Sample records for affects cardiac function

  1. Relationship between cardiac autonomic function and cognitive function in Alzheimer's disease.

    PubMed

    Nonogaki, Zen; Umegaki, Hiroyuki; Makino, Taeko; Suzuki, Yusuke; Kuzuya, Masafumi

    2017-01-01

    Alzheimer's disease (AD) affects many central nervous structures and neurotransmitter systems. These changes affect not only cognitive function, but also cardiac autonomic function. However, the functional relationship between cardiac autonomic function and cognition in AD has not yet been investigated. The objective of the present study was to evaluate the association between cardiac autonomic function measured by heart rate variability and cognitive function in AD. A total of 78 AD patients were recruited for this study. Cardiac autonomic function was evaluated using heart rate variability analysis. Multiple linear regression analysis was used to model the association between heart rate variability and cognitive function (global cognitive function, memory, executive function and processing speed), after adjustment for covariates. Global cognitive function was negatively associated with sympathetic modulation (low-to-high frequency power ratio). Memory performance was positively associated with parasympathetic modulation (high frequency power) and negatively associated with sympathetic modulation (low-to-high frequency power ratio). These associations were independent of age, sex, educational years, diabetes, hypertension and cholinesterase inhibitor use. Cognitive function, especially in the areas of memory, is associated with cardiac autonomic function in AD. Specifically, lower cognitive performance was found to be associated with significantly higher cardiac sympathetic and lower parasympathetic function in AD. Geriatr Gerontol Int 2017; 17: 92-98. © 2015 Japan Geriatrics Society.

  2. Randomised controlled trial of a 12 week yoga intervention on negative affective states, cardiovascular and cognitive function in post-cardiac rehabilitation patients.

    PubMed

    Yeung, Alan; Kiat, Hosen; Denniss, A Robert; Cheema, Birinder S; Bensoussan, Alan; Machliss, Bianca; Colagiuri, Ben; Chang, Dennis

    2014-10-24

    Negative affective states such as anxiety, depression and stress are significant risk factors for cardiovascular disease, particularly in cardiac and post-cardiac rehabilitation populations.Yoga is a balanced practice of physical exercise, breathing control and meditation that can reduce psychosocial symptoms as well as improve cardiovascular and cognitive function. It has the potential to positively affect multiple disease pathways and may prove to be a practical adjunct to cardiac rehabilitation in further reducing cardiac risk factors as well as improving self-efficacy and post-cardiac rehabilitation adherence to healthy lifestyle behaviours. This is a parallel arm, multi-centre, randomised controlled trial that will assess the outcomes of post- phase 2 cardiac rehabilitation patients assigned to a yoga intervention in comparison to a no-treatment wait-list control group. Participants randomised to the yoga group will engage in a 12 week yoga program comprising of two group based sessions and one self-administered home session each week. Group based sessions will be led by an experienced yoga instructor. This will involve teaching beginner students a hatha yoga sequence that incorporates asana (poses and postures), pranayama (breathing control) and meditation. The primary outcomes of this study are negative affective states of anxiety, depression and stress assessed using the Depression Anxiety Stress Scale. Secondary outcomes include measures of quality of life, and cardiovascular and cognitive function. The cardiovascular outcomes will include blood pressure, heart rate, heart rate variability, pulse wave velocity, carotid intima media thickness measurements, lipid/glucose profiles and C-reactive protein assays. Assessments will be conducted prior to (week 0), mid-way through (week 6) and following the intervention period (week 12) as well as at a four week follow-up (week 16). This study will determine the effect of yoga practice on negative affective states

  3. Gender differences in cardiac patients: a longitudinal investigation of exercise, autonomic anxiety, negative affect and depression.

    PubMed

    Hunt-Shanks, Tiffany; Blanchard, Christopher; Reid, Robert D

    2009-05-01

    Female cardiac patients frequently experience greater anxiety and depression and engage in less exercise when compared with their male counterparts. This study considered whether exercise had similar effects on male and female cardiac patients' autonomic anxiety, negative affect and depression, and whether exercise behavior explained the gender difference in their affective functioning (e.g. autonomic anxiety, negative affect and depression). Eight hundred one participants completed the Hospital and Anxiety Depression Scale (HADS) and the leisure score index (LSI) of the Godin Leisure-Time Exercise Questionnaire at baseline, 6 months, 12 months, and 24 months. Female cardiac patients had greater autonomic anxiety, negative affect and depression and reduced exercise when compared with male cardiac patients at all time points. Although exercise was significantly related to affective outcomes at various time points for both men and women, gender did not moderate any of the exercise/affective relationships, and exercise did not mediate any of the gender/affective relationships. Further research is needed to clarify the complex relationships between gender, exercise, and the affective functioning of cardiac patients.

  4. Cardiac function and cognition in older community-dwelling cardiac patients.

    PubMed

    Eggermont, Laura H P; Aly, Mohamed F A; Vuijk, Pieter J; de Boer, Karin; Kamp, Otto; van Rossum, Albert C; Scherder, Erik J A

    2017-11-01

    Cognitive deficits have been reported in older cardiac patients. An underlying mechanism for these findings may be reduced cardiac function. The relationship between cardiac function as represented by different echocardiographic measures and different cognitive function domains in older cardiac patients remains unknown. An older (≥70 years) heterogeneous group of 117 community-dwelling cardiac patients under medical supervision by a cardiologist underwent thorough echocardiographic assessment including left ventricular ejection fraction, cardiac index, left atrial volume index, left ventricular mass index, left ventricular diastolic function, and valvular calcification. During a home visit, a neuropsychological assessment was performed within 7.1 ± 3.8 months after echocardiographic assessment; the neuropsychological assessment included three subtests of a word-learning test (encoding, recall, recognition) to examine one memory function domain and three executive function tests, including digit span backwards, Trail Making Test B minus A, and the Stroop colour-word test. Regression analyses showed no significant linear or quadratic associations between any of the echocardiographic functions and the cognitive function measures. None of the echocardiographic measures as representative of cardiac function was correlated with memory or executive function in this group of community-dwelling older cardiac patients. These findings contrast with those of previous studies. © 2017 Japanese Psychogeriatric Society.

  5. Digoxin Induces Cardiac Hypertrophy Without Negative Effects on Cardiac Function and Physical Performance in Trained Normotensive Rats.

    PubMed

    Neves, Claodete Hasselstrom; Tibana, Ramires Alsamir; Prestes, Jonato; Voltarelli, Fabricio Azevedo; Aguiar, Andreo Fernando; Ferreira Mota, Gustavo Augusto; de Sousa, Sergio Luiz Borges; Leopoldo, Andre Soares; Leopoldo, Ana Paula Lima; Mueller, Andre; Aguiar, Danilo Henrique; Navalta, James Wilfred; Sugizaki, Mario Mateus

    2017-04-01

    Cardiotonic drugs and exercise training promote cardiac inotropic effects, which may affect training-induced cardiac adaptations. This study investigated the effects of long-term administration of digoxin on heart structure and function, and physical performance of rats submitted to high-intensity interval training (HIIT). Male Wistar rats, 60 days old, were divided into control (C), digoxin (DIGO), trained (T), and trained with digoxin (TDIGO). Digoxin was administered by gavage (30 µg/kg/day) for 75 days. The HIIT program consisted of treadmill running 60 min/day (8 min at 80% of the maximum speed (MS) and 2 min at 20% of the MS), 5 days per week during 60 days. The main cardiac parameters were evaluated by echocardiograph and cardiomyocyte area was determined by histology. There were no group x time effects of digoxin, HIIT or interactions (digoxin and HIIT) on functional echocardiographic parameters (heart rate; ejection fraction) or in the maximum exercise test. There was a group x time interaction, as evidenced by observed cardiac hypertrophy in the TDIGO group evaluated by ratio of left ventricle weight to body weight (p<0.002) and cardiomyocyte area (p<0.000002). Long-term administration of digoxin promoted cardiac hypertrophy without affecting cardiac function and physical performance in rats submitted to HIIT. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Hypertrophic Cardiomyopathy Cardiac Troponin C Mutations Differentially Affect Slow Skeletal and Cardiac Muscle Regulation

    PubMed Central

    Veltri, Tiago; Landim-Vieira, Maicon; Parvatiyar, Michelle S.; Gonzalez-Martinez, David; Dieseldorff Jones, Karissa M.; Michell, Clara A.; Dweck, David; Landstrom, Andrew P.; Chase, P. Bryant; Pinto, Jose R.

    2017-01-01

    Mutations in TNNC1—the gene encoding cardiac troponin C (cTnC)—that have been associated with hypertrophic cardiomyopathy (HCM) and cardiac dysfunction may also affect Ca2+-regulation and function of slow skeletal muscle since the same gene is expressed in both cardiac and slow skeletal muscle. Therefore, we reconstituted rabbit soleus fibers and bovine masseter myofibrils with mutant cTnCs (A8V, C84Y, E134D, and D145E) associated with HCM to investigate their effects on contractile force and ATPase rates, respectively. Previously, we showed that these HCM cTnC mutants, except for E134D, increased the Ca2+ sensitivity of force development in cardiac preparations. In the current study, an increase in Ca2+ sensitivity of isometric force was only observed for the C84Y mutant when reconstituted in soleus fibers. Incorporation of cTnC C84Y in bovine masseter myofibrils reduced the ATPase activity at saturating [Ca2+], whereas, incorporation of cTnC D145E increased the ATPase activity at inhibiting and saturating [Ca2+]. We also tested whether reconstitution of cardiac fibers with troponin complexes containing the cTnC mutants and slow skeletal troponin I (ssTnI) could emulate the slow skeletal functional phenotype. Reconstitution of cardiac fibers with troponin complexes containing ssTnI attenuated the Ca2+ sensitization of isometric force when cTnC A8V and D145E were present; however, it was enhanced for C84Y. In summary, although the A8V and D145E mutants are present in both muscle types, their functional phenotype is more prominent in cardiac muscle than in slow skeletal muscle, which has implications for the protein-protein interactions within the troponin complex. The C84Y mutant warrants further investigation since it drastically alters the properties of both muscle types and may account for the earlier clinical onset in the proband. PMID:28473771

  7. Myosin Transducer Mutations Differentially Affect Motor Function, Myofibril Structure, and the Performance of Skeletal and Cardiac Muscles

    PubMed Central

    Cammarato, Anthony; Dambacher, Corey M.; Knowles, Aileen F.; Kronert, William A.; Bodmer, Rolf

    2008-01-01

    Striated muscle myosin is a multidomain ATP-dependent molecular motor. Alterations to various domains affect the chemomechanical properties of the motor, and they are associated with skeletal and cardiac myopathies. The myosin transducer domain is located near the nucleotide-binding site. Here, we helped define the role of the transducer by using an integrative approach to study how Drosophila melanogaster transducer mutations D45 and Mhc5 affect myosin function and skeletal and cardiac muscle structure and performance. We found D45 (A261T) myosin has depressed ATPase activity and in vitro actin motility, whereas Mhc5 (G200D) myosin has these properties enhanced. Depressed D45 myosin activity protects against age-associated dysfunction in metabolically demanding skeletal muscles. In contrast, enhanced Mhc5 myosin function allows normal skeletal myofibril assembly, but it induces degradation of the myofibrillar apparatus, probably as a result of contractile disinhibition. Analysis of beating hearts demonstrates depressed motor function evokes a dilatory response, similar to that seen with vertebrate dilated cardiomyopathy myosin mutations, and it disrupts contractile rhythmicity. Enhanced myosin performance generates a phenotype apparently analogous to that of human restrictive cardiomyopathy, possibly indicating myosin-based origins for the disease. The D45 and Mhc5 mutations illustrate the transducer's role in influencing the chemomechanical properties of myosin and produce unique pathologies in distinct muscles. Our data suggest Drosophila is a valuable system for identifying and modeling mutations analogous to those associated with specific human muscle disorders. PMID:18045988

  8. Biomechanics of Cardiac Function

    PubMed Central

    Voorhees, Andrew P.; Han, Hai-Chao

    2015-01-01

    The heart pumps blood to maintain circulation and ensure the delivery of oxygenated blood to all the organs of the body. Mechanics play a critical role in governing and regulating heart function under both normal and pathological conditions. Biological processes and mechanical stress are coupled together in regulating myocyte function and extracellular matrix structure thus controlling heart function. Here we offer a brief introduction to the biomechanics of left ventricular function and then summarize recent progress in the study of the effects of mechanical stress on ventricular wall remodeling and cardiac function as well as the effects of wall mechanical properties on cardiac function in normal and dysfunctional hearts. Various mechanical models to determine wall stress and cardiac function in normal and diseased hearts with both systolic and diastolic dysfunction are discussed. The results of these studies have enhanced our understanding of the biomechanical mechanism in the development and remodeling of normal and dysfunctional hearts. Biomechanics provide a tool to understand the mechanism of left ventricular remodeling in diastolic and systolic dysfunction and guidance in designing and developing new treatments. PMID:26426462

  9. A high-sugar and high-fat diet impairs cardiac systolic and diastolic function in mice.

    PubMed

    Carbone, Salvatore; Mauro, Adolfo G; Mezzaroma, Eleonora; Kraskauskas, Donatas; Marchetti, Carlo; Buzzetti, Raffaella; Van Tassell, Benjamin W; Abbate, Antonio; Toldo, Stefano

    2015-11-01

    Heart failure (HF) is a clinical syndrome characterized by dyspnea, fatigue, exercise intolerance and cardiac dysfunction. Unhealthy diet has been associated with increased risk of obesity and heart disease, but whether it directly affects cardiac function, and promotes the development and progression of HF is unknown. We fed 8-week old male or female CD-1 mice with a standard diet (SD) or a diet rich in saturated fat and sugar, resembling a "Western" diet (WD). Cardiac systolic and diastolic function was measured at baseline and 4 and 8 weeks by Doppler echocardiography, and left ventricular (LV) end-diastolic pressure (EDP) by cardiac catheterization prior to sacrifice. An additional group of mice received WD for 4 weeks followed by SD (wash-out) for 8 weeks. WD-fed mice experienced a significant decreased in LV ejection fraction (LVEF), reflecting impaired systolic function, and a significant increase in isovolumetric relaxation time (IRT), myocardial performance index (MPI), and LVEDP, showing impaired diastolic function, without any sex-related differences. Switching to a SD after 4 weeks of WD partially reversed the cardiac systolic and diastolic dysfunction. A diet rich in saturated fat and sugars (WD) impairs cardiac systolic and diastolic function in the mouse. Further studies are required to define the mechanism through which diet affects cardiac function, and whether dietary interventions can be used in patients with, or at risk for, HF. Published by Elsevier Ireland Ltd.

  10. Interoception across Modalities: On the Relationship between Cardiac Awareness and the Sensitivity for Gastric Functions

    PubMed Central

    Herbert, Beate M.; Muth, Eric R.; Pollatos, Olga; Herbert, Cornelia

    2012-01-01

    The individual sensitivity for ones internal bodily signals (“interoceptive awareness”) has been shown to be of relevance for a broad range of cognitive and affective functions. Interoceptive awareness has been primarily assessed via measuring the sensitivity for ones cardiac signals (“cardiac awareness”) which can be non-invasively measured by heartbeat perception tasks. It is an open question whether cardiac awareness is related to the sensitivity for other bodily, visceral functions. This study investigated the relationship between cardiac awareness and the sensitivity for gastric functions in healthy female persons by using non-invasive methods. Heartbeat perception as a measure for cardiac awareness was assessed by a heartbeat tracking task and gastric sensitivity was assessed by a water load test. Gastric myoelectrical activity was measured by electrogastrography (EGG) and subjective feelings of fullness, valence, arousal and nausea were assessed. The results show that cardiac awareness was inversely correlated with ingested water volume and with normogastric activity after water load. However, persons with good and poor cardiac awareness did not differ in their subjective ratings of fullness, nausea and affective feelings after drinking. This suggests that good heartbeat perceivers ingested less water because they subjectively felt more intense signals of fullness during this lower amount of water intake compared to poor heartbeat perceivers who ingested more water until feeling the same signs of fullness. These findings demonstrate that cardiac awareness is related to greater sensitivity for gastric functions, suggesting that there is a general sensitivity for interoceptive processes across the gastric and cardiac modality. PMID:22606278

  11. Factors affecting cardiac rehabilitation referral by physician specialty.

    PubMed

    Grace, Sherry L; Grewal, Keerat; Stewart, Donna E

    2008-01-01

    Cardiac rehabilitation (CR) is widely underutilized because of multiple factors including physician referral practices. Previous research has shown CR referral varies by type of provider, with cardiologists more likely to refer than primary care physicians. The objective of this study was to compare factors affecting CR referral in primary care physicians versus cardiac specialists. A cross-sectional survey of a stratified random sample of 510 primary care physicians and cardiac specialists (cardiologists or cardiovascular surgeons) in Ontario identified through the Canadian Medical Directory Online was administered. One hundred four primary care physicians and 81 cardiac specialists responded to the 26-item investigator-generated survey examining medical, demographic, attitudinal, and health system factors affecting CR referral. Primary care physicians were more likely to endorse lack of familiarity with CR site locations (P < .001), lack of standardized referral forms (P < .001), inconvenience (P = .04), program quality (P = .004), and lack of discharge communication from CR (P = .001) as factors negatively impacting CR referral practices than cardiac specialists. Cardiac specialists were significantly more likely to perceive that their colleagues and department would regularly refer patients to CR than primary care physicians (P < .001). Where differences emerged, primary care physicians were more likely to perceive factors that would impede CR referral, some of which are modifiable. Marketing CR site locations, provision of standardized referral forms, and ensuring discharge summaries are communicated to primary care physicians may improve their willingness to refer to CR.

  12. Mathematical Models of Cardiac Pacemaking Function

    NASA Astrophysics Data System (ADS)

    Li, Pan; Lines, Glenn T.; Maleckar, Mary M.; Tveito, Aslak

    2013-10-01

    Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.

  13. Functional cardiac magnetic resonance microscopy

    NASA Astrophysics Data System (ADS)

    Brau, Anja Christina Sophie

    2003-07-01

    The study of small animal models of human cardiovascular disease is critical to our understanding of the origin, progression, and treatment of this pervasive disease. Complete analysis of disease pathophysiology in these animal models requires measuring structural and functional changes at the level of the whole heart---a task for which an appropriate non-invasive imaging method is needed. The purpose of this work was thus to develop an imaging technique to support in vivo characterization of cardiac structure and function in rat and mouse models of cardiovascular disease. Whereas clinical cardiac magnetic resonance imaging (MRI) provides accurate assessment of the human heart, the extension of cardiac MRI from humans to rodents presents several formidable scaling challenges. Acquiring images of the mouse heart with organ definition and fluidity of contraction comparable to that achieved in humans requires an increase in spatial resolution by a factor of 3000 and an increase in temporal resolution by a factor of ten. No single technical innovation can meet the demanding imaging requirements imposed by the small animal. A functional cardiac magnetic resonance microscopy technique was developed by integrating improvements in physiological control, imaging hardware, biological synchronization of imaging, and pulse sequence design to achieve high-quality images of the murine heart with high spatial and temporal resolution. The specific methods and results from three different sets of imaging experiments are presented: (1) 2D functional imaging in the rat with spatial resolution of 175 mum2 x 1 mm and temporal resolution of 10 ms; (2) 3D functional imaging in the rat with spatial resolution of 100 mum 2 x 500 mum and temporal resolution of 30 ms; and (3) 2D functional imaging in the mouse with spatial resolution down to 100 mum2 x 1 mm and temporal resolution of 10 ms. The cardiac microscopy technique presented here represents a novel collection of technologies capable

  14. The Role of Diacylglycerol Acyltransferase (DGAT) 1 and 2 in Cardiac Metabolism and Function.

    PubMed

    Roe, Nathan D; Handzlik, Michal K; Li, Tao; Tian, Rong

    2018-03-21

    It is increasingly recognized that synthesis and turnover of cardiac triglyceride (TG) play a pivotal role in the regulation of lipid metabolism and function of the heart. The last step in TG synthesis is catalyzed by diacylglycerol:acyltransferase (DGAT) which esterifies the diacylglycerol with a fatty acid. Mammalian heart has two DGAT isoforms, DGAT1 and DGAT2, yet their roles in cardiac metabolism and function remain poorly defined. Here, we show that inactivation of DGAT1 or DGAT2 in adult mouse heart results in a moderate suppression of TG synthesis and turnover. Partial inhibition of DGAT activity increases cardiac fatty acid oxidation without affecting PPARα signaling, myocardial energetics or contractile function. Moreover, coinhibition of DGAT1/2 in the heart abrogates TG turnover and protects the heart against high fat diet-induced lipid accumulation with no adverse effects on basal or dobutamine-stimulated cardiac function. Thus, the two DGAT isoforms in the heart have partially redundant function, and pharmacological inhibition of one DGAT isoform is well tolerated in adult hearts.

  15. Exercise improves cardiac autonomic function in obesity and diabetes.

    PubMed

    Voulgari, Christina; Pagoni, Stamatina; Vinik, Aaron; Poirier, Paul

    2013-05-01

    Physical activity is a key element in the prevention and management of obesity and diabetes. Regular physical activity efficiently supports diet-induced weight loss, improves glycemic control, and can prevent or delay type 2 diabetes diagnosis. Furthermore, physical activity positively affects lipid profile, blood pressure, reduces the rate of cardiovascular events and associated mortality, and restores the quality of life in type 2 diabetes. However, recent studies have documented that a high percentage of the cardiovascular benefits of exercise cannot be attributed solely to enhanced cardiovascular risk factor modulation. Obesity in concert with diabetes is characterized by sympathetic overactivity and the progressive loss of cardiac parasympathetic influx. These are manifested via different pathogenetic mechanisms, including hyperinsulinemia, visceral obesity, subclinical inflammation and increased thrombosis. Cardiac autonomic neuropathy is an underestimated risk factor for the increased cardiovascular morbidity and mortality associated with obesity and diabetes. The same is true for the role of physical exercise in the restoration of the heart cardioprotective autonomic modulation in these individuals. This review addresses the interplay of cardiac autonomic function in obesity and diabetes, and focuses on the importance of exercise in improving cardiac autonomic dysfunction. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Cardiac function and tadalafil used for treating fetal growth restriction in pregnant women without cardiovascular disease.

    PubMed

    Tanaka, Kayo; Tanaka, Hiroaki; Maki, Shintaro; Kubo, Michiko; Nii, Masafumi; Magawa, Shoichi; Hatano, Fumi; Tsuji, Makoto; Osato, Kazuhiro; Kamimoto, Yuki; Umekawa, Takashi; Ikeda, Tomoaki

    2018-02-20

    The aim of the present study was to evaluate tadalafil for the treatment of fetal growth restriction (FGR) and the cardiac function in pregnant women without cardiovascular disease who used tadalafil for this reason. We examined nine pregnant women without cardiovascular disease who were using tadalafil to treat FGR. Maternal heart rate, systolic blood pressure (BP), and echocardiographic findings were assessed before and after tadalafil use. Diastolic BP was lower after compared to that before using tadalafil, but the difference was not significant. Echocardiographic findings were not significantly different before and after tadalafil use. Tadalafil did not adversely affect pregnant women without cardiovascular disease and was considered acceptable for use since it did not affect the mother's cardiac function.

  17. Associations between attention, affect and cardiac activity in a single yoga session for female cancer survivors: an enactive neurophenomenology-based approach.

    PubMed

    Mackenzie, Michael J; Carlson, Linda E; Paskevich, David M; Ekkekakis, Panteleimon; Wurz, Amanda J; Wytsma, Kathryn; Krenz, Katie A; McAuley, Edward; Culos-Reed, S Nicole

    2014-07-01

    Yoga practice is reported to lead to improvements in quality of life, psychological functioning, and symptom indices in cancer survivors. Importantly, meditative states experienced within yoga practice are correlated to neurophysiological systems that moderate both focus of attention and affective valence. The current study used a mixed methods approach based in neurophenomenology to investigate associations between attention, affect, and cardiac activity during a single yoga session for female cancer survivors. Yoga practice was associated with a linear increase in associative attention and positive affective valence, while shifts in cardiac activity were related to the intensity of each yoga sequence. Changes in attention and affect were predicted by concurrently assessed cardiac activity. Awareness of breathing, physical movement, and increased relaxation were reported by participants as potential mechanisms for yoga's salutary effects. While yoga practice shares commonalities with exercise and relaxation training, yoga may serve primarily as a promising meditative attention-affect regulation training methodology. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Inhalation of Simulated Smog Atmospheres Affects Cardiac Function in Mice

    EPA Science Inventory

    The health effects of individual criteria air pollutants have been well investigated. However, little is known about the health effects of air pollutant mixtures that more realistically represent environmental exposures. The present study was designed to evaluate the cardiac eff...

  19. Albumin fiber scaffolds for engineering functional cardiac tissues.

    PubMed

    Fleischer, Sharon; Shapira, Assaf; Regev, Omri; Nseir, Nora; Zussman, Eyal; Dvir, Tal

    2014-06-01

    In recent years attempts to engineer contracting cardiac patches were focused on recapitulation of the myocardium extracellular microenvironment. We report here on our work, where for the first time, a three-dimensional cardiac patch was fabricated from albumin fibers. We hypothesized that since albumin fibers' mechanical properties resemble those of cardiac tissue extracellular matrix (ECM) and their biochemical character enables their use as protein carriers, they can support the assembly of cardiac tissues capable of generating strong contraction forces. Here, we have fabricated aligned and randomly oriented electrospun albumin fibers and investigated their structure, mechanical properties, and chemical nature. Our measurements showed that the scaffolds have improved elasticity as compared to synthetic electrospun PCL fibers, and that they are capable of adsorbing serum proteins, such as laminin leading to strong cell-matrix interactions. Moreover, due to the functional groups on their backbone, the fibers can be chemically modified with essential biomolecules. When seeded with rat neonatal cardiac cells the engineered scaffolds induced the assembly of aligned cardiac tissues with high aspect ratio cardiomyocytes and massive actinin striation. Compared to synthetic fibrous scaffolds, cardiac cells cultured within aligned or randomly oriented scaffolds formed functional tissues, exhibiting significantly improved function already on Day 3, including higher beating rate (P = 0.0002 and P < 0.0001, respectively), and higher contraction amplitude (P = 0.009 and P = 0.003, respectively). Collectively, our results suggest that albumin electrospun scaffolds can play a key role in contributing to the ex vivo formation of a contracting cardiac muscle tissue. © 2014 Wiley Periodicals, Inc.

  20. 3D bioprinted functional and contractile cardiac tissue constructs

    PubMed Central

    Wang, Zhan; Lee, Sang Jin; Cheng, Heng-Jie; Yoo, James J.; Atala, Anthony

    2018-01-01

    Bioengineering of a functional cardiac tissue composed of primary cardiomyocytes has great potential for myocardial regeneration and in vitro tissue modeling. However, its applications remain limited because the cardiac tissue is a highly organized structure with unique physiologic, biomechanical, and electrical properties. In this study, we undertook a proof-of-concept study to develop a contractile cardiac tissue with cellular organization, uniformity, and scalability by using three-dimensional (3D) bioprinting strategy. Primary cardiomyocytes were isolated from infant rat hearts and suspended in a fibrin-based bioink to determine the priting capability for cardiac tissue engineering. This cell-laden hydrogel was sequentially printed with a sacrificial hydrogel and a supporting polymeric frame through a 300-μm nozzle by pressured air. Bioprinted cardiac tissue constructs had a spontaneous synchronous contraction in culture, implying in vitro cardiac tissue development and maturation. Progressive cardiac tissue development was confirmed by immunostaining for α-actinin and connexin 43, indicating that cardiac tissues were formed with uniformly aligned, dense, and electromechanically coupled cardiac cells. These constructs exhibited physiologic responses to known cardiac drugs regarding beating frequency and contraction forces. In addition, Notch signaling blockade significantly accelerated development and maturation of bioprinted cardiac tissues. Our results demonstrated the feasibility of bioprinting functional cardiac tissues that could be used for tissue engineering applications and pharmaceutical purposes. PMID:29452273

  1. Longstanding Hyperthyroidism Is Associated with Normal or Enhanced Intrinsic Cardiomyocyte Function despite Decline in Global Cardiac Function

    PubMed Central

    Redetzke, Rebecca A.; Gerdes, A. Martin

    2012-01-01

    Thyroid hormones (THs) play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV) contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH). LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function. PMID:23056390

  2. Cardiac Fibroblast: The Renaissance Cell

    PubMed Central

    Souders, Colby A.; Bowers, Stephanie L.K.; Baudino, Troy A.

    2012-01-01

    The permanent cellular constituents of the heart include cardiac fibroblasts, myocytes, endothelial cells and vascular smooth muscle cells. Previous studies have demonstrated that there are undulating changes in cardiac cell populations during embryonic development, through neonatal development and into the adult. Transient cell populations include lymphocytes, mast cells and macrophages, which can interact with these permanent cell types to affect cardiac function. It has also been observed that there are marked differences in the makeup of the cardiac cell populations depending on the species, which may be important when examining myocardial remodeling. Current dogma states that the fibroblast makes up the largest cell population of the heart; however, this appears to vary for different species, especially mice. Cardiac fibroblasts play a critical role in maintaining normal cardiac function, as well as in cardiac remodeling during pathological conditions such as myocardial infarct and hypertension. These cells have numerous functions, including synthesis and deposition of extracellular matrix, cell-cell communication with myocytes, cell-cell signaling with other fibroblasts, as well as with endothelial cells. These contacts affect the electrophysiological properties, secretion of growth factors and cytokines, as well as potentiating blood vessel formation. While a plethora of information is known about several of these processes, relatively little is understood about fibroblasts and their role in angiogenesis during development or cardiac remodeling. In this review we provide insight into the various properties of cardiac fibroblasts that helps illustrate their importance in maintaining proper cardiac function, as well as their critical role in the remodeling heart. PMID:19959782

  3. Cardiac Function in Young and Old Little Mice

    PubMed Central

    Reddy, Anilkumar K.; Amador-Noguez, Daniel; Darlington, Gretchen J.; Scholz, Beth A.; Michael, Lloyd H.; Hartley, Craig J.; Entman, Mark L.; Taffet, George E.

    2009-01-01

    We studied cardiac function in young and old, wild-type (WT), and longer-living Little mice using cardiac flow velocities, echocardiographic measurements, and left ventricular (LV) pressure (P) to determine if enhanced reserves were in part responsible for longevity in these mice. Resting/baseline cardiac function, as measured by velocities, LV dimensions, +dP/dtmax, and −dP/dtmax, was significantly lower in young Little mice versus young WT mice. Fractional shortening (FS) increased significantly, and neither +dP/dtmax nor −dP/dtmax declined with age in Little mice. In contrast, old WT mice had no change in FS but had significantly lower +dP/dtmax and −dP/dtmax versus young WT mice. Significant decreases were observed in the velocity indices of old Little mice versus old WT mice, but other parameters were unchanged. The magnitude of dobutamine stress response remained unchanged with age in Little mice, while that in WT mice decreased. These data suggest that while resting cardiac function in Little mice versus WT mice is lower at young age, it is relatively unaltered with aging. Additionally, cardiac function in response to stress was maintained with age in Little mice but not in their WT counterparts. Thus, some mouse models of increased longevity may not be associated with enhanced reserves. PMID:18166681

  4. c-Myc Alters Substrate Utilization and O-GlcNAc Protein Posttranslational Modifications without Altering Cardiac Function during Early Aortic Constriction

    PubMed Central

    Ledee, Dolena; Smith, Lincoln; Bruce, Margaret; Kajimoto, Masaki; Isern, Nancy; Portman, Michael A.; Olson, Aaron K.

    2015-01-01

    Hypertrophic stimuli cause transcription of the proto-oncogene c-Myc (Myc). Prior work showed that myocardial knockout of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we assessed the interplay between Myc, substrate oxidation and cardiac function during early pressure overload hypertrophy. Mice with cardiac specific, inducible Myc knockout (MycKO-TAC) and non-transgenic littermates (Cont-TAC) were subjected to transverse aortic constriction (TAC; n = 7/group). Additional groups underwent sham surgery (Cont-Sham and MycKO-Sham, n = 5 per group). After two weeks, function was measured in isolated working hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. In sham hearts, Myc knockout did not affect cardiac function or substrate preferences for the citric acid cycle. However, Myc knockout altered fractional contributions during TAC. The unlabeled fractional contribution increased in MycKO-TAC versus Cont-TAC, whereas ketone and free fatty acid fractional contributions decreased. Additionally, protein posttranslational modifications by O-GlcNAc were significantly greater in Cont-TAC versus both Cont-Sham and MycKO-TAC. In conclusion, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy, which may regulate Myc-induced metabolic changes. PMID:26266538

  5. Evaluation of cardiac function in active and hibernating grizzly bears.

    PubMed

    Nelson, O Lynne; McEwen, Margaret-Mary; Robbins, Charles T; Felicetti, Laura; Christensen, William F

    2003-10-15

    To evaluate cardiac function parameters in a group of active and hibernating grizzly bears. Prospective study. 6 subadult grizzly bears. Indirect blood pressure, a 12-lead ECG, and a routine echocardiogram were obtained in each bear during the summer active phase and during hibernation. All measurements of myocardial contractility were significantly lower in all bears during hibernation, compared with the active period. Mean rate of circumferential left ventricular shortening, percentage fractional shortening, and percentage left ventricular ejection fraction were significantly lower in bears during hibernation, compared with the active period. Certain indices of diastolic function appeared to indicate enhanced ventricular compliance during the hibernation period. Mean mitral inflow ratio and isovolumic relaxation time were greater during hibernation. Heart rate was significantly lower for hibernating bears, and mean cardiac index was lower but not significantly different from cardiac index during the active phase. Contrary to results obtained in hibernating rodent species, cardiac index was not significantly correlated with heart rate. Cardiac function parameters in hibernating bears are opposite to the chronic bradycardic effects detected in nonhibernating species, likely because of intrinsic cardiac muscle adaptations during hibernation. Understanding mechanisms and responses of the myocardium during hibernation could yield insight into mechanisms of cardiac function regulation in various disease states in nonhibernating species.

  6. Losartan Decreases Cardiac Muscle Fibrosis and Improves Cardiac Function in Dystrophin-Deficient Mdx Mice

    PubMed Central

    Spurney, Christopher F.; Sali, Arpana; Guerron, Alfredo D.; Iantorno, Micaela; Yu, Qing; Gordish-Dressman, Heather; Rayavarapu, Sree; van der Meulen, Jack; Hoffman, Eric P.; Nagaraju, Kanneboyina

    2014-01-01

    Recent studies showed that chronic administration of losartan, an angiotensin II type I receptor antagonist, improved skeletal muscle function in dystrophin-deficient mdx mice. In this study, C57BL/10ScSn-Dmdmdx/J female mice were either untreated or treated with losartan (n = 15) in the drinking water at a dose of 600 mg/L over a 6-month period. Cardiac function was assessed via in vivo high frequency echocardiography and skeletal muscle function was assessed using grip strength testing, Digiscan monitoring, Rotarod timing, and in vitro force testing. Fibrosis was assessed using picrosirius red staining and Image J analysis. Gene expression was evaluated using real-time polymerized chain reaction (RT-PCR). Percentage shortening fraction was significantly decreased in untreated (26.9% ± 3.5%) mice compared to losartan-treated (32.2% ± 4.2%; P < .01) mice. Systolic blood pressure was significantly reduced in losartan-treated mice (56 ± 6 vs 69 ± 7 mm Hg; P < .0005). Percentage cardiac fibrosis was significantly reduced in losartan-treated hearts (P < .05) along with diaphragm (P < .01), extensor digitorum longus (P < .05), and gastrocnemius (P < .05) muscles compared to untreated mdx mice. There were no significant differences in skeletal muscle function between treated and untreated groups. Chronic treatment with losartan decreases cardiac and skeletal muscle fibrosis and improves cardiac systolic function in dystrophin-deficient mdx mice. PMID:21304057

  7. 3D bioprinted functional and contractile cardiac tissue constructs.

    PubMed

    Wang, Zhan; Lee, Sang Jin; Cheng, Heng-Jie; Yoo, James J; Atala, Anthony

    2018-04-01

    Bioengineering of a functional cardiac tissue composed of primary cardiomyocytes has great potential for myocardial regeneration and in vitro tissue modeling. However, its applications remain limited because the cardiac tissue is a highly organized structure with unique physiologic, biomechanical, and electrical properties. In this study, we undertook a proof-of-concept study to develop a contractile cardiac tissue with cellular organization, uniformity, and scalability by using three-dimensional (3D) bioprinting strategy. Primary cardiomyocytes were isolated from infant rat hearts and suspended in a fibrin-based bioink to determine the priting capability for cardiac tissue engineering. This cell-laden hydrogel was sequentially printed with a sacrificial hydrogel and a supporting polymeric frame through a 300-µm nozzle by pressured air. Bioprinted cardiac tissue constructs had a spontaneous synchronous contraction in culture, implying in vitro cardiac tissue development and maturation. Progressive cardiac tissue development was confirmed by immunostaining for α-actinin and connexin 43, indicating that cardiac tissues were formed with uniformly aligned, dense, and electromechanically coupled cardiac cells. These constructs exhibited physiologic responses to known cardiac drugs regarding beating frequency and contraction forces. In addition, Notch signaling blockade significantly accelerated development and maturation of bioprinted cardiac tissues. Our results demonstrated the feasibility of bioprinting functional cardiac tissues that could be used for tissue engineering applications and pharmaceutical purposes. Cardiovascular disease remains a leading cause of death in the United States and a major health-care burden. Myocardial infarction (MI) is a main cause of death in cardiovascular diseases. MI occurs as a consequence of sudden blocking of blood vessels supplying the heart. When occlusions in the coronary arteries occur, an immediate decrease in nutrient and

  8. Mesodermal iPSC–derived progenitor cells functionally regenerate cardiac and skeletal muscle

    PubMed Central

    Quattrocelli, Mattia; Swinnen, Melissa; Giacomazzi, Giorgia; Camps, Jordi; Barthélemy, Ines; Ceccarelli, Gabriele; Caluwé, Ellen; Grosemans, Hanne; Thorrez, Lieven; Pelizzo, Gloria; Muijtjens, Manja; Verfaillie, Catherine M.; Blot, Stephane; Janssens, Stefan; Sampaolesi, Maurilio

    2015-01-01

    Conditions such as muscular dystrophies (MDs) that affect both cardiac and skeletal muscles would benefit from therapeutic strategies that enable regeneration of both of these striated muscle types. Protocols have been developed to promote induced pluripotent stem cells (iPSCs) to differentiate toward cardiac or skeletal muscle; however, there are currently no strategies to simultaneously target both muscle types. Tissues exhibit specific epigenetic alterations; therefore, source-related lineage biases have the potential to improve iPSC-driven multilineage differentiation. Here, we determined that differential myogenic propensity influences the commitment of isogenic iPSCs and a specifically isolated pool of mesodermal iPSC-derived progenitors (MiPs) toward the striated muscle lineages. Differential myogenic propensity did not influence pluripotency, but did selectively enhance chimerism of MiP-derived tissue in both fetal and adult skeletal muscle. When injected into dystrophic mice, MiPs engrafted and repaired both skeletal and cardiac muscle, reducing functional defects. Similarly, engraftment into dystrophic mice of canine MiPs from dystrophic dogs that had undergone TALEN-mediated correction of the MD-associated mutation also resulted in functional striatal muscle regeneration. Moreover, human MiPs exhibited the same capacity for the dual differentiation observed in murine and canine MiPs. The findings of this study suggest that MiPs should be further explored for combined therapy of cardiac and skeletal muscles. PMID:26571398

  9. Myocardin-related transcription factors are required for cardiac development and function

    PubMed Central

    Mokalled, Mayssa H.; Carroll, Kelli J.; Cenik, Bercin K.; Chen, Beibei; Liu, Ning; Olson, Eric N.; Bassel-Duby, Rhonda

    2016-01-01

    Myocardin-Related Transcription Factors A and B (MRTF-A and MRTF-B) are highly homologous proteins that function as powerful coactivators of serum response factor (SRF), a ubiquitously expressed transcription factor essential for cardiac development. The SRF/MRTF complex binds to CArG boxes found in the control regions of genes that regulate cytoskeletal dynamics and muscle contraction, among other processes. While SRF is required for heart development and function, the role of MRTFs in the developing or adult heart has not been explored. Through cardiac-specific deletion of MRTF alleles in mice, we show that either MRTF-A or MRTF-B is dispensable for cardiac development and function, whereas deletion of both MRTF-A and MRTF-B causes a spectrum of structural and functional cardiac abnormalities. Defects observed in MRTF-A/B null mice ranged from reduced cardiac contractility and adult onset heart failure to neonatal lethality accompanied by sarcomere disarray. RNA-seq analysis on neonatal hearts identified the most altered pathways in MRTF double knockout hearts as being involved in cytoskeletal organization. Together, these findings demonstrate redundant but essential roles of the MRTFs in maintenance of cardiac structure and function and as indispensible links in cardiac cytoskeletal gene regulatory networks. PMID:26386146

  10. Long-term wheel running compromises diaphragm function but improves cardiac and plantarflexor function in the mdx mouse

    PubMed Central

    Acosta, Pedro; Sleeper, Meg M.; Barton, Elisabeth R.; Sweeney, H. Lee

    2013-01-01

    Dystrophin-deficient muscles suffer from free radical injury, mitochondrial dysfunction, apoptosis, and inflammation, among other pathologies that contribute to muscle fiber injury and loss, leading to wheelchair confinement and death in the patient. For some time, it has been appreciated that endurance training has the potential to counter many of these contributing factors. Correspondingly, numerous investigations have shown improvements in limb muscle function following endurance training in mdx mice. However, the effect of long-term volitional wheel running on diaphragm and cardiac function is largely unknown. Our purpose was to determine the extent to which long-term endurance exercise affected dystrophic limb, diaphragm, and cardiac function. Diaphragm specific tension was reduced by 60% (P < 0.05) in mice that performed 1 yr of volitional wheel running compared with sedentary mdx mice. Dorsiflexor mass (extensor digitorum longus and tibialis anterior) and function (extensor digitorum longus) were not altered by endurance training. In mice that performed 1 yr of volitional wheel running, plantarflexor mass (soleus and gastrocnemius) was increased and soleus tetanic force was increased 36%, while specific tension was similar in wheel-running and sedentary groups. Cardiac mass was increased 15%, left ventricle chamber size was increased 20% (diastole) and 18% (systole), and stroke volume was increased twofold in wheel-running compared with sedentary mdx mice. These data suggest that the dystrophic heart may undergo positive exercise-induced remodeling and that limb muscle function is largely unaffected. Most importantly, however, as the diaphragm most closely recapitulates the human disease, these data raise the possibility of exercise-mediated injury in dystrophic skeletal muscle. PMID:23823150

  11. Chronic losartan administration reduces mortality and preserves cardiac but not skeletal muscle function in dystrophic mice.

    PubMed

    Bish, Lawrence T; Yarchoan, Mark; Sleeper, Meg M; Gazzara, Jeffrey A; Morine, Kevin J; Acosta, Pedro; Barton, Elisabeth R; Sweeney, H Lee

    2011-01-01

    Duchenne muscular dystrophy (DMD) is a degenerative disorder affecting skeletal and cardiac muscle for which there is no effective therapy. Angiotension receptor blockade (ARB) has excellent therapeutic potential in DMD based on recent data demonstrating attenuation of skeletal muscle disease progression during 6-9 months of therapy in the mdx mouse model of DMD. Since cardiac-related death is major cause of mortality in DMD, it is important to evaluate the effect of any novel treatment on the heart. Therefore, we evaluated the long-term impact of ARB on both the skeletal muscle and cardiac phenotype of the mdx mouse. Mdx mice received either losartan (0.6 g/L) (n = 8) or standard drinking water (n = 9) for two years, after which echocardiography was performed to assess cardiac function. Skeletal muscle weight, morphology, and function were assessed. Fibrosis was evaluated in the diaphragm and heart by Trichrome stain and by determination of tissue hydroxyproline content. By the study endpoint, 88% of treated mice were alive compared to only 44% of untreated (p = 0.05). No difference in skeletal muscle morphology, function, or fibrosis was noted in losartan-treated animals. Cardiac function was significantly preserved with losartan treatment, with a trend towards reduction in cardiac fibrosis. We saw no impact on the skeletal muscle disease progression, suggesting that other pathways that trigger fibrosis dominate over angiotensin II in skeletal muscle long term, unlike the situation in the heart. Our study suggests that ARB may be an important prophylactic treatment for DMD-associated cardiomyopathy, but will not impact skeletal muscle disease.

  12. Simultaneous determination of dynamic cardiac metabolism and function using PET/MRI.

    PubMed

    Barton, Gregory P; Vildberg, Lauren; Goss, Kara; Aggarwal, Niti; Eldridge, Marlowe; McMillan, Alan B

    2018-05-01

    Cardiac metabolic changes in heart disease precede overt contractile dysfunction. However, metabolism and function are not typically assessed together in clinical practice. The purpose of this study was to develop a cardiac positron emission tomography/magnetic resonance (PET/MR) stress test to assess the dynamic relationship between contractile function and metabolism in a preclinical model. Following an overnight fast, healthy pigs (45-50 kg) were anesthetized and mechanically ventilated. 18 F-fluorodeoxyglucose ( 18 F-FDG) solution was administered intravenously at a constant rate of 0.01 mL/s for 60 minutes. A cardiac PET/MR stress test was performed using normoxic gas (F I O 2  = .209) and hypoxic gas (F I O 2  = .12). Simultaneous cardiac imaging was performed on an integrated 3T PET/MR scanner. Hypoxic stress induced a significant increase in heart rate, cardiac output, left ventricular (LV) ejection fraction (EF), and peak torsion. There was a significant decline in arterial SpO 2 , LV end-diastolic and end-systolic volumes in hypoxia. Increased LV systolic function was coupled with an increase in myocardial FDG uptake (Ki) during hypoxic stress. PET/MR with continuous FDG infusion captures dynamic changes in both cardiac metabolism and contractile function. This technique warrants evaluation in human cardiac disease for assessment of subtle functional and metabolic abnormalities.

  13. Cardiac telomere length in heart development, function, and disease.

    PubMed

    Booth, S A; Charchar, F J

    2017-07-01

    Telomeres are repetitive nucleoprotein structures at chromosome ends, and a decrease in the number of these repeats, known as a reduction in telomere length (TL), triggers cellular senescence and apoptosis. Heart disease, the worldwide leading cause of death, often results from the loss of cardiac cells, which could be explained by decreases in TL. Due to the cell-specific regulation of TL, this review focuses on studies that have measured telomeres in heart cells and critically assesses the relationship between cardiac TL and heart function. There are several lines of evidence that have identified rapid changes in cardiac TL during the onset and progression of heart disease as well as at critical stages of development. There are also many factors, such as the loss of telomeric proteins, oxidative stress, and hypoxia, that decrease cardiac TL and heart function. In contrast, antioxidants, calorie restriction, and exercise can prevent both cardiac telomere attrition and the progression of heart disease. TL in the heart is also indicative of proliferative potential and could facilitate the identification of cells suitable for cardiac rejuvenation. Although these findings highlight the involvement of TL in heart function, there are important questions regarding the validity of animal models, as well as several confounding factors, that need to be considered when interpreting results and planning future research. With these in mind, elucidating the telomeric mechanisms involved in heart development and the transition to disease holds promise to prevent cardiac dysfunction and potentiate regeneration after injury. Copyright © 2017 the American Physiological Society.

  14. Clinical significance of automatic warning function of cardiac remote monitoring systems in preventing acute cardiac episodes

    PubMed Central

    Chen, Shou-Qiang; Xing, Shan-Shan; Gao, Hai-Qing

    2014-01-01

    Objective: In addition to ambulatory Holter electrocardiographic recording and transtelephonic electrocardiographic monitoring (TTM), a cardiac remote monitoring system can provide an automatic warning function through the general packet radio service (GPRS) network, enabling earlier diagnosis, treatment and improved outcome of cardiac diseases. The purpose of this study was to estimate its clinical significance in preventing acute cardiac episodes. Methods: Using 2 leads (V1 and V5 leads) and the automatic warning mode, 7160 patients were tested with a cardiac remote monitoring system from October 2004 to September 2007. If malignant arrhythmias or obvious ST-T changes appeared in the electrocardiogram records was automatically transferred to the monitoring center, the patient and his family members were informed, and the corresponding precautionary or therapeutic measures were implemented immediately. Results: In our study, 274 cases of malignant arrhythmia, including sinus standstill and ventricular tachycardia, and 43 cases of obvious ST-segment elevation were detected and treated. Because of early detection, there was no death or deformity. Conclusions: A cardiac remote monitoring system providing an automatic warning function can play an important role in preventing acute cardiac episodes. PMID:25674124

  15. Emotion Risk-Factor in Patients With Cardiac Diseases: The Role of Cognitive Emotion Regulation Strategies, Positive Affect and Negative Affect (A Case-Control Study)

    PubMed Central

    Bahremand, Mostafa; Alikhani, Mostafa; Zakiei, Ali; Janjani, Parisa; Aghaei, Abbas

    2016-01-01

    Application of psychological interventions is essential in classic treatments for patient with cardiac diseases. The present study compared cognitive emotion regulation strategies, positive affect, and negative affect for cardiac patients with healthy subjects. This study was a case-control study. Fifty subjects were selected using convenient sampling method from cardiac (coronary artery disease) patients presenting in Imam Ali medical center of Kermanshah, Iran in the spring 2013. Fifty subjects accompanied the patients to the medical center, selected as control group, did not have any history of cardiac diseases. For collecting data, the cognitive emotion regulation questionnaire and positive and negative affect scales were used. For data analysis, multivariate analysis of variance (MANOVA) was applied using the SPSS statistical software (ver. 19.0). In all cognitive emotion regulation strategies, there was a significant difference between the two groups. A significant difference was also detected regarding positive affect between the two groups, but no significant difference was found regarding negative affect. We found as a result that, having poor emotion regulation strategies is a risk factor for developing heart diseases. PMID:26234976

  16. Emotion Risk-Factor in Patients with Cardiac Diseases: The Role of Cognitive Emotion Regulation Strategies, Positive Affect and Negative Affect (A Case-Control Study).

    PubMed

    Bahremand, Mostafa; Alikhani, Mostafa; Zakiei, Ali; Janjani, Parisa; Aghei, Abbas

    2015-05-17

    Application of psychological interventions is essential in classic treatments for patient with cardiac diseases. The present study compared cognitive emotion regulation strategies, positive affect, and negative affect for cardiac patients with healthy subjects. This study was a case-control study. Fifty subjects were selected using convenient sampling method from cardiac (coronary artery disease) patients presenting in Imam Ali medical center of Kermanshah, Iran in the spring 2013. Fifty subjects accompanied the patients to the medical center, selected as control group, did not have any history of cardiac diseases. For collecting data, the cognitive emotion regulation questionnaire and positive and negative affect scales were used. For data analysis, multivariate analysis of variance (MANOVA) Was applied using the SPSS statistical software (ver. 19.0). In all cognitive emotion regulation strategies, there was a significant difference between the two groups. A significant difference was also detected regarding positive affect between the two groups, but no significant difference was found regarding negative affect. We found as a result that, having poor emotion regulation strategies is a risk factor for developing heart diseases.

  17. Oil Exposure Impairs In Situ Cardiac Function in Response to β-Adrenergic Stimulation in Cobia (Rachycentron canadum).

    PubMed

    Cox, Georgina K; Crossley, Dane A; Stieglitz, John D; Heuer, Rachael M; Benetti, Daniel D; Grosell, Martin

    2017-12-19

    Aqueous crude oil spills expose fish to varying concentrations of dissolved polycyclic aromatic hydrocarbons (PAHs), which can have lethal and sublethal effects. The heart is particularly vulnerable in early life stages, as PAH toxicity causes developmental cardiac abnormalities and impaired cardiovascular function. However, cardiac responses of juvenile and adult fish to acute oil exposure remain poorly understood. We sought to assess cardiac function in a pelagic fish species, the cobia (Rachycentron canadum), following acute (24 h) exposure to two ecologically relevant levels of dissolved PAHs. Cardiac power output (CPO) was used to quantify cardiovascular performance using an in situ heart preparation. Cardiovascular performance was varied using multiple concentrations of the β-adrenoceptor agonist isoproterenol (ISO) and by varying afterload pressures. Oil exposure adversely affected CPO with control fish achieving maximum CPO's (4 mW g -1 Mv) greater than that of oil-exposed fish (1 mW g -1 Mv) at ISO concentrations of 1 × 10 -6 M. However, the highest concentration of ISO (1 × 10 -5 M) rescued cardiac function. This indicates an interactive effect between oil-exposure and β-adrenergic stimulation and suggests if animals achieve very large increases in β-adrenergic stimulation it could play a compensatory role that may mitigate some adverse effects of oil-exposure in vivo.

  18. Functional screening identifies miRNAs inducing cardiac regeneration.

    PubMed

    Eulalio, Ana; Mano, Miguel; Dal Ferro, Matteo; Zentilin, Lorena; Sinagra, Gianfranco; Zacchigna, Serena; Giacca, Mauro

    2012-12-20

    In mammals, enlargement of the heart during embryonic development is primarily dependent on the increase in cardiomyocyte numbers. Shortly after birth, however, cardiomyocytes stop proliferating and further growth of the myocardium occurs through hypertrophic enlargement of the existing myocytes. As a consequence of the minimal renewal of cardiomyocytes during adult life, repair of cardiac damage through myocardial regeneration is very limited. Here we show that the exogenous administration of selected microRNAs (miRNAs) markedly stimulates cardiomyocyte proliferation and promotes cardiac repair. We performed a high-content microscopy, high-throughput functional screening for human miRNAs that promoted neonatal cardiomyocyte proliferation using a whole-genome miRNA library. Forty miRNAs strongly increased both DNA synthesis and cytokinesis in neonatal mouse and rat cardiomyocytes. Two of these miRNAs (hsa-miR-590 and hsa-miR-199a) were further selected for testing and were shown to promote cell cycle re-entry of adult cardiomyocytes ex vivo and to promote cardiomyocyte proliferation in both neonatal and adult animals. After myocardial infarction in mice, these miRNAs stimulated marked cardiac regeneration and almost complete recovery of cardiac functional parameters. The miRNAs identified hold great promise for the treatment of cardiac pathologies consequent to cardiomyocyte loss.

  19. Cardiac dimensions and function in female handball players.

    PubMed

    Malmgren, A; Dencker, M; Stagmo, M; Gudmundsson, P

    2015-04-01

    Long-term intensive endurance training leads to increased left ventricular mass and increased left ventricular end-diastolic and left atrial end-systolic diameters. Different types of sports tend to give rise to distinct morphological forms of the athlete's heart. However, the sport-specific aspects have not been fully investigated in female athletes. The purpose of the present study was to investigate differences in left and right cardiac dimensions, cardiac volumes, and systolic and diastolic function in elite female handball players compared to sedentary controls. A cross-sectional study of 33 elite female handball players was compared to 33 matched sedentary controls. Mean age was 21.5±2 years. The subjects underwent echocardiography examinations, both 2-dimensional (2DE) and 3-dimensional (3DE). Cardiac dimensions and volumes were quantified using M-mode, 2DE and 3DE. Systolic and diastolic left ventricular functions were also evaluated. All cardiac dimensions and volumes were adjusted for body surface area (BSA). Left atrium and left ventricle volumes were significantly (P<0.001) larger in elite female handball players compared with sedentary controls. Even right atrium area as well as right ventricular end-diastolic and end-systolic area were significantly (P<0.001) larger in elite female handball players. Significant differences were observed in three out of five systolic parameters. Most diastolic function parameters did not differ between the two groups. The findings from the present study suggest that similar cardiac remodeling takes place in elite female handball players as it does in athletes pursuing endurance or team game sports.

  20. Chronic clenbuterol administration negatively alters cardiac function.

    PubMed

    Sleeper, Margaret M; Kearns, Charles F; McKeever, Kenneth H

    2002-04-01

    Chronic administration of pharmacological levels of beta2-agonists have been shown to have toxic effects on the heart; however, no data exist on cardiac function after chronic clenbuterol administration. The purpose of this study was to examine the effect of therapeutic levels of clenbuterol on cardiac performance. Twenty unfit Standardbred mares were divided into four experimental groups: clenbuterol (2.4 microg.kg(-1) twice daily 5 d.wk(-1)) plus exercise (20 min at 50% .VO(2max)) (CLENEX; N = 6), clenbuterol (CLEN; N = 6), exercise (EX; N = 4), and control (CON; N = 4). M-mode and two-dimensional echocardiography (2.5-MHz sector scanner transducer) were used to measure cardiac size and function before and immediately after an incremental exercise test, before and after 8 wk of drug and/or exercise treatments. After treatment, CLENEX and CLEN demonstrated significantly higher left ventricular internal dimension (LVD) at end diastole (+23.7 +/- 4.8%; +25.6 +/- 4.1%), LVD at end systole (+29.2 +/- 8.7%; +40.1 +/- 7.9%), interventricular septal wall thickness (IVS) at end diastole (+28.9 +/- 11.0%; +30.7 +/- 7.0%), IVS at end systole (+29.2 +/- 8.7%; +40.1 +/- 7.9%), and left ventricular posterior wall systolic thickness (+43.1 +/- 14.%; +45.8 +/- 14.1%). CLENEX and CLEN had significantly increased aortic root dimensions (+29.9 +/- 6.1%; +24.0 +/- 1.7%), suggesting increased risk of aortic rupture. Taken together, these data indicate that chronic clenbuterol administration may negatively alter cardiac function.

  1. Differential Regulation of Cardiac Function and Intracardiac Cytokines by Rapamycin in Healthy and Diabetic Rats.

    PubMed

    Luck, Christian; DeMarco, Vincent G; Mahmood, Abuzar; Gavini, Madhavi P; Pulakat, Lakshmi

    2017-01-01

    Diabetes is comorbid with cardiovascular disease and impaired immunity. Rapamycin improves cardiac functions and extends lifespan by inhibiting the mechanistic target of rapamycin complex 1 (mTORC1). However, in diabetic murine models, Rapamycin elevates hyperglycemia and reduces longevity. Since Rapamycin is an immunosuppressant, we examined whether Rapamycin (750  μ g/kg/day) modulates intracardiac cytokines, which affect the cardiac immune response, and cardiac function in male lean (ZL) and diabetic obese Zucker (ZO) rats. Rapamycin suppressed levels of fasting triglycerides, insulin, and uric acid in ZO but increased glucose. Although Rapamycin improved multiple diastolic parameters ( E / E ', E '/ A ', E / Vp ) initially, these improvements were reversed or absent in ZO at the end of treatment, despite suppression of cardiac fibrosis and phosphoSer473Akt. Intracardiac cytokine protein profiling and Ingenuity® Pathway Analysis indicated suppression of intracardiac immune defense in ZO, in response to Rapamycin treatment in both ZO and ZL. Rapamycin increased fibrosis in ZL without increasing phosphoSer473Akt and differentially modulated anti-fibrotic IL-10, IFN γ , and GM-CSF in ZL and ZO. Therefore, fundamental difference in intracardiac host defense between diabetic ZO and healthy ZL, combined with differential regulation of intracardiac cytokines by Rapamycin in ZO and ZL hearts, underlies differential cardiac outcomes of Rapamycin treatment in health and diabetes.

  2. Differential Regulation of Cardiac Function and Intracardiac Cytokines by Rapamycin in Healthy and Diabetic Rats

    PubMed Central

    Luck, Christian; DeMarco, Vincent G.; Mahmood, Abuzar; Gavini, Madhavi P.

    2017-01-01

    Diabetes is comorbid with cardiovascular disease and impaired immunity. Rapamycin improves cardiac functions and extends lifespan by inhibiting the mechanistic target of rapamycin complex 1 (mTORC1). However, in diabetic murine models, Rapamycin elevates hyperglycemia and reduces longevity. Since Rapamycin is an immunosuppressant, we examined whether Rapamycin (750 μg/kg/day) modulates intracardiac cytokines, which affect the cardiac immune response, and cardiac function in male lean (ZL) and diabetic obese Zucker (ZO) rats. Rapamycin suppressed levels of fasting triglycerides, insulin, and uric acid in ZO but increased glucose. Although Rapamycin improved multiple diastolic parameters (E/E′, E′/A′, E/Vp) initially, these improvements were reversed or absent in ZO at the end of treatment, despite suppression of cardiac fibrosis and phosphoSer473Akt. Intracardiac cytokine protein profiling and Ingenuity® Pathway Analysis indicated suppression of intracardiac immune defense in ZO, in response to Rapamycin treatment in both ZO and ZL. Rapamycin increased fibrosis in ZL without increasing phosphoSer473Akt and differentially modulated anti-fibrotic IL-10, IFNγ, and GM-CSF in ZL and ZO. Therefore, fundamental difference in intracardiac host defense between diabetic ZO and healthy ZL, combined with differential regulation of intracardiac cytokines by Rapamycin in ZO and ZL hearts, underlies differential cardiac outcomes of Rapamycin treatment in health and diabetes. PMID:28408970

  3. Physical activity and cardiac function in the oldest old.

    PubMed

    Stessman-Lande, Irit; Jacobs, Jeremy M; Gilon, Dan; Leibowitz, David

    2012-02-01

    The relationship of physical activity (PA) and cardiac function in the oldest old remains unclear. The objective of this study was to evaluate the relationship between PA and cardiac structure and function, in the oldest old. Subjects were recruited from the Jerusalem Longitudinal Cohort Study that was initiated in 1990 and has followed an age homogeneous cohort of Jerusalem residents born in 1920-1921. A total of 496 of the subjects from the most recent set of data collection in 2005-2006 underwent echocardiography at their place of residence in addition to structured interviews and physical examination. Standard echocardiographic assessment of cardiac structure and function including ejection fraction (EF) and diastolic function as assessed by E:E' measurements was performed. PA was defined as a dichotomous (≥4 hr of light exercise weekly) and as a categorical variable (<4 hr weekly/4 hours weekly/at least 1 hr daily/sport at least twice weekly). On bivariate analysis, mean EF was lower among sedentary versus active women (55.5%±8.5% vs. 58.4%±8.3, p=0.021). No other significant differences were observed between sedentary and active subjects, for either systolic or diastolic function. After adjusting for sex, education, diabetes, ischemic heart disease, hypertension, dependence in activities of daily living, and body mass index (BMI), no significant associations were found between systolic or diastolic function, or left ventricular structure and PA. Gender-specific analyses yielded similar findings. Our study of the oldest old did not demonstrate an association between PA and cardiac structure or function.

  4. Effects of Obesity on Cardiovascular Hemodynamics, Cardiac Morphology, and Ventricular Function.

    PubMed

    Alpert, Martin A; Omran, Jad; Bostick, Brian P

    2016-12-01

    Obesity produces a variety of hemodynamic alterations that may cause changes in cardiac morphology which predispose to left and right ventricular dysfunction. Various neurohormonal and metabolic alterations commonly associated with obesity may contribute to these abnormalities of cardiac structure and function. These changes in cardiovascular hemodynamics, cardiac morphology, and ventricular function may, in severely obese patients, predispose to heart failure, even in the absence of other forms of heart disease (obesity cardiomyopathy). In normotensive obese patients, cardiac involvement is commonly characterized by elevated cardiac output, low peripheral vascular resistance, and increased left ventricular (LV) end-diastolic pressure. Sleep-disordered breathing may lead to pulmonary arterial hypertension and, in association with left heart failure, may contribute to elevation of right heart pressures. These alterations, in association with various neurohormonal and metabolic abnormalities, may produce LV hypertrophy; impaired LV diastolic function; and less commonly, LV systolic dysfunction. Many of these alterations are reversible with substantial voluntary weight loss.

  5. EPAC expression and function in cardiac fibroblasts and myofibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olmedo, Ivonne; Muñoz, Claudia; Guzmán, Nancy

    In the heart, cardiac fibroblasts (CF) and cardiac myofibroblasts (CMF) are the main cells responsible for wound healing after cardiac insult. Exchange protein activated by cAMP (EPAC) is a downstream effector of cAMP, and it has been not completely studied on CF. Moreover, in CMF, which are the main cells responsible for cardiac healing, EPAC expression and function are unknown. We evaluated in both CF and CMF the effect of transforming growth factor β1 (TGF-β1) on EPAC-1 expression. We also studied the EPAC involvement on collagen synthesis, adhesion, migration and collagen gel contraction. Method: Rat neonatal CF and CMF weremore » treated with TGF-β1 at different times and concentrations. EPAC-1 protein levels and Rap1 activation were measured by western blot and pull down assay respectively. EPAC cellular functions were determined by adhesion, migration and collagen gel contraction assay; and collagen expression was determined by western blot. Results: TGF-β1 through Smad and JNK significantly reduced EPAC-1 expression in CF, while in CMF this cytokine increased EPAC-1 expression through ERK1/2, JNK, p38, AKT and Smad3. EPAC activation was able to induce higher Rap1-GTP levels in CMF than in CF. EPAC and PKA, both cAMP effectors, promoted CF and CMF adhesion on fibronectin, as well as CF migration; however, this effect was not observed in CMF. EPAC but not PKA activation mediated collagen gel contraction in CF, while in CMF both PKA and EPAC mediated collagen gel contraction. Finally, the EPAC and PKA activation reduced collagen synthesis in CF and CMF. Conclusion: TGF-β1 differentially regulates the expression of EPAC in CF and CMF; and EPAC regulates differentially CF and CMF functions associated with cardiac remodeling. - Highlights: • TGF-β1 regulates EPAC-1 expression in cardiac fibroblast and myofibroblast. • Rap-1GTP levels are higher in cardiac myofibroblast than fibroblast. • EPAC-1 controls adhesion, migration and collagen synthesis in

  6. Obesity-metabolic derangement exacerbates cardiomyocyte loss distal to moderate coronary artery stenosis in pigs without affecting global cardiac function.

    PubMed

    Li, Zi-Lun; Ebrahimi, Behzad; Zhang, Xin; Eirin, Alfonso; Woollard, John R; Tang, Hui; Lerman, Amir; Wang, Shen-Ming; Lerman, Lilach O

    2014-04-01

    Obesity associated with metabolic derangements (ObM) worsens the prognosis of patients with coronary artery stenosis (CAS), but the underlying cardiac pathophysiologic mechanisms remain elusive. We tested the hypothesis that ObM exacerbates cardiomyocyte loss distal to moderate CAS. Obesity-prone pigs were randomized to four groups (n = 6 each): lean-sham, ObM-sham, lean-CAS, and ObM-CAS. Lean and ObM pigs were maintained on a 12-wk standard or atherogenic diet, respectively, and left circumflex CAS was then induced by placing local-irritant coils. Cardiac structure, function, and myocardial oxygenation were assessed 4 wk later by computed-tomography and blood oxygenation level dependent (BOLD) MRI, the microcirculation with micro-computed-tomography, and injury mechanisms by immunoblotting and histology. ObM pigs showed obesity, dyslipidemia, and insulin resistance. The degree of CAS (range, 50-70%) was similar in lean and ObM pigs, and resting myocardial perfusion and global cardiac function remained unchanged. Increased angiogenesis distal to the moderate CAS observed in lean was attenuated in ObM pigs, which also showed microvascular dysfunction and increased inflammation (M1-macrophages, TNF-α expression), oxidative stress (gp91), hypoxia (BOLD-MRI), and fibrosis (Sirius-red and trichrome). Furthermore, lean-CAS showed increased myocardial autophagy, which was blunted in ObM pigs (downregulated expression of unc-51-like kinase-1 and autophagy-related gene-12; P < 0.05 vs. lean CAS) and associated with marked apoptosis. The interaction diet xstenosis synergistically inhibited angiogenic, autophagic, and fibrogenic activities. ObM exacerbates structural and functional myocardial injury distal to moderate CAS with preserved myocardial perfusion, possibly due to impaired cardiomyocyte turnover.

  7. The effects of malnutrition on cardiac function in African children.

    PubMed

    Silverman, Jonathan A; Chimalizeni, Yamikani; Hawes, Stephen E; Wolf, Elizabeth R; Batra, Maneesh; Khofi, Harriet; Molyneux, Elizabeth M

    2016-02-01

    Cardiac dysfunction may contribute to high mortality in severely malnourished children. Our objective was to assess the effect of malnutrition on cardiac function in hospitalised African children. Prospective cross-sectional study. Public referral hospital in Blantyre, Malawi. We enrolled 272 stable, hospitalised children ages 6-59 months, with and without WHO-defined severe acute malnutrition. Cardiac index, heart rate, mean arterial pressure, stroke volume index and systemic vascular resistance index were measured by the ultrasound cardiac output monitor (USCOM, New South Wales, Australia). We used linear regression with generalised estimating equations controlling for age, sex and anaemia. Our primary outcome, cardiac index, was similar between those with and without severe malnutrition: difference=0.22 L/min/m(2) (95% CI -0.08 to 0.51). No difference was found in heart rate or stroke volume index. However, mean arterial pressure and systemic vascular resistance index were lower in children with severe malnutrition: difference=-8.6 mm Hg (95% CI -12.7 to -4.6) and difference=-200 dyne s/cm(5)/m(2) (95% CI -320 to -80), respectively. In this largest study to date, we found no significant difference in cardiac function between hospitalised children with and without severe acute malnutrition. Further study is needed to determine if cardiac function is diminished in unstable malnourished children. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Design and formulation of functional pluripotent stem cell-derived cardiac microtissues

    PubMed Central

    Thavandiran, Nimalan; Dubois, Nicole; Mikryukov, Alexander; Massé, Stéphane; Beca, Bogdan; Simmons, Craig A.; Deshpande, Vikram S.; McGarry, J. Patrick; Chen, Christopher S.; Nanthakumar, Kumaraswamy; Keller, Gordon M.; Radisic, Milica; Zandstra, Peter W.

    2013-01-01

    Access to robust and information-rich human cardiac tissue models would accelerate drug-based strategies for treating heart disease. Despite significant effort, the generation of high-fidelity adult-like human cardiac tissue analogs remains challenging. We used computational modeling of tissue contraction and assembly mechanics in conjunction with microfabricated constraints to guide the design of aligned and functional 3D human pluripotent stem cell (hPSC)-derived cardiac microtissues that we term cardiac microwires (CMWs). Miniaturization of the platform circumvented the need for tissue vascularization and enabled higher-throughput image-based analysis of CMW drug responsiveness. CMW tissue properties could be tuned using electromechanical stimuli and cell composition. Specifically, controlling self-assembly of 3D tissues in aligned collagen, and pacing with point stimulation electrodes, were found to promote cardiac maturation-associated gene expression and in vivo-like electrical signal propagation. Furthermore, screening a range of hPSC-derived cardiac cell ratios identified that 75% NKX2 Homeobox 5 (NKX2-5)+ cardiomyocytes and 25% Cluster of Differentiation 90 OR (CD90)+ nonmyocytes optimized tissue remodeling dynamics and yielded enhanced structural and functional properties. Finally, we demonstrate the utility of the optimized platform in a tachycardic model of arrhythmogenesis, an aspect of cardiac electrophysiology not previously recapitulated in 3D in vitro hPSC-derived cardiac microtissue models. The design criteria identified with our CMW platform should accelerate the development of predictive in vitro assays of human heart tissue function. PMID:24255110

  9. c-Myc alters substrate utilization and O-GlcNAc protein posttranslational modifications without altering cardiac function during early aortic constriction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ledee, Dolena; Smith, Lincoln; Bruce, Margaret

    Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (TAC; n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated workingmore » hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (predominately glucose) contribution. The changes in free fatty acid and unlabeled fractional contributions were abrogated by Myc inactivation during TAC (MycKO-TAC). Additionally, protein posttranslational modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. Lastly, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy.« less

  10. c-Myc alters substrate utilization and O-GlcNAc protein posttranslational modifications without altering cardiac function during early aortic constriction

    DOE PAGES

    Ledee, Dolena; Smith, Lincoln; Bruce, Margaret; ...

    2015-08-12

    Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (TAC; n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated workingmore » hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (predominately glucose) contribution. The changes in free fatty acid and unlabeled fractional contributions were abrogated by Myc inactivation during TAC (MycKO-TAC). Additionally, protein posttranslational modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. Lastly, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy.« less

  11. Cardiac I-1c overexpression with reengineered AAV improves cardiac function in swine ischemic heart failure.

    PubMed

    Ishikawa, Kiyotake; Fish, Kenneth M; Tilemann, Lisa; Rapti, Kleopatra; Aguero, Jaume; Santos-Gallego, Carlos G; Lee, Ahyoung; Karakikes, Ioannis; Xie, Chaoqin; Akar, Fadi G; Shimada, Yuichi J; Gwathmey, Judith K; Asokan, Aravind; McPhee, Scott; Samulski, Jade; Samulski, Richard Jude; Sigg, Daniel C; Weber, Thomas; Kranias, Evangelia G; Hajjar, Roger J

    2014-12-01

    Cardiac gene therapy has emerged as a promising option to treat advanced heart failure (HF). Advances in molecular biology and gene targeting approaches are offering further novel options for genetic manipulation of the cardiovascular system. The aim of this study was to improve cardiac function in chronic HF by overexpressing constitutively active inhibitor-1 (I-1c) using a novel cardiotropic vector generated by capsid reengineering of adeno-associated virus (BNP116). One month after a large anterior myocardial infarction, 20 Yorkshire pigs randomly received intracoronary injection of either high-dose BNP116.I-1c (1.0 × 10(13) vector genomes (vg), n = 7), low-dose BNP116.I-1c (3.0 × 10(12) vg, n = 7), or saline (n = 6). Compared to baseline, mean left ventricular ejection fraction increased by 5.7% in the high-dose group, and by 5.2% in the low-dose group, whereas it decreased by 7% in the saline group. Additionally, preload-recruitable stroke work obtained from pressure-volume analysis demonstrated significantly higher cardiac performance in the high-dose group. Likewise, other hemodynamic parameters, including stroke volume and contractility index indicated improved cardiac function after the I-1c gene transfer. Furthermore, BNP116 showed a favorable gene expression pattern for targeting the heart. In summary, I-1c overexpression using BNP116 improves cardiac function in a clinically relevant model of ischemic HF.

  12. Cardiac I-1c Overexpression With Reengineered AAV Improves Cardiac Function in Swine Ischemic Heart Failure

    PubMed Central

    Ishikawa, Kiyotake; Fish, Kenneth M; Tilemann, Lisa; Rapti, Kleopatra; Aguero, Jaume; Santos-Gallego, Carlos G; Lee, Ahyoung; Karakikes, Ioannis; Xie, Chaoqin; Akar, Fadi G; Shimada, Yuichi J; Gwathmey, Judith K; Asokan, Aravind; McPhee, Scott; Samulski, Jade; Samulski, Richard Jude; Sigg, Daniel C; Weber, Thomas; Kranias, Evangelia G; Hajjar, Roger J

    2014-01-01

    Cardiac gene therapy has emerged as a promising option to treat advanced heart failure (HF). Advances in molecular biology and gene targeting approaches are offering further novel options for genetic manipulation of the cardiovascular system. The aim of this study was to improve cardiac function in chronic HF by overexpressing constitutively active inhibitor-1 (I-1c) using a novel cardiotropic vector generated by capsid reengineering of adeno-associated virus (BNP116). One month after a large anterior myocardial infarction, 20 Yorkshire pigs randomly received intracoronary injection of either high-dose BNP116.I-1c (1.0 × 1013 vector genomes (vg), n = 7), low-dose BNP116.I-1c (3.0 × 1012 vg, n = 7), or saline (n = 6). Compared to baseline, mean left ventricular ejection fraction increased by 5.7% in the high-dose group, and by 5.2% in the low-dose group, whereas it decreased by 7% in the saline group. Additionally, preload-recruitable stroke work obtained from pressure–volume analysis demonstrated significantly higher cardiac performance in the high-dose group. Likewise, other hemodynamic parameters, including stroke volume and contractility index indicated improved cardiac function after the I-1c gene transfer. Furthermore, BNP116 showed a favorable gene expression pattern for targeting the heart. In summary, I-1c overexpression using BNP116 improves cardiac function in a clinically relevant model of ischemic HF. PMID:25023328

  13. Biophysical stimulation for in vitro engineering of functional cardiac tissues.

    PubMed

    Korolj, Anastasia; Wang, Erika Yan; Civitarese, Robert A; Radisic, Milica

    2017-07-01

    Engineering functional cardiac tissues remains an ongoing significant challenge due to the complexity of the native environment. However, our growing understanding of key parameters of the in vivo cardiac microenvironment and our ability to replicate those parameters in vitro are resulting in the development of increasingly sophisticated models of engineered cardiac tissues (ECT). This review examines some of the most relevant parameters that may be applied in culture leading to higher fidelity cardiac tissue models. These include the biochemical composition of culture media and cardiac lineage specification, co-culture conditions, electrical and mechanical stimulation, and the application of hydrogels, various biomaterials, and scaffolds. The review will also summarize some of the recent functional human tissue models that have been developed for in vivo and in vitro applications. Ultimately, the creation of sophisticated ECT that replicate native structure and function will be instrumental in advancing cell-based therapeutics and in providing advanced models for drug discovery and testing. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  14. Inspiration from heart development: Biomimetic development of functional human cardiac organoids.

    PubMed

    Richards, Dylan J; Coyle, Robert C; Tan, Yu; Jia, Jia; Wong, Kerri; Toomer, Katelynn; Menick, Donald R; Mei, Ying

    2017-10-01

    Recent progress in human organoids has provided 3D tissue systems to model human development, diseases, as well as develop cell delivery systems for regenerative therapies. While direct differentiation of human embryoid bodies holds great promise for cardiac organoid production, intramyocardial cell organization during heart development provides biological foundation to fabricate human cardiac organoids with defined cell types. Inspired by the intramyocardial organization events in coronary vasculogenesis, where a diverse, yet defined, mixture of cardiac cell types self-organizes into functional myocardium in the absence of blood flow, we have developed a defined method to produce scaffold-free human cardiac organoids that structurally and functionally resembled the lumenized vascular network in the developing myocardium, supported hiPSC-CM development and possessed fundamental cardiac tissue-level functions. In particular, this development-driven strategy offers a robust, tunable system to examine the contributions of individual cell types, matrix materials and additional factors for developmental insight, biomimetic matrix composition to advance biomaterial design, tissue/organ-level drug screening, and cell therapy for heart repair. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Inhibitor of lysyl oxidase improves cardiac function and the collagen/MMP profile in response to volume overload.

    PubMed

    El Hajj, Elia C; El Hajj, Milad C; Ninh, Van K; Gardner, Jason D

    2018-05-18

    The cardiac extracellular matrix is a complex architectural network that serves many functions including providing structural and biochemical support to surrounding cells, and regulating intercellular signaling pathways. Cardiac function is directly affected by extracellular matrix (ECM) composition, and alterations of the ECM contribute to progression of heart failure. Initially, collagen deposition is an adaptive response that aims to preserve tissue integrity and maintain normal ventricular function. However, the synergistic effects of the pro-inflammatory and pro-fibrotic responses induce a vicious cycle which causes excess activation of myofibroblasts, significantly increasing collagen deposition and accumulation in the matrix. Further, excess synthesis and activation of the enzyme lysyl oxidase (LOX) during disease increases collagen cross-linking, which significantly increases collagen resistance to degradation by matrix metalloproteinases (MMPs). In this study, the aortocaval fistula model of volume overload (VO) was used to determine whether LOX inhibition could prevent adverse changes in the ECM and subsequent cardiac dysfunction. The major findings from this study are that LOX inhibition: (a) prevented VO-induced increases in LV wall stress, (b) partially attenuated VO-induced ventricular hypertrophy, (c) completely blocked the increases in fibrotic proteins, including collagens, MMPs, and their tissue inhibitors (TIMPs), and (d) prevented the VO-induced decline in cardiac function. It remains unclear whether a direct interaction between LOX and MMPs exists; however our studies suggest a potential link between the two since LOX inhibition completely attenuated the VO-induced increases in MMPs. Overall, our studies demonstrate key cardioprotective effects of LOX inhibition against adverse cardiac remodeling due to chronic VO.

  16. [Cardiac cachexia].

    PubMed

    Miján, Alberto; Martín, Elvira; de Mateo, Beatriz

    2006-05-01

    Chronic heart failure (CHF), especially affecting the right heart, frequently leads to malnutrition. If the latter is severe and is combined to other factors, it may lead to cardiac cachexia. This one is associated to increased mortality and lower survival of patients suffering from it. The causes of cardiac cachexia are diverse, generally associated to maintenance of a negative energy balance, with increasing evidence of its multifactorial origin. Neurohumoral, inflammatory, immunological, and metabolic factors, among others, are superimposed in the patient with CHF, leading to involvement and deterioration of several organs and systems, since this condition affects both lean (or active cellular) mass and adipose and bone tissue osteoporosis. Among all, the most pronounced deterioration may be seen at skeletal muscle tissue, at both structural and functional levels, the heart not being spared. As for treatment, it should be based on available scientific evidence. Assessment of nutritional status of any patient with CHF is a must, with the requirement of nutritional intervention in case of malnutrition. In this situation, especially if accompanied by cardiac cachexia, it is required to modify energy intake and oral diet quality, and to consider the indication of specific complementary or alternative artificial nutrition. Besides, the causal relationship of the beneficial role of moderate physical exertion is increasing, as well as modulation of metabolic and inflammatory impairments observed in cardiac cachexia with several drugs, leading to a favorable functional and structural response in CHF patients.

  17. Assessment of Cardiac Function in Fetuses of Gestational Diabetic Mothers During the Second Trimester.

    PubMed

    Atiq, Mehnaz; Ikram, Anum; Hussain, Batool M; Saleem, Bakhtawar

    2017-06-01

    Fetuses of diabetic mothers may have structural or functional cardiac abnormalities which increase morbidity and mortality. Isolated functional abnormalities have been identified in the third trimester. The aim of the present study was to assess fetal cardiac function (systolic, diastolic, and global myocardial performance) in the second trimester in mothers with gestational diabetes, and also to relate cardiac function with glycemic control. Mothers with gestational diabetes mellitus referred for fetal cardiac evaluation in the second trimester (between 19 and 24 weeks) from March 2015 to February 2016 were enrolled as case subjects in this study. Non-diabetic mothers who had a fetal echocardiogram done between 19 and 24 weeks for other indications were enrolled as controls. Functional cardiac variables showed a statistically significant difference in isovolumetric relaxation and contraction times and the myocardial performance index and mitral E/A ratios in the gestational diabetic group (p = 0.003). Mitral annular plane systolic excursion was significantly less in the diabetic group (p = 0.01). The only functional cardiac variable found abnormal in mothers with poor glycemic control was the prolonged isovolumetric relaxation time. Functional cardiac abnormalities can be detected in the second trimester in fetuses of gestational diabetic mothers and timely intervention can improve postnatal outcomes.

  18. Loss of stearoyl-CoA desaturase 1 rescues cardiac function in obese leptin-deficient mice.

    PubMed

    Dobrzyn, Pawel; Dobrzyn, Agnieszka; Miyazaki, Makoto; Ntambi, James M

    2010-08-01

    The heart of leptin-deficient ob/ob mice is characterized by pathologic left ventricular hypertrophy along with elevated triglyceride (TG) content, increased stearoyl-CoA desaturase (SCD) activity, and increased myocyte apoptosis. In the present study, using an ob/ob;SCD1(-/-) mouse model, we tested the hypothesis that lack of SCD1 could improve steatosis and left ventricle (LV) function in leptin deficiency. We show that disruption of the SCD1 gene improves cardiac function in ob/ob mice by correcting systolic and diastolic dysfunction without affecting levels of plasma TG and FFA. The improvement is associated with reduced expression of genes involved in FA transport and lipid synthesis in the heart, as well as reduction in cardiac FFA, diacylglycerol, TG, and ceramide levels. The rate of FA beta-oxidation is also significantly lower in the heart of ob/ob;SCD1(-/-) mice compared with ob/ob controls. Moreover, SCD1 deficiency reduces cardiac apoptosis in ob/ob mice due to increased expression of antiapoptotic factor Bcl-2 and inhibition of inducible nitric oxide synthase and caspase-3 activities. Reduction in myocardial lipid accumulation and inhibition of apoptosis appear to be one of the main mechanisms responsible for improved LV function in ob/ob mice caused by SCD1 deficiency.

  19. Cardiac and renal function in a large cohort of amateur marathon runners.

    PubMed

    Hewing, Bernd; Schattke, Sebastian; Spethmann, Sebastian; Sanad, Wasiem; Schroeckh, Sabrina; Schimke, Ingolf; Halleck, Fabian; Peters, Harm; Brechtel, Lars; Lock, Jürgen; Baumann, Gert; Dreger, Henryk; Borges, Adrian C; Knebel, Fabian

    2015-03-21

    Participation of amateur runners in endurance races continues to increase. Previous studies of marathon runners have raised concerns about exercise-induced myocardial and renal dysfunction and damage. In our pooled analysis, we aimed to characterize changes of cardiac and renal function after marathon running in a large cohort of mostly elderly amateur marathon runners. A total of 167 participants of the Berlin-Marathon (female n = 89, male n = 78; age = 50.3 ± 11.4 years) were included and cardiac and renal function was analyzed prior to, immediately after and 2 weeks following the race by echocardiography and blood tests (including cardiac troponin T, NT-proBNP and cystatin C). Among the runners, 58% exhibited a significant increase in cardiac biomarkers after completion of the marathon. Overall, the changes in echocardiographic parameters for systolic or diastolic left and right ventricular function did not indicate relevant myocardial dysfunction. Notably, 30% of all participants showed >25% decrease in cystatin C-estimated glomerular filtration rate (GFR) from baseline directly after the marathon; in 8%, we observed a decline of more than 50%. All cardiac and renal parameters returned to baseline ranges within 2 weeks after the marathon. The increase in cardiac biomarkers after completing a marathon was not accompanied by relevant cardiac dysfunction as assessed by echocardiography. After the race, a high proportion of runners experienced a decrease in cystatin C-estimated GFR, which is suggestive of transient, exercise-related alteration of renal function. However, we did not observe persistent detrimental effects on renal function.

  20. Systematic Characterization of the Murine Mitochondrial Proteome Using Functionally Validated Cardiac Mitochondria

    PubMed Central

    Zhang, Jun; Li, Xiaohai; Mueller, Michael; Wang, Yueju; Zong, Chenggong; Deng, Ning; Vondriska, Thomas M.; Liem, David A.; Yang, Jeong-In; Korge, Paavo; Honda, Henry; Weiss, James N.; Apweiler, Rolf; Ping, Peipei

    2009-01-01

    Mitochondria play essential roles in cardiac pathophysiology and the murine model has been extensively used to investigate cardiovascular diseases. In the present study, we characterized murine cardiac mitochondria using an LC/MS/MS approach. We extracted and purified cardiac mitochondria; validated their functionality to ensure the final preparation contains necessary components to sustain their normal function; and subjected these validated organelles to LC/MS/MS-based protein identification. A total of 940 distinct proteins were identified from murine cardiac mitochondria, among which, 480 proteins were not previously identified by major proteomic profiling studies. The 940 proteins consist of functional clusters known to support oxidative phosphorylation, metabolism and biogenesis. In addition, there are several other clusters--including proteolysis, protein folding, and reduction/oxidation signaling-which ostensibly represent previously under-appreciated tasks of cardiac mitochondria. Moreover, many identified proteins were found to occupy other subcellular locations, including cytoplasm, ER, and golgi, in addition to their presence in the mitochondria. These results provide a comprehensive picture of the murine cardiac mitochondrial proteome and underscore tissue- and species-specification. Moreover, the use of functionally intact mitochondria insures that the proteomic observations in this organelle are relevant to its normal biology and facilitates decoding the interplay between mitochondria and other organelles. PMID:18348319

  1. Acute Alcohol Modulates Cardiac Function as PI3K/Akt Regulates Oxidative Stress

    PubMed Central

    Umoh, Nsini A.; Walker, Robin K.; Al-Rubaiee, Mustafa; Jeffress, Miara A.; Haddad, Georges E.

    2015-01-01

    . Conclusions Acute LA and HA seem to oppositely affect cardiac function through modulation of oxidative stress where PI3K/Akt plays a pivotal role. PMID:24962888

  2. Environmentally persistent free radicals decrease cardiac function before and after ischemia/reperfusion injury in vivo

    PubMed Central

    Lord, Kevin; Moll, David; Lindsey, John K.; Mahne, Sarah; Raman, Girija; Dugas, Tammy; Cormier, Stephania; Troxlair, Dana; Lomnicki, Slawo; Dellinger, Barry; Varner, Kurt

    2011-01-01

    Exposure to airborne particles is associated with increased cardiovascular morbidity and mortality. During the combustion of chlorine-containing hazardous materials and fuels, chlorinated hydrocarbons chemisorb to the surface of transition metal-oxide-containing particles, reduce the metal, and form an organic free radical. These radical-particle systems can survive in the environment for days and are called environmentally persistent free radicals (EPFRs). This study determined whether EPFRs could decrease left ventricular function before and after ischemia and reperfusion (I/R) in vivo. Male Brown Norway rats were dosed (8 mg/kg, i.t.) 24 hr prior to testing with particles containing the EPFR of 1, 2-dichlorobenzene (DCB230). DCB230 treatment decreased systolic and diastolic function. DCB230 also produced pulmonary and cardiac inflammation. After ischemia, systolic, but not diastolic function was significantly decreased in DCB230-treated rats. Ventricular function was not affected by I/R in control rats. There was greater oxidative stress in the heart and increased 8-isoprostane (biomarker of oxidative stress) in the plasma of treated vs control rats after I/R. These data demonstrate for the first time that DCB230 can produce inflammation and significantly decrease cardiac function at baseline and after I/R in vivo. Furthermore, these data suggest that EPFRs may be a risk factor for cardiac toxicity in healthy individuals and individuals with ischemic heart disease. Potential mechanisms involving cytokines/chemokines and/or oxidative stress are discussed. PMID:21385100

  3. Network interactions within the canine intrinsic cardiac nervous system: implications for reflex control of regional cardiac function

    PubMed Central

    Beaumont, Eric; Salavatian, Siamak; Southerland, E Marie; Vinet, Alain; Jacquemet, Vincent; Armour, J Andrew; Ardell, Jeffrey L

    2013-01-01

    The aims of the study were to determine how aggregates of intrinsic cardiac (IC) neurons transduce the cardiovascular milieu versus responding to changes in central neuronal drive and to determine IC network interactions subsequent to induced neural imbalances in the genesis of atrial fibrillation (AF). Activity from multiple IC neurons in the right atrial ganglionated plexus was recorded in eight anaesthetized canines using a 16-channel linear microelectrode array. Induced changes in IC neuronal activity were evaluated in response to: (1) focal cardiac mechanical distortion; (2) electrical activation of cervical vagi or stellate ganglia; (3) occlusion of the inferior vena cava or thoracic aorta; (4) transient ventricular ischaemia, and (5) neurally induced AF. Low level activity (ranging from 0 to 2.7 Hz) generated by 92 neurons was identified in basal states, activities that displayed functional interconnectivity. The majority (56%) of IC neurons so identified received indirect central inputs (vagus alone: 25%; stellate ganglion alone: 27%; both: 48%). Fifty per cent transduced the cardiac milieu responding to multimodal stressors applied to the great vessels or heart. Fifty per cent of IC neurons exhibited cardiac cycle periodicity, with activity occurring primarily in late diastole into isovolumetric contraction. Cardiac-related activity in IC neurons was primarily related to direct cardiac mechano-sensory inputs and indirect autonomic efferent inputs. In response to mediastinal nerve stimulation, most IC neurons became excessively activated; such network behaviour preceded and persisted throughout AF. It was concluded that stochastic interactions occur among IC local circuit neuronal populations in the control of regional cardiac function. Modulation of IC local circuit neuronal recruitment may represent a novel approach for the treatment of cardiac disease, including atrial arrhythmias. PMID:23818689

  4. Effects of testosterone and nandrolone on cardiac function: a randomized, placebo-controlled study.

    PubMed

    Chung, T; Kelleher, S; Liu, P Y; Conway, A J; Kritharides, L; Handelsman, D J

    2007-02-01

    Androgens have striking effects on skeletal muscle, but the effects on human cardiac muscle function are not well defined, neither has the role of metabolic activation (aromatization, 5alpha reduction) of testosterone on cardiac muscle been directly studied. To assess the effects of testosterone and nandrolone, a non-amplifiable and non-aromatizable pure androgen, on cardiac muscle function in healthy young men. Double-blind, randomized, placebo-controlled, three-arm parallel group clinical trial. Ambulatory care research centre. Healthy young men randomized into three groups of 10 men. Weekly intramuscular injections of testosterone (200 mg mixed esters), nandrolone (200 mg nandrolone decanoate) or matching (2 ml arachis oil vehicle) placebo for 4 weeks. Comprehensive measures of cardiac muscle function involving transthoracic cardiac echocardiography measuring myocardial tissue velocity, peak systolic strain and strain rates, and bioimpedance measurement of cardiac output and systematic vascular resistance. Left ventricular (LV) function (LV ejection fraction, LV modified TEI index), right ventricular (RV) function (ejection area, tricuspid annular systolic planar motion, RV modified TEI index) as well as cardiac afterload (mean arterial pressure, systemic vascular resistance) and overall cardiac contractility (stroke volume, cardiac output) were within age- and gender-specific reference ranges and were not significantly (P < 0.05) altered by either androgen or placebo over 4 weeks of treatment. Minor changes remaining within normal range were observed solely within the testosterone group for: increased LV end-systolic diameter (30 +/- 7 vs. 33 +/- 5 mm, P = 0.04) and RV end-systolic area (12.8 +/- 1.3 vs. 14.6 +/- 3.3 cm(2), P = 0.04), reduced LV diastolic septal velocity (Em, 9.5 +/- 2.6 vs. 8.7 +/- 2.0 cm/s, P = 0.006), increased LV filling pressure (E/Em ratio, 7.1 +/- 1.6 vs. 8.3 +/- 1.8, P = 0.02) and shortened PR interval on the electrocardiogram (167

  5. Pulsed electromagnetic field improves cardiac function in response to myocardial infarction.

    PubMed

    Hao, Chang-Ning; Huang, Jing-Juan; Shi, Yi-Qin; Cheng, Xian-Wu; Li, Hao-Yun; Zhou, Lin; Guo, Xin-Gui; Li, Rui-Lin; Lu, Wei; Zhu, Yi-Zhun; Duan, Jun-Li

    2014-01-01

    Extracorporeal pulsed electromagnetic field (PEMF) has been shown the ability to improve regeneration in various ischemic episodes. Here, we examined whether PEMF therapy facilitate cardiac recovery in rat myocardial infarction (MI), and the cellular/molecular mechanisms underlying PEMF-related therapy was further investigated. The MI rats were exposed to active PEMF for 4 cycles per day (8 minutes/cycle, 30 ± 3 Hz, 5 mT) after MI induction. The data demonstrated that PEMF treatment significantly inhibited cardiac apoptosis and improved cardiac systolic function. Moreover, PEMF treatment increased capillary density, the levels of vascular endothelial growth factor (VEGF) and hypoxic inducible factor-1α in infarct border zone. Furthermore, the number and function of circulating endothelial progenitor cells were advanced in PEMF treating rats. In vitro, PEMF induced the degree of human umbilical venous endothelial cells tubulization and increased soluble pro-angiogenic factor secretion (VEGF and nitric oxide). In conclusion, PEMF therapy preserves cardiac systolic function, inhibits apoptosis and trigger postnatal neovascularization in ischemic myocardium.

  6. Characterization and Reduction of Cardiac- and Respiratory-Induced Noise as a Function of the Sampling Rate (TR) in fMRI

    PubMed Central

    Cordes, Dietmar; Nandy, Rajesh R.; Schafer, Scott; Wager, Tor D.

