two groups of numerical experiments to study the effects of these two processes on the emission characteristics in late-phase loops. In either of the two processes an EUV late-phase solar flare that conforms to the observational criteria can be numerically synthesized. However, the underlying hydrodynamic and thermodynamic evolutions in late-phase loops are different between the two synthetic flare cases. The late-phase peak due to a long-lasting cooling process always occurs during the radiative cooling phase, while that powered by a secondary heating is more likely to take place in the conductive cooling phase. We then propose a new method for diagnosing the two mechanisms based on the shape of EUV late-phase light curves. Moreover, from the partition of energy input, we discuss why most solar flares are not EUV late flares. Finally, by addressing some other factors that may potentially affect the loop emissions, we also discuss why the EUV late phase is mainly observed in warm coronal emissions.

  2. On higher order discrete phase-locked loops.

    NASA Technical Reports Server (NTRS)

    Gill, G. S.; Gupta, S. C.

    1972-01-01

    An exact mathematical model is developed for a discrete loop of a general order particularly suitable for digital computation. The deterministic response of the loop to the phase step and the frequency step is investigated. The design of the digital filter for the second-order loop is considered. Use is made of the incremental phase plane to study the phase error behavior of the loop. The model of the noisy loop is derived and the optimization of the loop filter for minimum mean-square error is considered.

  3. Manipulation of the extrastriate frontal loop can resolve visual disability in blindsight patients.

    PubMed

    Badgaiyan, Rajendra D

    2012-12-01

    Patients with blindsight are not consciously aware of visual stimuli in the affected field of vision but retain nonconscious perception. This disability can be resolved if nonconsciously perceived information can be brought to their conscious awareness. It can be accomplished by manipulating neural network of visual awareness. To understand this network, we studied the pattern of cortical activity elicited during processing of visual stimuli with or without conscious awareness. The analysis indicated that a re-entrant signaling loop between the area V3A (located in the extrastriate cortex) and the frontal cortex is critical for processing conscious awareness. The loop is activated by visual signals relayed in the primary visual cortex, which is damaged in blindsight patients. Because of the damage, V3A-frontal loop is not activated and the signals are not processed for conscious awareness. These patients however continue to receive visual signals through the lateral geniculate nucleus. Since these signals do not activate the V3A-frontal loop, the stimuli are not consciously perceived. If visual input from the lateral geniculate nucleus is appropriately manipulated and made to activate the V3A-frontal loop, blindsight patients can regain conscious vision. Published by Elsevier Ltd.

  4. Stretched Loops

    NASA Image and Video Library

    2017-03-16

    When an active region rotated over to the edge of the sun, it presented us with a nice profile view of its elongated loops stretching and swaying above it (Mar. 8-9, 2017). These loops are actually charged particles (made visible in extreme ultraviolet light) swirling along the magnetic field lines of the active region. The video covers about 30 hours of activity. Also of note is a darker twisting mass of plasma to the left of the active region being pulled and spun about by magnetic forces. Video is available at http://photojournal.jpl.nasa.gov/catalog/PIA21562

  5. Hyperstaticity and loops in frictional granular packings

    NASA Astrophysics Data System (ADS)

    Tordesillas, Antoinette; Lam, Edward; Metzger, Philip T.

    2009-06-01

    The hyperstatic nature of granular packings of perfectly rigid disks is analyzed algebraically and through numerical simulation. The elementary loops of grains emerge as a fundamental element in addressing hyperstaticity. Loops consisting of an odd number of grains behave differently than those with an even number. For odd loops, the latent stresses are exterior and are characterized by the sum of frictional forces around each loop. For even loops, the latent stresses are interior and are characterized by the alternating sum of frictional forces around each loop. The statistics of these two types of loop sums are found to be Gibbsian with a "temperature" that is linear with the friction coefficient μ when μ<1.

  6. Dealing with Stigma: Experiences of Persons Affected by Disabilities and Leprosy

    PubMed Central

    Zweekhorst, Marjolein B. M.; Miranda-Galarza, Beatriz; Peters, Ruth M. H.; Cummings, Sarah; Seda, Francisia S. S. E.; Bunders, Joske F. G.; Irwanto

    2015-01-01

    Persons affected by leprosy or by disabilities face forms of stigma that have an impact on their lives. This study seeks to establish whether their experiences of stigma are similar, with a view to enabling the two groups of people to learn from each other. Accounts of experiences of the impact of stigma were obtained using in-depth interviews and focus group discussion with people affected by leprosy and by disabilities not related to leprosy. The analysis shows that there are a lot of similarities in impact of stigma in terms of emotions, thoughts, behaviour, and relationships between the two groups. The main difference is that those affected by leprosy tended to frame their situation in medical terms, while those living with disabilities described their situation from a more social perspective. In conclusion, the similarities offer opportunities for interventions and the positive attitudes and behaviours can be modelled in the sense that both groups can learn and benefit. Research that tackles different aspects of stigmatization faced by both groups could lead to inclusive initiatives that help individuals to come to terms with the stigma and to advocate against exclusion and discrimination. PMID:25961008

  7. Dealing with stigma: experiences of persons affected by disabilities and leprosy.

    PubMed

    Lusli, Mimi; Zweekhorst, Marjolein B M; Miranda-Galarza, Beatriz; Peters, Ruth M H; Cummings, Sarah; Seda, Francisia S S E; Bunders, Joske F G; Irwanto

    2015-01-01

    Persons affected by leprosy or by disabilities face forms of stigma that have an impact on their lives. This study seeks to establish whether their experiences of stigma are similar, with a view to enabling the two groups of people to learn from each other. Accounts of experiences of the impact of stigma were obtained using in-depth interviews and focus group discussion with people affected by leprosy and by disabilities not related to leprosy. The analysis shows that there are a lot of similarities in impact of stigma in terms of emotions, thoughts, behaviour, and relationships between the two groups. The main difference is that those affected by leprosy tended to frame their situation in medical terms, while those living with disabilities described their situation from a more social perspective. In conclusion, the similarities offer opportunities for interventions and the positive attitudes and behaviours can be modelled in the sense that both groups can learn and benefit. Research that tackles different aspects of stigmatization faced by both groups could lead to inclusive initiatives that help individuals to come to terms with the stigma and to advocate against exclusion and discrimination.

  8. Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Tian, Hai-Ting; Pan, Xiong; Song, Ning-Fang

    2010-03-01

    The phase modulation and the closed-loop controller can generate electrical crosstalk-coupling in digital closed-loop fibre optic gyro. Four electrical cross-coupling paths are verified by the open-loop testing approach. It is found the variation of ramp amplitude will lead to the alternation of gyro bias. The amplitude and the phase parameters of the electrical crosstalk signal are measured by lock-in amplifier, and the variation of gyro bias is confirmed to be caused by the alternation of phase according to the amplitude of the ramp. A digital closed-loop fibre optic gyro electrical crosstalk-coupling model is built by approximating the electrical cross-coupling paths as a proportion and integration segment. The results of simulation and experiment show that the modulation signal electrical crosstalk-coupling can cause the dead zone of the gyro when a small angular velocity is inputted, and it could also lead to a periodic vibration of the bias error of the gyro when a large angular velocity is inputted.

  9. Digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Cliff, R. A. (Inventor)

    1975-01-01

    An digital phase-locked loop is provided for deriving a loop output signal from an accumulator output terminal. A phase detecting exclusive OR gate is fed by the loop digital input and output signals. The output of the phase detector is a bi-level digital signal having a duty cycle indicative of the relative phase of the input and output signals. The accumulator is incremented at a first rate in response to a first output level of the phase detector and at a second rate in response to a second output level of the phase detector.

  10. Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control.

    PubMed

    Gorju, G; Jucha, A; Jain, A; Crozatier, V; Lorgeré, I; Le Gouët, J-L; Bretenaker, F; Colice, M

    2007-03-01

    We propose and demonstrate a novel active stabilization scheme for wide and fast frequency chirps. The system measures the laser instantaneous frequency deviation from a perfectly linear chirp, thanks to a digital phase detection process, and provides an error signal that is used to servo-loop control the chirped laser. This way, the frequency errors affecting a laser scan over 10 GHz on the millisecond timescale are drastically reduced below 100 kHz. This active optoelectronic digital servo-loop control opens new and interesting perspectives in fields where rapidly chirped lasers are crucial.

  11. A Linguistic Analysis of Counselor's Affect Oriented Responses across Three Levels of Counseling Experience.

    ERIC Educational Resources Information Center

    Warden, Kathleen; Wycoff, Jean

    The effect of counselors' level of experience on clients' expression of feeling has not been investigated using stylistic and semantic measures. To examine the influence of affectively oriented counselors' level of experience, six counselors at three experience levels (low--masters, counseling practicum students; medium--doctoral, counseling…

  12. Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana

    PubMed Central

    Locke, James C W; Kozma-Bognár, László; Gould, Peter D; Fehér, Balázs; Kevei, Éva; Nagy, Ferenc; Turner, Matthew S; Hall, Anthony; Millar, Andrew J

    2006-01-01

    Our computational model of the circadian clock comprised the feedback loop between LATE ELONGATED HYPOCOTYL (LHY), CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and TIMING OF CAB EXPRESSION 1 (TOC1), and a predicted, interlocking feedback loop involving TOC1 and a hypothetical component Y. Experiments based on model predictions suggested GIGANTEA (GI) as a candidate for Y. We now extend the model to include a recently demonstrated feedback loop between the TOC1 homologues PSEUDO-RESPONSE REGULATOR 7 (PRR7), PRR9 and LHY and CCA1. This three-loop network explains the rhythmic phenotype of toc1 mutant alleles. Model predictions fit closely to new data on the gi;lhy;cca1 mutant, which confirm that GI is a major contributor to Y function. Analysis of the three-loop network suggests that the plant clock consists of morning and evening oscillators, coupled intracellularly, which may be analogous to coupled, morning and evening clock cells in Drosophila and the mouse. PMID:17102804

  13. Outcome of loop versus divided colostomy in the management of anorectal malformations.

    PubMed

    Almosallam, Osama Ibrahim; Aseeri, Ali; Shanafey, Saud Al

    2016-01-01

    Colostomy is a common part of the management of high anorectal malformation (ARM) in the pediatric population. To evaluate whether the type of colostomy (loop vs divided) has an impact on outcome in patients with ARM. A retrospective study. King Faisal Specialist Hospital and Research Center, a tertiary care center. All patients who were managed with colostomy for ARM and had definitive repair during the period of January 2000 to December 2014. Outcomes relative to the type of the colostomy were compared. Morbidities associated with each type of colostomy. There were 104 patients managed for ARM with colostomy as staged procedures, 63 males and 41 females. Patients had a colostomy at a median age of 6 days and were closed at a median of 11 months. Definitive repair was at a median age of 17 months. Type of fistula was 8 perineal, 21 rectovestibular, 35 rectourethral, 11 rectovesical and there were 16 without fistula and 13 cloaca anomalies. There were 55 loop and 49 divided colostomies. There were 91 descending/sigmoid and 13 transverse colostomies. Operative time for loop colostomy closure was shorter than with divided colo6stomy (76 minutes vs 94 minutes, P=.002). Three patients among the divided group had reversed orientation of the colostomy that had affected bowel preparations negatively prior to its repair. There was no differences in complications of creation and closure of loop and divided colostomies except in occurrence of skin excoriation. There was more skin excoriation with divided colostomy compared to loop colostomy (17 vs 10, P=.04). Loop colostomy has a shorter closure operative time and relatively fewer complications compared to the divided colostomy. Our data suggests that loop colostomy may be more favorable than divided colostomy for ARM patients. Retrospective nature of the study and some colostomies performed at other hospitals.

  14. Method of implementing digital phase-locked loops

    NASA Technical Reports Server (NTRS)

    Stephens, Scott A. (Inventor); Thomas, Jess Brooks, Jr. (Inventor)

    1993-01-01

    In a new formulation for digital phase-locked loops, loop-filter constants are determined from loop roots that can each be selectively placed in the s-plane on the basis of a new set of parameters, each with simple and direct physical meaning in terms of loop noise bandwidth, root-specific decay rate, or root-specific damping. Loops of first to fourth order are treated in the continuous-update approximation (BLT yields 0) and in a discrete-update formulation with arbitrary BLT. Deficiencies of the continuous-update approximation in large-BLT applications are avoided in the new discrete-update formulation. A new method for direct, transient-free acquisition with third- and fourth-order loops can improve the versatility and reliability of acquisition with such loops.

  15. Parallel tiled Nussinov RNA folding loop nest generated using both dependence graph transitive closure and loop skewing.

    PubMed

    Palkowski, Marek; Bielecki, Wlodzimierz

    2017-06-02

    RNA secondary structure prediction is a compute intensive task that lies at the core of several search algorithms in bioinformatics. Fortunately, the RNA folding approaches, such as the Nussinov base pair maximization, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. Polyhedral compilation techniques have proven to be a powerful tool for optimization of dense array codes. However, classical affine loop nest transformations used with these techniques do not optimize effectively codes of dynamic programming of RNA structure predictions. The purpose of this paper is to present a novel approach allowing for generation of a parallel tiled Nussinov RNA loop nest exposing significantly higher performance than that of known related code. This effect is achieved due to improving code locality and calculation parallelization. In order to improve code locality, we apply our previously published technique of automatic loop nest tiling to all the three loops of the Nussinov loop nest. This approach first forms original rectangular 3D tiles and then corrects them to establish their validity by means of applying the transitive closure of a dependence graph. To produce parallel code, we apply the loop skewing technique to a tiled Nussinov loop nest. The technique is implemented as a part of the publicly available polyhedral source-to-source TRACO compiler. Generated code was run on modern Intel multi-core processors and coprocessors. We present the speed-up factor of generated Nussinov RNA parallel code and demonstrate that it is considerably faster than related codes in which only the two outer loops of the Nussinov loop nest are tiled.

  16. Positive affective processes underlie positive health behaviour change.

    PubMed

    Van Cappellen, Patty; Rice, Elise L; Catalino, Lahnna I; Fredrickson, Barbara L

    2018-01-01

    Positive health behaviours such as physical activity can prevent or reverse many chronic conditions, yet a majority of people fall short of leading a healthy lifestyle. Recent discoveries in affective science point to promising approaches to circumvent barriers to lifestyle change. Here, we present a new theoretical framework that integrates scientific knowledge about positive affect with that on implicit processes. The upward spiral theory of lifestyle change explains how positive affect can facilitate long-term adherence to positive health behaviours. The inner loop of this spiral model identifies nonconscious motives as a central mechanism of behavioural maintenance. Positive affect experienced during health behaviours increases incentive salience for cues associated with those behaviours, which in turn, implicitly guides attention and the everyday decisions to repeat those behaviours. The outer loop represents the evidence-backed claim, based on Fredrickson's broaden-and-build theory, that positive affect builds a suite of endogenous resources, which may in turn amplify the positive affect experienced during positive health behaviours and strengthen the nonconscious motives. We offer published and preliminary evidence in favour of the theory, contrast it to other dominant theories of health behaviour change, and highlight attendant implications for interventions that merit testing.

  17. Self-organized synchronization of digital phase-locked loops with delayed coupling in theory and experiment

    PubMed Central

    Wetzel, Lucas; Jörg, David J.; Pollakis, Alexandros; Rave, Wolfgang; Fettweis, Gerhard; Jülicher, Frank

    2017-01-01

    Self-organized synchronization occurs in a variety of natural and technical systems but has so far only attracted limited attention as an engineering principle. In distributed electronic systems, such as antenna arrays and multi-core processors, a common time reference is key to coordinate signal transmission and processing. Here we show how the self-organized synchronization of mutually coupled digital phase-locked loops (DPLLs) can provide robust clocking in large-scale systems. We develop a nonlinear phase description of individual and coupled DPLLs that takes into account filter impulse responses and delayed signal transmission. Our phase model permits analytical expressions for the collective frequencies of synchronized states, the analysis of stability properties and the time scale of synchronization. In particular, we find that signal filtering introduces stability transitions that are not found in systems without filtering. To test our theoretical predictions, we designed and carried out experiments using networks of off-the-shelf DPLL integrated circuitry. We show that the phase model can quantitatively predict the existence, frequency, and stability of synchronized states. Our results demonstrate that mutually delay-coupled DPLLs can provide robust and self-organized synchronous clocking in electronic systems. PMID:28207779

  18. Observations of loops and prominences

    NASA Technical Reports Server (NTRS)

    Strong, Keith T.

    1994-01-01

    We review recent observations by the Yohkoh-SXT (Soft X-ray Telescope) in collaboration with other spacecraft and ground-based observatories of coronal loops and prominences. These new results point to problems that SoHO will be able to address. With a unique combination of rapid-cadence digital imaging (greater than or equal to 32 s full-disk and greater than or equal to 2 s partial-frame images), high spatial resolution (greater than or equal to 2.5 arcsec pixels), high sensitivity (EM less than or equal to 10(exp 42) cm(exp -3)), a low-scatter mirror, and large dynamic range, SXT can observe a vast range of targets on the Sun. Over the first 21 months of Yohkoh operations SXT has taken over one million images of the corona and so is building up an invaluable long-term database on the large-scale corona and loop geometry. The most striking thing about the SXT images is the range of loop sizes and shapes. The active regions are a bright tangle of magnetic field lines, surrounded by a network of large-scale quiet-Sun loops stretching over distances in excess of 105 km. The cross-section of most loops seems to be constant. Loops displaying significant Gamma's are the exception, not the rule, implying the presence of widespread currents in the corona. All magnetic structures show changes. Time scales range from seconds to months. The question of how these structures are formed, become filled with hot plasma, and are maintained is still open. While we see the propagation of brightenings along the length of active-region loops and in X-ray jets with velocities of several hundred km/s, much higher velocities are seen in the quiet Sun. In XBP flares, for example, velocities of over 1000 km/s are common. Active-region loops seem to be in constant motion, moving slowly outward, carrying plasma with them. During flares, loops often produce localized brightenings at the base and later at the apex of the loop. Quiescent filaments and prominences have been observed regularly

  19. The role of food-cue exposure and negative affect in the experience of thought-shape fusion.

    PubMed

    Coelho, Jennifer S; Roefs, Anne; Jansen, Anita

    2010-12-01

    Thought-shape fusion (TSF) is a cognitive distortion that can be induced by imagining eating high-caloric foods, and involves increased guilt, feelings of fatness, and perceptions of weight gain and moral wrong-doing. Two studies were conducted to further elucidate this phenomenon. Study 1 investigated whether merely being exposed to fattening foods (without being asked to think about these foods) could induce a TSF-like experience. Study 2 investigated the relationship between negative affect and TSF-like experiences. The results suggested that TSF is specific to thinking about eating fattening foods, as mere exposure to high-caloric foods did not increase state TSF scores in healthy females relative to a neutral control condition. Furthermore, susceptibility to TSF is associated with negative affect. Healthy females with low levels of negative affect appear to be protected against TSF, medium negative affect is associated with susceptibility to TSF inductions, while those with high levels of negative affect appear to be particularly vulnerable to TSF-like experiences (even after imagining a neutral situation). Overall, the studies suggest that negative affect is associated with a TSF-like experience, and that TSF is a phenomenon that is experienced (to at least some extent) by females in the general population. 2010 Elsevier Ltd. All rights reserved.

  20. Reliable Control Using Disturbance Observer and Equivalent Transfer Function for Position Servo System in Current Feedback Loop Failure

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kaoru; Nakamura, Taro; Osumi, Hisashi

    A reliable control method is proposed for multiple loop control system. After a feedback loop failure, such as case of the sensor break down, the control system becomes unstable and has a big fluctuation even if it has a disturbance observer. To cope with this problem, the proposed method uses an equivalent transfer function (ETF) as active redundancy compensation after the loop failure. The ETF is designed so that it does not change the transfer function of the whole system before and after the loop failure. In this paper, the characteristic of reliable control system that uses an ETF and a disturbance observer is examined by the experiment that uses the DC servo motor for the current feedback loop failure in the position servo system.

  1. Three-Dimensional Printing of Vitrification Loop Prototypes for Aquatic Species.

    PubMed

    Tiersch, Nolan J; Childress, William M; Tiersch, Terrence R

    2018-05-16

    Vitrification is a method of cryopreservation that freezes samples rapidly, while forming an amorphous solid ("glass"), typically in small (μL) volumes. The goal of this project was to create, by three-dimensional (3D) printing, open vitrification devices based on an elliptical loop that could be efficiently used and stored. Vitrification efforts can benefit from the application of 3D printing, and to begin integration of this technology, we addressed four main variables: thermoplastic filament type, loop length, loop height, and method of loading. Our objectives were to: (1) design vitrification loops with varied dimensions; (2) print prototype loops for testing; (3) evaluate loading methods for the devices; and (4) classify vitrification responses to multiple device configurations. The various configurations were designed digitally using 3D CAD (Computer Aided Design) software, and prototype devices were produced with MakerBot ® 3D printers. The thermoplastic filaments used to produce devices were acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA). Vitrification devices were characterized by the film volumes formed with different methods of loading (pipetting or submersion). Frozen films were classified to determine vitrification quality: zero (opaque, or abundant crystalline ice formation); one (translucent, or partial vitrification), or two (transparent, or substantial vitrification, glass). A published vitrification solution was used to conduct experiments. Loading by pipetting formed frozen films more reliably than by submersion, but submersion yielded fewer filling problems and was more rapid. The loop designs that yielded the highest levels of vitrification enabled rapid transfer of heat, and most often were characterized as being longer and consisting of fewer layers (height). 3D printing can assist standardization of vitrification methods and research, yet can also provide the ability to quickly design and fabricate custom devices when

  2. The Emotional Experience of People with Intellectual Disability: An Analysis Using the International Affective Pictures System

    ERIC Educational Resources Information Center

    Bermejo, Belen G.; Mateos, Pedro M.; Sanchez-Mateos, Juan Degado

    2014-01-01

    The present study provides information on the emotional experience of people with intellectual disability. To evaluate this emotional experience, we have used the International Affective Pictures System (IAPS). The most important result from this study is that the emotional reaction of people with intellectual disability to affective stimuli is…

  3. Comparison of electric dipole and magnetic loop antennas for exciting whistler modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenzel, R. L.; Urrutia, J. M.

    2016-08-15

    The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B{sub 0}. The other antenna is an elongated loop with dipole moment parallel to B{sub 0}. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that ofmore » the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.« less

  4. Near optimum digital phase locked loops.

    NASA Technical Reports Server (NTRS)

    Polk, D. R.; Gupta, S. C.

    1972-01-01

    Near optimum digital phase locked loops are derived utilizing nonlinear estimation theory. Nonlinear approximations are employed to yield realizable loop structures. Baseband equivalent loop gains are derived which under high signal to noise ratio conditions may be calculated off-line. Additional simplifications are made which permit the application of the Kalman filter algorithms to determine the optimum loop filter. Performance is evaluated by a theoretical analysis and by simulation. Theoretical and simulated results are discussed and a comparison to analog results is made.

  5. Which daily experiences can foster well-being at work? A diary study on the interplay between flow experiences, affective commitment, and self-control demands.

    PubMed

    Rivkin, Wladislaw; Diestel, Stefan; Schmidt, Klaus-Helmut

    2018-01-01

    Previous research has provided strong evidence for affective commitment as a direct predictor of employees' psychological well-being and as a resource that buffers the adverse effects of self-control demands as a stressor. However, the mechanisms that underlie the beneficial effects of affective commitment have not been examined yet. Drawing on the self-determination theory, we propose day-specific flow experiences as the mechanism that underlies the beneficial effects of affective commitment, because flow experiences as peaks of intrinsic motivation constitute manifestations of autonomous regulation. In a diary study covering 10 working days with N = 90 employees, we examine day-specific flow experiences as a mediator of the beneficial effects of interindividual affective commitment and a buffering moderator of the adverse day-specific effects of self-control demands on indicators of well-being (ego depletion, need for recovery, work engagement, and subjective vitality). Our results provide strong support for our predictions that day-specific flow experiences a) mediate the beneficial effects of affective commitment on employees' day-specific well-being and b) moderate (buffer) the adverse day-specific effects of self-control demands on well-being. That is, on days with high levels of flow experiences, employees were better able to cope with self-control demands whereas self-control demands translated into impaired well-being when employees experienced lower levels of day-specific flow experiences. We then discuss our findings and suggest practical implications. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Breaking a habit: a further role of the phonological loop in action control.

    PubMed

    Saeki, Erina; Baddeley, Alan D; Hitch, Graham J; Saito, Satoru

    2013-10-01

    Recent research has suggested that keeping track of a task goal in rapid task switching may depend on the phonological loop component of working memory. In this study, we investigated whether the phonological loop plays a similar role when a single switch extending over several trials is required after many trials on which one has performed a competing task. Participants were shown pairs of digits varying in numerical and physical size, and they were required to decide which digit was numerically or physically larger. An experimental cycle consisted of four blocks of 24 trials. In Experiment 1, participants in the task change groups performed the numerical-size judgment task during the first three blocks, and then changed to the physical-size judgment task in the fourth. Participants in the continuation groups performed only the physical-size judgment task throughout all four blocks. We found negative effects of articulatory suppression on the fourth block, but only in the task change groups. Experiment 2 was a replication, with the modification that both groups received identical instructions and practice. Experiment 3 was a further replication using numerical-size judgment as the target task. The results showed a pattern similar to that from Experiment 1, with negative effects of articulatory suppression found only in the task change group. The congruity of numerical and physical size had a reliable effect on performance in all three experiments, but unlike the task change, it did not reliably interact with articulatory suppression. The results suggest that in addition to its well-established role in rapid task switching, the phonological loop also contributes to active goal maintenance in longer-term action control.

  7. Filter for third order phase locked loops

    NASA Technical Reports Server (NTRS)

    Crow, R. B.; Tausworthe, R. C. (Inventor)

    1973-01-01

    Filters for third-order phase-locked loops are used in receivers to acquire and track carrier signals, particularly signals subject to high doppler-rate changes in frequency. A loop filter with an open-loop transfer function and set of loop constants, setting the damping factor equal to unity are provided.

  8. Wilson loop from a Dyson equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pak, M.; Reinhardt, H.

    2009-12-15

    The Dyson equation proposed for planar temporal Wilson loops in the context of supersymmetric gauge theories is critically analyzed thereby exhibiting its ingredients and approximations involved. We reveal its limitations and identify its range of applicability in nonsupersymmetric gauge theories. In particular, we show that this equation is applicable only to strongly asymmetric planar Wilson loops (consisting of a long and a short pair of loop segments) and as a consequence the Wilsonian potential can be extracted only up to intermediate distances. By this equation the Wilson loop is exclusively determined by the gluon propagator. We solve the Dyson equationmore » in Coulomb gauge for the temporal Wilson loop with the instantaneous part of the gluon propagator and for the spatial Wilson loop with the static gluon propagator obtained in the Hamiltonian approach to continuum Yang-Mills theory and on the lattice. In both cases we find a linearly rising color potential.« less

  9. A dual closed-loop control system for mechanical ventilation.

    PubMed

    Tehrani, Fleur; Rogers, Mark; Lo, Takkin; Malinowski, Thomas; Afuwape, Samuel; Lum, Michael; Grundl, Brett; Terry, Michael

    2004-04-01

    Closed-loop mechanical ventilation has the potential to provide more effective ventilatory support to patients with less complexity than conventional ventilation. The purpose of this study was to investigate the effectiveness of an automatic technique for mechanical ventilation. Two closed-loop control systems for mechanical ventilation are combined in this study. In one of the control systems several physiological data are used to automatically adjust the frequency and tidal volume of breaths of a patient. This method, which is patented under US Patent number 4986268, uses the criterion of minimal respiratory work rate to provide the patient with a natural pattern of breathing. The inputs to the system include data representing CO2 and O2 levels of the patient as well as respiratory compliance and airway resistance. The I:E ratio is adjusted on the basis of the respiratory time constant to allow for effective emptying of the lungs in expiration and to avoid intrinsic positive end expiratory pressure (PEEP). This system is combined with another closed-loop control system for automatic adjustment of the inspired fraction of oxygen of the patient. This controller uses the feedback of arterial oxygen saturation of the patient and combines a rapid stepwise control procedure with a proportional-integral-derivative (PID) control algorithm to automatically adjust the oxygen concentration in the patient's inspired gas. The dual closed-loop control system has been examined by using mechanical lung studies, computer simulations and animal experiments. In the mechanical lung studies, the ventilation controller adjusted the breathing frequency and tidal volume in a clinically appropriate manner in response to changes in respiratory mechanics. The results of computer simulations and animal studies under induced disturbances showed that blood gases were returned to the normal physiologic range in less than 25 s by the control system. In the animal experiments understeady

  10. On the feasibility of closed-loop control of intra-aortic balloon pumping

    NASA Technical Reports Server (NTRS)

    Clark, J. W., Jr.; Bourland, H. M.; Kane, G. R.

    1973-01-01

    A closed-loop control scheme for the control of intra-aortic balloon pumping has been developed and tested in dog experiments. A performance index reflecting the general objectives of balloon-assist pumping is developed and a modified steepest ascent control algorithm is utilized for the selection of a proper operating point for the balloon during its pumping cycle. This paper attempts to indicate the feasibility of closed-loop control of balloon pumping, and particularly its flexibility in achieving both diastolic augmentation of mean aortic pressure and control of the level of end-diastolic pressure (EDP) an important factor in reducing heart work.

  11. Tritium Management Loop Design Status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rader, Jordan D.; Felde, David K.; McFarlane, Joanna

    This report summarizes physical, chemical, and engineering analyses that have been done to support the development of a test loop to study tritium migration in 2LiF-BeF2 salts. The loop will operate under turbulent flow and a schematic of the apparatus has been used to develop a model in Mathcad to suggest flow parameters that should be targeted in loop operation. The introduction of tritium into the loop has been discussed as well as various means to capture or divert the tritium from egress through a test assembly. Permeation was calculated starting with a Modelica model for a transport through amore » nickel window into a vacuum, and modifying it for a FLiBe system with an argon sweep gas on the downstream side of the permeation interface. Results suggest that tritium removal with a simple tubular permeation device will occur readily. Although this system is idealized, it suggests that rapid measurement capability in the loop may be necessary to study and understand tritium removal from the system.« less

  12. Closed loop kinesthetic feedback for postural control rehabilitation.

    PubMed

    Vérité, Fabien; Bachta, Wael; Morel, Guillaume

    2014-01-01

    Postural control rehabilitation may benefit from the use of smart devices providing biofeedback. This approach consists of increasing the patients perception of their postural state. Namely, postural state is monitored and fed back in real time to the patients through one or more sensory channels. This allows implementing rehabilitation exercises where the patients control their posture with the help of additional sensory inputs. In this paper, a closed loop control of the Center-Of-Pressure (CoP) based on kinesthetic feedback is proposed as a new form of biofeedback. The motion of a one Degree of Freedom (DoF) translational device, lightly touched by the patient's forefinger, is servoed to the patient's CoP position extracted from the measurements of a force plate on which he/she stands. As a result, the patient's CoP can be controllably displaced. A first set of experiments is used to prove the feasibility of this closed-loop control under ideal conditions favoring the perception of the kinesthetic feedback, while the subject is totally unaware of the context. A second set of experiments is then proposed to evaluate the robustness of this approach under experimental conditions that are more realistic with regards to the clinical context of a rehabilitation program involving biofeedback-based exercises.

  13. DNA Topoisomerase 1 Prevents R-loop Accumulation to Modulate Auxin-Regulated Root Development in Rice.

    PubMed

    Shafiq, Sarfraz; Chen, Chunli; Yang, Jing; Cheng, Lingling; Ma, Fei; Widemann, Emilie; Sun, Qianwen

    2017-06-05

    R-loop structures (RNA:DNA hybrids) have important functions in many biological processes, including transcriptional regulation and genome instability among diverse organisms. DNA topoisomerase 1 (TOP1), an essential manipulator of DNA topology during RNA transcription and DNA replication processes, can prevent R-loop accumulation by removing the positive and negative DNA supercoiling that is made by RNA polymerases during transcription. TOP1 is required for plant development, but little is known about its function in preventing co-transcriptional R-loop accumulation in various biological processes in plants. Here we show that knockdown of OsTOP1 strongly affects rice development, causing defects in root architecture and gravitropism, which are the consequences of misregulation of auxin signaling and transporter genes. We found that R-loops are naturally formed at rice auxin-related gene loci, and overaccumulate when OsTOP1 is knocked down or OsTOP1 protein activity is inhibited. OsTOP1 therefore sets the accurate expression levels of auxin-related genes by preventing the overaccumulation of inherent R-loops. Our data reveal R-loops as important factors in polar auxin transport and plant root development, and highlight that OsTOP1 functions as a key to link transcriptional R-loops with plant hormone signaling, provide new insights into transcriptional regulation of hormone signaling in plants. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  14. Temperature dependence of looping rates in a short peptide.

    PubMed

    Roccatano, Danilo; Sahoo, Harekrushna; Zacharias, Martin; Nau, Werner M

    2007-03-15

    Knowledge of the influence of chain length and amino acid sequence on the structural and dynamic properties of small peptides in solution provides essential information on protein folding pathways. The combination of time-resolved optical spectroscopy and molecular dynamics (MD) simulation methods has become a powerful tool to investigate the kinetics of end-to-end collisions (looping rates) in short peptides, which are relevant in early protein folding events. We applied the combination of both techniques to study temperature-dependent (280-340 K) looping rates of the Dbo-AlaGlyGln-Trp-NH2 peptide, where Dbo represents a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine, which served as a fluorescent probe in the time-resolved spectroscopic experiments. The experimental looping rates increased from 4.8 x 10(7) s(-1) at 283 K to 2.0 x 10(8) s(-1) at 338 K in H2O. The corresponding Arrhenius plot provided as activation parameters Ea = 21.5 +/- 1.0 kJ mol(-1) and ln(A/s-1) = 26.8 +/- 0.2 in H2O. The results in D2O were consistent with a slight solvent viscosity effect, i.e., the looping rates were 10-20% slower. MD simulations were performed with the GROMOS96 force field in a water solvent model, which required first a parametrization of the synthetic amino acid Dbo. After corrections for solvent viscosity effects, the calculated looping rates varied from 1.5 x 10(8) s(-1) at 280 K to 8.2 x 10(8) s(-1) at 340 K in H2O, which was about four times larger than the experimental data. The calculated activation parameters were Ea = 24.7 +/- 1.5 kJ mol(-1) and ln(A/s(-1)) = 29.4 +/- 0.1 in H2O.