    2014-01-01

    It has recently been shown that both high-frequency and low-frequency cardiac and respiratory noise sources exist throughout the entire brain and can cause significant signal changes in fMRI data. It is also known that the brainstem, basal forebrain and spinal cord area are problematic for fMRI because of the magnitude of cardiac-induced pulsations at these locations. In this study, the physiological noise contributions in the lower brain areas (covering the brainstem and adjacent regions) are investigated and a novel method is presented for computing both low-frequency and high-frequency physiological regressors accurately for each subject. In particular, using a novel optimization algorithm that penalizes curvature (i.e. the second derivative) of the physiological hemodynamic response functions, the cardiac -and respiratory-related response functions are computed. The physiological noise variance is determined for each voxel and the frequency-aliasing property of the high-frequency cardiac waveform as a function of the repetition time (TR) is investigated. It is shown that for the brainstem and other brain areas associated with large pulsations of the cardiac rate, the temporal SNR associated with the low-frequency range of the BOLD response has maxima at subject-specific TRs. At these values, the high-frequency aliased cardiac rate can be eliminated by digital filtering without affecting the BOLD-related signal. PMID:24355483

  7. Acupuncture Effects on Cardiac Functions Measured by Cardiac Magnetic Resonance Imaging in a Feline Model

    PubMed Central

    Lin, Jen-Hsou; Shih, Chen-Haw; Kaphle, Krishna; Wu, Leang-Shin; Tseng, Weng-Yih; Chiu, Jen-Hwey; Lee, Tzu-chi

    2010-01-01

    The usefulness of acupuncture (AP) as a complementary and/or alternative therapy in animals is well established but more research is needed on its clinical efficacy relative to conventional therapy, and on the underlying mechanisms of the effects of AP. Cardiac magnetic resonance imaging (CMRI), an important tool in monitoring cardiovascular diseases, provides a reliable method to monitor the effects of AP on the cardiovascular system. This controlled experiment monitored the effect electro-acupuncture (EA) at bilateral acupoint Neiguan (PC6) on recovery time after ketamine/xylazine cocktail anesthesia in healthy cats. The CMRI data established the basic feline cardiac function index (CFI), including cardiac output and major vessel velocity. To evaluate the effect of EA on the functions of the autonomic nervous and cardiovascular systems, heart rate, respiration rate, electrocardiogram and pulse rate were also measured. Ketamine/xylazine cocktail anesthesia caused a transient hypertension in the cats; EA inhibited this anesthetic-induced hypertension and shortened the post-anesthesia recovery time. Our data support existing knowledge on the cardiovascular benefits of EA at PC6, and also provide strong evidence for the combination of anesthesia and EA to shorten post-anesthesia recovery time and counter the negative effects of anesthetics on cardiac physiology. PMID:18955311

  8. Clinical review: Positive end-expiratory pressure and cardiac output

    PubMed Central

    Luecke, Thomas; Pelosi, Paolo

    2005-01-01

    In patients with acute lung injury, high levels of positive end-expiratory pressure (PEEP) may be necessary to maintain or restore oxygenation, despite the fact that 'aggressive' mechanical ventilation can markedly affect cardiac function in a complex and often unpredictable fashion. As heart rate usually does not change with PEEP, the entire fall in cardiac output is a consequence of a reduction in left ventricular stroke volume (SV). PEEP-induced changes in cardiac output are analyzed, therefore, in terms of changes in SV and its determinants (preload, afterload, contractility and ventricular compliance). Mechanical ventilation with PEEP, like any other active or passive ventilatory maneuver, primarily affects cardiac function by changing lung volume and intrathoracic pressure. In order to describe the direct cardiocirculatory consequences of respiratory failure necessitating mechanical ventilation and PEEP, this review will focus on the effects of changes in lung volume, factors controlling venous return, the diastolic interactions between the ventricles and the effects of intrathoracic pressure on cardiac function, specifically left ventricular function. Finally, the hemodynamic consequences of PEEP in patients with heart failure, chronic obstructive pulmonary disease and acute respiratory distress syndrome are discussed. PMID:16356246

  9. Pulmonary function and adverse cardiovascular outcomes: Can cardiac function explain the link?

    PubMed

    Burroughs Peña, Melissa S; Dunning, Allison; Schulte, Phillip J; Durheim, Michael T; Kussin, Peter; Checkley, William; Velazquez, Eric J

    2016-12-01

    The complex interaction between pulmonary function, cardiac function and adverse cardiovascular events has only been partially described. We sought to describe the association between pulmonary function with left heart structure and function, all-cause mortality and incident cardiovascular hospitalization. This study is a retrospective analysis of patients evaluated in a single tertiary care medical center. We used multivariable linear regression analyses to examine the relationship between FVC and FEV1 with left ventricular ejection fraction (LVEF), left ventricular internal dimension in systole and diastole (LVIDS, LVIDD) and left atrial diameter, adjusting for baseline characteristics, right ventricular function and lung hyperinflation. We also used Cox proportional hazards models to examine the relationship between FVC and FEV1 with all-cause mortality and cardiac hospitalization. A total of 1807 patients were included in this analysis with a median age of 61 years and 50% were female. Decreased FVC and FEV1 were both associated with decreased LVEF. In individuals with FVC less than 2.75 L, decreased FVC was associated with increased all-cause mortality after adjusting for left and right heart echocardiographic variables (hazard ratio [HR] 0.49, 95% CI 0.29, 0.82, respectively). Decreased FVC was associated with increased cardiac hospitalization after adjusting for left heart size (HR 0.80, 95% CI 0.67, 0.96), even in patients with normal LVEF (HR 0.75, 95% CI 0.57, 0.97). In a tertiary care center reduced pulmonary function was associated with adverse cardiovascular events, a relationship that is not fully explained by left heart remodeling or right heart dysfunction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Mammalian enabled (Mena) is a critical regulator of cardiac function.

    PubMed

    Aguilar, Frédérick; Belmonte, Stephen L; Ram, Rashmi; Noujaim, Sami F; Dunaevsky, Olga; Protack, Tricia L; Jalife, Jose; Todd Massey, H; Gertler, Frank B; Blaxall, Burns C

    2011-05-01

    Mammalian enabled (Mena) of the Drosophila enabled/vasodilator-stimulated phosphoprotein gene family is a cytoskeletal protein implicated in actin regulation and cell motility. Cardiac Mena expression is enriched in intercalated discs (ICD), the critical intercellular communication nexus between adjacent muscle cells. We previously identified Mena gene expression to be a key predictor of human and murine heart failure (HF). To determine the in vivo function of Mena in the heart, we assessed Mena protein expression in multiple HF models and characterized the effects of genetic Mena deletion on cardiac structure and function. Immunoblot analysis revealed significant upregulation of Mena protein expression in left ventricle tissue from patients with end-stage HF, calsequestrin-overexpressing mice, and isoproterenol-infused mice. Characterization of the baseline cardiac function of adult Mena knockout mice (Mena(-/-)) via echocardiography demonstrated persistent cardiac dysfunction, including a significant reduction in percent fractional shortening compared with wild-type littermates. Electrocardiogram PR and QRS intervals were significantly prolonged in Mena(-/-) mice, manifested by slowed conduction on optical mapping studies. Ultrastructural analysis of Mena(-/-) hearts revealed disrupted organization and widening of ICD structures, mislocalization of the gap junction protein connexin 43 (Cx43) to the lateral borders of cardiomyoycytes, and increased Cx43 expression. Furthermore, the expression of vinculin (an adherens junction protein) was significantly reduced in Mena(-/-) mice. We report for the first time that genetic ablation of Mena results in cardiac dysfunction, highlighted by diminished contractile performance, disrupted ICD structure, and slowed electrical conduction.

  11. Non-invasive imaging of global and regional cardiac function in pulmonary hypertension

    PubMed Central

    Crowe, Tim; Jayasekera, Geeshath

    2017-01-01

    Pulmonary hypertension (PH) is a progressive illness characterized by elevated pulmonary artery pressure; however, the main cause of mortality in PH patients is right ventricular (RV) failure. Historically, improving the hemodynamics of pulmonary circulation was the focus of treatment; however, it is now evident that cardiac response to a given level of pulmonary hemodynamic overload is variable but plays an important role in the subsequent prognosis. Non-invasive tests of RV function to determine prognosis and response to treatment in patients with PH is essential. Although the right ventricle is the focus of attention, it is clear that cardiac interaction can cause left ventricular dysfunction, thus biventricular assessment is paramount. There is also focus on the atrial chambers in their contribution to cardiac function in PH. Furthermore, there is evidence of regional dysfunction of the two ventricles in PH, so it would be useful to understand both global and regional components of dysfunction. In order to understand global and regional cardiac function in PH, the most obvious non-invasive imaging techniques are echocardiography and cardiac magnetic resonance imaging (CMRI). Both techniques have their advantages and disadvantages. Echocardiography is widely available, relatively inexpensive, provides information regarding RV function, and can be used to estimate RV pressures. CMRI, although expensive and less accessible, is the gold standard of biventricular functional measurements. The advent of 3D echocardiography and techniques including strain analysis and stress echocardiography have improved the usefulness of echocardiography while new CMRI technology allows the measurement of strain and measuring cardiac function during stress including exercise. In this review, we have analyzed the advantages and disadvantages of the two techniques and discuss pre-existing and novel forms of analysis where echocardiography and CMRI can be used to examine atrial

  12. Evaluation of platelet function in dogs with cardiac disease using the PFA-100 platelet function analyzer.

    PubMed

    Clancey, Noel; Burton, Shelley; Horney, Barbara; Mackenzie, Allan; Nicastro, Andrea; Côté, Etienne

    2009-09-01

    Cardiac disease has the potential to alter platelet function in dogs. Evaluation of platelet function using the PFA-100 analyzer in dogs of multiple breeds and with a broad range of cardiac conditions would help clarify the effect of cardiac disease on platelets. The objective of this study was to assess differences in closure time (CT) in dogs with cardiac disease associated with murmurs, when compared with that of healthy dogs. Thirty-nine dogs with cardiac murmurs and turbulent blood flow as determined echocardiographically were included in the study. The dogs represented 23 different breeds. Dogs with murmurs were further divided into those with atrioventricular valvular insufficiency (n=23) and subaortic stenosis (n=9). Fifty-eight clinically healthy dogs were used as controls. CTs were determined in duplicate on a PFA-100 analyzer using collagen/ADP cartridges. Compared with CTs in the control group (mean+/-SD, 57.6+/-5.9 seconds; median, 56.5 seconds; reference interval, 48.0-77.0 seconds), dogs with valvular insufficiency (mean+/-SD, 81.9+/-26.3 seconds; median, 78.0 seconds; range, 52.5-187 seconds), subaortic stenosis (71.4+/-16.5 seconds; median, 66.0 seconds; range, 51.5-95.0 seconds), and all dogs with murmurs combined (79.6+/-24.1 seconds; median, 74.0 seconds; range, 48.0-187 seconds) had significantly prolonged CTs (P<.01). The PFA-100 analyzer is useful in detecting platelet function defects in dogs with cardiac murmurs, most notably those caused by mitral and/or tricuspid valvular insufficiency or subaortic stenosis. The form of turbulent blood flow does not appear to be an important factor in platelet hypofunction in these forms of cardiac disease.

  13. Cardiac structure and function in Cushing's syndrome: a cardiac magnetic resonance imaging study.

    PubMed

    Kamenický, Peter; Redheuil, Alban; Roux, Charles; Salenave, Sylvie; Kachenoura, Nadjia; Raissouni, Zainab; Macron, Laurent; Guignat, Laurence; Jublanc, Christel; Azarine, Arshid; Brailly, Sylvie; Young, Jacques; Mousseaux, Elie; Chanson, Philippe

    2014-11-01

    Patients with Cushing's syndrome have left ventricular (LV) hypertrophy and dysfunction on echocardiography, but echo-based measurements may have limited accuracy in obese patients. No data are available on right ventricular (RV) and left atrial (LA) size and function in these patients. The objective of the study was to evaluate LV, RV, and LA structure and function in patients with Cushing's syndrome by means of cardiac magnetic resonance, currently the reference modality in assessment of cardiac geometry and function. Eighteen patients with active Cushing's syndrome and 18 volunteers matched for age, sex, and body mass index were studied by cardiac magnetic resonance. The imaging was repeated in the patients 6 months (range 2-12 mo) after the treatment of hypercortisolism. Compared with controls, patients with Cushing's syndrome had lower LV, RV, and LA ejection fractions (P < .001 for all) and increased end-diastolic LV segmental thickness (P < .001). Treatment of hypercortisolism was associated with an improvement in ventricular and atrial systolic performance, as reflected by a 15% increase in the LV ejection fraction (P = .029), a 45% increase in the LA ejection fraction (P < .001), and an 11% increase in the RV ejection fraction (P = NS). After treatment, the LV mass index and end-diastolic LV mass to volume ratio decreased by 17% (P < .001) and 10% (P = .002), respectively. None of the patients had late gadolinium myocardial enhancement. Cushing's syndrome is associated with subclinical biventricular and LA systolic dysfunctions that are reversible after treatment. Despite skeletal muscle atrophy, Cushing's syndrome patients have an increased LV mass, reversible upon correction of hypercortisolism.

  14. Adaptive servo ventilation improves Cheyne-Stokes respiration, cardiac function, and prognosis in chronic heart failure patients with cardiac resynchronization therapy.

    PubMed

    Miyata, Makiko; Yoshihisa, Akiomi; Suzuki, Satoshi; Yamada, Shinya; Kamioka, Masashi; Kamiyama, Yoshiyuki; Yamaki, Takayoshi; Sugimoto, Koichi; Kunii, Hiroyuki; Nakazato, Kazuhiko; Suzuki, Hitoshi; Saitoh, Shu-ichi; Takeishi, Yasuchika

    2012-09-01

    Cheyne-Stokes respiration (CSR-CSA) is often observed in patients with chronic heart failure (CHF). Although cardiac resynchronization therapy (CRT) is effective for CHF patients with left ventricular dyssynchrony, it is still unclear whether adaptive servo ventilation (ASV) improves cardiac function and prognosis of CHF patients with CSR-CSA after CRT. Twenty two patients with CHF and CSR-CSA after CRT defibrillator (CRTD) implantation were enrolled in the present study and randomly assigned into two groups: 11 patients treated with ASV (ASV group) and 11 patients treated without ASV (non-ASV group). Measurement of plasma B-type natriuretic peptide (BNP) levels (before 3, and 6 months later) and echocardiography (before and 6 months) were performed in each group. Patients were followed up to register cardiac events (cardiac death and re-hospitalization) after discharge. In the ASV group, indices for apnea-hypopnea, central apnea, and oxyhemoglobin saturation were improved on ASV. BNP levels, cardiac systolic and diastolic function were improved with ASV treatment for 6 months. Importantly, the event-free rate was significantly higher in the ASV group than in the non-ASV group. ASV improves CSR-CSA, cardiac function, and prognosis in CHF patients with CRTD. Patients with CSR-CSA and post CRTD implantation would get benefits by treatment with ASV. Copyright © 2012 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  15. Cardiorespiratory Fitness and Cardiac Autonomic Function in Diabetes.

    PubMed

    Röhling, Martin; Strom, Alexander; Bönhof, Gidon J; Roden, Michael; Ziegler, Dan

    2017-10-23

    This review summarizes the current knowledge on the relationship of physical activity, exercise, and cardiorespiratory fitness (CRF) with cardiovascular autonomic neuropathy (CAN) based on epidemiological, clinical, and interventional studies. The prevalence of CAN increases with age and duration of diabetes. Further risk factors for CAN comprise poor glycemic control, dyslipidemia, abdominal obesity, hypertension, and the presence of diabetic complications. CAN has been also linked to reduced CRF. We recently showed that CRF parameters (e.g., maximal oxidative capacity or oxidative capacity at the anaerobic threshold) are associated with cardiac autonomic function in patients recently diagnosed with type 1 or type 2 diabetes. Exercise interventions have shown that physical activity can increase cardiovagal activity and reduce sympathetic overactivity. In particular, long-term and regularly, but also supervised, performed endurance and high-intense and high-volume exercise improves cardiac autonomic function in patients with type 2 diabetes. By contrast, the evidence in those with type 1 diabetes and also in individuals with prediabetes or metabolic syndrome is weaker. Overall, the studies reviewed herein addressing the question whether favorably modulating the autonomic nervous system may improve CRF during exercise programs support the therapeutic concept to promote physical activity and to achieve physical fitness. However, high-quality exercise interventions, especially in type 1 diabetes and metabolic syndrome including prediabetes, are further required to better understand the relationship between physical activity, fitness, and cardiac autonomic function.

  16. A Novel Human Tissue-Engineered 3-D Functional Vascularized Cardiac Muscle Construct

    PubMed Central

    Valarmathi, Mani T.; Fuseler, John W.; Davis, Jeffrey M.; Price, Robert L.

    2017-01-01

    Organ tissue engineering, including cardiovascular tissues, has been an area of intense investigation. The major challenge to these approaches has been the inability to vascularize and perfuse the in vitro engineered tissue constructs. Attempts to provide oxygen and nutrients to the cells contained in the biomaterial constructs have had varying degrees of success. The aim of this current study is to develop a three-dimensional (3-D) model of vascularized cardiac tissue to examine the concurrent temporal and spatial regulation of cardiomyogenesis in the context of postnatal de novo vasculogenesis during stem cell cardiac regeneration. In order to achieve the above aim, we have developed an in vitro 3-D functional vascularized cardiac muscle construct using human induced pluripotent stem cell-derived embryonic cardiac myocytes (hiPSC-ECMs) and human mesenchymal stem cells (hMSCs). First, to generate the prevascularized scaffold, human cardiac microvascular endothelial cells (hCMVECs) and hMSCs were co-cultured onto a 3-D collagen cell carrier (CCC) for 7 days under vasculogenic culture conditions. In this milieu, hCMVECs/hMSCs underwent maturation, differentiation, and morphogenesis characteristic of microvessels, and formed extensive plexuses of vascular networks. Next, the hiPSC-ECMs and hMSCs were co-cultured onto this generated prevascularized CCCs for further 7 or 14 days in myogenic culture conditions. Finally, the vascular and cardiac phenotypic inductions were analyzed at the morphological, immunological, biochemical, molecular, and functional levels. Expression and functional analyses of the differentiated cells revealed neo-angiogenesis and neo-cardiomyogenesis. Thus, our unique 3-D co-culture system provided us the apt in vitro functional vascularized 3-D cardiac patch that can be utilized for cellular cardiomyoplasty. PMID:28194397

  17. Nanowires and Electrical Stimulation Synergistically Improve Functions of hiPSC Cardiac Spheroids.

    PubMed

    Richards, Dylan J; Tan, Yu; Coyle, Robert; Li, Yang; Xu, Ruoyu; Yeung, Nelson; Parker, Arran; Menick, Donald R; Tian, Bozhi; Mei, Ying

    2016-07-13

    The advancement of human induced pluripotent stem-cell-derived cardiomyocyte (hiPSC-CM) technology has shown promising potential to provide a patient-specific, regenerative cell therapy strategy to treat cardiovascular disease. Despite the progress, the unspecific, underdeveloped phenotype of hiPSC-CMs has shown arrhythmogenic risk and limited functional improvements after transplantation. To address this, tissue engineering strategies have utilized both exogenous and endogenous stimuli to accelerate the development of hiPSC-CMs. Exogenous electrical stimulation provides a biomimetic pacemaker-like stimuli that has been shown to advance the electrical properties of tissue engineered cardiac constructs. Recently, we demonstrated that the incorporation of electrically conductive silicon nanowires to hiPSC cardiac spheroids led to advanced structural and functional development of hiPSC-CMs by improving the endogenous electrical microenvironment. Here, we reasoned that the enhanced endogenous electrical microenvironment of nanowired hiPSC cardiac spheroids would synergize with exogenous electrical stimulation to further advance the functional development of nanowired hiPSC cardiac spheroids. For the first time, we report that the combination of nanowires and electrical stimulation enhanced cell-cell junction formation, improved development of contractile machinery, and led to a significant decrease in the spontaneous beat rate of hiPSC cardiac spheroids. The advancements made here address critical challenges for the use of hiPSC-CMs in cardiac developmental and translational research and provide an advanced cell delivery vehicle for the next generation of cardiac repair.

  18. Effects of Kaempferia parviflora Wall. Ex. Baker and sildenafil citrate on cGMP level, cardiac function, and intracellular Ca2+ regulation in rat hearts.

    PubMed

    Weerateerangkul, Punate; Palee, Siripong; Chinda, Kroekkiat; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2012-09-01

    Although Kaempferia parviflora extract (KPE) and its flavonoids have positive effects on the nitric oxide (NO) signaling pathway, its mechanisms on the heart are still unclear. Because our previous studies demonstrated that KPE decreased defibrillation efficacy in swine similar to that of sildenafil citrate, the phosphodiesterase-5 inhibitor, it is possible that KPE may affect the cardiac NO signaling pathway. In the present study, the effects of KPE and sildenafil citrate on cyclic guanosine monophosphate (cGMP) level, modulation of cardiac function, and Ca transients in ventricular myocytes were investigated. In a rat model, cardiac cGMP level, cardiac function, and Ca transients were measured before and after treatment with KPE and sildenafil citrate. KPE significantly increased the cGMP level and decreased cardiac function and Ca transient. These effects were similar to those found in the sildenafil citrate-treated group. Furthermore, the nonspecific NOS inhibitor could abolish the effects of KPE and sildenafil citrate on Ca transient. KPE has positive effect on NO signaling in the heart, resulting in an increased cGMP level, similar to that of sildenafil citrate. This effect was found to influence the physiology of normal heart via the attenuation of cardiac function and the reduction of Ca transient in ventricular myocytes.

  19. Cardiac and autonomic nerve function after reduced-intensity stem cell transplantation for hematologic malignancy in patients with pre-transplant cardiac dysfunction.

    PubMed

    Nakane, Takahiko; Nakamae, Hirohisa; Muro, Takashi; Yamagishi, Hiroyuki; Kobayashi, Yoshiki; Aimoto, Mizuki; Sakamoto, Erina; Terada, Yoshiki; Nakamae, Mika; Koh, Ki-Ryang; Yamane, Takahisa; Yoshiyama, Minoru; Hino, Masayuki

    2009-09-01

    Recent reports have shown that cardiomyopathy caused by hemochromatosis in severe aplastic anemia is reversible after reduced-intensity allogeneic stem-cell transplantation (RIST). We comprehensively evaluated cardiac and autonomic nerve function to determine whether cardiac dysfunction due to causes other than hemochromatosis is attenuated after RIST. In five patients with cardiac dysfunction before transplant, we analyzed the changes in cardiac and autonomic nerve function after transplant, using electrocardiography (ECG), echocardiography, radionuclide angiography (RNA), serum markers, and heart rate variability (HRV), before and up to 100 days after transplant. There was no significant improvement in cardiac function in any patient and no significant alteration in ECG, echocardiogram, RNA, or serum markers. However, on time-domain analysis of HRV, the SD of normal-to-normal RR intervals (SDNN) and the coefficient of variation of the RR interval (CVRR) decreased significantly 30 and 60 days after transplant (P = 0.04 and 0.01, respectively). Similarly, on frequency-domain analysis of HRV, low and high frequency power (LF and HF) significantly and temporarily decreased (P = 0.003 and 0.03, respectively). Notably, in one patient who had acute heart failure after transplantation, the values of SDNN, CVRR, r-MSSD, LF, and HF at 30 and 60 days after transplantation were the lowest of all the patients. In conclusion, this study suggests that (a) RIST is well-tolerated in patients with cardiac dysfunction, but we cannot expect improvement in cardiac dysfunction due to causes other than hemochromatosis; and (b) monitoring HRV may be useful in predicting cardiac events after RIST.

  20. Enhancing Cardiac Triacylglycerol Metabolism Improves Recovery From Ischemic Stress

    PubMed Central

    Liu, Li; Goldberg, Ira J.

    2015-01-01

    Elevated cardiac triacylglycerol (TAG) content is traditionally equated with cardiolipotoxicity and suggested to be a culprit in cardiac dysfunction. However, previous work demonstrated that myosin heavy-chain–mediated cardiac-specific overexpression of diacylglycerol transferase 1 (MHC-DGAT1), the primary enzyme for TAG synthesis, preserved cardiac function in two lipotoxic mouse models despite maintaining high TAG content. Therefore, we examined whether increased cardiomyocyte TAG levels due to DGAT1 overexpression led to changes in cardiac TAG turnover rates under normoxia and ischemia-reperfusion conditions. MHC-DGAT1 mice had elevated TAG content and synthesis rates, which did not alter cardiac function, substrate oxidation, or myocardial energetics. MHC-DGAT1 hearts had ischemia-induced lipolysis; however, when a physiologic mixture of long-chain fatty acids was provided, enhanced TAG turnover rates were associated with improved functional recovery from low-flow ischemia. Conversely, exogenous supply of palmitate during reperfusion suppressed elevated TAG turnover rates and impaired recovery from ischemia in MHC-DGAT1 hearts. Collectively, this study shows that elevated TAG content, accompanied by enhanced turnover, does not adversely affect cardiac function and, in fact, provides cardioprotection from ischemic stress. In addition, the results highlight the importance of exogenous supply of fatty acids when assessing cardiac lipid metabolism and its relationship with cardiac function. PMID:25858561

  1. Mammalian enabled (Mena) is a critical regulator of cardiac function

    PubMed Central

    Aguilar, Frédérick; Belmonte, Stephen L.; Ram, Rashmi; Noujaim, Sami F.; Dunaevsky, Olga; Protack, Tricia L.; Jalife, Jose; Todd Massey, H.; Gertler, Frank B.

    2011-01-01

    Mammalian enabled (Mena) of the Drosophila enabled/vasodilator-stimulated phosphoprotein gene family is a cytoskeletal protein implicated in actin regulation and cell motility. Cardiac Mena expression is enriched in intercalated discs (ICD), the critical intercellular communication nexus between adjacent muscle cells. We previously identified Mena gene expression to be a key predictor of human and murine heart failure (HF). To determine the in vivo function of Mena in the heart, we assessed Mena protein expression in multiple HF models and characterized the effects of genetic Mena deletion on cardiac structure and function. Immunoblot analysis revealed significant upregulation of Mena protein expression in left ventricle tissue from patients with end-stage HF, calsequestrin-overexpressing mice, and isoproterenol-infused mice. Characterization of the baseline cardiac function of adult Mena knockout mice (Mena−/−) via echocardiography demonstrated persistent cardiac dysfunction, including a significant reduction in percent fractional shortening compared with wild-type littermates. Electrocardiogram PR and QRS intervals were significantly prolonged in Mena−/− mice, manifested by slowed conduction on optical mapping studies. Ultrastructural analysis of Mena−/− hearts revealed disrupted organization and widening of ICD structures, mislocalization of the gap junction protein connexin 43 (Cx43) to the lateral borders of cardiomyoycytes, and increased Cx43 expression. Furthermore, the expression of vinculin (an adherens junction protein) was significantly reduced in Mena−/− mice. We report for the first time that genetic ablation of Mena results in cardiac dysfunction, highlighted by diminished contractile performance, disrupted ICD structure, and slowed electrical conduction. PMID:21335464

  2. Skeletal and cardiac muscle pericytes: Functions and therapeutic potential

    PubMed Central

    Murray, Iain R.; Baily, James E.; Chen, William C.W.; Dar, Ayelet; Gonzalez, Zaniah N.; Jensen, Andrew R.; Petrigliano, Frank A.; Deb, Arjun; Henderson, Neil C.

    2017-01-01

    Pericytes are periendothelial mesenchymal cells residing within the microvasculature. Skeletal muscle and cardiac pericytes are now recognized to fulfill an increasing number of functions in normal tissue homeostasis, including contributing to microvascular function by maintaining vessel stability and regulating capillary flow. In the setting of muscle injury, pericytes contribute to a regenerative microenvironment through release of trophic factors and by modulating local immune responses. In skeletal muscle, pericytes also directly enhance tissue healing by differentiating into myofibers. Conversely, pericytes have also been implicated in the development of disease states, including fibrosis, heterotopic ossication and calcification, atherosclerosis, and tumor angiogenesis. Despite increased recognition of pericyte heterogeneity, it is not yet clear whether specific subsets of pericytes are responsible for individual functions in skeletal and cardiac muscle homeostasis and disease. PMID:27595928

  3. Cardiac function adaptations in hibernating grizzly bears (Ursus arctos horribilis).

    PubMed

    Nelson, O Lynne; Robbins, Charles T

    2010-03-01

    Research on the cardiovascular physiology of hibernating mammals may provide insight into evolutionary adaptations; however, anesthesia used to handle wild animals may affect the cardiovascular parameters of interest. To overcome these potential biases, we investigated the functional cardiac phenotype of the hibernating grizzly bear (Ursus arctos horribilis) during the active, transitional and hibernating phases over a 4 year period in conscious rather than anesthetized bears. The bears were captive born and serially studied from the age of 5 months to 4 years. Heart rate was significantly different from active (82.6 +/- 7.7 beats/min) to hibernating states (17.8 +/- 2.8 beats/min). There was no difference from the active to the hibernating state in diastolic and stroke volume parameters or in left atrial area. Left ventricular volume:mass was significantly increased during hibernation indicating decreased ventricular mass. Ejection fraction of the left ventricle was not different between active and hibernating states. In contrast, total left atrial emptying fraction was significantly reduced during hibernation (17.8 +/- 2.8%) as compared to the active state (40.8 +/- 1.9%). Reduced atrial chamber function was also supported by reduced atrial contraction blood flow velocities and atrial contraction ejection fraction during hibernation; 7.1 +/- 2.8% as compared to 20.7 +/- 3% during the active state. Changes in the diastolic cardiac filling cycle, especially atrial chamber contribution to ventricular filling, appear to be the most prominent macroscopic functional change during hibernation. Thus, we propose that these changes in atrial chamber function constitute a major adaptation during hibernation which allows the myocardium to conserve energy, avoid chamber dilation and remain healthy during a period of extremely low heart rates. These findings will aid in rational approaches to identifying underlying molecular mechanisms.

  4. Cardiac Expression of Microsomal Triglyceride Transfer Protein Is Increased in Obesity and Serves to Attenuate Cardiac Triglyceride Accumulation

    PubMed Central

    Bartels, Emil D.; Nielsen, Jan M.; Hellgren, Lars I.; Ploug, Thorkil; Nielsen, Lars B.

    2009-01-01

    Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and β-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via secretion of apolipoproteinB-containing (apoB) lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP); the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression in response to increased fatty acid availability during fasting and fat feeding. This resulted in cardiac triglyceride accumulation but unaffected cardiac insulin-stimulated glucose uptake. Long-term fat-feeding of male C57Bl/6 mice increased cardiac triglycerides, induced cardiac expression of triglyceride metabolism-controlling genes and attenuated heart function. Abolishing cardiac triglyceride accumulation in fat-fed mice by overexpression of an apoB transgene in the heart prevented the induction of triglyceride metabolism-controlling genes and improved heart function. The results suggest that in obesity, the physiological increase of cardiac MTP expression serves to attenuate cardiac triglyceride accumulation albeit without major effects on cardiac insulin sensitivity. Nevertheless, the data suggest that genetically increased lipoprotein secretion prevents development of obesity-induced lipotoxic heart disease. PMID:19390571

  5. Cardiac Structure and Function in Cushing's Syndrome: A Cardiac Magnetic Resonance Imaging Study

    PubMed Central

    Roux, Charles; Salenave, Sylvie; Kachenoura, Nadjia; Raissouni, Zainab; Macron, Laurent; Guignat, Laurence; Jublanc, Christel; Azarine, Arshid; Brailly, Sylvie; Young, Jacques; Mousseaux, Elie; Chanson, Philippe

    2014-01-01

    Background: Patients with Cushing's syndrome have left ventricular (LV) hypertrophy and dysfunction on echocardiography, but echo-based measurements may have limited accuracy in obese patients. No data are available on right ventricular (RV) and left atrial (LA) size and function in these patients. Objectives: The objective of the study was to evaluate LV, RV, and LA structure and function in patients with Cushing's syndrome by means of cardiac magnetic resonance, currently the reference modality in assessment of cardiac geometry and function. Methods: Eighteen patients with active Cushing's syndrome and 18 volunteers matched for age, sex, and body mass index were studied by cardiac magnetic resonance. The imaging was repeated in the patients 6 months (range 2–12 mo) after the treatment of hypercortisolism. Results: Compared with controls, patients with Cushing's syndrome had lower LV, RV, and LA ejection fractions (P < .001 for all) and increased end-diastolic LV segmental thickness (P < .001). Treatment of hypercortisolism was associated with an improvement in ventricular and atrial systolic performance, as reflected by a 15% increase in the LV ejection fraction (P = .029), a 45% increase in the LA ejection fraction (P < .001), and an 11% increase in the RV ejection fraction (P = NS). After treatment, the LV mass index and end-diastolic LV mass to volume ratio decreased by 17% (P < .001) and 10% (P = .002), respectively. None of the patients had late gadolinium myocardial enhancement. Conclusion: Cushing's syndrome is associated with subclinical biventricular and LA systolic dysfunctions that are reversible after treatment. Despite skeletal muscle atrophy, Cushing's syndrome patients have an increased LV mass, reversible upon correction of hypercortisolism. PMID:25093618

  6. Embryonic Stem Cell-Based Cardiopatches Improve Cardiac Function in Infarcted Rats

    PubMed Central

    Vallée, Jean-Paul; Hauwel, Mathieu; Lepetit-Coiffé, Matthieu; Bei, Wang; Montet-Abou, Karin; Meda, Paolo; Gardier, Stephany; Zammaretti, Prisca; Kraehenbuehl, Thomas P.; Herrmann, Francois; Hubbell, Jeffrey A.

    2012-01-01

    Pluripotent stem cell-seeded cardiopatches hold promise for in situ regeneration of infarcted hearts. Here, we describe a novel cardiopatch based on bone morphogenetic protein 2-primed cardiac-committed mouse embryonic stem cells, embedded into biodegradable fibrin matrices and engrafted onto infarcted rat hearts. For in vivo tracking of the engrafted cardiac-committed cells, superparamagnetic iron oxide nanoparticles were magnetofected into the cells, thus enabling detection and functional evaluation by high-resolution magnetic resonance imaging. Six weeks after transplantation into infarcted rat hearts, both local (p < .04) and global (p < .015) heart function, as well as the left ventricular dilation (p < .0011), were significantly improved (p < .001) as compared with hearts receiving cardiopatches loaded with iron nanoparticles alone. Histological analysis revealed that the fibrin scaffolds had degraded over time and clusters of myocyte enhancer factor 2-positive cardiac-committed cells had colonized most of the infarcted myocardium, including the fibrotic area. De novo CD31-positive blood vessels were formed in the vicinity of the transplanted cardiopatch. Altogether, our data provide evidence that stem cell-based cardiopatches represent a promising therapeutic strategy to achieve efficient cell implantation and improved global and regional cardiac function after myocardial infarction. PMID:23197784

  7. Transplantation of marrow-derived cardiac stem cells carried in fibrin improves cardiac function after myocardial infarction.

    PubMed

    Guo, Hai-Dong; Wang, Hai-Jie; Tan, Yu-Zhen; Wu, Jin-Hong

    2011-01-01

    The high death rate of the transplanted stem cells in the infarcted heart and the low efficiency of differentiation toward cardiomyocytes influence the outcome of stem cell transplantation for treatment of myocardial infarction (MI). Fibrin glue (FG) has been extensively used as a cell implantation matrix to increase cell survival. However, mechanisms of the effects of FG for stem cell transplantation to improve cardiac function are unclear. We have isolated c-kit+/Sca-1+ marrow-derived cardiac stem cells (MCSCs) from rat bone marrow; the cells expressed weakly early cardiac transcription factor Nkx2.5, GATA-4, Mef2C, and Tbx5. Effects of FG on survival, proliferation, and migration of MCSCs were examined in vitro. Cytoprotective effects of FG were assessed by exposure of MCSCs to anoxia. Efficacy of MCSC transplantation in FG was evaluated in the female rat MI model. The MCSCs survived well and proliferated in FG, and they may migrate out from the edge of FG in the wound and nature state. Acridine orange/ethidium bromide staining and lactate dehydrogenase analysis showed that MCSCs in FG were more resistant to anoxia as compared with MCSCs alone. In a rat MI model, cardiac function was improved and scar area was obviously reduced in group of MCSCs in FG compared with group of MCSCs and FG alone, respectively. Y chromosome fluorescence in situ hybridization showed that there were more survived MCSCs in group of MCSCs in FG than those in group of MCSCs alone, and most Y chromosome positive cells expressed cardiac troponin T (cTnT) and connexin-43 (Cx-43). Cx-43 was located between Y chromosome positive cells and recipient cardiomyocytes. Microvessel density in the peri-infarct regions and infarct regions significantly increased in group of MCSCs in FG. These results suggest that FG provide a suitable microenvironment for survival and proliferation of MCSCs and protect cells from apoptosis and necrosis caused by anoxia. MCSCs could differentiate into cardiomyocytes

  8. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome

    PubMed Central

    Tang, Junnan; Shen, Deliang; Caranasos, Thomas George; Wang, Zegen; Vandergriff, Adam C.; Allen, Tyler A.; Hensley, Michael Taylor; Dinh, Phuong-Uyen; Cores, Jhon; Li, Tao-Sheng; Zhang, Jinying; Kan, Quancheng; Cheng, Ke

    2017-01-01

    Stem cell therapy represents a promising strategy in regenerative medicine. However, cells need to be carefully preserved and processed before usage. In addition, cell transplantation carries immunogenicity and/or tumourigenicity risks. Mounting lines of evidence indicate that stem cells exert their beneficial effects mainly through secretion (of regenerative factors) and membrane-based cell–cell interaction with the injured cells. Here, we fabricate a synthetic cell-mimicking microparticle (CMMP) that recapitulates stem cell functions in tissue repair. CMMPs carry similar secreted proteins and membranes as genuine cardiac stem cells do. In a mouse model of myocardial infarction, injection of CMMPs leads to the preservation of viable myocardium and augmentation of cardiac functions similar to cardiac stem cell therapy. CMMPs (derived from human cells) do not stimulate T-cell infiltration in immuno-competent mice. In conclusion, CMMPs act as ‘synthetic stem cells’ which mimic the paracrine and biointerfacing activities of natural stem cells in therapeutic cardiac regeneration. PMID:28045024

  9. Time Course of Atrophic Remodeling: Effects of Exercise on Cardiac Morpology and Function

    NASA Technical Reports Server (NTRS)

    Scott, J. M.; Martin, D.; Caine, T.; Matz, T.; Ploutz-Snyder, L. L.

    2014-01-01

    Early and consistent evaluation of cardiac morphology and function throughout an atrophic stimulus is critically important for the design and optimization of interventions. Exercise training is one intervention that has been shown to confer favorable improvements in LV mass and function during unloading. However, the format and intensity of exercise required to induce optimal cardiac improvements has not been investigated. PURPOSE: This randomized, controlled trial was designed to 1) comprehensively characterize the time course of unloading-induced morpho-functional remodeling, and 2) examine the effects of high intensity exercise training on cardiac structural and functional parameters during unloading. METHODS: Twenty six subjects completed 70 days of head down tilt bed rest (HDBR): 17 were randomized to exercise training (ExBR) and 9 remained sedentary. Exercise consisted of integrated high intensity, continuous, and resistance exercise. We assessed cardiac morphology (left ventricular mass; LVM) and function (speckle-tracking assessment of longitudinal, radial, and circumferential strain and twist) before (BR-2), during (BR7,21,31,70), and following (BR+0, +3) HDBR. Cardiorespiratory fitness (VO2max) was evaluated before (BR- 3), during (BR4,25,46,68) and following (BR+0) HDBR. RESULTS: Sedentary HDBR resulted in a progressive decline in LVM, longitudinal, radial, and circumferential strain, and an increase in twist. ExBR mitigated decreases in LVM and function. Change in twist was significantly related to change in VO2max (R=0.68, p<0.01). CONCLUSIONS: Alterations in cardiac morphology and function begin early during unloading. High-intensity exercise attenuates atrophic morphological and functional remodeling.

  10. Cardiac Atrophy and Diastolic Dysfunction During and After Long Duration Spaceflight: Functional Consequences for Orthostatic Intolerance, Exercise Capability and Risk for Cardiac Arrhythmias

    NASA Technical Reports Server (NTRS)

    Levine, Benjamin D.; Bungo, Michael W.; Platts, Steven H.; Hamilton, Douglas R.; Johnston, Smith L.

    2009-01-01

    Cardiac Atrophy and Diastolic Dysfunction During and After Long Duration Spaceflight: Functional Consequences for Orthostatic Intolerance, Exercise Capability and Risk for Cardiac Arrhythmias (Integrated Cardiovascular) will quantify the extent of long-duration space flightassociated cardiac atrophy (deterioration) on the International Space Station crewmembers.

  11. Inspiratory Muscle Training and Functional Capacity in Patients Undergoing Cardiac Surgery.

    PubMed

    Cordeiro, André Luiz Lisboa; de Melo, Thiago Araújo; Neves, Daniela; Luna, Julianne; Esquivel, Mateus Souza; Guimarães, André Raimundo França; Borges, Daniel Lago; Petto, Jefferson

    2016-04-01

    Cardiac surgery is a highly complex procedure which generates worsening of lung function and decreased inspiratory muscle strength. The inspiratory muscle training becomes effective for muscle strengthening and can improve functional capacity. To investigate the effect of inspiratory muscle training on functional capacity submaximal and inspiratory muscle strength in patients undergoing cardiac surgery. This is a clinical randomized controlled trial with patients undergoing cardiac surgery at Instituto Nobre de Cardiologia. Patients were divided into two groups: control group and training. Preoperatively, were assessed the maximum inspiratory pressure and the distance covered in a 6-minute walk test. From the third postoperative day, the control group was managed according to the routine of the unit while the training group underwent daily protocol of respiratory muscle training until the day of discharge. 50 patients, 27 (54%) males were included, with a mean age of 56.7±13.9 years. After the analysis, the training group had significant increase in maximum inspiratory pressure (69.5±14.9 vs. 83.1±19.1 cmH2O, P=0.0073) and 6-minute walk test (422.4±102.8 vs. 502.4±112.8 m, P=0.0031). We conclude that inspiratory muscle training was effective in improving functional capacity submaximal and inspiratory muscle strength in this sample of patients undergoing cardiac surgery.

  12. Relationship between cardiac function and resting cerebral blood flow: MRI measurements in healthy elderly subjects.

    PubMed

    Henriksen, Otto M; Jensen, Lars T; Krabbe, Katja; Larsson, Henrik B W; Rostrup, Egill

    2014-11-01

    Although both impaired cardiac function and reduced cerebral blood flow are associated with ageing, current knowledge of the influence of cardiac function on resting cerebral blood flow (CBF) is limited. The aim of this study was to investigate the potential effects of cardiac function on CBF. CBF and cardiac output were measured in 31 healthy subjects 50-75 years old using magnetic resonance imaging techniques. Mean values of CBF, cardiac output and cardiac index were 43.6 ml per 100 g min(-1), 5.5 l min(-1) and 2.7 l min(-1) m(-2), respectively, in males, and 53.4 ml per 100 g min(-1), 4.3 l min(-1) and 2.4 l min(-1) m(-2), respectively, in females. No effects of cardiac output or cardiac index on CBF or structural signs of brain ageing were observed. However, fractional brain flow defined as the ratio of total brain flow to cardiac output was inversely correlated with cardiac index (r(2) = 0.22, P = 0.008) and furthermore lower in males than in females (8.6% versus 12.5%, P = 0.003). Fractional brain flow was also inversely correlated with cerebral white matter lesion grade, although this effect was not significant when adjusted for age. Frequency analysis of heart rate variability showed a gender-related inverse association of increased low-to-high-frequency power ratio with CBF and fractional brain flow. The findings do not support a direct effect of cardiac function on CBF, but demonstrates gender-related differences in cardiac output distribution. We propose fractional brain flow as a novel index that may be a useful marker of adequate brain perfusion in the context of ageing as well as cardiovascular disease. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  13. Sex differences in cardiac function after prolonged strenuous exercise.

    PubMed

    Cote, Anita T; Phillips, Aaron A; Foulds, Heather J; Charlesworth, Sarah A; Bredin, Shannon S D; Burr, Jamie F; Koehle, Michael S; Warburton, Darren E R

    2015-05-01

    To evaluate sex differences in left ventricular (LV) function after an ultramarathon, and the association of vascular and training indices with the magnitude of exercise-induced cardiac fatigue. Descriptive field study. Fat Dog 100 Ultramarathon Trail Race, Canada. Thirty-four (13 women) recreational runners (aged 28-56 years). A 100-km or 160-km mountain marathon. Baseline baroreceptor sensitivity, heart rate variability, and arterial compliance; Pre-exercise and postexercise echocardiographic evaluations of LV dimensions, volumes, Doppler flow velocities, tissue velocities, strain, and strain rate. Finishers represented 17 men (44.8 ± 6.6 years) and 8 women (45.9 ± 10.2 years; P = 0.758). After ultraendurance exercise, significant reductions (P < 0.05) in fractional shortening (men: 40.9 ± 6.9 to 34.1 ± 7.6%; women: 42.5 ± 6.5 to 34.6 ± 7.9%) diastolic filling (E/A, men: 1.28 ± 0.68 to 1.26 ± 0.33; women: 1.55 ± 0.51 to 1.30 ± 0.27), septal and lateral tissue velocities (E'), and longitudinal strain (men: -21.02 ± 1.98 to -18.44 ± 0.34; women: -20.28 ± 1.90 to -18.44 ± 2.34) were observed. Sex differences were found for baseline cardiac structure and global function, peak late transmitral flow velocity, and estimates of LV filling pressures (P < 0.05). Regression analysis found that higher baseline arterial compliance was associated with lower reductions in cardiac function postexercise, to which sex was a significant factor for E' of the lateral wall. Faster race pace and greater lifetime ultramarathons were associated with lower reductions in LV longitudinal strain (P < 0.05). Cardiac responses after an ultramarathon were similar between men and women. Greater evidence of exercise-induced cardiac fatigue was found to be associated with lower baseline arterial compliance and training status/experience. These findings suggest that vascular health is an important contributor to the degree of cardiovascular strain incurred as the result of an acute

  14. Amalaki rasayana, a traditional Indian drug enhances cardiac mitochondrial and contractile functions and improves cardiac function in rats with hypertrophy.

    PubMed

    Kumar, Vikas; Aneesh, Kumar A; Kshemada, K; Ajith, Kumar G S; Binil, Raj S S; Deora, Neha; Sanjay, G; Jaleel, A; Muraleedharan, T S; Anandan, E M; Mony, R S; Valiathan, M S; Santhosh, Kumar T R; Kartha, C C

    2017-08-17

    We evaluated the cardioprotective effect of Amalaki Rasayana (AR), a rejuvenating Ayurvedic drug prepared from Phyllanthus emblica fruits in the reversal of remodeling changes in pressure overload left ventricular cardiac hypertrophy (LVH) and age-associated cardiac dysfunction in male Wistar rats. Six groups (aging groups) of 3 months old animals were given either AR or ghee and honey (GH) orally; seventh group was untreated. Ascending aorta was constricted using titanium clips in 3 months old rats (N = 24; AC groups) and after 6 months, AR or GH was given for further 12 months to two groups; one group was untreated. Histology, gene and protein expression analysis were done in heart tissues. Chemical composition of AR was analyzed by HPLC, HPTLC and LC-MS. AR intake improved (P < 0.05) cardiac function in aging rats and decreased LVH (P < 0.05) in AC rats as well as increased (P < 0.05) fatigue time in treadmill exercise in both groups. In heart tissues of AR administered rats of both the groups, SERCA2, CaM, Myh11, antioxidant, autophagy, oxidative phosphorylation and TCA cycle proteins were up regulated. ADRB1/2 and pCREB expression were increased; pAMPK, NF-kB were decreased. AR has thus a beneficial effect on myocardial energetics, muscle contractile function and exercise tolerance capacity.

  15. Cardiac function, myocardial mechano-energetic efficiency, and ventricular-arterial coupling in normal pregnancy.

    PubMed

    Iacobaeus, Charlotte; Andolf, Ellika; Thorsell, Malin; Bremme, Katarina; Östlund, Eva; Kahan, Thomas

    2018-04-01

    To assess cardiac function, myocardial mechanoenergetic efficiency (MEE), and ventricular-arterial coupling (VAC) longitudinally during normal pregnancy, and to study if there was an association between cardiac structure and function, and fetal growth. Cardiac structure and function, MEE, and ventricular-arterial coupling was assessed longitudinally in 52 healthy nulliparous women at 14, 24, and 34 weeks' gestation and 9-month postpartum. Left atrial diameter increased during pregnancy (30.41 ± 3.59 mm in the nonpregnant state and 31.02 ± 3.91, 34.06 ± 3.58, and 33.9 ± 2.97 mm in the first, second, and third trimesters, P < 0.001). Left ventricular mass increased 117.12 ± 45.0 g in the nonpregnant state and 116.5 ± 33.0, 126.9 ± 34.5, 128.4 ± 36 g in the first, second, and third trimesters (P < 0.001). Cardiac output increased from 3.4 ± 1.2 l/min to 4.3 ± 0.7 l/min in the second and third trimesters (P < 0.001). Diastolic function decreased as both E/A and e'/a' decreased during pregnancy (P < 0.05 and P < 0.001, respectively). MEE and VAC were retained during pregnancy. Heart rate was associated with birth weight centile in the first (r = 0.41, P = 0.002) and second (r = 0.46, P = 0.002) trimester. The increase in cardiac output during normal pregnancy is obtained by an increase in heart rate, followed by structural cardiac changes. The impaired systolic function is accomplished by a deteriorated diastolic function. Despite these rapid changes, the myocardium manages to work efficient with a preserved MEE. Cardiac and arterial adaption to pregnancy seems to appear parallel as evidenced by a preserved VAC.

  16. Association of Weight and Body Composition on Cardiac Structure and Function in the ARIC Study (Atherosclerosis Risk in Communities).

    PubMed

    Bello, Natalie A; Cheng, Susan; Claggett, Brian; Shah, Amil M; Ndumele, Chiadi E; Roca, Gabriela Querejeta; Santos, Angela B S; Gupta, Deepak; Vardeny, Orly; Aguilar, David; Folsom, Aaron R; Butler, Kenneth R; Kitzman, Dalane W; Coresh, Josef; Solomon, Scott D

    2016-08-01

    Obesity increases cardiovascular risk. However, the extent to which various measures of body composition are associated with abnormalities in cardiac structure and function, independent of comorbidities commonly affecting obese individuals, is not clear. This study sought to examine the relationship between body mass index, waist circumference, and percent body fat with conventional and advanced measures of cardiac structure and function. We studied 4343 participants of the ARIC study (Atherosclerosis Risk in Communities) who were aged 69 to 82 years, free of coronary heart disease and heart failure, and underwent comprehensive echocardiography. Increasing body mass index, waist circumference, and body fat were associated with greater left ventricular (LV) mass and left atrial volume indexed to height(2.7) in both men and women (P<0.001). In women, all 3 measures were associated with abnormal LV geometry, and increasing waist circumference and body fat were associated with worse global longitudinal strain, a measure of LV systolic function. In both sexes, increasing body mass index was associated with greater right ventricular end-diastolic area and worse right ventricular fractional area change (P≤0.001). We observed similar associations for both waist circumference and percent body fat. In a large, biracial cohort of older adults free of clinically overt coronary heart disease or heart failure, obesity was associated with subclinical abnormalities in cardiac structure in both men and women and with adverse LV remodeling and impaired LV systolic function in women. These data highlight the association of obesity and subclinical abnormalities of cardiac structure and function, particularly in women. © 2016 American Heart Association, Inc.

  17. Association of Weight and Body Composition on Cardiac Structure and Function in the Atherosclerosis Risk in Communities (ARIC) Study

    PubMed Central

    Bello, Natalie A.; Cheng, Susan; Claggett, Brian; Shah, Amil; Ndumele, Chiadi E.; Roca, Gabriela Querejeta; Santos, Angela B.S.; Gupta, Deepak; Vardeny, Orly; Aguilar, David; Folsom, Aaron R.; Butler, Kenneth R.; Kitzman, Dalane W.; Coresh, Josef; Solomon, Scott D.

    2016-01-01

    Background Obesity increases cardiovascular risk. However, the extent to which various measures of body composition are associated with abnormalities in cardiac structure and function, independent of comorbidities commonly affecting obese individuals, is not clear. This study sought to examine the relationship of body mass index (BMI), waist circumference (WC), and percent body fat (BF) with conventional and advanced measures of cardiac structure and function. Methods and Results We studied 4343 participants of the Atherosclerosis Risk in Communities Study who were aged 69-82 years, free of coronary heart disease and heart failure, and underwent comprehensive echocardiography. Increasing BMI, WC, and BF were associated with greater left ventricular (LV) mass and left atrial volume indexed to height2.7 in both men and women (P<0.001). In women, all three measures were associated with abnormal LV geometry, and increasing WC and BF were associated with worse global longitudinal strain, a measure of left ventricular systolic function. In both sexes, increasing BMI was associated with greater right ventricular (RV) end-diastolic area and worse RV fractional area change (P≤0.001). We observed similar associations for both waist circumference and percent body fat. Conclusions In a large, biracial cohort of older adults free of clinically overt coronary heart disease or heart failure, obesity was associated with subclinical abnormalities in cardiac structure in both men and women and with adverse left ventricular remodeling and impaired left ventricular systolic function in women. These data highlight the association of obesity and subclinical abnormalities of cardiac structure and function, particularly in women. PMID:27512104

  18. Cardiac structure and function predicts functional decline in the oldest old.

    PubMed

    Leibowitz, David; Jacobs, Jeremy M; Lande-Stessman, Irit; Gilon, Dan; Stessman, Jochanan

    2018-02-01

    Background This study examined the association between cardiac structure and function and the deterioration in activities of daily living (ADLs) in an age-homogenous, community-dwelling population of patients born in 1920-1921 over a five-year follow-up period. Design Longitudinal cohort study. Methods Patients were recruited from the Jerusalem Longitudinal Cohort Study, which has followed an age-homogenous cohort of Jerusalem residents born in 1920-1921. Patients underwent home echocardiography and were followed up for five years. Dependence was defined as needing assistance with one or more basic ADL. Standard echocardiographic assessment of cardiac structure and function, including systolic and diastolic function, was performed. Reassessment of ADLs was performed at the five-year follow-up. Results A total of 459 patients were included in the study. Of these, 362 (79%) showed a deterioration in at least one ADL at follow-up. Patients with functional deterioration had a significantly higher left ventricular mass index and left atrial volume with a lower ejection fraction. There was no significant difference between the diastolic parameters the groups in examined. When the data were examined categorically, a significantly larger percentage of patients with functional decline had an abnormal left ventricular ejection fraction and left ventricular hypertrophy. The association between left ventricular mass index and functional decline remained significant in all multivariate models. Conclusions In this cohort of the oldest old, an elevated left ventricular mass index, higher left atrial volumes and systolic, but not diastolic dysfunction, were predictive of functional disability.

  19. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    PubMed Central

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-01-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, free-standing electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on-demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function. PMID:26974408

  20. Fermitins, the Orthologs of Mammalian Kindlins, Regulate the Development of a Functional Cardiac Syncytium in Drosophila melanogaster

    PubMed Central

    Catterson, James H.; Heck, Margarete M. S.; Hartley, Paul S.

    2013-01-01

    The vertebrate Kindlins are an evolutionarily conserved family of proteins critical for integrin signalling and cell adhesion. Kindlin-2 (KIND2) is associated with intercalated discs in mice, suggesting a role in cardiac syncytium development; however, deficiency of Kind2 leads to embryonic lethality. Morpholino knock-down of Kind2 in zebrafish has a pleiotropic effect on development that includes the heart. It therefore remains unclear whether cardiomyocyte Kind2 expression is required for cardiomyocyte junction formation and the development of normal cardiac function. To address this question, the expression of Fermitin 1 and Fermitin 2 (Fit1, Fit2), the two Drosophila orthologs of Kind2, was silenced in Drosophila cardiomyocytes. Heart development was assessed in adult flies by immunological methods and videomicroscopy. Silencing both Fit1 and Fit2 led to a severe cardiomyopathy characterised by the failure of cardiomyocytes to develop as a functional syncytium and loss of synchrony between cardiomyocytes. A null allele of Fit1 was generated but this had no impact on the heart. Similarly, the silencing of Fit2 failed to affect heart function. In contrast, the silencing of Fit2 in the cardiomyocytes of Fit1 null flies disrupted syncytium development, leading to severe cardiomyopathy. The data definitively demonstrate a role for Fermitins in the development of a functional cardiac syncytium in Drosophila. The findings also show that the Fermitins can functionally compensate for each other in order to control syncytium development. These findings support the concept that abnormalities in cardiomyocyte KIND2 expression or function may contribute to cardiomyopathies in humans. PMID:23690969

  1. Intrinsic cardiac nervous system in tachycardia induced heart failure.

    PubMed

    Arora, Rakesh C; Cardinal, Rene; Smith, Frank M; Ardell, Jeffrey L; Dell'Italia, Louis J; Armour, J Andrew

    2003-11-01

    The purpose of this study was to test the hypothesis that early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiac function. After 2 wk of rapid ventricular pacing in nine anesthetized canines, cardiac and right atrial neuronal function were evaluated in situ in response to enhanced cardiac sensory inputs, stimulation of extracardiac autonomic efferent neuronal inputs, and close coronary arterial administration of neurochemicals that included nicotine. Right atrial neuronal intracellular electrophysiological properties were then evaluated in vitro in response to synaptic activation and nicotine. Intrinsic cardiac nicotine-sensitive, neuronally induced cardiac responses were also evaluated in eight sham-operated, unpaced animals. Two weeks of rapid ventricular pacing reduced the cardiac index by 54%. Intrinsic cardiac neurons of paced hearts maintained their cardiac mechano- and chemosensory transduction properties in vivo. They also responded normally to sympathetic and parasympathetic preganglionic efferent neuronal inputs, as well as to locally administered alpha-or beta-adrenergic agonists or angiotensin II. The dose of nicotine needed to modify intrinsic cardiac neurons was 50 times greater in failure compared with normal preparations. That dose failed to alter monitored cardiovascular indexes in failing preparations. Phasic and accommodating neurons identified in vitro displayed altered intracellular membrane properties compared with control, including decreased membrane resistance, indicative of reduced excitability. Early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiodynamics. While maintaining its capacity to transduce cardiac mechano- and chemosensory inputs, as well as inputs from extracardiac autonomic efferent neurons, intrinsic cardiac nicotine-sensitive, local-circuit neurons differentially remodel such that their capacity to

  2. Is Affect Aversive to Young Children with Autism: Behavioral and Cardiac Responses to Experimenter Distress.

    ERIC Educational Resources Information Center

    Corona, Rosalie; Dissanayake, Cheryl; Arbelle, Shoshana; Wellington, Peter; Sigman, Marian

    1998-01-01

    Compared attention, behavioral reaction, facial affect, and cardiac responses of 22 autistic and 22 mentally retarded preschoolers to emotional displays. Found that both groups looked more at the experimenter and displayed more interest and concern when the experimenter showed strong distress than when she showed neutral affect. Autistic…

  3. Effect of transverse aortic constriction on cardiac structure, function and gene expression in pregnant rats.

    PubMed

    Songstad, Nils Thomas; Johansen, David; How, Ole-Jacob; Kaaresen, Per Ivar; Ytrehus, Kirsti; Acharya, Ganesh

    2014-01-01

    There is an increased risk of heart failure and pulmonary edema in pregnancies complicated by hypertensive disorders. However, in a previous study we found that pregnancy protects against fibrosis and preserves angiogenesis in a rat model of angiotensin II induced cardiac hypertrophy. In this study we test the hypothesis that pregnancy protects against negative effects of increased afterload. Pregnant (gestational day 5.5-8.5) and non-pregnant Wistar rats were randomized to transverse aortic constriction (TAC) or sham surgery. After 14.2 ± 0.14 days echocardiography was performed. Aortic blood pressure and left ventricular (LV) pressure-volume loops were obtained using a conductance catheter. LV collagen content and cardiomyocyte circumference were measured. Myocardial gene expression was assessed by real-time polymerase chain reaction. Heart weight was increased by TAC (p<0.001) but not by pregnancy. Cardiac myocyte circumference was larger in pregnant compared to non-pregnant rats independent of TAC (p = 0.01), however TAC per se did not affect this parameter. Collagen content in LV myocardium was not affected by pregnancy or TAC. TAC increased stroke work more in pregnant rats (34.1 ± 2.4 vs 17.5 ± 2.4 mmHg/mL, p<0.001) than in non-pregnant (28.2 ± 1.7 vs 20.9 ± 1.5 mmHg/mL, p = 0.06). However, it did not lead to overt heart failure in any group. In pregnant rats, α-MHC gene expression was reduced by TAC. Increased in the expression of β-MHC gene was higher in pregnant (5-fold) compared to non-pregnant rats (2-fold) after TAC (p = 0.001). Nine out of the 19 genes related to cardiac remodeling were affected by pregnancy independent of TAC. This study did not support the hypothesis that pregnancy is cardioprotective against the negative effects of increased afterload. Some differences in cardiac structure, function and gene expression between pregnant and non-pregnant rats following TAC indicated that afterload increase is less tolerated in pregnancy.

  4. [Structure and functional organization of integrated cardiac intensive care].

    PubMed

    Scherillo, Marino; Miceli, Domenico; Tubaro, Marco; Guiducci, Umberto

    2007-05-01

    The early invasive strategy for the treatment of acute coronary syndromes and the increasing number of older and sicker patients requiring prolonged and more complex intensive care have induced many changes in the function of the intensive care units. These changes include the statement that specially trained cardiologists and cardiac nurses who can manage patients with acute cardiac conditions should staff the intensive care units. This document indicates the structure of the units and specific recommendations for the number of beds, monitoring system, respirators, pacemaker/defibrillators and additional equipment.

  5. Effects of vildagliptin versus sitagliptin, on cardiac function, heart rate variability and mitochondrial function in obese insulin-resistant rats

    PubMed Central

    Apaijai, Nattayaporn; Pintana, Hiranya; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2013-01-01

    Background and Purpose Long-term high-fat diet (HFD) consumption has been shown to cause insulin resistance, which is characterized by hyperinsulinaemia with metabolic inflexibility. Insulin resistance is associated with cardiac sympathovagal imbalance, cardiac dysfunction and cardiac mitochondrial dysfunction. Dipeptidyl peptidase-4 (DPP-4) inhibitors, vildagliptin and sitagliptin, are oral anti-diabetic drugs often prescribed in patients with cardiovascular disease. Therefore, in this study, we sought to determine the effects of vildagliptin and sitagliptin in a murine model of insulin resistance. Experimental Approach Male Wistar rats weighing 180–200 g, were fed either a normal diet (20% energy from fat) or a HFD (59% energy from fat) for 12 weeks. These rats were then divided into three subgroups to receive vildagliptin (3 mg·kg−1·day−1), sitagliptin (30 mg·kg−1·day−1) or vehicle for another 21 days. Metabolic parameters, oxidative stress, heart rate variability (HRV), cardiac function and cardiac mitochondrial function were determined. Key Results Rats that received HFD developed insulin resistance characterized by increased body weight, plasma insulin, total cholesterol and oxidative stress levels along with a decreased high-density lipoprotein (HDL) level. Moreover, cardiac dysfunction, depressed HRV, cardiac mitochondrial dysfunction and cardiac mitochondrial morphology changes were observed in HFD rats. Both vildagliptin and sitagliptin decreased plasma insulin, total cholesterol and oxidative stress as well as increased HDL level. Furthermore, vildagliptin and sitagliptin attenuated cardiac dysfunction, prevented cardiac mitochondrial dysfunction and completely restored HRV. Conclusions and Implications Both vildagliptin and sitagliptin share similar efficacy in cardioprotection in obese insulin-resistant rats. PMID:23488656

  6. Effect of voluntary physical activity initiated at age 7 months on skeletal hindlimb and cardiac muscle function in mdx mice of both genders.

    PubMed

    Ferry, Arnaud; Benchaouir, Rachid; Joanne, Pierre; Peat, Rachel A; Mougenot, Nathalie; Agbulut, Onnik; Butler-Browne, Gillian

    2015-11-01

    The effects of voluntary activity initiated in adult mdx (C57BL/10ScSc-DMD(mdx) /J) mice on skeletal and cardiac muscle function have not been studied extensively. We studied the effects of 3 months of voluntary wheel running initiated at age 7 months on hindlimb muscle weakness, increased susceptibility to muscle contraction-induced injury, and left ventricular function in mdx mice. We found that voluntary wheel running did not worsen the deficit in force-generating capacity and the force drop after lengthening contractions in either mdx mouse gender. It increased the absolute maximal force of skeletal muscle in female mdx mice. Moreover, it did not affect left ventricular function, structural heart dimensions, cardiac gene expression of inflammation, fibrosis, or remodeling markers. These results indicate that voluntary activity initiated at age 7 months had no detrimental effects on skeletal or cardiac muscles in either mdx mouse gender. © 2015 Wiley Periodicals, Inc.

  7. Vascular calcification and cardiac function according to residual renal function in patients on hemodialysis with urination.

    PubMed

    Shin, Dong Ho; Lee, Young-Ki; Oh, Jieun; Yoon, Jong-Woo; Rhee, So Yon; Kim, Eun-Jung; Ryu, Jiwon; Cho, Ajin; Jeon, Hee Jung; Choi, Myung-Jin; Noh, Jung-Woo

    2017-01-01

    Vascular calcification is common and may affect cardiac function in patients with end-stage renal disease (ESRD). However, little is known about the effect of residual renal function on vascular calcification and cardiac function in patients on hemodialysis. This study was conducted between January 2014 and January 2017. One hundred six patients with residual renal function on maintenance hemodialysis for 3 months were recruited. We used residual renal urea clearance (KRU) to measure residual renal function. First, abdominal aortic calcification score (AACS) and brachial-ankle pulse wave velocity (baPWV) were measured in patients on hemodialysis. Second, we performed echocardiography and investigated new cardiovascular events after study enrollment. The median KRU was 0.9 (0.3-2.5) mL/min/1.73m2. AACS (4.0 [1.0-10.0] vs. 3.0 [0.0-8.0], p = 0.05) and baPWV (1836.1 ± 250.4 vs. 1676.8 ± 311.0 cm/s, p = 0.01) were significantly higher in patients with a KRU < 0.9 mL/min/1.73m2 than a KRU ≥ 0.9 mL/min/1.73m2. Log-KRU significantly negatively correlated with log-AACS (ß = -0.29, p = 0.002) and baPWV (ß = -0.19, P = 0.05) after factor adjustment. The proportion of left ventricular diastolic dysfunction was significantly higher in patients with a KRU < 0.9 mL/min/1.73m2 than with a KRU ≥ 0.9 mL/min/1.73m2 (67.9% vs. 49.1%, p = 0.05). Patients with a KRU < 0.9 mL/min/1.73m2 showed a higher tendency of cumulative cardiovascular events compared to those with a KRU ≥ 0.9 ml/min/1.73m2 (P = 0.08). Residual renal function was significantly associated with vascular calcification and left ventricular diastolic dysfunction in patients on hemodialysis.

  8. Channelopathies from Mutations in the Cardiac Sodium Channel Protein Complex

    PubMed Central

    Adsit, Graham S.; Vaidyanathan, Ravi; Galler, Carla M.; Kyle, John W.; Makielski, Jonathan C.

    2013-01-01

    The cardiac sodium current underlies excitability in heart, and inherited abnormalities of the proteins regulating and conducting this current cause inherited arrhythmia syndromes. This review focuses on inherited mutations in non-pore forming proteins of sodium channel complexes that cause cardiac arrhythmia, and the deduced mechanisms by which they affect function and dysfunction of the cardiac sodium current. Defining the structure and function of these complexes and how they are regulated will contribute to understanding the possible roles for this complex in normal and abnormal physiology and homeostasis. PMID:23557754

  9. Health-Related Quality of Life, Functional Status, and Cardiac Event-Free Survival in Patients With Heart Failure.

    PubMed

    Wu, Jia-Rong; Lennie, Terry A; Frazier, Susan K; Moser, Debra K

    2016-01-01

    Health-related quality of life (HRQOL), functional status, and cardiac event-free survival are outcomes used to assess the effectiveness of interventions in patients with heart failure (HF). However, the nature of the relationships among HRQOL, functional status, and cardiac event-free survival remains unclear. The purpose of this study is to examine the nature of the relationships among HRQOL, functional status, and cardiac event-free survival in patients with HF. This was a prospective, observational study of 313 patients with HF that was a secondary analysis from a registry. At baseline, patient demographic and clinical data were collected. Health-related quality of life was assessed using the Minnesota Living With Heart Failure Questionnaire and functional status was measured using the Duke Activity Status Index. Cardiac event-free survival data were obtained by patient interview, hospital database, and death certificate review. Multiple linear and Cox regressions were used to explore the relationships among HRQOL, functional status, and cardiac event-free survival while adjusting for demographic and clinical factors. Participants (n = 313) were men (69%), white (79%), and aged 62 ± 11 years. Mean left ventricular ejection fraction was 35% ± 14%. The mean HRQOL score of 32.3 ± 20.6 indicated poor HRQOL. The mean Duke Activity Status Index score of 16.2 ± 12.9 indicated poor functional status. Cardiac event-free survival was significantly worse in patients who had worse HRQOL or poorer functional status. Patients who had better functional status had better HRQOL (P < .001). Health-related quality of life was not a significant predictor of cardiac event-free survival after entering functional status in the model (P = .54), demonstrating that it was a mediator of the relationship between HRQOL and outcome. Functional status was a mediator between HRQOL and cardiac event-free survival. These data suggest that intervention studies to improve functional status

  10. Structural and functional affection of the heart in protein energy malnutrition patients on admission and after nutritional recovery.

    PubMed

    El-Sayed, H L; Nassar, M F; Habib, N M; Elmasry, O A; Gomaa, S M

    2006-04-01

    The pathogenesis of different malnutrition diseases was suggested to affect the heart. This study was designed to detect cardiac affection in protein energy malnutrition (PEM) patients, whether clinically or by electrocardiogram (ECG) and echocardiogram, and to assess the value of the cardiac marker troponin I in patients at risk of myocardial injury with special emphasis on the effect of nutritional rehabilitation. The present study was carried out on 30 PEM infants (16 nonedematous - 14 edematous) and 10 apparently healthy age and sex-matched infants acting as the control group. All studied infants were subjected to full history taking laying stress on dietetic history, thorough clinical and anthropometric measurements. Echocardiography and ECG were also performed. Laboratory investigations were performed including complete blood count, CRP, total proteins, albumin, liver and kidney functions as well as estimation of troponin-I in blood by immulite. Following initial evaluation, all malnourished infants were subjected to nutritional rehabilitation program for approximately 8 weeks, after which the patients were re-evaluated using the same preinterventional parameters. The results of the present study demonstrated that electrical properties of myocardium assessed by ECG showed significant decrease of R wave and QTc interval in patients compared to controls with significant improvement after nutritional rehabilitation. Echocardigraphic changes showed that cardiac mass index was significantly lower in both groups of malnourished cases compared to the controls with significant increase after nutritional rehabilitation. The study showed that the parameters of left ventricular (LV) systolic function which are the ejection fraction, fractional shortening and velocity of circumferential fiber shortening were not significantly reduced in patients compared to the controls. The diastolic function also showed no significant difference in the E wave/A wave (e/a) ratio between

  11. Estrogen-Related Receptor α (ERRα) and ERRγ Are Essential Coordinators of Cardiac Metabolism and Function

    PubMed Central

    Wang, Ting; McDonald, Caitlin; Petrenko, Nataliya B.; Leblanc, Mathias; Wang, Tao; Giguere, Vincent; Evans, Ronald M.; Patel, Vickas V.

    2015-01-01

    Almost all cellular functions are powered by a continuous energy supply derived from cellular metabolism. However, it is little understood how cellular energy production is coordinated with diverse energy-consuming cellular functions. Here, using the cardiac muscle system, we demonstrate that nuclear receptors estrogen-related receptor α (ERRα) and ERRγ are essential transcriptional coordinators of cardiac energy production and consumption. On the one hand, ERRα and ERRγ together are vital for intact cardiomyocyte metabolism by directly controlling expression of genes important for mitochondrial functions and dynamics. On the other hand, ERRα and ERRγ influence major cardiomyocyte energy consumption functions through direct transcriptional regulation of key contraction, calcium homeostasis, and conduction genes. Mice lacking both ERRα and cardiac ERRγ develop severe bradycardia, lethal cardiomyopathy, and heart failure featuring metabolic, contractile, and conduction dysfunctions. These results illustrate that the ERR transcriptional pathway is essential to couple cellular energy metabolism with energy consumption processes in order to maintain normal cardiac function. PMID:25624346

  12. Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs

    PubMed Central

    Wang, Bo; Patnaik, Sourav S.; Brazile, Bryn; Butler, J. Ryan; Claude, Andrew; Zhang, Ge; Guan, Jianjun; Hong, Yi; Liao, Jun

    2016-01-01

    Myocardial infarction (MI) causes massive heart muscle death and remains a leading cause of death in the world. Cardiac tissue engineering aims to replace the infarcted tissues with functional engineered heart muscles or revitalize the infarcted heart by delivering cells, bioactive factors, and/or biomaterials. One major challenge of cardiac tissue engineering and regeneration is the establishment of functional perfusion and structure to achieve timely angiogenesis and effective vascularization, which are essential to the survival of thick implants and the integration of repaired tissue with host heart. In this paper, we review four major approaches to promoting angiogenesis and vascularization in cardiac tissue engineering and regeneration: delivery of pro-angiogenic factors/molecules, direct cell implantation/cell sheet grafting, fabrication of prevascularized cardiac constructs, and the use of bioreactors to promote angiogenesis and vascularization. We further provide a detailed review and discussion on the early perfusion design in nature-derived biomaterials, synthetic biodegradable polymers, tissue-derived acellular scaffolds/whole hearts, and hydrogel derived from extracellular matrix. A better understanding of the current approaches and their advantages, limitations, and hurdles could be useful for developing better materials for future clinical applications. PMID:27480586

  13. Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs.

    PubMed

    Wang, Bo; Patnaik, Sourav S; Brazile, Bryn; Butler, J Ryan; Claude, Andrew; Zhang, Ge; Guan, Jianjun; Hong, Yi; Liao, Jun

    2015-01-01

    Myocardial infarction (MI) causes massive heart muscle death and remains a leading cause of death in the world. Cardiac tissue engineering aims to replace the infarcted tissues with functional engineered heart muscles or revitalize the infarcted heart by delivering cells, bioactive factors, and/or biomaterials. One major challenge of cardiac tissue engineering and regeneration is the establishment of functional perfusion and structure to achieve timely angiogenesis and effective vascularization, which are essential to the survival of thick implants and the integration of repaired tissue with host heart. In this paper, we review four major approaches to promoting angiogenesis and vascularization in cardiac tissue engineering and regeneration: delivery of pro-angiogenic factors/molecules, direct cell implantation/cell sheet grafting, fabrication of prevascularized cardiac constructs, and the use of bioreactors to promote angiogenesis and vascularization. We further provide a detailed review and discussion on the early perfusion design in nature-derived biomaterials, synthetic biodegradable polymers, tissue-derived acellular scaffolds/whole hearts, and hydrogel derived from extracellular matrix. A better understanding of the current approaches and their advantages, limitations, and hurdles could be useful for developing better materials for future clinical applications.

  14. Renal perfusion index reflects cardiac systolic function in chronic cardio-renal syndrome.

    PubMed

    Lubas, Arkadiusz; Ryczek, Robert; Kade, Grzegorz; Niemczyk, Stanisław

    2015-04-17

    Cardiac dysfunction can modify renal perfusion, which is crucial to maintain sufficient kidney tissue oxygenation. Renal cortex perfusion assessed by dynamic ultrasound method is related both to renal function and cardiac hemodynamics. The aim of the study was to test the hypothesis that Renal Perfusion Index (RPI) can more closely reflect cardiac hemodynamics and differentiate etiology of chronic cardio-renal syndrome. Twenty-four patients with hypertension and chronic kidney disease (CKD) at 2-4 stage (12 with hypertensive nephropathy and 12 with CKD prior to hypertension) were enrolled in the study. Blood tests, 24-h ABPM, echocardiography, and ultrasonography with estimation of Total renal Cortical Perfusion intensity and Renal Perfusion Index (RPI) were performed. In the group of all patients, RPI correlated with left ventricular stoke volume (LVSV), and cardiac index, but not with markers of renal function. In multiple stepwise regression analysis CKD-EPI(Cys-Cr) (b=-0.360), LVSV (b=0.924) and MAP (b=0.376) together independently influenced RPI (R2=0.74; p<0.0001). RPI<0.567 allowed for the identification of patients with chronic cardio-renal syndrome with sensitivity of 41.7% and specificity of 83.3%. Renal perfusion index relates more strongly to cardiac output than to renal function, and could be helpful in recognizing chronic cardio-renal syndrome. Applicability of RPI in diagnosing early abnormalities in the cardio-renal axis requires further investigation.

  15. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function.

    PubMed

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  16. Loss of microRNA-22 prevents high-fat diet induced dyslipidemia and increases energy expenditure without affecting cardiac hypertrophy.

    PubMed

    Diniz, Gabriela Placoná; Huang, Zhan-Peng; Liu, Jianming; Chen, Jinghai; Ding, Jian; Fonseca, Renata Inzinna; Barreto-Chaves, Maria Luiza; Donato, Jose; Hu, Xiaoyun; Wang, Da-Zhi

    2017-12-15

    Obesity is associated with development of diverse diseases, including cardiovascular diseases and dyslipidemia. MiRNA-22 (miR-22) is a critical regulator of cardiac function and targets genes involved in metabolic processes. Previously, we generated miR-22 null mice and we showed that loss of miR-22 blunted cardiac hypertrophy induced by mechanohormornal stress. In the present study, we examined the role of miR-22 in the cardiac and metabolic alterations promoted by high-fat (HF) diet. We found that loss of miR-22 attenuated the gain of fat mass and prevented dyslipidemia induced by HF diet, although the body weight gain, or glucose intolerance and insulin resistance did not seem to be affected. Mechanistically, loss of miR-22 attenuated the increased expression of genes involved in lipogenesis and inflammation mediated by HF diet. Similarly, we found that miR-22 mediates metabolic alterations and inflammation induced by obesity in the liver. However, loss of miR-22 did not appear to alter HF diet induced cardiac hypertrophy or fibrosis in the heart. Our study therefore establishes miR-22 as an important regulator of dyslipidemia and suggests it may serve as a potential candidate in the treatment of dyslipidemia associated with obesity. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  17. Positive affect moderates the effect of negative affect on cardiovascular disease-related hospitalizations and all-cause mortality after cardiac rehabilitation.

    PubMed

    Meyer, Fiorenza Angela; von Känel, Roland; Saner, Hugo; Schmid, Jean-Paul; Stauber, Stefanie

    2015-10-01

    Little is known as to whether negative emotions adversely impact the prognosis of patients who undergo cardiac rehabilitation. We prospectively investigated the predictive value of state negative affect (NA) assessed at discharge from cardiac rehabilitation for prognosis and the moderating role of positive affect (PA) on the effect of NA on outcomes. A total of 564 cardiac patients (62.49 ± 11.51) completed a comprehensive three-month outpatient cardiac rehabilitation program, filling in the Global Mood Scale (GMS) at discharge. The combined endpoint was cardiovascular disease (CVD)-related hospitalizations plus all-cause mortality at follow-up. Cox regression models estimated the predictive value of NA, as well as the moderating influence of PA on outcomes. Survival models were adjusted for sociodemographic factors, traditional cardiovascular risk factors, and severity of disease. During a mean follow-up period of 3.4 years, 71 patients were hospitalized for a CVD-related event and 15 patients died. NA score (range 0-20) was a significant and independent predictor (hazard ratio (HR) 1.091, 95% confidence interval (CI) 1.012-1.175; p = 0.023) with a three-point higher level in NA increasing the relative risk by 9.1%. Furthermore, PA interacted significantly with NA (p < 0.001). The relative risk of poor prognosis with NA was increased in patients with low PA (p = 0.012) but remained unchanged in combination with high PA (p = 0.12). The combination of NA with low PA was particularly predictive of poor prognosis. Whether reduction of NA and increase of PA, particularly in those with high NA, improves outcome needs to be tested. © The European Society of Cardiology 2014.

  18. Importance of circulating IGF-1 for normal cardiac morphology, function and post infarction remodeling.

    PubMed

    Scharin Täng, M; Redfors, B; Lindbom, M; Svensson, J; Ramunddal, T; Ohlsson, C; Shao, Y; Omerovic, E

    2012-12-01

    IGF-1 plays an important role in cardiovascular homeostasis, and plasma levels of IGF-1 correlate inversely with systolic function in heart failure. It is not known to what extent circulating IGF-1 secreted by the liver and local autocrine/paracrine IGF-1 expressed in the myocardium contribute to these beneficial effects on cardiac function and morphology. In the present study, we used a mouse model of liver-specific inducible deletion of the IGF-1 gene (LI-IGF-1 -/- mouse) in an attempt to evaluate the importance of circulating IGF-I on cardiac morphology and function under normal and pathological conditions, with an emphasis on its regulatory role in myocardial phosphocreatine metabolism. Echocardiography was performed in LI-IGF-1 -/- and control mice at rest and during dobutamine stress, both at baseline and post myocardial infarction (MI). High-energy phosphate metabolites were compared between LI-IGF-1 -/- and control mice at 4 weeks post MI. We found that LI-IGF-1 -/- mice had significantly greater left ventricular dimensions at baseline and showed a greater relative increase in cardiac dimensions, as well as deterioration of cardiac function, post MI. Myocardial creatine content was 17.9% lower in LI-IGF-1 -/- mice, whereas there was no detectable difference in high-energy nucleotides. These findings indicate an important role of circulating IGF-1 in preserving cardiac structure and function both in physiological settings and post MI. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. [Cardiac Synchronization Function Estimation Based on ASM Level Set Segmentation Method].

    PubMed

    Zhang, Yaonan; Gao, Yuan; Tang, Liang; He, Ying; Zhang, Huie

    At present, there is no accurate and quantitative methods for the determination of cardiac mechanical synchronism, and quantitative determination of the synchronization function of the four cardiac cavities with medical images has a great clinical value. This paper uses the whole heart ultrasound image sequence, and segments the left & right atriums and left & right ventricles of each frame. After the segmentation, the number of pixels in each cavity and in each frame is recorded, and the areas of the four cavities of the image sequence are therefore obtained. The area change curves of the four cavities are further extracted, and the synchronous information of the four cavities is obtained. Because of the low SNR of Ultrasound images, the boundary lines of cardiac cavities are vague, so the extraction of cardiac contours is still a challenging problem. Therefore, the ASM model information is added to the traditional level set method to force the curve evolution process. According to the experimental results, the improved method improves the accuracy of the segmentation. Furthermore, based on the ventricular segmentation, the right and left ventricular systolic functions are evaluated, mainly according to the area changes. The synchronization of the four cavities of the heart is estimated based on the area changes and the volume changes.

  20. Proangiogenic scaffolds as functional templates for cardiac tissue engineering.

    PubMed

    Madden, Lauran R; Mortisen, Derek J; Sussman, Eric M; Dupras, Sarah K; Fugate, James A; Cuy, Janet L; Hauch, Kip D; Laflamme, Michael A; Murry, Charles E; Ratner, Buddy D

    2010-08-24

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-sized, spherical, interconnected pores that enhance angiogenesis while reducing scarring. Surface-modified scaffolds were seeded with human ES cell-derived cardiomyocytes and cultured in vitro. Cardiomyocytes survived and proliferated for 2 wk in scaffolds, reaching adult heart densities. Cardiac implantation of acellular scaffolds with pore diameters of 30-40 microm showed angiogenesis and reduced fibrotic response, coinciding with a shift in macrophage phenotype toward the M2 state. This work establishes a foundation for spatially controlled cardiac tissue engineering by providing discrete compartments for cardiomyocytes and stroma in a scaffold that enhances vascularization and integration while controlling the inflammatory response.

  1. Proangiogenic scaffolds as functional templates for cardiac tissue engineering

    PubMed Central

    Madden, Lauran R.; Mortisen, Derek J.; Sussman, Eric M.; Dupras, Sarah K.; Fugate, James A.; Cuy, Janet L.; Hauch, Kip D.; Laflamme, Michael A.; Murry, Charles E.; Ratner, Buddy D.

    2010-01-01

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-sized, spherical, interconnected pores that enhance angiogenesis while reducing scarring. Surface-modified scaffolds were seeded with human ES cell-derived cardiomyocytes and cultured in vitro. Cardiomyocytes survived and proliferated for 2 wk in scaffolds, reaching adult heart densities. Cardiac implantation of acellular scaffolds with pore diameters of 30–40 μm showed angiogenesis and reduced fibrotic response, coinciding with a shift in macrophage phenotype toward the M2 state. This work establishes a foundation for spatially controlled cardiac tissue engineering by providing discrete compartments for cardiomyocytes and stroma in a scaffold that enhances vascularization and integration while controlling the inflammatory response. PMID:20696917

  2. Early Effects of Prolonged Cardiac Arrest and Ischemic Postconditioning during Cardiopulmonary Resuscitation on Cardiac and Brain Mitochondrial Function in Pigs.

    PubMed

    Matsuura, Timothy R; Bartos, Jason A; Tsangaris, Adamantios; Shekar, Kadambari Chandra; Olson, Matthew D; Riess, Matthias L; Bienengraeber, Martin; Aufderheide, Tom P; Neumar, Robert W; Rees, Jennifer N; McKnite, Scott H; Dikalova, Anna E; Dikalov, Sergey I; Douglas, Hunter F; Yannopoulos, Demetris

    2017-07-01

    Out-of-hospital cardiac arrest (CA) is a prevalent medical crisis resulting in severe injury to the heart and brain and an overall survival of less than 10%. Mitochondrial dysfunction is predicted to be a key determinant of poor outcomes following prolonged CA. However, the onset and severity of mitochondrial dysfunction during CA and cardiopulmonary resuscitation (CPR) is not fully understood. Ischemic postconditioning (IPC), controlled pauses during the initiation of CPR, has been shown to improve cardiac function and neurologically favorable outcomes after 15min of CA. We tested the hypothesis that mitochondrial dysfunction develops during prolonged CA and can be rescued with IPC during CPR (IPC-CPR). A total of 63 swine were randomized to no ischemia (Naïve), 19min of ventricular fibrillation (VF) CA without CPR (Untreated VF), or 15min of CA with 4min of reperfusion with either standard CPR (S-CPR) or IPC-CPR. Mitochondria were isolated from the heart and brain to quantify respiration, rate of ATP synthesis, and calcium retention capacity (CRC). Reactive oxygen species (ROS) production was quantified from fresh frozen heart and brain tissue. Compared to Naïve, Untreated VF induced cardiac and brain ROS overproduction concurrent with decreased mitochondrial respiratory coupling and CRC, as well as decreased cardiac ATP synthesis. Compared to Untreated VF, S-CPR attenuated brain ROS overproduction but had no other effect on mitochondrial function in the heart or brain. Compared to Untreated VF, IPC-CPR improved cardiac mitochondrial respiratory coupling and rate of ATP synthesis, and decreased ROS overproduction in the heart and brain. Fifteen minutes of VF CA results in diminished mitochondrial respiration, ATP synthesis, CRC, and increased ROS production in the heart and brain. IPC-CPR attenuates cardiac mitochondrial dysfunction caused by prolonged VF CA after only 4min of reperfusion, suggesting that IPC-CPR is an effective intervention to reduce cardiac

  3. Normalization of cardiac substrate utilization and left ventricular hypertrophy precede functional recovery in heart failure regression.

    PubMed

    Byrne, Nikole J; Levasseur, Jody; Sung, Miranda M; Masson, Grant; Boisvenue, Jamie; Young, Martin E; Dyck, Jason R B

    2016-05-15

    Impaired cardiac substrate metabolism plays an important role in heart failure (HF) pathogenesis. Since many of these metabolic changes occur at the transcriptional level of metabolic enzymes, it is possible that this loss of metabolic flexibility is permanent and thus contributes to worsening cardiac function and/or prevents the full regression of HF upon treatment. However, despite the importance of cardiac energetics in HF, it remains unclear whether these metabolic changes can be normalized. In the current study, we investigated whether a reversal of an elevated aortic afterload in mice with severe HF would result in the recovery of cardiac function, substrate metabolism, and transcriptional reprogramming as well as determined the temporal relationship of these changes. Male C57Bl/6 mice were subjected to either Sham or transverse aortic constriction (TAC) surgery to induce HF. After HF development, mice with severe HF (% ejection fraction < 30) underwent a second surgery to remove the aortic constriction (debanding, DB). Three weeks following DB, there was a near complete recovery of systolic and diastolic function, and gene expression of several markers for hypertrophy/HF were returned to values observed in healthy controls. Interestingly, pressure-overload-induced left ventricular hypertrophy (LVH) and cardiac substrate metabolism were restored at 1-week post-DB, which preceded functional recovery. The regression of severe HF is associated with early and dramatic improvements in cardiac energy metabolism and LVH normalization that precede restored cardiac function, suggesting that metabolic and structural improvements may be critical determinants for functional recovery. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  4. Obesity Alters Molecular and Functional Cardiac Responses to Ischemia-Reperfusion and Glucagon-Like Peptide-1 Receptor Agonism

    PubMed Central

    Sassoon, Daniel J; Goodwill, Adam G; Noblet, Jillian N; Conteh, Abass M; Herring, B. Paul; McClintick, Jeanette N; Tune, Johnathan D; Mather, Kieren J

    2016-01-01

    This study tested the hypothesis that obesity alters the cardiac response to ischemia/reperfusion and/or glucagon like peptide-1 (GLP-1) receptor activation, and that these differences are associated with alterations in the obese cardiac proteome and microRNA (miR) transcriptome. Ossabaw swine were fed normal chow or obesogenic diet for 6 months. Cardiac function was assessed at baseline, during a 30-min coronary occlusion, and during 2 hours of reperfusion in anesthetized swine treated with saline or exendin-4 for 24 hours. Cardiac biopsies were obtained from normal and ischemia/reperfusion territories. Fat-fed animals were heavier, and exhibited hyperinsulinemia, hyperglycemia, and hypertriglyceridemia. Plasma troponin-I concentration (index of myocardial injury) was increased following ischemia/reperfusion and decreased by exendin-4 treatment in both groups. Ischemia/reperfusion produced reductions in systolic pressure and stroke volume in lean swine. These indices were higher in obese hearts at baseline and relatively maintained throughout ischemia/reperfusion. Exendin-4 administration increased systolic pressure in lean swine but did not affect blood pressure in obese swine. End-diastolic volume was reduced by exendin-4 following ischemia/reperfusion in obese swine. These divergent physiologic responses were associated with obesity-related differences in proteins related to myocardial structure/function (e.g. titin) and calcium handling (e.g. SERCA2a, histidine-rich Ca2+ binding protein). Alterations in expression of cardiac miRs in obese hearts included miR-15, miR-27, miR-130, miR-181, and let-7. Taken together, these observations validate this discovery approach and reveal novel associations that suggest previously undiscovered mechanisms contributing to the effects of obesity on the heart and contributing to the actions of GLP-1 following ischemia/reperfusion. PMID:27234258

  5. Transplantation of Epigenetically Modified Adult Cardiac c-Kit+ Cells Retards Remodeling and Improves Cardiac Function in Ischemic Heart Failure Model

    PubMed Central

    Zakharova, Liudmila; Nural-Guvener, Hikmet; Feehery, Lorraine; Popovic-Sljukic, Snjezana

    2015-01-01

    Cardiac c-Kit+ cells have a modest cardiogenic potential that could limit their efficacy in heart disease treatment. The present study was designed to augment the cardiogenic potential of cardiac c-Kit+ cells through class I histone deacetylase (HDAC) inhibition and evaluate their therapeutic potency in the chronic heart failure (CHF) animal model. Myocardial infarction (MI) was created by coronary artery occlusion in rats. c-Kit+ cells were treated with mocetinostat (MOCE), a specific class I HDAC inhibitor. At 3 weeks after MI, CHF animals were retrogradely infused with untreated (control) or MOCE-treated c-Kit+ cells (MOCE/c-Kit+ cells) and evaluated at 3 weeks after cell infusion. We found that class I HDAC inhibition in c-Kit+ cells elevated the level of acetylated histone H3 (AcH3) and increased AcH3 levels in the promoter regions of pluripotent and cardiac-specific genes. Epigenetic changes were accompanied by increased expression of cardiac-specific markers. Transplantation of CHF rats with either control or MOCE/c-Kit+ cells resulted in an improvement in cardiac function, retardation of CHF remodeling made evident by increased vascularization and scar size, and cardiomyocyte hypertrophy reduction. Compared with CHF infused with control cells, infusion of MOCE/c-Kit+ cells resulted in a further reduction in left ventricle end-diastolic pressure and total collagen and an increase in interleukin-6 expression. The low engraftment of infused cells suggests that paracrine effects might account for the beneficial effects of c-Kit+ cells in CHF. In conclusion, selective inhibition of class I HDACs induced expression of cardiac markers in c-Kit+ cells and partially augmented the efficacy of these cells for CHF repair. Significance The study has shown that selective class 1 histone deacetylase inhibition is sufficient to redirect c-Kit+ cells toward a cardiac fate. Epigenetically modified c-Kit+ cells improved contractile function and retarded remodeling of the

  6. Reduced cardiac vagal activity in obese children and adolescents.

    PubMed

    Dangardt, Frida; Volkmann, Reinhard; Chen, Yun; Osika, Walter; Mårild, Staffan; Friberg, Peter

    2011-03-01

      Obese children present with various cardiovascular risk factors affecting their future health. In adults, cardiac autonomic function is a major risk factor, predicting cardiovascular morbidity and mortality. We hypothesized that obese children and adolescents had a lower cardiac vagal activity than lean subjects. We measured cardiac spontaneous baroreflex sensitivity (BRS), reflecting the dynamic regulation of cardiac vagal function, in large groups of obese and lean young individuals.   Cardiac BRS, using the sequence approach, was assessed in 120 obese (59 girls), 43 overweight (23 girls) and 148 lean subjects (78 girls). Obese subjects showed a decreased BRS compared to both overweight and lean subjects [16±7 versus 21±9 (P<0·01) and 22±10 ms per mmHg (P<0·0001), respectively]. The differences remained after correcting for age, gender and pubertal status.   Children with obesity had low vagal activity at rest, and there was no gender difference. © 2010 The Authors. Clinical Physiology and Functional Imaging © 2010 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  7. The effect of childhood obesity on cardiac functions.

    PubMed

    Üner, Abdurrahman; Doğan, Murat; Epcacan, Zerrin; Epçaçan, Serdar

    2014-03-01

    Obesity is a metabolic disorder defined as excessive accumulation of body fat, which is made up of genetic, environmental, and hormonal factors and has various social, psychological, and medical complications. Childhood obesity is a major indicator of adult obesity. The aim of this study is to evaluate the cardiac functions via electrocardiography (ECG), echocardiography (ECHO), and treadmill test in childhood obesity. A patient group consisting of 30 obese children and a control group consisting of 30 non-obese children were included in the study. The age range was between 8 and 17 years. Anthropometric measurements, physical examination, ECG, ECHO, and treadmill test were done in all patients. P-wave dispersion (PD) was found to be statistically significantly high in obese patients. In ECHO analysis, we found that end-diastolic diameter, end-systolic diameter, left ventricle posterior wall thickness, and interventricular septum were significantly greater in obese children. In treadmill test, exercise capacity was found to be significantly lower and the hemodynamic response to exercise was found to be defective in obese children. Various cardiac structural and functional changes occur in childhood obesity and this condition includes important cardiovascular risks. PD, left ventricle end-systolic and end-diastolic diameter, left ventricle posterior wall thickness, interventricular septum thickness, exercise capacity, and hemodynamic and ECG measurements during exercise testing are useful tests to determine cardiac dysfunctions and potential arrhythmias even in early stages of childhood obesity. Early recognition and taking precautions for obesity during childhood is very important to intercept complications that will occur in adulthood.

  8. Cardiac Alpha1-Adrenergic Receptors: Novel Aspects of Expression, Signaling Mechanisms, Physiologic Function, and Clinical Importance

    PubMed Central

    O’Connell, Timothy D.; Jensen, Brian C.; Baker, Anthony J.

    2014-01-01

    Adrenergic receptors (AR) are G-protein-coupled receptors (GPCRs) that have a crucial role in cardiac physiology in health and disease. Alpha1-ARs signal through Gαq, and signaling through Gq, for example, by endothelin and angiotensin receptors, is thought to be detrimental to the heart. In contrast, cardiac alpha1-ARs mediate important protective and adaptive functions in the heart, although alpha1-ARs are only a minor fraction of total cardiac ARs. Cardiac alpha1-ARs activate pleiotropic downstream signaling to prevent pathologic remodeling in heart failure. Mechanisms defined in animal and cell models include activation of adaptive hypertrophy, prevention of cardiac myocyte death, augmentation of contractility, and induction of ischemic preconditioning. Surprisingly, at the molecular level, alpha1-ARs localize to and signal at the nucleus in cardiac myocytes, and, unlike most GPCRs, activate “inside-out” signaling to cause cardioprotection. Contrary to past opinion, human cardiac alpha1-AR expression is similar to that in the mouse, where alpha1-AR effects are seen most convincingly in knockout models. Human clinical studies show that alpha1-blockade worsens heart failure in hypertension and does not improve outcomes in heart failure, implying a cardioprotective role for human alpha1-ARs. In summary, these findings identify novel functional and mechanistic aspects of cardiac alpha1-AR function and suggest that activation of cardiac alpha1-AR might be a viable therapeutic strategy in heart failure. PMID:24368739

  9. TRPV2 is critical for the maintenance of cardiac structure and function in mice

    PubMed Central

    Katanosaka, Yuki; Iwasaki, Keiichiro; Ujihara, Yoshihiro; Takatsu, Satomi; Nishitsuji, Koki; Kanagawa, Motoi; Sudo, Atsushi; Toda, Tatsushi; Katanosaka, Kimiaki; Mohri, Satoshi; Naruse, Keiji

    2014-01-01

    The heart has a dynamic compensatory mechanism for haemodynamic stress. However, the molecular details of how mechanical forces are transduced in the heart are unclear. Here we show that the transient receptor potential, vanilloid family type 2 (TRPV2) cation channel is critical for the maintenance of cardiac structure and function. Within 4 days of eliminating TRPV2 from hearts of the adult mice, cardiac function declines severely, with disorganization of the intercalated discs that support mechanical coupling with neighbouring myocytes and myocardial conduction defects. After 9 days, cell shortening and Ca2+ handling by single myocytes are impaired in TRPV2-deficient hearts. TRPV2-deficient neonatal cardiomyocytes form no intercalated discs and show no extracellular Ca2+-dependent intracellular Ca2+ increase and insulin-like growth factor (IGF-1) secretion in response to stretch stimulation. We further demonstrate that IGF-1 receptor/PI3K/Akt pathway signalling is significantly downregulated in TRPV2-deficient hearts, and that IGF-1 administration partially prevents chamber dilation and impairment in cardiac pump function in these hearts. Our results improve our understanding of the molecular processes underlying the maintenance of cardiac structure and function. PMID:24874017

  10. TRPV2 is critical for the maintenance of cardiac structure and function in mice.

    PubMed

    Katanosaka, Yuki; Iwasaki, Keiichiro; Ujihara, Yoshihiro; Takatsu, Satomi; Nishitsuji, Koki; Kanagawa, Motoi; Sudo, Atsushi; Toda, Tatsushi; Katanosaka, Kimiaki; Mohri, Satoshi; Naruse, Keiji

    2014-05-29

    The heart has a dynamic compensatory mechanism for haemodynamic stress. However, the molecular details of how mechanical forces are transduced in the heart are unclear. Here we show that the transient receptor potential, vanilloid family type 2 (TRPV2) cation channel is critical for the maintenance of cardiac structure and function. Within 4 days of eliminating TRPV2 from hearts of the adult mice, cardiac function declines severely, with disorganization of the intercalated discs that support mechanical coupling with neighbouring myocytes and myocardial conduction defects. After 9 days, cell shortening and Ca(2+) handling by single myocytes are impaired in TRPV2-deficient hearts. TRPV2-deficient neonatal cardiomyocytes form no intercalated discs and show no extracellular Ca(2+)-dependent intracellular Ca(2+) increase and insulin-like growth factor (IGF-1) secretion in response to stretch stimulation. We further demonstrate that IGF-1 receptor/PI3K/Akt pathway signalling is significantly downregulated in TRPV2-deficient hearts, and that IGF-1 administration partially prevents chamber dilation and impairment in cardiac pump function in these hearts. Our results improve our understanding of the molecular processes underlying the maintenance of cardiac structure and function.

  11. Ivabradine and metoprolol differentially affect cardiac glucose metabolism despite similar heart rate reduction in a mouse model of dyslipidemia.

    PubMed

    Vaillant, Fanny; Lauzier, Benjamin; Ruiz, Matthieu; Shi, Yanfen; Lachance, Dominic; Rivard, Marie-Eve; Bolduc, Virginie; Thorin, Eric; Tardif, Jean-Claude; Des Rosiers, Christine

    2016-10-01

    While heart rate reduction (HRR) is a target for the management of patients with heart disease, contradictory results were reported using ivabradine, which selectively inhibits the pacemaker I f current, vs. β-blockers like metoprolol. This study aimed at testing whether similar HRR with ivabradine vs. metoprolol differentially modulates cardiac energy substrate metabolism, a factor determinant for cardiac function, in a mouse model of dyslipidemia (hApoB +/+ ;LDLR -/- ). Following a longitudinal study design, we used 3- and 6-mo-old mice, untreated or treated for 3 mo with ivabradine or metoprolol. Cardiac function was evaluated in vivo and ex vivo in working hearts perfused with 13 C-labeled substrates to assess substrate fluxes through energy metabolic pathways. Compared with 3-mo-old, 6-mo-old dyslipidemic mice had similar cardiac hemodynamics in vivo but impaired (P < 0.001) contractile function (aortic flow: -45%; cardiac output: -34%; stroke volume: -35%) and glycolysis (-24%) ex vivo. Despite inducing a similar 10% HRR, ivabradine-treated hearts displayed significantly higher stroke volume values and glycolysis vs. their metoprolol-treated counterparts ex vivo, values for the ivabradine group being often not significantly different from 3-mo-old mice. Further analyses highlighted additional significant cardiac alterations with disease progression, namely in the total tissue level of proteins modified by O-linked N-acetylglucosamine (O-GlcNAc), whose formation is governed by glucose metabolism via the hexosamine biosynthetic pathway, which showed a similar pattern with ivabradine vs. metoprolol treatment. Collectively, our results emphasize the implication of alterations in cardiac glucose metabolism and signaling linked to disease progression in our mouse model. Despite similar HRR, ivabradine, but not metoprolol, preserved cardiac function and glucose metabolism during disease progression. Copyright © 2016 the American Physiological Society.

  12. GPER mediates the effects of 17β-estradiol in cardiac mitochondrial biogenesis and function.

    PubMed

    Sbert-Roig, Miquel; Bauzá-Thorbrügge, Marco; Galmés-Pascual, Bel M; Capllonch-Amer, Gabriela; García-Palmer, Francisco J; Lladó, Isabel; Proenza, Ana M; Gianotti, Magdalena

    2016-01-15

    Considering the sexual dimorphism described in cardiac mitochondrial function and oxidative stress, we aimed to investigate the role of 17β-estradiol (E2) in these sex differences and the contribution of E2 receptors to these effects. As a model of chronic deprivation of ovarian hormones, we used ovariectomized (OVX) rats, half of which were treated with E2. Ovariectomy decreased markers of cardiac mitochondrial biogenesis and function and also increased oxidative stress, whereas E2 counteracted these effects. In H9c2 cardiomyocytes we observed that G-protein coupled estrogen receptor (GPER) agonist mimicked the effects of E2 in enhancing mitochondrial function and biogenesis, whereas GPER inhibitor neutralized them. These data suggest that E2 enhances mitochondrial function and decreases oxidative stress in cardiac muscle, thus it could be responsible for the sexual dimorphism observed in mitochondrial biogenesis and function in this tissue. These effects seem to be mediated through GPER stimulation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Cardiac metabolic pathways affected in the mouse model of barth syndrome.

    PubMed

    Huang, Yan; Powers, Corey; Madala, Satish K; Greis, Kenneth D; Haffey, Wendy D; Towbin, Jeffrey A; Purevjav, Enkhsaikhan; Javadov, Sabzali; Strauss, Arnold W; Khuchua, Zaza

    2015-01-01

    Cardiolipin (CL) is a mitochondrial phospholipid essential for electron transport chain (ETC) integrity. CL-deficiency in humans is caused by mutations in the tafazzin (Taz) gene and results in a multisystem pediatric disorder, Barth syndrome (BTHS). It has been reported that tafazzin deficiency destabilizes mitochondrial respiratory chain complexes and affects supercomplex assembly. The aim of this study was to investigate the impact of Taz-knockdown on the mitochondrial proteomic landscape and metabolic processes, such as stability of respiratory chain supercomplexes and their interactions with fatty acid oxidation enzymes in cardiac muscle. Proteomic analysis demonstrated reduction of several polypeptides of the mitochondrial respiratory chain, including Rieske and cytochrome c1 subunits of complex III, NADH dehydrogenase alpha subunit 5 of complex I and the catalytic core-forming subunit of F0F1-ATP synthase. Taz gene knockdown resulted in upregulation of enzymes of folate and amino acid metabolic pathways in heart mitochondria, demonstrating that Taz-deficiency causes substantive metabolic remodeling in cardiac muscle. Mitochondrial respiratory chain supercomplexes are destabilized in CL-depleted mitochondria from Taz knockdown hearts resulting in disruption of the interactions between ETC and the fatty acid oxidation enzymes, very long-chain acyl-CoA dehydrogenase and long-chain 3-hydroxyacyl-CoA dehydrogenase, potentially affecting the metabolic channeling of reducing equivalents between these two metabolic pathways. Mitochondria-bound myoglobin was significantly reduced in Taz-knockdown hearts, potentially disrupting intracellular oxygen delivery to the oxidative phosphorylation system. Our results identify the critical pathways affected by the Taz-deficiency in mitochondria and establish a future framework for development of therapeutic options for BTHS.

  14. Rationally engineered Troponin C modulates in vivo cardiac function and performance in health and disease.

    PubMed

    Shettigar, Vikram; Zhang, Bo; Little, Sean C; Salhi, Hussam E; Hansen, Brian J; Li, Ning; Zhang, Jianchao; Roof, Steve R; Ho, Hsiang-Ting; Brunello, Lucia; Lerch, Jessica K; Weisleder, Noah; Fedorov, Vadim V; Accornero, Federica; Rafael-Fortney, Jill A; Gyorke, Sandor; Janssen, Paul M L; Biesiadecki, Brandon J; Ziolo, Mark T; Davis, Jonathan P

    2016-02-24

    Treatment for heart disease, the leading cause of death in the world, has progressed little for several decades. Here we develop a protein engineering approach to directly tune in vivo cardiac contractility by tailoring the ability of the heart to respond to the Ca(2+) signal. Promisingly, our smartly formulated Ca(2+)-sensitizing TnC (L48Q) enhances heart function without any adverse effects that are commonly observed with positive inotropes. In a myocardial infarction (MI) model of heart failure, expression of TnC L48Q before the MI preserves cardiac function and performance. Moreover, expression of TnC L48Q after the MI therapeutically enhances cardiac function and performance, without compromising survival. We demonstrate engineering TnC can specifically and precisely modulate cardiac contractility that when combined with gene therapy can be employed as a therapeutic strategy for heart disease.

  15. Rationally engineered Troponin C modulates in vivo cardiac function and performance in health and disease

    PubMed Central

    Shettigar, Vikram; Zhang, Bo; Little, Sean C.; Salhi, Hussam E.; Hansen, Brian J.; Li, Ning; Zhang, Jianchao; Roof, Steve R.; Ho, Hsiang-Ting; Brunello, Lucia; Lerch, Jessica K.; Weisleder, Noah; Fedorov, Vadim V.; Accornero, Federica; Rafael-Fortney, Jill A.; Gyorke, Sandor; Janssen, Paul M. L.; Biesiadecki, Brandon J.; Ziolo, Mark T.; Davis, Jonathan P.

    2016-01-01

    Treatment for heart disease, the leading cause of death in the world, has progressed little for several decades. Here we develop a protein engineering approach to directly tune in vivo cardiac contractility by tailoring the ability of the heart to respond to the Ca2+ signal. Promisingly, our smartly formulated Ca2+-sensitizing TnC (L48Q) enhances heart function without any adverse effects that are commonly observed with positive inotropes. In a myocardial infarction (MI) model of heart failure, expression of TnC L48Q before the MI preserves cardiac function and performance. Moreover, expression of TnC L48Q after the MI therapeutically enhances cardiac function and performance, without compromising survival. We demonstrate engineering TnC can specifically and precisely modulate cardiac contractility that when combined with gene therapy can be employed as a therapeutic strategy for heart disease. PMID:26908229

  16. Transgenic Analysis of the Role of FKBP12.6 in Cardiac Function and Intracellular Calcium Release

    PubMed Central

    Liu, Ying; Chen, Hanying; Ji, Guangju; Li, Baiyan; Mohler, Peter J.; Zhu, Zhiming; Yong, Weidong; Chen, Zhuang; Xu, Xuehong

    2011-01-01

    Abstract FK506 binding protein12.6 (FKBP12.6) binds to the Ca2+ release channel ryanodine receptor (RyR2) in cardiomyocytes and stabilizes RyR2 to prevent premature sarcoplasmic reticulum Ca2+ release. Previously, two different mouse strains deficient in FKBP12.6 were reported to have different abnormal cardiac phenotypes. The first mutant strain displayed sex-dependent cardiac hypertrophy, while the second displayed exercise-induced cardiac arrhythmia and sudden death. In this study, we tested whether FKBP12.6-deficient mice that display hypertrophic hearts can develop exercise-induced cardiac sudden death and whether the hypertrophic heart is a direct consequence of abnormal calcium handling in mutant cardiomyocytes. Our data show that FKBP12.6-deficient mice with cardiac hypertrophy do not display exercise-induced arrhythmia and/or sudden cardiac death. To investigate the role of FKBP12.6 overexpression for cardiac function and cardiomyocyte calcium release, we generated a transgenic mouse line with cardiac specific overexpression of FKBP12.6 using α-myosin heavy chain (αMHC) promoter. MHC-FKBP12.6 mice displayed normal cardiac development and function. We demonstrated that MHC-FKBP12.6 mice are able to rescue abnormal cardiac hypertrophy and abnormal calcium release in FKBP12.6-deficient mice. PMID:22087651

  17. Geraniol alleviates diabetic cardiac complications: Effect on cardiac ischemia and oxidative stress.

    PubMed

    El-Bassossy, Hany M; Ghaleb, Hanna; Elberry, Ahmed A; Balamash, Khadijah S; Ghareib, Salah A; Azhar, Ahmad; Banjar, Zainy

    2017-04-01

    The present study was planned to assess the possible protective effect of geraniol on cardiovascular complications in an animal model with diabetes. Diabetes was induced in rats by a single streptozotocin injection. In the treated group, geraniol (150mgkg -1 day -1 ) was administered orally starting from the 15th day after induction of diabetes, and ending after 7 weeks; diabetic control rats were given vehicle for the same period. At the end of the study, cardiac contractility was assessed by using a Millar microtip catheter in anesthetised rats, and cardiac conductivity determined by a surface ECG. Serum levels of glucose, cholesterol, triglyceride and adiponectin as well as urine 8-isoprostane were determined. In addition, cardiac superoxide dismutase (SOD) and catalase activity were measured. Geraniol administration significantly alleviated the attenuated cardiac systolic function associated with diabetes as indicated by inhibiting the decrease in the rate of rise (dP/dt max ) in ventricular pressure and the increase in systolic duration observed in diabetic rats. In addition, geraniol alleviated impaired diastolic function as shown by inhibiting the decrease in the rate of fall (dP/dt min ) in ventricular pressure and increased isovolumic relaxation constant (Tau) observed in diabetic rats. ECG recordings showed that geraniol prevented any increase in QTc and T-peak-T-end intervals, and markers of LV ischemia and arrhythmogenesis, seen in diabetic animals. Geraniol suppressed the exaggerated oxidative stress as evidenced by preventing the increase in 8-isoprotane. In diabetic heart tissue, geraniol prevented the inhibition in catalase activity but did not affect the heart SOD. Geraniol partially reduced hyperglycemia, prevented the hypercholesterolemia, but did not affect the serum level of adiponectin in diabetic animals. Results obtained in this study suggest that geraniol provides a potent protective effect against cardiac dysfunction induced by diabetes

  18. Mitochondrial function in engineered cardiac tissues is regulated by extracellular matrix elasticity and tissue alignment.

    PubMed

    Lyra-Leite, Davi M; Andres, Allen M; Petersen, Andrew P; Ariyasinghe, Nethika R; Cho, Nathan; Lee, Jezell A; Gottlieb, Roberta A; McCain, Megan L

    2017-10-01

    Mitochondria in cardiac myocytes are critical for generating ATP to meet the high metabolic demands associated with sarcomere shortening. Distinct remodeling of mitochondrial structure and function occur in cardiac myocytes in both developmental and pathological settings. However, the factors that underlie these changes are poorly understood. Because remodeling of tissue architecture and extracellular matrix (ECM) elasticity are also hallmarks of ventricular development and disease, we hypothesize that these environmental factors regulate mitochondrial function in cardiac myocytes. To test this, we developed a new procedure to transfer tunable polydimethylsiloxane disks microcontact-printed with fibronectin into cell culture microplates. We cultured Sprague-Dawley neonatal rat ventricular myocytes within the wells, which consistently formed tissues following the printed fibronectin, and measured oxygen consumption rate using a Seahorse extracellular flux analyzer. Our data indicate that parameters associated with baseline metabolism are predominantly regulated by ECM elasticity, whereas the ability of tissues to adapt to metabolic stress is regulated by both ECM elasticity and tissue alignment. Furthermore, bioenergetic health index, which reflects both the positive and negative aspects of oxygen consumption, was highest in aligned tissues on the most rigid substrate, suggesting that overall mitochondrial function is regulated by both ECM elasticity and tissue alignment. Our results demonstrate that mitochondrial function is regulated by both ECM elasticity and myofibril architecture in cardiac myocytes. This provides novel insight into how extracellular cues impact mitochondrial function in the context of cardiac development and disease. NEW & NOTEWORTHY A new methodology has been developed to measure O 2 consumption rates in engineered cardiac tissues with independent control over tissue alignment and matrix elasticity. This led to the findings that matrix

  19. Cardiac structure and function in the obese: a cardiovascular magnetic resonance imaging study.

    PubMed

    Danias, Peter G; Tritos, Nicholas A; Stuber, Matthias; Kissinger, Kraig V; Salton, Carol J; Manning, Warren J

    2003-07-01

    Obesity is a major health problem in the Western world. Among obese subjects cardiac pathology is common, but conventional noninvasive imaging modalities are often suboptimal for detailed evaluation of cardiac structure and function. We investigated whether cardiovascular magnetic resonance imaging (CMR) can better characterize possible cardiac abnormalities associated with obesity, in the absence of other confounding comorbidities. In this prospective cross-sectional study, CMR was used to quantify left and right ventricular volumes, ejection fraction, mass, cardiac output, and apical left ventricular rotation in 25 clinically healthy obese men and 25 age-matched lean controls. Obese subjects had higher left ventricular mass (203 +/- 38 g vs. 163 +/- 22 g, p < 0.001), end-diastolic volume (176 +/- 29 mL vs. 156 +/- 25 mL, p < 0.05), and cardiac output (8.2 +/- 1.2 L/min vs. 6.4 +/- 1.3 L/min, p < 0.001). The obese also had increased right ventricular mass (105 +/- 25 g vs. 87 +/- 18 g, p < 0.005) and end-diastolic volume (179 +/- 36 mL vs. 155 +/- 28 mL, p < 0.05). When indexed for height, differences in left and right ventricular mass, and left ventricular end-diastolic volume remained significant. Apical left ventricular rotation and rotational velocity patterns were also different between obese and lean subjects. Obesity is independently associated with remodeling of the heart. Cardiovascular magnetic resonance imaging identifies subtle cardiac abnormalities and may be the preferred imaging technique to evaluate cardiac structure and function in the obese.

  20. In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy.

    PubMed

    Weber, Michael; Huisken, Jan

    2015-01-01

    Detailed studies of heart development and function are crucial for our understanding of cardiac failures and pave the way for better diagnostics and treatment. However, the constant motion and close incorporation into the cardiovascular system prevent in vivo studies of the living, unperturbed heart. The complementary strengths of the zebrafish model and light sheet microscopy provide a useful platform to fill this gap. High-resolution images of the embryonic vertebrate heart are now recorded from within the living animal: deep inside the unperturbed heart we can follow cardiac contractions and measure action potentials and calcium transients. Three-dimensional reconstructions of the entire beating heart with cellular resolution give new insights into its ever-changing morphology and facilitate studies into how individual cells form the complex cardiac network. In addition, cardiac dynamics and robustness are now examined with targeted optical manipulation. Overall, the combination of zebrafish and light sheet microscopy represents a promising addition for cardiac research and opens the door to a better understanding of heart function and development.

  1. Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds.

    PubMed

    Hussain, Ali; Collins, George; Yip, Derek; Cho, Cheul H

    2013-02-01

    The in vitro generation of a three-dimensional (3-D) myocardial tissue-like construct employing cells, biomaterials, and biomolecules is a promising strategy in cardiac tissue regeneration, drug testing, and tissue engineering applications. Despite significant progress in this field, current cardiac tissue models are not yet able to stably maintain functional characteristics of cardiomyocytes for long-term culture and therapeutic purposes. The objective of this study was to fabricate bioactive 3-D chitosan nanofiber scaffolds using an electrospinning technique and exploring its potential for long-term cardiac function in the 3-D co-culture model. Chitosan is a natural polysaccharide biomaterial that is biocompatible, biodegradable, non-toxic, and cost effective. Electrospun chitosan was utilized to provide structural scaffolding characterized by scale and architectural resemblance to the extracellular matrix (ECM) in vivo. The chitosan fibers were coated with fibronectin via adsorption in order to enhance cellular adhesion to the fibers and migration into the interfibrous milieu. Ventricular cardiomyocytes were harvested from neonatal rats and studied in various culture conditions (i.e., mono- and co-cultures) for their viability and function. Cellular morphology and functionality were examined using immunofluorescent staining for alpha-sarcomeric actin (SM-actin) and gap junction protein, Connexin-43 (Cx43). Scanning electron microscopy (SEM) and light microscopy were used to investigate cellular morphology, spatial organization, and contractions. Calcium indicator was used to monitor calcium ion flux of beating cardiomyocytes. The results demonstrate that the chitosan nanofibers retained their cylindrical morphology in long-term cell cultures and exhibited good cellular attachment and spreading in the presence of adhesion molecule, fibronectin. Cardiomyocyte mono-cultures resulted in loss of cardiomyocyte polarity and islands of non-coherent contractions. However

  2. Hypoxia signaling controls postnatal changes in cardiac mitochondrial morphology and function

    PubMed Central

    Neary, Marianne T.; Ng, Keat-Eng; Ludtmann, Marthe H.R.; Hall, Andrew R.; Piotrowska, Izabela; Ong, Sang-Bing; Hausenloy, Derek J.; Mohun, Timothy J.; Abramov, Andrey Y.; Breckenridge, Ross A.

    2014-01-01

    Fetal cardiomyocyte adaptation to low levels of oxygen in utero is incompletely understood, and is of interest as hypoxia tolerance is lost after birth, leading to vulnerability of adult cardiomyocytes. It is known that cardiac mitochondrial morphology, number and function change significantly following birth, although the underlying molecular mechanisms and physiological stimuli are undefined. Here we show that the decrease in cardiomyocyte HIF-signaling in cardiomyocytes immediately after birth acts as a physiological switch driving mitochondrial fusion and increased postnatal mitochondrial biogenesis. We also investigated mechanisms of ATP generation in embryonic cardiac mitochondria. We found that embryonic cardiac cardiomyocytes rely on both glycolysis and the tricarboxylic acid cycle to generate ATP, and that the balance between these two metabolic pathways in the heart is controlled around birth by the reduction in HIF signaling. We therefore propose that the increase in ambient oxygen encountered by the neonate at birth acts as a key physiological stimulus to cardiac mitochondrial adaptation. PMID:24984146

  3. Cardiac-specific overexpression of aldehyde dehydrogenase 2 exacerbates cardiac remodeling in response to pressure overload.

    PubMed

    Dassanayaka, Sujith; Zheng, Yuting; Gibb, Andrew A; Cummins, Timothy D; McNally, Lindsey A; Brittian, Kenneth R; Jagatheesan, Ganapathy; Audam, Timothy N; Long, Bethany W; Brainard, Robert E; Jones, Steven P; Hill, Bradford G

    2018-06-01

    Pathological cardiac remodeling during heart failure is associated with higher levels of lipid peroxidation products and lower abundance of several aldehyde detoxification enzymes, including aldehyde dehydrogenase 2 (ALDH2). An emerging idea that could explain these findings concerns the role of electrophilic species in redox signaling, which may be important for adaptive responses to stress or injury. The purpose of this study was to determine whether genetically increasing ALDH2 activity affects pressure overload-induced cardiac dysfunction. Mice subjected to transverse aortic constriction (TAC) for 12 weeks developed myocardial hypertrophy and cardiac dysfunction, which were associated with diminished ALDH2 expression and activity. Cardiac-specific expression of the human ALDH2 gene in mice augmented myocardial ALDH2 activity but did not improve cardiac function in response to pressure overload. After 12 weeks of TAC, ALDH2 transgenic mice had larger hearts than their wild-type littermates and lower capillary density. These findings show that overexpression of ALDH2 augments the hypertrophic response to pressure overload and imply that downregulation of ALDH2 may be an adaptive response to certain forms of cardiac pathology. Copyright © 2018. Published by Elsevier B.V.

  4. Chronic Intermittent Hypobaric Hypoxia Improves Cardiac Function through Inhibition of Endoplasmic Reticulum Stress.

    PubMed

    Yuan, Fang; Zhang, Li; Li, Yan-Qing; Teng, Xu; Tian, Si-Yu; Wang, Xiao-Ran; Zhang, Yi

    2017-08-11

    We investigated the role of endoplasmic reticulum stress (ERS) in chronic intermittent hypobaric hypoxia (CIHH)-induced cardiac protection. Adult male Sprague-Dawley rats were exposed to CIHH treatment simulating 5000 m altitude for 28 days, 6 hours per day. The heart was isolated and perfused with Langendorff apparatus and subjected to 30-min ischemia followed by 60-min reperfusion. Cardiac function, infarct size, and lactate dehydrogenase (LDH) activity were assessed. Expression of ERS molecular chaperones (GRP78, CHOP and caspase-12) was assayed by western blot analysis. CIHH treatment improved the recovery of left ventricular function and decreased cardiac infarct size and activity of LDH after I/R compared to control rats. Furthermore, CIHH treatment inhibited over-expression of ERS-related factors including GRP78, CHOP and caspase-12. CIHH-induced cardioprotection and inhibition of ERS were eliminated by application of dithiothreitol, an ERS inducer, and chelerythrine, a protein kinase C (PKC) inhibitor. In conclusion CIHH treatment exerts cardiac protection against I/R injury through inhibition of ERS via PKC signaling pathway.

  5. Combining computer modelling and cardiac imaging to understand right ventricular pump function.

    PubMed

    Walmsley, John; van Everdingen, Wouter; Cramer, Maarten J; Prinzen, Frits W; Delhaas, Tammo; Lumens, Joost

    2017-10-01

    Right ventricular (RV) dysfunction is a strong predictor of outcome in heart failure and is a key determinant of exercise capacity. Despite these crucial findings, the RV remains understudied in the clinical, experimental, and computer modelling literature. This review outlines how recent advances in using computer modelling and cardiac imaging synergistically help to understand RV function in health and disease. We begin by highlighting the complexity of interactions that make modelling the RV both challenging and necessary, and then summarize the multiscale modelling approaches used to date to simulate RV pump function in the context of these interactions. We go on to demonstrate how these modelling approaches in combination with cardiac imaging have improved understanding of RV pump function in pulmonary arterial hypertension, arrhythmogenic right ventricular cardiomyopathy, dyssynchronous heart failure and cardiac resynchronization therapy, hypoplastic left heart syndrome, and repaired tetralogy of Fallot. We conclude with a perspective on key issues to be addressed by computational models of the RV in the near future. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  6. Diabetic db/db mice do not develop heart failure upon pressure overload: a longitudinal in vivo PET, MRI, and MRS study on cardiac metabolic, structural, and functional adaptations.

    PubMed

    Abdurrachim, Desiree; Nabben, Miranda; Hoerr, Verena; Kuhlmann, Michael T; Bovenkamp, Philipp; Ciapaite, Jolita; Geraets, Ilvy M E; Coumans, Will; Luiken, Joost J F P; Glatz, Jan F C; Schäfers, Michael; Nicolay, Klaas; Faber, Cornelius; Hermann, Sven; Prompers, Jeanine J

    2017-08-01

    Heart failure is associated with altered myocardial substrate metabolism and impaired cardiac energetics. Comorbidities like diabetes may influence the metabolic adaptations during heart failure development. We quantified to what extent changes in substrate preference, lipid accumulation, and energy status predict the longitudinal development of hypertrophy and failure in the non-diabetic and the diabetic heart. Transverse aortic constriction (TAC) was performed in non-diabetic (db/+) and diabetic (db/db) mice to induce pressure overload. Magnetic resonance imaging, 31P magnetic resonance spectroscopy (MRS), 1H MRS, and 18F-fluorodeoxyglucose-positron emission tomography (PET) were applied to measure cardiac function, energy status, lipid content, and glucose uptake, respectively. In vivo measurements were complemented with ex vivo techniques of high-resolution respirometry, proteomics, and western blotting to elucidate the underlying molecular pathways. In non-diabetic mice, TAC induced progressive cardiac hypertrophy and dysfunction, which correlated with increased protein kinase D-1 (PKD1) phosphorylation and increased glucose uptake. These changes in glucose utilization preceded a reduction in cardiac energy status. At baseline, compared with non-diabetic mice, diabetic mice showed normal cardiac function, higher lipid content and mitochondrial capacity for fatty acid oxidation, and lower PKD1 phosphorylation, glucose uptake, and energetics. Interestingly, TAC affected cardiac function only mildly in diabetic mice, which was accompanied by normalization of phosphorylated PKD1, glucose uptake, and cardiac energy status. The cardiac metabolic adaptations in diabetic mice seem to prevent the heart from failing upon pressure overload, suggesting that restoring the balance between glucose and fatty acid utilization is beneficial for cardiac function. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions

  7. Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice

    PubMed Central

    Ziegler, Karin A; Ahles, Andrea; Wille, Timo; Kerler, Julia; Ramanujam, Deepak; Engelhardt, Stefan

    2018-01-01

    Abstract Aims Cardiac inflammation has been suggested to be regulated by the sympathetic nervous system (SNS). However, due to the lack of methodology to surgically eliminate the myocardial SNS in mice, neuronal control of cardiac inflammation remains ill-defined. Here, we report a procedure for local cardiac sympathetic denervation in mice and tested its effect in a mouse model of heart failure post-myocardial infarction. Methods and results Upon preparation of the carotid bifurcation, the right and the left superior cervical ganglia were localized and their pre- and postganglionic branches dissected before removal of the ganglion. Ganglionectomy led to an almost entire loss of myocardial sympathetic innervation in the left ventricular anterior wall. When applied at the time of myocardial infarction (MI), cardiac sympathetic denervation did not affect acute myocardial damage and infarct size. In contrast, cardiac sympathetic denervation significantly attenuated chronic consequences of MI, including myocardial inflammation, myocyte hypertrophy, and overall cardiac dysfunction. Conclusion These data suggest a critical role for local sympathetic control of cardiac inflammation. Our model of myocardial sympathetic denervation in mice should prove useful to further dissect the molecular mechanisms underlying cardiac neural control. PMID:29186414

  8. Effect of prolonged space flight on cardiac function and dimensions

    NASA Technical Reports Server (NTRS)

    Henry, W. L.; Epstein, S. E.; Griffith, J. M.; Goldstein, R. E.; Redwood, D. R.

    1974-01-01

    Echocardiographic studies were performed preflight 5 days before launch and on recovery day and 1, 2, 4, 11, 31 and 68 days postflight. From these echocardiograms measurements were made. From these primary measurements, left ventricular end-diastolic volume, end-systolic volume, stroke volume, and mass were derived using the accepted assumptions. Findings in the Scientist Pilot and Pilot resemble those seen in trained distance runners. Wall thickness measurements were normal in all three crewmembers preflight. Postflight basal studies were unchanged in the Commander on recovery day through 68 days postflight in both the Scientist Pilot and Pilot, however, the left ventricular end-diastolic volume, stroke volume, and mass were decreased slightly. Left ventricular function curves were constructed for the Commander and Pilot by plotting stroke volume versus end-diastolic volume. In both astronauts, preflight and postflight data fell on the same straight line demonstrating that no deterioration in cardiac function had occurred. These data indicate that the cardiovascular system adapts well to prolonged weightlessness and suggest that alterations in cardiac dimensions and function are unlikely to limit man's future in space.

  9. Functional Effects of Hyperthyroidism on Cardiac Papillary Muscle in Rats.

    PubMed

    Vieira, Fabricio Furtado; Olivoto, Robson Ruiz; Silva, Priscyla Oliveira da; Francisco, Julio Cesar; Fogaça, Rosalvo Tadeu Hochmuller

    2016-12-01

    Hyperthyroidism is currently recognized to affect the cardiovascular system, leading to a series of molecular and functional changes. However, little is known about the functional influence of hyperthyroidism in the regulation of cytoplasmic calcium and on the sodium/calcium exchanger (NCX) in the cardiac muscle. To evaluate the functional changes in papillary muscles isolated from animals with induced hyperthyroidism. We divided 36 Wistar rats into a group of controls and another of animals with hyperthyroidism induced by intraperitoneal T3 injection. We measured in the animals' papillary muscles the maximum contraction force, speed of contraction (+df/dt) and relaxation (-df/dt), contraction and relaxation time, contraction force at different concentrations of extracellular sodium, post-rest potentiation (PRP), and contraction force induced by caffeine. In hyperthyroid animals, we observed decreased PRP at all rest times (p < 0.05), increased +df/dt and -df/dt (p < 0.001), low positive inotropic response to decreased concentration of extracellular sodium (p < 0.001), reduction of the maximum force in caffeine-induced contraction (p < 0.003), and decreased total contraction time (p < 0.001). The maximal contraction force did not differ significantly between groups (p = 0.973). We hypothesize that the changes observed are likely due to a decrease in calcium content in the sarcoplasmic reticulum, caused by calcium leakage, decreased expression of NCX, and increased expression of a-MHC and SERCA2.

  10. Electromechanical Conditioning of Adult Progenitor Cells Improves Recovery of Cardiac Function After Myocardial Infarction

    PubMed Central

    Llucià‐Valldeperas, Aida; Soler‐Botija, Carolina; Gálvez‐Montón, Carolina; Roura, Santiago; Prat‐Vidal, Cristina; Perea‐Gil, Isaac; Sanchez, Benjamin; Bragos, Ramon; Vunjak‐Novakovic, Gordana

    2016-01-01

    Abstract Cardiac cells are subjected to mechanical and electrical forces, which regulate gene expression and cellular function. Therefore, in vitro electromechanical stimuli could benefit further integration of therapeutic cells into the myocardium. Our goals were (a) to study the viability of a tissue‐engineered construct with cardiac adipose tissue‐derived progenitor cells (cardiac ATDPCs) and (b) to examine the effect of electromechanically stimulated cardiac ATDPCs within a myocardial infarction (MI) model in mice for the first time. Cardiac ATDPCs were electromechanically stimulated at 2‐millisecond pulses of 50 mV/cm at 1 Hz and 10% stretching during 7 days. The cells were harvested, labeled, embedded in a fibrin hydrogel, and implanted over the infarcted area of the murine heart. A total of 39 animals were randomly distributed and sacrificed at 21 days: groups of grafts without cells and with stimulated or nonstimulated cells. Echocardiography and gene and protein analyses were also carried out. Physiologically stimulated ATDPCs showed increased expression of cardiac transcription factors, structural genes, and calcium handling genes. At 21 days after implantation, cardiac function (measured as left ventricle ejection fraction between presacrifice and post‐MI) increased up to 12% in stimulated grafts relative to nontreated animals. Vascularization and integration with the host blood supply of grafts with stimulated cells resulted in increased vessel density in the infarct border region. Trained cells within the implanted fibrin patch expressed main cardiac markers and migrated into the underlying ischemic myocardium. To conclude, synchronous electromechanical cell conditioning before delivery may be a preferred alternative when considering strategies for heart repair after myocardial infarction. Stem Cells Translational Medicine 2017;6:970–981 PMID:28297585

  11. Echocardiographic Assessment of Cardiac Function by Conventional and Speckle-Tracking Echocardiography in Dogs with Patent Ductus Arteriosus.

    PubMed

    Spalla, I; Locatelli, C; Zanaboni, A M; Brambilla, P; Bussadori, C

    2016-05-01

    Patent ductus arteriosus (PDA) is one of the most common congenital heart defects in dogs. Advanced echocardiographic techniques such as speckle-tracking echocardiography (STE) have not been extensively used to evaluate cardiac function in affected dogs. Advanced echocardiographic techniques are more sensitive than standard echocardiographic techniques in analyzing systolic function in dogs with PDA. Forty-four client-owned dogs: 34 dogs with PDA (preoperative evaluation) and 10 healthy sex- and weight-matched controls. Prospective study. Dogs were recruited over a 2-year period. Complete echocardiographic evaluation was performed, including conventional (end-diastolic volumes indexed to body surface area in B and M-mode [EDVIB /M ], end-systolic volumes indexed to body surface area in B and M-mode [ESVIB /M ], allometric scaling in diastole and systole [AlloD/S], pulmonary flow to systemic flow [Qp/Qs], ejection fraction [EF] and fractional shortening [FS]) and speckle-tracking echocardiography ([STE]: global longitudinal, radial and circumferential strain [S] and strain rate [SR]). Dogs with PDA had significantly different EDVIB /M , ESVIB /M , AlloD/S, Qp/Qs and all STE-derived parameters (global longitudinal S and SR, global circumferential S and SR, global radial S and SR)compared to healthy dogs. No correlation was found between standard techniques (EDVIB /M , ESVIB /M , AlloD/S, Qp/Qs) and STE-derived parameters (global longitudinal, circumferential and radial S and SR). Conventional parameters routinely used to assess systolic function (EF and FS) were not different between the groups; STE-derived parameters identified subtle changes in cardiac systolic function and contractility between the 2 groups of dogs. Based on these findings, STE may be a more appropriate tool to assess cardiac contractility in dogs with PDA. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College

  12. Intravital imaging of cardiac function at the single-cell level.

    PubMed

    Aguirre, Aaron D; Vinegoni, Claudio; Sebas, Matt; Weissleder, Ralph

    2014-08-05

    Knowledge of cardiomyocyte biology is limited by the lack of methods to interrogate single-cell physiology in vivo. Here we show that contracting myocytes can indeed be imaged with optical microscopy at high temporal and spatial resolution in the beating murine heart, allowing visualization of individual sarcomeres and measurement of the single cardiomyocyte contractile cycle. Collectively, this has been enabled by efficient tissue stabilization, a prospective real-time cardiac gating approach, an image processing algorithm for motion-artifact-free imaging throughout the cardiac cycle, and a fluorescent membrane staining protocol. Quantification of cardiomyocyte contractile function in vivo opens many possibilities for investigating myocardial disease and therapeutic intervention at the cellular level.

  13. Restoring the impaired cardiac calcium homeostasis and cardiac function in iron overload rats by the combined deferiprone and N-acetyl cysteine

    PubMed Central

    Wongjaikam, Suwakon; Kumfu, Sirinart; Khamseekaew, Juthamas; Chattipakorn, Siriporn C.; Chattipakorn, Nipon

    2017-01-01

    Intracellular calcium [Ca2+]i dysregulation plays an important role in the pathophysiology of iron overload cardiomyopathy. Although either iron chelators or antioxidants provide cardioprotection, a comparison of the efficacy of deferoxamine (DFO), deferiprone (DFP), deferasirox (DFX), N-acetyl cysteine (NAC) or a combination of DFP plus NAC on cardiac [Ca2+]i homeostasis in chronic iron overload has never been investigated. Male Wistar rats were fed with either a normal diet or a high iron (HFe) diet for 4 months. At 2 months, HFe rats were divided into 6 groups and treated with either a vehicle, DFO (25 mg/kg/day), DFP (75 mg/kg/day), DFX (20 mg/kg/day), NAC (100 mg/kg/day), or combined DFP plus NAC. At 4 months, the number of cardiac T-type calcium channels was increased, whereas cardiac sarcoplasmic-endoplasmic reticulum Ca2+ ATPase (SERCA) was decreased, leading to cardiac iron overload and impaired cardiac [Ca2+]i homeostasis. All pharmacological interventions restored SERCA levels. Although DFO, DFP, DFX or NAC alone shared similar efficacy in improving cardiac [Ca2+]i homeostasis, only DFP + NAC restored cardiac [Ca2+]i homeostasis, leading to restoring left ventricular function in the HFe-fed rats. Thus, the combined DFP + NAC was more effective than any monotherapy in restoring cardiac [Ca2+]i homeostasis, leading to restored myocardial contractility in iron-overloaded rats. PMID:28287621

  14. Protecting Mitochondrial Bioenergetic Function during Resuscitation from Cardiac Arrest

    PubMed Central

    Gazmuri, Raúl J.; Radhakrishnan, Jeejabai

    2012-01-01

    Synopsis Successful resuscitation from cardiac arrest requires reestablishment of aerobic metabolism by reperfusion with oxygenated blood of tissues that have been deprived of oxygen for variables periods of time. However, reperfusion concomitantly activates pathogenic mechanisms known as “reperfusion injury.” At the core of reperfusion injury are mitochondria, playing a critical role as effectors and targets of such injury. Mitochondrial injury compromises oxidative phosphorylation and also prompts release of cytochrome c to the cytosol and bloodstream where it correlates with severity of injury. Main drivers of such injury include Ca2+ overload and oxidative stress. Preclinical work shows that limiting myocardial cytosolic Na+ overload at the time of reperfusion attenuates mitochondrial Ca2+ overload and maintains oxidative phosphorylation yielding functional myocardial benefits that include preservation of left ventricular distensibility. Preservation of left ventricular distensibility enables hemodynamically more effective chest compression. Similar myocardial effect have been reported using erythropoietin hypothesized to protect mitochondrial bioenergetic function presumably through activation of pathways similar to those activated during preconditioning. Incorporation of novel and clinical relevant strategies to protect mitochondrial bioenergetic function are expected to attenuate injury at the time of reperfusion and enhance organ viability ultimately improving resuscitation and survival from cardiac arrest. PMID:22433486

  15. Genetic engineering of somatic cells to study and improve cardiac function.

    PubMed

    Kirkton, Robert D; Bursac, Nenad

    2012-11-01

    To demonstrate the utility of genetically engineered excitable cells for studies of basic electrophysiology and cardiac cell therapy. 'Zig-zag' networks of neonatal rat ventricular myocytes (NRVMs) were micropatterned onto thin elastomeric films to mimic the slow action potential (AP) conduction found in fibrotic myocardium. Addition of genetically engineered excitable human embryonic kidney cells (HEK-293 cells) ('Ex-293' cells stably expressing Kir2.1, Na(v)1.5, and Cx43 channels) increased both cardiac conduction velocity by 370% and twitch force amplitude by 64%. Furthermore, we stably expressed mutant Na(v)1.5 [A1924T (fast sodium channel mutant (substitution of alanine by threonine at amino acid 1924)] channels with hyperpolarized steady-state activation and showed that, despite a 71.6% reduction in peak I(Na), these cells propagated APs at the same velocity as the wild-type Na(v)1.5-expressing Ex-293 cells. Stable expression of Ca(v)3.3 (T-type voltage-gated calcium) channels in Ex-293 cells (to generate an 'ExCa-293' line) significantly increased their AP duration and reduced repolarization gradients in cocultures of these cells and NRVMs. Additional expression of an optogenetic construct [ChIEF (light-gated Channelrhodopsin mutant)]enabled light-based control of AP firing in ExCa-293 cells. We show that, despite being non-contractile, genetically engineered excitable cells can significantly improve both electrical and mechanical function of engineered cardiac tissues in vitro. We further demonstrate the utility of engineered cells for tissue-level studies of basic electrophysiology and cardiac channelopathies. In the future, this novel platform could be utilized in the high-throughput design of new genetically encoded indicators of cell electrical function, validation, and improvement of computer models of AP conduction, and development of novel engineered somatic cell therapies for the treatment of cardiac infarction and arrhythmias.

  16. Characterization and functionality of cardiac progenitor cells in congenital heart patients.

    PubMed

    Mishra, Rachana; Vijayan, Kalpana; Colletti, Evan J; Harrington, Daniel A; Matthiesen, Thomas S; Simpson, David; Goh, Saik Kia; Walker, Brandon L; Almeida-Porada, Graça; Wang, Deli; Backer, Carl L; Dudley, Samuel C; Wold, Loren E; Kaushal, Sunjay

    2011-02-01

    Human cardiac progenitor cells (hCPCs) may promote myocardial regeneration in adult ischemic myocardium. The regenerative capacity of hCPCs in young patients with nonischemic congenital heart defects for potential use in congenital heart defect repair warrants exploration. Human right atrial specimens were obtained during routine congenital cardiac surgery across 3 groups: neonates (age, <30 days), infants (age, 1 month to 2 years), and children (age, >2 to ≤13 years). C-kit(+) hCPCs were 3-fold higher in neonates than in children >2 years of age. hCPC proliferation was greatest during the neonatal period as evidenced by c-kit(+) Ki67(+) expression but decreased with age. hCPC differentiation capacity was also greatest in neonatal right atrium as evidenced by c-kit(+), NKX2-5(+), NOTCH1(+), and NUMB(+) expression. Despite the age-dependent decline in resident hCPCs, we isolated and expanded right atrium-derived CPCs from all patients (n=103) across all ages and diagnoses using the cardiosphere method. Intact cardiospheres contained a mix of heart-derived cell subpopulations that included cardiac progenitor cells expressing c-kit(+), Islet-1, and supporting cells. The number of c-kit(+)-expressing cells was highest in human cardiosphere-derived cells (hCDCs) grown from neonatal and infant right atrium. Furthermore, hCDCs could differentiate into diverse cardiovascular lineages by in vitro differentiation assays. Transplanted hCDCs promoted greater myocardial regeneration and functional improvement in infarcted myocardium than transplanted cardiac fibroblasts. Resident hCPCs are most abundant in the neonatal period and rapidly decrease over time. hCDCs can be reproducibly isolated and expanded from young human myocardial samples regardless of age or diagnosis. hCPCs are functional and have potential in congenital cardiac repair.

  17. Nitrite therapy after cardiac arrest reduces ROS generation, improves cardiac and neurological function and enhances survival via reversible inhibition of mitochondrial complex I

    PubMed Central

    Dezfulian, Cameron; Shiva, Sruti; Alekseyenko, Aleksey; Pendyal, Akshay; Beiser, DG; Munasinghe, Jeeva P.; Anderson, Stasia A.; Chesley, Christopher F.; Hoek, TL Vanden; Gladwin, Mark T.

    2009-01-01

    Background Three-fourths of cardiac arrest survivors die prior to hospital discharge or suffer significant neurological injury. Excepting therapeutic hypothermia and revascularization, no novel therapies have been developed that improve survival or cardiac and neurological function after resuscitation. Nitrite (NO2−) increases cellular resilience to focal ischemia-reperfusion injury in multiple organs. We hypothesized that nitrite therapy may improve outcomes after the unique global ischemia-reperfusion insult of cardiopulmonary arrest. Methods and Results We developed a mouse model of cardiac arrest characterized by 12-minutes of normothermic asystole and a high cardiopulmonary resuscitation (CPR) rate. In this model, global ischemia and CPR was associated with blood and organ nitrite depletion, reversible myocardial dysfunction, impaired alveolar gas exchange, neurological injury and an approximate 50% mortality. A single low dose of intravenous nitrite (50 nmol=1.85 μmol/kg=0.13 mg/kg) compared to blinded saline placebo given at CPR initiation with epinephrine improved cardiac function, survival and neurological outcomes. From a mechanistic standpoint, nitrite treatment restored intracardiac nitrite and increased S-nitrosothiol levels, decreased pathological cardiac mitochondrial oxygen consumption due to reactive oxygen species formation and prevented oxidative enzymatic injury via reversible specific inhibition of respiratory chain complex I. Conclusion Nitrite therapy after resuscitation from 12-minutes of asystole rapidly and reversibly modulated mitochondrial reactive oxygen species generation during early reperfusion, limiting acute cardiac dysfunction and death, as well as neurological impairment in survivors. PMID:19704094

  18. Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function

    PubMed Central

    Wild, Philipp S.; Felix, Janine F.; Schillert, Arne; Chen, Ming-Huei; Leening, Maarten J.G.; Völker, Uwe; Großmann, Vera; Brody, Jennifer A.; Irvin, Marguerite R.; Shah, Sanjiv J.; Pramana, Setia; Lieb, Wolfgang; Schmidt, Reinhold; Stanton, Alice V.; Malzahn, Dörthe; Lyytikäinen, Leo-Pekka; Tiller, Daniel; Smith, J. Gustav; Di Tullio, Marco R.; Musani, Solomon K.; Morrison, Alanna C.; Pers, Tune H.; Morley, Michael; Kleber, Marcus E.; Aragam, Jayashri; Bis, Joshua C.; Bisping, Egbert; Broeckel, Ulrich; Cheng, Susan; Deckers, Jaap W.; Del Greco M, Fabiola; Edelmann, Frank; Fornage, Myriam; Franke, Lude; Friedrich, Nele; Harris, Tamara B.; Hofer, Edith; Hofman, Albert; Huang, Jie; Hughes, Alun D.; Kähönen, Mika; investigators, KNHI; Kruppa, Jochen; Lackner, Karl J.; Lannfelt, Lars; Laskowski, Rafael; Launer, Lenore J.; Lindgren, Cecilia M.; Loley, Christina; Mayet, Jamil; Medenwald, Daniel; Morris, Andrew P.; Müller, Christian; Müller-Nurasyid, Martina; Nappo, Stefania; Nilsson, Peter M.; Nuding, Sebastian; Nutile, Teresa; Peters, Annette; Pfeufer, Arne; Pietzner, Diana; Pramstaller, Peter P.; Raitakari, Olli T.; Rice, Kenneth M.; Rotter, Jerome I.; Ruohonen, Saku T.; Sacco, Ralph L.; Samdarshi, Tandaw E.; Sharp, Andrew S.P.; Shields, Denis C.; Sorice, Rossella; Sotoodehnia, Nona; Stricker, Bruno H.; Surendran, Praveen; Töglhofer, Anna M.; Uitterlinden, André G.; Völzke, Henry; Ziegler, Andreas; Münzel, Thomas; März, Winfried; Cappola, Thomas P.; Hirschhorn, Joel N.; Mitchell, Gary F.; Smith, Nicholas L.; Fox, Ervin R.; Dueker, Nicole D.; Jaddoe, Vincent W.V.; Melander, Olle; Lehtimäki, Terho; Ciullo, Marina; Hicks, Andrew A.; Lind, Lars; Gudnason, Vilmundur; Pieske, Burkert; Barron, Anthony J.; Zweiker, Robert; Schunkert, Heribert; Ingelsson, Erik; Liu, Kiang; Arnett, Donna K.; Psaty, Bruce M.; Blankenberg, Stefan; Larson, Martin G.; Felix, Stephan B.; Franco, Oscar H.; Zeller, Tanja; Vasan, Ramachandran S.; Dörr, Marcus

    2017-01-01

    BACKGROUND. Understanding the genetic architecture of cardiac structure and function may help to prevent and treat heart disease. This investigation sought to identify common genetic variations associated with inter-individual variability in cardiac structure and function. METHODS. A GWAS meta-analysis of echocardiographic traits was performed, including 46,533 individuals from 30 studies (EchoGen consortium). The analysis included 16 traits of left ventricular (LV) structure, and systolic and diastolic function. RESULTS. The discovery analysis included 21 cohorts for structural and systolic function traits (n = 32,212) and 17 cohorts for diastolic function traits (n = 21,852). Replication was performed in 5 cohorts (n = 14,321) and 6 cohorts (n = 16,308), respectively. Besides 5 previously reported loci, the combined meta-analysis identified 10 additional genome-wide significant SNPs: rs12541595 near MTSS1 and rs10774625 in ATXN2 for LV end-diastolic internal dimension; rs806322 near KCNRG, rs4765663 in CACNA1C, rs6702619 near PALMD, rs7127129 in TMEM16A, rs11207426 near FGGY, rs17608766 in GOSR2, and rs17696696 in CFDP1 for aortic root diameter; and rs12440869 in IQCH for Doppler transmitral A-wave peak velocity. Findings were in part validated in other cohorts and in GWAS of related disease traits. The genetic loci showed associations with putative signaling pathways, and with gene expression in whole blood, monocytes, and myocardial tissue. CONCLUSION. The additional genetic loci identified in this large meta-analysis of cardiac structure and function provide insights into the underlying genetic architecture of cardiac structure and warrant follow-up in future functional studies. FUNDING. For detailed information per study, see Acknowledgments. PMID:28394258

  19. Cardiac structure and function in relation to cardiovascular risk factors in Chinese

    PubMed Central

    2012-01-01

    Background Cardiac structure and function are well-studied in Western countries. However, epidemiological data is still scarce in China. Methods Our study was conducted in the framework of cardiovascular health examinations for the current and retired employees of a factory and their family members. According to the American Society of Echocardiography recommendations, we performed echocardiography to evaluate cardiac structure and function, including left atrial volume, left ventricular hypertrophy and diastolic dysfunction. Results The 843 participants (43.0 years) included 288 (34.2%) women, and 191 (22.7%) hypertensive patients, of whom 82 (42.9%) took antihypertensive drugs. The prevalence of left atrial enlargement, left ventricular hypertrophy and concentric remodeling was 2.4%, 5.0% and 12.7%, respectively. The prevalence of mild and moderate-to-severe left ventricular diastolic dysfunction was 14.2% and 3.3%, respectively. The prevalence of these cardiac abnormalities significantly (P ≤ 0.002) increased with age, except for the moderate-to-severe left ventricular diastolic dysfunction. After adjustment for age, gender, body height and body weight, left atrial enlargement was associated with plasma glucose (P = 0.009), and left ventricular hypertrophy and diastolic dysfunction were significantly associated with systolic and diastolic blood pressure (P ≤ 0.03), respectively. Conclusions The prevalence of cardiac structural and functional abnormalities increased with age in this Chinese population. Current drinking and plasma glucose had an impact on left atrial enlargement, whereas systolic and diastolic blood pressures were major correlates for left ventricular hypertrophy and diastolic dysfunction, respectively. PMID:23035836

  20. Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function

    PubMed Central

    McDermott-Roe, Chris; Ye, Junmei; Ahmed, Rizwan; Sun, Xi-Ming; Serafín, Anna; Ware, James; Bottolo, Leonardo; Muckett, Phil; Cañas, Xavier; Zhang, Jisheng; Rowe, Glenn C.; Buchan, Rachel; Lu, Han; Braithwaite, Adam; Mancini, Massimiliano; Hauton, David; Martí, Ramon; García-Arumí, Elena; Hubner, Norbert; Jacob, Howard; Serikawa, Tadao; Zidek, Vaclav; Papousek, Frantisek; Kolar, Frantisek; Cardona, Maria; Ruiz-Meana, Marisol; García-Dorado, David; Comella, Joan X; Felkin, Leanne E; Barton, Paul JR; Arany, Zoltan; Pravenec, Michal; Petretto, Enrico; Sanchis, Daniel; Cook, Stuart A.

    2011-01-01

    Left ventricular mass (LVM) is a highly heritable trait1 and an independent risk factor for all-cause mortality2. To date, genome-wide association studies (GWASs) have not identified the genetic factors underlying LVM variation3 and the regulatory mechanisms for blood pressure (BP)-independent cardiac hypertrophy remain poorly understood4,5. Unbiased systems-genetics approaches in the rat6,7 now provide a powerful complementary tool to GWAS and we applied integrative genomics to dissect a highly replicated, BP-independent LVM locus on rat chromosome 3p. We identified endonuclease G (Endog), previously implicated in apoptosis8 but not hypertrophy, as the gene at the locus and demonstrated loss-of-function mutation in Endog associated with increased LVM and impaired cardiac function. Inhibition of Endog in cultured cardiomyocytes resulted in an increase in cell size and hypertrophic biomarkers in the absence of pro-hypertrophic stimulation. Genome-wide network analysis unexpectedly inferred ENDOG in fundamental mitochondrial processes unrelated to apoptosis. We showed direct regulation of ENDOG by ERRα and PGC1α, master regulators of mitochondrial and cardiac function9,10,11, interaction of ENDOG with the mitochondrial genome and ENDOG-mediated regulation of mitochondrial mass. At baseline, Endog deleted mouse heart had depleted mitochondria, mitochondrial dysfunction and elevated reactive oxygen species (ROS), which was associated with enlarged and steatotic cardiomyocytes. Our studies establish further the link between mitochondrial dysfunction, ROS and heart disease and demonstrate a new role for Endog in maladaptive cardiac hypertrophy. PMID:21979051

  1. Transjugular intrahepatic portosystemic shunt: impact on systemic hemodynamics and renal and cardiac function in patients with cirrhosis.

    PubMed

    Busk, Troels M; Bendtsen, Flemming; Poulsen, Jørgen H; Clemmesen, Jens O; Larsen, Fin S; Goetze, Jens P; Iversen, Jens S; Jensen, Magnus T; Møgelvang, Rasmus; Pedersen, Erling B; Bech, Jesper N; Møller, Søren

    2018-02-01

    Transjugular intrahepatic portosystemic shunt (TIPS) alleviates portal hypertension and possibly increases central blood volume (CBV). Moreover, renal function often improves; however, its effects on cardiac function are unclear. The aims of our study were to examine the effects of TIPS on hemodynamics and renal and cardiac function in patients with cirrhosis. In 25 cirrhotic patients, we analyzed systemic, cardiac, and splanchnic hemodynamics by catheterization of the liver veins and right heart chambers before and 1 wk after TIPS. Additionally, we measured renal and cardiac markers and performed advanced echocardiography before, 1 wk after, and 4 mo after TIPS. CBV increased significantly after TIPS (+4.6%, P < 0.05). Cardiac output (CO) increased (+15.3%, P < 0.005) due to an increase in stroke volume (SV) (+11.1%, P < 0.005), whereas heart rate (HR) was initially unchanged. Cardiopulmonary pressures increased after TIPS, whereas copeptin, a marker of vasopressin, decreased (-18%, P < 0.005) and proatrial natriuretic peptide increased (+52%, P < 0.0005) 1 wk after TIPS and returned to baseline 4 mo after TIPS. Plasma neutrophil gelatinase-associated lipocalin, renin, aldosterone, and serum creatinine decreased after TIPS (-36%, P < 0.005; -65%, P < 0.05; -90%, P < 0.005; and -13%, P < 0.005, respectively). Echocardiography revealed subtle changes in cardiac function after TIPS, although these were within the normal range. TIPS increases CBV by increasing CO and SV, whereas HR is initially unaltered. These results indicate an inability to increase the heart rate in response to a hemodynamic challenge that only partially increases CBV after TIPS. These changes, however, are sufficient for improving renal function. NEW & NOTEWORTHY For the first time, we have combined advanced techniques to study the integrated effects of transjugular intrahepatic portosystemic shunt (TIPS) in cirrhosis. We showed that TIPS increases central blood volume (CBV) through improved

  2. Modulating Beta-Cardiac Myosin Function at the Molecular and Tissue Levels

    PubMed Central

    Tang, Wanjian; Blair, Cheavar A.; Walton, Shane D.; Málnási-Csizmadia, András; Campbell, Kenneth S.; Yengo, Christopher M.

    2017-01-01

    Inherited cardiomyopathies are a common form of heart disease that are caused by mutations in sarcomeric proteins with beta cardiac myosin (MYH7) being one of the most frequently affected genes. Since the discovery of the first cardiomyopathy associated mutation in beta-cardiac myosin, a major goal has been to correlate the in vitro myosin motor properties with the contractile performance of cardiac muscle. There has been substantial progress in developing assays to measure the force and velocity properties of purified cardiac muscle myosin but it is still challenging to correlate results from molecular and tissue-level experiments. Mutations that cause hypertrophic cardiomyopathy are more common than mutations that lead to dilated cardiomyopathy and are also often associated with increased isometric force and hyper-contractility. Therefore, the development of drugs designed to decrease isometric force by reducing the duty ratio (the proportion of time myosin spends bound to actin during its ATPase cycle) has been proposed for the treatment of hypertrophic cardiomyopathy. Para-Nitroblebbistatin is a small molecule drug proposed to decrease the duty ratio of class II myosins. We examined the impact of this drug on human beta cardiac myosin using purified myosin motor assays and studies of permeabilized muscle fiber mechanics. We find that with purified human beta-cardiac myosin para-Nitroblebbistatin slows actin-activated ATPase and in vitro motility without altering the ADP release rate constant. In permeabilized human myocardium, para-Nitroblebbistatin reduces isometric force, power, and calcium sensitivity while not changing shortening velocity or the rate of force development (ktr). Therefore, designing a drug that reduces the myosin duty ratio by inhibiting strong attachment to actin while not changing detachment can cause a reduction in force without changing shortening velocity or relaxation. PMID:28119616

  3. Assessment of hemodynamic load components affecting optimization of cardiac resynchronization therapy by lumped parameter mode.

    PubMed

    Xu, Ke; Butlin, Mark; Avolio, Alberto P

    2012-01-01

    Timing of biventricular pacing devices employed in cardiac resynchronization therapy (CRT) is a critical determinant of efficacy of the procedure. Optimization is done by maximizing function in terms of arterial pressure (BP) or cardiac output (CO). However, BP and CO are also determined by the hemodynamic load of the pulmonary and systemic vasculature. This study aims to use a lumped parameter circulatory model to assess the influence of the arterial load on the atrio-ventricular (AV) and inter-ventricular (VV) delay for optimal CRT performance.

  4. Current perspectives on cardiac amyloidosis

    PubMed Central

    Guan, Jian; Mishra, Shikha; Falk, Rodney H.

    2012-01-01

    Amyloidosis represents a group of diseases in which proteins undergo misfolding to form insoluble fibrils with subsequent tissue deposition. While almost all deposited amyloid fibers share a common nonbranched morphology, the affected end organs, clinical presentation, treatment strategies, and prognosis vary greatly among this group of diseases and are largely dependent on the specific amyloid precursor protein. To date, at least 27 precursor proteins have been identified to result in either local tissue or systemic amyloidosis, with nine of them manifesting in cardiac deposition and resulting in a syndrome termed “cardiac amyloidosis” or “amyloid cardiomyopathy.” Although cardiac amyloidosis has been traditionally considered to be a rare disorder, as clinical appreciation and understanding continues to grow, so too has the prevalence, suggesting that this disease may be greatly underdiagnosed. The most common form of cardiac amyloidosis is associated with circulating amyloidogenic monoclonal immunoglobulin light chain proteins. Other major cardiac amyloidoses result from a misfolding of products of mutated or wild-type transthyretin protein. While the various cardiac amyloidoses share a common functional consequence, namely, an infiltrative cardiomyopathy with restrictive pathophysiology leading to progressive heart failure, the underlying pathophysiology and clinical syndrome varies with each precursor protein. Herein, we aim to provide an up-to-date overview of cardiac amyloidosis from nomenclature to molecular mechanisms and treatment options, with a particular focus on amyloidogenic immunoglobulin light chain protein cardiac amyloidosis. PMID:22058156

  5. Genome-Wide Screens for In Vivo Tinman Binding Sites Identify Cardiac Enhancers with Diverse Functional Architectures

    PubMed Central

    Jin, Hong; Stojnic, Robert; Adryan, Boris; Ozdemir, Anil; Stathopoulos, Angelike; Frasch, Manfred

    2013-01-01

    The NK homeodomain factor Tinman is a crucial regulator of early mesoderm patterning and, together with the GATA factor Pannier and the Dorsocross T-box factors, serves as one of the key cardiogenic factors during specification and differentiation of heart cells. Although the basic framework of regulatory interactions driving heart development has been worked out, only about a dozen genes involved in heart development have been designated as direct Tinman target genes to date, and detailed information about the functional architectures of their cardiac enhancers is lacking. We have used immunoprecipitation of chromatin (ChIP) from embryos at two different stages of early cardiogenesis to obtain a global overview of the sequences bound by Tinman in vivo and their linked genes. Our data from the analysis of ∼50 sequences with high Tinman occupancy show that the majority of such sequences act as enhancers in various mesodermal tissues in which Tinman is active. All of the dorsal mesodermal and cardiac enhancers, but not some of the others, require tinman function. The cardiac enhancers feature diverse arrangements of binding motifs for Tinman, Pannier, and Dorsocross. By employing these cardiac and non-cardiac enhancers in machine learning approaches, we identify a novel motif, termed CEE, as a classifier for cardiac enhancers. In vivo assays for the requirement of the binding motifs of Tinman, Pannier, and Dorsocross, as well as the CEE motifs in a set of cardiac enhancers, show that the Tinman sites are essential in all but one of the tested enhancers; although on occasion they can be functionally redundant with Dorsocross sites. The enhancers differ widely with respect to their requirement for Pannier, Dorsocross, and CEE sites, which we ascribe to their different position in the regulatory circuitry, their distinct temporal and spatial activities during cardiogenesis, and functional redundancies among different factor binding sites. PMID:23326246

  6. Exercise and type 2 diabetes mellitus: changes in tissue-specific fat distribution and cardiac function.

    PubMed

    Jonker, Jacqueline T; de Mol, Pieter; de Vries, Suzanna T; Widya, Ralph L; Hammer, Sebastiaan; van Schinkel, Linda D; van der Meer, Rutger W; Gans, Rijk O B; Webb, Andrew G; Kan, Hermien E; de Koning, Eelco J P; Bilo, Henk J G; Lamb, Hildo J

    2013-11-01

    To prospectively assess the effects of an exercise intervention on organ-specific fat accumulation and cardiac function in type 2 diabetes mellitus. Written informed consent was obtained from all participants, and the study protocol was approved by the medical ethics committee. The study followed 12 patients with type 2 diabetes mellitus (seven men; mean age, 46 years ± 2 [standard error]) before and after 6 months of moderate-intensity exercise, followed by a high-altitude trekking expedition with exercise of long duration. Abdominal, epicardial, and paracardial fat volume were measured by using magnetic resonance (MR) imaging. Cardiac function was quantified with cardiac MR, and images were analyzed by a researcher who was supervised by a senior researcher (4 and 21 years of respective experience in cardiac MR). Hepatic, myocardial, and intramyocellular triglyceride (TG) content relative to water were measured with proton MR spectroscopy at 1.5 and 7 T. Two-tailed paired t tests were used for statistical analysis. Exercise reduced visceral abdominal fat volume from 348 mL ± 57 to 219 mL ± 33 (P < .01), and subcutaneous abdominal fat volume remained unchanged (P = .9). Exercise decreased hepatic TG content from 6.8% ± 2.3 to 4.6% ± 1.6 (P < .01) and paracardial fat volume from 4.6 mL ± 0.9 to 3.7 mL ± 0.8 (P = .02). Exercise did not change epicardial fat volume (P = .9), myocardial TG content (P = .9), intramyocellular lipid content (P = .3), or cardiac function (P = .5). A 6-month exercise intervention in type 2 diabetes mellitus decreased hepatic TG content and visceral abdominal and paracardial fat volume, which are associated with increased cardiovascular risk, but cardiac function was unaffected. Tissue-specific exercise-induced changes in body fat distribution in type 2 diabetes mellitus were demonstrated in this study. RSNA, 2013

  7. Calcitriol attenuates cardiac remodeling and dysfunction in a murine model of polycystic ovary syndrome.

    PubMed

    Gao, Ling; Cao, Jia-Tian; Liang, Yan; Zhao, Yi-Chao; Lin, Xian-Hua; Li, Xiao-Cui; Tan, Ya-Jing; Li, Jing-Yi; Zhou, Cheng-Liang; Xu, Hai-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-05-01

    Polycystic ovary syndrome (PCOS) is a complex reproductive and metabolic disorder affecting 10 % of reproductive-aged women, and is well associated with an increased prevalence of cardiovascular risk factors. However, there are few data concerning the direct association of PCOS with cardiac pathologies. The present study aims to investigate the changes in cardiac structure, function, and cardiomyocyte survival in a PCOS model, and explore the possible effect of calcitriol administration on these changes. PCOS was induced in C57BL/6J female mice by chronic dihydrotestosterone administration, as evidenced by irregular estrous cycles, obesity and dyslipidemia. PCOS mice progressively developed cardiac abnormalities including cardiac hypertrophy, interstitial fibrosis, myocardial apoptosis, and cardiac dysfunction. Conversely, concomitant administration of calcitriol significantly attenuated cardiac remodeling and cardiomyocyte apoptosis, and improved cardiac function. Molecular analysis revealed that the beneficial effect of calcitriol was associated with normalized autophagy function by increasing phosphorylation levels of AMP-activated protein kinase and inhibiting phosphorylation levels of mammalian target of rapamycin complex. Our findings provide the first evidence for the presence of cardiac remodeling in a PCOS model, and vitamin D supplementation may be a potential therapeutic strategy for the prevention and treatment of PCOS-related cardiac remodeling.

  8. Small interfering RNA targeting focal adhesion kinase prevents cardiac dysfunction in endotoxemia.

    PubMed

    Guido, Maria C; Clemente, Carolina F; Moretti, Ana I; Barbeiro, Hermes V; Debbas, Victor; Caldini, Elia G; Franchini, Kleber G; Soriano, Francisco G

    2012-01-01

    Sepsis and septic shock are associated with cardiac depression. Cardiovascular instability is a major cause of death in patients with sepsis. Focal adhesion kinase (FAK) is a potential mediator of cardiomyocyte responses to oxidative and mechanical stress. Myocardial collagen deposition can affect cardiac compliance and contractility. The aim of the present study was to determine whether the silencing of FAK is protective against endotoxemia-induced alterations of cardiac structure and function. In male Wistar rats, endotoxemia was induced by intraperitoneal injection of lipopolysaccharide (10 mg/kg). Cardiac morphometry and function were studied in vivo by left ventricular catheterization and histology. Intravenous injection of small interfering RNA targeting FAK was used to silence myocardial expression of the kinase. The hearts of lipopolysaccharide-injected rats showed collagen deposition, increased matrix metalloproteinase 2 activity, and myocyte hypertrophy, as well as reduced 24-h +dP/dt and -dP/dt, together with hypotension, increased left ventricular end-diastolic pressure, and elevated levels of FAK (phosphorylated and unphosphorylated). Focal adhesion kinase silencing reduced the expression and activation of the kinase in cardiac tissue, as well as protecting against the increased collagen deposition, greater matrix metalloproteinase 2 activity, and reduced cardiac contractility that occur during endotoxemia. In conclusion, FAK is activated in endotoxemia, playing a role in cardiac remodeling and in the impairment of cardiac function. This kinase represents a potential therapeutic target for the protection of cardiac function in patients with sepsis.

  9. Electromechanical Conditioning of Adult Progenitor Cells Improves Recovery of Cardiac Function After Myocardial Infarction.

    PubMed

    Llucià-Valldeperas, Aida; Soler-Botija, Carolina; Gálvez-Montón, Carolina; Roura, Santiago; Prat-Vidal, Cristina; Perea-Gil, Isaac; Sanchez, Benjamin; Bragos, Ramon; Vunjak-Novakovic, Gordana; Bayes-Genis, Antoni

    2017-03-01

    Cardiac cells are subjected to mechanical and electrical forces, which regulate gene expression and cellular function. Therefore, in vitro electromechanical stimuli could benefit further integration of therapeutic cells into the myocardium. Our goals were (a) to study the viability of a tissue-engineered construct with cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs) and (b) to examine the effect of electromechanically stimulated cardiac ATDPCs within a myocardial infarction (MI) model in mice for the first time. Cardiac ATDPCs were electromechanically stimulated at 2-millisecond pulses of 50 mV/cm at 1 Hz and 10% stretching during 7 days. The cells were harvested, labeled, embedded in a fibrin hydrogel, and implanted over the infarcted area of the murine heart. A total of 39 animals were randomly distributed and sacrificed at 21 days: groups of grafts without cells and with stimulated or nonstimulated cells. Echocardiography and gene and protein analyses were also carried out. Physiologically stimulated ATDPCs showed increased expression of cardiac transcription factors, structural genes, and calcium handling genes. At 21 days after implantation, cardiac function (measured as left ventricle ejection fraction between presacrifice and post-MI) increased up to 12% in stimulated grafts relative to nontreated animals. Vascularization and integration with the host blood supply of grafts with stimulated cells resulted in increased vessel density in the infarct border region. Trained cells within the implanted fibrin patch expressed main cardiac markers and migrated into the underlying ischemic myocardium. To conclude, synchronous electromechanical cell conditioning before delivery may be a preferred alternative when considering strategies for heart repair after myocardial infarction. Stem Cells Translational Medicine 2017;6:970-981. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  10. Expression and function of Kv7.4 channels in rat cardiac mitochondria: possible targets for cardioprotection.

    PubMed

    Testai, Lara; Barrese, Vincenzo; Soldovieri, Maria Virginia; Ambrosino, Paolo; Martelli, Alma; Vinciguerra, Iolanda; Miceli, Francesco; Greenwood, Iain Andrew; Curtis, Michael John; Breschi, Maria Cristina; Sisalli, Maria Josè; Scorziello, Antonella; Canduela, Miren Josune; Grandes, Pedro; Calderone, Vincenzo; Taglialatela, Maurizio

    2016-05-01

    Plasmalemmal Kv7.1 (KCNQ1) channels are critical players in cardiac excitability; however, little is known on the functional role of additional Kv7 family members (Kv7.2-5) in cardiac cells. In this work, the expression, function, cellular and subcellular localization, and potential cardioprotective role against anoxic-ischaemic cardiac injury of Kv7.4 channels have been investigated. Expression of Kv7.1 and Kv7.4 transcripts was found in rat heart tissue by quantitative polymerase chain reaction. Western blots detected Kv7.4 subunits in mitochondria from Kv7.4-transfected cells, H9c2 cardiomyoblasts, freshly isolated adult cardiomyocytes, and whole hearts. Immunofluorescence experiments revealed that Kv7.4 subunits co-localized with mitochondrial markers in cardiac cells, with ∼ 30-40% of cardiac mitochondria being labelled by Kv7.4 antibodies, a result also confirmed by immunogold electron microscopy experiments. In isolated cardiac (but not liver) mitochondria, retigabine (1-30 µM) and flupirtine (30 µM), two selective Kv7 activators, increased Tl(+) influx, depolarized the membrane potential, and inhibited calcium uptake; all these effects were antagonized by the Kv7 blocker XE991. In intact H9c2 cells, reducing Kv7.4 expression by RNA interference blunted retigabine-induced mitochondrial membrane depolarization; in these cells, retigabine decreased mitochondrial Ca(2+) levels and increased radical oxygen species production, both effects prevented by XE991. Finally, retigabine reduced cellular damage in H9c2 cells exposed to anoxia/re-oxygenation and largely prevented the functional and morphological changes triggered by global ischaemia/reperfusion (I/R) in Langendorff-perfused rat hearts. Kv7.4 channels are present and functional in cardiac mitochondria; their activation exerts a significant cardioprotective role, making them potential therapeutic targets against I/R-induced cardiac injury. Published on behalf of the European Society of Cardiology. All

  11. The effect of time to defibrillation and targeted temperature management on functional survival after out-of-hospital cardiac arrest.

    PubMed

    Drennan, Ian R; Lin, Steve; Thorpe, Kevin E; Morrison, Laurie J

    2014-11-01

    Cardiac arrest physiology has been proposed to occur in three distinct phases: electrical, circulatory and metabolic. There is limited research evaluating the relationship of the 3-phase model of cardiac arrest to functional survival at hospital discharge. Furthermore, the effect of post-cardiac arrest targeted temperature management (TTM) on functional survival during each phase is unknown. To determine the effect of TTM on the relationship between the time of initial defibrillation during each phase of cardiac arrest and functional survival at hospital discharge. This was a retrospective observational study of consecutive adult (≥18 years) out-of-hospital cardiac arrest (OHCA) patients with initial shockable rhythms. Included patients obtained a return of spontaneous circulation (ROSC) and were eligible for TTM. Multivariable logistic regression was used to determine predictors of functional survival at hospital discharge. There were 20,165 OHCA treated by EMS and 871 patients were eligible for TTM. Of these patients, 622 (71.4%) survived to hospital discharge and 487 (55.9%) had good functional survival. Good functional survival was associated with younger age (OR 0.94; 95% CI 0.93-0.95), shorter times from collapse to initial defibrillation (OR 0.73; 95% CI 0.65-0.82), and use of post-cardiac arrest TTM (OR 1.49; 95% CI 1.07-2.30). Functional survival decreased during each phase of the model (65.3% vs. 61.7% vs. 50.2%, P<0.001). Functional survival at hospital discharge was associated with shorter times to initial defibrillation and was decreased during each successive phase of the 3-phase model. Post-cardiac arrest TTM was associated with improved functional survival. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Electrophysiological Modeling of Cardiac Ventricular Function: From Cell to Organ

    PubMed Central

    Winslow, R. L.; Scollan, D. F.; Holmes, A.; Yung, C. K.; Zhang, J.; Jafri, M. S.

    2005-01-01

    Three topics of importance to modeling the integrative function of the heart are reviewed. The first is modeling of the ventricular myocyte. Emphasis is placed on excitation-contraction coupling and intracellular Ca2+ handling, and the interpretation of experimental data regarding interval-force relationships. Second, data on use of diffusion tensor magnetic resonance (DTMR) imaging for measuring the anatomical structure of the cardiac ventricles are presented. A method for the semi-automated reconstruction of the ventricles using a combination of gradient recalled acquisition in the steady state (GRASS) and DTMR images is described. Third, we describe how these anatomically and biophysically based models of the cardiac ventricles can be implemented on parallel computers. PMID:11701509

  13. Myocardial ischaemia and the cardiac nervous system.

    PubMed

    Armour, J A

    1999-01-01

    The intrinsic cardiac nervous system has been classically considered to contain only parasympathetic efferent postganglionic neurones which receive inputs from medullary parasympathetic efferent preganglionic neurones. In such a view, intrinsic cardiac ganglia act as simple relay stations of parasympathetic efferent neuronal input to the heart, the major autonomic control of the heart purported to reside solely in the brainstem and spinal cord. Data collected over the past two decades indicate that processing occurs within the mammalian intrinsic cardiac nervous system which involves afferent neurones, local circuit neurones (interconnecting neurones) as well as both sympathetic and parasympathetic efferent postganglionic neurones. As such, intrinsic cardiac ganglionic interactions represent the organ component of the hierarchy of intrathoracic nested feedback control loops which provide rapid and appropriate reflex coordination of efferent autonomic neuronal outflow to the heart. In such a concept, the intrinsic cardiac nervous system acts as a distributive processor, integrating parasympathetic and sympathetic efferent centrifugal information to the heart in addition to centripetal information arising from cardiac sensory neurites. A number of neurochemicals have been shown to influence the interneuronal interactions which occur within the intrathoracic cardiac nervous system. For instance, pharmacological interventions that modify beta-adrenergic or angiotensin II receptors affect cardiomyocyte function not only directly, but indirectly by influencing the capacity of intrathoracic neurones to regulate cardiomyocytes. Thus, current pharmacological management of heart disease may influence cardiomyocyte function directly as well as indirectly secondary to modifying the cardiac nervous system. This review presents a brief summary of developing concepts about the role of the cardiac nervous system in regulating the normal heart. In addition, it provides some

  14. Older Adults in Cardiac Rehabilitation: A New Strategy for Enhancing Physical Function.

    ERIC Educational Resources Information Center

    Rejeski, W. Jack; Foy, Capri Gabrielle; Brawley, Lawrence R.; Brubaker, Peter H.; Focht, Brian C.; Norris, James L., III; Smith, Marci L.

    2002-01-01

    Contrasted the effect of a group-mediated cognitive- behavioral intervention (GMCB) versus traditional cardiac rehabilitation (CRP) upon changes in objective and self-reported physical function of older adults after 3 months of exercise therapy. Both groups improved significantly. Adults with lower function at the outset of the intervention…

  15. Update on the slow delayed rectifier potassium current (I(Ks)): role in modulating cardiac function.

    PubMed

    Liu, Zhenzhen; Du, Lupei; Li, Minyong

    2012-01-01

    The slow delayed rectifier current (I(Ks)) is the slow component of cardiac delayed rectifier current and is critical for the late phase repolarization of cardiac action potential. This current is also an important target for Sympathetic Nervous System (SNS) to regulate the cardiac electivity to accommodate to heart rate alterations in response to exercise or emotional stress and can be up-regulated by β- adrenergic or other signal molecules. I(Ks) channel is originated by the co-assembly of pore-forming KCNQ1 α-subunit and accessory KCNE1 β-subunit. Mutations in any subunit can bring about severe long QT syndrome (LQT-1, LQT-5) as characterized by deliquium, seizures and sudden death. This review summarizes the normal physiological functions and molecular basis of I(Ks) channels, as well as illustrates up-to-date development on its blockers and activators. Therefore, the current extensive survey should generate fundamental understanding of the role of I(Ks) channel in modulating cardiac function and donate some instructions to the progression of I(Ks) blockers and activators as potential antiarrhythmic agents or pharmacological tools to determine the physiological and pathological function of I(Ks).

  16. The effects of obesity and type 2 diabetes mellitus on cardiac structure and function in adolescents and young adults.

    PubMed

    Shah, A S; Khoury, P R; Dolan, L M; Ippisch, H M; Urbina, E M; Daniels, S R; Kimball, T R

    2011-04-01

    We sought to evaluate the effects of obesity and obesity-related type 2 diabetes mellitus on cardiac geometry (remodelling) and systolic and diastolic function in adolescents and young adults. Cardiac structure and function were compared by echocardiography in participants who were lean, obese or obese with type 2 diabetes (obese diabetic), in a cross sectional study. Group differences were assessed using ANOVA. Independent determinants of cardiac outcome measures were evaluated with general linear models. Adolescents with obesity and obesity-related type 2 diabetes were found to have abnormal cardiac geometry compared with lean controls (16% and 20% vs <1%, p < 0.05). These two groups also had increased systolic function. Diastolic function decreased from the lean to obese to obese diabetic groups with the lowest diastolic function observed in the obese diabetic group (p < 0.05). Regression analysis showed that group, BMI z score (BMIz), group × BMIz interaction and systolic BP z score (BPz) were significant determinants of cardiac structure, while group, BMIz, systolic BPz, age and fasting glucose were significant determinants of the diastolic function (all p < 0.05). Adolescents with obesity and obesity-related type 2 diabetes demonstrate changes in cardiac geometry consistent with cardiac remodelling. These two groups also demonstrate decreased diastolic function compared with lean controls, with the greatest decrease observed in those with type 2 diabetes. Adults with diastolic dysfunction are known to be at increased risk of progressing to heart failure. Therefore, our findings suggest that adolescents with obesity-related type 2 diabetes may be at increased risk of progressing to early heart failure compared with their obese and lean counterparts.

  17. Chronic Cardiac-Targeted RNA Interference for the Treatment of Heart Failure Restores Cardiac Function and Reduces Pathological Hypertrophy

    PubMed Central

    Suckau, Lennart; Fechner, Henry; Chemaly, Elie; Krohn, Stefanie; Hadri, Lahouaria; Kockskämper, Jens; Westermann, Dirk; Bisping, Egbert; Ly, Hung; Wang, Xiaomin; Kawase, Yoshiaki; Chen, Jiqiu; Liang, Lifan; Sipo, Isaac; Vetter, Roland; Weger, Stefan; Kurreck, Jens; Erdmann, Volker; Tschope, Carsten; Pieske, Burkert; Lebeche, Djamel; Schultheiss, Heinz-Peter; Hajjar, Roger J.; Poller, Wolfgang Ch.

    2009-01-01

    Background RNA interference (RNAi) has the potential to be a novel therapeutic strategy in diverse areas of medicine. We report on targeted RNAi for the treatment of heart failure (HF), an important disorder in humans resulting from multiple etiologies. Successful treatment of HF is demonstrated in a rat model of transaortic banding by RNAi targeting of phospholamban (PLB), a key regulator of cardiac Ca2+ homeostasis. Whereas gene therapy rests on recombinant protein expression as its basic principle, RNAi therapy employs regulatory RNAs to achieve its effect. Methods and Results We describe structural requirements to obtain high RNAi activity from adenoviral (AdV) and adeno-associated virus (AAV9) vectors and show that an AdV short hairpin RNA vector (AdV-shRNA) silenced PLB in cardiomyocytes (NRCMs) and improved hemodynamics in HF rats 1 month after aortic root injection. For simplified long-term therapy we developed a dimeric cardiotropic AAV vector (rAAV9-shPLB) delivering RNAi activity to the heart via intravenous injection. Cardiac PLB protein was reduced to 25% and SERCA2a suppression in the HF groups was rescued. In contrast to traditional vectors rAAV9 shows high affinity for myocardium, but low affinity for liver and other organs. rAAV9-shPLB therapy restored diastolic (LVEDP, dp/dtmin, Tau) and systolic (fractional shortening) functional parameters to normal range. The massive cardiac dilation was normalized and the cardiac hypertrophy, cardiomyocyte diameter and cardiac fibrosis significantly reduced. Importantly, there was no evidence of microRNA deregulation or hepatotoxicity during these RNAi therapies. Conclusion Our data show, for the first time, high efficacy of an RNAi therapeutic strategy in a cardiac disease. PMID:19237664

  18. Dual function of the UNC-45b chaperone with myosin and GATA4 in cardiac development

    PubMed Central

    Chen, Daisi; Li, Shumin; Singh, Ram; Spinette, Sarah; Sedlmeier, Reinhard; Epstein, Henry F.

    2012-01-01

    Summary Cardiac development requires interplay between the regulation of gene expression and the assembly of functional sarcomeric proteins. We report that UNC-45b recessive loss-of-function mutations in C3H and C57BL/6 inbred mouse strains cause arrest of cardiac morphogenesis at the formation of right heart structures and failure of contractile function. Wild-type C3H and C57BL/6 embryos at the same stage, E9.5, form actively contracting right and left atria and ventricles. The known interactions of UNC-45b as a molecular chaperone are consistent with diminished accumulation of the sarcomeric myosins, but not their mRNAs, and the resulting decreased contraction of homozygous mutant embryonic hearts. The novel finding that GATA4 accumulation is similarly decreased at the protein but not mRNA levels is also consistent with the function of UNC-45b as a chaperone. The mRNAs of known downstream targets of GATA4 during secondary cardiac field development, the cardiogenic factors Hand1, Hand2 and Nkx-2.5, are also decreased, consistent with the reduced GATA4 protein accumulation. Direct binding studies show that the UNC-45b chaperone forms physical complexes with both the alpha and beta cardiac myosins and the cardiogenic transcription factor GATA4. Co-expression of UNC-45b with GATA4 led to enhanced transcription from GATA promoters in naïve cells. These novel results suggest that the heart-specific UNC-45b isoform functions as a molecular chaperone mediating contractile function of the sarcomere and gene expression in cardiac development. PMID:22553207

  19. Self-reported physical activity and lung function two months after cardiac surgery--a prospective cohort study.

    PubMed

    Jonsson, Marcus; Urell, Charlotte; Emtner, Margareta; Westerdahl, Elisabeth

    2014-03-28

    Physical activity has well-established positive health-related effects. Sedentary behaviour has been associated with postoperative complications and mortality after cardiac surgery. Patients undergoing cardiac surgery often suffer from impaired lung function postoperatively. The association between physical activity and lung function in cardiac surgery patients has not previously been reported. Patients undergoing cardiac surgery were followed up two months postoperatively. Physical activity was assessed on a four-category scale (sedentary, moderate activity, moderate regular exercise, and regular activity and exercise), modified from the Swedish National Institute of Public Health's national survey. Formal lung function testing was performed preoperatively and two months postoperatively. The sample included 283 patients (82% male). Two months after surgery, the level of physical activity had increased (p < 0.001) in the whole sample. Patients who remained active or increased their level of physical activity had significantly better recovery of lung function than patients who remained sedentary or had decreased their level of activity postoperatively in terms of vital capacity (94 ± 11% of preoperative value vs. 91 ± 9%; p = 0.03), inspiratory capacity (94 ± 14% vs. 88 ± 19%; p = 0.008), and total lung capacity (96 ± 11% vs. 90 ± 11%; p = 0.01). An increased level of physical activity, compared to preoperative level, was reported as early as two months after surgery. Our data shows that there could be a significant association between physical activity and recovery of lung function after cardiac surgery. The relationship between objectively measured physical activity and postoperative pulmonary recovery needs to be further examined to verify these results.

  20. Engineering the heart: Evaluation of conductive nanomaterials for improving implant integration and cardiac function

    PubMed Central

    Zhou, Jin; Chen, Jun; Sun, Hongyu; Qiu, Xiaozhong; Mou, Yongchao; Liu, Zhiqiang; Zhao, Yuwei; Li, Xia; Han, Yao; Duan, Cuimi; Tang, Rongyu; Wang, Chunlan; Zhong, Wen; Liu, Jie; Luo, Ying; (Mengqiu) Xing, Malcolm; Wang, Changyong

    2014-01-01

    Recently, carbon nanotubes together with other types of conductive materials have been used to enhance the viability and function of cardiomyocytes in vitro. Here we demonstrated a paradigm to construct ECTs for cardiac repair using conductive nanomaterials. Single walled carbon nanotubes (SWNTs) were incorporated into gelatin hydrogel scaffolds to construct three-dimensional ECTs. We found that SWNTs could provide cellular microenvironment in vitro favorable for cardiac contraction and the expression of electrochemical associated proteins. Upon implantation into the infarct hearts in rats, ECTs structurally integrated with the host myocardium, with different types of cells observed to mutually invade into implants and host tissues. The functional measurements showed that SWNTs were essential to improve the performance of ECTs in inhibiting pathological deterioration of myocardium. This work suggested that conductive nanomaterials hold therapeutic potential in engineering cardiac tissues to repair myocardial infarction. PMID:24429673

  1. Bystander capability to activate speaker function for continuous dispatcher assisted CPR in case of suspected cardiac arrest.

    PubMed

    Steensberg, Alvilda T; Eriksen, Mette M; Andersen, Lars B; Hendriksen, Ole M; Larsen, Heinrich D; Laier, Gunnar H; Thougaard, Thomas

    2017-06-01

    The European Resuscitation Council Guidelines 2015 recommend bystanders to activate their mobile phone speaker function, if possible, in case of suspected cardiac arrest. This is to facilitate continuous dialogue with the dispatcher including (if required) cardiopulmonary resuscitation instructions. The aim of this study was to measure the bystander capability to activate speaker function in case of suspected cardiac arrest. In 87days, a systematic prospective registration of bystander capability to activate the speaker function, when cardiac arrest was suspected, was performed. For those asked, "can you activate your mobile phone's speaker function", audio recordings were examined and categorized into groups according to the bystanders capability to activate speaker function on their own initiative, without instructions, or with instructions from the emergency medical dispatcher. Time delay was measured, in seconds, for the bystanders without pre-activated speaker function. 42.0% (58) was able to activate the speaker function without instructions, 2.9% (4) with instructions, 18.1% (25) on own initiative and 37.0% (51) were unable to activate the speaker function. The median time to activate speaker function was 19s and 8s, with and without instructions, respectively. Dispatcher assisted cardiopulmonary resuscitation with activated speaker function, in cases of suspected cardiac arrest, allows for continuous dialogue between the emergency medical dispatcher and the bystander. In this study, we found a 63.0% success rate of activating the speaker function in such situations. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Engineering a functional three-dimensional human cardiac tissue model for drug toxicity screening.

    PubMed

    Lu, Hong Fang; Leong, Meng Fatt; Lim, Tze Chiun; Chua, Ying Ping; Lim, Jia Kai; Du, Chan; Wan, Andrew C A

    2017-05-11

    Cardiotoxicity is one of the major reasons for clinical drug attrition. In vitro tissue models that can provide efficient and accurate drug toxicity screening are highly desired for preclinical drug development and personalized therapy. Here, we report the fabrication and characterization of a human cardiac tissue model for high throughput drug toxicity studies. Cardiac tissues were fabricated via cellular self-assembly of human transgene-free induced pluripotent stem cells-derived cardiomyocytes in pre-fabricated polydimethylsiloxane molds. The formed tissue constructs expressed cardiomyocyte-specific proteins, exhibited robust production of extracellular matrix components such as laminin, collagen and fibronectin, aligned sarcomeric organization, and stable spontaneous contractions for up to 2 months. Functional characterization revealed that the cardiac cells cultured in 3D tissues exhibited higher contraction speed and rate, and displayed a significantly different drug response compared to cells cultured in age-matched 2D monolayer. A panel of clinically relevant compounds including antibiotic, antidiabetic and anticancer drugs were tested in this study. Compared to conventional viability assays, our functional contractility-based assays were more sensitive in predicting drug-induced cardiotoxic effects, demonstrating good concordance with clinical observations. Thus, our 3D cardiac tissue model shows great potential to be used for early safety evaluation in drug development and drug efficiency testing for personalized therapy.

  3. Elevated expression of the metabolic regulator receptor-interacting protein 140 results in cardiac hypertrophy and impaired cardiac function.

    PubMed

    Fritah, Asmaà; Steel, Jennifer H; Nichol, Donna; Parker, Nadeene; Williams, Sharron; Price, Anthony; Strauss, Leena; Ryder, Timothy A; Mobberley, Margaret A; Poutanen, Matti; Parker, Malcolm; White, Roger

    2010-06-01

    Receptor-interacting protein 140 (RIP140) is a ligand-dependent cofactor for nuclear receptors that regulate networks of genes involved in cellular processes, including metabolism. An important role for RIP140 in metabolic control has been identified in RIP140 null mice, whose phenotypes include derepression of genes involved in energy mobilization or catabolism in adipocytes and a switch to more oxidative fibres in skeletal muscle. We hypothesized that ubiquitous expression of RIP140 would suppress metabolic processes, leading to defects in development or cellular function. The primary effect of exogenous expression of RIP140 mRNA (real-time PCR) and protein (western blotting) in transgenic mice is impaired postnatal heart function. There was rapid onset of cardiac hypertrophy and ventricular fibrosis, detected microscopically, in male RIP140 transgenic mice from 4 weeks of age, resulting in 25% mortality by 5 months. RIP140 exogenous expression in the heart leads to decreased mitochondria state III and state IV membrane potential and oxygen consumption. Quantitative PCR showed more than 50% reduced expression of genes involved in mitochondrial activity and fatty acid metabolism, including mitochondrial transcription factor A, cytochrome oxidase VIIa, cytochrome XII, CD36, medium-chain acyl dehydrogenase, and fatty acid transport protein, many of which are known targets for nuclear receptors, including peroxisome proliferator-activated receptors PPARalpha and PPARdelta and oestrogen-related receptors ERRalpha and ERRgamma. This study demonstrates that RIP140 is an important cofactor in postnatal cardiac function and that inhibition of the action of RIP140 may provide a model system to investigate specific interventions designed to prevent or delay the onset of cardiac disease.

  4. Cardiac Metabolism in Heart Failure - Implications beyond ATP production

    PubMed Central

    Doenst, Torsten; Nguyen, T. Dung; Abel, E. Dale

    2013-01-01

    The heart has a high rate of ATP production and turnover which is required to maintain its continuous mechanical work. Perturbations in ATP generating processes may therefore affect contractile function directly. Characterizing cardiac metabolism in heart failure revealed several metabolic alterations termed metabolic remodeling, ranging from changes in substrate utilization to mitochondrial dysfunction, ultimately resulting in ATP deficiency and impaired contractility. However, ATP depletion is not the only relevant consequence of metabolic remodeling during heart failure. By providing cellular building blocks and signaling molecules, metabolic pathways control essential processes such as cell growth and regeneration. Thus, alterations in cardiac metabolism may also affect the progression to heart failure by mechanisms beyond ATP supply. Our aim is therefore to highlight that metabolic remodeling in heart failure not only results in impaired cardiac energetics, but also induces other processes implicated in the development of heart failure such as structural remodeling and oxidative stress. Accordingly, modulating cardiac metabolism in heart failure may have significant therapeutic relevance that goes beyond the energetic aspect. PMID:23989714

  5. Cardiac-Specific Knockout of ETA Receptor Mitigates Paraquat-Induced Cardiac Contractile Dysfunction.

    PubMed

    Wang, Jiaxing; Lu, Songhe; Zheng, Qijun; Hu, Nan; Yu, Wenjun; Li, Na; Liu, Min; Gao, Beilei; Zhang, Guoyong; Zhang, Yingmei; Wang, Haichang

    2016-07-01

    Paraquat (1,1'-dim ethyl-4-4'-bipyridinium dichloride), a highly toxic quaternary ammonium herbicide widely used in agriculture, exerts potent toxic prooxidant effects resulting in multi-organ failure including the lung and heart although the underlying mechanism remains elusive. Recent evidence suggests possible involvement of endothelin system in paraquat-induced acute lung injury. This study was designed to examine the role of endothelin receptor A (ETA) in paraquat-induced cardiac contractile and mitochondrial injury. Wild-type (WT) and cardiac-specific ETA receptor knockout mice were challenged to paraquat (45 mg/kg, i.p.) for 48 h prior to the assessment of echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties, as well as apoptosis and mitochondrial damage. Levels of the mitochondrial proteins for biogenesis and oxidative phosphorylation including UCP2, HSP90 and PGC1α were evaluated. Our results revealed that paraquat elicited cardiac enlargement, mechanical anomalies including compromised echocardiographic parameters (elevated left ventricular end-systolic and end-diastolic diameters as well as reduced factional shortening), suppressed cardiomyocyte contractile function, intracellular Ca(2+) handling, overt apoptosis and mitochondrial damage. ETA receptor knockout itself failed to affect myocardial function, apoptosis, mitochondrial integrity and mitochondrial protein expression. However, ETA receptor knockout ablated or significantly attenuated paraquat-induced cardiac contractile and intracellular Ca(2+) defect, apoptosis and mitochondrial damage. Taken together, these findings revealed that endothelin system in particular the ETA receptor may be involved in paraquat-induced toxic myocardial contractile anomalies possibly related to apoptosis and mitochondrial damage.

  6. Data on cardiac defects, morbidity and mortality in patients affected by RASopathies. CARNET study results.

    PubMed

    Calcagni, Giulio; Limongelli, Giuseppe; D'Ambrosio, Angelo; Gesualdo, Francesco; Digilio, Maria Cristina; Baban, Anwar; Albanese, Sonia B; Versacci, Paolo; De Luca, Enrica; Ferrero, Giovanni B; Baldassarre, Giuseppina; Agnoletti, Gabriella; Banaudi, Elena; Marek, Jan; Kaski, Juan P; Tuo, Giulia; Russo, Maria Giovanna; Pacileo, Giuseppe; Milanesi, Ornella; Messina, Daniela; Marasini, Maurizio; Cairello, Francesca; Formigari, Roberto; Brighenti, Maurizio; Dallapiccola, Bruno; Tartaglia, Marco; Marino, Bruno

    2018-02-01

    A comprehensive description of morbidity and mortality in patients affected by mutations in genes encoding for signal transducers of the RAS-MAPK cascade (RASopathies) was performed in our study recently published in the International Journal of Cardiology. Seven European cardiac centres participating to the CArdiac Rasopathy NETwork (CARNET), collaborated in this multicentric, observational, retrospective data analysis and collection. In this study, clinical records of 371 patients with confirmed molecular diagnosis of RASopathy were reviewed. Cardiac defects, crude mortality, survival rate of patients with 1) hypertrophic cardiomyopathy (HCM) and age <2 years or young adults; 2) individuals with Noonan syndrome and pulmonary stenosis carrying PTPN11 mutations; 3) biventricular obstruction and PTPN11 mutations; 4) Costello syndrome or cardiofaciocutaneous syndrome were analysed. Mortality was described as crude mortality, cumulative survival and restricted estimated mean survival. In particular, with this Data In Brief (DIB) paper, the authors aim to report specific statistic highlights of the multivariable regression analysis that was used to assess the impact of mutated genes on number of interventions and overall prognosis.