  15. Polyakov loop modeling for hot QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukushima, Kenji; Skokov, Vladimir

    Here, we review theoretical aspects of quantum chromodynamics (QCD) at finite temperature. The most important physical variable to characterize hot QCD is the Polyakov loop, which is an approximate order parameter for quark deconfinement in a hot gluonic medium. Additionally to its role as an order parameter, the Polyakov loop has rich physical contents in both perturbative and non-perturbative sectors. This review covers a wide range of subjects associated with the Polyakov loop from topological defects in hot QCD to model building with coupling to the Polyakov loop.

  16. Capillary-Condenser-Pumped Heat-Transfer Loop

    NASA Technical Reports Server (NTRS)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  17. Polyakov loop modeling for hot QCD

    DOE PAGES

    Fukushima, Kenji; Skokov, Vladimir

    2017-06-19

    Here, we review theoretical aspects of quantum chromodynamics (QCD) at finite temperature. The most important physical variable to characterize hot QCD is the Polyakov loop, which is an approximate order parameter for quark deconfinement in a hot gluonic medium. Additionally to its role as an order parameter, the Polyakov loop has rich physical contents in both perturbative and non-perturbative sectors. This review covers a wide range of subjects associated with the Polyakov loop from topological defects in hot QCD to model building with coupling to the Polyakov loop.

  18. Gravity Effect on Capillary Limit in a Miniature Loop Heat Pipe with Multiple Evaporators and Multiple Condensers

    NASA Technical Reports Server (NTRS)

    Nagano, Hosei; Ku, Jentung

    2007-01-01

    This paper describes the gravity effect on heat transport characteristics in a minia6re loop heat pipe with multiple evaporators and multiple condensers. Tests were conducted in three different orientations: horizontal, 45deg tilt, and vertical. The gravity affected the loop's natural operating temperature, the maximum heat transport capability, and the thermal conductance. In the case that temperatures of compensation chambers were actively controlled, the required control heater power was also dependent on the test configuration. In the vertical configuration, the secondary wick was not able to pump the liquid from the CC to the evaporator against the gravity. Thus the loop could operate stably or display some peculiar behaviors depending on the initial liquid distribution between the evaporator and the CC. Because such an initial condition was not known prior to the test, the subsequent loop performance was unpredictable.

  19. Testing of the Geoscience Laser Altimeter System (GLAS) Prototype Loop Heat Pipe

    NASA Technical Reports Server (NTRS)

    Douglas, Donya; Ku, Jentung; Kaya, Tarik

    1998-01-01

    This paper describes the testing of the prototype loop heat pipe (LHP) for the Geoscience Laser Altimeter System (GLAS). The primary objective of the test program was to verify the loop's heat transport and temperature control capabilities under conditions pertinent to GLAS applications. Specifically, the LHP had to demonstrate a heat transport capability of 100 W, with the operating temperature maintained within +/-2K while the condenser sink was subjected to a temperature change between 273K and 283K. Test results showed that this loop heat pipe was more than capable of transporting the required heat load and that the operating temperature could be maintained within +/-2K. However, this particular integrated evaporator-compensation chamber design resulted in an exchange of energy between the two that affected the overall operation of the system. One effect was the high temperature the LHP was required to reach before nucleation would begin due to inability to control liquid distribution during ground testing. Another effect was that the loop had a low power start-up limitation of approximately 25 W. These Issues may be a concern for other applications, although it is not expected that they will cause problems for GLAS under micro-gravity conditions.

  20. Kalman Orbit Optimized Loop Tracking

    NASA Technical Reports Server (NTRS)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  1. Daily Couple Experiences and Parent Affect in Families of Children with versus without Autism

    PubMed Central

    Hartley, Sigan L.; DaWalt, Leann Smith; Schultz, Haley M.

    2017-01-01

    We examined daily couple experiences in 174 couples who had a child with autism spectrum disorder (ASD) relative to 179 couples who had a child without disabilities and their same-day association with parent affect. Parents completed a 14-day daily diary in which they reported time with partner, partner support, partner closeness, and positive and negative couple interactions and level of positive and negative affect. One-way multivariate analyses of covariance and dyadic multilevel models were conducted. Parents of children with ASD reported less time with partner, lower partner closeness, and fewer positive couple interactions than the comparison group. Daily couple experiences were more strongly associated with parent affect in the ASD than comparison group. Findings have implications for programs and supports. PMID:28275928

  2. Daily Couple Experiences and Parent Affect in Families of Children with Versus Without Autism.

    PubMed

    Hartley, Sigan L; DaWalt, Leann Smith; Schultz, Haley M

    2017-06-01

    We examined daily couple experiences in 174 couples who had a child with autism spectrum disorder (ASD) relative to 179 couples who had a child without disabilities and their same-day association with parent affect. Parents completed a 14-day daily diary in which they reported time with partner, partner support, partner closeness, and positive and negative couple interactions and level of positive and negative affect. One-way multivariate analyses of covariance and dyadic multilevel models were conducted. Parents of children with ASD reported less time with partner, lower partner closeness, and fewer positive couple interactions than the comparison group. Daily couple experiences were more strongly associated with parent affect in the ASD than comparison group. Findings have implications for programs and supports.

  3. Parallel Digital Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Sadr, Ramin; Shah, Biren N.; Hinedi, Sami M.

    1995-01-01

    Wide-band microwave receivers of proposed type include digital phase-locked loops in which band-pass filtering and down-conversion of input signals implemented by banks of multirate digital filters operating in parallel. Called "parallel digital phase-locked loops" to distinguish them from other digital phase-locked loops. Systems conceived as cost-effective solution to problem of filtering signals at high sampling rates needed to accommodate wide input frequency bands. Each of M filters process 1/M of spectrum of signal.

  4. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    PubMed Central

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-01-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique. PMID:27426442

  5. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy.

    PubMed

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-07-18

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique.

  6. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-07-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique.

  7. Development and Implementation of a Design Metric for Systems Containing Long-Term Fluid Loops

    NASA Technical Reports Server (NTRS)

    Steele, John W.

    2016-01-01

    John Steele, a chemist and technical fellow from United Technologies Corporation, provided a water quality module to assist engineers and scientists with a metric tool to evaluate risks associated with the design of space systems with fluid loops. This design metric is a methodical, quantitative, lessons-learned based means to evaluate the robustness of a long-term fluid loop system design. The tool was developed by a cross-section of engineering disciplines who had decades of experience and problem resolution.

  8. Trigger loop folding determines transcription rate of Escherichia coli’s RNA polymerase

    DOE PAGES

    Mejia, Yara X.; Nudler, Evgeny; Bustamante, Carlos

    2014-12-31

    Two components of the RNA polymerase (RNAP) catalytic center, the bridge helix and the trigger loop (TL), have been linked with changes in elongation rate and pausing. Here, single molecule experiments with the WT and two TL-tip mutants of the Escherichia coli enzyme reveal that tip mutations modulate RNAP’s pause-free velocity, identifying TL conformational changes as one of two rate-determining steps in elongation. Consistent with this observation, we find a direct correlation between helix propensity of the modified amino acid and pause-free velocity. Moreover, nucleotide analogs affect transcription rate, suggesting that their binding energy also influences TL folding. A kineticmore » model in which elongation occurs in two steps, TL folding on nucleoside triphosphate (NTP) binding followed by NTP incorporation/pyrophosphate release, quantitatively accounts for these results. The TL plays no role in pause recovery remaining unfolded during a pause. The model suggests a finely tuned mechanism that balances transcription speed and fidelity.« less

  9. Performance of the supercritical helium cooling loop for the JET divertor cryopump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obert, W.; Mayaux, C.; Barth, K.

    1996-12-31

    A supercritical helium cooling loop for the two JET divertor cryopumps has been tested, commissioned and is operational practically uninterrupted for over one year. Operation experience under a number of different boundary and transient conditions have been obtained. The flow of the supercritical helium (6 g/s, 2.7 bar) is driven by the main compressor of the JET helium refrigerator passing a heat exchanger where it is subcooled to 4.1 K before entering the two cryopumps which are an assembly of two 60 m long and 20 mm diameter corrugated stainless steel tubes. By using a dedicated cold ejector which ismore » driven by the main flow and where the expansion from 12 bar to 2.7 bar takes place increases the flow of supercritical helium up to {approximately}17 g/s. The steady state thermal load to the cooling loop of the cryopump is < 80 W but during transient conditions in particular due to nuclear heating in the active phase of JET considerably higher transient heat loads can be accepted by the loop. Details about the steady state and transient thermal conditions as well as the cooldown and warm up behavior of the loop and the interaction of the supercritical loop with the operation of other plant equipment will be discussed in the paper.« less

  10. Wanting to Maximize the Positive and Minimize the Negative: Implications for Mixed Affective Experience in American and Chinese Contexts

    PubMed Central

    Sims, Tamara; Tsai, Jeanne L.; Jiang, Da; Wang, Yaheng; Fung, Helene H.; Zhang, Xiulan

    2016-01-01

    Previous studies have demonstrated that European Americans have fewer mixed affective experiences (i.e., are less likely to experience the bad with the good) compared to Chinese. In this paper, we argue that these cultural differences are due to “ideal affect,” or how people ideally want to feel. Specifically, we predict that people from individualistic cultures want to maximize positive and minimize negative affect more than people from collectivistic cultures, and as a result, they are less likely to actually experience mixed emotions (reflected by a more negative within-person correlation between actual positive and negative affect). We find support for this prediction in two experience sampling studies conducted in the U.S. and China (Studies 1 and 2). In addition, we demonstrate that ideal affect is a distinct construct from dialectical view of the self, which has also been related to mixed affective experience (Study 3). Finally, in Study 4, we demonstrate that experimentally manipulating the desire to maximize the positive and minimize the negative alters participants' actual experience of mixed emotions during a pleasant (but not unpleasant or combined pleasant and unpleasant) television clip in the U.S. and Hong Kong. Together, these findings suggest that across cultures, how people want to feel shapes how they actually feel, particularly people's mixed affective experience. PMID:26121525

  11. Wanting to maximize the positive and minimize the negative: implications for mixed affective experience in American and Chinese contexts.

    PubMed

    Sims, Tamara; Tsai, Jeanne L; Jiang, Da; Wang, Yaheng; Fung, Helene H; Zhang, Xiulan

    2015-08-01

    Previous studies have demonstrated that European Americans have fewer mixed affective experiences (i.e., are less likely to experience the bad with the good) compared with Chinese. In this article, we argue that these cultural differences are due to "ideal affect," or how people ideally want to feel. Specifically, we predict that people from individualistic cultures want to maximize positive and minimize negative affect more than people from collectivistic cultures, and as a result, they are less likely to actually experience mixed emotions (reflected by a more negative within-person correlation between actual positive and negative affect). We find support for this prediction in 2 experience sampling studies conducted in the United States and China (Studies 1 and 2). In addition, we demonstrate that ideal affect is a distinct construct from dialectical view of the self, which has also been related to mixed affective experience (Study 3). Finally, in Study 4, we demonstrate that experimentally manipulating the desire to maximize the positive and minimize the negative alters participants' actual experience of mixed emotions during a pleasant (but not unpleasant or combined pleasant and unpleasant) TV clip in the United States and Hong Kong. Together, these findings suggest that across cultures, how people want to feel shapes how they actually feel, particularly people's experiences of mixed affect. (c) 2015 APA, all rights reserved.

  12. Prediction of Long Loops with Embedded Secondary Structure using the Protein Local Optimization Program

    PubMed Central

    Miller, Edward B.; Murrett, Colleen S.; Zhu, Kai; Zhao, Suwen; Goldfeld, Dahlia A.; Bylund, Joseph H.; Friesner, Richard A.

    2013-01-01

    Robust homology modeling to atomic-level accuracy requires in the general case successful prediction of protein loops containing small segments of secondary structure. Further, as loop prediction advances to success with larger loops, the exclusion of loops containing secondary structure becomes awkward. Here, we extend the applicability of the Protein Local Optimization Program (PLOP) to loops up to 17 residues in length that contain either helical or hairpin segments. In general, PLOP hierarchically samples conformational space and ranks candidate loops with a high-quality molecular mechanics force field. For loops identified to possess α-helical segments, we employ an alternative dihedral library composed of (ϕ,ψ) angles commonly found in helices. The alternative library is searched over a user-specified range of residues that define the helical bounds. The source of these helical bounds can be from popular secondary structure prediction software or from analysis of past loop predictions where a propensity to form a helix is observed. Due to the maturity of our energy model, the lowest energy loop across all experiments can be selected with an accuracy of sub-Ångström RMSD in 80% of cases, 1.0 to 1.5 Å RMSD in 14% of cases, and poorer than 1.5 Å RMSD in 6% of cases. The effectiveness of our current methods in predicting hairpin-containing loops is explored with hairpins up to 13 residues in length and again reaching an accuracy of sub-Ångström RMSD in 83% of cases, 1.0 to 1.5 Å RMSD in 10% of cases, and poorer than 1.5 Å RMSD in 7% of cases. Finally, we explore the effect of an imprecise surrounding environment, in which side chains, but not the backbone, are initially in perturbed geometries. In these cases, loops perturbed to 3Å RMSD from the native environment were restored to their native conformation with sub-Ångström RMSD. PMID:23814507

  13. Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.

    PubMed

    Davidson, Paul R; Jones, Richard D; Andreae, John H; Sirisena, Harsha R

    2002-11-01

    In many recent human motor control models, including feedback-error learning and adaptive model theory (AMT), feedback control is used to correct errors while an inverse model is simultaneously tuned to provide accurate feedforward control. This popular and appealing hypothesis, based on a combination of psychophysical observations and engineering considerations, predicts that once the tuning of the inverse model is complete the role of feedback control is limited to the correction of disturbances. This hypothesis was tested by looking at the open-loop behavior of the human motor system during adaptation. An experiment was carried out involving 20 normal adult subjects who learned a novel visuomotor relationship on a pursuit tracking task with a steering wheel for input. During learning, the response cursor was periodically blanked, removing all feedback about the external system (i.e., about the relationship between hand motion and response cursor motion). Open-loop behavior was not consistent with a progressive transfer from closed- to open-loop control. Our recently developed computational model of the brain--a novel nonlinear implementation of AMT--was able to reproduce the observed closed- and open-loop results. In contrast, other control-systems models exhibited only minimal feedback control following adaptation, leading to incorrect open-loop behavior. This is because our model continues to use feedback to control slow movements after adaptation is complete. This behavior enhances the internal stability of the inverse model. In summary, our computational model is currently the only motor control model able to accurately simulate the closed- and open-loop characteristics of the experimental response trajectories.

  14. State demonstration project : loop detectors.

    DOT National Transportation Integrated Search

    1985-01-01

    The Virginia Department of Highways and Transportation frequently utilizes induction loops in its vehicle detector systems. Although not documented, there have been many instances of loop failure; therefore, the practices and materials used by the De...

  15. Analysis and design of a 3rd order velocity-controlled closed-loop for MEMS vibratory gyroscopes.

    PubMed

    Wu, Huan-ming; Yang, Hai-gang; Yin, Tao; Jiao, Ji-wei

    2013-09-18

    The time-average method currently available is limited to analyzing the specific performance of the automatic gain control-proportional and integral (AGC-PI) based velocity-controlled closed-loop in a micro-electro-mechanical systems (MEMS) vibratory gyroscope, since it is hard to solve nonlinear functions in the time domain when the control loop reaches to 3rd order. In this paper, we propose a linearization design approach to overcome this limitation by establishing a 3rd order linear model of the control loop and transferring the analysis to the frequency domain. Order reduction is applied on the built linear model's transfer function by constructing a zero-pole doublet, and therefore mathematical expression of each control loop's performance specification is obtained. Then an optimization methodology is summarized, which reveals that a robust, stable and swift control loop can be achieved by carefully selecting the system parameters following a priority order. Closed-loop drive circuits are designed and implemented using 0.35 μm complementary metal oxide semiconductor (CMOS) process, and experiments carried out on a gyroscope prototype verify the optimization methodology that an optimized stability of the control loop can be achieved by constructing the zero-pole doublet, and disturbance rejection capability (D.R.C) of the control loop can be improved by increasing the integral term.

  16. Ferroelectric-like hysteresis loop originated from non-ferroelectric effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Bora; Seol, Daehee; Lee, Shinbuhm

    Piezoresponse force microscopy (PFM) has provided advanced nanoscale understanding and analysis of ferroelectric and piezoelectric properties. In PFM-based studies, electromechanical strain induced by the converse piezoelectric effect is probed and analyzed as a PFM response. However, electromechanical strain can also arise from several non-piezoelectric origins that may lead to a misinterpretation of the observed response. Among them, electrostatic interaction can significantly affect the PFM response. Nonetheless, previous studies explored solely the influence of electrostatic interaction on the PFM response under the situation accompanied with polarization switching. Here, we show the influence of the electrostatic interaction in the absence of polarizationmore » switching by using unipolar voltage sweep. The obtained results reveal that the electromechanical neutralization between piezoresponse of polarization and electrostatic interaction plays a crucial role in the observed ferroelectric-like hysteresis loop despite the absence of polarization switching. Furthermore, our work can provide a basic guideline for the correct interpretation of the hysteresis loop in PFM-based studies.« less

  17. Ferroelectric-like hysteresis loop originated from non-ferroelectric effects

    DOE PAGES

    Kim, Bora; Seol, Daehee; Lee, Shinbuhm; ...

    2016-09-06

    Piezoresponse force microscopy (PFM) has provided advanced nanoscale understanding and analysis of ferroelectric and piezoelectric properties. In PFM-based studies, electromechanical strain induced by the converse piezoelectric effect is probed and analyzed as a PFM response. However, electromechanical strain can also arise from several non-piezoelectric origins that may lead to a misinterpretation of the observed response. Among them, electrostatic interaction can significantly affect the PFM response. Nonetheless, previous studies explored solely the influence of electrostatic interaction on the PFM response under the situation accompanied with polarization switching. Here, we show the influence of the electrostatic interaction in the absence of polarizationmore » switching by using unipolar voltage sweep. The obtained results reveal that the electromechanical neutralization between piezoresponse of polarization and electrostatic interaction plays a crucial role in the observed ferroelectric-like hysteresis loop despite the absence of polarization switching. Furthermore, our work can provide a basic guideline for the correct interpretation of the hysteresis loop in PFM-based studies.« less

  18. Steady State Model for Solar Coronal Loops

    NASA Astrophysics Data System (ADS)

    Sugiyama, L.; Asgari-Targhi, M.

    2017-12-01

    Solar coronal loops on the surface of the sun provide background magnetic and plasma structures for the release of a significant amount of the sun's energy, through energetic solar flares and coronal mass ejections and more gradual processes. Understanding their steady states is the first step in understanding loop dynamics. A consistent MHD steady state model, for a curved magnetic flux rope that contains plasma, has been developed[1] for simple coronal loops with both ends anchored in the photosphere. Plasma pressure or current makes the loop unstable to expansion in major radius and must be balanced by external forces, such as the solar gravity. The MHD momentum equation has a well defined small parameter ordering in the loop inverse aspect ratio ɛ=a/Ro (minor/major radius). Different types of common coronal loops fall in different parameter regimes, determined by the relative values of the plasma beta β=po/(Bo2/2μo), the MHD gravity parameter Ĝ≡ga/vA2 (the gravitational acceleration g normalized to the minor radius a and shear Alfvén velocity vA), and ɛ. The largest possible gravity, Ĝ ɛ1β, corresponds to the largest loops because it reduces the plasma density at the top of the loop exponentially compared to its lower ends, reducing the downward gravitational force -ρĜ there. The thin loops that are ubiquitous in solar active regions have ``high'' beta, β ɛ1, for ɛ≃0.02, and fit the predicted model scalings. The thicker loops that can give rise to flares and CMEs have ``low'' beta, β ɛ2. Cool loops, such as solar filaments outside active regions, that have a central pressure lower than that of the surrounding corona would have the strongest stability against radial expansion. The model raises a number of questions about the connection of loops to the photosphere and the force-free nature of the magnetic field there. [1] L. Sugiyama, M. Asgari-Targhi, Phys. Plasmas 24, 022904 (2017).

  19. Topological and trivial magnetic oscillations in nodal loop semimetals

    NASA Astrophysics Data System (ADS)

    Oroszlány, László; Dóra, Balázs; Cserti, József; Cortijo, Alberto

    2018-05-01

    Nodal loop semimetals are close descendants of Weyl semimetals and possess a topologically dressed band structure. We argue by combining the conventional theory of magnetic oscillation with topological arguments that nodal loop semimetals host coexisting topological and trivial magnetic oscillations. These originate from mapping the topological properties of the extremal Fermi surface cross sections onto the physics of two dimensional semi-Dirac systems, stemming from merging two massless Dirac cones. By tuning the chemical potential and the direction of magnetic field, a sharp transition is identified from purely trivial oscillations, arising from the Landau levels of a normal two dimensional (2D) electron gas, to a phase where oscillations of topological and trivial origin coexist, originating from 2D massless Dirac and semi-Dirac points, respectively. These could in principle be directly identified in current experiments.

  20. Loop corrections to primordial fluctuations from inflationary phase transitions

    NASA Astrophysics Data System (ADS)

    Wu, Yi-Peng; Yokoyama, Jun'ichi

    2018-05-01

    We investigate loop corrections to the primordial fluctuations in the single-field inflationary paradigm from spectator fields that experience a smooth transition of their vacuum expectation values. We show that when the phase transition involves a classical evolution effectively driven by a negative mass term from the potential, important corrections to the curvature perturbation can be generated by field perturbations that are frozen outside the horizon by the time of the phase transition, yet the correction to tensor perturbation is naturally suppressed by the spatial derivative couplings between spectator fields and graviton. At one-loop level, the dominant channel for the production of primordial fluctuations comes from a pair-scattering of free spectator fields that decay into the curvature perturbations, and this decay process is only sensitive to field masses comparable to the Hubble scale of inflation.

  1. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control. Part 1; New Technologies and Validation Approach

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem

    2010-01-01

    Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, four experiments Thermal Loop, Dependable Microprocessor, SAILMAST, and UltraFlex - were conducted to advance the maturity of individual technologies from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. This paper presents the new technologies and validation approach of the Thermal Loop experiment. The Thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Details of the thermal loop concept, technical advances, benefits, objectives, level 1 requirements, and performance characteristics are described. Also included in the paper are descriptions of the test articles and mathematical modeling used for the technology validation. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for TRL 4 and TRL 5 validations, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. Capabilities and limitations of the analytical model are also addressed.

  2. Optical Closed-Loop Propulsion Control System Development

    NASA Technical Reports Server (NTRS)

    Poppel, Gary L.

    1998-01-01

    The overall objective of this program was to design and fabricate the components required for optical closed-loop control of a F404-400 turbofan engine, by building on the experience of the NASA Fiber Optic Control System Integration (FOCSI) program. Evaluating the performance of fiber optic technology at the component and system levels will result in helping to validate its use on aircraft engines. This report includes descriptions of three test plans. The EOI Acceptance Test is designed to demonstrate satisfactory functionality of the EOI, primarily fail-safe throughput of the F404 sensor signals in the normal mode, and validation, switching, and output of the five analog sensor signals as generated from validated optical sensor inputs, in the optical mode. The EOI System Test is designed to demonstrate acceptable F404 ECU functionality as interfaced with the EOI, making use of a production ECU test stand. The Optical Control Engine Test Request describes planned hardware installation, optical signal calibrations, data system coordination, test procedures, and data signal comparisons for an engine test demonstration of the optical closed-loop control.

  3. A dynamic flare with anomalously dense flare loops

    NASA Technical Reports Server (NTRS)

    Svestka, Z.; Fontenla, J. M.; Machado, M. E.; Martin, S. F.; Neidig, D. F.

    1986-01-01

    The dynamic flare of November 6, 1980 developed a rich system of growing loops which could be followed in H-alpha for 1.5 hours. Throughout the flare, these loops, near the limb, were seen in emission against the disk. Theoretical computations of b-values for a hydrogen atom reveal that this requires electron densities in the loops to be close to 10 to the 12th per cu cm. From measured widths of higher Balmer lines the density at the tops of the loops was found to be 4 x 10 to the 12th per cu cm if no nonthermal motions were present. It is now general knowledge that flare loops are initially observed in X-rays and become visible in H-alpha only after cooling. For such a high density a loop would cool through radiation from 10 to the 7th K to 10 to the 4th K within a few minutes so that the dense H-alpha loops should have heights very close to the heights of the X-ray loops. This, however, contradicts the observations obtained by the HXIS and FCS instruments on board SMM which show the X-ray loops at much higher altitudes than the loops in H-alpha. Therefore, the density must have been significantly smaller when the loops were formed and the flare loops were apparently both shrinking and becoming denser while cooling.

  4. How Sensory Experiences of Children With and Without Autism Affect Family Occupations

    PubMed Central

    Bagby, Molly Shields; Dickie, Virginia A.; Baranek, Grace T.

    2012-01-01

    We used a grounded theory approach to data analysis to discover what effect, if any, children's sensory experiences have on family occupations. We chose this approach because the existing literature does not provide a theory to account for the effect of children's sensory experiences on family occupations. Parents of six children who were typically developing and six children who had autism were interviewed. We analyzed the data using open, axial, and selective coding techniques. Children's sensory experiences affect family occupations in three ways: (1) what a family chooses to do or not do; (2) how the family prepares; and (3) the extent to which experiences, meaning, and feelings are shared. PMID:22389942

  5. Socioeconomic Status, Daily Affective and Social Experiences, and Inflammation during Adolescence

    PubMed Central

    Chiang, Jessica J.; Bower, Julienne E.; Almeida, David M.; Irwin, Michael R.; Seeman, Teresa E.; Fuligni, Andrew J.

    2015-01-01

    Objective To assess the relation between socioeconomic status (SES) and inflammation during adolescence and determine whether daily affective and social experiences across a 15-day period mediate this relation. Methods Adolescents (n = 316) completed daily diary reports of positive affect, negative affect, and negative social interactions for 15 days and provided whole blood spot samples for the assessment of C-reactive protein (CRP). Parents provided information on SES, including the highest level of education they and their spouses completed and household income. Results Lower parent education was associated with higher levels of adolescent CRP, controlling for age, gender, ethnicity, and body mass index (β = −.12; p = .031). Mean daily positive affect, negative affect, and negative social interactions were examined as potential mediators of this association. In these models, parent education was no longer associated with adolescent CRP (β = −.09; p = .12), and only positive affect was related to CRP (β = −.12; p = .025). Bootstrapping confirmed the mediating role of positive affect (indirect effect = −.015, 95% CI = [−.038, −.002]). Conclusions Adolescents with less educated parents tended to have higher levels of CRP, which may be explained by their lower levels of positive affect. Findings suggest that a lack of positive affect may be a pathway by which SES confers early risk for poor health in adulthood. It is possible that adolescents who display positive affect during daily life in circumstances of relatively adverse socioeconomic circumstances may have better health outcomes related to lower inflammatory factors. PMID:25829237

  6. Automatic blocking of nested loops

    NASA Technical Reports Server (NTRS)

    Schreiber, Robert; Dongarra, Jack J.

    1990-01-01

    Blocked algorithms have much better properties of data locality and therefore can be much more efficient than ordinary algorithms when a memory hierarchy is involved. On the other hand, they are very difficult to write and to tune for particular machines. The reorganization is considered of nested loops through the use of known program transformations in order to create blocked algorithms automatically. The program transformations used are strip mining, loop interchange, and a variant of loop skewing in which invertible linear transformations (with integer coordinates) of the loop indices are allowed. Some problems are solved concerning the optimal application of these transformations. It is shown, in a very general setting, how to choose a nearly optimal set of transformed indices. It is then shown, in one particular but rather frequently occurring situation, how to choose an optimal set of block sizes.

  7. [The usefullness of implantable loop recorders for evaluation of unexplained syncope and palpitations].

    PubMed

    Kristjánsdóttir, Ingibjörg; Reimarsdóttir, Guđrun; Arnar, Davíđ O

    2012-09-01

    Syncope is a common complaint and determining the underlying cause can be difficult despite extensive evaluation. The purpose of this study was to evaluate the usefulness of an implantable loop recorder for patients with unexplained syncope and palpitations. This was a retrospective analysis of 18 patients, five of whom still have the device implanted. All patients had undergone extensive evaluation for their symptoms before getting the loop recorder implanted and this was therefore a highly select group. Of the thirteen patients where use of the device was completed, the mean age was 65±20 years. The loop recorder was in use for a mean time of 20±13 months. Unexplained syncope, eleven of thirteen, was the most common indication. The other two received the loop recorder for unexplained palpitations. Four patients had sick sinus syndrome during monitoring, three had supraventricular tachycardia and one had ventricular tachycardia. Further three had typical symptoms but no arrhythmia was recorded and excluding that as a cause. Two patients had no symptoms the entire time they had the loop recorder. Of the five patients still with the device three had syncope as the indication for monitoring and two have the device as a means of evaluating the results of treatment for arrhythmia. This study on our initial experience with implantable loop recorders shows that these devices can be useful in the investigation of the causes of syncope and palpitations.

  8. Trait Dissociation and the Subjective Affective, Motivational, and Phenomenological Experience of Self-Defining Memories

    PubMed Central

    Sutin, Angelina R.; Stockdale, Gary D.

    2010-01-01

    The present research reports two studies that examine the relation between non-pathological trait dissociation and the subjective affect, motivation, and phenomenology of self-defining memories. In Study 1 (N=293), participants retrieved and rated the emotional and motivational experience of a general and a positive and negative achievement-related memory. Study 2 (N=449) extended these ratings to relationship-related memories and the phenomenological experience of the memory. Dissociation was associated with incongruent affect in valenced memories (e.g., positive affect in a negative memory) and memories that were visually incoherent and saturated with power motivation, hubristic pride, and shame, regardless of valence or domain. The present findings demonstrate that autobiographical memories, which integrate emotional, motivational, and phenomenological components, reflect the emotional and motivational processes inherent to dissociation. PMID:21204840

  9. Investigating Affective Experiences in the Undergraduate Chemistry Laboratory: Students' Perceptions of Control and Responsibility

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Malakpa, Zoebedeh; Bretz, Stacey Lowery

    2016-01-01

    Meaningful learning requires the integration of cognitive and affective learning with the psychomotor, i.e., hands-on learning. The undergraduate chemistry laboratory is an ideal place for meaningful learning to occur. However, accurately characterizing students' affective experiences in the chemistry laboratory can be a very difficult task. While…

  10. Effects of two-loop contributions in the pseudofermion functional renormalization group method for quantum spin systems

    NASA Astrophysics Data System (ADS)

    Rück, Marlon; Reuther, Johannes

    2018-04-01

    We implement an extension of the pseudofermion functional renormalization group method for quantum spin systems that takes into account two-loop diagrammatic contributions. An efficient numerical treatment of the additional terms is achieved within a nested graph construction which recombines different one-loop interaction channels. In order to be fully self-consistent with respect to self-energy corrections, we also include certain three-loop terms of Katanin type. We first apply this formalism to the antiferromagnetic J1-J2 Heisenberg model on the square lattice and benchmark our results against the previous one-loop plus Katanin approach. Even though the renormalization group (RG) equations undergo significant modifications when including the two-loop terms, the magnetic phase diagram, comprising Néel ordered and collinear ordered phases separated by a magnetically disordered regime, remains remarkably unchanged. Only the boundary position between the disordered and the collinear phases is found to be moderately affected by two-loop terms. On the other hand, critical RG scales, which we associate with critical temperatures Tc, are reduced by a factor of ˜2 indicating that the two-loop diagrams play a significant role in enforcing the Mermin-Wagner theorem. Improved estimates for critical temperatures are also obtained for the Heisenberg ferromagnet on the three-dimensional simple cubic lattice where errors in Tc are reduced by ˜34 % . These findings have important implications for the quantum phase diagrams calculated within the previous one-loop plus Katanin approach which turn out to be already well converged.

  11. Ballet of Loops

    NASA Image and Video Library

    2018-06-11

    Giant, bright coronal loops trace out the magnetic field lines above an active region from June 4-6, 2018. The wavelength of extreme ultraviolet light shown here is emitted by ionized iron travelling along the field lines, super-heated to approximately 1 million degrees K. Coronal loops were not seen in this level of detail until the Solar Dynamics Observatory was launched in 2010 and came online, giving solar scientists new data with which to study the Sun and its processes. https://photojournal.jpl.nasa.gov/catalog/PIA22508

  12. Students' Understanding of Loops and Nested Loops in Computer Programming: An APOS Theory Perspective

    ERIC Educational Resources Information Center

    Cetin, Ibrahim

    2015-01-01

    The purpose of this study is to explore students' understanding of loops and nested loops concepts. Sixty-three mechanical engineering students attending an introductory programming course participated in the study. APOS (Action, Process, Object, Schema) is a constructivist theory developed originally for mathematics education. This study is the…

  13. Method of Implementing Digital Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Stephens, Scott A. (Inventor); Thomas, J. Brooks (Inventor)

    1997-01-01

    In a new formulation for digital phase-locked loops, loop-filter constants are determined from loop roots that can each be selectively placed in the s-plane on the basis of a new set of parameters, each with simple and direct physical meaning in terms of loop noise bandwidth, root-specific decay rate, and root-specific damping. Loops of first to fourth order are treated in the continuous-update approximation (B(sub L)T approaches 0) and in a discrete-update formulation with arbitrary B(sub L)T. Deficiencies of the continuous-update approximation in large-B(sub L)T applications are avoided in the new discrete-update formulation.