  7. Novel Measures of Volume Status and Cardiac Function in Traumatic Shock

    DTIC Science & Technology

    2016-06-01

    cardio -protective, fluid-limited method of resuscitation. In addition to providing insight into fluid management and cardiac function, the data indicate... cardio -protective method of resuscitation. 8.0 REFERENCES 1. Marik PE, Monnet X, Teboul JL. Hemodynamic parameters to guide fluid therapy. Ann

  8. Structural and functional cardiac cholinergic deficits in adult neurturin knockout mice.

    PubMed

    Mabe, Abigail M; Hoover, Donald B

    2009-04-01

    Previous work provided indirect evidence that the neurotrophic factor neurturin (NRTN) is required for normal cholinergic innervation of the heart. This study used nrtn knockout (KO) and wild-type (WT) mice to determine the effect of nrtn deletion on cardiac cholinergic innervation and function in the adult heart. Immunohistochemistry, confocal microscopy, and quantitative image analysis were used to directly evaluate intrinsic cardiac neuronal development. Atrial acetylcholine (ACh) levels were determined as an indirect index of cholinergic innervation. Cholinergic function was evaluated by measuring negative chronotropic responses to right vagal nerve stimulation in anaesthetized mice and responses of isolated atria to muscarinic agonists. KO hearts contained only 35% the normal number of cholinergic neurons, and the residual cholinergic neurons were 15% smaller than in WT. Cholinergic nerve density at the sinoatrial node was reduced by 87% in KOs, but noradrenergic nerve density was unaffected. Atrial ACh levels were substantially lower in KO mice (0.013 +/- 0.004 vs. 0.050 +/- 0.011 pmol/microg protein; P < 0.02) as expected from cholinergic neuron and nerve fibre deficits. Maximum bradycardia evoked by vagal stimulation was reduced in KO mice (38 +/- 6% vs. 69 +/- 3% decrease at 20 Hz; P < 0.001), and chronotropic responses took longer to develop and fade. In contrast to these deficits, isolated atria from KO mice had normal post-junctional sensitivity to carbachol and bethanechol. These findings demonstrate that NRTN is essential for normal cardiac cholinergic innervation and cholinergic control of heart rate. The presence of residual cardiac cholinergic neurons and vagal bradycardia in KO mice suggests that additional neurotrophic factors may influence this system.

  9. Immune function surveillance: association with rejection, infection and cardiac allograft vasculopathy.

    PubMed

    Heikal, N M; Bader, F M; Martins, T B; Pavlov, I Y; Wilson, A R; Barakat, M; Stehlik, J; Kfoury, A G; Gilbert, E M; Delgado, J C; Hill, H R

    2013-01-01

    Rejection, cardiac allograft vasculopathy (CAV), and infection are significant causes of mortality in heart transplantation recipients. Assessing the immune status of a particular patient remains challenging. Although endomyocardial biopsy (EMB) and angiography are effective for the identification of rejection and CAV, respectively, these are expensive, invasive, and may have numerous complications. The aim of this study was to evaluate the immune function and assess its utility in predicting rejection, CAV, and infection in heart transplantation recipients. We prospectively obtained samples at the time of routine EMB and when clinically indicated for measurement of the ImmuKnow assay (IM), 12 cytokines and soluble CD30 (sCD30). EMB specimens were evaluated for acute cellular rejection, and antibody-mediated rejection (AMR). CAV was diagnosed by the development of angiographic coronary artery disease. Infectious episodes occurring during the next 30 days after testing were identified by the presence of positive bacterial or fungal cultures and/or viremia that prompted treatment with antimicrobials. We collected 162 samples from 56 cardiac transplant recipients. There were 31 infection episodes, 7 AMR, and 4 CAV cases. The average IM value was significantly lower during infection, (P = .04). Soluble CD30 concentrations showed significantly positive correlation with infection episodes, (P = .001). Significant positive correlation was observed between interleukin-5(IL-5) and AMR episodes (P = .008). Tumor necrosis factor-α and IL-8 showed significant positive correlation with CAV (P = .001). Immune function monitoring appears promising in predicting rejection, CAV, and infection in cardiac transplantation recipients. This approach may help in more individualized immunosuppression and it may also minimize unnecessary EMBs and cardiac angiographies. Published by Elsevier Inc.

  10. Thioredoxin-2 Inhibits Mitochondrial ROS Generation and ASK1 Activity to Maintain Cardiac Function

    PubMed Central

    Huang, Qunhua; Zhou, Huanjiao Jenny; Zhang, Haifeng; Huang, Yan; Hinojosa-Kirschenbaum, Ford; Fan, Peidong; Yao, Lina; Belardinelli, Luiz; Tellides, George; Giordano, Frank J.; Budas, Grant R.; Min, Wang

    2015-01-01

    Background Thioredoxin 2 (Trx2) is a key mitochondrial protein which regulates cellular redox and survival by suppressing mitochondrial ROS generation and by inhibiting apoptosis stress kinase-1 (ASK1)-dependent apoptotic signaling. To date, the role of the mitochondrial Trx2 system in heart failure pathogenesis has not been investigated. Methods and Results Western blot and histological analysis revealed that Trx2 protein expression levels were reduced in hearts from patients with dilated cardiomyopathy (DCM), with a concomitant increase in increased ASK1 phosphorylation/activity. Cardiac-specific Trx2 knockout mice (Trx2-cKO). Trx2-cKO mice develop spontaneous DCM at 1 month of age with increased heart size, reduced ventricular wall thickness, and a progressive decline in left ventricular (LV) contractile function, resulting in mortality due to heart failure by ~4 months of age. The progressive decline in cardiac function observed in Trx2-cKO mice was accompanied by disruption of mitochondrial ultrastructure, mitochondrial membrane depolarization, increased mitochondrial ROS generation and reduced ATP production, correlating with increased ASK1 signaling and increased cardiomyocyte apoptosis. Chronic administration of a highly selective ASK1 inhibitor improved cardiac phenotype and reduced maladaptive LV remodeling with significant reductions in oxidative stress, apoptosis, fibrosis and cardiac failure. Cellular data from Trx2-deficient cardiomyocytes demonstrated that ASK1 inhibition reduced apoptosis and reduced mitochondrial ROS generation. Conclusions Our data support an essential role for mitochondrial Trx2 in preserving cardiac function by suppressing mitochondrial ROS production and ASK1-dependent apoptosis. Inhibition of ASK1 represents a promising therapeutic strategy for the treatment of dilated cardiomyopathy and heart failure. PMID:25628390

  11. Isolation and expansion of functionally-competent cardiac progenitor cells directly from heart biopsies

    PubMed Central

    Davis, Darryl R; Kizana, Eddy; Terrovitis, John; Barth, Andreas S.; Zhang, Yiqiang; Smith, Rachel Ruckdeschel; Miake, Junichiro; Marbán, Eduardo

    2010-01-01

    The adult heart contains reservoirs of progenitor cells that express embryonic and stem cell-related antigens. While these antigenically-purified cells are promising candidates for autologous cell therapy, clinical application is hampered by their limited abundance and tedious isolation methods. Methods that involve an intermediate cardiosphere-forming step have proven successful and are being tested clinically, but it is unclear whether the cardiosphere step is necessary. Accordingly, we investigated the molecular profile and functional benefit of cells that spontaneously emigrate from cardiac tissue in primary culture. Adult Wistar-Kyoto rat hearts were minced, digested and cultured as separate anatomical regions. Loosely-adherent cells that surround the plated tissue were harvested weekly for a total of five harvests. Genetic lineage tracing demonstrated that a small proportion of the direct outgrowth from cardiac samples originates from myocardial cells. This outgrowth contains sub-populations of cells expressing embryonic (SSEA-1) and stem cell-related antigens (c-Kit, abcg2) that varied with time in culture but not with the cardiac chamber of origin. This direct outgrowth, and its expanded progeny, underwent marked in vitro angiogenic/cardiogenic differentiation and cytokine secretion (IGF-1, VGEF). In vivo effects included long-term functional benefits as gauged by MRI following cell injection in a rat model of myocardial infarction. Outgrowth cells afforded equivalent functional benefits to cardiosphere-derived cells, which require more processing steps to manufacture. These results provide the basis for a simplified and efficient process to generate autologous cardiac progenitor cells (and mesenchymal supporting cells) to augment clinically-relevant approaches for myocardial repair. PMID:20211627

  12. Pulse wave velocity and cardiac autonomic function in type 2 diabetes mellitus.

    PubMed

    Chorepsima, Stamatina; Eleftheriadou, Ioanna; Tentolouris, Anastasios; Moyssakis, Ioannis; Protogerou, Athanasios; Kokkinos, Alexandros; Sfikakis, Petros P; Tentolouris, Nikolaos

    2017-05-19

    Increased carotid-femoral pulse wave velocity (PWV) has been associated with incident cardiovascular disease, independently of traditional risk factors. Cardiac autonomic dysfunction is a common complication of diabetes and has been associated with reduced aortic distensibility. However, the association of cardiac autonomic dysfunction with PWV is not known. In this study we examined the association between cardiac autonomic function and PWV in subjects with type 2 diabetes mellitus. A total of 290 patients with type 2 diabetes were examined. PWV was measured at the carotid-femoral segment with applanation tonometry. Central mean arterial blood pressure (MBP) was determined by the same apparatus. Participants were classified as having normal (n = 193) or abnormal (n = 97) PWV values using age-corrected values. Cardiac autonomic nervous system activity was determined by measurement of parameters of heart rate variability (HRV). Subjects with abnormal PWV were older, had higher arterial blood pressure and higher heart rate than those with normal PWV. Most of the values of HRV were significantly lower in subjects with abnormal than in those with normal PWV. Multivariate analysis, after controlling for various confounding factors, demonstrated that abnormal PWV was associated independently only with peripheral MBP [odds ratio (OR) 1.049, 95% confidence intervals (CI) 1.015-1.085, P = 0.005], central MBP (OR 1.052, 95% CI 1.016-1.088, P = 0.004), log total power (OR 0.490, 95% CI 0.258-0.932, P = 0.030) and log high frequency power (OR 0.546, 95% CI 0.301-0.991, P = 0.047). In subjects with type 2 diabetes, arterial blood pressure and impaired cardiac autonomic function is associated independently with abnormal PWV.

  13. Playing with Cardiac “Redox Switches”: The “HNO Way” to Modulate Cardiac Function

    PubMed Central

    Tocchetti, Carlo G.; Stanley, Brian A.; Murray, Christopher I.; Sivakumaran, Vidhya; Donzelli, Sonia; Mancardi, Daniele; Pagliaro, Pasquale; Gao, Wei Dong; van Eyk, Jennifer; Kass, David A.; Wink, David A.

    2011-01-01

    Abstract The nitric oxide (NO•) sibling, nitroxyl or nitrosyl hydride (HNO), is emerging as a molecule whose pharmacological properties include providing functional support to failing hearts. HNO also preconditions myocardial tissue, protecting it against ischemia-reperfusion injury while exerting vascular antiproliferative actions. In this review, HNO's peculiar cardiovascular assets are discussed in light of its unique chemistry that distinguish HNO from NO• as well as from reactive oxygen and nitrogen species such as the hydroxyl radical and peroxynitrite. Included here is a discussion of the possible routes of HNO formation in the myocardium and its chemical targets in the heart. HNO has been shown to have positive inotropic/lusitropic effects under normal and congestive heart failure conditions in animal models. The mechanistic intricacies of the beneficial cardiac effects of HNO are examined in cellular models. In contrast to β-receptor/cyclic adenosine monophosphate/protein kinase A-dependent enhancers of myocardial performance, HNO uses its “thiophylic” nature as a vehicle to interact with redox switches such as cysteines, which are located in key components of the cardiac electromechanical machinery ruling myocardial function. Here, we will briefly review new features of HNO's cardiovascular effects that when combined with its positive inotropic/lusitropic action may render HNO donors an attractive addition to the current therapeutic armamentarium for treating patients with acutely decompensated congestive heart failure. Antioxid. Redox Signal. 14, 1687–1698. PMID:21235349

  14. Estradiol improves cardiac and hepatic function after trauma-hemorrhage: role of enhanced heat shock protein expression.

    PubMed

    Szalay, László; Shimizu, Tomoharu; Suzuki, Takao; Yu, Huang-Ping; Choudhry, Mashkoor A; Schwacha, Martin G; Rue, Loring W; Bland, Kirby I; Chaudry, Irshad H

    2006-03-01

    Although studies indicate that 17beta-estradiol administration after trauma-hemorrhage (T-H) improves cardiac and hepatic functions, the underlying mechanisms remain unclear. Because the induction of heat shock proteins (HSPs) can protect cardiac and hepatic functions, we hypothesized that these proteins contribute to the salutary effects of estradiol after T-H. To test this hypothesis, male Sprague-Dawley rats ( approximately 300 g) underwent laparotomy and hemorrhagic shock (35-40 mmHg for approximately 90 min) followed by resuscitation with four times the shed blood volume in the form of Ringer lactate. 17beta-estradiol (1 mg/kg body wt) was administered at the end of the resuscitation. Five hours after T-H and resuscitation there was a significant decrease in cardiac output, positive and negative maximal rate of left ventricular pressure. Liver function as determined by bile production and indocyanine green clearance was also compromised after T-H and resuscitation. This was accompanied by an increase in plasma alanine aminotransferase (ALT) levels and liver perfusate lactic dehydrogenase levels. Furthermore, circulating levels of TNF-alpha, IL-6, and IL-10 were also increased. In addition to decreased cardiac and hepatic function, there was an increase in cardiac HSP32 expression and a reduction in HSP60 expression after T-H. In the liver, HSP32 and HSP70 were increased after T-H. There was no change in heart HSP70 and liver HSP60 after T-H and resuscitation. Estradiol administration at the end of T-H and resuscitation increased heart/liver HSPs expression, ameliorated the impairment of heart/liver functions, and significantly prevented the increase in plasma levels of ALT, TNF-alpha, and IL-6. The ability of estradiol to induce HSPs expression in the heart and the liver suggests that HSPs, in part, mediate the salutary effects of 17beta-estradiol on organ functions after T-H.

  15. Effect of atenolol on ventilatory and cardiac function in asthma.

    PubMed Central

    Vilsvik, J S; Schaanning, J

    1976-01-01

    The effects on ventilatory and cardiac function of atenolol, a new cardioselective beta-adrenoceptor blocking agent, were compared with those of practolol in a double-blind trial in 12 patients with asthma. Both drugs impaired ventilatory function--atenolol insignificantly and practolol significantly. Atenolol was if anything more cardioselective than practolol. Neither drug interfered significantly with the bronchodilator response to inhaled isoprenaline. Atenolol is suitable for use in patients for whom practolol would formerly have been chosen because of its cardioselectivity. PMID:8188

  16. TRPA1 mediates changes in heart rate variability and cardiac mechanical function in mice exposed to acrolein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurhanewicz, Nicole

    Short-term exposure to ambient air pollution is linked with adverse cardiovascular effects. While previous research focused primarily on particulate matter-induced responses, gaseous air pollutants also contribute to cause short-term cardiovascular effects. Mechanisms underlying such effects have not been adequately described, however the immediate nature of the response suggests involvement of irritant neural activation and downstream autonomic dysfunction. Thus, this study examines the role of TRPA1, an irritant sensory receptor found in the airways, in the cardiac response of mice to acrolein and ozone. Conscious unrestrained wild-type C57BL/6 (WT) and TRPA1 knockout (KO) mice implanted with radiotelemeters were exposed once tomore » 3 ppm acrolein, 0.3 ppm ozone, or filtered air. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure. Analysis of ECG morphology, incidence of arrhythmia and heart rate variability (HRV) were performed. Cardiac mechanical function was assessed using a Langendorff perfusion preparation 24 h post-exposure. Acrolein exposure increased HRV independent of HR, as well as incidence of arrhythmia. Acrolein also increased left ventricular developed pressure in WT mice at 24 h post-exposure. Ozone did not produce any changes in cardiac function. Neither gas produced ECG effects, changes in HRV, arrhythmogenesis, or mechanical function in KO mice. These data demonstrate that a single exposure to acrolein causes cardiac dysfunction through TRPA1 activation and autonomic imbalance characterized by a shift toward parasympathetic modulation. Furthermore, it is clear from the lack of ozone effects that although gaseous irritants are capable of eliciting immediate cardiac changes, gas concentration and properties play important roles. - Highlights: • Acute acrolein exposure causes autonomic imbalance and altered CV function in mice. • TRPA1 mediates acrolein-induced autonomic nervous system

  17. Performance of Automated Software in the Assessment of Segmental Left Ventricular Function in Cardiac CT: Comparison with Cardiac Magnetic Resonance.

    PubMed

    Wang, Rui; Meinel, Felix G; Schoepf, U Joseph; Canstein, Christian; Spearman, James V; De Cecco, Carlo N

    2015-12-01

    To evaluate the accuracy, reliability and time saving potential of a novel cardiac CT (CCT)-based, automated software for the assessment of segmental left ventricular function compared to visual and manual quantitative assessment of CCT and cardiac magnetic resonance (CMR). Forty-seven patients with suspected or known coronary artery disease (CAD) were enrolled in the study. Wall thickening was calculated. Segmental LV wall motion was automatically calculated and shown as a colour-coded polar map. Processing time for each method was recorded. Mean wall thickness in both systolic and diastolic phases on polar map, CCT, and CMR was 9.2 ± 0.1 mm and 14.9 ± 0.2 mm, 8.9 ± 0.1 mm and 14.5 ± 0.1 mm, 8.3 ± 0.1 mm and 13.6 ± 0.1 mm, respectively. Mean wall thickening was 68.4 ± 1.5 %, 64.8 ± 1.4 % and 67.1 ± 1.4 %, respectively. Agreement for the assessment of LV wall motion between CCT, CMR and polar maps was good. Bland-Altman plots and ICC indicated good agreement between CCT, CMR and automated polar maps of the diastolic and systolic segmental wall thickness and thickening. The processing time using polar map was significantly decreased compared with CCT and CMR. Automated evaluation of segmental LV function with polar maps provides similar measurements to manual CCT and CMR evaluation, albeit with substantially reduced analysis time. • Cardiac computed tomography (CCT) can accurately assess segmental left ventricular wall function. • A novel automated software permits accurate and fast evaluation of wall function. • The software may improve the clinical implementation of segmental functional analysis.

  18. Cardiac Radionuclide Imaging in Rodents: A Review of Methods, Results, and Factors at Play

    PubMed Central

    Cicone, Francesco; Viertl, David; Quintela Pousa, Ana Maria; Denoël, Thibaut; Gnesin, Silvano; Scopinaro, Francesco; Vozenin, Marie-Catherine; Prior, John O.

    2017-01-01

    The interest around small-animal cardiac radionuclide imaging is growing as rodent models can be manipulated to allow the simulation of human diseases. In addition to new radiopharmaceuticals testing, often researchers apply well-established probes to animal models, to follow the evolution of the target disease. This reverse translation of standard radiopharmaceuticals to rodent models is complicated by technical shortcomings and by obvious differences between human and rodent cardiac physiology. In addition, radionuclide studies involving small animals are affected by several extrinsic variables, such as the choice of anesthetic. In this paper, we review the major cardiac features that can be studied with classical single-photon and positron-emitting radiopharmaceuticals, namely, cardiac function, perfusion and metabolism, as well as the results and pitfalls of small-animal radionuclide imaging techniques. In addition, we provide a concise guide to the understanding of the most frequently used anesthetics such as ketamine/xylazine, isoflurane, and pentobarbital. We address in particular their mechanisms of action and the potential effects on radionuclide imaging. Indeed, cardiac function, perfusion, and metabolism can all be significantly affected by varying anesthetics and animal handling conditions. PMID:28424774

  19. Dmpk gene deletion or antisense knockdown does not compromise cardiac or skeletal muscle function in mice

    PubMed Central

    Carrell, Samuel T.; Carrell, Ellie M.; Auerbach, David; Pandey, Sanjay K.; Bennett, C. Frank; Dirksen, Robert T.; Thornton, Charles A.

    2016-01-01

    Myotonic dystrophy type 1 (DM1) is a genetic disorder in which dominant-active DM protein kinase (DMPK) transcripts accumulate in nuclear foci, leading to abnormal regulation of RNA processing. A leading approach to treat DM1 uses DMPK-targeting antisense oligonucleotides (ASOs) to reduce levels of toxic RNA. However, basal levels of DMPK protein are reduced by half in DM1 patients. This raises concern that intolerance for further DMPK loss may limit ASO therapy, especially since mice with Dmpk gene deletion reportedly show cardiac defects and skeletal myopathy. We re-examined cardiac and muscle function in mice with Dmpk gene deletion, and studied post-maturity knockdown using Dmpk-targeting ASOs in mice with heterozygous deletion. Contrary to previous reports, we found no effect of Dmpk gene deletion on cardiac or muscle function, when studied on two genetic backgrounds. In heterozygous knockouts, the administration of ASOs reduced Dmpk expression in cardiac and skeletal muscle by > 90%, yet survival, electrocardiogram intervals, cardiac ejection fraction and muscle strength remained normal. The imposition of cardiac stress by pressure overload, or muscle stress by myotonia, did not unmask a requirement for DMPK. Our results support the feasibility and safety of using ASOs for post-transcriptional silencing of DMPK in muscle and heart. PMID:27522499

  20. Assessment of cardiac function using myocardial perfusion imaging technique on SPECT with 99mTc sestamibi

    NASA Astrophysics Data System (ADS)

    Gani, M. R. A.; Nazir, F.; Pawiro, S. A.; Soejoko, D. S.

    2016-03-01

    Suspicion on coronary heart disease can be confirmed by observing the function of left ventricle cardiac muscle with Myocardial Perfusion Imaging techniques. The function perfusion itself is indicated by the uptake of radiopharmaceutical tracer. The 31 patients were studied undergoing the MPI examination on Gatot Soebroto Hospital using 99mTc-sestamibi radiopharmaceutical with stress and rest conditions. Stress was stimulated by physical exercise or pharmacological agent. After two hours, the patient did rest condition on the same day. The difference of uptake percentage between stress and rest conditions will be used to determine the malfunction of perfusion due to ischemic or infarct. Degradation of cardiac function was determined based on the image-based assessment of five segments of left ventricle cardiac. As a result, 8 (25.8%) patients had normal myocardial perfusion and 11 (35.5%) patients suspected for having partial ischemia. Total ischemia occurred to 8 (25.8%) patients with reversible and irreversible ischemia and the remaining 4 (12.9%) patients for partial infarct with characteristic the percentage of perfusion ≤50%. It is concluded that MPI technique of image-based assessment on uptake percentage difference between stress and rest conditions can be employed to predict abnormal perfusion as complementary information to diagnose the cardiac function.

  1. Tandospirone reduces wasting and improves cardiac function in experimental cancer cachexia.

    PubMed

    Elkina, Yulia; Palus, Sandra; Tschirner, Anika; Hartmann, Kai; von Haehling, Stephan; Doehner, Wolfram; Mayer, Ulrike; Coats, Andrew J S; Beadle, John; Anker, Stefan D; Springer, Jochen

    2013-12-10

    Cancer cachexia is thought to be the cause of >20% of cancer related deaths. Symptoms of cancer cachexia patients include depression and anorexia significantly worsening their quality of life. Moreover, in rodent models of cancer cachexia atrophy of the heart has been shown to impair cardiac function. Here, we characterize the effects of the antidepressant and anxiolytic drug tandospirone on wasting, cardiac function and survival in experimental cancer cachexia. The well-established Yoshida hepatoma rat model was used and tumor-bearing rats were treated with 1mg/kg/d (LD), 10mg/kg/d (HD) tandospirone or placebo. Weight, body composition (NMR), cardiac function (echocardiography), activity and food intake were assessed. Noradrenalin and cortisol were measured in plasma and caspase activity in skeletal muscle. Ten mg/kg/d tandospirone decreased the loss of body weight (p=0.0003) compared to placebo animals, mainly due to preservation of muscle mass (p<0.001), while 1mg/kg/d tandospirone was not effective. Locomotor activity (p=0.0007) and food intake (p=0.0001) were increased by HD tandospirone. The weight (p=0.0277) and function of heart (left ventricular mass, fractional shortening, stroke volume, ejection fraction, all p<0.05) were significantly improved. In the HD tandospirone group, plasma levels of noradrenalin and cortisol were significantly reduced by 49% and 52%, respectively, which may have contributed to the lower caspase activity in the gastrocnemius muscle. Most importantly, HD tandospirone significantly improved survival compared to placebo rats (HR: 0.34; 95% CI: 0.13-0.86; p=0.0495). Tandospirone showed significant beneficial effects in the Yoshida hepatoma cancer cachexia model and should be further examined as a prospective drug for this syndrome. © 2013.

  2. False dyssynchrony: problem with image-based cardiac functional analysis using x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Kidoh, Masafumi; Shen, Zeyang; Suzuki, Yuki; Ciuffo, Luisa; Ashikaga, Hiroshi; Fung, George S. K.; Otake, Yoshito; Zimmerman, Stefan L.; Lima, Joao A. C.; Higuchi, Takahiro; Lee, Okkyun; Sato, Yoshinobu; Becker, Lewis C.; Fishman, Elliot K.; Taguchi, Katsuyuki

    2017-03-01

    We have developed a digitally synthesized patient which we call "Zach" (Zero millisecond Adjustable Clinical Heart) phantom, which allows for an access to the ground truth and assessment of image-based cardiac functional analysis (CFA) using CT images with clinically realistic settings. The study using Zach phantom revealed a major problem with image-based CFA: "False dyssynchrony." Even though the true motion of wall segments is in synchrony, it may appear to be dyssynchrony with the reconstructed cardiac CT images. It is attributed to how cardiac images are reconstructed and how wall locations are updated over cardiac phases. The presence and the degree of false dyssynchrony may vary from scan-to-scan, which could degrade the accuracy and the repeatability (or precision) of image-based CT-CFA exams.

  3. Lack of UCP3 does not affect skeletal muscle mitochondrial function under lipid-challenged conditions, but leads to sudden cardiac death.

    PubMed

    Nabben, Miranda; van Bree, Bianca W J; Lenaers, Ellen; Hoeks, Joris; Hesselink, Matthijs K C; Schaart, Gert; Gijbels, Marion J J; Glatz, Jan F C; da Silva, Gustavo J J; de Windt, Leon J; Tian, Rong; Mike, Elise; Skapura, Darlene G; Wehrens, Xander H T; Schrauwen, Patrick

    2014-01-01

    UCP3's exact physiological function in lipid handling in skeletal and cardiac muscle remains unknown. Interestingly, etomoxir, a fat oxidation inhibitor and strong inducer of UCP3, is proposed for treating both diabetes and heart failure. We hypothesize that the upregulation of UCP3 upon etomoxir serves to protect mitochondria against lipotoxicity. To evaluate UCP3's role in skeletal muscle (skm) and heart under lipid-challenged conditions, the effect of UCP3 ablation was examined in a state of dysbalance between fat availability and oxidative capacity. Wild type (WT) and UCP3(-/-) mice were subjected to high-fat feeding for 14 days. From day 6 onwards, they were given either saline or etomoxir. Etomoxir treatment induced an increase in markers of lipotoxicity in skm compared to saline. This increase upon etomoxir was similar for both, WT and UCP3(-/-) mice, suggesting that UCP3 does not play a role in protection against lipotoxicity. Interestingly, we observed 25 % mortality in UCP3(-/-)s upon etomoxir administration vs. 11 % in WTs. This increased mortality in UCP3(-/-) compared to WT mice could not be explained by differences in cardiac lipotoxicity, apoptosis, fibrosis (histology, immunohistochemistry), oxidative capacity (respirometry) or function (echocardiography). Electrophysiology demonstrated, however, prolonged QRS and QTc intervals and greater susceptibility to ventricular tachycardia upon programmed electrical stimulation in etomoxir-treated UCP3(-/-)s versus WTs. Isoproterenol administration after pacing resulted in 75 % mortality in UCP3(-/-)s vs. 14 % in WTs. Our results argue against a protective role for UCP3 on skm metabolism under lipid overload, but suggest UCP3 to be crucial in prevention of arrhythmias upon lipid-challenged conditions.

  4. Cardiac function and exercise adaptation in 8 children with LPIN1 mutations.

    PubMed

    Legendre, Antoine; Khraiche, Diala; Ou, Phalla; Mauvais, François-Xavier; Madrange, Marine; Guemann, Anne-Sophie; Jais, Jean-Philippe; Bonnet, Damien; Hamel, Yamina; de Lonlay, Pascale

    2018-03-01

    Lipin-1 deficiency is a major cause of rhabdomyolysis that are precipitated by febrile illness. The prognosis is poor, with one-third of patients dying from cardiac arrest during a crisis episode. Apart from acute rhabdomyolysis, most patients are healthy, showing normal clinical and cardiac ultrasound parameters. We report cardiac and exercise examinations of 8 children carrying two LPIN1 mutations. The examinations were performed outside of a myolysis episode, but one patient presented with fever during one examination. All but one patient displayed normal resting cardiac function, as determined by echocardiography. One patient exhibited slight left ventricular dysfunction at rest and a lack of increased stroke volume during cycle ramp exercise. During exercise, peripheral muscle adaptation was impaired in 2 patients compared to healthy controls: they presented an abnormal increase in cardiac output relative to oxygen uptake: dQ/dVO 2 =8.2 and 9.5 (>2DS of controls population). One patient underwent 2 exercise tests; during one test, the patient was febrile, leading to acute rhabdomyolysis in the following hours. He exhibited changes in recovery muscle reoxygenation parameters and an increased dQ/dVO 2 during exercise compared with that under normothermia (7.9 vs 6), which did not lead to acute rhabdomyolysis. The four patients assessed by cardiac 1 H-magnetic resonance spectroscopy exhibited signs of intracardiac steatosis. We observed abnormal haemodynamic profiles during exercise in 3/8 patients with lipin-1 deficiency, suggesting impaired muscle oxidative phosphorylation during exercise. Fever appeared to be an aggravating factor. One patient exhibited moderate cardiac dysfunction, which was possibly related to intracardiac stored lipid toxicity. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Challenges in Cardiac Tissue Engineering

    PubMed Central

    Tandon, Nina; Godier, Amandine; Maidhof, Robert; Marsano, Anna; Martens, Timothy P.; Radisic, Milica

    2010-01-01

    Cardiac tissue engineering aims to create functional tissue constructs that can reestablish the structure and function of injured myocardium. Engineered constructs can also serve as high-fidelity models for studies of cardiac development and disease. In a general case, the biological potential of the cell—the actual “tissue engineer”—is mobilized by providing highly controllable three-dimensional environments that can mediate cell differentiation and functional assembly. For cardiac regeneration, some of the key requirements that need to be met are the selection of a human cell source, establishment of cardiac tissue matrix, electromechanical cell coupling, robust and stable contractile function, and functional vascularization. We review here the potential and challenges of cardiac tissue engineering for developing therapies that could prevent or reverse heart failure. PMID:19698068

  6. Impact of enzyme replacement therapy on cardiac morphology and function and late enhancement in Fabry's cardiomyopathy.

    PubMed

    Beer, Meinrad; Weidemann, Frank; Breunig, Frank; Knoll, Anita; Koeppe, Sabrina; Machann, Wolfram; Hahn, Dietbert; Wanner, Christoph; Strotmann, Jörg; Sandstede, Jörn

    2006-05-15

    The present study evaluated the evolution of cardiac morphology, function, and late enhancement as a noninvasive marker of myocardial fibrosis, and their inter-relation during enzyme replacement therapy in patients with Fabry's disease using magnetic resonance imaging and color Doppler myocardial imaging. Late enhancement, which was present in up to 50% of patients, was associated with increased left ventricular mass, the failure of a significant regression of hypertrophy during enzyme replacement therapy, and worse segmental myocardial function. Late enhancement may predict the effect of enzyme replacement therapy on left ventricular mass and cardiac function.

  7. Boosters and barriers for direct cardiac reprogramming.

    PubMed

    Talkhabi, Mahmood; Zonooz, Elmira Rezaei; Baharvand, Hossein

    2017-06-01

    Heart disease is currently the most significant cause of morbidity and mortality worldwide, which accounts for approximately 33% of all deaths. Recently, a promising and alchemy-like strategy has been developed called direct cardiac reprogramming, which directly converts somatic cells such as fibroblasts to cardiac lineage cells such as cardiomyocytes (CMs), termed induced CMs or iCMs. The first in vitro cardiac reprogramming study, mediated by cardiac transcription factors (TFs)-Gata4, Tbx5 and Mef2C-, was not enough efficient to produce an adequate number of fully reprogrammed, functional iCMs. As a result, numerous combinations of cardiac TFs exist for direct cardiac reprogramming of mouse and human fibroblasts. However, the efficiency of direct cardiac reprogramming remains low. Recently, a number of cellular and molecular mechanisms have been identified to increase the efficiency of direct cardiac reprogramming and the quality of iCMs. For example, microgrooved substrate, cardiogenic growth factors [VEGF, FGF, BMP4 and Activin A], and an appropriate stoichiometry of TFs boost the direct cardiac reprogramming. On the other hand, serum, TGFβ signaling, activators of epithelial to mesenchymal transition, and some epigenetic factors (Bmi1 and Ezh2) are barriers for direct cardiac reprogramming. Manipulating these mechanisms by the application of boosters and removing barriers can increase the efficiency of direct cardiac reprogramming and possibly make iCMs reliable for cell-based therapy or other potential applications. In this review, we summarize the latest trends in cardiac TF- or miRNA-based direct cardiac reprogramming and comprehensively discuses all molecular and cellular boosters and barriers affecting direct cardiac reprogramming. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. [Effect of substance P on cardiac autonomic nervous function in rats].

    PubMed

    Deng, Lijun; Li, Jing; Yan, Fuping; Lu, Jie

    2009-12-01

    Forty SD rats were divided into 5 groups: control group, SP groups (5 microg/kg,10 microg/kg, 20 microg/kg) and spantide II plus SP group. An analysis of heart rate variability (HRV) was used to detect the changes of HRV parameters before and after intravenous injection of SP in order to investigate the effect of substance P on cardiac autonomic nervous function and the corresponding mechanism. (1) There were significant differences in most HRV parameters for the three different doses of SP. Mean heart period (MHP), absolute power of ultra-low frequency and high frequency band (APU, APH), total power (TPV) and ratio of power in ultra-low to high frequency band (RUH) increased, while mean heart rate (MHR) and chaos intensity (HCC) decreased during the 30 minutes. Each peak amplitude of HRV parameters went higher and showed up ahead of the upward doses of SP. (2) Significant change was seen in each of the parameters between spantide II plus SP group and high-dose SP group. These data idicate that, after intravenous injection of different doses of SP, both cardiac sympathetic nervous system activity and parasympathetic nervous system activity increase, and the function of cardiac autonomic nervous becomes instable and unbalanced. The effect of SP may be dose dependent, and it is possibly mediated by neurokinin-1(NK-1) receptor.

  9. HB-EGF function in cardiac valve development requires interaction with heparan sulfate proteoglycans.

    PubMed

    Iwamoto, Ryo; Mine, Naoki; Kawaguchi, Taichiro; Minami, Seigo; Saeki, Kazuko; Mekada, Eisuke

    2010-07-01

    HB-EGF, a member of the EGF family of growth factors, plays an important role in cardiac valve development by suppressing mesenchymal cell proliferation. Here, we show that HB-EGF must interact with heparan sulfate proteoglycans (HSPGs) to properly function in this process. In developing valves, HB-EGF is synthesized in endocardial cells but accumulates in the mesenchyme by interacting with HSPGs. Disrupting the interaction between HB-EGF and HSPGs in an ex vivo model of endocardial cushion explants resulted in increased mesenchymal cell proliferation. Moreover, homozygous knock-in mice (HB(Delta)(hb/)(Delta)(hb)) expressing a mutant HB-EGF that cannot bind to HSPGs developed enlarged cardiac valves with hyperproliferation of mesenchymal cells; this resulted in a phenotype that resembled that of Hbegf-null mice. Interestingly, although Hbegf-null mice had abnormal heart chambers and lung alveoli, HB(Delta)(hb/)(Delta)(hb) mice did not exhibit these defects. These results indicate that interactions with HSPGs are essential for the function of HB-EGF, especially in cardiac valve development, in which HB-EGF suppresses mesenchymal cell proliferation.

  10. Cardiac Amyloidosis Shows Decreased Diastolic Function as Assessed by Echocardiographic Parameterized Diastolic Filling.

    PubMed

    Salman, Katrin; Cain, Peter A; Fitzgerald, Benjamin T; Sundqvist, Martin G; Ugander, Martin

    2017-07-01

    Cardiac amyloidosis is a rare but serious condition with poor survival. One of the early findings by echocardiography is impaired diastolic function, even before the development of cardiac symptoms. Early diagnosis is important, permitting initiation of treatment aimed at improving survival. The parameterized diastolic filling (PDF) formalism entails describing the left ventricular filling pattern during early diastole using the mathematical equation for the motion of a damped harmonic oscillator. We hypothesized that echocardiographic PDF analysis could detect differences in diastolic function between patients with amyloidosis and controls. Pulsed-wave Doppler echocardiography of transmitral flow was measured in 13 patients with amyloid heart disease and 13 age- and gender matched controls. E- waves (2 to 3 per subject) were analyzed using in-house developed software. Nine PDF-derived parameters were obtained in addition to conventional echocardiographic parameters of diastolic function. Compared to controls, cardiac amyloidosis patients had a larger left atrial area (23.7 ± 7.5 cm 2 vs. 18.5 ± 4.8 cm 2 , p = 0.04), greater interventricular septum wall thickness (14.4 ± 2.6 mm vs. 9.3 ± 1.3 mm, p < 0.001), lower e' (0.06 ± 0.02 m/s vs. 0.09 ± 0.02 m/s, p < 0.001) and higher E/e' (18.0 ± 12.9 vs. 7.7 ± 1.3, p = 0.001). The PDF parameter peak resistive force was greater in cardiac amyloidosis patients compared to controls (17.9 ± 5.7 mN vs. 13.1 ± 3.1 mN, p = 0.03), and other PDF parameters did not differ. PDF analysis revealed that patients with cardiac amyloidosis had a greater peak resistive force compared to controls, consistent with a greater degree of diastolic dysfunction. PDF analysis may be useful in characterizing diastolic function in amyloid heart disease. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Clinical characteristics and vital and functional prognosis of out-of-hospital cardiac arrest survivors admitted to five cardiac intensive care units.

    PubMed

    Loma-Osorio, Pablo; Aboal, Jaime; Sanz, Maria; Caballero, Ángel; Vila, Montserrat; Lorente, Victoria; Sánchez-Salado, José Carlos; Sionis, Alessandro; Curós, Antoni; Lidón, Rosa-Maria

    2013-08-01

    Survivors of out-of-hospital cardiac arrest constitute an increasing patient population in cardiac intensive care units. Our aim was to characterize these patients and determine their vital and functional prognosis in accordance with the latest evidence. A multicenter, prospective register was constructed with information from patients admitted to 5 cardiac intensive care units from January 2010 through January 2012 with a diagnosis of resuscitated out-of-hospital cardiac arrest. The information included clinical status, cardiac arrest characteristics, in-hospital course, and vital and neurologic status at discharge and at 6 months. A total of 204 patients were included. In 64% of cases, a first shockable rhythm was identified. The time to return of spontaneous circulation was 29 (18) min. An etiologic diagnosis was made in 86% of patients; 44% were discharged with no neurologic sequelae; 40% died in the hospital. At 6 months, 79% of survivors at discharge were still alive and neurologically intact with minimal sequelae. Short resuscitation time, first recorded rhythm, pH on admission >7.1, absence of shock, and use of hypothermia were the independent variables associated with a good neurologic prognosis. Half the patients who recovered from out-of-hospital cardiac arrest had good neurologic prognosis at discharge, and 79% of survivors were alive and neurologically intact after 6 months of follow-up. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  12. Inhibition of Let-7 microRNA attenuates myocardial remodeling and improves cardiac function postinfarction in mice

    PubMed Central

    Tolonen, Anna-Maria; Magga, Johanna; Szabó, Zoltán; Viitala, Pirkko; Gao, Erhe; Moilanen, Anne-Mari; Ohukainen, Pauli; Vainio, Laura; Koch, Walter J; Kerkelä, Risto; Ruskoaho, Heikki; Serpi, Raisa

    2014-01-01

    The members of lethal-7 (Let-7) microRNA (miRNA) family are involved in regulation of cell differentiation and reprogramming of somatic cells into induced pluripotent stem cells. However, their function in the heart is not known. In this study, we examined the effect of inhibiting the function of Let-7c miRNA on the progression of postinfarction left ventricular (LV) remodeling in mice. Myocardial infarction was induced with permanent ligation of left anterior descending coronary artery with a 4-week follow-up period. Let-7c miRNA was inhibited with a specific antagomir administered intravenously. The inhibition of Let-7c miRNA downregulated the levels of mature Let-7c miRNA and its other closely related members of Let-7 family in the heart and resulted in increased expression of pluripotency-associated genes Oct4 and Sox2 in cardiac fibroblasts in vitro and in adult mouse heart in vivo. Importantly, Let-7c inhibitor prevented the deterioration of cardiac function postinfarction, as demonstrated by preserved LV ejection fraction and elevated cardiac output. Improvement in cardiac function by Let-7c inhibitor postinfarction was associated with decreased apoptosis, reduced fibrosis, and reduction in the number of discoidin domain receptor 2–positive fibroblasts, while the number of c-kit+ cardiac stem cells and Ki-67+ proliferating cells remained unaltered. In conclusion, inhibition of Let-7 miRNA may be beneficial for the prevention of postinfarction LV remodeling and progression of heart failure. PMID:25505600

  13. RNA splicing regulated by RBFOX1 is essential for cardiac function in zebrafish.

    PubMed

    Frese, Karen S; Meder, Benjamin; Keller, Andreas; Just, Steffen; Haas, Jan; Vogel, Britta; Fischer, Simon; Backes, Christina; Matzas, Mark; Köhler, Doreen; Benes, Vladimir; Katus, Hugo A; Rottbauer, Wolfgang

    2015-08-15

    Alternative splicing is one of the major mechanisms through which the proteomic and functional diversity of eukaryotes is achieved. However, the complex nature of the splicing machinery, its associated splicing regulators and the functional implications of alternatively spliced transcripts are only poorly understood. Here, we investigated the functional role of the splicing regulator rbfox1 in vivo using the zebrafish as a model system. We found that loss of rbfox1 led to progressive cardiac contractile dysfunction and heart failure. By using deep-transcriptome sequencing and quantitative real-time PCR, we show that depletion of rbfox1 in zebrafish results in an altered isoform expression of several crucial target genes, such as actn3a and hug. This study underlines that tightly regulated splicing is necessary for unconstrained cardiac function and renders the splicing regulator rbfox1 an interesting target for investigation in human heart failure and cardiomyopathy. © 2015. Published by The Company of Biologists Ltd.

  14. High Sensitivity Cardiac Troponin T and Cognitive Function in the Oldest Old: The Leiden 85-Plus Study.

    PubMed

    Bertens, Anne Suzanne; Sabayan, Behnam; de Craen, Anton J M; Van der Mast, Roos C; Gussekloo, Jacobijn

    2017-01-01

    Impaired cardiac function has been related to accelerated cognitive decline in late-life. To investigate whether higher levels of high sensitivity cardiac troponin T (hs-cTnT), a sensitive marker for myocardial injury, are associated with worse cognitive function in the oldest old. In 455 participants of the population-based Leiden 85-plus Study, hs-cTnT was measured at 86 years. Cognitive function was measured annually during four years with the Mini-Mental State Examination (MMSE). Participants in the highest gender-specific tertile of hs-cTnT had a 2.0-point lower baseline MMSE score than participants in the lowest tertile (95% confidence interval (CI) (95% CI 0.73-3.3), and had a 0.58-point steeper annual decline in MMSE during follow-up (95% CI 0.06-1.1). The associations remained after adjusting for sociodemographic and cardiovascular risk factors excluding those without a history of overt cardiac disease. In a population-based sample of the oldest old, higher levels of hs-cTnT were associated with worse cognitive function and faster cognitive decline, independently from cardiovascular risk factors and a history of overt cardiac disease.

  15. Cardiac integrins the ties that bind.

    PubMed

    Simpson, D G; Reaves, T A; Shih, D T; Burgess, W; Borg, T K; Terracio, L

    1998-01-01

    An elaborate series of morphogenetic events must be precisely coordinated during development to promote the formation of the elaborate three-dimensional structure of the normal heart. In this study we focus on discussing how interconnections between the cardiac myocyte and its surrounding environment regulate cardiac form and function. In vitro experiments from our laboratories provide direct evidence that cardiac cell shape is regulated by a dynamic interaction between constituents of the extracellular matrix (ECM) and by specific members of the integrin family of matrix receptors. Our data indicates that phenotypic information is stored in the tertiary structure and chemical identity of the ECM. This information appears to be actively communicated and transduced by the α1β1 integrin molecule into an intracellular signal that regulates cardiac cell shape and myofibrillar organization. In this study we have assessed the phenotypic consequences of suppressing the expression and accumulation of the α1 integrin molecule in aligned cultures of cardiac myocytes. In related experiments we have examined how the overexpression of α2 and α5 integrin, integrins normally not present or present at very low copy number on the cell surface of neonatal cardiac myocytes, affect cardiac protein metabolism. We also consider how biochemical signals and the mechanical signals mediated by the integrins may converge on common intracellular signaling pathways in the heart. Experiments with the whole embryo culture system indicate that angiotensin II, a peptide that carries information concerning cardiac load, plays a role in controling cardiac looping and the proliferation of myofibrils during development.

  16. A Tocotrienol-Enriched Formulation Protects against Radiation-Induced Changes in Cardiac Mitochondria without Modifying Late Cardiac Function or Structure

    PubMed Central

    Sridharan, Vijayalakshmi; Tripathi, Preeti; Aykin-Burns, Nukhet; Krager, Kimberly J; Sharma, Sunil K.; Moros, Eduardo G.; Melnyk, Stepan B.; Pavliv, Oleksandra; Hauer-Jensen, Martin; Boerma, Marjan

    2015-01-01

    Radiation-induced heart disease (RIHD) is a common and sometimes severe late side effect of radiation therapy for intrathoracic and chest wall tumors. We have previously shown that local heart irradiation in a rat model caused prolonged changes in mitochondrial respiration and increased susceptibility to mitochondrial permeability transition pore (mPTP) opening. Because tocotrienols are known to protect against oxidative stress-induced mitochondrial dysfunction, in this study, we examined the effects of tocotrienols on radiation-induced alterations in mitochondria, and structural and functional manifestations of RIHD. Male Sprague-Dawley rats received image-guided localized X irradiation to the heart to a total dose of 21 Gy. Twenty-four hours before irradiation, rats received a tocotrienol-enriched formulation or vehicle by oral gavage. Mitochondrial function and mitochondrial membrane parameters were studied at 2 weeks and 28 weeks after irradiation. In addition, cardiac function and histology were examined at 28 weeks. A single oral dose of the tocotrienol-enriched formulation preserved Bax/Bcl2 ratios and prevented mPTP opening and radiation-induced alterations in succinate-driven mitochondrial respiration. Nevertheless, the late effects of local heart irradiation pertaining to myocardial function and structure were not modified. Our studies suggest that a single dose of tocotrienols protects against radiation-induced mitochondrial changes, but these effects are not sufficient against long-term alterations in cardiac function or remodeling. PMID:25710576

  17. A tocotrienol-enriched formulation protects against radiation-induced changes in cardiac mitochondria without modifying late cardiac function or structure.

    PubMed

    Sridharan, Vijayalakshmi; Tripathi, Preeti; Aykin-Burns, Nukhet; Krager, Kimberly J; Sharma, Sunil K; Moros, Eduardo G; Melnyk, Stepan B; Pavliv, Oleksandra; Hauer-Jensen, Martin; Boerma, Marjan

    2015-03-01

    Radiation-induced heart disease (RIHD) is a common and sometimes severe late side effect of radiation therapy for intrathoracic and chest wall tumors. We have previously shown that local heart irradiation in a rat model caused prolonged changes in mitochondrial respiration and increased susceptibility to mitochondrial permeability transition pore (mPTP) opening. Because tocotrienols are known to protect against oxidative stress-induced mitochondrial dysfunction, in this study, we examined the effects of tocotrienols on radiation-induced alterations in mitochondria, and structural and functional manifestations of RIHD. Male Sprague-Dawley rats received image-guided localized X irradiation to the heart to a total dose of 21 Gy. Twenty-four hours before irradiation, rats received a tocotrienol-enriched formulation or vehicle by oral gavage. Mitochondrial function and mitochondrial membrane parameters were studied at 2 weeks and 28 weeks after irradiation. In addition, cardiac function and histology were examined at 28 weeks. A single oral dose of the tocotrienol-enriched formulation preserved Bax/Bcl2 ratios and prevented mPTP opening and radiation-induced alterations in succinate-driven mitochondrial respiration. Nevertheless, the late effects of local heart irradiation pertaining to myocardial function and structure were not modified. Our studies suggest that a single dose of tocotrienols protects against radiation-induced mitochondrial changes, but these effects are not sufficient against long-term alterations in cardiac function or remodeling.

  18. The changes in beta-adrenoceptor-mediated cardiac function in experimental hypothyroidism: the possible contribution of cardiac beta3-adrenoceptors.

    PubMed

    Arioglu, E; Guner, S; Ozakca, I; Altan, V M; Ozcelikay, A T

    2010-02-01

    Thyroid hormone deficiency has been reported to decrease expression and function of both beta(1)- and beta(2)-adrenoceptor in different tissues including heart. The purpose of this study was to examine the possible contribution of beta(3)-adrenoceptors to cardiac dysfunction in hypothyroidism. In addition, effect of this pathology on beta(1)- and beta(2)-adrenoceptor was investigated. Hypothyroidism was induced by adding methimazole (300 mg/l) to drinking water of rats for 8 weeks. Cardiac hemodynamic parameters were measured in anesthetised rats in vivo. Responses to beta-adrenoceptor agonists were examined in rat papillary muscle in vitro. We also studied the effect of hypotyroidism on mRNA expression of beta-adrenoceptors, Gialpha, GRK, and eNOS in rat heart. All of the hemodynamic parameters (systolic, diastolic and mean arterial pressure, left ventricular pressure, heart rate, +dp/dt, and -dp/dt) were significantly reduced by the methimazole treatment. The negative inotropic effect elicited by BRL 37344 (a beta(3)-adrenoceptor preferential agonist) and positive inotropic effects produced by isoprenaline and noradrenaline, respectively, were significantly decreased in papillary muscle of hypothyroid rats as compared to those of controls. On the other hand, hypothyroidism resulted in increased cardiac beta(2)- and beta(3)-adrenoceptor, Gialpha(2), Gialpha(3), GRK3, and eNOS mRNA expressions. However, beta(1)-adrenoceptor and GRK2 mRNA expressions were not changed significantly in this pathology. These results show that mRNA expression of beta(3)-adrenoceptors as well as the signalling pathway components mediated through beta(3)-adrenoceptors are significantly increased in hypothyroid rat heart. Since we could not correlate these alternates with the decreased negative inotropic response mediated by this receptor subtype, it is not clear whether these changes are important for hypothyroid induced reduction in cardiac function.

  19. Preservation of cardiac function by prolonged action potentials in mice deficient of KChIP2.

    PubMed

    Grubb, Søren; Aistrup, Gary L; Koivumäki, Jussi T; Speerschneider, Tobias; Gottlieb, Lisa A; Mutsaers, Nancy A M; Olesen, Søren-Peter; Calloe, Kirstine; Thomsen, Morten B

    2015-08-01

    Inherited ion channelopathies and electrical remodeling in heart disease alter the cardiac action potential with important consequences for excitation-contraction coupling. Potassium channel-interacting protein 2 (KChIP2) is reduced in heart failure and interacts under physiological conditions with both Kv4 to conduct the fast-recovering transient outward K(+) current (Ito,f) and with CaV1.2 to mediate the inward L-type Ca(2+) current (ICa,L). Anesthetized KChIP2(-/-) mice have normal cardiac contraction despite the lower ICa,L, and we hypothesized that the delayed repolarization could contribute to the preservation of contractile function. Detailed analysis of current kinetics shows that only ICa,L density is reduced, and immunoblots demonstrate unaltered CaV1.2 and CaVβ₂ protein levels. Computer modeling suggests that delayed repolarization would prolong the period of Ca(2+) entry into the cell, thereby augmenting Ca(2+)-induced Ca(2+) release. Ca(2+) transients in disaggregated KChIP2(-/-) cardiomyocytes are indeed comparable to wild-type transients, corroborating the preserved contractile function and suggesting that the compensatory mechanism lies in the Ca(2+)-induced Ca(2+) release event. We next functionally probed dyad structure, ryanodine receptor Ca(2+) sensitivity, and sarcoplasmic reticulum Ca(2+) load and found that increased temporal synchronicity of the Ca(2+) release in KChIP2(-/-) cardiomyocytes may reflect improved dyad structure aiding the compensatory mechanisms in preserving cardiac contractile force. Thus the bimodal effect of KChIP2 on Ito,f and ICa,L constitutes an important regulatory effect of KChIP2 on cardiac contractility, and we conclude that delayed repolarization and improved dyad structure function together to preserve cardiac contraction in KChIP2(-/-) mice. Copyright © 2015 the American Physiological Society.

  20. Combining wet and dry research: experience with model development for cardiac mechano-electric structure-function studies

    PubMed Central

    Quinn, T. Alexander; Kohl, Peter

    2013-01-01

    Since the development of the first mathematical cardiac cell model 50 years ago, computational modelling has become an increasingly powerful tool for the analysis of data and for the integration of information related to complex cardiac behaviour. Current models build on decades of iteration between experiment and theory, representing a collective understanding of cardiac function. All models, whether computational, experimental, or conceptual, are simplified representations of reality and, like tools in a toolbox, suitable for specific applications. Their range of applicability can be explored (and expanded) by iterative combination of ‘wet’ and ‘dry’ investigation, where experimental or clinical data are used to first build and then validate computational models (allowing integration of previous findings, quantitative assessment of conceptual models, and projection across relevant spatial and temporal scales), while computational simulations are utilized for plausibility assessment, hypotheses-generation, and prediction (thereby defining further experimental research targets). When implemented effectively, this combined wet/dry research approach can support the development of a more complete and cohesive understanding of integrated biological function. This review illustrates the utility of such an approach, based on recent examples of multi-scale studies of cardiac structure and mechano-electric function. PMID:23334215

  1. Novel approaches to determine contractile function of the isolated adult zebrafish ventricular cardiac myocyte.

    PubMed

    Dvornikov, Alexey V; Dewan, Sukriti; Alekhina, Olga V; Pickett, F Bryan; de Tombe, Pieter P

    2014-05-01

    The zebrafish (Danio rerio) has been used extensively in cardiovascular biology, but mainly in the study of heart development. The relative ease of its genetic manipulation may indicate the suitability of this species as a cost-effective model system for the study of cardiac contractile biology. However, whether the zebrafish heart is an appropriate model system for investigations pertaining to mammalian cardiac contractile structure-function relationships remains to be resolved. Myocytes were isolated from adult zebrafish hearts by enzymatic digestion, attached to carbon rods, and twitch force and intracellular Ca(2+) were measured. We observed the modulation of twitch force, but not of intracellular Ca(2+), by both extracellular [Ca(2+)] and sarcomere length. In permeabilized cells/myofibrils, we found robust myofilament length-dependent activation. Moreover, modulation of myofilament activation-relaxation and force redevelopment kinetics by varied Ca(2+) activation levels resembled that found previously in mammalian myofilaments. We conclude that the zebrafish is a valid model system for the study of cardiac contractile structure-function relationships.

  2. The parasitic copepod Lernaeocera branchialis negatively affects cardiorespiratory function in Gadus morhua.

    PubMed

    Behrens, J W; Seth, H; Axelsson, M; Buchmann, K

    2014-05-01

    The parasitic copepod Lernaeocera branchialis had a negative effect on cardiorespiratory function in Atlantic cod Gadus morhua such that it caused pronounced cardiac dysfunction with irregular rhythm and reduced stroke amplitude compared with uninfected fish. In addition, parasite infection depressed the postprandial cardiac output and oxygen consumption. © 2014 The Fisheries Society of the British Isles.

  3. Assessment of cardiac sympathetic neuronal function using PET imaging.

    PubMed

    Bengel, Frank M; Schwaiger, Markus

    2004-01-01

    The autonomic nervous system plays a key role for regulation of cardiac performance, and the importance of alterations of innervation in the pathophysiology of various heart diseases has been increasingly emphasized. Nuclear imaging techniques have been established that allow for global and regional investigation of the myocardial nervous system. The guanethidine analog iodine 123 metaiodobenzylguanidine (MIBG) has been introduced for scintigraphic mapping of presynaptic sympathetic innervation and is available today for imaging on a broad clinical basis. Not much later than MIBG, positron emission tomography (PET) has also been established for characterizing the cardiac autonomic nervous system. Although PET is methodologically demanding and less widely available, it provides substantial advantages. High spatial and temporal resolution along with routinely available attenuation correction allows for detailed definition of tracer kinetics and makes noninvasive absolute quantification a reality. Furthermore, a series of different radiolabeled catecholamines, catecholamine analogs, and receptor ligands are available. Those are often more physiologic than MIBG and well understood with regard to their tracer physiologic properties. PET imaging of sympathetic neuronal function has been successfully applied to gain mechanistic insights into myocardial biology and pathology. Available tracers allow dissection of processes of presynaptic and postsynaptic innervation contributing to cardiovascular disease. This review summarizes characteristics of currently available PET tracers for cardiac neuroimaging along with the major findings derived from their application in health and disease.

  4. Testosterone receptor blockade after trauma-hemorrhage improves cardiac and hepatic functions in males.

    PubMed

    Remmers, D E; Wang, P; Cioffi, W G; Bland, K I; Chaudry, I H

    1997-12-01

    Although studies have shown that testosterone receptor blockade with flutamide after hemorrhage restores the depressed immune function, it remains unknown whether administration of flutamide following trauma and hemorrhage and resuscitation has any salutary effects on the depressed cardiovascular and hepatocellular functions. To study this, male rats underwent a laparotomy (representing trauma) and were then bled and maintained at a mean arterial pressure (MAP) of 40 mmHg until the animals could not maintain this pressure. Ringer lactate was given to maintain a MAP of 40 mmHg until 40% of the maximal shed blood volume was returned in the form of Ringer lactate. The rats were then resuscitated with four times the shed blood volume in the form of Ringer lactate over 60 min. Flutamide (25 mg/kg) or an equal volume of the vehicle propanediol was injected subcutaneously 15 min before the end of resuscitation. Various in vivo heart performance parameters (e.g., maximal rate of the pressure increase or decrease), cardiac output, and hepatocellular function (i.e., the maximum velocity and the overall efficiency of indocyanine green clearance) were determined at 20 h after resuscitation. Additionally, hepatic microvascular blood flow (HMBF) was determined using a laser Doppler flowmeter. The results indicate that left ventricular performance, cardiac output, HMBF, and hepatocellular function decreased significantly at 20 h after the completion of trauma, hemorrhage, and resuscitation. Administration of the testosterone receptor blocker flutamide, however, significantly improved cardiac performance, HMBF, and hepatocellular function. Thus flutamide appears to be a novel and useful adjunct for improving cardiovascular and hepatocellular functions in males following trauma and hemorrhagic shock.

  5. Autonomic control of cardiac function and myocardial oxygen consumption during hypoxic hypoxia.

    NASA Technical Reports Server (NTRS)

    Erickson, H. H.; Stone, H. L.

    1972-01-01

    Investigation in 19 conscious dogs of the importance of the sympathetic nervous system in the coronary and cardiac response to altitude (hypoxic) hypoxia. Beta-adrenergic blockade was used to minimize the cardiac effect associated with sympathetic receptors. It is shown that the autonomic nervous system, and particularly the sympathetic nervous system, is responsible for the increase in ventricular function and myocardial oxygen consumption that occurs during hypoxia. Minimizing this response through appropriate conditioning and training may improve the operating efficiency of the heart and reduce the hazard of hypoxia and other environmental stresses, such as acceleration, which are encountered in advanced aircraft systems.

  6. [Sodium hydrosulfide improves cardiac functions and structures in rats with chronic heart failure].

    PubMed

    Li, Xiao-hui; Zhang, Chao-ying; Zhang, Ting

    2011-11-22

    an amelioration of myocardial damage, an alleviation of myocardial fiber changes and a decrease in myocardial collagen content (particularly type-I collagen). Compared with the sham operation and shunt + NaHS groups, the shunt group displayed increased right ventricular hydroxyproline (mg×g(-1)·pro: 1.32 ± 0.25 vs 0.89 ± 0.18 and 0.83 ± 0.19, all P < 0.05). H(2)S may improve cardiac functions and ameliorate cardiac structures in rats with chronic heart failure probably through dilating the blood vessels and affecting the extracellular collagen metabolism.

  7. Cardiac Med1 deletion promotes early lethality, cardiac remodeling, and transcriptional reprogramming

    PubMed Central

    Spitler, Kathryn M.; Ponce, Jessica M.; Oudit, Gavin Y.; Hall, Duane D.

    2017-01-01

    The mediator complex, a multisubunit nuclear complex, plays an integral role in regulating gene expression by acting as a bridge between transcription factors and RNA polymerase II. Genetic deletion of mediator subunit 1 (Med1) results in embryonic lethality, due in large part to impaired cardiac development. We first established that Med1 is dynamically expressed in cardiac development and disease, with marked upregulation of Med1 in both human and murine failing hearts. To determine if Med1 deficiency protects against cardiac stress, we generated two cardiac-specific Med1 knockout mouse models in which Med1 is conditionally deleted (Med1cKO mice) or inducibly deleted in adult mice (Med1cKO-MCM mice). In both models, cardiac deletion of Med1 resulted in early lethality accompanied by pronounced changes in cardiac function, including left ventricular dilation, decreased ejection fraction, and pathological structural remodeling. We next defined how Med1 deficiency alters the cardiac transcriptional profile using RNA-sequencing analysis. Med1cKO mice demonstrated significant dysregulation of genes related to cardiac metabolism, in particular genes that are coordinated by the transcription factors Pgc1α, Pparα, and Errα. Consistent with the roles of these transcription factors in regulation of mitochondrial genes, we observed significant alterations in mitochondrial size, mitochondrial gene expression, complex activity, and electron transport chain expression under Med1 deficiency. Taken together, these data identify Med1 as an important regulator of vital cardiac gene expression and maintenance of normal heart function. NEW & NOTEWORTHY Disruption of transcriptional gene expression is a hallmark of dilated cardiomyopathy; however, its etiology is not well understood. Cardiac-specific deletion of the transcriptional coactivator mediator subunit 1 (Med1) results in dilated cardiomyopathy, decreased cardiac function, and lethality. Med1 deletion disrupted cardiac

  8. Cardiac myosin missense mutations cause dilated cardiomyopathy in mouse models and depress molecular motor function.

    PubMed

    Schmitt, Joachim P; Debold, Edward P; Ahmad, Ferhaan; Armstrong, Amy; Frederico, Andrea; Conner, David A; Mende, Ulrike; Lohse, Martin J; Warshaw, David; Seidman, Christine E; Seidman, J G

    2006-09-26

    Dilated cardiomyopathy (DCM) leads to heart failure, a leading cause of death in industrialized nations. Approximately 30% of DCM cases are genetic in origin, with some resulting from point mutations in cardiac myosin, the molecular motor of the heart. The effects of these mutations on myosin's molecular mechanics have not been determined. We have engineered two murine models characterizing the physiological, cellular, and molecular effects of DCM-causing missense mutations (S532P and F764L) in the alpha-cardiac myosin heavy chain and compared them with WT mice. Mutant mice developed morphological and functional characteristics of DCM consistent with the human phenotypes. Contractile function of isolated myocytes was depressed and preceded left ventricular dilation and reduced fractional shortening. In an in vitro motility assay, both mutant cardiac myosins exhibited a reduced ability to translocate actin (V(actin)) but had similar force-generating capacities. Actin-activated ATPase activities were also reduced. Single-molecule laser trap experiments revealed that the lower V(actin) in the S532P mutant was due to a reduced ability of the motor to generate a step displacement and an alteration of the kinetics of its chemomechanical cycle. These results suggest that the depressed molecular function in cardiac myosin may initiate the events that cause the heart to remodel and become pathologically dilated.

  9. Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function.

    PubMed

    Chiellini, Grazia; Frascarelli, Sabina; Ghelardoni, Sandra; Carnicelli, Vittoria; Tobias, Sandra C; DeBarber, Andrea; Brogioni, Simona; Ronca-Testoni, Simonetta; Cerbai, Elisabetta; Grandy, David K; Scanlan, Thomas S; Zucchi, Riccardo

    2007-05-01

    3-Iodothyronamine T1AM is a novel endogenous thyroid hormone derivative that activates the G protein-coupled receptor known as trace anime-associated receptor 1 (TAAR1). In the isolated working rat heart and in rat cardiomyocytes, T1AM produced a reversible, dose-dependent negative inotropic effect (e.g., 27+/-5, 51+/-3, and 65+/-2% decrease in cardiac output at 19, 25, and 38 microM concentration, respectively). An independent negative chronotropic effect was also observed. The hemodynamic effects of T1AM were remarkably increased in the presence of the tyrosine kinase inhibitor genistein, whereas they were attenuated in the presence of the tyrosine phosphatase inhibitor vanadate. No effect was produced by inhibitors of protein kinase A, protein kinase C, calcium-calmodulin kinase II, phosphatidylinositol-3-kinase, or MAP kinases. Tissue cAMP levels were unchanged. In rat ventricular tissue, Western blot experiments with antiphosphotyrosine antibodies showed reduced phosphorylation of microsomal and cytosolic proteins after perfusion with synthetic T1AM; reverse transcriptase-polymerase chain reaction experiments revealed the presence of transcripts for at least 5 TAAR subtypes; specific and saturable binding of [125I]T1AM was observed, with a dissociation constant in the low micromolar range (5 microM); and endogenous T1AM was detectable by tandem mass spectrometry. In conclusion, our findings provide evidence for the existence of a novel aminergic system modulating cardiac function.

  10. An Echocardiographic Study of Left Ventricular Size and Cardiac Function in Adolescent Females with Anorexia Nervosa.

    PubMed

    Escudero, Carolina A; Potts, James E; Lam, Pei-Yoong; De Souza, Astrid M; Mugford, Gerald J; Sandor, George G S

    2016-01-01

    This retrospective case-control study investigated cardiac dimensions and ventricular function in female adolescents with anorexia nervosa (AN) compared with controls. Echocardiographic measurements of left ventricular (LV) dimensions, LV mass index, left atrial size and cardiac index were made. Detailed measures of systolic and diastolic ventricular function were made including tissue Doppler imaging. Patients were stratified by body mass index ≤10th percentile (AN ≤ 10th) and >10th percentile (AN > 10th). Ninety-five AN patients and 58 controls were included. AN and AN ≤ 10th groups had reduced LV dimensions, LV mass index, left atrial size and cardiac index compared with controls. There were no differences between groups in measures of systolic function. Measures of diastolic tissue Doppler imaging were decreased in AN and AN ≤ 10th. No differences in echocardiographic measurements existed between controls and AN > 10th. Female adolescents with AN have preserved systolic function and abnormalities of diastolic ventricular function. AN ≤ 10th may be a higher risk group. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.

  11. Exercise Type Affects Cardiac Vagal Autonomic Recovery After a Resistance Training Session.

    PubMed

    Mayo, Xián; Iglesias-Soler, Eliseo; Fariñas-Rodríguez, Juán; Fernández-Del-Olmo, Miguel; Kingsley, J Derek

    2016-09-01

    Mayo, X, Iglesias-Soler, E, Fariñas-Rodríguez, J, Fernández-del-Olmo, M, and Kingsley, JD. Exercise type affects cardiac vagal autonomic recovery after a resistance training session. J Strength Cond Res 30(9): 2565-2573, 2016-Resistance training sessions involving different exercises and set configurations may affect the acute cardiovascular recovery pattern. We explored the interaction between exercise type and set configuration on the postexercise cardiovagal withdrawal measured by heart rate variability and their hypotensive effect. Thirteen healthy participants (10 repetitions maximum [RM] bench press: 56 ± 10 kg; parallel squat: 91 ± 13 kg) performed 6 sessions corresponding to 2 exercises (Bench press vs. Parallel squat), 2 set configurations (Failure session vs. Interrepetition rest session), and a Control session of each exercise. Load (10RM), volume (5 sets), and rest (720 seconds) were equated between exercises and set configurations. Parallel squat produced higher reductions in cardiovagal recovery vs. Bench press (p = 0.001). These differences were dependent on the set configuration, with lower values in Parallel squat vs. Bench press for Interrepetition rest session (1.816 ± 0.711 vs. 2.399 ± 0.739 Ln HF/IRR × 10, p = 0.002), but not for Failure session (1.647 ± 0.904 vs. 1.808 ± 0.703 Ln HF/IRR × 10, p > 0.05). Set configuration affected the cardiovagal recovery, with lower values in Failure session in comparison with Interrepetition rest (p = 0.027) and Control session (p = 0.022). Postexercise hypotension was not dependent on the exercise type (p > 0.05) but was dependent on the set configuration, with lower values of systolic (p = 0.004) and diastolic (p = 0.011) blood pressure after the Failure session but not after an Interrepetition rest session in comparison with the Control session (p > 0.05). These results suggest that the exercise type and an Interrepetition rest design could blunt the decrease of cardiac vagal activity after

  12. Age-specific associations between cardiac vagal activity and functional somatic symptoms: a population-based study.

    PubMed

    Tak, Lineke M; Janssens, Karin A M; Dietrich, Andrea; Slaets, Joris P J; Rosmalen, Judith G M

    2010-01-01

    Functional somatic symptoms (FSS) are symptoms not explained by underlying organic pathology. It has frequently been suggested that dysfunction of the autonomic nervous system (ANS) contributes to the development of FSS. We hypothesized that decreased cardiac vagal activity is cross-sectionally and prospectively associated with the number of FSS in the general population. This study was performed in a population-based cohort of 774 adults (45.1% male, mean age +/- SD 53.5 +/- 10.7 years). Participants completed the somatization section of the Composite International Diagnostic Interview surveying the presence of 43 FSS. ANS function was assessed by spectral analysis of heart rate variability in the high-frequency band (HRV-HF), reflecting cardiac vagal activity. Follow-up measurements of HRV-HF and FSS were performed approximately 2 years later. Linear regression analyses, with adjustments for gender, age, body mass index, anxiety, depression, smoking, alcohol use, and frequency of exercise, revealed an interaction of cardiac vagal activity with age: HRV-HF was negatively associated with FSS in adults 52 years (beta = 0.13, t = 2.51, p = 0.012). Longitudinal analysis demonstrated a similar pattern. Decreased cardiac vagal activity is associated with a higher number of FSS in adults aged cardiac vagal activity and FSS in adults aged >52 years needs further exploration. The role of age should be acknowledged in future studies on ANS function in the etiology of FSS. (c) 2010 S. Karger AG, Basel.

  13. Functional Tissue Engineering: A Prevascularized Cardiac Muscle Construct for Validating Human Mesenchymal Stem Cells Engraftment Potential In Vitro

    PubMed Central

    Fuseler, John W.; Potts, Jay D.; Davis, Jeffrey M.; Price, Robert L.

    2018-01-01

    The influence of somatic stem cells in the stimulation of mammalian cardiac muscle regeneration is still in its early stages, and so far, it has been difficult to determine the efficacy of the procedures that have been employed. The outstanding question remains whether stem cells derived from the bone marrow or some other location within or outside of the heart can populate a region of myocardial damage and transform into tissue-specific differentiated progenies, and also exhibit functional synchronization. Consequently, this necessitates the development of an appropriate in vitro three-dimensional (3D) model of cardiomyogenesis and prompts the development of a 3D cardiac muscle construct for tissue engineering purposes, especially using the somatic stem cell, human mesenchymal stem cells (hMSCs). To this end, we have created an in vitro 3D functional prevascularized cardiac muscle construct using embryonic cardiac myocytes (eCMs) and hMSCs. First, to generate the prevascularized scaffold, human cardiac microvascular endothelial cells (hCMVECs) and hMSCs were cocultured onto a 3D collagen cell carrier (CCC) for 7 days under vasculogenic culture conditions; hCMVECs/hMSCs underwent maturation, differentiation, and morphogenesis characteristic of microvessels, and formed dense vascular networks. Next, the eCMs and hMSCs were cocultured onto this generated prevascularized CCCs for further 7 or 14 days in myogenic culture conditions. Finally, the vascular and cardiac phenotypic inductions were characterized at the morphological, immunological, biochemical, molecular, and functional levels. Expression and functional analyses of the differentiated progenies revealed neo-cardiomyogenesis and neo-vasculogenesis. In this milieu, for instance, not only were hMSCs able to couple electromechanically with developing eCMs but were also able to contribute to the developing vasculature as mural cells, respectively. Hence, our unique 3D coculture system provides us a reproducible

  14. Teaching Cardiac Autonomic Function Dynamics Employing the Valsalva (Valsalva-Weber) Maneuver

    ERIC Educational Resources Information Center

    Junqueira, Luiz Fernando, Jr.

    2008-01-01

    In this report, a brief history of the Valsalva (Valsalva-Weber) maneuver is outlined, followed by an explanation on the use of this approach for the evaluation of cardiac autonomic function based on underlying heart rate changes. The most important methodological and interpretative aspects of the Valsalva-Weber maneuver are critically updated,…

  15. Chronic fatigue syndrome: illness severity, sedentary lifestyle, blood volume and evidence of diminished cardiac function.

    PubMed

    Hurwitz, Barry E; Coryell, Virginia T; Parker, Meela; Martin, Pedro; Laperriere, Arthur; Klimas, Nancy G; Sfakianakis, George N; Bilsker, Martin S

    2009-10-19

    The study examined whether deficits in cardiac output and blood volume in a CFS (chronic fatigue syndrome) cohort were present and linked to illness severity and sedentary lifestyle. Follow-up analyses assessed whether differences in cardiac output levels between CFS and control groups were corrected by controlling for cardiac contractility and TBV (total blood volume). The 146 participants were subdivided into two CFS groups based on symptom severity data, severe (n=30) and non-severe (n=26), and two healthy non-CFS control groups based on physical activity, sedentary (n=58) and non-sedentary (n=32). Controls were matched to CFS participants using age, gender, ethnicity and body mass. Echocardiographic measures indicated that the severe CFS participants had 10.2% lower cardiac volume (i.e. stroke index and end-diastolic volume) and 25.1% lower contractility (velocity of circumferential shortening corrected by heart rate) than the control groups. Dual tag blood volume assessments indicated that the CFS groups had lower TBV, PV (plasma volume) and RBCV (red blood cell volume) than control groups. Of the CFS subjects with a TBV deficit (i.e. > or = 8% below ideal levels), the mean+/-S.D. percentage deficit in TBV, PV and RBCV were -15.4+/-4.0, -13.2+/-5.0 and -19.1+/-6.3% respectively. Lower cardiac volume levels in CFS were substantially corrected by controlling for prevailing TBV deficits, but were not affected by controlling for cardiac contractility levels. Analyses indicated that the TBV deficit explained 91-94% of the group differences in cardiac volume indices. Group differences in cardiac structure were offsetting and, hence, no differences emerged for left ventricular mass index. Therefore the findings indicate that lower cardiac volume levels, displayed primarily by subjects with severe CFS, were not linked to diminished cardiac contractility levels, but were probably a consequence of a co-morbid hypovolaemic condition. Further study is needed to address

  16. Functional Cardiac Magnetic Resonance Imaging (MRI) in the Assessment of Myocardial Viability and Perfusion

    PubMed Central

    2003-01-01

    Executive Summary Objective The objective of this health technology policy assessment was to determine the effectiveness safety and cost-effectiveness of using functional cardiac magnetic resonance imaging (MRI) for the assessment of myocardial viability and perfusion in patients with coronary artery disease and left ventricular dysfunction. Results Functional MRI has become increasingly investigated as a noninvasive method for assessing myocardial viability and perfusion. Most patients in the published literature have mild to moderate impaired LV function. It is possible that the severity of LV dysfunction may be an important factor that can alter the diagnostic accuracy of imaging techniques. There is some evidence of comparable or better performance of functional cardiac MRI for the assessment of myocardial viability and perfusion compared with other imaging techniques. However limitations to most of the studies included: Functional cardiac MRI studies that assess myocardial viability and perfusion have had small sample sizes. Some studies assessed myocardial viability/perfusion in patients who had already undergone revascularization, or excluded patients with a prior MI (Schwitter et al., 2001). Lack of explicit detail of patient recruitment. Patients with LVEF >35%. Interstudy variability in post MI imaging time(including acute or chronic MI), when patients with a prior MI were included. Poor interobserver agreement (kappa statistic) in the interpretation of the results. Traditionally, 0.80 is considered “good”. Cardiac MRI measurement of myocardial perfusion to as an adjunct tool to help diagnose CAD (prior to a definitive coronary angiography) has also been examined in some studies, with methodological limitations, yielding comparable results. Many studies examining myocardial viability and perfusion report on the accuracy of imaging methods with limited data on long-term patient outcome and management. Kim et al. (2000) revealed that the transmural

  17. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddad, Rami, E-mail: rami.haddad@mail.mcgill.ca; Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2; Kasneci, Amanda, E-mail: amanda.kasneci@mail.mcgill.ca

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentarymore » or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation.

  18. Translating golden retriever muscular dystrophy microarray findings to novel biomarkers for cardiac/skeletal muscle function in Duchenne muscular dystrophy.

    PubMed

    Galindo, Cristi L; Soslow, Jonathan H; Brinkmeyer-Langford, Candice L; Gupte, Manisha; Smith, Holly M; Sengsayadeth, Seng; Sawyer, Douglas B; Benson, D Woodrow; Kornegay, Joe N; Markham, Larry W

    2016-04-01

    In Duchenne muscular dystrophy (DMD), abnormal cardiac function is typically preceded by a decade of skeletal muscle disease. Molecular reasons for differences in onset and progression of these muscle groups are unknown. Human biomarkers are lacking. We analyzed cardiac and skeletal muscle microarrays from normal and golden retriever muscular dystrophy (GRMD) dogs (ages 6, 12, or 47+ mo) to gain insight into muscle dysfunction and to identify putative DMD biomarkers. These biomarkers were then measured using human DMD blood samples. We identified GRMD candidate genes that might contribute to the disparity between cardiac and skeletal muscle disease, focusing on brain-derived neurotropic factor (BDNF) and osteopontin (OPN/SPP1, hereafter indicated as SPP1). BDNF was elevated in cardiac muscle of younger GRMD but was unaltered in skeletal muscle, while SPP1 was increased only in GRMD skeletal muscle. In human DMD, circulating levels of BDNF were inversely correlated with ventricular function and fibrosis, while SPP1 levels correlated with skeletal muscle function. These results highlight gene expression patterns that could account for differences in cardiac and skeletal disease in GRMD. Most notably, animal model-derived data were translated to DMD and support use of BDNF and SPP1 as biomarkers for cardiac and skeletal muscle involvement, respectively.

  19. Cardiac function and perfusion dynamics measured on a beat-by-beat basis in the live mouse using ultra-fast 4D optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Ford, Steven J.; Deán-Ben, Xosé L.; Razansky, Daniel

    2015-03-01

    The fast heart rate (~7 Hz) of the mouse makes cardiac imaging and functional analysis difficult when studying mouse models of cardiovascular disease, and cannot be done truly in real-time and 3D using established imaging modalities. Optoacoustic imaging, on the other hand, provides ultra-fast imaging at up to 50 volumetric frames per second, allowing for acquisition of several frames per mouse cardiac cycle. In this study, we combined a recently-developed 3D optoacoustic imaging array with novel analytical techniques to assess cardiac function and perfusion dynamics of the mouse heart at high, 4D spatiotemporal resolution. In brief, the heart of an anesthetized mouse was imaged over a series of multiple volumetric frames. In another experiment, an intravenous bolus of indocyanine green (ICG) was injected and its distribution was subsequently imaged in the heart. Unique temporal features of the cardiac cycle and ICG distribution profiles were used to segment the heart from background and to assess cardiac function. The 3D nature of the experimental data allowed for determination of cardiac volumes at ~7-8 frames per mouse cardiac cycle, providing important cardiac function parameters (e.g., stroke volume, ejection fraction) on a beat-by-beat basis, which has been previously unachieved by any other cardiac imaging modality. Furthermore, ICG distribution dynamics allowed for the determination of pulmonary transit time and thus additional quantitative measures of cardiovascular function. This work demonstrates the potential for optoacoustic cardiac imaging and is expected to have a major contribution toward future preclinical studies of animal models of cardiovascular health and disease.

  20. Cardiac diastolic function after recovery from pre-eclampsia.

    PubMed

    Soma-Pillay, P; Louw, M C; Adeyemo, A O; Makin, J; Pattinson, R C

    Pre-eclampsia is associated with significant changes to the cardiovascular system during pregnancy. Eccentric and concentric remodelling of the left ventricle occurs, resulting in impaired contractility and diastolic dysfunction. It is unclear whether these structural and functional changes resolve completely after delivery. The objective of the study was to determine cardiac diastolic function at delivery and one year post-partum in women with severe pre-eclampsia, and to determine possible future cardiovascular risk. This was a descriptive study performed at Steve Biko Academic Hospital, a tertiary referral hospital in Pretoria, South Africa. Ninety-six women with severe preeclampsia and 45 normotensive women with uncomplicated pregnancies were recruited during the delivery admission. Seventy-four (77.1%) women in the pre-eclamptic group were classified as a maternal near miss. Transthoracic Doppler echocardiography was performed at delivery and one year post-partum. At one year post-partum, women with pre-eclampsia had a higher diastolic blood pressure (p = 0.001) and body mass index (p = 0.02) than women in the normotensive control group. Women with early onset pre-eclampsia requiring delivery prior to 34 weeks' gestation had an increased risk of diastolic dysfunction at one year post-partum (RR 3.41, 95% CI: 1.11-10.5, p = 0.04) and this was irrespective of whether the patient had chronic hypertension or not. Women who develop early-onset pre-eclampsia requiring delivery before 34 weeks are at a significant risk of developing cardiac diastolic dysfunction one year after delivery compared to normotensive women with a history of a low-risk pregnancy.

  1. Shrink-induced biomimetic wrinkled substrates for functional cardiac cell alignment and culture.

    PubMed

    Mendoza, Nicole; Tu, Roger; Chen, Aaron; Lee, Eugene; Khine, Michelle

    2014-01-01

    The anisotropic alignment of cardiomyocytes in native myocardium tissue is a functional feature that is absent in traditional in vitro cardiac cell culture. Microenvironmental factors cue structural organization of the myocardium, which promotes the mechanical contractile properties and electrophysiological patterns seen in mature cardiomyocytes. Current nano- and microfabrication techniques, such as photolithography, generate simplified cell culture topographies that are not truly representative of the multifaceted and multi-scale fibrils of the cardiac extracellular matrix. In addition, such technologies are costly and require a clean room for fabrication. This chapter offers an easy, fast, robust, and inexpensive fabrication of biomimetic multi-scale wrinkled surfaces through the process of plasma treating and shrinking prestressed thermoplastic. Additionally, this chapter includes techniques for culturing stem cells and their cardiac derivatives on these substrates. Importantly, this wrinkled cell culture platform is compatible with both fluorescence and bright-field imaging; real-time physiological monitoring of CM action potential propagation and contraction properties can elucidate cardiotoxicity drug effects.

  2. The contributions of cardiac myosin binding protein C and troponin I phosphorylation to β‐adrenergic enhancement of in vivo cardiac function

    PubMed Central

    Gresham, Kenneth S.

    2016-01-01

    Key points β‐adrenergic stimulation increases cardiac myosin binding protein C (MyBP‐C) and troponin I phosphorylation to accelerate pressure development and relaxation in vivo, although their relative contributions remain unknown.Using a novel mouse model lacking protein kinase A‐phosphorylatable troponin I (TnI) and MyBP‐C, we examined in vivo haemodynamic function before and after infusion of the β‐agonist dobutamine.Mice expressing phospho‐ablated MyBP‐C displayed cardiac hypertrophy and prevented full acceleration of pressure development and relaxation in response to dobutamine, whereas expression of phosphor‐ablated TnI alone had little effect on the acceleration of contractile function in response to dobutamine.Our data demonstrate that MyBP‐C phosphorylation is the principal mediator of the contractile response to increased β‐agonist stimulation in vivo.These results help us understand why MyBP‐C dephosphorylation in the failing heart contributes to contractile dysfunction and decreased adrenergic reserve in response to acute stress. Abstract β‐adrenergic stimulation plays a critical role in accelerating ventricular contraction and speeding relaxation to match cardiac output to changing circulatory demands. Two key myofilaments proteins, troponin I (TnI) and myosin binding protein‐C (MyBP‐C), are phosphorylated following β‐adrenergic stimulation; however, their relative contributions to the enhancement of in vivo cardiac contractility are unknown. To examine the roles of TnI and MyBP‐C phosphorylation in β‐adrenergic‐mediated enhancement of cardiac function, transgenic (TG) mice expressing non‐phosphorylatable TnI protein kinase A (PKA) residues (i.e. serine to alanine substitution at Ser23/24; TnIPKA−) were bred with mice expressing non‐phosphorylatable MyBP‐C PKA residues (i.e. serine to alanine substitution at Ser273, Ser282 and Ser302; MyBPCPKA−) to generate a novel mouse model expressing non

  3. Cardiac structure and function and dependency in the oldest old.

    PubMed

    Leibowitz, David; Jacobs, Jeremy M; Stessman-Lande, Irit; Cohen, Aharon; Gilon, Dan; Ein-Mor, Eliana; Stessman, Jochanan

    2011-08-01

    To examine the association between cardiac function and activities of daily living (ADLs) in an age-homogenous, community-dwelling population born in 1920 and 1921. Cross-sectional analysis of a prospective cohort study. Community-dwelling elderly population. Participants were recruited from the Jerusalem Longitudinal Cohort Study, which has followed an age-homogenous cohort of Jerusalem residents born in 1920 and 1921. Four hundred eighty-nine of the participants (228 male, 261 female) from the most recent set of data collection in 2005 and 2006 underwent echocardiography at their place of residence in addition to structured interviews and physical examination. A home-based comprehensive assessment was performed to assess health and functional status, including performance of ADLs. Dependence was defined as needing assistance with one or more basic ADLs. Standard echocardiographic assessment of cardiac structure and function, including ejection fraction (EF) and diastolic function as assessed using early diastolic mitral annular tissue velocity measurements obtained using tissue Doppler, was performed. Of the participants with limitation in at least one ADL, significantly more had low EF (< 55%) than the group that was independent (52.6 % vs 39.1%; P=.01). In addition, participants with dependence in ADL had higher left ventricular mass index (LVMI) (129.3 vs 119.7 g/m²) and left atrial volume index (LAVI) (41.3 vs 36.7 mL/m²). There were no differences between the groups in percentage of participants with impaired diastolic function or average ratio of early diastolic transmitral flow velocity to early diastolic mitral annular tissue velocity (11.5 vs 11.8; P=.64). In this age-homogenous cohort of the oldest old, high LVMI and LAVI and indices of systolic but not diastolic function as assessed according to Doppler were associated with limitations in ADLs. © 2011, Copyright the Authors. Journal compilation © 2011, The American Geriatrics Society.

  4. Nanotized PPARα Overexpression Targeted to Hypertrophied Myocardium Improves Cardiac Function by Attenuating the p53-GSK3β-Mediated Mitochondrial Death Pathway.

    PubMed

    Rana, Santanu; Datta, Ritwik; Chaudhuri, Ratul Datta; Chatterjee, Emeli; Chawla-Sarkar, Mamta; Sarkar, Sagartirtha

    2018-05-09

    Metabolic remodeling of cardiac muscles during pathological hypertrophy is characterized by downregulation of fatty acid oxidation (FAO) regulator, peroxisome proliferator-activated receptor alpha (PPARα). Thereby, we hypothesized that a cardiac-specific induction of PPARα might restore the FAO-related protein expression and resultant energy deficit. In the present study, consequences of PPARα augmentation were evaluated for amelioration of chronic oxidative stress, myocyte apoptosis, and cardiac function during pathological cardiac hypertrophy. Nanotized PPARα overexpression targeted to myocardium was done by a stearic acid-modified carboxymethyl-chitosan (CMC) conjugated to a 20-mer myocyte-targeted peptide (CMCP). Overexpression of PPARα ameliorated pathological hypertrophy and improved cardiac function. Augmented PPARα in hypertrophied myocytes revealed downregulated p53 acetylation (lys 382), leading to reduced apoptosis. Such cells showed increased binding of PPARα with p53 that in turn reduced interaction of p53 with glycogen synthase kinase-3β (GSK3β), which upregulated inactive phospho-GSK3β (serine [Ser]9) expression within mitochondrial protein fraction. Altogether, the altered molecular milieu in PPARα-overexpressed hypertrophy groups restored mitochondrial structure and function both in vitro and in vivo. Cardiomyocyte-targeted overexpression of a protein of interest (PPARα) by nanotized plasmid has been described for the first time in this study. Our data provide a novel insight towards regression of pathological hypertrophy by ameliorating mitochondrial oxidative stress in targeted PPARα-overexpressed myocardium. PPARα-overexpression during pathological hypertrophy showed substantial betterment of mitochondrial structure and function, along with downregulated apoptosis. Myocardium-targeted overexpression of PPARα during pathological cardiac hypertrophy led to an overall improvement of cardiac energy deficit and subsequent cardiac

  5. Safety of capsule endoscopy using human body communication in patients with cardiac devices.

    PubMed

    Chung, Joo Won; Hwang, Hye Jin; Chung, Moon Jae; Park, Jeong Youp; Pak, Hui-Nam; Song, Si Young

    2012-06-01

    The MiroCam (IntroMedic, Ltd., Seoul, Korea) is a small-bowel capsule endoscope that uses human body communication to transmit data. The potential interactions between cardiac devices and the capsule endoscope are causes for concern, but no data are available for this matter. This clinical study was designed to evaluate the potential influence of the MiroCam capsules on cardiac devices. Patients with cardiac pacemakers or implantable cardiac defibrillators referred for evaluation of small bowel disease were prospectively enrolled in this study. Before capsule endoscopy, a cardiologist checked baseline electrocardiograms and functions of the cardiac devices. Cardiac rhythms were continuously monitored by 24-h telemetry during capsule endoscopy in the hospital. After completion of procedures, functions of the cardiac devices were checked again for interference. Images from the capsule endoscopy were reviewed and analyzed for technical problems. Six patients, three with pacemakers and three with implantable cardiac defibrillators, were included in the study. We identified no disturbances in the cardiac devices and no arrhythmias detected on telemetry monitoring during capsule endoscopy. No significant changes in the programmed parameters of the cardiac devices were noted after capsule endoscopy. There were no imaging disturbances from the cardiac devices on capsule endoscopy. Capsule endoscopy using human body communication to transmit data was safely performed in patients with cardiac pacemakers or implantable cardiac defibrillators. Images from the capsule endoscopy were not affected by cardiac devices. A further large-scale study is required to confirm the safety of capsule endoscopy with various types of cardiac devices.

  6. [Cardiac failure in endocrine diseases].

    PubMed

    Hashizume, K

    1993-05-01

    Several endocrine diseases show the symptoms of cardiac failure. Among them, patients with acromegaly show a specific cardiomyopathy which results in a severe left-sided cardiac failure. Hypoparathyroidism also induces cardiac failure, which is resulted from hypocalcemia and low levels of serum parathyroid hormone. In the cases of hypothyroidism, the patients with myxedemal coma show a severe cardiac failure, which is characterized by disturbance of central nervous system, renal function, and cardiac function. In the patients with thyroid crisis (storm), the cardiac failure comes from the great reduction of cardiac output with dehydration. The reduction of circulation volume, observed in the patients with pheochromocytoma easily induces cardiac failure (shock) just after the removal of adrenal tumor. In patients with malignant carcinoid syndrome, right-sided ventricular failure which may be occurred through the actions of biogenic amines is observed.

  7. Nuclear cardiac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slutsky, R.; Ashburn, W.L.

    1982-01-01

    The relationship between nuclear medicine and cardiology has continued to produce a surfeit of interesting, illuminating, and important reports involving the analysis of cardiac function, perfusion, and metabolism. To simplify the presentation, this review is broken down into three major subheadings: analysis of myocardial perfusion; imaging of the recent myocardial infarction; and the evaluation of myocardial function. There appears to be an increasingly important relationship between cardiology, particularly cardiac physiology, and nuclear imaging techniques. (KRM)

  8. The relationship between physical performance and cardiac function in an elderly Russian cohort.

    PubMed

    Tadjibaev, Pulod; Frolova, Elena; Gurina, Natalia; Degryse, Jan; Vaes, Bert

    2014-01-01

    This study aims to determine the cardiac dysfunction prevalence, to investigate the relationship between the Short Physical Performance Battery (SPPB) test and structural and functional echocardiographic parameters and to determine whether SPPB scores and cardiac dysfunction are independent mortality predictors in an elderly Russian population. A random sample of 284 community-dwelling adults aged 65 and older were selected from a population-based register and divided into two age groups (65-74 and ≥75). The SPPB test, echocardiography and all-cause mortality were measured. The prevalence of cardiac dysfunction was 12% in the 65-74 group and 23% in the ≥75 group. The multivariate models could explain 15% and 23% of the SPPB score total variance for the 65-74 and ≥75 age groups, respectively. In the younger age group, the mean follow-up time was 2.6±0.46 years, and the adjusted hazard ratio (HR) for risk of mortality from cardiac dysfunction was 4.9. In the older age group, the mean follow-up time was 2.4±0.61 years, and both cardiac dysfunction and poor physical performance were found to be independent predictors of mortality (adjusted HR=3.4 and adjusted HR=4.2, respectively). The cardiac dysfunction prevalence in this elderly Russian population was found to be comparable to, or even lower than, reported prevalences for Western countries. Furthermore, the observed correlations between echocardiographic abnormalities and SPPB scores were limited. Cardiac dysfunction was shown to be a strong mortality predictor in both age groups, and poor physical performance was identified as an independent mortality predictor in the oldest subjects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Resting handgrip force and impaired cardiac function at rest and during exercise in COPD patients.

    PubMed

    Cortopassi, Felipe; Divo, Miguel; Pinto-Plata, Victor; Celli, Bartolome

    2011-05-01

    Cardiac function measured as the oxygen pulse (O(2) pulse) is impaired during exercise (CPET) in patients with COPD. We investigated the relationship between handgrip force and O(2) pulse in COPD and controls. We measured anthropometrics, lung function, respiratory muscle force, handgrip (HG) force and fat free mass (FFM) at rest in 18 men with COPD (FEV(1)%=45±20) and 15 controls. We then performed a symptom limited cardiopulmonary exercise test (CPET) with similar load and used heart rate, and oxygen pulse (VO(2)/HR) to express cardiac function at rest and during exercise. We corrected the O(2) pulse by FFM. Patients and controls were similar in BMI and FFM. COPD patients had lower handgrip (37.8±7 vs. 55±2) kg. O(2) pulse and HG were associated (r=0.665). At rest, COPD patients had faster heart rate (76±11 vs. 61±5) and lower oxygen pulse. COPD patients had lower oxygen pulse mL/beat at exercise isotime (10.6±3.7 vs. 14.3±2.7), even adjusted by muscle mass. Handgrip is associated with impaired heart function at rest and during exercise in COPD patients even adjusting for muscle mass differences. Lower handgrip may be a marker of impaired cardiac function in COPD patients. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr -/- and in utero TCDD-exposed Ahr +/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr -/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  11. Mesenchymal-endothelial-transition contributes to cardiac neovascularization

    PubMed Central

    Ubil, Eric; Duan, Jinzhu; Pillai, Indulekha C.L.; Rosa-Garrido, Manuel; Wu, Yong; Bargiacchi, Francesca; Lu, Yan; Stanbouly, Seta; Huang, Jie; Rojas, Mauricio; Vondriska, Thomas M.; Stefani, Enrico; Deb, Arjun

    2014-01-01

    Endothelial cells contribute to a subset of cardiac fibroblasts by undergoing endothelial-to-mesenchymal-transition, but whether cardiac fibroblasts can adopt an endothelial cell fate and directly contribute to neovascularization after cardiac injury is not known. Here, using genetic fate map techniques, we demonstrate that cardiac fibroblasts rapidly adopt an endothelial cell like phenotype after acute ischemic cardiac injury. Fibroblast derived endothelial cells exhibit anatomical and functional characteristics of native endothelial cells. We show that the transcription factor p53 regulates such a switch in cardiac fibroblast fate. Loss of p53 in cardiac fibroblasts severely decreases the formation of fibroblast derived endothelial cells, reduces post infarct vascular density and worsens cardiac function. Conversely, stimulation of the p53 pathway in cardiac fibroblasts augments mesenchymal to endothelial transition, enhances vascularity and improves cardiac function. These observations demonstrate that mesenchymal-to-endothelial-transition contributes to neovascularization of the injured heart and represents a potential therapeutic target for enhancing cardiac repair. PMID:25317562

  12. Cardiac Biomarkers: a Focus on Cardiac Regeneration

    PubMed Central

    Forough, Reza; Scarcello, Catherine; Perkins, Matthew

    2011-01-01

    Historically, biomarkers have been used in two major ways to maintain and improve better health status: first, for diagnostic purposes, and second, as specific targets to treat various diseases. A new era in treatment and even cure for the some diseases using reprograming of somatic cells is about to be born. In this approach, scientists are successfully taking human skin cells (previously considered terminally-differentiated cells) and re-programming them into functional cardiac myocytes and other cell types in vitro. A cell reprograming approach for treatment of cardiovascular diseases will revolutionize the field of medicine and significantly expand the human lifetime. Availability of a comprehensive catalogue for cardiac biomarkers is necessary for developing cell reprograming modalities to treat cardiac diseases, as well as for determining the progress of reprogrammed cells as they become cardiac cells. In this review, we present a comprehensive survey of the cardiac biomarkers currently known. PMID:23074366

  13. Single-Dose Intracardiac Injection of Pro-Regenerative MicroRNAs Improves Cardiac Function After Myocardial Infarction.