  14. Premeasured Chordal Loops for Mitral Valve Repair.

    PubMed

    Gillinov, Marc; Quinn, Reed; Kerendi, Faraz; Gaudiani, Vince; Shemin, Richard; Barnhart, Glenn; Raines, Edward; Gerdisch, Marc W; Banbury, Michael

    2016-09-01

    Premeasured expanded polytetrafluoroethylene chordal loops with integrated sutures for attachment to the papillary muscle and leaflet edges facilitate correction of mitral valve prolapse. Configured as a group of 3 loops (length range 12 to 24 mm), the loops are attached to a pledget that is passed through the papillary muscle and tied. Each of the loops has 2 sutures with attached needles; these needles are passed through the free edge of the leaflet and then the sutures are tied to each other, securing the chordal loop to the leaflet. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Loop Evolution Observed with AIA and Hi-C

    NASA Technical Reports Server (NTRS)

    Mulu-Moore, Fana; Winebarger, Amy R.; Cirtain, Jonathan W.; Kobayashi, Ken; Korreck, Kelly E.; Golub, Leon; Kuzin, Sergei; Walsh, Robert William; DeForest, Craig E.; De Pontieu, Bart; hide

    2012-01-01

    In the past decade, the evolution of EUV loops has been used to infer the loop substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this presentation we discuss the first results of loop analysis comparing AIA and Hi-C data. In the past decade, the evolution of EUV loops has been used to infer the loop substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this presentation we discuss the first results of loop analysis comparing AIA and Hi-C data.

  16. First cytoplasmic loop of glucagon-like peptide-1 receptor can function at the third cytoplasmic loop position of rhodopsin.

    PubMed

    Yamashita, Takahiro; Tose, Koji; Shichida, Yoshinori

    2008-01-01

    G protein-coupled receptors (GPCRs) are classified into several families based on their amino acid sequences. In family 1, GPCRs such as rhodopsin and adrenergic receptor, the structure-function relationship has been extensively investigated to demonstrate that exposure of the third cytoplasmic loop is essential for selective G protein activation. In contrast, much less is known about other families. Here we prepared chimeric mutants between Gt-coupled rhodopsin and Gi/Go- and Gs-coupled glucagon-like peptide-1 (GLP-1) receptor of family 2 and tried to identify the loop region that functions at the third cytoplasmic loop position of rhodopsin. We succeeded in expressing a mutant having the first cytoplasmic loop of GLP-1 receptor and found that this mutant activated Gi and Go efficiently but did not activate Gt. Moreover, the rhodopsin mutant having the first loop of Gs-coupled secretin receptor of family 2 decreased the Gi and Go activation efficiencies. Therefore, the first loop of GLP-1 receptor would share a similar role to the third loop of rhodopsin in G protein activation. This result strongly suggested that different families of GPCRs have maintained molecular architectures of their ancestral types to generate a common mechanism, namely exposure of the cytoplasmic loop, to activate peripheral G protein.

  17. Loops of Jupiter

    NASA Astrophysics Data System (ADS)

    Opolski, Antoni

    2014-12-01

    Professor Antoni Opolski was actively interested in astronomy after his retirement in 1983. He especially liked to study the works of the famous astronomer Copernicus getting inspiration for his own work. Opolski started his work on planetary loops in 2011 continuing it to the end of 2012 . During this period calculations, drawings, tables, and basic descriptions of all the planets of the Solar System were created with the use of a piece of paper and a pencil only. In 2011 Antoni Opolski asked us to help him in editing the manuscript and preparing it for publication. We have been honored having the opportunity to work on articles on planetary loops with Antoni Opolski in his house for several months. In the middle of 2012 the detailed material on Jupiter was ready. However, professor Opolski improved the article by smoothing the text and preparing new, better drawings. Finally the article ''Loops of Jupiter'', written by the 99- year old astronomer, was published in the year of his 100th birthday.

  18. Digital phase-lock loop

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess B. (Inventor)

    1991-01-01

    An improved digital phase lock loop incorporates several distinctive features that attain better performance at high loop gain and better phase accuracy. These features include: phase feedback to a number-controlled oscillator in addition to phase rate; analytical tracking of phase (both integer and fractional cycles); an amplitude-insensitive phase extractor; a more accurate method for extracting measured phase; a method for changing loop gain during a track without loss of lock; and a method for avoiding loss of sampled data during computation delay, while maintaining excellent tracking performance. The advantages of using phase and phase-rate feedback are demonstrated by comparing performance with that of rate-only feedback. Extraction of phase by the method of modeling provides accurate phase measurements even when the number-controlled oscillator phase is discontinuously updated.

  19. The effect on quadruplex stability of North-Nucleoside derivatives in the loops of the thrombin-binding aptamer

    PubMed Central

    Mazzini, Stefania; Ferreira, Ruben; Gargallo, Raimundo; Marquez, Victor E.

    2012-01-01

    Modified thrombin-binding aptamers (TBAs) carrying uridine (U), 2′-deoxy-2′-fluorouridine (FU) and North-methanocarbathymidine (NT) residues in the loop regions were synthesized and analyzed by UV thermal denaturation experiments and CD spectroscopy. The replacement of thymidines in the TGT loop by U and FU results in an increased stability of the antiparallel quadruplex structure described for the TBA while the presence of NT residues in the same positions destabilizes the antiparallel structure. The substitution of the thymidines in the TT loops for U, FU and NT induce a destabilization of the antiparallel quadruplex, indicating the crucial role of these positions. NMR studies on TBAs modified with uridines at the TGT loop also confirm the presence of the antiparallel quadruplex structure. Nevertheless, replacement of two Ts in the TT loops by uridine gives a more complex scenario in which the antiparallel quadruplex structure is present along with other partially unfolded species or aggregates. PMID:22727781

  20. Optimum design of hybrid phase locked loops

    NASA Technical Reports Server (NTRS)

    Lee, P.; Yan, T.

    1981-01-01

    The design procedure of phase locked loops is described in which the analog loop filter is replaced by a digital computer. Specific design curves are given for the step and ramp input changes in phase. It is shown that the designed digital filter depends explicitly on the product of the sampling time and the noise bandwidth of the phase locked loop. This technique of optimization can be applied to the design of digital analog loops for other applications.

  1. The role of loop ZA and Pro371 in the function of yeast Gcn5p bromodomain revealed through molecular dynamics and experiment.

    PubMed

    Pizzitutti, Francesco; Giansanti, Andrea; Ballario, Paola; Ornaghi, Prisca; Torreri, Paola; Ciccotti, Giovanni; Filetici, Patrizia

    2006-01-01

    Biological experiments were combined with molecular dynamics simulations to understand the importance of amino acidic residues present in the bromodomain of the yeast histone acetyltransferase Gcn5p. It was found that residue Pro371 plays an important role in the molecular recognition of the acetylated histone H4 tail by Gcn5p bromodomain. Crystallographic analysis of the complex showed that this residue does not directly interact with the histone substrate. It has been demonstrated that a double mutation Pro371Thr and Met372Ala in the Gcn5p bromodomain impairs chromatin remodeling activity. It is demonstrated here that, in this double mutant and in the fully deleted bromodomain strain, there is lower growth under amino acid deprivation conditions. By in vitro surface plasmon resonance (Biacore) experiments it is shown that the binding affinity of the double mutation to acetyl lysine 16 histone H4 peptide decreases. Molecular dynamics simulations were used to explain this loss in acetyl lysine-Gcn5p bromodomain affinity, in the double mutant. By comparing nanosecond molecular dynamics trajectories of the native as well as the single and doubly mutated bromodomain, it is concluded that the presence of Pro371 is important to the functionality of the Gcn5p bromodomain. In the simulation a point mutation involving this highly conserved residue induced an increase in the flexibility of the ZA loop, which in turn modulated the exposure of the binding pocket to the acetyl lysine. The combined double mutations (Pro371Thr-Met372Ala) not only markedly perturb the motion of the ZA loop but also destabilize the entire structure of the bromodomain. Copyright 2005 John Wiley & Sons, Ltd.

  2. Closed-Loop, Multichannel Experimentation Using the Open-Source NeuroRighter Electrophysiology Platform

    PubMed Central

    Newman, Jonathan P.; Zeller-Townson, Riley; Fong, Ming-Fai; Arcot Desai, Sharanya; Gross, Robert E.; Potter, Steve M.

    2013-01-01

    Single neuron feedback control techniques, such as voltage clamp and dynamic clamp, have enabled numerous advances in our understanding of ion channels, electrochemical signaling, and neural dynamics. Although commercially available multichannel recording and stimulation systems are commonly used for studying neural processing at the network level, they provide little native support for real-time feedback. We developed the open-source NeuroRighter multichannel electrophysiology hardware and software platform for closed-loop multichannel control with a focus on accessibility and low cost. NeuroRighter allows 64 channels of stimulation and recording for around US $10,000, along with the ability to integrate with other software and hardware. Here, we present substantial enhancements to the NeuroRighter platform, including a redesigned desktop application, a new stimulation subsystem allowing arbitrary stimulation patterns, low-latency data servers for accessing data streams, and a new application programming interface (API) for creating closed-loop protocols that can be inserted into NeuroRighter as plugin programs. This greatly simplifies the design of sophisticated real-time experiments without sacrificing the power and speed of a compiled programming language. Here we present a detailed description of NeuroRighter as a stand-alone application, its plugin API, and an extensive set of case studies that highlight the system’s abilities for conducting closed-loop, multichannel interfacing experiments. PMID:23346047

  3. Loop-quantum-gravity vertex amplitude.

    PubMed

    Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo

    2007-10-19

    Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.

  4. THE CORONAL LOOP INVENTORY PROJECT: EXPANDED ANALYSIS AND RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmelz, J. T.; Christian, G. M.; Chastain, R. A., E-mail: jschmelz@usra.edu

    We have expanded upon earlier work that investigates the relative importance of coronal loops with isothermal versus multithermal cross-field temperature distributions. These results are important for determining if loops have substructure in the form of unresolved magnetic strands. We have increased the number of loops targeted for temperature analysis from 19 to 207 with the addition of 188 new loops from multiple regions. We selected all loop segments visible in the 171 Å images of the Atmospheric Imaging Assembly (AIA) that had a clean background. Eighty-six of the new loops were rejected because they could not be reliably separated frommore » the background in other AIA filters. Sixty-one loops required multithermal models to reproduce the observations. Twenty-eight loops were effectively isothermal, that is, the plasma emission to which AIA is sensitive could not be distinguished from isothermal emission, within uncertainties. Ten loops were isothermal. Also, part of our inventory was one small flaring loop, one very cool loop whose temperature distribution could not be constrained by the AIA data, and one loop with inconclusive results. Our survey can confirm an unexpected result from the pilot study: we found no isothermal loop segments where we could properly use the 171-to-193 ratio method, which would be similar to the analysis done for many loops observed with TRACE and EIT. We recommend caution to observers who assume the loop plasma is isothermal, and hope that these results will influence the direction of coronal heating models and the effort modelers spend on various heating scenarios.« less

  5. Study of the post-flare loops on 29 July 1973. I - Dynamics of the X-ray loops

    NASA Technical Reports Server (NTRS)

    Nolte, J. T.; Gerassimenko, M.; Krieger, A. S.; Petrasso, R. D.; Svestka, Z.

    1979-01-01

    We derive an empirical model of the X-ray emitting post-flare loops observed during the decay phase of the 29 July 1973 flare. We find that the loops are elliptical, with the brightest emitting region at the tops. We determine the height, velocity of growth, and ratio of height to width of the loops at times from 3 to 12 hr after the flare onset.

  6. Design validation and performance of closed loop gas recirculation system

    NASA Astrophysics Data System (ADS)

    Kalmani, S. D.; Joshi, A. V.; Majumder, G.; Mondal, N. K.; Shinde, R. R.

    2016-11-01

    A pilot experimental set up of the India Based Neutrino Observatory's ICAL detector has been operational for the last 4 years at TIFR, Mumbai. Twelve glass RPC detectors of size 2 × 2 m2, with a gas gap of 2 mm are under test in a closed loop gas recirculation system. These RPCs are continuously purged individually, with a gas mixture of R134a (C2H2F4), isobutane (iC4H10) and sulphur hexafluoride (SF6) at a steady rate of 360 ml/h to maintain about one volume change a day. To economize gas mixture consumption and to reduce the effluents from being released into the atmosphere, a closed loop system has been designed, fabricated and installed at TIFR. The pressure and flow rate in the loop is controlled by mass flow controllers and pressure transmitters. The performance and integrity of RPCs in the pilot experimental set up is being monitored to assess the effect of periodic fluctuation and transients in atmospheric pressure and temperature, room pressure variation, flow pulsations, uniformity of gas distribution and power failures. The capability of closed loop gas recirculation system to respond to these changes is also studied. The conclusions from the above experiment are presented. The validations of the first design considerations and subsequent modifications have provided improved guidelines for the future design of the engineering module gas system.

  7. Closed loop statistical performance analysis of N-K knock controllers

    NASA Astrophysics Data System (ADS)

    Peyton Jones, James C.; Shayestehmanesh, Saeed; Frey, Jesse

    2017-09-01

    The closed loop performance of engine knock controllers cannot be rigorously assessed from single experiments or simulations because knock behaves as a random process and therefore the response belongs to a random distribution also. In this work a new method is proposed for computing the distributions and expected values of the closed loop response, both in steady state and in response to disturbances. The method takes as its input the control law, and the knock propensity characteristic of the engine which is mapped from open loop steady state tests. The method is applicable to the 'n-k' class of knock controllers in which the control action is a function only of the number of cycles n since the last control move, and the number k of knock events that have occurred in this time. A Cumulative Summation (CumSum) based controller falls within this category, and the method is used to investigate the performance of the controller in a deeper and more rigorous way than has previously been possible. The results are validated using onerous Monte Carlo simulations, which confirm both the validity of the method and its high computational efficiency.

  8. Chromosomal Organization by an Interplay of Loop Extrusion and Compartment Interaction

    NASA Astrophysics Data System (ADS)

    Nuebler, Johannes; Fudenberg, Geoffrey; Imakaev, Maxim; Lu, Carolyn; Goloborodko, Anton; Abdennur, Nezar; Mirny, Leonid

    The chromatin fiber in eukaryotic nuclei is far from being simply a confined but otherwise randomly arranged polymer. Rather, it shows a high degree of spatial organization on all length scales, from individual nucleosomes up to well-segregated chromosome territories. On intermediate scales, chromosome conformation capture techniques have revealed two ubiquitous modes of organization: an alternating structure of A/B compartments, where each type preferentially associates with other base pairs of its type, and, typically on a smaller scale, the formation of topologically associating domains (TADs) with increased association within each domain but not across boundaries. The mechanisms behind this organization are only beginning to emerge. We review how the model of active loop extrusion can explain in a unified way such diverse phenomena as TAD formation and mitotic compaction and segregation, and we address in particular to what extent the interplay of active loop extrusion and compartment structure is compatible with recent experiments that interfere with the loading of the proposed loop extrusion factor cohesin. 4D Nucleome.

  9. Filterless frequency-octupling mm-wave generation by cascading Sagnac loop and DPMZM

    NASA Astrophysics Data System (ADS)

    Zhang, Wu; Wen, Aijun; Gao, Yongsheng; Shang, Shuo; Zheng, Hanxiao; He, Hongye

    2017-12-01

    In this paper, a filterless photonic frequency-octupling scheme is presented. It is implemented by cascading a Sagnac loop with an intensity modulator (IM) in it and a dual-parallel Mach-Zehnder modulator (DPMZM) in series. The Sagnac loop is used to get the ±2nd-order sidebands of LO signal. The following DPMZM is utilized to obtain the ±4th-order sidebands. By photo-detecting the ±4th-order sidebands, mm-wave signal with the eightfold frequency of LO signal can be obtained. The scheme is verified by experiments, and a 32-GHz mm-wave signal is produced with the assistance of a 4-GHz LO signal. A 20-dB optical sideband suppression ratio (OSSR) and a 17-dB electrical spurious suppression ratio (ESSR) are realized, and no extra deterioration of phase noise is observed. Besides, the verification of the frequency tunability is implemented in the experiment.

  10. Multiple roles of mobile active center loops in the E1 component of the Escherichia coli pyruvate dehydrogenase complex - Linkage of protein dynamics to catalysis

    PubMed Central

    Jordan, Frank; Arjunan, Palaniappa; Kale, Sachin; Nemeria, Natalia S.; Furey, William

    2009-01-01

    The region encompassing residues 401–413 on the E1 component of the pyruvate dehydrogenase multienzyme complex from Escherichia coli comprises a loop (the inner loop) which was not seen in the X-ray structure in the presence of thiamin diphosphate, the required cofactor for the enzyme. This loop is seen in the presence of a stable analogue of the pre-decarboxylation intermediate, the covalent adduct between the substrate analogue methyl acetylphosphonate and thiamin diphosphate, C2α-phosphonolactylthiamin diphosphate. It has been shown that the residue H407 and several other residues on this loop are required to reduce the mobility of the loop so electron density corresponding to it can be seen once the pre-decarboxylation intermediate is formed. Concomitantly, the loop encompassing residues 541–557 (the outer loop) appears to work in tandem with the inner loop and there is a hydrogen bond between the two loops ensuring their correlated motion. The inner loop was shown to: a) sequester the active center from carboligase side reactions; b) assist the interaction between the E1 and the E2 components, thereby affecting the overall reaction rate of the entire multienzyme complex; c) control substrate access to the active center. Using viscosity effects on kinetics it was shown that formation of the pre-decarboxylation intermediate is specifically affected by loop movement. A cysteine-less variant was created for the E1 component, onto which cysteines were substituted at selected loop positions. Introducing an electron spin resonance spin label and an 19F NMR label onto these engineered cysteines, the loop mobility was examined: a) both methods suggested that in the absence of ligand, the loop exists in two conformations; b) line-shape analysis of the NMR signal at different temperatures, enabled estimation of the rate constant for loop movement, and this rate constant was found to be of the same order of magnitude as the turnover number for the enzyme under the

  11. A simple second-order digital phase-locked loop.

    NASA Technical Reports Server (NTRS)

    Tegnelia, C. R.

    1972-01-01

    A simple second-order digital phase-locked loop has been designed for the Viking Orbiter 1975 command system. Excluding analog-to-digital conversion, implementation of the loop requires only an adder/subtractor, two registers, and a correctable counter with control logic. The loop considers only the polarity of phase error and corrects system clocks according to a filtered sequence of this polarity. The loop is insensitive to input gain variation, and therefore offers the advantage of stable performance over long life. Predictable performance is guaranteed by extreme reliability of acquisition, yet in the steady state the loop produces only a slight degradation with respect to analog loop performance.

  12. Study of the post-flare loops on 29 July 1973. II - Physical parameters in the X-ray loops

    NASA Technical Reports Server (NTRS)

    Petrasso, R. D.; Nolte, J. T.; Gerassimenko, M.; Krieger, A. S.; Krogstad, R.; Seguin, F. H.; Svestka, Z.

    1979-01-01

    We use the filter ratio method of analysis to determine spatially resolved values of plasma parameters in the X-ray emitting post-flare loop system which developed on 29 and 30 July 1973. We find that the loops were hotter and had higher plasma pressure at their tops than near their footpoints. The loop tops were at nearly the same temperature at different places 3 hr after the flare maximum and were also at nearly this same temperature 3 and 8 hr later. Variations in brightness transverse to the loops were due to variations in emission measure. We show by consideration of radiative losses alone that energy must have been added to the hottest part of the flare, at the tops of the loops, late in the decay phase of the flare.

  13. Post-test analysis of dryout test 7B' of the W-1 Sodium Loop Safety Facility Experiment with the SABRE-2P code. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, S.D.; Dearing, J.F.

    An understanding of conditions that may cause sodium boiling and boiling propagation that may lead to dryout and fuel failure is crucial in liquid-metal fast-breeder reactor safety. In this study, the SABRE-2P subchannel analysis code has been used to analyze the ultimate transient of the in-core W-1 Sodium Loop Safety Facility experiment. This code has a 3-D simple nondynamic boiling model which is able to predict the flow instability which caused dryout. In other analyses dryout has been predicted for out-of-core test bundles and so this study provides additional confirmation of the model.

  14. Binary phase locked loops for Omega receivers

    NASA Technical Reports Server (NTRS)

    Chamberlin, K.

    1974-01-01

    An all-digital phase lock loop (PLL) is considered because of a number of problems inherent in an employment of analog PLL. The digital PLL design presented solves these problems. A single loop measures all eight Omega time slots. Memory-aiding leads to the name of this design, the memory-aided phase lock loop (MAPLL). Basic operating principles are discussed and the superiority of MAPLL over the conventional digital phase lock loop with regard to the operational efficiency for Omega applications is demonstrated.

  15. Wilson-loop instantons

    NASA Technical Reports Server (NTRS)

    Lee, Kimyeong; Holman, Richard; Kolb, Edward W.

    1987-01-01

    Wilson-loop symmetry breaking is considered on a space-time of the form M4 x K, where M4 is a four-dimensional space-time and K is an internal space with nontrivial and finite fundamental group. It is shown in a simple model that the different vacua obtained by breaking a non-Abelian gauge group by Wilson loops are separated in the space of gauge potentials by a finite energy barrier. An interpolating gauge configuration is then constructed between these vacua and shown to have minimum energy. Finally some implications of this construction are discussed.

  16. Loop quantum cosmology and singularities.

    PubMed

    Struyve, Ward

    2017-08-15

    Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.

  17. Optical injection phase-lock loops

    NASA Astrophysics Data System (ADS)

    Bordonalli, Aldario Chrestani

    Locking techniques have been widely applied for frequency synchronisation of semiconductor lasers used in coherent communication and microwave signal generation systems. Two main locking techniques, the optical phase-lock loop (OPLL) and optical injection locking (OIL) are analysed in this thesis. The principal limitations on OPLL performance result from the loop propagation delay, which makes difficult the implementation of high gain and wide bandwidth loops, leading to poor phase noise suppression performance and requiring the linewidths of the semiconductor laser sources to be less than a few megahertz for practical values of loop delay. The OIL phase noise suppression is controlled by the injected power. The principal limitations of the OIL implementation are the finite phase error under locked conditions and the narrow stable locking range the system provides at injected power levels required to reduce the phase noise output of semiconductor lasers significantly. This thesis demonstrates theoretically and experimentally that it is possible to overcome the limitations of OPLL and OIL systems by combining them, to form an optical injection phase-lock loop (OIPLL). The modelling of an OIPLL system is presented and compared with the equivalent OPLL and OIL results. Optical and electrical design of an homodyne OIPLL is detailed. Experimental results are given which verify the theoretical prediction that the OIPLL would keep the phase noise suppression as high as that of the OIL system over a much wider stable locking range, even with wide linewidth lasers and long loop delays. The experimental results for lasers with summed linewidth of 36 MHz and a loop delay of 15 ns showed measured phase error variances as low as 0.006 rad2 (500 MHz bandwidth) for locking bandwidths greater than 26 GHz, compared with the equivalent OPLL phase error variance of around 1 rad2 (500 MHz bandwidth) and the equivalent OIL locking bandwidth of less than 1.2 GHz.

  18. Space Station evolution study oxygen loop closure

    NASA Technical Reports Server (NTRS)

    Wood, M. G.; Delong, D.

    1993-01-01

    In the current Space Station Freedom (SSF) Permanently Manned Configuration (PMC), physical scars for closing the oxygen loop by the addition of oxygen generation and carbon dioxide reduction hardware are not included. During station restructuring, the capability for oxygen loop closure was deferred to the B-modules. As such, the ability to close the oxygen loop in the U.S. Laboratory module (LAB A) and the Habitation A module (HAB A) is contingent on the presence of the B modules. To base oxygen loop closure of SSF on the funding of the B-modules may not be desirable. Therefore, this study was requested to evaluate the necessary hooks and scars in the A-modules to facilitate closure of the oxygen loop at or subsequent to PMC. The study defines the scars for oxygen loop closure with impacts to cost, weight and volume and assesses the effects of byproduct venting. In addition, the recommended scenarios for closure with regard to topology and packaging are presented.

  19. SimSup's Loop: A Control Theory Approach to Spacecraft Operator Training

    NASA Technical Reports Server (NTRS)

    Owens, Brandon Dewain; Crocker, Alan R.

    2015-01-01

    Immersive simulation is a staple of training for many complex system operators, including astronauts and ground operators of spacecraft. However, while much has been written about simulators, simulation facilities, and operator certification programs, the topic of how one develops simulation scenarios to train a spacecraft operator is relatively understated in the literature. In this paper, an approach is presented for using control theory as the basis for developing the immersive simulation scenarios for a spacecraft operator training program. The operator is effectively modeled as a high level controller of lower level hardware and software control loops that affect a select set of system state variables. Simulation scenarios are derived from a STAMP-based hazard analysis of the operator's high and low level control loops. The immersive simulation aspect of the overall training program is characterized by selecting a set of scenarios that expose the operator to the various inadequate control actions that stem from control flaws and inadequate control executions in the different sections of the typical control loop. Results from the application of this approach to the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission are provided through an analysis of the simulation scenarios used for operator training and the actual anomalies that occurred during the mission. The simulation scenarios and inflight anomalies are mapped to specific control flaws and inadequate control executions in the different sections of the typical control loop to illustrate the characteristics of anomalies arising from the different sections of the typical control loop (and why it is important for operators to have exposure to these characteristics). Additionally, similarities between the simulation scenarios and inflight anomalies are highlighted to make the case that the simulation scenarios prepared the operators for the mission.

  20. Closed-loop for type 1 diabetes - an introduction and appraisal for the generalist.

    PubMed

    Bally, Lia; Thabit, Hood; Hovorka, Roman

    2017-01-23

    Rapid progress over the past decade has been made with the development of the 'Artificial Pancreas', also known as the closed-loop system, which emulates the feedback glucose-responsive functionality of the pancreatic beta cell. The recent FDA approval of the first hybrid closed-loop system makes the Artificial Pancreas a realistic therapeutic option for people with type 1 diabetes. In anticipation of its advent into clinical care, we provide a primer and appraisal of this novel therapeutic approach in type 1 diabetes for healthcare professionals and non-specialists in the field. Randomised clinical studies in outpatient and home settings have shown improved glycaemic outcomes, reduced risk of hypoglycaemia and positive user attitudes. User input and interaction with existing closed-loop systems, however, are still required. Therefore, management of user expectations, as well as training and support by healthcare providers are key to ensure optimal uptake, satisfaction and acceptance of the technology. An overview of closed-loop technology and its clinical implications are discussed, complemented by our extensive hands-on experience with closed-loop system use during free daily living. The introduction of the artificial pancreas into clinical practice represents a milestone towards the goal of improving the care of people with type 1 diabetes. There remains a need to understand the impact of user interaction with the technology, and its implication on current diabetes management and care.

  1. Two-phase Heating in Flaring Loops

    NASA Astrophysics Data System (ADS)

    Zhu, Chunming; Qiu, Jiong; Longcope, Dana W.

    2018-03-01

    We analyze and model a C5.7 two-ribbon solar flare observed by the Solar Dynamics Observatory, Hinode, and GOES on 2011 December 26. The flare is made of many loops formed and heated successively over one and half hours, and their footpoints are brightened in the UV 1600 Å before enhanced soft X-ray and EUV missions are observed in flare loops. Assuming that anchored at each brightened UV pixel is a half flaring loop, we identify more than 6700 half flaring loops, and infer the heating rate of each loop from the UV light curve at the footpoint. In each half loop, the heating rate consists of two phases: intense impulsive heating followed by a low-rate heating that is persistent for more than 20 minutes. Using these heating rates, we simulate the evolution of their coronal temperatures and densities with the model of the “enthalpy-based thermal evolution of loops.” In the model, suppression of thermal conduction is also considered. This model successfully reproduces total soft X-ray and EUV light curves observed in 15 passbands by four instruments GOES, AIA, XRT, and EVE. In this flare, a total energy of 4.9 × 1030 erg is required to heat the corona, around 40% of this energy is in the slow-heating phase. About two-fifths of the total energy used to heat the corona is radiated by the coronal plasmas, and the other three fifth transported to the lower atmosphere by thermal conduction.

  2. Control-structure interaction in precision pointing servo loops

    NASA Technical Reports Server (NTRS)

    Spanos, John T.

    1989-01-01

    The control-structure interaction problem is addressed via stability analysis of a generic linear servo loop model. With the plant described by the rigid body mode and a single elastic mode, structural flexibility is categorized into one of three types: (1) appendage, (2) in-the-loop minimum phase, and (3) in-the-loop nonminimum phase. Closing the loop with proportional-derivative (PD) control action and introducing sensor roll-off dynamics in the feedback path, stability conditions are obtained. Trade studies are conducted with modal frequency, modal participation, modal damping, loop bandwidth, and sensor bandwidth treated as free parameters. Results indicate that appendage modes are most likely to produce instability if they are near the sensor rolloff, whereas in-the-loop modes are most dangerous near the loop bandwidth. The main goal of this paper is to provide a fundamental understanding of the control-structure interaction problem so that it may benefit the design of complex spacecraft and pointing system servo loops. In this framework, the JPL Pathfinder gimbal pointer is considered as an example.

  3. Comparative assessment of the efficacy of closed helical loop and T-loop for space closure in lingual orthodontics-a finite element study.

    PubMed

    Chacko, Ajay; Tikku, Tripti; Khanna, Rohit; Maurya, Rana Pratap; Srivastava, Kamna

    2018-05-28

    Retraction in lingual orthodontics has biomechanical differences when compared to labial orthodontics, which is not yet established. Thus, we have intended to compare the biomechanical characteristics of closed helical loop and T-loop on 1 mm activation with 30° of compensatory curvatures during retraction in lingual orthodontics. STb lingual brackets were indirectly bonded to maxillary typhodont model that was scanned to obtain FEM model. Closed helical loop (2 × 7 mm) and T-loop (6 × 2 × 7 mm) of 0.016″ × 0.016″ TMA wire were modeled without preactivation bends. Preactivation bends at 30° were given in the software. Boundary conditions were set. The force (F) and moment (M) of both the loops were determined on 1 mm activation, using ANSYS software. M/F ratio was also calculated for both the loops. T-loop exerted less force, thus increased M/F ratio as compared to closed helical loop on 1 mm activation. When torque has to be preserved in the anterior segment during retraction in lingual orthodontics, T-loop can be preferred over closed helical loop.

  4. The flexibility of a distant loop modulates active site motion and product release in ribonuclease A.

    PubMed

    Doucet, Nicolas; Watt, Eric D; Loria, J Patrick

    2009-08-04

    The role of the flexible loop 1 in protein conformational motion and in the dissociation of enzymatic product from ribonuclease A (RNase A) was investigated by creation of a chimeric enzyme in which a 6-residue loop 1 from the RNase A homologue, eosinophil cationic protein (ECP), replaced the 12-residue loop 1 in RNase A. The chimera (RNase A(ECP)) experiences only local perturbations in NMR backbone chemical shifts compared to WT RNase A. Many of the flexible residues that were previously identified in WT as involved in an important conformational change now experience no NMR-detected millisecond motions in the chimera. Likewise, binding of the product analogue, 3'-CMP, to RNase A(ECP) results in only minor chemical shift changes in the enzyme similar to what is observed for the H48A mutant of RNase A and in contrast to WT enzyme. For both RNase A(ECP) and H48A there is a 10-fold decrease in the product release rate constant, k(off), compared to WT, in agreement with previous studies indicating the importance of flexibility in RNase A in the overall rate-limiting product release step. Together, these NMR and biochemical experiments provide additional insight into the mechanism of millisecond motions in the RNase A catalytic cycle.

  5. Acquisition and Tracking Behavior of Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Viterbi, A. J.

    1958-01-01

    Phase-locked or APC loops have found increasing applications in recent years as tracking filters, synchronizing devices, and narrowband FM discriminators. Considerable work has been performed to determine the noise-squelching properties of the loop when it is operating in or near phase lock and is functioning as a linear coherent detector. However, insufficient consideration has been devoted to the non-linear behavior of the loop when it is out of lock and in the process of pulling in. Experimental evidence has indicated that there is a strong tendency for phase-locked loops to achieve lock under most circumstances. However, the analysis which has appeared in the literature iis limited to the acquisition of a constant frequency reference signal with only one phase-locked loop filter configuration. This work represents an investigation of frequency acquisition properties of phase-locked loops for a variety of reference-signal behavior and loop configurations

  6. A totally diverting loop colostomy.

    PubMed Central

    Merrett, N. D.; Gartell, P. C.

    1993-01-01

    A technique is described where the distal limb of a loop colostomy is tied with nylon or polydioxanone. This ensures total faecal diversion and dispenses with the supporting rod, enabling early application of stoma appliances. The technique does not interfere with the traditional transverse closure of a loop colostomy. PMID:8379632

  7. Effects of mediated social touch on affective experiences and trust.

    PubMed

    Erk, Stefanie M; Toet, Alexander; Van Erp, Jan B F

    2015-01-01

    This study investigated whether communication via mediated hand pressure during a remotely shared experience (watching an amusing video) can (1) enhance recovery from sadness, (2) enhance the affective quality of the experience, and (3) increase trust towards the communication partner. Thereto participants first watched a sad movie clip to elicit sadness, followed by a funny one to stimulate recovery from sadness. While watching the funny clip they signaled a hypothetical fellow participant every time they felt amused. In the experimental condition the participants responded by pressing a hand-held two-way mediated touch device (a Frebble), which also provided haptic feedback via simulated hand squeezes. In the control condition they responded by pressing a button and they received abstract visual feedback. Objective (heart rate, galvanic skin conductance, number and duration of joystick or Frebble presses) and subjective (questionnaires) data were collected to assess the emotional reactions of the participants. The subjective measurements confirmed that the sad movie successfully induced sadness while the funny movie indeed evoked more positive feelings. Although their ranking agreed with the subjective measurements, the physiological measurements confirmed this conclusion only for the funny movie. The results show that recovery from movie induced sadness, the affective experience of the amusing movie, and trust towards the communication partner did not differ between both experimental conditions. Hence, feedback via mediated hand touching did not enhance either of these factors compared to visual feedback. Further analysis of the data showed that participants scoring low on Extraversion (i.e., persons that are more introvert) or low on Touch Receptivity (i.e., persons who do not like to be touched by others) felt better understood by their communication partner when receiving mediated touch feedback instead of visual feedback, while the opposite was found for

  8. Effects of mediated social touch on affective experiences and trust

    PubMed Central

    Erk, Stefanie M.; Van Erp, Jan B.F.