    PubMed

    Lesizza, Pierluigi; Prosdocimo, Giulia; Martinelli, Valentina; Sinagra, Gianfranco; Zacchigna, Serena; Giacca, Mauro

    2017-04-14

    Recent evidence indicates that a few human microRNAs (miRNAs), in particular hsa-miR-199a-3p and hsa-miR-590-3p, stimulate proliferation of cardiomyocytes and, once expressed in the mouse heart using viral vectors, induce cardiac regeneration after myocardial infarction. Viral vectors, however, are not devoid of safety issues and, more notably, drive expression of the encoded miRNAs for indefinite periods of time, which might not be desirable in light of human therapeutic application. As an alternative to the use of viral vectors, we wanted to assess the efficacy of synthetic miRNA mimics in inducing myocardial repair after single intracardiac injection using synthetic lipid formulations. We comparatively analyzed the efficacy of different lipid formulations in delivering hsa-miR-199a-3p and hsa-miR-590-3p both in primary neonatal mouse cardiomyocytes and in vivo. We established a transfection protocol allowing persistence of these 2 mimics for at least 12 days after a single intracardiac injection, with minimal dispersion to other organs and long-term preservation of miRNA functional activity, as assessed by monitoring the expression of 2 mRNA targets. Administration of this synthetic formulation immediately after myocardial infarction in mice resulted in marked reduction of infarct size and persistent recovery of cardiac function. A single administration of synthetic miRNA-lipid formulations is sufficient to stimulate cardiac repair and restoration of cardiac function. © 2017 American Heart Association, Inc.

  14. The two-minute walk test as a measure of functional capacity in cardiac surgery patients.

    PubMed

    Brooks, Dina; Parsons, Janet; Tran, Diem; Jeng, Bonnie; Gorczyca, Barbara; Newton, Janet; Lo, Vincent; Dear, Cheryl; Silaj, Ellen; Hawn, Therese

    2004-09-01

    To examine construct validity and sensitivity of the two-minute walk test (2MWT) in cardiac surgery patients. Measurements were made in patients preoperatively, during the postoperative in-hospital stay, and 6 to 8 weeks after discharge from hospital. Ambulatory and hospitalized care. Patients (N=122; mean age +/- standard deviation, 63+/-9 y) undergoing coronary artery bypass grafting. Not applicable. The 2MWT, New York Heart Association (NYHA) functional classification for cardiac disease, the Nottingham Extended Activities of Daily Living scale, and the Medical Outcomes Survey 36-Item Short-Form Health Questionnaire (SF-36). Distance walked in 2 minutes decreased significantly postoperatively (from 138+/-26 m to 84+/-33 m, P<.001), but increased again at follow-up (151+/-31 m, P<.0001). Distance walked on the 2MWT correlated significantly to SF-36 (physical function subscale) preoperatively (r=.44) and at follow-up (r=.48) (P<.001). There was a significant difference in distance walked between those with NYHA class I and II compared with those classified as III or IV (P=.04). However, there was no significant difference in distance walked in 2 minutes between those who developed cardiac or pulmonary complications postoperatively (P> or =0.2). The 2MWT was sensitive to change after cardiac surgery and showed moderate correlation with measures of physical functioning in this population. However, the 2MWT could not identify those who developed complications in the postoperative period.

  15. Aging Impairs Myocardial Fatty Acid and Ketone Oxidation and Modifies Cardiac Functional and Metabolic Responses to Insulin in Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyyti, Outi M.; Ledee, Dolena; Ning, Xue-Han

    2010-07-02

    Aging presumably initiates shifts in substrate oxidation mediated in part by changes in insulin sensitivity. Similar shifts occur with cardiac hypertrophy and may contribute to contractile dysfunction. We tested the hypothesis that aging modifies substrate utilization and alters insulin sensitivity in mouse heart when provided multiple substrates. In vivo cardiac function was measured with microtipped pressure transducers in the left ventricle from control (4–6 mo) and aged (22–24 mo) mice. Cardiac function was also measured in isolated working hearts along with substrate and anaplerotic fractional contributions to the citric acid cycle (CAC) by using perfusate containing 13C-labeled free fatty acidsmore » (FFA), acetoacetate, lactate, and unlabeled glucose. Stroke volume and cardiac output were diminished in aged mice in vivo, but pressure development was preserved. Systolic and diastolic functions were maintained in aged isolated hearts. Insulin prompted an increase in systolic function in aged hearts, resulting in an increase in cardiac efficiency. FFA and ketone flux were present but were markedly impaired in aged hearts. These changes in myocardial substrate utilization corresponded to alterations in circulating lipids, thyroid hormone, and reductions in protein expression for peroxisome proliferator-activated receptor (PPAR)α and pyruvate dehydrogenase kinase (PDK)4. Insulin further suppressed FFA oxidation in the aged. Insulin stimulation of anaplerosis in control hearts was absent in the aged. The aged heart shows metabolic plasticity by accessing multiple substrates to maintain function. However, fatty acid oxidation capacity is limited. Impaired insulin-stimulated anaplerosis may contribute to elevated cardiac efficiency, but may also limit response to acute stress through depletion of CAC intermediates.« less

  16. Improvement in cardiac function and free fatty acid metabolism in a case of dilated cardiomyopathy with CD36 deficiency.

    PubMed

    Hirooka, K; Yasumura, Y; Ishida, Y; Komamura, K; Hanatani, A; Nakatani, S; Yamagishi, M; Miyatake, K

    2000-09-01

    A 27-year-old man diagnosed as having dilated cardiomyopathy (DCM) without myocardial accumulation of 123I-beta-methyl-iodophenylpentadecanoic acid, and he was found to have type I CD36 deficiency. This abnormality of cardiac free fatty acid metabolism was also confirmed by other methods: 18F-fluoro-2-deoxyglucose positron emission tomography, measurements of myocardial respiratory quotient and cardiac fatty acid uptake. Although the type I CD36 deficiency was reconfirmed after 3 months, the abnormal free fatty acid metabolism improved after carvedilol therapy and was accompanied by improved cardiac function. Apart from a cause-and-effect relationship, carvedilol can improve cardiac function and increase free fatty acid metabolism in patients with both DCM and CD36 deficiency.

  17. Self-reported physical activity and lung function two months after cardiac surgery – a prospective cohort study

    PubMed Central

    2014-01-01

    Background Physical activity has well-established positive health-related effects. Sedentary behaviour has been associated with postoperative complications and mortality after cardiac surgery. Patients undergoing cardiac surgery often suffer from impaired lung function postoperatively. The association between physical activity and lung function in cardiac surgery patients has not previously been reported. Methods Patients undergoing cardiac surgery were followed up two months postoperatively. Physical activity was assessed on a four-category scale (sedentary, moderate activity, moderate regular exercise, and regular activity and exercise), modified from the Swedish National Institute of Public Health’s national survey. Formal lung function testing was performed preoperatively and two months postoperatively. Results The sample included 283 patients (82% male). Two months after surgery, the level of physical activity had increased (p < 0.001) in the whole sample. Patients who remained active or increased their level of physical activity had significantly better recovery of lung function than patients who remained sedentary or had decreased their level of activity postoperatively in terms of vital capacity (94 ± 11% of preoperative value vs. 91 ± 9%; p = 0.03), inspiratory capacity (94 ± 14% vs. 88 ± 19%; p = 0.008), and total lung capacity (96 ± 11% vs. 90 ± 11%; p = 0.01). Conclusions An increased level of physical activity, compared to preoperative level, was reported as early as two months after surgery. Our data shows that there could be a significant association between physical activity and recovery of lung function after cardiac surgery. The relationship between objectively measured physical activity and postoperative pulmonary recovery needs to be further examined to verify these results. PMID:24678691

  18. The relationship between changes in functional cardiac parameters following anthracycline therapy and carbonyl reductase 3 and glutathione S transferase Pi polymorphisms.

    PubMed

    Volkan-Salanci, Bilge; Aksoy, Hakan; Kiratli, Pınar Özgen; Tülümen, Erol; Güler, Nilüfer; Öksüzoglu, Berna; Tokgözoğlu, Lale; Erbaş, Belkıs; Alikaşifoğlu, Mehmet

    2012-10-01

    The aim of this prospective clinical study is to evaluate the relationship between changes in functional cardiac parameters following anthracycline therapy and carbonyl reductase 3 (CBR3p.V244M) and glutathione S transferase Pi (GSTP1p.I105V) polymorphisms. Seventy patients with normal cardiac function and no history of cardiac disease scheduled to undergo anthracycline chemotherapy were included in the study. The patients' cardiac function was evaluated by gated blood pool scintigraphy and echocardiography before and after chemotherapy, as well as 1 year following therapy. Gene polymorphisms were genotyped in 70 patients using TaqMan probes, validated by DNA sequencing. A deteriorating trend was observed in both systolic and diastolic parameters from GG to AA in CBR3p.V244M polymorphism. Patients with G-allele carriers of GSTP1p.I105V polymorphism were common (60%), with significantly decreased PFR compared to patiens with AA genotype. Variants of CBR3 and GSTP1 enzymes may be associated with changes in short-term functional cardiac parameters.

  19. Cardiac Autonomic Function during Submaximal Treadmill Exercise in Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo

    2011-01-01

    This study determined whether the cardiac autonomic function of adults with Down syndrome (DS) differs from that of nondisabled persons during submaximal dynamic exercise. Thirteen participants with DS and 12 nondisabled individuals performed maximal and submaximal treadmill tests with metabolic and heart rate (HR) measurements. Spectral analysis…

  20. Cardiac Light-Sheet Fluorescent Microscopy for Multi-Scale and Rapid Imaging of Architecture and Function

    NASA Astrophysics Data System (ADS)

    Fei, Peng; Lee, Juhyun; Packard, René R. Sevag; Sereti, Konstantina-Ioanna; Xu, Hao; Ma, Jianguo; Ding, Yichen; Kang, Hanul; Chen, Harrison; Sung, Kevin; Kulkarni, Rajan; Ardehali, Reza; Kuo, C.-C. Jay; Xu, Xiaolei; Ho, Chih-Ming; Hsiai, Tzung K.

    2016-03-01

    Light Sheet Fluorescence Microscopy (LSFM) enables multi-dimensional and multi-scale imaging via illuminating specimens with a separate thin sheet of laser. It allows rapid plane illumination for reduced photo-damage and superior axial resolution and contrast. We hereby demonstrate cardiac LSFM (c-LSFM) imaging to assess the functional architecture of zebrafish embryos with a retrospective cardiac synchronization algorithm for four-dimensional reconstruction (3-D space + time). By combining our approach with tissue clearing techniques, we reveal the entire cardiac structures and hypertrabeculation of adult zebrafish hearts in response to doxorubicin treatment. By integrating the resolution enhancement technique with c-LSFM to increase the resolving power under a large field-of-view, we demonstrate the use of low power objective to resolve the entire architecture of large-scale neonatal mouse hearts, revealing the helical orientation of individual myocardial fibers. Therefore, our c-LSFM imaging approach provides multi-scale visualization of architecture and function to drive cardiovascular research with translational implication in congenital heart diseases.

  1. Asymptomatic Changes in Cardiac Function Can Occur in DCIS Patients Following Treatment with HER-2/neu Pulsed Dendritic Cell Vaccines

    PubMed Central

    Bahl, Susan; Roses, Robert; Sharma, Anupama; Koldovsky, Ursula; Xu, Shuwen; Weinstein, Susan; Nisenbaum, Harvey; Fox, Kevin; Pasha, Theresa; Zhang, Paul; Araujo, Louis; Carver, Joseph; Czerniecki, Brian J

    2009-01-01

    Background Targeting HER-2/neu with Trastuzumab has been associated with development of cardiac toxicity. Methods Twenty-seven patients with ductal carcinoma in situ (DCIS) of the breast completed an IRB approved clinical trial of a HER-2/neu targeted dendritic cell based vaccine. Four weekly vaccinations were administered prior to surgical resection. All subjects underwent pre- and post-vaccine cardiac monitoring by MUGA/ECHO scanning allowing for a comparison of cardiac function. Results In 3 of 27 vaccinated patients (11%) transient asymptomatic decrements in ejection fraction of greater than 15% were noted after vaccination. Notably, evidence of circulating anti-HER-2/neu antibody was found prior to vaccination in all three patients, but cardiac toxicity was not noted until induction of cellular mediated immune responses. Conclusions This is the first description of HER-2/neu targeted vaccination associated with an incidence of cardiac changes, and the induction of cellular immune responses combined with antibody may contribute to changes in cardiac function. PMID:19800453

  2. Functional significance of cardiac reinnervation in heart transplant recipients.

    PubMed

    Schwaiblmair, M; von Scheidt, W; Uberfuhr, P; Ziegler, S; Schwaiger, M; Reichart, B; Vogelmeier, C

    1999-09-01

    There is accumulating evidence of structural sympathetic reinnervation after human cardiac transplantation. However, the functional significance of reinnervation in terms of exercise capacity has not been established as yet; we therefore investigated the influence of reinnervation on cardiopulmonary exercise testing. After orthotopic heart transplantation 35 patients (mean age, 49.1 +/- 8.4 years) underwent positron emission tomography with scintigraphically measured uptake of C11-hydroxyephedrine (HED), lung function testing, and cardiopulmonary exercise testing. Two groups were defined based on scintigraphic findings, indicating a denervated group (n = 15) with a HED uptake of 5.45%/min and a reinnervated group (n = 20) with a HED uptake of 10.59%/min. The two study groups did not show significant differences with regard to anthropometric data, number of rejection episodes, preoperative hemodynamics, and postoperative lung function data. The reinnervated group had a significant longer time interval from transplantation (1625 +/- 1069 versus 800 +/- 1316 days, p < .05). In transplant recipients with reinnervation, heart rate at maximum exercise (137 +/- 15 versus 120 +/- 20 beats/min, p = .012), peak oxygen uptake (21.0 +/- 4 versus 16.1 +/- 5 mL/min/kg, p = .006), peak oxygen pulse (12.4 +/- 2.9 versus 10.2 +/- 2.7 mL/min/beat, p = .031), and anaerobic threshold (11.2 +/- 1.8 versus 9.5 +/- 2.1 mL/min, p = .046) were significantly increased in comparison to denervated transplant recipients. Additionally, a decreased functional dead space ventilation (0.24 +/- 0.05 versus 0.30 +/- 0.05, p = .004) was observed in the reinnervated group. Our study results support the hypothesis that partial sympathetic reinnervation after cardiac transplantation is of functional significance. Sympathetic reinnervation enables an increased peak oxygen uptake. This is most probably due to partial restoration of the chronotropic and inotropic competence of the heart as well as an

  3. Minocycline attenuates cardiac dysfunction in tumor-burdened mice.

    PubMed

    Devine, Raymond D; Eichenseer, Clayton M; Wold, Loren E

    2016-11-01

    Cardiovascular dysfunction as a result of tumor burden is becoming a recognized complication; however, the mechanisms remain unknown. A murine model of cancer cachexia has shown marked increases of matrix metalloproteinases (MMPs), known mediators of cardiac remodeling, in the left ventricle. The extent to which MMPs are involved in remodeling remains obscured. To this end a common antibiotic, minocycline, with MMP inhibitory properties was used to elucidate MMP involvement in tumor induced cardiovascular dysfunction. Tumor-bearing mice showed decreased cardiac function with reduced posterior wall thickness (PWTs) during systole, increased MMP and collagen expression consistent with fibrotic remodeling. Administration of minocycline preserved cardiac function in tumor bearing mice and decreased collagen RNA expression in the left ventricle. MMP protein levels were unaffected by minocycline administration, with the exception of MMP-9, indicating minocycline inhibition mechanisms are directly affecting MMP activity. Cancer induced cardiovascular dysfunction is an increasing concern; novel therapeutics are needed to prevent cardiac complications. Minocycline is a well-known antibiotic and recently has been shown to possess MMP inhibitory properties. Our findings presented here show that minocycline could represent a novel use for a long established drug in the prevention and treatment of cancer induced cardiovascular dysfunction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Daily affect and female sexual function.

    PubMed

    Kalmbach, David A; Pillai, Vivek

    2014-12-01

    The specific affective experiences related to changes in various aspects of female sexual function have received little attention as most prior studies have focused instead on the role of clinical mood and anxiety disorders and their influence on sexual dysfunction. We sought to understand the transaction between daily affect and female sexual function in effort to provide a more nuanced understanding of the interplay between affective and sexual experiences. The present study used a 2-week daily diary approach to examine same-day and temporal relations between positive and negative affect states and sexual function in young women. We examined the unique relations between positive (i.e., joviality, serenity, self-assurance) and negative (i.e., fear, sadness, hostility) affects and female sexual response (i.e., desire, subjective arousal, vaginal lubrication, orgasmic function, and sexual pain) while controlling for higher order sexual distress, depression, and anxiety, as well as age effects and daily menstruation. Analyses revealed different aspects of both positive and negative affects to be independently related to sexual response indices. Specifically, results indicated that joviality was related to same-day sexual desire and predicted increased desire the following day. This latter relation was partially mediated by sexual activity. Further, greater sexual desire predicted next-day calmness, which was partially mediated by sexual activity. Notably, fear was related to same-day subjective arousal, lubrication, orgasmic function, and vaginal pain, whereas poorer orgasmic function predicted greater next-day sadness. These findings describe the manner in which changes in affect correspond to variations in female sexual function, thus highlighting the inextricability of mental and sexual health. Further, these findings may offer insight into the progression of normative levels of affect and sexual function as they develop into comorbid depression, anxiety, and

  5. Docosahexaenoic acid in cardiac metabolism and function.

    PubMed

    Gudbjarnason, S; Doell, B; Oskarsdóttir, G

    1978-01-01

    The polyene fatty acid compostition of cardiac phospholipids is modified by a) dietary cod liver oil, b) norepinephrine, c) chronic administration of nicotine to animals fed a high cholesterol diet. Polyene fatty acids stimulate microsomal oxydation of epinephrine to cardiotoxic adrenochrome. Adrenochrome stimulates microsomal peroxydation or oxygenation of polyene fatty acids. There is an exponential relationship between docosahexaenoic acid of cardiac phospholipids and the heart rate.

  6. Prognostic value of depressed midwall systolic function in cardiac light-chain amyloidosis.

    PubMed

    Perlini, Stefano; Salinaro, Francesco; Musca, Francesco; Mussinelli, Roberta; Boldrini, Michele; Raimondi, Ambra; Milani, Paolo; Foli, Andrea; Cappelli, Francesco; Perfetto, Federico; Palladini, Giovanni; Rapezzi, Claudio; Merlini, Giampaolo

    2014-05-01

    Cardiac amyloidosis represents an archetypal form of restrictive heart disease, characterized by profound diastolic dysfunction. As ejection fraction is preserved until the late stage of the disease, the majority of patients do fulfill the definition of diastolic heart failure, that is, heart failure with preserved ejection fraction (HFpEF). In another clinical model of HFpEF, that is, pressure-overload hypertrophy, depressed midwall fractional shortening (mFS) has been shown to be a powerful prognostic factor. To assess the potential prognostic role of mFS in cardiac light-chain amyloidosis with preserved ejection fraction, we enrolled 221 consecutive untreated patients, in whom a first diagnosis of cardiac light-chain amyloidosis was concluded between 2008 and 2010. HFpEF was present in 181 patients. Patients in whom cardiac involvement was excluded served as controls (n = 121). Prognosis was assessed after a median follow-up of 561 days. When compared with light-chain amyloidosis patients without myocardial involvement, cardiac light-chain amyloidosis was characterized by increased wall thickness (P <0.001), reduced end-diastolic left ventricular volumes (P <0.001), and diastolic dysfunction (P <0.001). In patients with preserved ejection fraction, mFS was markedly depressed [10.6% (8.7-13.5) vs. 17.8% (15.9-19.5) P <0.001]. At multivariable analysis, mFS, troponin I, and NT-pro-brain natriuretic peptide were the only significant prognostic determinants (P <0.001), whereas other indices of diastolic (E/E' ratio, transmitral and pulmonary vein flow velocities) and systolic function (tissue Doppler systolic indices, ejection fraction), or the presence/absence of congestive heart failure did not enter the model. In cardiac light-chain amyloidosis with normal ejection fraction, depressed circumferential mFS, a marker of myocardial contractile dysfunction, is a powerful predictor of survival.

  7. Cannabinoid receptor 1 inhibition improves cardiac function and remodelling after myocardial infarction and in experimental metabolic syndrome.

    PubMed

    Slavic, Svetlana; Lauer, Dilyara; Sommerfeld, Manuela; Kemnitz, Ulrich Rudolf; Grzesiak, Aleksandra; Trappiel, Manuela; Thöne-Reineke, Christa; Baulmann, Johannes; Paulis, Ludovit; Kappert, Kai; Kintscher, Ulrich; Unger, Thomas; Kaschina, Elena

    2013-07-01

    The cannabinoid receptors, CB1 and CB2, are expressed in the heart, but their role under pathological conditions remains controversial. This study examined the effect of CB1 receptor blockade on cardiovascular functions after experimental MI and in experimental metabolic syndrome. MI was induced in Wistar rats by permanent ligation of the left coronary artery. Treatment with the CB1 receptor antagonist rimonabant (10 mg/kg i.p. daily) started 7 days before or 6 h after MI and continued for 6 weeks. Haemodynamic parameters were measured via echocardiography and intracardiac Samba catheter. CB1 blockade improved systolic and diastolic heart function, decreased cardiac collagen and hydroxyproline content and down-regulated TGF-β1. Additionally, rimonabant decreased arterial stiffness, normalised QRS complex duration and reduced brain natriuretic peptide levels in serum. In primary cardiac fibroblasts, rimonabant decreased MMP-9 activity and TGF-β1 expression. Furthermore, rimonabant improved depressed systolic function of spontaneously hypertensive obese rats and reduced weight gain. Blocking of CB1 receptor with rimonabant improves cardiac functions in the early and late stages after MI, decreases arterial stiffness and reduces cardiac remodelling. Rimonabant also has cardioprotective actions in rats characterised by the metabolic syndrome. Inhibition of proteolysis and TGF-β1 expression and reduced collagen content by rimonabant may attenuate destruction of the extracellular matrix and decrease fibrosis after MI.

  8. Cardiac ion channels

    PubMed Central

    Priest, Birgit T; McDermott, Jeff S

    2015-01-01

    Ion channels are critical for all aspects of cardiac function, including rhythmicity and contractility. Consequently, ion channels are key targets for therapeutics aimed at cardiac pathophysiologies such as atrial fibrillation or angina. At the same time, off-target interactions of drugs with cardiac ion channels can be the cause of unwanted side effects. This manuscript aims to review the physiology and pharmacology of key cardiac ion channels. The intent is to highlight recent developments for therapeutic development, as well as elucidate potential mechanisms for drug-induced cardiac side effects, rather than present an in-depth review of each channel subtype. PMID:26556552

  9. Cardiac Remodeling: Endothelial Cells Have More to Say Than Just NO

    PubMed Central

    Segers, Vincent F. M.; Brutsaert, Dirk L.; De Keulenaer, Gilles W.

    2018-01-01

    The heart is a highly structured organ consisting of different cell types, including myocytes, endothelial cells, fibroblasts, stem cells, and inflammatory cells. This pluricellularity provides the opportunity of intercellular communication within the organ, with subsequent optimization of its function. Intercellular cross-talk is indispensable during cardiac development, but also plays a substantial modulatory role in the normal and failing heart of adults. More specifically, factors secreted by cardiac microvascular endothelial cells modulate cardiac performance and either positively or negatively affect cardiac remodeling. The role of endothelium-derived small molecules and peptides—for instance NO or endothelin-1—has been extensively studied and is relatively well defined. However, endothelial cells also secrete numerous larger proteins. Information on the role of these proteins in the heart is scattered throughout the literature. In this review, we will link specific proteins that modulate cardiac contractility or cardiac remodeling to their expression by cardiac microvascular endothelial cells. The following proteins will be discussed: IL-6, periostin, tenascin-C, thrombospondin, follistatin-like 1, frizzled-related protein 3, IGF-1, CTGF, dickkopf-3, BMP-2 and−4, apelin, IL-1β, placental growth factor, LIF, WISP-1, midkine, and adrenomedullin. In the future, it is likely that some of these proteins can serve as markers of cardiac remodeling and that the concept of endothelial function and dysfunction might have to be redefined as we learn more about other factors secreted by ECs besides NO. PMID:29695980

  10. Supplementary Administration of Everolimus Reduces Cardiac Systolic Function in Kidney Transplant Recipients.

    PubMed

    Tsujimura, Kazuma; Ota, Morihito; Chinen, Kiyoshi; Nagayama, Kiyomitsu; Oroku, Masato; Nishihira, Morikuni; Shiohira, Yoshiki; Abe, Masami; Iseki, Kunitoshi; Ishida, Hideki; Tanabe, Kazunari

    2017-05-26

    BACKGROUND The effect of everolimus, one of the mammalian targets of rapamycin inhibitors, on cardiac function was evaluated in kidney transplant recipients. MATERIAL AND METHODS Seventy-six participants who underwent kidney transplant between March 2009 and May 2016 were retrospectively reviewed. To standardize everolimus administration, the following criteria were used: (1) the recipient did not have a donor-specific antigen before kidney transplantation; (2) the recipient did not have proteinuria and uncontrollable hyperlipidemia after kidney transplantation; and (3) acute rejection was not observed on protocol biopsy 3 months after kidney transplantation. According to these criteria, everolimus administration for maintenance immunosuppression after kidney transplantation was included. Cardiac function was compared between the treatment group (n=30) and non-treatment group (n=46). RESULTS The mean observation periods of the treatment and non-treatment groups were 41.3±12.6 and 43.9±19.8 months, respectively (p=0.573). The mean ejection fraction and fractional shortening of the treatment and non-treatment groups after kidney transplant were 66.5±7.9% vs. 69.6±5.5% (p=0.024) and 37.1±6.2% vs. 39.3±4.7% (p=0.045), respectively. In the treatment group, the mean ejection fraction and fractional shortening before and after kidney transplantation did not differ significantly (p=0.604 and 0.606, respectively). In the non-treatment group, the mean ejection fraction and fractional shortening before and after kidney transplantation differed significantly (p=0.004 and 0.006, respectively). CONCLUSIONS Supplementary administration of everolimus after kidney transplantation can reduce cardiac systolic function.

  11. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds.

    PubMed

    Radisic, Milica; Park, Hyoungshin; Shing, Helen; Consi, Thomas; Schoen, Frederick J; Langer, Robert; Freed, Lisa E; Vunjak-Novakovic, Gordana

    2004-12-28

    The major challenge of tissue engineering is directing the cells to establish the physiological structure and function of the tissue being replaced across different hierarchical scales. To engineer myocardium, biophysical regulation of the cells needs to recapitulate multiple signals present in the native heart. We hypothesized that excitation-contraction coupling, critical for the development and function of a normal heart, determines the development and function of engineered myocardium. To induce synchronous contractions of cultured cardiac constructs, we applied electrical signals designed to mimic those in the native heart. Over only 8 days in vitro, electrical field stimulation induced cell alignment and coupling, increased the amplitude of synchronous construct contractions by a factor of 7, and resulted in a remarkable level of ultrastructural organization. Development of conductive and contractile properties of cardiac constructs was concurrent, with strong dependence on the initiation and duration of electrical stimulation.

  12. Direct In Vivo Reprogramming with Sendai Virus Vectors Improves Cardiac Function after Myocardial Infarction.

    PubMed

    Miyamoto, Kazutaka; Akiyama, Mizuha; Tamura, Fumiya; Isomi, Mari; Yamakawa, Hiroyuki; Sadahiro, Taketaro; Muraoka, Naoto; Kojima, Hidenori; Haginiwa, Sho; Kurotsu, Shota; Tani, Hidenori; Wang, Li; Qian, Li; Inoue, Makoto; Ide, Yoshinori; Kurokawa, Junko; Yamamoto, Tsunehisa; Seki, Tomohisa; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki

    2018-01-04

    Direct cardiac reprogramming holds great promise for regenerative medicine. We previously generated directly reprogrammed induced cardiomyocyte-like cells (iCMs) by overexpression of Gata4, Mef2c, and Tbx5 (GMT) using retrovirus vectors. However, integrating vectors pose risks associated with insertional mutagenesis and disruption of gene expression and are inefficient. Here, we show that Sendai virus (SeV) vectors expressing cardiac reprogramming factors efficiently and rapidly reprogram both mouse and human fibroblasts into integration-free iCMs via robust transgene expression. SeV-GMT generated 100-fold more beating iCMs than retroviral-GMT and shortened the duration to induce beating cells from 30 to 10 days in mouse fibroblasts. In vivo lineage tracing revealed that the gene transfer of SeV-GMT was more efficient than retroviral-GMT in reprogramming resident cardiac fibroblasts into iCMs in mouse infarct hearts. Moreover, SeV-GMT improved cardiac function and reduced fibrosis after myocardial infarction. Thus, efficient, non-integrating SeV vectors may serve as a powerful system for cardiac regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Adiponectin and Cardiac Hypertrophy in Acromegaly.

    PubMed

    Gurbulak, Sabriye; Akin, Fulya; Yerlikaya, Emrah; Yaylali, Guzin F; Topsakal, Senay; Tanriverdi, Halil; Akdag, Beyza; Kaptanoglu, Bunyamin

    2016-01-01

    Adiponectin is an adipocytes-derived hormone which has been shown to possess insulin-sensitizing, antiatherogenic, and anti-inflammatory properties. In acromegaly, the data on adiponectin is contradictory. The relationship between adiponectin levels and cardiac parameters has not been studied. The aim of this study was to find out how adiponectin levels were affected in acromegalic patients and the relationship between adiponectin levels and cardiac parameters. We included 30 subjects (15 male, 15 female), diagnosed with acromegaly and 30 healthy (10 male, 20 female) subjects. Serum glucose, insulin, GH, IGF-1 and adiponectin levels were obtained and the insulin resistance of the subjects was calculated. Echocardiographic studies of the subjects were performed. We determined that adiponectin levels were significantly higher in the acromegalic group than the control group. In the acromegalic group, there was no statistically significant relation between serum adiponectin and growth hormone (GH), or insulin-like growth factor-1 (IGF-1) levels (p = 0.3, p = 0.1). We demonstrated that cardiac function and structure are affected by acromegaly. IVST, PWT, LVMI, E/A ratio, DT, ET, IVRT, VPR, and LVESV values were increased and the results were statistically significant. In the acromegalic group, adiponectin levels were positively related with left ventricle mass index (LVMI) but this correlation was found to be statistically weak (p = 0.03). In our study, there was a positive correlation between VAI and LVM. We also could not find any correlation between VAI and adiponectin levels. Although insulin resistance and high insulin levels occur in active acromegaly patients, adiponectin levels were higher in our study as a consequence of GH lowering therapies. Our study showed that adiponectin levels may be an indicator of the cardiac involvement acromegaly. However, the usage of serum adiponectin levels in acromegalic patients as an indicator of cardiac involvement should be

  14. Exercise training improves cardiac function in infarcted rabbits: involvement of autophagic function and fatty acid utilization.

    PubMed

    Chen, Ching-Yi; Hsu, Hsiu-Ching; Lee, Bai-Chin; Lin, Hung-Ju; Chen, Ying-Hsien; Huang, Hui-Chun; Ho, Yi-Lwun; Chen, Ming-Fong

    2010-04-01

    To explore whether exercise can improve cardiac function in a post-myocardial infarction (MI) rabbit model and to determine contributing factors in the left ventricle (LV). Adult male New Zealand White rabbits (2.5-3 kg) underwent MI by ligation of the left anterior descending coronary artery. For 8 weeks after surgery, sham-operated, and post-MI rabbits were housed under sedentary conditions or assigned to a 4-week treadmill exercise protocol at a speed of 1.0 km/h for 30 min 5 days per week, then sacrificed. The non-infarcted region of the LV was harvested for further analysis. MI decreased left ventricular ejection fraction (LVEF) and increased thiobarbituric acid reactive substances (TBARS) generation in the LV. Exercise improved the cardiac function of MI rabbits. Left ventricular LC3II/LC3I (microtubule-associated protein light chain 3) in the MI group was 2.1-fold higher than that of the sham group, exercise significantly decreased LC3II/LC3I in the MI group. MI down-regulated the expression of heart-type fatty acid binding protein (h-FABP), and exercise up-regulated h-FABP. In addition, LVEF had a significantly positive correlation with h-FABP and a negative correlation with LC3II/LC3I. Exercise induced change in autophagic function and fatty acid utilization may contribute to the improvement in ventricular function in the infarcted heart.

  15. Exercise capacity in diabetes mellitus is predicted by activity status and cardiac size rather than cardiac function: a case control study.

    PubMed

    Roberts, Timothy J; Burns, Andrew T; MacIsaac, Richard J; MacIsaac, Andrew I; Prior, David L; La Gerche, André

    2018-03-23

    The reasons for reduced exercise capacity in diabetes mellitus (DM) remains incompletely understood, although diastolic dysfunction and diabetic cardiomyopathy are often favored explanations. However, there is a paucity of literature detailing cardiac function and reserve during incremental exercise to evaluate its significance and contribution. We sought to determine associations between comprehensive measures of cardiac function during exercise and maximal oxygen consumption ([Formula: see text]peak), with the hypothesis that the reduction in exercise capacity and cardiac function would be associated with co-morbidities and sedentary behavior rather than diabetes itself. This case-control study involved 60 subjects [20 with type 1 DM (T1DM), 20 T2DM, and 10 healthy controls age/sex-matched to each diabetes subtype] performing cardiopulmonary exercise testing and bicycle ergometer echocardiography studies. Measures of biventricular function were assessed during incremental exercise to maximal intensity. T2DM subjects were middle-aged (52 ± 11 years) with a mean T2DM diagnosis of 12 ± 7 years and modest glycemic control (HbA 1c 57 ± 12 mmol/mol). T1DM participants were younger (35 ± 8 years), with a 19 ± 10 year history of T1DM and suboptimal glycemic control (HbA 1c 65 ± 16 mmol/mol). Participants with T2DM were heavier than their controls (body mass index 29.3 ± 3.4 kg/m 2 vs. 24.7 ± 2.9, P = 0.001), performed less exercise (10 ± 12 vs. 28 ± 30 MET hours/week, P = 0.031) and had lower exercise capacity ([Formula: see text]peak = 26 ± 6 vs. 38 ± 8 ml/min/kg, P < 0.0001). These differences were not associated with biventricular systolic or left ventricular (LV) diastolic dysfunction at rest or during exercise. There was no difference in weight, exercise participation or [Formula: see text]peak in T1DM subjects as compared to their controls. After accounting for age, sex and body

  16. Novel MRI-derived quantitative biomarker for cardiac function applied to classifying ischemic cardiomyopathy within a Bayesian rule learning framework

    NASA Astrophysics Data System (ADS)

    Menon, Prahlad G.; Morris, Lailonny; Staines, Mara; Lima, Joao; Lee, Daniel C.; Gopalakrishnan, Vanathi

    2014-03-01

    Characterization of regional left ventricular (LV) function may have application in prognosticating timely response and informing choice therapy in patients with ischemic cardiomyopathy. The purpose of this study is to characterize LV function through a systematic analysis of 4D (3D + time) endocardial motion over the cardiac cycle in an effort to define objective, clinically useful metrics of pathological remodeling and declining cardiac performance, using standard cardiac MRI data for two distinct patient cohorts accessed from CardiacAtlas.org: a) MESA - a cohort of asymptomatic patients; and b) DETERMINE - a cohort of symptomatic patients with a history of ischemic heart disease (IHD) or myocardial infarction. The LV endocardium was segmented and a signed phase-to-phase Hausdorff distance (HD) was computed at 3D uniformly spaced points tracked on segmented endocardial surface contours, over the cardiac cycle. An LV-averaged index of phase-to-phase endocardial displacement (P2PD) time-histories was computed at each tracked point, using the HD computed between consecutive cardiac phases. Average and standard deviation in P2PD over the cardiac cycle was used to prepare characteristic curves for the asymptomatic and IHD cohort. A novel biomarker of RMS error between mean patient-specific characteristic P2PD over the cardiac cycle for each individual patient and the cumulative P2PD characteristic of a cohort of asymptomatic patients was established as the RMS-P2PD marker. The novel RMS-P2PD marker was tested as a cardiac function based feature for automatic patient classification using a Bayesian Rule Learning (BRL) framework. The RMS-P2PD biomarker indices were significantly different for the symptomatic patient and asymptomatic control cohorts (p<0.001). BRL accurately classified 83.8% of patients correctly from the patient and control populations, with leave-one-out cross validation, using standard indices of LV ejection fraction (LV-EF) and LV end-systolic volume

  17. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest

    PubMed Central

    Mills, Richard J.; Titmarsh, Drew M.; Koenig, Xaver; Parker, Benjamin L.; Ryall, James G.; Quaife-Ryan, Gregory A.; Voges, Holly K.; Hodson, Mark P.; Ferguson, Charles; Drowley, Lauren; Plowright, Alleyn T.; Needham, Elise J.; Wang, Qing-Dong; Gregorevic, Paul; Xin, Mei; Thomas, Walter G.; Parton, Robert G.; Nielsen, Lars K.; Elliott, David A.; Porrello, Enzo R.

    2017-01-01

    The mammalian heart undergoes maturation during postnatal life to meet the increased functional requirements of an adult. However, the key drivers of this process remain poorly defined. We are currently unable to recapitulate postnatal maturation in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), limiting their potential as a model system to discover regenerative therapeutics. Here, we provide a summary of our studies, where we developed a 96-well device for functional screening in human pluripotent stem cell-derived cardiac organoids (hCOs). Through interrogation of >10,000 organoids, we systematically optimize parameters, including extracellular matrix (ECM), metabolic substrate, and growth factor conditions, that enhance cardiac tissue viability, function, and maturation. Under optimized maturation conditions, functional and molecular characterization revealed that a switch to fatty acid metabolism was a central driver of cardiac maturation. Under these conditions, hPSC-CMs were refractory to mitogenic stimuli, and we found that key proliferation pathways including β-catenin and Yes-associated protein 1 (YAP1) were repressed. This proliferative barrier imposed by fatty acid metabolism in hCOs could be rescued by simultaneous activation of both β-catenin and YAP1 using genetic approaches or a small molecule activating both pathways. These studies highlight that human organoids coupled with higher-throughput screening platforms have the potential to rapidly expand our knowledge of human biology and potentially unlock therapeutic strategies. PMID:28916735

  18. Pulmonary function and health-related quality of life 1-year follow up after cardiac surgery.

    PubMed

    Westerdahl, Elisabeth; Jonsson, Marcus; Emtner, Margareta

    2016-07-08

    Pulmonary function is severely reduced in the early period after cardiac surgery, and impairments have been described up to 4-6 months after surgery. Evaluation of pulmonary function in a longer perspective is lacking. In this prospective study pulmonary function and health-related quality of life were investigated 1 year after cardiac surgery. Pulmonary function measurements, health-related quality of life (SF-36), dyspnoea, subjective breathing and coughing ability and pain were evaluated before and 1 year after surgery in 150 patients undergoing coronary artery bypass grafting, valve surgery or combined surgery. One year after surgery the forced vital capacity and forced expiratory volume in 1 s were significantly decreased (by 4-5 %) compared to preoperative values (p < 0.05). Saturation of peripheral oxygen was unchanged 1 year postoperatively compared to baseline. A significantly improved health-related quality of life was found 1 year after surgery, with improvements in all eight aspects of SF-36 (p < 0.001). Sternotomy-related pain was low 1 year postoperatively at rest (median 0 [min-max; 0-7]), while taking a deep breath (0 [0-4]) and while coughing (0 [0-8]). A more pronounced decrease in pulmonary function was associated with dyspnoea limitations and impaired subjective breathing and coughing ability. One year after cardiac surgery static and dynamic lung function measurements were slightly decreased, while health-related quality of life was improved in comparison to preoperative values. Measured levels of pain were low and saturation of peripheral oxygen was same as preoperatively.

  19. An injectable silk sericin hydrogel promotes cardiac functional recovery after ischemic myocardial infarction.

    PubMed

    Song, Yu; Zhang, Cheng; Zhang, Jinxiang; Sun, Ning; Huang, Kun; Li, Huili; Wang, Zheng; Huang, Kai; Wang, Lin

    2016-09-01

    Acute myocardial infarction (MI) leads to morbidity and mortality due to cardiac dysfunction. Here we identify sericin, a silk-derived protein, as an injectable therapeutic biomaterial for the minimally invasive MI repair. For the first time, sericin prepared in the form of an injectable hydrogel has been utilized for cardiac tissue engineering and its therapeutical outcomes evaluated in a mouse MI model. The injection of this sericin hydrogel into MI area reduces scar formation and infarct size, increases wall thickness and neovascularization, and inhibits the MI-induced inflammatory responses and apoptosis, thereby leading to a significant functional improvement. The potential therapeutical mechanisms have been further analyzed in vitro. Our results indicate that sericin downregulates pro-inflammatory cytokines (TNF-α and IL-18) and chemokine (CCL2) and reduces TNF-α expression by suppressing the TLR4-MAPK/NF-κB pathways. Moreover, sericin exhibits angiogenic activity by promoting migration and tubular formation of human umbilical vessel endothelial cells (HUVECs). Also, sericin stimulates VEGFa expression via activating ERK phosphorylation. Further, sericin protects endothelial cells and cardiomyocytes from apoptosis by inhibiting the activation of caspase 3. Together, these diverse biochemical activities of sericin protein lead to a significant recovery of cardiac function. This work represents the first study reporting sericin as an effective therapeutic biomaterial for ischemic myocardial repair in vivo. Intramyocardial biomaterial injection is thought to be a potential therapeutic approach to improve cardiac performance after ischemic myocardial infarction. In this study, we report the successful fabrication and in vivo application of an injectable sericin hydrogel for ischemic heart disease. We for the first time show that the injection of in situ forming crosslinked sericin hydrogel promotes heart functional recovery accompanied with reduced

  20. About Cardiac Arrest

    MedlinePlus

    ... Options for Heart Failure Living With HF and Advanced HF High Blood Pressure ... Updated:Mar 10,2017 What is cardiac arrest? Cardiac arrest is the abrupt loss of heart function in a person who may or may not ...

  1. Physics of cardiac imaging with multiple-row detector CT.

    PubMed

    Mahesh, Mahadevappa; Cody, Dianna D

    2007-01-01

    Cardiac imaging with multiple-row detector computed tomography (CT) has become possible due to rapid advances in CT technologies. Images with high temporal and spatial resolution can be obtained with multiple-row detector CT scanners; however, the radiation dose associated with cardiac imaging is high. Understanding the physics of cardiac imaging with multiple-row detector CT scanners allows optimization of cardiac CT protocols in terms of image quality and radiation dose. Knowledge of the trade-offs between various scan parameters that affect image quality--such as temporal resolution, spatial resolution, and pitch--is the key to optimized cardiac CT protocols, which can minimize the radiation risks associated with these studies. Factors affecting temporal resolution include gantry rotation time, acquisition mode, and reconstruction method; factors affecting spatial resolution include detector size and reconstruction interval. Cardiac CT has the potential to become a reliable tool for noninvasive diagnosis and prevention of cardiac and coronary artery disease. (c) RSNA, 2007.

  2. Effects of a Structured Discharge Planning Program on Perceived Functional Status, Cardiac Self-efficacy, Patient Satisfaction, and Unexpected Hospital Revisits Among Filipino Cardiac Patients: A Randomized Controlled Study.

    PubMed

    Cajanding, Ruff Joseph

    Cardiovascular diseases remain the leading cause of morbidity and mortality among Filipinos and are responsible for a very large number of hospital readmissions. Comprehensive discharge planning programs have demonstrated positive benefits among various populations of patients with cardiovascular disease, but the clinical and psychosocial effects of such intervention among Filipino patients with acute myocardial infarction (AMI) have not been studied. In this study we aimed to determine the effectiveness of a nurse-led structured discharge planning program on perceived functional status, cardiac self-efficacy, patient satisfaction, and unexpected hospital revisits among Filipino patients with AMI. A true experimental (randomized control) 2-group design with repeated measures and data collected before and after intervention and at 1-month follow-up was used in this study. Participants were assigned to either the control (n = 68) or the intervention group (n = 75). Intervention participants underwent a 3-day structured discharge planning program implemented by a cardiovascular nurse practitioner, which is comprised of a series of individualized lecture-discussion, provision of feedback, integrative problem solving, goal setting, and action planning. Control participants received standard routine care. Measures of functional status, cardiac self-efficacy, and patient satisfaction were measured at baseline; cardiac self-efficacy and patient satisfaction scores were measured prior to discharge, and perceived functional status and number of revisits were measured 1 month after discharge. Participants in the intervention group had significant improvement in functional status, cardiac self-efficacy, and patient satisfaction scores at baseline and at follow-up compared with the control participants. Furthermore, participants in the intervention group had significantly fewer hospital revisits compared with those who received only standard care. The results demonstrate that a

  3. Motivational factors of adherence to cardiac rehabilitation.

    PubMed

    Shahsavari, Hooman; Shahriari, Mohsen; Alimohammadi, Nasrollah

    2012-05-01

    Main suggested theories about patients' adherence to treatment regimens recognize the importance of motivation in positive changes in behaviors. Since cardiac diseases are chronic and common, cardiac rehabilitation as an effective prevention program is crucial in management of these diseases. There is always concern about the patients' adherence to cardiac rehabilitation. The aim of this study was to describe the motivational factors affecting the patients' participation and compliance to cardiac rehabilitation by recognizing and understanding the nature of patients' experiences. The participants were selected among the patients with cardiac diseases who were referred to cardiac rehabilitation in Isfahan Cardiovascular Research Center, Iran. The purposive sampling method was used and data saturation achieved after 8 semi-structured interviews. The three main concepts obtained from this study are "beliefs", "supporters" and "group cohesion". In cardiac rehabilitation programs, emphasis on motivational factors affects the patient's adherence. It is suggested that in cardiac rehabilitation programs more attention should be paid to patients' beliefs, the role of patients' supporters and the role of group-based rehabilitation.

  4. [Experimental therapy of cardiac remodeling with quercetin-containing drugs].

    PubMed

    Kuzmenko, M A; Pavlyuchenko, V B; Tumanovskaya, L V; Dosenko, V E; Moybenko, A A

    2013-01-01

    It was shown that continuous beta-adrenergic hyperstimulation resulted in cardiac function disturbances and fibrosis of cardiac tissue. Treatment with quercetin-containing drugs, particularly, water-soluble corvitin and tableted quertin exerted favourable effect on cardiac hemodynamics, normalized systolic and diastolic function in cardiac remodeling, induced by sustained beta-adrenergic stimulation. It was estimated that conducted experimental therapy limited cardiac fibrosis area almost three-fold, that could be associated with first and foremost improved cardiac distensibility, characteristics of diastolic and also pump function in cardiac remodeling.

  5. Megestrol acetate improves cardiac function in a model of cancer cachexia-induced cardiomyopathy by autophagic modulation.

    PubMed

    Musolino, Vincenzo; Palus, Sandra; Tschirner, Anika; Drescher, Cathleen; Gliozzi, Micaela; Carresi, Cristina; Vitale, Cristiana; Muscoli, Carolina; Doehner, Wolfram; von Haehling, Stephan; Anker, Stefan D; Mollace, Vincenzo; Springer, Jochen

    2016-12-01

    Cachexia is a complex metabolic syndrome associated with cancer. One of the features of cachexia is the loss of muscle mass, characterized by an imbalance between protein synthesis and protein degradation. Muscle atrophy is caused by the hyperactivation of some of the main cellular catabolic pathways, including autophagy. Cachexia also affects the cardiac muscle. As a consequence of the atrophy of the heart, cardiac function is impaired and mortality is increased. Anti-cachectic therapy in patients with cancer cachexia is so far limited to nutritional support and anabolic steroids. The use of the appetite stimulant megestrol acetate (MA) has been discussed as a treatment for cachexia. In this study the effects of MA were tested in cachectic tumour-bearing rats (Yoshida AH-130 ascites hepatoma). Rats were treated daily with 100 mg/kg of MA or placebo starting one day after tumour inoculation, and for a period of 16 days. Body weight and body composition were assessed at baseline and at the end of the study. Cardiac function was analysed by echocardiography at baseline and at day 11. Locomotor activity and food intake were assessed before tumour inoculation and at day 11. Autophagic markers were assessed in gastrocnemius muscle and heart by western blot analysis. Treatment with 100 mg/kg/day MA significantly attenuated the loss of body weight (-9 ± 12%, P  < 0.05) and the wasting of lean and fat mass (-7.0 ± 6% and -22.4 ± 3 %, P  < 0.001 and P  < 0.05, respectively). Administration of 100 mg/kg/day MA significantly protected the heart from general atrophy (633.8 ± 30 mg vs. placebo 474 ± 13 mg, P  < 0.001). Tumour-bearing rats displayed cardiac dysfunction, as indicated by the significant impairment of the left ventricular ejection fraction, the left ventricular fractional shortening, the stroke volume, the end dyastolic volume, and the end systolic volume. In contrast, MA significantly improved left ventricular

  6. LRRC10 is required to maintain cardiac function in response to pressure overload

    PubMed Central

    Brody, Matthew J.; Feng, Li; Grimes, Adrian C.; Hacker, Timothy A.; Olson, Timothy M.; Kamp, Timothy J.

    2015-01-01

    We previously reported that the cardiomyocyte-specific leucine-rich repeat containing protein (LRRC)10 has critical functions in the mammalian heart. In the present study, we tested the role of LRRC10 in the response of the heart to biomechanical stress by performing transverse aortic constriction on Lrrc10-null (Lrrc10−/−) mice. Mild pressure overload induced severe cardiac dysfunction and ventricular dilation in Lrrc10−/− mice compared with control mice. In addition to dilation and cardiomyopathy, Lrrc10−/− mice showed a pronounced increase in heart weight with pressure overload stimulation and a more dramatic loss of cardiac ventricular performance, collectively suggesting that the absence of LRRC10 renders the heart more disease prone with greater hypertrophy and structural remodeling, although rates of cardiac fibrosis and myocyte dropout were not different from control mice. Lrrc10−/− cardiomyocytes also exhibited reduced contractility in response to β-adrenergic stimulation, consistent with loss of cardiac ventricular performance after pressure overload. We have previously shown that LRRC10 interacts with actin in the heart. Here, we show that His150 of LRRC10 was required for an interaction with actin, and this interaction was reduced after pressure overload, suggesting an integral role for LRRC10 in the response of the heart to mechanical stress. Importantly, these experiments demonstrated that LRRC10 is required to maintain cardiac performance in response to pressure overload and suggest that dysregulated expression or mutation of LRRC10 may greatly sensitize human patients to more severe cardiac disease in conditions such as chronic hypertension or aortic stenosis. PMID:26608339

  7. LRRC10 is required to maintain cardiac function in response to pressure overload.

    PubMed

    Brody, Matthew J; Feng, Li; Grimes, Adrian C; Hacker, Timothy A; Olson, Timothy M; Kamp, Timothy J; Balijepalli, Ravi C; Lee, Youngsook

    2016-01-15

    We previously reported that the cardiomyocyte-specific leucine-rich repeat containing protein (LRRC)10 has critical functions in the mammalian heart. In the present study, we tested the role of LRRC10 in the response of the heart to biomechanical stress by performing transverse aortic constriction on Lrrc10-null (Lrrc10(-/-)) mice. Mild pressure overload induced severe cardiac dysfunction and ventricular dilation in Lrrc10(-/-) mice compared with control mice. In addition to dilation and cardiomyopathy, Lrrc10(-/-) mice showed a pronounced increase in heart weight with pressure overload stimulation and a more dramatic loss of cardiac ventricular performance, collectively suggesting that the absence of LRRC10 renders the heart more disease prone with greater hypertrophy and structural remodeling, although rates of cardiac fibrosis and myocyte dropout were not different from control mice. Lrrc10(-/-) cardiomyocytes also exhibited reduced contractility in response to β-adrenergic stimulation, consistent with loss of cardiac ventricular performance after pressure overload. We have previously shown that LRRC10 interacts with actin in the heart. Here, we show that His(150) of LRRC10 was required for an interaction with actin, and this interaction was reduced after pressure overload, suggesting an integral role for LRRC10 in the response of the heart to mechanical stress. Importantly, these experiments demonstrated that LRRC10 is required to maintain cardiac performance in response to pressure overload and suggest that dysregulated expression or mutation of LRRC10 may greatly sensitize human patients to more severe cardiac disease in conditions such as chronic hypertension or aortic stenosis. Copyright © 2016 the American Physiological Society.

  8. Cardiac Arrest Resuscitation.

    PubMed

    Guyette, Francis X; Reynolds, Joshua C; Frisch, Adam

    2015-08-01

    Cardiac arrest is a dynamic disease that tests the multitasking and leadership abilities of emergency physicians. Providers must simultaneously manage the logistics of resuscitation while searching for the cause of cardiac arrest. The astute clinician will also realize that he or she is orchestrating only one portion of a larger series of events, each of which directly affects patient outcomes. Resuscitation science is rapidly evolving, and emergency providers must be familiar with the latest evidence and controversies surrounding resuscitative techniques. This article reviews evidence, discusses controversies, and offers strategies to provide quality cardiac arrest resuscitation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Cardiac-Specific Disruption of GH Receptor Alters Glucose Homeostasis While Maintaining Normal Cardiac Performance in Adult Male Mice.

    PubMed

    Jara, Adam; Liu, Xingbo; Sim, Don; Benner, Chance M; Duran-Ortiz, Silvana; Qian, Yanrong; List, Edward O; Berryman, Darlene E; Kim, Jason K; Kopchick, John J

    2016-05-01

    GH is considered necessary for the proper development and maintenance of several tissues, including the heart. Studies conducted in both GH receptor null and bovine GH transgenic mice have demonstrated specific cardiac structural and functional changes. In each of these mouse lines, however, GH-induced signaling is altered systemically, being decreased in GH receptor null mice and increased in bovine GH transgenic mice. Therefore, to clarify the direct effects GH has on cardiac tissue, we developed a tamoxifen-inducible, cardiac-specific GHR disrupted (iC-GHRKO) mouse line. Cardiac GH receptor was disrupted in 4-month-old iC-GHRKO mice to avoid developmental effects due to perinatal GHR gene disruption. Surprisingly, iC-GHRKO mice showed no difference vs controls in baseline or postdobutamine stress test echocardiography measurements, nor did iC-GHRKO mice show differences in longitudinal systolic blood pressure measurements. Interestingly, iC-GHRKO mice had decreased fat mass and improved insulin sensitivity at 6.5 months of age. By 12.5 months of age, however, iC-GHRKO mice no longer had significant decreases in fat mass and had developed glucose intolerance and insulin resistance. Furthermore, investigation via immunoblot analysis demonstrated that iC-GHRKO mice had appreciably decreased insulin stimulated Akt phosphorylation, specifically in heart and liver, but not in epididymal white adipose tissue. These changes were accompanied by a decrease in circulating IGF-1 levels in 12.5-month-old iC-GHRKO mice. These data indicate that whereas the disruption of cardiomyocyte GH-induced signaling in adult mice does not affect cardiac function, it does play a role in systemic glucose homeostasis, in part through modulation of circulating IGF-1.

  10. Cardiac torsion and electromagnetic fields: the cardiac bioinformation hypothesis.

    PubMed

    Burleson, Katharine O; Schwartz, Gary E

    2005-01-01

    Although in physiology the heart is often referred to as a simple piston pump, there are in fact two additional features that are integral to cardiac physiology and function. First, the heart as it contracts in systole, also rotates and produces torsion due to the structure of the myocardium. Second, the heart produces a significant electromagnetic field with each contraction due to the coordinated depolarization of myocytes producing a current flow. Unlike the electrocardiogram, the magnetic field is not limited to volume conduction and extends outside the body. The therapeutic potential for interaction of this cardioelectromagnetic field both within and outside the body is largely unexplored. It is our hypothesis that the heart functions as a generator of bioinformation that is central to normative functioning of body. The source of this bioinformation is based on: (1) vortex blood flow in the left ventricle; (2) a cardiac electromagnetic field and both; (3) heart sounds; and (4) pulse pressure which produce frequency and amplitude information. Thus, there is a multidimensional role for the heart in physiology and biopsychosocial dynamics. Recognition of these cardiac properties may result in significant implications for new therapies for cardiovascular disease based on increasing cardiac energy efficiency (coherence) and bioinformation from the cardioelectromagnetic field. Research studies to test this hypothesis are suggested.

  11. Exercise-Induced Changes in Glucose Metabolism Promote Physiological Cardiac Growth

    PubMed Central

    Gibb, Andrew A.; Epstein, Paul N.; Uchida, Shizuka; Zheng, Yuting; McNally, Lindsey A.; Obal, Detlef; Katragadda, Kartik; Trainor, Patrick; Conklin, Daniel J.; Brittian, Kenneth R.; Tseng, Michael T.; Wang, Jianxun; Jones, Steven P.; Bhatnagar, Aruni

    2017-01-01

    Background: Exercise promotes metabolic remodeling in the heart, which is associated with physiological cardiac growth; however, it is not known whether or how physical activity–induced changes in cardiac metabolism cause myocardial remodeling. In this study, we tested whether exercise-mediated changes in cardiomyocyte glucose metabolism are important for physiological cardiac growth. Methods: We used radiometric, immunologic, metabolomic, and biochemical assays to measure changes in myocardial glucose metabolism in mice subjected to acute and chronic treadmill exercise. To assess the relevance of changes in glycolytic activity, we determined how cardiac-specific expression of mutant forms of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase affect cardiac structure, function, metabolism, and gene programs relevant to cardiac remodeling. Metabolomic and transcriptomic screenings were used to identify metabolic pathways and gene sets regulated by glycolytic activity in the heart. Results: Exercise acutely decreased glucose utilization via glycolysis by modulating circulating substrates and reducing phosphofructokinase activity; however, in the recovered state following exercise adaptation, there was an increase in myocardial phosphofructokinase activity and glycolysis. In mice, cardiac-specific expression of a kinase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase transgene (GlycoLo mice) lowered glycolytic rate and regulated the expression of genes known to promote cardiac growth. Hearts of GlycoLo mice had larger myocytes, enhanced cardiac function, and higher capillary-to-myocyte ratios. Expression of phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in the heart (GlycoHi mice) increased glucose utilization and promoted a more pathological form of hypertrophy devoid of transcriptional activation of the physiological cardiac growth program. Modulation of phosphofructokinase activity was sufficient to regulate the

  12. Novel mechanisms for caspase inhibition protecting cardiac function with chronic pressure overload

    PubMed Central

    Vatner, Stephen F.; Yan, Lin; Gao, Shumin; Yoon, Seunghun; Lee, Grace Jung Ah; Xie, Lai-Hua; Kitsis, Richard N.; Vatner, Dorothy E.

    2013-01-01

    Myocyte apoptosis is considered a major mechanism in the pathogenesis of heart failure. Accordingly, manipulations that inhibit apoptosis are assumed to preserve cardiac function by maintaining myocyte numbers. We tested this assumption by examining the effects of caspase inhibition (CI) on cardiac structure and function in C57BL/6 mouse with pressure overload model induced by transverse aortic constriction (TAC). CI preserved left ventricular (LV) function following TAC compared with the vehicle. TAC increased apoptosis in non-myocytes more than in myocytes and these increases were blunted more in non-myocytes by CI. Total myocyte number, however, did not differ significantly among control and TAC groups and there was no correlation between myocyte number and apoptosis, but there was a strong correlation between myocyte number and an index of myocyte proliferation, Ki67-positive myocytes. Despite comparable pressure gradients, LV hypertrophy was less in the CI group, likely attributable to decreased wall stress. Since changes in myocyte numbers did not account for protection from TAC, several other CI-mediated mechanisms were identified including: (a) lessening of TAC-induced fibrosis, (b) augmentation of isolated myocyte contractility, and (c) increased angiogenesis and Ki67-positive myocytes, which were due almost entirely to the non-myocyte apoptosis, but not myocyte apoptosis, with CI. CI maintained LV function following TAC not by protecting against myocyte loss, but rather by augmenting myocyte contractile function, myocyte proliferation, and angiogenesis resulting in reduced LV wall stress, hypertrophy, and fibrosis. PMID:23277091

  13. Are There Deleterious Cardiac Effects of Acute and Chronic Endurance Exercise?

    PubMed Central

    Eijsvogels, Thijs M. H.; Fernandez, Antonio B.; Thompson, Paul D.

    2015-01-01

    Multiple epidemiological studies document that habitual physical activity reduces the risk of atherosclerotic cardiovascular disease (ASCVD), and most demonstrate progressively lower rates of ASCVD with progressively more physical activity. Few studies have included individuals performing high-intensity, lifelong endurance exercise, however, and recent reports suggest that prodigious amounts of exercise may increase markers for, and even the incidence of, cardiovascular disease. This review examines the evidence that extremes of endurance exercise may increase cardiovascular disease risk by reviewing the causes and incidence of exercise-related cardiac events, and the acute effects of exercise on cardiovascular function, the effect of exercise on cardiac biomarkers, including “myocardial” creatine kinase, cardiac troponins, and cardiac natriuretic peptides. This review also examines the effect of exercise on coronary atherosclerosis and calcification, the frequency of atrial fibrillation in aging athletes, and the possibility that exercise may be deleterious in individuals genetically predisposed to such cardiac abnormalities as long QT syndrome, right ventricular cardiomyopathy, and hypertrophic cardiomyopathy. This review is to our knowledge unique because it addresses all known potentially adverse cardiovascular effects of endurance exercise. The best evidence remains that physical activity and exercise training benefit the population, but it is possible that prolonged exercise and exercise training can adversely affect cardiac function in some individuals. This hypothesis warrants further examination. PMID:26607287

  14. Long-term functional and echocardiographic assessment after penetrating cardiac injury: 5-year follow-up results.

    PubMed

    Carr, John Alfred; Buterakos, Roxanne; Bowling, William M; Janson, Lisa; Kralovich, Kurt A; Copeland, Craig; Link, Renee; Roiter, Cecilia; Casey, Gregory; Wagner, James W

    2011-03-01

    There is almost no data describing the long-term functional outcome of patients after penetrating cardiac injury. A retrospective study at a Level I trauma center from 2000 to 2009. Sixty-three patients had penetrating cardiac injuries from 28 stabbings and 35 gunshots. Men comprised 89% (56) of the patients. Overall, there were 21 survivors (33%) and 42 died in the emergency room or perioperative period. The mean age did not significantly differ between survivors (36 years ± 12 years) compared with those who died (30 years ± 11 years; p=0.07). There was an increased chance of survival after being stabbed compared with being shot (17 patients vs. 4 patients; odds ratio=12; p=0.002). Thirteen (62%) had injuries to the right ventricle only. Three patients died during follow-up: one from lung cancer and two other patients died from myocardial infarctions, one 9 years later at the age of 45 years and the other 8 years later at the age of 55 years. The survivors had functional follow-up evaluations from 2 months to 114 months (median, 71; interquartile range, 34-92 months) and echocardiographic follow-up from 2 months to 107 months (median, 64; interquartile range, 31-84 months) after their injuries. Functionally, all patients were in NYHA class 1 status, except one patient in class II who was 54 years old and had a mild exertional limitation. The previously injured area could only be identified by echocardiogram in one patient who had a patch repair of a ventricular septal defect (VSD). The mean ejection fraction improved over time from a mean of 51% ± 8% in the immediate postoperative period to 60% ± 9% after a mean follow-up of 59 months (p=0.01). After surgery, 43% of patients had a mild to moderate pericardial effusion; however, the long-term follow-up studies showed that all these had resolved. Wall motion abnormalities occurred in 33% of patients in the immediate postoperative period and, again, all these resolved during long-term follow-up. Patients who

  15. Critical Care Management Focused on Optimizing Brain Function After Cardiac Arrest.

    PubMed

    Nakashima, Ryuta; Hifumi, Toru; Kawakita, Kenya; Okazaki, Tomoya; Egawa, Satoshi; Inoue, Akihiko; Seo, Ryutaro; Inagaki, Nobuhiro; Kuroda, Yasuhiro

    2017-03-24

    The discussion of neurocritical care management in post-cardiac arrest syndrome (PCAS) has generally focused on target values used for targeted temperature management (TTM). There has been less attention paid to target values for systemic and cerebral parameters to minimize secondary brain damage in PCAS. And the neurologic indications for TTM to produce a favorable neurologic outcome remain to be determined. Critical care management of PCAS patients is fundamental and essential for both cardiologists and general intensivists to improve neurologic outcome, because definitive therapy of PCAS includes both special management of the cause of cardiac arrest, such as coronary intervention to ischemic heart disease, and intensive management of the results of cardiac arrest, such as ventilation strategies to avoid brain ischemia. We reviewed the literature and the latest research about the following issues and propose practical care recommendations. Issues are (1) prediction of TTM candidate on admission, (2) cerebral blood flow and metabolism and target value of them, (3) seizure management using continuous electroencephalography, (4) target value of hemodynamic stabilization and its method, (5) management and analysis of respiration, (6) sedation and its monitoring, (7) shivering control and its monitoring, and (8) glucose management. We hope to establish standards of neurocritical care to optimize brain function and produce a favorable neurologic outcome.

  16. Long-lasting functional disabilities in patients who recover from coma after cardiac operations.

    PubMed

    Rodriguez, Rosendo A; Nair, Shona; Bussière, Miguel; Nathan, Howard J

    2013-03-01

    Uncertainty regarding the long-term functional outcome of patients who awaken from coma after cardiac operations is difficult for families and physicians and may delay rehabilitation. We studied the long-term functional status of these patients to determine if duration of coma predicted outcome. We followed 71 patients who underwent cardiac operations; recovered their ability to respond to verbal commands after coma associated with postoperative stroke, encephalopathy, and/or seizures; and were discharged from the hospital. The Glasgow Outcome Scale Extended (GOSE) was used to assess functional disability 2 to 4 years after discharge. Outcomes were classified as favorable (GOSE scores 7 and 8) and unfavorable (GOSE scores 1-6). Of 71 patients identified, 39 were interviewed, 15 died, 1 refused to be interviewed, and 16 were lost to follow-up. Of the 54 patients with completed GOSE evaluations, only 15 (28%) had favorable outcomes. Among patients with unfavorable outcomes, 15 (28%) died, 14 (26%) survived with moderate disabilities, and 10 (18%) had severe disabilities. Factors associated with unfavorable outcomes were increases in duration of coma (p = 0.007), time in intensive care (p = 0.006), length of hospitalization (p = 0.004), and postoperative serum creatine kinase levels (p = 0.006). Only duration of coma was an independent predictor of unfavorable outcome (odds ratio [OR], 1.25; 95% confidence interval [CI], 1.008-1.537; p = 0.042). Patients with durations of coma greater than 4 days were more likely to have unfavorable outcomes (OR, 5.1; 95% CI, 1.3-21.3; p = 0.02). Two thirds of comatose patients who survived to discharge after cardiac operations had unfavorable long-term functional outcomes. A longer duration of unconsciousness is a predictor of unfavorable outcome. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment.

    PubMed Central

    Iso, Yoshitaka; Spees, Jeffrey L.; Serrano, Claudia; Bakondi, Benjamin; Pochampally, Radhika; Song, Yao-Hua; Sobel, Burton E.; Delafontaine, Patrick; Prockop, Darwin J.

    2007-01-01

    The aim of this study was to determine whether intravenously-administered multipotent stromal cells from human bone marrow (hMSCs) can improve cardiac function after myocardial infarction (MI) without long-term engraftment and therefore whether transitory paracrine effects or secreted factors are responsible for the benefit conferred. hMSCs were injected systemically into immunodeficient mice with acute MI. Cardiac function and fibrosis after MI in the hMSC-treated group was significantly improved compared with that in controls. However, despite the cardiac improvement, there was no evident hMSC engraftment in the heart 3 weeks after MI. Microarray assays and ELISAs demonstrated that multiple protective factors were expressed and secreted from the hMSCs in culture. Factors secreted by hMSCs prevented cell death of cultured cardiomyocytes and endothelial cells under conditions that mimicked tissue ischemia. The favorable effects of hMSCs appear to reflect the impact of secreted factors rather than engraftment, differentiation, or cell fusion. PMID:17257581

  18. Physiologic abnormalities of cardiac function in progressive systemic sclerosis with diffuse scleroderma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follansbee, W.P.; Curtiss, E.I.; Medsger, T.A. Jr.

    1984-01-19

    To investigate cardiopulmonary function in progressive systemic sclerosis with diffuse scleroderma, we studied 26 patients with maximal exercise and redistribution thallium scans, rest and exercise radionuclide ventriculography, pulmonary-function testing, and chest roentgenography. Although only 6 patients had clinical evidence of cardiac involvement, 20 had abnormal thallium scans, including 10 with reversible exercise-induced defects and 18 with fixed defects (8 had both). Seven of the 10 patients who had exercise-induced defects and underwent cardiac catheterization had normal coronary angiograms. Mean resting left ventricular ejection fraction and mean resting right ventricular ejection fraction were lower in patients with post-exercise left ventricular thalliummore » defect scores above the median (59 +/- 13 per cent vs. 69 +/- 6 per cent, and 36 +/- 12 per cent vs. 47 +/- 7 per cent, respectively). The authors conclude that in progressive systemic sclerosis with diffuse scleroderma, abnormalities of myocardial perfusion are common and appear to be due to a disturbance of the myocardial microcirculation. Both right and left ventricular dysfunction appear to be related to this circulatory disturbance, suggesting ischemically mediated injury.« less

  19. Qiliqiangxin Rescues Mouse Cardiac Function by Regulating AGTR1/TRPV1-Mediated Autophagy in STZ-Induced Diabetes Mellitus.

    PubMed

    Tong, Jing; Lai, Yan; Yao, Yi-An; Wang, Xue-Jun; Shi, Yu-Shuang; Hou, Han-Jin; Gu, Jian-Yun; Chen, Fei; Liu, Xue-Bo

    2018-06-19

    To explore the potential role of qiliqiangxin (QLQX) A traditional Chinese medicine and the involvement of angiotensin II receptor type 1 (AGTR1) and transient receptor potential vanilloid 1 (TRPV1) in diabetic mouse cardiac function. Intragastric QLQX was administered for 5 weeks after streptozotocin (STZ) treatment. Additionally, Intraperitoneal injections of angiotensin II (Ang II) or intragastric losartan (Los) were administered to assess the activities of AGTR1 and TRPV1. Two-dimensional echocardiography and tissue histopathology were used to assess cardiac function Western blot was used to detect the autophagic biomarkers Such as light chain 3 P62 and lysosomal-associated membrane protein 2 And transmission electron microscopy was used to count the number of autophagosomes. Decreased expression of TRPV1 and autophagic hallmarks and reduced numbers of autophagolysosomes as well as increased expression of angiotensin converting enzyme 1 and AGTR1 were observed in diabetic hearts. Blocking AGTR1 with Los mimicked the QLQX-mediated improvements in cardiac function Alleviated myocardial fibrosis and enabled autophagy Whereas Ang II abolished the beneficial effects of QLQX in wild type diabetic mice but not in TRPV1-/- diabetic mice. QLQX may improve diabetic cardiac function by regulating AGTR1/ TRPV1-mediated autophagy in STZ-induced diabetic mice. © 2018 The Author(s). Published by S. Karger AG, Basel.

  20. The role of the anterodorsal thalami nuclei in the regulation of adrenal medullary function, beta-adrenergic cardiac receptors and anxiety responses in maternally deprived rats under stressful conditions.

    PubMed

    Suárez, M M; Rivarola, M A; Molina, S M; Levin, G M; Enders, J; Paglini, P

    2004-09-01

    Maternal separation can interfere with growth and development of the brain and represents a significant risk factor for adult psychopathology. In rodents, prolonged separation from the mother affects the behavioral and endocrine responses to stress for the lifetime of the animal. Limbic structures such as the anterodorsal thalamic nuclei (ADTN) play an important role in the control of neuroendocrine and sympathetic-adrenal function. In view of these findings we hypothesized that the function of the ADTN may be affected in an animal model of maternal deprivation. To test this hypothesis female rats were isolated 4.5 h daily, during the first 3 weeks of life and tested as adults. We evaluated plasma epinephrine (E) and norepinephrine (NE), cardiac adrenoreceptors and anxiety responses after maternal deprivation and variable chronic stress (VCS) in ADTN-lesioned rats. Thirty days after ADTN lesion, in non-maternally deprived rats basal plasma NE concentration was greater and cardiac beta-adrenoreceptor density was lower than that in the sham-lesioned group. Maternal deprivation induced a significant increase in basal plasma NE concentration, which was greater in lesioned rats, and cardiac beta-adrenoreceptor density was decreased in lesioned rats. After VCS plasma catecholamine concentration was much greater in non-maternally deprived rats than in maternally-deprived rats; cardiac beta-adrenoreceptor density was decreased by VCS in both maternally-deprived and non-deprived rats, but more so in non-deprived rats, and further decreased by the ADTN lesion. In the plus maze test, the number of open arm entries was greater in the maternally deprived and in the stressed rats. Thus, sympathetic-adrenal medullary activation produced by VCS was much greater in non-deprived rats, and was linked to a down regulation of myocardial beta-adrenoceptors. The ADTN are not responsible for the reduced catecholamine responses to stress in maternally-deprived rats. Maternal deprivation or

  1. Functional subcellular distribution of β1- and β2-adrenergic receptors in rat ventricular cardiac myocytes

    PubMed Central

    Cros, Caroline; Brette, Fabien

    2013-01-01

    β-adrenergic stimulation is a key regulator of cardiac function. The localization of major cardiac adrenergic receptors (β1 and β2) has been investigated using biochemical and biophysical approaches and has led to contradictory results. This study investigates the functional subcellular localization of β1- and β2-adrenergic receptors in rat ventricular myocytes using a physiological approach. Ventricular myocytes were isolated from the hearts of rat and detubulated using formamide. Physiological cardiac function was measured as Ca2+ transient using Fura-2-AM and cell shortening. Selective activation of β1- and β2-adrenergic receptors was induced with isoproterenol (0.1 μmol/L) and ICI-118,551 (0.1 μmol/L); and with salbutamol (10 μmol/L) and atenolol (1 μmol/L), respectively. β1- and β2-adrenergic stimulations induced a significant increase in Ca2+ transient amplitude and cell shortening in intact rat ventricular myocytes (i.e., surface sarcolemma and t-tubules) and in detubulated cells (depleted from t-tubules, surface sarcolemma only). Both β1- and β2-adrenergic receptors stimulation caused a greater effect on Ca2+ transient and cell shortening in detubulated myocytes than in control myocytes. Quantitative analysis indicates that β1-adrenergic stimulation is ∼3 times more effective at surface sarcolemma compared to t-tubules, whereas β2- adrenergic stimulation occurs almost exclusively at surface sarcolemma (∼100 times more effective). These physiological data demonstrate that in rat ventricular myocytes, β1-adrenergic receptors are functionally present at surface sarcolemma and t-tubules, while β2-adrenergic receptors stimulation occurs only at surface sarcolemma of cardiac cells. PMID:24303124

  2. Maternal cardiac metabolism in pregnancy

    PubMed Central

    Liu, Laura X.; Arany, Zolt

    2014-01-01

    Pregnancy causes dramatic physiological changes in the expectant mother. The placenta, mostly foetal in origin, invades maternal uterine tissue early in pregnancy and unleashes a barrage of hormones and other factors. This foetal ‘invasion’ profoundly reprogrammes maternal physiology, affecting nearly every organ, including the heart and its metabolism. We briefly review here maternal systemic metabolic changes during pregnancy and cardiac metabolism in general. We then discuss changes in cardiac haemodynamic during pregnancy and review what is known about maternal cardiac metabolism during pregnancy. Lastly, we discuss cardiac diseases during pregnancy, including peripartum cardiomyopathy, and the potential contribution of aberrant cardiac metabolism to disease aetiology. PMID:24448314

  3. Biomechanics of Early Cardiac Development

    PubMed Central

    Goenezen, Sevan; Rennie, Monique Y.

    2012-01-01

    Biomechanics affect early cardiac development, from looping to the development of chambers and valves. Hemodynamic forces are essential for proper cardiac development, and their disruption leads to congenital heart defects. A wealth of information already exists on early cardiac adaptations to hemodynamic loading, and new technologies, including high resolution imaging modalities and computational modeling, are enabling a more thorough understanding of relationships between hemodynamics and cardiac development. Imaging and modeling approaches, used in combination with biological data on cell behavior and adaptation, are paving the road for new discoveries on links between biomechanics and biology and their effect on cardiac development and fetal programming. PMID:22760547

  4. Genetic modification of embryonic stem cells with VEGF enhances cell survival and improves cardiac function.

    PubMed

    Xie, Xiaoyan; Cao, Feng; Sheikh, Ahmad Y; Li, Zongjin; Connolly, Andrew J; Pei, Xuetao; Li, Ren-Ke; Robbins, Robert C; Wu, Joseph C

    2007-01-01

    Cardiac stem cell therapy remains hampered by acute donor cell death posttransplantation and the lack of reliable methods for tracking cell survival in vivo. We hypothesize that cells transfected with inducible vascular endothelial growth factor 165 (VEGF(165)) can improve their survival as monitored by novel molecular imaging techniques. Mouse embryonic stem (ES) cells were transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF(165) and renilla luciferase (Rluc). Addition of doxycycline induced Bi-Tet expression of VEGF(165) and Rluc significantly compared to baseline (p<0.05). Expression of VEGF(165) enhanced ES cell proliferation and inhibited apoptosis as determined by Annexin-V staining. For noninvasive imaging, ES cells were transduced with a double fusion (DF) reporter gene consisting of firefly luciferase and enhanced green fluorescence protein (Fluc-eGFP). There was a robust correlation between cell number and Fluc activity (R(2)=0.99). Analysis by immunostaining, histology, and RT-PCR confirmed that expression of Bi-Tet and DF systems did not affect ES cell self-renewal or pluripotency. ES cells were differentiated into beating embryoid bodies expressing cardiac markers such as troponin, Nkx2.5, and beta-MHC. Afterward, 5 x 10(5) cells obtained from these beating embryoid bodies or saline were injected into the myocardium of SV129 mice (n=36) following ligation of the left anterior descending (LAD) artery. Bioluminescence imaging (BLI) and echocardiography showed that VEGF(165) induction led to significant improvements in both transplanted cell survival and cardiac function (p<0.05). This is the first study to demonstrate imaging of embryonic stem cell-mediated gene therapy targeting cardiovascular disease. With further validation, this platform may have broad applications for current basic research and further clinical studies.

  5. Predictive value of myocardial perfusion single-photon emission computed tomography and the impact of renal function on cardiac death.

    PubMed

    Hakeem, Abdul; Bhatti, Sabha; Dillie, Kathryn Sullivan; Cook, Jeffrey R; Samad, Zainab; Roth-Cline, Michelle D; Chang, Su Min

    2008-12-09

    Patients with chronic kidney disease (CKD) have worse cardiovascular outcomes than those without CKD. The prognostic utility of myocardial perfusion single-photon emission CT (MPS) in patients with varying degrees of renal dysfunction and the impact of CKD on cardiac death prediction in patients undergoing MPS have not been investigated. We followed up 1652 consecutive patients who underwent stress MPS (32% exercise, 95% gated) for cardiac death for a mean of 2.15+/-0.8 years. MPS defects were defined with a summed stress score (normal summed stress score <4, abnormal summed stress score>or=4). Ischemia was defined as a summed stress score >or=4 plus a summed difference score >or=2, and scar was defined as a summed difference score <2 plus a summed stress score >or=4. Renal function was calculated with the Modified Diet in Renal Disease equation. CKD (estimated glomerular filtration rate <60 mL . min(-1) . 1.73 m(-2)) was present in 36%. Cardiac death increased with worsening levels of perfusion defects across the entire spectrum of renal function. Presence of ischemia was independently predictive of cardiac death, all-cause mortality, and nonfatal myocardial infarction. Patients with normal MPS and CKD had higher unadjusted cardiac death event rates than those with no CKD and normal MPS (2.7% versus 0.8%, P=0.001). Multivariate Cox proportional hazards models revealed that both perfusion defects (hazard ratio 1.90, 95% CI 1.47 to 2.46) and CKD (hazard ratio 1.96, 95% CI 1.29 to 2.95) were independent predictors of cardiac death after accounting for risk factors, left ventricular dysfunction, pharmacological stress, and symptom status. Both MPS and CKD had incremental power for cardiac death prediction over baseline risk factors and left ventricular dysfunction (global chi(2) 207.5 versus 169.3, P<0.0001). MPS provides effective risk stratification across the entire spectrum of renal function. Renal dysfunction is also an important independent predictor of cardiac

  6. Chronic resuscitation after trauma-hemorrhage and acute fluid replacement improves hepatocellular function and cardiac output.

    PubMed

    Remmers, D E; Wang, P; Cioffi, W G; Bland, K I; Chaudry, I H

    1998-01-01

    To determine whether prolonged (chronic) resuscitation has any beneficial effects on cardiac output and hepatocellular function after trauma-hemorrhage and acute fluid replacement. Acute fluid resuscitation after trauma-hemorrhage restores but does not maintain the depressed hepatocellular function and cardiac output. Male Sprague-Dawley rats underwent a 5-cm laparotomy (i.e., trauma was induced) and were bled to and maintained at a mean arterial pressure of 40 mmHg until 40% of maximal bleed-out volume was returned in the form of Ringer's lactate (RL). The animals were acutely resuscitated with RL using 4 times the volume of maximum bleed-out over 60 minutes, followed by chronic resuscitation of 0, 5, or 10 mL/kg/hr RL for 20 hours. Hepatocellular function was determined by an in vivo indocyanine green clearance technique. Hepatic microvascular blood flow was assessed by laser Doppler flowmetry. Plasma levels of interleukin-6 (IL-6) were determined by bioassay. Chronic resuscitation with 5 mL/kg/hr RL, but not with 0 or 10 mL/kg/hr RL, restored cardiac output, hepatocellular function, and hepatic microvascular blood flow at 20 hours after hemorrhage. The regimen above also reduced plasma IL-6 levels. Because chronic resuscitation with 5 mL/kg/hr RL after trauma-hemorrhage and acute fluid replacement restored hepatocellular function and hepatic microvascular blood flow and decreased plasma levels of IL-6, we propose that chronic fluid resuscitation in addition to acute fluid replacement should be routinely used in experimental studies of trauma-hemorrhage.

  7. Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies.

    PubMed

    Kanaan, Georges N; Ichim, Bianca; Gharibeh, Lara; Maharsy, Wael; Patten, David A; Xuan, Jian Ying; Reunov, Arkadiy; Marshall, Philip; Veinot, John; Menzies, Keir; Nemer, Mona; Harper, Mary-Ellen

    2018-04-01

    Glutaredoxin 2 (GRX2), a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and cardiac hypertrophy in mice but the impact on mitochondrial structure and function in intact cardiomyocytes and in humans has not been explored. We hypothesized that Grx2 controls cardiac mitochondrial dynamics and function in cellular and mouse models, and that low expression is associated with human cardiac dysfunction. Here we show that Grx2 absence impairs mitochondrial fusion, ultrastructure and energetics in primary cardiomyocytes and cardiac tissue. Moreover, provision of the glutathione precursor, N-acetylcysteine (NAC) to Grx2-/- mice did not restore glutathione redox or prevent impairments. Using genetic and histopathological data from the human Genotype-Tissue Expression consortium we demonstrate that low GRX2 is associated with fibrosis, hypertrophy, and infarct in the left ventricle. Altogether, GRX2 is important in the control of cardiac mitochondrial structure and function, and protects against human cardiac pathologies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Effects of milrinone on left ventricular cardiac function during cooling in an intact animal model.

    PubMed

    Tveita, Torkjel; Sieck, Gary C

    2012-08-01

    Due to adverse effects of β-receptor agonists reported when applied during hypothermia, left ventricular (LV) cardiac effects of milrinone, a PDE3 inhibitor which mode of action is deprived the sarcolemmal β-receptor-G protein-PKA system, was tested during cooling to 15 °C. Sprague Dawley rats were instrumented to measure left ventricular (LV) pressure-volume changes using a Millar pressure-volume conductance catheter. Core temperature was reduced from 37 to 15 °C (60 min) using internal and external heat exchangers. Milrinone, or saline placebo, was given as continuous i.v. infusions for 30 min at 37 °C and during cooling. In normothermic controls continuous milrinone infusion for 90 min elevated cardiac output (CO) and stroke volume (SV) significantly. Significant differences in cardiac functional variables between the milrinone group and the saline control group during cooling to 15 °C were found: Compared to saline treated animals throughout cooling from 33 to 15 °CSV was significantly elevated in milrinone animals, the index of LV isovolumic relaxation, Tau, was significantly better preserved, and both HR and CO were significantly higher from 33 to 24 °C. Likewise, during cooling between 33 and 28 °C also LVdP/dt(max) was significantly higher in the milrinone group. Milrinone preserved LV systolic and diastolic function at a significantly higher level than in saline controls during cooling to 15 °C. In essential contrast to our previous results when using β-receptor agonists during hypothermia, the present experiment demonstrates the positive inotropic effects of milrinone on LV cardiac function during cooling to 15 °C. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Does Travel Distance Affect Readmission Rates after Cardiac Surgery?

    PubMed

    Juo, Yen-Yi; Woods, Alexis; Ou, Ryan; Ramos, Gianna; Shemin, Richard; Benharash, Peyman

    2017-10-01

    With emphasis on value-based health care, empiric models are used to estimate expected readmission rates for individual institutions. The aim of this study was to determine the relationship between distance traveled to seek surgical care and likelihood of readmission in adult patients undergoing cardiac operations at a single medical center. All adults undergoing major cardiac surgeries from 2008 to 2015 were included. Patients were stratified by travel distance into regional and distant travel groups. Multivariable logistic regression models were developed to assess the impact of distance traveled on odds of readmission. Of the 4232 patients analyzed, 29 per cent were in the regional group and 71 per cent in the distant. Baseline characteristics between the two groups were comparable except mean age (62 vs 61 years, P < 0.01) and Caucasian race (59 vs 73%, P < 0.01). Distant travel was associated with a significantly longer hospital length of stay (11.8 vs 10.5 days, P < 0.01) and lower risk of readmission (9.5 vs 13.4%, P < 0.01). Odds of readmission was inversely associated with logarithm of distance traveled (odds ratio 0.75). Travel distance in patients undergoing major cardiac surgeries was inversely associated with odds of readmission.

  10. The Heart of the Matter: Cardiac Manifestations of Endocrine Disease

    PubMed Central

    Binu, Aditya John; Cherian, Kripa Elizabeth; Kapoor, Nitin; Chacko, Sujith Thomas; George, Oommen; Paul, Thomas Vizhalil

    2017-01-01

    Endocrine disorders manifest as a disturbance in the milieu of multiple organ systems. The cardiovascular system may be directly affected or alter its function to maintain the state of homeostasis. In this article, we aim to review the pathophysiology, diagnosis, clinical features and management of cardiac manifestations of various endocrine disorders. PMID:29285459

  11. The Role of Oxygen Sensors, Hydroxylases, and HIF in Cardiac Function and Disease.

    PubMed

    Townley-Tilson, W H Davin; Pi, Xinchun; Xie, Liang

    2015-01-01

    Ischemic heart disease is the leading cause of death worldwide. Oxygen-sensing proteins are critical components of the physiological response to hypoxia and reperfusion injury, but the role of oxygen and oxygen-mediated effects is complex in that they can be cardioprotective or deleterious to the cardiac tissue. Over 200 oxygen-sensing proteins mediate the effects of oxygen tension and use oxygen as a substrate for posttranslational modification of other proteins. Hydroxylases are an essential component of these oxygen-sensing proteins. While a major role of hydroxylases is regulating the transcription factor HIF, we investigate the increasing scope of hydroxylase substrates. This review discusses the importance of oxygen-mediated effects in the heart as well as how the field of oxygen-sensing proteins is expanding, providing a more complete picture into how these enzymes play a multifaceted role in cardiac function and disease. We also review how oxygen-sensing proteins and hydroxylase function could prove to be invaluable in drug design and therapeutic targets for heart disease.

  12. In Utero Exposure to a Cardiac Teratogen Causes Reversible Deficits in Postnatal Cardiovascular Function, But Altered Adaptation to the Burden of Pregnancy.

    PubMed

    Aasa, Kristiina L; Maciver, Rebecca D; Ramchandani, Shyamlal; Adams, Michael A; Ozolinš, Terence R S

    2015-11-01

    Congenital heart defects (CHD) are the most common birth anomaly and while many resolve spontaneously by 1 year of age, the lifelong burden on survivors is poorly understood. Using a rat model of chemically induced CHD that resolve postnatally, we sought to characterize the postnatal changes in cardiac function, and to investigate whether resolved CHD affects the ability to adapt to the increased the cardiovascular (CV) burden of pregnancy. To generate rats with resolved CHD, pregnant rats were administered distilled water or dimethadione (DMO) [300 mg/kg b.i.d. on gestation day (gd) 9 and 10] and pups delivered naturally. To characterize structural and functional changes in the heart, treated and control offspring were scanned by echocardiography on postnatal day 4, 21, and 10-12 weeks. Radiotelemeters were implanted for continuous monitoring of hemodynamics. Females were mated and scanned by echocardiography on gd12 and gd18 during pregnancy. On gd18, maternal hearts were collected for structural and molecular assessment. Postnatal echocardiography revealed numerous structural and functional differences in treated offspring compared with control; however, these resolved by 10-12 weeks of age. The CV demand of pregnancy revealed differences between treated and control offspring with respect to mean arterial pressure, CV function, cardiac strain, and left ventricular gene expression. In utero exposure to DMO also affected the subsequent generation. Gd18 fetal and placental weights were increased in treated F2 offspring. This study demonstrates that in utero chemical exposure may permanently alter the capacity of the postnatal heart to adapt to pregnancy and this may have transgenerational effects. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Exercise training in Tgαq*44 mice during the progression of chronic heart failure: cardiac vs. peripheral (soleus muscle) impairments to oxidative metabolism.

    PubMed

    Grassi, Bruno; Majerczak, Joanna; Bardi, Eleonora; Buso, Alessia; Comelli, Marina; Chlopicki, Stefan; Guzik, Magdalena; Mavelli, Irene; Nieckarz, Zenon; Salvadego, Desy; Tyrankiewicz, Urszula; Skórka, Tomasz; Bottinelli, Roberto; Zoladz, Jerzy A; Pellegrino, Maria Antonietta

    2017-08-01

    Cardiac function, skeletal (soleus) muscle oxidative metabolism, and the effects of exercise training were evaluated in a transgenic murine model (Tgα q *44) of chronic heart failure during the critical period between the occurrence of an impairment of cardiac function and the stage at which overt cardiac failure ensues (i.e., from 10 to 12 mo of age). Forty-eight Tgα q *44 mice and 43 wild-type FVB controls were randomly assigned to control groups and to groups undergoing 2 mo of intense exercise training (spontaneous running on an instrumented wheel). In mice evaluated at the beginning and at the end of training we determined: exercise performance (mean distance covered daily on the wheel); cardiac function in vivo (by magnetic resonance imaging); soleus mitochondrial respiration ex vivo (by high-resolution respirometry); muscle phenotype [myosin heavy chain (MHC) isoform content; citrate synthase (CS) activity]; and variables related to the energy status of muscle fibers [ratio of phosphorylated 5'-AMP-activated protein kinase (AMPK) to unphosphorylated AMPK] and mitochondrial biogenesis and function [peroxisome proliferative-activated receptor-γ coactivator-α (PGC-1α)]. In the untrained Tgα q *44 mice functional impairments of exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed. The impairment of mitochondrial respiration was related to the function of complex I of the respiratory chain, and it was not associated with differences in CS activity, MHC isoforms, p-AMPK/AMPK, and PGC-1α levels. Exercise training improved exercise performance and cardiac function, but it did not affect mitochondrial respiration, even in the presence of an increased percentage of type 1 MHC isoforms. Factors "upstream" of mitochondria were likely mainly responsible for the improved exercise performance. NEW & NOTEWORTHY Functional impairments in exercise performance, cardiac function, and soleus muscle mitochondrial respiration

  14. Physiological and structural differences in spatially distinct subpopulations of cardiac mitochondria: influence of cardiac pathologies

    PubMed Central

    Thapa, Dharendra; Shepherd, Danielle L.

    2014-01-01

    Cardiac tissue contains discrete pools of mitochondria that are characterized by their subcellular spatial arrangement. Subsarcolemmal mitochondria (SSM) exist below the cell membrane, interfibrillar mitochondria (IFM) reside in rows between the myofibrils, and perinuclear mitochondria are situated at the nuclear poles. Microstructural imaging of heart tissue coupled with the development of differential isolation techniques designed to sequentially separate spatially distinct mitochondrial subpopulations have revealed differences in morphological features including shape, absolute size, and internal cristae arrangement. These findings have been complemented by functional studies indicating differences in biochemical parameters and, potentially, functional roles for the ATP generated, based upon subcellular location. Consequently, mitochondrial subpopulations appear to be influenced differently during cardiac pathologies including ischemia/reperfusion, heart failure, aging, exercise, and diabetes mellitus. These influences may be the result of specific structural and functional disparities between mitochondrial subpopulations such that the stress elicited by a given cardiac insult differentially impacts subcellular locales and the mitochondria contained within. The goal of this review is to highlight some of the inherent structural and functional differences that exist between spatially distinct cardiac mitochondrial subpopulations as well as provide an overview of the differential impact of various cardiac pathologies on spatially distinct mitochondrial subpopulations. As an outcome, we will instill a basis for incorporating subcellular spatial location when evaluating the impact of cardiac pathologies on the mitochondrion. Incorporation of subcellular spatial location may offer the greatest potential for delineating the influence of cardiac pathology on this critical organelle. PMID:24778166

  15. Cardiac iron load and function in transfused patients treated with deferasirox (the MILE study).

    PubMed

    Ho, P Joy; Tay, Lay; Teo, Juliana; Marlton, Paula; Grigg, Andrew; St Pierre, Tim; Brown, Greg; Badcock, Caro-Anne; Traficante, Robert; Gervasio, Othon L; Bowden, Donald K

    2017-02-01

    To assess the effect of iron chelation therapy with deferasirox on cardiac iron and function in patients with transfusion-dependent thalassemia major, sickle cell disease (SCD), and myelodysplastic syndromes (MDS). This phase IV, single-arm, open-label study over 53 wk evaluated the change in cardiac and liver iron load with deferasirox (up to 40 mg/kg/d), measured by magnetic resonance imaging (MRI). Cardiac iron load (myocardial T2*) significantly improved (P = 0.002) overall (n = 46; n = 36 thalassemia major, n = 4 SCD, n = 6 MDS). Results were significant for patients with normal and moderate baseline cardiac iron (P = 0.017 and P = 0.015, respectively), but not in the five patients with severe cardiac iron load. Liver iron concentration (LIC) significantly decreased overall [mean LIC 10.4 to 8.2 mg Fe/g dry tissue (dw); P = 0.024], particularly in those with baseline LIC >7 mg Fe/g dw (19.9 to 15.6 mg Fe/g dw; P = 0.002). Furthermore, myocardial T2* significantly increased in patients with LIC <7 mg Fe/g dw, but not in those with a higher LIC. Safety was consistent with previous reports. Once-daily deferasirox over 1 yr significantly increased myocardial T2* and reduced LIC. This confirms that single-agent deferasirox is effective in the management of cardiac iron, especially for patients with myocardial T2* >10 ms (Clinicaltrials.gov identifier: NCT00673608). © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Renal denervation improves cardiac function in rats with chronic heart failure: Effects on expression of β-adrenoceptors

    PubMed Central

    Zheng, Hong; Liu, Xuefei; Sharma, Neeru M.