    2015-01-01

    This study investigated whether communication via mediated hand pressure during a remotely shared experience (watching an amusing video) can (1) enhance recovery from sadness, (2) enhance the affective quality of the experience, and (3) increase trust towards the communication partner. Thereto participants first watched a sad movie clip to elicit sadness, followed by a funny one to stimulate recovery from sadness. While watching the funny clip they signaled a hypothetical fellow participant every time they felt amused. In the experimental condition the participants responded by pressing a hand-held two-way mediated touch device (a Frebble), which also provided haptic feedback via simulated hand squeezes. In the control condition they responded by pressing a button and they received abstract visual feedback. Objective (heart rate, galvanic skin conductance, number and duration of joystick or Frebble presses) and subjective (questionnaires) data were collected to assess the emotional reactions of the participants. The subjective measurements confirmed that the sad movie successfully induced sadness while the funny movie indeed evoked more positive feelings. Although their ranking agreed with the subjective measurements, the physiological measurements confirmed this conclusion only for the funny movie. The results show that recovery from movie induced sadness, the affective experience of the amusing movie, and trust towards the communication partner did not differ between both experimental conditions. Hence, feedback via mediated hand touching did not enhance either of these factors compared to visual feedback. Further analysis of the data showed that participants scoring low on Extraversion (i.e., persons that are more introvert) or low on Touch Receptivity (i.e., persons who do not like to be touched by others) felt better understood by their communication partner when receiving mediated touch feedback instead of visual feedback, while the opposite was found for

  9. R-loops cause genomic instability in T helper lymphocytes from patients with Wiskott-Aldrich syndrome.

    PubMed

    Sarkar, Koustav; Han, Seong-Su; Wen, Kuo-Kuang; Ochs, Hans D; Dupré, Loïc; Seidman, Michael M; Vyas, Yatin M

    2017-12-15

    Wiskott-Aldrich syndrome (WAS), X-linked thrombocytopenia (XLT), and X-linked neutropenia, which are caused by WAS mutations affecting Wiskott-Aldrich syndrome protein (WASp) expression or activity, manifest in immunodeficiency, autoimmunity, genomic instability, and lymphoid and other cancers. WASp supports filamentous actin formation in the cytoplasm and gene transcription in the nucleus. Although the genetic basis for XLT/WAS has been clarified, the relationships between mutant forms of WASp and the diverse features of these disorders remain ill-defined. We sought to define how dysfunctional gene transcription is causally linked to the degree of T H cell deficiency and genomic instability in the XLT/WAS clinical spectrum. In human T H 1- or T H 2-skewing cell culture systems, cotranscriptional R-loops (RNA/DNA duplex and displaced single-stranded DNA) and DNA double-strand breaks (DSBs) were monitored in multiple samples from patients with XLT and WAS and in normal T cells depleted of WASp. WASp deficiency provokes increased R-loops and R-loop-mediated DSBs in T H 1 cells relative to T H 2 cells. Mechanistically, chromatin occupancy of serine 2-unphosphorylated RNA polymerase II is increased, and that of topoisomerase 1, an R-loop preventing factor, is decreased at R-loop-enriched regions of IFNG and TBX21 (T H 1 genes) in T H 1 cells. These aberrations accompany increased unspliced (intron-retained) and decreased spliced mRNA of IFNG and TBX21 but not IL13 (T H 2 gene). Significantly, increased cellular load of R-loops and DSBs, which are normalized on RNaseH1-mediated suppression of ectopic R-loops, inversely correlates with disease severity scores. Transcriptional R-loop imbalance is a novel molecular defect causative in T H 1 immunodeficiency and genomic instability in patients with WAS. The study proposes that cellular R-loop load could be used as a potential biomarker for monitoring symptom severity and prognostic outcome in the XLT-WAS clinical spectrum

  10. Collider study on the loop-induced dark matter mediation

    NASA Astrophysics Data System (ADS)

    Tsai, Yuhsin

    2016-06-01

    Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For DM couplings involving light mediators, especially for the loop-mediated interactions, a meaningful interpretation of the results requires to go beyond effective field theory. In this note we discuss the study of the magnetic dipole interacting DM, focusing on a model with anarchic dark flavor structure. By including the momentum-dependent form factors that mediate the coupling - given by the Dark Penguin - in collider processes, we study bounds from monophoton, diphoton, and non-pointing photon searches at the LHC. We also compare our results to constraints from the direct detection experiments.

  11. Automated Detection of Solar Loops by the Oriented Connectivity Method

    NASA Technical Reports Server (NTRS)

    Lee, Jong Kwan; Newman, Timothy S.; Gary, G. Allen

    2004-01-01

    An automated technique to segment solar coronal loops from intensity images of the Sun s corona is introduced. It exploits physical characteristics of the solar magnetic field to enable robust extraction from noisy images. The technique is a constructive curve detection approach, constrained by collections of estimates of the magnetic fields orientation. Its effectiveness is evaluated through experiments on synthetic and real coronal images.

  12. Wilson loops in supersymmetric gauge theories

    NASA Astrophysics Data System (ADS)

    Pestun, Vasily

    This thesis is devoted to several exact computations in four-dimensional supersymmetric gauge field theories. In the first part of the thesis we prove conjecture due to Erickson-Semenoff-Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop operators in the N = 4 supersymmetric Yang-Mills theory with a Gaussian matrix model. We also compute the partition function and give a new matrix model formula for the expectation value of a supersymmetric circular Wilson loop operator for the pure N = 2 and the N* = 2 supersymmetric Yang-Mills theory on a four-sphere. Circular supersymmetric Wilson loops in four-dimensional N = 2 superconformal gauge theory are treated similarly. In the second part we consider supersymmetric Wilson loops of arbitrary shape restricted to a two-dimensional sphere in the four-dimensional N = 4 supersymmetric Yang-Mills theory. We show that expectation value for these Wilson loops can be exactly computed using a two-dimensional theory closely related to the topological two-dimensional Higgs-Yang-Mills theory, or two-dimensional Yang-Mills theory for the complexified gauge group.

  13. Closed loop cavitation control - A step towards sonomechatronics.

    PubMed

    Saalbach, Kai-Alexander; Ohrdes, Hendrik; Twiefel, Jens

    2018-06-01

    In the field of sonochemistry, many processes are made possible by the generation of cavitation. This article is about closed loop control of ultrasound assisted processes with the aim of controlling the intensity of cavitation-based sonochemical processes. This is the basis for a new research field which the authors call "sonomechatronics". In order to apply closed loop control, a so called self-sensing technique is applied, which uses the ultrasound transducer's electrical signals to gain information about cavitation activity. Experiments are conducted to find out if this self-sensing technique is capable of determining the state and intensity of acoustic cavitation. A distinct frequency component in the transducer's current signal is found to be a good indicator for the onset and termination of transient cavitation. Measurements show that, depending on the boundary conditions, the onset and termination of transient cavitation occur at different thresholds, with the onset occurring at a higher value in most cases. This known hysteresis effect offers the additional possibility of achieving an energetic optimization by controlling cavitation generation. Using the cavitation indicator for the implementation of a double set point closed loop control, the mean driving current was reduced by approximately 15% compared to the value needed to exceed the transient cavitation threshold. The results presented show a great potential for the field of sonomechatronics. Nevertheless, further investigations are necessary in order to design application-specific sonomechatronic processes. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. On-the-fly reduction of open loops

    NASA Astrophysics Data System (ADS)

    Buccioni, Federico; Pozzorini, Stefano; Zoller, Max

    2018-01-01

    Building on the open-loop algorithm we introduce a new method for the automated construction of one-loop amplitudes and their reduction to scalar integrals. The key idea is that the factorisation of one-loop integrands in a product of loop segments makes it possible to perform various operations on-the-fly while constructing the integrand. Reducing the integrand on-the-fly, after each segment multiplication, the construction of loop diagrams and their reduction are unified in a single numerical recursion. In this way we entirely avoid objects with high tensor rank, thereby reducing the complexity of the calculations in a drastic way. Thanks to the on-the-fly approach, which is applied also to helicity summation and for the merging of different diagrams, the speed of the original open-loop algorithm can be further augmented in a very significant way. Moreover, addressing spurious singularities of the employed reduction identities by means of simple expansions in rank-two Gram determinants, we achieve a remarkably high level of numerical stability. These features of the new algorithm, which will be made publicly available in a forthcoming release of the OpenLoops program, are particularly attractive for NLO multi-leg and NNLO real-virtual calculations.

  15. Mitotic chromosome compaction via active loop extrusion

    NASA Astrophysics Data System (ADS)

    Goloborodko, Anton; Imakaev, Maxim; Marko, John; Mirny, Leonid; MIT-Northwestern Team

    During cell division, two copies of each chromosome are segregated from each other and compacted more than hundred-fold into the canonical X-shaped structures. According to earlier microscopic observations and the recent Hi-C study, chromosomes are compacted into arrays of consecutive loops of ~100 kilobases. Mechanisms that lead to formation of such loop arrays are largely unknown. Here we propose that, during cell division, chromosomes can be compacted by enzymes that extrude loops on chromatin fibers. First, we use computer simulations and analytical modeling to show that a system of loop-extruding enzymes on a chromatin fiber self-organizes into an array of consecutive dynamic loops. Second, we model the process of loop extrusion in 3D and show that, coupled with the topo II strand-passing activity, it leads to robust compaction and segregation of sister chromatids. This mechanism of chromosomal condensation and segregation does not require additional proteins or specific DNA markup and is robust against variations in the number and properties of such loop extruding enzymes. Work at NU was supported by the NSF through Grants DMR-1206868 and MCB-1022117, and by the NIH through Grants GM105847 and CA193419. Work at MIT was supported by the NIH through Grants GM114190 R01HG003143.

  16. Loop Quantum Cosmology.

    PubMed

    Bojowald, Martin

    2008-01-01

    Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time. Supplementary material is available for this article at 10.12942/lrr-2008-4.

  17. The performance of a sampled data delay lock loop implemented with a Kalman loop filter

    NASA Astrophysics Data System (ADS)

    Eilts, H. S.

    1980-01-01

    The purpose of this study is to evaluate the steady-state and transient (lock-up) performance of a tracking loop implemented with a Kalman filter. Steady-state performance criteria are errors due to measurement noise (jitter) and Doppler errors due to motion of the tracking loop. Trade-offs exist between the two criteria such that increasing performance with respect to either one will cause performance decrease with respect to the other. It is shown that by carefully selecting filter parameters reasonable performance can be obtained for both criteria simultaneously. It is also shown that lock-up performance for the loop is acceptable when these parameters are used.

  18. Velocity Measurements for a Solar Active Region Fan Loop from Hinode/EIS Observations

    NASA Astrophysics Data System (ADS)

    Young, P. R.; O'Dwyer, B.; Mason, H. E.

    2012-01-01

    The velocity pattern of a fan loop structure within a solar active region over the temperature range 0.15-1.5 MK is derived using data from the EUV Imaging Spectrometer (EIS) on board the Hinode satellite. The loop is aligned toward the observer's line of sight and shows downflows (redshifts) of around 15 km s-1 up to a temperature of 0.8 MK, but for temperatures of 1.0 MK and above the measured velocity shifts are consistent with no net flow. This velocity result applies over a projected spatial distance of 9 Mm and demonstrates that the cooler, redshifted plasma is physically disconnected from the hotter, stationary plasma. A scenario in which the fan loops consist of at least two groups of "strands"—one cooler and downflowing, the other hotter and stationary—is suggested. The cooler strands may represent a later evolutionary stage of the hotter strands. A density diagnostic of Mg VII was used to show that the electron density at around 0.8 MK falls from 3.2 × 109 cm-3 at the loop base, to 5.0 × 108 cm-3 at a projected height of 15 Mm. A filling factor of 0.2 is found at temperatures close to the formation temperature of Mg VII (0.8 MK), confirming that the cooler, downflowing plasma occupies only a fraction of the apparent loop volume. The fan loop is rooted within a so-called outflow region that displays low intensity and blueshifts of up to 25 km s-1 in Fe XII λ195.12 (formed at 1.5 MK), in contrast to the loop's redshifts of 15 km s-1 at 0.8 MK. A new technique for obtaining an absolute wavelength calibration for the EIS instrument is presented and an instrumental effect, possibly related to a distorted point-spread function, that affects velocity measurements is identified.

  19. VELOCITY MEASUREMENTS FOR A SOLAR ACTIVE REGION FAN LOOP FROM HINODE/EIS OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, P. R.; O'Dwyer, B.; Mason, H. E.

    2012-01-01

    The velocity pattern of a fan loop structure within a solar active region over the temperature range 0.15-1.5 MK is derived using data from the EUV Imaging Spectrometer (EIS) on board the Hinode satellite. The loop is aligned toward the observer's line of sight and shows downflows (redshifts) of around 15 km s{sup -1} up to a temperature of 0.8 MK, but for temperatures of 1.0 MK and above the measured velocity shifts are consistent with no net flow. This velocity result applies over a projected spatial distance of 9 Mm and demonstrates that the cooler, redshifted plasma is physicallymore » disconnected from the hotter, stationary plasma. A scenario in which the fan loops consist of at least two groups of 'strands'-one cooler and downflowing, the other hotter and stationary-is suggested. The cooler strands may represent a later evolutionary stage of the hotter strands. A density diagnostic of Mg VII was used to show that the electron density at around 0.8 MK falls from 3.2 Multiplication-Sign 10{sup 9} cm{sup -3} at the loop base, to 5.0 Multiplication-Sign 10{sup 8} cm{sup -3} at a projected height of 15 Mm. A filling factor of 0.2 is found at temperatures close to the formation temperature of Mg VII (0.8 MK), confirming that the cooler, downflowing plasma occupies only a fraction of the apparent loop volume. The fan loop is rooted within a so-called outflow region that displays low intensity and blueshifts of up to 25 km s{sup -1} in Fe XII {lambda}195.12 (formed at 1.5 MK), in contrast to the loop's redshifts of 15 km s{sup -1} at 0.8 MK. A new technique for obtaining an absolute wavelength calibration for the EIS instrument is presented and an instrumental effect, possibly related to a distorted point-spread function, that affects velocity measurements is identified.« less

  20. Closed-loop regulation of arterial pressure after acute brain death.

    PubMed

    Soltesz, Kristian; Sjöberg, Trygve; Jansson, Tomas; Johansson, Rolf; Robertsson, Anders; Paskevicius, Audrius; Liao, Quiming; Qin, Guangqi; Steen, Stig

    2018-06-01

    The purpose of this concept study was to investigate the possibility of automatic mean arterial pressure (MAP) regulation in a porcine heart-beating brain death (BD) model. Hemodynamic stability of BD donors is necessary for maintaining acceptable quality of donated organs for transplantation. Manual stabilization is challenging, due to the lack of vasomotor function in BD donors. Closed-loop stabilization therefore has the potential of increasing availability of acceptable donor organs, and serves to indicate feasibility within less demanding patient groups. A dynamic model of nitroglycerine pharmacology, suitable for controller synthesis, was identified from an experiment involving an anesthetized pig, using a gradient-based output error method. The model was used to synthesize a robust PID controller for hypertension prevention, evaluated in a second experiment, on a second, brain dead, pig. Hypotension was simultaneously prevented using closed-loop controlled infusion of noradrenaline, by means of a previously published controller. A linear model of low order, with variable (uncertain) gain, was sufficient to describe the dynamics to be controlled. The robustly tuned PID controller utilized in the second experiment kept the MAP within a user-defined range. The system was able to prevent hypertension, exceeding a reference of 100 mmHg by more than 10%, during 98% of a 12 h experiment. This early work demonstrates feasibility of the investigated modelling and control synthesis approach, for the purpose of maintaining normotension in a porcine BD model. There remains a need to characterize individual variability, in order to ensure robust performance over the expected population.

  1. Direct-contact closed-loop heat exchanger

    DOEpatents

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1984-01-01

    A high temperature heat exchanger with a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.

  2. The kinase activity of fibroblast growth factor receptor 3 with activation loop mutations affects receptor trafficking and signaling.

    PubMed

    Lievens, Patricia M-J; Mutinelli, Chiara; Baynes, Darcie; Liboi, Elio

    2004-10-08

    Amino acid substitutions at the Lys-650 codon within the activation loop kinase domain of fibroblast growth factor receptor 3 (FGFR3) result in graded constitutive phosphorylation of the receptor. Accordingly, the Lys-650 mutants are associated with dwarfisms with graded clinical severity. To assess the importance of the phosphorylation level on FGFR3 maturation along the secretory pathway, hemagglutinin A-tagged derivatives were studied. The highly activated SADDAN (severe achondroplasia with developmental delay and acanthosis nigricans) mutant accumulates in its immature and phosphorylated form in the endoplasmic reticulum (ER), which fails to be degraded. Furthermore, the Janus kinase (Jak)/STAT pathway is activated from the ER by direct recruitment of Jak1. Abolishing the autocatalytic property of the mutated FGFR3 by replacing the critical Tyr-718 reestablishes the receptor full maturation and inhibits signaling. Differently, the low activated hypochondroplasia mutant is present as a mature phosphorylated form on the plasma membrane, although with a delayed transition in the ER, and is completely processed. Signaling does not occur in the presence of brefeldin A; instead, STAT1 is activated when protein secretion is blocked with monensin, suggesting that the hypochondroplasia receptor signals at the exit from the ER. Our results suggest that kinase activity affects FGFR3 trafficking and determines the spatial segregation of signaling pathways. Consequently, the defect in down-regulation of the highly activated receptors results in the increased signaling capacity from the intracellular compartments, and this may determine the severity of the diseases.

  3. Loop equations and bootstrap methods in the lattice

    DOE PAGES

    Anderson, Peter D.; Kruczenski, Martin

    2017-06-17

    Pure gauge theories can be formulated in terms of Wilson Loops by means of the loop equation. In the large-N limit this equation closes in the expectation value of single loops. In particular, using the lattice as a regulator, it becomes a well defined equation for a discrete set of loops. In this paper we study different numerical approaches to solving this equation.

  4. Mathematical Modeling of Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Kaya, Tarik; Ku, Jentung; Hoang, Triem T.; Cheung, Mark L.

    1998-01-01

    The primary focus of this study is to model steady-state performance of a Loop Heat Pipe (LHP). The mathematical model is based on the steady-state energy balance equations at each component of the LHP. The heat exchange between each LHP component and the surrounding is taken into account. Both convection and radiation environments are modeled. The loop operating temperature is calculated as a function of the applied power at a given loop condition. Experimental validation of the model is attempted by using two different LHP designs. The mathematical model is tested at different sink temperatures and at different elevations of the loop. Tbc comparison of the calculations and experimental results showed very good agreement (within 3%). This method proved to be a useful tool in studying steady-state LHP performance characteristics.

  5. Te homogeneous precipitation in Ge dislocation loop vicinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perrin Toinin, J.; Portavoce, A., E-mail: alain.portavoce@im2np.fr; Texier, M.

    2016-06-06

    High resolution microscopies were used to study the interactions of Te atoms with Ge dislocation loops, after a standard n-type doping process in Ge. Te atoms neither segregate nor precipitate on dislocation loops, but form Te-Ge clusters at the same depth as dislocation loops, in contradiction with usual dopant behavior and thermodynamic expectations. Atomistic kinetic Monte Carlo simulations show that Te atoms are repulsed from dislocation loops due to elastic interactions, promoting homogeneous Te-Ge nucleation between dislocation loops. This phenomenon is enhanced by coulombic interactions between activated Te{sup 2+} or Te{sup 1+} ions.

  6. Closed-loop brain-machine-body interfaces for noninvasive rehabilitation of movement disorders.

    PubMed

    Broccard, Frédéric D; Mullen, Tim; Chi, Yu Mike; Peterson, David; Iversen, John R; Arnold, Mike; Kreutz-Delgado, Kenneth; Jung, Tzyy-Ping; Makeig, Scott; Poizner, Howard; Sejnowski, Terrence; Cauwenberghs, Gert

    2014-08-01

    Traditional approaches for neurological rehabilitation of patients affected with movement disorders, such as Parkinson's disease (PD), dystonia, and essential tremor (ET) consist mainly of oral medication, physical therapy, and botulinum toxin injections. Recently, the more invasive method of deep brain stimulation (DBS) showed significant improvement of the physical symptoms associated with these disorders. In the past several years, the adoption of feedback control theory helped DBS protocols to take into account the progressive and dynamic nature of these neurological movement disorders that had largely been ignored so far. As a result, a more efficient and effective management of PD cardinal symptoms has emerged. In this paper, we review closed-loop systems for rehabilitation of movement disorders, focusing on PD, for which several invasive and noninvasive methods have been developed during the last decade, reducing the complications and side effects associated with traditional rehabilitation approaches and paving the way for tailored individual therapeutics. We then present a novel, transformative, noninvasive closed-loop framework based on force neurofeedback and discuss several future developments of closed-loop systems that might bring us closer to individualized solutions for neurological rehabilitation of movement disorders.

  7. Closed-loop Brain-Machine-Body Interfaces for Noninvasive Rehabilitation of Movement Disorders

    PubMed Central

    Broccard, Frédéric D.; Mullen, Tim; Chi, Yu Mike; Peterson, David; Iversen, John R.; Arnold, Mike; Kreutz-Delgado, Kenneth; Jung, Tzyy-Ping; Makeig, Scott; Poizner, Howard; Sejnowski, Terrence; Cauwenberghs, Gert

    2014-01-01

    Traditional approaches for neurological rehabilitation of patients affected with movement disorders, such as Parkinson's disease (PD), dystonia, and essential tremor (ET) consist mainly of oral medication, physical therapy, and botulinum toxin injections. Recently, the more invasive method of deep brain stimulation (DBS) showed significant improvement of the physical symptoms associated with these disorders. In the past several years, the adoption of feedback control theory helped DBS protocols to take into account the progressive and dynamic nature of these neurological movement disorders that had largely been ignored so far. As a result, a more efficient and effective management of PD cardinal symptoms has emerged. In this paper, we review closed-loop systems for rehabilitation of movement disorders, focusing on PD, for which several invasive and noninvasive methods have been developed during the last decade, reducing the complications and side effects associated with traditional rehabilitation approaches and paving the way for tailored individual therapeutics. We then present a novel, transformative, noninvasive closed-loop framework based on force neurofeedback and discuss several future developments of closed-loop systems that might bring us closer to individualized solutions for neurological rehabilitation of movement disorders. PMID:24833254

  8. New insights into the structural and functional involvement of the gate loop in AcrB export activity.

    PubMed

    Ababou, Abdessamad

    2018-02-01

    AcrB is a major multidrug exporter in Escherichia coli and other Gram-negative bacteria. Its gate loop, located between the proximal and the distal pockets, have been reported to play important role in the export of many antibiotics. This loop location, rigidity and interactions with substrates have led recent reports to suggest that AcrB export mechanism operates in a sequential manner. First the substrate binds the proximal pocket in the access monomer, then it moves to bind the distal pocket in the binding monomer and subsequently it is extruded in the extrusion monomer. Recently, we have demonstrated that the gate loop is not required for the binding of Erythromycin but the integrity of this loop is important for an efficient export of this substrate. However, here we show that the antibiotic susceptibilities of the same AcrB gate loop mutants for Doxorubicin were unaffected, suggesting that this loop is not required for its export, and we demonstrate that this substrate may use principally the tunnel-1, located between transmembranes 8 and 9, more often than previously reported. To further explain our findings, here we address the gate loop mutations effects on AcrB solution energetics (fold, stability, molecular dynamics) and on the in vivo efflux of Erythromycin and Doxorubicin. Finally, we discuss the efflux and the discrepancy between the structural and the functional experiments for Erythromycin in these gate loop mutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation

    PubMed Central

    Zbrzeski, Adeline; Bornat, Yannick; Hillen, Brian; Siu, Ricardo; Abbas, James; Jung, Ranu; Renaud, Sylvie

    2016-01-01

    Cervical spinal cord injury can disrupt connections between the brain respiratory network and the respiratory muscles which can lead to partial or complete loss of ventilatory control and require ventilatory assistance. Unlike current open-loop technology, a closed-loop diaphragmatic pacing system could overcome the drawbacks of manual titration as well as respond to changing ventilation requirements. We present an original bio-inspired assistive technology for real-time ventilation assistance, implemented in a digital configurable Field Programmable Gate Array (FPGA). The bio-inspired controller, which is a spiking neural network (SNN) inspired by the medullary respiratory network, is as robust as a classic controller while having a flexible, low-power and low-cost hardware design. The system was simulated in MATLAB with FPGA-specific constraints and tested with a computational model of rat breathing; the model reproduced experimentally collected respiratory data in eupneic animals. The open-loop version of the bio-inspired controller was implemented on the FPGA. Electrical test bench characterizations confirmed the system functionality. Open and closed-loop paradigm simulations were simulated to test the FPGA system real-time behavior using the rat computational model. The closed-loop system monitors breathing and changes in respiratory demands to drive diaphragmatic stimulation. The simulated results inform future acute animal experiments and constitute the first step toward the development of a neuromorphic, adaptive, compact, low-power, implantable device. The bio-inspired hardware design optimizes the FPGA resource and time costs while harnessing the computational power of spike-based neuromorphic hardware. Its real-time feature makes it suitable for in vivo applications. PMID:27378844

  10. Experiences of School Principals with Newcomers from War-Affected Countries in Africa

    ERIC Educational Resources Information Center

    Okoko, Janet Mola

    2011-01-01

    This article is based on the results of an exploratory study of experiences of 2 urban school principals about leading schools with immigrants from war-affected countries in Africa. It examines how they perceived their preparation for multicultural leadership, and explores lessons that leadership development institutions can learn from their…

  11. Facilities, breed and experience affect ease of sheep handling: the livestock transporter's perspective.

    PubMed

    Burnard, C L; Pitchford, W S; Hocking Edwards, J E; Hazel, S J

    2015-08-01

    An understanding of the perceived importance of a variety of factors affecting the ease of handling of sheep and the interactions between these factors is valuable in improving profitability and welfare of the livestock. Many factors may contribute to animal behaviour during handling, and traditionally these factors have been assessed in isolation under experimental conditions. A human social component to this phenomenon also exists. The aim of this study was to gain a deeper understanding of the importance of a variety of factors affecting ease of handling, and the interactions between these from the perspective of the livestock transporter. Qualitative interviews were used to investigate the factors affecting sheep behaviour during handling. Interview transcripts underwent thematic analysis. Livestock transporters discussed the effects of attitudes and behaviours towards sheep, helpers, facilities, distractions, environment, dogs and a variety of sheep factors including breed, preparation, experience and sex on sheep behaviour during handling. Transporters demonstrated care and empathy and stated that patience and experience were key factors determining how a person might deal with difficult sheep. Livestock transporters strongly believed facilities (ramps and yards) had the greatest impact, followed by sheep experience (naivety of the sheep to handling and transport) and breed. Transporters also discussed the effects of distractions, time of day, weather, dogs, other people, sheep preparation, body condition and sheep sex on ease of handling. The concept of individual sheep temperament was indirectly expressed.

  12. REVIEWS OF TOPICAL PROBLEMS: Coronal magnetic loops

    NASA Astrophysics Data System (ADS)

    Zaitsev, Valerii V.; Stepanov, Alexander V.

    2008-11-01

    The goal of this review is to outline some new ideas in the physics of coronal magnetic loops, the fundamental structural elements of the atmospheres of the Sun and flaring stars, which are involved in phenomena such as stellar coronal heating, flare energy release, charged particle acceleration, and the modulation of optical, radio, and X-ray emissions. The Alfvén-Carlqvist view of a coronal loop as an equivalent electric circuit allows a good physical understanding of loop processes. Describing coronal loops as MHD-resonators explains various ways in which flaring emissions from the Sun and stars are modulated, whereas modeling them by magnetic mirror traps allows one to describe the dynamics and emission of high-energy particles. Based on these approaches, loop plasma and fast particle parameters are obtained and models for flare energy release and stellar corona heating are developed.

  13. Direct-contact closed-loop heat exchanger

    DOEpatents

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02

    A high temperature heat exchanger is disclosed which has a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.

  14. Combination decongestion therapy in hospitalized heart failure: loop diuretics, mineralocorticoid receptor antagonists and vasopressin antagonists.

    PubMed

    Vaduganathan, Muthiah; Mentz, Robert J; Greene, Stephen J; Senni, Michele; Sato, Naoki; Nodari, Savina; Butler, Javed; Gheorghiade, Mihai

    2015-01-01

    Congestion is the most common reason for admissions and readmissions for heart failure (HF). The vast majority of hospitalized HF patients appear to respond readily to loop diuretics, but available data suggest that a significant proportion are being discharged with persistent evidence of congestion. Although novel therapies targeting congestion should continue to be developed, currently available agents may be utilized more optimally to facilitate complete decongestion. The combination of loop diuretics, natriuretic doses of mineralocorticoid receptor antagonists and vasopressin antagonists represents a regimen of currently available therapies that affects early and persistent decongestion, while limiting the associated risks of electrolyte disturbances, hemodynamic fluctuations, renal dysfunction and mortality.

  15. WiLE: A Mathematica package for weak coupling expansion of Wilson loops in ABJ(M) theory

    NASA Astrophysics Data System (ADS)

    Preti, M.

    2018-06-01

    We present WiLE, a Mathematica® package designed to perform the weak coupling expansion of any Wilson loop in ABJ(M) theory at arbitrary perturbative order. For a given set of fields on the loop and internal vertices, the package displays all the possible Feynman diagrams and their integral representations. The user can also choose to exclude non planar diagrams, tadpoles and self-energies. Through the use of interactive input windows, the package should be easily accessible to users with little or no previous experience. The package manual provides some pedagogical examples and the computation of all ladder diagrams at three-loop relevant for the cusp anomalous dimension in ABJ(M). The latter application gives also support to some recent results computed in different contexts.

  16. Teachers' Attitudes and Perceptions of Looping and the Effect of Looping on Students' Academic Achievement

    ERIC Educational Resources Information Center

    Williams-Wright, Vera

    2013-01-01

    The purpose of this research study was two-fold. The first purpose was to investigate the impact of looping on academic achievement of students in selected public schools in Mississippi. The students' results on the 2010 and 2011 Mississippi Curriculum Test, Second Edition (MCT2) were used to determine whether looping students score differently in…

  17. Effect of Abscisic Acid on the Gain of the Feedback Loop Involving Carbon Dioxide and Stomata 1

    PubMed Central

    Dubbe, Dean R.; Farquhar, Graham D.; Raschke, Klaus

    1978-01-01

    Gains of the feedback loops involving intercellular CO2 concentration on one hand, and CO2 assimilation and stomata on the other (= assimilation loop with gain [GA] and conductance loop with gain [Gg]) were determined in detached leaves of Amaranthus powelli S. Wats., Avena sativa L., Gossypium hirsutum L., Xanthium strumarium L., and Zea mays in the absence and presence of 10−5 m (±) abscisic acid (ABA) in the transpiration stream. Determinations were made for an ambient CO2 concentration of 300 microliters per liter. In the absence of ABA, stomata were insensitive to CO2 (Gg between 0.00 and −0.02) in A. sativa, G. hirsutum, and X. strumarium, sensitive in A powelli (Gg = −0.46), and very sensitive in Z. mays (Gg = −3.6). Addition of ABA increased the absolute values of the gain of the conductance loop in A. powelli (Gg = −2.0), G. hirsutum (Gg = −0.31), and X. strumarium (Gg = −1.14). Stomata closed completely in A. sativa. In Z. mays, Gg decreased after application of ABA to a value of −0.86, but stomatal sensitivity to CO2 increased for intercellular CO2 concentrations < 100 microliters per liter. The gain of the assimilation loop increased after application of ABA in all cases, from values between 0.0 (A. powelli) and −0.21 (Z. mays) in the absence of ABA to values between −0.19 (A. powelli) and −0.43 (Z. mays) in the presence of ABA. In none of the species examined did ABA affect the photosynthetic capacity of the leaves. The application of ABA caused stomatal narrowing which affected transpiration more than the assimilation of CO2. In the case of A. powelli the transpiration ratio decreased without a concomitant reduction of the assimilation rate. PMID:16660528

  18. A causal loop analysis of the sustainability of integrated community case management in Rwanda.

    PubMed

    Sarriot, Eric; Morrow, Melanie; Langston, Anne; Weiss, Jennifer; Landegger, Justine; Tsuma, Laban

    2015-04-01

    Expansion of community health services in Rwanda has come with the national scale up of integrated Community Case Management (iCCM) of malaria, pneumonia and diarrhea. We used a sustainability assessment framework as part of a large-scale project evaluation to identify factors affecting iCCM sustainability (2011). We then (2012) used causal-loop analysis to identify systems determinants of iCCM sustainability from a national systems perspective. This allows us to develop three high-probability future scenarios putting the achievements of community health at risk, and to recommend mitigating strategies. Our causal loop diagram highlights both balancing and reinforcing loops of cause and effect in the national iCCM system. Financial, political and technical scenarios carry high probability for threatening the sustainability through: (1) reduction in performance-based financing resources, (2) political shocks and erosion of political commitment for community health, and (3) insufficient progress in resolving district health systems--"building blocks"--performance gaps. In a complex health system, the consequences of choices may be delayed and hard to predict precisely. Causal loop analysis and scenario mapping make explicit complex cause-and-effects relationships and high probability risks, which need to be anticipated and mitigated. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Affective experience in adulthood and old age: The role of affective arousal and perceived affect regulation.

    PubMed

    Kessler, Eva-Marie; Staudinger, Ursula M

    2009-06-01

    The aim of the present study was to investigate age-related differences in self-reported affect in adulthood. Measurement of affect encompassed high- and low-arousal positive and negative affect. The sample consisted of 277 participants who were between 20 and 80 years old. Older participants showed a higher level of low-arousal positive affect and did not significantly differ from the two younger age groups in high-arousal positive affect. Both high- and low-arousal negative affect decreased from middle to older adulthood. Only partially are these age effects explained by sociodemographic characteristics, education, or self-reported health and personality. The perceived regulation of affect in the face of difficulties or threatening situations emerged as a central mediator in the association between age and the three age-graded facets of affect. In contrast, future time perspective had no mediating effect on the age-affect relationship. Results suggest that age-related advantages in perceived affect regulation seem to be one central component of resilience in old age. (c) 2009 APA, all rights reserved.