    2016-01-01

    Chronic activation of the sympathetic drive contributes to cardiac remodeling and dysfunction during chronic heart failure (HF). The present study was undertaken to assess whether renal denervation (RDN) would abrogate the sympathoexcitation in HF and ameliorate the adrenergic dysfunction and cardiac damage. Ligation of the left coronary artery was used to induce HF in Sprague-Dawley rats. Four weeks after surgery, RDN was performed, 1 wk before the final measurements. At the end of the protocol, cardiac function was assessed by measuring ventricular hemodynamics. Rats with HF had an average infarct area >30% of the left ventricle and left ventricular end-diastolic pressure (LVEDP) >20 mmHg. β1- and β2-adrenoceptor proteins in the left ventricle were reduced by 37 and 49%, respectively, in the rats with HF. RDN lowered elevated levels of urinary excretion of norepinephrine and brain natriuretic peptide levels in the hearts of rats with HF. RDN also decreased LVEDP to 10 mmHg and improved basal dP/dt to within the normal range in rats with HF. RDN blunted loss of β1-adrenoceptor (by 47%) and β2-adrenoceptor (by 100%) protein expression and improved isoproterenol (0.5 μg/kg)-induced increase in +dP/dt (by 71%) and −dP/dt (by 62%) in rats with HF. RDN also attenuated the increase in collagen 1 expression in the left ventricles of rats with HF. These findings demonstrate that RDN initiated in chronic HF condition improves cardiac function mediated by adrenergic agonist and blunts β-adrenoceptor expression loss, providing mechanistic insights for RDN-induced improvements in cardiac function in the HF condition. PMID:27288440

  17. N-acetylcysteine neither lowers plasma homocysteine concentrations nor improves brachial artery endothelial function in cardiac transplant recipients.

    PubMed

    Miner, S E S; Cole, D E C; Evrovski, J; Forrest, Q; Hutchison, S J; Holmes, K; Ross, H J

    2002-05-01

    N-acetylcysteine is a novel antioxidant that has been reported to reduce plasma homocysteine concentrations and improve endothelial function. Cardiac transplant recipients have a high incidence of coronary endothelial dysfunction and hyperhomocysteinemia, both of which may lead to the development of transplantation coronary artery disease. It was hypothesized that N-acetylcysteine would reduce plasma homocysteine concentrations and improve brachial endothelial function in cardiac transplant recipients. A cohort of stable cardiac transplant recipients was recruited from the outpatient clinic at the Toronto General Hospital, Toronto, Ontario. Brachial artery endothelial functions were studied according to standard techniques to determine flow-mediated dilation of the brachial artery. Plasma homocysteine concentrations were assayed using high performance liquid chromatography with electrochemical detection and pulsed integrated amperometry. After baseline testing, patients were treated in an unblinded fashion with N-acetylcysteine 500 mg/day. After 10 weeks of therapy, patients returned for follow-up endothelial function and homocysteine testing. Thirty-one patients were initially enrolled. Two patients withdrew due to excessive gastrointestinal upset. Two patients did not return for follow-up testing. The remaining 27 patients tolerated the treatment well. At baseline, 85% of the patients had hyperhomocysteinemia (greater than 15 mol/L) with a mean plasma concentration of 18.6 4.7 mol/L. No changes in homocysteine concentrations were seen at follow-up. At baseline, the average flow-mediated dilation was only 4.7 6.3%. No changes were seen at follow-up. Hyperhomocysteinemia and brachial endothelial dysfunction are common in stable cardiac transplant recipients and are unaffected by supplementation with N-acetylcysteine.

  18. Cardiac Mechano-Gated Ion Channels and Arrhythmias

    PubMed Central

    Peyronnet, Remi; Nerbonne, Jeanne M.; Kohl, Peter

    2015-01-01

    Mechanical forces will have been omnipresent since the origin of life, and living organisms have evolved mechanisms to sense, interpret and respond to mechanical stimuli. The cardiovascular system in general, and the heart in particular, are exposed to constantly changing mechanical signals, including stretch, compression, bending, and shear. The heart adjusts its performance to the mechanical environment, modifying electrical, mechanical, metabolic, and structural properties over a range of time scales. Many of the underlying regulatory processes are encoded intra-cardially, and are thus maintained even in heart transplant recipients. Although mechano-sensitivity of heart rhythm has been described in the medical literature for over a century, its molecular mechanisms are incompletely understood. Thanks to modern biophysical and molecular technologies, the roles of mechanical forces in cardiac biology are being explored in more detail, and detailed mechanisms of mechano-transduction have started to emerge. Mechano-gated ion channels are cardiac mechano-receptors. They give rise to mechano-electric feedback, thought to contribute to normal function, disease development, and, potentially, therapeutic interventions. In this review, we focus on acute mechanical effects on cardiac electrophysiology, explore molecular candidates underlying observed responses, and discuss their pharmaceutical regulation. From this, we identify open research questions and highlight emerging technologies that may help in addressing them. Cardiac electrophysiology is acutely affected by the heart’s mechanical environment. Mechano-electric feedback affects excitability, conduction, and electrical load, and remains an underestimated player in arrhythmogenesis. The utility of therapeutic interventions targeting acute mechano-electrical transduction is an open field worthy of further study. PMID:26838316

  19. Model-based imaging of cardiac electrical function in human atria

    NASA Astrophysics Data System (ADS)

    Modre, Robert; Tilg, Bernhard; Fischer, Gerald; Hanser, Friedrich; Messnarz, Bernd; Schocke, Michael F. H.; Kremser, Christian; Hintringer, Florian; Roithinger, Franz

    2003-05-01

    Noninvasive imaging of electrical function in the human atria is attained by the combination of data from electrocardiographic (ECG) mapping and magnetic resonance imaging (MRI). An anatomical computer model of the individual patient is the basis for our computer-aided diagnosis of cardiac arrhythmias. Three patients suffering from Wolff-Parkinson-White syndrome, from paroxymal atrial fibrillation, and from atrial flutter underwent an electrophysiological study. After successful treatment of the cardiac arrhythmia with invasive catheter technique, pacing protocols with stimuli at several anatomical sites (coronary sinus, left and right pulmonary vein, posterior site of the right atrium, right atrial appendage) were performed. Reconstructed activation time (AT) maps were validated with catheter-based electroanatomical data, with invasively determined pacing sites, and with pacing at anatomical markers. The individual complex anatomical model of the atria of each patient in combination with a high-quality mesh optimization enables accurate AT imaging, resulting in a localization error for the estimated pacing sites within 1 cm. Our findings may have implications for imaging of atrial activity in patients with focal arrhythmias.

  20. Ramipril restores PPARβ/δ and PPARγ expressions and reduces cardiac NADPH oxidase but fails to restore cardiac function and accompanied myosin heavy chain ratio shift in severe anthracycline-induced cardiomyopathy in rat.

    PubMed

    Cernecka, Hana; Doka, Gabriel; Srankova, Jasna; Pivackova, Lenka; Malikova, Eva; Galkova, Kristina; Kyselovic, Jan; Krenek, Peter; Klimas, Jan

    2016-11-15

    We hypothesized that peroxisome proliferator-activated receptors (PPARs) might be involved in a complex protective action of ACE inhibitors (ACEi) in anthracyclines-induced cardiomyopathy. For purpose of study, we compared effects of ramipril on cardiac dysfunction, cardiac failure markers and PPAR isoforms in moderate and severe chronic daunorubicin-induced cardiomyopathy. Male Wistar rats were administered with a single intravenous injection of daunorubicin: 5mg/kg (moderate cardiomyopathy), or 15mg/kg (severe cardiomyopathy) or co-administered with daunorubicin and ramipril (1mg/kg/d, orally) or vehicle for 8 weeks. Left ventricular function was measured invasively under anesthesia. Cardiac mRNA levels of heart failure markers (ANP, Myh6, Myh7, Myh7b) and PPARs (alpha, beta/delta and gama) were measured by qRT-PCR. Protein expression of NADPH subunit (gp91phox) was measured by Western blot. Moderate cardiomyopathy exhibited only minor cardiac dysfunction what was corrected by ramipril. In severe cardiomyopathy, hemodynamic dysfunction remained unaltered upon ramipril although it decreased the significantly up-regulated cardiac ANP mRNA expression. Simultaneously, while high-dose daunorubicin significantly decreased PPARbeta/delta and PPARgama mRNA, ramipril normalized these abnormalities. Similarly, ramipril reduced altered levels of oxidative stress-related gp91phox. On the other hand, ramipril was unable to correct both the significantly decreased relative abundance of Myh6 and increased Myh7 mRNA levels, respectively. In conclusion, ramipril had a protective effect on cardiac function exclusively in moderate chronic daunorubicin-induced cardiomyopathy. Although it normalized abnormal PPARs expression and exerted also additional protective effects also in severe cardiomyopathy, it was insufficient to influence impaired cardiac function probably because of a shift in myosin heavy chain isoform content. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Early sepsis does not stimulate reactive oxygen species production and does not reduce cardiac function despite an increased inflammation status.

    PubMed

    Léger, Thibault; Charrier, Alice; Moreau, Clarisse; Hininger-Favier, Isabelle; Mourmoura, Evangelia; Rigaudière, Jean-Paul; Pitois, Elodie; Bouvier, Damien; Sapin, Vincent; Pereira, Bruno; Azarnoush, Kasra; Demaison, Luc

    2017-07-01

    If it is sustained for several days, sepsis can trigger severe abnormalities of cardiac function which leads to death in 50% of cases. This probably occurs through activation of toll-like receptor-9 by bacterial lipopolysaccharides and overproduction of proinflammatory cytokines such as TNF- α and IL-1 β In contrast, early sepsis is characterized by the development of tachycardia. This study aimed at determining the early changes in the cardiac function during sepsis and at finding the mechanism responsible for the observed changes. Sixty male Wistar rats were randomly assigned to two groups, the first one being made septic by cecal ligation and puncture (sepsis group) and the second one being subjected to the same surgery without cecal ligation and puncture (sham-operated group). The cardiac function was assessed in vivo and ex vivo in standard conditions. Several parameters involved in the oxidative stress and inflammation were determined in the plasma and heart. As evidenced by the plasma level of TNF- α and gene expression of IL-1 β and TNF- α in the heart, inflammation was developed in the sepsis group. The cardiac function was also slightly stimulated by sepsis in the in vivo and ex vivo situations. This was associated with unchanged levels of oxidative stress, but several parameters indicated a lower cardiac production of reactive oxygen species in the septic group. In conclusion, despite the development of inflammation, early sepsis did not increase reactive oxygen species production and did not reduce myocardial function. The depressant effect of TNF- α and IL-1 β on the cardiac function is known to occur at very high concentrations. The influence of low- to moderate-grade inflammation on the myocardial mechanical behavior must thus be revisited. © 2017 French National Institute of Agronomical Research (INRA). Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  2. Embryonic Stem Cell-Derived Exosomes Promote Endogenous Repair Mechanisms and Enhance Cardiac Function Following Myocardial Infarction

    PubMed Central

    Khan, Mohsin; Nickoloff, Emily; Abramova, Tatiana; Johnson, Jennifer; Verma, Suresh Kumar; Krishnamurthy, Prasanna; Mackie, Alexander Roy; Vaughan, Erin; Garikipati, Venkata Naga Srikanth; Benedict, Cynthia; Ramirez, Veronica; Lambers, Erin; Ito, Aiko; Gao, Erhe; Misener, Sol; Luongo, Timothy; Elrod, John; Qin, Gangjian; Houser, Steven R; Koch, Walter J; Kishore, Raj

    2015-01-01

    Rationale Embryonic stem cells (ESCs) hold great promise for cardiac regeneration but are susceptible to various concerns. Recently, salutary effects of stem cells have been connected to exosome secretion. ESCs have the ability to produce exosomes however their effect in the context of the heart is unknown. Objective Determine the effect of ESC-derived exosome for the repair of ischemic myocardium and whether c-kit+ CPCs function can be enhanced with ESC exosomes Methods and Results This study demonstrates that mouse ESC derived exosomes (mES Ex) possess ability to augment function in infarcted hearts. mES Ex enhanced neovascularization, cardiomyocyte survival and reduced fibrosis post infarction consistent with resurgence of cardiac proliferative response. Importantly, mES Ex augmented cardiac progenitor cell (CPC) survival, proliferation and cardiac commitment concurrent with increased c-kit+ CPCs in vivo 8 weeks after in vivo transfer along with formation of bonafide new cardiomyocytes in the ischemic heart. miRNA array revealed significant enrichment of miR290–295 cluster and particularly miR-294 in ESC exosomes. The underlying basis for the beneficial effect of mES Ex was tied to delivery of ESC specific miR-294 to CPCs promoting increased survival, cell cycle progression and proliferation. Conclusions mES Ex provide a novel cell free system that utilizes the immense regenerative power of ES cells while avoiding the risks associated with direct ES or ES derived cell transplantation and risk of teratomas. ESC exosomes possess cardiac regeneration ability and modulate both cardiomyocyte and CPC based repair programs in the heart. PMID:25904597

  3. A Cell Model to Evaluate Chemical Effects on Adult Human Cardiac Progenitor Cell Differentiation and Function

    EPA Science Inventory

    Adult cardiac stem cells (CSC) and progenitor cells (CPC) represent a population of cells in the heart critical for its regeneration and function over a lifetime. The impact of chemicals on adult human CSC/CPC differentiation and function is unknown. Research was conducted to dev...

  4. The transfer functions of cardiac tissue during stochastic pacing.

    PubMed

    de Lange, Enno; Kucera, Jan P

    2009-01-01

    The restitution properties of cardiac action potential duration (APD) and conduction velocity (CV) are important factors in arrhythmogenesis. They determine alternans, wavebreak, and the patterns of reentrant arrhythmias. We developed a novel approach to characterize restitution using transfer functions. Transfer functions relate an input and an output quantity in terms of gain and phase shift in the complex frequency domain. We derived an analytical expression for the transfer function of interbeat intervals (IBIs) during conduction from one site (input) to another site downstream (output). Transfer functions can be efficiently obtained using a stochastic pacing protocol. Using simulations of conduction and extracellular mapping of strands of neonatal rat ventricular myocytes, we show that transfer functions permit the quantification of APD and CV restitution slopes when it is difficult to measure APD directly. We find that the normally positive CV restitution slope attenuates IBI variations. In contrast, a negative CV restitution slope (induced by decreasing extracellular [K(+)]) amplifies IBI variations with a maximum at the frequency of alternans. Hence, it potentiates alternans and renders conduction unstable, even in the absence of APD restitution. Thus, stochastic pacing and transfer function analysis represent a powerful strategy to evaluate restitution and the stability of conduction.

  5. Childhood obesity: impact on cardiac geometry and function.

    PubMed

    Mangner, Norman; Scheuermann, Kathrin; Winzer, Ephraim; Wagner, Isabel; Hoellriegel, Robert; Sandri, Marcus; Zimmer, Marion; Mende, Meinhard; Linke, Axel; Kiess, Wieland; Schuler, Gerhard; Körner, Antje; Erbs, Sandra

    2014-12-01

    The aim of our study was to assess geometric and functional changes of the heart in obese compared with nonobese children and adolescents. Obesity in children and adolescents has increased over the past decades and is considered a strong risk factor for future cardiovascular morbidity and mortality. Obesity has been associated with myocardial structural alterations that may influence cardiac mechanics. We prospectively recruited 61 obese (13.5 ± 2.7 years of age, 46% male sex, SD score body mass index, 2.52 ± 0.60) and 40 nonobese (14.1 ± 2.8 years of age, 50% male sex, SD score body mass index, -0.33 ± 0.83) consecutive, nonselected Caucasian children and adolescents. A standardized 2-dimensional (2D) echocardiography and 2D speckle-tracking analysis was performed in all children. Furthermore, blood chemistry including lipid and glucose metabolism was assessed in all children. Compared with nonobese children, blood pressure, low-density lipoprotein cholesterol, and parameters of glucose metabolism were significantly increased in obese children, whereas high-density lipoprotein cholesterol was significantly lower. Compared with nonobese children, obese children were characterized by enlarged left- and right-sided cardiac chambers, thicker left ventricular walls, and, consequently, increased left ventricular mass. Despite a comparable left ventricular ejection fraction, decreased tissue Doppler-derived peak systolic velocity and regional basoseptal strain were found in obese children compared with nonobese children. Beyond that, 2D speckle tracking-derived longitudinal (-18.2 ± 2.0 vs. -20.5 ± 2.3, p < 0.001) and circumferential (-17.0 ± 2.7 vs. -19.5 ± 2.9, p < 0.001) strain of the left ventricle was reduced in obese children compared with nonobese children. Diastolic function was also impaired in obese compared with nonobese children. Both longitudinal strain and circumferential strain were independently associated with obesity. The results of this

  6. The relationship between erythrocyte membrane fatty acid levels and cardiac autonomic function in obese children.

    PubMed

    Mustafa, Gulgun; Kursat, Fidanci Muzaffer; Ahmet, Tas; Alparslan, Genc Fatih; Omer, Gunes; Sertoglu, Erdem; Erkan, Sarı; Ediz, Yesilkaya; Turker, Turker; Ayhan, Kılıc

    Childhood obesity is a worldwide health concern. Studies have shown autonomic dysfunction in obese children. The exact mechanism of this dysfunction is still unknown. The aim of this study was to assess the relationship between erythrocyte membrane fatty acid (EMFA) levels and cardiac autonomic function in obese children using heart rate variability (HRV). A total of 48 obese and 32 healthy children were included in this case-control study. Anthropometric and biochemical data, HRV indices, and EMFA levels in both groups were compared statistically. HRV parameters including standard deviation of normal-to-normal R-R intervals (NN), root mean square of successive differences, the number of pairs of successive NNs that differ by >50 ms (NN50), the proportion of NN50 divided by the total number of NNs, high-frequency power, and low-frequency power were lower in obese children compared to controls, implying parasympathetic impairment. Eicosapentaenoic acid and docosahexaenoic acid levels were lower in the obese group (p<0.001 and p=0.012, respectively). In correlation analysis, in the obese group, body mass index standard deviation and linoleic acid, arachidonic acid, triglycerides, and high-density lipoprotein levels showed a linear correlation with one or more HRV parameter, and age, eicosapentaenoic acid, and systolic and diastolic blood pressure correlated with mean heart rate. In linear regression analysis, age, dihomo-gamma-linolenic acid, linoleic acid, arachidonic acid, body mass index standard deviation, systolic blood pressure, triglycerides, low-density lipoprotein and high-density lipoprotein were related to HRV parameters, implying an effect on cardiac autonomic function. There is impairment of cardiac autonomic function in obese children. It appears that levels of EMFAs such as linoleic acid, arachidonic acid and dihomo-gamma-linolenic acid play a role in the regulation of cardiac autonomic function in obese children. Copyright © 2017 Sociedade Portuguesa

  7. Patterns and determinants of functional and absolute iron deficiency in patients undergoing cardiac rehabilitation following heart surgery.

    PubMed

    Tramarin, Roberto; Pistuddi, Valeria; Maresca, Luigi; Pavesi, Marco; Castelvecchio, Serenella; Menicanti, Lorenzo; de Vincentiis, Carlo; Ranucci, Marco

    2017-05-01

    Background Anaemia and iron deficiency are frequent following major surgery. The present study aims to identify the iron deficiency patterns in cardiac surgery patients at their admission to a cardiac rehabilitation programme, and to determine which perioperative risk factor(s) may be associated with functional and absolute iron deficiency. Design This was a retrospective study on prospectively collected data. Methods The patient population included 339 patients. Functional iron deficiency was defined in the presence of transferrin saturation <20% and serum ferritin ≥100 µg/l. Absolute iron deficiency was defined in the presence of serum ferritin values <100 µg/l. Results Functional iron deficiency was found in 62.9% of patients and absolute iron deficiency in 10% of the patients. At a multivariable analysis, absolute iron deficiency was significantly ( p = 0.001) associated with mechanical prosthesis mitral valve replacement (odds ratio 5.4, 95% confidence interval 1.9-15) and tissue valve aortic valve replacement (odds ratio 4.5, 95% confidence interval 1.9-11). In mitral valve surgery, mitral repair carried a significant ( p = 0.013) lower risk of absolute iron deficiency (4.4%) than mitral valve replacement with tissue valves (8.3%) or mechanical prostheses (22.5%). Postoperative outcome did not differ between patients with functional iron deficiency and patients without iron deficiency; patients with absolute iron deficiency had a significantly ( p = 0.017) longer postoperative hospital stay (median 11 days) than patients without iron deficiency (median nine days) or with functional iron deficiency (median eight days). Conclusions Absolute iron deficiency following cardiac surgery is more frequent in heart valve surgery and is associated with a prolonged hospital stay. Routine screening for iron deficiency at admission in the cardiac rehabilitation unit is suggested.

  8. Metabonomics Indicates Inhibition of Fatty Acid Synthesis, β-Oxidation, and Tricarboxylic Acid Cycle in Triclocarban-Induced Cardiac Metabolic Alterations in Male Mice.

    PubMed

    Xie, Wenping; Zhang, Wenpeng; Ren, Juan; Li, Wentao; Zhou, Lili; Cui, Yuan; Chen, Huiming; Yu, Wenlian; Zhuang, Xiaomei; Zhang, Zhenqing; Shen, Guolin; Li, Haishan

    2018-02-14

    Triclocarban (TCC) has been identified as a new environmental pollutant that is potentially hazardous to human health; however, the effects of short-term TCC exposure on cardiac function are not known. The aim of this study was to use metabonomics and molecular biology techniques to systematically elucidate the molecular mechanisms of TCC-induced effects on cardiac function in mice. Our results show that TCC inhibited the uptake, synthesis, and oxidation of fatty acids, suppressed the tricarboxylic acid (TCA) cycle, and increased aerobic glycolysis levels in heart tissue after short-term TCC exposure. TCC also inhibited the nuclear peroxisome proliferator-activated receptor α (PPARα), confirming its inhibitory effects on fatty acid uptake and oxidation. Histopathology and other analyses further confirm that TCC altered mouse cardiac physiology and pathology, ultimately affecting normal cardiac metabolic function. We elucidate the molecular mechanisms of TCC-induced harmful effects on mouse cardiac metabolism and function from a new perspective, using metabonomics and bioinformatics analysis data.

  9. SIRT1 activation rescues doxorubicin-induced loss of functional competence of human cardiac progenitor cells.

    PubMed

    De Angelis, Antonella; Piegari, Elena; Cappetta, Donato; Russo, Rosa; Esposito, Grazia; Ciuffreda, Loreta Pia; Ferraiolo, Fiorella Angelica Valeria; Frati, Caterina; Fagnoni, Francesco; Berrino, Liberato; Quaini, Federico; Rossi, Francesco; Urbanek, Konrad

    2015-01-01

    The search for compounds able to counteract chemotherapy-induced heart failure is extremely important at the age of global cancer epidemic. The role of SIRT1 in the maintenance of progenitor cell homeostasis may contribute to its cardioprotective effects. SIRT1 activators, by preserving progenitor cells, could have a clinical relevance for the prevention of doxorubicin (DOXO)-cardiotoxicity. To determine whether SIRT1 activator, resveratrol (RES), interferes with adverse effects of DOXO on cardiac progenitor cells (CPCs): 1) human CPCs (hCPCs) were exposed in vitro to DOXO or DOXO+RES and their regenerative potential was tested in vivo in an animal model of DOXO-induced heart failure; 2) the in vivo effects of DOXO+RES co-treatment on CPCs were studied in a rat model. In contrast to healthy cells, DOXO-exposed hCPCs were ineffective in a model of anthracycline cardiomyopathy. The in vitro activation of SIRT1 decreased p53 acetylation, overcame suppression of the IGF-1/Akt pro-survival and anti-apoptotic signaling, enhanced oxidative stress defense and prevented senescence and growth arrest of hCPCs. Priming with RES counterbalanced the onset of dysfunctional phenotype in DOXO-exposed hCPCs, partly restoring their ability to repair the damage with improvement in cardiac function and animal survival. The in vivo co-treatment DOXO+RES prevented the anthracycline-induced alterations in CPCs, partly preserving cardiac function. SIRT1 activation protects DOXO-exposed CPCs and re-establishes their proper function. Pharmacological intervention at the level of tissue-specific progenitor cells may provide cardiac benefits for the growing population of long-term cancer survivors that are at risk of chemotherapy-induced cardiovascular toxicity. Copyright © 2015. Published by Elsevier Ireland Ltd.

  10. Functional TRPV2 and TRPV4 channels in human cardiac c-kit(+) progenitor cells.

    PubMed

    Che, Hui; Xiao, Guo-Sheng; Sun, Hai-Ying; Wang, Yan; Li, Gui-Rong

    2016-06-01

    The cellular physiology and biology of human cardiac c-kit(+) progenitor cells has not been extensively characterized and remains an area of active research. This study investigates the functional expression of transient receptor potential vanilloid (TRPV) and possible roles for this ion channel in regulating proliferation and migration of human cardiac c-kit(+) progenitor cells. We found that genes coding for TRPV2 and TRPV4 channels and their proteins are significantly expressed in human c-kit(+) cardiac stem cells. Probenecid, an activator of TRPV2, induced an increase in intracellular Ca(2+) (Ca(2+) i ), an effect that may be attenuated or abolished by the TRPV2 blocker ruthenium red. The TRPV4 channel activator 4α-phorbol 12-13-dicaprinate induced Ca(2+) i oscillations, which can be inhibited by the TRPV4 blocker RN-1734. The alteration of Ca(2+) i by probenecid or 4α-phorbol 12-13-dicprinate was dramatically inhibited in cells infected with TRPV2 short hairpin RNA (shRNA) or TRPV4 shRNA. Silencing TRPV2, but not TRPV4, significantly reduced cell proliferation by arresting cells at the G0/G1 boundary of the cell cycle. Cell migration was reduced by silencing TRPV2 or TRPV4. Western blot revealed that silencing TRPV2 decreased expression of cyclin D1, cyclin E, pERK1/2 and pAkt, whereas silencing TRPV4 only reduced pAkt expression. Our results demonstrate for the first time that functional TRPV2 and TRPV4 channels are abundantly expressed in human cardiac c-kit(+) progenitor cells. TRPV2 channels, but not TRPV4 channels, participate in regulating cell cycle progression; moreover, both TRPV2 and TRPV4 are involved in migration of human cardiac c-kit(+) progenitor cells. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  11. Cardiac rhythm management devices

    PubMed

    Stevenson, Irene; Voskoboinik, Alex

    2018-05-01

    The last decade has seen ongoing evolution and use of cardiac rhythm management devices, including pacemakers, cardiac resynchronisation therapy, implantable cardioverter defibrillators and loop recorders. General practitioners are increasingly involved in follow-up and management of patients with these devices. The aim of this article is to provide an overview of different cardiac rhythm management devices, including their role, implant procedure, post-procedural care, potential complications and follow‑up. We also include practical advice for patients regarding driving, exercise, sexual intimacy and precautions with regards to electromagnetic interference. Cardiac rhythm management devices perform many functions, including bradycardia pacing, monitoring for arrhythmias, cardiac resynchronisation for heart failure, defibrillation and anti-tachycardia pacing for tachyarrhythmias. Concerns regarding potential device-related complications should be discussed with the implanting physician. In the post-implant period, patients with cardiac rhythm management devices can expect to lead normal, active lives. However, caution must occasionally be exercised in certain situations, such as near appliances with electromagnetic interference. Future innovations will move away from transvenous leads to leadless designs with combinations of different components on a 'modular' basis according to the function required.

  12. Transthyretin Cardiac Amyloidosis.

    PubMed

    Mankad, Anit K; Shah, Keyur B

    2017-08-24

    Transthyretin (TTR)-related cardiac amyloidosis is a progressive infiltrative cardiomyopathy that mimics hypertensive, hypertrophic heart disease and may go undiagnosed. Transthyretin-derived amyloidosis accounts for 18% of all cases of cardiac amyloidosis. Thus, the study's purpose is to provide a comprehensive review of transthyretin cardiac amyloidosis. Wild-type transthyretin (ATTRwt) protein causes cardiac amyloidosis sporadically, with 25 to 36% of the population older than 80 years of age are at risk to develop a slowly progressive, infiltrative amyloid cardiomyopathy secondary to ATTRwt. In contrast, hereditary amyloidosis (ATTRm) is an autosomal dominant inherited disease associated with more than 100 point mutations in the transthyretin gene and has a tendency to affect the heart and nervous system. Up to 4% of African-Americans carry the Val122Ile mutation in the transthyretin gene, the most prevalent cause of hereditary cardiac amyloidosis in the USA. Identifying transthyretin cardiac amyloidosis requires increased awareness of the prevalence, signs and symptoms, and diagnostic tools available for discrimination of this progressive form of cardiomyopathy associated with left ventricular hypertrophy. While there are no FDA-approved medical treatments, investigation is underway on agents to reduce circulating mutated transthyretin.

  13. Cardiac fluid dynamics meets deformation imaging.

    PubMed

    Dal Ferro, Matteo; Stolfo, Davide; De Paris, Valerio; Lesizza, Pierluigi; Korcova, Renata; Collia, Dario; Tonti, Giovanni; Sinagra, Gianfranco; Pedrizzetti, Gianni

    2018-02-20

    Cardiac function is about creating and sustaining blood in motion. This is achieved through a proper sequence of myocardial deformation whose final goal is that of creating flow. Deformation imaging provided valuable contributions to understanding cardiac mechanics; more recently, several studies evidenced the existence of an intimate relationship between cardiac function and intra-ventricular fluid dynamics. This paper summarizes the recent advances in cardiac flow evaluations, highlighting its relationship with heart wall mechanics assessed through the newest techniques of deformation imaging and finally providing an opinion of the most promising clinical perspectives of this emerging field. It will be shown how fluid dynamics can integrate volumetric and deformation assessments to provide a further level of knowledge of cardiac mechanics.

  14. Heme oxygenase-1 affects generation and spontaneous cardiac differentiation of induced pluripotent stem cells.

    PubMed

    Stepniewski, Jacek; Pacholczak, Tomasz; Skrzypczyk, Aniela; Ciesla, Maciej; Szade, Agata; Szade, Krzysztof; Bidanel, Romain; Langrzyk, Agnieszka; Grochowski, Radoslaw; Vandermeeren, Felix; Kachamakova-Trojanowska, Neli; Jez, Mateusz; Drabik, Grazyna; Nakanishi, Mahito; Jozkowicz, Alicja; Dulak, Jozef

    2018-02-01

    Cellular stress can influence efficiency of iPSCs generation and their differentiation. However, the role of intracellular cytoprotective factors in these processes is still not well known. Therefore, we investigated the effect of HO-1 (Hmox1) or Nrf2 (Nfe2l2), two major cytoprotective genes. Hmox1 -/- fibroblasts demonstrated decreased reprogramming efficiency in comparison to Hmox1 +/+ cells. Reversely, pharmacological enhancement of HO-1 resulted in higher number of iPSCs colonies. Importantly, elevated level of both p53 and p53-regulated miR-34a and 14-3-3σ was observed in HO-1-deficient fibroblasts whereas downregulation of p53 in these cells markedly increased their reprogramming efficiency. In human fibroblasts HO-1 silencing also induced p53 expression and affected reprogramming outcome. Hmox1 +/+ and Hmox1 -/- iPSCs similarly differentiated in vitro to cells originating from three germ layers, however, lower number of contracting cells was observed during this process in HO-1-deficient cells indicating attenuated cardiac differentiation. Importantly, silencing of Hmox1 in murine ESC using CRISPR/Cas-9 editing also impaired their spontaneous cardiac differentiation. Decreased reprogramming efficiency was also observed in Nrf2-lacking fibroblasts. Reversely, sulforaphane, a Nrf2 activator, increased the number of iPSCs colonies. However, both Nfe2l2 +/+ and Nfe2l2 -/- iPSCs showed similar pluripotency and differentiation capacity. These results indicate that regulation of HO-1 expression can further optimize generation and cardiac differentiation of iPSCs. © 2018 IUBMB Life, 70(2):129-142, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  15. Prognostic value of left atrial function in systemic light-chain amyloidosis: a cardiac magnetic resonance study.

    PubMed

    Mohty, Dania; Boulogne, Cyrille; Magne, Julien; Varroud-Vial, Nicolas; Martin, Sylvain; Ettaif, Hind; Fadel, Bahaa M; Bridoux, Frank; Aboyans, Victor; Damy, Thibaud; Jaccard, Arnaud

    2016-09-01

    Cardiac involvement in systemic light-chain amyloidosis (AL) imparts an adverse impact on outcome. The left atrium (LA), by virtue of its anatomical location and muscular wall, is commonly affected by the amyloid process. Although LA infiltration by amyloid fibrils leads to a reduction in its pump function, the infiltration of the left ventricular (LV) myocardium results in diastolic dysfunction with subsequent increase in filling pressures and LA enlargement. Even though left atrial volume (LAV) is an independent prognostic marker in many cardiomyopathies, its value in amyloid heart disease remains to be determined. In addition, few data are available as to the prognostic value of LA function in systemic AL. Using cardiac magnetic resonance (CMR), the current study aims to assess the prognostic significance of the maximal LAV and total LA emptying fraction (LAEF) in patients with AL. Fifty-four consecutive patients (age 66 ± 10 years, 59% males) with confirmed systemic AL and mean LV ejection fraction of 60 ± 12% underwent CMR. As compared with patients with no or minimal cardiac involvement (Mayo Clinic [MC] stage I), those at moderate and high risk (MC stages II and III) had significantly larger indexed maximal LAV (36 ± 15 vs. 46 ± 13 vs. 52 ± 19 mL/m(2), P = 0.03) and indexed minimal LAV (20 ± 6 vs. 34 ± 11 vs. 44 ± 17 mL/m(2), P < 0.001), lower LAEF (42 ± 9 vs. 26 ± 13 vs. 16 ± 9%, P < 0.0001) but similar LVEF. Furthermore, myocardial late gadolinium enhancement (LGE) was more frequent and significantly associated with lower LAEF. LAEF was also significantly lower in symptomatic (NHYA ≥ II, 22 ± 14%) as compared with asymptomatic patients (NYHA class I, 33 ± 13%, P = 0.006). Two-year survival rate was lower in patients with LAEF ≤ 16% as compared with those with LAEF > 16% (37 ± 11 vs. 94 ± 4%, P = 0.001). In multivariate analysis, lower LAEF remained independently associated with a higher risk of 2-year mortality (HR = 1.08 per 1% decrease

  16. Connecting Teratogen-Induced Congenital Heart Defects to Neural Crest Cells and Their Effect on Cardiac Function

    PubMed Central

    Karunamuni, Ganga H.; Ma, Pei; Gu, Shi; Rollins, Andrew M.; Jenkins, Michael W.; Watanabe, Michiko

    2014-01-01

    Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest is in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies. PMID:25220155

  17. Improved hepatic arterial fraction estimation using cardiac output correction of arterial input functions for liver DCE MRI

    NASA Astrophysics Data System (ADS)

    Chouhan, Manil D.; Bainbridge, Alan; Atkinson, David; Punwani, Shonit; Mookerjee, Rajeshwar P.; Lythgoe, Mark F.; Taylor, Stuart A.

    2017-02-01

    Liver dynamic contrast enhanced (DCE) MRI pharmacokinetic modelling could be useful in the assessment of diffuse liver disease and focal liver lesions, but is compromised by errors in arterial input function (AIF) sampling. In this study, we apply cardiac output correction to arterial input functions (AIFs) for liver DCE MRI and investigate the effect on dual-input single compartment hepatic perfusion parameter estimation and reproducibility. Thirteen healthy volunteers (28.7  ±  1.94 years, seven males) underwent liver DCE MRI and cardiac output measurement using aortic root phase contrast MRI (PCMRI), with reproducibility (n  =  9) measured at 7 d. Cardiac output AIF correction was undertaken by constraining the first pass AIF enhancement curve using the indicator-dilution principle. Hepatic perfusion parameters with and without cardiac output AIF correction were compared and 7 d reproducibility assessed. Differences between cardiac output corrected and uncorrected liver DCE MRI portal venous (PV) perfusion (p  =  0.066), total liver blood flow (TLBF) (p  =  0.101), hepatic arterial (HA) fraction (p  =  0.895), mean transit time (MTT) (p  =  0.646), distribution volume (DV) (p  =  0.890) were not significantly different. Seven day corrected HA fraction reproducibility was improved (mean difference 0.3%, Bland-Altman 95% limits-of-agreement (BA95%LoA)  ±27.9%, coefficient of variation (CoV) 61.4% versus 9.3%, ±35.5%, 81.7% respectively without correction). Seven day uncorrected PV perfusion was also improved (mean difference 9.3 ml min-1/100 g, BA95%LoA  ±506.1 ml min-1/100 g, CoV 64.1% versus 0.9 ml min-1/100 g, ±562.8 ml min-1/100 g, 65.1% respectively with correction) as was uncorrected TLBF (mean difference 43.8 ml min-1/100 g, BA95%LoA  ±586.7 ml min-1/ 100 g, CoV 58.3% versus 13.3 ml min-1/100 g, ±661.5 ml min-1/100 g, 60.9% respectively with correction

  18. Maturation status of sarcomere structure and function in human iPSC-derived cardiac myocytes.

    PubMed

    Bedada, Fikru B; Wheelwright, Matthew; Metzger, Joseph M

    2016-07-01

    Human heart failure due to myocardial infarction is a major health concern. The paucity of organs for transplantation limits curative approaches for the diseased and failing adult heart. Human induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) have the potential to provide a long-term, viable, regenerative-medicine alternative. Significant progress has been made with regard to efficient cardiac myocyte generation from hiPSCs. However, directing hiPSC-CMs to acquire the physiological structure, gene expression profile and function akin to mature cardiac tissue remains a major obstacle. Thus, hiPSC-CMs have several hurdles to overcome before they find their way into translational medicine. In this review, we address the progress that has been made, the void in knowledge and the challenges that remain. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Metformin improves cardiac function in mice with heart failure after myocardial infarction by regulating mitochondrial energy metabolism.

    PubMed

    Sun, Dan; Yang, Fei

    2017-04-29

    To investigate whether metformin can improve the cardiac function through improving the mitochondrial function in model of heart failure after myocardial infarction. Male C57/BL6 mice aged about 8 weeks were selected and the anterior descending branch was ligatured to establish the heart failure model after myocardial infarction. The cardiac function was evaluated via ultrasound after 3 days to determine the modeling was successful, and the mice were randomly divided into two groups. Saline group (Saline) received the intragastric administration of normal saline for 4 weeks, and metformin group (Met) received the intragastric administration of metformin for 4 weeks. At the same time, Shame group (Sham) was set up. Changes in cardiac function in mice were detected at 4 weeks after operation. Hearts were taken from mice after 4 weeks, and cell apoptosis in myocardial tissue was detected using TUNEL method; fresh mitochondria were taken and changes in oxygen consumption rate (OCR) and respiratory control rate (RCR) of mitochondria in each group were detected using bio-energy metabolism tester, and change in mitochondrial membrane potential (MMP) of myocardial tissue was detected via JC-1 staining; the expressions and changes in Bcl-2, Bax, Sirt3, PGC-1α and acetylated PGC-1α in myocardial tissue were detected by Western blot. RT-PCR was used to detect mRNA levels in Sirt3 in myocardial tissues. Metformin improved the systolic function of heart failure model rats after myocardial infarction and reduced the apoptosis of myocardial cells after myocardial infarction. Myocardial mitochondrial respiratory function and membrane potential were decreased after myocardial infarction, and metformin treatment significantly improved the mitochondrial respiratory function and mitochondrial membrane potential; Metformin up-regulated the expression of Sirt3 and the activity of PGC-1α in myocardial tissue of heart failure after myocardial infarction. Metformin decreases the

  20. Impact of metoprolol treatment on cardiac function and exercise tolerance in heart failure patients with neuropsychiatric disorders.

    PubMed

    Huang, Jingjing; Zhang, Ran; Liu, Xuelu; Meng, Yong

    2018-01-01

    To investigate the impact of neuropsychiatric disorders on the effect of metoprolol on cardiac and motor function in chronic heart failure (CHF) patients. From February 2013 to April 2016, CHF patients with clinical mental disorders received metoprolol (23.75 or 47.5 mg, once daily, orally) at the Second Affiliated Hospital of Kunming Medical University. Mental status was confirmed by means of the Hospital Anxiety and Depression Scale (HADS) and the Copenhagen Burnout Inventory (CBI) scale. Cardiac function parameters such as systolic blood pressure (SBP), ejection fraction (EF) and cardiac index (CI) as well as motor function including the 6 meter walk test (6MWT) and the Veteran's Specific Activity Questionnaire (VSAQ) were assessed as primary outcomes of the study. A total of 154 patients (median age, 66.39 years; men, n = 101) were allocated into eight groups based on their mental status. There were no significant differences in heart rate (HR) or SBP control achieved by metoprolol in any groups compared with the control (patients with normal mental status). Furthermore, biphasic ejection fraction (EF) changes were observed in all the groups with a decrease in the first month and increase from the sixth month. However, this increase was significantly lower (p < .001) than the EF achieved with metoprolol treatment in the control group except for the anxiety group. A similar pattern was seen for CI, 6MWT and VSAQ changes in all the groups. Patients in the anxiety group responded similarly to the patients with normal mental status. Depressive and high burnout symptoms, but not anxiety, lower the improvement of cardiac and motor function by metoprolol treatment in CHF.

  1. Intramuscular injection of human umbilical cord-derived mesenchymal stem cells improves cardiac function in dilated cardiomyopathy rats.

    PubMed

    Mao, Chenggang; Hou, Xu; Wang, Benzhen; Chi, Jingwei; Jiang, Yanjie; Zhang, Caining; Li, Zipu

    2017-01-28

    Stem cells provide a promising candidate for the treatment of the fatal pediatric dilated cardiomyopathy (DCM). This study aimed to investigate the effects of intramuscular injection of human umbilical cord-derived mesenchymal stem cells (hUCMSCs) on the cardiac function of a DCM rat model. A DCM model was established by intraperitoneal injections of doxorubicin in Sprague-Dawley rats. hUCMSCs at different concentrations or cultured medium were injected via limb skeletal muscles, with blank medium injected as the control. The rats were monitored for 4 weeks, meanwhile BNP, cTNI, VEGF, HGF, GM-CSF, and LIF in the peripheral blood were examined by ELISA, and cardiac function was monitored by echocardiography (Echo-CG). Finally, the expression of IGF-1, HGF, and VEGF in the myocardium was examined by histoimmunochemistry and real-time PCR, and the ultrastructure of the myocardium was examined by electron microscopy. Injection of hUCMSCs markedly improved cardiac function in the DCM rats by significantly elevating left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS). The BNP and cTNI levels in the peripheral blood were reduced by hUCMSCs, while HGF, LIF, GM-CSF, and VEGF were increased by hUCMSCs. Expression of IGF-1, HGF, and VEGF in the myocardium from the DCM rats was significantly increased by hUCMSC injection. Furthermore, hUCMSCs protected the ultrastructure of cardiomyocytes by attenuating mitochondrial swelling and maintaining sarcolemma integrity. Intramuscular injection of UCMSCs can improve DCM-induced cardiac function impairment and protect the myocardium. These effects may be mediated by regulation of relevant cytokines in serum and the myocardium.

  2. How the 2008 stock market crash and seasons affect total and cardiac deaths in Los Angeles County.

    PubMed

    Schwartz, Bryan Glen; Pezzullo, John Christopher; McDonald, Scott Andrew; Poole, William Kenneth; Kloner, Robert Alan

    2012-05-15

    Various stressors trigger cardiac death. The objective was to investigate a possible relation between a stock market crash and cardiac death in a large population within the United States. We obtained daily stock market data (Dow Jones Industrial Average Index), death certificate data for daily deaths in Los Angeles County (LA), and annual LA population estimates for 2005 through 2008. The 4 years death rate curves (2005 through 2008) were averaged into a single curve to illustrate annual trends. Data were "deseasonalized" by subtracting from the daily observed value the average value for that day of year. There was marked seasonal variation in total and cardiac death rates. Even in the mild LA climate, death rates were higher in winter versus summer including total death (+17%), circulatory death (+24%), coronary heart disease death (+28%), and myocardial infarction death (+38%) rates (p <0.0001 for each). Absolute coronary heart disease death rates have decreased since 1985. After accounting for seasonal variation, the large stock market crash in October 2008 did not affect death rates in LA. Death rates remained at or below seasonal averages during the stock market crash. In conclusion, after correcting for seasonal variation, the stock market crash in October 2008 was not associated with an increase in total or cardiac death in LA. Annual coronary heart disease death rates continue to decrease. However, seasonal variation (specifically winter) remains a trigger for death and coronary heart disease death even in LA where winters are mild. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Spatially divergent cardiac responses to nicotinic stimulation of ganglionated plexus neurons in the canine heart.

    PubMed

    Cardinal, René; Pagé, Pierre; Vermeulen, Michel; Ardell, Jeffrey L; Armour, J Andrew

    2009-01-28

    Ganglionated plexuses (GPs) are major constituents of the intrinsic cardiac nervous system, the final common integrator of regional cardiac control. We hypothesized that nicotinic stimulation of individual GPs exerts divergent regional influences, affecting atrial as well as ventricular functions. In 22 anesthetized canines, unipolar electrograms were recorded from 127 atrial and 127 ventricular epicardial loci during nicotine injection (100 mcg in 0.1 ml) into either the 1) right atrial (RA), 2) dorsal atrial, 3) left atrial, 4) inferior vena cava-inferior left atrial, 5) right ventricular, 6) ventral septal ventricular or 7) cranial medial ventricular (CMV) GP. In addition to sinus and AV nodal function, neural effects on atrial and ventricular repolarization were identified as changes in the area subtended by unipolar recordings under basal conditions and at maximum neurally-induced effects. Animals were studied with intact AV node or following ablation to achieve ventricular rate control. Atrial rate was affected in response to stimulation of all 7 GPs with an incidence of 50-95% of the animals among the different GPs. AV conduction was affected following stimulation of 6/7 GP with an incidence of 22-75% among GPs. Atrial and ventricular repolarization properties were affected by atrial as well as ventricular GP stimulation. Distinct regional patterns of repolarization changes were identified in response to stimulation of individual GPs. RAGP predominantly affected the RA and posterior right ventricular walls whereas CMVGP elicited biatrial and biventricular repolarization changes. Spatially divergent and overlapping cardiac regions are affected in response to nicotinic stimulation of neurons in individual GPs.

  4. Cardiac autonomic function in children with type 1 diabetes.

    PubMed

    Metwalley, Kotb Abbass; Hamed, Sherifa Ahmed; Farghaly, Hekma Saad

    2018-06-01

    Cardiovascular autonomic neuropathy (CAN) is a major complication of type 1 diabetes (T1D). This study aimed to evaluate cardiac autonomic nervous system (ANS) function in children with T1D and its relation to different demographic, clinical and laboratory variable. This cross-sectional study included 60 children with T1D (mean age = 15.1 ± 3.3 years; duration of diabetes = 7.95 ± 3.83 years). The following 8 non-invasive autonomic testing were used for evaluation: heart rate at rest and in response to active standing (30:15 ratio), deep breathing and Valsalva maneuver (indicating parasympathetic function); blood pressure response to standing (orthostatic hypotension or OH), sustained handgrip and cold; and heart rate response to standing or positional orthostatic tachycardia syndrome or POTs (indicating sympathetic function). None had clinically manifest CAN. Compared to healthy children (5%), 36.67% of children with T1D had ≥ 2 abnormal tests (i.e., CAN) (P = 0.0001) which included significantly abnormal heart rate response to standing (POTs) (P = 0.052), active standing (30:15 ratio) (P = 0.0001) and Valsalva maneuver (P = 0.0001), indicating parasympathetic autonomic dysfunction, and blood pressure response to cold (P = 0.01), indicating sympathetic autonomic dysfunction. 54.55, 27.27 and 18.18% had early, definite and severe dysfunction of ANS. All patients had sensorimotor peripheral neuropathy. The longer duration of diabetes (> 5 years), presence of diabetic complications and worse glycemic control were significantly associated with CAN. The study concluded that both parasympathetic and sympathetic autonomic dysfunctions are common in children with T1D particularly with longer duration of diabetes and presence of microvascular complications. What is Known: • Cardiovascular autonomic neuropathy (CAN) is a major complication of type 1 diabetes (T1D). • Limited studies evaluated CAN in children with T1D. What

  5. The effect of prolonged physical activity performed during extreme caloric deprivation on cardiac function.

    PubMed

    Planer, David; Leibowitz, David; Hadid, Amir; Erlich, Tomer; Sharon, Nir; Paltiel, Ora; Jacoby, Elad; Lotan, Chaim; Moran, Daniel S

    2012-01-01

    Endurance exercise may induce transient cardiac dysfunction. Data regarding the effect of caloric restriction on cardiac function is limited. We studied the effect of physical activity performed during extreme caloric deprivation on cardiac function. Thirty-nine healthy male soldiers (mean age 20 ± 0.3 years) were studied during a field training exercise lasted 85-103 hours, with negligible food intake and unlimited water supply. Anthropometric measurements, echocardiographic examinations and blood and urine tests were performed before and after the training exercise. Baseline VO(2) max was 59 ± 5.5 ml/kg/min. Participants' mean weight reduction was 5.7 ± 0.9 kg. There was an increase in plasma urea (11.6 ± 2.6 to 15.8 ± 3.8 mmol/L, p<0.001) and urine osmolarity (692 ± 212 to 1094 ± 140 mmol/kg, p<0.001) and a decrease in sodium levels (140.5 ± 1.0 to 136.6 ± 2.1 mmol/L, p<0.001) at the end of the study. Significant alterations in diastolic parameters included a decrease in mitral E wave (93.6 to 83.5 cm/s; p = 0.003), without change in E/A and E/E' ratios, and an increase in iso-volumic relaxation time (73.9 to 82.9 ms, p = 0.006). There was no change in left or right ventricular systolic function, or pulmonary arterial pressure. Brain natriuretic peptide (BNP) levels were significantly reduced post-training (median 9 to 0 pg/ml, p<0.001). There was no elevation in Troponin T or CRP levels. On multivariate analysis, BNP reduction correlated with sodium levels and weight reduction (R = 0.8, p<0.001). Exposure to prolonged physical activity performed under caloric deprivation resulted in minor alterations of left ventricular diastolic function. BNP levels were significantly reduced due to negative water and sodium balance.

  6. Cardiac responses to hypoxia and reoxygenation in Drosophila.

    PubMed

    Zarndt, Rachel; Piloto, Sarah; Powell, Frank L; Haddad, Gabriel G; Bodmer, Rolf; Ocorr, Karen

    2015-12-01

    An adequate supply of oxygen is important for the survival of all tissues, but it is especially critical for tissues with high-energy demands, such as the heart. Insufficient tissue oxygenation occurs under a variety of conditions, including high altitude, embryonic and fetal development, inflammation, and thrombotic diseases, often affecting multiple organ systems. Responses and adaptations of the heart to hypoxia are of particular relevance in human cardiovascular and pulmonary diseases, in which the effects of hypoxic exposure can range in severity from transient to long-lasting. This study uses the genetic model system Drosophila to investigate cardiac responses to acute (30 min), sustained (18 h), and chronic (3 wk) hypoxia with reoxygenation. Whereas hearts from wild-type flies recovered quickly after acute hypoxia, exposure to sustained or chronic hypoxia significantly compromised heart function upon reoxygenation. Hearts from flies with mutations in sima, the Drosophila homolog of the hypoxia-inducible factor alpha subunit (HIF-α), exhibited exaggerated reductions in cardiac output in response to hypoxia. Heart function in hypoxia-selected flies, selected over many generations for survival in a low-oxygen environment, revealed reduced cardiac output in terms of decreased heart rate and fractional shortening compared with their normoxia controls. Hypoxia-selected flies also had smaller hearts, myofibrillar disorganization, and increased extracellular collagen deposition, consistent with the observed reductions in contractility. This study indicates that longer-duration hypoxic insults exert deleterious effects on heart function that are mediated, in part, by sima and advances Drosophila models for the genetic analysis of cardiac-specific responses to hypoxia and reoxygenation. Copyright © 2015 the American Physiological Society.

  7. Cardiac autonomic neuropathy risk estimated by sudomotor function and arterial stiffness in Chinese subjects.

    PubMed

    Zeng, Q; Dong, S-Y; Wang, M-L; Wang, F; Li, J-M; Zhao, X-L

    2016-11-01

    The SUDOSCAN test was recently developed to detect diabetic autonomic neuropathy early and screen for cardiac autonomic neuropathy (CAN) through assessment of sudomotor function. The aim of this study was to investigate the relationship of cardiac autonomic dysfunction estimated by the SUDOSCAN test with arterial stiffness. A total of 4019 subjects without diabetes or established cardiovascular disease were tested with SUDOSCAN, central systolic blood pressure (cSBP) and brachial-ankle pulse wave velocity (baPWV). Hands mean electrochemical skin conductance (ESC) measured by SUDOSCAN was 70±17 μS, feet mean ESC was 71±16 μS and the CAN risk score was 21±10%. The levels of cSBP and baPWV increased across quartiles of CAN risk score (P for trend <0.001 for all). In spearman correlation analyses, the CAN risk score was positively correlated with cSBP (r=0.391, P<0.001) and baPWV (r=0.305, P<0.001). In multivariable analyses, the values of cSBP and baPWV increased 0.17 mm Hg (P=0.002) and 2.01 cm per second (P=0.010), respectively, when CAN risk score increased 1%. The results were unchanged when stratified by glucose tolerance status. In conclusion, cardiac autonomic dysfunction estimated by sudomotor function was correlated with arterial stiffness independent of conventional factors and glucose tolerance status.

  8. Intermedin improves cardiac function and sympathetic neural remodeling in a rat model of post myocardial infarction heart failure

    PubMed Central

    Xu, Bin; Xu, Hao; Cao, Heng; Liu, Xiaoxiao; Qin, Chunhuan; Zhao, Yanzhou; Han, Xiaolin; Li, Hongli

    2017-01-01

    Emerging evidence has suggested that intermedin (IMD), a novel member of the calcitonin gene-related peptide (CGRP) family, has a wide range of cardioprotective effects. The present study investigated the effects of long-term administration of IMD on cardiac function and sympathetic neural remodeling in heart failure (HF) rats, and studied potential underlying mechanism. HF was induced in rats by myocardial infarction (MI). Male Sprague Dawley rats were randomly assigned to either saline or IMD (0.6 µg/kg/h) treatment groups for 4 weeks post-MI. Another group of sham-operated rats served as controls. Cardiac function was assessed by echocardiography, cardiac catheterization and plasma level of B-type natriuretic peptide (BNP). Cardiac sympathetic neural remodeling was assessed by immunohistochemistical study of tyrosine hydroxylase (TH) and growth associated protein 43 (GAP43) immunoreactive nerve fibers. The protein expression levels of nerve growth factor (NGF), TH and GAP43 in the ventricular myocardium were studied by western blotting. Ventricular fibrillation threshold (VFT) was determined to evaluate the incidence of ventricular arrhythmia. Oxidative stress was assessed by detecting the activity of superoxide dismutase and the level of malondialdehyde. Compared with rats administrated with saline, IMD significantly improved cardiac function, decreased the plasma BNP level, attenuated sympathetic neural remodeling, increased VFT and suppressed oxidative stress. In conclusion, these results indicated that IMD prevents ventricle remodeling and improves the performance of a failing heart. In addition, IMD attenuated sympathetic neural remodeling and reduced the incidence of ventricular arrhythmia, which may contribute to its anti-oxidative property. These results implicate IMD as a potential therapeutic agent for the treatment of HF. PMID:28627670

  9. Central-peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function.

    PubMed

    Ardell, Jeffrey L; Rajendran, Pradeep S; Nier, Heath A; KenKnight, Bruce H; Armour, J Andrew

    2015-11-15

    Using vagus nerve stimulation (VNS), we sought to determine the contribution of vagal afferents to efferent control of cardiac function. In anesthetized dogs, the right and left cervical vagosympathetic trunks were stimulated in the intact state, following ipsilateral or contralateral vagus nerve transection (VNTx), and then following bilateral VNTx. Stimulations were performed at currents from 0.25 to 4.0 mA, frequencies from 2 to 30 Hz, and a 500-μs pulse width. Right or left VNS evoked significantly greater current- and frequency-dependent suppression of chronotropic, inotropic, and lusitropic function subsequent to sequential VNTx. Bradycardia threshold was defined as the current first required for a 5% decrease in heart rate. The threshold for the right vs. left vagus-induced bradycardia in the intact state (2.91 ± 0.18 and 3.47 ± 0.20 mA, respectively) decreased significantly with right VNTx (1.69 ± 0.17 mA for right and 3.04 ± 0.27 mA for left) and decreased further following bilateral VNTx (1.29 ± 0.16 mA for right and 1.74 ± 0.19 mA for left). Similar effects were observed following left VNTx. The thresholds for afferent-mediated effects on cardiac parameters were 0.62 ± 0.04 and 0.65 ± 0.06 mA with right and left VNS, respectively, and were reflected primarily as augmentation. Afferent-mediated tachycardias were maintained following β-blockade but were eliminated by VNTx. The increased effectiveness and decrease in bradycardia threshold with sequential VNTx suggest that 1) vagal afferents inhibit centrally mediated parasympathetic efferent outflow and 2) the ipsilateral and contralateral vagi exert a substantial buffering capacity. The intact threshold reflects the interaction between multiple levels of the cardiac neural hierarchy. Copyright © 2015 the American Physiological Society.

  10. Central-peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function

    PubMed Central

    Rajendran, Pradeep S.; Nier, Heath A.; KenKnight, Bruce H.; Armour, J. Andrew

    2015-01-01

    Using vagus nerve stimulation (VNS), we sought to determine the contribution of vagal afferents to efferent control of cardiac function. In anesthetized dogs, the right and left cervical vagosympathetic trunks were stimulated in the intact state, following ipsilateral or contralateral vagus nerve transection (VNTx), and then following bilateral VNTx. Stimulations were performed at currents from 0.25 to 4.0 mA, frequencies from 2 to 30 Hz, and a 500-μs pulse width. Right or left VNS evoked significantly greater current- and frequency-dependent suppression of chronotropic, inotropic, and lusitropic function subsequent to sequential VNTx. Bradycardia threshold was defined as the current first required for a 5% decrease in heart rate. The threshold for the right vs. left vagus-induced bradycardia in the intact state (2.91 ± 0.18 and 3.47 ± 0.20 mA, respectively) decreased significantly with right VNTx (1.69 ± 0.17 mA for right and 3.04 ± 0.27 mA for left) and decreased further following bilateral VNTx (1.29 ± 0.16 mA for right and 1.74 ± 0.19 mA for left). Similar effects were observed following left VNTx. The thresholds for afferent-mediated effects on cardiac parameters were 0.62 ± 0.04 and 0.65 ± 0.06 mA with right and left VNS, respectively, and were reflected primarily as augmentation. Afferent-mediated tachycardias were maintained following β-blockade but were eliminated by VNTx. The increased effectiveness and decrease in bradycardia threshold with sequential VNTx suggest that 1) vagal afferents inhibit centrally mediated parasympathetic efferent outflow and 2) the ipsilateral and contralateral vagi exert a substantial buffering capacity. The intact threshold reflects the interaction between multiple levels of the cardiac neural hierarchy. PMID:26371171

  11. Heart repair by reprogramming non-myocytes with cardiac transcription factors

    PubMed Central

    Song, Kunhua; Nam, Young-Jae; Luo, Xiang; Qi, Xiaoxia; Tan, Wei; Huang, Guo N.; Acharya, Asha; Smith, Christopher L.; Tallquist, Michelle D.; Neilson, Eric G.; Hill, Joseph A.; Bassel-Duby, Rhonda; Olson, Eric N.

    2012-01-01

    The adult mammalian heart possesses little regenerative potential following injury. Fibrosis due to activation of cardiac fibroblasts impedes cardiac regeneration and contributes to loss of contractile function, pathological remodeling and susceptibility to arrhythmias. Cardiac fibroblasts account for a majority of cells in the heart and represent a potential cellular source for restoration of cardiac function following injury through phenotypic reprogramming to a myocardial cell fate. Here we show that four transcription factors, GATA4, Hand2, MEF2C and Tbx5 can cooperatively reprogram adult mouse tail-tip and cardiac fibroblasts into beating cardiac-like myocytes in vitro. Forced expression of these factors in dividing non-cardiomyocytes in mice reprograms these cells into functional cardiac-like myocytes, improves cardiac function and reduces adverse ventricular remodeling following myocardial infarction. Our results suggest a strategy for cardiac repair through reprogramming fibroblasts resident in the heart with cardiogenic transcription factors or other molecules. PMID:22660318

  12. Cardiac Physiology of Aging: Extracellular Considerations.

    PubMed

    Horn, Margaux A

    2015-07-01

    Aging is a major risk factor for the development of cardiovascular disease, with the majority of affected patients being elderly. Progressive changes to myocardial structure and function occur with aging, often in concert with underlying pathologies. However, whether chronological aging results in a remodeled "aged substrate" has yet to be established. In addition to myocyte contractility, myocardial performance relies heavily on the cardiac extracellular matrix (ECM), the roles of which are as dynamic as they are significant; including providing structural integrity, assisting in force transmission throughout the cardiac cycle and acting as a signaling medium for communication between cells and the extracellular environment. In the healthy heart, ECM homeostasis must be maintained, and matrix deposition is in balance with degradation. Consequently, alterations to, or misregulation of the cardiac ECM has been shown to occur in both aging and in pathological remodeling with disease. Mounting evidence suggests that age-induced matrix remodeling may occur at the level of ECM control; including collagen synthesis, deposition, maturation, and degradation. Furthermore, experimental studies using aged animal models not only suggest that the aged heart may respond differently to insult than the young, but the identification of key players specific to remodeling with age may hold future therapeutic potential for the treatment of cardiac dysfunction in the elderly. This review will focus on the role of the cardiac interstitium in the physiology of the aging myocardium, with particular emphasis on the implications to age-related remodeling in disease. © 2015 American Physiological Society.

  13. Dual chamber stent prevents organ malperfusion in a model of donation after cardiac death.

    PubMed

    Tillman, Bryan W; Chun, Youngjae; Cho, Sung Kwon; Chen, Yanfei; Liang, Nathan; Maul, Timothy; Demetris, Anthony; Gu, Xinzhu; Wagner, William R; Tevar, Amit D

    2016-10-01

    The paradigm for donation after cardiac death subjects donor organs to ischemic injury. A dual-chamber organ perfusion stent would maintain organ perfusion without affecting natural cardiac death. A center lumen allows uninterrupted cardiac blood flow, while an external chamber delivers oxygenated blood to the visceral vessels. A prototype organ perfusion stent was constructed from commercial stents. In a porcine model, the organ perfusion stent was deployed, followed by a simulated agonal period. Oxygenated blood perfused the external stent chamber. Organ perfusion was compared between controls (n = 3) and organ perfusion stent (n = 6). Finally, a custom, nitinol, dual chamber organ perfusion stent was fabricated using a retrievable "petal and stem" design. Endovascular organ perfusion stent deployment achieved visceral isolation without adverse impact on cardiac parameters. Visceral oxygen delivery was 4.8-fold greater compared with controls. During the agonal period, organs in organ perfusion stent-treated animals appeared well perfused in contrast with the malperfused controls. A custom nitinol and polyurethane organ perfusion stent was recaptured easily with simple sheath advancement. An organ perfusion stent maintained organ perfusion during the agonal phase in a porcine model of donation after cardiac death organ donation without adversely affecting cardiac function. Ultimately, the custom retrievable design of this study may help resolve the critical shortage of donor organs for transplant. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Cardiac mechanics: Physiological, clinical, and mathematical considerations

    NASA Technical Reports Server (NTRS)

    Mirsky, I. (Editor); Ghista, D. N.; Sandler, H.

    1974-01-01

    Recent studies concerning the basic physiological and biochemical principles underlying cardiac muscle contraction, methods for the assessment of cardiac function in the clinical situation, and mathematical approaches to cardiac mechanics are presented. Some of the topics covered include: cardiac ultrastructure and function in the normal and failing heart, myocardial energetics, clinical applications of angiocardiography, use of echocardiography for evaluating cardiac performance, systolic time intervals in the noninvasive assessment of left ventricular performance in man, evaluation of passive elastic stiffness for the left ventricle and isolated heart muscle, a conceptual model of myocardial infarction and cardiogenic shock, application of Huxley's sliding-filament theory to the mechanics of normal and hypertrophied cardiac muscle, and a rheological modeling of the intact left ventricle. Individual items are announced in this issue.

  15. Extracellular signal-regulated kinase (ERK) activation preserves cardiac function in pressure overload induced hypertrophy.

    PubMed

    Mutlak, Michael; Schlesinger-Laufer, Michal; Haas, Tali; Shofti, Rona; Ballan, Nimer; Lewis, Yair E; Zuler, Mor; Zohar, Yaniv; Caspi, Lilac H; Kehat, Izhak

    2018-05-24

    Chronic pressure overload and a variety of mediators induce concentric cardiac hypertrophy. When prolonged, cardiac hypertrophy culminates in decreased myocardial function and heart failure. Activation of the extracellular signal-regulated kinase (ERK) is consistently observed in animal models of hypertrophy and in human patients, but its role in the process is controversial. We generated transgenic mouse lines with cardiomyocyte restricted overexpression of intrinsically active ERK1, which similar to the observations in hypertrophy is phosphorylated on both the TEY and the Thr207 motifs and is overexpressed at pathophysiological levels. The activated ERK1 transgenic mice developed a modest adaptive hypertrophy with increased contractile function and without fibrosis. Following induction of pressure-overload, where multiple pathways are stimulated, this activation did not further increase the degree of hypertrophy but protected the heart through a decrease in the degree of fibrosis and maintenance of ventricular contractile function. The ERK pathway acts to promote a compensated hypertrophic response, with enhanced contractile function and reduced fibrosis. The activation of this pathway may be a therapeutic strategy to preserve contractile function when the pressure overload cannot be easily alleviated. The inhibition of this pathway, which is increasingly being used for cancer therapy on the other hand, should be used with caution in the presence of pressure-overload. Copyright © 2017. Published by Elsevier B.V.

  16. SiSSR: Simultaneous subdivision surface registration for the quantification of cardiac function from computed tomography in canines.

    PubMed

    Vigneault, Davis M; Pourmorteza, Amir; Thomas, Marvin L; Bluemke, David A; Noble, J Alison

    2018-05-01

    Recent improvements in cardiac computed tomography (CCT) allow for whole-heart functional studies to be acquired at low radiation dose (<2mSv) and high-temporal resolution (<100ms) in a single heart beat. Although the extraction of regional functional information from these images is of great clinical interest, there is a paucity of research into the quantification of regional function from CCT, contrasting with the large body of work in echocardiography and cardiac MR. Here we present the Simultaneous Subdivision Surface Registration (SiSSR) method: a fast, semi-automated image analysis pipeline for quantifying regional function from contrast-enhanced CCT. For each of thirteen adult male canines, we construct an anatomical reference mesh representing the left ventricular (LV) endocardium, obviating the need for a template mesh to be manually sculpted and initialized. We treat this generated mesh as a Loop subdivision surface, and adapt a technique previously described in the context of 3-D echocardiography to register these surfaces to the endocardium efficiently across all cardiac frames simultaneously. Although previous work performs the registration at a single resolution, we observe that subdivision surfaces naturally suggest a multiresolution approach, leading to faster convergence and avoiding local minima. We additionally make two notable changes to the cost function of the optimization, explicitly encouraging plausible biological motion and high mesh quality. Finally, we calculate an accepted functional metric for CCT from the registered surfaces, and compare our results to an alternate state-of-the-art CCT method. Published by Elsevier B.V.

  17. Redox Aspects of Chaperones in Cardiac Function

    PubMed Central

    Penna, Claudia; Sorge, Matteo; Femminò, Saveria; Pagliaro, Pasquale; Brancaccio, Mara

    2018-01-01

    Molecular chaperones are stress proteins that allow the correct folding or unfolding as well as the assembly or disassembly of macromolecular cellular components. Changes in expression and post-translational modifications of chaperones have been linked to a number of age- and stress-related diseases including cancer, neurodegeneration, and cardiovascular diseases. Redox sensible post-translational modifications, such as S-nitrosylation, glutathionylation and phosphorylation of chaperone proteins have been reported. Redox-dependent regulation of chaperones is likely to be a phenomenon involved in metabolic processes and may represent an adaptive response to several stress conditions, especially within mitochondria, where it impacts cellular bioenergetics. These post-translational modifications might underlie the mechanisms leading to cardioprotection by conditioning maneuvers as well as to ischemia/reperfusion injury. In this review, we discuss this topic and focus on two important aspects of redox-regulated chaperones, namely redox regulation of mitochondrial chaperone function and cardiac protection against ischemia/reperfusion injury. PMID:29615920

  18. Effects of depth and chest volume on cardiac function during breath-hold diving.

    PubMed

    Marabotti, Claudio; Scalzini, Alessandro; Cialoni, Danilo; Passera, Mirko; Ripoli, Andrea; L'Abbate, Antonio; Bedini, Remo

    2009-07-01

    Cardiac response to breath-hold diving in human beings is primarily characterized by the reduction of both heart rate and stroke volume. By underwater Doppler-echocardiography we observed a "restrictive/constrictive" left ventricular filling pattern compatible with the idea of chest squeeze and heart compression during diving. We hypothesized that underwater re-expansion of the chest would release heart constriction and normalize cardiac function. To this aim, 10 healthy male subjects (age 34.2 +/- 10.4) were evaluated by Doppler-echocardiography during breath-hold immersion at a depth of 10 m, before and after a single maximal inspiration from a SCUBA device. During the same session, all subjects were also studied at surface (full-body immersion) and at 5-m depth in order to better characterize the relationship of echo-Doppler pattern with depth. In comparison to surface immersion, 5-m deep diving was sufficient to reduce cardiac output (P = 0.042) and increase transmitral E-peak velocity (P < 0.001). These changes remained unaltered at a 10-m depth. Chest expansion at 10 m decreased left ventricular end-systolic volume (P = 0.024) and increased left ventricular stroke volume (P = 0.024). In addition, it decreased transmitral E-peak velocity (P = 0.012) and increased deceleration time of E-peak (P = 0.021). In conclusion the diving response, already evident during shallow diving (5 m) did not progress during deeper dives (10 m). The rapid improvement in systolic and diastolic function observed after lung volume expansion is congruous with the idea of a constrictive effect on the heart exerted by chest squeeze.

  19. UCP3 Ablation Exacerbates High-Salt Induced Cardiac Hypertrophy and Cardiac Dysfunction.

    PubMed

    Lang, Hongmei; Xiang, Yang; Ai, Zhihua; You, Zhiqing; Jin, Xiaolan; Wan, Yong; Yang, Yongjian

    2018-04-20

    Excessive salt intake and left ventricular hypertrophy (LVH) are both critical for the development of hypertension and heart failure. The uncoupling protein 3 (UCP3) plays a cardio-protective role in early heart failure development. However, the potential role for UCP3 in salt intake and LVH is unclear. UCP3-/- and C57BL/6 mice were placed on either a normal-salt (NS, 0.5%) or a high-salt (HS, 8%) diet for 24 weeks. The cardiac function, endurance capacity, energy expenditure, and mitochondrial functional capacity were measured in each group. Elevated blood pressure was only observed in HS-fed UCP3-/- mice. High salt induced cardiac hypertrophy and dysfunction were observed in both C57BL/6 and UCP3-/- mice. However, the cardiac lesions were more profound in HS-fed UCP3-/- mice. Furthermore, HS-fed UCP3-/-mice experienced more severe mitochondrial respiratory dysfunction compared with HS-fed C57BL/6 mice, represented by the decreased volume of oxygen consumption and heat production at the whole-body level. UCP3 protein was involved in the incidence of high-salt induced hypertension and the progression of cardiac dysfunction in the early stages of heart failure. UCP3 ablation exacerbated high-salt-induced cardiac hypertrophy and cardiac dysfunction. © 2018 The Author(s). Published by S. Karger AG, Basel.

  20. Multidimensional structure-function relationships in human β-cardiac myosin from population-scale genetic variation

    PubMed Central

    Homburger, Julian R.; Green, Eric M.; Caleshu, Colleen; Sunitha, Margaret S.; Taylor, Rebecca E.; Ruppel, Kathleen M.; Metpally, Raghu Prasad Rao; Colan, Steven D.; Michels, Michelle; Day, Sharlene M.; Olivotto, Iacopo; Bustamante, Carlos D.; Dewey, Frederick E.; Ho, Carolyn Y.; Spudich, James A.; Ashley, Euan A.

    2016-01-01

    Myosin motors are the fundamental force-generating elements of muscle contraction. Variation in the human β-cardiac myosin heavy chain gene (MYH7) can lead to hypertrophic cardiomyopathy (HCM), a heritable disease characterized by cardiac hypertrophy, heart failure, and sudden cardiac death. How specific myosin variants alter motor function or clinical expression of disease remains incompletely understood. Here, we combine structural models of myosin from multiple stages of its chemomechanical cycle, exome sequencing data from two population cohorts of 60,706 and 42,930 individuals, and genetic and phenotypic data from 2,913 patients with HCM to identify regions of disease enrichment within β-cardiac myosin. We first developed computational models of the human β-cardiac myosin protein before and after the myosin power stroke. Then, using a spatial scan statistic modified to analyze genetic variation in protein 3D space, we found significant enrichment of disease-associated variants in the converter, a kinetic domain that transduces force from the catalytic domain to the lever arm to accomplish the power stroke. Focusing our analysis on surface-exposed residues, we identified a larger region significantly enriched for disease-associated variants that contains both the converter domain and residues on a single flat surface on the myosin head described as the myosin mesa. Notably, patients with HCM with variants in the enriched regions have earlier disease onset than patients who have HCM with variants elsewhere. Our study provides a model for integrating protein structure, large-scale genetic sequencing, and detailed phenotypic data to reveal insight into time-shifted protein structures and genetic disease. PMID:27247418

  1. Impact of the severity of end-stage liver disease in cardiac structure and function.

    PubMed

    Silvestre, Odilson Marcos; Bacal, Fernando; de Souza Ramos, Danusa; Andrade, Jose L; Furtado, Meive; Pugliese, Vincenzo; Belleti, Elisangela; Andraus, Wellington; Carrilho, Flair José; Carneiro D'Albuquerque, Luiz Augusto; Queiroz Farias, Alberto

    2013-01-01

    The impact of end-stage liver disease (ESLD) in cardiac remodeling of patients with cirrhosis is unknown. Our aim was to correlate the severity of ESLD with morphologic and functional heart changes. 184 patients underwent a protocol providing data on the severity of ESLD and undergoing echocardiography to assess the diameters of the left atrium and right ventricle; the systolic and diastolic diameters of the left ventricle, interventricular septum, and posterior wall of the left ventricle; systolic pulmonary artery pressure; ejection fraction; and diastolic function. Severity of ESLD was assessed by the Model for End-Stage Liver Disease (MELD) score. Left-atrial diameter (r = 0.323; IC 95% 0.190-0.455; p < 0.001), left-ventricular diastolic diameter (r = 0.177; IC 95% 0.033-0.320; p = 0.01) and systolic pulmonary artery pressure (r = 0.185; IC 95% 0.036-0.335; p = 0.02) significantly correlated with MELD score. Patients with MELD ≥ 16 had significantly higher left-atrial diameter and systolic pulmonary artery pressure, compared with patients with MELD scores < 16 points. Changes in cardiac structure and function correlate with the severity of ESLD.

  2. Low-dose dasatinib rescues cardiac function in Noonan syndrome

    PubMed Central

    Yi, Jae-Sung; Huang, Yan; Kwaczala, Andrea T.; Kuo, Ivana Y.; Ehrlich, Barbara E.; Campbell, Stuart G.; Giordano, Frank J.; Bennett, Anton M.

    2016-01-01

    Noonan syndrome (NS) is a common autosomal dominant disorder that presents with short stature, craniofacial dysmorphism, and cardiac abnormalities. Activating mutations in the PTPN11 gene encoding for the Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-2 (SHP2) causes approximately 50% of NS cases. In contrast, NS with multiple lentigines (NSML) is caused by mutations that inactivate SHP2, but it exhibits some overlapping abnormalities with NS. Protein zero-related (PZR) is a SHP2-binding protein that is hyper-tyrosyl phosphorylated in the hearts of mice from NS and NSML, suggesting that PZR and the tyrosine kinase that catalyzes its phosphorylation represent common targets for these diseases. We show that the tyrosine kinase inhibitor, dasatinib, at doses orders of magnitude lower than that used for its anticancer activities inhibited PZR tyrosyl phosphorylation in the hearts of NS mice. Low-dose dasatinib treatment of NS mice markedly improved cardiomyocyte contractility and functionality. Remarkably, a low dose of dasatinib reversed the expression levels of molecular markers of cardiomyopathy and reduced cardiac fibrosis in NS and NSML mice. These results suggest that PZR/SHP2 signaling is a common target of both NS and NSML and that low-dose dasatinib may represent a unifying therapy for the treatment of PTPN11-related cardiomyopathies. PMID:27942593

  3. Computational modeling for cardiac safety pharmacology analysis: Contribution of fibroblasts.

    PubMed

    Gao, Xin; Engel, Tyler; Carlson, Brian E; Wakatsuki, Tetsuro

    2017-09-01

    Drug-induced proarrhythmic potential is an important regulatory criterion in safety pharmacology. The application of in silico approaches to predict proarrhythmic potential of new compounds is under consideration as part of future guidelines. Current approaches simulate the electrophysiology of a single human adult ventricular cardiomyocyte. However, drug-induced proarrhythmic potential can be different when cardiomyocytes are surrounded by non-muscle cells. Incorporating fibroblasts in models of myocardium is important particularly for predicting a drugs cardiac liability in the aging population - a growing population who take more medications and exhibit increased cardiac fibrosis. In this study, we used computational models to investigate the effects of fibroblast coupling on the electrophysiology and response to drugs of cardiomyocytes. A computational model of cardiomyocyte electrophysiology and ion handling (O'Hara, Virag, Varro, & Rudy, 2011) is coupled to a passive model of fibroblast electrophysiology to test the effects of three compounds that block cardiomyocyte ion channels. Results are compared to model results without fibroblast coupling to see how fibroblasts affect cardiomyocyte action potential duration at 90% repolarization (APD 90 ) and propensity for early after depolarization (EAD). Simulation results show changes in cardiomyocyte APD 90 with increasing concentration of three drugs that affect cardiac function (dofetilide, vardenafil and nebivolol) when no fibroblasts are coupled to the cardiomyocyte. Coupling fibroblasts to cardiomyocytes markedly shortens APD 90 . Moreover, increasing the number of fibroblasts can augment the shortening effect. Coupling cardiomyocytes and fibroblasts are predicted to decrease proarrhythmic susceptibility under dofetilide, vardenafil and nebivolol block. However, this result is sensitive to parameters which define the electrophysiological function of the fibroblast. Fibroblast membrane capacitance and

  4. [The effect of hypothyroidism on cardiac function in dogs].

    PubMed

    Stephan, I; Nolte, I; Hoppen, H O

    2003-06-01

    The thyroid hormones have direct and indirect effects on the heart. So it is possible that depression of left ventricular function is associated with hypothyroidism. This publication describes cardiac findings (auscultation, electrocardiography, echocardiography) in ten hypothyroid dogs. Low heart rates, reduced R-amplitudes and bradycardic arrhythmias (first and second-degree AV block) were found on the electrocardiogram before treatment. On the echocardiograms most of the dogs showed reduced contractillity and reduced left ventricular wall thickness. Seven dogs were reexamined after levothyroxine supplementation. Effects of treatment were increased heart rates and R-amplitudes as well as disappearance of the bradycardic arrhythmias in electrocardiographic examination. The echocardiographic examination showed increased contractility and increased left ventricular wall thickness.

  5. Telocytes in skeletal, cardiac and smooth muscle interstitium: morphological and functional aspects.

    PubMed

    Marini, Mirca; Rosa, Irene; Ibba-Manneschi, Lidia; Manetti, Mirko

    2018-04-25

    Telocytes (TCs) represent a new distinct type of cells found in the stromal compartment of many organs, including the skeletal, cardiac and smooth muscles. TCs are morphologically defined as interstitial cells with a small cellular body from which arise very long (up to hundreds of micrometers) and thin moniliform processes (named telopodes) featuring the alternation of slender segments (called podomers) and small dilated portions (called podoms) accommodating some organelles. Although these stromal cells are mainly characterized by their ultrastructural traits, in the last few years TCs have been increasingly studied for their immunophenotypes, microRNA profiles, and gene expression and proteomic signatures. By their long-distance spreading telopodes, TCs build a three-dimensional network throughout the whole stromal space and communicate with each other and neighboring cells through homocellular and heterocellular junctions, respectively. Moreover, increasing evidence suggests that TCs may exert paracrine functions being able to transfer genetic information and signaling molecules to other cells via the release of different types of extracellular vesicles. A close relationship between TCs and stem/progenitor cell niches has also been described in several organs. However, the specific functions of TCs located in the muscle interstitium remain to be unraveled. Here, we review the morphological and possible functional aspects of TCs in skeletal, cardiac and smooth muscle tissues. The potential involvement of TCs in muscle tissue pathological changes and future possibilities for targeting TCs as a novel promising therapeutic strategy to foster muscle tissue regeneration and repair are also discussed.

  6. Cortistatin Improves Cardiac Function After Acute Myocardial Infarction in Rats by Suppressing Myocardial Apoptosis and Endoplasmic Reticulum Stress.

    PubMed

    Shi, Zhi-Yu; Liu, Yue; Dong, Li; Zhang, Bo; Zhao, Meng; Liu, Wen-Xiu; Zhang, Xin; Yin, Xin-Hua

    2016-04-18

    The endoplasmic reticulum (ER) stress-induced apoptotic pathway is associated with the development of acute myocardial infarction (AMI). Cortistatin (CST) is a novel bioactive peptide that inhibits apoptosis-related injury. Therefore, we investigated the cardioprotective effects and potential mechanisms of CST in a rat model of AMI. Male Wistar rats were randomly divided into sham, AMI, and AMI + CST groups. Cardiac function and the degree of infarction were evaluated by echocardiography, cardiac troponin I activity, and 2,3,5-triphenyl-2H-tetrazolium chloride staining after 7 days. The expression of CST, ER stress markers, and apoptotic markers was examined using immunohistochemistry and Western blotting. Compared to the AMI group, the AMI + CST group exhibited markedly better cardiac function and a lower degree of infarction. Electron microscopy and terminal deoxynucleotidyl transferase dUTP nick end labeling confirmed that myocardial apoptosis occurred after AMI. Cortistatin treatment reduced the expression of caspase 3, cleaved caspase 3, and Bax (proapoptotic proteins) and promoted the expression of Bcl-2 (antiapoptotic protein). In addition, the reduced expression of glucose-regulated protein 94 (GRP94), glucose-regulated protein 78 (GRP78), CCAAT/enhancer-binding proteins homologous protein, and caspase 12 indicated that ER stress and the apoptotic pathway associated with ER stress were suppressed. Exogenous CST has a notable cardioprotective effect after AMI in a rat model in that it improves cardiac function by suppressing ER stress and myocardial apoptosis. © The Author(s) 2016.

  7. Brain function monitoring during off-pump cardiac surgery: a case report

    PubMed Central

    Zanatta, Paolo; Bosco, Enrico; Di Pasquale, Piero; Nivedita, Agarwal; Valfrè, Carlo; Sorbara, Carlo

    2008-01-01

    Background Early postoperative stroke is an adverse syndrome after coronary bypass surgery. This report focuses on overcoming of cerebral ischemia as a result of haemodynamic instability during heart enucleation in off-pump procedure. Case presentation A 67 year old male patient, Caucasian race, with a body mass index of 28, had a recent non-Q posterolateral myocardial infarction one month before and recurrent instable angina. His past history includes an uncontrolled hypertension, dyslipidemia, insulin dependent diabetes mellitus, epiaortic vessel stenosis. The patient was scheduled for an off-pump procedure and monitored with bilateral somatosensory evoked potentials, whose alteration signalled the decrement of the cardiac index during operation. The somatosensory evoked potentials appeared when the blood pressure was increased with a pharmacological treatment. Conclusion During the off-pump coronary bypass surgery, a lower cardiac index, predisposes patients, with multiple stroke risk factors, to a reduction of the cerebral blood flow. Intraoperative somatosensory evoked potentials monitoring provides informations about the functional status of somatosensory cortex to reverse effects of brain ischemia. PMID:18706094

  8. Cardiac vagal control and children’s adaptive functioning: A meta-analysis

    PubMed Central

    Graziano, Paulo; Derefinko, Karen

    2014-01-01

    Polyvagal theory has influenced research on the role of cardiac vagal control, indexed by respiratory sinus arrhythmia withdrawal (RSA-W) during challenging states, in children’s self-regulation. However, it remains unclear how well RSA-W predicts adaptive functioning (AF) outcomes and whether certain caveats of measuring RSA (e.g., respiration) significantly impact these associations. A meta-analysis of 44 studies (n = 4,996 children) revealed small effect sizes such that greater levels of RSA-W were related to fewer externalizing, internalizing, and cognitive/academic problems. In contrast, RSA-W was differentially related to children’s social problems according to sample type (community vs. clinical/at-risk). The relations between RSA-W and children’s AF outcomes were stronger among studies that co-varied baseline RSA and in Caucasian children (no effect was found for respiration). Children from clinical/at-risk samples displayed lower levels of baseline RSA and RSA-W compared to children from community samples. Theoretical/practical implications for the study of cardiac vagal control are discussed. PMID:23648264

  9. Higher protein intake increases cardiac function parameters in healthy children: metabolic programming by infant nutrition-secondary analysis from a clinical trial.

    PubMed

    Collell, Rosa; Closa-Monasterolo, Ricardo; Ferré, Natalia; Luque, Veronica; Koletzko, Berthold; Grote, Veit; Janas, Roman; Verduci, Elvira; Escribano, Joaquín

    2016-06-01

    Protein intake may modulate cardiac structure and function in pathological conditions, but there is a lack of knowledge on potential effects in healthy infants. Secondary analysis of an ongoing randomized clinical trial comparing two groups of infants receiving a higher (HP) or lower (LP) protein content formula in the first year of life, and compared with an observational group of breastfed (BF) infants. Growth and dietary intake were assessed periodically from birth to 2 y. Insulin-like growth factor 1 (IGF-1) axis parameters were analyzed at 6 mo in a blood sample. At 2 y, cardiac mass and function were assessed by echocardiography. HP infants (n = 50) showed a higher BMI z-score at 2 y compared with LP (n = 47) or BF (n = 44). Cardiac function parameters were increased in the HP group compared with the LP and were directly related to the protein intake during the first 6 mo of life. Moreover, there was an increase in free IGF-1 in the HP group at 6 mo. A moderate increase in protein supply during the first year of life is associated with higher cardiac function parameters at 2 y. IGF-1 axis modifications may, at least in part, underlie these effects.

  10. Ubiquitin-proteasome system impairment caused by a missense cardiac myosin-binding protein C mutation and associated with cardiac dysfunction in hypertrophic cardiomyopathy.

    PubMed

    Bahrudin, Udin; Morisaki, Hiroko; Morisaki, Takayuki; Ninomiya, Haruaki; Higaki, Katsumi; Nanba, Eiji; Igawa, Osamu; Takashima, Seiji; Mizuta, Einosuke; Miake, Junichiro; Yamamoto, Yasutaka; Shirayoshi, Yasuaki; Kitakaze, Masafumi; Carrier, Lucie; Hisatome, Ichiro

    2008-12-26

    The ubiquitin-proteasome system is responsible for the disappearance of truncated cardiac myosin-binding protein C, and the suppression of its activity contributes to cardiac dysfunction. This study investigated whether missense cardiac myosin-binding protein C gene (MYBPC3) mutation in hypertrophic cardiomyopathy (HCM) leads to destabilization of its protein, causes UPS impairment, and is associated with cardiac dysfunction. Mutations were identified in Japanese HCM patients using denaturing HPLC and sequencing. Heterologous expression was investigated in COS-7 cells as well as neonatal rat cardiac myocytes to examine protein stability and proteasome activity. The cardiac function was measured using echocardiography. Five novel MYBPC3 mutations -- E344K, DeltaK814, Delta2864-2865GC, Q998E, and T1046M -- were identified in this study. Compared with the wild type and other mutations, the E334K protein level was significantly lower, it was degraded faster, it had a higher level of polyubiquination, and increased in cells pretreated with the proteasome inhibitor MG132 (50 microM, 6 h). The electrical charge of its amino acid at position 334 influenced its stability, but E334K did not affect its phosphorylation. The E334K protein reduced cellular 20 S proteasome activity, increased the proapoptotic/antiapoptotic protein ratio, and enhanced apoptosis in transfected Cos-7 cells and neonatal rat cardiac myocytes. Patients carrying the E334K mutation presented significant left ventricular dysfunction and dilation. The conclusion is the missense MYBPC3 mutation E334K destabilizes its protein through UPS and may contribute to cardiac dysfunction in HCM through impairment of the ubiquitin-proteasome system.

  11. Influenza epidemics, seasonality, and the effects of cold weather on cardiac mortality

    PubMed Central

    2012-01-01

    Background More people die in the winter from cardiac disease, and there are competing hypotheses to explain this. The authors conducted a study in 48 US cities to determine how much of the seasonal pattern in cardiac deaths could be explained by influenza epidemics, whether that allowed a more parsimonious control for season than traditional spline models, and whether such control changed the short term association with temperature. Methods The authors obtained counts of daily cardiac deaths and of emergency hospital admissions of the elderly for influenza during 1992–2000. Quasi-Poisson regression models were conducted estimating the association between daily cardiac mortality, and temperature. Results Controlling for influenza admissions provided a more parsimonious model with better Generalized Cross-Validation, lower residual serial correlation, and better captured Winter peaks. The temperature-response function was not greatly affected by adjusting for influenza. The pooled estimated increase in risk for a temperature decrease from 0 to −5°C was 1.6% (95% confidence interval (CI) 1.1-2.1%). Influenza accounted for 2.3% of cardiac deaths over this period. Conclusions The results suggest that including epidemic data explained most of the irregular seasonal pattern (about 18% of the total seasonal variation), allowing more parsimonious models than when adjusting for seasonality only with smooth functions of time. The effect of cold temperature is not confounded by epidemics. PMID:23025494

  12. Factors Affecting Attendance at an Adapted Cardiac Rehabilitation Exercise Program for Individuals with Mobility Deficits Poststroke.

    PubMed

    Marzolini, Susan; Balitsky, Amaris; Jagroop, David; Corbett, Dale; Brooks, Dina; Grace, Sherry L; Lawrence, Danielle; Oh, Paul I

    2016-01-01

    The aim of this study was to determine the factors affecting attendance at an adapted cardiac rehabilitation program for individuals poststroke. A convenience sample of ambulatory patients with hemiparetic gait rated 20 potential barriers to attendance on a 5-point Likert scale upon completion of a 6-month program of 24 prescheduled weekly sessions. Sociodemographic characteristics, depressive symptoms, cardiovascular fitness, and comorbidities were collected by questionnaire or medical chart. Sixty-one patients attended 77.3 ± 12% of the classes. The longer the elapsed time from stroke, the lower the attendance rate (r = -.34, P = .02). The 4 greatest barriers influencing attendance were severe weather, transportation problems, health problems, and traveling distance. Health problems included hospital readmissions (n = 6), influenza/colds (n = 6), diabetes and cardiac complications (n = 4), and musculoskeletal issues (n = 2). Of the top 4 barriers, people with lower compared to higher income had greater transportation issues (P = .004). Greater motor deficits of the stroke-affected leg were associated with greater barriers related to health issues (r = .7, P = .001). The only sociodemographic factor associated with a higher total mean barrier score was non-English as the primary language spoken at home (P = .002); this factor was specifically related to the barriers of cost (P = .007), family responsibilities (P = .018), and lack of social support (P = .001). No other associations were observed. Barriers to attendance were predominantly related to logistic/transportation and health issues. People who were more disadvantaged socioeconomically (language, finances), and physically (stroke-related deficits) were more affected by these barriers. Strategies to reduce these barriers, including timely referral to exercise programs, need to be investigated. Copyright © 2015 National Stroke Association. Published by

  13. Simvastatin reduces wasting and improves cardiac function as well as outcome in experimental cancer cachexia.

    PubMed

    Palus, Sandra; von Haehling, Stephan; Flach, Valerie C; Tschirner, Anika; Doehner, Wolfram; Anker, Stefan D; Springer, Jochen

    2013-10-09

    Chronic inflammation is common in cancer cachexia (CC) and directly involved in the atrophy seen in this condition. Recently, several groups have described a form of cardiomyopathy in CC animal models. Hence, we investigated the effect of simvastatin with its known anti-inflammatory and cardioprotective effects in a rat model of CC. Juvenile Wister Han rats (weight approx. 200 g) were inoculated with Yoshida AH-130 hepatoma cells and treated once daily with 0.1, 1, 10 or 20 mg/kg/d simvastatin or placebo for 14 days. Body weight and body composition (NMR) were assessed at baseline and at the end of the study. Cardiac function was analysed by echocardiography at baseline and day 11. Tumour-bearing, placebo-treated rats lost 47.9±3.8 g of their initial body weight. Treatment with 0.1, 1, 10 or 20 mg/kg/d simvastatin significantly reduced wasting by 39.6%, 47.6%, 28.5% and 35.4%, respectively (all p<0.05 vs. placebo). This was mainly due to reduced atrophy of lean mass, i.e. muscle mass. Cardiac function was significantly improved, e.g. cardiac output (untreated sham: 78.9 mL/min) was severely impaired in tumour-bearing rats (42.4 mL/min) and improved by 1, 10 or 20 mg/kg/d simvastatin (62.2, 59.0 and 57.0 mL/min, respectively, all p<0.05 vs. placebo). Most importantly, 10 or 20 mg/kg/d simvastatin reduced mortality (HR:0.16, 95%CI:0.04-0.76, p=0.021 and HR:0.16, 95%CI:0.03-0.72, p=0.017 vs placebo, respectively). Simvastatin attenuated loss of body weight as well as muscle mass and improved cardiac function leading to improved survival in this CC model. Simvastatin may be beneficial in a clinical setting to treat CC. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Nppa and Nppb act redundantly during zebrafish cardiac development to confine AVC marker expression and reduce cardiac jelly volume.

    PubMed

    Grassini, Daniela R; Lagendijk, Anne K; De Angelis, Jessica E; Da Silva, Jason; Jeanes, Angela; Zettler, Nicole; Bower, Neil I; Hogan, Benjamin M; Smith, Kelly A

    2018-05-11

    Atrial natriuretic peptide ( nppa/anf ) and brain natriuretic peptide ( nppb/bnp ) form a gene cluster with expression in the chambers of the developing heart. Despite restricted expression, a function in cardiac development has not been demonstrated by mutant analysis. This is attributed to functional redundancy however their genomic location in cis has impeded formal analysis. Using genome-editing, we generated mutants for nppa and nppb and found single mutants indistinguishable from wildtype whereas nppa / nppb double mutants display heart morphogenesis defects and pericardial oedema. Analysis of atrioventricular canal (AVC) markers show expansion of bmp4 , tbx2b, has2 and versican expression into the atrium of double mutants. This expanded expression correlates with increased extracellular matrix in the atrium. Using a biosensor for Hyaluronic acid to measure the cardiac jelly (cardiac extracellular matrix), we confirm cardiac jelly expansion in nppa / nppb double mutants. Finally, bmp4 knockdown rescues the expansion of has2 expression and cardiac jelly in double mutants. This definitively shows that nppa and nppb function redundantly during cardiac development to restrict gene expression to the AVC, preventing excessive cardiac jelly synthesis in the atrial chamber. © 2018. Published by The Company of Biologists Ltd.

  15. Evaluation of cardiac function in a group of small for gestational age school-age children treated with growth hormone.

    PubMed

    Aurensanz Clemente, Esther; Ayerza Casas, Ariadna; Samper Villagrasa, Pilar; Ruiz Frontera, Pablo; Bueno Lozano, Gloria

    2017-02-09

    Small for gestational age (SGA) patients have an increased risk of developing a cardiovascular pathology, as well as a metabolic syndrome. Our objective is to evaluate the cardiac morphology and function of SGA children treated with growth hormone (GH), identifying changes that could potentially have long-term consequences. We selected 23 SGA school-age patients and 23 healthy children. We measured their weight, height, blood pressure and heart rate. Using transthoracic echocardiography, we evaluated cardiac chamber size, ascending and abdominal aortic diameter as well as the systolic and diastolic function of both ventricles. SGA children have a higher systolic and diastolic blood pressure (P<.05) without significant changes in their heart rate. They also have a thicker interventricular septum (SGA Z-score 1.57 vs. 0.89; P=.026) and a worse right ventricular systolic function, with a lower TAPSE (SGA Z-score -0.98 vs. 0.95; P=.000), as well as a lower blood flow rate in the pulmonary artery (SGA 0.85m/s vs. 0.97m/s; P=.045). No significant difference was observed in the patients' left ventricular function. SGA patients' ascending aortic diameter was greater (SGA Z-score -1.09 vs. -1.93; P=.026), whereas the systolic abdominal aortic diameter was smaller (SGA Z-score-0.89 vs. -0.19; P=.015). We found functional and morphological cardiac changes in SGA school-age patients treated with GH. It is important to follow-up this patient group in order to determine if these changes contribute to an increased cardiac morbidity in adulthood. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  16. Cardiac Autoantibodies from Patients Affected by a New Variant of Endemic Pemphigus Foliaceus in Colombia, South America

    PubMed Central

    Howard, Michael S.; Jiao, Zhe; Gao, Weiqing; Yi, Hong; Grossniklaus, Hans E.; Duque-Ramírez, Mauricio; Dudley, Samuel C.