  20. Investigation of the Frequency Shift of a SAD Circuit Loop and the Internal Micro-Cantilever in a Gas Sensor

    PubMed Central

    Guan, Liu; Zhao, Jiahao; Yu, Shijie; Li, Peng; You, Zheng

    2010-01-01

    Micro-cantilever sensors for mass detection using resonance frequency have attracted considerable attention over the last decade in the field of gas sensing. For such a sensing system, an oscillator circuit loop is conventionally used to actuate the micro-cantilever, and trace the frequency shifts. In this paper, gas experiments are introduced to investigate the mechanical resonance frequency shifts of the micro-cantilever within the circuit loop(mechanical resonance frequency, MRF) and resonating frequency shifts of the electric signal in the oscillator circuit (system working frequency, SWF). A silicon beam with a piezoelectric zinc oxide layer is employed in the experiment, and a Self-Actuating-Detecting (SAD) circuit loop is built to drive the micro-cantilever and to follow the frequency shifts. The differences between the two resonating frequencies and their shifts are discussed and analyzed, and a coefficient α related to the two frequency shifts is confirmed. PMID:22163588

  1. Stability characteristics of a single-phase free convection loop

    NASA Technical Reports Server (NTRS)

    Creveling, H. F.; De Paz, J. F.; Baladi, J. Y.; Schoenhals, R. J.

    1975-01-01

    Experiments investigating the stability characteristics of a single-phase free convection loop are reported. Results of the study confirm the contention made by previous workers that instabilities near the thermodynamic critical point can occur for ordinary fluids as well as those with unusual behavior in the near-critical region. Such a claim runs counter to traditional beliefs, but it is supported by the observation of such instabilities for water at atmospheric pressure and moderate temperatures in the present work.

  2. A wirelessly-powered homecage with animal behavior analysis and closed-loop power control.

    PubMed

    Yaoyao Jia; Zheyuan Wang; Canales, Daniel; Tinkler, Morgan; Chia-Chun Hsu; Madsen, Teresa E; Mirbozorgi, S Abdollah; Rainnie, Donald; Ghovanloo, Maysam

    2016-08-01

    This paper presents a new EnerCage-homecage system, EnerCage-HC2, for longitudinal electrophysiology data acquisition experiments on small freely moving animal subjects, such as rodents. EnerCage-HC2 is equipped with multi-coil wireless power transmission (WPT), closed-loop power control, bidirectional data communication via Bluetooth Low Energy (BLE), and Microsoft Kinect® based animal behavior tracking and analysis. The EnerCage-HC2 achieves a homogeneous power transfer efficiency (PTE) of 14% on average, with ~42 mW power delivered to the load (PDL) at a nominal height of 7 cm by the closed-loop power control mechanism. The Microsoft Kinect® behavioral analysis algorithm can not only track the animal position in real-time but also classify 5 different types of rodent behaviors: standstill, walking, grooming, rearing, and rotating. A proof-of-concept in vivo experiment was conducted on two awake freely behaving rats while successfully operating a one-channel stimulator and generating an ethogram.

  3. A LabVIEW model incorporating an open-loop arterial impedance and a closed-loop circulatory system.

    PubMed

    Cole, R T; Lucas, C L; Cascio, W E; Johnson, T A

    2005-11-01

    While numerous computer models exist for the circulatory system, many are limited in scope, contain unwanted features or incorporate complex components specific to unique experimental situations. Our purpose was to develop a basic, yet multifaceted, computer model of the left heart and systemic circulation in LabVIEW having universal appeal without sacrificing crucial physiologic features. The program we developed employs Windkessel-type impedance models in several open-loop configurations and a closed-loop model coupling a lumped impedance and ventricular pressure source. The open-loop impedance models demonstrate afterload effects on arbitrary aortic pressure/flow inputs. The closed-loop model catalogs the major circulatory waveforms with changes in afterload, preload, and left heart properties. Our model provides an avenue for expanding the use of the ventricular equations through closed-loop coupling that includes a basic coronary circuit. Tested values used for the afterload components and the effects of afterload parameter changes on various waveforms are consistent with published data. We conclude that this model offers the ability to alter several circulatory factors and digitally catalog the most salient features of the pressure/flow waveforms employing a user-friendly platform. These features make the model a useful instructional tool for students as well as a simple experimental tool for cardiovascular research.

  4. Study on digital closed-loop system of silicon resonant micro-sensor

    NASA Astrophysics Data System (ADS)

    Xu, Yefeng; He, Mengke

    2008-10-01

    Designing a micro, high reliability weak signal extracting system is a critical problem need to be solved in the application of silicon resonant micro-sensor. The closed-loop testing system based on FPGA uses software to replace hardware circuit which dramatically decrease the system's mass and power consumption and make the system more compact, both correlation theory and frequency scanning scheme are used in extracting weak signal, the adaptive frequency scanning arithmetic ensures the system real-time. The error model was analyzed to show the solution to enhance the system's measurement precision. The experiment results show that the closed-loop testing system based on FPGA has the personality of low power consumption, high precision, high-speed, real-time etc, and also the system is suitable for different kinds of Silicon Resonant Micro-sensor.

  5. Protein Loop Structure Prediction Using Conformational Space Annealing.

    PubMed

    Heo, Seungryong; Lee, Juyong; Joo, Keehyoung; Shin, Hang-Cheol; Lee, Jooyoung

    2017-05-22

    We have developed a protein loop structure prediction method by combining a new energy function, which we call E PLM (energy for protein loop modeling), with the conformational space annealing (CSA) global optimization algorithm. The energy function includes stereochemistry, dynamic fragment assembly, distance-scaled finite ideal gas reference (DFIRE), and generalized orientation- and distance-dependent terms. For the conformational search of loop structures, we used the CSA algorithm, which has been quite successful in dealing with various hard global optimization problems. We assessed the performance of E PLM with two widely used loop-decoy sets, Jacobson and RAPPER, and compared the results against the DFIRE potential. The accuracy of model selection from a pool of loop decoys as well as de novo loop modeling starting from randomly generated structures was examined separately. For the selection of a nativelike structure from a decoy set, E PLM was more accurate than DFIRE in the case of the Jacobson set and had similar accuracy in the case of the RAPPER set. In terms of sampling more nativelike loop structures, E PLM outperformed E DFIRE for both decoy sets. This new approach equipped with E PLM and CSA can serve as the state-of-the-art de novo loop modeling method.

  6. 3D MHD Models of Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  7. EXAMINATION OF Zr AND Ti RECOMBINER LOOP SPECIMENS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittenhouse, P.L.

    1958-12-19

    Cold-worked specimens of iodide zirconium, Zircaloy-2, iodide titanium, and A-55 titanium were tested in a high-pressure recombiner loop in an attempt to duplicate anomalous results obtained in a prior recombiner loop. Hydrogen analyses and metallographic examinations were made on all specimens. The titanium materials and Zircaloy-2 picked up major amounts of hydrogen in the cell section. None of the materials tested showed appreciable hydrogen absorption in the recombiner section. Complete recrystallization occurred in all cell specimens while only Zircaloy-2, of the recombiner specimens, showed any degree of recrystallization. No explanation for this behavior can be given. A survnnary of themore » data obtained in previous recombiner loops is compared with the results of this loop. Conclusions were based on the results of three recombiner loops. Primarlly because of the hydrogen absorption data obtained in all three recombiner loops it is recommended that the zirconium and titunium materials tested not be used in environments similar to those encountered in high pressure recombiner loops. (auth)« less

  8. A dual-loop model of the human controller

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1977-01-01

    A representative model of the human controller in single-axis compensatory tracking tasks that exhibits an internal feedback loop which is not evident in single-loop models now in common use is presented. This hypothetical inner-loop involves a neuromuscular command signal derived from the time rate of change of controlled element output which is due to control activity. It is not contended that the single-loop human controller models now in use are incorrect, but that they contain an implicit but important internal loop closure, which, if explicitly considered, can account for a good deal of the adaptive nature of the human controller in a systematic manner.

  9. Closed-loop fiber optic gyroscope with homodyne detection

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Qin, BingKun; Chen, Shufen

    1996-09-01

    Interferometric fiber optic gyroscope (IFOG) has been analyzed with autocontrol theory in this paper. An open-loop IFOG system is not able to restrain the bias drift, but a closed-loop IFOG system can do it very well using negative feedback in order to suppress zero drift. The result of our theoretic analysis and computer simulation indicate that the bias drift of a closed-loop system is smaller than an open- loop one.

  10. Closed-loop control of zebrafish response using a bioinspired robotic-fish in a preference test

    PubMed Central

    Kopman, Vladislav; Laut, Jeffrey; Polverino, Giovanni; Porfiri, Maurizio

    2013-01-01

    In this paper, we study the response of zebrafish to a robotic-fish whose morphology and colour pattern are inspired by zebrafish. Experiments are conducted in a three-chambered instrumented water tank where a robotic-fish is juxtaposed with an empty compartment, and the preference of live subjects is scored as the mean time spent in the vicinity of the tank's two lateral sides. The tail-beating of the robotic-fish is controlled in real-time based on feedback from fish motion to explore a spectrum of closed-loop systems, including proportional and integral controllers. Closed-loop control systems are complemented by open-loop strategies, wherein the tail-beat of the robotic-fish is independent of the fish motion. The preference space and the locomotory patterns of fish for each experimental condition are analysed and compared to understand the influence of real-time closed-loop control on zebrafish response. The results of this study show that zebrafish respond differently to the pattern of tail-beating motion executed by the robotic-fish. Specifically, the preference and behaviour of zebrafish depend on whether the robotic-fish tail-beating frequency is controlled as a function of fish motion and how such closed-loop control is implemented. PMID:23152102

  11. Looping tracks associated with tropical cyclones approaching an isolated mountain. Part I: Essential parameters

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Chih; Lin, Yuh-Lang

    2018-06-01

    Essential parameters for making a looping track when a westward-moving tropical cyclone (TC) approaches a mesoscale mountain are investigated by examining several key nondimensional control parameters with a series of systematic, idealized numerical experiments, such as U/ Nh, V max/ Nh, U/ fL x , V max/ fR, h/ L x , and R/ L y . Here U is the uniform zonal wind velocity, N the Brunt-Vaisala frequency, h the mountain height, f the Coriolis parameter, V max the maximum tangential velocity at a radius of R from the cyclone center and L x is the halfwidth of the mountain in the east-west direction. It is found that looping tracks (a) tend to occur under small U/ Nh and U/ fL x , moderate h/ L x , and large V max/ Nh, which correspond to slow movement (leading to subgeostrophic flow associated with strong orographic blocking), moderate steepness, and strong tangential wind associated with TC vortex; (b) are often accompanied by an area of perturbation high pressure to the northeast of the mountain, which lasts for only a short period; and (c) do not require the existence of a northerly jet. The nondimensional control parameters are consolidated into a TC looping index (LI), {U2 R2 }/{V_{max 2 hLy }} , which is tested by several historical looping and non-looping typhoons approaching Taiwan's Central Mountain Range (CMR) from east or southeast. It is found that LI < 0.0125 may serve as a criterion for looping track to occur.

  12. Equilibrium models of coronal loops that involve curvature and buoyancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindman, Bradley W.; Jain, Rekha, E-mail: hindman@solarz.colorado.edu

    2013-12-01

    We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to amore » detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of the curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.« less

  13. Digital Filters for Digital Phase-locked Loops

    NASA Technical Reports Server (NTRS)

    Simon, M.; Mileant, A.

    1985-01-01

    An s/z hybrid model for a general phase locked loop is proposed. The impact of the loop filter on the stability, gain margin, noise equivalent bandwidth, steady state error and time response is investigated. A specific digital filter is selected which maximizes the overall gain margin of the loop. This filter can have any desired number of integrators. Three integrators are sufficient in order to track a phase jerk with zero steady state error at loop update instants. This filter has one zero near z = 1.0 for each integrator. The total number of poles of the filter is equal to the number of integrators plus two.

  14. Protein-mediated looping of DNA under tension requires supercoiling

    PubMed Central

    Yan, Yan; Leng, Fenfei; Finzi, Laura; Dunlap, David

    2018-01-01

    Abstract Protein-mediated DNA looping is ubiquitous in chromatin organization and gene regulation, but to what extent supercoiling or nucleoid associated proteins promote looping is poorly understood. Using the lac repressor (LacI), a paradigmatic loop-mediating protein, we measured LacI-induced looping as a function of either supercoiling or the concentration of the HU protein, an abundant nucleoid protein in Escherichia coli. Negative supercoiling to physiological levels with magnetic tweezers easily drove the looping probability from 0 to 100% in single DNA molecules under slight tension that likely exists in vivo. In contrast, even saturating (micromolar) concentrations of HU could not raise the looping probability above 30% in similarly stretched DNA or 80% in DNA without tension. Negative supercoiling is required to induce significant looping of DNA under any appreciable tension. PMID:29365152

  15. LMFBR with booster pump in pumping loop

    DOEpatents

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  16. Phase-lock loop frequency control and the dropout problem

    NASA Technical Reports Server (NTRS)

    Attwood, S.; Kline, A. J.

    1968-01-01

    Technique automatically sets the frequency of narrow band phase-lock loops within automatic lock-in-range. It presets a phase-lock loop to a desired center frequency with a closed loop electronic frequency discriminator and holds the phase-lock loop to that center frequency until lock is achieved.

  17. Visualizing Active-Site Dynamics in Single Crystals of HePTP: Opening of the WPD Loop Involves Coordinated Movement of the E Loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D Critton; L Tautz; R Page

    2011-12-31

    Phosphotyrosine hydrolysis by protein tyrosine phosphatases (PTPs) involves substrate binding by the PTP loop and closure over the active site by the WPD loop. The E loop, located immediately adjacent to the PTP and WPD loops, is conserved among human PTPs in both sequence and structure, yet the role of this loop in substrate binding and catalysis is comparatively unexplored. Hematopoietic PTP (HePTP) is a member of the kinase interaction motif (KIM) PTP family. Compared to other PTPs, KIM-PTPs have E loops that are unique in both sequence and structure. In order to understand the role of the E loopmore » in the transition between the closed state and the open state of HePTP, we identified a novel crystal form of HePTP that allowed the closed-state-to-open-state transition to be observed within a single crystal form. These structures, which include the first structure of the HePTP open state, show that the WPD loop adopts an 'atypically open' conformation and, importantly, that ligands can be exchanged at the active site, which is critical for HePTP inhibitor development. These structures also show that tetrahedral oxyanions bind at a novel secondary site and function to coordinate the PTP, WPD, and E loops. Finally, using both structural and kinetic data, we reveal a novel role for E-loop residue Lys182 in enhancing HePTP catalytic activity through its interaction with Asp236 of the WPD loop, providing the first evidence for the coordinated dynamics of the WPD and E loops in the catalytic cycle, which, as we show, is relevant to multiple PTP families.« less

  18. Layout Slam with Model Based Loop Closure for 3d Indoor Corridor Reconstruction

    NASA Astrophysics Data System (ADS)

    Baligh Jahromi, A.; Sohn, G.; Jung, J.; Shahbazi, M.; Kang, J.

    2018-05-01

    In this paper, we extend a recently proposed visual Simultaneous Localization and Mapping (SLAM) techniques, known as Layout SLAM, to make it robust against error accumulations, abrupt changes of camera orientation and miss-association of newly visited parts of the scene to the previously visited landmarks. To do so, we present a novel technique of loop closing based on layout model matching; i.e., both model information (topology and geometry of reconstructed models) and image information (photometric features) are used to address a loop-closure detection. The advantages of using the layout-related information in the proposed loop-closing technique are twofold. First, it imposes a metric constraint on the global map consistency and, thus, adjusts the mapping scale drifts. Second, it can reduce matching ambiguity in the context of indoor corridors, where the scene is homogenously textured and extracting sufficient amount of distinguishable point features is a challenging task. To test the impact of the proposed technique on the performance of Layout SLAM, we have performed the experiments on wide-angle videos captured by a handheld camera. This dataset was collected from the indoor corridors of a building at York University. The obtained results demonstrate that the proposed method successfully detects the instances of loops while producing very limited trajectory errors.

  19. Collider study on the loop-induced dark matter mediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Yuhsin, E-mail: yhtsai@umd.edu

    2016-06-21

    Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For DM couplings involving light mediators, especially for the loop-mediated interactions, a meaningful interpretation of the results requires to go beyond effective field theory. In this note we discuss the study of the magnetic dipole interacting DM, focusing on a model with anarchic dark flavor structure. By including the momentum-dependent form factors that mediate the coupling – given by the Dark Penguin – in collider processes, we study bounds from monophoton, diphoton, and non-pointing photon searches at the LHC. We also compare our results tomore » constraints from the direct detection experiments.« less

  20. Current systems of coronal loops in 3D MHD simulations

    NASA Astrophysics Data System (ADS)

    Warnecke, J.; Chen, F.; Bingert, S.; Peter, H.

    2017-11-01

    Aims: We study the magnetic field and current structure associated with a coronal loop. Through this we investigate to what extent the assumptions of a force-free magnetic field break down and where they might be justified. Methods: We analyze a three-dimensional (3D) magnetohydrodynamic (MHD) model of the solar corona in an emerging active region with the focus on the structure of the forming coronal loops. The lower boundary of this simulation is taken from a model of an emerging active region. As a consequence of the emerging magnetic flux and the horizontal motions at the surface a coronal loop forms self-consistently. We investigate the current density along magnetic field lines inside (and outside) this loop and study the magnetic and plasma properties in and around this loop. The loop is defined as the bundle of field lines that coincides with enhanced emission in extreme UV. Results: We find that the total current along the emerging loop changes its sign from being antiparallel to parallel to the magnetic field. This is caused by the inclination of the loop together with the footpoint motion. Around the loop, the currents form a complex non-force-free helical structure. This is directly related to a bipolar current structure at the loop footpoints at the base of the corona and a local reduction of the background magnetic field (I.e., outside the loop) caused by the plasma flow into and along the loop. Furthermore, the locally reduced magnetic pressure in the loop allows the loop to sustain a higher density, which is crucial for the emission in extreme UV. The action of the flow on the magnetic field hosting the loop turns out to also be responsible for the observed squashing of the loop. Conclusions: The complex magnetic field and current system surrounding it can only be modeled in 3D MHD models where the magnetic field has to balance the plasma pressure. A one-dimensional coronal loop model or a force-free extrapolation cannot capture the current system

  1. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control. Part 2; Validation Results

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem

    2010-01-01

    Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, Goddard Space Fight Center has conducted a Thermal Loop experiment to advance the maturity of the Thermal Loop technology from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. The thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for the TRL 4 and TRL 5 validations, respectively, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. The MLHP demonstrated excellent performance during experimental tests and the analytical model predictions agreed very well with experimental data. All success criteria at various TRLs were met. Hence, the Thermal Loop technology has reached a TRL of 6. This paper presents the validation results, both experimental and analytical, of such a technology development effort.

  2. Sweeping Arches and Loops [video

    NASA Image and Video Library

    2014-07-10

    Two active regions with their intense magnetic fields produced towering arches and spiraling coils of solar loops above them (June 29 - July 1, 2014) as they rotated into view. When viewed in extreme ultraviolet light, magnetic field lines are revealed by charged particles that travel along them. These active regions appear as dark sunspots when viewed in filtered light. Note the small blast in the upper of the two major active regions, followed by more coils of loops as the region reorganizes itself. The still was taken on June 30 at 10:33 UT. Credit: NASA/Solar Dynamics Observatory Two active regions with their intense magnetic fields produced towering arches and spiraling coils of solar loops above them (June 29 - July 1, 2014) as they rotated into view. When viewed in extreme ultraviolet light, magnetic field lines are revealed by charged particles that travel along them. These active regions appear as dark sunspots when viewed in filtered light. Note the small blast in the upper of the two major active regions, followed by more coils of loops as the region reorganizes itself. The still was taken on June 30 at 10:33 UT. Credit: Solar Dynamics Observatory/NASA.

  3. Numerical analysis of stress effects on Frank loop evolution during irradiation in austenitic Fe&z.sbnd;Cr&z.sbnd;Ni alloy

    NASA Astrophysics Data System (ADS)

    Tanigawa, Hiroyasu; Katoh, Yutai; Kohyama, Akira

    1995-08-01

    Effects of applied stress on early stages of interstitial type Frank loop evolution were investigated by both numerical calculation and irradiation experiments. The final objective of this research is to propose a comprehensive model of complex stress effects on microstructural evolution under various conditions. In the experimental part of this work, the microstructural analysis revealed that the differences in resolved normal stress caused those in the nucleation rates of Frank loops on {111} crystallographic family planes, and that with increasing external applied stress the total nucleation rate of Frank loops was increased. A numerical calculation was carried out primarily to evaluate the validity of models of stress effects on nucleation processes of Frank loop evolution. The calculation stands on rate equuations which describe evolution of point defects, small points defect clusters and Frank loops. The rate equations of Frank loop evolution were formulated for {111} planes, considering effects of resolved normal stress to clustering processes of small point defects and growth processes of Frank loops, separately. The experimental results and the predictions from the numerical calculation qualitatively coincided well with each other.

  4. Feedback loop compensates for rectifier nonlinearity

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Signal processing circuit with two negative feedback loops rectifies two sinusoidal signals which are 180 degrees out of phase and produces a single full-wave rectified output signal. Each feedback loop incorporates a feedback rectifier to compensate for the nonlinearity of the circuit.

  5. A class of optimum digital phase locked loops

    NASA Technical Reports Server (NTRS)

    Kumar, R.; Hurd, W. J.

    1986-01-01

    This paper presents a class of optimum digital filters for digital phase locked loops, for the important case in which the maximum update rate of the loop filter and numerically controlled oscillator (NCO) is limited. This case is typical when the loop filter is implemented in a microprocessor. In these situations, pure delay is encountered in the loop transfer function and thus the stability and gain margin of the loop are of crucial interest. The optimum filters designed for such situations are evaluated in terms of their gain margin for stability, dynamic error, and steady-state error performance. For situations involving considerably high phase dynamics an adaptive and programmable implementation is also proposed to obtain an overall optimum strategy.

  6. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1996-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA-High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high order characteristics of the system. In this paper, only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles at attack : 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  7. Functional Loop Dynamics of the Streptavidin-Biotin Complex

    PubMed Central

    Song, Jianing; Li, Yongle; Ji, Changge; Zhang, John Z. H.

    2015-01-01

    Accelerated molecular dynamics (aMD) simulation is employed to study the functional dynamics of the flexible loop3-4 in the strong-binding streptavidin-biotin complex system. Conventional molecular (cMD) simulation is also performed for comparison. The present study reveals the following important properties of the loop dynamics: (1) The transition of loop3-4 from open to closed state is observed in 200 ns aMD simulation. (2) In the absence of biotin binding, the open-state streptavidin is more stable, which is consistent with experimental evidences. The free energy (ΔG) difference is about 5 kcal/mol between two states. But with biotin binding, the closed state is more stable due to electrostatic and hydrophobic interactions between the loop3-4 and biotin. (3) The closure of loop3-4 is concerted to the stable binding of biotin to streptavidin. When the loop3-4 is in its open-state, biotin moves out of the binding pocket, indicating that the interactions between the loop3-4 and biotin are essential in trapping biotin in the binding pocket. (4) In the tetrameric streptavidin system, the conformational change of the loop3-4 in each monomer is independent of each other. That is, there is no cooperative binding for biotin bound to the four subunits of the tetramer. PMID:25601277

  8. Damped transverse oscillations of interacting coronal loops

    NASA Astrophysics Data System (ADS)

    Soler, Roberto; Luna, Manuel

    2015-10-01

    Damped transverse oscillations of magnetic loops are routinely observed in the solar corona. This phenomenon is interpreted as standing kink magnetohydrodynamic waves, which are damped by resonant absorption owing to plasma inhomogeneity across the magnetic field. The periods and damping times of these oscillations can be used to probe the physical conditions of the coronal medium. Some observations suggest that interaction between neighboring oscillating loops in an active region may be important and can modify the properties of the oscillations. Here we theoretically investigate resonantly damped transverse oscillations of interacting nonuniform coronal loops. We provide a semi-analytic method, based on the T-matrix theory of scattering, to compute the frequencies and damping rates of collective oscillations of an arbitrary configuration of parallel cylindrical loops. The effect of resonant damping is included in the T-matrix scheme in the thin boundary approximation. Analytic and numerical results in the specific case of two interacting loops are given as an application.

  9. Two AFC Loops For Low CNR And High Dynamics

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami M.; Aguirre, Sergio

    1992-01-01

    Two alternative digital automatic-frequency-control (AFC) loops proposed to acquire (or reacquire) and track frequency of received carrier radio signal. Intended for use where carrier-to-noise ratios (CNR's) low and carrier frequency characterized by high Doppler shift and Doppler rate because of high relative speed and acceleration, respectively, between transmitter and receiver. Either AFC loops used in place of phase-locked loop. New loop concepts integrate ideas from classical spectrum-estimation, digital-phase-locked-loop, and Kalman-Filter theories.

  10. A chicken intestinal ligated loop model to study the virulence of Clostridium perfringens isolates recovered from antibiotic-free chicken flocks.

    PubMed

    Parent, Eric; Archambault, Marie; Charlebois, Audrey; Bernier-Lachance, Jocelyn; Boulianne, Martine

    2017-04-01

    Necrotic enteritis (NE) is a major problem in antibiotic-free (ABF) chicken flocks and specific strains of Clostridium perfringens are known to induce NE. The objective of this study was to develop a chicken intestinal ligated loop model in order to compare the virulence of various C. perfringens strains recovered from consecutive ABF flocks with and without NE. Intestinal loops were surgically prepared in 10 anaesthetized specific-pathogen-free chickens and alternately inoculated with C. perfringens isolates or brain heart infusion (BHI) media. Histological lesion scoring was performed for each loop. All strains from NE-affected flocks induced histological lesions compatible with NE whereas inoculation of loops with a commensal C. perfringens strain or BHI did not. Among inoculated strains, CP0994 (netB-positive and cpb2-positive) and CP-2003-1256 (netB-positive) demonstrated mean histological lesion scores significantly higher (P < 0.01) than those obtained with a commensal strain or BHI whereas strain CP1073 (netB-negative and cpb2-positive) induced intestinal lesions without significantly higher scores. In loops where villi were colonized by Gram-positive rods, significantly higher (P < 0.01) mean histological lesion scores were observed. This result supports the hypothesis that colonization of the intestinal mucosa by C. perfringens is a critical step in the pathogenesis of NE. Finally, we demonstrated the importance of controlling virulent C. perfringens strains in ABF chicken flocks as a highly virulent strain can be present in consecutive flocks with NE and possibly affect multiple flocks.

  11. Motor loop dysfunction causes impaired cognitive sequencing in patients suffering from Parkinson's disease.

    PubMed

    Schönberger, Anna R; Hagelweide, Klara; Pelzer, Esther A; Fink, Gereon R; Schubotz, Ricarda I

    2015-10-01

    Cognitive impairment in Parkinson's disease (PD) is often attributed to dopamine deficiency in the prefrontal-basal ganglia-thalamo-cortical loops. Although recent studies point to a close interplay between motor and cognitive abilities in PD, the so-called "motor loop" connecting supplementary motor area (SMA) and putamen has been considered solely with regard to the patients' motor impairment. Our study challenges this view by testing patients with the serial prediction task (SPT), a cognitive task that requires participants to predict stimulus sequences and particularly engages premotor sites of the motor loop. We hypothesised that affection of the motor loop causes impaired SPT performance, especially when the internal sequence representation is challenged by suspension of external stimuli. As shown for motor tasks, we further expected this impairment to be compensated by hyperactivity of the lateral premotor cortex (PM). We tested 16 male PD patients ON and OFF dopaminergic medication and 16 male age-matched healthy controls in an functional Magnetic Resonance Imaging study. All subjects performed two versions of the SPT: one with on-going sequences (SPT0), and one with sequences containing non-informative wildcards (SPT+) increasing the demands on mnemonic sequence representation. Patients ON (compared to controls) revealed an impaired performance coming along with hypoactivity of SMA and putamen. Patients OFF compared to ON medication, while showing poorer performance, exhibited a significantly increased PM activity for SPT+ vs. SPT0. Furthermore, patients' performance positively co-varied with PM activity, corroborating a compensatory account. Our data reveal a contribution of the motor loop to cognitive impairment in PD, and suggest a close interplay of SMA and PM beyond motor control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. MULTI-STRAND CORONAL LOOP MODEL AND FILTER-RATIO ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourouaine, Sofiane; Marsch, Eckart, E-mail: bourouaine@mps.mpg.d

    2010-01-10

    We model a coronal loop as a bundle of seven separate strands or filaments. Each of the loop strands used in this model can independently be heated (near their left footpoints) by Alfven/ion-cyclotron waves via wave-particle interactions. The Alfven waves are assumed to penetrate the strands from their footpoints, at which we consider different wave energy inputs. As a result, the loop strands can have different heating profiles, and the differential heating can lead to a varying cross-field temperature in the total coronal loop. The simulation of Transition Region and Coronal Explorer (TRACE) observations by means of this loop modelmore » implies two uniform temperatures along the loop length, one inferred from the 171:195 filter ratio and the other from the 171:284 ratio. The reproduced flat temperature profiles are consistent with those inferred from the observed extreme-ultraviolet coronal loops. According to our model, the flat temperature profile is a consequence of the coronal loop consisting of filaments, which have different temperatures but almost similar emission measures in the cross-field direction. Furthermore, when we assume certain errors in the simulated loop emissions (e.g., due to photometric uncertainties in the TRACE filters) and use the triple-filter analysis, our simulated loop conditions become consistent with those of an isothermal plasma. This implies that the use of TRACE or EUV Imaging Telescope triple filters for observation of a warm coronal loop may not help in determining whether the cross-field isothermal assumption is satisfied or not.« less

  13. Man-in-the-control-loop simulation of manipulators

    NASA Technical Reports Server (NTRS)

    Chang, J. L.; Lin, Tsung-Chieh; Yae, K. Harold

    1989-01-01

    A method to achieve man-in-the-control-loop simulation is presented. Emerging real-time dynamics simulation suggests a potential for creating an interactive design workstation with a human operator in the control loop. The recursive formulation for multibody dynamics simulation is studied to determine requirements for man-in-the-control-loop simulation. High speed computer graphics techniques provides realistic visual cues for the simulator. Backhoe and robot arm simulations are implemented to demonstrate the capability of man-in-the-control-loop simulation.

  14. On the nature of fast sausage waves in coronal loops

    NASA Astrophysics Data System (ADS)

    Bahari, Karam

    2018-05-01

    The effect of the parameters of coronal loops on the nature of fast sausage waves are investigated. To do this three models of the coronal loop considered, a simple loop model, a current-carrying loop model and a model with radially structured density called "Inner μ" profile. For all the models the Magnetohydrodynamic (MHD) equations solved analytically in the linear approximation and the restoring forces of oscillations obtained. The ratio of the magnetic tension force to the pressure gradient force obtained as a function of the distance from the axis of the loop. In the simple loop model for all values of the loop parameters the fast sausages wave have a mixed nature of Alfvénic and fast MHD waves, in the current-carrying loop model with thick annulus and low density contrast the fast sausage waves can be considered as purely Alfvénic wave in the core region of the loop, and in the "Inner μ" profile for each set of the parameters of the loop the wave can be considered as a purely Alfvénic wave in some regions of the loop.

  15. Spring control of wire harness loops

    NASA Technical Reports Server (NTRS)

    Curcio, P. J.

    1979-01-01

    Negator spring control guides wire harness between movable and fixed structure. It prevents electrical wire harness loop from jamming or being severed as wire moves in response to changes in position of aircraft rudder. Spring-loaded coiled cable controls wire loop regardless of rudder movement.

  16. Loop corrections to primordial non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Boran, Sibel; Kahya, E. O.

    2018-02-01

    We discuss quantum gravitational loop effects to observable quantities such as curvature power spectrum and primordial non-Gaussianity of cosmic microwave background (CMB) radiation. We first review the previously shown case where one gets a time dependence for zeta-zeta correlator due to loop corrections. Then we investigate the effect of loop corrections to primordial non-Gaussianity of CMB. We conclude that, even with a single scalar inflaton, one might get a huge value for non-Gaussianity which would exceed the observed value by at least 30 orders of magnitude. Finally we discuss the consequences of this result for scalar driven inflationary models.

  17. On the relationship between personal experience, affect and risk perception: The case of climate change

    PubMed Central

    van der Linden, Sander

    2014-01-01

    Examining the conceptual relationship between personal experience, affect, and risk perception is crucial in improving our understanding of how emotional and cognitive process mechanisms shape public perceptions of climate change. This study is the first to investigate the interrelated nature of these variables by contrasting three prominent social-psychological theories. In the first model, affect is viewed as a fast and associative information processing heuristic that guides perceptions of risk. In the second model, affect is seen as flowing from cognitive appraisals (i.e., affect is thought of as a post-cognitive process). Lastly, a third, dual-process model is advanced that integrates aspects from both theoretical perspectives. Four structural equation models were tested on a national sample (N = 808) of British respondents. Results initially provide support for the “cognitive” model, where personal experience with extreme weather is best conceptualized as a predictor of climate change risk perception and, in turn, risk perception a predictor of affect. Yet, closer examination strongly indicates that at the same time, risk perception and affect reciprocally influence each other in a stable feedback system. It is therefore concluded that both theoretical claims are valid and that a dual-process perspective provides a superior fit to the data. Implications for theory and risk communication are discussed. © 2014 The Authors. European Journal of Social Psychology published by John Wiley & Sons, Ltd. PMID:25678723

  18. Influence of cross-sectional ratio of down comer to riser on the efficiency of liquid circulation in loop air lift bubble column

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tatsumi; Kawasaki, Hiroyuki; Mori, Hidetoshi

    2017-11-01

    Loop type bubble columns have good performance of liquid circulation and mass transfer by airlift effect, where the liquid circulation time is an important measurable characteristic parameter. This parameter is affected by the column construction, the aspect ratio of the column, the cross-sectional area ratio of down comer to riser (R), and the superficial gas velocity in the riser (UGR). In this work, the mean gas holdup and the liquid circulation time (TC) have been measured in four types of loop airlift type bubble column: concentric tube internal loop airlift type, rectangular internal loop airlift type, external loop airlift type, external loop airlift with separator. Air and tap water were used as gas and liquid phase, respectively. The results have demonstrated that the mean gas holdup in riser increases in proportion to UGR, and that it in downcomer changes according to the geometric parameters of each bubble column. TC has been found to conform to an empirical equation which depends on UGR and the length of draft tube or division plate in the region of 0.33 < R < 1.

  19. System identification from closed-loop data with known output feedback dynamics

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Horta, Lucas G.; Longman, Richard W.

    1992-01-01

    This paper presents a procedure to identify the open loop systems when it is operating under closed loop conditions. First, closed loop excitation data are used to compute the system open loop and closed loop Markov parameters. The Markov parameters, which are the pulse response samples, are then used to compute a state space representation of the open loop system. Two closed loop configurations are considered in this paper. The closed loop system can have either a linear output feedback controller or a dynamic output feedback controller. Numerical examples are provided to illustrate the proposed closed loop identification method.

  20. Does midwife experience affect the rate of severe perineal tears?

    PubMed

    Mizrachi, Yossi; Leytes, Sophia; Levy, Michal; Hiaev, Zvia; Ginath, Shimon; Bar, Jacob; Kovo, Michal

    2017-06-01

    Our aim was to study whether midwife experience affects the rate of severe perineal tears (3rd and 4th degree). A retrospective cohort study of all women with term vertex singleton pregnancies, who underwent normal vaginal deliveries, in a single tertiary hospital, between 2011 and 2015, was performed. Exclusion criteria were instrumental deliveries and stillbirth. All midwives used a "hands on" technique for protecting the perineum. The midwife experience at each delivery was calculated as the time interval between her first delivery and current delivery. A comparison was performed between deliveries in which midwife experience was less than 2 years (inexperienced), between 2 and 10 years (moderately experienced), and more than 10 years (highly experienced). A multivariate regression analysis was performed to assess the association between midwife experience and the incidence of severe perineal tears, after controlling for confounders. Overall, 15 146 deliveries were included. Severe perineal tears were diagnosed in 51 (0.33%) deliveries. Women delivered by inexperienced midwives had a higher rate of severe perineal tears compared with women delivered by highly experienced midwives (0.5% vs 0.2%, respectively, P=.024). On multivariate regression analysis, midwife experience was independently associated with a lower rate of severe perineal tears, after controlling for confounding factors. Each additional year of experience was associated with a 4.7% decrease in the risk of severe perineal tears (adjusted OR 0.95 [95% CI 0.91-0.99, P=.03). More experienced midwives had a lower rate of severe perineal tears, and may be preferred for managing deliveries of women at high risk for such tears. © 2017 Wiley Periodicals, Inc.

  1. Browns Ferry-1 single-loop operation tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    March-Leuba, J.; Wood, R.T.; Otaduy, P.J.

    1985-09-01

    This report documents the results of the stability tests performed on February 9, 1985, at the Browns Ferry Nuclear Power Plant Unit 1 under single-loop operating conditions. The observed increase in neutron noise during single-loop operation is solely due to an increase in flow noise. The Browns Ferry-1 reactor has been found to be stable in all modes of operation attained during the present tests. The most unstable test plateau corresponded to minimum recirculation pump speed in single-loop operation (test BFTP3). This operating condition had the minimum flow and maximum power-to-flow ratio. The estimated decay ratio in this plateau ismore » 0.53. The decay ratio decreased as the flow was increased during single-loop operation (down to 0.34 for test plateau BFTP6). This observation implies that the core-wide reactor stability follows the same trends in single-loop as it does in two-loop operation. Finally, no local or higher mode instabilities were found in the data taken from local power range monitors. The decay ratios estimated from the local power range monitors were not significantly different from those estimated from the average power range monitors.« less

  2. Minor loop dependence of the magnetic forces and stiffness in a PM-HTS levitation system

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Li, Chengshan

    2017-12-01

    Based upon the method of current vector potential and the critical state model of Bean, the vertical and lateral forces with different sizes of minor loop are simulated in two typical cooling conditions when a rectangular permanent magnet (PM) above a cylindrical high temperature superconductor (HTS) moves vertically and horizontally. The different values of average magnetic stiffness are calculated by various sizes of minor loop changing from 0.1 to 2 mm. The magnetic stiffness with zero traverse is obtained by using the method of linear extrapolation. The simulation results show that the extreme values of forces decrease with increasing size of minor loop. The magnetic hysteresis of the force curves also becomes small as the size of minor loop increases. This means that the vertical and lateral forces are significantly influenced by the size of minor loop because the forces intensely depend on the moving history of the PM. The vertical stiffness at every vertical position when the PM vertically descends to 1 mm is larger than that as the PM vertically ascents to 30 mm. When the PM moves laterally, the lateral stiffness during the PM passing through any horizontal position in the first time almost equal to the value during the PM passing through the same position in the second time in zero-field cooling (ZFC), however, the lateral stiffness in field cooling (FC) and the cross stiffness in ZFC and FC are significantly affected by the moving history of the PM.

  3. Transequatorial loops interconnecting McMath regions 12472 and 12474

    NASA Technical Reports Server (NTRS)

    Svestka, Z.; Krieger, A. S.; Chase, R. C.; Howard, R.

    1977-01-01

    The paper reviews the life history of one transequatorial loop in a system observed in soft X-rays for at least 1.5 days and which interconnected a newly born active region with an old region. The birth of the selected loop is discussed along with properties of the interconnected active regions, sharpening and brightening of the loop, decay of the loop system, and physical relations between the interconnected regions. It is concluded that: (1) the loop was most probably born via reconnection of magnetic-field lines extending from the two active regions toward the equator, which occurred later than 33 hr after the younger region was born; (2) the fully developed interconnection was composed of several loops, all of which appeared to be rooted in a spotless magnetic hill of preceding northern polarity but were spread over two separate spotty regions of southern polarity in the magnetically complex new region; (3) the loop electron temperature increased from 2.1 million to 3.1 million K in one to three hours when the loop system brightened; and (4) the loops became twisted during the brightening, possibly due to their rise in the corona while remaining rooted in moving magnetic features in the younger region.

  4. The role of experience in flight behaviour of Drosophila.

    PubMed

    Hesselberg, Thomas; Lehmann, Fritz-Olaf

    2009-10-01

    Experience plays a key role in the acquisition of complex motor skills in running and flight of many vertebrates. To evaluate the significance of previous experience for the efficiency of motor behaviour in an insect, we investigated the flight behaviour of the fruit fly Drosophila. We reared flies in chambers in which the animals could freely walk and extend their wings, but could not gain any flight experience. These naive animals were compared with control flies under both open- and closed-loop tethered flight conditions in a flight simulator as well as in a free-flight arena. The data suggest that the overall flight behaviour in Drosophila seems to be predetermined because both groups exhibited similar mean stroke amplitude and stroke frequency, similar open-loop responses to visual stimulation and the immediate ability to track visual objects under closed-loop feedback conditions. In short free flight bouts, peak saccadic turning rate, angular acceleration, peak horizontal speed and flight altitude were also similar in naive and control flies. However, we found significant changes in other key parameters in naive animals such as a reduction in mean horizontal speed (-23%) and subtle changes in mean turning rate (-48%). Naive flies produced 25% less yaw torque-equivalent stroke amplitudes than the controls in response to a visual stripe rotating in open loop around the tethered animal, potentially suggesting a flight-dependent adaptation of the visuo-motor gain in the control group. This change ceased after the animals experienced visual closed-loop feedback. During closed-loop flight conditions, naive flies had 53% larger differences in left and right stroke amplitude when fixating a visual object, thus steering control was less precise. We discuss two alternative hypotheses to explain our results: the ;neuronal experience' hypothesis, suggesting that there are some elements of learning and fine-tuning involved during the first flight experiences in Drosophila

  5. Experiments of Transient Condensation Heat Transfer on the Heat Flux Senor

    NASA Astrophysics Data System (ADS)

    Wang, Xuwen; Liu, Qiusheng; Zhu, Zhiqiang; Chen, Xue

    2015-09-01

    The influence of transient heat transfer in different condensation condition was investigated experimentally in the present paper. Getting condensation heat and mass transfer regularity and characteristics in space can provide theoretical basis for thermodynamic device such as heat pipes, loop heat pipes and capillary pumped loops as well as other fluid management engineering designing. In order to study the condensation process in space, an experimental study has been carried out on the ground for space experiment. The results show that transit heat transfer coefficient of film condensation is related to the condensation film width, the flow condition near the two phase interface and the pressure of the vapor and non-condensable gas in chamber. On the ground, the condensation heat flux on vertical surface is higher than it on horizontal surface. The transit heat flux of film condensation is affected by the temperature of superheated vapor, the temperature of condensation surface and non-condensable gas pressure. Condensation heat flux with vapor forced convection is many times more than it with natural convection. All of heat flux for both vapor forced convection and natural convection condensation in limited chamber declines dramatically over time. The present experiment is preliminary work for our future space experiments of the condensation and heat transfer process onboard the Chinese Spacecraft "TZ-1" to be launched in 2016.

  6. Dynamical behaviour in coronal loops

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard M.

    1986-01-01

    Rapid variability has been found in two active region coronal loops observed by the X-ray Polychromator (XRP) and the Hard X-ray Imaging Spectrometer (HXIS) onboard the Solar Maximum Mission (SMM). There appear to be surprisingly few observations of the short-time scale behavior of hot loops, and the evidence presented herein lends support to the hypothesis that coronal heating may be impulsive and driven by flaring.

  7. Dynamical behaviour in coronal loops

    NASA Astrophysics Data System (ADS)

    Haisch, Bernhard M.

    Rapid variability has been found in two active region coronal loops observed by the X-ray Polychromator (XRP) and the Hard X-ray Imaging Spectrometer (HXIS) onboard the Solar Maximum Mission (SMM). There appear to be surprisingly few observations of the short-time scale behavior of hot loops, and the evidence presented herein lends support to the hypothesis that coronal heating may be impulsive and driven by flaring.

  8. On the Loop Current Penetration into the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Weisberg, Robert H.; Liu, Yonggang

    2017-12-01

    The Gulf of Mexico Loop Current generally intrudes some distance into the Gulf of Mexico before shedding an anticyclonic eddy and retreating back to its more direct entry to exit pathway. The control of this aperiodic process remains only partially known. Here we describe the evolution of the Loop Current throughout the era of satellite altimetry, and offer a mechanistic hypothesis on Loop Current intrusion. As a complement to the known effects of Loop Current forcing on the west Florida shelf circulation, we argue that the west Florida shelf, in turn, impacts the Loop Current evolution. A Self-Organizing Map analysis shows that anomalous northward penetrations of the Loop Current into the Gulf of Mexico occur when the eastern side of Loop Current is positioned west from the southwest corner of the west Florida shelf, whereas the more direct inflow to outflow route occurs when the eastern side of the Loop Current comes in contact with the southwest corner of the west Florida shelf. In essence, we argue that the west Florida shelf anchors the Loop Current in its direct path configuration and that farther northward penetration into the Gulf of Mexico occurs when such anchoring is released. To test of this hypothesis heuristically, we estimate that the dissipation and buoyancy work due to known Loop Current forcing of the west Florida shelf circulation (when in contact with the southwest corner) may exceed the pressure work required for the Loop Current to advance against the ambient Gulf of Mexico fluid.Plain Language SummaryThe Gulf of Mexico <span class="hlt">Loop</span> Current may intrude far into the Gulf of Mexico or take a more direct entry to exit pathway. Such <span class="hlt">Loop</span> Current behaviors are described using remote observations by satellites, and a heuristic hypothesis on the control of <span class="hlt">Loop</span> Current intrusion is presented. We argue that energy dissipation and buoyancy work by the west Florida shelf circulation, when the <span class="hlt">Loop</span> Current contacts</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JPhCS.523a2061B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JPhCS.523a2061B"><span>Multi-<span class="hlt">loop</span> Integrand Reduction with Computational Algebraic Geometry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Badger, Simon; Frellesvig, Hjalte; Zhang, Yang</p> <p>2014-06-01</p> <p>We discuss recent progress in multi-<span class="hlt">loop</span> integrand reduction methods. Motivated by the possibility of an automated construction of multi-<span class="hlt">loop</span> amplitudes via generalized unitarity cuts we describe a procedure to obtain a general parameterisation of any multi-<span class="hlt">loop</span> integrand in a renormalizable gauge theory. The method relies on computational algebraic geometry techniques such as Gröbner bases and primary decomposition of ideals. We present some results for two and three <span class="hlt">loop</span> amplitudes obtained with the help of the MACAULAY2 computer algebra system and the Mathematica package BASISDET.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvD..97j5006C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvD..97j5006C"><span>Universality hypothesis breakdown at one-<span class="hlt">loop</span> order</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carvalho, P. R. S.</p> <p>2018-05-01</p> <p>We probe the universality hypothesis by analytically computing the at least two-<span class="hlt">loop</span> corrections to the critical exponents for q -deformed O (N ) self-interacting λ ϕ4 scalar field theories through six distinct and independent field-theoretic renormalization group methods and ɛ -expansion techniques. We show that the effect of q deformation on the one-<span class="hlt">loop</span> corrections to the q -deformed critical exponents is null, so the universality hypothesis is broken down at this <span class="hlt">loop</span> order. Such an effect emerges only at the two-<span class="hlt">loop</span> and higher levels, and the validity of the universality hypothesis is restored. The q -deformed critical exponents obtained through the six methods are the same and, furthermore, reduce to their nondeformed values in the appropriated limit.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990032463&hterms=vehicle+identification&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dvehicle%2Bidentification','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990032463&hterms=vehicle+identification&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dvehicle%2Bidentification"><span>Closed-<span class="hlt">Loop</span> System Identification <span class="hlt">Experience</span> for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Murphy, Patrick C.</p> <p>1999-01-01</p> <p>This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-<span class="hlt">loop</span> models for this type of aircraft can be made difficult by nonlinearities and high-order characteristics of the system. In this paper only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-<span class="hlt">loop</span> rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles of attack: 5, 20, 30, 45, and 60 degrees. Data analysis and closed-<span class="hlt">loop</span> model identification were done using frequency domain maximum likelihood. The structure of the identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the estimated closed-<span class="hlt">loop</span> rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24792385','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24792385"><span>Creating stable stem regions for <span class="hlt">loop</span> elongation in Fcabs - insights from combining yeast surface display, in silico <span class="hlt">loop</span> reconstruction and molecular dynamics simulations.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hasenhindl, Christoph; Lai, Balder; Delgado, Javier; Traxlmayr, Michael W; Stadlmayr, Gerhard; Rüker, Florian; Serrano, Luis; Oostenbrink, Chris; Obinger, Christian</p> <p>2014-09-01</p> <p>Fcabs (Fc antigen binding) are crystallizable fragments of IgG where the C-terminal structural <span class="hlt">loops</span> of the CH3 domain are engineered for antigen binding. For the design of libraries it is beneficial to know positions that will permit <span class="hlt">loop</span> elongation to increase the potential interaction surface with antigen. However, the insertion of additional <span class="hlt">loop</span> residues might impair the immunoglobulin fold. In the present work we have probed whether stabilizing mutations flanking the randomized and elongated <span class="hlt">loop</span> region improve the quality of Fcab libraries. In detail, 13 libraries were constructed having the C-terminal part of the EF <span class="hlt">loop</span> randomized and carrying additional residues (1, 2, 3, 5 or 10, respectively) in the absence and presence of two flanking mutations. The latter have been demonstrated to increase the thermal stability of the CH3 domain of the respective solubly expressed proteins. Assessment of the stability of the libraries expressed on the surface of yeast cells by flow cytometry demonstrated that <span class="hlt">loop</span> elongation was considerably better tolerated in the stabilized libraries. By using in silico <span class="hlt">loop</span> reconstruction and mimicking randomization together with MD simulations the underlying molecular dynamics were investigated. In the presence of stabilizing stem residues the backbone flexibility of the engineered EF <span class="hlt">loop</span> as well as the fluctuation between its accessible conformations were decreased. In addition the CD <span class="hlt">loop</span> (but not the AB <span class="hlt">loop</span>) and most of the framework regions were rigidified. The obtained data are discussed with respect to the design of Fcabs and available data on the relation between flexibility and affinity of CDR <span class="hlt">loops</span> in Ig-like molecules. Copyright © 2014. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSH31B2569Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSH31B2569Y"><span>Fine flow structures in the transition region small-scale <span class="hlt">loops</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yan, L.; Peter, H.; He, J.; Wei, Y.</p> <p>2016-12-01</p> <p>The observation and model have suggested that the transition region EUV emission from the quiet sun region is contributed by very small scale <span class="hlt">loops</span> which have not been resolved. Recently, the observation from IRIS has revealed that this kind of small scale <span class="hlt">loops</span>. Based on the high resolution spectral and imaging observation from IRIS, much more detail work needs to be done to reveal the fine flow features in this kind of <span class="hlt">loop</span> to help us understand the <span class="hlt">loop</span> heating. Here, we present a detail statistical study of the spatial and temporal evolution of Si IV line profiles of small scale <span class="hlt">loops</span> and report the spectral features: there is a transition from blue (red) wing enhancement dominant to red (blue) wing enhancement dominant along the cross-section of the <span class="hlt">loop</span>, which is independent of time. This feature appears as the <span class="hlt">loop</span> appear and disappear as the <span class="hlt">loop</span> un-visible. This is probably the signature of helical flow along the <span class="hlt">loop</span>. The result suggests that the brightening of this kind of <span class="hlt">loop</span> is probably due to the current dissipation heating in the twisted magnetic field flux tube.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JPCM...23K4104L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JPCM...23K4104L"><span><span class="hlt">Loop</span> formation of microtubules during gliding at high density</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Lynn; Tüzel, Erkan; Ross, Jennifer L.</p> <p>2011-09-01</p> <p>The microtubule cytoskeleton, including the associated proteins, forms a complex network essential to multiple cellular processes. Microtubule-associated motor proteins, such as kinesin-1, travel on microtubules to transport membrane bound vesicles across the crowded cell. Other motors, such as cytoplasmic dynein and kinesin-5, are used to organize the cytoskeleton during mitosis. In order to understand the self-organization processes of motors on microtubules, we performed filament-gliding assays with kinesin-1 motors bound to the cover glass with a high density of microtubules on the surface. To observe microtubule organization, 3% of the microtubules were fluorescently labeled to serve as tracers. We find that microtubules in these assays are not confined to two dimensions and can cross one other. This causes microtubules to align locally with a relatively short correlation length. At high density, this local alignment is enough to create 'intersections' of perpendicularly oriented groups of microtubules. These intersections create vortices that cause microtubules to form <span class="hlt">loops</span>. We characterize the radius of curvature and time duration of the <span class="hlt">loops</span>. These different behaviors give insight into how crowded conditions, such as those in the cell, might <span class="hlt">affect</span> motor behavior and cytoskeleton organization.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994IJSSC..29...67E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994IJSSC..29...67E"><span>Multifrequency zero-jitter delay-locked <span class="hlt">loop</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Efendovich, Avner; Afek, Yachin; Sella, Coby; Bikowsky, Zeev</p> <p>1994-01-01</p> <p>The approach of an all-digital phase locked <span class="hlt">loop</span> is used in this delay-locked <span class="hlt">loop</span> circuit. This design is designated to a system with two processing units, a master CPU and a slave system chip, that share the same bus. It allows maximum utilization of the bus, as the minimal skew between the clocks of the two components significantly reduces idle periods, and also set-up and hold times. Changes in the operating frequency are possible, without falling out of synchronization. Due to the special lead-lag phase detector, the jitter of the clock is zero, when the <span class="hlt">loop</span> is locked, under any working conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1413920-polyakov-loop-correlator-perturbation-theory','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1413920-polyakov-loop-correlator-perturbation-theory"><span>Polyakov <span class="hlt">loop</span> correlator in perturbation theory</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Berwein, Matthias; Brambilla, Nora; Petreczky, Péter; ...</p> <p>2017-07-25</p> <p>We study the Polyakov <span class="hlt">loop</span> correlator in the weak coupling expansion and show how the perturbative series re-exponentiates into singlet and adjoint contributions. We calculate the order g 7 correction to the Polyakov <span class="hlt">loop</span> correlator in the short distance limit. We show how the singlet and adjoint free energies arising from the re-exponentiation formula of the Polyakov <span class="hlt">loop</span> correlator are related to the gauge invariant singlet and octet free energies that can be defined in pNRQCD, namely we find that the two definitions agree at leading order in the multipole expansion, but differ at first order in the quark-antiquark distance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1413920-polyakov-loop-correlator-perturbation-theory','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1413920-polyakov-loop-correlator-perturbation-theory"><span>Polyakov <span class="hlt">loop</span> correlator in perturbation theory</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Berwein, Matthias; Brambilla, Nora; Petreczky, Péter</p> <p></p> <p>We study the Polyakov <span class="hlt">loop</span> correlator in the weak coupling expansion and show how the perturbative series re-exponentiates into singlet and adjoint contributions. We calculate the order g 7 correction to the Polyakov <span class="hlt">loop</span> correlator in the short distance limit. We show how the singlet and adjoint free energies arising from the re-exponentiation formula of the Polyakov <span class="hlt">loop</span> correlator are related to the gauge invariant singlet and octet free energies that can be defined in pNRQCD, namely we find that the two definitions agree at leading order in the multipole expansion, but differ at first order in the quark-antiquark distance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29327083','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29327083"><span>R-<span class="hlt">loops</span>: targets for nuclease cleavage and repeat instability.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Freudenreich, Catherine H</p> <p>2018-01-11</p> <p>R-<span class="hlt">loops</span> form when transcribed RNA remains bound to its DNA template to form a stable RNA:DNA hybrid. Stable R-<span class="hlt">loops</span> form when the RNA is purine-rich, and are further stabilized by DNA secondary structures on the non-template strand. Interestingly, many expandable and disease-causing repeat sequences form stable R-<span class="hlt">loops</span>, and R-<span class="hlt">loops</span> can contribute to repeat instability. Repeat expansions are responsible for multiple neurodegenerative diseases, including Huntington's disease, myotonic dystrophy, and several types of ataxias. Recently, it was found that R-<span class="hlt">loops</span> at an expanded CAG/CTG repeat tract cause DNA breaks as well as repeat instability (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Two factors were identified as causing R-<span class="hlt">loop</span>-dependent breaks at CAG/CTG tracts: deamination of cytosines and the MutLγ (Mlh1-Mlh3) endonuclease, defining two new mechanisms for how R-<span class="hlt">loops</span> can generate DNA breaks (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Following R-<span class="hlt">loop</span>-dependent nicking, base excision repair resulted in repeat instability. These results have implications for human repeat expansion diseases and provide a paradigm for how RNA:DNA hybrids can cause genome instability at structure-forming DNA sequences. This perspective summarizes mechanisms of R-<span class="hlt">loop</span>-induced fragility at G-rich repeats and new links between DNA breaks and repeat instability.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21316295-wilson-loops-qcd-string-scattering-amplitudes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21316295-wilson-loops-qcd-string-scattering-amplitudes"><span>Wilson <span class="hlt">loops</span> and QCD/string scattering amplitudes</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Makeenko, Yuri; Olesen, Poul; Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen O</p> <p>2009-07-15</p> <p>We generalize modern ideas about the duality between Wilson <span class="hlt">loops</span> and scattering amplitudes in N=4 super Yang-Mills theory to large N QCD by deriving a general relation between QCD meson scattering amplitudes and Wilson <span class="hlt">loops</span>. We then investigate properties of the open-string disk amplitude integrated over reparametrizations. When the Wilson-<span class="hlt">loop</span> is approximated by the area behavior, we find that the QCD scattering amplitude is a convolution of the standard Koba-Nielsen integrand and a kernel. As usual poles originate from the first factor, whereas no (momentum-dependent) poles can arise from the kernel. We show that the kernel becomes a constant whenmore » the number of external particles becomes large. The usual Veneziano amplitude then emerges in the kinematical regime, where the Wilson <span class="hlt">loop</span> can be reliably approximated by the area behavior. In this case, we obtain a direct duality between Wilson <span class="hlt">loops</span> and scattering amplitudes when spatial variables and momenta are interchanged, in analogy with the N=4 super Yang-Mills theory case.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20377660','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20377660"><span>Closing the <span class="hlt">loop</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dassau, E; Atlas, E; Phillip, M</p> <p>2010-02-01</p> <p>The dream of closing the <span class="hlt">loop</span> is actually the dream of creating an artificial pancreas and freeing the patients from being involved with the care of their own diabetes. Insulin-dependent diabetes (type 1) is a chronic incurable disease which requires constant therapy without the possibility of any 'holidays' or insulin-free days. It means that patients have to inject insulin every day of their life, several times per day, and in order to do it safely they also have to measure their blood glucose levels several times per day. Patients need to plan their meals, their physical activities and their insulin regime - there is only very small room for spontaneous activities. This is why the desire for an artificial pancreas is so strong despite the fact that it will not cure the diabetic patients. Attempts to develop a closed-<span class="hlt">loop</span> system started in the 1960s but never got to a clinical practical stage of development. In recent years the availability of continuous glucose sensors revived those efforts and stimulated the clinician and researchers to believe that closing the <span class="hlt">loop</span> might be possible nowadays. Many papers have been published over the years describing several different ideas on how to close the <span class="hlt">loop</span>. Most of the suggested systems have a sensing arm that measures the blood glucose repeatedly or continuously, an insulin delivery arm that injects insulin upon command and a computer that makes the decisions of when and how much insulin to deliver. The differences between the various published systems in the literature are mainly in their control algorithms. However, there are also differences related to the method and site of glucose measurement and insulin delivery. SC glucose measurements and insulin delivery are the most studied option but other combinations of insulin measurements and glucose delivery including intravascular and intraperitoneal (IP) are explored. We tried to select recent publications that we believe had influenced and inspired people interested</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983STIN...8330814G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983STIN...8330814G"><span>Buoyancy-induced flow studies in thermally stratified <span class="hlt">loop</span> of a double-envelope building</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghaffari, H. T.; Jones, R. F.</p> <p></p> <p>There is a wide interest in the flow studies of thermally stratified <span class="hlt">loops</span> of double-envelope houses. These <span class="hlt">loops</span> primarily serve to hold a moderate air temperature around the inner buildings, and to reduce thermal losses and air movements into the house by diminishing infiltration. Further, if the thermal mechanism of the buildng is well designed, it may be possible to cause a solar-assisted, buoyancy-induced cycling of the flow during the day and a probable reverse cycling during the night. The benefits of this flow pattern are a possible storage of heat in the ground level of the crawl space during the day, its retrieval at night, and a better mixing of warmed air in various zones of the <span class="hlt">loop</span>. The double-envelope section of the buildng was monitored from October 1981 to October 1982. Data collected were debugged and the monitoring system was adjusted and calibrated. Results from this <span class="hlt">experiment</span> concerning significant local flows are analyzed. Hence, a validation of the conceptual thermal mechanism is obtained, and empirical and analytical assessments are compared.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6686153-model-loop-voltage-reversed-field-pinches','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6686153-model-loop-voltage-reversed-field-pinches"><span>Model for the <span class="hlt">loop</span> voltage of reversed field pinches</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jarboe, T.R.; Alper, B.</p> <p>1987-04-01</p> <p>A simple model is presented that uses the concept of helicity balance to predict the toroidal <span class="hlt">loop</span> voltage of reversed field pinches (RFP's). Data from the RFP's at Culham (Plasma Phys. Controlled Fusion 27, 1307 (1985)) are used to calibrate and verify the model. The model indicates that most of the helicity dissipation occurs in edge regions that are outside the limiters or in regions where field lines contact the walls. The value of this new interpretation to future RFP and spheromak <span class="hlt">experiments</span> is discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910035220&hterms=digital+phase+locked+loop&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddigital%2Bphase%2Blocked%2Bloop','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910035220&hterms=digital+phase+locked+loop&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddigital%2Bphase%2Blocked%2Bloop"><span>An estimator-predictor approach to PLL <span class="hlt">loop</span> filter design</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Statman, Joseph I.; Hurd, William J.</p> <p>1990-01-01</p> <p>The design of digital phase locked <span class="hlt">loops</span> (DPLL) using estimation theory concepts in the selection of a <span class="hlt">loop</span> filter is presented. The key concept, that the DPLL closed-<span class="hlt">loop</span> transfer function is decomposed into an estimator and a predictor, is discussed. The estimator provides recursive estimates of phase, frequency, and higher-order derivatives, and the predictor compensates for the transport lag inherent in the <span class="hlt">loop</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MAR.M1308K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MAR.M1308K"><span>Open <span class="hlt">Loop</span> Structure Low Cost Integrated Differential Inductive Micro Magnetic Volumetric Bio-Sensors</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khodadadi, Mohammad; Chang, Long; Litvinov, Dimitri</p> <p></p> <p>This investigation proposes a study, model, simulate and <span class="hlt">experiment</span> innovative very low cost Magnetic induction biosensor for point of care diagnostics. The biosensor consists of 2 ``semi-<span class="hlt">loops</span>'' in a micro fluidic channel, one as a sensor and one as a reference, the design takes advantage of microfabrication processes to produce more precise structures to improve sensitivity. Besides the attractively low cost, this biosensor has many advantages. Since the detector is basically a shaped wire, it is inherently robust and reliable. Typical errors in fabricating the wires will not <span class="hlt">affect</span> its performance and it is sensing volumetric, unlike GMR-based sensors used in biosensor systems that boast single particle detection. Due to small dimensions the sensors do not need to be calibrated. This sensor also has a large range of detection since its sensitivity is proportional to the excitation frequency. Being able to sense Magnetic nano particles in the volume is an advantage in term of trapping MNPs and sensitivity and functionality. Basically, this new brilliant design, fill the gap between the fabricated sensors and hand wounded sensors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820054524&hterms=vlahos&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dvlahos','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820054524&hterms=vlahos&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dvlahos"><span>Electron acceleration and radiation signatures in <span class="hlt">loop</span> coronal transients</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vlahos, L.; Gergely, T. E.; Papadopoulos, K.</p> <p>1982-01-01</p> <p>It is proposed that in <span class="hlt">loop</span> coronal transients an erupting <span class="hlt">loop</span> moves away from the solar surface, with a velocity exceeding the local Alfven speed, pushing against the overlying magnetic fields and driving a shock in the front of the moving part of the <span class="hlt">loop</span>. Lower hybrid waves are excited at the shock front and propagate radially toward the center of the <span class="hlt">loop</span> with phase velocity along the magnetic field that exceeds the thermal velocity. The lower hybrid waves stochastically accelerate the tail of the electron distribution inside the <span class="hlt">loop</span>. The manner in which the accelerated electrons are trapped in the moving <span class="hlt">loop</span> are discussed, and their radiation signature is estimated. It is suggested that plasma radiation can explain the power observed in stationary and moving type IV bursts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130003201','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130003201"><span>Coronal <span class="hlt">Loop</span> Evolution Observed with AIA and Hi-C</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mulu-Moore, Fana; Winebarger, A.; Cirtain, J.; Kobayashi, K.; Korreck, K.; Golub, L.; Kuzin. S.; Walsh, R.; DeForest, C.; DePontieu, B.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20130003201'); toggleEditAbsImage('author_20130003201_show'); toggleEditAbsImage('author_20130003201_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20130003201_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20130003201_hide"></p> <p>2012-01-01</p> <p>Despite much progress toward understanding the dynamics of the solar corona, the physical properties of coronal <span class="hlt">loops</span> are not yet fully understood. Recent investigations and observations from different instruments have yielded contradictory results about the true physical properties of coronal <span class="hlt">loops</span>. In the past, the evolution of <span class="hlt">loops</span> has been used to infer the <span class="hlt">loop</span> substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this poster we discuss the first results of <span class="hlt">loop</span> analysis comparing AIA and Hi-C data. We find signatures of cooling in a pixel selected along a <span class="hlt">loop</span> structure in the AIA multi-filter observations. However, unlike previous studies, we find that the cooling time is much longer than the draining time. This is inconsistent with previous cooling models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24132544','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24132544"><span>The play is now reality: <span class="hlt">affective</span> turns, narrative struggles, and theorizing emotion as practical <span class="hlt">experience</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kumar, Anita</p> <p>2013-12-01</p> <p>Discursive approaches to subjectivity have been critiqued most recently for its dismissal of a living body that moves and senses. While identity as performative has proven invaluable to contemporary cultural theory for its dynamic conceptualization of power in everyday practice, the emergence of what some scholars have named an "<span class="hlt">affective</span> turn" has prompted calls for configuring the body as more than a complex set of significations, but also a vibrant energy field in perpetual emergence. Centered on an enacted story created by two clinical therapists and two South Asian immigrant domestic violence survivors during a therapeutic support group session, this paper brings the <span class="hlt">affective</span> turn into dialog with narrative theory. I juxtapose two different readings of this clinical "performance." One interpretation recognizes <span class="hlt">affect</span> theory's value for highlighting sensation and the virtual in moments of transformation. Nonetheless I argue it overlooks a lived history. Thus, using a specifically dramatistic approach to narrative, the second analysis stresses the importance of personal <span class="hlt">experience</span> and meaning-making in strengthening the link between <span class="hlt">affect</span> and subjectivity. In doing so, the case study also argues for emotion's critical link to practical and moral <span class="hlt">experience</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040171672','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040171672"><span>Hardware-In-The-<span class="hlt">Loop</span> Testing of Continuous Control Algorithms for a Precision Formation Flying Demonstration Mission</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Naasz, Bo J.; Burns, Richard D.; Gaylor, David; Higinbotham, John</p> <p>2004-01-01</p> <p>A sample mission sequence is defined for a low earth orbit demonstration of Precision Formation Flying (PFF). Various guidance navigation and control strategies are discussed for use in the PFF <span class="hlt">experiment</span> phases. A sample PFF <span class="hlt">experiment</span> is implemented and tested in a realistic Hardware-in-the-<span class="hlt">Loop</span> (HWIL) simulation using the Formation Flying Test Bed (FFTB) at NASA's Goddard Space Flight Center.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26835637','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26835637"><span>Analysis of dead zone sources in a closed-<span class="hlt">loop</span> fiber optic gyroscope.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chong, Kyoung-Ho; Choi, Woo-Seok; Chong, Kil-To</p> <p>2016-01-01</p> <p>Analysis of the dead zone is among the intensive studies in a closed-<span class="hlt">loop</span> fiber optic gyroscope. In a dead zone, a gyroscope cannot detect any rotation and produces a zero bias. In this study, an analysis of dead zone sources is performed in simulation and <span class="hlt">experiments</span>. In general, the problem is mainly due to electrical cross coupling and phase modulation drift. Electrical cross coupling is caused by interference between modulation voltage and the photodetector. The cross-coupled signal produces spurious gyro bias and leads to a dead zone if it is larger than the input rate. Phase modulation drift as another dead zone source is due to the electrode contamination, the piezoelectric effect of the LiNbO3 substrate, or to organic fouling. This modulation drift lasts for a short or long period of time like a lead-lag filter response and produces gyro bias error, noise spikes, or dead zone. For a more detailed analysis, the cross-coupling effect and modulation phase drift are modeled as a filter and are simulated in both the open-<span class="hlt">loop</span> and closed-<span class="hlt">loop</span> modes. The sources of dead zone are more clearly analyzed in the simulation and experimental results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5712997','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5712997"><span>Combining a Disturbance Observer with Triple-<span class="hlt">Loop</span> Control Based on MEMS Accelerometers for Line-of-Sight Stabilization</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Huang, Yongmei; Deng, Chao; Ren, Wei; Wu, Qiongyan</p> <p>2017-01-01</p> <p>In the CCD-based fine tracking optical system (FTOS), the whole disturbance suppression ability (DSA) is the product of the inner <span class="hlt">loop</span> and outer position <span class="hlt">loop</span>. Traditionally, high sampling fiber-optic gyroscopes (FOGs) are added to the platform to stabilize the line-of-sight (LOS). However, because of the FOGs’ high cost and relatively big volume relative to the back narrow space of small rotating mirrors, we attempt in this work to utilize a cheaper and smaller micro-electro-mechanical system (MEMS) accelerometer to build the inner <span class="hlt">loop</span>, replacing the FOG. Unfortunately, since accelerometers are susceptible to the low-frequency noise, according to the classical way of using accelerometers, the crucial low-frequency DSA of the system is insufficient. To solve this problem, in this paper, we propose an approach based on MEMS accelerometers combining disturbance observer (DOB) with triple-<span class="hlt">loop</span> control (TLC) in which the composite velocity <span class="hlt">loop</span> is built by acceleration integration and corrected by CCD. The DOB is firstly used to reform the platform, greatly improving the medium-frequency DSA. Then the composite velocity <span class="hlt">loop</span> exchanges a part of medium-frequency performance for the low-frequency DSA. A detailed analysis and <span class="hlt">experiments</span> verify the proposed method has a better DSA than the traditional way and could totally substitute FOG in the LOS stabilization. PMID:29149050</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740000274','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740000274"><span>Digital second-order phase-locked <span class="hlt">loop</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Holmes, J. K.; Carl, C. C.; Tagnelia, C. R.</p> <p>1975-01-01</p> <p>Actual tests with second-order digital phase-locked <span class="hlt">loop</span> at simulated relative Doppler shift of 1x0.0001 produced phase lock with timing error of 6.5 deg and no appreciable Doppler bias. <span class="hlt">Loop</span> thus appears to achieve subcarrier synchronization and to remove bias due to Doppler shift in range of interest.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21965362','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21965362"><span>Review article: closed-<span class="hlt">loop</span> systems in anesthesia: is there a potential for closed-<span class="hlt">loop</span> fluid management and hemodynamic optimization?</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rinehart, Joseph; Liu, Ngai; Alexander, Brenton; Cannesson, Maxime</p> <p>2012-01-01</p> <p>Closed-<span class="hlt">loop</span> (automated) controllers are encountered in all aspects of modern life in applications ranging from air-conditioning to spaceflight. Although these systems are virtually ubiquitous, they are infrequently used in anesthesiology because of the complexity of physiologic systems and the difficulty in obtaining reliable and valid feedback data from the patient. Despite these challenges, closed-<span class="hlt">loop</span> systems are being increasingly studied and improved for medical use. Two recent developments have made fluid administration a candidate for closed-<span class="hlt">loop</span> control. First, the further description and development of dynamic predictors of fluid responsiveness provides a strong parameter for use as a control variable to guide fluid administration. Second, rapid advances in noninvasive monitoring of cardiac output and other hemodynamic variables make goal-directed therapy applicable for a wide range of patients in a variety of clinical care settings. In this article, we review the history of closed-<span class="hlt">loop</span> controllers in clinical care, discuss the current understanding and limitations of the dynamic predictors of fluid responsiveness, and examine how these variables might be incorporated into a closed-<span class="hlt">loop</span> fluid administration system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29289567','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29289567"><span>The Affinity of the S9.6 Antibody for Double-Stranded RNAs Impacts the Accurate Mapping of R-<span class="hlt">Loops</span> in Fission Yeast.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hartono, Stella R; Malapert, Amélie; Legros, Pénélope; Bernard, Pascal; Chédin, Frédéric; Vanoosthuyse, Vincent</p> <p>2018-02-02</p> <p>R-<span class="hlt">loops</span>, which result from the formation of stable DNA:RNA hybrids, can both threaten genome integrity and act as physiological regulators of gene expression and chromatin patterning. To characterize R-<span class="hlt">loops</span> in fission yeast, we used the S9.6 antibody-based DRIPc-seq method to sequence the RNA strand of R-<span class="hlt">loops</span> and obtain strand-specific R-<span class="hlt">loop</span> maps at near nucleotide resolution. Surprisingly, preliminary DRIPc-seq <span class="hlt">experiments</span> identified mostly RNase H-resistant but exosome-sensitive RNAs that mapped to both DNA strands and resembled RNA:RNA hybrids (dsRNAs), suggesting that dsRNAs form widely in fission yeast. We confirmed in vitro that S9.6 can immuno-precipitate dsRNAs and provide evidence that dsRNAs can interfere with its binding to R-<span class="hlt">loops</span>. dsRNA elimination by RNase III treatment prior to DRIPc-seq allowed the genome-wide and strand-specific identification of genuine R-<span class="hlt">loops</span> that responded in vivo to RNase H levels and displayed classical features associated with R-<span class="hlt">loop</span> formation. We also found that most transcripts whose levels were altered by in vivo manipulation of RNase H levels did not form detectable R-<span class="hlt">loops</span>, suggesting that prolonged manipulation of R-<span class="hlt">loop</span> levels could indirectly alter the transcriptome. We discuss the implications of our work in the design of experimental strategies to probe R-<span class="hlt">loop</span> functions. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720045438&hterms=digital+phase+locked+loop&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddigital%2Bphase%2Blocked%2Bloop','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720045438&hterms=digital+phase+locked+loop&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddigital%2Bphase%2Blocked%2Bloop"><span>Digital simulation of hybrid <span class="hlt">loop</span> operation in RFI backgrounds.</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ziemer, R. E.; Nelson, D. R.</p> <p>1972-01-01</p> <p>A digital computer model for Monte-Carlo simulation of an imperfect second-order hybrid phase-locked <span class="hlt">loop</span> (PLL) operating in radio-frequency interference (RFI) and Gaussian noise backgrounds has been developed. Characterization of hybrid <span class="hlt">loop</span> performance in terms of cycle slipping statistics and phase error variance, through computer simulation, indicates that the hybrid <span class="hlt">loop</span> has desirable performance characteristics in RFI backgrounds over the conventional PLL or the costas <span class="hlt">loop</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3964914','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3964914"><span>Association of a peptoid ligand with the apical <span class="hlt">loop</span> of pri-miR-21 inhibits cleavage by Drosha</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Diaz, Jason P.; Chirayil, Rachel; Chirayil, Sara; Tom, Martin; Head, Katie J.; Luebke, Kevin J.</p> <p>2014-01-01</p> <p>We have found a small molecule that specifically inhibits cleavage of a precursor to the oncogenic miRNA, miR-21, by the microprocessor complex of Drosha and DGCR8. We identified novel ligands for the apical <span class="hlt">loop</span> of this precursor from a screen of 14,024 N-substituted oligoglycines (peptoids) in a microarray format. Eight distinct compounds with specific affinity were obtained, three having affinities for the targeted <span class="hlt">loop</span> in the low micromolar range and greater than 15-fold discrimination against a closely related hairpin. One of these compounds completely inhibits microprocessor cleavage of a miR-21 primary transcript at concentrations at which cleavage of another miRNA primary transcript, pri-miR-16, is little <span class="hlt">affected</span>. The apical <span class="hlt">loop</span> of pri-miR-21, placed in the context of pri-miR-16, is sufficient for inhibition of microprocessor cleavage by the peptoid. This compound also inhibits cleavage of pri-miR-21 containing the pri-miR-16 apical <span class="hlt">loop</span>, suggesting an additional site of association within pri-miR-21. The reported peptoid is the first example of a small molecule that inhibits microprocessor cleavage by binding to the apical <span class="hlt">loop</span> of a pri-miRNA. PMID:24497550</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvL.119m8101B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvL.119m8101B"><span>Nonequilibrium Chromosome <span class="hlt">Looping</span> via Molecular Slip Links</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brackley, C. A.; Johnson, J.; Michieletto, D.; Morozov, A. N.; Nicodemi, M.; Cook, P. R.; Marenduzzo, D.</p> <p>2017-09-01</p> <p>We propose a model for the formation of chromatin <span class="hlt">loops</span> based on the diffusive sliding of molecular slip links. These mimic the behavior of molecules like cohesin, which, along with the CTCF protein, stabilize <span class="hlt">loops</span> which contribute to organizing the genome. By combining 3D Brownian dynamics simulations and 1D exactly solvable nonequilibrium models, we show that diffusive sliding is sufficient to account for the strong bias in favor of convergent CTCF-mediated chromosome <span class="hlt">loops</span> observed experimentally. We also find that the diffusive motion of multiple slip links along chromatin is rectified by an intriguing ratchet effect that arises if slip links bind to the chromatin at a preferred "loading site." This emergent collective behavior favors the extrusion of <span class="hlt">loops</span> which are much larger than the ones formed by single slip links.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26740019','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26740019"><span>Coral mucus fuels the sponge <span class="hlt">loop</span> in warm- and cold-water coral reef ecosystems.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick</p> <p>2016-01-07</p> <p>Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge <span class="hlt">loop</span>. Coral mucus may be a major DOM source for the sponge <span class="hlt">loop</span>, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer <span class="hlt">experiments</span> to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge <span class="hlt">loop</span> on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge <span class="hlt">loop</span> in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28665227','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28665227"><span>Reciprocal within-day associations between incidental <span class="hlt">affect</span> and exercise: An EMA study.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Emerson, Jessica A; Dunsiger, Shira; Williams, David M</p> <p>2018-01-01</p> <p>Previous research suggests that how people feel throughout the course of a day (i.e. incidental <span class="hlt">affect</span>) is predictive of exercise behaviour. A mostly separate literature suggests that exercise can lead to more positive incidental <span class="hlt">affect</span>. This study examines the potential reciprocal effects of incidental <span class="hlt">affect</span> and exercise behaviour within the same day. Fifty-nine low-active (exercise <60 min/week), overweight (BMI: 25.0-39.9) adults (ages 18-65) participated in a six-month print-based exercise promotion programme. Ecological momentary assessment was used to record self-reported exercise sessions in real time and incidental <span class="hlt">affective</span> valence (feeling good/bad) as assessed by the 11-point Feeling Scale at random times throughout the day. Use of a within-subjects cross-lagged, autoregressive model showed that participants were more likely to exercise on days when they experienced more positive incidental <span class="hlt">affect</span> earlier in the day (b = .58, SE = .10, p < .01), and participants were more likely to <span class="hlt">experience</span> more positive incidental <span class="hlt">affect</span> on days when they had exercised (b = .26, SE = .03, p < .01), with the former association significantly stronger than the latter (t = 23.54, p < .01). The findings suggest a positive feedback <span class="hlt">loop</span> whereby feeling good and exercising are reciprocally influential within the course of a day.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22370040-unresolved-fine-scale-structure-solar-coronal-loop-tops','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22370040-unresolved-fine-scale-structure-solar-coronal-loop-tops"><span>Unresolved fine-scale structure in solar coronal <span class="hlt">loop</span>-tops</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Scullion, E.; Van der Voort, L. Rouppe; Wedemeyer, S.</p> <p>2014-12-10</p> <p>New and advanced space-based observing facilities continue to lower the resolution limit and detect solar coronal <span class="hlt">loops</span> in greater detail. We continue to discover even finer substructures within coronal <span class="hlt">loop</span> cross-sections, in order to understand the nature of the solar corona. Here, we push this lower limit further to search for the finest coronal <span class="hlt">loop</span> substructures, through taking advantage of the resolving power of the Swedish 1 m Solar Telescope/CRisp Imaging Spectro-Polarimeter (CRISP), together with co-observations from the Solar Dynamics Observatory/Atmospheric Image Assembly (AIA). High-resolution imaging of the chromospheric Hα 656.28 nm spectral line core and wings can, under certainmore » circumstances, allow one to deduce the topology of the local magnetic environment of the solar atmosphere where its observed. Here, we study post-flare coronal <span class="hlt">loops</span>, which become filled with evaporated chromosphere that rapidly condenses into chromospheric clumps of plasma (detectable in Hα) known as a coronal rain, to investigate their fine-scale structure. We identify, through analysis of three data sets, large-scale catastrophic cooling in coronal <span class="hlt">loop</span>-tops and the existence of multi-thermal, multi-stranded substructures. Many cool strands even extend fully intact from <span class="hlt">loop</span>-top to footpoint. We discover that coronal <span class="hlt">loop</span> fine-scale strands can appear bunched with as many as eight parallel strands within an AIA coronal <span class="hlt">loop</span> cross-section. The strand number density versus cross-sectional width distribution, as detected by CRISP within AIA-defined coronal <span class="hlt">loops</span>, most likely peaks at well below 100 km, and currently, 69% of the substructure strands are statistically unresolved in AIA coronal <span class="hlt">loops</span>.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16908527','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16908527"><span>The mitochondrial intermembrane <span class="hlt">loop</span> region of rat carnitine palmitoyltransferase 1A is a major determinant of its malonyl-CoA sensitivity.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Borthwick, Karen; Jackson, Vicky N; Price, Nigel T; Zammit, Victor A</p> <p>2006-11-03</p> <p>Carnitine palmitoyltransferase (CPT) 1A adopts a polytopic conformation within the mitochondrial outer membrane, having both the N- and C-terminal segments on the cytosolic aspect of the membrane and a <span class="hlt">loop</span> region connecting the two transmembrane (TM) segments protruding into the inter membrane space. In this study we demonstrate that the <span class="hlt">loop</span> exerts major effects on the sensitivity of the enzyme to its inhibitor, malonyl-CoA. Insertion of a 16-residue spacer between the C-terminal part of the <span class="hlt">loop</span> sequence (i.e. between residues 100 and 101) and TM2 (which is predicted to start at residue 102) increased the sensitivity to malonyl-CoA inhibition of the resultant mutant protein by more than 10-fold. By contrast, the same insertion made between TM1 and the <span class="hlt">loop</span> had no effects on the kinetic properties of the enzyme, indicating that effects on the catalytic C-terminal segment were specifically induced by <span class="hlt">loop</span>-TM2 interactions. Enhanced sensitivity was also observed in all mutants in which the native TM2-<span class="hlt">loop</span> pairing was disrupted either by making chimeras in which the <span class="hlt">loops</span> and TM2 segments of CPT 1A and CPT 1B were exchanged or by deleting successive 9-residue segments from the <span class="hlt">loop</span> sequence. The data suggest that the sequence spanning the <span class="hlt">loop</span>-TM2 boundary determines the disposition of this TM in the membrane so as to alter the conformation of the C-terminal segment and thus <span class="hlt">affect</span> its interaction with malonyl-CoA.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvL.115l1603G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvL.115l1603G"><span><span class="hlt">Loop</span> Integrands for Scattering Amplitudes from the Riemann Sphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Tourkine, Piotr</p> <p>2015-09-01</p> <p>The scattering equations on the Riemann sphere give rise to remarkable formulas for tree-level gauge theory and gravity amplitudes. Adamo, Casali, and Skinner conjectured a one-<span class="hlt">loop</span> formula for supergravity amplitudes based on scattering equations on a torus. We use a residue theorem to transform this into a formula on the Riemann sphere. What emerges is a framework for <span class="hlt">loop</span> integrands on the Riemann sphere that promises to have a wide application, based on off-shell scattering equations that depend on the <span class="hlt">loop</span> momentum. We present new formulas, checked explicitly at low points, for supergravity and super-Yang-Mills amplitudes and for n -gon integrands at one <span class="hlt">loop</span>. Finally, we show that the off-shell scattering equations naturally extend to arbitrary <span class="hlt">loop</span> order, and we give a proposal for the all-<span class="hlt">loop</span> integrands for supergravity and planar super-Yang-Mills theory.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/19016','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/19016"><span>Installation report, state demonstration project, <span class="hlt">loop</span> detectors.</span></a></p> <p><a target="_blank" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1982-01-01</p> <p>The Virginia Department of Highways and Transportation frequently utilizes induction <span class="hlt">loops</span> in its vehicle detector systems. Although not documented, there have been many instances of <span class="hlt">loop</span> failure; therefore, the practices and materials used by the De...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5945819','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5945819"><span>Closed <span class="hlt">Loop</span> Deep Brain Stimulation for PTSD, Addiction, and Disorders of <span class="hlt">Affective</span> Facial Interpretation: Review and Discussion of Potential Biomarkers and Stimulation Paradigms</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bina, Robert W.; Langevin, Jean-Phillipe</p> <p>2018-01-01</p> <p>The treatment of psychiatric diseases with Deep Brain Stimulation (DBS) is becoming more of a reality as studies proliferate the indications and targets for therapies. Opinions on the initial failures of DBS trials for some psychiatric diseases point to a certain lack of finesse in using an Open <span class="hlt">Loop</span> DBS (OLDBS) system in these dynamic, cyclical pathologies. OLDBS delivers monomorphic input into dysfunctional brain circuits with modulation of that input via human interface at discrete time points with no interim modulation or adaptation to the changing circuit dynamics. Closed <span class="hlt">Loop</span> DBS (CLDBS) promises dynamic, intrinsic circuit modulation based on individual physiologic biomarkers of dysfunction. Discussed here are several psychiatric diseases which may be amenable to CLDBS paradigms as the neurophysiologic dysfunction is stochastic and not static. Post-Traumatic Stress Disorder (PTSD) has several peripheral and central physiologic and neurologic changes preceding stereotyped hyper-activation behavioral responses. Biomarkers for CLDBS potentially include skin conductance changes indicating changes in the sympathetic nervous system, changes in serum and central neurotransmitter concentrations, and limbic circuit activation. Chemical dependency and addiction have been demonstrated to be improved with both ablation and DBS of the Nucleus Accumbens and as a serendipitous side effect of movement disorder treatment. Potential peripheral biomarkers are similar to those proposed for PTSD with possible use of environmental and geolocation based cues, peripheral signs of physiologic arousal, and individual changes in central circuit patterns. Non-substance addiction disorders have also been serendipitously treated in patients with OLDBS for movement disorders. As more is learned about these behavioral addictions, DBS targets and effectors will be identified. Finally, discussed is the use of facial recognition software to modulate activation of inappropriate responses for</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.962a2021J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.962a2021J"><span>Flow rate and temperature characteristics in steady state condition on FASSIP-01 <span class="hlt">loop</span> during commissioning</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Juarsa, M.; Giarno; Rohman, A. N.; Heru K., G. B.; Witoko, J. P.; Sony Tjahyani, D. T.</p> <p>2018-02-01</p> <p>The need for large-scale experimental facilities to investigate the phenomenon of natural circulation flow rate becomes a necessity in the development of nuclear reactor safety management. The FASSIP-01 <span class="hlt">loop</span> has been built to determine the natural circulation flow rate performance in the large-scale media and aimed to reduce errors in the results for its application in the design of new generation reactors. The commissioning needs to be done to define the capability of the FASSIP-01 <span class="hlt">loop</span> and to prescribe the <span class="hlt">experiment</span> limitations. On this commissioning, two scenarios experimental method has been used. The first scenario is a static condition test which was conducted to verify measurement system response during 24 hours without electrical load in heater and cooler, there is water and no water inside the rectangular <span class="hlt">loop</span>. Second scenario is a dynamics condition that aims to understand the flow rate, a dynamic test was conducted using heater power of 5627 watts and coolant flow rate in the HSS <span class="hlt">loop</span> of 9.35 LPM. The result of this test shows that the temperature characterization on static test provide a recommendation, that the <span class="hlt">experiments</span> should be done at night because has a better environmental temperature stability compared to afternoon, with stable temperature around 1°C - 3°C. While on the dynamic test, the water temperature difference between the inlet-outlets in the heater area is quite large, about 7 times the temperature difference in the cooler area. The magnitude of the natural circulation flow rate calculated is much larger at about 300 times compared to the measured flow rate with different flow rate profiles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss006e39254.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss006e39254.html"><span>View of Sodium Chloride inserted onto blueberry jelly within a metal <span class="hlt">loop</span> on Expedition Six</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2003-03-14</p> <p>ISS006-E-39254 (14 March 2003) --- A view of sodium chloride inserted onto blueberry jelly within a 50-millimeter (mm) metal <span class="hlt">loop</span> was photographed by an Expedition Six crewmember. The <span class="hlt">experiment</span> took place in the Destiny laboratory on the International Space Station (ISS).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2143095','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2143095"><span>S-ovalbumin, an ovalbumin conformer with properties analogous to those of <span class="hlt">loop</span>-inserted serpins.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Huntington, J. A.; Patston, P. A.; Gettins, P. G.</p> <p>1995-01-01</p> <p>Most serpins are inhibitors of serine proteinases and are thought to undergo a conformational change upon complex formation with proteinase that involves partial insertion of the reactive center <span class="hlt">loop</span> into a beta-sheet of the inhibitor. Ovalbumin, although a serpin, is not an inhibitor of serine proteinases. It has been proposed that this deficiency arises from the presence of a charged residue, arginine, at a critical point (P14) in the reactive center region, which prevents <span class="hlt">loop</span> insertion into the beta-sheet and thereby precludes inhibitory properties. To test whether <span class="hlt">loop</span> insertion is prevented in ovalbumin we have examined the properties of two forms of ovalbumin: the native protein and S-ovalbumin, a form that forms spontaneously from native ovalbumin and has increased stability. Calorimetric measurements showed that S-ovalbumin was more stable than ovalbumin by about 3 kcal mol-1. CD spectra, which indicated that S-ovalbumin had less alpha-helix than native ovalbumin, and 1H NMR spectra, which indicated very similar overall structures, suggest limited conformational differences between the two forms. From comparison of the susceptibility of the reactive center region of each protein to proteolysis by porcine pancreatic elastase and by subtilisin Carlsberg, we concluded that the limited native-to-S conformational change specifically <span class="hlt">affected</span> the reactive center region. These data are consistent with a structure for S-ovalbumin in which part of the reactive center <span class="hlt">loop</span> has inserted into beta-sheet A to give a more stable structure, analogously to other serpins. However, the rate of <span class="hlt">loop</span> insertion appears to be very much lower than for inhibitory serpins.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7613461</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24877928','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24877928"><span>New constraints on dark matter effective theories from standard model <span class="hlt">loops</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Crivellin, Andreas; D'Eramo, Francesco; Procura, Massimiliano</p> <p>2014-05-16</p> <p>We consider an effective field theory for a gauge singlet Dirac dark matter particle interacting with the standard model fields via effective operators suppressed by the scale Λ ≳ 1 TeV. We perform a systematic analysis of the leading <span class="hlt">loop</span> contributions to spin-independent Dirac dark matter-nucleon scattering using renormalization group evolution between Λ and the low-energy scale probed by direct detection <span class="hlt">experiments</span>. We find that electroweak interactions induce operator mixings such that operators that are naively velocity suppressed and spin dependent can actually contribute to spin-independent scattering. This allows us to put novel constraints on Wilson coefficients that were so far poorly bounded by direct detection. Constraints from current searches are already significantly stronger than LHC bounds, and will improve in the near future. Interestingly, the <span class="hlt">loop</span> contribution we find is isospin violating even if the underlying theory is isospin conserving.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27756701','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27756701"><span>Tonic accommodation predicts closed-<span class="hlt">loop</span> accommodation responses.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Chunming; Drew, Stefanie A; Borsting, Eric; Escobar, Amy; Stark, Lawrence; Chase, Christopher</p> <p>2016-12-01</p> <p>The purpose of this study is to examine the potential relationship between tonic accommodation (TA), near work induced TA-adaptation and the steady state closed-<span class="hlt">loop</span> accommodation response (AR). Forty-two graduate students participated in the study. Various aspects of their accommodation system were objectively measured using an open-field infrared auto-refractor (Grand Seiko WAM-5500). Tonic accommodation was assessed in a completely dark environment. The association between TA and closed-<span class="hlt">loop</span> AR was assessed using linear regression correlations and t-test comparisons. Initial mean baseline TA was 1.84diopter (D) (SD±1.29D) with a wide distribution range (-0.43D to 5.14D). For monocular visual tasks, baseline TA was significantly correlated with the closed-<span class="hlt">loop</span> AR. The slope of the best fit line indicated that closed-<span class="hlt">loop</span> AR varied by approximately 0.3D for every 1D change in TA. This ratio was consistent across a variety of viewing distances and different near work tasks, including both static targets and continuous reading. Binocular reading conditions weakened the correlation between baseline TA and AR, although results remained statistically significant. The 10min near reading task with a 3D demand did not reveal significant near work induced TA-adaptation for either monocular or binocular conditions. Consistently, the TA-adaptation did not show any correlation with AR during reading. This study found a strong association between open-<span class="hlt">loop</span> TA and closed-<span class="hlt">loop</span> AR across a variety of viewing distances and different near work tasks. Difference between the correlations under monocular and binocular reading condition suggests a potential role for vergence compensation during binocular closed-<span class="hlt">loop</span> AR. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JChPh.148d4903Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JChPh.148d4903Z"><span>Phase transitions in single macromolecules: <span class="hlt">Loop</span>-stretch transition versus <span class="hlt">loop</span> adsorption transition in end-grafted polymer chains</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Shuangshuang; Qi, Shuanhu; Klushin, Leonid I.; Skvortsov, Alexander M.; Yan, Dadong; Schmid, Friederike</p> <p>2018-01-01</p> <p>We use Brownian dynamics simulations and analytical theory to compare two prominent types of single molecule transitions. One is the adsorption transition of a <span class="hlt">loop</span> (a chain with two ends bound to an attractive substrate) driven by an attraction parameter ɛ and the other is the <span class="hlt">loop</span>-stretch transition in a chain with one end attached to a repulsive substrate, driven by an external end-force F applied to the free end. Specifically, we compare the behavior of the respective order parameters of the transitions, i.e., the mean number of surface contacts in the case of the adsorption transition and the mean position of the chain end in the case of the <span class="hlt">loop</span>-stretch transition. Close to the transition points, both the static behavior and the dynamic behavior of chains with different length N are very well described by a scaling ansatz with the scaling parameters (ɛ - ɛ*)Nϕ (adsorption transition) and (F - F*)Nν (<span class="hlt">loop</span>-stretch transition), respectively, where ϕ is the crossover exponent of the adsorption transition and ν is the Flory exponent. We show that both the <span class="hlt">loop</span>-stretch and the <span class="hlt">loop</span> adsorption transitions provide an exceptional opportunity to construct explicit analytical expressions for the crossover functions which perfectly describe all simulation results on static properties in the finite-size scaling regime. Explicit crossover functions are based on the ansatz for the analytical form of the order parameter distributions at the respective transition points. In contrast to the close similarity in equilibrium static behavior, the dynamic relaxation at the two transitions shows qualitative differences, especially in the strongly ordered regimes. This is attributed to the fact that the surface contact dynamics in a strongly adsorbed chain is governed by local processes, whereas the end height relaxation of a strongly stretched chain involves the full spectrum of Rouse modes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4118681','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4118681"><span>Creating stable stem regions for <span class="hlt">loop</span> elongation in Fcabs — Insights from combining yeast surface display, in silico <span class="hlt">loop</span> reconstruction and molecular dynamics simulations</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hasenhindl, Christoph; Lai, Balder; Delgado, Javier; Traxlmayr, Michael W.; Stadlmayr, Gerhard; Rüker, Florian; Serrano, Luis; Oostenbrink, Chris; Obinger, Christian</p> <p>2014-01-01</p> <p>Fcabs (Fc antigen binding) are crystallizable fragments of IgG where the C-terminal structural <span class="hlt">loops</span> of the CH3 domain are engineered for antigen binding. For the design of libraries it is beneficial to know positions that will permit <span class="hlt">loop</span> elongation to increase the potential interaction surface with antigen. However, the insertion of additional <span class="hlt">loop</span> residues might impair the immunoglobulin fold. In the present work we have probed whether stabilizing mutations flanking the randomized and elongated <span class="hlt">loop</span> region improve the quality of Fcab libraries. In detail, 13 libraries were constructed having the C-terminal part of the EF <span class="hlt">loop</span> randomized and carrying additional residues (1, 2, 3, 5 or 10, respectively) in the absence and presence of two flanking mutations. The latter have been demonstrated to increase the thermal stability of the CH3 domain of the respective solubly expressed proteins. Assessment of the stability of the libraries expressed on the surface of yeast cells by flow cytometry demonstrated that <span class="hlt">loop</span> elongation was considerably better tolerated in the stabilized libraries. By using in silico <span class="hlt">loop</span> reconstruction and mimicking randomization together with MD simulations the underlying molecular dynamics were investigated. In the presence of stabilizing stem residues the backbone flexibility of the engineered EF <span class="hlt">loop</span> as well as the fluctuation between its accessible conformations were decreased. In addition the CD <span class="hlt">loop</span> (but not the AB <span class="hlt">loop</span>) and most of the framework regions were rigidified. The obtained data are discussed with respect to the design of Fcabs and available data on the relation between flexibility and affinity of CDR <span class="hlt">loops</span> in Ig-like molecules. PMID:24792385</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPD....4810612D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPD....4810612D"><span>Ponderomotive Acceleration in Coronal <span class="hlt">Loops</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dahlburg, Russell B.; Laming, J. Martin; Taylor, Brian; Obenschain, Keith</p> <p>2017-08-01</p> <p>Ponderomotive acceleration has been asserted to be a cause of the First Ionization Potential (FIP) effect, the by now well known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal <span class="hlt">loops</span>, with the appropriate magnitude and direction, as a ``byproduct'' of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of a coronal <span class="hlt">loops</span> with an axial magnetic field from 0.005 Teslas to 0.02 Teslas and lengths from 25000 km to 75000 km are presented. In the simulations the footpoints of the axial <span class="hlt">loop</span> magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets which act to heat the <span class="hlt">loop</span>. As a consequence of coronal magnetic reconnection, small scale, high speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ITNS...64.2144C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ITNS...64.2144C"><span>Single-Event Upset Characterization of Common First- and Second-Order All-Digital Phase-Locked <span class="hlt">Loops</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Y. P.; Massengill, L. W.; Kauppila, J. S.; Bhuva, B. L.; Holman, W. T.; Loveless, T. D.</p> <p>2017-08-01</p> <p>The single-event upset (SEU) vulnerability of common first- and second-order all-digital-phase-locked <span class="hlt">loops</span> (ADPLLs) is investigated through field-programmable gate array-based fault injection <span class="hlt">experiments</span>. SEUs in the highest order pole of the <span class="hlt">loop</span> filter and fraction-based phase detectors (PDs) may result in the worst case error response, i.e., limit cycle errors, often requiring system restart. SEUs in integer-based linear PDs may result in loss-of-lock errors, while SEUs in bang-bang PDs only result in temporary-frequency errors. ADPLLs with the same frequency tuning range but fewer bits in the control word exhibit better overall SEU performance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26951244','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26951244"><span><span class="hlt">Loop</span> Diuretics in the Treatment of Hypertension.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Malha, Line; Mann, Samuel J</p> <p>2016-04-01</p> <p><span class="hlt">Loop</span> diuretics are not recommended in current hypertension guidelines largely due to the lack of outcome data. Nevertheless, they have been shown to lower blood pressure and to offer potential advantages over thiazide-type diuretics. Torsemide offers advantages of longer duration of action and once daily dosing (vs. furosemide and bumetanide) and more reliable bioavailability (vs. furosemide). Studies show that the previously employed high doses of thiazide-type diuretics lower BP more than furosemide. <span class="hlt">Loop</span> diuretics appear to have a preferable side effect profile (less hyponatremia, hypokalemia, and possibly less glucose intolerance). Studies comparing efficacy and side effect profiles of <span class="hlt">loop</span> diuretics with the lower, currently widely prescribed, thiazide doses are needed. Research is needed to fill gaps in knowledge and common misconceptions about <span class="hlt">loop</span> diuretic use in hypertension and to determine their rightful place in the antihypertensive arsenal.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/621625','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/621625"><span><span class="hlt">Affect</span>, accessibility of material in memory, and behavior: a cognitive <span class="hlt">loop</span>?</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Isen, A M; Shalker, T E; Clark, M; Karp, L</p> <p>1978-01-01</p> <p>Two studies investigated the effect of good mood on cognitive processes. In the first study, conducted in a shopping mall, a positive feeling state was induced by giving subjects a free gift, and good mood, thus induced, was found to improve subjects' evaluations of the performance and service records of products they owned. In the second study, in which <span class="hlt">affect</span> was induced by having subjects win or lose a computer game in a laboratory setting, subjects who had won the game were found to be better able to recall positive material in memory. The results of the two studies are discussed in terms of the effect that feelings have on accessibility of cognitions. In addition, the nature of <span class="hlt">affect</span> and the relationship between good mood and behavior (such as helping) are discussed in terms of this proposed cognitive process.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012CQGra..29x9001D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012CQGra..29x9001D"><span>BOOK REVIEW: A First Course in <span class="hlt">Loop</span> Quantum Gravity A First Course in <span class="hlt">Loop</span> Quantum Gravity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dittrich, Bianca</p> <p>2012-12-01</p> <p>Students who are interested in quantum gravity usually face the difficulty of working through a large amount of prerequisite material before being able to deal with actual quantum gravity. A First Course in <span class="hlt">Loop</span> Quantum Gravity by Rodolfo Gambini and Jorge Pullin, aimed at undergraduate students, marvellously succeeds in starting from the basics of special relativity and covering basic topics in Hamiltonian dynamics, Yang Mills theory, general relativity and quantum field theory, ending with a tour on current (<span class="hlt">loop</span>) quantum gravity research. This is all done in a short 173 pages! As such the authors cannot cover any of the subjects in depth and indeed this book should be seen more as a motivation and orientation guide so that students can go on to follow the hints for further reading. Also, as there are many subjects to cover beforehand, slightly more than half of the book is concerned with more general subjects (special and general relativity, Hamiltonian dynamics, constrained systems, quantization) before the starting point for <span class="hlt">loop</span> quantum gravity, the Ashtekar variables, are introduced. The approach taken by the authors is heuristic and uses simplifying examples in many places. However they take care in motivating all the main steps and succeed in presenting the material pedagogically. Problem sets are provided throughout and references for further reading are given. Despite the shortness of space, alternative viewpoints are mentioned and the reader is also referred to experimental results and bounds. In the second half of the book the reader gets a ride through <span class="hlt">loop</span> quantum gravity; the material covers geometric operators and their spectra, the Hamiltonian constraints, <span class="hlt">loop</span> quantum cosmology and, more broadly, black hole thermodynamics. A glimpse of recent developments and open problems is given, for instance a discussion on experimental predictions, where the authors carefully point out the very preliminary nature of the results. The authors close with an</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EPJC...78..261O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EPJC...78..261O"><span>Charged string <span class="hlt">loops</span> in Reissner-Nordström black hole background</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oteev, Tursinbay; Kološ, Martin; Stuchlík, Zdeněk</p> <p>2018-03-01</p> <p>We study the motion of current carrying charged string <span class="hlt">loops</span> in the Reissner-Nordström black hole background combining the gravitational and electromagnetic field. Introducing new electromagnetic interaction between central charge and charged string <span class="hlt">loop</span> makes the string <span class="hlt">loop</span> equations of motion to be non-integrable even in the flat spacetime limit, but it can be governed by an effective potential even in the black hole background. We classify different types of the string <span class="hlt">loop</span> trajectories using effective potential approach, and we compare the innermost stable string <span class="hlt">loop</span> positions with loci of the charged particle innermost stable orbits. We examine string <span class="hlt">loop</span> small oscillations around minima of the string <span class="hlt">loop</span> effective potential, and we plot radial profiles of the string <span class="hlt">loop</span> oscillation frequencies for both the radial and vertical modes. We construct charged string <span class="hlt">loop</span> quasi-periodic oscillations model and we compare it with observed data from microquasars GRO 1655-40, XTE 1550-564, and GRS 1915+105. We also study the acceleration of current carrying string <span class="hlt">loops</span> along the vertical axis and the string <span class="hlt">loop</span> ejection from RN black hole neighbourhood, taking also into account the electromagnetic interaction.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2833150','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2833150"><span>Mining protein <span class="hlt">loops</span> using a structural alphabet and statistical exceptionality</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2010-01-01</p> <p>Background Protein <span class="hlt">loops</span> encompass 50% of protein residues in available three-dimensional structures. These regions are often involved in protein functions, e.g. binding site, catalytic pocket... However, the description of protein <span class="hlt">loops</span> with conventional tools is an uneasy task. Regular secondary structures, helices and strands, have been widely studied whereas <span class="hlt">loops</span>, because they are highly variable in terms of sequence and structure, are difficult to analyze. Due to data sparsity, long <span class="hlt">loops</span> have rarely been systematically studied. Results We developed a simple and accurate method that allows the description and analysis of the structures of short and long <span class="hlt">loops</span> using structural motifs without restriction on <span class="hlt">loop</span> length. This method is based on the structural alphabet HMM-SA. HMM-SA allows the simplification of a three-dimensional protein structure into a one-dimensional string of states, where each state is a four-residue prototype fragment, called structural letter. The difficult task of the structural grouping of huge data sets is thus easily accomplished by handling structural letter strings as in conventional protein sequence analysis. We systematically extracted all seven-residue fragments in a bank of 93000 protein <span class="hlt">loops</span> and grouped them according to the structural-letter sequence, named structural word. This approach permits a systematic analysis of <span class="hlt">loops</span> of all sizes since we consider the structural motifs of seven residues rather than complete <span class="hlt">loops</span>. We focused the analysis on highly recurrent words of <span class="hlt">loops</span> (observed more than 30 times). Our study reveals that 73% of <span class="hlt">loop</span>-lengths are covered by only 3310 highly recurrent structural words out of 28274 observed words). These structural words have low structural variability (mean RMSd of 0.85 Å). As expected, half of these motifs display a flanking-region preference but interestingly, two thirds are shared by short (less than 12 residues) and long <span class="hlt">loops</span>. Moreover, half of recurrent motifs exhibit a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20132552','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20132552"><span>Mining protein <span class="hlt">loops</span> using a structural alphabet and statistical exceptionality.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Regad, Leslie; Martin, Juliette; Nuel, Gregory; Camproux, Anne-Claude</p> <p>2010-02-04</p> <p>Protein <span class="hlt">loops</span> encompass 50% of protein residues in available three-dimensional structures. These regions are often involved in protein functions, e.g. binding site, catalytic pocket... However, the description of protein <span class="hlt">loops</span> with conventional tools is an uneasy task. Regular secondary structures, helices and strands, have been widely studied whereas <span class="hlt">loops</span>, because they are highly variable in terms of sequence and structure, are difficult to analyze. Due to data sparsity, long <span class="hlt">loops</span> have rarely been systematically studied. We developed a simple and accurate method that allows the description and analysis of the structures of short and long <span class="hlt">loops</span> using structural motifs without restriction on <span class="hlt">loop</span> length. This method is based on the structural alphabet HMM-SA. HMM-SA allows the simplification of a three-dimensional protein structure into a one-dimensional string of states, where each state is a four-residue prototype fragment, called structural letter. The difficult task of the structural grouping of huge data sets is thus easily accomplished by handling structural letter strings as in conventional protein sequence analysis. We systematically extracted all seven-residue fragments in a bank of 93000 protein <span class="hlt">loops</span> and grouped them according to the structural-letter sequence, named structural word. This approach permits a systematic analysis of <span class="hlt">loops</span> of all sizes since we consider the structural motifs of seven residues rather than complete <span class="hlt">loops</span>. We focused the analysis on highly recurrent words of <span class="hlt">loops</span> (observed more than 30 times). Our study reveals that 73% of <span class="hlt">loop</span>-lengths are covered by only 3310 highly recurrent structural words out of 28274 observed words). These structural words have low structural variability (mean RMSd of 0.85 A). As expected, half of these motifs display a flanking-region preference but interestingly, two thirds are shared by short (less than 12 residues) and long <span class="hlt">loops</span>. Moreover, half of recurrent motifs exhibit a significant level of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22364966-fine-structures-overlying-loops-confined-solar-flares','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22364966-fine-structures-overlying-loops-confined-solar-flares"><span>FINE STRUCTURES AND OVERLYING <span class="hlt">LOOPS</span> OF CONFINED SOLAR FLARES</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yang, Shuhong; Zhang, Jun; Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn</p> <p>2014-10-01</p> <p>Using the Hα observations from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we focus on the fine structures of three confined flares and the issue why all the three flares are confined instead of eruptive. All the three confined flares take place successively at the same location and have similar morphologies, so can be termed homologous confined flares. In the simultaneous images obtained by the Solar Dynamics Observatory, many large-scale coronal <span class="hlt">loops</span> above the confined flares are clearly observed in multi-wavelengths. At the pre-flare stage, two dipoles emerge near the negative sunspot, and the dipolar patches aremore » connected by small <span class="hlt">loops</span> appearing as arch-shaped Hα fibrils. There exists a reconnection between the small <span class="hlt">loops</span>, and thus the Hα fibrils change their configuration. The reconnection also occurs between a set of emerging Hα fibrils and a set of pre-existing large <span class="hlt">loops</span>, which are rooted in the negative sunspot, a nearby positive patch, and some remote positive faculae, forming a typical three-legged structure. During the flare processes, the overlying <span class="hlt">loops</span>, some of which are tracked by activated dark materials, do not break out. These direct observations may illustrate the physical mechanism of confined flares, i.e., magnetic reconnection between the emerging <span class="hlt">loops</span> and the pre-existing <span class="hlt">loops</span> triggers flares and the overlying <span class="hlt">loops</span> prevent the flares from being eruptive.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss006e39258.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss006e39258.html"><span>View of Sodium Chloride inserted onto blueberry jelly within a metal <span class="hlt">loop</span> on Expedition Six</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2003-03-14</p> <p>ISS006-E-39258 (14 March 2003) --- A close up view of sodium chloride inserted onto blueberry jelly within a 50-millimeter (mm) metal <span class="hlt">loop</span> was photographed by an Expedition Six crewmember. The <span class="hlt">experiment</span> took place in the Destiny laboratory on the International Space Station (ISS).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1130544','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1130544"><span><span class="hlt">Experiment</span> Needs and Facilities Study Appendix A Transient Reactor Test Facility (TREAT) Upgrade</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>None</p> <p></p> <p>The TREAT Upgrade effort is designed to provide significant new capabilities to satisfy <span class="hlt">experiment</span> requirements associated with key LMFBR Safety Issues. The upgrade consists of reactor-core modifications to supply the physics performance needed for the new <span class="hlt">experiments</span>, an Advanced TREAT <span class="hlt">loop</span> with size and thermal-hydraulics capabilities needed for the <span class="hlt">experiments</span>, associated interface equipment for <span class="hlt">loop</span> operations and handling, and facility modifications necessary to accommodate operations with the <span class="hlt">Loop</span>. The costs and schedules of the tasks to be accomplished under the TREAT Upgrade project are summarized. Cost, including contingency, is about 10 million dollars (1976 dollars). A schedule for execution ofmore » 36 months has been established to provide the new capabilities in order to provide timely support of the LMFBR national effort. A key requirement for the facility modifications is that the reactor availability will not be interrupted for more than 12 weeks during the upgrade. The Advanced TREAT <span class="hlt">loop</span> is the prototype for the STF small-bundle package <span class="hlt">loop</span>. Modified TREAT fuel elements contain segments of graphite-matrix fuel with graded uranium loadings similar to those of STF. In addition, the TREAT upgrade provides for use of STF-like stainless steel-UO{sub 2} TREAT fuel for tests of fully enriched fuel bundles. This report will introduce the Upgrade study by presenting a brief description of the scope, performance capability, safety considerations, cost schedule, and development requirements. This work is followed by a "Design Description". Because greatly upgraded <span class="hlt">loop</span> performance is central to the upgrade, a description is given of Advanced TREAT <span class="hlt">loop</span> requirements prior to description of the <span class="hlt">loop</span> concept. Performance requirements of the upgraded reactor system are given. An extensive discussion of the reactor physics calculations performed for the Upgrade concept study is provided. Adequate physics performance is essential for performance of <span class="hlt">experiments</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26A...613L...3K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26A...613L...3K"><span>Excitation of vertical coronal <span class="hlt">loop</span> oscillations by impulsively driven flows</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kohutova, P.; Verwichte, E.</p> <p>2018-05-01</p> <p>Context. Flows of plasma along a coronal <span class="hlt">loop</span> caused by the pressure difference between <span class="hlt">loop</span> footpoints are common in the solar corona. Aims: We aim to investigate the possibility of excitation of <span class="hlt">loop</span> oscillations by an impulsively driven flow triggered by an enhanced pressure in one of the <span class="hlt">loop</span> footpoints. Methods: We carry out 2.5D magnetohydrodynamic (MHD) simulations of a coronal <span class="hlt">loop</span> with an impulsively driven flow and investigate the properties and evolution of the resulting oscillatory motion of the <span class="hlt">loop</span>. Results: The action of the centrifugal force associated with plasma moving at high speeds along the curved axis of the <span class="hlt">loop</span> is found to excite the fundamental harmonic of a vertically polarised kink mode. We analyse the dependence of the resulting oscillations on the speed and kinetic energy of the flow. Conclusions: We find that flows with realistic speeds of less than 100 km s-1 are sufficient to excite oscillations with observable amplitudes. We therefore propose plasma flows as a possible excitation mechanism for observed transverse <span class="hlt">loop</span> oscillations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA480557','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA480557"><span>The Effects of Prior Combat <span class="hlt">Experience</span> on the Expression of Somatic and <span class="hlt">Affective</span> Symptoms in Deploying Soldiers</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2006-01-01</p> <p>Journal of Psychosomatic ResThe effects of prior combat <span class="hlt">experience</span> on the expression of somatic and <span class="hlt">affective</span> symptoms in deploying soldiers William...rates of somatic complaints compared with combat-naive soldiers. Methods: Self-reports of posttraumatic stress disorder (PTSD) and <span class="hlt">affective</span> and somatic ...identical for the experienced and inexperienced groups, scores on the <span class="hlt">Affective</span> and Somatic scales differed as a function of prior combat history. Previous</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9744289','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9744289"><span>Morphological and functional changes after benzalkonium chloride treatment of the small intestinal Thiry-Vella <span class="hlt">loop</span> in rats.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Móricz, K; Gyetvai, B; Bárdos, G</p> <p>1998-08-01</p> <p>The aim of this work was to study the effects of benzalkonium chloride (BAC) treatment on the small intestine and its functioning in rats surgically prepared with Thiry-Vella intestinal <span class="hlt">loop</span>. The <span class="hlt">loops</span> were treated with either BAC, which ablated much of the myenteric plexus and extrinsic innervation, or with physiological saline (SAL). In vivo drinking <span class="hlt">experiments</span> were performed to examine the effect on fluid intake and behavioral indices of distending the <span class="hlt">loop</span> with a balloon. Spontaneous motility and its changes induced by acetylcholine (ACh) and histamine (His) were studied on isolated stripes in vitro. Finally, samples from the <span class="hlt">loops</span> were examined histologically. Though reduction of the cell number was less than expected and no differences of the thickness of the muscular layer between the two groups was observed, BAC treatment altered the pattern of spontaneous activity and also the sensitivity to ACh and His in isolated stripes. In vivo distension of the SAL-treated <span class="hlt">loops</span> reduced fluid intake and produced signs of aversivity; these effects were absent in the BAC-treated group. Our results show that despite the differences in the degree of ablation from those obtained by others, BAC treatment can be used to study the mechanisms underlying the effects of the enteral stimuli on the behavior.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3756228','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3756228"><span>Striving to Feel Good: Ideal <span class="hlt">Affect</span>, Actual <span class="hlt">Affect</span>, and Their Correspondence Across Adulthood</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Scheibe, Susanne; English, Tammy; Tsai, Jeanne L.; Carstensen, Laura L.</p> <p>2013-01-01</p> <p>The <span class="hlt">experience</span> of positive <span class="hlt">affect</span> is essential for healthy functioning and quality of life. Although there is a great deal of research on ways in which people regulate negative states, little is known about the regulation of positive states. In the present study we examined age differences in the types of positive states people strive to <span class="hlt">experience</span> and the correspondence between their desired and actual <span class="hlt">experiences</span>. Adults aged 18–93 years of age described their ideal positive <span class="hlt">affect</span> states. Then, using <span class="hlt">experience</span>-sampling over a seven-day period, they reported their actual positive <span class="hlt">affect</span> <span class="hlt">experiences</span>. Two types of positive <span class="hlt">affect</span> were assessed: low-arousal (calm, peaceful, relaxed) and high-arousal (excited, proud). Young participants valued both types of positive <span class="hlt">affect</span> equally. Older participants, however, showed increasingly clear preferences for low-arousal over high-arousal positive <span class="hlt">affect</span>. Older adults reached both types of positive <span class="hlt">affective</span> goals more often than younger adults (indicated by a smaller discrepancy between actual and ideal <span class="hlt">affect</span>). Moreover, meeting ideal levels of positive low-arousal <span class="hlt">affect</span> (though not positive high-arousal <span class="hlt">affect</span>) was associated with individuals’ physical health, over and above levels of actual <span class="hlt">affect</span>. Findings underscore the importance of considering age differences in emotion-regulatory goals related to positive <span class="hlt">experience</span>. PMID:23106153</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1899f0009K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1899f0009K"><span>Mobile application MDDCS for modeling the expansion dynamics of a dislocation <span class="hlt">loop</span> in FCC metals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirilyuk, Vasiliy; Petelin, Alexander; Eliseev, Andrey</p> <p>2017-11-01</p> <p>A mobile version of the software package Dynamic Dislocation of Crystallographic Slip (MDDCS) designed for modeling the expansion dynamics of dislocation <span class="hlt">loops</span> and formation of a crystallographic slip zone in FCC-metals is examined. The paper describes the possibilities for using MDDCS, the application interface, and the database scheme. The software has a simple and intuitive interface and does not require special training. The user can set the initial parameters of the <span class="hlt">experiment</span>, carry out computational <span class="hlt">experiments</span>, export parameters and results of the <span class="hlt">experiment</span> into separate text files, and display the <span class="hlt">experiment</span> results on the device screen.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23038575','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23038575"><span>Optimal energy-splitting method for an open-<span class="hlt">loop</span> liquid crystal adaptive optics system.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cao, Zhaoliang; Mu, Quanquan; Hu, Lifa; Liu, Yonggang; Peng, Zenghui; Yang, Qingyun; Meng, Haoran; Yao, Lishuang; Xuan, Li</p> <p>2012-08-13</p> <p>A waveband-splitting method is proposed for open-<span class="hlt">loop</span> liquid crystal adaptive optics systems (LC AOSs). The proposed method extends the working waveband, splits energy flexibly, and improves detection capability. Simulated analysis is performed for a waveband in the range of 350 nm to 950 nm. The results show that the optimal energy split is 7:3 for the wavefront sensor (WFS) and for the imaging camera with the waveband split into 350 nm to 700 nm and 700 nm to 950 nm, respectively. A validation <span class="hlt">experiment</span> is conducted by measuring the signal-to-noise ratio (SNR) of the WFS and the imaging camera. The results indicate that for the waveband-splitting method, the SNR of WFS is approximately equal to that of the imaging camera with a variation in the intensity. On the other hand, the SNR of the WFS is significantly different from that of the imaging camera for the polarized beam splitter energy splitting scheme. Therefore, the waveband-splitting method is more suitable for an open-<span class="hlt">loop</span> LC AOS. An adaptive correction <span class="hlt">experiment</span> is also performed on a 1.2-meter telescope. A star with a visual magnitude of 4.45 is observed and corrected and an angular resolution ability of 0.31″ is achieved. A double star with a combined visual magnitude of 4.3 is observed as well, and its two components are resolved after correction. The results indicate that the proposed method can significantly improve the detection capability of an open-<span class="hlt">loop</span> LC AOS.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005NIMPB.235...40G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005NIMPB.235...40G"><span>Second-order electron self-energy <span class="hlt">loop-after-loop</span> correction for low- Z hydrogen-like ions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goidenko, Igor; Labzowsky, Leonti; Plunien, Günter; Soff, Gerhard</p> <p>2005-07-01</p> <p>The second-order electron self-energy <span class="hlt">loop-after-loop</span> correction is investigated for hydrogen-like ions in the region of low nuclear charge numbers Z. Both irreducible and reducible parts of this correction are evaluated for the 1s1/2-state within the Fried-Yennie gauge. We confirm the result obtained first by Mallampalli and Sapirstein. The reducible part of this correction is evaluated numerically for the first time and it is consistent with the corresponding analytical αZ-expansion.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=supernova&id=EJ362816','ERIC'); return false;" href="https://eric.ed.gov/?q=supernova&id=EJ362816"><span>The Cygnus <span class="hlt">Loop</span>: An Older Supernova Remnant.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Straka, William</p> <p>1987-01-01</p> <p>Describes the Cygnus <span class="hlt">Loop</span>, one of brightest and most easily studied of the older "remnant nebulae" of supernova outbursts. Discusses some of the historical events surrounding the discovery and measurement of the Cygnus <span class="hlt">Loop</span> and makes some projections on its future. (TW)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvB..97l5143Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvB..97l5143Z"><span>Hybrid nodal <span class="hlt">loop</span> metal: Unconventional magnetoresponse and material realization</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Xiaoming; Yu, Zhi-Ming; Lu, Yunhao; Sheng, Xian-Lei; Yang, Hui Ying; Yang, Shengyuan A.</p> <p>2018-03-01</p> <p>A nodal <span class="hlt">loop</span> is formed by a band crossing along a one-dimensional closed manifold, with each point on the <span class="hlt">loop</span> a linear nodal point in the transverse dimensions, and can be classified as type I or type II depending on the band dispersion. Here, we propose a class of nodal <span class="hlt">loops</span> composed of both type-I and type-II points, which are hence termed as hybrid nodal <span class="hlt">loops</span>. Based on first-principles calculations, we predict the realization of such <span class="hlt">loops</span> in the existing electride material Ca2As . For a hybrid <span class="hlt">loop</span>, the Fermi surface consists of coexisting electron and hole pockets that touch at isolated points for an extended range of Fermi energies, without the need for fine-tuning. This leads to unconventional magnetic responses, including the zero-field magnetic breakdown and the momentum-space Klein tunneling observable in the magnetic quantum oscillations, as well as the peculiar anisotropy in the cyclotron resonance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24915991','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24915991"><span>Tau pathology does not <span class="hlt">affect</span> <span class="hlt">experience</span>-driven single-neuron and network-wide Arc/Arg3.1 responses.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rudinskiy, Nikita; Hawkes, Jonathan M; Wegmann, Susanne; Kuchibhotla, Kishore V; Muzikansky, Alona; Betensky, Rebecca A; Spires-Jones, Tara L; Hyman, Bradley T</p> <p>2014-06-10</p> <p>Intraneuronal neurofibrillary tangles (NFTs) - a characteristic pathological feature of Alzheimer's and several other neurodegenerative diseases - are considered a major target for drug development. Tangle load correlates well with the severity of cognitive symptoms and mouse models of tauopathy are behaviorally impaired. However, there is little evidence that NFTs directly impact physiological properties of host neurons. Here we used a transgenic mouse model of tauopathy to study how advanced tau pathology in different brain regions <span class="hlt">affects</span> activity-driven expression of immediate-early gene Arc required for <span class="hlt">experience</span>-dependent consolidation of long-term memories. We demonstrate in vivo that visual cortex neurons with tangles are as likely to express comparable amounts of Arc in response to structured visual stimulation as their neighbors without tangles. Probability of <span class="hlt">experience</span>-dependent Arc response was not <span class="hlt">affected</span> by tau tangles in both visual cortex and hippocampal pyramidal neurons as determined postmortem. Moreover, whole brain analysis showed that network-wide activity-driven Arc expression was not <span class="hlt">affected</span> by tau pathology in any of the brain regions, including brain areas with the highest tangle load. Our findings suggest that intraneuronal NFTs do not <span class="hlt">affect</span> signaling cascades leading to <span class="hlt">experience</span>-dependent gene expression required for long-term synaptic plasticity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3962101','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3962101"><span>Conformational Sampling in Template-Free Protein <span class="hlt">Loop</span> Structure Modeling: An Overview</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Yaohang</p> <p>2013-01-01</p> <p>Accurately modeling protein <span class="hlt">loops</span> is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of <span class="hlt">loops</span> is difficult and is usually treated as a “mini protein folding problem” under geometric constraints. In the past decade, there has been remarkable progress in template-free <span class="hlt">loop</span> structure modeling due to advances of computational methods as well as stably increasing number of known structures available in PDB. This mini review provides an overview on the recent computational approaches for <span class="hlt">loop</span> structure modeling. In particular, we focus on the approaches of sampling <span class="hlt">loop</span> conformation space, which is a critical step to obtain high resolution models in template-free methods. We review the potential energy functions for <span class="hlt">loop</span> modeling, <span class="hlt">loop</span> buildup mechanisms to satisfy geometric constraints, and <span class="hlt">loop</span> conformation sampling algorithms. The recent <span class="hlt">loop</span> modeling results are also summarized. PMID:24688696</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24688696','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24688696"><span>Conformational sampling in template-free protein <span class="hlt">loop</span> structure modeling: an overview.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Yaohang</p> <p>2013-01-01</p> <p>Accurately modeling protein <span class="hlt">loops</span> is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of <span class="hlt">loops</span> is difficult and is usually treated as a "mini protein folding problem" under geometric constraints. In the past decade, there has been remarkable progress in template-free <span class="hlt">loop</span> structure modeling due to advances of computational methods as well as stably increasing number of known structures available in PDB. This mini review provides an overview on the recent computational approaches for <span class="hlt">loop</span> structure modeling. In particular, we focus on the approaches of sampling <span class="hlt">loop</span> conformation space, which is a critical step to obtain high resolution models in template-free methods. We review the potential energy functions for <span class="hlt">loop</span> modeling, <span class="hlt">loop</span> buildup mechanisms to satisfy geometric constraints, and <span class="hlt">loop</span> conformation sampling algorithms. The recent <span class="hlt">loop</span> modeling results are also summarized.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3867476','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3867476"><span>Conformation and Stability of Intramolecular Telomeric G-Quadruplexes: Sequence Effects in the <span class="hlt">Loops</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sattin, Giovanna; Artese, Anna; Nadai, Matteo; Costa, Giosuè; Parrotta, Lucia; Alcaro, Stefano; Palumbo, Manlio; Richter, Sara N.</p> <p>2013-01-01</p> <p>Telomeres are guanine-rich sequences that protect the ends of chromosomes. These regions can fold into G-quadruplex structures and their stabilization by G-quadruplex ligands has been employed as an anticancer strategy. Genetic analysis in human telomeres revealed extensive allelic variation restricted to <span class="hlt">loop</span> bases, indicating that the variant telomeric sequences maintain the ability to fold into G-quadruplex. To assess the effect of mutations in <span class="hlt">loop</span> bases on G-quadruplex folding and stability, we performed a comprehensive analysis of mutant telomeric sequences by spectroscopic techniques, molecular dynamics simulations and gel electrophoresis. We found that when the first position in the <span class="hlt">loop</span> was mutated from T to C or A the resulting structure adopted a less stable antiparallel topology; when the second position was mutated to C or A, lower thermal stability and no evident conformational change were observed; in contrast, substitution of the third position from A to C induced a more stable and original hybrid conformation, while mutation to T did not significantly <span class="hlt">affect</span> G-quadruplex topology and stability. Our results indicate that allelic variations generate G-quadruplex telomeric structures with variable conformation and stability. This aspect needs to be taken into account when designing new potential anticancer molecules. PMID:24367632</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss006e39142.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss006e39142.html"><span>Flight Engineer Donald R. Pettit looks closely at Sodium Chloride within a 50-millimeter metal <span class="hlt">loop</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2003-03-12</p> <p>ISS006-E-39142 (12 March 2003) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, looks closely at a water bubble within a 50-millimeter metal <span class="hlt">loop</span>. The <span class="hlt">experiment</span> took place in the Destiny laboratory on the International Space Station (ISS).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25177634','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25177634"><span>Evaluation of Effects and Effectiveness of Various α and β Angulations for Three Different <span class="hlt">Loop</span> Made of Stainless Steel Arch Wires - A FEM Study.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kamisetty, Supradeep Kumar; N, Raghuveer; N, Rajavikram; N, Chakrapani; Dwaragesh; Praven</p> <p>2014-07-01</p> <p>Evaluations on retraction <span class="hlt">loop</span> designs have been limited to describe the force systems applied to the buccal surfaces of the tooth that can be in different planes resulting undesirable effects, needing corrective action in future. By initially understanding these effects, modifications to the <span class="hlt">loop</span> design can essentially counteract the undesired <span class="hlt">affects</span>. To deter-mine Moments & M/F ratios produced by different gabling in the three retraction <span class="hlt">loops</span> (Tear drop <span class="hlt">loop</span>, T-<span class="hlt">loop</span>, Open vertical <span class="hlt">loop</span>) and movement of the anterior teeth and posterior teeth) of the maxillary arch in an extraction model, on activation of three retraction <span class="hlt">loops</span> by1 mm. A PC with Quad core processor, 8GB RAM, 1TB storage space and Graphic Accelerator was used. Computer Software: ANSYS Version11, PRO/ENGINEER was used in the study. The first step is modeling, done by using Pro/Engineer software and for creating a model the CT scan data is required. The maxilla with teeth of a patient is scanned at various sections at regular intervals of 0.5 mm. These scanned images are then imported into Pro/E software to various offset planes. Once imported, the software can do an automatic meshing and establishes contact automatically. When angulations increases intrusive or extrusive movements and movements in horizontal direction of crown tip and root tip increases. All values of T-<span class="hlt">loop</span> are more than Teardrop <span class="hlt">loop</span> and less than Open vertical <span class="hlt">loop</span>. FEM study concludes that Teardrop <span class="hlt">loop</span> with 10-20(α-β) combination is preferred for Group A anchorage.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016A%26A...593A..33M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016A%26A...593A..33M"><span>Closed-<span class="hlt">loop</span> focal plane wavefront control with the SCExAO instrument</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martinache, Frantz; Jovanovic, Nemanja; Guyon, Olivier</p> <p>2016-09-01</p> <p>Aims: This article describes the implementation of a focal plane based wavefront control <span class="hlt">loop</span> on the high-contrast imaging instrument SCExAO (Subaru Coronagraphic Extreme Adaptive Optics). The sensor relies on the Fourier analysis of conventional focal-plane images acquired after an asymmetric mask is introduced in the pupil of the instrument. Methods: This absolute sensor is used here in a closed-<span class="hlt">loop</span> to compensate for the non-common path errors that normally <span class="hlt">affects</span> any imaging system relying on an upstream adaptive optics system.This specific implementation was used to control low-order modes corresponding to eight zernike modes (from focus to spherical). Results: This <span class="hlt">loop</span> was successfully run on-sky at the Subaru Telescope and is used to offset the SCExAO deformable mirror shape used as a zero-point by the high-order wavefront sensor. The paper details the range of errors this wavefront-sensing approach can operate within and explores the impact of saturation of the data and how it can be bypassed, at a cost in performance. Conclusions: Beyond this application, because of its low hardware impact, the asymmetric pupil Fourier wavefront sensor (APF-WFS) can easily be ported in a wide variety of wavefront sensing contexts, for ground- as well space-borne telescopes, and for telescope pupils that can be continuous, segmented or even sparse. The technique is powerful because it measures the wavefront where it really matters, at the level of the science detector.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ISTSP...8..802C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ISTSP...8..802C"><span>Downlink Training Techniques for FDD Massive MIMO Systems: Open-<span class="hlt">Loop</span> and Closed-<span class="hlt">Loop</span> Training With Memory</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choi, Junil; Love, David J.; Bidigare, Patrick</p> <p>2014-10-01</p> <p>The concept of deploying a large number of antennas at the base station, often called massive multiple-input multiple-output (MIMO), has drawn considerable interest because of its potential ability to revolutionize current wireless communication systems. Most literature on massive MIMO systems assumes time division duplexing (TDD), although frequency division duplexing (FDD) dominates current cellular systems. Due to the large number of transmit antennas at the base station, currently standardized approaches would require a large percentage of the precious downlink and uplink resources in FDD massive MIMO be used for training signal transmissions and channel state information (CSI) feedback. To reduce the overhead of the downlink training phase, we propose practical open-<span class="hlt">loop</span> and closed-<span class="hlt">loop</span> training frameworks in this paper. We assume the base station and the user share a common set of training signals in advance. In open-<span class="hlt">loop</span> training, the base station transmits training signals in a round-robin manner, and the user successively estimates the current channel using long-term channel statistics such as temporal and spatial correlations and previous channel estimates. In closed-<span class="hlt">loop</span> training, the user feeds back the best training signal to be sent in the future based on channel prediction and the previously received training signals. With a small amount of feedback from the user to the base station, closed-<span class="hlt">loop</span> training offers better performance in the data communication phase, especially when the signal-to-noise ratio is low, the number of transmit antennas is large, or prior channel estimates are not accurate at the beginning of the communication setup, all of which would be mostly beneficial for massive MIMO systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.8961E..2JA','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.8961E..2JA"><span>Ultra-low noise optical phase-locked <span class="hlt">loop</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ayotte, Simon; Babin, André; Costin, François</p> <p>2014-03-01</p> <p>The relative phase between two fiber lasers is controlled via a high performance optical phase-locked <span class="hlt">loop</span> (OPLL). Two parameters are of particular importance for the design: the intrinsic phase noise of the laser (i.e. its linewidth) and a high-gain, low-noise electronic locking <span class="hlt">loop</span>. In this work, one of the lowest phase noise fiber lasers commercially available was selected (i.e. NP Photonics Rock fiber laser module), with sub-kHz linewidth at 1550.12 nm. However, the fast tuning mechanism of such lasers is through stretching its cavity length with a piezoelectric transducer which has a few 10s kHz bandwidth. To further increase the locking <span class="hlt">loop</span> bandwidth to several MHz, a second tuning mechanism is used by adding a Lithium Niobate phase modulator in the laser signal path. The OPLL is thus divided into two locking <span class="hlt">loops</span>, a slow <span class="hlt">loop</span> acting on the laser piezoelectric transducer and a fast <span class="hlt">loop</span> acting on the phase modulator. The beat signal between the two phase-locked lasers yields a highly pure sine wave with an integrated phase error of 0.0012 rad. This is orders of magnitude lower than similar existing systems such as the Laser Synthesizer used for distribution of photonic local oscillator (LO) for the Atacama Large Millimeter Array radio telescope in Chile. Other applications for ultra-low noise OPLL include coherent power combining, Brillouin sensing, light detection and ranging (LIDAR), fiber optic gyroscopes, phased array antenna and beam steering, generation of LOs for next generation coherent communication systems, coherent analog optical links, terahertz generation and coherent spectroscopy.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3630299','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3630299"><span>In and out of the <span class="hlt">loop</span>: external and internal modulation of the olivo-cerebellar <span class="hlt">loop</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Libster, Avraham M.; Yarom, Yosef</p> <p>2013-01-01</p> <p>Cerebellar anatomy is known for its crystal like structure, where neurons and connections are precisely and repeatedly organized with minor variations across the Cerebellar Cortex. The olivo-cerebellar <span class="hlt">loop</span>, denoting the connections between the Cerebellar cortex, Inferior Olive and Cerebellar Nuclei (CN), is also modularly organized to form what is known as the cerebellar module. In contrast to the relatively organized and static anatomy, the cerebellum is innervated by a wide variety of neuromodulator carrying axons that are heterogeneously distributed along the olivo-cerebellar <span class="hlt">loop</span>, providing heterogeneity to the static structure. In this manuscript we review modulatory processes in the olivo-cerebellar <span class="hlt">loop</span>. We start by discussing the relationship between neuromodulators and the animal behavioral states. This is followed with an overview of the cerebellar neuromodulatory signals and a short discussion of why and when the cerebellar activity should be modulated. We then devote a section for three types of neurons where we briefly review its properties and propose possible neuromodulation scenarios. PMID:23626524</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>