    2012-01-01

    Several patients affected by a new variant of endemic pemphigus foliaceus in El Bagre, Colombia (El Bagre-EPF) have experienced a sudden death syndrome, including persons below the age of 50. El Bagre-EPF patients share several autoantigens with paraneoplastic pemphigus patients, such as reactivity to plakins. Further, paraneoplastic pemphigus patients have autoantibodies to the heart. Therefore, we tested 15 El Bagre-EPF patients and 15 controls from the endemic area for autoreactivity to heart tissue using direct and indirect immunofluorescence, confocal microscopy, immunohistochemistry, immunoblotting, and immunoelectron microscopy utilizing heart extracts as antigens. We found that 7 of 15 El Bagre patients exhibited a polyclonal immune response to several cell junctions of the heart, often colocalizing with known markers. These colocalizing markers included those for the area composita of the heart, such as anti-desmoplakins I and II; markers for gap junctions, such as connexin 43; markers for tight junctions, such as ezrin and junctional adhesion molecule A; and adherens junctions, such pan-cadherin. We also detected colocalization of the patient antibodies within blood vessels, Purkinje fibers, and cardiac sarcomeres. We conclude that El Bagre-EPF patients display autoreactivity to multiple cardiac epitopes, that this disease may resemble what is found in patients with rheumatic carditis, and further, that the cardiac pathophysiology of this disorder warrants further evaluation. PMID:21796504

  17. Akt2 Knockout Alleviates Prolonged Caloric Restriction-Induced Change in Cardiac Contractile Function through Regulation of Autophagy

    PubMed Central

    Zhang, Yingmei; Han, Xuefeng; Hu, Nan; Huff, Anna F.; Gao, Feng; Ren, Jun

    2014-01-01

    Caloric restriction leads to changes in heart geometry and function although the underlying mechanism remains elusive. Autophagy, a conserved pathway for degradation of intracellular proteins and organelles, preserves energy and nutrient in the face of caloric insufficiency. This study was designed to examine the role of Akt2 in prolonged caloric restriction-induced change in cardiac homeostasis and the underlying mechanism(s) involved. Wild-type (WT) and Akt2 knockout mice were caloric restricted (by 40%) for 30 weeks. Echocardiographic, cardiomyocyte contractile and intracellular Ca2+ properties, autophagy and its regulatory proteins were evaluated. Caloric restriction compromised echocardiographic indices (decreased left ventricular mass, left ventricular diameters and cardiac output), cardiomyocyte contractile and intracellular Ca2+ properties associated with dampened SERCA2a phosphorylation, upregulated phospholamban and autophagy (Beclin-1, Atg7, LC3BII-to-LC3BI ratio), increased autophagy adaptor protein p62, elevated phosphorylation of AMPK, Akt2 and the Akt downstream signal molecule TSC2, the effects of which with the exception of autophagy protein markers (Beclin-1, Atg7, LC3B) and AMPK were mitigated or significantly alleviated by Akt2 knockout. Lysosomal inhibition using bafilomycin A1 negated Akt2 knockout-induced protective effect on p62. Evaluation of downstream signaling molecules of Akt and AMPK including mTOR and ULK1 revealed that caloric restriction suppressed and promoted phosphorylation of mTOR and ULK1, respectively, without affecting total mTOR and ULK1 expression. Akt2 knockout significantly augmented caloric restriction-induced responses on mTOR and ULK1. Taken together, these data suggest a beneficial role of Akt2 knockout in preservation of cardiac homeostasis against prolonged caloric restriction-induced pathological changes possibly through facilitating autophagy. PMID:24368095

  18. Childhood obesity and cardiac remodeling: from cardiac structure to myocardial mechanics.

    PubMed

    Tadic, Marijana; Cuspidi, Cesare

    2015-08-01

    Epidemic of obesity, especially morbid obesity, among children and adolescents, is a key factor associated with the dramatic increase in prevalence of type 2 diabetes mellitus, arterial hypertension, and metabolic syndrome in this population. Furthermore, childhood obesity represents a very important predictor of obesity in adulthood that is related to cardiovascular and cerebrovascular diseases. Overweight and obesity in children and adolescents are associated with impairment of cardiac structure and function. The majority of studies investigated the influence of obesity on left ventricular remodeling. However, the impact of obesity on the right ventricle, both the atria, and myocardial mechanics has been insufficiently studied. The aim of this review article is to summarize all data about heart remodeling in childhood, from cardiac size, throughout systolic and diastolic function, to myocardial mechanics, using a wide range of mainly echocardiographic techniques and parameters. Additionally, we sought to present current knowledge about the influence of weight loss, achieved by various therapeutic approaches, on the improvement of cardiac geometry, structure, and function in obese children and adolescents.

  19. Maternal nicotine exposure leads to decreased cardiac protein disulfide isomerase and impaired mitochondrial function in male rat offspring.

    PubMed

    Barra, Nicole G; Lisyansky, Maria; Vanduzer, Taylor A; Raha, Sandeep; Holloway, Alison C; Hardy, Daniel B

    2017-12-01

    Smoking throughout pregnancy can lead to complications during gestation, parturition and neonatal development. Thus, nicotine replacement therapies are a popular alternative thought to be safer than cigarettes. However, recent studies in rodents suggest that fetal and neonatal nicotine exposure alone results in cardiac dysfunction and high blood pressure. While it is well known that perinatal nicotine exposure causes increased congenital abnormalities, the mechanisms underlying longer-term deficits in cardiac function are not completely understood. Recently, our laboratory demonstrated that nicotine impairs placental protein disulfide isomerase (PDI) triggering an increase in endoplasmic reticulum stress, leading us to hypothesize that this may also occur in the heart. At 3 months of age, nicotine-exposed offspring had 45% decreased PDI levels in the absence of endoplasmic reticulum stress. Given the association of PDI and superoxide dismutase enzymes, we further observed that antioxidant superoxide dismutase-2 levels were reduced by 32% in these offspring concomitant with a 26-49% decrease in mitochondrial complex proteins (I, II, IV and V) and tissue inhibitor of metalloproteinase-4, a critical matrix metalloprotease for cardiac contractility and health. Collectively, this study suggests that perinatal nicotine exposure decreases PDI, which can promote oxidative damage and mitochondrial damage, associated with a premature decline in cardiac function. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Autonomic, functional, skeletal muscle, and cardiac abnormalities are associated with increased ergoreflex sensitivity in mitochondrial disease.

    PubMed

    Giannoni, Alberto; Aimo, Alberto; Mancuso, Michelangelo; Piepoli, Massimo Francesco; Orsucci, Daniele; Aquaro, Giovanni Donato; Barison, Andrea; De Marchi, Daniele; Taddei, Claudia; Cameli, Matteo; Raglianti, Valentina; Siciliano, Gabriele; Passino, Claudio; Emdin, Michele

    2017-12-01

    Mitochondrial disease (MD) is a genetic disorder affecting skeletal muscles, with possible myocardial disease. The ergoreflex, sensitive to skeletal muscle work, regulates ventilatory and autonomic responses to exercise. We hypothesized the presence of an increased ergoreflex sensitivity in MD patients, its association with abnormal ventilatory and autonomic responses, and possibly with subclinical cardiac involvement. Twenty-five MD patients (aged 46 ± 3 years, 32% male) with skeletal myopathy but without known cardiac disease, underwent a thorough evaluation including BNPs, galectin-3, soluble suppression of tumorigenesis 2 (sST2), high sensitivity troponin T/I, catecholamines, ECG, 24-h ECG recording, cardiopulmonary exercise testing, echocardiography, cardiac/muscle magnetic resonance (C/MMR), and ergoreflex assessment. Thirteen age- and sex-matched healthy controls were chosen. Among these myopathic patients, subclinical cardiac damage was detected in up to 80%, with 44% showing fibrosis at CMR. Ergoreflex sensitivity was markedly higher in patients than in controls (64% vs. 37%, P < 0.001), and correlated with muscle fat to water ratio and extracellular volume at MMR (both P < 0.05). Among patients, ergoreflex sensitivity was higher in those with cardiac involvement (P = 0.034). Patients showed a lower peak oxygen consumption (VO 2 /kg) than controls (P < 0.001), as well as ventilatory inefficiency (P = 0.024). Ergoreflex sensitivity correlated with reduced workload and peak VO 2 /kg (both P < 0.001), and several indicators of autonomic imbalance (P < 0.05). Plasma norepinephrine was the unique predictor of myocardial fibrosis at univariate analysis (P < 0.05). Skeletal myopathy in MD is characterized by enhanced ergoreflex sensitivity, which is associated with a higher incidence of cardiac involvement, exercise intolerance, and sympathetic activation. © 2017 The Authors. European Journal of Heart Failure © 2017 European Society of Cardiology.

  1. Adrenergic Blockade Bi-directionally and Asymmetrically Alters Functional Brain-Heart Communication and Prolongs Electrical Activities of the Brain and Heart during Asphyxic Cardiac Arrest.

    PubMed

    Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M; Farrehi, Peter; Borjigin, Jimo

    2018-01-01

    Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO 2 -mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients.

  2. Right ventricular dysfunction after resuscitation predicts poor outcomes in cardiac arrest patients independent of left ventricular function.

    PubMed

    Ramjee, Vimal; Grossestreuer, Anne V; Yao, Yuan; Perman, Sarah M; Leary, Marion; Kirkpatrick, James N; Forfia, Paul R; Kolansky, Daniel M; Abella, Benjamin S; Gaieski, David F

    2015-11-01

    Determination of clinical outcomes following resuscitation from cardiac arrest remains elusive in the immediate post-arrest period. Echocardiographic assessment shortly after resuscitation has largely focused on left ventricular (LV) function. We aimed to determine whether post-arrest right ventricular (RV) dysfunction predicts worse survival and poor neurologic outcome in cardiac arrest patients, independent of LV dysfunction. A single-center, retrospective cohort study at a tertiary care university hospital participating in the Penn Alliance for Therapeutic Hypothermia (PATH) Registry between 2000 and 2012. 291 in- and out-of-hospital adult cardiac arrest patients at the University of Pennsylvania who had return of spontaneous circulation (ROSC) and post-arrest echocardiograms. Of the 291 patients, 57% were male, with a mean age of 59 ± 16 years. 179 (63%) patients had LV dysfunction, 173 (59%) had RV dysfunction, and 124 (44%) had biventricular dysfunction on the initial post-arrest echocardiogram. Independent of LV function, RV dysfunction was predictive of worse survival (mild or moderate: OR 0.51, CI 0.26-0.99, p<0.05; severe: OR 0.19, CI 0.06-0.65, p=0.008) and neurologic outcome (mild or moderate: OR 0.33, CI 0.17-0.65, p=0.001; severe: OR 0.11, CI 0.02-0.50, p=0.005) compared to patients with normal RV function after cardiac arrest. Echocardiographic findings of post-arrest RV dysfunction were equally prevalent as LV dysfunction. RV dysfunction was significantly predictive of worse outcomes in post-arrest patients after accounting for LV dysfunction. Post-arrest RV dysfunction may be useful for risk stratification and management in this high-mortality population. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    PubMed

    Buscariollo, Daniela L; Fang, Xiefan; Greenwood, Victoria; Xue, Huiling; Rivkees, Scott A; Wendler, Christopher C

    2014-01-01

    Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs) mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg) or vehicle (0.09% NaCl) i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs) within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  4. Reduced capacity of cardiac efferent sympathetic neurons to release noradrenaline and modify cardiac function in tachycardia-induced canine heart failure.

    PubMed

    Cardinal, R; Nadeau, R; Laurent, C; Boudreau, G; Armour, J A

    1996-09-01

    To investigate the capacity of efferent sympathetic neurons to modulate the failing heart, stellate ganglion stimulation was performed in dogs with biventricular heart failure induced by rapid ventricular pacing (240 beats/min) for 4-6 weeks. Less noradrenaline was released from cardiac myoneural junctions into coronary sinus blood in response to left stellate ganglion stimulation in anesthetized failing heart preparations (582 pg/mL, lower and upper 95% confidence intervals of 288 and 1174 pg/mL, n = 19) compared with healthy heart preparations (6391 pg/mL, 95% confidence intervals of 4180 and 9770 pg/mL, n = 14; p < 0.001). There was substantial adrenaline extraction by failing hearts (49 +/- 6%), although it was slightly lower than in healthy heart preparations (65 +/- 9%, p = 0.055). In contrast with healthy heart preparations, no net release of adrenaline occurred during stellate ganglion stimulation in any of the failing heart preparations, and ventricular tissue levels of adrenaline fell below the sensitivity limit of the HPLC technique. In failing heart preparations, maximal electrical stimulation of right or left stellate ganglia resulted in minimal augmentation of left ventricular intramyocardial (17%) and chamber (12%) systolic pressures. These indices were augmented by 145 and 97%, respectively, following exogenous noradrenaline administration. Thus, the cardiac efferent sympathetic neurons' reduced capacity to release noradrenaline and modify cardiac function can contribute to reduction of sympathetic support to the failing heart.

  5. MitoQ administration prevents endotoxin-induced cardiac dysfunction.

    PubMed

    Supinski, G S; Murphy, M P; Callahan, L A

    2009-10-01

    Sepsis elicits severe alterations in cardiac function, impairing cardiac mitochondrial and pressure-generating capacity. Currently, there are no therapies to prevent sepsis-induced cardiac dysfunction. We tested the hypothesis that administration of a mitochondrially targeted antioxidant, 10-(6'-ubiquinonyl)-decyltriphenylphosphonium (MitoQ), would prevent endotoxin-induced reductions in cardiac mitochondrial and contractile function. Studies were performed on adult rodents (n = 52) given either saline, endotoxin (8 mg x kg(-1) x day(-1)), saline + MitoQ (500 microM), or both endotoxin and MitoQ. At 48 h animals were killed and hearts were removed for determination of either cardiac mitochondrial function (using polarography) or cardiac pressure generation (using the Langendorf technique). We found that endotoxin induced reductions in mitochondrial state 3 respiration rates, the respiratory control ratio, and ATP generation. Moreover, MitoQ administration prevented each of these endotoxin-induced abnormalities, P < 0.001. We also found that endotoxin produced reductions in cardiac pressure-generating capacity, reducing the systolic pressure-diastolic relationship. MitoQ also prevented endotoxin-induced reductions in cardiac pressure generation, P < 0.01. One potential link between mitochondrial and contractile dysfunction is caspase activation; we found that endotoxin increased cardiac levels of active caspases 9 and 3 (P < 0.001), while MitoQ prevented this increase (P < 0.01). These data demonstrate that MitoQ is a potent inhibitor of endotoxin-induced mitochondrial and cardiac abnormalities. We speculate that this agent may prove a novel therapy for sepsis-induced cardiac dysfunction.

  6. Crude oil exposures reveal roles for intracellular calcium cycling in haddock craniofacial and cardiac development

    PubMed Central

    Sørhus, Elin; Incardona, John P.; Karlsen, Ørjan; Linbo, Tiffany; Sørensen, Lisbet; Nordtug, Trond; van der Meeren, Terje; Thorsen, Anders; Thorbjørnsen, Maja; Jentoft, Sissel; Edvardsen, Rolf B.; Meier, Sonnich

    2016-01-01

    Recent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7–7 μg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underlying cardiac and craniofacial defects. Because of oil droplet binding, a 24-hr exposure was sufficient to create severe cardiac and craniofacial abnormalities. The specific nature of the craniofacial abnormalities suggests that crude oil may target common craniofacial and cardiac precursor cells either directly or indirectly by affecting ion channels and intracellular calcium in particular. Furthermore, down-regulation of genes encoding specific components of the EC coupling machinery suggests that crude oil disrupts excitation-transcription coupling or normal feedback regulation of ion channels blocked by PAHs. These data support a unifying hypothesis whereby depletion of intracellular calcium pools by crude oil-derived PAHs disrupts several pathways critical for organogenesis in fish. PMID:27506155

  7. Anti-thymocyte globulin induces neoangiogenesis and preserves cardiac function after experimental myocardial infarction.

    PubMed

    Lichtenauer, Michael; Mildner, Michael; Werba, Gregor; Beer, Lucian; Hoetzenecker, Konrad; Baumgartner, Andrea; Hasun, Matthias; Nickl, Stefanie; Mitterbauer, Andreas; Zimmermann, Matthias; Gyöngyösi, Mariann; Podesser, Bruno Karl; Klepetko, Walter; Ankersmit, Hendrik Jan

    2012-01-01

    Acute myocardial infarction (AMI) followed by ventricular remodeling is the major cause of congestive heart failure and death in western world countries. Of relevance are reports showing that infusion of apoptotic leucocytes or anti-lymphocyte serum after AMI reduces myocardial necrosis and preserves cardiac function. In order to corroborate this therapeutic mechanism, the utilization of an immunosuppressive agent with a comparable mechanism, such as anti-thymocyte globulin (ATG) was evaluated in this study. AMI was induced in rats by ligation of the left anterior descending artery. Initially after the onset of ischemia, rabbit ATG (10 mg/rat) was injected intravenously. In vitro and in vivo experiments showed that ATG induced a pronounced release of pro-angiogenic and chemotactic factors. Moreover, paracrine factors released from ATG co-incubated cell cultures conferred a down-regulation of p53 in cardiac myocytes. Rats that were injected with ATG evidenced higher numbers of CD68+ macrophages in the ischemic myocardium. Animals injected with ATG evidenced less myocardial necrosis, showed a significant reduction of infarct dimension and an improvement of post-AMI remodeling after six weeks (infarct dimension 24.9% vs. 11.4%, p<0.01). Moreover, a higher vessel density in the peri-infarct region indicated a better collateralization in rats that were injected with ATG. These data indicate that ATG, a therapeutic agent successfully applied in clinical transplant immunology, triggered cardioprotective effects after AMI that salvaged ischemic myocardium by down-regulation of p53. This might have raised the resistance against apoptotic cell death during ischemia. The combination of these mechanisms seems to be causative for improved cardiac function and less ventricular remodeling after experimental AMI.

  8. Skeletal myoblasts for heart regeneration and repair: state of the art and perspectives on the mechanisms for functional cardiac benefits.

    PubMed

    Formigli, L; Zecchi-Orlandini, S; Meacci, E; Bani, D

    2010-01-01

    Until recently, skeletal myoblasts (SkMBs) have been the most widely used cells in basic research and clinical trials of cell based therapy for cardiac repair and regeneration. Although SkMB engraftment into the post-infarcted heart has been consistently found to improve cardiac contractile function, the underlying therapeutic mechanisms remain still a matter of controversy and debate. This is basically because SkMBs do not attain a cardiac-like phenotype once homed into the diseased heart nor they form a contractile tissue functionally coupled with the surrounding viable myocardium. This issue of concern has generated the idea that the cardiotropic action of SkMBs may depend on the release of paracrine factors. However, the paracrine hypothesis still remains ill-defined, particularly concerning the identification of the whole spectrum of cell-derived soluble factors and details on their cardiac effects. In this context, the possibility to genetically engineering SkMBs to potentate their paracrine attitudes appears particularly attractive and is actually raising great expectation. Aim of the present review is not to cover all the aspects of cell-based therapy with SkMBs, as this has been the object of previous exhaustive reviews in this field. Rather, we focused on novel aspects underlying the interactions between SkMBs and the host cardiac tissues which may be relevant for directing the future basic and applied research on SkMB transplantation for post ischemic cardiac dysfunction.

  9. Gene transfer, expression, and sarcomeric incorporation of a headless myosin molecule in cardiac myocytes: evidence for a reserve in myofilament motor function

    PubMed Central

    Vandenboom, Rene; Herron, Todd; Favre, Elizabeth; Albayya, Faris P.

    2011-01-01

    The purpose of this study was to implement a living myocyte in vitro model system to test whether a motor domain-deleted headless myosin construct could be incorporated into the sarcomere and affect contractility. To this end we used gene transfer to express a “headless” myosin heavy chain (headless-MHC) in complement with the native full-length myosin motors in the cardiac sarcomere. An NH2-terminal Flag epitope was used for unique detection of the motor domain-deleted headless-MHC. Total MHC content (i.e., headless-MHC + endogenous MHC) remained constant, while expression of the headless-MHC in transduced myocytes increased from 24 to 72 h after gene transfer until values leveled off at 96 h after gene transfer, at which time the headless-MHC comprised ∼20% of total MHC. Moreover, immunofluorescence labeling and confocal imaging confirmed expression and demonstrated incorporation of the headless-MHC in the A band of the cardiac sarcomere. Functional measurements in intact myocytes showed that headless-MHC modestly reduced amplitude of dynamic twitch contractions compared with controls (P < 0.05). In chemically permeabilized myocytes, maximum steady-state isometric force and the tension-pCa relationship were unaltered by the headless-MHC. These data suggest that headless-MHC can express to 20% of total myosin and incorporate into the sarcomere yet have modest to no effects on dynamic and steady-state contractile function. This would indicate a degree of functional tolerance in the sarcomere for nonfunctional myosin molecules. PMID:21112946

  10. A flatness-based control approach to drug infusion for cardiac function regulation

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Zervos, Nikolaos; Melkikh, Alexey

    2016-12-01

    A new control method based on differential flatness theory is developed in this article, aiming at solving the problem of regulation of haemodynamic parameters, Actually control of the cardiac output (volume of blood pumped out by heart per unit of time) and of the arterial blood pressure is achieved through the administered infusion of cardiovascular drugs, such as dopamine and sodium nitroprusside. Time delays between the control inputs and the system's outputs are taken into account. Using the principle of dynamic extension, which means that by considering certain control inputs and their derivatives as additional state variables, a state-space description for the heart's function is obtained. It is proven that the dynamic model of the heart is a differentially flat one. This enables its transformation into a linear canonical and decoupled form, for which the design of a stabilizing feedback controller becomes possible. The proposed feedback controller is of proven stability and assures fast and accurate tracking of the reference setpoints by the outputs of the heart's dynamic model. Moreover, by using a Kalman Filter-based disturbances' estimator, it becomes possible to estimate in real-time and compensate for the model uncertainty and external perturbation inputs that affect the heart's model.

  11. Cardiac Abnormalities in Primary Hyperoxaluria

    PubMed Central

    Mookadam, Farouk; Smith, Travis; Jiamsripong, Panupong; Moustafa, Sherif E; Monico, Carla G.; Lieske, John C.; Milliner, Dawn S.

    2018-01-01

    Background In patients with primary hyperoxaluria (PH), oxalate overproduction can result in recurrent urolithiasis and nephrocalcinosis, which in some cases results in a progressive decline in renal function, oxalate retention, and systemic oxalosis involving bone, retina, arterial media, peripheral nerves, skin, and heart. Oxalosis involving the myocardium or conduction system can potentially lead to heart failure and fatal arrhythmias. Methods and Results A retrospective review of our institution’s database was conducted for all patients with a confirmed diagnosis of PH between 1/1948 and 1/2006 (n=103). Electrocardiogram (ECG) and echocardiography were used to identify cardiac abnormalities. Ninety-three patients fulfilled the inclusion criteria, 58% were male. Mean follow-up was 11.9 (median 8.8) years. In 38 patients who received an ECG or echocardiography, 31 were found to have any cardiac abnormalities. Cardiac findings correlated with decline in renal function. Conclusions Our data suggests that physicians caring for patients with PH should pay close attention to cardiac status, especially if renal function is impaired. PMID:20921818

  12. The Effect of Prolonged Physical Activity Performed during Extreme Caloric Deprivation on Cardiac Function

    PubMed Central

    Planer, David; Leibowitz, David; Hadid, Amir; Erlich, Tomer; Sharon, Nir; Paltiel, Ora; Jacoby, Elad; Lotan, Chaim; Moran, Daniel S.

    2012-01-01

    Background Endurance exercise may induce transient cardiac dysfunction. Data regarding the effect of caloric restriction on cardiac function is limited. We studied the effect of physical activity performed during extreme caloric deprivation on cardiac function. Methods Thirty-nine healthy male soldiers (mean age 20±0.3 years) were studied during a field training exercise lasted 85–103 hours, with negligible food intake and unlimited water supply. Anthropometric measurements, echocardiographic examinations and blood and urine tests were performed before and after the training exercise. Results Baseline VO2 max was 59±5.5 ml/kg/min. Participants' mean weight reduction was 5.7±0.9 kg. There was an increase in plasma urea (11.6±2.6 to 15.8±3.8 mmol/L, p<0.001) and urine osmolarity (692±212 to 1094±140 mmol/kg, p<0.001) and a decrease in sodium levels (140.5±1.0 to 136.6±2.1 mmol/L, p<0.001) at the end of the study. Significant alterations in diastolic parameters included a decrease in mitral E wave (93.6 to 83.5 cm/s; p = 0.003), without change in E/A and E/E′ ratios, and an increase in iso-volumic relaxation time (73.9 to 82.9 ms, p = 0.006). There was no change in left or right ventricular systolic function, or pulmonary arterial pressure. Brain natriuretic peptide (BNP) levels were significantly reduced post-training (median 9 to 0 pg/ml, p<0.001). There was no elevation in Troponin T or CRP levels. On multivariate analysis, BNP reduction correlated with sodium levels and weight reduction (R = 0.8, p<0.001). Conclusions Exposure to prolonged physical activity performed under caloric deprivation resulted in minor alterations of left ventricular diastolic function. BNP levels were significantly reduced due to negative water and sodium balance. PMID:22384007

  13. Cardiac considerations in the triathlete.

    PubMed

    Douglas, P S

    1989-10-01

    The cardiac adaptation to exercise training produces a variety of adaptations in cardiac size, shape, and function. To further define these changes and to investigate the effects of maximal conditioning, we studied ultraendurance triathletes training for the Hawaii Ironman Triathlon using echocardiography, Doppler ultrasound, and electrocardiography. In this population, the left ventricle (LV) was of normal size but had increased wall thickness and mass. Systolic function was normal and diastolic function was normal or supernormal (increased ratio of rapid to atrial LV filling velocities). The finding of a pattern of concentric hypertrophy was reinforced by a close relationship between submaximal exercise systolic blood pressure and LV mass (r = 0.88). Examination of valvular function by Doppler ultrasound revealed significantly increased prevalences of mitral and tricuspid regurgitation in athletes, with 91% of athletes (vs 38% of controls) having regurgitation detected in at least one cardiac valve. Analysis of athletes using standard electrocardiographic criteria for the detection of left ventricular hypertrophy showed that these criteria did not reliably detect increased mass. However, changes such as marked QRS prolongation and nonvoltage criteria for LV hypertrophy and RV hypertrophy may be useful in separating physiologic from pathologic hypertrophy. Our studies provide additional descriptions of cardiac changes produced by ultraendurance exercise training and suggest that the hemodynamic load imposed by exercise may be a contributing cause to physiologic hypertrophy. Much yet remains to be learned about the cardiac adaptation to exercise training.

  14. Cardiac neuronal hierarchy in health and disease.

    PubMed

    Armour, J Andrew

    2004-08-01

    The cardiac neuronal hierarchy can be represented as a redundant control system made up of spatially distributed cell stations comprising afferent, efferent, and interconnecting neurons. Its peripheral and central neurons are in constant communication with one another such that, for the most part, it behaves as a stochastic control system. Neurons distributed throughout this hierarchy interconnect via specific linkages such that each neuronal cell station is involved in temporally dependent cardio-cardiac reflexes that control overlapping, spatially organized cardiac regions. Its function depends primarily, but not exclusively, on inputs arising from afferent neurons transducing the cardiovascular milieu to directly or indirectly (via interconnecting neurons) modify cardiac motor neurons coordinating regional cardiac behavior. As the function of the whole is greater than that of its individual parts, stable cardiac control occurs most of the time in the absence of direct cause and effect. During altered cardiac status, its redundancy normally represents a stabilizing feature. However, in the presence of regional myocardial ischemia, components within the intrinsic cardiac nervous system undergo pathological change. That, along with any consequent remodeling of the cardiac neuronal hierarchy, alters its spatially and temporally organized reflexes such that populations of neurons, acting in isolation, may destabilize efferent neuronal control of regional cardiac electrical and/or mechanical events.

  15. Hypothyroidism and its rapid correction alter cardiac remodeling.

    PubMed

    Hajje, Georges; Saliba, Youakim; Itani, Tarek; Moubarak, Majed; Aftimos, Georges; Farès, Nassim

    2014-01-01

    The cardiovascular effects of mild and overt thyroid disease include a vast array of pathological changes. As well, thyroid replacement therapy has been suggested for preserving cardiac function. However, the influence of thyroid hormones on cardiac remodeling has not been thoroughly investigated at the molecular and cellular levels. The purpose of this paper is to study the effect of hypothyroidism and thyroid replacement therapy on cardiac alterations. Thirty Wistar rats were divided into 2 groups: a control (n = 10) group and a group treated with 6-propyl-2-thiouracil (PTU) (n = 20) to induce hypothyroidism. Ten of the 20 rats in the PTU group were then treated with L-thyroxine to quickly re-establish euthyroidism. The serum levels of inflammatory markers, such as C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL6) and pro-fibrotic transforming growth factor beta 1 (TGF-β1), were significantly increased in hypothyroid rats; elevations in cardiac stress markers, brain natriuretic peptide (BNP) and cardiac troponin T (cTnT) were also noted. The expressions of cardiac remodeling genes were induced in hypothyroid rats in parallel with the development of fibrosis, and a decline in cardiac function with chamber dilation was measured by echocardiography. Rapidly reversing the hypothyroidism and restoring the euthyroid state improved cardiac function with a decrease in the levels of cardiac remodeling markers. However, this change further increased the levels of inflammatory and fibrotic markers in the plasma and heart and led to myocardial cellular infiltration. In conclusion, we showed that hypothyroidism is related to cardiac function decline, fibrosis and inflammation; most importantly, the rapid correction of hypothyroidism led to cardiac injuries. Our results might offer new insights for the management of hypothyroidism-induced heart disease.

  16. Hypothyroidism and Its Rapid Correction Alter Cardiac Remodeling

    PubMed Central

    Itani, Tarek; Moubarak, Majed; Aftimos, Georges; Farès, Nassim

    2014-01-01

    The cardiovascular effects of mild and overt thyroid disease include a vast array of pathological changes. As well, thyroid replacement therapy has been suggested for preserving cardiac function. However, the influence of thyroid hormones on cardiac remodeling has not been thoroughly investigated at the molecular and cellular levels. The purpose of this paper is to study the effect of hypothyroidism and thyroid replacement therapy on cardiac alterations. Thirty Wistar rats were divided into 2 groups: a control (n = 10) group and a group treated with 6-propyl-2-thiouracil (PTU) (n = 20) to induce hypothyroidism. Ten of the 20 rats in the PTU group were then treated with L-thyroxine to quickly re-establish euthyroidism. The serum levels of inflammatory markers, such as C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL6) and pro-fibrotic transforming growth factor beta 1 (TGF-β1), were significantly increased in hypothyroid rats; elevations in cardiac stress markers, brain natriuretic peptide (BNP) and cardiac troponin T (cTnT) were also noted. The expressions of cardiac remodeling genes were induced in hypothyroid rats in parallel with the development of fibrosis, and a decline in cardiac function with chamber dilation was measured by echocardiography. Rapidly reversing the hypothyroidism and restoring the euthyroid state improved cardiac function with a decrease in the levels of cardiac remodeling markers. However, this change further increased the levels of inflammatory and fibrotic markers in the plasma and heart and led to myocardial cellular infiltration. In conclusion, we showed that hypothyroidism is related to cardiac function decline, fibrosis and inflammation; most importantly, the rapid correction of hypothyroidism led to cardiac injuries. Our results might offer new insights for the management of hypothyroidism-induced heart disease. PMID:25333636

  17. Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy.

    PubMed

    Liu, Xifu; Gu, Xinhua; Li, Zhaoming; Li, Xinyan; Li, Hui; Chang, Jianjie; Chen, Ping; Jin, Jing; Xi, Bing; Chen, Denghong; Lai, Donna; Graham, Robert M; Zhou, Mingdong

    2006-10-03

    We evaluated the therapeutic potential of a recombinant 61-residue neuregulin-1 (beta2a isoform) receptor-active peptide (rhNRG-1) in multiple animal models of heart disease. Activation of the erbB family of receptor tyrosine kinases by rhNRG-1 could provide a treatment option for heart failure, because neuregulin-stimulated erbB2/erbB4 heterodimerization is not only critical for myocardium formation in early heart development but prevents severe dysfunction of the adult heart and premature death. Disabled erbB-signaling is also implicated in the transition from compensatory hypertrophy to failure, whereas erbB receptor-activation promotes myocardial cell growth and survival and protects against anthracycline-induced cardiomyopathy. rhNRG-1 was administered IV to animal models of ischemic, dilated, and viral cardiomyopathy, and cardiac function and survival were evaluated. Short-term intravenous administration of rhNRG-1 to normal dogs and rats did not alter hemodynamics or cardiac contractility. In contrast, rhNRG-1 improved cardiac performance, attenuated pathological changes, and prolonged survival in rodent models of ischemic, dilated, and viral cardiomyopathy, with the survival benefits in the ischemic model being additive to those of angiotensin-converting enzyme inhibitor therapy. In addition, despite continued pacing, rhNRG-1 produced global improvements in cardiac function in a canine model of pacing-induced heart failure. These beneficial effects make rhNRG-1 promising as a broad-spectrum therapeutic for the treatment of heart failure due to a variety of common cardiac diseases.

  18. [Role of cardiac magnetic resonance in cardiac involvement of Fabry disease].

    PubMed

    Serra, Viviana M; Barba, Miguel Angel; Torrá, Roser; Pérez De Isla, Leopoldo; López, Mónica; Calli, Andrea; Feltes, Gisela; Torras, Joan; Valverde, Victor; Zamorano, José L

    2010-09-04

    Fabry disease is a hereditary disorder. Clinical manifestations are multisystemic. The majority of the patients remain undiagnosed until late in life, when alterations could be irreversible. Early detection of cardiac symptoms is of major interest in Fabry's disease (FD) in order to gain access to enzyme replacement therapy. Echo-Doppler tissular imaging (TDI) has been used as a cardiologic early marker in FD. This study is intended to determine whether the cardiac magnetic resonance is as useful tool as TDI for the early detection of cardiac affectation in FD. Echocardiography, tissue Doppler and Cardio magnetic resonance was performed in 20 patients with confirmed Fabry Disease. Left ventricular hypertrophy was defined as septum and left ventricular posterior wall thickness ≥12 mm. An abnormal TDI velocity was defined as (Sa), (Ea) and/or (Aa) velocities <8 cm/s at either the septal or lateral corner. Late phase gadolinium-enhanced images sequences were obtained using magnetic resonance. Twenty patients included in the study were divided into three groups: 1. Those without left ventricular hypertrophy nor tissue Doppler impairment 2. Those without left ventricular hypertrophy and tissue Doppler impairment 3. Those with left ventricular hypertrophy and Tissue Doppler impairment. Late gadolinium enhancement was found in only one patient, who has already altered DTI and LVH. Tissue Doppler imaging (TDI) is the only diagnostic tool able to provide early detection of cardiac affectation in patients with FD. Magnetic resonance provides information of the disease severity in patients with LVH, but can not be used as an early marker of cardiac disease in patients with FD. However MRI could be of great value for diagnostic stratification. Copyright © 2009 Elsevier España, S.L. All rights reserved.

  19. A man with multiple cardiac masses.

    PubMed

    Indrabhinduwat, Manasawee; Arciniegas Calle, Maria C; Colgan, Joseph P; Villarraga, Benoy N

    2018-06-12

    A 37-year-old male presented with cough, dyspnea, significant weight loss (45 pounds) and subacute fever for the past two months. Physical examination revealed inspiratory and expiratory wheezing bilaterally. A normal S1, S2 and a 3/6 systolic ejection murmur at the left upper parasternal border with respiratory variation were found during cardiac auscultation. Kidney and bone marrow biopsy reported a high grade B cell lymphoma. Echocardiography and cardiac CT findings consisted of multiple intracardiac masses affecting the right ventricular (RV) outflow track, RV apex, medial portion of the right atrium and posterior left atrium, as well as mild impairment of the RV systolic function. The masses in the RV outflow track caused partial obstruction (Pulmonary Valve peak velocity 2.3 m/s) with a RV systolic pressure of 43 mmHg. The infiltrative mass in the interatrial septum extended into both the right and left atrial cavities. The right superior pulmonary vein was occluded. This patient was treated with aggressive chemotherapy and had a good clinical response that resulted in mass size reduction after the first course of chemotherapy. Multimodality imaging techniques such as echocardiography, cardiac CT and PET scan can provide complementary information to better evaluate, stage and manage these patients. © 2018 The authors.

  20. Action Potential Shortening and Impairment of Cardiac Function by Ablation of Slc26a6.

    PubMed

    Sirish, Padmini; Ledford, Hannah A; Timofeyev, Valeriy; Thai, Phung N; Ren, Lu; Kim, Hyo Jeong; Park, Seojin; Lee, Jeong Han; Dai, Gu; Moshref, Maryam; Sihn, Choong-Ryoul; Chen, Wei Chun; Timofeyeva, Maria Valeryevna; Jian, Zhong; Shimkunas, Rafael; Izu, Leighton T; Chiamvimonvat, Nipavan; Chen-Izu, Ye; Yamoah, Ebenezer N; Zhang, Xiao-Dong

    2017-10-01

    Intracellular pH (pH i ) is critical to cardiac excitation and contraction; uncompensated changes in pH i impair cardiac function and trigger arrhythmia. Several ion transporters participate in cardiac pH i regulation. Our previous studies identified several isoforms of a solute carrier Slc26a6 to be highly expressed in cardiomyocytes. We show that Slc26a6 mediates electrogenic Cl - /HCO 3 - exchange activities in cardiomyocytes, suggesting the potential role of Slc26a6 in regulation of not only pH i , but also cardiac excitability. To test the mechanistic role of Slc26a6 in the heart, we took advantage of Slc26a6 knockout ( Slc26a6 -/ - ) mice using both in vivo and in vitro analyses. Consistent with our prediction of its electrogenic activities, ablation of Slc26a6 results in action potential shortening. There are reduced Ca 2+ transient and sarcoplasmic reticulum Ca 2+ load, together with decreased sarcomere shortening in Slc26a6 -/ - cardiomyocytes. These abnormalities translate into reduced fractional shortening and cardiac contractility at the in vivo level. Additionally, pH i is elevated in Slc26a6 -/ - cardiomyocytes with slower recovery kinetics from intracellular alkalization, consistent with the Cl - /HCO 3 - exchange activities of Slc26a6. Moreover, Slc26a6 -/ - mice show evidence of sinus bradycardia and fragmented QRS complex, supporting the critical role of Slc26a6 in cardiac conduction system. Our study provides mechanistic insights into Slc26a6, a unique cardiac electrogenic Cl - /HCO 3 - transporter in ventricular myocytes, linking the critical roles of Slc26a6 in regulation of pH i , excitability, and contractility. pH i is a critical regulator of other membrane and contractile proteins. Future studies are needed to investigate possible changes in these proteins in Slc26a6 -/ - mice. © 2017 American Heart Association, Inc.

  1. Plasma cardiac troponin I concentration and cardiac death in cats with hypertrophic cardiomyopathy.

    PubMed

    Borgeat, K; Sherwood, K; Payne, J R; Luis Fuentes, V; Connolly, D J

    2014-01-01

    The use of cardiac biomarkers to assist in the diagnosis of occult and symptomatic hypertrophic cardiomyopathy (HCM) in cats has been established. There is limited data describing their prognostic utility in cats with HCM. Circulating concentrations of N-terminal B-type natriuretic peptide (NTproBNP) and cardiac troponin I (cTnI) predict cardiac death in cats with HCM. Forty-one cats diagnosed with HCM at a veterinary teaching hospital, between February 2010 and May 2011. Prospective investigational study. Plasma samples were collected from cats diagnosed with HCM and concentrations of NTproBNP and cTnI were analyzed at a commercial laboratory. Echocardiographic measurements from the day of blood sampling were recorded. Long-term outcome data were obtained. Associations with time to cardiac death were analyzed using Cox proportional hazards models. When controlling for the presence/absence of heart failure and echocardiographic measures of left atrial size and function, cTnI > 0.7 ng/mL was independently associated with time to cardiac death. In univariable analysis, NTproBNP > 250 pmol/L was associated with cardiac death (P = .023), but this did not remain significant (P = .951) when controlling for the effect of clinical signs or left atrial size/function. Plasma concentration of cTnI (cutoff >0.7 ng/mL) is a predictor of cardiac death in cats with HCM that is independent of the presence of heart failure or left atrial dilatation. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  2. Towards optogenetic control of spatiotemporal cardiac dynamics

    NASA Astrophysics Data System (ADS)

    Diaz-Maue, Laura; Luther, Stefan; Richter, Claudia

    2018-02-01

    Detailed understanding of mechanisms and instabilities underlying the onset, perpetuation, and control of cardiac arrhythmias is required for the development, further optimization, and translation of clinically applicable defibrillation methods. Recently, the potential use of optogenetic tools using structured illumination to control cardiac arrhythmia has been successfully demonstrated and photostimulation turned out to be a promising experimental tool to investigate the dynamics and mechanisms of multi-site pacing strategies for low-energy defibrillation. In order to study the relation between trigger and control mechanisms of arrhythmic cardiac conditions without external affecting factors like eventually damaging fiber poking, it is important to establish a non-invasive photostimulation method. Hence, we applied a custom-configured digital light processing micromirror array operated by a high-speed FPGA, which guarantees a high frequency control of stimulation patterns. The integration into a highly sophisticated optical experiment setup allows us to record photostimulation effects and to proof the light pulse as origin of cardiac excitation. Experiments with transgenic murine hearts demonstrate the successful induction and termination of cardiac dysrhythmia using light crafting tools. However, the complex spatiotemporal dynamics underlying arrhythmia critically depends on the ratio of the characteristic wavelength of arrhythmia and substrate size. Based on the experimental evidence regarding the feasibility of optical defibrillation in small mammals, the transfer in clinically relevant large animal models would be the next milestone to therapeutic translation. Thus, the presented experimental results of optogenetically modified murine hearts function as originator for ongoing studies involving principle design studies for therapeutic applicable optical defibrillation.

  3. Feature tracking cardiac magnetic resonance imaging: A review of a novel non-invasive cardiac imaging technique

    PubMed Central

    Rahman, Zia Ur; Sethi, Pooja; Murtaza, Ghulam; Virk, Hafeez Ul Hassan; Rai, Aitzaz; Mahmod, Masliza; Schoondyke, Jeffrey; Albalbissi, Kais

    2017-01-01

    Cardiovascular disease is a leading cause of morbidity and mortality globally. Early diagnostic markers are gaining popularity for better patient care disease outcomes. There is an increasing interest in noninvasive cardiac imaging biomarkers to diagnose subclinical cardiac disease. Feature tracking cardiac magnetic resonance imaging is a novel post-processing technique that is increasingly being employed to assess global and regional myocardial function. This technique has numerous applications in structural and functional diagnostics. It has been validated in multiple studies, although there is still a long way to go for it to become routine standard of care. PMID:28515849

  4. Can Functional Cardiac Age be Predicted from ECG in a Normal Healthy Population

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd; Starc, Vito; Leban, Manja; Sinigoj, Petra; Vrhovec, Milos

    2011-01-01

    In a normal healthy population, we desired to determine the most age-dependent conventional and advanced ECG parameters. We hypothesized that changes in several ECG parameters might correlate with age and together reliably characterize the functional age of the heart. Methods: An initial study population of 313 apparently healthy subjects was ultimately reduced to 148 subjects (74 men, 84 women, in the range from 10 to 75 years of age) after exclusion criteria. In all subjects, ECG recordings (resting 5-minute 12-lead high frequency ECG) were evaluated via custom software programs to calculate up to 85 different conventional and advanced ECG parameters including beat-to-beat QT and RR variability, waveform complexity, and signal-averaged, high-frequency and spatial/spatiotemporal ECG parameters. The prediction of functional age was evaluated by multiple linear regression analysis using the best 5 univariate predictors. Results: Ignoring what were ultimately small differences between males and females, the functional age was found to be predicted (R2= 0.69, P < 0.001) from a linear combination of 5 independent variables: QRS elevation in the frontal plane (p<0.001), a new repolarization parameter QTcorr (p<0.001), mean high frequency QRS amplitude (p=0.009), the variability parameter % VLF of RRV (p=0.021) and the P-wave width (p=0.10). Here, QTcorr represents the correlation between the calculated QT and the measured QT signal. Conclusions: In apparently healthy subjects with normal conventional ECGs, functional cardiac age can be estimated by multiple linear regression analysis of mostly advanced ECG results. Because some parameters in the regression formula, such as QTcorr, high frequency QRS amplitude and P-wave width also change with disease in the same direction as with increased age, increased functional age of the heart may reflect subtle age-related pathologies in cardiac electrical function that are usually hidden on conventional ECG.

  5. Regular Football Practice Improves Autonomic Cardiac Function in Male Children

    PubMed Central

    Fernandes, Luis; Oliveira, Jose; Soares-Miranda, Luisa; Rebelo, Antonio; Brito, Joao

    2015-01-01

    Background: The role of the autonomic nervous system (ANS) in the cardiovascular regulation is of primal importance. Since it has been associated with adverse conditions such as cardiac arrhythmias, sudden death, sleep disorders, hypertension and obesity. Objectives: The present study aimed to investigate the impact of recreational football practice on the autonomic cardiac function of male children, as measured by heart rate variability. Patients and Methods: Forty-seven male children aged 9 - 12 years were selected according to their engagement with football oriented practice outside school context. The children were divided into a football group (FG; n = 22) and a control group (CG; n = 25). The FG had regular football practices, with 2 weekly training sessions and occasional weekend matches. The CG was not engaged with any physical activity other than complementary school-based physical education classes. Data from physical activity, physical fitness, and heart rate variability measured in time and frequency domains were obtained. Results: The anthropometric and body composition characteristics were similar in both groups (P > 0.05). The groups were also similar in time spent daily on moderate-to-vigorous physical activities (FG vs. CG: 114 ± 64 vs. 87 ± 55 minutes; P > 0.05). However, the FG performed better (P < 0.05) in Yo-Yo intermittent endurance test (1394 ± 558 vs. 778 ± 408 m) and 15-m sprint test (3.06 ± 0.17 vs. 3.20 ± 0.23 s). Also, the FG presented enhanced autonomic function. Significant differences were detected (P < 0.05) between groups for low frequency normalized units (38.0 ± 15.2 vs. 47.3 ± 14.2 n.u (normalized units)), high frequency normalized units (62.1 ± 15.2 vs. 52.8 ± 14.2 n.u.), and LF:HF ratio (0.7 ± 0.4 vs. 1.1 ± 0.6 ms2). Conclusions: Children engaged with regular football practice presented enhanced physical fitness and autonomic function, by increasing vagal tone at rest. PMID:26448848

  6. Regular Football Practice Improves Autonomic Cardiac Function in Male Children.

    PubMed

    Fernandes, Luis; Oliveira, Jose; Soares-Miranda, Luisa; Rebelo, Antonio; Brito, Joao

    2015-09-01

    The role of the autonomic nervous system (ANS) in the cardiovascular regulation is of primal importance. Since it has been associated with adverse conditions such as cardiac arrhythmias, sudden death, sleep disorders, hypertension and obesity. The present study aimed to investigate the impact of recreational football practice on the autonomic cardiac function of male children, as measured by heart rate variability. Forty-seven male children aged 9 - 12 years were selected according to their engagement with football oriented practice outside school context. The children were divided into a football group (FG; n = 22) and a control group (CG; n = 25). The FG had regular football practices, with 2 weekly training sessions and occasional weekend matches. The CG was not engaged with any physical activity other than complementary school-based physical education classes. Data from physical activity, physical fitness, and heart rate variability measured in time and frequency domains were obtained. The anthropometric and body composition characteristics were similar in both groups (P > 0.05). The groups were also similar in time spent daily on moderate-to-vigorous physical activities (FG vs. CG: 114 ± 64 vs. 87 ± 55 minutes; P > 0.05). However, the FG performed better (P < 0.05) in Yo-Yo intermittent endurance test (1394 ± 558 vs. 778 ± 408 m) and 15-m sprint test (3.06 ± 0.17 vs. 3.20 ± 0.23 s). Also, the FG presented enhanced autonomic function. Significant differences were detected (P < 0.05) between groups for low frequency normalized units (38.0 ± 15.2 vs. 47.3 ± 14.2 n.u (normalized units)), high frequency normalized units (62.1 ± 15.2 vs. 52.8 ± 14.2 n.u.), and LF:HF ratio (0.7 ± 0.4 vs. 1.1 ± 0.6 ms(2)). Children engaged with regular football practice presented enhanced physical fitness and autonomic function, by increasing vagal tone at rest.

  7. Coronary Microvascular Dysfunction is Related to Abnormalities in Myocardial Structure and Function in Cardiac Amyloidosis

    PubMed Central

    Dorbala, Sharmila; Vangala, Divya; Bruyere, John; Quarta, Christina; Kruger, Jenna; Padera, Robert; Foster, Courtney; Hanley, Michael; Di Carli, Marcelo F.; Falk, Rodney

    2014-01-01

    Objectives We sought to test the hypothesis that coronary microvascular function is impaired in subjects with cardiac amyloidosis. Background Effort angina is common in subjects with cardiac amyloidosis even in the absence of epicardial coronary artery disease (CAD). Methods Thirty one subjects were prospectively enrolled in this study including 21 subjects with definite cardiac amyloidosis without epicardial CAD and 10 subjects with hypertensive left ventricular hypertrophy (LVH). All subjects underwent rest and vasodilator stress N-13 ammonia positron emission tomography and 2D echocardiography. Global LV myocardial blood flow (MBF) was quantified at rest and during peak hyperemia, and coronary flow reserve (CFR) was computed (peak stress MBF / rest MBF) adjusting for rest rate pressure product. Results Compared to the LVH group, the amyloid group showed lower rest MBF (0.59 ± 0.15 vs. 0.88 ± 0.23 ml/g/min, P = 0.004), stress MBF (0.85 ± 0.29 vs. 1.85 ± 0.45 vs. ml/min/g, P < 0.0001), CFR (1.19 ± 0.38 vs. 2.23 ± 0.88, P < 0.0001), and higher minimal coronary vascular resistance (111 ± 40 vs. 70 ± 19 mm Hg/mL/g/min, P = 0.004). Of note, almost all amyloid subjects (> 95%) demonstrated significantly reduced peak stress MBF (< 1.3 mL/g/min). In multivariable linear regression analyses, a diagnosis of amyloidosis, increased LV mass and age were the only independent predictors of impaired coronary vasodilator function. Conclusions Coronary microvascular dysfunction is highly prevalent in subjects with cardiac amyloidosis even in the absence of epicardial CAD, and may explain their anginal symptoms. Further study is required to understand whether specific therapy directed at amyloidosis may improve coronary vasomotion in amyloidosis. PMID:25023822

  8. Heterogeneous response of cardiac sympathetic function to cardiac resynchronization therapy in heart failure documented by 11[C]-hydroxy-ephedrine and PET/CT.

    PubMed

    Capitanio, Selene; Nanni, Cristina; Marini, Cecilia; Bonfiglioli, Rachele; Martignani, Cristian; Dib, Bassam; Fuccio, Chiara; Boriani, Giuseppe; Picori, Lorena; Boschi, Stefano; Morbelli, Silvia; Fanti, Stefano; Sambuceti, Gianmario

    2015-11-01

    Cardiac resynchronization therapy (CRT) is an accepted treatment in patients with end-stage heart failure. PET permits the absolute quantification of global and regional homogeneity in cardiac sympathetic innervation. We evaluated the variation of cardiac adrenergic activity in patients with idiopathic heart failure (IHF) disease (NYHA III-IV) after CRT using (11)C-hydroxyephedrine (HED) PET/CT. Ten IHF patients (mean age = 68; range = 55-81; average left ventricular ejection fraction 26 ± 4%) implanted with a resynchronization device underwent three HED PET/CT studies: PET 1 one week after inactive device implantation; PET 2, one week after PET 1 under stimulated rhythm; PET 3, at 3 months under active CRT. A dedicated software (PMOD 3.4 version) was used to estimate global and regional cardiac uptake of HED through 17 segment polar maps. At baseline, HED uptake was heterogeneously distributed throughout the left ventricle with a variation coefficient of 18 ± 5%. This variable markedly decreased after three months CRT (12 ± 5%, p < 0.01). Interestingly, subdividing the 170 myocardial segments (17 segments of each patient multiplied by the number of patients) into two groups, according to the median value of tracer uptake expressed as % of maximal myocardial uptake (76%), we observed a different behaviour depending on baseline innervation: HED uptake significantly increased only in segments with "impaired innervation" (SUV 2.61 ± 0.92 at PET1 and 3.05 ± 1.67 at three months, p < 0.01). As shown by HED PET/CT uptake and distribution, improvement in homogeneity of myocardial neuronal function reflected a selective improvement of tracer uptake in regions with more severe neuronal damage. These finding supported the presence of a myocardial regional variability in response of cardiac sympathetic system to CRT and a systemic response involving remote tissues with rich adrenergic innervation. This work might contribute to identify imaging parameters that could

  9. Cardiac rehabilitation after myocardial infarction.

    PubMed

    Contractor, Aashish S

    2011-12-01

    Cardiac rehabilitation/secondary prevention programs are recognized as integral to the comprehensive care of patients with coronary heart disease (CHD), and as such are recommended as useful and effective (Class I) by the American Heart Association and the American College of Cardiology in the treatment of patients with CHD. The term cardiac rehabilitation refers to coordinated, multifaceted interventions designed to optimize a cardiac patient's physical, psychological, and social functioning, in addition to stabilizing, slowing, or even reversing the progression of the underlying atherosclerotic processes, thereby reducing morbidity and mortality. Cardiac rehabilitation, aims at returning the patient back to normal functioning in a safe and effective manner and to enhance the psychosocial and vocational state of the patient. The program involves education, exercise, risk factor modification and counselling. A meta-analysis based on a review of 48 randomized trials that compared outcomes of exercise-based rehabilitation with usual medical care, showed a reduction of 20% in total mortality and 26% in cardiac mortality rates, with exercise-based rehabilitation compared with usual medical care. Risk stratification helps identify patients who are at increased risk for exercise-related cardiovascular events and who may require more intensive cardiac monitoring in addition to the medical supervision provided for all cardiac rehabilitation program participants. During exercise, the patients' ECG is continuously monitored through telemetry, which serves to optimize the exercise prescription and enhance safety. The safety of cardiac rehabilitation exercise programs is well established, and the occurrence of major cardiovascular events during supervised exercise is extremely low. As hospital stays decrease, cardiac rehabilitation is assuming an increasingly important role in secondary prevention. In contrast with its growing importance internationally, there are very few

  10. Adrenergic Blockade Bi-directionally and Asymmetrically Alters Functional Brain-Heart Communication and Prolongs Electrical Activities of the Brain and Heart during Asphyxic Cardiac Arrest

    PubMed Central

    Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M.; Farrehi, Peter; Borjigin, Jimo

    2018-01-01

    Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO2-mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients. PMID:29487541

  11. AMP-activated Protein Kinase Phosphorylates Cardiac Troponin I at Ser-150 to Increase Myofilament Calcium Sensitivity and Blunt PKA-dependent Function*

    PubMed Central

    Nixon, Benjamin R.; Thawornkaiwong, Ariyoporn; Jin, Janel; Brundage, Elizabeth A.; Little, Sean C.; Davis, Jonathan P.; Solaro, R. John; Biesiadecki, Brandon J.

    2012-01-01

    AMP-activated protein kinase (AMPK) is an energy-sensing enzyme central to the regulation of metabolic homeostasis. In the heart AMPK is activated during cardiac stress-induced ATP depletion and functions to stimulate metabolic pathways that restore the AMP/ATP balance. Recently it was demonstrated that AMPK phosphorylates cardiac troponin I (cTnI) at Ser-150 in vitro. We sought to determine if the metabolic regulatory kinase AMPK phosphorylates cTnI at Ser-150 in vivo to alter cardiac contractile function directly at the level of the myofilament. Rabbit cardiac myofibrils separated by two-dimensional isoelectric focusing subjected to a Western blot with a cTnI phosphorylation-specific antibody demonstrates that cTnI is endogenously phosphorylated at Ser-150 in the heart. Treatment of myofibrils with the AMPK holoenzyme increased cTnI Ser-150 phosphorylation within the constraints of the muscle lattice. Compared with controls, cardiac fiber bundles exchanged with troponin containing cTnI pseudo-phosphorylated at Ser-150 demonstrate increased sensitivity of calcium-dependent force development, blunting of both PKA-dependent calcium desensitization, and PKA-dependent increases in length dependent activation. Thus, in addition to the defined role of AMPK as a cardiac metabolic energy gauge, these data demonstrate AMPK Ser-150 phosphorylation of cTnI directly links the regulation of cardiac metabolic demand to myofilament contractile energetics. Furthermore, the blunting effect of cTnI Ser-150 phosphorylation cross-talk can uncouple the effects of myofilament PKA-dependent phosphorylation from β-adrenergic signaling as a novel thin filament contractile regulatory signaling mechanism. PMID:22493448

  12. STRUCTURAL AND FUNCTIONAL BASES OF CARDIAC FIBRILLATION. DIFFERENCES AND SIMILARITIES BETWEEN ATRIA AND VENTRICLES

    PubMed Central

    Filgueiras-Rama, David; Jalife, José

    2016-01-01

    Evidence accumulated over the last 25 years suggests that, whether in the atria or ventricles, fibrillation may be explained by the self-organization of the cardiac electrical activity into rapidly spinning rotors giving way to spiral waves that break intermittently and result in fibrillatory conduction. The dynamics and frequency of such rotors depend on the ion channel composition, excitability and refractory properties of the tissues involved, as well as on the thickness and respective three-dimensional fiber structure of the atrial and ventricular chambers. Therefore, improving the understanding of fibrillation has required the use of multidisciplinary research approaches, including optical mapping, patch clamping and molecular biology, and the application of concepts derived from the theory of wave propagation in excitable media. Moreover, translation of such concepts to the clinic has recently opened new opportunities to apply novel mechanistic approaches to therapy, particularly during atrial fibrillation ablation. Here we review the current understanding of the manner in which the underlying myocardial structure and function influence rotor initiation and maintenance during cardiac fibrillation. We also examine relevant underlying differences and similarities between atrial fibrillation and ventricular fibrillation and evaluate the latest clinical mapping technologies used to identify rotors in either arrhythmia. Altogether, the data being discussed have significantly improved our understanding of the cellular and structural bases of cardiac fibrillation and pointed toward potentially exciting new avenues for more efficient and effective identification and therapy of the most complex cardiac arrhythmias. PMID:27042693

  13. MitoQ administration prevents endotoxin-induced cardiac dysfunction

    PubMed Central

    Murphy, M. P.; Callahan, L. A.

    2009-01-01

    Sepsis elicits severe alterations in cardiac function, impairing cardiac mitochondrial and pressure-generating capacity. Currently, there are no therapies to prevent sepsis-induced cardiac dysfunction. We tested the hypothesis that administration of a mitochondrially targeted antioxidant, 10-(6′-ubiquinonyl)-decyltriphenylphosphonium (MitoQ), would prevent endotoxin-induced reductions in cardiac mitochondrial and contractile function. Studies were performed on adult rodents (n = 52) given either saline, endotoxin (8 mg·kg−1·day−1), saline + MitoQ (500 μM), or both endotoxin and MitoQ. At 48 h animals were killed and hearts were removed for determination of either cardiac mitochondrial function (using polarography) or cardiac pressure generation (using the Langendorf technique). We found that endotoxin induced reductions in mitochondrial state 3 respiration rates, the respiratory control ratio, and ATP generation. Moreover, MitoQ administration prevented each of these endotoxin-induced abnormalities, P < 0.001. We also found that endotoxin produced reductions in cardiac pressure-generating capacity, reducing the systolic pressure-diastolic relationship. MitoQ also prevented endotoxin-induced reductions in cardiac pressure generation, P < 0.01. One potential link between mitochondrial and contractile dysfunction is caspase activation; we found that endotoxin increased cardiac levels of active caspases 9 and 3 (P < 0.001), while MitoQ prevented this increase (P < 0.01). These data demonstrate that MitoQ is a potent inhibitor of endotoxin-induced mitochondrial and cardiac abnormalities. We speculate that this agent may prove a novel therapy for sepsis-induced cardiac dysfunction. PMID:19657095

  14. Changes in cardiac function after pedicle subtraction osteotomy in patients with a kyphosis due to ankylosing spondylitis.

    PubMed

    Fu, J; Song, K; Zhang, Y G; Zheng, G Q; Zhang, G Y; Liu, C; Wang, Y

    2015-10-01

    Cardiac disease in patients with ankylosing spondylitis (AS) has previously been studied but not in patients with a kyphosis or in those who have undergone an operation to correct it. The aim of this study was to measure the post-operative changes in cardiac function of patients with an AS kyphosis after pedicle subtraction osteotomy (PSO). The original cohort consisted of 39 patients (33 men, six women). Of these, four patients (two men, two women) were lost to follow-up leaving 35 patients (31 men, four women) to study. The mean age of the remaining patients was 37.4 years (22.3 to 47.8) and their mean duration of AS was 17.0 years (4.6 to 26.4). Echocardiographic measurements, resting heart rate (RHR), physical function score (PFS), and full-length standing spinal radiographs were obtained before surgery and at the two-year follow-up. The mean pre-operative RHR was 80.2 bpm (60.6 to 112.3) which dropped to a mean of 73.7 bpm (60.7 to 90.6) at the two-year follow-up (p = 0.0000). Of 15 patients with normal ventricular function pre-operatively, two developed mild left ventricular diastolic dysfunction (LVDD) at the two-year follow-up. Of 20 patients with mild LVDD pre-operatively only five had this post-operatively. Overall, 15 patients had normal LV diastolic function before their operation and 28 patients had normal LV function at the two-year follow-up. The clinical improvement was 15 out of 20 (75.0%): cardiac function in patients with AS whose kyphosis was treated by PSO was significantly improved. ©2015 The British Editorial Society of Bone & Joint Surgery.

  15. Positive and negative affective processing exhibit dissociable functional hubs during the viewing of affective pictures.

    PubMed

    Zhang, Wenhai; Li, Hong; Pan, Xiaohong

    2015-02-01

    Recent resting-state functional magnetic resonance imaging (fMRI) studies using graph theory metrics have revealed that the functional network of the human brain possesses small-world characteristics and comprises several functional hub regions. However, it is unclear how the affective functional network is organized in the brain during the processing of affective information. In this study, the fMRI data were collected from 25 healthy college students as they viewed a total of 81 positive, neutral, and negative pictures. The results indicated that affective functional networks exhibit weaker small-worldness properties with higher local efficiency, implying that local connections increase during viewing affective pictures. Moreover, positive and negative emotional processing exhibit dissociable functional hubs, emerging mainly in task-positive regions. These functional hubs, which are the centers of information processing, have nodal betweenness centrality values that are at least 1.5 times larger than the average betweenness centrality of the network. Positive affect scores correlated with the betweenness values of the right orbital frontal cortex (OFC) and the right putamen in the positive emotional network; negative affect scores correlated with the betweenness values of the left OFC and the left amygdala in the negative emotional network. The local efficiencies in the left superior and inferior parietal lobe correlated with subsequent arousal ratings of positive and negative pictures, respectively. These observations provide important evidence for the organizational principles of the human brain functional connectome during the processing of affective information. © 2014 Wiley Periodicals, Inc.

  16. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Arshi, Armin; Nakashima, Yasuhiro; Nakano, Haruko; Eaimkhong, Sarayoot; Evseenko, Denis; Reed, Jason; Stieg, Adam Z.; Gimzewski, James K.; Nakano, Atsushi

    2013-04-01

    While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell-cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes.

  17. Decoding the Long Noncoding RNA During Cardiac Maturation: A Roadmap for Functional Discovery.

    PubMed

    Touma, Marlin; Kang, Xuedong; Zhao, Yan; Cass, Ashley A; Gao, Fuying; Biniwale, Reshma; Coppola, Giovanni; Xiao, Xinshu; Reemtsen, Brian; Wang, Yibin

    2016-10-01

    Cardiac maturation during perinatal transition of heart is critical for functional adaptation to hemodynamic load and nutrient environment. Perturbation in this process has major implications in congenital heart defects. Transcriptome programming during perinatal stages is an important information but incomplete in current literature, particularly, the expression profiles of the long noncoding RNAs (lncRNAs) are not fully elucidated. From comprehensive analysis of transcriptomes derived from neonatal mouse heart left and right ventricles, a total of 45 167 unique transcripts were identified, including 21 916 known and 2033 novel lncRNAs. Among these lncRNAs, 196 exhibited significant dynamic regulation along maturation process. By implementing parallel weighted gene co-expression network analysis of mRNA and lncRNA data sets, several lncRNA modules coordinately expressed in a developmental manner similar to protein coding genes, while few lncRNAs revealed chamber-specific patterns. Out of 2262 lncRNAs located within 50 kb of protein coding genes, 5% significantly correlate with the expression of their neighboring genes. The impact of Ppp1r1b-lncRNA on the corresponding partner gene Tcap was validated in cultured myoblasts. This concordant regulation was also conserved in human infantile hearts. Furthermore, the Ppp1r1b-lncRNA/Tcap expression ratio was identified as a molecular signature that differentiated congenital heart defect phenotypes. The study provides the first high-resolution landscape on neonatal cardiac lncRNAs and reveals their potential interaction with mRNA transcriptome during cardiac maturation. Ppp1r1b-lncRNA was identified as a regulator of Tcap expression, with dynamic interaction in postnatal cardiac development and congenital heart defects. © 2016 American Heart Association, Inc.

  18. Measurement of functional capacity requirements of police officers to aid in development of an occupation-specific cardiac rehabilitation training program.

    PubMed

    Adams, Jenny; Schneider, Jonna; Hubbard, Matthew; McCullough-Shock, Tiffany; Cheng, Dunlei; Simms, Kay; Hartman, Julie; Hinton, Paul; Strauss, Danielle

    2010-01-01

    This study was designed to measure the functional capacity of healthy subjects during strenuous simulated police tasks, with the goal of developing occupation-specific training for cardiac rehabilitation of police officers. A calibrated metabolic instrument and an oxygen consumption data collection mask were used to measure the oxygen consumption and heart rates of 30 Dallas Police Academy officers and cadets as they completed an 8-event obstacle course that simulated chasing, subduing, and handcuffing a suspect. Standard target heart rates (85% of age-predicted maximum heart rate, or 0.85 x [220 - age]) and metabolic equivalents (METs) were calculated; a matched-sample t test based on differences between target and achieved heart rate and MET level was used for statistical analysis. Peak heart rates during the obstacle course simulation were significantly higher than the standard target heart rates (those at which treadmill stress tests in physicians' offices are typically stopped) (t(29) = 12.81, P < 0.001) and significantly higher than the suggested maximum of 150 beats/min during cardiac rehabilitation training (t(29) = 17.84, P < 0.001). Peak MET levels during the obstacle course simulation were also significantly higher than the goal level (8 METs) that patients typically achieve in a cardiac rehabilitation program (t(29) = 14.73, P < 0.001). We conclude that police work requires a functional capacity greater than that typically attained in traditional cardiac rehabilitation programs. Rehabilitation professionals should consider performing maximal stress tests and increasing the intensity of cardiac rehabilitation workouts to effectively train police officers who have had a cardiac event.

  19. The effect of N-acetylcysteine on cardiac contractility to dobutamine in rats with streptozotocin-induced diabetes.

    PubMed

    Cheng, Xing; Xia, Zhengyuan; Leo, Joyce M; Pang, Catherine C Y

    2005-09-05

    We examined if myocardial depression at the acute phase of diabetes (3 weeks after injection of streptozotocin, 60 mg/kg i.v.) is due to activation of inducible nitric oxide synthase and production of peroxynitrite, and if treatment with N-acetylcysteine (1.2 g/day/kg for 3 weeks, antioxidant) improves cardiac function. Four groups of rats were used: control, N-acetylcysteine-treated control, diabetic and N-acetylcysteine-treated diabetic. Pentobarbital-anaesthetized diabetic rats, relative to the controls, had reduced left ventricular contractility to dobutamine (1-57 microg/min/kg). The diabetic rats also had increased myocardial levels of thiobarbituric acid reactive substances, immunostaining of inducible nitric oxide synthase and nitrotyrosine, and similar baseline 15-F2t-isoprostane. N-acetylcysteine did not affect responses in the control rats; but increased cardiac contractility to dobutamine, reduced myocardial immunostaining of inducible nitric oxide synthase and nitrotyrosine and level of 15-F2t-isoprostane, and increased cardiac contractility to dobutamine in the diabetic rats. Antioxidant supplementation in diabetes reduces oxidative stress and improves cardiac function.

  20. Inflammation, functional status, and weight loss during recovery from cardiac surgery in older adults: a pilot study.

    PubMed

    DiMaria-Ghalili, Rose Ann; Sullivan-Marx, Eileen M; Compher, Charlene

    2014-07-01

    To determine the nutritional, inflammatory, and functional aspects of unintentional weight loss after cardiac surgery that warrant further investigation. Twenty community-dwelling adults > 65 years old undergoing cardiac surgery (coronary artery bypass graft [CABG] or CABG + valve) were recruited for this prospective longitudinal (preoperative and 4-6 weeks postdischarge) pilot study. Anthropometrics (weight, standing height, and mid-arm and calf circumference), nutritional status (Mini-Nutritional Assessment™ [MNA]), appetite, physical performance (timed chair stand), muscle strength (hand grip) and functional status (basic and instrumental activities of daily living), and inflammatory markers (plasma leptin, ghrelin, interleukin [IL]-6, high-sensitivity[hs] C-reactive protein, and serum albumin and prealbumin) were measured. Participants who completed the study (n = 11 males, n = 3 females) had a mean age 70.21 ± 4.02 years. Of these, 12 lost 3.66 ± 1.44 kg over the study period. Weight, BMI, activities of daily living, and leptin decreased over time (p < .05). IL-6 increased over time (p < .05). Ghrelin, hs-CRP, and timed chair stand increased over time in those who underwent combined procedures (p < .05). Grip strength decreased in those who developed complications (p = .004). Complications, readmission status, and lowered grip strength were found in those with low preoperative MNA scores (p < .05). After cardiac surgery, postdischarge weight loss occurs during a continued inflammatory response accompanied by decreased physical functioning and may not be a positive outcome. The impacts of weight loss, functional impairment, and inflammation during recovery on disability and frailty warrant further study. © The Author(s) 2013.

  1. Irradiation induced modest changes in murine cardiac function despite progressive structural damage to the myocardium and microvasculature.

    PubMed

    Seemann, Ingar; Gabriels, Karen; Visser, Nils L; Hoving, Saske; te Poele, Johannes A; Pol, Jeffrey F; Gijbels, Marion J; Janssen, Ben J; van Leeuwen, Fijs W; Daemen, Mat J; Heeneman, Sylvia; Stewart, Fiona A

    2012-05-01

    Radiotherapy of thoracic and chest wall tumors increases the long-term risk of cardiotoxicity, but the underlying mechanisms are unclear. Single doses of 2, 8, or 16 Gy were delivered to the hearts of mice and damage was evaluated at 20, 40, and 60 weeks, relative to age matched controls. Single photon emission computed tomography (SPECT/CT) and ultrasound were used to measure cardiac geometry and function, which was related to histo-morphology and microvascular damage. Gated SPECT/CT and ultrasound demonstrated decreases in end diastolic and systolic volumes, while the ejection fraction was increased at 20 and 40 weeks after 2, 8, and 16 Gy. Cardiac blood volume was decreased at 20 and 60 weeks after irradiation. Histological examination revealed inflammatory changes at 20 and 40 weeks after 8 and 16 Gy. Microvascular density in the left ventricle was decreased at 40 and 60 weeks after 8 and 16 Gy, with functional damage to remaining microvasculature manifest as decreased alkaline phosphatase (2, 8, and 16 Gy), increased von Willebrand Factor and albumin leakage from vessels (8 and 16 Gy), and amyloidosis (16 Gy). 16 Gy lead to sudden death between 30 and 40 weeks in 38% of mice. Irradiation with 2 and 8 Gy induced modest changes in murine cardiac function within 20 weeks but this did not deteriorate further, despite progressive structural and microvascular damage. This indicates that heart function can compensate for significant structural damage, although higher doses, eventually lead to sudden death. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Projection-based motion estimation for cardiac functional analysis with high temporal resolution: a proof-of-concept study with digital phantom experiment

    NASA Astrophysics Data System (ADS)

    Suzuki, Yuki; Fung, George S. K.; Shen, Zeyang; Otake, Yoshito; Lee, Okkyun; Ciuffo, Luisa; Ashikaga, Hiroshi; Sato, Yoshinobu; Taguchi, Katsuyuki

    2017-03-01

    Cardiac motion (or functional) analysis has shown promise not only for non-invasive diagnosis of cardiovascular diseases but also for prediction of cardiac future events. Current imaging modalities has limitations that could degrade the accuracy of the analysis indices. In this paper, we present a projection-based motion estimation method for x-ray CT that estimates cardiac motion with high spatio-temporal resolution using projection data and a reference 3D volume image. The experiment using a synthesized digital phantom showed promising results for motion analysis.

  3. [Effect of formula of removing both phlegm and blood stasis in improving cardiac function of Chinese mini-swine with coronary heart disease of phlegm-stasis cementation syndrome].

    PubMed

    Li, Lei; Lin, Cheng-Ren; Ren, Jian-Xun; Miao, Lan; Yao, Ming-Jiang; Li, Dan; Shi, Yue; Ma, Yan-Lei; Fu, Jian-Hua; Liu, Jian-Xun

    2014-02-01

    To evaluate that the effect of formula of removing both phlegm and blood stasis in improving cardiac function of Chinese mini-swine with coronary heart disease of phlegm-stasis cementation syndrome. Totally 36 Chinese mini-swine were randomly divided to six groups: the normal control group, the model group, the Danlou tablet group, and Tanyu Tonzhi Fang(TYTZ) groups with doses of 2. 0, 1. 0 and 0. 5 g kg-1, with six in each group. Except for the normal control group, all of other groups were fed with high-fat diet for 2 weeks. Interventional balloons are adopted to injure their left anterior descending artery endothelium. After the operation, they were fed with high-fat diet for 8 weeks to prepare the coronary heart disease model of phlegm-stasis cementation syndrome. After the operation, they were administered with drugs for 8 weeks. The changes in the myocardial ischemia were observed. The changes in the cardiac function and structure were detected by cardiac ultrasound and noninvasive hemodynamic method. Compared with the normal control group, the model group showed significant increase in myocardial ischemia and SVR and obvious decrease in CO, SV and LCW in noninvasive hemodynamic parameters (P <0.05 or P <0.01). The ultrasonic cardiogram indicated notable decrease in IVSd, LVPWs, EF and FS, and remarkable increase in LVIDs (P<0. 05 orP<0.01). Compared with the model group, TYTZ could reduce the myocardial ischemia, strengthen cardiac function, and improve the abnormal cardiac structure and function induced by ischemia (P <0. 05 or P <0. 01). TYTZ shows a significant effect in improving cardiac function of Chinese mini-swine with coronary heart disease of phlegm-stasis cementation syndrome. The clinical cardiac function detection method could be adopted to correctly evaluate the changes in the post-myocardial ischemia cardiac function, and narrow the gap between clinical application and basic experimental studies.

  4. Cardiac Expression of ms1/STARS, a Novel Gene Involved in Cardiac Development and Disease, Is Regulated by GATA4

    PubMed Central

    Kobayashi, Satoru; Peterson, Richard E.; He, Aibin; Motterle, Anna; Samani, Nilesh J.; Menick, Donald R.; Pu, William T.; Liang, Qiangrong

    2012-01-01

    Ms1/STARS is a novel muscle-specific actin-binding protein that specifically modulates the myocardin-related transcription factor (MRTF)-serum response factor (SRF) regulatory axis within striated muscle. This ms1/STARS-dependent regulatory axis is of central importance within the cardiac gene regulatory network and has been implicated in cardiac development and postnatal cardiac function/homeostasis. The dysregulation of ms1/STARS is associated with and causative of pathological cardiac phenotypes, including cardiac hypertrophy and cardiomyopathy. In order to gain an understanding of the mechanisms governing ms1/STARS expression in the heart, we have coupled a comparative genomic in silico analysis with reporter, gain-of-function, and loss-of-function approaches. Through this integrated analysis, we have identified three evolutionarily conserved regions (ECRs), α, SINA, and DINA, that act as cis-regulatory modules and confer differential cardiac cell-specific activity. Two of these ECRs, α and DINA, displayed distinct regulatory sensitivity to the core cardiac transcription factor GATA4. Overall, our results demonstrate that within embryonic, neonatal, and adult hearts, GATA4 represses ms1/STARS expression with the pathologically associated depletion of GATA4 (type 1/type 2 diabetic models), resulting in ms1/STARS upregulation. This GATA4-dependent repression of ms1/STARS expression has major implications for MRTF-SRF signaling in the context of cardiac development and disease. PMID:22431517

  5. Multicomponent cardiac rehabilitation in patients after transcatheter aortic valve implantation: Predictors of functional and psychocognitive recovery.

    PubMed

    Eichler, Sarah; Salzwedel, Annett; Reibis, Rona; Nothroff, Jörg; Harnath, Axel; Schikora, Martin; Butter, Christian; Wegscheider, Karl; Völler, Heinz

    2017-02-01

    Background In the last decade, transcatheter aortic valve implantation has become a promising treatment modality for patients with aortic stenosis and a high surgical risk. Little is known about influencing factors of function and quality of life during multicomponent cardiac rehabilitation. Methods From October 2013 to July 2015, patients with elective transcatheter aortic valve implantation and a subsequent inpatient cardiac rehabilitation were enrolled in the prospective cohort multicentre study. Frailty-Index (including cognition, nutrition, autonomy and mobility), Short Form-12 (SF-12), six-minute walk distance (6MWD) and maximum work load in bicycle ergometry were performed at admission and discharge of cardiac rehabilitation. The relation between patient characteristics and improvements in 6MWD, maximum work load or SF-12 scales were studied univariately and multivariately using regression models. Results One hundred and thirty-six patients (80.6 ± 5.0 years, 47.8% male) were enrolled. 6MWD and maximum work load increased by 56.3 ± 65.3 m ( p < 0.001) and 8.0 ± 14.9 watts ( p < 0.001), respectively. An improvement in SF-12 (physical 2.5 ± 8.7, p = 0.001, mental 3.4 ± 10.2, p = 0.003) could be observed. In multivariate analysis, age and higher education were significantly associated with a reduced 6MWD, whereas cognition and obesity showed a positive predictive value. Higher cognition, nutrition and autonomy positively influenced the physical scale of SF-12. Additionally, the baseline values of SF-12 had an inverse impact on the change during cardiac rehabilitation. Conclusions Cardiac rehabilitation can improve functional capacity as well as quality of life and reduce frailty in patients after transcatheter aortic valve implantation. An individually tailored therapy with special consideration of cognition and nutrition is needed to maintain autonomy and empower octogenarians in coping with challenges of everyday

  6. An exploratory investigation of echocardiographic parameters and the effects of posture on cardiac structure and function in the Livingstone's fruit bat (Pteropus livingstonii).

    PubMed

    Drane, Aimee L; Shave, Robert; Routh, Andrew; Barbon, Alberto

    2018-01-01

    There is growing evidence that dilated cardiomyopathy may be a major cause of death in captive Livingstone's fruit bats (Pteropus livingstonii). Therefore, the primary aim of this prospective, exploratory study was to examine whether a systematic cardiac ultrasound protocol is feasible in this critically endangered species and to report basic measures of cardiac structure and function from a cohort of apparently healthy bats. A secondary aim was to test the effect posture (dorsal recumbency vs. roosting) has upon cardiac function in this species. Transthoracic echocardiograms, including 2D, Doppler, and tissue Doppler measures of cardiac structure and function were completed as part of routine health examinations for bats at a single center (n = 19). Bats were then grouped by age and disease status and the mean and range data reported for each group. In healthy adult bats, with the exception of a reduction in heart rate (P ≤ 0.05), right atrial systolic area (P ≤ 0.05), and right ventricular velocity during atrial contraction, there were no significant changes in cardiac structure or function in response to the roosting position. However, in the bats presenting with dilated cardiomyopathy the current data suggest that left ventricular ejection fraction is improved while roosting. Further work is required to confirm our initial findings, generate diagnostic reference intervals, and explore the causes of dilated cardiomyopathy in this species. © 2017 American College of Veterinary Radiology.

  7. Disturbance of cardiac gene expression and cardiomyocyte structure predisposes Mecp2-null mice to arrhythmias

    PubMed Central

    Hara, Munetsugu; Takahashi, Tomoyuki; Mitsumasu, Chiaki; Igata, Sachiyo; Takano, Makoto; Minami, Tomoko; Yasukawa, Hideo; Okayama, Satoko; Nakamura, Keiichiro; Okabe, Yasunori; Tanaka, Eiichiro; Takemura, Genzou; Kosai, Ken-ichiro; Yamashita, Yushiro; Matsuishi, Toyojiro

    2015-01-01

    Methyl-CpG-binding protein 2 (MeCP2) is an epigenetic regulator of gene expression that is essential for normal brain development. Mutations in MeCP2 lead to disrupted neuronal function and can cause Rett syndrome (RTT), a neurodevelopmental disorder. Previous studies reported cardiac dysfunction, including arrhythmias in both RTT patients and animal models of RTT. In addition, recent studies indicate that MeCP2 may be involved in cardiac development and dysfunction, but its role in the developing and adult heart remains unknown. In this study, we found that Mecp2-null ESCs could differentiate into cardiomyocytes, but the development and further differentiation of cardiovascular progenitors were significantly affected in MeCP2 deficiency. In addition, we revealed that loss of MeCP2 led to dysregulation of endogenous cardiac genes and myocardial structural alterations, although Mecp2-null mice did not exhibit obvious cardiac functional abnormalities. Furthermore, we detected methylation of the CpG islands in the Tbx5 locus, and showed that MeCP2 could target these sequences. Taken together, these results suggest that MeCP2 is an important regulator of the gene-expression program responsible for maintaining normal cardiac development and cardiomyocyte structure. PMID:26073556

  8. Magnetic resonance-compatible model of isolated working heart from large animal for multimodal assessment of cardiac function, electrophysiology, and metabolism.

    PubMed

    Vaillant, Fanny; Magat, Julie; Bour, Pierre; Naulin, Jérôme; Benoist, David; Loyer, Virginie; Vieillot, Delphine; Labrousse, Louis; Ritter, Philippe; Bernus, Olivier; Dos Santos, Pierre; Quesson, Bruno

    2016-05-15

    To provide a model close to the human heart, and to study intrinsic cardiac function at the same time as electromechanical coupling, we developed a magnetic resonance (MR)-compatible setup of isolated working perfused pig hearts. Hearts from pigs (40 kg, n = 20) and sheep (n = 1) were blood perfused ex vivo in the working mode with and without loaded right ventricle (RV), for 80 min. Cardiac function was assessed by measuring left intraventricular pressure and left ventricular (LV) ejection fraction (LVEF), aortic and mitral valve dynamics, and native T1 mapping with MR imaging (1.5 Tesla). Potential myocardial alterations were assessed at the end of ex vivo perfusion from late-Gadolinium enhancement T1 mapping. The ex vivo cardiac function was stable across the 80 min of perfusion. Aortic flow and LV-dP/dtmin were significantly higher (P < 0.05) in hearts perfused with loaded RV, without differences for heart rate, maximal and minimal LV pressure, LV-dP/dtmax, LVEF, and kinetics of aortic and mitral valves. T1 mapping analysis showed a spatially homogeneous distribution over the LV. Simultaneous recording of hemodynamics, LVEF, and local cardiac electrophysiological signals were then successfully performed at baseline and during electrical pacing protocols without inducing alteration of MR images. Finally, (31)P nuclear MR spectroscopy (9.4 T) was also performed in two pig hearts, showing phosphocreatine-to-ATP ratio in accordance with data previously reported in vivo. We demonstrate the feasibility to perfuse isolated pig hearts in the working mode, inside an MR environment, allowing simultaneous assessment of cardiac structure, mechanics, and electrophysiology, illustrating examples of potential applications. Copyright © 2016 the American Physiological Society.

  9. Favorable Changes in Cardiac Geometry and Function Following Gastric Bypass Surgery

    PubMed Central

    Owan, Theophilus; Avelar, Erick; Morley, Kimberly; Jiji, Ronny; Hall, Nathaniel; Krezowski, Joseph; Gallagher, James; Williams, Zachary; Preece, Kevin; Gundersen, Nancy; Strong, Michael B.; Pendleton, Robert C.; Segerson, Nathan; Cloward, Tom V.; Walker, James M.; Farney, Robert J.; Gress, Richard E.; Adams, Ted D.; Hunt, Steven C.; Litwin, Sheldon E.

    2013-01-01

    Objectives The objective of this study was to test the hypothesis that gastric bypass surgery (GBS) would favorably impact cardiac remodeling and function. Background GBS is increasingly used to treat severe obesity, but there are limited outcome data. Methods We prospectively studied 423 severely obese patients undergoing GBS and a reference group of severely obese subjects that did not have surgery (n = 733). Results At a 2-year follow up, GBS subjects had a large reduction in body mass index compared with the reference group (−15.4 ± 7.2 kg/m2 vs. −0.03 ± 4.0 kg/m2; p < 0.0001), as well as significant reductions in waist circumference, systolic blood pressure, heart rate, triglycerides, low-density lipoprotein cholesterol, and insulin resistance. High-density lipoprotein cholesterol increased. The GBS group had reductions in left ventricular (LV) mass index and right ventricular (RV) cavity area. Left atrial volume did not change in GBS but increased in reference subjects. In conjunction with reduced chamber sizes, GBS subjects also had increased LV midwall fractional shortening and RV fractional area change. In multivariable analysis, age, change in body mass index, severity of nocturnal hypoxemia, E/E', and sex were independently associated with LV mass index, whereas surgical status, change in waist circumference, and change in insulin resistance were not. Conclusions Marked weight loss in patients undergoing GBS was associated with reverse cardiac remodeling and improved LV and RV function. These data support the use of bariatric surgery to prevent cardiovascular complications in severe obesity. PMID:21292133

  10. Athletes at Risk for Sudden Cardiac Death

    ERIC Educational Resources Information Center

    Subasic, Kim

    2010-01-01

    High school athletes represent the largest group of individuals affected by sudden cardiac death, with an estimated incidence of once or twice per week. Structural cardiovascular abnormalities are the most frequent cause of sudden cardiac death. Athletes participating in basketball, football, track, soccer, baseball, and swimming were found to…

  11. Influences of the G2350A polymorphism in the ACE Gene on cardiac structure and function of ball game players

    PubMed Central

    2012-01-01

    Background Except for the I/D polymorphism in the angiotensin I-converting enzyme (ACE) gene, there were few reports about the relationship between other genetic polymorphisms in this gene and the changes in cardiac structure and function of athletes. Thus, we investigated whether the G2350A polymorphism in the ACE gene is associated with the changes in cardiac structure and function of ball game players. Total 85 healthy ball game players were recruited in this study, and they were composed of 35 controls and 50 ball game players, respectively. Cardiac structure and function were measured by 2-D echocardiography, and the G2350A polymorphism in the ACE gene analyzed by the SNaPshot method. Results There were significant differences in left ventricular mass index (LVmassI) value among each sporting discipline studied. Especially in the athletes of basketball disciplines, indicated the highest LVmassI value than those of other sporting disciplines studied (p < 0.05). However, there were no significant association between any echocardiographic data and the G2350A polymorphism in the ACE gene in the both controls and ball game players. Conclusions Our data suggests that the G2350A polymorphism in the ACE gene may not significantly contribute to the changes in cardiac structure and function of ball game players, although sporting disciplines of ball game players may influence the changes in LVmassI value of these athletes. Further studies using a larger sample size and other genetic markers in the ACE gene will be needed. PMID:22239999

  12. Effects of glutamine treatment on myocardial damage and cardiac function in rats after severe burn injury.

    PubMed

    Yan, Hong; Zhang, Yong; Lv, Shang-jun; Wang, Lin; Liang, Guang-ping; Wan, Qian-xue; Peng, Xi

    2012-01-01

    Treatment with glutamine has been shown to reduce myocardial damage associated with ischemia/reperfusion injury. However, the cardioprotective effect of glutamine specifically after burn injury remains unclear. The present study explores the ability of glutamine to protect against myocardial damage in rats that have been severely burned. Seventy-two Wistar rats were randomly divided into three groups: normal controls (C), burned controls (B) and a glutamine-treated group (G). Groups B and G were subjected to full thickness burns comprising 30% of total body surface area. Group G was administered 1.5 g/ (kg•d) glutamine and group B was given the same dose of alanine via intragastric administration for 3 days. Levels of serum creatine kinase (CK), lactate dehydrogenase (LDH), aspartate transaminase (AST) and blood lactic acid were measured, as well as myocardial ATP and glutathione (GSH) contents. Cardiac function indices and histopathological changes were analyzed at 12, 24, 48 and 72 post-burn hours. In both burned groups, levels of serum CK, LDH, AST and blood lactic acid increased significantly, while myocardial ATP and GSH contents decreased. Compared with group B, CK, LDH, and AST levels were lower and blood lactic acid, myocardial ATP and GSH levels were higher in group G. Moreover, cardiac contractile function inhibition and myocardial histopathological damage were significantly reduced in group G compared to B. Taken together, these results show that glutamine supplementation protects myocardial structure and function after burn injury by improving energy metabolism and by promoted the synthesis of ATP and GSH in cardiac myocytes.

  13. Effects of glutamine treatment on myocardial damage and cardiac function in rats after severe burn injury

    PubMed Central

    Yan, Hong; Zhang, Yong; Lv, Shang-jun; Wang, Lin; Liang, Guang-ping; Wan, Qian-xue; Peng, Xi

    2012-01-01

    Treatment with glutamine has been shown to reduce myocardial damage associated with ischemia/reperfusion injury. However, the cardioprotective effect of glutamine specifically after burn injury remains unclear. The present study explores the ability of glutamine to protect against myocardial damage in rats that have been severely burned. Seventy-two Wistar rats were randomly divided into three groups: normal controls (C), burned controls (B) and a glutamine-treated group (G). Groups B and G were subjected to full thickness burns comprising 30% of total body surface area. Group G was administered 1.5 g/ (kg•d) glutamine and group B was given the same dose of alanine via intragastric administration for 3 days. Levels of serum creatine kinase (CK), lactate dehydrogenase (LDH), aspartate transaminase (AST) and blood lactic acid were measured, as well as myocardial ATP and glutathione (GSH) contents. Cardiac function indices and histopathological changes were analyzed at 12, 24, 48 and 72 post-burn hours. In both burned groups, levels of serum CK, LDH, AST and blood lactic acid increased significantly, while myocardial ATP and GSH contents decreased. Compared with group B, CK, LDH, and AST levels were lower and blood lactic acid, myocardial ATP and GSH levels were higher in group G. Moreover, cardiac contractile function inhibition and myocardial histopathological damage were significantly reduced in group G compared to B. Taken together, these results show that glutamine supplementation protects myocardial structure and function after burn injury by improving energy metabolism and by promotedthe synthesis of ATP and GSH in cardiac myocytes. PMID:22977661

  14. Functional Outcome Trajectories after Out-of Hospital Pediatric Cardiac Arrest

    PubMed Central

    Silverstein, Faye S; Slomine, Beth; Christensen, James; Holubkov, Richard; Page, Kent; Dean, J. Michael; Moler, Frank

    2016-01-01

    Objective To analyze functional performance measures collected prospectively during the conduct of a clinical trial that enrolled children (up to age 18 years), resuscitated after out-of-hospital cardiac arrest, who were at high risk for poor outcomes. Design Children with Glasgow Motor Scales <5, within 6 hours of resuscitation, were enrolled in a clinical trial that compared two targeted temperature management interventions (THAPCA-OH, NCT00878644). The primary outcome, 12-month survival with Vineland Adaptive Behavior Scales, second edition (VABS-II) score ≥70, did not differ between groups. Setting 38 North American pediatric ICU’s. Participants 295 children were enrolled; 270/295 had baseline VABS-II scores ≥70; 87/270 survived one year. Interventions Targeted temperatures were 33.0°C and 36.8°C for hypothermia and normothermia groups. Measurements and Main Results Baseline measures included VABS-II, Pediatric Cerebral Performance Category(PCPC), and Pediatric Overall Performance Category (POPC). PCPC and POPC were rescored at hospital discharges; all three were scored at 3 and 12 months. In survivors with baseline VABS-II scores ≥70, we evaluated relationships of hospital discharge PCPC with 3 and 12 month scores, and between 3 and 12 month VABS-II scores. Hospital discharge PCPC scores strongly predicted 3 and 12 month PCPC (r=0.82,0.79; p<0.0001) and VABS-II scores (r=−0.81,−0.77; p<0.0001) Three month VABS-II scores strongly predicted 12 month performance (r=0.95, p<0.0001). Hypothermia treatment did not alter these relationships. Conclusions In comatose children, with Glasgow Motor Scales <5 in the initial hours after out-of-hospital cardiac arrest resuscitation, function scores at hospital discharge and at 3 months predicted 12-month performance well in the majority of survivors. PMID:27509385

  15. Health Instruction Packages: Cardiac Anatomy.

    ERIC Educational Resources Information Center

    Phillips, Gwen; And Others

    Text, illustrations, and exercises are utilized in these five learning modules to instruct nurses, students, and other health care professionals in cardiac anatomy and functions and in fundamental electrocardiographic techniques. The first module, "Cardiac Anatomy and Physiology: A Review" by Gwen Phillips, teaches the learner to draw…

  16. Oxygen demand of perfused heart preparations: how electromechanical function and inadequate oxygenation affect physiology and optical measurements.

    PubMed

    Kuzmiak-Glancy, Sarah; Jaimes, Rafael; Wengrowski, Anastasia M; Kay, Matthew W

    2015-06-01

    What is the topic of this review? This review discusses how the function and electrophysiology of isolated perfused hearts are affected by oxygenation and energy utilization. The impact of oxygenation on fluorescence measurements in perfused hearts is also discussed. What advances does it highlight? Recent studies have illuminated the inherent differences in electromechanical function, energy utilization rate and oxygen requirements between the primary types of excised heart preparations. A summary and analysis of how these variables affect experimental results are necessary to elevate the physiological relevance of these approaches in order to advance the field of whole-heart research. The ex vivo perfused heart recreates important aspects of in vivo conditions to provide insight into whole-organ function. In this review we discuss multiple types of ex vivo heart preparations, explain how closely each mimic in vivo function, and discuss how changes in electromechanical function and inadequate oxygenation of ex vivo perfused hearts may affect measurements of physiology. Hearts that perform physiological work have high oxygen demand and are likely to experience hypoxia when perfused with a crystalloid perfusate. Adequate myocardial oxygenation is critically important for obtaining physiologically relevant measurements, so when designing experiments the type of ex vivo preparation and the capacity of perfusate to deliver oxygen must be carefully considered. When workload is low, such as during interventions that inhibit contraction, oxygen demand is also low, which could dramatically alter a physiological response to experimental variables. Changes in oxygenation also alter the optical properties of cardiac tissue, an effect that may influence optical signals measured from both endogenous and exogenous fluorophores. Careful consideration of oxygen supply, working condition, and wavelengths used to acquire optical signals is critical for obtaining physiologically

  17. Using iPSC Models to Probe Regulation of Cardiac Ion Channel Function.

    PubMed

    Bruyneel, Arne A N; McKeithan, Wesley L; Feyen, Dries A M; Mercola, Mark

    2018-05-25

    Cardiovascular disease is the leading contributor to mortality and morbidity. Many deaths of heart failure patients can be attributed to sudden cardiac death due primarily to ventricular arrhythmia. Currently, most anti-arrhythmics modulate ion channel conductivity or β-adrenergic signaling, but these drugs have limited efficacy for some indications, and can potentially be proarrhythmic. Recent studies have shown that mutations in proteins other than cardiac ion channels may confer susceptibility to congenital as well as acquired arrhythmias. Additionally, ion channels themselves are subject to regulation at the levels of channel expression, trafficking and post-translational modification; thus, research into the regulation of ion channels may elucidate disease mechanisms and potential therapeutic targets for future drug development. This review summarizes the current knowledge of the molecular mechanisms of arrhythmia susceptibility and discusses technological advances such as induced pluripotent stem cell-derived cardiomyocytes, gene editing, functional genomics, and physiological screening platforms that provide a new paradigm for discovery of new therapeutic targets to treat congenital and acquired diseases of the heart rhythm.

  18. Endothelial fibroblast growth factor receptor signaling is required for vascular remodeling following cardiac ischemia-reperfusion injury

    PubMed Central

    Castro, Angela M.; Lupu, Traian S.; Weinheimer, Carla; Smith, Craig; Kovacs, Attila

    2016-01-01

    Fibroblast growth factor (FGF) signaling is cardioprotective in various models of myocardial infarction. FGF receptors (FGFRs) are expressed in multiple cell types in the adult heart, but the cell type-specific FGFR signaling that mediates different cardioprotective endpoints is not known. To determine the requirement for FGFR signaling in endothelium in cardiac ischemia-reperfusion injury, we conditionally inactivated the Fgfr1 and Fgfr2 genes in endothelial cells with Tie2-Cre (Tie2-Cre, Fgfr1f/f, Fgfr2f/f DCKO mice). Tie2-Cre, Fgfr1f/f, Fgfr2f/f DCKO mice had normal baseline cardiac morphometry, function, and vessel density. When subjected to closed-chest, regional cardiac ischemia-reperfusion injury, Tie2-Cre, Fgfr1f/f, Fgfr2f/f DCKO mice showed a significantly increased hypokinetic area at 7 days, but not 1 day, after reperfusion. Tie2-Cre, Fgfr1f/f, Fgfr2f/f DCKO mice also showed significantly worsened cardiac function compared with controls at 7 days but not 1 day after reperfusion. Pathophysiological analysis showed significantly decreased vessel density, increased endothelial cell apoptosis, and worsened tissue hypoxia in the peri-infarct area at 7 days following reperfusion. Notably, Tie2-Cre, Fgfr1f/f, Fgfr2f/f DCKO mice showed no impairment in the cardiac hypertrophic response. These data demonstrate an essential role for FGFR1 and FGFR2 in endothelial cells for cardiac functional recovery and vascular remodeling following in vivo cardiac ischemia-reperfusion injury, without affecting the cardiac hypertrophic response. This study suggests the potential for therapeutic benefit from activation of endothelial FGFR pathways following ischemic injury to the heart. PMID:26747503

  19. Endothelial fibroblast growth factor receptor signaling is required for vascular remodeling following cardiac ischemia-reperfusion injury.

    PubMed

    House, Stacey L; Castro, Angela M; Lupu, Traian S; Weinheimer, Carla; Smith, Craig; Kovacs, Attila; Ornitz, David M

    2016-03-01

    Fibroblast growth factor (FGF) signaling is cardioprotective in various models of myocardial infarction. FGF receptors (FGFRs) are expressed in multiple cell types in the adult heart, but the cell type-specific FGFR signaling that mediates different cardioprotective endpoints is not known. To determine the requirement for FGFR signaling in endothelium in cardiac ischemia-reperfusion injury, we conditionally inactivated the Fgfr1 and Fgfr2 genes in endothelial cells with Tie2-Cre (Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice). Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice had normal baseline cardiac morphometry, function, and vessel density. When subjected to closed-chest, regional cardiac ischemia-reperfusion injury, Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice showed a significantly increased hypokinetic area at 7 days, but not 1 day, after reperfusion. Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice also showed significantly worsened cardiac function compared with controls at 7 days but not 1 day after reperfusion. Pathophysiological analysis showed significantly decreased vessel density, increased endothelial cell apoptosis, and worsened tissue hypoxia in the peri-infarct area at 7 days following reperfusion. Notably, Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice showed no impairment in the cardiac hypertrophic response. These data demonstrate an essential role for FGFR1 and FGFR2 in endothelial cells for cardiac functional recovery and vascular remodeling following in vivo cardiac ischemia-reperfusion injury, without affecting the cardiac hypertrophic response. This study suggests the potential for therapeutic benefit from activation of endothelial FGFR pathways following ischemic injury to the heart. Copyright © 2016 the American Physiological Society.

  20. Cardiac function is preserved following 4 weeks of voluntary wheel running in a rodent model of chronic kidney disease.

    PubMed

    Kuczmarski, James M; Martens, Christopher R; Kim, Jahyun; Lennon-Edwards, Shannon L; Edwards, David G

    2014-09-01

    The purpose of this investigation was to determine the effect of 4 wk of voluntary wheel running on cardiac performance in the 5/6 ablation-infarction (AI) rat model of chronic kidney disease (CKD). We hypothesized that voluntary wheel running would be effective in preserving cardiac function in AI. Male Sprague-Dawley rats were divided into three study groups: 1) sham, sedentary nondiseased control; 2) AI-SED, sedentary AI; and 3) AI-WR, wheel-running AI. Animals were maintained over a total period of 8 wk following AI and sham surgery. The 8-wk period included 4 wk of disease development followed by a 4-wk voluntary wheel-running intervention/sedentary control period. Cardiac performance was assessed using an isolated working heart preparation. Left ventricular (LV) tissue was used for biochemical tissue analysis. In addition, soleus muscle citrate synthase activity was measured. AI-WR rats performed a low volume of exercise, running an average of 13 ± 2 km, which resulted in citrate synthase activity not different from that in sham animals. Isolated AI-SED hearts demonstrated impaired cardiac performance at baseline and in response to preload/afterload manipulations. Conversely, cardiac function was preserved in AI-WR vs. sham hearts. LV nitrite + nitrate and expression of LV nitric oxide (NO) synthase isoforms 2 and 3 in AI-WR were not different from those of sham rats. In addition, LV H2O2 in AI-WR was similar to that of sham and associated with increased expression of LV superoxide-dismutase-2 and glutathione peroxidase-1/2. The findings of the current study suggest that a low-volume exercise intervention is sufficient to maintain cardiac performance in rats with CKD, potentially through a mechanism related to improved redox homeostasis and increased NO. Copyright © 2014 the American Physiological Society.

  1. Comparison of yoga and walking-exercise on cardiac time intervals as a measure of cardiac function in elderly with increased pulse pressure.

    PubMed

    Patil, Satish Gurunathrao; Patil, Shankargouda S; Aithala, Manjunatha R; Das, Kusal Kanti

    Arterial aging along with increased blood pressure(BP) has become the major cardiovascular(CV) risk in elderly. The aim of the study was to compare the effects of yoga program and walking-exercise on cardiac function in elderly with increased pulse pressure (PP). An open label, parallel-group randomized controlled study design was adopted. Elderly individuals aged ≥60 years with PP≥60mmHg were recruited for the study. Yoga (study) group (n=30) was assigned for yoga training and walking (exercise) group (n=30) for walking with loosening practices for one hour in the morning for 6days in a week for 3 months. The outcome measures were cardiac time intervals derived from pulse wave analysis and ECG: resting heart rate (RHR), diastolic time(DT), ventricular ejection time(LVET), upstroke time(UT), ejection duration index (ED%), pre-ejection period (PEP), rate pressure product (RPP) and percentage of mean arterial pressure (%MAP). The mean within-yoga group change in RHR(bpm) was 4.41 (p=0.031), PD(ms): -50.29 (p=0.042), DT(ms): -49.04 (p=0.017), ED%: 2.107 (p=0.001), ES(mmHg/ms): 14.62 (p=0.118), ET(ms): -0.66 (p=0.903), UT(ms): -2.54 (p=0.676), PEP(ms): -1.25 (p=0.11) and %MAP: 2.08 (p=0.04). The mean within-control group change in HR (bpm) was 0.35 (p=0.887), PD (ms): 11.15(p=0.717), DT (ms): 11.3 (p=0.706), ED%: -0.101 (p=0.936), ES (mmHg/ms): 0.75 (p=0.926), ET(ms): 2.2 (p=0.721), UT(ms):4.7(p=455), PEP (ms): 2.1(p=0.11), %MAP: 0.65 (p=0.451). A significant difference between-group was found in RHR (p=0.036), PD (p=0.02), ED% (p=0.049), LVET (p=0.048), DT (p=0.02) and RPP (p=0.001). Yoga practice for 3 months showed a significant improvement in diastolic function with a minimal change in systolic function. Yoga is more effective than walking in improving cardiac function in elderly with high PP. Copyright © 2017 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  2. Short-term effects of β2-AR blocker ICI 118,551 on sarcoplasmic reticulum SERCA2a and cardiac function of rats with heart failure.

    PubMed

    Gong, Haibin; Li, Yanfei; Wang, Lei; Lv, Qian; Wang, Xiuli

    2016-09-01

    The study was conducted to examine the effects of ICI 118,551 on the systolic function of cardiac muscle cells of rats in heart failure and determine the molecular mechanism of selective β2-adrenergic receptor (β2-AR) antagonist on these cells. The chronic heart failure model for rats was prepared through abdominal aortic constriction and separate cardiac muscle cells using the collagenase digestion method. The rats were then divided into Sham, HF and HF+ICI 50 nM goups and cultivated for 48 h. β2-AR, Gi/Gs and sarcoplasmic reticulum Ca 2+ -ATPase (SERCA2a) protein expression levels in the cardiac muscle cells were evaluated by western blotting and changes in the systolic function of cardiac muscle cells based on the boundary detection system of contraction dynamics for individual cells was measured. The results showed that compared with the Sham group, the survival rate, percentage of basic contraction and maximum contraction amplitude percentage of cardiac muscle cells with heart failure decreased, Gi protein expression increased while Gs and SERCA2a protein expression decreased. Compared with the HF group, the maximum contraction amplitude percentage of cardiac muscle cells in group HF+ICI 50 nM decreased, the Gi protein expression level increased while the SERCA2a protein expression level decreased. Following the stimulation of Ca 2+ and ISO, the maximum contraction amplitude percentage of cardiac muscle cells in the HF+ICI 50 nM group was lower than that in group HF. This indicated that ICI 118,551 has negative inotropic effects on cardiac muscle cells with heart failure, which may be related to Gi protein. Systolic function of cardiac muscle cells with heart failure can therefore be reduced by increasing Gi protein expression and lowering SERCA2a protein expression.

  3. Abnormal cardiac autonomic regulation in mice lacking ASIC3.

    PubMed

    Cheng, Ching-Feng; Kuo, Terry B J; Chen, Wei-Nan; Lin, Chao-Chieh; Chen, Chih-Cheng

    2014-01-01

    Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3) is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3(-/-) mice. Asic3(-/-) mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3(-/-) mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3(-/-) mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  4. Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure

    PubMed Central

    Xu, Jianchao; Li, Guoyong; Wang, Peili; Velazquez, Heino; Yao, Xiaoqiang; Li, Yanyan; Wu, Yanling; Peixoto, Aldo; Crowley, Susan; Desir, Gary V.

    2005-01-01

    The kidney not only regulates fluid and electrolyte balance but also functions as an endocrine organ. For instance, it is the major source of circulating erythropoietin and renin. Despite currently available therapies, there is a marked increase in cardiovascular morbidity and mortality among patients suffering from end-stage renal disease. We hypothesized that the current understanding of the endocrine function of the kidney was incomplete and that the organ might secrete additional proteins with important biological roles. Here we report the identification of a novel flavin adenine dinucleotide–dependent amine oxidase (renalase) that is secreted into the blood by the kidney and metabolizes catecholamines in vitro (renalase metabolizes dopamine most efficiently, followed by epinephrine, and then norepinephrine). In humans, renalase gene expression is highest in the kidney but is also detectable in the heart, skeletal muscle, and the small intestine. The plasma concentration of renalase is markedly reduced in patients with end-stage renal disease, as compared with healthy subjects. Renalase infusion in rats caused a decrease in cardiac contractility, heart rate, and blood pressure and prevented a compensatory increase in peripheral vascular tone. These results identify renalase as what we believe to be a novel amine oxidase that is secreted by the kidney, circulates in blood, and modulates cardiac function and systemic blood pressure. PMID:15841207

  5. Macaque Cardiac Physiology Is Sensitive to the Valence of Passively Viewed Sensory Stimuli

    PubMed Central

    Bliss-Moreau, Eliza; Machado, Christopher J.; Amaral, David G.

    2013-01-01

    Autonomic nervous system activity is an important component of affective experience. We demonstrate in the rhesus monkey that both the sympathetic and parasympathetic branches of the autonomic nervous system respond differentially to the affective valence of passively viewed video stimuli. We recorded cardiac impedance and an electrocardiogram while adult macaques watched a series of 300 30-second videos that varied in their affective content. We found that sympathetic activity (as measured by cardiac pre-ejection period) increased and parasympathetic activity (as measured by respiratory sinus arrhythmia) decreased as video content changes from positive to negative. These findings parallel the relationship between autonomic nervous system responsivity and valence of stimuli in humans. Given the relationship between human cardiac physiology and affective processing, these findings suggest that macaque cardiac physiology may be an index of affect in nonverbal animals. PMID:23940712

  6. Pregnancy as a cardiac stress model

    PubMed Central

    Chung, Eunhee; Leinwand, Leslie A.

    2014-01-01

    Cardiac hypertrophy occurs during pregnancy as a consequence of both volume overload and hormonal changes. Both pregnancy- and exercise-induced cardiac hypertrophy are generally thought to be similar and physiological. Despite the fact that there are shared transcriptional responses in both forms of cardiac adaptation, pregnancy results in a distinct signature of gene expression in the heart. In some cases, however, pregnancy can induce adverse cardiac events in previously healthy women without any known cardiovascular disease. Peripartum cardiomyopathy is the leading cause of non-obstetric mortality during pregnancy. To understand how pregnancy can cause heart disease, it is first important to understand cardiac adaptation during normal pregnancy. This review provides an overview of the cardiac consequences of pregnancy, including haemodynamic, functional, structural, and morphological adaptations, as well as molecular phenotypes. In addition, this review describes the signalling pathways responsible for pregnancy-induced cardiac hypertrophy and angiogenesis. We also compare and contrast cardiac adaptation in response to disease, exercise, and pregnancy. The comparisons of these settings of cardiac hypertrophy provide insight into pregnancy-associated cardiac adaptation. PMID:24448313

  7. Residential Proximity to Major Roadways Is Not Associated with Cardiac Function in African Americans: Results from the Jackson Heart Study.

    PubMed

    Weaver, Anne M; Wellenius, Gregory A; Wu, Wen-Chih; Hickson, DeMarc A; Kamalesh, Masoor; Wang, Yi

    2016-06-13

    Cardiovascular disease (CVD), including heart failure, is a major cause of morbidity and mortality, particularly among African Americans. Exposure to ambient air pollution, such as that produced by vehicular traffic, is believed to be associated with heart failure, possibly by impairing cardiac function. We evaluated the cross-sectional association between residential proximity to major roads, a marker of long-term exposure to traffic-related pollution, and echocardiographic indicators of left and pulmonary vascular function in African Americans enrolled in the Jackson Heart Study (JHS): left ventricular ejection fraction, E-wave velocity, isovolumic relaxation time, left atrial diameter index, and pulmonary artery systolic pressure. We examined these associations using multivariable linear or logistic regression, adjusting for potential confounders. Of 4866 participants at study enrollment, 106 lived <150 m, 159 lived 150-299 m, 1161 lived 300-999 m, and 3440 lived ≥1000 m from a major roadway. We did not observe any associations between residential distance to major roads and these markers of cardiac function. Results were similar with additional adjustment for diabetes and hypertension, when considering varying definitions of major roadways, or when limiting analyses to those free from cardiovascular disease at baseline. Overall, we observed little evidence that residential proximity to major roads was associated with cardiac function among African Americans.

  8. Computational approaches to understand cardiac electrophysiology and arrhythmias

    PubMed Central

    Roberts, Byron N.; Yang, Pei-Chi; Behrens, Steven B.; Moreno, Jonathan D.

    2012-01-01

    Cardiac rhythms arise from electrical activity generated by precisely timed opening and closing of ion channels in individual cardiac myocytes. These impulses spread throughout the cardiac muscle to manifest as electrical waves in the whole heart. Regularity of electrical waves is critically important since they signal the heart muscle to contract, driving the primary function of the heart to act as a pump and deliver blood to the brain and vital organs. When electrical activity goes awry during a cardiac arrhythmia, the pump does not function, the brain does not receive oxygenated blood, and death ensues. For more than 50 years, mathematically based models of cardiac electrical activity have been used to improve understanding of basic mechanisms of normal and abnormal cardiac electrical function. Computer-based modeling approaches to understand cardiac activity are uniquely helpful because they allow for distillation of complex emergent behaviors into the key contributing components underlying them. Here we review the latest advances and novel concepts in the field as they relate to understanding the complex interplay between electrical, mechanical, structural, and genetic mechanisms during arrhythmia development at the level of ion channels, cells, and tissues. We also discuss the latest computational approaches to guiding arrhythmia therapy. PMID:22886409

  9. Pressor response to intravenous tyramine is a marker of cardiac, but not vascular, adrenergic function

    NASA Technical Reports Server (NTRS)

    Meck, Janice V.; Martin, David S.; D'Aunno, Dominick S.; Waters, Wendy W.

    2003-01-01

    Intravenous injections of the indirect sympathetic amine, tyramine, are used as a test of peripheral adrenergic function. The authors measured the time course of increases in ejection fraction, heart rate, systolic and diastolic pressure, popliteal artery flow, and greater saphenous vein diameter before and after an injection of 4.0 mg/m(2) body surface area of tyramine in normal human subjects. The tyramine caused moderate, significant increases in systolic pressure and significant decreases in total peripheral resistance. The earliest changes were a 30% increase in ejection fraction and a 16% increase in systolic pressure, followed by a 60% increase in popliteal artery flow and a later 11% increase in greater saphenous vein diameter. There were no changes in diastolic pressure or heart rate. These results suggest that pressor responses during tyramine injections are primarily due to an inotropic response that increases cardiac output and pressure and causes a reflex decrease in vascular resistance. Thus, tyramine pressor tests are a measure of cardiac, but not vascular, sympathetic function.

  10. Mapping arginine methylation in the human body and cardiac disease.

    PubMed

    Onwuli, Donatus O; Rigau-Roca, Laura; Cawthorne, Chris; Beltran-Alvarez, Pedro

    2017-01-01

    Arginine methylation (ArgMe) is one of the most ubiquitous PTMs, and hundreds of proteins undergo ArgMe in, for example, brain. However, the scope of ArgMe in many tissues, including the heart, is currently underexplored. Here, we aimed to (i) identify proteins undergoing ArgMe in human organs, and (ii) expose the relevance of ArgMe in cardiac disease. The publicly available proteomic data is used to search for ArgMe in 13 human tissues. To induce H9c2 cardiac-like cell hypertrophy glucose is used. The results show that ArgMe is mainly tissue-specific; nevertheless, the authors suggest an embryonic origin of core ArgMe events. In the heart, 103 mostly novel ArgMe sites in 58 nonhistone proteins are found. The authors provide compelling evidence that cardiac protein ArgMe is relevant to cardiomyocyte ontology, and important for proper cardiac function. This is highlighted by the fact that genetic mutations affecting methylated arginine positions are often associated with cardiac disease, including hypertrophic cardiomyopathy. The pilot experimental data suggesting significant changes in ArgMe profiles of H9c2 cells upon induction of cell hypertrophy using glucose is provided. The work calls for in-depth investigation of ArgMe in normal and diseased tissues using methods including clinical proteomics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Cardiac Fibroblasts Adopt Osteogenic Fates and Can Be Targeted to Attenuate Pathological Heart Calcification.

    PubMed

    Pillai, Indulekha C L; Li, Shen; Romay, Milagros; Lam, Larry; Lu, Yan; Huang, Jie; Dillard, Nathaniel; Zemanova, Marketa; Rubbi, Liudmilla; Wang, Yibin; Lee, Jason; Xia, Ming; Liang, Owen; Xie, Ya-Hong; Pellegrini, Matteo; Lusis, Aldons J; Deb, Arjun

    2017-02-02

    Mammalian tissues calcify with age and injury. Analogous to bone formation, osteogenic cells are thought to be recruited to the affected tissue and induce mineralization. In the heart, calcification of cardiac muscle leads to conduction system disturbances and is one of the most common pathologies underlying heart blocks. However the cell identity and mechanisms contributing to pathological heart muscle calcification remain unknown. Using lineage tracing, murine models of heart calcification and in vivo transplantation assays, we show that cardiac fibroblasts (CFs) adopt an osteoblast cell-like fate and contribute directly to heart muscle calcification. Small-molecule inhibition of ENPP1, an enzyme that is induced upon injury and regulates bone mineralization, significantly attenuated cardiac calcification. Inhibitors of bone mineralization completely prevented ectopic cardiac calcification and improved post injury heart function. Taken together, these findings highlight the plasticity of fibroblasts in contributing to ectopic calcification and identify pharmacological targets for therapeutic development. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Cardiac myocyte exosomes: stability, HSP60, and proteomics.

    PubMed

    Malik, Z A; Kott, K S; Poe, A J; Kuo, T; Chen, L; Ferrara, K W; Knowlton, A A

    2013-04-01

    Exosomes, which are 50- to 100-nm-diameter lipid vesicles, have been implicated in intercellular communication, including transmitting malignancy, and as a way for viral particles to evade detection while spreading to new cells. Previously, we demonstrated that adult cardiac myocytes release heat shock protein (HSP)60 in exosomes. Extracellular HSP60, when not in exosomes, causes cardiac myocyte apoptosis via the activation of Toll-like receptor 4. Thus, release of HSP60 from exosomes would be damaging to the surrounding cardiac myocytes. We hypothesized that 1) pathological changes in the environment, such as fever, change in pH, or ethanol consumption, would increase exosome permeability; 2) different exosome inducers would result in different exosomal protein content; 3) ethanol at "physiological" concentrations would cause exosome release; and 4) ROS production is an underlying mechanism of increased exosome production. We found the following: first, exosomes retained their protein cargo under different physiological/pathological conditions, based on Western blot analyses. Second, mass spectrometry demonstrated that the protein content of cardiac exosomes differed significantly from other types of exosomes in the literature and contained cytosolic, sarcomeric, and mitochondrial proteins. Third, ethanol did not affect exosome stability but greatly increased the production of exosomes by cardiac myocytes. Fourth, ethanol- and hypoxia/reoxygenation-derived exosomes had different protein content. Finally, ROS inhibition reduced exosome production but did not completely inhibit it. In conclusion, exosomal protein content is influenced by the cell source and stimulus for exosome formation. ROS stimulate exosome production. The functions of exosomes remain to be fully elucidated.

  13. Pacsin 2 is required for the maintenance of a normal cardiac function in the developing mouse heart.

    PubMed

    Semmler, Judith; Kormann, Jan; Srinivasan, Sureshkumar Perumal; Köster, Annette; Sälzer, Daniel; Reppel, Michael; Hescheler, Jürgen; Plomann, Markus; Nguemo, Filomain

    2018-02-01

    The Pacsin proteins (Pacsin 1, 2 and 3) play an important role in intracellular trafficking and thereby signal transduction in many cells types. This study was designed to examine the role of Pacsin 2 in cardiac development and function. We investigated the development and electrophysiological properties of Pacsin 2 knockout (P2KO) hearts and single cardiomyocytes isolated from 11.5 and 15.5days old fetal mice. Immunofluorescence experiments confirmed the lack of Pacsin 2 protein expression in P2KO cardiac myocytes in comparison to wildtype (WT). Western blotting demonstrates low expression levels of connexin 43 and T-box 3 proteins in P2KO compared to wildtype (WT). Electrophysiology measurements including online Multi-Electrode Array (MEA) based field potential (FP) recordings on isolated whole heart of P2KO mice showed a prolonged AV-conduction time. Patch clamp measurements of P2KO cardiomyocytes revealed differences in action potential (AP) parameters and decreased pacemaker funny channel (I f ), as well as L-type Ca 2+ channel (I CaL ), and sodium channel (I Na ). These findings demonstrate that Pacsin 2 is necessary for cardiac development and function in mouse embryos, which will enhance our knowledge to better understand the genesis of cardiovascular diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Matrine pretreatment improves cardiac function in rats with diabetic cardiomyopathy via suppressing ROS/TLR-4 signaling pathway.

    PubMed

    Liu, Zhong-wei; Wang, Jun-kui; Qiu, Chuan; Guan, Gong-chang; Liu, Xin-hong; Li, Shang-jian; Deng, Zheng-rong

    2015-03-01

    Matrine is an alkaloid from Sophora alopecuroides L, which has shown a variety of pharmacological activities and potential therapeutic value in cardiovascular diseases. In this study we examined the protective effects of matrine against diabetic cardiomyopathy (DCM) in rats. Male SD rats were injected with streptozotocin (STZ) to induce DCM. One group of DCM rats was pretreated with matrine (200 mg·kg(-1)·d(-1), po) for 10 consecutive days before STZ injection. Left ventricular function was evaluated using invasive hemodynamic examination, and myocardiac apoptosis was assessed. Primary rat myocytes were used for in vitro experiments. Intracellular ROS generation, MDA content and GPx activity were determined. Real-time PCR and Western blotting were performed to detect the expression of relevant mRNAs and proteins. DCM rats exhibited abnormally elevated non-fasting blood glucose levels at 4 weeks after STZ injection, and LV function impairment at 16 weeks. The cardiac tissues of DCM rats showed markedly increased apoptosis, excessive ROS production, and activation of TLR-4/MyD-88/caspase-8/caspase-3 signaling. Pretreatment with matrine significantly decreased non-fasting blood glucose levels and improved LV function in DCM rats, which were associated with reducing apoptosis and ROS production, and suppressing TLR-4/MyD-88/caspase-8/caspase-3 signaling in cardiac tissues. Incubation in a high-glucose medium induced oxidative stress and activation of TLR-4/MyD-88 signaling in cultured myocytes in vitro, which were significantly attenuated by pretreatment with N-acetylcysteine. Excessive ROS production in DCM activates the TLR-4/MyD-88 signaling, resulting in cardiomyocyte apoptosis, whereas pretreatment with matrine improves cardiac function via suppressing ROS/TLR-4 signaling pathway.

  15. Impaired cardiac contractile function in arginine:glycine amidinotransferase knockout mice devoid of creatine is rescued by homoarginine but not creatine

    PubMed Central

    Faller, Kiterie M E; Atzler, Dorothee; McAndrew, Debra J; Zervou, Sevasti; Whittington, Hannah J; Simon, Jillian N; Aksentijevic, Dunja; ten Hove, Michiel; Choe, Chi-un; Isbrandt, Dirk; Casadei, Barbara; Schneider, Jurgen E; Neubauer, Stefan; Lygate, Craig A

    2018-01-01

    Abstract Aims Creatine buffers cellular adenosine triphosphate (ATP) via the creatine kinase reaction. Creatine levels are reduced in heart failure, but their contribution to pathophysiology is unclear. Arginine:glycine amidinotransferase (AGAT) in the kidney catalyses both the first step in creatine biosynthesis as well as homoarginine (HA) synthesis. AGAT-/- mice fed a creatine-free diet have a whole body creatine-deficiency. We hypothesized that AGAT-/- mice would develop cardiac dysfunction and rescue by dietary creatine would imply causality. Methods and results Withdrawal of dietary creatine in AGAT-/- mice provided an estimate of myocardial creatine efflux of ∼2.7%/day; however, in vivo cardiac function was maintained despite low levels of myocardial creatine. Using AGAT-/- mice naïve to dietary creatine we confirmed absence of phosphocreatine in the heart, but crucially, ATP levels were unchanged. Potential compensatory adaptations were absent, AMPK was not activated and respiration in isolated mitochondria was normal. AGAT-/- mice had rescuable changes in body water and organ weights suggesting a role for creatine as a compatible osmolyte. Creatine-naïve AGAT-/- mice had haemodynamic impairment with low LV systolic pressure and reduced inotropy, lusitropy, and contractile reserve. Creatine supplementation only corrected systolic pressure despite normalization of myocardial creatine. AGAT-/- mice had low plasma HA and supplementation completely rescued all other haemodynamic parameters. Contractile dysfunction in AGAT-/- was confirmed in Langendorff perfused hearts and in creatine-replete isolated cardiomyocytes, indicating that HA is necessary for normal cardiac function. Conclusions Our findings argue against low myocardial creatine per se as a major contributor to cardiac dysfunction. Conversely, we show that HA deficiency can impair cardiac function, which may explain why low HA is an independent risk factor for multiple cardiovascular diseases

  16. Characterization of Glutamatergic Neurons in the Rat Atrial Intrinsic Cardiac Ganglia that Project to the Cardiac Ventricular Wall

    PubMed Central

    Wang, Ting; Miller, Kenneth E.

    2016-01-01

    The intrinsic cardiac nervous system modulates cardiac function by acting as an integration site for regulating autonomic efferent cardiac output. This intrinsic system is proposed to be composed of a short cardio-cardiac feedback control loop within the cardiac innervation hierarchy. For example, electrophysiological studies have postulated the presence of sensory neurons in intrinsic cardiac ganglia for regional cardiac control. There is still a knowledge gap, however, about the anatomical location and neurochemical phenotype of sensory neurons inside intrinsic cardiac ganglia. In the present study, rat intrinsic cardiac ganglia neurons were characterized neurochemically with immunohistochemistry using glutamatergic markers: vesicular glutamate transporters 1 and 2 (VGLUT1; VGLUT2), and glutaminase (GLS), the enzyme essential for glutamate production. Glutamatergic neurons (VGLUT1/VGLUT2/GLS) in the ICG that have axons to the ventricles were identified by retrograde tracing of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injected in the ventricular wall. Co-labeling of VGLUT1, VGLUT2, and GLS with the vesicular acetylcholine transporter (VAChT) was used to evaluate the relationship between post-ganglionic autonomic neurons and glutamatergic neurons. Sequential labeling of VGLUT1 and VGLUT2 in adjacent tissue sections was used to evaluate the co-localization of VGLUT1 and VGLUT2 in ICG neurons. Our studies yielded the following results: (1) intrinsic cardiac ganglia contain glutamatergic neurons with GLS for glutamate production and VGLUT1 and 2 for transport of glutamate into synaptic vesicles; (2) atrial intrinsic cardiac ganglia contain neurons that project to ventricle walls and these neurons are glutamatergic; (3) many glutamatergic ICG neurons also were cholinergic, expressing VAChT. (4) VGLUT1 and VGLUT2 co-localization occurred in ICG neurons with variation of their protein expression level. Investigation of both glutamatergic and cholinergic ICG

  17. The effects of pleural fluid drainage on respiratory function in mechanically ventilated patients after cardiac surgery

    PubMed Central

    Brims, Fraser J H; Davies, Michael G; Elia, Andy; Griffiths, Mark J D

    2015-01-01

    Background Pleural effusions occur commonly after cardiac surgery and the effects of drainage on gas exchange in this population are not well established. We examined pulmonary function indices following drainage of pleural effusions in cardiac surgery patients. Methods We performed a retrospective study examining the effects of pleural fluid drainage on the lung function indices of patients recovering from cardiac surgery requiring mechanical ventilation for more than 7 days. We specifically analysed patients who had pleural fluid removed via an intercostal tube (ICT: drain group) compared with those of a control group (no effusion, no ICT). Results In the drain group, 52 ICTs were sited in 45 patients. The mean (SD) volume of fluid drained was 1180 (634) mL. Indices of oxygenation were significantly worse in the drain group compared with controls prior to drainage. The arterial oxygen tension (PaO2)/fractional inspired oxygen (FiO2) (P/F) ratio improved on day 1 after ICT placement (mean (SD), day 0: 31.01 (8.92) vs 37.18 (10.7); p<0.05) and both the P/F ratio and oxygenation index (OI: kPa/cm H2O=PaO2/mean airway pressure×FiO2) demonstrated sustained improvement to day 5 (P/F day 5: 39.85 (12.8); OI day 0: 2.88 (1.10) vs day 5: 4.06 (1.73); both p<0.01). The drain group patients were more likely to have an improved mode of ventilation on day 1 compared with controls (p=0.028). Conclusions Pleural effusion after cardiac surgery may impair oxygenation. Drainage of pleural fluid is associated with a rapid and sustained improvement in oxygenation. PMID:26339492

  18. Unexpected and rapid recovery of left ventricular function in patients with peripartum cardiomyopathy: impact of cardiac resynchronization therapy.

    PubMed

    Mouquet, Frederic; Mostefa Kara, Meriem; Lamblin, Nicolas; Coulon, Capucine; Langlois, Stephane; Marquie, Christelle; de Groote, Pascal

    2012-05-01

    Aim Peripartum cardiomyopathy (PPCM) is a rare cause of dilated cardiomyopathy responsible for heart failure toward the end of pregnancy, which can lead to chronic heart failure in 50% of cases. In this short report, we assessed the benefit of cardiac resynchronization in patients with PPCM and chronic systolic dysfunction despite optimal medical treatment. For the last 10 years, we managed eight patients diagnosed with PPCM. Two of them presented severe systolic dysfunction, and medical treatment resulted in limited improvement from 10% to 25% and from 25% to 28% despite optimal treatment for 9 and 6 years, respectively. These two patients were porposed to receive an implantatable cardioverter defibrillator (ICD) and cardiac resynchronization therapy (CRT). Six months after ICD-CRT treatment, we observed a significant improvement in systolic function from 25% to 45% and 28% to 50%, respectively, and positive remodelling with reduction of left ventricular end-diastolic volume from 216 to 144 mL and from 354 to 105 mL, which represent a 34% and a 70% reduction, respectively. Physicians in charge of patients with PPCM should offer the opportunity of CRT for patients whose cardiac function has not significantly improved under standard medical treatment.

  19. Distinct Functional Roles of Cardiac Mitochondrial Subpopulations Revealed by a 3D Simulation Model

    PubMed Central

    Hatano, Asuka; Okada, Jun-ichi; Washio, Takumi; Hisada, Toshiaki; Sugiura, Seiryo

    2015-01-01

    Experimental characterization of two cardiac mitochondrial subpopulations, namely, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), has been hampered by technical difficulties, and an alternative approach is eagerly awaited. We previously developed a three-dimensional computational cardiomyocyte model that integrates electrophysiology, metabolism, and mechanics with subcellular structure. In this study, we further developed our model to include intracellular oxygen diffusion, and determined whether mitochondrial localization or intrinsic properties cause functional variations. For this purpose, we created two models: one with equal SSM and IFM properties and one with IFM having higher activity levels. Using these two models to compare the SSM and IFM responses of [Ca2+], tricarboxylic acid cycle activity, [NADH], and mitochondrial inner membrane potential to abrupt changes in pacing frequency (0.25–2 Hz), we found that the reported functional differences between these subpopulations appear to be mostly related to local [Ca2+] heterogeneity, and variations in intrinsic properties only serve to augment these differences. We also examined the effect of hypoxia on mitochondrial function. Under normoxic conditions, intracellular oxygen is much higher throughout the cell than the half-saturation concentration for oxidative phosphorylation. However, under limited oxygen supply, oxygen is mostly exhausted in SSM, leaving the core region in an anoxic condition. Reflecting this heterogeneous oxygen environment, the inner membrane potential continues to decrease in IFM, whereas it is maintained to nearly normal levels in SSM, thereby ensuring ATP supply to this region. Our simulation results provide clues to understanding the origin of functional variations in two cardiac mitochondrial subpopulations and their differential roles in maintaining cardiomyocyte function as a whole. PMID:26039174

  20. Racial differences in sudden cardiac death

    PubMed Central

    Fender, Erin A.; Henrikson, Charles A.; Tereshchenko, Larisa

    2014-01-01

    There is an increased risk of sudden cardiac death (SCD) and sudden cardiac arrest (SCA), in African Americans, the basis of which is likely multifactorial. African Americans have higher rates of traditional cardiac risk factors including hypertension, left ventricular hypertrophy, diabetes, coronary heart disease, and heart failure. There are also significant disparities in health care delivery. While these factors undoubtedly affect health outcomes, there is also growing evidence that genetics may have a significant impact as well. In this paper, we discuss data and hypotheses in support of both sides of the controversy around racial differences in SCD/SCA. PMID:25155390

  1. The E-domain region of mechano-growth factor inhibits cellular apoptosis and preserves cardiac function during myocardial infarction.

    PubMed

    Mavrommatis, Evangelos; Shioura, Krystyna M; Los, Tamara; Goldspink, Paul H

    2013-09-01

    Insulin-like growth factor-1 (IGF-1) isoforms are expressed via alternative splicing. Expression of the minor isoform IGF-1Eb [also known as mechano-growth factor (MGF)] is responsive to cell stress. Since IGF-1 isoforms differ in their E-domain regions, we are interested in determining the biological function of the MGF E-domain. To do so, a synthetic peptide analog was used to gain mechanistic insight into the actions of the E-domain. Treatment of H9c2 cells indicated a rapid cellular uptake mechanism that did not involve IGF-1 receptor activation but resulted in a nuclear localization. Peptide treatment inhibited the intrinsic apoptotic pathway in H9c2 cells subjected to cell stress with sorbitol by preventing the collapse of the mitochondrial membrane potential and inhibition of caspase-3 activation. Therefore, we administered the peptide at the time of myocardial infarction (MI) in mice. At 2 weeks post-MI cardiac function, gene expression and cell death were assayed. A significant decline in both systolic and diastolic function was evident in untreated mice based on PV loop analysis. Delivery of the E-peptide ameliorated the decline in function and resulted in significant preservation of cardiac contractility. Associated with these changes were an inhibition of pathologic hypertrophy and significantly fewer apoptotic nuclei in the viable myocardium of E-peptide-treated mice post-MI. We conclude that administration of the MGF E-domain peptide may provide a means of modulating local tissue IGF-1 autocrine/paracrine actions to preserve cardiac function, prevent cell death, and pathologic remodeling in the heart.

  2. Cardiac myofilaments: mechanics and regulation

    NASA Technical Reports Server (NTRS)

    de Tombe, Pieter P.; Bers, D. M. (Principal Investigator)

    2003-01-01

    The mechanical properties of the cardiac myofilament are an important determinant of pump function of the heart. This report is focused on the regulation of myofilament function in cardiac muscle. Calcium ions form the trigger that induces activation of the thin filament which, in turn, allows for cross-bridge formation, ATP hydrolysis, and force development. The structure and protein-protein interactions of the cardiac sarcomere that are responsible for these processes will be reviewed. The molecular mechanism that underlies myofilament activation is incompletely understood. Recent experimental approaches have been employed to unravel the mechanism and regulation of myofilament mechanics and energetics by activator calcium and sarcomere length, as well as contractile protein phosphorylation mediated by protein kinase A. Central to these studies is the question whether such factors impact on muscle function simply by altering thin filament activation state, or whether modulation of cross-bridge cycling also plays a part in the responses of muscle to these stimuli.

  3. Sarcolemmal cholesterol and caveolin-3 dependence of cardiac function, ischemic tolerance, and opioidergic cardioprotection

    PubMed Central

    See Hoe, Louise E.; Schilling, Jan M.; Tarbit, Emiri; Kiessling, Can J.; Busija, Anna R.; Niesman, Ingrid R.; Du Toit, Eugene; Ashton, Kevin J.; Roth, David M.; Headrick, John P.; Patel, Hemal H.

    2014-01-01

    Cholesterol-rich caveolar microdomains and associated caveolins influence sarcolemmal ion channel and receptor function and protective stress signaling. However, the importance of membrane cholesterol content to cardiovascular function and myocardial responses to ischemia-reperfusion (I/R) and cardioprotective stimuli are unclear. We assessed the effects of graded cholesterol depletion with methyl-β-cyclodextrin (MβCD) and lifelong knockout (KO) or overexpression (OE) of caveolin-3 (Cav-3) on cardiac function, I/R tolerance, and opioid receptor (OR)-mediated protection. Langendorff-perfused hearts from young male C57Bl/6 mice were untreated or treated with 0.02–1.0 mM MβCD for 25 min to deplete membrane cholesterol and disrupt caveolae. Hearts were subjected to 25-min ischemia/45-min reperfusion, and the cardioprotective effects of morphine applied either acutely or chronically [sustained ligand-activated preconditioning (SLP)] were assessed. MβCD concentration dependently reduced normoxic contractile function and postischemic outcomes in association with graded (10–30%) reductions in sarcolemmal cholesterol. Cardioprotection with acute morphine was abolished with ≥20 μM MβCD, whereas SLP was more robust and only inhibited with ≥200 μM MβCD. Deletion of Cav-3 also reduced, whereas Cav-3 OE improved, myocardial I/R tolerance. Protection via SLP remained equally effective in Cav-3 KO mice and was additive with innate protection arising with Cav-3 OE. These data reveal the membrane cholesterol dependence of normoxic myocardial and coronary function, I/R tolerance, and OR-mediated cardioprotection in murine hearts (all declining with cholesterol depletion). In contrast, baseline function appears insensitive to Cav-3, whereas cardiac I/R tolerance parallels Cav-3 expression. Novel SLP appears unique, being less sensitive to cholesterol depletion than acute OR protection and arising independently of Cav-3 expression. PMID:25063791

  4. Effects of cigarette smoking on cardiac autonomic function during dynamic exercise.

    PubMed

    Mendonca, Goncalo V; Pereira, Fernando D; Fernhall, Bo

    2011-06-01

    The purpose of this study was to investigate the acute effect of cigarette smoking on cardiac autonomic function in young adult smokers during dynamic exercise. Fourteen healthy young smokers (21.4 ± 3.4 years) performed peak and submaximal exercise protocols under control and smoking conditions. Resting and submaximal beat-to-beat R-R series were recorded and spectrally decomposed using the fast Fourier transformation. Smoking resulted in a significant decrease in work time, VO(2peak) and peak O(2) pulse (P < 0.05). Heart rate increased at rest and during submaximal exercise after smoking (P < 0.05). The raw high frequency and low frequency power were significantly reduced by smoking, both at rest and during exercise (P < 0.05). The low to high frequency ratio was higher after smoking (P < 0.05). The normalised low frequency power was also significantly increased by smoking, but only at rest (P < 0.05). These data demonstrate that the tachycardic effect elicited by smoking is accompanied by acute changes in heart rate spectral components both at rest and during exercise. Therefore, the cardiac autonomic control is altered by smoking not only at rest, but also during exercise, resulting in reduced vagal modulation and increased sympathetic dominance.

  5. Cardiac rhythm and pacemaking abnormalities in patients affected by endemic pemphigus in Colombia may be the result of deposition of autoantibodies, complement, fibrinogen, and other molecules.

    PubMed

    Abreu Velez, Ana Maria; Howard, Michael S; Velazquez-Velez, Jorge Enrique

    2018-05-01

    We previously showed that one-third of patients affected by endemic pemphigus foliaceus in El Bagre, Colombia (El Bagre-EPF), display autoreactivity to the heart. The purpose of this study was to investigate rhythm disturbances with the presence of autoantibodies and correlate them with ECG changes in these patients. We performed a study comparing 30 patients and 30 controls from the endemic area, matched by demographics, including age, sex, weight, work activities, and comorbidities. ECG as well as direct and indirect immunofluorescence, immunohistochemistry, and confocal microscopic studies focusing on cardiac node abnormalities were performed. Autopsies of 7 patients also were reviewed. The main ECG abnormalities seen in the El Bagre-EPF patients were sinus bradycardia (in one-half), followed by left bundle branch block, left posterior fascicular block, and left anterior fascicular block compared with the controls. One-third of the patients displayed polyclonal autoantibodies against the sinoatrial and/or AV nodes and the His bundle correlating with rhythm anomalies and delays in the cardiac conduction system (P <.01). The patient antibodies colocalized with commercial antibodies to desmoplakins I and II, p0071, armadillo repeat gene deleted in velo-cardio-facial syndrome (ARVCF), and myocardium-enriched zonula occludens-1-associated protein (MYZAP; Progen Biotechnik) (P <.01). One-third of the patients affected by El Bagre-EPF have rhythm abnormalities that slow the conduction of impulses in cardiac nodes and the cardiac conduction system. These abnormalities likely occur as a result of deposition of autoantibodies, complement, and other inflammatory molecules. We show for the first time that MYZAP is present in cardiac nodes. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  6. Cardiac emergencies and problems of the critical care patient.

    PubMed

    Marr, Celia M

    2004-04-01

    Cardiac disease and dysfunction can occur as a primary disorder(ie, with pathology situated in one or more of the cardiac structures) or can be classified as a secondary problem when it occurs in patients with another primary problem that has affected the heart either directly or indirectly. Primary cardiac problems are encountered in horses presented to emergency clinics; however,this occurs much less frequently in equine critical patients than cardiac problems arising secondary to other conditions. Nevertheless,if primary or secondary cardiac problems are not identified and addressed, they certainly contribute to the morbidity and mortality of critical care patients.

  7. Self-Efficacy as a Marker of Cardiac Function and Predictor of Heart Failure Hospitalization and Mortality in Patients With Stable Coronary Heart Disease: Findings From the Heart and Soul Study

    PubMed Central

    Sarkar, Urmimala; Ali, Sadia; Whooley, Mary A.

    2009-01-01

    Objective The authors sought to evaluate the association of self-efficacy with objective measures of cardiac function, subsequent hospitalization for heart failure (HF), and all-cause mortality. Design Observational cohort of ambulatory patients with stable CHD. The authors measured self-efficacy using a published, validated, 5-item summative scale, the Sullivan Self-Efficacy to Maintain Function Scale. The authors also performed a cardiac assessment, including an exercise treadmill test with stress echocardiography. Main Outcome Measures Hospitalizations for HF, as determined by blinded review of medical records, and all-cause mortality, with adjustment for demographics, medical history, medication use, depressive symptoms, and social support. Results Of the 1,024 predominately male, older CHD patients, 1013 (99%) were available for follow-up, 124 (12%) were hospitalized for HF, and 235 (23%) died during 4.3 years of follow-up. Mean cardiac self-efficacy score was 9.7 (SD 4.5, range 0–20), corresponding to responses between “not at all confident” and “somewhat confident” for ability to maintain function. Lower self-efficacy predicted subsequent HF hospitalization (OR per SD decrease = 1.4, p = 0006), and all-cause mortality (OR per SD decrease = 1.4, p < .0001). After adjustment, the association of cardiac self-efficacy with both HF hospitalization and mortality was explained by worse baseline cardiac function. Conclusion Among patients with CHD, self-efficacy was a reasonable proxy for predicting HF hospitalizations. The increased risk of HF associated with lower baseline self-efficacy was explained by worse cardiac function. These findings indicate that measuring cardiac self-efficacy provides a rapid and potentially useful assessment of cardiac function among outpatients with CHD. PMID:19290708

  8. Akt2 knockout alleviates prolonged caloric restriction-induced change in cardiac contractile function through regulation of autophagy.

    PubMed

    Zhang, Yingmei; Han, Xuefeng; Hu, Nan; Huff, Anna F; Gao, Feng; Ren, Jun

    2014-06-01

    Caloric restriction leads to changes in heart geometry and function although the underlying mechanism remains elusive. Autophagy, a conserved pathway for degradation of intracellular proteins and organelles, preserves energy and nutrient in the face of caloric insufficiency. This study was designed to examine the role of Akt2 in prolonged caloric restriction-induced change in cardiac homeostasis and the underlying mechanism(s) involved. Wild-type (WT) and Akt2 knockout mice were calorie restricted (by 40%) for 30weeks. Echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties, autophagy and its regulatory proteins were evaluated. Caloric restriction compromised echocardiographic indices (decreased left ventricular mass, left ventricular diameters and cardiac output), cardiomyocyte contractile and intracellular Ca(2+) properties associated with dampened SERCA2a phosphorylation, upregulated phospholamban and autophagy (Beclin-1, Atg7, LC3BII-to-LC3BI ratio), increased autophagy adaptor protein p62, elevated phosphorylation of AMPK, Akt2 and the Akt downstream signal molecule TSC2, the effects of which with the exception of autophagy protein markers (Beclin-1, Atg7, LC3B) and AMPK were mitigated or significantly alleviated by Akt2 knockout. Lysosomal inhibition using bafilomycin A1 negated Akt2 knockout-induced protective effect on p62. Evaluation of downstream signaling molecules of Akt and AMPK including mTOR and ULK1 revealed that caloric restriction suppressed and promoted phosphorylation of mTOR and ULK1, respectively, without affecting total mTOR and ULK1 expression. Akt2 knockout significantly augmented caloric restriction-induced responses on mTOR and ULK1. Taken together, these data suggest a beneficial role of Akt2 knockout in preservation of cardiac homeostasis against prolonged caloric restriction-induced pathological changes possibly through facilitating autophagy. This article is part of a Special Issue entitled "Protein Quality

  9. Detraining Differentially Preserved Beneficial Effects of Exercise on Hypertension: Effects on Blood Pressure, Cardiac Function, Brain Inflammatory Cytokines and Oxidative Stress

    PubMed Central

    Agarwal, Deepmala; Dange, Rahul B.; Vila, Jorge; Otamendi, Arturo J.; Francis, Joseph

    2012-01-01

    Aims This study sought to investigate the effects of physical detraining on blood pressure (BP) and cardiac morphology and function in hypertension, and on pro- and anti-inflammatory cytokines (PICs and AIC) and oxidative stress within the brain of hypertensive rats. Methods and Results Hypertension was induced in male Sprague-Dawley rats by delivering AngiotensinII for 42 days using implanted osmotic minipumps. Rats were randomized into sedentary, trained, and detrained groups. Trained rats underwent moderate-intensity exercise (ExT) for 42 days, whereas, detrained groups underwent 28 days of exercise followed by 14 days of detraining. BP and cardiac function were evaluated by radio-telemetry and echocardiography, respectively. At the end, the paraventricular nucleus (PVN) was analyzed by Real-time RT-PCR and Western blot. ExT in AngII-infused rats caused delayed progression of hypertension, reduced cardiac hypertrophy, and improved diastolic function. These results were associated with significantly reduced PICs, increased AIC (interleukin (IL)-10), and attenuated oxidative stress in the PVN. Detraining did not abolish the exercise-induced attenuation in MAP in hypertensive rats; however, detraining failed to completely preserve exercise-mediated improvement in cardiac hypertrophy and function. Additionally, detraining did not reverse exercise-induced improvement in PICs in the PVN of hypertensive rats; however, the improvements in IL-10 were abolished. Conclusion These results indicate that although 2 weeks of detraining is not long enough to completely abolish the beneficial effects of regular exercise, continuing cessation of exercise may lead to detrimental effects. PMID:23285093

  10. Heme Oxygenase-1 Induction Improves Cardiac Function following Myocardial Ischemia by Reducing Oxidative Stress

    PubMed Central

    Issan, Yossi; Kornowski, Ran; Aravot, Dan; Shainberg, Asher; Laniado-Schwartzman, Michal; Sodhi, Komal; Abraham, Nader G.; Hochhauser, Edith

    2014-01-01

    Background Oxidative stress plays a key role in exacerbating diabetes and cardiovascular disease. Heme oxygenase-1 (HO-1), a stress response protein, is cytoprotective, but its role in post myocardial infarction (MI) and diabetes is not fully characterized. We aimed to investigate the protection and the mechanisms of HO-1 induction in cardiomyocytes subjected to hypoxia and in diabetic mice subjected to LAD ligation. Methods In vitro: cultured cardiomyocytes were treated with cobalt-protoporphyrin (CoPP) and tin protoporphyrin (SnPP) prior to hypoxic stress. In vivo: CoPP treated streptozotocin-induced diabetic mice were subjected to LAD ligation for 2/24 h. Cardiac function, histology, biochemical damage markers and signaling pathways were measured. Results HO-1 induction lowered release of lactate dehydrogenase (LDH) and creatine phospho kinase (CK), decreased propidium iodide staining, improved cell morphology and preserved mitochondrial membrane potential in cardiomyocytes. In diabetic mice, Fractional Shortening (FS) was lower than non-diabetic mice (35±1%vs.41±2, respectively p<0.05). CoPP-treated diabetic animals improved cardiac function (43±2% p<0.01), reduced CK, Troponin T levels and infarct size compared to non-treated diabetic mice (P<0.01, P<0.001, P<0.01 respectively). CoPP-enhanced HO-1 protein levels and reduced oxidative stress in diabetic animals, as indicated by the decrease in superoxide levels in cardiac tissues and plasma TNFα levels (p<0.05). The increased levels of HO-1 by CoPP treatment after LAD ligation led to a shift of the Bcl-2/bax ratio towards the antiapoptotic process (p<0.05). CoPP significantly increased the expression levels of pAKT and pGSK3β (p<0.05) in cardiomyocytes and in diabetic mice with MI. SnPP abolished CoPP's cardioprotective effects. Conclusions HO-1 induction plays a role in cardioprotection against hypoxic damage in cardiomyocytes and in reducing post ischemic cardiac damage in the diabetic heart as proved by

  11. Pathological presentation of cardiac mitochondria in a rat model for chronic kidney disease.

    PubMed

    Bigelman, Einat; Cohen, Lena; Aharon-Hananel, Genya; Levy, Ran; Rozenbaum, Zach; Saada, Ann; Keren, Gad; Entin-Meer, Michal

    2018-01-01

    Mitochondria hold crucial importance in organs with high energy demand especially the heart. We investigated whether chronic kidney disease (CKD), which eventually culminates in cardiorenal syndrome, could affect cardiac mitochondria and assessed the potential involvement of angiotensin II (AngII) in the process. Male Lewis rats underwent 5/6 nephrectomy allowing CKD development for eight months or for eleven weeks. Short-term CKD rats were administered with AngII receptor blocker (ARB). Cardiac function was assessed by echocardiography and cardiac sections were evaluated for interstitial fibrosis and cardiomyocytes' hypertrophy. Electron microscopy was used to explore the spatial organization of the cardiomyocytes. Expression levels of mitochondrial content and activity markers were tested in order to delineate the underlying mechanisms for mitochondrial pathology in the CKD setting with or without ARB administration. CKD per-se resulted in induced cardiac interstitial fibrosis and cardiomyocytes' hypertrophy combined with a marked disruption of the mitochondrial structure. Moreover, CKD led to enhanced cytochrome C leakage to the cytosol and to enhanced PARP-1 cleavage which are associated with cellular apoptosis. ARB treatment did not improve kidney function but markedly reduced left ventricular mass, cardiomyocytes' hypertrophy and interstitial fibrosis. Interestingly, ARB administration improved the spatial organization of cardiac mitochondria and reduced their increased volume compared to untreated CKD animals. Nevertheless, ARB did not improve mitochondrial content, mitochondrial biogenesis or the respiratory enzyme activity. ARB mildly upregulated protein levels of mitochondrial fusion-related proteins. CKD results in cardiac pathological changes combined with mitochondrial damage and elevated apoptotic markers. We anticipate that the increased mitochondrial volume mainly represents mitochondrial swelling that occurs during the pathological process of

  12. Cardiac misconceptions in healthcare workers.

    PubMed

    Angus, Neil; Patience, Fiona; Maclean, Elizabeth; Corrigall, Helen; Bradbury, Ian; Thompson, David R; Atherton, Iain; Leslie, Stephen J

    2012-12-01

    Cardiac misconceptions are common and may have a detrimental effect on patients. Such misconceptions may be introduced or reinforced by vague and inconsistent advice from healthcare staff and can adversely affect health outcomes. To assess whether level of cardiac misconceptions significantly differs between groups of healthcare staff based on occupation. The 22-item York cardiac beliefs questionnaire (YCBQ) was administered to a convenience sample of healthcare staff (n = 263) in direct contact with cardiac patients. Data was also collected on the occupation of healthcare staff and years worked. Medical staff had the lowest mean score (17.5, CI 15.6-19.4), indicating fewest misconceptions, and unqualified healthcare workers had the highest mean score (32.1, CI 28.4-35.7). Analysis by ANOVA indicated differences between staff groups to be statistically significant (F = 17.66, p < 0.001). Length of time worked was found to be significantly associated with cardiac misconception score (Pearson's r = - 0.243, p < 0.001). Further analysis demonstrated that significant differences between mean group scores remained when years worked was defined as a covariate, F = 15.68, p < 0.001). There is significant variability in cardiac misconceptions in different groups of healthcare staff. Education to correct cardiac misconceptions should be particularly targeted at unqualified healthcare staff. The importance of maintaining appropriate ratios of qualified to unqualified healthcare staff in the care of cardiac patients is supported by this study.

  13. The endothelin pathway: a protective or detrimental target of bardoxolone methyl on cardiac function in patients with advanced chronic kidney disease?

    PubMed

    Camer, Danielle; Huang, Xu-Feng

    2014-01-01

    Bardoxolone methyl has been reported to cause detrimental cardiovascular events in the terminated BEACON Phase III human clinical trial via modulation of the renal endothelin pathway. However, the effects of bardoxolone methyl administration on the endothelin pathway in the heart are unknown. Our purpose in this perspective is to highlight the distinctive opposing roles of the renal and heart endothelin pathway in cardiac function. Furthermore, we address the need for further investigation in order to determine if bardoxolone methyl has a protective role in cardiac function through the suppression of the endothelin pathway in the heart. © 2014 S. Karger AG, Basel.

  14. Soccer training improves cardiac function in men with type 2 diabetes.

    PubMed

    Schmidt, Jakob Friis; Andersen, Thomas Rostgaard; Horton, Joshua; Brix, Jonathan; Tarnow, Lise; Krustrup, Peter; Andersen, Lars Juel; Bangsbo, Jens; Hansen, Peter Riis

    2013-12-01

    Patients with type 2 diabetes mellitus (T2DM) have an increased risk of cardiovascular disease, which is worsened by physical inactivity. Subclinical myocardial dysfunction is associated with increased risk of heart failure and impaired prognosis in T2DM; however, it is not clear if exercise training can counteract the early signs of diabetic heart disease. This study aimed to evaluate the effects of soccer training on cardiac function, exercise capacity, and blood pressure in middle-age men with T2DM. Twenty-one men age 49.8 ± 1.7 yr with T2DM and no history of cardiovascular disease participated in a soccer training group (n = 12) that trained 1 h twice a week or a control group (n = 9) with no change in lifestyle. Examinations included comprehensive transthoracic echocardiography, measurements of blood pressure, maximal oxygen consumption (V(˙)O(2max)), and intermittent endurance capacity before and after 12 and 24 wk. Two-way repeated-measures ANOVA was applied. After 24 wk of soccer training, left ventricular (LV) end-diastolic diameter and volume were increased (P < 0.001) compared to baseline. LV longitudinal systolic displacement was augmented by 23% (P < 0.001) and global longitudinal two-dimensional strain increased by 10% (P < 0.05). LV diastolic function, determined by mitral inflow (E/A ratio) and peak diastolic velocity E', was increased by 18% (P < 0.01) and 29% (P < 0.001), respectively, whereas LV filling pressure E/E' was reduced by 15% (P = 0.05). Systolic, diastolic, and mean arterial pressures were all reduced by 8 mm Hg (P < 0.01, P < 0.001, and P < 0.001, respectively). V(˙)O(2max) and intermittent endurance capacity was 12% and 42% (P < 0.001) higher, respectively. No changes in any of the measured parameters were observed in control group. Regular soccer training improves cardiac function, increases exercise capacity, and lowers blood pressure in men with T2DM.

  15. Epitranscriptional orchestration of genetic reprogramming is an emergent property of stress-regulated cardiac microRNAs

    PubMed Central

    Hu, Yuanxin; Matkovich, Scot J.; Hecker, Peter A.; Zhang, Yan; Edwards, John R.; Dorn, Gerald W.

    2012-01-01

    Cardiac stress responses are driven by an evolutionarily conserved gene expression program comprising dozens of microRNAs and hundreds of mRNAs. Functionalities of different individual microRNAs are being studied, but the overall purpose of interactions between stress-regulated microRNAs and mRNAs and potentially distinct roles for microRNA-mediated epigenetic and conventional transcriptional genetic reprogramming of the stressed heart are unknown. Here we used deep sequencing to interrogate microRNA and mRNA regulation in pressure-overloaded mouse hearts, and performed a genome-wide examination of microRNA–mRNA interactions during early cardiac hypertrophy. Based on abundance and regulatory patterns, cardiac microRNAs were categorized as constitutively expressed housekeeping, regulated homeostatic, or dynamic early stress-responsive microRNAs. Regulation of 62 stress-responsive cardiac microRNAs directly affected levels of only 66 mRNAs, but the global impact of microRNA-mediated epigenetic regulation was amplified by preferential targeting of mRNAs encoding transcription factors, kinases, and phosphatases exerting amplified secondary effects. Thus, an emergent cooperative property of stress-regulated microRNAs is orchestration of transcriptional and posttranslational events that help determine the stress-reactive cardiac phenotype. This global functionality explains how large end-organ effects can be induced through modest individual changes in target mRNA and protein content by microRNAs that sense and respond dynamically to a changing physiological milieu. PMID:23150554

  16. Clinicians' adherence to clinical practice guidelines for cardiac function monitoring during antipsychotic treatment: a retrospective report on 434 patients with severe mental illness.

    PubMed

    Manchia, Mirko; Firinu, Giorgio; Carpiniello, Bernardo; Pinna, Federica

    2017-03-31

    Severe mental illness (SMI) has considerable excess morbidity and mortality, a proportion of which is explained by cardiovascular diseases, caused in part by antipsychotic (AP) induced QT-related arrhythmias and sudden death by Torsade de Point (TdP). The implementation of evidence-based recommendations for cardiac function monitoring might reduce the incidence of these AP-related adverse events. To investigate clinicians' adherence to cardiac function monitoring before and after starting AP, we performed a retrospective assessment of 434 AP-treated SMI patients longitudinally followed-up for 5 years at an academic community mental health center. We classified antipsychotics according to their risk of inducing QT-related arrhythmias and TdP (Center for Research on Therapeutics, University of Arizona). We used univariate tests and multinomial or binary logistic regression model for data analysis. Univariate and multinomial regression analysis showed that psychiatrists were more likely to perform pre-treatment electrocardiogram (ECG) and electrolyte testing with AP carrying higher cardiovascular risk, but not on the basis of AP pharmacological class. Univariate and binomial regression analysis showed that cardiac function parameters (ECG and electrolyte balance) were more frequently monitored during treatment with second generation AP than with first generation AP. Our data show the presence of weaknesses in the cardiac function monitoring of AP-treated SMI patients, and might guide future interventions to tackle them.

  17. Real-time myocardium segmentation for the assessment of cardiac function variation

    NASA Astrophysics Data System (ADS)

    Zoehrer, Fabian; Huellebrand, Markus; Chitiboi, Teodora; Oechtering, Thekla; Sieren, Malte; Frahm, Jens; Hahn, Horst K.; Hennemuth, Anja

    2017-03-01

    Recent developments in MRI enable the acquisition of image sequences with high spatio-temporal resolution. Cardiac motion can be captured without gating and triggering. Image size and contrast relations differ from conventional cardiac MRI cine sequences requiring new adapted analysis methods. We suggest a novel segmentation approach utilizing contrast invariant polar scanning techniques. It has been tested with 20 datasets of arrhythmia patients. The results do not differ significantly more between automatic and manual segmentations than between observers. This indicates that the presented solution could enable clinical applications of real-time MRI for the examination of arrhythmic cardiac motion in the future.

  18. Deficiency in Cardiac Dystrophin Affects the Abundance of the α-/β-Dystroglycan Complex

    PubMed Central

    2005-01-01

    Although Duchenne muscular dystrophy is primarily categorised as a skeletal muscle disease, deficiency in the membrane cytoskeletal protein dystrophin also affects the heart. The central transsarcolemmal linker between the actin membrane cytoskeleton and the extracellular matrix is represented by the dystrophin-associated dystroglycans. Chemical cross-linking analysis revealed no significant differences in the dimeric status of the α-/β-dystroglycan subcomplex in the dystrophic mdx heart as compared to normal cardiac tissue. In analogy to skeletal muscle fibres, heart muscle also exhibited a greatly reduced abundance of both dystroglycans in dystrophin-deficient cells. Immunoblotting demonstrated that the degree of reduction in α-dystroglycan is more pronounced in matured mdx skeletal muscle as contrasted to the mdx heart. The fact that the deficiency in dystrophin triggers a similar pathobiochemical response in both types of muscle suggests that the cardiomyopathic complications observed in x-linked muscular dystrophy might be initiated by the loss of the dystrophin-associated surface glycoprotein complex. PMID:15689636

  19. Hypertrophic cardiomyopathy mutation in cardiac troponin T (R95H) attenuates length-dependent activation in guinea pig cardiac muscle fibers.

    PubMed

    Mickelson, Alexis V; Chandra, Murali

    2017-12-01

    The central region of cardiac troponin T (TnT) is important for modulating the dynamics of muscle length-mediated cross-bridge recruitment. Therefore, hypertrophic cardiomyopathy mutations in the central region may affect cross-bridge recruitment dynamics to alter myofilament Ca 2+ sensitivity and length-dependent activation of cardiac myofilaments. Given the importance of the central region of TnT for cardiac contractile dynamics, we studied if hypertrophic cardiomyopathy-linked mutation (TnT R94H )-induced effects on contractile function would be differently modulated by sarcomere length (SL). Recombinant wild-type TnT (TnT WT ) and the guinea pig analog of the human R94H mutation (TnT R95H ) were reconstituted into detergent-skinned cardiac muscle fibers from guinea pigs. Steady-state and dynamic contractile measurements were made at short and long SLs (1.9 and 2.3 µm, respectively). Our results demonstrated that TnT R95H increased pCa 50 (-log of free Ca 2+ concentration) to a greater extent at short SL; TnT R95H increased pCa 50 by 0.11 pCa units at short SL and 0.07 pCa units at long SL. The increase in pCa 50 associated with an increase in SL from 1.9 to 2.3 µm (ΔpCa 50 ) was attenuated nearly twofold in TnT R95H fibers; ΔpCa 50 was 0.09 pCa units for TnT WT fibers but only 0.05 pCa units for TnT R95H fibers. The SL dependency of rate constants of cross-bridge distortion dynamics and tension redevelopment was also blunted by TnT R95H Collectively, our observations on the SL dependency of pCa 50 and rate constants of cross-bridge distortion dynamics and tension redevelopment suggest that mechanisms underlying the length-dependent activation cardiac myofilaments are attenuated by TnT R95H NEW & NOTEWORTHY Mutant cardiac troponin T (TnT R95H ) differently affects myofilament Ca 2+ sensitivity at short and long sarcomere length, indicating that mechanisms underlying length-dependent activation are altered by TnT R95H TnT R95H enhances myofilament Ca 2

  20. Chemical Endoplasmic Reticulum Chaperone Alleviates Doxorubicin-Induced Cardiac Dysfunction.

    PubMed

    Fu, Hai Ying; Sanada, Shoji; Matsuzaki, Takashi; Liao, Yulin; Okuda, Keiji; Yamato, Masaki; Tsuchida, Shota; Araki, Ryo; Asano, Yoshihiro; Asanuma, Hiroshi; Asakura, Masanori; French, Brent A; Sakata, Yasushi; Kitakaze, Masafumi; Minamino, Tetsuo

    2016-03-04

    Doxorubicin is an effective chemotherapeutic agent for cancer, but its use is often limited by cardiotoxicity. Doxorubicin causes endoplasmic reticulum (ER) dilation in cardiomyocytes, and we have demonstrated that ER stress plays important roles in the pathophysiology of heart failure. We evaluated the role of ER stress in doxorubicin-induced cardiotoxicity and examined whether the chemical ER chaperone could prevent doxorubicin-induced cardiac dysfunction. We confirmed that doxorubicin caused ER dilation in mouse hearts, indicating that doxorubicin may affect ER function. Doxorubicin activated an ER transmembrane stress sensor, activating transcription factor 6, in cultured cardiomyocytes and mouse hearts. However, doxorubicin suppressed the expression of genes downstream of activating transcription factor 6, including X-box binding protein 1. The decreased levels of X-box binding protein 1 resulted in a failure to induce the expression of the ER chaperone glucose-regulated protein 78 which plays a major role in adaptive responses to ER stress. In addition, doxorubicin activated caspase-12, an ER membrane-resident apoptotic molecule, which can lead to cardiomyocyte apoptosis and cardiac dysfunction. Cardiac-specific overexpression of glucose-regulated protein 78 by adeno-associated virus 9 or the administration of the chemical ER chaperone 4-phenylbutyrate attenuated caspase-12 cleavage, and alleviated cardiac apoptosis and dysfunction induced by doxorubicin. Doxorubicin activated the ER stress-initiated apoptotic response without inducing the ER chaperone glucose-regulated protein 78, further augmenting ER stress in mouse hearts. Cardiac-specific overexpression of glucose-regulated protein 78 or the administration of the chemical ER chaperone alleviated the cardiac dysfunction induced by doxorubicin and may facilitate the safe use of doxorubicin for cancer treatment. © 2016 American Heart Association, Inc.

  1. Cardiac function in children with premature ventricular contractions: the effect of omega-3 polyunsaturated fatty acid supplementation.

    PubMed

    Oner, Taliha; Ozdemir, Rahmi; Doksöz, Onder; Genc, Dildar B; Guven, Baris; Demirpence, Savas; Yilmazer, Murat M; Yozgat, Yilmaz; Mese, Timur; Tavli, Vedide

    2018-07-01

    Premature ventricular contractions are accepted as benign in structurally normal hearts. However, reversible cardiomyopathy can sometimes develop. Omega-3 polyunsaturated fatty acids have anti-arrhythmic properties in animals and humans.AimWe evaluated left ventricular function in children with premature ventricular contractions with normal cardiac anatomy and assessed the impact of omega-3 fatty acid supplementation on left ventricular function in a prospective trial. A total of 25 patients with premature ventricular contraction, with more than 2% premature ventricular contractions on 24-hour Holter electrocardiography, and 30 healthy patients were included into study. All patients underwent electrocardiography, left ventricular M-mode echocardiography, and myocardial performance index testing. Patients with premature ventricular contraction were given omega-3 fatty acids at a dose of 1 g/day for 3 months, and control echocardiography and 24-hour Holter electrocardiography were performed. Neither placebo nor omega-3 fatty acids were given to the control group. Compared with the values of the control group, the patients with premature ventricular contraction had significantly lower fractional shortening. The myocardial performance index decreased markedly in the patient groups. The mean heart rate and mean premature ventricular contraction percentage of Group 2 significantly decreased in comparison with their baseline values after the omega-3 supplementation. In conclusion, premature ventricular contractions can lead to systolic cardiac dysfunction in children. Omega-3 supplementation may improve cardiac function in children with premature ventricular contractions. This is the first study conducted in children to investigate the possible role of omega-3 fatty acid supplementation on treatment of premature ventricular contractions.

  2. Cardiac-specific overexpression of sarcolipin inhibits sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA2a) activity and impairs cardiac function in mice

    PubMed Central

    Asahi, Michio; Otsu, Kinya; Nakayama, Hiroyuki; Hikoso, Shungo; Takeda, Toshihiro; Gramolini, Anthony O.; Trivieri, Maria G.; Oudit, Gavin Y.; Morita, Takashi; Kusakari, Yoichiro; Hirano, Shuta; Hongo, Kenichi; Hirotani, Shinichi; Yamaguchi, Osamu; Peterson, Alan; Backx, Peter H.; Kurihara, Satoshi; Hori, Masatsugu; MacLennan, David H.

    2004-01-01

    Sarcolipin (SLN) inhibits the cardiac sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA2a) by direct binding and is superinhibitory if it binds through phospholamban (PLN). To determine whether overexpression of SLN in the heart might impair cardiac function, transgenic (TG) mice were generated with cardiac-specific overexpression of NF-SLN (SLN tagged at its N terminus with the FLAG epitope). The level of NF-SLN expression (the NF-SLN/PLN expression ratio) was equivalent to that which induces profound superinhibition when coexpressed with PLN and SERCA2a in HEK-293 cells. In TG hearts, the apparent affinity of SERCA2a for Ca2+ was decreased compared with non-TG littermate control hearts. Invasive hemodynamic and echocardiographic analyses revealed impaired cardiac contractility and ventricular hypertrophy in TG mice. Basal PLN phosphorylation was reduced. In isolated papillary muscle subjected to isometric tension, peak amplitudes of Ca2+ transients and peak tensions were reduced, whereas decay times of Ca2+ transients and relaxation times of tension were increased in TG mice. Isoproterenol largely restored contractility in papillary muscle and stimulated PLN phosphorylation to wild-type levels in intact hearts. No compensatory changes in expression of SERCA2a, PLN, ryanodine receptor, and calsequestrin were observed in TG hearts. Coimmunoprecipitation indicated that overexpressed NF-SLN was bound to both SERCA2a and PLN, forming a ternary complex. These data suggest that NF-SLN overexpression inhibits SERCA2a through stabilization of SERCA2a–PLN interaction in the absence of PLN phosphorylation and through the inhibition of PLN phosphorylation. Inhibition of SERCA2a impairs contractility and calcium cycling, but responsiveness to β-adrenergic agonists may prevent progression to heart failure. PMID:15201433

  3. Cardiac structure and function across the glycemic spectrum in elderly men and women free of prevalent heart disease: the Atherosclerosis Risk In the Community study.

    PubMed

    Skali, Hicham; Shah, Amil; Gupta, Deepak K; Cheng, Susan; Claggett, Brian; Liu, Jiankang; Bello, Natalie; Aguilar, David; Vardeny, Orly; Matsushita, Kunihiro; Selvin, Elizabeth; Solomon, Scott

    2015-05-01

    Individuals with diabetes mellitus and pre-diabetes mellitus are at particularly high risk of incident heart failure or death, even after accounting for known confounders. Nevertheless, the extent of impairments in cardiac structure and function in elderly individuals with diabetes mellitus and pre-diabetes mellitus is not well known. We aimed to assess the relationship between echocardiographic measures of cardiac structure and function and dysglycemia. We assessed measures of cardiac structure and function in 4419 participants without prevalent coronary heart disease or heart failure who attended the Atherosclerosis Risk In the Community (ARIC) visit 5 examination (2011-2013) and underwent transthoracic echocardiography (age, 75±6 years; 61% women, 23% black). Subjects were grouped across the dysglycemia spectrum as normal (39%), pre-diabetes mellitus (31%), or diabetes mellitus (30%) based on medical history, antidiabetic medication use, and glycated hemoglobin levels. Glycemic status was related to measures of cardiac structure and function. Worsening dysglycemia was associated with increased left ventricular mass, worse diastolic function, and subtle reduction in left ventricular systolic function (P≤0.01 for all). For every 1% higher glycated hemoglobin, left ventricular mass was higher by 3.0 g (95% confidence interval, 1.5-4.6 g), E/E' by 0.5 (95% confidence interval, 0.4-0.7), and global longitudinal strain by 0.3% (95% confidence interval, 0.2-0.4) in multivariable analyses. In a large contemporary biracial cohort of elderly subjects without prevalent cardiovascular disease or heart failure, dysglycemia was associated with subtle and subclinical alterations of cardiac structure, and left ventricular systolic and diastolic function. It remains unclear whether these are sufficient to explain the heightened risk of heart failure in individuals with diabetes mellitus. © 2015 American Heart Association, Inc.

  4. Zebrafish as a Vertebrate Model System to Evaluate Effects of Environmental Toxicants on Cardiac Development and Function.

    PubMed

    Sarmah, Swapnalee; Marrs, James A

    2016-12-16

    Environmental pollution is a serious problem of the modern world that possesses a major threat to public health. Exposure to environmental pollutants during embryonic development is particularly risky. Although many pollutants have been verified as potential toxicants, there are new chemicals in the environment that need assessment. Heart development is an extremely sensitive process, which can be affected by environmentally toxic molecule exposure during embryonic development. Congenital heart defects are the most common life-threatening global health problems, and the etiology is mostly unknown. The zebrafish has emerged as an invaluable model to examine substance toxicity on vertebrate development, particularly on cardiac development. The zebrafish offers numerous advantages for toxicology research not found in other model systems. Many laboratories have used the zebrafish to study the effects of widespread chemicals in the environment on heart development, including pesticides, nanoparticles, and various organic pollutants. Here, we review the uses of the zebrafish in examining effects of exposure to external molecules during embryonic development in causing cardiac defects, including chemicals ubiquitous in the environment and illicit drugs. Known or potential mechanisms of toxicity and how zebrafish research can be used to provide mechanistic understanding of cardiac defects are discussed.

  5. Zebrafish as a Vertebrate Model System to Evaluate Effects of Environmental Toxicants on Cardiac Development and Function

    PubMed Central

    Sarmah, Swapnalee; Marrs, James A.

    2016-01-01

    Environmental pollution is a serious problem of the modern world that possesses a major threat to public health. Exposure to environmental pollutants during embryonic development is particularly risky. Although many pollutants have been verified as potential toxicants, there are new chemicals in the environment that need assessment. Heart development is an extremely sensitive process, which can be affected by environmentally toxic molecule exposure during embryonic development. Congenital heart defects are the most common life-threatening global health problems, and the etiology is mostly unknown. The zebrafish has emerged as an invaluable model to examine substance toxicity on vertebrate development, particularly on cardiac development. The zebrafish offers numerous advantages for toxicology research not found in other model systems. Many laboratories have used the zebrafish to study the effects of widespread chemicals in the environment on heart development, including pesticides, nanoparticles, and various organic pollutants. Here, we review the uses of the zebrafish in examining effects of exposure to external molecules during embryonic development in causing cardiac defects, including chemicals ubiquitous in the environment and illicit drugs. Known or potential mechanisms of toxicity and how zebrafish research can be used to provide mechanistic understanding of cardiac defects are discussed. PMID:27999267

  6. Assessment of cardiac structure and function in patients without and with peripheral oedema during rosiglitazone treatment.

    PubMed

    Narang, Nikhil; Armstead, Sumiko I; Stream, Amanda; Abdullah, Shuaib M; See, Raphael; Snell, Peter G; McGavock, Jonathan; Ayers, Colby R; Gore, M Odette; Khera, Amit; de Lemos, James A; McGuire, Darren K

    2011-04-01

    Thiazolidinediones cause peripheral oedema, the aetiology of which remains poorly understood. In a sub-study of a 6-month trial comparing rosiglitazone (Rsg) versus placebo, we compared those with versus without oedema among the 74 subjects treated with Rsg with respect to peak oxygen consumption indexed to fat-free mass (VO(2peak-FFM) ), cardiac MRI and markers of plasma volume expansion. Almost half (49%) of the Rsg-treated patients developed oedema. Baseline VO(2peak-FFM) was not different between those with versus without oedema (25.8 versus 28.2 ml/kg/min; p = 0.22) and declined 5% in the oedema group (Δ -1.3 ml/min/kg; p = 0.005) with no change in those without oedema. Stroke volume increased in both groups (Δ 8.7 and 8.8 ml; p < 0.001 for each); end-diastolic volume increased only in those with oedema (+13.1 ml; p = 0.001). No other cardiac function changes were observed. In both groups, weight increased (3.6 and 2.2 kg) and haematocrit decreased (-3.2% and -2.1%; p < 0.001 for each). In those with oedema, albumin decreased (-0.2 g/dl) and brain natriuretic peptide increased (11.9 pg/ml; p < 0.03 for each). Oedema was associated with a small decline in VO(2peak FFM), no adverse effects on cardiac function, and changes in selected measures suggesting that volume expansion underpins Rsg oedema.

  7. Premature Ventricular Contraction Coupling Interval Variability Destabilizes Cardiac Neuronal and Electrophysiological Control: Insights From Simultaneous Cardioneural Mapping.

    PubMed

    Hamon, David; Rajendran, Pradeep S; Chui, Ray W; Ajijola, Olujimi A; Irie, Tadanobu; Talebi, Ramin; Salavatian, Siamak; Vaseghi, Marmar; Bradfield, Jason S; Armour, J Andrew; Ardell, Jeffrey L; Shivkumar, Kalyanam

    2017-04-01

    Variability in premature ventricular contraction (PVC) coupling interval (CI) increases the risk of cardiomyopathy and sudden death. The autonomic nervous system regulates cardiac electrical and mechanical indices, and its dysregulation plays an important role in cardiac disease pathogenesis. The impact of PVCs on the intrinsic cardiac nervous system, a neural network on the heart, remains unknown. The objective was to determine the effect of PVCs and CI on intrinsic cardiac nervous system function in generating cardiac neuronal and electric instability using a novel cardioneural mapping approach. In a porcine model (n=8), neuronal activity was recorded from a ventricular ganglion using a microelectrode array, and cardiac electrophysiological mapping was performed. Neurons were functionally classified based on their response to afferent and efferent cardiovascular stimuli, with neurons that responded to both defined as convergent (local reflex processors). Dynamic changes in neuronal activity were then evaluated in response to right ventricular outflow tract PVCs with fixed short, fixed long, and variable CI. PVC delivery elicited a greater neuronal response than all other stimuli ( P <0.001). Compared with fixed short and long CI, PVCs with variable CI had a greater impact on neuronal response ( P <0.05 versus short CI), particularly on convergent neurons ( P <0.05), as well as neurons receiving sympathetic ( P <0.05) and parasympathetic input ( P <0.05). The greatest cardiac electric instability was also observed after variable (short) CI PVCs. Variable CI PVCs affect critical populations of intrinsic cardiac nervous system neurons and alter cardiac repolarization. These changes may be critical for arrhythmogenesis and remodeling, leading to cardiomyopathy. © 2017 American Heart Association, Inc.

  8. Melanocyte pigmentation stiffens murine cardiac tricuspid valve leaflet

    PubMed Central

    Balani, Kantesh; Brito, Flavia C.; Kos, Lidia; Agarwal, Arvind

    2009-01-01

    Pigmentation of murine cardiac tricuspid valve leaflet is associated with melanocyte concentration, which affects its stiffness. Owing to its biological and viscoelastic nature, estimation of the in situ stiffness measurement becomes a challenging task. Therefore, quasi-static and nanodynamic mechanical analysis of the leaflets of the mouse tricuspid valve is performed in the current work. The mechanical properties along the leaflet vary with the degree of pigmentation. Pigmented regions of the valve leaflet that contain melanocytes displayed higher storage modulus (7–10 GPa) than non-pigmented areas (2.5–4 GPa). These results suggest that the presence of melanocytes affects the viscoelastic properties of the mouse atrioventricular valves and are important for their proper functioning in the organism. PMID:19586956

  9. A New Parameter for Cardiac Efficiency Analysis

    NASA Astrophysics Data System (ADS)

    Borazjani, Iman; Rajan, Navaneetha Krishnan; Song, Zeying; Hoffmann, Kenneth; MacMahon, Eileen; Belohlavek, Marek

    2014-11-01

    Detecting and evaluating a heart with suboptimal pumping efficiency is a significant clinical goal. However, the routine parameters such as ejection fraction, quantified with current non-invasive techniques are not predictive of heart disease prognosis. Furthermore, they only represent left-ventricular (LV) ejection function and not the efficiency, which might be affected before apparent changes in the function. We propose a new parameter, called the hemodynamic efficiency (H-efficiency) and defined as the ratio of the useful to total power, for cardiac efficiency analysis. Our results indicate that the change in the shape/motion of the LV will change the pumping efficiency of the LV even if the ejection fraction is kept constant at 55% (normal value), i.e., H-efficiency can be used for suboptimal cardiac performance diagnosis. To apply H-efficiency on a patient-specific basis, we are developing a system that combines echocardiography (echo) and computational fluid dynamics (CFD) to provide the 3D pressure and velocity field to directly calculate the H-efficiency parameter. Because the method is based on clinically used 2D echo, which has faster acquisition time and lower cost relative to other imaging techniques, it can have a significant impact on a large number of patients. This work is partly supported by the American Heart Association.

  10. AKAP-scaffolding proteins and regulation of cardiac physiology

    PubMed Central

    Mauban, JRH; O'Donnell, M; Warrier, S; Manni, S; Bond, M

    2009-01-01

    A kinase anchoring proteins (AKAPs) compose a growing list of diverse but functionally related proteins defined by their ability to bind to the regulatory subunit of protein kinase A. AKAPs perform an integral role in the spatiotemporal modulation of a multitude of cellular signaling pathways. This review highlights the extensive role of AKAPs in cardiac excitation/contraction coupling and cardiac physiology. The literature shows that particular AKAPs are involved in cardiac Ca2+ influx, release, re-uptake, and myocyte repolarization. Studies have also suggested roles for AKAPs in cardiac remodeling. Transgenic studies show functional effects of AKAPs, not only in the cardiovascular system, but in other organ systems as well. PMID:19364910

  11. Insulin-Like Growth Factor I (IGF-1) Deficiency Ameliorates Sex Difference in Cardiac Contractile Function and Intracellular Ca2+ Homeostasis

    PubMed Central

    Ceylan-Isik, Asli F.; Li, Qun; Ren, Jun

    2011-01-01

    Sex difference in cardiac contractile function exists which may contribute to the different prevalence in cardiovascular diseases between genders. However, the precise mechanisms of action behind sex difference in cardiac function are still elusive. Given that sex difference exists in insulin-like growth factor I (IGF-1) cascade, this study is designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on sex difference in cardiac function. Echocardiographic, cardiomyocyte contractile and intracellular Ca2+ properties were evaluated including ventricular geometry, fractional shortening, peak shortening, maximal velocity of shortening/relengthening (± dL/dt), time-to-peak shortening (TPS), time-to-90% relengthening (TR90), fura-fluorescence intensity (FFI) and intracellular Ca2+ clearance. Female C57 mice exhibited significantly higher plasma IGF-1 levels than their male counterpart. LID mice possessed comparably low IGF-1 levels in both sexes. Female C57 and LID mice displayed lower body, heart and liver weights compared to male counterparts. Echocardiographic analysis revealed larger LV mass in female C57 but not LID mice without sex difference in other cardiac geometric indices. Myocytes from female C57 mice exhibited reduced peak shortening, ± dL/dt, longer TPS, TR90 and intracellular Ca2+ clearance compared with males. Interestingly, this sex difference was greatly attenuated or abolished by IGF-1 deficiency. Female C57 mice displayed significantly decreased mRNA and protein levels of Na+-Ca2+ exchanger, SERCA2a and phosphorylated phospholamban as well as SERCA activity compared with male C57 mice. These sex differences in Ca2+ regulatory proteins were abolished or overtly attenuated by IGF-1 deficiency. In summary, our data suggested that IGF-1 deficiency may significantly attenuated or mitigate the sex difference in cardiomyocyte contractile function associated with intracellular Ca2+ regulation. PMID:21763763

  12. Insulin-like growth factor I (IGF-1) deficiency ameliorates sex difference in cardiac contractile function and intracellular Ca(2+) homeostasis.

    PubMed

    Ceylan-Isik, Asli F; Li, Qun; Ren, Jun

    2011-10-10

    Sex difference in cardiac contractile function exists which may contribute to the different prevalence in cardiovascular diseases between genders. However, the precise mechanisms of action behind sex difference in cardiac function are still elusive. Given that sex difference exists in insulin-like growth factor I (IGF-1) cascade, this study is designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on sex difference in cardiac function. Echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated including ventricular geometry, fractional shortening, peak shortening, maximal velocity of shortening/relengthening (±dL/dt), time-to-peak shortening (TPS), time-to-90% relengthening (TR(90)), fura-fluorescence intensity (FFI) and intracellular Ca(2+) clearance. Female C57 mice exhibited significantly higher plasma IGF-1 levels than their male counterpart. LID mice possessed comparably low IGF-1 levels in both sexes. Female C57 and LID mice displayed lower body, heart and liver weights compared to male counterparts. Echocardiographic analysis revealed larger LV mass in female C57 but not LID mice without sex difference in other cardiac geometric indices. Myocytes from female C57 mice exhibited reduced peak shortening, ±dL/dt, longer TPS, TR(90) and intracellular Ca(2+) clearance compared with males. Interestingly, this sex difference was greatly attenuated or abolished by IGF-1 deficiency. Female C57 mice displayed significantly decreased mRNA and protein levels of Na(+)-Ca(2+) exchanger, SERCA2a and phosphorylated phospholamban as well as SERCA activity compared with male C57 mice. These sex differences in Ca(2+) regulatory proteins were abolished or overtly attenuated by IGF-1 deficiency. In summary, our data suggested that IGF-1 deficiency may significantly attenuated or mitigate the sex difference in cardiomyocyte contractile function associated with intracellular Ca(2+) regulation. Copyright © 2011 Elsevier Ireland

  13. Racial differences in sudden cardiac death.

    PubMed

    Fender, Erin A; Henrikson, Charles A; Tereshchenko, Larisa

    2014-01-01

    There is an increased risk of sudden cardiac death (SCD) and sudden cardiac arrest (SCA), in African Americans, the basis of which is likely multifactorial. African Americans have higher rates of traditional cardiac risk factors including hypertension, left ventricular hypertrophy, diabetes, coronary heart disease, and heart failure. There are also significant disparities in health care delivery. While these factors undoubtedly affect health outcomes, there is also growing evidence that genetics may have a significant impact as well. In this paper, we discuss data and hypotheses in support of both sides of the controversy around racial differences in SCD/SCA. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Functional Cardiac Recovery and Hematologic Response to Chemotherapy in Patients With Light-Chain Amyloidosis (from the Stanford University Amyloidosis Registry).

    PubMed

    Tuzovic, Mirela; Kobayashi, Yukari; Wheeler, Matthew; Barrett, Christopher; Liedtke, Michaela; Lafayette, Richard; Schrier, Stanley; Haddad, Francois; Witteles, Ronald

    2017-10-15

    Cardiac involvement is common in patients with light-chain (AL) amyloidosis and portends a poor prognosis, although little is known about the changes in cardiac mechanics after chemotherapy. We sought to explore the relation between amyloidosis staging and baseline cardiac mechanics and to investigate short-term changes in cardiac mechanics after chemotherapy. We identified 41 consecutive patients from the Stanford Amyloid Center who had echocardiograms and free light-chain values before and after chemotherapy, along with 40 age- and gender-matched controls. Echocardiographic assessment included left ventricular global longitudinal strain, E/e' ratio, and left atrial (LA) stiffness. Hematologic response to chemotherapy was defined as ≥50% reduction in the difference between the involved and the uninvolved free light chain (dFLC). The mean age was 66.9 ± 8.4 years and 66% were men. Before chemotherapy, global longitudinal strain, E/e' ratio, and LA stiffness were impaired in patients with amyloidosis compared with controls, and the severity of impairment worsened with advanced staging. After chemotherapy, hematologic response was observed in 30 (73%) patients. There was a significant association between the change in dFLC and cardiac function (E/e' ratio: r = -0.43, p = 0.01; LA stiffness: r = -0.35, p = 0.05). There was no significant improvement in cardiac mechanics in patients without a hematologic response to chemotherapy. In conclusion, amyloidosis stage correlated with noninvasive measurements of cardiac mechanics, and improvement in dFLC correlated with cardiac improvement on short-term follow-up echocardiography. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Continuous cardiac troponin I release in Fabry disease.

    PubMed

    Feustel, Andreas; Hahn, Andreas; Schneider, Christian; Sieweke, Nicole; Franzen, Wolfgang; Gündüz, Dursun; Rolfs, Arndt; Tanislav, Christian

    2014-01-01

    Fabry disease (FD) is a rare lysosomal storage disorder also affecting the heart. The aims of this study were to determine the frequency of cardiac troponin I (cTNI) elevation, a sensitive parameter reflecting myocardial damage, in a smaller cohort of FD-patients, and to analyze whether persistent cTNI can be a suitable biomarker to assess cardiac dysfunction in FD. cTNI values were determined at least twice per year in 14 FD-patients (6 males and 8 females) regularly followed-up in our centre. The data were related to other parameters of heart function including cardiac magnetic resonance imaging (cMRI). Three patients (21%) without specific vascular risk factors other than FD had persistent cTNI-elevations (range 0.05-0.71 ng/ml, normal: <0.01). cMRI disclosed late gadolinium enhancement (LGE) in all three individuals with cTNI values ≥0.01, while none of the 11 patients with cTNI <0.01 showed a pathological enhancement (p<0.01). Two subjects with increased cTNI-values underwent coronary angiography, excluding relevant stenoses. A myocardial biopsy performed in one during this procedure demonstrated substantial accumulation of globotriaosylceramide (Gb3) in cardiomyocytes. Continuous cTNI elevation seems to occur in a substantial proportion of patients with FD. The high accordance with LGE, reflecting cardiac dysfunction, suggests that cTNI-elevation can be a useful laboratory parameter for assessing myocardial damage in FD.

  16. Continuous Cardiac Troponin I Release in Fabry Disease

    PubMed Central

    Schneider, Christian; Sieweke, Nicole; Franzen, Wolfgang; Gündüz, Dursun; Rolfs, Arndt

    2014-01-01

    Background Fabry disease (FD) is a rare lysosomal storage disorder also affecting the heart. The aims of this study were to determine the frequency of cardiac troponin I (cTNI) elevation, a sensitive parameter reflecting myocardial damage, in a smaller cohort of FD-patients, and to analyze whether persistent cTNI can be a suitable biomarker to assess cardiac dysfunction in FD. Methods cTNI values were determined at least twice per year in 14 FD-patients (6 males and 8 females) regularly followed-up in our centre. The data were related to other parameters of heart function including cardiac magnetic resonance imaging (cMRI). Results Three patients (21%) without specific vascular risk factors other than FD had persistent cTNI-elevations (range 0.05–0.71 ng/ml, normal: <0.01). cMRI disclosed late gadolinium enhancement (LGE) in all three individuals with cTNI values ≥0.01, while none of the 11 patients with cTNI <0.01 showed a pathological enhancement (p<0.01). Two subjects with increased cTNI-values underwent coronary angiography, excluding relevant stenoses. A myocardial biopsy performed in one during this procedure demonstrated substantial accumulation of globotriaosylceramide (Gb3) in cardiomyocytes. Conclusion Continuous cTNI elevation seems to occur in a substantial proportion of patients with FD. The high accordance with LGE, reflecting cardiac dysfunction, suggests that cTNI-elevation can be a useful laboratory parameter for assessing myocardial damage in FD. PMID:24626231

  17. Modular assembly of thick multifunctional cardiac patches

    PubMed Central

    Fleischer, Sharon; Shapira, Assaf; Feiner, Ron; Dvir, Tal

    2017-01-01

    In cardiac tissue engineering cells are seeded within porous biomaterial scaffolds to create functional cardiac patches. Here, we report on a bottom-up approach to assemble a modular tissue consisting of multiple layers with distinct structures and functions. Albumin electrospun fiber scaffolds were laser-patterned to create microgrooves for engineering aligned cardiac tissues exhibiting anisotropic electrical signal propagation. Microchannels were patterned within the scaffolds and seeded with endothelial cells to form closed lumens. Moreover, cage-like structures were patterned within the scaffolds and accommodated poly(lactic-co-glycolic acid) (PLGA) microparticulate systems that controlled the release of VEGF, which promotes vascularization, or dexamethasone, an anti-inflammatory agent. The structure, morphology, and function of each layer were characterized, and the tissue layers were grown separately in their optimal conditions. Before transplantation the tissue and microparticulate layers were integrated by an ECM-based biological glue to form thick 3D cardiac patches. Finally, the patches were transplanted in rats, and their vascularization was assessed. Because of the simple modularity of this approach, we believe that it could be used in the future to assemble other multicellular, thick, 3D, functional tissues. PMID:28167795

  18. Cross-talk between cardiac muscle and coronary vasculature.

    PubMed

    Westerhof, Nico; Boer, Christa; Lamberts, Regis R; Sipkema, Pieter

    2006-10-01

    The cardiac muscle and the coronary vasculature are in close proximity to each other, and a two-way interaction, called cross-talk, exists. Here we focus on the mechanical aspects of cross-talk including the role of the extracellular matrix. Cardiac muscle affects the coronary vasculature. In diastole, the effect of the cardiac muscle on the coronary vasculature depends on the (changes in) muscle length but appears to be small. In systole, coronary artery inflow is impeded, or even reversed, and venous outflow is augmented. These systolic effects are explained by two mechanisms. The waterfall model and the intramyocardial pump model are based on an intramyocardial pressure, assumed to be proportional to ventricular pressure. They explain the global effects of contraction on coronary flow and the effects of contraction in the layers of the heart wall. The varying elastance model, the muscle shortening and thickening model, and the vascular deformation model are based on direct contact between muscles and vessels. They predict global effects as well as differences on flow in layers and flow heterogeneity due to contraction. The relative contributions of these two mechanisms depend on the wall layer (epi- or endocardial) and type of contraction (isovolumic or shortening). Intramyocardial pressure results from (local) muscle contraction and to what extent the interstitial cavity contracts isovolumically. This explains why small arterioles and venules do not collapse in systole. Coronary vasculature affects the cardiac muscle. In diastole, at physiological ventricular volumes, an increase in coronary perfusion pressure increases ventricular stiffness, but the effect is small. In systole, there are two mechanisms by which coronary perfusion affects cardiac contractility. Increased perfusion pressure increases microvascular volume, thereby opening stretch-activated ion channels, resulting in an increased intracellular Ca2+ transient, which is followed by an increase in Ca

  19. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association.

    PubMed

    Donofrio, Mary T; Moon-Grady, Anita J; Hornberger, Lisa K; Copel, Joshua A; Sklansky, Mark S; Abuhamad, Alfred; Cuneo, Bettina F; Huhta, James C; Jonas, Richard A; Krishnan, Anita; Lacey, Stephanie; Lee, Wesley; Michelfelder, Erik C; Rempel, Gwen R; Silverman, Norman H; Spray, Thomas L; Strasburger, Janette F; Tworetzky, Wayne; Rychik, Jack

    2014-05-27

    The goal of this statement is to review available literature and to put forth a scientific statement on the current practice of fetal cardiac medicine, including the diagnosis and management of fetal cardiovascular disease. A writing group appointed by the American Heart Association reviewed the available literature pertaining to topics relevant to fetal cardiac medicine, including the diagnosis of congenital heart disease and arrhythmias, assessment of cardiac function and the cardiovascular system, and available treatment options. The American College of Cardiology/American Heart Association classification of recommendations and level of evidence for practice guidelines were applied to the current practice of fetal cardiac medicine. Recommendations relating to the specifics of fetal diagnosis, including the timing of referral for study, indications for referral, and experience suggested for performance and interpretation of studies, are presented. The components of a fetal echocardiogram are described in detail, including descriptions of the assessment of cardiac anatomy, cardiac function, and rhythm. Complementary modalities for fetal cardiac assessment are reviewed, including the use of advanced ultrasound techniques, fetal magnetic resonance imaging, and fetal magnetocardiography and electrocardiography for rhythm assessment. Models for parental counseling and a discussion of parental stress and depression assessments are reviewed. Available fetal therapies, including medical management for arrhythmias or heart failure and closed or open intervention for diseases affecting the cardiovascular system such as twin-twin transfusion syndrome, lung masses, and vascular tumors, are highlighted. Catheter-based intervention strategies to prevent the progression of disease in utero are also discussed. Recommendations for delivery planning strategies for fetuses with congenital heart disease including models based on classification of disease severity and delivery room

  20. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review.

    PubMed

    Tallawi, Marwa; Rosellini, Elisabetta; Barbani, Niccoletta; Cascone, Maria Grazia; Rai, Ranjana; Saint-Pierre, Guillaume; Boccaccini, Aldo R

    2015-07-06

    The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed.