Science.gov

Sample records for affects glucose metabolism

  1. Prolonged Sleep Restriction Affects Glucose Metabolism in Healthy Young Men

    PubMed Central

    van Leeuwen, Wessel M. A.; Hublin, Christer; Sallinen, Mikael; Härmä, Mikko; Hirvonen, Ari; Porkka-Heiskanen, Tarja

    2010-01-01

    This study identifies the effects of sleep restriction and subsequent recovery sleep on glucose homeostasis, serum leptin levels, and feelings of subjective satiety. Twenty-three healthy young men were allocated to a control group (CON) or an experimental (EXP) group. After two nights of 8 h in bed (baseline, BL), EXP spent 4 h in bed for five days (sleep restriction, SR), followed by two nights of 8 h (recovery, REC). CON spent 8 h in bed throughout the study. Blood samples were taken after the BL, SR, and REC period. In EXP, insulin and insulin-to-glucose ratio increased after SR. IGF-1 levels increased after REC. Leptin levels were elevated after both SR and REC; subjective satiety remained unaffected. No changes were observed in CON. The observed increase of serum IGF-1 and insulin-to-glucose ratio indicates that sleep restriction may result in an increased risk to develop type 2 diabetes. PMID:20414467

  2. Perinatal Exposure to Perfluorooctane Sulfonate Affects Glucose Metabolism in Adult Offspring

    PubMed Central

    Wan, Hin T.; Zhao, Yin G.; Leung, Pik Y.; Wong, Chris K. C.

    2014-01-01

    Perfluoroalkyl acids (PFAAs) are globally present in the environment and are widely distributed in human populations and wildlife. The chemicals are ubiquitous in human body fluids and have a long serum elimination half-life. The notorious member of PFAAs, perfluorooctane sulfonate (PFOS) is prioritized as a global concerning chemical at the Stockholm Convention in 2009, due to its harmful effects in mammals and aquatic organisms. PFOS is known to affect lipid metabolism in adults and was found to be able to cross human placenta. However the effects of in utero exposure to the susceptibility of metabolic disorders in offspring have not yet been elucidated. In this study, pregnant CD-1 mice (F0) were fed with 0, 0.3 or 3 mg PFOS/kg body weight/day in corn oil by oral gavage daily throughout gestational and lactation periods. We investigated the immediate effects of perinatal exposure to PFOS on glucose metabolism in both maternal and offspring after weaning (PND 21). To determine if the perinatal exposure predisposes the risk for metabolic disorder to the offspring, weaned animals without further PFOS exposure, were fed with either standard or high-fat diet until PND 63. Fasting glucose and insulin levels were measured while HOMA-IR index and glucose AUCs were reported. Our data illustrated the first time the effects of the environmental equivalent dose of PFOS exposure on the disturbance of glucose metabolism in F1 pups and F1 adults at PND 21 and 63, respectively. Although the biological effects of PFOS on the elevated levels of fasting serum glucose and insulin levels were observed in both pups and adults of F1, the phenotypes of insulin resistance and glucose intolerance were only evident in the F1 adults. The effects were exacerbated under HFD, highlighting the synergistic action at postnatal growth on the development of metabolic disorders. PMID:24498028

  3. Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster

    PubMed Central

    Wagner, Anika E.; Piegholdt, Stefanie; Rabe, Doerte; Baenas, Nieves; Schloesser, Anke; Eggersdorfer, Manfred; Stocker, Achim; Rimbach, Gerald

    2015-01-01

    In this study, we tested whether a standardized epigallocatechin-3-gallate (EGCG) rich green tea extract (comprising > 90% EGCG) affects fitness and lifespan as well as parameters of glucose metabolism and energy homeostasis in the fruit fly, Drosophila melanogaster. Following the application of the green tea extract a significant increase in the mean lifespan (+ 3.3 days) and the 50% survival (+ 4.3 days) as well as improved fitness was detected. These effects went along an increased expression of Spargel, the homolog of mammalian PGC1α, which has been reported to affect lifespan in flies. Intriguingly, in flies, treatment with the green tea extract decreased glucose concentrations, which were accompanied by an inhibition of α-amylase and α-glucosidase activity. Computational docking analysis proved the potential of EGCG to dock into the substrate binding pocket of α-amylase and to a greater extent into α-glucosidase. Furthermore, we demonstrate that EGCG downregulates insulin-like peptide 5 and phosphoenolpyruvate carboxykinase, major regulators of glucose metabolism, as well as the Drosophila homolog of leptin, unpaired 2. We propose that a decrease in glucose metabolism in connection with an upregulated expression of Spargel contribute to the better fitness and the extended lifespan in EGCG-treated flies. PMID:26375250

  4. Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species

    PubMed Central

    Lee, Mi Jin; Lee, Seung Jun; Yun, Su Jin; Jang, Ji-Young; Kang, Hangoo; Kim, Kyongmin; Choi, In-Hong; Park, Sun

    2016-01-01

    The silver nanoparticle (AgNP) is a candidate for anticancer therapy because of its effects on cell survival and signaling. Although numerous reports are available regarding their effect on cell death, the effect of AgNPs on metabolism is not well understood. In this study, we investigated the effect of AgNPs on glucose metabolism in hepatoma cell lines. Lactate release from both HepG2 and Huh7 cells was reduced with 5 nm AgNPs as early as 1 hour after treatment, when cell death did not occur. Treatment with 5 nm AgNPs decreased glucose consumption in HepG2 cells but not in Huh7 cells. Treatment with 5 nm AgNPs reduced nuclear factor erythroid 2-like 2 expression in both cell types without affecting its activation at the early time points after AgNPs’ treatment. Increased reactive oxygen species (ROS) production was detected 1 hour after 5 nm AgNPs’ treatment, and lactate release was restored in the presence of an ROS scavenger. Our results suggest that 5 nm AgNPs affect glucose metabolism by producing ROS. PMID:26730190

  5. Drug-Induced Diabetes Mellitus: Evidence for Statins and Other Drugs Affecting Glucose Metabolism.

    PubMed

    Anyanwagu, U; Idris, I; Donnelly, R

    2016-04-01

    Abnormalities of glucose metabolism and glucose tolerance, either because of a reduction in tissue sensitivity to insulin (e.g., in liver, skeletal muscle, and adipose tissues) and/or a reduction in pancreatic insulin secretion, are associated with a number of unwanted health outcomes. Even small increases in circulating glucose levels (often described as dysglycemia or prediabetes) may confer an increased risk of cardiovascular (CV) disease and progression to overt type 2 diabetes. A number of drug therapies, many of them used long term in chronic disease management, have adverse effects on glucose metabolism, diabetes risk, and glycemic control among patients with preexisting diabetes. In this study, we review the evidence, underlying mechanisms, and the clinical significance of drug-related adverse effects on glucose metabolism. PMID:26440603

  6. Kinetics of metabolism of glucose, propionate and CO2 in steers as affected by injecting phlorizin and feeding propionate

    SciTech Connect

    Veenhuizen, J.J.; Russell, R.W.; Young, J.W.

    1988-11-01

    Effects of injecting phlorizin subcutaneously and/or feeding propionate on metabolism of glucose, propionate and CO2 were determined for four steers used in a 4 x 4 Latin square design. Isotope dilution techniques were used to determine a four-pool kinetic solution for the flux of carbon among plasma glucose, rumen propionate, blood CO2 and rumen CO2. Injecting 1 g of phlorizin twice daily for 19 d resulted in 7.1 mol glucose C/d being excreted in urine. The basal glucose production of 13.4 mol C/d was increased to 17.9 mol C/d with phlorizin. There was no change in glucose oxidation or propionate production. The percentage of plasma glucose derived from propionate was unaffected by phlorizin, but 54 +/- 0.4% of total propionate was converted to plasma glucose during phlorizin treatment versus 40 +/- 0.6% during the basal treatment. When propionate was fed (18.3 mol C/d) glucose production increased to 21.2 mol C/d from the basal value of 13.4 mol C/d, and propionate oxidation to CO2 increased to 14.9 mol C/d from the basal value of 4.1 mol C/d. Glucose derived from propionate was 43 +/- 5% for the basal treatment and 67 +/- 3% during propionate feeding. The percentage of propionate converted to plasma glucose and blood and rumen CO2 was not affected by feeding propionate. An increased need for glucose, because of glucose excretion during phlorizin treatment, caused an increased utilization of propionate for gluconeogenesis, but an increased availability of propionate caused an increase in glucose production without affecting the relative distribution of carbon from propionate.

  7. Cocoa and Whey Protein Differentially Affect Markers of Lipid and Glucose Metabolism and Satiety.

    PubMed

    Campbell, Caroline L; Foegeding, E Allen; Harris, G Keith

    2016-03-01

    Food formulation with bioactive ingredients is a potential strategy to promote satiety and weight management. Whey proteins are high in leucine and are shown to decrease hunger ratings and increase satiety hormone levels; cocoa polyphenolics moderate glucose levels and slow digestion. This study examined the effects of cocoa and whey proteins on lipid and glucose metabolism and satiety in vitro and in a clinical trial. In vitro, 3T3-L1 preadipocytes were treated with 0.5-100 μg/mL cocoa polyphenolic extract (CPE) and/or 1-15 mM leucine (Leu) and assayed for lipid accumulation and leptin production. In vivo, a 6-week clinical trial consisted of nine panelists (age: 22.6 ± 1.7; BMI: 22.3 ± 2.1) consuming chocolate-protein beverages once per week, including placebo, whey protein isolate (WPI), low polyphenolic cocoa (LP), high polyphenolic cocoa (HP), LP-WPI, and HP-WPI. Measurements included blood glucose and adiponectin levels, and hunger ratings at baseline and 0.5-4.0 h following beverage consumption. At levels of 50 and 100 μg/mL, CPE significantly inhibited preadipocyte lipid accumulation by 35% and 50%, respectively, and by 22% and 36% when combined with 15 mM Leu. Leu treatment increased adipocyte leptin production by 26-37%. In the clinical trial, all beverages significantly moderated blood glucose levels 30 min postconsumption. WPI beverages elicited lowest peak glucose levels and HP levels were significantly lower than LP. The WPI and HP beverage treatments significantly increased adiponectin levels, but elicited no significant changes in hunger ratings. These trends suggest that combinations of WPI and cocoa polyphenols may improve markers of metabolic syndrome and satiety. PMID:26987021

  8. MAPK14/p38α-dependent modulation of glucose metabolism affects ROS levels and autophagy during starvation

    PubMed Central

    Desideri, Enrico; Vegliante, Rolando; Cardaci, Simone; Nepravishta, Ridvan; Paci, Maurizio; Ciriolo, Maria Rosa

    2014-01-01

    Increased glycolytic flux is a common feature of many cancer cells, which have adapted their metabolism to maximize glucose incorporation and catabolism to generate ATP and substrates for biosynthetic reactions. Indeed, glycolysis allows a rapid production of ATP and provides metabolic intermediates required for cancer cells growth. Moreover, it makes cancer cells less sensitive to fluctuations of oxygen tension, a condition usually occurring in a newly established tumor environment. Here, we provide evidence for a dual role of MAPK14 in driving a rearrangement of glucose metabolism that contributes to limiting reactive oxygen species (ROS) production and autophagy activation in condition of nutrient deprivation. We demonstrate that MAPK14 is phosphoactivated during nutrient deprivation and affects glucose metabolism at 2 different levels: on the one hand, it increases SLC2A3 mRNA and protein levels, resulting in a higher incorporation of glucose within the cell. This event involves the MAPK14-mediated enhancement of HIF1A protein stability. On the other hand, MAPK14 mediates a metabolic shift from glycolysis to the pentose phosphate pathway (PPP) through the modulation of PFKFB3 (6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase 3) degradation by the proteasome. This event requires the presence of 2 distinct degradation sequences, KEN box and DSG motif Ser273, which are recognized by 2 different E3 ligase complexes. The mutation of either motif increases PFKFB3 resistance to starvation-induced degradation. The MAPK14-driven metabolic reprogramming sustains the production of NADPH, an important cofactor for many reduction reactions and for the maintenance of the proper intracellular redox environment, resulting in reduced levels of ROS. The final effect is a reduced activation of autophagy and an increased resistance to nutrient deprivation. PMID:25046111

  9. Early life stress affects cerebral glucose metabolism in adult rhesus monkeys (Macaca mulatta).

    PubMed

    Parr, Lisa A; Boudreau, Matthew; Hecht, Erin; Winslow, James T; Nemeroff, Charles B; Sánchez, Mar M

    2012-01-01

    Early life stress (ELS) is a risk factor for anxiety, mood disorders and alterations in stress responses. Less is known about the long-term neurobiological impact of ELS. We used [(18)F]-fluorodeoxyglucose Positron Emission Tomography (FDG-PET) to assess neural responses to a moderate stress test in adult monkeys that experienced ELS as infants. Both groups of monkeys showed hypothalamic-pituitary-adrenal (HPA) axis stress-induced activations and cardiac arousal in response to the stressor. A whole brain analysis detected significantly greater regional cerebral glucose metabolism (rCGM) in superior temporal sulcus, putamen, thalamus, and inferotemporal cortex of ELS animals compared to controls. Region of interest (ROI) analyses performed in areas identified as vulnerable to ELS showed greater activity in the orbitofrontal cortex of ELS compared to control monkeys, but greater hippocampal activity in the control compared to ELS monkeys. Together, these results suggest hyperactivity in emotional and sensory processing regions of adult monkeys with ELS, and greater activity in stress-regulatory areas in the controls. Despite these neural responses, no group differences were detected in neuroendocrine, autonomic or behavioral responses, except for a trend towards increased stillness in the ELS monkeys. Together, these data suggest hypervigilance in the ELS monkeys in the absence of immediate danger. PMID:22682736

  10. In Vitro Fertilization Affects Growth and Glucose Metabolism in a Sex-Specific Manner in an Outbred Mouse Model1

    PubMed Central

    Donjacour, Annemarie; Liu, Xiaowei; Lin, Wingka; Simbulan, Rhodel; Rinaudo, Paolo F.

    2014-01-01

    ABSTRACT The preimplantation period is a time of reprogramming that may be vulnerable to disruption. This question has wide clinical relevance since the number of children conceived by in vitro fertilization (IVF) is rising. To examine this question, outbred mice (CF1 × B6D2F1) conceived by IVF and cultured using Whitten medium and 20% O2 (IVFWM group, less optimal) or K simplex optimized medium with amino acids and 5% O2 (IVFKAA group, more optimal and similar to conditions used in human IVF) were studied postnatally. We found that flushed blastocysts transferred to recipient mice provided the best control group (FB group), as this accounted for the effects of superovulation, embryo transfer, and litter size. We observed that many physiological parameters were normal. Reassuringly, IVFKAA offspring did not differ significantly from FB offspring. However, male IVFWM mice (but not females) were larger during the first 19 wk of life and exhibited glucose intolerance. Male IVFWM mice also showed enlarged left heart despite normal blood pressure. Expression of candidate imprinted genes (H19, Igf2, and Slc38a4) in multiple adult tissues did not show differences among the groups; only Slc38a4 was down-regulated following IVF (in both culture conditions) in female adipose tissue. These studies demonstrate that adult metabolism is affected by the type of conditions encountered during the preimplantation stage. Further, the postnatal growth trajectory and glucose homeostasis following ex vivo manipulation may be sexual dimorphic. Future work on the long-term effects of IVF offspring should focus on glucose metabolism and the cardiovascular system. PMID:24621920

  11. Impairment of vesicular ATP release affects glucose metabolism and increases insulin sensitivity

    PubMed Central

    Sakamoto, Shohei; Miyaji, Takaaki; Hiasa, Miki; Ichikawa, Reiko; Uematsu, Akira; Iwatsuki, Ken; Shibata, Atsushi; Uneyama, Hisayuki; Takayanagi, Ryoichi; Yamamoto, Akitsugu; Omote, Hiroshi; Nomura, Masatoshi; Moriyama, Yoshinori

    2014-01-01

    Neuroendocrine cells store ATP in secretory granules and release it along with hormones that may trigger a variety of cellular responses in a process called purinergic chemical transmission. Although the vesicular nucleotide transporter (VNUT) has been shown to be involved in vesicular storage and release of ATP, its physiological relevance in vivo is far less well understood. In Vnut knockout (Vnut−/−) mice, we found that the loss of functional VNUT in adrenal chromaffin granules and insulin granules in the islets of Langerhans led to several significant effects. Vesicular ATP accumulation and depolarization-dependent ATP release were absent in the chromaffin granules of Vnut−/− mice. Glucose-responsive ATP release was also absent in pancreatic β-cells in Vnut−/− mice, while glucose-responsive insulin secretion was enhanced to a greater extent than that in wild-type tissue. Vnut−/− mice exhibited improved glucose tolerance and low blood glucose upon fasting due to increased insulin sensitivity. These results demonstrated an essential role of VNUT in vesicular storage and release of ATP in neuroendocrine cells in vivo and suggest that vesicular ATP and/or its degradation products act as feedback regulators in catecholamine and insulin secretion, thereby regulating blood glucose homeostasis. PMID:25331291

  12. Impairment of vesicular ATP release affects glucose metabolism and increases insulin sensitivity.

    PubMed

    Sakamoto, Shohei; Miyaji, Takaaki; Hiasa, Miki; Ichikawa, Reiko; Uematsu, Akira; Iwatsuki, Ken; Shibata, Atsushi; Uneyama, Hisayuki; Takayanagi, Ryoichi; Yamamoto, Akitsugu; Omote, Hiroshi; Nomura, Masatoshi; Moriyama, Yoshinori

    2014-01-01

    Neuroendocrine cells store ATP in secretory granules and release it along with hormones that may trigger a variety of cellular responses in a process called purinergic chemical transmission. Although the vesicular nucleotide transporter (VNUT) has been shown to be involved in vesicular storage and release of ATP, its physiological relevance in vivo is far less well understood. In Vnut knockout (Vnut(-/-)) mice, we found that the loss of functional VNUT in adrenal chromaffin granules and insulin granules in the islets of Langerhans led to several significant effects. Vesicular ATP accumulation and depolarization-dependent ATP release were absent in the chromaffin granules of Vnut(-/-) mice. Glucose-responsive ATP release was also absent in pancreatic β-cells in Vnut(-/-) mice, while glucose-responsive insulin secretion was enhanced to a greater extent than that in wild-type tissue. Vnut(-/-) mice exhibited improved glucose tolerance and low blood glucose upon fasting due to increased insulin sensitivity. These results demonstrated an essential role of VNUT in vesicular storage and release of ATP in neuroendocrine cells in vivo and suggest that vesicular ATP and/or its degradation products act as feedback regulators in catecholamine and insulin secretion, thereby regulating blood glucose homeostasis. PMID:25331291

  13. Deletion of GPR40 Impairs Glucose-Induced Insulin Secretion In Vivo in Mice Without Affecting Intracellular Fuel Metabolism in Islets

    SciTech Connect

    Alquier, Thierry; Peyot, Marie-Line; Latour, M. G.; Kebede, Melkam; Sorensen, Christina M.; Gesta, Stephane; Kahn, C. R.; Smith, Richard D.; Jetton, Thomas L.; Metz, Thomas O.; Prentki, Marc; Poitout, Vincent J.

    2009-11-01

    The G protein-coupled receptor GPR40 mediates fatty-acid potentiation of glucose-stimulated insulin secretion, but its contribution to insulin secretion in vivo and mechanisms of action remain uncertain. This study was aimed to ascertain whether GPR40 controls insulin secretion in vivo and modulates intracellular fuel metabolism in islets. We observed that glucose- and arginine-stimulated insulin secretion, assessed by hyperglycemic clamps, was decreased by approximately 60% in GPR40 knock-out (KO) fasted and fed mice, without changes in insulin sensitivity assessed by hyperinsulinemic-euglycemic clamps. Glucose and palmitate metabolism were not affected by GPR40 deletion. Lipid profiling revealed a similar increase in triglyceride and decrease in lysophosphatidylethanolamine species in WT and KO islets in response to palmitate. These results demonstrate that GPR40 regulates insulin secretion in vivo not only in response to fatty acids but also to glucose and arginine, without altering intracellular fuel metabolism.

  14. Glucose Metabolism in Neisseria gonorrhoeae

    PubMed Central

    Morse, Stephen A.; Stein, Stefanie; Hines, James

    1974-01-01

    The metabolism of glucose was examined in several clinical isolates of Neisseria gonorrhoeae. Radiorespirometric studies revealed that growing cells metabolized glucose by a combination on the Entner-Doudoroff and pentose phosphate pathways. A portion of the glyceraldehyde-3-phosphate formed via the Entner-Doudoroff pathway was recycled by conversion to glucose-6-phosphate. Subsequent catabolism of this glucose-6-phosphate by either the Entner-Doudoroff or pentose phosphate pathways yielded CO2 from the original C6 of glucose. Enzyme analyses confirmed the presence of all enzymes of the Entner-Doudoroff, pentose phosphate, and Embden-Meyerhof-Parnas pathways. There was always a high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) relative to that of 6-phosphogluconate dehydrogenase (EC 1.1.1.44). The glucose-6-phosphate dehydrogenase utilized either nicotinamide adenine dinucleotide phosphate or nicotinamide adenine dinucleotide as electron acceptor. Acetate was the only detectable nongaseous end product of glucose metabolism. Following the disappearance of glucose, acetate was metabolized by the tricarboxylic acid cycle as evidenced by the preferential oxidation of [1-14C]acetate over that of [2-14C]acetate. When an aerobically grown log-phase culture was subjected to anaerobic conditions, lactate and acetate were formed from glucose. Radiorespirometric studies showed that under these conditions, glucose was dissimilated entirely by the Entner-Doudoroff pathway. Further studies determined that this anaerobic dissimilation of glucose was not growth dependent. PMID:4156358

  15. Low and high dietary protein:carbohydrate ratios during pregnancy affect materno-fetal glucose metabolism in pigs.

    PubMed

    Metges, Cornelia C; Görs, Solvig; Lang, Iris S; Hammon, Harald M; Brüssow, Klaus-Peter; Weitzel, Joachim M; Nürnberg, Gerd; Rehfeldt, Charlotte; Otten, Winfried

    2014-02-01

    Inadequate dietary protein during pregnancy causes intrauterine growth retardation. Whether this is related to altered maternal and fetal glucose metabolism was examined in pregnant sows comparing a high-protein:low-carbohydrate diet (HP-LC; 30% protein, 39% carbohydrates) with a moderately low-protein:high-carbohydrate diet (LP-HC; 6.5% protein, 68% carbohydrates) and the isoenergetic standard diet (ST; 12.1% protein, 60% carbohydrates). During late pregnancy, maternal and umbilical glucose metabolism and fetal hepatic mRNA expression of gluconeogenic enzymes were examined. During an i.v. glucose tolerance test (IVGTT), the LP-HC-fed sows had lower insulin concentrations and area under the curve (AUC), and higher glucose:insulin ratios than the ST- and the HP-LC-fed sows (P < 0.05). Insulin sensitivity and glucose clearance were higher in the LP-HC sows compared with ST sows (P < 0.05). Glucagon concentrations during postabsorptive conditions and IVGTT, and glucose AUC during IVGTT, were higher in the HP-LC group compared with the other groups (P < 0.001). (13)C glucose oxidation was lower in the HP-LC sows than in the ST and LP-HC sows (P < 0.05). The HP-LC fetuses were lighter and had a higher brain:liver ratio than the ST group (P < 0.05). The umbilical arterial inositol concentration was greater in the HP-LC group (P < 0.05) and overall small fetuses (230-572 g) had higher values than medium and heavy fetuses (≥573 g) (P < 0.05). Placental lactate release was lower in the LP-HC group than in the ST group (P < 0.05). Fetal glucose extraction tended to be lower in the LP-HC group than in the ST group (P = 0.07). In the HP-LC and LP-HC fetuses, hepatic mRNA expression of cytosolic phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC) was higher than in the ST fetuses (P < 0.05). In conclusion, the HP-LC and LP-HC sows adapted by reducing glucose turnover and oxidation and having higher glucose utilization, respectively. The HP-LC and LP

  16. Antihypertensive drugs and glucose metabolism

    PubMed Central

    Rizos, Christos V; Elisaf, Moses S

    2014-01-01

    Hypertension plays a major role in the development and progression of micro- and macrovascular disease. Moreover, increased blood pressure often coexists with additional cardiovascular risk factors such as insulin resistance. As a result the need for a comprehensive management of hypertensive patients is critical. However, the various antihypertensive drug categories have different effects on glucose metabolism. Indeed, angiotensin receptor blockers as well as angiotensin converting enzyme inhibitors have been associated with beneficial effects on glucose homeostasis. Calcium channel blockers (CCBs) have an overall neutral effect on glucose metabolism. However, some members of the CCBs class such as azelnidipine and manidipine have been shown to have advantageous effects on glucose homeostasis. On the other hand, diuretics and β-blockers have an overall disadvantageous effect on glucose metabolism. Of note, carvedilol as well as nebivolol seem to differentiate themselves from the rest of the β-blockers class, being more attractive options regarding their effect on glucose homeostasis. The adverse effects of some blood pressure lowering drugs on glucose metabolism may, to an extent, compromise their cardiovascular protective role. As a result the effects on glucose homeostasis of the various blood pressure lowering drugs should be taken into account when selecting an antihypertensive treatment, especially in patients which are at high risk for developing diabetes. PMID:25068013

  17. [Glucose Metabolism: Stress Hyperglycemia and Glucose Control].

    PubMed

    Tanaka, Katsuya; Tsutsumi, Yasuo M

    2016-05-01

    It is important for the anesthesiologists to understand pathophysiology of perioperative stress hyperglycemia, because it offers strategies for treatment of stress hyperglycemia. The effect of glucose tolerance is different in the choice of the anesthetic agent used in daily clinical setting. Specifically, the volatile anesthetics inhibit insulin secretion after glucose load and affects glucose tolerance. During minor surgery by the remifentanil anesthesia, the stress reaction is hard to be induced, suggesting that we should consider low-dose glucose load. Finally it is necessary to perform the glycemic control of the patients who fell into stress hyperglycemia depending on the individual patient. However, there are a lot of questions to be answered in the future. The prognosis of the perioperative patients is more likely to be greatly improved if we can control stress hyperglycemia. PMID:27319094

  18. Linking cytoarchitecture to metabolism: sarcolemma-associated plectin affects glucose uptake by destabilizing microtubule networks in mdx myofibers

    PubMed Central

    2013-01-01

    Background Duchenne muscular dystrophy (DMD) is one of the most frequent forms of muscular disorders. It is caused by the absence of dystrophin, a core component of the sarcolemma-associated junctional complex that links the cytoskeleton to the extracellular matrix. We showed previously that plectin 1f (P1f), one of the major muscle-expressed isoforms of the cytoskeletal linker protein plectin, accumulates at the sarcolemma of DMD patients as well as of mdx mice, a widely studied animal model for DMD. Based on plectin’s dual role as structural protein and scaffolding platform for signaling molecules, we speculated that the dystrophic phenotype observed after loss of dystrophin was caused, at least to some extent, by excess plectin. Thus, we hypothesized that elimination of plectin expression in mdx skeletal muscle, while probably resulting in an overall more severe phenotype, may lead to a partial phenotype rescue. In particular, we wanted to assess whether excess sarcolemmal plectin contributes to the dysregulation of sugar metabolism in mdx myofibers. Methods We generated plectin/dystrophin double deficient (dKO) mice by breeding mdx with conditional striated muscle-restricted plectin knockout (cKO) mice. The phenotype of these mice was comparatively analyzed with that of mdx, cKO, and wild-type mice, focusing on structural integrity and dysregulation of glucose metabolism. Results We show that the accumulation of plectin at the sarcolemma of mdx muscle fibers hardly compensated for their loss of structural integrity. Instead, it led to an additional metabolic deficit by impairing glucose uptake. While dKO mice suffered from an overall more severe form of muscular dystrophy compared to mdx or plectin-deficient mice, sarcolemmal integrity as well as glucose uptake of their myofibers were restored to normal levels upon ablation of plectin. Furthermore, microtubule (MT) networks in intact dKO myofibers, including subsarcolemmal areas, were found to be more robust

  19. Glucose metabolism and cardiac hypertrophy

    PubMed Central

    Kolwicz, Stephen C.; Tian, Rong

    2011-01-01

    The most notable change in the metabolic profile of hypertrophied hearts is an increased reliance on glucose with an overall reduced oxidative metabolism, i.e. a reappearance of the foetal metabolic pattern. In animal models, this change is attributed to the down-regulation of the transcriptional cascades promoting gene expression for fatty acid oxidation and mitochondrial oxidative phosphorylation in adult hearts. Impaired myocardial energetics in cardiac hypertrophy also triggers AMP-activated protein kinase (AMPK), leading to increased glucose uptake and glycolysis. Aside from increased reliance on glucose as an energy source, changes in other glucose metabolism pathways, e.g. the pentose phosphate pathway, the glucosamine biosynthesis pathway, and anaplerosis, are also noted in the hypertrophied hearts. Studies using transgenic mouse models and pharmacological compounds to mimic or counter the switch of substrate preference in cardiac hypertrophy have demonstrated that increased glucose metabolism in adult heart is not harmful and can be beneficial when it provides sufficient fuel for oxidative metabolism. However, improvement in the oxidative capacity and efficiency rather than the selection of the substrate is likely the ultimate goal for metabolic therapies. PMID:21502371

  20. Withdrawal of dietary phytoestrogens in adult male rats affects hypothalamic regulation of food intake, induces obesity and alters glucose metabolism.

    PubMed

    Andreoli, María Florencia; Stoker, Cora; Rossetti, María Florencia; Alzamendi, Ana; Castrogiovanni, Daniel; Luque, Enrique H; Ramos, Jorge Guillermo

    2015-02-01

    The absence of phytoestrogens in the diet during pregnancy has been reported to result in obesity later in adulthood. We investigated whether phytoestrogen withdrawal in adult life could alter the hypothalamic signals that regulate food intake and affect body weight and glucose homeostasis. Male Wistar rats fed from conception to adulthood with a high phytoestrogen diet were submitted to phytoestrogen withdrawal by feeding a low phytoestrogen diet, or a high phytoestrogen-high fat diet. Withdrawal of dietary phytoestrogens increased body weight, adiposity and energy intake through an orexigenic hypothalamic response characterized by upregulation of AGRP and downregulation of POMC. This was associated with elevated leptin and T4, reduced TSH, testosterone and estradiol, and diminished hypothalamic ERα expression, concomitant with alterations in glucose tolerance. Removing dietary phytoestrogens caused manifestations of obesity and diabetes that were more pronounced than those induced by the high phytoestrogen-high fat diet intake. PMID:25486512

  1. [Glucose metabolic changes in stress].

    PubMed

    Foia, L; Costuleanu, N; Trandafirescu, M; Saila, V; Pavel, M

    1999-01-01

    Provision of a better understanding of the pathogenic pathways underlying injured sugar metabolism during stress should ideally translate into a more rational approach to the provision of nutritional support. Patients with burns, trauma, severe injuries or infections commonly develop a hypermetabolic state that is associated with several changes in carbohydrate metabolism. The hypermetabolic state is induced either by the area of injury and by organs involved in the immunologic response to stress; further it determines a glycemic milieu which will be directed toward satisfaction of the requirements for glucose as an energy support. PMID:10756928

  2. Glucose metabolism and hexosamine pathway regulate oncogene-induced senescence.

    PubMed

    Gitenay, D; Wiel, C; Lallet-Daher, H; Vindrieux, D; Aubert, S; Payen, L; Simonnet, H; Bernard, D

    2014-01-01

    Oncogenic stress-induced senescence (OIS) prevents the ability of oncogenic signals to induce tumorigenesis. It is now largely admitted that the mitogenic effect of oncogenes requires metabolic adaptations to respond to new energetic and bio constituent needs. Yet, whether glucose metabolism affects OIS response is largely unknown. This is largely because of the fact that most of the OIS cellular models are cultivated in glucose excess. In this study, we used human epithelial cells, cultivated without glucose excess, to study alteration and functional role of glucose metabolism during OIS. We report a slowdown of glucose uptake and metabolism during OIS. Increasing glucose metabolism by expressing hexokinase2 (HK2), which converts glucose to glucose-6-phosphate (G6P), favors escape from OIS. Inversely, expressing a glucose-6-phosphatase, [corrected] pharmacological inhibition of HK2, or adding nonmetabolizable glucose induced a premature senescence. Manipulations of various metabolites covering G6P downstream pathways (hexosamine, glycolysis, and pentose phosphate pathways) suggest an unexpected role of the hexosamine pathway in controlling OIS. Altogether, our results show that decreased glucose metabolism occurs during and participates to OIS. PMID:24577087

  3. Regional glucose metabolism using PETT in normal and psychiatric populations

    SciTech Connect

    Brodie, J.D.; Wolf, A.P.; Volkow, N.

    1982-01-01

    The metabolism of /sup 18/F-2-deoxy-2-fluoro-D-glucose (/sup 18/FDG) in 150 subjects including normals, schizophrenics, senile dementias, and primary affective disorders was studied. Some of the data analyzed to date are discussed.

  4. Modeling Glucose Metabolism in the Kidney.

    PubMed

    Chen, Ying; Fry, Brendan C; Layton, Anita T

    2016-06-01

    The mammalian kidney consumes a large amount of energy to support the reabsorptive work it needs to excrete metabolic wastes and to maintain homeostasis. Part of that energy is supplied via the metabolism of glucose. To gain insights into the transport and metabolic processes in the kidney, we have developed a detailed model of the renal medulla of the rat kidney. The model represents water and solute flows, transmural fluxes, and biochemical reactions in the luminal fluid of the nephrons and vessels. In particular, the model simulates the metabolism of oxygen and glucose. Using that model, we have identified parameters concerning glucose transport and basal metabolism that yield predicted blood glucose concentrations that are consistent with experimental measurements. The model predicts substantial axial gradients in blood glucose levels along various medullary structures. Furthermore, the model predicts that in the inner medulla, owing to the relatively limited blood flow and low tissue oxygen tension, anaerobic metabolism of glucose dominates. PMID:27371260

  5. Drugs affecting glycosaminoglycan metabolism.

    PubMed

    Ghiselli, Giancarlo; Maccarana, Marco

    2016-07-01

    Glycosaminoglycans (GAGs) are charged polysaccharides ubiquitously present at the cell surface and in the extracellular matrix. GAGs are crucial for cellular homeostasis, and their metabolism is altered during pathological processes. However, little consideration has been given to the regulation of the GAG milieu through pharmacological interventions. In this review, we provide a classification of small molecules affecting GAG metabolism based on their mechanism of action. Furthermore, we present evidence to show that clinically approved drugs affect GAG metabolism and that this could contribute to their therapeutic benefit. PMID:27217160

  6. Sex steroids and glucose metabolism.

    PubMed

    Allan, Carolyn A

    2014-01-01

    Testosterone levels are lower in men with metabolic syndrome and type 2 diabetes mellitus (T2DM) and also predict the onset of these adverse metabolic states. Body composition (body mass index, waist circumference) is an important mediator of this relationship. Sex hormone binding globulin is also inversely associated with insulin resistance and T2DM but the data regarding estrogen are inconsistent. Clinical models of androgen deficiency including Klinefelter's syndrome and androgen deprivation therapy in the treatment of advanced prostate cancer confirm the association between androgens and glucose status. Experimental manipulation of the insulin/glucose milieu and suppression of endogenous testicular function suggests the relationship between androgens and insulin sensitivity is bidirectional. Androgen therapy in men without diabetes is not able to differentiate the effect on insulin resistance from that on fat mass, in particular visceral adiposity. Similarly, several small clinical studies have examined the efficacy of exogenous testosterone in men with T2DM, however, the role of androgens, independent of body composition, in modifying insulin resistance is uncertain. PMID:24457840

  7. TNFα Altered Inflammatory Responses, Impaired Health and Productivity, but Did Not Affect Glucose or Lipid Metabolism in Early-Lactation Dairy Cows

    PubMed Central

    Mamedova, Laman K.; Sordillo, Lorraine M.; Bradford, Barry J.

    2013-01-01

    Inflammation may be a major contributing factor to peripartum metabolic disorders in dairy cattle. We tested whether administering an inflammatory cytokine, recombinant bovine tumor necrosis factor-α (rbTNFα), affects milk production, metabolism, and health during this period. Thirty-three Holstein cows (9 primiparous and 24 multiparous) were randomly assigned to 1 of 3 treatments at parturition. Treatments were 0 (Control), 1.5, or 3.0 µg/kg body weight rbTNFα, which were administered once daily by subcutaneous injection for the first 7 days of lactation. Statistical contrasts were used to evaluate the treatment and dose effects of rbTNFα administration. Plasma TNFα concentrations at 16 h post-administration tended to be increased (P<0.10) by rbTNFα administration, but no dose effect (P>0.10) was detected; rbTNFα treatments increased (P<0.01) concentrations of plasma haptoglobin. Most plasma eicosanoids were not affected (P>0.10) by rbTNFα administration, but 6 out of 16 measured eicosanoids changed (P<0.05) over the first week of lactation, reflecting elevated inflammatory mediators in the days immediately following parturition. Dry matter and water intake, milk yield, and milk fat and protein yields were all decreased (P<0.05) by rbTNFα treatments by 15 to 18%. Concentrations of plasma glucose, insulin, β-hydroxybutyrate, non-esterified fatty acids, triglyceride, 3-methylhistidine, and liver triglyceride were unaffected (P>0.10) by rbTNFα treatment. Glucose turnover rate was unaffected (P = 0.18) by rbTNFα administration. The higher dose of rbTNFα tended to increase the risk of cows developing one or more health disorders (P = 0.08). Taken together, these results indicate that administration of rbTNFα daily for the first 7 days of lactation altered inflammatory responses, impaired milk production and health, but did not significantly affect liver triglyceride accumulation or nutrient metabolism in dairy cows. PMID:24260367

  8. Persistent impaired glucose metabolism in a zebrafish hyperglycemia model.

    PubMed

    Capiotti, Katiucia Marques; Antonioli, Régis; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2014-05-01

    Diabetes mellitus (DM) affects over 10% of the world's population. Hyperglycemia is the main feature for the diagnosis of this disease. The zebrafish (Danio rerio) is an established model organism for the study of various metabolic diseases. In this paper, hyperglycemic zebrafish, when immersed in a 111 mM glucose solution for 14 days, developed increased glycation of proteins from the eyes, decreased mRNA levels of insulin receptors in the muscle, and a reversion of high blood glucose level after treatment with anti-diabetic drugs (glimepiride and metformin) even after 7 days of glucose withdrawal. Additionally, hyperglycemic zebrafish developed an impaired response to exogenous insulin, which was recovered after 7 days of glucose withdrawal. These data suggest that the exposure of adult zebrafish to high glucose concentration is able to induce persistent metabolic changes probably underlined by a hyperinsulinemic state and impaired peripheral glucose metabolism. PMID:24704522

  9. Circadian control of glucose metabolism

    PubMed Central

    Kalsbeek, Andries; la Fleur, Susanne; Fliers, Eric

    2014-01-01

    The incidence of obesity and type 2 diabetes mellitus (T2DM) has risen to epidemic proportions. The pathophysiology of T2DM is complex and involves insulin resistance, pancreatic β-cell dysfunction and visceral adiposity. It has been known for decades that a disruption of biological rhythms (which happens the most profoundly with shift work) increases the risk of developing obesity and T2DM. Recent evidence from basal studies has further sparked interest in the involvement of daily rhythms (and their disruption) in the development of obesity and T2DM. Most living organisms have molecular clocks in almost every tissue, which govern rhythmicity in many domains of physiology, such as rest/activity rhythms, feeding/fasting rhythms, and hormonal secretion. Here we present the latest research describing the specific role played by the molecular clock mechanism in the control of glucose metabolism and speculate on how disruption of these tissue clocks may lead to the disturbances in glucose homeostasis. PMID:24944897

  10. Dietary fructose and glucose differentially affect lipid and glucose homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Absorbed glucose and fructose differ in that glucose largely escapes first pass removal by the liver, whereas fructose does not, resulting in different metabolic effects of these two monosaccharides. In short-term controlled feeding studies, dietary fructose significantly increases postprandial trig...

  11. Dietary fructose and glucose differentially affect lipid and glucose homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Absorbed glucose and fructose differ in that glucose largely escapes first-pass removal by the liver, whereas fructose does not, resulting in different metabolic effects of these 2 monosaccharides. In short-term controlled feeding studies, dietary fructose significantly increases postprandial trigly...

  12. High or low dietary carbohydrate:protein ratios during first-feeding affect glucose metabolism and intestinal microbiota in juvenile rainbow trout.

    PubMed

    Geurden, I; Mennigen, J; Plagnes-Juan, E; Veron, V; Cerezo, T; Mazurais, D; Zambonino-Infante, J; Gatesoupe, J; Skiba-Cassy, S; Panserat, S

    2014-10-01

    Based on the concept of nutritional programming in mammals, we tested whether an acute hyperglucidic-hypoproteic stimulus during first feeding could induce long-term changes in nutrient metabolism in rainbow trout. Trout alevins received during the five first days of exogenous feeding either a hyperglucidic (40% gelatinized starch + 20% glucose) and hypoproteic (20%) diet (VLP diet) or a high-protein (60%) glucose-free diet (HP diet, control). Following a common 105-day period on a commercial diet, both groups were then challenged (65 days) with a carbohydrate-rich diet (28%). Short- and long-term effects of the early stimuli were evaluated in terms of metabolic marker gene expressions and intestinal microbiota as initial gut colonisation is essential for regulating the development of the digestive system. In whole alevins (short term), diet VLP relative to HP rapidly increased gene expressions of glycolytic enzymes, while those involved in gluconeogenesis and amino acid catabolism decreased. However, none of these genes showed persistent molecular adaptation in the liver of challenged juveniles (long term). By contrast, muscle of challenged juveniles subjected previously to the VLP stimulus displayed downregulated expression of markers of glycolysis and glucose transport (not seen in the short term). These fish also had higher plasma glucose (9 h postprandial), suggesting impaired glucose homeostasis induced by the early stimulus. The early stimulus did not modify the expression of the analysed metabolism-related microRNAs, but had short- and long-term effects on intestinal fungi (not bacteria) profiles. In summary, our data show that a short hyperglucidic-hypoproteic stimulus during early life may have a long-term influence on muscle glucose metabolism and intestinal microbiota in trout. PMID:25274323

  13. Factors Affecting Gender Differences in the Association between Health-Related Quality of Life and Metabolic Syndrome Components: Tehran Lipid and Glucose Study

    PubMed Central

    Amiri, Parisa; Deihim, Tina; Taherian, Reza; Karimi, Mehrdad; Gharibzadeh, Safoora; Asghari-Jafarabadi, Mohammad; Shiva, Niloofar; Azizi, Fereidoun

    2015-01-01

    Objective Using structural equation modeling, this study is one of the first efforts aimed at assessing influential factors causing gender differences in the association between health-related quality of life (HRQoL) and metabolic syndrome. Methods A sample of 950 adults, from Tehran Lipid and Glucose Study were recruited for this cross sectional study in 2005–2007. Health-related quality of life was assessed using the Iranian version of SF-36. Metabolic syndrome components (MetSCs) and physical and mental HRQoL were considered as continuous latent constructs explaining the variances of their observed components. Structural equation modeling was performed to examine the association between the constructs of MetSCs and the physical and mental HRQoL within the two gender groups. Results Based on the primary hypothesis, MetSCs and HRQoL were fitted in a model. The negative effect of MetSCs on HRQoL was found to be significant only in the physical domain and only in women. The proportion of all the cardio-metabolic risk factors as well as subscales of physical HRQoL that have been explained via the two constructs of MetSCs and HRQoL, respectively, were significantly higher in women. Physical activity in both men (β = 3.19, p<0.05) and women (β = 3.94, p<0.05), age (β = -3.28, p<0.05), education (β = 2.63, p<0.05) only in women and smoking (β = 2.28, p<0.05) just in men, directly affected physical HRQoL. Regarding the mental domain, physical activity (β = 3.37, p<0.05) and marital status (β = 3.44, p<0.05) in women and age (β = 2.01, p<0.05) in men were direct effective factors. Age and education in women as well as smoking in men indirectly affected physical HRQoL via MetSCs. Conclusion Gender differences in the association between MetSCs and physical HRQoL could mostly be attributed to the different structures of both MetSCs and physical HRQoL constructs in men and women. Age and smoking are the most important socio-behavioral factors which could affect this

  14. Cell Based Metabolic Barriers to Glucose Diffusion: Macrophages and Continuous Glucose Monitoring

    PubMed Central

    Klueh, Ulrike; Frailey, Jackman; Qiao, Yi; Antar, Omar; Kreutzer, Donald L.

    2014-01-01

    It is assumed that MQ are central to glucose sensor bio-fouling and therefore have a major negative impact on continuous glucose monitoring (CGM) performance in vivo. However to our knowledge there is no data in the literature to directly support or refute this assumption. Since glucose and oxygen (O2) are key to glucose sensor function in vivo, understanding and controlling glucose and O2 metabolic activity of MQ is likely key to successful glucose sensor performance. We hypothesized that the accumulation of MQ at the glucose sensor-tissue interface will act as “Cell Based Metabolic Barriers” (CBMB) to glucose diffusing from the interstitial tissue compartment to the implanted glucose sensor and as such creating an artificially low sensor output, thereby compromising sensor function and CGM. Our studies demonstrated that 1) direct injections of MQ at in vivo sensor implantation sites dramatically decreased sensor output (measured in nA), 2) addition of MQ to glucose sensors in vitro resulted in a rapid and dramatic fall in sensor output and 3) lymphocytes did not affect sensor function in vitro or in vivo. These data support our hypothesis that MQ can act as metabolic barriers to glucose and O2 diffusion in vivo and in vitro. PMID:24461328

  15. Glucose Transporters in Cardiac Metabolism and Hypertrophy

    PubMed Central

    Shao, Dan; Tian, Rong

    2016-01-01

    The heart is adapted to utilize all classes of substrates to meet the high-energy demand, and it tightly regulates its substrate utilization in response to environmental changes. Although fatty acids are known as the predominant fuel for the adult heart at resting stage, the heart switches its substrate preference toward glucose during stress conditions such as ischemia and pathological hypertrophy. Notably, increasing evidence suggests that the loss of metabolic flexibility associated with increased reliance on glucose utilization contribute to the development of cardiac dysfunction. The changes in glucose metabolism in hypertrophied hearts include altered glucose transport and increased glycolysis. Despite the role of glucose as an energy source, changes in other nonenergy producing pathways related to glucose metabolism, such as hexosamine biosynthetic pathway and pentose phosphate pathway, are also observed in the diseased hearts. This article summarizes the current knowledge regarding the regulation of glucose transporter expression and translocation in the heart during physiological and pathological conditions. It also discusses the signaling mechanisms governing glucose uptake in cardiomyocytes, as well as the changes of cardiac glucose metabolism under disease conditions. PMID:26756635

  16. Glucose metabolism in diabetic blood vessels

    SciTech Connect

    Brown, B.J.; Crass, M.F. III

    1986-03-05

    Since glycolysis appears to be coupled to active ion transport in vascular smooth muscle, alterations in glucose metabolism may contribute to cellular dysfunction and angiopathy in diabetes. Uptake and utilization of glucose were studied in perfused blood vessels in which pulsatile flow and perfusion pressure were similar to those measured directly in vivo. Thoracic aortae isolated from 8-wk alloxan diabetic (D) and nondiabetic control rabbits were cannulated, tethered, and perfused with oxygenated buffer containing 7 or 25 mM glucose and tracer amounts of glucose-U/sup -14/ C. Norepinephrine (NE) (10/sup -6/ M) and/or insulin (I) (150 ..mu..U/ml) and albumin (0.2%) were added. NE-induced tension development increased glucose uptake 39% and /sup 14/CO/sub 2/ and lactate production 2.3-fold. With 7 mM glucose, marked decreases in glucose uptake (74%), /sup 14/CO/sub 2/ (68%), lactate (30%), total tissue glycogen (75%), and tissue phospholipids (70%) were observed in D. Addition of I or elevation of exogenous glucose to 25 mM normalized glucose uptake, but had differential effects on the pattern of substrate utilization. Thus, in D, there was a marked depression of vascular glucose metabolism that was partially reversed by addition of low concentrations of insulin or D levels of glucose.

  17. Impaired glucose metabolism treatment and carcinogenesis

    PubMed Central

    MATYSZEWSKI, ARTUR; CZARNECKA, ANNA; KAWECKI, MACIEJ; KORZEŃ, PIOTR; SAFIR, ILAN J.; KUKWA, WOJCIECH; SZCZYLIK, CEZARY

    2015-01-01

    Carbohydrate metabolism disorders increase the risk of carcinogenesis. Diabetes mellitus alters numerous physiological processes that may encourage cancer growth. However, treating impaired glucose homeostasis may actually promote neoplasia; maintaining proper glucose plasma concentrations reduces metabolic stresses, however, certain medications may themselves result in oncogenic effects. A number of previous studies have demonstrated that metformin reduces the cancer risk. However, the use of sulfonylurea derivatives correlates with an increased risk of developing a malignancy. Another form of treatment, insulin therapy, involves using various forms of insulin that differ in pharmacodynamics, pharmacokinetics and efficacy. Previous studies have indicated that certain insulin variants also affect the cancer risk. The results from analyses that address the safety of long-lasting insulin types raise the most concern regarding the increased risk of malignancy. Rapid development of novel diabetic medications and their widespread use carries the risk of potentially increased rates of cancer, unnoticeable in limited, randomized, controlled trials. In the present review, the results of clinical and epidemiological studies are evaluated to assess the safety of anti-hyperglycemic medications and their effect on cancer risk and outcomes. PMID:26622538

  18. Estimation of liver glucose metabolism after refeeding

    SciTech Connect

    Rognstad, R.

    1987-05-01

    Refeeding or infusing glucose to rats fasted for 24 hr or more causes rapid liver glycogen synthesis, the carbon source now considered to be largely from gluconeogenesis. While substrate cycling between plasma glucose and liver glucose-6P is known to occur, this cycling has apparently been ignored when calculations are made of % contribution of direct and indirect pathways to liver glycogen synthesis, or when hepatic glucose output is calculated from glucose turnover minus the glucose infusion rate. They show that, isotopically, an estimate of the fluxes of liver glucokinase and glucose-6-phosphatase is required to quantitate sources of carbon for liver glycogen synthesis, and to measure hepatic glucose output (or uptake). They propose a method to estimate these fluxes, involving a short infusion of a /sup 14/C labelled gluconeogenic precursor plus (6T)glucose, with determination of isotopic yields in liver glycogen and total glucose. Given also the rate of liver glycogen synthesis, this procedure permits the estimation of net gluconeogenesis and hepatic glucose output or uptake. Also, in vitro evidence against the notion of a drastic zonation of liver carbohydrate metabolism is presented, e.g. raising the glucose concentration from 10 to 25 mM increases the /sup 14/C yield from H/sup 14/CO/sub 3//sup -/ in lactate, with the increased pyruvate kinase flux and decreased gluconeogenesis occurring in the same cell type, not opposing pathways in different hepatocyte types (as has been postulated by some to occur in vivo after refeeding.

  19. Antiretroviral drug levels and interactions affect lipid, lipoprotein and glucose metabolism in HIV-1 seronegative subjects: A pharmacokinetic-pharmacodynamic analysis

    PubMed Central

    Rosenkranz, Susan L.; Yarasheski, Kevin E.; Para, Michael F.; Reichman, Richard C.; Morse, Gene D.

    2007-01-01

    Background: HIV-infected patients treated with antiretroviral medications (ARVs) develop undesirable changes in lipid and glucose metabolism that mimic the metabolic syndrome and may be proatherogenic. Antiretroviral drug levels and their interactions may contribute to these metabolic alterations. Methods: Fifty-six HIV-seronegative adults were enrolled in an open-label, randomized, pharmacokinetic interaction study, and received a non-nucleoside reverse transcriptase inhibitor (efavirenz on days 1-21) plus a protease inhibitor (PI; amprenavir on days 11-21), with a second PI on days 15-21 (saquinavir, nelfinavir, indinavir, or ritonavir). Fasting triglycerides, total, LDL- and HDL-cholesterol, glucose, insulin and C-peptide levels were measured on days 0, 14, 21, and 2-3 weeks after discontinuing drugs. Regression models were used to estimate changes in these parameters and associations between these changes and circulating levels of study drugs. Results: Short-term efavirenz and amprenavir administration significantly increased cholesterol, triglycerides and glucose levels. Addition of a second protease inhibitor further increased triglycerides, total- and LDL-cholesterol levels. Higher amprenavir levels predicted larger increases in triglycerides, total and LDL-cholesterol. Two weeks after all study drugs were stopped, total, LDL- and HDL-cholesterol remained elevated above baseline. Conclusions: ARV regimens that include a non-nucleoside reverse transcriptase inhibitor plus single or boosted PIs are becoming more common, but the pharmacodynamic interactions associated with these regimens can result in persistent, undesirable alterations in serum lipid/lipoprotein levels. Additional pharmacodynamic studies are needed to examine the metabolic effects of ritonavir-boosted regimens, with and without efavirenz. PMID:18007962

  20. Sleep Control, GPCRs, and Glucose Metabolism.

    PubMed

    Tsuneki, Hiroshi; Sasaoka, Toshiyasu; Sakurai, Takeshi

    2016-09-01

    Modern lifestyles prolong daily activities into the nighttime, disrupting circadian rhythms, which may cause sleep disturbances. Sleep disturbances have been implicated in the dysregulation of blood glucose levels and reported to increase the risk of type 2 diabetes (T2D) and diabetic complications. Sleep disorders are treated using anti-insomnia drugs that target ionotropic and G protein-coupled receptors (GPCRs), including γ-aminobutyric acid (GABA) agonists, melatonin agonists, and orexin receptor antagonists. A deeper understanding of the effects of these medications on glucose metabolism and their underlying mechanisms of action is crucial for the treatment of diabetic patients with sleep disorders. In this review we focus on the beneficial impact of sleep on glucose metabolism and suggest a possible strategy for therapeutic intervention against sleep-related metabolic disorders. PMID:27461005

  1. Glucose metabolism in rat retinal pigment epithelium.

    PubMed

    Coffe, Víctor; Carbajal, Raymundo C; Salceda, Rocío

    2006-01-01

    The retinal pigment epithelium (RPE) is the major transport pathway for exchange of metabolites and ions between choroidal blood supply and the neural retina. To gain insight into the mechanisms controlling glucose metabolism in RPE and its possible relationship to retinopathy, we studied the influence of different glucose concentrations on glycogen and lactate levels and CO(2) production in RPE from normal and streptozotocin-treated diabetic rats. Incubation of normal RPE in the absence of glucose caused a decrease in lactate production and glycogen content. In normal RPE, increasing glucose concentrations from 5.6 mM to 30 mM caused a four-fold increase in glucose accumulation and CO(2) yield, as well as reduction in lactate and glycogen production. In RPE from diabetic rats glucose accumulation did not increase in the presence of high glucose substrate, but it showed a four- and a seven-fold increase in CO(2) production through the mitochondrial and pentose phosphate pathways, respectively. We found high glycogen levels in RPE which can be used as an energy reserve for RPE itself and/or neural retina. Findings further show that the RPE possesses a high oxidative capacity. The large increase in glucose shunting to the pentose phosphate pathway in diabetic retina exposed to high glucose suggests a need for reducing capacity, consistent with increased oxidative stress. PMID:16475003

  2. MicroRNA 33 Regulates Glucose Metabolism

    PubMed Central

    Ramírez, Cristina M.; Goedeke, Leigh; Rotllan, Noemi; Yoon, Je-Hyun; Cirera-Salinas, Daniel; Mattison, Julie A.; Suárez, Yajaira; de Cabo, Rafael; Gorospe, Myriam

    2013-01-01

    Metabolic diseases are characterized by the failure of regulatory genes or proteins to effectively orchestrate specific pathways involved in the control of many biological processes. In addition to the classical regulators, recent discoveries have shown the remarkable role of small noncoding RNAs (microRNAs [miRNAs]) in the posttranscriptional regulation of gene expression. In this regard, we have recently demonstrated that miR-33a and miR33b, intronic miRNAs located within the sterol regulatory element-binding protein (SREBP) genes, regulate lipid metabolism in concert with their host genes. Here, we show that miR-33b also cooperates with SREBP1 in regulating glucose metabolism by targeting phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC), key regulatory enzymes of hepatic gluconeogenesis. Overexpression of miR-33b in human hepatic cells inhibits PCK1 and G6PC expression, leading to a significant reduction of glucose production. Importantly, hepatic SREBP1c/miR-33b levels correlate inversely with the expression of PCK1 and G6PC upon glucose infusion in rhesus monkeys. Taken together, these results suggest that miR-33b works in concert with its host gene to ensure a fine-tuned regulation of lipid and glucose homeostasis, highlighting the clinical potential of miR-33a/b as novel therapeutic targets for a range of metabolic diseases. PMID:23716591

  3. Glucose and fructose metabolism in Zymomonas anaerobia

    PubMed Central

    McGill, D. J.; Dawes, E. A.

    1971-01-01

    Isotopic and enzymic evidence indicates that Zymomonas anaerobia ferments glucose via the Entner–Doudoroff pathway. The molar growth yields with glucose (5.89) and fructose (5.0) are lower than those for the related organism Zymomonas mobilis and the observed linear growth suggests that energetically uncoupled growth occurs. A survey of enzymes of carbohydrate metabolism revealed the presence of weak phosphofructokinase and fructose 1,6-diphosphate aldolase activities but phosphoketolase, transketolase and transaldolase were not detected. Fermentation balances for glucose and fructose are reported; acetaldehyde accumulated in both fermentations, to a greater extent with fructose which also yielded glycerol and dihydroxyacetone as minor products. PMID:4259336

  4. Role of glucose signaling in yeast metabolism

    SciTech Connect

    Dam, K. van

    1996-10-05

    The conversion of glucose to ethanol and carbon dioxide by yeast was the first biochemical pathway to be studied in detail. The initial observation that this process is catalyzed by an extract of yeast led to the discovery of enzymes and coenzymes and laid the foundation for modern biochemistry. In this article, knowledge concerning the relation between uptake of and signaling by glucose in the yeast Saccharomyces cerevisiae is reviewed and compared to the analogous process in prokaryotes. It is concluded that (much) more fundamental knowledge concerning these processes is required before rational redesign of metabolic fluxes from glucose in yeast can be achieved.

  5. Serotonin (5-HT) Affects Expression of Liver Metabolic Enzymes and Mammary Gland Glucose Transporters during the Transition from Pregnancy to Lactation

    PubMed Central

    Laporta, Jimena; Peters, Tonia L.; Merriman, Kathryn E.; Vezina, Chad M.; Hernandez, Laura L.

    2013-01-01

    The aim of this experiment was to demonstrate the ability of feeding serotonin (5-HT; 5-hydroxytryptamine) precursors to increase 5-HT production during the transition from pregnancy to lactation and the effects this has on maternal energy metabolism in the liver and mammary gland. Pregnant rats (n = 45) were fed one of three diets: I) control (CON), II) CON supplemented with 0.2% 5-hydroxytryptophan (5-HTP) or III) CON supplemented with 1.35% L-tryptophan (L-TRP), beginning on d13 of pregnancy through d9 of lactation (d9). Serum (pre and post-partum), milk (daily), liver and mammary gland tissue (d9) were collected. Serum 5-HT was increased in the 5-HTP fed dams beginning on d20 of gestation and remained elevated through d9, while it was only increased on d9 in the L-TRP fed dams. 5-HT levels were increased in mammary gland and liver of both groups. Additionally, 5-HTP fed dams had serum and milk glucose levels similar to the CON, while L-TRP had decreased serum (d9) and milk glucose (all dates evaluated). Feeding 5-HTP resulted in increased mRNA expression of key gluconeogenic and glycolytic enzymes in liver and glucose transporters 1 and 8 (GLUT-1, -8) in the mammary gland. We demonstrated the location of GLUT-8 in the mammary gland both in the epithelial and vascular endothelial cells. Finally, phosphorylated 5′ AMP-activated protein kinase (pAMPK), a known regulator of intracellular energy status, was elevated in mammary glands of 5-HTP fed dams. Our results suggest that increasing 5-HT production during the transition from pregnancy to lactation increases mRNA expression of enzymes involved in energy metabolism in the liver, and mRNA abundance and distribution of glucose transporters within the mammary gland. This suggests the possibility that 5-HT may be involved in regulating energy metabolism during the transition from pregnancy to lactation. PMID:23469086

  6. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice

    SciTech Connect

    Hesselbarth, Nico; Pettinelli, Chiara; Gericke, Martin; Berger, Claudia; Kunath, Anne; Stumvoll, Michael; Blüher, Matthias; Klöting, Nora

    2015-08-28

    Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I) significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations (p < 0.01), II) browning of subcutaneous AT and increased UCP-1 expression, III) increased AT proliferation marker Ki67 mRNA expression, IV) changes in adipocyte size distribution, and V) transient body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects. - Highlights: • Tamoxifen treatment causes significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations. • Tamoxifen induces browning of subcutaneous AT and increased UCP-1 expression. • Tamoxifen changes adipocyte size distribution, and transient body composition.

  7. Glucose metabolism in patients with Cushing's syndrome.

    PubMed

    Bowes, S B; Benn, J J; Scobie, I N; Umpleby, A M; Lowy, C; Sönksen, P H

    1991-04-01

    Glucose intolerance, sometimes severe enough to cause frank diabetes mellitus, is a frequent feature of Cushing's syndrome. The primary cause of the hyperglycaemia, whether due to glucose over-production or under-utilization, remains unresolved. We therefore measured glucose turnover using an intravenous bolus of 3-3H glucose in 14 normoglycaemic patients with Cushing's syndrome and 14 control subjects. Seven of the patients with Cushing's syndrome were also restudied post-operatively. Plasma glucose concentrations were similar in all three groups whereas glucose metabolic clearance rate (MCR) (1.80 +/- 0.06 ml/min/kg) and glucose turnover rate (9.09 +/- 0.36 mumol/min/kg) were significantly reduced in patients with Cushing's syndrome compared to normal subjects (2.21 +/- 0.1; P less than 0.001; 10.90 +/- 0.50; P less than 0.01) and rose post-operatively to normal values (2.35 +/- 0.14 ml/min/kg; 11.07 +/- 0.48 mumol/min/kg). We conclude from these results that the hyperglycaemia sometimes found in Cushing's syndrome may be primarily due to decreased utilization rather than increased glucose production. PMID:1879061

  8. Hepatic glucose and lipid metabolism.

    PubMed

    Jones, John G

    2016-06-01

    The liver has a central role in the regulation of systemic glucose and lipid fluxes during feeding and fasting and also relies on these substrates for its own energy needs. These parallel requirements are met by coordinated control of carbohydrate and lipid fluxes into and out of the Krebs cycle, which is highly tuned to nutrient availability and heavily regulated by insulin and glucagon. During progression of type 2 diabetes, hepatic carbohydrate and lipid biosynthesis fluxes become elevated, thus contributing to hyperglycaemia and hypertriacylglycerolaemia. Over this interval there are also significant fluctuations in hepatic energy state. To date, it is not known to what extent abnormal glucose and lipid fluxes are causally linked to altered energy states. Recent evidence that the glucose-lowering effects of metformin appear to be mediated by attenuation of hepatic energy generation places an additional spotlight on the interdependence of hepatic biosynthetic and oxidative fluxes. The transition from fasting to feeding results in a significant re-direction of hepatic glucose and lipid fluxes and may also incur a temporary hepatic energy deficit. At present, it is not known to what extent these variables are additionally modified by type 2 diabetes and/or non-alcoholic fatty liver disease. Thus, there is a compelling need to measure fluxes through oxidative, gluconeogenic and lipogenic pathways and determine their relationship with hepatic energy state in both fasting and fed conditions. New magnetic resonance-based technologies allow these variables to be non-invasively studied in animal models and humans. This review summarises a presentation given at the symposium entitled 'The liver in focus' at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Kenneth Cusi, DOI: 10.1007/s00125-016-3952-1 , and by Hannele Yki-Järvinen, DOI: 10.1007/s00125-016-3944-1 ) and a commentary by the Session Chair, Michael

  9. Maternal inheritance of severe hypertriglyceridemia impairs glucose metabolism in offspring.

    PubMed

    Ma, Ya-Hong; Yu, Caiguo; Kayoumu, Abudurexiti; Guo, Xin; Ji, Zhili; Liu, George

    2015-04-01

    Maternally inherited familial hypercholesterolemia (FH) impairs glucose metabolism and increases cardiovascular risks in the offspring to a greater degree than paternal inherited FH. However, it remains unknown whether hypertriglyceridemia affects glucose metabolism via inheritance. In this study, we sought to compare the impact of maternally and paternally inherited hypertriglyceridemia on glucose and lipid metabolism in mice. ApoCIII transgenic mice with severe hypertriglyceridemia were mated with non-transgenic control mice to obtain 4 types of offspring: maternal non-transgenic control and maternal transgenic offspring, and paternal control and paternal transgenic offspring. Plasma triglycerides (TG), total cholesterol (TC), fasting plasma glucose (FPG) and fasting insulin (FINS) were measured. ApoCIII overexpression caused severe hypertriglyceridemia, but the transgenic female mice had unaltered fertility with normal pregnancy and birth of pups. The 4 groups of offspring had similar birth weight and growth rate. The plasma TG of maternal and paternal transgenic offspring were nearly 40-fold higher than maternal and paternal control mice, but there was no difference in plasma TG between maternal and paternal transgenic offspring. Although the FPG of the 4 groups of animals had no difference, the maternal transgenic mice showed impaired glucose tolerance, increased FINS levels and higher homeostasis model assessment insulin resistance index (HOMA-IR) than the other 3 groups. In conclusion, maternally inherited hypertriglyceridemia in ApoCIII transgenic mice displayed impaired glucose tolerance, hyperinsulinemia and increased HOMA-R, while paternally inherited hypertriglyceridemia did not have such impacts. PMID:25859267

  10. Glucose regulates lipid metabolism in fasting king penguins.

    PubMed

    Bernard, Servane F; Orvoine, Jord; Groscolas, René

    2003-08-01

    This study aims to determine whether glucose intervenes in the regulation of lipid metabolism in long-term fasting birds, using the king penguin as an animal model. Changes in the plasma concentration of various metabolites and hormones, and in lipolytic fluxes as determined by continuous infusion of [2-3H]glycerol and [1-14C]palmitate, were examined in vivo before, during, and after a 2-h glucose infusion under field conditions. All the birds were in the phase II fasting status (large fat stores, protein sparing) but differed by their metabolic and hormonal statuses, being either nonstressed (NSB; n = 5) or stressed (SB; n = 5). In both groups, glucose infusion at 5 mg.kg-1.min-1 induced a twofold increase in glycemia. In NSB, glucose had no effect on lipolysis (maintenance of plasma concentrations and rates of appearance of glycerol and nonesterified fatty acids) and no effect on the plasma concentrations of triacylglycerols (TAG), glucagon, insulin, or corticosterone. However, it limited fatty acid (FA) oxidation, as indicated by a 25% decrease in the plasma level of beta-hydroxybutyrate (beta-OHB). In SB, glucose infusion induced an approximately 2.5-fold decrease in lipolytic fluxes and a large decrease in FA oxidation, as reflected by a 64% decrease in the plasma concentration of beta-OHB. There were also a 35% decrease in plasma TAG, a 6.5- and 2.8-fold decrease in plasma glucagon and corticosterone, respectively, and a threefold increase in insulinemia. These data show that in fasting king penguins, glucose regulates lipid metabolism (inhibition of lipolysis and/or of FA oxidation) and affects hormonal status differently in stressed vs. nonstressed individuals. The results also suggest that in birds, as in humans, the availability of glucose, not of FA, is an important determinant of the substrate mix (glucose vs. FA) that is oxidized for energy production. PMID:12738609

  11. Regulation of Blood Glucose by Hypothalamic Pyruvate Metabolism

    NASA Astrophysics Data System (ADS)

    Lam, Tony K. T.; Gutierrez-Juarez, Roger; Pocai, Alessandro; Rossetti, Luciano

    2005-08-01

    The brain keenly depends on glucose for energy, and mammalians have redundant systems to control glucose production. An increase in circulating glucose inhibits glucose production in the liver, but this negative feedback is impaired in type 2 diabetes. Here we report that a primary increase in hypothalamic glucose levels lowers blood glucose through inhibition of glucose production in rats. The effect of glucose requires its conversion to lactate followed by stimulation of pyruvate metabolism, which leads to activation of adenosine triphosphate (ATP)-sensitive potassium channels. Thus, interventions designed to enhance the hypothalamic sensing of glucose may improve glucose homeostasis in diabetes.

  12. Insulin Stimulates S100B Secretion and These Proteins Antagonistically Modulate Brain Glucose Metabolism.

    PubMed

    Wartchow, Krista Minéia; Tramontina, Ana Carolina; de Souza, Daniela F; Biasibetti, Regina; Bobermin, Larissa D; Gonçalves, Carlos-Alberto

    2016-06-01

    Brain metabolism is highly dependent on glucose, which is derived from the blood circulation and metabolized by the astrocytes and other neural cells via several pathways. Glucose uptake in the brain does not involve insulin-dependent glucose transporters; however, this hormone affects the glucose influx to the brain. Changes in cerebrospinal fluid levels of S100B (an astrocyte-derived protein) have been associated with alterations in glucose metabolism; however, there is no evidence whether insulin modulates glucose metabolism and S100B secretion. Herein, we investigated the effect of S100B on glucose metabolism, measuring D-(3)H-glucose incorporation in two preparations, C6 glioma cells and acute hippocampal slices, and we also investigated the effect of insulin on S100B secretion. Our results showed that: (a) S100B at physiological levels decreases glucose uptake, through the multiligand receptor RAGE and mitogen-activated protein kinase/ERK signaling, and (b) insulin stimulated S100B secretion via PI3K signaling. Our findings indicate the existence of insulin-S100B modulation of glucose utilization in the brain tissue, and may improve our understanding of glucose metabolism in several conditions such as ketosis, streptozotocin-induced dementia and pharmacological exposure to antipsychotics, situations that lead to changes in insulin signaling and extracellular levels of S100B. PMID:26875731

  13. Quantification of serial tumor glucose metabolism

    SciTech Connect

    Wu, Hsiao-Ming; Hoh, C.K.; Huang, Sung-Cheng; Yao, Wei-Jen

    1996-03-01

    We developed a method to improve the quantitative precision of FDG-PET scans in cancer patients. The total-lesion evaluation method generates a correlation coefficient (r) constrained Patlak parametric image of the lesion together with three calculated glucose metabolic indices: (a) the total-lesion metabolic index ({open_quotes}K{sub T-tie}{close_quotes}, ml/min/lesion); (b) the total-lesion voxel index ({open_quotes}V{sub T-tie}{close_quotes}, voxels/lesion); and (c) the global average metabolic index ({open_quotes}K{sub V-tie}{close_quotes}, ml/min/voxel). The glucose metabolic indices obtained from conventional region of interest (ROI) and multiplane evaluation were used as standards to evaluate the accuracy of the total-lesion evaluation method. Computer simulations and four patients with metastatic melanoma before and after chemotherapy were studied. Computer simulations showed that the total-lesion evaluation method has improved precision (%s.d. <0.6%) and accuracy ({approximately}10% error) compared with the conventional ROI method (%S.d. {approximately}5%; {approximately}25% error). The K{sub T-tie} and V{sub T-tie} indices from human FDG-PET studies using the total-lesion evaluation method showed excellent correlations with the corresponding values obtained from the conventional ROI methods and multiplane evaluation (r{approximately}1.0) and CT lesion volume measurements. This method is a simple but reliable way to quantitatively monitor tumor FDG uptake. The method has several advantages over the conventional ROI method: (a) less sensitive to the ROI definition, (b) no need for image registration of serial scan data and (c) includes tumor volume changes in the global tumor metabolism. 18 refs., 8 figs., 4 tabs.

  14. Enzymes of glucose metabolism in Frankia sp.

    PubMed

    Lopez, M F; Torrey, J G

    1985-04-01

    Enzymes of glucose metabolism were assayed in crude cell extracts of Frankia strains HFPArI3 and HFPCcI2 as well as in isolated vesicle clusters from Alnus rubra root nodules. Activities of the Embden-Meyerhof-Parnas pathway enzymes glucokinase, phosphofructokinase, and pyruvate kinase were found in Frankia strain HFPArI3 and glucokinase and pyruvate kinase were found in Frankia strain HFPCcI2 and in the vesicle clusters. An NADP+-linked glucose 6-phosphate dehydrogenase and an NAD-linked 6-phosphogluconate dehydrogenase were found in all of the extracts, although the role of these enzymes is unclear. No NADP+-linked 6-phosphogluconate dehydrogenase was found. Both dehydrogenases were inhibited by adenosine 5-triphosphate, and the apparent Km's for glucose 6-phosphate and 6-phosphogluconate were 6.86 X 10(-4) and 7.0 X 10(-5) M, respectively. In addition to the enzymes mentioned above, an NADP+-linked malic enzyme was detected in the pure cultures but not in the vesicle clusters. In contrast, however, the vesicle clusters had activity of an NAD-linked malic enzyme. The possibility that this enzyme resulted from contamination from plant mitochondria trapped in the vesicle clusters could not be discounted. None of the extracts showed activities of the Entner-Doudoroff enzymes or the gluconate metabolism enzymes gluconate dehydrogenase or gluconokinase. Propionate- versus trehalose-grown cultures of strain HFPArI3 showed similar activities of most enzymes except malic enzyme, which was higher in the cultures grown on the organic acid. Nitrogen-fixing cultures of strain HFPArI3 showed higher specific activities of glucose 6-phosphate and 6-phosphogluconate dehydrogenases and phosphofructokinase than ammonia-grown cultures. PMID:3980434

  15. Microcalorimetric Measurements of Glucose Metabolism by Marine Bacterium Vibrio alginolyticus

    PubMed Central

    Gordon, Andrew S.; Millero, Frank J.; Gerchakov, Sol M.

    1982-01-01

    Microcalorimetric measurements of heat production from glucose by Vibrio alginolyticus were made to assess the viability of calorimetry as a technique for studying the metabolism of marine bacteria at organic nutrient concentrations found in marine waters. The results show that the metabolism of glucose by this bacterium can be measured by calorimetry at submicromolar concentrations. A linear correlation between glucose concentration and total heat production was observed over a concentration range of 8 mM to 0.35 μM. It is suggested that these data indicate a constant efficiency of metabolism for this bacterium over the wide range of glucose concentrations studied. PMID:16346131

  16. Advances in glucose metabolism research in colorectal cancer

    PubMed Central

    Fang, Sitian; Fang, Xiao

    2016-01-01

    Cancer cells uptake glucose at a higher rate and produce lactic acid rather than metabolizing pyruvate through the tricarboxylic acid cycle. This adaptive metabolic shift is termed the Warburg effect. Recently progress had been made regarding the mechanistic understanding of glucose metabolism and associated diagnostic and therapeutic methods, which have been investigated in colorectal cancer. The majority of novel mechanisms involve important glucose metabolism associated genes and miRNA regulation. The present review discusses the contribution of these research results to facilitate with the development of novel diagnosis and anticancer treatment options. PMID:27602209

  17. GSM mobile phone radiation suppresses brain glucose metabolism

    PubMed Central

    Kwon, Myoung Soo; Vorobyev, Victor; Kännälä, Sami; Laine, Matti; Rinne, Juha O; Toivonen, Tommi; Johansson, Jarkko; Teräs, Mika; Lindholm, Harri; Alanko, Tommi; Hämäläinen, Heikki

    2011-01-01

    We investigated the effects of mobile phone radiation on cerebral glucose metabolism using high-resolution positron emission tomography (PET) with the 18F-deoxyglucose (FDG) tracer. A long half-life (109 minutes) of the 18F isotope allowed a long, natural exposure condition outside the PET scanner. Thirteen young right-handed male subjects were exposed to a pulse-modulated 902.4 MHz Global System for Mobile Communications signal for 33 minutes, while performing a simple visual vigilance task. Temperature was also measured in the head region (forehead, eyes, cheeks, ear canals) during exposure. 18F-deoxyglucose PET images acquired after the exposure showed that relative cerebral metabolic rate of glucose was significantly reduced in the temporoparietal junction and anterior temporal lobe of the right hemisphere ipsilateral to the exposure. Temperature rise was also observed on the exposed side of the head, but the magnitude was very small. The exposure did not affect task performance (reaction time, error rate). Our results show that short-term mobile phone exposure can locally suppress brain energy metabolism in humans. PMID:21915135

  18. GSM mobile phone radiation suppresses brain glucose metabolism.

    PubMed

    Kwon, Myoung Soo; Vorobyev, Victor; Kännälä, Sami; Laine, Matti; Rinne, Juha O; Toivonen, Tommi; Johansson, Jarkko; Teräs, Mika; Lindholm, Harri; Alanko, Tommi; Hämäläinen, Heikki

    2011-12-01

    We investigated the effects of mobile phone radiation on cerebral glucose metabolism using high-resolution positron emission tomography (PET) with the (18)F-deoxyglucose (FDG) tracer. A long half-life (109 minutes) of the (18)F isotope allowed a long, natural exposure condition outside the PET scanner. Thirteen young right-handed male subjects were exposed to a pulse-modulated 902.4 MHz Global System for Mobile Communications signal for 33 minutes, while performing a simple visual vigilance task. Temperature was also measured in the head region (forehead, eyes, cheeks, ear canals) during exposure. (18)F-deoxyglucose PET images acquired after the exposure showed that relative cerebral metabolic rate of glucose was significantly reduced in the temporoparietal junction and anterior temporal lobe of the right hemisphere ipsilateral to the exposure. Temperature rise was also observed on the exposed side of the head, but the magnitude was very small. The exposure did not affect task performance (reaction time, error rate). Our results show that short-term mobile phone exposure can locally suppress brain energy metabolism in humans. PMID:21915135

  19. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism

    PubMed Central

    Paixão, Laura; Caldas, José; Kloosterman, Tomas G.; Kuipers, Oscar P.; Vinga, Susana; Neves, Ana R.

    2015-01-01

    Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonized by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose is the prevailing sugar. As a result during progression from colonization to disease S. pneumoniae has to cope with a pronounced shift in carbohydrate nature and availability. Thus, we set out to assess the pneumococcal response to sugars found in glycans and the influence of glucose (Glc) on this response at the transcriptional, physiological, and metabolic levels. Galactose (Gal), N-acetylglucosamine (GlcNAc), and mannose (Man) affected the expression of 8 to 14% of the genes covering cellular functions including central carbon metabolism and virulence. The pattern of end-products as monitored by in vivo 13C-NMR is in good agreement with the fermentation profiles during growth, while the pools of phosphorylated metabolites are consistent with the type of fermentation observed (homolactic vs. mixed) and regulation at the metabolic level. Furthermore, the accumulation of α-Gal6P and Man6P indicate metabolic bottlenecks in the metabolism of Gal and Man, respectively. Glc added to cells actively metabolizing other sugar(s) was readily consumed and elicited a metabolic shift toward a homolactic profile. The transcriptional response to Glc was large (over 5% of the genome). In central carbon metabolism (most represented category), Glc exerted mostly negative regulation. The smallest response to Glc was observed on a sugar mix, suggesting that exposure to varied sugars improves the fitness of S. pneumoniae. The expression of virulence factors was negatively controlled by Glc in a sugar-dependent manner. Overall, our results shed new light on the link between carbohydrate metabolism, adaptation to host niches and virulence. PMID:26500614

  20. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism.

    PubMed

    Paixão, Laura; Caldas, José; Kloosterman, Tomas G; Kuipers, Oscar P; Vinga, Susana; Neves, Ana R

    2015-01-01

    Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonized by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose is the prevailing sugar. As a result during progression from colonization to disease S. pneumoniae has to cope with a pronounced shift in carbohydrate nature and availability. Thus, we set out to assess the pneumococcal response to sugars found in glycans and the influence of glucose (Glc) on this response at the transcriptional, physiological, and metabolic levels. Galactose (Gal), N-acetylglucosamine (GlcNAc), and mannose (Man) affected the expression of 8 to 14% of the genes covering cellular functions including central carbon metabolism and virulence. The pattern of end-products as monitored by in vivo (13)C-NMR is in good agreement with the fermentation profiles during growth, while the pools of phosphorylated metabolites are consistent with the type of fermentation observed (homolactic vs. mixed) and regulation at the metabolic level. Furthermore, the accumulation of α-Gal6P and Man6P indicate metabolic bottlenecks in the metabolism of Gal and Man, respectively. Glc added to cells actively metabolizing other sugar(s) was readily consumed and elicited a metabolic shift toward a homolactic profile. The transcriptional response to Glc was large (over 5% of the genome). In central carbon metabolism (most represented category), Glc exerted mostly negative regulation. The smallest response to Glc was observed on a sugar mix, suggesting that exposure to varied sugars improves the fitness of S. pneumoniae. The expression of virulence factors was negatively controlled by Glc in a sugar-dependent manner. Overall, our results shed new light on the link between carbohydrate metabolism, adaptation to host niches and virulence. PMID:26500614

  1. How High Glucose Levels Affect Tendon Homeostasis.

    PubMed

    Snedeker, Jess G

    2016-01-01

    Among the many factors playing a role in tendon disease, unregulated biochemical reactions between glucose and the collagen extracellular matrix are coming increasingly into focus. We have shown that formation of advanced glycation end-products that cross-link the collagen extracellular matrix can drastically affect cellular level mechanical properties of the matrix, and in turn affect cell-level biomechanical stimuli during physiological loading of the tissue. We suggest that these may adversely affect tendon cell response to matrix damage, as well as the quality of the consequent repair. If such mechanical feedback loops are altered, the ability of tendon cells to maintain tissue in a functional, healthy state may be compromised. Although key foundational elements of biochemical, biomechanical, and biological understanding are now in place, the full extent of how these aspects interact, including the precise mechanisms by which advanced glycation end-products pathologically disrupt connective tissue homeostasis and damage repair, are only beginning to be adequately appreciated. PMID:27535261

  2. Per-Arnt-Sim Kinase (PASK): An Emerging Regulator of Mammalian Glucose and Lipid Metabolism

    PubMed Central

    Zhang, Dan-dan; Zhang, Ji-gang; Wang, Yu-zhu; Liu, Ying; Liu, Gao-lin; Li, Xiao-yu

    2015-01-01

    Per-Arnt-Sim Kinase (PASK) is an evolutionarily-conserved nutrient-responsive protein kinase that regulates lipid and glucose metabolism, mitochondrial respiration, phosphorylation, and gene expression. Recent data suggests that mammalian PAS kinase is involved in glucose metabolism and acts on pancreatic islet α/β cells and glycogen synthase (GS), affecting insulin secretion and blood glucose levels. In addition, PASK knockout mice (PASK-/-) are protected from obesity, liver triglyceride accumulation, and insulin resistance when fed a high-fat diet, implying that PASK may be a new target for metabolic syndrome (MetS) treatment as well as the cellular nutrients and energy sensors—adenosine monophosphate (AMP)-activated protein kinase (AMPK) and the targets of rapamycin (m-TOR). In this review, we will briefly summarize the regulation of PASK on mammalian glucose and lipid metabolism and its possible mechanism, and further explore the potential targets for MetS therapy. PMID:26371032

  3. Glucosensing in the gastrointestinal tract: Impact on glucose metabolism.

    PubMed

    Fournel, Audren; Marlin, Alysson; Abot, Anne; Pasquio, Charles; Cirillo, Carla; Cani, Patrice D; Knauf, Claude

    2016-05-01

    The gastrointestinal tract is an important interface of exchange between ingested food and the body. Glucose is one of the major dietary sources of energy. All along the gastrointestinal tube, e.g., the oral cavity, small intestine, pancreas, and portal vein, specialized cells referred to as glucosensors detect variations in glucose levels. In response to this glucose detection, these cells send hormonal and neuronal messages to tissues involved in glucose metabolism to regulate glycemia. The gastrointestinal tract continuously communicates with the brain, especially with the hypothalamus, via the gut-brain axis. It is now well established that the cross talk between the gut and the brain is of crucial importance in the control of glucose homeostasis. In addition to receiving glucosensing information from the gut, the hypothalamus may also directly sense glucose. Indeed, the hypothalamus contains glucose-sensitive cells that regulate glucose homeostasis by sending signals to peripheral tissues via the autonomous nervous system. This review summarizes the mechanisms by which glucosensors along the gastrointestinal tract detect glucose, as well as the results of such detection in the whole body, including the hypothalamus. We also highlight how disturbances in the glucosensing process may lead to metabolic disorders such as type 2 diabetes. A better understanding of the pathways regulating glucose homeostasis will further facilitate the development of novel therapeutic strategies for the treatment of metabolic diseases. PMID:26939867

  4. Glucose Metabolism Disorders, HIV and Antiretroviral Therapy among Tanzanian Adults

    PubMed Central

    Maganga, Emmanuel; Smart, Luke R.; Kalluvya, Samuel; Kataraihya, Johannes B.; Saleh, Ahmed M.; Obeid, Lama; Downs, Jennifer A.; Fitzgerald, Daniel W.; Peck, Robert N.

    2015-01-01

    Introduction Millions of HIV-infected Africans are living longer due to long-term antiretroviral therapy (ART), yet little is known about glucose metabolism disorders in this group. We aimed to compare the prevalence of glucose metabolism disorders among HIV-infected adults on long-term ART to ART-naïve adults and HIV-negative controls, hypothesizing that the odds of glucose metabolism disorders would be 2-fold greater even after adjusting for possible confounders. Methods In this cross-sectional study conducted between October 2012 and April 2013, consecutive adults (>18 years) attending an HIV clinic in Tanzania were enrolled in 3 groups: 153 HIV-negative controls, 151 HIV-infected, ART-naïve, and 150 HIV-infected on ART for ≥ 2 years. The primary outcome was the prevalence of glucose metabolism disorders as determined by oral glucose tolerance testing. We compared glucose metabolism disorder prevalence between each HIV group vs. the control group by Fisher’s exact test and used multivariable logistic regression to determine factors associated with glucose metabolism disorders. Results HIV-infected adults on ART had a higher prevalence of glucose metabolism disorders (49/150 (32.7%) vs.11/153 (7.2%), p<0.001) and frank diabetes mellitus (27/150 (18.0%) vs. 8/153 (5.2%), p = 0.001) than HIV-negative adults, which remained highly significant even after adjusting for age, gender, adiposity and socioeconomic status (OR = 5.72 (2.78–11.77), p<0.001). Glucose metabolism disorders were significantly associated with higher CD4+ T-cell counts. Awareness of diabetes mellitus was <25%. Conclusions HIV-infected adults on long-term ART had 5-fold greater odds of glucose metabolism disorders than HIV-negative controls but were rarely aware of their diagnosis. Intensive glucose metabolism disorder screening and education are needed in HIV clinics in sub-Saharan Africa. Further research should determine how glucose metabolism disorders might be related to immune

  5. Glucose metabolism in pregnant sheep when placental growth is restricted

    SciTech Connect

    Owens, J.A.; Falconer, J.; Robinson, J.S. )

    1989-08-01

    The effect of restricting placental growth on glucose metabolism in pregnant sheep in late gestation was determined by primed constant infusions of D-(U-{sup 14}C)- and D-(2-{sup 3}H)glucose and antipyrine into fetuses of six control sheep and six sheep from which endometrial caruncles had been removed before pregnancy (caruncle sheep). In the latter, placental and fetal weights were reduced, as was the concentration of glucose in fetal arterial blood. Fetal glucose turnover in caruncle sheep was only 52-59% of that in controls, largely because of lower umbilical loss of glucose back to the placenta (38-39% of control) and lower fetal glucose utilization (61-74% of control). However, fetal glucose utilization on a weight-specific basis was similar in control and caruncle sheep. Significant endogenous glucose production occurred in control and caruncle fetal sheep. Maternal glucose production and partition of glucose between the gravid uterus and other maternal tissues were similar in control and caruncle sheep. In conclusion, when placental and fetal growth are restricted, fetal glucose utilization is maintained by reduced loss of glucose back to the placenta and mother and by maintaining endogenous glucose production.

  6. Effects of dehydroepiandrosterone (DHEA) on glucose metabolism in isolated hepatocytes from Zucker rats

    SciTech Connect

    Finan, A.; Cleary, M.P.

    1986-03-05

    DHEA has been shown to competitively inhibit the pentose phosphate shunt (PPS) enzyme glucose-6-phosphate dehydrogenase (G6PD) when added in vitro to supernatants or homogenates prepared from mammalian tissues. However, no consistent effect on G6PD activity has been determined in tissue removed from DHEA-treated rats. To explore the effects of DHEA on PPS, glucose utilization was measured in hepatocytes from lean and obese male Zucker rats (8 wks of age) following 1 wk of DHEA treatment (0.6% in diet). Incubation of isolated hepatocytes from treated lean Zucker rats with either (1-/sup 14/C) glucose or (6-/sup 14/C) glucose resulted in significant decreases in CO/sub 2/ production and total glucose utilization. DHEA-lean rats also had lowered fat pad weights. In obese rats, there was no effect of 1 wk of treatment on either glucose metabolism or fat pad weight. The calculated percent contribution of the PPS to glucose metabolism in hepatocytes was not changed for either DHEA-lean or obese rats when compared to control rats. In conclusion, 1 wk of DHEA treatment lowered overall glucose metabolism in hepatocytes of lean Zucker rats, but did not selectively affect the PPS. The lack of an effect of short-term treatment in obese rats may be due to differences in their metabolism or storage/release of DHEA in tissues in comparison to lean rats.

  7. Glucose Metabolism: A Sweet Relief of Alzheimer's Disease.

    PubMed

    Duran-Aniotz, Claudia; Hetz, Claudio

    2016-09-12

    Patients and individuals at risk for Alzheimer's disease show reduced glucose metabolism in the brain. A new study takes advantage of a fly model of Alzheimer's disease to demonstrate that enhancing glucose uptake in neurons has strong neuroprotective effects involving improved proteostasis. PMID:27623263

  8. Regulation of glucose metabolism from a liver-centric perspective

    PubMed Central

    Han, Hye-Sook; Kang, Geon; Kim, Jun Seok; Choi, Byeong Hoon; Koo, Seung-Hoi

    2016-01-01

    Glucose homeostasis is tightly regulated to meet the energy requirements of the vital organs and maintain an individual's health. The liver has a major role in the control of glucose homeostasis by controlling various pathways of glucose metabolism, including glycogenesis, glycogenolysis, glycolysis and gluconeogenesis. Both the acute and chronic regulation of the enzymes involved in the pathways are required for the proper functioning of these complex interwoven systems. Allosteric control by various metabolic intermediates, as well as post-translational modifications of these metabolic enzymes constitute the acute control of these pathways, and the controlled expression of the genes encoding these enzymes is critical in mediating the longer-term regulation of these metabolic pathways. Notably, several key transcription factors are shown to be involved in the control of glucose metabolism including glycolysis and gluconeogenesis in the liver. In this review, we would like to illustrate the current understanding of glucose metabolism, with an emphasis on the transcription factors and their regulators that are involved in the chronic control of glucose homeostasis. PMID:26964834

  9. Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism.

    PubMed

    Saab, Aiman S; Tzvetavona, Iva D; Trevisiol, Andrea; Baltan, Selva; Dibaj, Payam; Kusch, Kathrin; Möbius, Wiebke; Goetze, Bianka; Jahn, Hannah M; Huang, Wenhui; Steffens, Heinz; Schomburg, Eike D; Pérez-Samartín, Alberto; Pérez-Cerdá, Fernando; Bakhtiari, Davood; Matute, Carlos; Löwel, Siegrid; Griesinger, Christian; Hirrlinger, Johannes; Kirchhoff, Frank; Nave, Klaus-Armin

    2016-07-01

    Oligodendrocytes make myelin and support axons metabolically with lactate. However, it is unknown how glucose utilization and glycolysis are adapted to the different axonal energy demands. Spiking axons release glutamate and oligodendrocytes express NMDA receptors of unknown function. Here we show that the stimulation of oligodendroglial NMDA receptors mobilizes glucose transporter GLUT1, leading to its incorporation into the myelin compartment in vivo. When myelinated optic nerves from conditional NMDA receptor mutants are challenged with transient oxygen-glucose deprivation, they show a reduced functional recovery when returned to oxygen-glucose but are indistinguishable from wild-type when provided with oxygen-lactate. Moreover, the functional integrity of isolated optic nerves, which are electrically silent, is extended by preincubation with NMDA, mimicking axonal activity, and shortened by NMDA receptor blockers. This reveals a novel aspect of neuronal energy metabolism in which activity-dependent glutamate release enhances oligodendroglial glucose uptake and glycolytic support of fast spiking axons. PMID:27292539

  10. Peripheral glucose metabolism and insulin sensitivity in Alzheimer's disease.

    PubMed

    Kilander, L; Boberg, M; Lithell, H

    1993-04-01

    Twenty-four patients with Alzheimer's disease and matched controls were examined with reference to metabolic parameters such as peripheral insulin and glucose metabolism, serum lipid concentrations and blood pressure levels. Blood glucose levels and insulin response were measured during an intravenous glucose tolerance test and peripheral insulin sensitivity was estimated with the hyperinsulinemic euglycemic clamp technique. There were no differences recorded between the two groups in glucose metabolism, triglyceride, cholesterol or HDL-cholesterol levels. The patients with Alzheimer's disease had significantly lower blood pressure levels, which partly could be explained by ongoing treatment with neuroleptics and antidepressives. Previous findings of higher insulin levels in Alzheimer's disease could not be verified. PMID:8503259

  11. Regional cerebral glucose metabolism in patients with alcoholic Korsakoff's syndrome

    SciTech Connect

    Kessler, R.M.; Parker, E.S.; Clark, C.M.; Martin, P.R.; George, D.T.; Weingartner, H.; Sokoloff, L.; Ebert, M.H.; Mishkin, M.

    1985-05-01

    Seven alcoholic male subjects diagnosed as having Korsakoff's syndrome and eight age-matched male normal volunteers were studied with /sup 18/F 2-fluoro-2-deoxy-D-glucose (2/sup 18/FDG). All subjects were examined at rest with eyes covered in a quiet, darkened room. Serial plasma samples were obtained following injection of 4 to 5 mCi of 2/sup 18/FDG. Tomographic slices spaced at 10mm axial increments were obtained (in-plane resolution = 1.75 cm, axial resolution = 1.78 cm). Four planes were selected from each subject, and a total of 46 regions of interest were sampled and glucose metabolic rates for each region calculated. The mean glucose metalbolic rate for the 46 regions in the Korsakoff subjects was significantly lower than that in the normal controls (5.17 +- .43 versus 6.6 +- 1.31). A Q-component analysis, which examined each subject's regional rates relative to his mean rate, revealed two distinct patterns in the Korsakoff group. Glucose metabolism was significantly reduced in 37 of the 46 regions sampled. Reduced cerebral glucose metabolism in a nondemented group of subjects has not previously been reported. The reduction in cortical metabolism may be the result of damage to sub-cortical projecting systems. The differing patterns of cerebral metabolism in Korsakoff's syndrome suggests subgroups with differing neuropathology. Regions implicated in memory function, medial temporal, thalamic and medial prefrontal were among the regions reduced in metabolism.

  12. Jejunal epithelial glucose metabolism: effects of Na+ replacement.

    PubMed

    Mallet, R T; Jackson, M J; Kelleher, J K

    1986-11-01

    The objective of this study was to characterize the effects of replacement of extracellular Na+ with a nontransportable cation, N-methyl-D-glucamine (NMDG+) on jejunal epithelial glucose metabolism. Jejunal epithelium isolated from male Sprague-Dawley rats was incubated in media containing 5 mM glucose, 0.5 mM glutamine, 0.5 mM beta-hydroxybutyrate, and 0.3 mM acetoacetate as the principal carbon sources. O2 consumption and total glucose utilization were reduced 30 and 50%, respectively, when Na+ was replaced with NMDG+. In both media, approximately 75% of utilized glucose carbon was converted to lactate. The rate of glucose metabolism via the hexose monophosphate shunt, as evaluated using specific 14CO2 yields from [1-14C]glucose and [6-14C]glucose, was not appreciably altered by Na+ replacement. Tricarboxylic acid (TCA) cycle flux was evaluated using 14CO2 production from [14C]glucose and [14C]pyruvate radioisotopes. Approximately 50% of TCA cycle flux was shunted into products other than CO2 in both media. The majority of the acetyl-CoA oxidized in the TCA cycle was derived from cytosolic pyruvate. It is concluded that removal of Na+ from the bathing medium substantially reduced glucose utilization via the Embden-Meyerhof pathway and TCA cycle in the jejunal epithelium. PMID:3777159

  13. Cerebral glucose metabolism in Wernicke's, Broca's, and conduction aphasia

    SciTech Connect

    Metter, E.J.; Kempler, D.; Jackson, C.; Hanson, W.R.; Mazziotta, J.C.; Phelps, M.E.

    1989-01-01

    Cerebral glucose metabolism was evaluated in patients with either Wernicke's (N = 7), Broca's (N = 11), or conduction (N = 10) aphasia using /sup 18/F-2-fluoro-2-deoxy-D-glucose with positron emission tomography. The three aphasic syndromes differed in the degree of left-to-right frontal metabolic asymmetry, with Broca's aphasia showing severe asymmetry and Wernicke's aphasia mild-to-moderate metabolic asymmetry, while patients with conduction aphasia were metabolically symmetric. On the other hand, the three syndromes showed the same degree of metabolic decline in the left temporal region. The parietal region appeared to separate conduction aphasia from both Broca's and Wernicke's aphasias. Common aphasic features in the three syndromes appear to be due to common changes in the temporal region, while unique features were associated with frontal and parietal metabolic differences.

  14. Brain glucose metabolism in an animal model of depression.

    PubMed

    Detka, J; Kurek, A; Kucharczyk, M; Głombik, K; Basta-Kaim, A; Kubera, M; Lasoń, W; Budziszewska, B

    2015-06-01

    An increasing number of data support the involvement of disturbances in glucose metabolism in the pathogenesis of depression. We previously reported that glucose and glycogen concentrations in brain structures important for depression are higher in a prenatal stress model of depression when compared with control animals. A marked rise in the concentrations of these carbohydrates and glucose transporters were evident in prenatally stressed animals subjected to acute stress and glucose loading in adulthood. To determine whether elevated levels of brain glucose are associated with a change in its metabolism in this model, we assessed key glycolytic enzymes (hexokinase, phosphofructokinase and pyruvate kinase), products of glycolysis, i.e., pyruvate and lactate, and two selected enzymes of the tricarboxylic acid cycle (pyruvate dehydrogenase and α-ketoglutarate dehydrogenase) in the hippocampus and frontal cortex. Additionally, we assessed glucose-6-phosphate dehydrogenase activity, a key enzyme in the pentose phosphate pathway (PPP). Prenatal stress increased the levels of phosphofructokinase, an important glycolytic enzyme, in the hippocampus and frontal cortex. However, prenatal stress had no effect on hexokinase or pyruvate kinase levels. The lactate concentration was elevated in prenatally stressed rats in the frontal cortex, and pyruvate levels remained unchanged. Among the tricarboxylic acid cycle enzymes, prenatal stress decreased the level of pyruvate dehydrogenase in the hippocampus, but it had no effect on α-ketoglutarate dehydrogenase. Like in the case of glucose and its transporters, also in the present study, differences in markers of glucose metabolism between control animals and those subjected to prenatal stress were not observed under basal conditions but in rats subjected to acute stress and glucose load in adulthood. Glucose-6-phosphate dehydrogenase activity was not reduced by prenatal stress but was found to be even higher in animals exposed to

  15. Polychlorinated biphenyl 126 exposure in L6 myotubes alters glucose metabolism: a pilot study.

    PubMed

    Mauger, Jean-François; Nadeau, Lucien; Caron, Audrey; Chapados, Natalie Ann; Aguer, Céline

    2016-04-01

    Polychlorinated biphenyls (PCBs) are increasingly recognized as metabolic disruptors. Due to its mass, skeletal muscle is the major site of glucose disposal. While muscle mitochondrial dysfunction and oxidative stress have been shown to play a central role in metabolic disease development, no studies to date have investigated the effect of PCB exposure on muscle energy metabolism and oxidative stress. In this pilot study, we tested the effect of exposure to PCB126 in L6 myotubes (from 1 to 2500 nM for 24 h) on mitochondrial function, glucose metabolism, and oxidative stress. Exposure to PCB126 had no apparent effect on resting, maximal, and proton leak-dependent oxygen consumption rate in intact L6 myotubes. However, basal glucose uptake and glycolysis were inhibited by 20-30 % in L6 myotubes exposed to PCB126. Exposure to PCB126 did not appear to alter skeletal muscle anti-oxidant defense or oxidative stress. In conclusion, our study shows for the first time that exposure to a dioxin-like PCB adversely affects skeletal muscle glucose metabolism. Given the importance of skeletal muscle in the maintenance of glucose homeostasis, PCB126 could play an important role in the development of metabolic disorders. PMID:26936477

  16. Metabolism of tritiated D-glucose in rat erythrocytes

    SciTech Connect

    Manuel y Keenoy, B.; Malaisse-Lagae, F.; Malaisse, W.J. )

    1991-09-01

    The metabolism of D-(U-14C)glucose, D-(1-14C)glucose, D-(6-14C)glucose, D-(1-3H)glucose, D-(2-3H)glucose, D-(3-3H)glucose, D-(3,4-3H)glucose, D-(5-3H)glucose, and D-(6-3H)glucose was examined in rat erythrocytes. There was a fair agreement between the rate of 3HOH production from either D-(3-3H)glucose and D-(5-3H)glucose, the decrease in the 2,3-diphosphoglycerate pool, its fractional turnover rate, the production of 14C-labeled lactate from D-(U-14C)glucose, and the total lactate output. The generation of both 3HOH and tritiated acidic metabolites from D-(3,4-3H)glucose indicated incomplete detritiation of the C4 during interconversion of fructose-1,6-bisphosphate and triose phosphates. Erythrocytes unexpectedly generated 3HOH from D-(6-3H)glucose, a phenomenon possibly attributable to the detritiation of (3-3H)pyruvate in the reaction catalyzed by glutamate pyruvate transaminase. The production of 3HOH from D-(2-3H)glucose was lower than that from D-(5-3H)glucose, suggesting enzyme-to-enzyme tunneling of glycolytic intermediates in the hexokinase/phosphoglucoisomerase/phosphofructokinase sequence. The production of 3HOH from D-(1-3H)glucose largely exceeded that of 14CO2 from D-(1-14C)glucose, a situation tentatively ascribed to the generation of 3HOH in the phosphomannoisomerase reaction. It is further speculated that the adjustment in specific radioactivity of D-(1-3H)glucose-6-phosphate cannot simultaneously match the vastly different degrees of isotopic discrimination in velocity at the levels of the reactions catalyzed by either glucose-6-phosphate dehydrogenase or phosphoglucoisomerase. The interpretation of the present findings thus raises a number of questions, which are proposed as a scope for further investigations.

  17. Glucose metabolism in cultured trophoblasts from human placenta

    SciTech Connect

    Moe, A.J.; Farmer, D.R.; Nelson, D.M.; Smith, C.H. )

    1990-02-26

    The development of appropriate placental trophoblast isolation and culture techniques enables the study of pathways of glucose utilization by this important cell layer in vitro. Trophoblasts from normal term placentas were isolated and cultured 24 hours and 72 hours in uncoated polystyrene culture tubes or tubes previously coated with a fibrin matrix. Trophoblasts cultured on fibrin are morphologically distinct from those cultured on plastic or other matrices and generally resemble in vivo syncytium. Cells were incubated up to 3 hours with {sup 14}C-labeled glucose and reactions were stopped by addition of perchloric acid. {sup 14}CO{sub 2} production by trophoblasts increased linearly with time however the largest accumulation of label was in organic acids. Trophoblasts cultured in absence of fibrin utilized more glucose and accumulated more {sup 14}C in metabolic products compared to cells cultured on fibrin. Glucose oxidation to CO{sub 2} by the phosphogluconate (PG) pathway was estimated from specific yields of {sup 14}CO{sub 2} from (1-{sup 14}C)-D-glucose and (6-{sup 14}C)-D-glucose. Approximately 6% of glucose oxidation was by the PG pathway when cells were cultured on fibrin compared to approximately 1% by cells cultured in the absence of fibrin. The presence of a fibrin growth matrix appears to modulate the metabolism of glucose by trophoblast from human placenta in vitro.

  18. Perturbed Glucose Metabolism: Insights into Multiple Sclerosis Pathogenesis

    PubMed Central

    Mathur, Deepali; López-Rodas, Gerardo; Casanova, Bonaventura; Marti, Maria Burgal

    2014-01-01

    Multiple sclerosis (MS) is a complex debilitating disease of the central nervous system (CNS) perceived to result from the autoimmune effect of T cells in damaging myelin sheath. However, the exact pathogenesis of the disease remains elusive. Initial studies describing the possibility of defective pyruvate metabolism in MS were performed in 1950s. The group observed elevated blood pyruvate level in both fasting and postprandial times in MS patients with relapse. Similarly, other investigators also reported increased fasting pyruvate level in this disease. These reports hint to a possible abnormality of pyruvate metabolism in MS patients. In addition, increase in levels of Krebs cycle acids like alpha-ketoglutarate in fasting and citrate after glucose intake in MS patients further strengthened the connection of disturbed pyruvate metabolism with MS progression. These studies led the investigators to explore the role of disturbed glucose metabolism in pathophysiological brain function. Under normal circumstances, complex molecules are metabolized into simpler molecules through their respective pathways. Differential expression of genes encoding enzymes of the glucose metabolic pathway in CNS may result in neurological deficits. In this review article, we discuss the studies related to disturbed carbohydrate metabolism in MS and other neurodegenerative diseases. These observations open new perspectives for the understanding of metabolic dynamics in MS yet many puzzling aspects and critical questions need to be addressed. Much more research is required to fully unravel the disease mechanism, and a proper understanding of the disease could eventually lead to new treatments. PMID:25520698

  19. Monoamines, glucose metabolism, aggression towards self and others.

    PubMed

    Roy, A; Virkkunen, M; Linnoila, M

    1988-08-01

    The evidence is reviewed that violent and suicidal behavior is associated with a deficiency of the serotonin system and that individuals with poor impulse control tend to become hypoglycemic during an oral glucose tolerance test, and have low levels of 5-hydroxyindole acetic acid in the cerebrospinal fluid. It is postulated that serotonergic deficits may predispose individuals to poor impulse control, disturbance of glucose metabolism, alcohol abuse, violent behavior and suicide. PMID:2460415

  20. Positive Correlation between Severity of Blepharospasm and Thalamic Glucose Metabolism.

    PubMed

    Murai, Hideki; Suzuki, Yukihisa; Kiyosawa, Motohiro; Wakakura, Masato; Mochizuki, Manabu; Ishiwata, Kiichi; Ishii, Kenji

    2011-01-01

    A 43-year-old woman with drug-related blepharospasm was followed up for 22 months. She had undergone etizolam treatment for 19 years for indefinite complaints. We examined her cerebral glucose metabolism 5 times (between days 149 and 688 since presentation), using positron emission tomography, and identified regions of interest in the thalamus, caudate nucleus, putamen, and primary somatosensory area on both sides. The severity of the blepharospasm was evaluated by PET scanning using the Wakakura classification. Sixteen women (mean age 42.4 ± 11.7 years) were examined as normal controls. The thalamic glucose metabolism in our patient was significantly increased on days 149, 212, and 688. The severity of the blepharospasm was positively correlated with the thalamic glucose metabolism, suggesting that the severity of blepharospasms reflects thalamic activity. PMID:22110436

  1. Positive Correlation between Severity of Blepharospasm and Thalamic Glucose Metabolism

    PubMed Central

    Murai, Hideki; Suzuki, Yukihisa; Kiyosawa, Motohiro; Wakakura, Masato; Mochizuki, Manabu; Ishiwata, Kiichi; Ishii, Kenji

    2011-01-01

    A 43-year-old woman with drug-related blepharospasm was followed up for 22 months. She had undergone etizolam treatment for 19 years for indefinite complaints. We examined her cerebral glucose metabolism 5 times (between days 149 and 688 since presentation), using positron emission tomography, and identified regions of interest in the thalamus, caudate nucleus, putamen, and primary somatosensory area on both sides. The severity of the blepharospasm was evaluated by PET scanning using the Wakakura classification. Sixteen women (mean age 42.4 ± 11.7 years) were examined as normal controls. The thalamic glucose metabolism in our patient was significantly increased on days 149, 212, and 688. The severity of the blepharospasm was positively correlated with the thalamic glucose metabolism, suggesting that the severity of blepharospasms reflects thalamic activity. PMID:22110436

  2. Glutamine and glucose metabolism in enterocytes of the neonatal pig.

    PubMed

    Wu, G; Knabe, D A; Yan, W; Flynn, N E

    1995-02-01

    Glutamine and glucose metabolism was studied in 0- to 21-day-old pig enterocytes. Cells were incubated at 37 degrees C for 30 min in Krebs-Henseleit bicarbonate buffer (pH 7.4) in the presence of 2 mM [U-14C]glutamine with or without 5 mM glucose, or 5 mM [U-14C]glucose with or without 2 mM glutamine. Glutamine was metabolized to ammonia, glutamate, alanine, aspartate, CO2, citrulline, ornithine, and proline, whereas glucose was converted to lactate, pyruvate, and CO2 in pig enterocytes. CO2 production from glutamine accounted for 32-36% and 3-4% of utilized glutamine carbons in 0- to 7-day-old and 14- to 21-day-old pigs, respectively. The rates of O2 consumption and metabolism of glutamine and glucose decreased in enterocytes from 2- to 14-day-old pigs compared with 0-day-old pigs. By day 14 after birth, the oxidation of glutamine and glucose as well as citrulline production had decreased by 90-95%. Arginine synthesis from glutamine occurred in cells from 0- to 7-day-old pigs but not 14- to 21-day-old ones. Glucose (5 mM) had no effect on glutamine utilization and oxidation or the production of glutamate and arginine but stimulated the formation of alanine, citrulline, and proline at the expense of aspartate. In contrast, glutamine (2 mM) inhibited glycolysis and glucose oxidation in cells from 0- to 7-day-old pigs and had no effects in 14- to 21-day-old pigs. As a result, glutamine contributed approximately 2-fold greater amounts of ATP to 0- to 7-day-old pig enterocytes than glucose.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7864226

  3. 1-deoxynojirimycin inhibits glucose absorption and accelerates glucose metabolism in streptozotocin-induced diabetic mice

    PubMed Central

    Li, You-Gui; Ji, Dong-Feng; Zhong, Shi; Lin, Tian-Bao; Lv, Zhi-Qiang; Hu, Gui-Yan; Wang, Xin

    2013-01-01

    We investigated the role of 1-deoxynojirimycin (DNJ) on glucose absorption and metabolism in normal and diabetic mice. Oral and intravenous glucose tolerance tests and labeled 13C6-glucose uptake assays suggested that DNJ inhibited intestinal glucose absorption in intestine. We also showed that DNJ down-regulated intestinal SGLT1, Na+/K+-ATP and GLUT2 mRNA and protein expression. Pretreatment with DNJ (50 mg/kg) increased the activity, mRNA and protein levels of hepatic glycolysis enzymes (GK, PFK, PK, PDE1) and decreased the expression of gluconeogenesis enzymes (PEPCK, G-6-Pase). Assays of protein expression in hepatic cells and in vitro tests with purified enzymes indicated that the increased activity of glucose glycolysis enzymes was resulted from the relative increase in protein expression, rather than from direct enzyme activation. These results suggest that DNJ inhibits intestinal glucose absorption and accelerates hepatic glucose metabolism by directly regulating the expression of proteins involved in glucose transport systems, glycolysis and gluconeogenesis enzymes. PMID:23536174

  4. Patterns of human local cerebral glucose metabolism during epileptic seizures

    SciTech Connect

    Engel, J. Jr.; Kuhl, D.E.; Phelps, M.E.

    1982-10-01

    Ictal patterns of local cerebral metabolic rate have been studied in epileptic patients by positron computed tomography with /sup 18/F-labeled 2-fluoro-2-deoxy-D-glucose. Partial seizures were associated with activation of anatomic structures unique to each patient studied. Ictal increases and decreases in local cerebral metabolism were observed. Scans performed during generalized convulsions induced by electroshock demonstrated a diffuse ictal increase and postictal decrease in cerebral metabolism. Petit mal absences were associated with a diffuse increase in cerebral metabolic rate. The ictal fluorodeoxyglucose patterns obtained from patients do not resemble autoradiographic patterns obtained from common experimental animal models of epilepsy.

  5. Glucose transport and glucose transporter GLUT4 are regulated by product(s) of intermediary metabolism in cardiomyocytes.

    PubMed Central

    Fischer, Y; Böttcher, U; Eblenkamp, M; Thomas, J; Jüngling, E; Rösen, P; Kammermeier, H

    1997-01-01

    Alternative substrates of energy metabolism are thought to contribute to the impairment of heart and muscle glucose utilization in insulin-resistant states. We have investigated the acute effects of substrates in isolated rat cardiomyocytes. Exposure to lactate, pyruvate, propionate, acetate, palmitate, beta-hydroxybutyrate or alpha-oxoglutarate led to the depression of glucose transport by up to 50%, with lactate, pyruvate and propionate being the most potent agents. The percentage inhibition was greater in cardiomyocytes in which glucose transport was stimulated with the alpha-adrenergic agonist phenylephrine or with a submaximal insulin concentration than in basal or fully insulin-stimulated cells. Cardiomyocytes from fasted or diabetic rats displayed a similar sensitivity to substrates as did cells from control animals. On the other hand, the amination product of pyruvate (alanine), as well as valine and the aminotransferase inhibitors cycloserine and amino-oxyacetate, stimulated glucose transport about 2-fold. In addition, the effect of pyruvate was counteracted by cycloserine. Since reversible transamination reactions are known to affect the pool size of the citrate cycle, the influence of substrates, amino acids and aminotransferase inhibitors on citrate, malate and glutamate content was examined. A significant negative correlation was found between alterations in glucose transport and the levels of citrate (P < 0.01) or malate (P < 0.01), and there was a positive correlation between glucose transport and glutamate levels (P < 0.05). In contrast, there was no correlation with changes in [1-(14)C]pyruvate oxidation or in glucose-6-phosphate levels. Finally, pyruvate decreased the abundance of GLUT4 glucose transporters at the surface of phenylephrine- or insulin-stimulated cells by 34% and 27 % respectively, as determined by using the selective photoaffinity label [3H]ATB-BMPA [[3H]2-N-[4-(1-azi-2,2,2-trifluoroethyl)benzoyl]-1,3-bis-(D-man nos-4-yloxy

  6. Glucose Regulates Hypothalamic Long-chain Fatty Acid Metabolism via AMP-activated Kinase (AMPK) in Neurons and Astrocytes*

    PubMed Central

    Taïb, Bouchra; Bouyakdan, Khalil; Hryhorczuk, Cécile; Rodaros, Demetra; Fulton, Stephanie; Alquier, Thierry

    2013-01-01

    Hypothalamic controls of energy balance rely on the detection of circulating nutrients such as glucose and long-chain fatty acids (LCFA) by the mediobasal hypothalamus (MBH). LCFA metabolism in the MBH plays a key role in the control of food intake and glucose homeostasis, yet it is not known if glucose regulates LCFA oxidation and esterification in the MBH and, if so, which hypothalamic cell type(s) and intracellular signaling mechanisms are involved. The aim of this study was to determine the impact of glucose on LCFA metabolism, assess the role of AMP-activated Kinase (AMPK), and to establish if changes in LCFA metabolism and its regulation by glucose vary as a function of the kind of LCFA, cell type, and brain region. We show that glucose inhibits palmitate oxidation via AMPK in hypothalamic neuronal cell lines, primary hypothalamic astrocyte cultures, and MBH slices ex vivo but not in cortical astrocytes and slice preparations. In contrast, oleate oxidation was not affected by glucose or AMPK inhibition in MBH slices. In addition, our results show that glucose increases palmitate, but not oleate, esterification into neutral lipids in neurons and MBH slices but not in hypothalamic astrocytes. These findings reveal for the first time the metabolic fate of different LCFA in the MBH, demonstrate AMPK-dependent glucose regulation of LCFA oxidation in both astrocytes and neurons, and establish metabolic coupling of glucose and LCFA as a distinguishing feature of hypothalamic nuclei critical for the control of energy balance. PMID:24240094

  7. Ascorbic acid recycling by cultured beta cells: effects of increased glucose metabolism.

    PubMed

    Steffner, Robert J; Wu, Lan; Powers, Alvin C; May, James M

    2004-11-15

    Ascorbic acid is necessary for optimal insulin secretion from pancreatic islets. We evaluated ascorbate recycling and whether it is impaired by increased glucose metabolism in the rat beta-cell line INS-1. INS-1 cells, engineered with the potential for overexpression of glucokinase under the control of a tetracycline-inducible gene expression system, took up and reduced dehydroascorbic acid to ascorbate in a concentration-dependent manner that was optimal in the presence of physiologic D-glucose concentrations. Ascorbate uptake did not affect intracellular GSH concentrations. Whereas depletion of GSH in culture to levels about 25% of normal also did not affect the ability of the cells to reduce dehydroascorbic acid, more severe acute GSH depletion to less than 10% of normal levels did impair dehydroascorbic acid reduction. Culture of inducible cells in 11.8 mM D-glucose and doxycycline for 48 h enhanced glucokinase activity, increased glucose utilization, abolished D-glucose-dependent insulin secretion, and increased generation of reactive oxygen species. The latter may have contributed to subsequent decreases in the ability of the cells both to maintain intracellular ascorbate and to recycle it from dehydroascorbic acid. Cultured beta cells have a high capacity to recycle ascorbate, but this is sensitive to oxidant stress generated by increased glucose metabolism due to culture in high glucose concentrations and increased glucokinase expression. Impaired ascorbate recycling as a result of increased glucose metabolism may have implications for the role of ascorbate in insulin secretion in diabetes mellitus and may partially explain glucose toxicity in beta cells. PMID:15477012

  8. Glucose metabolic phenotype of pancreatic cancer

    PubMed Central

    Chan, Anthony KC; Bruce, Jason IE; Siriwardena, Ajith K

    2016-01-01

    AIM: To construct a global “metabolic phenotype” of pancreatic ductal adenocarcinoma (PDAC) reflecting tumour-related metabolic enzyme expression. METHODS: A systematic review of the literature was performed using OvidSP and PubMed databases using keywords “pancreatic cancer” and individual glycolytic and mitochondrial oxidative phosphorylation (MOP) enzymes. Both human and animal studies investigating the oncological effect of enzyme expression changes and inhibitors in both an in vitro and in vivo setting were included in the review. Data reporting changes in enzyme expression and the effects on PDAC cells, such as survival and metastatic potential, were extracted to construct a metabolic phenotype. RESULTS: Seven hundred and ten papers were initially retrieved, and were screened to meet the review inclusion criteria. 107 unique articles were identified as reporting data involving glycolytic enzymes, and 28 articles involving MOP enzymes in PDAC. Data extraction followed a pre-defined protocol. There is consistent over-expression of glycolytic enzymes and lactate dehydrogenase in keeping with the Warburg effect to facilitate rapid adenosine-triphosphate production from glycolysis. Certain isoforms of these enzymes were over-expressed specifically in PDAC. Altering expression levels of HK, PGI, FBA, enolase, PK-M2 and LDA-A with metabolic inhibitors have shown a favourable effect on PDAC, thus identifying these as potential therapeutic targets. However, the Warburg effect on MOP enzymes is less clear, with different expression levels at different points in the Krebs cycle resulting in a fundamental change of metabolite levels, suggesting that other essential anabolic pathways are being stimulated. CONCLUSION: Further characterisation of the PDAC metabolic phenotype is necessary as currently there are few clinical studies and no successful clinical trials targeting metabolic enzymes. PMID:27022229

  9. Glucose metabolism in cachectic patients with colorectal cancer.

    PubMed

    Holroyde, C P; Skutches, C L; Boden, G; Reichard, G A

    1984-12-01

    We have studied a defined group of 12 weight-losing patients with metastatic colorectal cancer to evaluate the occurrence of and possible relationship between those determinants of carbohydrate metabolism which have been reported to occur commonly in cancer cachexia. The rates of endogenous glucose production and recycling via lactate (Cori cycle) were measured following an infusion of 50 to 100 microCi of [1-14C]glucose. Compared to an age-related group of control subjects without cancer, significantly elevated rates of glucose production [136.4 +/- 9.0 (S.E.) versus 101.0 +/- 4.6 mg/kg/hr; p less than 0.01] and recycling (43.0 +/- 7.2 versus 15.4 mg/kg/hr; p less than 0.01) were observed. Values for glucose production and recycling ranged from normal to markedly elevated. Glucose tolerance was then determined following a p.o. glucose load of 40 g/sq m in 10 of the 12 patients. Compared to control subjects, all showed a significantly delayed clearance of glucose (p less than 0.01) and a blunted insulin-secretory responsiveness (p less than 0.025). Increased glucose production and recycling was only observed in the presence of carbohydrate intolerance, but the latter occurred in a manner which seemed independent of the rate of glucose turnover. In order to obtain an estimate of hepatic glycogen reserves, glucagon, 15 ng/kg/min, was infused over 40 min in seven subjects. A significantly blunted glycemic response was observed in the cancer patients compared to controls (delta 25.0 +/- 6.9 versus 57.8 +/- 8.5 mg/dl; p less than 0.025). Neither the rate of glucose production nor the glycemic response to glucagon appeared to correlate with the immediate antecedent caloric intake. An apparent relationship was observed, however, between increased glucose production and recycling and a lack of response to infused glucagon, probably reflecting decreased glycogen stores in the face of an increased glucose requirement by the patient. We have shown that diverse abnormalities

  10. Glucose metabolism and effect of acetate in ovine adipocytes.

    PubMed

    Yang, Y T; White, L S; Muir, L A

    1982-08-01

    Isolated ovine adipocytes were incubated in vitro with specifically labeled 14C-glucose in the presence or absence of acetate. The flux patterns of glucose carbon through major metabolic pathways were estimated. When glucose was added as the sole substrate, approximately equal portions of glucose carbon (10%) were oxidized to CO2 in the pentose phosphate pathway, in the pyruvate dehydrogenase reaction and in the citrate cycle. Fifteen percent of the glucose carbon was incorporated into fatty acids and 43% was released as lactate and pyruvate. Addition of acetate to the medium increased glucose carbon uptake by 1.5-fold. Most of this increase was accounted for by a sevenfold increase in the activity of the pentose phosphate pathway. Acetate increased glucose carbon fluxes via pentose phosphate pathway to triose phosphates, from triose phosphate to pyruvate, into glyceride glycerol, into lactate and pyruvate and into pyruvate dehydrogenase and citrate cycle CO2. Glucose carbon incorporated into fatty acids was decreased 50% by acetate while, carbon fluxes through the phosphofructokinase-aldolase reactions were not significantly increased. Results of this study suggest that, when glucose is the sole substrate, the conversion of glucose to fatty acids in ovine adipocytes may not be limited by the maximum capacity of hexokinase, the pentose phosphate pathway or enzymes involved in the conversion of triose phosphates to pyruvate and of pyruvate to fatty acid. Acetate increased glucose utilization apparently by increasing activity of the pentose phosphate pathway as a result of enhanced NADPH utilization for fatty acid synthesis. PMID:7142048

  11. Thalamic, brainstem, and cerebellar glucose metabolism in the hemiplegic monkey

    SciTech Connect

    Shimoyama, I.; Dauth, G.W.; Gilman, S.; Frey, K.A.; Penney, J.B. Jr.

    1988-12-01

    Unilateral ablation of cerebral cortical areas 4 and 6 of Brodmann in the macaque monkey results in a contralateral hemiplegia that resolves partially with time. During the phase of dense hemiplegia, local cerebral metabolic rate for glucose (1CMRG1c) is decreased significantly in most of the thalamic nuclei ipsilateral to the ablation, and there are slight contralateral decreases. The lCMRGlc is reduced bilaterally in most of the brainstem nuclei and bilaterally in the deep cerebellar nuclei, but only in the contralateral cerebellar cortex. During the phase of partial motor recovery, lCMRGlc is incompletely restored in many of the thalamic nuclei ipsilateral to the ablation and completely restored in the contralateral nuclei. In the brainstem and deep cerebellar nuclei, poor to moderate recovery occurs bilaterally. Moderate recovery occurs in the contralateral cerebellar cortex. The findings demonstrate that a unilateral cerebral cortical lesion strongly affects lCMRGlc in the thalamus ipsilaterally and in the cerebellar cortex contralaterally, but in the brainstem bilaterally. Partial recovery of lCMRGlc accompanies the progressive motor recovery. The structures affected include those with direct, and also those with indirect, connections to the areas ablated.

  12. Metabolic Profiling of the Response to an Oral Glucose Tolerance Test Detects Subtle Metabolic Changes

    PubMed Central

    Wopereis, Suzan; Rubingh, Carina M.; van Erk, Marjan J.; Verheij, Elwin R.; van Vliet, Trinette; Cnubben, Nicole H. P.; Smilde, Age K.; van der Greef, Jan; van Ommen, Ben; Hendriks, Henk F. J.

    2009-01-01

    Background The prevalence of overweight is increasing globally and has become a serious health problem. Low-grade chronic inflammation in overweight subjects is thought to play an important role in disease development. Novel tools to understand these processes are needed. Metabolic profiling is one such tool that can provide novel insights into the impact of treatments on metabolism. Methodology To study the metabolic changes induced by a mild anti-inflammatory drug intervention, plasma metabolic profiling was applied in overweight human volunteers with elevated levels of the inflammatory plasma marker C-reactive protein. Liquid and gas chromatography mass spectrometric methods were used to detect high and low abundant plasma metabolites both in fasted conditions and during an oral glucose tolerance test. This is based on the concept that the resilience of the system can be assessed after perturbing a homeostatic situation. Conclusions Metabolic changes were subtle and were only detected using metabolic profiling in combination with an oral glucose tolerance test. The repeated measurements during the oral glucose tolerance test increased statistical power, but the metabolic perturbation also revealed metabolites that respond differentially to the oral glucose tolerance test. Specifically, multiple metabolic intermediates of the glutathione synthesis pathway showed time-dependent suppression in response to the glucose challenge test. The fact that this is an insulin sensitive pathway suggests that inflammatory modulation may alter insulin signaling in overweight men. PMID:19242536

  13. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    SciTech Connect

    Ackermann, R.F.; Lear, J.L. )

    1989-12-01

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered ({sup 18}F)fluorodeoxyglucose (FDG) and ({sup 14}C)-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the {sup 14}C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the {sup 14}C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum.

  14. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose.

    PubMed

    Ackermann, R F; Lear, J L

    1989-12-01

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered [18F]fluorodeoxyglucose (FDG) and [14C]-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the 14C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the 14C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum. PMID:2584274

  15. Environmental factors affecting pregnancy: endocrine disrupters, nutrients and metabolic pathways.

    PubMed

    Bazer, Fuller W; Wu, Guoyao; Johnson, Gregory A; Wang, Xiaoqiu

    2014-12-01

    Uterine adenogenesis, a unique post-natal event in mammals, is vulnerable to endocrine disruption by estrogens and progestins resulting in infertility or reduced prolificacy. The absence of uterine glands results in insufficient transport of nutrients into the uterine lumen to support conceptus development. Arginine, a component of histotroph, is substrate for production of nitric oxide, polyamines and agmatine and, with secreted phosphoprotein 1, it affects cytoskeletal organization of trophectoderm. Arginine is critical for development of the conceptus, pregnancy recognition signaling, implantation and placentation. Conceptuses of ungulates and cetaceans convert glucose to fructose which is metabolized via multiple pathways to support growth and development. However, high fructose corn syrup in soft drinks and foods may increase risks for metabolic disorders and increase insulin resistance in adults. Understanding endocrine disrupters and dietary substances, and novel pathways for nutrient metabolism during pregnancy can improve survival and growth, and prevent chronic metabolic diseases in offspring. PMID:25224489

  16. Altered glucose metabolism in mouse and humans conceived by IVF.

    PubMed

    Chen, Miaoxin; Wu, Linda; Zhao, Junli; Wu, Fang; Davies, Michael J; Wittert, Gary A; Norman, Robert J; Robker, Rebecca L; Heilbronn, Leonie K

    2014-10-01

    In vitro fertilization (IVF) may influence the metabolic health of children. However, in humans, it is difficult to separate out the relative contributions of genetics, environment, or the process of IVF, which includes ovarian stimulation (OS) and embryo culture. Therefore, we examined glucose metabolism in young adult humans and in adult male C57BL/6J mice conceived by IVF versus natural birth under energy-balanced and high-fat-overfeeding conditions. In humans, peripheral insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamp (80 mU/m(2)/min), was lower in IVF patients (n = 14) versus control subjects (n = 20) after 3 days of an energy-balanced diet (30% fat). In response to 3 days of overfeeding (+1,250 kcal/day, 45% fat), there was a greater increase in systolic blood pressure in IVF versus controls (P = 0.02). Mice conceived after either OS alone or IVF weighed significantly less at birth versus controls (P < 0.01). However, only mice conceived by IVF displayed increased fasting glucose levels, impaired glucose tolerance, and reduced insulin-stimulated Akt phosphorylation in the liver after 8 weeks of consuming either a chow or high-fat diet (60% fat). Thus, OS impaired fetal growth in the mouse, but only embryo culture resulted in changes in glucose metabolism that may increase the risk of the development of metabolic diseases later in life, in both mice and humans. PMID:24760136

  17. Pear Bud Metabolism: Seasonal Changes in Glucose Utilization

    PubMed Central

    Zimmerman, Richard H.; Faust, Miklos

    1969-01-01

    Utilization of glucose, uracil and valine by flower and leaf buds of seedling pear trees (Pyrus calleryana Decne.) from the time of flower bud initiation to flowering was investigated. A very high rate of glucose utilization through the pentose phosphate pathway was observed throughout the development of buds. There was no difference in the type of glucose metabolism between flower and leaf buds except immediately before flowering, when the metabolism in flower buds was shifted toward the glycolytic pathway. Such a shift did not occur in leaf buds. The incorporation of uracil and valine into the nucleic acid and protein fraction of buds, respectively, was high throughout bud development, perhaps indicating a high rate of turnover in the resting buds. Incorporation of both compounds decreased when buds started to expand prior to flowering. PMID:16657202

  18. Compartmentalized Acyl-CoA Metabolism in Skeletal Muscle Regulates Systemic Glucose Homeostasis

    PubMed Central

    Li, Lei O.; Grevengoed, Trisha J.; Paul, David S.; Ilkayeva, Olga; Koves, Timothy R.; Pascual, Florencia; Newgard, Christopher B.; Muoio, Deborah M.

    2015-01-01

    The impaired capacity of skeletal muscle to switch between the oxidation of fatty acid (FA) and glucose is linked to disordered metabolic homeostasis. To understand how muscle FA oxidation affects systemic glucose, we studied mice with a skeletal muscle–specific deficiency of long-chain acyl-CoA synthetase (ACSL)1. ACSL1 deficiency caused a 91% loss of ACSL-specific activity and a 60–85% decrease in muscle FA oxidation. Acsl1M−/− mice were more insulin sensitive, and, during an overnight fast, their respiratory exchange ratio was higher, indicating greater glucose use. During endurance exercise, Acsl1M−/− mice ran only 48% as far as controls. At the time that Acsl1M−/− mice were exhausted but control mice continued to run, liver and muscle glycogen and triacylglycerol stores were similar in both genotypes; however, plasma glucose concentrations in Acsl1M−/− mice were ∼40 mg/dL, whereas glucose concentrations in controls were ∼90 mg/dL. Excess use of glucose and the likely use of amino acids for fuel within muscle depleted glucose reserves and diminished substrate availability for hepatic gluconeogenesis. Surprisingly, the content of muscle acyl-CoA at exhaustion was markedly elevated, indicating that acyl-CoAs synthesized by other ACSL isoforms were not available for β-oxidation. This compartmentalization of acyl-CoAs resulted in both an excessive glucose requirement and severely compromised systemic glucose homeostasis. PMID:25071025

  19. A computer model simulating human glucose absorption and metabolism in health and metabolic disease states

    PubMed Central

    Naftalin, Richard J.

    2016-01-01

    A computer model designed to simulate integrated glucose-dependent changes in splanchnic blood flow with small intestinal glucose absorption, hormonal and incretin circulation and hepatic and systemic metabolism in health and metabolic diseases e.g. non-alcoholic fatty liver disease, (NAFLD), non-alcoholic steatohepatitis, (NASH) and type 2 diabetes mellitus, (T2DM) demonstrates how when glucagon-like peptide-1, (GLP-1) is synchronously released into the splanchnic blood during intestinal glucose absorption, it stimulates superior mesenteric arterial (SMA) blood flow and by increasing passive intestinal glucose absorption, harmonizes absorption with its distribution and metabolism. GLP-1 also synergises insulin-dependent net hepatic glucose uptake (NHGU). When GLP-1 secretion is deficient post-prandial SMA blood flow is not increased and as NHGU is also reduced, hyperglycaemia follows. Portal venous glucose concentration is also raised, thereby retarding the passive component of intestinal glucose absorption.   Increased pre-hepatic sinusoidal resistance combined with portal hypertension leading to opening of intrahepatic portosystemic collateral vessels are NASH-related mechanical defects that alter the balance between splanchnic and systemic distributions of glucose, hormones and incretins.The model reveals the latent contribution of portosystemic shunting in development of metabolic disease. This diverts splanchnic blood content away from the hepatic sinuses to the systemic circulation, particularly during the glucose absorptive phase of digestion, resulting in inappropriate increases in insulin-dependent systemic glucose metabolism.  This hastens onset of hypoglycaemia and thence hyperglucagonaemia. The model reveals that low rates of GLP-1 secretion, frequently associated with T2DM and NASH, may be also be caused by splanchnic hypoglycaemia, rather than to intrinsic loss of incretin secretory capacity. These findings may have therapeutic implications on GLP

  20. Comparison of glucose and lipid metabolic gene expressions between fat and lean lines of rainbow trout after a glucose load.

    PubMed

    Jin, Junyan; Médale, Françoise; Kamalam, Biju Sam; Aguirre, Peyo; Véron, Vincent; Panserat, Stéphane

    2014-01-01

    Two experimental rainbow trout lines developed through divergent selection for low (Lean 'L' line) or high (Fat 'F' line) muscle fat content were used as models to study the genetic determinism of fat depots. Previous nutritional studies suggested that the F line had a better capability to use glucose than the L line during feeding trials. Based on that, we put forward the hypothesis that F line has a greater metabolic ability to clear a glucose load effectively, compared to L line. In order to test this hypothesis, 250 mg/kg glucose was intraperitoneally injected to the two rainbow trout lines fasted for 48 h. Hyperglycemia was observed after glucose treatment in both lines without affecting the phosphorylation of AMPK (cellular energy sensor) and Akt-TOR (insulin signaling) components. Liver glucokinase and glucose-6-phosphate dehydrogenase expression levels were increased by glucose, whereas mRNA levels of β-oxidation enzymes (CPT1a, CPT1b, HOAD and ACO) were down-regulated in the white skeletal muscle of both lines. Regarding the genotype effect, concordant with normoglycemia at 12 h after glucose treatment, higher muscle glycogen was found in F line compared to L line which exhibited hyperglycemia. Moreover, mRNA levels of hepatic glycolytic enzymes (GK, 6PFK and PK), gluconeogenic enzyme PEPCK and muscle fatty acid oxidation enzymes (CPT1a, CPT1b and HOAD) were concurrently higher in the F line. Overall, these findings suggest that F line may have a better ability to maintain glucose homeostasis than L line. PMID:25141351

  1. Education-Associated Cortical Glucose Metabolism during Sustained Attention

    PubMed Central

    Eisenberg, Daniel P.; London, Edythe D.; Matochik, John A.; Derbyshire, Stuart; Cohen, Lisa J.; Steinfeld, Matthew; Prosser, James; Galynker, Igor I.

    2007-01-01

    Despite research suggesting that education may mitigate cognitive sequelae of neural injury, little is known about interactions between education and regional brain function. We examined whether educational experience is associated with relative glucose metabolism in brain regions that are important for sustained attention and learning. Fourteen healthy adults, with twelve to eighteen years of schooling, underwent positron emission tomography (PET) scanning with 18F-fluorodeoxyglucose (FDG) during an auditory continuous discrimination task. Years of education correlated positively with relative glucose metabolism in the lingual gyri (bilaterally), left posterior cingulate gyrus, and left precuneus. Previously, these structures have shown early impairment in dementia. Further investigation should explore whether metabolic changes in these regions contribute to the possible protective effect of education on cognition. PMID:16110274

  2. Cerebral glucose metabolism in the course of subacute sclerosing panencephalitis

    SciTech Connect

    Huber, M.; Herholz, K.; Pawlik, G.; Szelies, B.; Juergens, R.H.; Heiss, W.D.

    1989-01-01

    Regional cerebral glucose metabolism was studied in a 15-year-old boy with subacute sclerosing panencephalitis before and after therapy with human interferon beta, using positron emission tomography of fluorine 18-2-fluoro-2-deoxyglucose. At first examination, metabolism was symmetrically decreased in the thalamus, cerebellum, and all cortical areas except prerolandic motor cortex, but increased in lentiform nucleus. A computed tomographic scan was normal. Six months later, bilateral focal necrosis centered in the previously hypermetabolic putamen was demonstrated by computed tomography and magnetic resonance imaging. The caudate nucleus and the superoposterior part of the putamen were spared, still showing increased metabolism. Corresponding with some clinical improvement, cortical glucose consumption rates had returned to a normal level.

  3. Type 2 Diabetes Dysregulates Glucose Metabolism in Cardiac Progenitor Cells.

    PubMed

    Salabei, Joshua K; Lorkiewicz, Pawel K; Mehra, Parul; Gibb, Andrew A; Haberzettl, Petra; Hong, Kyung U; Wei, Xiaoli; Zhang, Xiang; Li, Qianhong; Wysoczynski, Marcin; Bolli, Roberto; Bhatnagar, Aruni; Hill, Bradford G

    2016-06-24

    Type 2 diabetes is associated with increased mortality and progression to heart failure. Recent studies suggest that diabetes also impairs reparative responses after cell therapy. In this study, we examined potential mechanisms by which diabetes affects cardiac progenitor cells (CPCs). CPCs isolated from the diabetic heart showed diminished proliferation, a propensity for cell death, and a pro-adipogenic phenotype. The diabetic CPCs were insulin-resistant, and they showed higher energetic reliance on glycolysis, which was associated with up-regulation of the pro-glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). In WT CPCs, expression of a mutant form of PFKFB, which mimics PFKFB3 activity and increases glycolytic rate, was sufficient to phenocopy the mitochondrial and proliferative deficiencies found in diabetic cells. Consistent with activation of phosphofructokinase in diabetic cells, stable isotope carbon tracing in diabetic CPCs showed dysregulation of the pentose phosphate and glycero(phospho)lipid synthesis pathways. We describe diabetes-induced dysregulation of carbon partitioning using stable isotope metabolomics-based coupling quotients, which relate relative flux values between metabolic pathways. These findings suggest that diabetes causes an imbalance in glucose carbon allocation by uncoupling biosynthetic pathway activity, which could diminish the efficacy of CPCs for myocardial repair. PMID:27151219

  4. GLUCOSE METABOLISM AND INSULIN SENSITIVITY WERE UNAFFECTED BY DIETARY FRUCTOSE INTAKE (AND GLYCEMIC INDEX) IN OBESE AND LEAN ADOLESCENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is growing concern that the increased consumption of fructose has detrimental effects on carbohydrate metabolism in adolescents. This study was designed to determine whether a high dietary fructose intake consumed over the short term adversely affects glucose metabolism, insulin secretion or ...

  5. Alpha-melanocyte-stimulating hormone is a peripheral, integrative regulator of glucose and fat metabolism.

    PubMed

    Brennan, Miles B; Costa, Jessica Lynn; Forbes, Stacy; Reed, Peggy; Bui, Stephanie; Hochgeschwender, Ute

    2003-06-01

    Melanocortins are known to affect feeding and probably insulin activity through the central nervous system. It was also recently shown that peripheral alpha-melanocyte-stimulating hormone (alpha-MSH) administration can reduce weight gain in both genetic and diet-induced obese mice. As obesity is often associated with disregulation of glucose and insulin, we investigated the nature of glucose homeostasis in the obese pro-opiomelanocortin (POMC) knockout mouse. Here we report that though they are obese, mice deficient in POMC (and, thereby, deficient in alpha-MSH) are euglycemic throughout their lives. While these mice are euinsulinemic, they are hypersensitive to exogenous insulin. This defect can be reversed through administration of alpha-MSH. We demonstrate that the actions of alpha-MSH in the periphery, known from our work to include lipid metabolism effects, are also involved in glucose homeostasis. These findings substantiate a pivotal role of the POMC gene products in integrating metabolism. PMID:12851327

  6. Uric acid as a modulator of glucose and lipid metabolism.

    PubMed

    Lima, William Gustavo; Martins-Santos, Maria Emília Soares; Chaves, Valéria Ernestânia

    2015-09-01

    In humans, uric acid is the final oxidation product of purine catabolism. The serum uric acid level is based on the balance between the absorption, production and excretion of purine. Uric acid is similarly produced in the liver, adipose tissue and muscle and is primarily excreted through the urinary tract. Several factors, including a high-fructose diet and the use of xenobiotics and alcohol, contribute to hyperuricaemia. Hyperuricaemia belongs to a cluster of metabolic and haemodynamic abnormalities, called metabolic syndrome, characterised by abdominal obesity, glucose intolerance, insulin resistance, dyslipidaemia and hypertension. Hyperuricaemia reduction in the Pound mouse or fructose-fed rats, as well as hyperuricaemia induction by uricase inhibition in rodents and studies using cell culture have suggested that uric acid plays an important role in the development of metabolic syndrome. These studies have shown that high uric acid levels regulate the oxidative stress, inflammation and enzymes associated with glucose and lipid metabolism, suggesting a mechanism for the impairment of metabolic homeostasis. Humans lacking uricase, the enzyme responsible for uric acid degradation, are susceptible to these effects. In this review, we summarise the current knowledge of the effects of uric acid on the regulation of metabolism, primarily focusing on liver, adipose tissue and skeletal muscle. PMID:26133655

  7. Glucose and glycogen metabolism in erythrocytes from normal and glycogen storage disease type III subjects

    PubMed Central

    Moses, Shimon W.; Chayoth, Reuben; Levin, Stanley; Lazarovitz, Ela; Rubinstein, David

    1968-01-01

    Active glycogen metabolism has been demonstrated in both normal and glycogen-rich erythrocytes taken from patients with type III glycogen storage disease. Activity of all enzymes catalyzing the reactions required for the synthesis and degradation of glycogen have been demonstrated in the mature erythrocytes. Uniformly labeled glucose-14C is incorporated into glycogen in intact cells of both types during incubation. Replacement of the glucose-14C by unlabeled glucose in the medium resulted in a significant loss of radioactivity from cellular glycogen. In the absence of the substrate a progressive shortening of outer branches occurred during incubation of intact glucogen-rich cells. Using cells from patients with type III glycogen storage disease, which have sufficient glycogen content to be analyzed by β-amylolysis, we demonstrated that the glucosyl units are first incorporated in the outer tiers, then transferred to the core where they tend to accumulate due to the absence of amylo-1,6-glucosidase. The glycogen-rich cells have a more rapid rate of glucose utilization upon incubation which is not reflected by a higher lactate production. The increased rate of glucose utilization did not result from an increased rate of glucose incorporation into glycogen in affected cells. The rate of 14CO2 production from glucose-1-14C during incubation was not significantly different in the two types of cells unless methylene blue was added as an electron acceptor, in which case the glycogen-rich cells oxidized glucose to CO2 more rapidly. PMID:5240360

  8. Ethanol induced impairment of glucose metabolism involves alterations of GABAergic signaling in pancreatic β-cells.

    PubMed

    Wang, Shuanglian; Luo, Yan; Feng, Allen; Li, Tao; Yang, Xupeng; Nofech-Mozes, Roy; Yu, Meng; Wang, Changhui; Li, Ziwei; Yi, Fan; Liu, Chuanyong; Lu, Wei-Yang

    2014-12-01

    Alcohol overindulgence is a risk factor of type 2 diabetes mellitus. However, the mechanisms by which alcohol overindulgence damages glucose metabolism remain unclear. Pancreatic islet β-cells are endowed with type-A γ-aminobutyric acid receptor (GABAAR) mediated autocrine signaling mechanism, which regulates insulin secretion and fine-tunes glucose metabolism. In neurons GABAAR is one of the major targets for alcohol. This study investigated whether ethanol alters glucose metabolism by affecting GABAAR signaling in pancreatic β-cells. Blood glucose level of test mice was measured using a blood glucose meter. Insulin secretion by the pancreatic β-cell line INS-1 cells was examined using a specific insulin ELISA kit. Whole-cell patch-clamp recording was used to evaluate GABA-elicited current in INS-1 cells. Western blot and immunostaining were used to measure the expression of GABAAR subunits in mouse pancreatic tissues or in INS-1 cells. Intraperitoneal (i.p.) administration of ethanol (3.0g/kg body weight) to mice altered glucose metabolism, which was associated with decreased expression of GABAAR α1- and δ- subunits on the surface of pancreatic β-cells. Acute treatment of cultured INS-1cells with ethanol (60mM) decreased the GABA-induced current and reduced insulin secretion. In contrast, treating INS-1 cells with GABA (100μM) largely prevented the ethanol-induced reduction of insulin release. Importantly, pre-treating mice with GABA (i.p., 1.5mg/kg body weight) partially reversed ethanol-induced impairment of glucose homeostasis in mice. Our data suggest a novel role of pancreatic GABA signaling in protecting pancreatic islet β-cells from ethanol-induced dysfunction. PMID:25456265

  9. Does hyperketonemia affect protein or glucose kinetics in postabsorptive or traumatized man

    SciTech Connect

    Crowe, P.J.; Royle, G.T.; Wagner, D.; Burke, J.F. )

    1989-10-01

    Leucine and glucose turnover were measured using simultaneous infusions of (13C)leucine and (2H)glucose before and during an infusion of Na DL-hydroxybutyrate (Na DL-HB) in overnight-fasted patients the day before and 3 days after total hip replacement. The ketone body infusion before surgery resulted in a significant increase in plasma leucine concentration and leucine turnover, while glucose concentration and turnover decreased. Surgery increased leucine turnover. Ketone body infusion after surgery caused a further increased leucine turnover while turnover fell as before surgery. We suggest that exogenous ketone bodies decrease hepatic glucose production and probably stimulate a rise in protein synthesis above breakdown leading to a decreased nitrogen excretion as observed by other investigators. Despite the metabolic adaptation to trauma, this response was not affected by surgery.

  10. [GLUCOSE METABOLISM IN SURFACTANTS PRODUCER NOCARDIA VACCINII IMV B-7405].

    PubMed

    Pirog, T P; Shevchuk, T A; Beregova, K A

    2015-01-01

    Key enzymes of glucose metabolism were detected in the cells of surfactants producer Nocardia vaccinii IMV B-7405 grown on this substrate. It has been established that glucose catabolism is performed through gluconate (FAD(+)-dependent glucose dehydrogenase activity 698 ± 35 nmol x min(-1) x mg(-1) of protein). Oxidation of gluconate to 6-phosphogluconate is catalised by gluconokinase (178 ± 9 nmol x min(-1) x mg(-1) of protein). 6-Phosphogluconate was involved into pentose phosphate cycle by constitutive NADP(+)-dependent 6-phosphogluconate dehydrogenase (activity 357 ± 17 nmol x min(-1) x mg(-1) of protein). The data obtained serve as the basis for theoretical calculations of optimal molar ratio of concentrations of energetically nonequivalent substrates for intensifying the surfactants synthesis on their mixture. PMID:26638479

  11. Circadian System and Glucose Metabolism: Implications for Physiology and Disease.

    PubMed

    Qian, Jingyi; Scheer, Frank A J L

    2016-05-01

    The circadian system serves one of the most fundamental properties present in nearly all organisms: it generates 24-h rhythms in behavioral and physiological processes and enables anticipating and adapting to daily environmental changes. Recent studies indicate that the circadian system is important in regulating the daily rhythm in glucose metabolism. Disturbance of this circadian control or of its coordination relative to the environmental/behavioral cycle, such as in shift work, eating late, or due to genetic changes, results in disturbed glucose control and increased type 2 diabetes risk. Therefore, an in-depth understanding of the mechanisms underlying glucose regulation by the circadian system and its disturbance may help in the development of therapeutic interventions against the deleterious health consequences of circadian disruption. PMID:27079518

  12. Quantifying the Contribution of the Liver to Glucose Homeostasis: A Detailed Kinetic Model of Human Hepatic Glucose Metabolism

    PubMed Central

    König, Matthias; Bulik, Sascha; Holzhütter, Hermann-Georg

    2012-01-01

    Despite the crucial role of the liver in glucose homeostasis, a detailed mathematical model of human hepatic glucose metabolism is lacking so far. Here we present a detailed kinetic model of glycolysis, gluconeogenesis and glycogen metabolism in human hepatocytes integrated with the hormonal control of these pathways by insulin, glucagon and epinephrine. Model simulations are in good agreement with experimental data on (i) the quantitative contributions of glycolysis, gluconeogenesis, and glycogen metabolism to hepatic glucose production and hepatic glucose utilization under varying physiological states. (ii) the time courses of postprandial glycogen storage as well as glycogen depletion in overnight fasting and short term fasting (iii) the switch from net hepatic glucose production under hypoglycemia to net hepatic glucose utilization under hyperglycemia essential for glucose homeostasis (iv) hormone perturbations of hepatic glucose metabolism. Response analysis reveals an extra high capacity of the liver to counteract changes of plasma glucose level below 5 mM (hypoglycemia) and above 7.5 mM (hyperglycemia). Our model may serve as an important module of a whole-body model of human glucose metabolism and as a valuable tool for understanding the role of the liver in glucose homeostasis under normal conditions and in diseases like diabetes or glycogen storage diseases. PMID:22761565

  13. Genes in Glucose Metabolism and Association With Spina Bifida

    PubMed Central

    Davidson, Christina M.; Northrup, Hope; King, Terri M.; Fletcher, Jack M.; Townsend, Irene; Tyerman, Gayle H.

    2008-01-01

    The authors tested single nucleotide polymorphisms (SNPs) in coding sequences of candidate genes involved in glucose metabolism and obesity for associations with spina bifida (SB). Coding SNPs on 12 candidate genes was investigated. Genotyping was performed on 507 children with SB and their parents plus anonymous control DNAs from Hispanic and Caucasian individuals. The transmission disequilibrium test was performed to test for genetic associations between transmission of alleles and SB in the offspring (P < .05). A statistically significant association between Lys481 of HK1 (G allele), Arg109Lys of LEPR (G allele), and Pro196 of GLUT1 (A allele) was found (P = .019, .039 and .040, respectively). Three SNPs on 3 genes involved with glucose metabolism and obesity may be associated with increased susceptibility to SB. PMID:18212354

  14. Cerebral metabolism of glucose in benign hereditary chorea

    SciTech Connect

    Suchowersky, O.; Hayden, M.R.; Martin, W.R.; Stoessl, A.J.; Hildebrand, A.M.; Pate, B.D.

    1986-01-01

    Benign hereditary chorea (BHC) is an autosomal dominant disorder characterized by chorea of early onset with little or no progression. There is marked clinical variability in this disease with some subjects having onset in infancy and others with onset in early adulthood. In contrast to Huntington's disease (HD), there is no dementia. Computed tomography is normal in all subjects with no evidence of caudate nucleus atrophy. We present the results of positron emission tomography using YF-2-fluorodeoxyglucose on three patients with this disorder from two families. Cerebral glucose metabolism in one patient was decreased in the caudate nucleus, as previously reported in HD. The other two persons from a second family showed a relative decrease in metabolic rates of glucose in the caudate when compared with the thalamus. It appears that caudate hypometabolism is not specific for HD. These findings suggest that the caudate nucleus may play a significant role in the pathophysiology of some persons with BHC.

  15. Glucose metabolism in gastric cancer: The cutting-edge

    PubMed Central

    Yuan, Lian-Wen; Yamashita, Hiroharu; Seto, Yasuyuki

    2016-01-01

    Glucose metabolism in gastric cancer cells differs from that of normal epithelial cells. Upregulated aerobic glycolysis (Warburg effect) in gastric cancer meeting the demands of cell proliferation is associated with genetic mutations, epigenetic modification and proteomic alteration. Understanding the mechanisms of aerobic glycolysis may contribute to our knowledge of gastric carcinogenesis. Metabolomic studies offer novel, convenient and practical tools in the search for new biomarkers for early detection, diagnosis, prognosis, and chemosensitivity prediction of gastric cancer. Interfering with the process of glycolysis in cancer cells may provide a new and promising therapeutic strategy for gastric cancer. In this article, we present a brief review of recent studies of glucose metabolism in gastric cancer, with primary focus on the clinical applications of new biomarkers and their potential therapeutic role in gastric cancer. PMID:26877609

  16. Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice

    NASA Astrophysics Data System (ADS)

    Yan, Shengmin; Zhang, Hongxia; Zheng, Fei; Sheng, Nan; Guo, Xuejiang; Dai, Jiayin

    2015-06-01

    Perfluoroalkyl acids (PFAAs) are widely used in many applications due to their unique physical and chemical characteristics. Because of the increasing prevalence of metabolic syndromes, including obesity, dyslipidemia and insulin resistance, concern has arisen about the roles of environmental pollutants in such diseases. Earlier epidemiologic studies showed a potential association between perfluorooctanoic acid (PFOA) and glucose metabolism, but how PFOA influences glucose homeostasis is still unknown. Here, we report on the modulation of the phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT) signaling pathway in the livers of mice after 28 d of exposure to PFOA. Compared with normal mice, PFOA exposure significantly decreased the expression of the phosphatase and tensin homologue (PTEN) protein and affected the PI3K-AKT signaling pathway in the liver. Tolerance tests further indicated that PFOA exposure induced higher insulin sensitivity and glucose tolerance in mice. Biochemical analysis revealed that PFOA exposure reduced hepatic glycogen synthesis, which might be attributed to gluconeogenesis inhibition. The levels of several circulating proteins were altered after PFOA exposure, including proteins potentially related to diabetes and liver disease. Our results suggest that PFOA affected glucose metabolism and induced insulin hypersensitivity in mice.

  17. Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice

    PubMed Central

    Yan, Shengmin; Zhang, Hongxia; Zheng, Fei; Sheng, Nan; Guo, Xuejiang; Dai, Jiayin

    2015-01-01

    Perfluoroalkyl acids (PFAAs) are widely used in many applications due to their unique physical and chemical characteristics. Because of the increasing prevalence of metabolic syndromes, including obesity, dyslipidemia and insulin resistance, concern has arisen about the roles of environmental pollutants in such diseases. Earlier epidemiologic studies showed a potential association between perfluorooctanoic acid (PFOA) and glucose metabolism, but how PFOA influences glucose homeostasis is still unknown. Here, we report on the modulation of the phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT) signaling pathway in the livers of mice after 28 d of exposure to PFOA. Compared with normal mice, PFOA exposure significantly decreased the expression of the phosphatase and tensin homologue (PTEN) protein and affected the PI3K-AKT signaling pathway in the liver. Tolerance tests further indicated that PFOA exposure induced higher insulin sensitivity and glucose tolerance in mice. Biochemical analysis revealed that PFOA exposure reduced hepatic glycogen synthesis, which might be attributed to gluconeogenesis inhibition. The levels of several circulating proteins were altered after PFOA exposure, including proteins potentially related to diabetes and liver disease. Our results suggest that PFOA affected glucose metabolism and induced insulin hypersensitivity in mice. PMID:26066376

  18. Serotonin modulation of cerebral glucose metabolism: sex and age effects.

    PubMed

    Munro, Cynthia A; Workman, Clifford I; Kramer, Elisse; Hermann, Carol; Ma, Yilong; Dhawan, Vijay; Chaly, Thomas; Eidelberg, David; Smith, Gwenn S

    2012-11-01

    The serotonin system is implicated in a variety of psychiatric disorders whose clinical presentation and response to treatment differ between males and females, as well as with aging. However, human neurobiological studies are limited. Sex differences in the cerebral metabolic response to an increase in serotonin concentrations were measured, as well as the effect of aging, in men compared to women. Thirty-three normal healthy individuals (14 men/19 women, age range 20-79 years) underwent two resting positron emission tomography studies with the radiotracer [18F]-2-deoxy-2-fluoro-D-glucose ([(18)F]-FDG) after placebo and selective serotonin reuptake inhibitor (SSRI, citalopram) infusions on two separate days. Results indicated that women demonstrated widespread areas of increased cortical glucose metabolism with fewer areas of decrease in metabolism in response to citalopram. Men, in contrast, demonstrated several regions of decreased cortical metabolism, but no regions of increased metabolism. Age was associated with greater increases in women and greater decreases in men in most brain regions. These results support prior studies indicating that serotonin function differs in men and women across the lifespan. Future studies aimed at characterizing the influences of age and sex on the serotonin system in patients with psychiatric disorders are needed to elucidate the relationship between sex and age differences in brain chemistry and associated differences in symptom presentation and treatment response. PMID:22836227

  19. Reproducibility of cerebral glucose metabolic measurements in resting human subjects.

    PubMed

    Bartlett, E J; Brodie, J D; Wolf, A P; Christman, D R; Laska, E; Meissner, M

    1988-08-01

    Positron emission tomography with 11C-2-deoxyglucose was used to determine the test-retest variability of regional cerebral glucose metabolism in 22 young normal right-handed men scanned twice in a 24-h period under baseline (resting) conditions. To assess the effects of scan order and time of day on variability, 12 subjects were scanned in the morning and afternoon of the same day (a.m.-p.m.) and 10 in the reverse order (p.m.-a.m.) with a night in between. The effect of anxiety on metabolism was also assessed. Seventy-three percent of the total subject group showed changes in whole brain metabolism from the first to the second measurement of 10% or less, with comparable changes in various cortical and subcortical regions. When a scaling factor was used to equate the whole brain metabolism in the two scans for each individual, the resulting average regional changes for each group were no more than 1%. This suggests that the proportion of the whole brain metabolism utilized regionally is stable in a group of subjects over time. Both groups of subjects had lower morning than afternoon metabolism, but the differences were slight in the p.m.-a.m. group. One measure of anxiety (pulse at run 1) was correlated with run 1 metabolism and with the percentage of change from run 1 to run 2. No significant run 2 correlations were observed. This is the first study to measure test-retest variability in cerebral glucose metabolism in a large sample of young normal subjects. It demonstrates that the deoxyglucose method yields low intrasubject variability and high stability over a 24-h period. PMID:3260593

  20. The Lin28/let-7 axis regulates glucose metabolism.

    PubMed

    Zhu, Hao; Shyh-Chang, Ng; Segrè, Ayellet V; Shinoda, Gen; Shah, Samar P; Einhorn, William S; Takeuchi, Ayumu; Engreitz, Jesse M; Hagan, John P; Kharas, Michael G; Urbach, Achia; Thornton, James E; Triboulet, Robinson; Gregory, Richard I; Altshuler, David; Daley, George Q

    2011-09-30

    The let-7 tumor suppressor microRNAs are known for their regulation of oncogenes, while the RNA-binding proteins Lin28a/b promote malignancy by inhibiting let-7 biogenesis. We have uncovered unexpected roles for the Lin28/let-7 pathway in regulating metabolism. When overexpressed in mice, both Lin28a and LIN28B promote an insulin-sensitized state that resists high-fat-diet induced diabetes. Conversely, muscle-specific loss of Lin28a or overexpression of let-7 results in insulin resistance and impaired glucose tolerance. These phenomena occur, in part, through the let-7-mediated repression of multiple components of the insulin-PI3K-mTOR pathway, including IGF1R, INSR, and IRS2. In addition, the mTOR inhibitor, rapamycin, abrogates Lin28a-mediated insulin sensitivity and enhanced glucose uptake. Moreover, let-7 targets are enriched for genes containing SNPs associated with type 2 diabetes and control of fasting glucose in human genome-wide association studies. These data establish the Lin28/let-7 pathway as a central regulator of mammalian glucose metabolism. PMID:21962509

  1. Dietary patterns in men and women are simultaneously determinants of altered glucose metabolism and bone metabolism.

    PubMed

    Langsetmo, Lisa; Barr, Susan I; Dasgupta, Kaberi; Berger, Claudie; Kovacs, Christopher S; Josse, Robert G; Adachi, Jonathan D; Hanley, David A; Prior, Jerilynn C; Brown, Jacques P; Morin, Suzanne N; Davison, Kenneth S; Goltzman, David; Kreiger, Nancy

    2016-04-01

    We hypothesized that diet would have direct effects on glucose metabolism with direct and indirect effects on bone metabolism in a cohort of Canadian adults. We assessed dietary patterns (Prudent [fruit, vegetables, whole grains, fish, and legumes] and Western [soft drinks, potato chips, French fries, meats, and desserts]) from a semiquantitative food frequency questionnaire. We used fasting blood samples to measure glucose, insulin, homeostatic model assessment insulin resistance (HOMA-IR), 25-hydroxyvitamin D (25OHD), parathyroid hormone, bone-specific alkaline phosphatase (a bone formation marker), and serum C-terminal telopeptide (CTX; a bone resorption marker). We used multivariate regression models adjusted for confounders and including/excluding body mass index. In a secondary analysis, we examined relationships through structural equations models. The Prudent diet was associated with favorable effects on glucose metabolism (lower insulin and HOMA-IR) and bone metabolism (lower CTX in women; higher 25OHD and lower parathyroid hormone in men). The Western diet was associated with deleterious effects on glucose metabolism (higher glucose, insulin, and HOMA-IR) and bone metabolism (higher bone-specific alkaline phosphatase and lower 25OHD in women; higher CTX in men). Body mass index adjustment moved point estimates toward the null, indicating partial mediation. The structural equation model confirmed the hypothesized linkage with strong effects of Prudent and Western diet on metabolic risk, and both direct and indirect effects of a Prudent diet on bone turnover. In summary, a Prudent diet was associated with lower metabolic risk with both primary and mediated effects on bone turnover, suggesting that it is a potential target for reducing fracture risk. PMID:27001278

  2. Brain glucose metabolism during hypoglycemia in type 1 diabetes: insights from functional and metabolic neuroimaging studies.

    PubMed

    Rooijackers, Hanne M M; Wiegers, Evita C; Tack, Cees J; van der Graaf, Marinette; de Galan, Bastiaan E

    2016-02-01

    Hypoglycemia is the most frequent complication of insulin therapy in patients with type 1 diabetes. Since the brain is reliant on circulating glucose as its main source of energy, hypoglycemia poses a threat for normal brain function. Paradoxically, although hypoglycemia commonly induces immediate decline in cognitive function, long-lasting changes in brain structure and cognitive function are uncommon in patients with type 1 diabetes. In fact, recurrent hypoglycemia initiates a process of habituation that suppresses hormonal responses to and impairs awareness of subsequent hypoglycemia, which has been attributed to adaptations in the brain. These observations sparked great scientific interest into the brain's handling of glucose during (recurrent) hypoglycemia. Various neuroimaging techniques have been employed to study brain (glucose) metabolism, including PET, fMRI, MRS and ASL. This review discusses what is currently known about cerebral metabolism during hypoglycemia, and how findings obtained by functional and metabolic neuroimaging techniques contributed to this knowledge. PMID:26521082

  3. Metabolic Characteristics of a Glucose-Utilizing Shewanella oneidensis Strain Grown under Electrode-Respiring Conditions

    PubMed Central

    Nakagawa, Gen; Kouzuma, Atsushi; Hirose, Atsumi; Kasai, Takuya; Yoshida, Gen; Watanabe, Kazuya

    2015-01-01

    In bioelectrochemical systems, the electrode potential is an important parameter affecting the electron flow between electrodes and microbes and microbial metabolic activities. Here, we investigated the metabolic characteristics of a glucose-utilizing strain of engineered Shewanella oneidensis under electrode-respiring conditions in electrochemical reactors for gaining insight into how metabolic pathways in electrochemically active bacteria are affected by the electrode potential. When an electrochemical reactor was operated with its working electrode poised at +0.4 V (vs. an Ag/AgCl reference electrode), the engineered S. oneidensis strain, carrying a plasmid encoding a sugar permease and glucose kinase of Escherichia coli, generated current by oxidizing glucose to acetate and produced D-lactate as an intermediate metabolite. However, D-lactate accumulation was not observed when the engineered strain was grown with a working electrode poised at 0 V. We also found that transcription of genes involved in pyruvate and D-lactate metabolisms was upregulated at a high electrode potential compared with their transcription at a low electrode potential. These results suggest that the carbon catabolic pathway of S. oneidensis can be modified by controlling the potential of a working electrode in an electrochemical bioreactor. PMID:26394222

  4. Transient focal cortical increase of interictal glucose metabolism in Sturge-Weber syndrome: Implications for epileptogenesis

    PubMed Central

    Alkonyi, Bálint; Chugani, Harry T.; Juhász, Csaba

    2011-01-01

    SUMMARY Purpose To investigate clinical correlates and longitudinal course of interictal focal cortical glucose hypermetabolism in children with Sturge-Weber syndrome (SWS). Methods FDG PET scans of 60 children (age range: 3 months-15.2 years) with Sturge-Weber syndrome and epilepsy were assessed prospectively and serially for focal hypo- or hypermetabolism. Thirty-two patients had two or more consecutive PET scans. Age, seizure variables and the occurrence of epilepsy surgery were compared between patients with and without focal hypermetabolism. The severity of focal hypermetabolism was also assessed and correlated with seizure variables. Key Findings Interictal cortical glucose hypermetabolism, ipsilateral to the angioma, was seen in 9 patients, with the most common location in the frontal lobe. Age was lower in patients with hypermetabolism than in those without (p=0.022). In addition, time difference between the onset of first seizure and the first PET scan was much shorter in children with increased glucose metabolism than in those without (mean: 1.0 vs. 3.6 years; p=0.019). Increased metabolism was transient and switched to hypometabolism in all five children where follow-up scans were available. Focal glucose hypermetabolism occurred in 28 % of children under the age of two years. Children with transient hypermetabolism had a higher rate of subsequent epilepsy surgery as compared to those without hypermetabolism (p=0.039). Significance Interictal glucose hypermetabolism in young children with SWS is most often seen within a short time before or after the onset of first clinical seizures, i.e., the presumed period of epileptogenesis. Increased glucose metabolism detected by PET predicts future demise of the affected cortex based on a progressive loss of metabolism and may be an imaging marker of the most malignant cases of intractable epilepsy requiring surgery in SWS. PMID:21480889

  5. Improvement of glucose metabolism in patients with type II diabetes after treatment with a hemodialysate.

    PubMed

    Jacob, S; Dietze, G J; Machicao, F; Kuntz, G; Augustin, H J

    1996-03-01

    Insulin resistance of skeletal muscle glucose uptake is a prominent feature of Type II diabetes (NIDDM); therefore, pharmacological intervention should aim to improve insulin sensitivity. Previous studies have shown that Actovegin, a hemodialysate of calf blood, which has been used for treatment of circulatory disorders for many years, improves glucose tolerance in NIDDM without affecting insulin levels; in vitro studies found an improvement of insulin-stimulated glucose uptake in adipocytes. This pilot study was initiated to see whether this compound augments insulin sensitivity after repeated treatment. Ten patients with NIDDM received the hemodialysate (Actovegin 2.000 pro infusions, 500 ml as daily infusions) over a period of 10 days. A hyperinsulinaemic, isoglycaemic glucose-clamp was done on day 0 and day 11; oral glucose tolerance test (oGTT) was done on day -4 and day 12. Parenteral administration of the hemodialysate markedly augmented insulin stimulated glucose disposal (glucose infusion rate and metabolic clearance rate) by more than 80% (p < 0.003 day 11 vs. day 0). Although tested 44 h after the last infusion, oGTT also improved significantly, as documented by the diminished area under the curve (AUC) for glucose, whereas the AUC for insulin remained unchanged. This is the first clinical study to show that parenteral administration of the tested hemodialysate results in a significant increase of insulin-stimulated glucose disposal in NIDDM. The exact mode of action of the hemodialysate in improving insulin sensitivity is currently not known. The hemodialysate possibly acts via a supplementation of inositol-phosphate-oligosaccharides (IPO), as in experimental studies IPOs isolated from the hemodialysate improved glucose uptake in adipocytes in an insulin-independent manner. Further studies are needed to elucidate the underlying mechanisms. PMID:8901147

  6. Sucralose Affects Glycemic and Hormonal Responses to an Oral Glucose Load

    PubMed Central

    Pepino, M. Yanina; Tiemann, Courtney D.; Patterson, Bruce W.; Wice, Burton M.; Klein, Samuel

    2013-01-01

    OBJECTIVE Nonnutritive sweeteners (NNS), such as sucralose, have been reported to have metabolic effects in animal models. However, the relevance of these findings to human subjects is not clear. We evaluated the acute effects of sucralose ingestion on the metabolic response to an oral glucose load in obese subjects. RESEARCH DESIGN AND METHODS Seventeen obese subjects (BMI 42.3 ± 1.6 kg/m2) who did not use NNS and were insulin sensitive (based on a homeostasis model assessment of insulin resistance score ≤2.6) underwent a 5-h modified oral glucose tolerance test on two separate occasions preceded by consuming either sucralose (experimental condition) or water (control condition) 10 min before the glucose load in a randomized crossover design. Indices of β-cell function, insulin sensitivity (SI), and insulin clearance rates were estimated by using minimal models of glucose, insulin, and C-peptide kinetics. RESULTS Compared with the control condition, sucralose ingestion caused 1) a greater incremental increase in peak plasma glucose concentrations (4.2 ± 0.2 vs. 4.8 ± 0.3 mmol/L; P = 0.03), 2) a 20 ± 8% greater incremental increase in insulin area under the curve (AUC) (P < 0.03), 3) a 22 ± 7% greater peak insulin secretion rate (P < 0.02), 4) a 7 ± 4% decrease in insulin clearance (P = 0.04), and 5) a 23 ± 20% decrease in SI (P = 0.01). There were no significant differences between conditions in active glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide, glucagon incremental AUC, or indices of the sensitivity of the β-cell response to glucose. CONCLUSIONS These data demonstrate that sucralose affects the glycemic and insulin responses to an oral glucose load in obese people who do not normally consume NNS. PMID:23633524

  7. Simvastatin Inhibits Glucose Metabolism and Legumain Activity in Human Myotubes

    PubMed Central

    Smith, Robert; Solberg, Rigmor; Jacobsen, Linn Løkken; Voreland, Anette Larsen; Rustan, Arild Christian; Thoresen, G. Hege; Johansen, Harald Thidemann

    2014-01-01

    Simvastatin, a HMG-CoA reductase inhibitor, is prescribed worldwide to patients with hypercholesterolemia. Although simvastatin is well tolerated, side effects like myotoxicity are reported. The mechanism for statin-induced myotoxicity is still poorly understood. Reports have suggested impaired mitochondrial dysfunction as a contributor to the observed myotoxicity. In this regard, we wanted to study the effects of simvastatin on glucose metabolism and the activity of legumain, a cysteine protease. Legumain, being the only known asparaginyl endopeptidase, has caspase-like properties and is described to be involved in apoptosis. Recent evidences indicate a regulatory role of both glucose and statins on cysteine proteases in monocytes. Satellite cells were isolated from the Musculus obliquus internus abdominis of healthy human donors, proliferated and differentiated into polynuclear myotubes. Simvastatin with or without mevalonolactone, farnesyl pyrophosphate or geranylgeranyl pyrophosphate were introduced on day 5 of differentiation. After 48 h, cells were either harvested for immunoblotting, ELISA, cell viability assay, confocal imaging or enzyme activity analysis, or placed in a fuel handling system with [14C]glucose or [3H]deoxyglucose for uptake and oxidation studies. A dose-dependent decrease in both glucose uptake and oxidation were observed in mature myotubes after exposure to simvastatin in concentrations not influencing cell viability. In addition, simvastatin caused a decrease in maturation and activity of legumain. Dysregulation of glucose metabolism and decreased legumain activity by simvastatin points out new knowledge about the effects of statins on skeletal muscle, and may contribute to the understanding of the myotoxicity observed by statins. PMID:24416446

  8. Nighttime Administration of Nicotine Improves Hepatic Glucose Metabolism via the Hypothalamic Orexin System in Mice.

    PubMed

    Tsuneki, Hiroshi; Nagata, Takashi; Fujita, Mikio; Kon, Kanta; Wu, Naizhen; Takatsuki, Mayumi; Yamaguchi, Kaoru; Wada, Tsutomu; Nishijo, Hisao; Yanagisawa, Masashi; Sakurai, Takeshi; Sasaoka, Toshiyasu

    2016-01-01

    Nicotine is known to affect the metabolism of glucose; however, the underlying mechanism remains unclear. Therefore, we here investigated whether nicotine promoted the central regulation of glucose metabolism, which is closely linked to the circadian system. The oral intake of nicotine in drinking water, which mainly occurred during the nighttime active period, enhanced daily hypothalamic prepro-orexin gene expression and reduced hyperglycemia in type 2 diabetic db/db mice without affecting body weight, body fat content, and serum levels of insulin. Nicotine administered at the active period appears to be responsible for the effect on blood glucose, because nighttime but not daytime injections of nicotine lowered blood glucose levels in db/db mice. The chronic oral treatment with nicotine suppressed the mRNA levels of glucose-6-phosphatase, the rate-limiting enzyme of gluconeogenesis, in the liver of db/db and wild-type control mice. In the pyruvate tolerance test to evaluate hepatic gluconeogenic activity, the oral nicotine treatment moderately suppressed glucose elevations in normal mice and mice lacking dopamine receptors, whereas this effect was abolished in orexin-deficient mice and hepatic parasympathectomized mice. Under high-fat diet conditions, the oral intake of nicotine lowered blood glucose levels at the daytime resting period in wild-type, but not orexin-deficient, mice. These results indicated that the chronic daily administration of nicotine suppressed hepatic gluconeogenesis via the hypothalamic orexin-parasympathetic nervous system. Thus, the results of the present study may provide an insight into novel chronotherapy for type 2 diabetes that targets the central cholinergic and orexinergic systems. PMID:26492471

  9. Interaction between Glucose and Lipid Metabolism: More than Diabetic Dyslipidemia

    PubMed Central

    2015-01-01

    Glucose and lipid metabolism are linked to each other in many ways. The most important clinical manifestation of this interaction is diabetic dyslipidemia, characterized by elevated triglycerides, low high density lipoprotein cholesterol (HDL-C), and predominance of small-dense LDL particles. However, in the last decade we have learned that the interaction is much more complex. Hypertriglyceridemia and low HDL-C cannot only be the consequence but also the cause of a disturbed glucose metabolism. Furthermore, it is now well established that statins are associated with a small but significant increase in the risk for new onset diabetes. The underlying mechanisms are not completely understood but modulation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG CoA)-reductase may play a central role as genetic data indicate that mutations resulting in lower HMG CoA-reductase activity are also associated with obesity, higher glucose concentrations and diabetes. Very interestingly, this statin induced increased risk for new onset type 2 diabetes is not detectable in subjects with familial hypercholesterolemia. Furthermore, patients with familial hypercholesterolemia seem to have a lower risk for type 2 diabetes, a phenomenon which seems to be dose-dependent (the higher the low density lipoprotein cholesterol, the lower the risk). Whether there is also an interaction between lipoprotein(a) and diabetes is still a matter of debate. PMID:26566492

  10. The Role of Glucose Metabolism and Glucose-Associated Signalling in Cancer

    PubMed Central

    Wittig, Rainer; Coy, Johannes F.

    2007-01-01

    Aggressive carcinomas ferment glucose to lactate even in the presence of oxygen. This particular metabolism, termed aerobic glycolysis, the glycolytic phenotype, or the Warburg effect, was discovered by Nobel laureate Otto Warburg in the 1920s. Since these times, controversial discussions about the relevance of the fermentation of glucose by tumours took place; however, a majority of cancer researchers considered the Warburg effect as a non-causative epiphenomenon. Recent research demonstrated, that several common oncogenic events favour the expression of the glycolytic phenotype. Moreover, a suppression of the phenotypic features by either substrate limitation, pharmacological intervention, or genetic manipulation was found to mediate potent tumour-suppressive effects. The discovery of the transketolase-like 1 (TKTL1) enzyme in aggressive cancers may deliver a missing link in the interpretation of the Warburg effect. TKTL1-activity could be the basis for a rapid fermentation of glucose in aggressive carcinoma cells via the pentose phosphate pathway, which leads to matrix acidification, invasive growth, and ultimately metastasis. TKTL1 expression in certain non-cancerous tissues correlates with aerobic formation of lactate and rapid fermentation of glucose, which may be required for the prevention of advanced glycation end products and the suppression of reactive oxygen species. There is evidence, that the activity of this enzyme and the Warburg effect can be both protective or destructive for the organism. These results place glucose metabolism to the centre of pathogenesis of several civilisation related diseases and raise concerns about the high glycaemic index of various food components commonly consumed in western diets. PMID:19812737

  11. Cerebral glucose metabolic abnormality in patients with congenital scoliosis.

    PubMed

    Park, Weon Wook; Suh, Kuen Tak; Kim, Jeung Il; Ku, Ja Gyung; Lee, Hong Seok; Kim, Seong-Jang; Kim, In-Ju; Kim, Yong-Ki; Lee, Jung Sub

    2008-07-01

    A possible association between congenital scoliosis and low mental status has been recognized, but there are no reports describing the mental status or cerebral metabolism in patients with congenital scoliosis in detail. We investigated the mental status using a mini-mental status exam as well as the cerebral glucose metabolism using F-18 fluorodeoxyglucose brain positron emission tomography in 12 patients with congenital scoliosis and compared them with those of 14 age-matched patients with adolescent idiopathic scoliosis. The mean mini-mental status exam score in the congenital scoliosis group was significantly lower than that in the adolescent idiopathic scoliosis group. Group analysis found that various brain areas of patients with congenital scoliosis showed glucose hypometabolisms in the left prefrontal cortex (Brodmann area 10), right orbitofrontal cortex (Brodmann area 11), left dorsolateral prefrontal cortex (Brodmann area 9), left anterior cingulate gyrus (Brodmann area 24) and pulvinar of the left thalamus. From this study, we could find the metabolic abnormalities of brain in patients with congenital scoliosis and suggest the possible role of voxel-based analysis of brain fluorodeoxyglucose positron emission tomography. PMID:18446384

  12. Posterior Cingulate Glucose Metabolism, Hippocampal Glucose Metabolism, and Hippocampal Volume in Cognitively Normal, Late-Middle-Aged Persons at 3 Levels of Genetic Risk for Alzheimer Disease

    PubMed Central

    Protas, Hillary D.; Chen, Kewei; Langbaum, Jessica B. S.; Fleisher, Adam S.; Alexander, Gene E.; Lee, Wendy; Bandy, Daniel; de Leon, Mony J.; Mosconi, Lisa; Buckley, Shannon; Truran-Sacrey, Diana; Schuff, Norbert; Weiner, Michael W.; Caselli, Richard J.; Reiman, Eric M.

    2013-01-01

    Objective To characterize and compare measurements of the posterior cingulate glucose metabolism, the hippocampal glucose metabolism, and hippocampal volume so as to distinguish cognitively normal, late-middle-aged persons with 2, 1, or 0 copies of the apolipoprotein E (APOE) ε4 allele, reflecting 3 levels of risk for late-onset Alzheimer disease. Design Cross-sectional comparison of measurements of cerebral glucose metabolism using 18F-fluorodeoxy-glucose positron emission tomography and measurements of brain volume using magnetic resonance imaging in cognitively normal ε4 homozygotes, ε4 heterozygotes, and noncarriers. Setting Academic medical center. Participants A total of 31 ε4 homozygotes, 42 ε4 heterozygotes, and 76 noncarriers, 49 to 67 years old, matched for sex, age, and educational level. Main Outcome Measures The measurements of posterior cingulate and hippocampal glucose metabolism were characterized using automated region-of-interest algorithms and normalized for whole-brain measurements. The hippocampal volume measurements were characterized using a semiautomated algorithm and normalized for total intracranial volume. Results Although there were no significant differences among the 3 groups of participants in their clinical ratings, neuropsychological test scores, hippocampal volumes (P=.60), or hippocampal glucose metabolism measurements (P = .12), there were significant group differences in their posterior cingulate glucose metabolism measurements (P=.001). The APOE ε4 gene dose was significantly associated with posterior cingulate glucose metabolism (r=0.29, P=.0003), and this association was significantly greater than those with hippocampal volume or hippocampal glucose metabolism (P<.05, determined by use of pairwise Fisher z tests). Conclusions Although our findings may depend in part on the analysis algorithms used, they suggest that a reduction in posterior cingulate glucose metabolism precedes a reduction in hippocampal volume or

  13. Acute effects of concentric and eccentric exercise on glucose metabolism and interleukin-6 concentration in healthy males

    PubMed Central

    Krüsmann, PJ; Mersa, L; Eder, EM; Gatterer, H; Melmer, A; Ebenbichler, C; Burtscher, M

    2016-01-01

    Acute muscle-damaging eccentric exercise (EE) negatively affects glucose metabolism. On the other hand, long-term eccentric endurance exercise seems to result in equal or superior positive effects on glucose metabolism compared to concentric endurance exercise. However, it is not known if acute non-muscle-damaging EE will have the same positive effects on glucose metabolism as acute concentric exercise (CE). Interleukin-6 (IL-6) released from the exercising muscles may be involved in the acute adaptations of glucose metabolism after CE and non-muscle-damaging EE. The aim of this study was to assess acute effects of uphill walking (CE) and non-muscle-damaging downhill walking (EE) on glucose metabolism and IL-6 secretion. Seven sedentary non-smoking, healthy males participated in a crossover trial consisting of a 1 h uphill (CE) and a 1 h downhill (EE) walking block on a treadmill. Venous blood samples were drawn before (pre), directly after (acute) and 24 h after (post) exercise. An oral glucose tolerance test (OGTT) was performed before and 24 h after exercise. Glucose tolerance after 1 and 2 hours significantly improved 24 hours after CE (-10.12±3.22%: P=0.039; -13.40±8.24%: P=0.028). After EE only the 1-hour value was improved (-5.03±5.48%: P=0.043). Acute IL-6 concentration rose significantly after CE but not after EE. We conclude that both a single bout of CE and a single bout of non-muscle-damaging EE elicit positive changes in glucose tolerance even in young, healthy subjects. Our experiment indicates that the overall metabolic cost is a major trigger for acute adaptations of glucose tolerance after exercise, but only the IL-6 production during EE was closely related to changes in glycaemic control. PMID:27274108

  14. Acute effects of concentric and eccentric exercise on glucose metabolism and interleukin-6 concentration in healthy males.

    PubMed

    Philippe, M; Krüsmann, P J; Mersa, L; Eder, E M; Gatterer, H; Melmer, A; Ebenbichler, C; Burtscher, M

    2016-06-01

    Acute muscle-damaging eccentric exercise (EE) negatively affects glucose metabolism. On the other hand, long-term eccentric endurance exercise seems to result in equal or superior positive effects on glucose metabolism compared to concentric endurance exercise. However, it is not known if acute non-muscle-damaging EE will have the same positive effects on glucose metabolism as acute concentric exercise (CE). Interleukin-6 (IL-6) released from the exercising muscles may be involved in the acute adaptations of glucose metabolism after CE and non-muscle-damaging EE. The aim of this study was to assess acute effects of uphill walking (CE) and non-muscle-damaging downhill walking (EE) on glucose metabolism and IL-6 secretion. Seven sedentary non-smoking, healthy males participated in a crossover trial consisting of a 1 h uphill (CE) and a 1 h downhill (EE) walking block on a treadmill. Venous blood samples were drawn before (pre), directly after (acute) and 24 h after (post) exercise. An oral glucose tolerance test (OGTT) was performed before and 24 h after exercise. Glucose tolerance after 1 and 2 hours significantly improved 24 hours after CE (-10.12±3.22%: P=0.039; -13.40±8.24%: P=0.028). After EE only the 1-hour value was improved (-5.03±5.48%: P=0.043). Acute IL-6 concentration rose significantly after CE but not after EE. We conclude that both a single bout of CE and a single bout of non-muscle-damaging EE elicit positive changes in glucose tolerance even in young, healthy subjects. Our experiment indicates that the overall metabolic cost is a major trigger for acute adaptations of glucose tolerance after exercise, but only the IL-6 production during EE was closely related to changes in glycaemic control. PMID:27274108

  15. Fractional uptake value as a good indicator for glucose metabolism

    SciTech Connect

    Nishizawa, S.; Yonekura, Y.; Mukai, T. |

    1995-05-01

    In a previous paper, we demonstrated that hyperglycemia enhanced brain tumor detection in FDG-PET studies. However, the autoradiographic method underestimated cerebral glucose metabolism (CMRglc) in hyperglycemia, while dynamic PET scans are often not feasible due to patient`s condition. For such situations, we propose the use of the fractional uptake value (FUV) which is given by Ci(t)/{integral}Ca(t)dt where Ci(t) and Ca(t) are radio-activities in brain and plasma. In this study, we tested FUV as an indicator of the net clearance coefficient of FDG (K*) over a side range of plasma glucose levels. Seven patients with brain tumor underwent FDG-PET studies in normoglycemia (mean: 5.2 mM) and hyperglycemia (mean: 14.6 mM) on separate days. Dynamic PET scan was performed for 40 min with arterial sampling after an i.v. injection of 160-370 MBq of FDG. Data analysis was carried out on cortices contralateral of the tumor. The rate constants (K1*,k2*,k3*, and k4*) and cerebral blood volume of a 3 compartment model were estimated by non-linear least squared optimization. K* was defined as K*=K1*,k3*/(k2*+k3*). FUV was calculated using 4-min scan data from 36 to 40 min of the dynamic scan. The FUV demonstrated a good relationship with K value over a wide range of plasma glucose level (K*=2.0 10{sup -3} +1.02 FUV r=0.99), and proved to be a good indicator for cerebral glucose metabolism.

  16. Metabolic, enzymatic and gene involvement in cerebral glucose dysmetabolism after traumatic brain injury.

    PubMed

    Amorini, Angela Maria; Lazzarino, Giacomo; Di Pietro, Valentina; Signoretti, Stefano; Lazzarino, Giuseppe; Belli, Antonio; Tavazzi, Barbara

    2016-04-01

    In this study, the metabolic, enzymatic and gene changes causing cerebral glucose dysmetabolism following graded diffuse traumatic brain injury (TBI) were evaluated. TBI was induced in rats by dropping 450g from 1 (mild TBI; mTBI) or 2m height (severe TBI; sTBI). After 6, 12, 24, 48, and 120h gene expressions and enzymatic activities of glycolysis and pentose phosphate pathway (PPP) enzymes, and levels of lactate, ATP, ADP, ATP/ADP (indexing mitochondrial phosphorylating capacity), NADP(+), NADPH and GSH were determined in whole brain extracts (n=9 rats at each time for both TBI levels). Sham-operated animals (n=9) were used as controls. Results demonstrated that mTBI caused a late increase (48-120h post injury) of glycolytic gene expression and enzymatic activities, concomitantly with mitochondrial functional recovery (ATP and ATP/ADP normalization). No changes in lactate and PPP genes and enzymes, were accompanied by transient decrease in GSH, NADP(+), NADPH and NADPH/NADP(+). Animals following sTBI showed early increase (6-24h post injury) of glycolytic gene expression and enzymatic activities, occurring during mitochondrial malfunctioning (50% decrease in ATP and ATP/ADP). Higher lactate and lower GSH, NADP(+), NADPH, NADPH/NADP(+) than controls were recorded at anytime post injury (p<0.01). Both TBI levels caused metabolic and gene changes affecting glucose metabolism. Following mTBI, increased glucose flux through glycolysis is coupled to mitochondrial glucose oxidation. "True" hyperglycolysis occurs only after sTBI, where metabolic changes, caused by depressed mitochondrial phosphorylating capacity, act on genes causing net glycolytic flux increase uncoupled from mitochondrial glucose oxidation. PMID:26844378

  17. Effect of Peripheral 5-HT on Glucose and Lipid Metabolism in Wether Sheep

    PubMed Central

    Watanabe, Hitoshi; Saito, Ryo; Nakano, Tatsuya; Takahashi, Hideyuki; Takahashi, Yu; Sumiyoshi, Keisuke; Sato, Katsuyoshi; Chen, Xiangning; Okada, Natsumi; Iwasaki, Shunsuke; Harjanti, Dian W.; Sekiguchi, Natsumi; Sano, Hiroaki; Kitazawa, Haruki; Rose, Michael T.; Ohwada, Shyuichi; Watanabe, Kouichi; Aso, Hisashi

    2014-01-01

    In mice, peripheral 5-HT induces an increase in the plasma concentrations of glucose, insulin and bile acids, and a decrease in plasma triglyceride, NEFA and cholesterol concentrations. However, given the unique characteristics of the metabolism of ruminants relative to monogastric animals, the physiological role of peripheral 5-HT on glucose and lipid metabolism in sheep remains to be established. Therefore, in this study, we investigated the effect of 5-HT on the circulating concentrations of metabolites and insulin using five 5-HT receptor (5HTR) antagonists in sheep. After fasting for 24 h, sheep were intravenously injected with 5-HT, following which-, plasma glucose, insulin, triglyceride and NEFA concentrations were significantly elevated. In contrast, 5-HT did not affect the plasma cholesterol concentration, and it induced a decrease in bile acid concentrations. Increases in plasma glucose and insulin concentrations induced by 5-HT were attenuated by pre-treatment with Methysergide, a 5HTR 1, 2 and 7 antagonist. Additionally, decreased plasma bile acid concentrations induced by 5-HT were blocked by pre-treatment with Ketanserin, a 5HTR 2A antagonist. However, none of the 5HTR antagonists inhibited the increase in plasma triglyceride and NEFA levels induced by 5-HT. On the other hand, mRNA expressions of 5HTR1D and 1E were observed in the liver, pancreas and skeletal muscle. These results suggest that there are a number of differences in the physiological functions of peripheral 5-HT with respect to lipid metabolism between mice and sheep, though its effect on glucose metabolism appears to be similar between these species. PMID:24505376

  18. Insulin signalling and the regulation of glucose and lipid metabolism

    NASA Astrophysics Data System (ADS)

    Saltiel, Alan R.; Kahn, C. Ronald

    2001-12-01

    The epidemic of type 2 diabetes and impaired glucose tolerance is one of the main causes of morbidity and mortality worldwide. In both disorders, tissues such as muscle, fat and liver become less responsive or resistant to insulin. This state is also linked to other common health problems, such as obesity, polycystic ovarian disease, hyperlipidaemia, hypertension and atherosclerosis. The pathophysiology of insulin resistance involves a complex network of signalling pathways, activated by the insulin receptor, which regulates intermediary metabolism and its organization in cells. But recent studies have shown that numerous other hormones and signalling events attenuate insulin action, and are important in type 2 diabetes.

  19. Affective Disorders, Bone Metabolism, and Osteoporosis

    PubMed Central

    2013-01-01

    The nature of the relationship between affective disorders, bone mineral density (BMD), and bone metabolism is unresolved, although there is growing evidence that many medications used to treat affective disorders are associated with low BMD or alterations in neuroendocrine systems that influence bone turnover. The objective of this review is to describe the current evidence regarding the association of unipolar and bipolar depression with BMD and indicators of bone metabolism, and to explore potential mediating and confounding influences of those relationships. The majority of studies of unipolar depression and BMD indicate that depressive symptoms are associated with low BMD. In contrast, evidence regarding the relationship between bipolar depression and BMD is inconsistent. There is limited but suggestive evidence to support an association between affective disorders and some markers of bone turnover. Many medications used to treat affective disorders have effects on physiologic systems that influence bone metabolism, and these conditions are also associated with a range of health behaviors that can influence osteoporosis risk. Future research should focus on disentangling the pathways linking psychotropic medications and their clinical indications with BMD and fracture risk. PMID:23874147

  20. Polysaccharides from Enteromorpha prolifera Improve Glucose Metabolism in Diabetic Rats

    PubMed Central

    Lin, Wenting; Wang, Wenxiang; Liao, Dongdong; Chen, Damiao; Zhu, Pingping; Cai, Guoxi; Kiyoshi, Aoyagi

    2015-01-01

    This study investigated the effects of polysaccharides from Enteromorpha prolifera (PEP) on glucose metabolism in a rat model of diabetes mellitus (DM). PEP (0, 150, 300, and 600 mg/kg) was administered intragastrically to rats for four weeks. After treatment, fasting blood glucose (FBG) and insulin (INS) levels were measured, and the insulin sensitivity index (ISI) was calculated. The morphopathological changes in the pancreas were observed. Serum samples were collected to measure the oxidant-antioxidant status. The mRNA expression levels of glucokinase (GCK) and insulin receptor (InsR) in liver tissue and glucose transporter type 4 (GLUT-4) and adiponectin (APN) in adipose tissue were determined. Compared with the model group, the FBG and INS levels were lower, the ISI was higher, and the number of islet β-cells was significantly increased in all the PEP groups. In the medium- and high-dose PEP groups, MDA levels decreased, and the enzymatic activities of SOD and GSH-Px increased. The mRNA expression of InsR and GCK increased in all the PEP groups; APN mRNA expression increased in the high-dose PEP group, and GLUT-4 mRNA expression increased in adipose tissue. These findings suggest that PEP is a potential therapeutic agent that can be utilized to treat DM. PMID:26347892

  1. Energetics of Glucose Metabolism: A Phenomenological Approach to Metabolic Network Modeling

    PubMed Central

    Diederichs, Frank

    2010-01-01

    A new formalism to describe metabolic fluxes as well as membrane transport processes was developed. The new flux equations are comparable to other phenomenological laws. Michaelis-Menten like expressions, as well as flux equations of nonequilibrium thermodynamics, can be regarded as special cases of these new equations. For metabolic network modeling, variable conductances and driving forces are required to enable pathway control and to allow a rapid response to perturbations. When applied to oxidative phosphorylation, results of simulations show that whole oxidative phosphorylation cannot be described as a two-flux-system according to nonequilibrium thermodynamics, although all coupled reactions per se fulfill the equations of this theory. Simulations show that activation of ATP-coupled load reactions plus glucose oxidation is brought about by an increase of only two different conductances: a [Ca2+] dependent increase of cytosolic load conductances, and an increase of phosphofructokinase conductance by [AMP], which in turn becomes increased through [ADP] generation by those load reactions. In ventricular myocytes, this feedback mechanism is sufficient to increase cellular power output and O2 consumption several fold, without any appreciable impairment of energetic parameters. Glucose oxidation proceeds near maximal power output, since transformed input and output conductances are nearly equal, yielding an efficiency of about 0.5. This conductance matching is fulfilled also by glucose oxidation of β-cells. But, as a price for the metabolic mechanism of glucose recognition, β-cells have only a limited capability to increase their power output. PMID:21152283

  2. Alteration of the regional cerebral glucose metabolism in healthy subjects by glucose loading.

    PubMed

    Ishibashi, Kenji; Wagatsuma, Kei; Ishiwata, Kiichi; Ishii, Kenji

    2016-08-01

    High plasma glucose (PG) levels can reduce fluorine-18-labeled fluorodeoxyglucose ((18) F-FDG) uptake, especially in the Alzheimer's disease (AD)-related regions. This fact is supported by studies showing that the resting-state activity in diabetes can be altered in the default mode network (DMN)-related regions, which considerably overlap with the AD-related regions. In order to expand the current knowledge, we aimed to investigate the relationship between increasing PG levels and the regional cerebral metabolic rates for glucose (CMRglc ) as a direct index of brain activity. We performed dynamic (18) F-FDG positron emission tomography with arterial blood sampling once each in the fasting and glucose-loading conditions on 12 young, healthy volunteers without cognitive impairment or insulin resistance. The absolute CMRglc values were calculated for the volume-of-interest (VOI) analysis, and normalized CMRglc maps were generated for the voxelwise analysis. The normalized measurement is known to have smaller intersubject variability than the absolute measurement, and may, thus, lead to greater statistical power. In VOI analysis, no regional difference in the CMRglc was found between the two conditions. In exploratory voxelwise analysis, however, significant clusters were identified in the precuneus, posterior cingulate, lateral parietotemporal, and medial prefrontal regions where the CMRglc decreased upon glucose loading (P < 0.05, corrected). These regions include the representative components of both the DMN and AD pathology. Taken together with the previous knowledge on the relationships between the DMN, AD, and diabetes, it may be inferred that glucose loading induces hypometabolism in the AD-related and DMN-related regions. Hum Brain Mapp 37:2823-2832, 2016. © 2016 Wiley Periodicals, Inc. PMID:27061859

  3. [Metabolism of labeled exogenous glucose in fiber flax tissues].

    PubMed

    Chikov, V I; Avvakumova, N Iu; Bakirova, G G; Khamidullina, L A

    2005-01-01

    A labeled glucose solution was introduced into cut fiber flax plants (45-50 cm high) using a special unit under a pressure of 0.1 atm for 30 min, 1, and 2 h. The highest quantities of labeled carbon were revealed in the woody tissue. Sucrose made up a considerable proportion in low molecular weight products of [ [2-14C]-glucose transformation (23.5%). Metabolism of labeled glucose in the leaves exposed to sunlight yielded a set of metabolites similar to products of 14CO2 photoassimilation. In the shade, the pattern of 14C distribution in labeled compounds of the water/alcohol soluble fraction remained similar in mature leaves, while in juvenile leaves, 14C content decreased in sucrose and increased in organic and amino acids. In the shade, the incorporation of 14C into starch and hot water soluble polysaccharides increased at the expense of the acetone fraction (lipids and pigments), water/salt soluble proteins, and cellulose. Low light conditions increased the radioactivity ratio of sparingly soluble (KOH and Triton X-100 soluble) proteins to albumins and globulins. We propose that the synthesis of components of the photosynthetic apparatus in juvenile leaves is directly powered by photosynthesis and the photosynthesis of glucose and the polymers compete for ATP energy. Appearance of sucrose in the woody tissue is due to its release from the phloem to the stem apoplast and the radial transfer to the xylem, where it is transported to the upper shoot with the transpiration flow. PMID:16004260

  4. Glucose metabolism in isolated uteri of immature rats. Influence of prostaglandins and nitric oxide.

    PubMed

    Finkelberg, Ana Beatriz; Linares, Jorge; Goldraij, Adolfo

    2006-01-01

    We studied the contractile activity and glucose metabolism, in terms of production of 14CO2 from [14C] glucose, in isolated uteri of immature rats. Immaturity was due to age or exposure to a restricted diet. The contractile activity in both prepubertal groups persisted for a period of 60 minutes and fell when indomethacin was added to the KRB medium. The production of 14CO2 was greater than for adult rats and fell as a result of the addition of indomethacin. The metabolism of [14C] arachidonic acid showed that the percentage of eicosanoids released in age related immature uteri was greater than that in restricted diet related immature uteri. In animals that are immature as a result of exposure to a restricted diet, 14CO2 fell due to the effect of NAME. Sodium nitroprusside and L-arginine increased the production of 14CO2. This effect was reverted by NAME and indomethacin. Conversely, the uteri of age related prepubertal rats were not affected. The level of activity of nitric oxide synthase was higher in restricted diet related immature animals and fell following the addition of NS-398. We may conclude that in rats exposed to a restricted diet, NO and COX-2 participate in glucose metabolism whereas they would not be involved in age related prepubertal animals. PMID:16438910

  5. Effects of nicotine on regional cerebral glucose metabolism in awake resting tobacco smokers.

    PubMed

    Domino, E F; Minoshima, S; Guthrie, S K; Ohl, L; Ni, L; Koeppe, R A; Cross, D J; Zubieta, J

    2000-01-01

    Eleven healthy tobacco smoking adult male volunteers of mixed race were tobacco abstinent overnight for this study. In each subject, positron emission tomographic images of regional cerebral metabolism of glucose with [18F]fluorodeoxyglucose were obtained in two conditions in the morning on different days: about 3min after approximately 1-2mg of nasal nicotine spray and after an equivalent volume of an active placebo spray of oleoresin of pepper in a random counterbalanced design. A Siemens/CTI 931/08-12 scanner with the capability of 15 horizontal brain slices was used. The images were further converted into a standard uniform brain format in which the mean data of all 11 subjects were obtained. Images were analysed in stereotactic coordinates using pixel-wise t statistics and a smoothed Gaussian model. Peak plasma nicotine levels varied three-fold and the areas under the curve(0-30min) varied seven-fold among the individual subjects. Nicotine caused a small overall reduction in global cerebral metabolism of glucose but, when the data were normalized, several brain regions showed relative increases in activity. Cerebral structures specifically activated by nicotine (nicotine minus pepper, Z score >4.0) included: left inferior frontal gyrus, left posterior cingulate gyrus and right thalamus. The visual cortex, including the right and left cuneus and left lateral occipito-temporal gyrus fusiformis, also showed an increase in regional cerebral metabolism of glucose with Z scores >3. 6. Structures with a decrease in regional cerebral metabolism of glucose (pepper minus nicotine) were the left insula and right inferior occipital gyrus, with Z scores >3.5. Especially important is the fact that the thalamus is activated by nicotine. This is consistent with the high density of nicotinic cholinoceptors in that brain region. However, not all brain regions affected by nicotine are known to have many nicotinic cholinoceptors. The results are discussed in relation to the

  6. The role of hepatic mitochondria in the regulation of glucose metabolism in BHE rats

    SciTech Connect

    Kim, M.J.C.

    1988-01-01

    The interacting effects of dietary fat source and thyroxine treatment on the hepatic mitochondrial function and glucose metabolism were studied. In the first study, three different sources of dietary fatty acids and thyroxine treatment were used to investigate the hepatic mitochondrial thermotropic behavior in two strains of rat. The NIDDM BHE and Sprague-Dawley rats were used. Feeding coconut oil increased serum T{sub 4} levels and T{sub 4} treatment increased serum T{sub 3} levels in the BHE rats. In the mitochondria from BHE rats fed coconut oil and treated with T{sub 4}, the transition temperature disappeared due to a decoupling of succinate supported respiration. This was not observed in the Sprague-Dawley rats. In the second study, two different sources of dietary fat and T{sub 4} treatment were used to investigate hepatic mitochondrial function. Coconut oil feeding increased Ca{sup ++}Mg{sup ++}ATPase and Mg{sup ++}ATPase. T{sub 4} treatment had potentiated this effect. T{sub 4} increased the malate-aspartate shuttle and {alpha}-glycerophosphate shuttle activities. In the third study, the glucose turnover rate from D-({sup 14}C-U)/(6-{sup 3}H)-glucose and gluconeogeneis from L-({sup 14}C-U)-alanine was examined. Dietary fat or T{sub 4} did not affect the glucose mass. T{sub 4} increased the irreversible fractional glucose turnover rate.

  7. Sustained sleep fragmentation affects brain temperature, food intake and glucose tolerance in mice.

    PubMed

    Baud, Maxime O; Magistretti, Pierre J; Petit, Jean-Marie

    2013-02-01

    Sleep fragmentation is present in numerous sleep pathologies and constitutes a major feature of patients with obstructive sleep apnea. A prevalence of metabolic syndrome, diabetes and obesity has been shown to be associated to obstructive sleep apnea. While sleep fragmentation has been shown to impact sleep homeostasis, its specific effects on metabolic variables are only beginning to emerge. In this context, it is important to develop realistic animal models that would account for chronic metabolic effects of sleep fragmentation. We developed a 14-day model of instrumental sleep fragmentation in mice, and show an impact on both brain-specific and general metabolism. We first report that sleep fragmentation increases food intake without affecting body weight. This imbalance was accompanied by the inability to adequately decrease brain temperature during fragmented sleep. In addition, we report that sleep-fragmented mice develop glucose intolerance. We also observe that sleep fragmentation slightly increases the circadian peak level of glucocorticoids, a factor that may be involved in the observed metabolic effects. Our results confirm that poor-quality sleep with sustained sleep fragmentation has similar effects on general metabolism as actual sleep loss. Altogether, these results strongly suggest that sleep fragmentation is an aggravating factor for the development of metabolic dysfunctions that may be relevant for sleep disorders such as obstructive sleep apnea. PMID:22734931

  8. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism

    PubMed Central

    Fendt, Sarah-Maria; Bell, Eric L.; Keibler, Mark A.; Davidson, Shawn M.; Wirth, Gregory J.; Fiske, Brian; Mayers, Jared R.; Schwab, Matthias; Bellinger, Gary; Csibi, Alfredo; Patnaik, Akash; Jose Blouin, Marie; Cantley, Lewis C.; Guarente, Leonard; Blenis, John; Pollak, Michael N.; Olumi, Aria F.

    2013-01-01

    Metformin inhibits cancer cell proliferation and epidemiology studies suggest an association with increased survival in cancer patients taking metformin, however, the mechanism by which metformin improves cancer outcomes remains controversial. To explore how metformin might directly affect cancer cells, we analyzed how metformin altered the metabolism of prostate cancer cells and tumors. We found that metformin decreased glucose oxidation and increased dependency on reductive glutamine metabolism in both cancer cell lines and in a mouse model of prostate cancer. Inhibition of glutamine anaplerosis in the presence of metformin further attenuated proliferation while increasing glutamine metabolism rescued the proliferative defect induced by metformin. These data suggest that interfering with glutamine may synergize with metformin to improve outcomes in patients with prostate cancer. PMID:23687346

  9. Sex-Specific Differences in Lipid and Glucose Metabolism

    PubMed Central

    Varlamov, Oleg; Bethea, Cynthia L.; Roberts, Charles T.

    2014-01-01

    Energy metabolism in humans is tuned to distinct sex-specific functions that potentially reflect the unique requirements in females for gestation and lactation, whereas male metabolism may represent a default state. These differences are the consequence of the action of sex chromosomes and sex-specific hormones, including estrogens and progesterone in females and androgens in males. In humans, sex-specific specialization is associated with distinct body-fat distribution and energy substrate-utilization patterns; i.e., females store more lipids and have higher whole-body insulin sensitivity than males, while males tend to oxidize more lipids than females. These patterns are influenced by the menstrual phase in females, and by nutritional status and exercise intensity in both sexes. This minireview focuses on sex-specific mechanisms in lipid and glucose metabolism and their regulation by sex hormones, with a primary emphasis on studies in humans and the most relevant pre-clinical model of human physiology, non-human primates. PMID:25646091

  10. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism

    PubMed Central

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-01-01

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism. PMID:26964832

  11. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism.

    PubMed

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-01-01

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism. PMID:26964832

  12. Glucose Metabolism during Resting State Reveals Abnormal Brain Networks Organization in the Alzheimer’s Disease and Mild Cognitive Impairment

    PubMed Central

    Martínez-Montes, Eduardo

    2013-01-01

    This paper aims to study the abnormal patterns of brain glucose metabolism co-variations in Alzheimer disease (AD) and Mild Cognitive Impairment (MCI) patients compared to Normal healthy controls (NC) using the Alzheimer Disease Neuroimaging Initiative (ADNI) database. The local cerebral metabolic rate for glucose (CMRgl) in a set of 90 structures belonging to the AAL atlas was obtained from Fluro-Deoxyglucose Positron Emission Tomography data in resting state. It is assumed that brain regions whose CMRgl values are significantly correlated are functionally associated; therefore, when metabolism is altered in a single region, the alteration will affect the metabolism of other brain areas with which it interrelates. The glucose metabolism network (represented by the matrix of the CMRgl co-variations among all pairs of structures) was studied using the graph theory framework. The highest concurrent fluctuations in CMRgl were basically identified between homologous cortical regions in all groups. Significant differences in CMRgl co-variations in AD and MCI groups as compared to NC were found. The AD and MCI patients showed aberrant patterns in comparison to NC subjects, as detected by global and local network properties (global and local efficiency, clustering index, and others). MCI network’s attributes showed an intermediate position between NC and AD, corroborating it as a transitional stage from normal aging to Alzheimer disease. Our study is an attempt at exploring the complex association between glucose metabolism, CMRgl covariations and the attributes of the brain network organization in AD and MCI. PMID:23894356

  13. Specific inactivation of glucose metabolism from eucaryotic cells by pentalenolactone.

    PubMed

    Duszenko, M; Balla, H; Mecke, D

    1982-02-01

    Pentalenolactone, an antibiotic related to the class of the sesquiterpene-lactones and produced by the strain Streptomyces arenae Tü-469, inhibits specifically the glucose metabolism by inactivation of the enzyme glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD oxidoreductase (phosphorylating) ED 1.2.1.1.2). The sensitivity of several eucaryotic cell-systems for pentalenolactone was shown under in vivo conditions. The glycolytic as well as the gluconeogenetic pathway of mammalian cells can be completely inhibited with low concentrations of the antibiotic. In all cases, the minimum inhibitory concentration is dependent on cell density. The inhibitory effect in vivo and in vitro does not seem to be species-specific. In erythrocytes from rats, in Ehrlich-ascites tumor cells and in Plasmodium vinckei infected erythrocytes from mice glycolysis can be inhibited with concentrations of 18--90 micrometers pentalenolactone. In hepatocytes, glycolysis as well as gluconeogenesis in prevented by the same concentrations. In contrast to these results, in yeast the inhibition depends on growth conditions. The inhibition in glucose medium is cancelled by precultivation on acetate-containing medium. PMID:7034785

  14. Correlations Between Abnormal Glucose Metabolism and Bone Mineral Density or Bone Metabolism.

    PubMed

    Qu, Yang; Kang, Ming-Yang; Dong, Rong-Peng; Zhao, Jian-Wu

    2016-01-01

    BACKGROUND The aim of this meta-analysis was to explore the correlations of abnormal glucose metabolism (AGM) with bone mineral density (BMD) and bone metabolism. MATERIAL AND METHODS Relevant studies were identified using computerized and manual search strategies. The included studies were in strict accordance with inclusion and exclusion criteria. Statistical analyses were conducted with the Comprehensive Meta-analysis 2.0 (Biostat Inc., Englewood, NJ, USA). RESULTS Our present meta-analysis initially searched 844 studies, and 7 studies were eventually incorporated in the present meta-analysis. These 7 cohort studies included 1123 subjects altogether (560 patients with AGM and 563 healthy controls). The results showed that bone mass index (BMI), insulin, and insulin resistance (IR) of patients with AGM were significantly higher than that of the population with normal glucose metabolism (BMI: SMD=1.658, 95% CI=0.663~2.654, P=0.001; insulin: SMD=0.544, 95% CI=0.030~1.058, P=0.038; IR: SMD=8.767, 95% CI=4.178~13.356, P<0.001). However, the results also indicated there was no obvious difference in osteocalcin (OC) and BMD in patients with AGM and the population with normal glucose metabolism (OC: SMD=0.293, 95% CI=-0.023~0.609, P=0.069; BMD: SMD=0.805, 95% CI=-0. 212~1.821, P=0.121). CONCLUSIONS Our meta-analysis results suggest that AGM might lead to increased BMI, insulin, and IR, while it has no significant correlation with BMD or bone metabolism. PMID:26970713

  15. Correlations Between Abnormal Glucose Metabolism and Bone Mineral Density or Bone Metabolism

    PubMed Central

    Qu, Yang; Kang, Ming-Yang; Dong, Rong-Peng; Zhao, Jian-Wu

    2016-01-01

    Background The aim of this meta-analysis was to explore the correlations of abnormal glucose metabolism (AGM) with bone mineral density (BMD) and bone metabolism. Material/Methods Relevant studies were identified using computerized and manual search strategies. The included studies were in strict accordance with inclusion and exclusion criteria. Statistical analyses were conducted with the Comprehensive Meta-analysis 2.0 (Biostat Inc., Englewood, NJ, USA). Results Our present meta-analysis initially searched 844 studies, and 7 studies were eventually incorporated in the present meta-analysis. These 7 cohort studies included 1123 subjects altogether (560 patients with AGM and 563 healthy controls). The results showed that bone mass index (BMI), insulin, and insulin resistance (IR) of patients with AGM were significantly higher than that of the population with normal glucose metabolism (BMI: SMD=1.658, 95% CI=0.663~2.654, P=0.001; insulin: SMD=0.544, 95% CI=0.030~1.058, P=0.038; IR: SMD=8.767, 95% CI=4.178~13.356, P<0.001). However, the results also indicated there was no obvious difference in osteocalcin (OC) and BMD in patients with AGM and the population with normal glucose metabolism (OC: SMD=0.293, 95% CI=−0.023~0.609, P=0.069; BMD: SMD=0.805, 95% CI=−0. 212~1.821, P=0.121). Conclusions Our meta-analysis results suggest that AGM might lead to increased BMI, insulin, and IR, while it has no significant correlation with BMD or bone metabolism. PMID:26970713

  16. Failure of Hyperglycemia and Hyperinsulinemia to Compensate for Impaired Metabolic Response to an Oral Glucose Load

    PubMed Central

    Hussain, M; Janghorbani, M; Schuette, S; Considine, RV; Chisholm, RL; Mather, KJ

    2014-01-01

    Objective To evaluate whether the augmented insulin and glucose response to a glucose challenge is sufficient to compensate for defects in glucose utilization in obesity and type 2 diabetes, using a breath test measurement of integrated glucose metabolism. Methods Non-obese, obese normoglycemic and obese Type 2 diabetic subjects were studied on 2 consecutive days. A 75g oral glucose load spiked with 13C-glucose was administered, measuring exhaled breath 13CO2 as an integrated measure of glucose metabolism and oxidation. A hyperinsulinemic euglycemic clamp was performed, measuring whole body glucose disposal rate. Body composition was measured by DEXA. Multivariable analyses were performed to evaluate the determinants of the breath 13CO2. Results Breath 13CO2 was reduced in obese and type 2 diabetic subjects despite hyperglycemia and hyperinsulinemia. The primary determinants of breath response were lean mass, fat mass, fasting FFA concentrations, and OGTT glucose excursion. Multiple approaches to analysis showed that hyperglycemia and hyperinsulinemia were not sufficient to compensate for the defect in glucose metabolism in obesity and diabetes. Conclusions Augmented insulin and glucose responses during an OGTT are not sufficient to overcome the underlying defects in glucose metabolism in obesity and diabetes. PMID:25511878

  17. Phylloquinone intake is associated with glucose metabolism in middle- and older-aged men and women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal and metabolic studies suggest that vitamin K may have a beneficial role in glucose homeostasis. The aim of this study was to examine the association between vitamin K intake and measures of glucose metabolism in a community-based sample of healthy adults. We assessed the cross-sectional assoc...

  18. Association between DNA Methylation in Whole Blood and Measures of Glucose Metabolism: KORA F4 Study.

    PubMed

    Kriebel, Jennifer; Herder, Christian; Rathmann, Wolfgang; Wahl, Simone; Kunze, Sonja; Molnos, Sophie; Volkova, Nadezda; Schramm, Katharina; Carstensen-Kirberg, Maren; Waldenberger, Melanie; Gieger, Christian; Peters, Annette; Illig, Thomas; Prokisch, Holger; Roden, Michael; Grallert, Harald

    2016-01-01

    Epigenetic regulation has been postulated to affect glucose metabolism, insulin sensitivity and the risk of type 2 diabetes. Therefore, we performed an epigenome-wide association study for measures of glucose metabolism in whole blood samples of the population-based Cooperative Health Research in the Region of Augsburg F4 study using the Illumina HumanMethylation 450 BeadChip. We identified a total of 31 CpG sites where methylation level was associated with measures of glucose metabolism after adjustment for age, sex, smoking, and estimated white blood cell proportions and correction for multiple testing using the Benjamini-Hochberg (B-H) method (four for fasting glucose, seven for fasting insulin, 25 for homeostasis model assessment-insulin resistance [HOMA-IR]; B-H-adjusted p-values between 9.2x10(-5) and 0.047). In addition, DNA methylation at cg06500161 (annotated to ABCG1) was associated with all the aforementioned phenotypes and 2-hour glucose (B-H-adjusted p-values between 9.2x10(-5) and 3.0x10(-3)). Methylation status of additional three CpG sites showed an association with fasting insulin only after additional adjustment for body mass index (BMI) (B-H-adjusted p-values = 0.047). Overall, effect strengths were reduced by around 30% after additional adjustment for BMI, suggesting that this variable has an influence on the investigated phenotypes. Furthermore, we found significant associations between methylation status of 21 of the aforementioned CpG sites and 2-hour insulin in a subset of samples with seven significant associations persisting after additional adjustment for BMI. In a subset of 533 participants, methylation of the CpG site cg06500161 (ABCG1) was inversely associated with ABCG1 gene expression (B-H-adjusted p-value = 1.5x10(-9)). Additionally, we observed an enrichment of the top 1,000 CpG sites for diabetes-related canonical pathways using Ingenuity Pathway Analysis. In conclusion, our study indicates that DNA methylation and diabetes

  19. Association between DNA Methylation in Whole Blood and Measures of Glucose Metabolism: KORA F4 Study

    PubMed Central

    Wahl, Simone; Kunze, Sonja; Molnos, Sophie; Volkova, Nadezda; Schramm, Katharina; Carstensen-Kirberg, Maren; Waldenberger, Melanie; Gieger, Christian; Peters, Annette; Illig, Thomas; Prokisch, Holger; Roden, Michael; Grallert, Harald

    2016-01-01

    Epigenetic regulation has been postulated to affect glucose metabolism, insulin sensitivity and the risk of type 2 diabetes. Therefore, we performed an epigenome-wide association study for measures of glucose metabolism in whole blood samples of the population-based Cooperative Health Research in the Region of Augsburg F4 study using the Illumina HumanMethylation 450 BeadChip. We identified a total of 31 CpG sites where methylation level was associated with measures of glucose metabolism after adjustment for age, sex, smoking, and estimated white blood cell proportions and correction for multiple testing using the Benjamini-Hochberg (B-H) method (four for fasting glucose, seven for fasting insulin, 25 for homeostasis model assessment-insulin resistance [HOMA-IR]; B-H-adjusted p-values between 9.2x10-5 and 0.047). In addition, DNA methylation at cg06500161 (annotated to ABCG1) was associated with all the aforementioned phenotypes and 2-hour glucose (B-H-adjusted p-values between 9.2x10-5 and 3.0x10-3). Methylation status of additional three CpG sites showed an association with fasting insulin only after additional adjustment for body mass index (BMI) (B-H-adjusted p-values = 0.047). Overall, effect strengths were reduced by around 30% after additional adjustment for BMI, suggesting that this variable has an influence on the investigated phenotypes. Furthermore, we found significant associations between methylation status of 21 of the aforementioned CpG sites and 2-hour insulin in a subset of samples with seven significant associations persisting after additional adjustment for BMI. In a subset of 533 participants, methylation of the CpG site cg06500161 (ABCG1) was inversely associated with ABCG1 gene expression (B-H-adjusted p-value = 1.5x10-9). Additionally, we observed an enrichment of the top 1,000 CpG sites for diabetes-related canonical pathways using Ingenuity Pathway Analysis. In conclusion, our study indicates that DNA methylation and diabetes-related traits

  20. Thyroid hormone’s role in regulating brain glucose metabolism and potentially modulating hippocampal cognitive processes

    PubMed Central

    Jahagirdar, V; McNay, EC

    2012-01-01

    Cognitive performance is dependent on adequate glucose supply to the brain. Insulin, which regulates systemic glucose metabolism, has been recently shown both to regulate hippocampal metabolism and to be a mandatory component of hippocampally-mediated cognitive performance. Thyroid hormones (TH) regulate systemic glucose metabolism and may also be involved in regulation of brain glucose metabolism. Here we review potential mechanisms for such regulation. Importantly, TH imbalance is often encountered in combination with metabolic disorders, such as diabetes, and may cause additional metabolic dysregulation and hence worsening of disease states. TH’s potential as a regulator of brain glucose metabolism is heightened by interactions with insulin signaling, but there have been relatively few studies on this topic or on the actions of TH in a mature brain. This review discusses evidence for mechanistic links between TH, insulin, cognitive function, and brain glucose metabolism, and suggests that TH is a good candidate to be a modulator of memory processes, likely at least in part by modulation of central insulin signaling and glucose metabolism. PMID:22437199

  1. Implications of Hydrogen Sulfide in Glucose Regulation: How H2S Can Alter Glucose Homeostasis through Metabolic Hormones

    PubMed Central

    Pichette, Jennifer

    2016-01-01

    Diabetes and its comorbidities continue to be a major health problem worldwide. Understanding the precise mechanisms that control glucose homeostasis and their dysregulation during diabetes are a major research focus. Hydrogen sulfide (H2S) has emerged as an important regulator of glucose homeostasis. This is achieved through its production and action in several metabolic and hormone producing organs including the pancreas, liver, and adipose. Of importance, H2S production and signaling in these tissues are altered during both type 1 and type 2 diabetes mellitus. This review first examines how H2S is produced both endogenously and by gastrointestinal microbes, with a particular focus on the altered production that occurs during obesity and diabetes. Next, the action of H2S on the metabolic organs with key roles in glucose homeostasis, with a particular focus on insulin, is described. Recent work has also suggested that the effects of H2S on glucose homeostasis goes beyond its role in insulin secretion. Several studies have demonstrated important roles for H2S in hepatic glucose output and adipose glucose uptake. The mechanism of H2S action on these metabolic organs is described. In the final part of this review, future directions examining the roles of H2S in other metabolic and glucoregulatory hormone secreting tissues are proposed. PMID:27478532

  2. Implications of Hydrogen Sulfide in Glucose Regulation: How H2S Can Alter Glucose Homeostasis through Metabolic Hormones.

    PubMed

    Pichette, Jennifer; Gagnon, Jeffrey

    2016-01-01

    Diabetes and its comorbidities continue to be a major health problem worldwide. Understanding the precise mechanisms that control glucose homeostasis and their dysregulation during diabetes are a major research focus. Hydrogen sulfide (H2S) has emerged as an important regulator of glucose homeostasis. This is achieved through its production and action in several metabolic and hormone producing organs including the pancreas, liver, and adipose. Of importance, H2S production and signaling in these tissues are altered during both type 1 and type 2 diabetes mellitus. This review first examines how H2S is produced both endogenously and by gastrointestinal microbes, with a particular focus on the altered production that occurs during obesity and diabetes. Next, the action of H2S on the metabolic organs with key roles in glucose homeostasis, with a particular focus on insulin, is described. Recent work has also suggested that the effects of H2S on glucose homeostasis goes beyond its role in insulin secretion. Several studies have demonstrated important roles for H2S in hepatic glucose output and adipose glucose uptake. The mechanism of H2S action on these metabolic organs is described. In the final part of this review, future directions examining the roles of H2S in other metabolic and glucoregulatory hormone secreting tissues are proposed. PMID:27478532

  3. Effect of Oxygen on Glucose Metabolism: Utilization of Lactate in Staphylococcus Aureus as Revealed by In Vivo NMR Studies

    PubMed Central

    Gaspar, Paula; Pinho, Mariana G.; Neves, Ana Rute

    2013-01-01

    The ability to successfully adapt to changing host conditions is crucial for full virulence of bacterial pathogens. Staphylococcus aureus has to cope with fluctuating oxygen concentrations during the course of infection. Hence, we studied the effect of oxygen on glucose metabolism in non-growing S. aureus COL-S cells by in vivo 13C-NMR. Glucose catabolism was probed at different oxygen concentrations in suspensions of cells grown aerobically (direct effects on metabolism) or anaerobically (transcriptional adjustment to oxygen deprivation). In aerobically-grown cells, the rate of glucose consumption diminished progressively with decreasing oxygen concentrations. Additionally, oxygen deprivation resulted in biphasic glucose consumption, with the second phase presenting a higher rate. The fructose-1,6-bisphosphate pool peaked while glucose was still abundant, but the transient maximum varied with the oxygen concentration. As oxygen became limiting mannitol/mannitol-1-phosphate were detected as products of glucose catabolism. Under anoxic conditions, accumulation of mannitol-1-phosphate ceased with the switch to higher glucose consumption rates, which implies the activation of a more efficient means by which NAD+ can be regenerated. The distribution of end-products deriving from glucose catabolism was dramatically affected by oxygen: acetate increased and lactate decreased with the oxygen concentration; ethanol was formed only anaerobically. Moreover, oxygen promoted the energetically favourable conversion of lactate into acetate, which was particularly noticeable under fully oxygenated conditions. Interestingly, under aerobiosis growing S. aureus cells also converted lactate to acetate, used simultaneously glucose and lactate as substrates for growth, and grew considerably well on lactate-medium. We propose that the efficient lactate catabolism may endow S. aureus with a metabolic advantage in its ecological niche. PMID:23472168

  4. Cattle temperament influences metabolism: metabolic response to glucose tolerance and insulin sensitivity tests in beef steers.

    PubMed

    Burdick Sanchez, N C; Carroll, J A; Broadway, P R; Hughes, H D; Roberts, S L; Richeson, J T; Schmidt, T B; Vann, R C

    2016-07-01

    Cattle temperament, defined as the reactivity of cattle to humans or novel environments, can greatly influence several physiological systems in the body, including immunity, stress, and most recently discovered, metabolism. Greater circulating concentrations of nonesterified fatty acids (NEFAs) found in temperamental cattle suggest that temperamental cattle are metabolically different than calm cattle. Further, elevated NEFA concentrations have been reported to influence insulin sensitivity. Therefore, the objective of this study was to determine whether cattle temperament would influence the metabolic response to a glucose tolerance test (GTT) and insulin sensitivity test (IST). Angus-cross steers (16 calm and 15 temperamental; 216 ± 6 kg BW) were selected based on temperament score measured at weaning. On day 1, steers were moved into indoor stanchions to allow measurement of individual ad libitum feed intake. On day 6, steers were fitted with indwelling rectal temperature probes and jugular catheters. At 9 AM on day 7, steers received the GTT (0.5-mL/kg BW of a 50% dextrose solution), and at 2 PM on day 7, steers received the IST (2.5 IU bovine insulin/kg BW). Blood samples were collected and serum isolated at -60, -45, -30, -15, 0, 10, 20, 30, 45, 60, 90, 120, and 150 min relative to each challenge. Serum was stored at -80°C until analyzed for cortisol, glucose, NEFA, and blood urea nitrogen concentrations. All variables changed over time (P < 0.01). For the duration of the study, temperamental steers maintained greater (P < 0.01) serum NEFA and less (P ≤ 0.01) serum blood urea nitrogen and insulin sensitivity (calculated using Revised Quantitative Insulin Sensitivity Check Index) compared with calm steers. During the GTT, temperamental steers had greater (P < 0.01) serum glucose, yet decreased (P = 0.03) serum insulin and (P < 0.01) serum insulin: serum glucose compared to calm cattle. During the IST, temperamental steers had greater (P < 0.01) serum

  5. Metabolic Control of Type 2 Diabetes by Targeting the GLUT4 Glucose Transporter: Intervention Approaches.

    PubMed

    Alam, Fahmida; Islam, Md Asiful; Khalil, Md Ibrahim; Gan, Siew Hua

    2016-01-01

    Type 2 diabetes mellitus (T2DM), the most common form of diabetes, is characterized by insulin resistance in the hepatic and peripheral tissues. Glucose transporter 4 (GLUT4) plays a major role in the pathophysiology of T2DM. Its defective expression or translocation to the peripheral cell plasma membrane in T2DM patients hinders the entrance of glucose into the cell for energy production. In addition to suitable drugs, an appropriate diet and/or exercise can be implemented to target the increase in GLUT4 expression, GLUT4 concentrations and GLUT4 translocation to the cell surface when managing the glucose metabolism of T2DM patients. In this review, we discussed successful intervention strategies that were individually administered or coupled with diet and/or exercise and affected the expression and translocation of GLUT4 in T2DM while reducing the excess glucose load from the blood. Additionally, some potentially good synthetic and natural compounds, which can activate the insulin-independent GLUT4 signaling pathways for the efficient management of T2DM, are highlighted as possible targets or emerging alternative sources for future anti-diabetic drug development. PMID:26951104

  6. Peritoneal Dialysate Glucose Load and Systemic Glucose Metabolism in Non-Diabetics: Results from the GLOBAL Fluid Cohort Study

    PubMed Central

    Chess, James; Do, Jun-Young; Noh, Hyunjin; Lee, Hi-Bahl; Kim, Yong-Lim; Summers, Angela; Williams, Paul Ford; Davison, Sara; Dorval, Marc

    2016-01-01

    Background and Objectives Glucose control is a significant predictor of mortality in diabetic peritoneal dialysis (PD) patients. During PD, the local toxic effects of intra-peritoneal glucose are well recognized, but despite large amounts of glucose being absorbed, the systemic effects of this in non-diabetic patients are not clear. We sought to clarify whether dialysate glucose has an effect upon systemic glucose metabolism. Methods and Materials We analysed the Global Fluid Study cohort, a prospective, observational cohort study initiated in 2002. A subset of 10 centres from 3 countries with high data quality were selected (368 incident and 272 prevalent non-diabetic patients), with multilevel, multivariable analysis of the reciprocal of random glucose levels, and a stratified-by-centre Cox survival analysis. Results The median follow up was 5.6 and 6.4 years respectively in incident and prevalent patients. On multivariate analysis, serum glucose increased with age (β = -0.007, 95%CI -0.010, -0.004) and decreased with higher serum sodium (β = 0.002, 95%CI 0.0005, 0.003) in incident patients and increased with dialysate glucose (β = -0.0002, 95%CI -0.0004, -0.00006) in prevalent patients. Levels suggested undiagnosed diabetes in 5.4% of prevalent patients. Glucose levels predicted death in unadjusted analyses of both incident and prevalent groups but in an adjusted survival analysis they did not (for random glucose 6–10 compared with <6, Incident group HR 0.92, 95%CI 0.58, 1.46, Prevalent group HR 1.42, 95%CI 0.86, 2.34). Conclusions In prevalent non-diabetic patients, random glucose levels at a diabetic level are under-recognised and increase with dialysate glucose load. Random glucose levels predict mortality in unadjusted analyses, but this association has not been proven in adjusted analyses. PMID:27249020

  7. Decreased Insulin Receptors but Normal Glucose Metabolism in Duchenne Muscular Dystrophy

    NASA Astrophysics Data System (ADS)

    de Pirro, Roberto; Lauro, Renato; Testa, Ivano; Ferretti, Ginofabrizio; de Martinis, Carlo; Dellantonio, Renzo

    1982-04-01

    Compared to matched controls, 17 patients with Duchenne muscular dystrophy showed decreased insulin binding to monocytes due to decreased receptor concentration. These patients showed no signs of altered glucose metabolism and retrospective analysis of the clinical records of a further 56 such patients revealed no modification in carbohydrate metabolism. These data suggest that reduced insulin receptor number does not produce overt modifications of glucose metabolism in Duchenne muscular dystrophy.

  8. Sclerosing Mesenteritis and Disturbance of Glucose Metabolism: A New Relationship? A Case Series

    PubMed Central

    Pereira, João Pedro Tavares; Romão, Vera; Eulálio, Margarida; Jorge, Rita; Breda, Filipe; Calretas, Suzana; Leitão, Sara; Eugénio, Gisela; Santos, Rui; Carvalho, Armando

    2016-01-01

    Case series Patient: Male, 51 • Male, 70 • Male, 63 • Male, 67 • Female, 76 Final Diagnosis: Sclerosing mesenteritis Symptoms: Abdominal pain Medication: — Clinical Procedure: Colcicine Specialty: Metabolic Disorders and Diabetics Objective: Rare co-existance of disease or pathology Background: Sclerosing mesenteritis is an idiopathic inflammatory and fibrotic disease that affects the mesentery. It is a rare disease, with the total number of reported cases in the literature ranging from 122 to 300. It mainly affects men in the sixth decade of life, and its etiology remains unknown. Clinical presentation is variable, but it is frequently asymptomatic. Diagnosis is often made by computed tomography (CT) scan, although biopsy may be needed for confirmation. An association between other diseases (e.g., neoplasms) and sclerosing mesenteritis has been described, but the relationship between the latter and glucose changes is not disclosed in the currently available literature. Case Report: Five cases of sclerosing mesenteritis and glucose metabolism disorders (impaired fasting glucose and type 2 diabetes mellitus) were retrospectively collected and analyzed. The mean age was 65±9.3 years, 80% were male, and all patients were white. Three patients were asymptomatic and the other 2 (40%) had non-specific chronic abdominal pain. Blood tests revealed normal inflammatory parameters (mean HbA1c was 6.4% and fasting blood glucose was 140 mg/dL). The diagnosis was made by abdominal CT scan. The 2 symptomatic patients underwent therapy with colchicine 1 mg/day, with clinical improvement. During the mean 43-month follow-up period, there was no symptomatic progression, thereby maintaining the usual benign course of this condition. Conclusions: Sclerosing mesenteritis has only been described in small series and isolated cases, but its diagnosis is becoming more common due to greater access to diagnostic methods and higher awareness of the disease in the medical community

  9. Differential effect of saturated and polyunsaturated fatty acids on hepatic glucose metabolism in humans.

    PubMed

    Clore, John N; Stillman, Julie S; Li, Jing; O'Keefe, Stephen J D; Levy, James R

    2004-08-01

    Prolonged infusions of lipid and heparin that achieve high physiological free fatty acid (FFA) concentrations inhibit hepatic (and peripheral) insulin sensitivity in humans. These infusions are composed largely of polyunsaturated fatty acids (PUFA; linoleic and linolenic). It is not known whether fatty acid composition per se affects hepatic glucose metabolism in humans. To address this issue, we examined the impact of enteral infusions of either palm oil (48% palmitic, 35% oleic, and 8% linoleic acids) or safflower oil (6% palmitic, 12% oleic, 74% linoleic acids) in 14 obese nondiabetic subjects. (2)H(2)O was administered to determine the contribution of gluconeogenesis to endogenous glucose production (EGP), and a primed continuous infusion of [6,6-(2)H]glucose was administered to assess glucose appearance. As a result of the lipid infusions, plasma FFA concentrations increased significantly in both the palm oil (507.5 +/- 47.4 to 939.3 +/- 61.3 micromol/l, P < 0.01) and safflower oil (588.2.0 +/- 43.0 to 857.8 +/- 68.7 micromol/l, P < 0.01) groups after 4 h. EGP was similar at baseline (12.4 +/- 1.8 vs. 11.2 +/- 1.0 micromol x kg FFM(-1) x min(-1)). During a somatostatin-insulin clamp, the glucose infusion rate was significantly lower (AUC glucose infusion rate 195.8 +/- 50.7 vs. 377.8 +/- 38.0 micromol/kg FFM, P < 0.01), and rates of EGP were significantly higher (10.7 +/- 1.4 vs. 6.5 +/- 1.5 micromol x kg FFM(-1) x min(-1), P < 0.01) after palm oil compared with safflower oil, respectively. Baseline rates of gluconeogenesis and glycogenolysis were also similar. However, after lipid infusion, rates of glycogenolysis were suppressed by safflower oil but not by palm oil. Thus these studies demonstrate, for the first time in humans, a differential effect of saturated fatty acids and PUFA on hepatic glucose metabolism. PMID:15082421

  10. Prenatal hyperandrogenism induces alterations that affect liver lipid metabolism.

    PubMed

    Abruzzese, Giselle Adriana; Heber, Maria Florencia; Ferreira, Silvana Rocio; Velez, Leandro Martin; Reynoso, Roxana; Pignataro, Omar Pedro; Motta, Alicia Beatriz

    2016-07-01

    Prenatal hyperandrogenism is hypothesized as one of the main factors contributing to the development of polycystic ovary syndrome (PCOS). PCOS patients have high risk of developing fatty liver and steatosis. This study aimed to evaluate the role of prenatal hyperandrogenism in liver lipid metabolism and fatty liver development. Pregnant rats were hyperandrogenized with testosterone. At pubertal age, the prenatally hyperandrogenized (PH) female offspring displayed both ovulatory (PHov) and anovulatory (PHanov) phenotypes that mimic human PCOS features. We evaluated hepatic transferases, liver lipid content, the balance between lipogenesis and fatty acid oxidation pathway, oxidant/antioxidant balance and proinflammatory status. We also evaluated the general metabolic status through growth rate curve, basal glucose and insulin levels, glucose tolerance test, HOMA-IR index and serum lipid profile. Although neither PH group showed signs of liver lipid content, the lipogenesis and fatty oxidation pathways were altered. The PH groups also showed impaired oxidant/antioxidant balance, a decrease in the proinflammatory pathway (measured by prostaglandin E2 and cyclooxygenase-2 levels), decreased glucose tolerance, imbalance of circulating lipids and increased risk of metabolic syndrome. We conclude that prenatal hyperandrogenism generates both PHov and PHanov phenotypes with signs of liver alterations, imbalance in lipid metabolism and increased risk of developing metabolic syndrome. The anovulatory phenotype showed more alterations in liver lipogenesis and a more impaired balance of insulin and glucose metabolism, being more susceptible to the development of steatosis. PMID:27179108

  11. Regional brain glucose metabolism in patients with brain tumors before and after radiotherapy

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Lau, Y.H.

    1994-05-01

    This study was performed to measure regional glucose metabolism in nonaffected brain regions of patients with primary or metastatic brain tumors. Seven female and four male patients (mean age 51.5{plus_minus}14.0 years old) were compared with eleven age and sex matched normal subjects. None of the patients had hydrocephalus and/or increased intracranial pressure. Brain glucose metabolism was measured using FDG-PET scan. Five of the patients were reevaluated one week after receiving radiation treatment (RT) to the brain. Patients were on Decadron and/or Dilantin at the time of both scan. PET images were analyzed with a template of 115 nonoverlapping regions of interest and then grouped into eight gray matter regions on each hemisphere. Brain regions with tumors and edema shown in MR imaging were excluded. Z scores were used to compare individual patients` regional values with those of normal subjects. The number of regional values with Z scores of less than - 3.0 were considered abnormal and were quantified. The mean global glucose metabolic rate (mean of all regions) in nonaffected brain regions of patients was significantly lower than that of normal controls (32.1{plus_minus}9.0 versus 44.8{plus_minus}6.3 {mu}mol/100g/min, p<0.001). Analyses of individual subjects revealed that none of the controls and 8 of the 11 patients had at least one abnormal region. In these 8 patients the regions which were abnormal were most frequently localized in right (n=5) and left occipital (n=6) and right orbital frontal cortex (n=7) whereas the basal ganglia was not affected. Five of the patients who had repeated scans following RT showed decrements in tumor metabolism (41{plus_minus}20.5%) and a significant increase in whole brain metabolism (8.6{plus_minus}5.3%, p<0.001). The improvement in whole brain metabolism after RT suggests that the brain metabolic decrements in the patients were related to the presence of tumoral tissue and not just a medication effect.

  12. [Relationships of glucose transporter 4 with cognitive changes induced by high fat diet and glucose metabolism in hippocampus].

    PubMed

    Zhang, Yun-Li; Wang, Lin

    2016-06-25

    The hippocampus not only plays a role in appetite and energy balance, but also is particularly important in learning and memory. Figuring out the relationships of hippocampal glucose transporter 4 (GLUT4) with hippocampal glucose metabolism and hippocampus-dependent cognitive function is very important to clearly understand the pathophysiological basis of nutritional obesity and diabetes-related diseases, and treat obesity and cognitive dysfunction. Therefore, this study reviewed recent researches conducted on hippocampal GLUT4, hippocampal glucose metabolism, and hippocampus-dependent cognitive function. In this review, we mainly discussed: (1) The structure of GLUT4 and the distribution and function of GLUT4 in the hippocampus; (2) The translocation of GLUT4 in the hippocampus; (3) The relationships of the PI3K-Akt-GLUT4 signaling pathway with the high fat diet-induced changes of cognitive function and the glucose metabolism in the hippocampus; (4) The associations of the PI3K-Akt-GLUT4 signaling pathway with the diabetes-related cognitive dysfunction in the hippocampus; (5) The potential mechanisms of cognitive dysfunction induced by glucose metabolic disorder. PMID:27350206

  13. Glucose Availability and AMP-Activated Protein Kinase Link Energy Metabolism and Innate Immunity in the Bovine Endometrium

    PubMed Central

    Turner, Matthew L.; Cronin, James G.; Noleto, Pablo G.; Sheldon, I. Martin

    2016-01-01

    Defences against the bacteria that usually infect the endometrium of postpartum cattle are impaired when there is metabolic energy stress, leading to endometritis and infertility. The endometrial response to bacteria depends on innate immunity, with recognition of pathogen-associated molecular patterns stimulating inflammation, characterised by secretion of interleukin (IL)-1β, IL-6 and IL-8. How metabolic stress impacts tissue responses to pathogens is unclear, but integration of energy metabolism and innate immunity means that stressing one system might affect the other. Here we tested the hypothesis that homeostatic pathways integrate energy metabolism and innate immunity in bovine endometrial tissue. Glucose deprivation reduced the secretion of IL-1β, IL-6 and IL-8 from ex vivo organ cultures of bovine endometrium challenged with the pathogen-associated molecular patterns lipopolysaccharide and bacterial lipopeptide. Endometrial inflammatory responses to lipopolysaccharide were also reduced by small molecules that activate or inhibit the intracellular sensor of energy, AMP-activated protein kinase (AMPK). However, inhibition of mammalian target of rapamycin, which is a more global metabolic sensor than AMPK, had little effect on inflammation. Similarly, endometrial inflammatory responses to lipopolysaccharide were not affected by insulin-like growth factor-1, which is an endocrine regulator of metabolism. Interestingly, the inflammatory responses to lipopolysaccharide increased endometrial glucose consumption and induced the Warburg effect, which could exacerbate deficits in glucose availability in the tissue. In conclusion, metabolic energy stress perturbed inflammatory responses to pathogen-associated molecular patterns in bovine endometrial tissue, and the most fundamental regulators of cellular energy, glucose availability and AMPK, had the greatest impact on innate immunity. PMID:26974839

  14. Glucose Availability and AMP-Activated Protein Kinase Link Energy Metabolism and Innate Immunity in the Bovine Endometrium.

    PubMed

    Turner, Matthew L; Cronin, James G; Noleto, Pablo G; Sheldon, I Martin

    2016-01-01

    Defences against the bacteria that usually infect the endometrium of postpartum cattle are impaired when there is metabolic energy stress, leading to endometritis and infertility. The endometrial response to bacteria depends on innate immunity, with recognition of pathogen-associated molecular patterns stimulating inflammation, characterised by secretion of interleukin (IL)-1β, IL-6 and IL-8. How metabolic stress impacts tissue responses to pathogens is unclear, but integration of energy metabolism and innate immunity means that stressing one system might affect the other. Here we tested the hypothesis that homeostatic pathways integrate energy metabolism and innate immunity in bovine endometrial tissue. Glucose deprivation reduced the secretion of IL-1β, IL-6 and IL-8 from ex vivo organ cultures of bovine endometrium challenged with the pathogen-associated molecular patterns lipopolysaccharide and bacterial lipopeptide. Endometrial inflammatory responses to lipopolysaccharide were also reduced by small molecules that activate or inhibit the intracellular sensor of energy, AMP-activated protein kinase (AMPK). However, inhibition of mammalian target of rapamycin, which is a more global metabolic sensor than AMPK, had little effect on inflammation. Similarly, endometrial inflammatory responses to lipopolysaccharide were not affected by insulin-like growth factor-1, which is an endocrine regulator of metabolism. Interestingly, the inflammatory responses to lipopolysaccharide increased endometrial glucose consumption and induced the Warburg effect, which could exacerbate deficits in glucose availability in the tissue. In conclusion, metabolic energy stress perturbed inflammatory responses to pathogen-associated molecular patterns in bovine endometrial tissue, and the most fundamental regulators of cellular energy, glucose availability and AMPK, had the greatest impact on innate immunity. PMID:26974839

  15. A link between hepatic glucose production and peripheral energy metabolism via hepatokines

    PubMed Central

    Abdul-Wahed, Aya; Gautier-Stein, Amandine; Casteras, Sylvie; Soty, Maud; Roussel, Damien; Romestaing, Caroline; Guillou, Hervé; Tourette, Jean-André; Pleche, Nicolas; Zitoun, Carine; Gri, Blandine; Sardella, Anne; Rajas, Fabienne; Mithieux, Gilles

    2014-01-01

    Type 2 diabetes is characterized by a deterioration of glucose tolerance, which associates insulin resistance of glucose uptake by peripheral tissues and increased endogenous glucose production. Here we report that the specific suppression of hepatic glucose production positively modulates whole-body glucose and energy metabolism. We used mice deficient in liver glucose-6 phosphatase that is mandatory for endogenous glucose production. When they were fed a high fat/high sucrose diet, they resisted the development of diabetes and obesity due to the activation of peripheral glucose metabolism and thermogenesis. This was linked to the secretion of hepatic hormones like fibroblast growth factor 21 and angiopoietin-like factor 6. Interestingly, the deletion of hepatic glucose-6 phosphatase in previously obese and insulin-resistant mice resulted in the rapid restoration of glucose and body weight controls. Therefore, hepatic glucose production is an essential lever for the control of whole-body energy metabolism during the development of obesity and diabetes. PMID:25061558

  16. Resistance to chemotherapy is associated with altered glucose metabolism in acute myeloid leukemia

    PubMed Central

    SONG, KUI; LI, MIN; XU, XIAOJUN; XUAN, LI; HUANG, GUINIAN; LIU, QIFA

    2016-01-01

    Altered glucose metabolism has been described as a cause of chemoresistance in multiple tumor types. The present study aimed to identify the expression profile of glucose metabolism in drug-resistant acute myeloid leukemia (AML) cells and provide potential strategies for the treatment of drug-resistant AML. Bone marrow and serum samples were obtained from patients with AML that were newly diagnosed or had relapsed. The messenger RNA expression of hypoxia inducible factor (HIF)-1α, glucose transporter (GLUT)1, and hexokinase-II was measured by quantitative polymerase chain reaction. The levels of LDH and β subunit of human F1-F0 adenosine triphosphate synthase (β-F1-ATPase) were detected by enzyme-linked immunosorbent and western blot assays. The HL-60 and HL-60/ADR cell lines were used to evaluate glycolytic activity and effect of glycolysis inhibition on cellular proliferation and apoptosis. Drug-resistant HL-60/ADR cells exhibited a significantly increased level of glycolysis compared with the drug-sensitive HL-60 cell line. The expression of HIF-1α, hexokinase-II, GLUT1 and LDH were increased in AML patients with no remission (NR), compared to healthy control individuals and patients with complete remission (CR) and partial remission. The expression of β-F1-ATPase in patients with NR was decreased compared with the expression in the CR group. Treatment of HL-60/ADR cells with 2-deoxy-D-glucose or 3-bromopyruvate increased in vitro sensitivity to Adriamycin (ADR), while treatment of HL-60 cells did not affect drug cytotoxicity. Subsequent to treatment for 24 h, apoptosis in these two cell lines showed no significant difference. However, glycolytic inhibitors in combination with ADR increased cellular necrosis. These findings indicate that increased glycolysis and low efficiency of oxidative phosphorylation may contribute to drug resistance. Targeting glycolysis is a viable strategy for modulating chemoresistance in AML. PMID:27347147

  17. Experimental evidence and isotopomer analysis of mixotrophic glucose metabolism in the marine diatom Phaeodactylum tricornutum

    PubMed Central

    2013-01-01

    Background Heterotrophic fermentation using simple sugars such as glucose is an established and cost-effective method for synthesizing bioproducts from bacteria, yeast and algae. Organisms incapable of metabolizing glucose have limited applications as cell factories, often despite many other advantageous characteristics. Therefore, there is a clear need to investigate glucose metabolism in potential cell factories. One such organism, with a unique metabolic network and a propensity to synthesize highly reduced compounds as a large fraction of its biomass, is the marine diatom Phaeodactylum tricornutum (Pt). Although Pt has been engineered to metabolize glucose, conflicting lines of evidence leave it unresolved whether Pt can natively consume glucose. Results Isotope labeling experiments in which Pt was mixotrophically grown under light on 100% U-13C glucose and naturally abundant (~99% 12C) dissolved inorganic carbon resulted in proteinogenic amino acids with an average 13C-enrichment of 88%, thus providing convincing evidence of glucose uptake and metabolism. The dissolved inorganic carbon was largely incorporated through anaplerotic rather than photosynthetic fixation. Furthermore, an isotope labeling experiment utilizing 1-13C glucose and subsequent metabolic pathway analysis indicated that (i) the alternative Entner-Doudoroff and Phosphoketolase glycolytic pathways are active during glucose metabolism, and (ii) during mixotrophic growth, serine and glycine are largely synthesized from glyoxylate through photorespiratory reactions rather than from 3-phosphoglycerate. We validated the latter result for mixotrophic growth on glycerol by performing a 2-13C glycerol isotope labeling experiment. Additionally, gene expression assays showed that known, native glucose transporters in Pt are largely insensitive to glucose or light, whereas the gene encoding cytosolic fructose bisphosphate aldolase 3, an important glycolytic enzyme, is overexpressed in light but

  18. Acid sphingomyelinase regulates glucose and lipid metabolism in hepatocytes through AKT activation and AMP-activated protein kinase suppression

    PubMed Central

    Osawa, Yosuke; Seki, Ekihiro; Kodama, Yuzo; Suetsugu, Atsushi; Miura, Kouichi; Adachi, Masayuki; Ito, Hiroyasu; Shiratori, Yoshimune; Banno, Yoshiko; Olefsky, Jerrold M.; Nagaki, Masahito; Moriwaki, Hisataka; Brenner, David A.; Seishima, Mitsuru

    2011-01-01

    Acid sphingomyelinase (ASM) regulates the homeostasis of sphingolipids, including ceramides and sphingosine-1-phosphate (S1P). Because sphingolipids regulate AKT activation, we investigated the role of ASM in hepatic glucose and lipid metabolism. Initially, we overexpressed ASM in the livers of wild-type and diabetic db/db mice by adenovirus vector (Ad5ASM). In these mice, glucose tolerance was improved, and glycogen and lipid accumulation in the liver were increased. Using primary cultured hepatocytes, we confirmed that ASM increased glucose uptake, glycogen deposition, and lipid accumulation through activation of AKT and glycogen synthase kinase-3β. In addition, ASM induced up-regulation of glucose transporter 2 accompanied by suppression of AMP-activated protein kinase (AMPK) phosphorylation. Loss of sphingosine kinase-1 (SphK1) diminished ASM-mediated AKT phosphorylation, but exogenous S1P induced AKT activation in hepatocytes. In contrast, SphK1 deficiency did not affect AMPK activation. These results suggest that the SphK/S1P pathway is required for ASM-mediated AKT activation but not for AMPK inactivation. Finally, we found that treatment with high-dose glucose increased glycogen deposition and lipid accumulation in wild-type hepatocytes but not in ASM−/− cells. This result is consistent with glucose intolerance in ASM−/− mice. In conclusion, ASM modulates AKT activation and AMPK inactivation, thus regulating glucose and lipid metabolism in the liver.—Osawa, Y., Seki, E., Kodama, Y., Suetsugu, A., Miura, K., Adachi, M., Ito, H., Shiratori, Y., Banno, Y., Olefsky, J. M., Nagaki, M., Moriwaki, H., Brenner, D. A., Seishima, M. Acid sphingomyelinase regulates glucose and lipid metabolism in hepatocytes through AKT activation and AMP-activated protein kinase suppression. PMID:21163859

  19. Lactose in milk replacer can partly be replaced by glucose, fructose, or glycerol without affecting insulin sensitivity in veal calves.

    PubMed

    Pantophlet, A J; Gilbert, M S; van den Borne, J J G C; Gerrits, W J J; Roelofsen, H; Priebe, M G; Vonk, R J

    2016-04-01

    Calf milk replacer (MR) contains 40 to 50% lactose. Lactose strongly fluctuates in price and alternatives are desired. Also, problems with glucose homeostasis and insulin sensitivity (i.e., high incidence of hyperglycemia and hyperinsulinemia) have been described for heavy veal calves (body weight >100kg). Replacement of lactose by other dietary substrates can be economically attractive, and may also positively (or negatively) affect the risk of developing problems with glucose metabolism. An experiment was designed to study the effects of replacing one third of the dietary lactose by glucose, fructose, or glycerol on glucose homeostasis and insulin sensitivity in veal calves. Forty male Holstein-Friesian (body weight=114±2.4kg; age=97±1.4 d) calves were fed an MR containing 462g of lactose/kg (CON), or an MR in which 150g of lactose/kg of MR was replaced by glucose (GLU), fructose (FRU), or glycerol (GLY). During the first 10d of the trial, all calves received CON. The CON group remained on this diet and the other groups received their experimental diets for a period of 8 wk. Measurements were conducted during the first (baseline) and last week of the trial. A frequently sampled intravenous glucose tolerance test was performed to assess insulin sensitivity and 24 h of urine was collected to measure glucose excretion. During the last week of the trial, a bolus of 1.5g of [U-(13)C] substrates was added to their respective meals and plasma glucose, insulin, and (13)C-glucose responses were measured. Insulin sensitivity was low at the start of the trial and remained low [1.2±0.1 and 1.0±0.1 (mU/L)(-1) × min(-1)], and no treatment effect was noted. Glucose excretion was low at the start of the trial (3.4±1.0g/d), but increased in CON and GLU calves (26.9±3.9 and 43.0±10.6g/d) but not in FRU and GLY calves. Postprandial glucose was higher in GLU, lower in FRU, and similar in GLY compared with CON calves. Postprandial insulin was lower in FRU and GLY and similar

  20. Glucose metabolism in obese and lean adolescents with polycystic ovary syndrome.

    PubMed

    Poomthavorn, Preamrudee; Chaya, Weerapong; Mahachoklertwattana, Pat; Sukprasert, Matchuporn; Weerakiet, Sawaek

    2013-01-01

    Data on glucose metabolism in Asian adolescents with polycystic ovary syndrome (PCOS) are limited. Glucose metabolism assessment using an oral glucose tolerance test (OGTT) in obese and lean Thai adolescents with PCOS, and a comparison between the two groups were done. Thirty-one patients (19 obese, 12 lean) were enrolled. Their median (range) age was 14.9 (11.0-21.0) years. Eighteen patients had abnormal glucose metabolism (13 hyperinsulinemia, 4 impaired glucose tolerance, and 1 diabetes). Compared between obese [median (range) BMI Z-score, 1.6 (1.2-2.6)] and lean [median (range) BMI Z-score, 0.1 (-1.4 to 0.6)] patients, the frequencies of each abnormal OGTT category, areas under the curves of glucose and insulin levels, and insulinogenic index were not different; however, insulin resistance was greater in the obese group. In conclusion, a high proportion of our adolescents with PCOS had abnormal glucose metabolism. Therefore, OGTT should be performed in adolescents with PCOS for the early detection of abnormal glucose metabolism. PMID:23314524

  1. Glucagon-like peptide-1 (GLP-1) and glucose metabolism in human myocytes.

    PubMed

    Luque, M A; González, N; Márquez, L; Acitores, A; Redondo, A; Morales, M; Valverde, I; Villanueva-Peñacarrillo, M L

    2002-06-01

    Glucagon-like peptide-1 (GLP-1) has been shown to have insulin-like effects upon the metabolism of glucose in rat liver, muscle and fat, and on that of lipids in rat and human adipocytes. These actions seem to be exerted through specific receptors which, unlike that of the pancreas, are not - at least in liver and muscle - cAMP-associated. Here we have investigated the effect, its characteristics, and possible second messengers of GLP-1 on the glucose metabolism of human skeletal muscle, in tissue strips and primary cultured myocytes. In muscle strips, GLP-1, like insulin, stimulated glycogen synthesis, glycogen synthase a activity, and glucose oxidation and utilization, and inhibited glycogen phosphorylase a activity, all of this at physiological concentrations of the peptide. In cultured myotubes, GLP-1 exerted, from 10(-13) mol/l, a dose-related increase of the D-[U-(14)C]glucose incorporation into glycogen, with the same potency as insulin, together with an activation of glycogen synthase a; the effect of 10(-11) mol/l GLP-1 on both parameters was additive to that induced by the equimolar amount of insulin. Synthase a was still activated in cells after 2 days of exposure to GLP-1, as compared with myotubes maintained in the absence of peptide. In human muscle cells, exendin-4 and its truncated form 9-39 amide (Ex-9) are both agonists of the GLP-1 effect on glycogen synthesis and synthase a activity; but while neither GLP-1 nor exendin-4 affected the cellular cAMP content after 5-min incubation in the absence of 3-isobutyl-1-methylxantine (IBMX), an increase was detected with Ex-9. GLP-1, exendin-4, Ex-9 and insulin all induced the prompt hydrolysis of glycosylphosphatidylinositols (GPIs). This work shows a potent stimulatory effect of GLP-1 on the glucose metabolism of human skeletal muscle, and supports the long-term therapeutic value of the peptide. Further evidence for a GLP-1 receptor in this tissue, different from that of the pancreas, is also illustrated

  2. A 2-Pyridone-Amide Inhibitor Targets the Glucose Metabolism Pathway of Chlamydia trachomatis

    PubMed Central

    Engström, Patrik; Krishnan, K. Syam; Ngyuen, Bidong D.; Chorell, Erik; Normark, Johan; Silver, Jim; Bastidas, Robert J.; Welch, Matthew D.; Hultgren, Scott J.; Wolf-Watz, Hans; Valdivia, Raphael H.

    2014-01-01

    ABSTRACT In a screen for compounds that inhibit infectivity of the obligate intracellular pathogen Chlamydia trachomatis, we identified the 2-pyridone amide KSK120. A fluorescent KSK120 analogue was synthesized and observed to be associated with the C. trachomatis surface, suggesting that its target is bacterial. We isolated KSK120-resistant strains and determined that several resistance mutations are in genes that affect the uptake and use of glucose-6-phosphate (G-6P). Consistent with an effect on G-6P metabolism, treatment with KSK120 blocked glycogen accumulation. Interestingly, KSK120 did not affect Escherichia coli or the host cell. Thus, 2-pyridone amides may represent a class of drugs that can specifically inhibit C. trachomatis infection. PMID:25550323

  3. Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells.

    PubMed

    Amaral, Ana I; Hadera, Mussie G; Tavares, Joana M; Kotter, Mark R N; Sonnewald, Ursula

    2016-01-01

    Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope-labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2-(13)C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1-(13)C]lactate or [1,2-(13)C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2-(13)C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2-(13)C]acetate and [1,2-(13)C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS. PMID:26352325

  4. Glucose homeostasis and the enteroinsular axis in the horse: a possible role in equine metabolic syndrome.

    PubMed

    de Graaf-Roelfsema, Ellen

    2014-01-01

    One of the principal components of equine metabolic syndrome (EMS) is hyperinsulinaemia combined with insulin resistance. It has long been known that hyperinsulinaemia occurs after the development of insulin resistance. But it is also known that hyperinsulinaemia itself can induce insulin resistance and obesity and might play a key role in the development of metabolic syndrome. This review focuses on the physiology of glucose and insulin metabolism and the pathophysiological mechanisms in glucose homeostasis in the horse (compared with what is already known in humans) in order to gain insight into the pathophysiological principles underlying EMS. The review summarizes new insights on the oral uptake of glucose by the gut and the enteroinsular axis, the role of diet in incretin hormone and postprandial insulin responses, the handling of glucose by the liver, muscle and fat tissue, and the production and secretion of insulin by the pancreas under healthy and disrupted glucose homeostatic conditions in horses. PMID:24287206

  5. Glucose metabolism: focus on gut microbiota, the endocannabinoid system and beyond.

    PubMed

    Cani, P D; Geurts, L; Matamoros, S; Plovier, H; Duparc, T

    2014-09-01

    The gut microbiota is now considered as a key factor in the regulation of numerous metabolic pathways. Growing evidence suggests that cross-talk between gut bacteria and host is achieved through specific metabolites (such as short-chain fatty acids) and molecular patterns of microbial membranes (lipopolysaccharides) that activate host cell receptors (such as toll-like receptors and G-protein-coupled receptors). The endocannabinoid (eCB) system is an important target in the context of obesity, type 2 diabetes (T2D) and inflammation. It has been demonstrated that eCB system activity is involved in the control of glucose and energy metabolism, and can be tuned up or down by specific gut microbes (for example, Akkermansia muciniphila). Numerous studies have also shown that the composition of the gut microbiota differs between obese and/or T2D individuals and those who are lean and non-diabetic. Although some shared taxa are often cited, there is still no clear consensus on the precise microbial composition that triggers metabolic disorders, and causality between specific microbes and the development of such diseases is yet to be proven in humans. Nevertheless, gastric bypass is most likely the most efficient procedure for reducing body weight and treating T2D. Interestingly, several reports have shown that the gut microbiota is profoundly affected by the procedure. It has been suggested that the consistent postoperative increase in certain bacterial groups such as Proteobacteria, Bacteroidetes and Verrucomicrobia (A. muciniphila) may explain its beneficial impact in gnotobiotic mice. Taken together, these data suggest that specific gut microbes modulate important host biological systems that contribute to the control of energy homoeostasis, glucose metabolism and inflammation in obesity and T2D. PMID:24631413

  6. Assessment of regional glucose metabolism in aging brain and dementia with positron-emission tomography

    SciTech Connect

    Reivich, M.; Alavi, A.; Ferris, S.; Christman, D.; Fowler, J.; MacGregor, R.; Farkas, T.; Greenberg, J.; Dann, R.; Wolf, A.

    1981-01-01

    This paper explores the alterations in regional glucose metabolism that occur in elderly subjects and those with senile dementia compared to normal young volunteers. Results showed a tendency for the frontal regions to have a lower metabolic rate in patients with dementia although this did not reach the level of significance when compared to the elderly control subjects. The changes in glucose metabolism were symmetrical in both the left and right hemispheres. There was a lack of correlation between the mean cortical metabolic rates for glucose and the global mental function in the patients with senile dementia. This is at variance with most of the regional cerebral blood flow data that has been collected. This may be partly related to the use of substrates other than glucose by the brain in elderly and demented subjects. (PSB)

  7. Roles of Chlorogenic Acid on Regulating Glucose and Lipids Metabolism: A Review

    PubMed Central

    Meng, Shengxi; Cao, Jianmei; Feng, Qin; Peng, Jinghua; Hu, Yiyang

    2013-01-01

    Intracellular glucose and lipid metabolic homeostasis is vital for maintaining basic life activities of a cell or an organism. Glucose and lipid metabolic disorders are closely related with the occurrence and progression of diabetes, obesity, hepatic steatosis, cardiovascular disease, and cancer. Chlorogenic acid (CGA), one of the most abundant polyphenol compounds in the human diet, is a group of phenolic secondary metabolites produced by certain plant species and is an important component of coffee. Accumulating evidence has demonstrated that CGA exerts many biological properties, including antibacterial, antioxidant, and anticarcinogenic activities. Recently, the roles and applications of CGA, particularly in relation to glucose and lipid metabolism, have been highlighted. This review addresses current studies investigating the roles of CGA in glucose and lipid metabolism. PMID:24062792

  8. Different metabolic features of Bacteroides fragilis growing in the presence of glucose and exopolysaccharides of bifidobacteria

    PubMed Central

    Rios-Covian, David; Sánchez, Borja; Salazar, Nuria; Martínez, Noelia; Redruello, Begoña; Gueimonde, Miguel; de los Reyes-Gavilán, Clara G.

    2015-01-01

    Bacteroides is among the most abundant microorganism inhabiting the human intestine. They are saccharolytic bacteria able to use dietary or host-derived glycans as energy sources. Some Bacteroides fragilis strains contribute to the maturation of the immune system but it is also an opportunistic pathogen. The intestine is the habitat of most Bifidobacterium species, some of whose strains are considered probiotics. Bifidobacteria can synthesize exopolysaccharides (EPSs), which are complex carbohydrates that may be available in the intestinal environment. We studied the metabolism of B. fragilis when an EPS preparation from bifidobacteria was added to the growth medium compared to its behavior with added glucose. 2D-DIGE coupled with the identification by MALDI-TOF/TOF evidenced proteins that were differentially produced when EPS was added. The results were supported by RT-qPCR gene expression analysis. The intracellular and extracellular pattern of certain amino acids, the redox balance and the α-glucosidase activity were differently affected in EPS with respect to glucose. These results allowed us to hypothesize that three general main events, namely the activation of amino acids catabolism, enhancement of the transketolase reaction from the pentose-phosphate cycle, and activation of the succinate-propionate pathway, promote a shift of bacterial metabolism rendering more reducing power and optimizing the energetic yield in the form of ATP when Bacteroides grow with added EPSs. Our results expand the knowledge about the capacity of B. fragilis for adapting to complex carbohydrates and amino acids present in the intestinal environment. PMID:26347720

  9. Different metabolic features of Bacteroides fragilis growing in the presence of glucose and exopolysaccharides of bifidobacteria.

    PubMed

    Rios-Covian, David; Sánchez, Borja; Salazar, Nuria; Martínez, Noelia; Redruello, Begoña; Gueimonde, Miguel; de Los Reyes-Gavilán, Clara G

    2015-01-01

    Bacteroides is among the most abundant microorganism inhabiting the human intestine. They are saccharolytic bacteria able to use dietary or host-derived glycans as energy sources. Some Bacteroides fragilis strains contribute to the maturation of the immune system but it is also an opportunistic pathogen. The intestine is the habitat of most Bifidobacterium species, some of whose strains are considered probiotics. Bifidobacteria can synthesize exopolysaccharides (EPSs), which are complex carbohydrates that may be available in the intestinal environment. We studied the metabolism of B. fragilis when an EPS preparation from bifidobacteria was added to the growth medium compared to its behavior with added glucose. 2D-DIGE coupled with the identification by MALDI-TOF/TOF evidenced proteins that were differentially produced when EPS was added. The results were supported by RT-qPCR gene expression analysis. The intracellular and extracellular pattern of certain amino acids, the redox balance and the α-glucosidase activity were differently affected in EPS with respect to glucose. These results allowed us to hypothesize that three general main events, namely the activation of amino acids catabolism, enhancement of the transketolase reaction from the pentose-phosphate cycle, and activation of the succinate-propionate pathway, promote a shift of bacterial metabolism rendering more reducing power and optimizing the energetic yield in the form of ATP when Bacteroides grow with added EPSs. Our results expand the knowledge about the capacity of B. fragilis for adapting to complex carbohydrates and amino acids present in the intestinal environment. PMID:26347720

  10. Afamin promotes glucose metabolism in papillary thyroid carcinoma.

    PubMed

    Shen, Chen-Tian; Wei, Wei-Jun; Qiu, Zhong-Ling; Song, Hong-Jun; Luo, Quan-Yong

    2016-10-15

    Circulating afamin (AFM) concentrations have been investigated as a tumor biomarker in various types of carcinomas. However, suitable cell lines expressing human afamin have not yet been reported and current knowledge of the functions of afamin, particularly at the mechanistic molecular level, is very limited. In the current study, thyroid cancer cell lines 8505c and K1 were used to investigate the potential functions of afamin. AFM over-expression models and vector controls of 8505c (8505c + AFM and 8505c + NC) and K1 (K1 + AFM and K1 + NC) were successfully established by Lenti-LV5-AFM and Lenti-LV5-NC transfection. The change of gene expression was detected by qRT-PCR and western blotting analysis. (18)F-FDG imaging in xenografts model was performed using a micro PET/CT. We found that protein level of GAPDH, GLUT1, HK2, p-AKT, AKT, p-mTOR and PARP1 were up-regulated in K1 + AFM cells when compared to K1 and K1 + NC. While in 8505c, 8505c + NC and 8505c cells, the expression level of these genes were not significantly changed. (18)F-FDG uptake was much higher in K1 + AFM cells when compared to K1 and K1 + NC in vitro and in vivo. In conclusion, afamin could promote glycometabolism by up-regulating the glucose metabolism key enzymes in papillary thyroid carcinoma. These findings reveal new clues of the molecular function of AFM. PMID:27329154

  11. Variations in the Ghrelin Receptor Gene Associate with Obesity and Glucose Metabolism in Individuals with Impaired Glucose Tolerance

    PubMed Central

    Mager, Ursula; Degenhardt, Tatjana; Pulkkinen, Leena; Kolehmainen, Marjukka; Tolppanen, Anna-Maija; Lindström, Jaana; Eriksson, Johan G.; Carlberg, Carsten; Tuomilehto, Jaakko; Uusitupa, Matti

    2008-01-01

    Background Ghrelin may influence the development of obesity through its role in the control of energy balance, food intake, and regulation of body weight. The effects of ghrelin are mediated via the growth hormone secretagogue receptor (GHSR). Methodology/Principal Findings We genotyped 7 single nucleotide polymorphisms (SNPs) in the GHSR gene and assessed the association between those SNPs and obesity and type 2 diabetes-related phenotypes from 507 middle-aged overweight persons with impaired glucose tolerance participating in the Finnish Diabetes Prevention Study (DPS). Additionally, we performed in silico screening of the 5′-regulatory region of GHSR and evaluated SNPs disrupting putative transcription factor (TF) binding sites in vitro with gelshift assays to determine differences in protein binding between different alleles of SNPs. Rs9819506 in the promoter region of GHSR was associated with body weight (p = 0.036); persons with rs9819506-AA genotype having the lowest body weight. Individuals with rs490683-CC genotype displayed highest weight loss in the whole study population (p = 0.032). The false discovery rate for these results was <10%. Rs490683 and rs509035 were associated with several measures of glucose and insulin metabolism during the follow-up. Rs490683 may be a functional SNP, since gelshift experiments showed differential protein binding between the alleles, with higher binding to the G-allele. Rs490683-C may disrupt a putative binding site for the TF nuclear factor 1 (NF-1), thus rs4906863-GG genotype where the NF-1 site is intact may lead to a higher GHSR gene expression. Conclusion/Significance Polymorphisms in the GHSR promoter may modify changes in body weight during long-term lifestyle intervention and affect ghrelin receptor signalling through modulation of GHSR gene expression. PMID:18698404

  12. Brain glucose metabolism in adults with ataxia-telangiectasia and their asymptomatic relatives.

    PubMed

    Volkow, Nora D; Tomasi, Dardo; Wang, Gene-Jack; Studentsova, Yana; Margus, Brad; Crawford, Thomas O

    2014-06-01

    Ataxia-telangiectasia is a recessive genetic disorder (ATM is the mutated gene) of childhood with severe motor impairments and whereas homozygotes manifest the disorder, heterozygotes are asymptomatic. Structural brain imaging and post-mortem studies in individuals with ataxia-telangiectasia have reported cerebellar atrophy; but abnormalities of motor control characteristic of extrapyramidal dysfunction suggest impairment of broader motor networks. Here, we investigated possible dysfunction in other brain areas in individuals with ataxia-telangiectasia and tested for brain changes in asymptomatic relatives to assess if heterozygocity affects brain function. We used positron emission tomography and (18)F-fluorodeoxyglucose to measure brain glucose metabolism (quantified as µmol/100 g/min), which serves as a marker of brain function, in 10 adults with ataxia-telangiectasia, 19 non-affected adult relatives (12 siblings, seven parents) and 29 age-matched healthy controls. Statistical parametric mapping and region of interest analyses were used to compare individuals with ataxia-telangiectasia, asymptomatic relatives, and unrelated controls. We found that participants with ataxia-telangiectasia had lower metabolism in cerebellar hemispheres (14%, P < 0.001), anterior vermis (40%, P < 0.001) and fusiform gyrus (20%, P < 0.001) compared with controls or siblings, and lower metabolism in hippocampus (12%, P = 0.05) compared with controls, and showed significant intersubject variability (decreases in vermis ranged from 18% to 60%). Participants with ataxia-telangiectasia also had higher metabolism in globus pallidus (16%, P = 0.05), which correlated negatively with motor performance. Asymptomatic relatives had lower metabolism in anterior vermis (12%; P = 0.01) and hippocampus (19%; P = 0.002) than controls. Our results indicate that, in addition to the expected decrease in cerebellar metabolism, participants with ataxia-telangiectasia had widespread changes in metabolic

  13. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies.

    PubMed

    Chen, Zhichun; Zhong, Chunjiu

    2013-09-01

    Alzheimer's disease (AD) is an age-related devastating neurodegenerative disorder, which severely impacts on the global economic development and healthcare system. Though AD has been studied for more than 100 years since 1906, the exact cause(s) and pathogenic mechanism(s) remain to be clarified. Also, the efficient disease-modifying treatment and ideal diagnostic method for AD are unavailable. Perturbed cerebral glucose metabolism, an invariant pathophysiological feature of AD, may be a critical contributor to the pathogenesis of this disease. In this review, we firstly discussed the features of cerebral glucose metabolism in physiological and pathological conditions. Then, we further reviewed the contribution of glucose transportation abnormality and intracellular glucose catabolism dysfunction in AD pathophysiology, and proposed a hypothesis that multiple pathogenic cascades induced by impaired cerebral glucose metabolism could result in neuronal degeneration and consequently cognitive deficits in AD patients. Among these pathogenic processes, altered functional status of thiamine metabolism and brain insulin resistance are highly emphasized and characterized as major pathogenic mechanisms. Finally, considering the fact that AD patients exhibit cerebral glucose hypometabolism possibly due to impairments of insulin signaling and altered thiamine metabolism, we also discuss some potential possibilities to uncover diagnostic biomarkers for AD from abnormal glucose metabolism and to develop drugs targeting at repairing insulin signaling impairment and correcting thiamine metabolism abnormality. We conclude that glucose metabolism abnormality plays a critical role in AD pathophysiological alterations through the induction of multiple pathogenic factors such as oxidative stress, mitochondrial dysfunction, and so forth. To clarify the causes, pathogeneses and consequences of cerebral hypometabolism in AD will help break the bottleneck of current AD study in finding

  14. Similarities of cerebral glucose metabolism in Alzheimer's and Parkinsonian dementia

    SciTech Connect

    Kuhl, D.E.; Metter, E.J.; Benson, D.F.; Ashford, J.W.; Riege, W.H.; Fujikawa, D.G.; Markham, C.H.; Maltese, A.

    1985-05-01

    In the dementia of probable Alzheimer's Disease (AD), there is a decrease in the metabolic ratio of parietal cortex/caudate-thalamus which relates measures in the most and in the least severely affected locations. Since some demented patients with Parkinson's Disease (PDD) are known to share pathological and neurochemical features with AD patients, the authors evaluated if the distribution of cerebral hypometabolism in PDD and AD were the same. Local cerebral metabolic rates were determined using the FDG method and positron tomography in subjects with AD (N=23), and PDD (N=7), multiple infarct dementia (MID)(N=6), and controls (N=10). In MID, the mean par/caudthal ratio was normal (0.79 +- 0.9, N=6). In AD and PDD patients, this ratio correlated negatively with both the severity (r=-0.624, rho=0.001) and duration (r=-0.657, rho=0.001) of dementia. The ratio was markedly decreased in subjects with mild to severe dementia (0.46 +- 0.09, N=21) and with dementia duration greater than two years (0.44 +- 0.08, N=18), but the ratio was also significantly decreased in patients with less advanced disease, i.e., when dementia was only questionable (0.64 +- 0.14, N=9) (t=2.27, rho<0.037) and when duration was two years or less (0.62 +- 0.13, N=12)(t=2.88, rho<0.009). This similarity of hypometabolism in AD and PDD is additional evidence that a common mechanism may operate in both disorders. The par/caud-thal metabolic ratio may be an index useful in the differential diagnosis of early dementia.

  15. The effects of wild blueberry consumption on plasma markers and gene expression related to glucose metabolism in the obese Zucker rat.

    PubMed

    Vendrame, Stefano; Zhao, Alice; Merrow, Thomas; Klimis-Zacas, Dorothy

    2015-06-01

    Impaired fasting blood glucose is one of the landmark signs of metabolic syndrome, together with hyperinsulinemia, dyslipidemia, hypertension, and a chronic proinflammatory, pro-oxidative, and prothrombotic environment. This study investigates the effect of wild blueberry (WB) consumption on blood glucose levels and other parameters involved in glucose metabolism in the obese Zucker rat (OZR), an experimental model of metabolic syndrome. Sixteen OZRs and 16 lean littermate controls (lean Zucker rat [LZR]) were fed an 8% enriched WB diet or a control (C) diet for 8 weeks. Plasma concentrations of glucose, insulin, glycated hemoglobin GHbA1c, resistin, and retinol-binding protein 4 (RBP4) were measured. Expression of the resistin, RBP4, and glucose transporter GLUT4 genes was also determined both in the liver and the abdominal adipose tissue (AAT). Plasma glycated hemoglobin HbA1c, RBP4, and resistin concentrations were significantly lower in OZRs following the WB diet (-20%, -22%, and -27%, respectively, compared to C diet, P<.05). Following WB consumption, resistin expression was significantly downregulated in the liver of both OZRs and LZRs (-28% and -61%, respectively, P<.05), while RBP4 expression was significantly downregulated in the AAT of both OZRs and LZRs (-87% and -43%, respectively, P<.05). All other markers were not significantly affected following WB consumption. In conclusion, WB consumption normalizes some markers related to glucose metabolism in the OZR model of metabolic syndrome, but has no effect on fasting blood glucose or insulin concentrations. PMID:25383490

  16. Upregulation of glucose metabolism by granulocyte-monocyte colony-stimulating factor

    SciTech Connect

    Schuler, A.; Spolarics, Z.; Lang, C.H.; Bagby, G.J.; Nelson, S.; Spitzer, J.J. )

    1991-01-01

    Alterations of glucose metabolism were investigated for 6 hours following an intraarterial injection of murine recombinant granulocyte-monocyte colony-stimulating factor (GM-CSF). GM-CSF resulted in a transient elevation of plasma glucose. The rate of whole body glucose appearance, as measured by infusion of (6-{sup 3}H)glucose, was increased by about 10% between 0.5 and 3 hours following GM-CSF injection. In vivo glucose utilization of individual tissues was investigated by the tracer 2-deoxyglucose technique. At 30 min, GM-CSF increased glucose utilization by 80-90% in liver and lung, and 50-60% in skin and spleen. At 3 and 6 hours, glucose utilization by these tissues returned toward control levels except for lung. There was a 40-50% increase in glucose utilization by skeletal muscle 30 min after GM-CSF which was sustained for 6 hours. Glucose utilization of testis, ileum and kidney did not change significantly. Plasma concentrations of insulin, glucagon and tumor necrosis factor were not altered in response to GM-CSF. These findings indicate that some of the acute metabolic effects of a short-term administration of GM-CSF are observed in macrophage-rich tissues, and suggest that GM-CSF may be involved in the metabolic upregulation of immunologically active tissues.

  17. Leptin: a possible metabolic signal affecting reproduction.

    PubMed

    Spicer, L J

    2001-11-01

    Since its discovery in 1994, leptin, a protein hormone synthesized and secreted by adipose tissue, has been shown to regulate feed intake in several species including sheep and pigs. Although a nimiety of information exists regarding the physiological role of leptin in rodents and humans, the regulation and action of leptin in domestic animals is less certain. Emerging evidence in several species indicates that leptin may also affect the hypothalamo-pituitary-gonadal axis. Leptin receptor mRNA is present in the anterior pituitary and hypothalamus of several species, including sheep. In rats, effects of leptin on GnRH, LH and FSH secretion have been inconsistent, with leptin exhibiting both stimulatory and inhibitory action in vivo and in vitro. Evidence to support direct action of leptin at the level of the gonad indicates that the leptin receptor and its mRNA are present in ovarian tissue of several species, including cattle. These leptin receptors are functional, since leptin inhibits insulin-induced steroidogenesis of both granulosa and thecal cells of cattle in vitro. Leptin receptor mRNA is also found in the testes of rodents. As with the ovary, these receptors are functional, at least in rats, since leptin inhibits hCG-induced testosterone secretion by Leydig cells in vitro. During pregnancy, placental production of leptin may be a major contributor to the increase in maternal leptin in primates but not rodents. However, in both primates and rodents, leptin receptors exist in placental tissues and may regulate metabolism of the fetal-placental unit. As specific leptin immunoassays are developed for domestic animals, in vivo associations may then be made among leptin, body energy stores, dietary energy intake and reproductive function. This may lead to a more definitive role of leptin in domestic animal reproduction. PMID:11872320

  18. Immune system and glucose metabolism interaction in schizophrenia: a chicken-egg dilemma.

    PubMed

    Steiner, Johann; Bernstein, Hans-Gert; Schiltz, Kolja; Müller, Ulf J; Westphal, Sabine; Drexhage, Hemmo A; Bogerts, Bernhard

    2014-01-01

    Impaired glucose metabolism and the development of metabolic syndrome contribute to a reduction in the average life expectancy of individuals with schizophrenia. It is unclear whether this association simply reflects an unhealthy lifestyle or whether weight gain and impaired glucose tolerance in patients with schizophrenia are directly attributable to the side effects of atypical antipsychotic medications or disease-inherent derangements. In addition, numerous previous studies have highlighted alterations in the immune system of patients with schizophrenia. Increased concentrations of interleukin (IL)-1, IL-6, and transforming growth factor-beta (TGF-β) appear to be state markers, whereas IL-12, interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and soluble IL-2 receptor (sIL-2R) appear to be trait markers of schizophrenia. Moreover, the mononuclear phagocyte system (MPS) and microglial activation are involved in the early course of the disease. This review illustrates a "chicken-egg dilemma", as it is currently unclear whether impaired cerebral glucose utilization leads to secondary disturbances in peripheral glucose metabolism, an increased risk of cardiovascular complications, and accompanying pro-inflammatory changes in patients with schizophrenia or whether immune mechanisms may be involved in the initial pathogenesis of schizophrenia, which leads to disturbances in glucose metabolism such as metabolic syndrome. Alternatively, shared underlying factors may be responsible for the co-occurrence of immune system and glucose metabolism disturbances in schizophrenia. PMID:23085507

  19. Effects of Treatment for Tobacco Dependence on Resting Cerebral Glucose Metabolism

    PubMed Central

    Costello, Matthew R; Mandelkern, Mark A; Shoptaw, Stephen; Shulenberger, Stephanie; Baker, Stephanie K; Abrams, Anna L; Xia, Catherine; London, Edythe D; Brody, Arthur L

    2010-01-01

    While bupropion HCl and practical group counseling (PGC) are commonly used treatments for tobacco dependence, the effects of these treatments on brain function are not well established. For this study, 54 tobacco-dependent cigarette smokers underwent resting 18F-fluorodeoxyglucose–positron emission tomography (FDG–PET) scanning before and after 8 weeks of treatment with bupropion HCl, PGC, or pill placebo. Using Statistical Parametric Mapping (SPM 2), changes in cerebral glucose metabolism from before to after treatment were compared between treatment groups and correlations were determined between amount of daily cigarette usage and cerebral glucose metabolism. Compared with placebo, the two active treatments (bupropion HCl and PGC) had reductions in glucose metabolism in the posterior cingulate gyrus. Further analysis suggested that PGC had a greater effect than bupropion HCl on glucose metabolism in this region. We also found positive correlations between daily cigarette use and glucose metabolism in the left occipital gyrus and parietal–temporal junction. There were no significant negative correlations between daily cigarette use and glucose metabolism. Our findings suggest that bupropion HCl and PGC reduce neural activity much as the performance of a goal-oriented task does in the default mode network of the brain, including the posterior cingulate gyrus. Thus, this study supports the theory that active treatments for tobacco dependence move the brain into a more goal-oriented state. PMID:19865076

  20. Fasting and postabsorptive hepatic glucose and insulin metabolism in hyperthyroidism.

    PubMed

    Raboudi, N; Arem, R; Jones, R H; Chap, Z; Pena, J; Chou, J; Field, J B

    1989-01-01

    The effect of thyroid hormone excess on hepatic glucose balances and fractional hepatic extraction of insulin and glucagon was examined in six conscious dogs with catheters in the portal vein, hepatic vein, and femoral artery and Doppler flow probes on the portal vein and hepatic artery. An oral glucose tolerance test was performed before and after the animals were made hyperthyroid by intramuscular thyroxine administration (100 micrograms.kg-1.day-1) for 10 days. In the basal state and after oral glucose, insulin and glucagon levels in the three vessels and the basal fractional hepatic extraction of insulin and glucagon were not significantly modified by thyroid hormone. These results suggest that in short-term thyrotoxicosis insulin secretion is not impaired, and the rise in fasting plasma glucose and increased hepatic glucose production could reflect hepatic insulin resistance, increased availability of precursors for gluconeogenesis, or increased glycogenolysis. Hyperthyroidism significantly increased basal flows in the portal vein (14.7 +/- 0.6 vs. 12.9 +/- 0.5 ml.kg-1.min-1), the hepatic artery (4.8 +/- 0.3 vs. 3.9 +/- 0.2 ml.kg-1.min-1) and vein (19.6 +/- 0.7 vs. 16.9 +/- 0.4 ml.kg-1.min-1), the fasting plasma glucose concentration (104 +/- 3 vs. 92 +/- 2 mg/dl), and basal hepatic glucose output (2.1 +/- 0.2 vs. 1.5 +/- 0.2 mg.kg-1.min-1). It did not alter the nonhepatic splanchnic uptake of glucose, the percent of orally administered glucose that appeared in the portal vein (47 +/- 2 vs. 45 +/- 11%), the percent of hepatic uptake of glucose (59 +/- 11 vs. 74 +/- 22%), or the shape of the glucose tolerance test. PMID:2643338

  1. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder

    SciTech Connect

    Swedo, S.E.; Schapiro, M.B.; Grady, C.L.; Cheslow, D.L.; Leonard, H.L.; Kumar, A.; Friedland, R.; Rapoport, S.I.; Rapoport, J.L.

    1989-06-01

    The cerebral metabolic rate for glucose was studied in 18 adults with childhood-onset obsessive-compulsive disorder (OCD) and in age- and sex-matched controls using positron emission tomography and fludeoxyglucose F 18. Both groups were scanned during rest, with reduced auditory and visual stimulation. The group with OCD showed an increased glucose metabolism in the left orbital frontal, right sensorimotor, and bilateral prefrontal and anterior cingulate regions as compared with controls. Ratios of regional activity to mean cortical gray matter metabolism were increased for the right prefrontal and left anterior cingulate regions in the group with OCD as a whole. Correlations between glucose metabolism and clinical assessment measures showed a significant relationship between metabolic activity and both state and trait measurements of OCD and anxiety as well as the response to clomipramine hydrochloride therapy. These results are consistent with the suggestion that OCD may result from a functional disturbance in the frontal-limbic-basal ganglia system.

  2. The Role of Glucose and Lipid Metabolism in Growth and Survival of Cancer Cells.

    PubMed

    Brault, Charlene; Schulze, Almut

    2016-01-01

    One of the prerequisites for cell growth and proliferation is the synthesis of macromolecules, including proteins, nucleic acids and lipids. Cells have to alter their metabolism to allow the production of metabolic intermediates that are the precursors for biomass production. It is now evident that oncogenic signalling pathways target metabolic processes on several levels and metabolic reprogramming has emerged as a hallmark of cancer. The increased metabolic demand of cancer cells also produces selective dependencies that could be targeted for therapeutic intervention. Understanding the role of glucose and lipid metabolism in supporting cancer cell growth and survival is crucial to identify essential processes that could provide therapeutic windows for cancer therapy. PMID:27557532

  3. SCAP links glucose to lipid metabolism in cancer cells

    PubMed Central

    Guo, Deliang

    2016-01-01

    We recently uncovered that glucose is a critical activator of sterol regulatory element-binding proteins (SREBPs). Glucose promotes SREBP-cleavage activating protein (SCAP)/SREBP complex trafficking from the ER to the Golgi and subsequent SREBP activation via N-glycosylation of SCAP. Our study also demonstrated that SCAP plays a critical role in tumor growth. PMID:27065222

  4. Relationship of metabolic and endocrine parameters to brain glucose metabolism in older adults: do cognitively-normal older adults have a particular metabolic phenotype?

    PubMed

    Nugent, S; Castellano, C A; Bocti, C; Dionne, I; Fulop, T; Cunnane, S C

    2016-02-01

    Our primary objective in this study was to quantify whole brain and regional cerebral metabolic rates of glucose (CMRg) in young and older adults in order to determine age-normalized reference CMRg values for healthy older adults with normal cognition for age. Our secondary objectives were to--(i) report a broader range of metabolic and endocrine parameters including body fat composition that could form the basis for the concept of a 'metabolic phenotype' in cognitively normal, older adults, and (ii) to assess whether medications commonly used to control blood lipids, blood pressure or thyroxine affect CMRg values in older adults. Cognition assessed by a battery of tests was normal for age and education in both groups. Compared to the young group (25 years old; n = 34), the older group (72 years old; n = 41) had ~14% lower CMRg (μmol/100 g/min) specifically in the frontal cortex, and 18% lower CMRg in the caudate. Lower grey matter volume and cortical thickness was widespread in the older group. These differences in CMRg, grey matter volume and cortical thickness were present in the absence of any known evidence for prodromal Alzheimer's disease (AD). Percent total body fat was positively correlated with CMRg in many brain regions but only in the older group. Before and after controlling for body fat, HOMA2-IR was significantly positively correlated to CMRg in several brain regions in the older group. These data show that compared to a healthy younger adult, the metabolic phenotype of a cognitively-normal 72 year old person includes similar plasma glucose, insulin, cholesterol, triglycerides and TSH, higher hemoglobin A1c and percent body fat, lower CMRg in the superior frontal cortex and caudate, but the same CMRg in the hippocampus and white matter. Age-normalization of cognitive test results is standard practice and we would suggest that regional CMRg in cognitively healthy older adults should also be age-normalized. PMID:26364049

  5. Direct effect of incretin hormones on glucose and glycerol metabolism and hemodynamics.

    PubMed

    Karstoft, Kristian; Mortensen, Stefan P; Knudsen, Sine H; Solomon, Thomas P J

    2015-03-01

    The objective of this study was to assess the insulin-independent effects of incretin hormones on glucose and glycerol metabolism and hemodynamics under euglycemic and hyperglycemic conditions. Young, healthy men (n=10) underwent three trials in a randomized, controlled, crossover study. Each trial consisted of a two-stage (euglycemia and hyperglycemia) pancreatic clamp (using somatostatin to prevent endogenous insulin secretion). Glucose and lipid metabolism was measured via infusion of stable glucose and glycerol isotopic tracers. Hemodynamic variables (femoral, brachial, and common carotid artery blood flow and flow-mediated dilation of the brachial artery) were also measured. The three trials differed as follows: 1) saline [control (CON)], 2) glucagon-like peptide (GLP-1, 0.5 pmol·kg(-1)·min(-1)), and 3) glucose-dependent insulinotropic polypeptide (GIP, 1.5 pmol·kg(-1)·min(-1)). No between-trial differences in glucose infusion rates (GIR) or glucose or glycerol kinetics were seen during euglycemia, whereas hyperglycemia resulted in increased GIR and glucose rate of disappearance during GLP-1 compared with CON and GIP (P<0.01 for all). However, when normalized to insulin levels, no differences between trials were seen for GIR or glucose rate of disappearance. Besides a higher femoral blood flow during hyperglycemia with GIP (vs. CON and GLP-1, P<0.001), no between-trial differences were seen for the hemodynamic variables. In conclusion, GLP-1 and GIP have no direct effect on whole body glucose metabolism or hemodynamics during euglycemia. On the contrary, during hyperglycemia, GIP increases femoral artery blood flow with no effect on glucose metabolism, whereas GLP-1 increases glucose disposal, potentially due to increased insulin levels. PMID:25564476

  6. Comparison of clinical types of Wilson's disease and glucose metabolism in extrapyramidal motor brain regions.

    PubMed

    Hermann, W; Barthel, H; Hesse, S; Grahmann, F; Kühn, H-J; Wagner, A; Villmann, T

    2002-07-01

    In Wilson's disease a disturbed glucose metabolism especially in striatal and cerebellar areas has been reported. This is correlated with the severity of extrapyramidal motor symptoms (EPS). These findings are only based on a small number of patients. Up to now it is unknown whether EPS are caused by various patterns of disturbed basal ganglia glucose metabolism. We investigated 37 patients and 9 normal volunteers to characterize the disturbed glucose metabolism in Wilson's disease more precisely. The glucose metabolism was determined in 5 cerebellar and cerebral areas (putamen, caput nuclei caudati, cerebellum, midbrain and thalamic area) by using (18)F-Fluorodesoxyglucose-Positron-Emission-Tomography ( [(18)F]FDG-PET). The database was evaluated by a cluster analysis. Additionally, the severity extrapyramidal motor symptoms were judged by a clinical score system. Three characteristic patterns of glucose metabolism in basal ganglia were obtained. Two of them may be assigned to patients with neurological symptoms whereas the third cluster corresponds to most patients without EPS or normal volunteers. The clusters can be identified by characteristic consumption rates in this 5 brain areas. The severity of EPS can not clearly be assigned to one of the clusters with disturbed glucose metabolism. However, the most severe cases are characterized by the lowest consumption in the striatal area. When there is marked improvement of EPS impaired glucose consumption reveals a persistent brain lesion. Finally, the neurological symptoms in Wilson's disease are caused by (at least) two different patterns of disturbed glucose metabolism in basal ganglia and cerebellum. The severity of EPS seems to be determined by a disturbed consumption in the striatal area. PMID:12140675

  7. Effects of brain amyloid deposition and reduced glucose metabolism on the default mode of brain function in normal aging.

    PubMed

    Kikuchi, Mitsuru; Hirosawa, Tetsu; Yokokura, Masamichi; Yagi, Shunsuke; Mori, Norio; Yoshikawa, Etsuji; Yoshihara, Yujiro; Sugihara, Genichi; Takebayashi, Kiyokazu; Iwata, Yasuhide; Suzuki, Katsuaki; Nakamura, Kazuhiko; Ueki, Takatoshi; Minabe, Yoshio; Ouchi, Yasuomi

    2011-08-01

    Brain β-amyloid (Aβ) deposition during normal aging is highlighted as an initial pathogenetic event in the development of Alzheimer's disease. Many recent brain imaging studies have focused on areas deactivated during cognitive tasks [the default mode network (DMN), i.e., medial frontal gyrus/anterior cingulate cortex and precuneus/posterior cingulate cortex], where the strength of functional coordination was more or less affected by cerebral Aβ deposits. In the present positron emission tomography study, to investigate whether regional glucose metabolic alterations and Aβ deposits seen in nondemented elderly human subjects (n = 22) are of pathophysiological importance in changes of brain hemodynamic coordination in DMN during normal aging, we measured cerebral glucose metabolism with [(18)F]FDG, Aβ deposits with [(11)C]PIB, and regional cerebral blood flow during control and working memory tasks by H(2)(15)O on the same day. Data were analyzed using both region of interest and statistical parametric mapping. Our results indicated that the amount of Aβ deposits was negatively correlated with hemodynamic similarity between medial frontal and medial posterior regions, and the lower similarity was associated with poorer working memory performance. In contrast, brain glucose metabolism was not related to this medial hemodynamic similarity. These findings suggest that traceable Aβ deposition, but not glucose hypometabolism, in the brain plays an important role in occurrence of neuronal discoordination in DMN along with poor working memory in healthy elderly people. PMID:21813680

  8. In vivo cardiac glucose metabolism in the high-fat fed mouse: Comparison of euglycemic–hyperinsulinemic clamp derived measures of glucose uptake with a dynamic metabolomic flux profiling approach

    SciTech Connect

    Kowalski, Greg M.; De Souza, David P.; Risis, Steve; Burch, Micah L.; Hamley, Steven; Kloehn, Joachim; Selathurai, Ahrathy; Lee-Young, Robert S.; Tull, Dedreia; O'Callaghan, Sean; McConville, Malcolm J.; Bruce, Clinton R.

    2015-08-07

    insulin resistance. • Clamp measures were compared to a dynamic metabolomics approach. • The clamp revealed the presence of cardiac insulin resistance after 3 weeks of HFD. • Cardiac glucose metabolism was not affected by HFD during an oral glucose challenge.

  9. The use of /sup 11/C-glucose and positron emission tomography to measure brain glucose metabolism

    SciTech Connect

    Mintun, M.A.; Raichle, M.E.; Welch, M.J.; Kilbourn, M.R.

    1985-05-01

    To measure regional cerebral metabolism of glucose (CMRGlu) with positron emission tomography (PET), but avoid the potential problems inherent in the use of /sup 18/F-fluoro-deoxyglucose, (e.g. regional variation in regional rate constants and instability of the ''lumped constant''), the authors have developed a method using uniformly labeled /sup 11/C-glucose. The method employs a 4-compartment model that accounts for vascular tracer, transport of tracer in and out of the extravascular space, metabolism of tracer, and the production of labeled carbon dioxide, which is free to leave the tissue with blood flow. The differential equations for this model, when solved for CMRGlu, yield CMRGlu=k/sub 1/ . k/sub 3/ . CBF . C/sub B//(k/sub 1/ . k/sub 3/+CBF/CBV . (k/sub 2/+k/sub 3/)) where CBF and CBV are cerebral blood flow and volume, C/sub B/ is unlabeled blood glucose content, k/sub 1/ and k/sub 2/ are transport rate constants and k/sub 3/ is the metabolism rate constant. The authors have begun implementing this technique in baboons and human subjects by first measuring regional CBV and CBF with extant PET methods, then after injection of 20-40mCi of U-/sup 11/C-glucose, estimating the rate constants from 40 sequential PET scans taken over 20 minutes. Resulting white-to-gray matter range in CMRGlu for one typical human subject was 2.9 to 6.3 mg/(min . 100 mg). Oxygen metabolism (CMRO/sub 2/) was also measured at the same sitting with PET and the molar ratio of CMRO/sub 2//CMRGlu ranged from 5.8 to 6.4 as would be expected. These results demonstrate that it may be feasible to avoid the difficulties of an analogue tracer in the measurement of CMRGlu by using /sup 11/C-glucose.

  10. Effect of sorghum grain supplementation on glucose metabolism in cattle and sheep fed temperate pasture.

    PubMed

    Aguerre, M; Carriquiry, M; Astessiano, A L; Cajarville, C; Repetto, J L

    2015-06-01

    The aim of this work was to evaluate the effect of sorghum grain supplementation on plasma glucose, insulin and glucagon concentrations, and hepatic mRNA concentrations of insulin receptor (INSR), pyruvate carboxylase (PC), and phosphoenolpyruvate carboxykinase (PCK1) mRNA and their association with nutrient intake, digestion and rumen volatile fatty acids (VFA) in cattle and sheep fed a fresh temperate pasture. Twelve Hereford × Aberdeen Angus heifers and 12 Corriedale × Milchschaf wethers in positive energy balance were assigned within each species to one of two treatments (n = 6 per treatment within specie): non-supplemented or supplemented with sorghum grain at 15 g/kg of their body weight (BW). Supplemented cattle had greater plasma glucose concentrations, decreased plasma glucagon concentrations and tended to have greater plasma insulin and insulin-to-glucagon ratio than non-supplemented ones. Hepatic expression of INSR and PC mRNA did not differ between treatments but PCK1 mRNA was less in supplemented than non-supplemented cattle. Supplemented sheep tended to have greater plasma glucagon concentrations than non-supplemented ones. Plasma glucose, insulin, insulin-to-glucagon ratio, and hepatic expression of INSR and PC mRNA did not differ between treatments, but PCK1 mRNA was less in supplemented than non-supplemented sheep. The inclusion of sorghum grain in the diet decreased PCK1 mRNA but did not affect PC mRNA in both species; these effects were associated with changes in glucose and endocrine profiles in cattle but not in sheep. Results would suggest that sorghum grain supplementation of animals in positive energy balance (cattle and sheep) fed a fresh temperate pasture would modify hepatic metabolism to prioritize the use of propionate as a gluconeogenic precursor. PMID:25040769

  11. Histochemical research on metabolic pathways of glucose in some species of Mollusca Gastropoda.

    PubMed

    Bolognani Fantin, A M; Bolognani, L; Ottaviani, E; Franchini, A

    1987-01-01

    The metabolic pathways of glucose were studied by histochemical reactions in some species of gastropods living in different habitats. The glycolytic pathway is histochemically indicated by positive results for glucose-6-phosphate isomerase, fructose-1,6-biphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, and D-lactate dehydrogenase. The enzymes of the Krebs cycle gave different responses: isocitrate dehydrogenase and L-malate dehydrogenase were positive, whilst succinate dehydrogenase was constantly negative. Malate synthetase activity was also demonstrated. Despite L-glutamate dehydrogenase is undetectable, the presence of transaminase indicates the gluconeogenetic route. Phosphoglucomutase and glucose-6-phosphate phosphatase appear also positive. The metabolic meaning of our results were discussed. PMID:3111150

  12. Remodeling of Glucose Metabolism Precedes Pressure Overload -Induced Left Ventricular Hypertrophy: Review of a Hypothesis

    PubMed Central

    Kundu, Bijoy K.; Zhong, Min; Sen, Shiraj; Davogustto, Giovanni; Keller, Susanna R.; Taegtmeyer, Heinrich

    2015-01-01

    When subjected to pressure overload, the ventricular myocardium shifts from fatty acids to glucose as its main source for energy provision and frequently increases its mass. Here, we review the evidence in support of the concept that metabolic remodeling, measured as increased myocardial glucose uptake using dynamic positron emission tomography (PET) with the glucose analogue 2-deoxy-2-[18F]-fluoro-D-glucose (FDG), precedes the onset of left ventricular hypertrophy (LVH) and heart failure. Consistent with this, early intervention with propranolol, which attenuates glucose uptake, prevents the maladaptive metabolic response and preserves cardiac function in vivo. We also review ex vivo studies suggesting a link between dysregulated myocardial glucose metabolism, intracellular accumulation of glucose 6-phosphate (G6P) and contractile dysfunction of the heart. G6P levels correlate with activation of mTOR (mechanistic target of rapamycin) and endoplasmic reticulum stress. This sequence of events could be prevented by pre-treatment with rapamycin (mTOR inhibition) or metformin (enzyme 5′-AMP-activated protein kinase activation ). In conclusion, we propose that metabolic imaging with FDG PET may provide a novel approach to guide the treatment of patients with hypertension-induced LVH. PMID:25791172

  13. miR-182 Regulates Metabolic Homeostasis by Modulating Glucose Utilization in Muscle.

    PubMed

    Zhang, Duo; Li, Yan; Yao, Xuan; Wang, Hui; Zhao, Lei; Jiang, Haowen; Yao, Xiaohan; Zhang, Shengjie; Ye, Cheng; Liu, Wei; Cao, Hongchao; Yu, Shuxian; Wang, Yu-Cheng; Li, Qiong; Jiang, Jingjing; Liu, Yi; Zhang, Ling; Liu, Yun; Iwai, Naoharu; Wang, Hui; Li, Jingya; Li, Jia; Li, Xihua; Jin, Zi-Bing; Ying, Hao

    2016-07-19

    Understanding the fiber-type specification and metabolic switch in skeletal muscle provides insights into energy metabolism in physiology and diseases. Here, we show that miR-182 is highly expressed in fast-twitch muscle and negatively correlates with blood glucose level. miR-182 knockout mice display muscle loss, fast-to-slow fiber-type switching, and impaired glucose metabolism. Mechanistic studies reveal that miR-182 modulates glucose utilization in muscle by targeting FoxO1 and PDK4, which control fuel selection via the pyruvate dehydrogenase complex (PDHC). Short-term high-fat diet (HFD) feeding reduces muscle miR-182 levels by tumor necrosis factor α (TNFα), which contributes to the upregulation of FoxO1/PDK4. Restoration of miR-182 expression in HFD-fed mice induces a faster muscle phenotype, decreases muscle FoxO1/PDK4 levels, and improves glucose metabolism. Together, our work establishes miR-182 as a critical regulator that confers robust and precise controls on fuel usage and glucose homeostasis. Our study suggests that a metabolic shift toward a faster and more glycolytic phenotype is beneficial for glucose control. PMID:27396327

  14. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism

    PubMed Central

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John Douglas R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using 2-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyze the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identifies the neuron as the principal locus of glucose uptake as visualized by functional brain imaging. PMID:25904018

  15. Relationship of impaired brain glucose metabolism to learning deficit in the senescence-accelerated mouse.

    PubMed

    Ohta, H; Nishikawa, H; Hirai, K; Kato, K; Miyamoto, M

    1996-10-11

    The relationship between brain glucose metabolism and learning deficit was examined in the senescence-accelerated-prone mouse (SAMP) 8, which has been proven to be a useful murine model of age-related behavioral disorders. SAMP8, 7 months old, exhibited marked learning impairment in the passive avoidance task, as compared with the control strain, senescence-accelerated-resistant mice (SAMR) 1. SAMP8 also exhibited a reduction in brain glucose metabolism, as indicated by a reduction in [14C]2-deoxyglucose accumulation in the brain following the intravenous injection impaired glucose metabolism correlated significantly with the learning impairment in all brain regions in SAMR1 and SAMP8. In the SAMP8, a significant correlation was observed in the posterior half of the cerebral cortex. These results suggest that the SAMP8 strain is a useful model of not only age-related behavioral disorders, but also glucose hypometabolism observed in aging and dementias. PMID:8905734

  16. Regulation of glucose and glycogen metabolism during and after exercise.

    PubMed

    Jensen, Thomas E; Richter, Erik A

    2012-03-01

    Utilization of carbohydrate in the form of intramuscular glycogen stores and glucose delivered from plasma becomes an increasingly important energy substrate to the working muscle with increasing exercise intensity. This review gives an update on the molecular signals by which glucose transport is increased in the contracting muscle followed by a discussion of glycogen mobilization and synthesis by the action of glycogen phosphorylase and glycogen synthase, respectively. Finally, this review deals with the signalling relaying the well-described increased sensitivity of glucose transport to insulin in the post-exercise period which can result in an overshoot of intramuscular glycogen resynthesis post exercise (glycogen supercompensation). PMID:22199166

  17. Regulation of glucose and glycogen metabolism during and after exercise

    PubMed Central

    Jensen, Thomas E; Richter, Erik A

    2012-01-01

    Utilization of carbohydrate in the form of intramuscular glycogen stores and glucose delivered from plasma becomes an increasingly important energy substrate to the working muscle with increasing exercise intensity. This review gives an update on the molecular signals by which glucose transport is increased in the contracting muscle followed by a discussion of glycogen mobilization and synthesis by the action of glycogen phosphorylase and glycogen synthase, respectively. Finally, this review deals with the signalling relaying the well-described increased sensitivity of glucose transport to insulin in the post-exercise period which can result in an overshoot of intramuscular glycogen resynthesis post exercise (glycogen supercompensation). PMID:22199166

  18. Comparison of cerebral glucose metabolic rates measured with fluorodeoxyglucose and glucose labeled in the 1, 2, 3-4, and 6 positions using double label quantitative digital autoradiography

    SciTech Connect

    Lear, J.L.; Ackermann, R.F.

    1988-08-01

    We compared local cerebral glucose metabolic rates (LCMRglu) that were determined with (/sup 18/F)fluorodeoxyglucose (FDG) and (/sup 14/C)glucose labeled in the 1, 2, 3-4, and 6 positions. Double label digital autoradiography was used with published kinetic models to determine LCMRglu for FDG and glucose in the same animals. Glucose showed metabolic rate dependent underestimation of LCMRglu compared to FDG, which worsened with increasing experimental times. The least underestimation occurred with glucose labeled in the 6 position at 6 min, reaching 10% in areas of high metabolism. Labeling in the 1 position, the 2 position and the 3-4 position caused progressively worse underestimation at all times. In addition, some structures showed differences not directly related to metabolic rate, indicating regional variations in relationships between individual kinetic constants of FDG and glucose.

  19. The role of osteocalcin in human glucose metabolism: marker or mediator?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing evidence supports an association between the skeleton and energy metabolism. These interactions are mediated by a variety of hormones, cytokines, and nutrients. Here, the evidence for a role of osteocalcin in the regulation of glucose metabolism in humans is reviewed. Osteocalcin is a bon...

  20. Multiple dietary supplements do not affect metabolic and cardiovascular health.

    PubMed

    Soare, Andreea; Weiss, Edward P; Holloszy, John O; Fontana, Luigi

    2013-09-01

    Dietary supplements are widely used for health purposes. However, little is known about the metabolic and cardiovascular effects of combinations of popular over-the-counter supplements, each of which has been shown to have anti-oxidant, anti-inflammatory and pro-longevity properties in cell culture or animal studies. This study was a 6-month randomized, single-blind controlled trial, in which 56 non-obese (BMI 21.0-29.9 kg/m2) men and women, aged 38 to 55 yr, were assigned to a dietary supplement (SUP) group or control (CON) group, with a 6-month follow-up. The SUP group took 10 dietary supplements each day (100 mg of resveratrol, a complex of 800 mg each of green, black, and white tea extract, 250 mg of pomegranate extract, 650 mg of quercetin, 500 mg of acetyl-l-carnitine, 600 mg of lipoic acid, 900 mg of curcumin, 1 g of sesamin, 1.7 g of cinnamon bark extract, and 1.0 g fish oil). Both the SUP and CON groups took a daily multivitamin/mineral supplement. The main outcome measures were arterial stiffness, endothelial function, biomarkers of inflammation and oxidative stress, and cardiometabolic risk factors. Twenty-four weeks of daily supplementation with 10 dietary supplements did not affect arterial stiffness or endothelial function in nonobese individuals. These compounds also did not alter body fat measured by DEXA, blood pressure, plasma lipids, glucose, insulin, IGF-1, and markers of inflammation and oxidative stress. In summary, supplementation with a combination of popular dietary supplements has no cardiovascular or metabolic effects in non-obese relatively healthy individuals. PMID:24036417

  1. Multiple dietary supplements do not affect metabolic and cardiovascular health

    PubMed Central

    Holloszy, John O.; Fontana, Luigi

    2014-01-01

    Dietary supplements are widely used for health purposes. However, little is known about the metabolic and cardiovascular effects of combinations of popular over-the-counter supplements, each of which has been shown to have anti-oxidant, anti-inflammatory and pro-longevity properties in cell culture or animal studies. This study was a 6-month randomized, single-blind controlled trial, in which 56 non-obese (BMI 21.0-29.9 kg/m2) men and women, aged 38 to 55 yr, were assigned to a dietary supplement (SUP) group or control (CON) group, with a 6-month follow-up. The SUP group took 10 dietary supplements each day (100 mg of resveratrol, a complex of 800 mg each of green, black, and white tea extract, 250 mg of pomegranate extract, 650 mg of quercetin, 500 mg of acetyl-l-carnitine, 600 mg of lipoic acid, 900 mg of curcumin, 1 g of sesamin, 1.7 g of cinnamon bark extract, and 1.0 g fish oil). Both the SUP and CON groups took a daily multivitamin/mineral supplement. The main outcome measures were arterial stiffness, endothelial function, biomarkers of inflammation and oxidative stress, and cardiometabolic risk factors. Twenty-four weeks of daily supplementation with 10 dietary supplements did not affect arterial stiffness or endothelial function in nonobese individuals. These compounds also did not alter body fat measured by DEXA, blood pressure, plasma lipids, glucose, insulin, IGF-1, and markers of inflammation and oxidative stress. In summary, supplementation with a combination of popular dietary supplements has no cardiovascular or metabolic effects in non-obese relatively healthy individuals. PMID:24659610

  2. Characterization of the role of sphingomyelin synthase 2 in glucose metabolism in whole-body and peripheral tissues in mice.

    PubMed

    Sugimoto, Masayuki; Shimizu, Yoichi; Zhao, Songji; Ukon, Naoyuki; Nishijima, Ken-ichi; Wakabayashi, Masato; Yoshioka, Takeshi; Higashino, Kenichi; Numata, Yoshito; Okuda, Tomohiko; Tamaki, Nagara; Hanamatsu, Hisatoshi; Igarashi, Yasuyuki; Kuge, Yuji

    2016-08-01

    Sphingomyelin synthase 2 (SMS2) is a proposed potential therapeutic target for obesity and insulin resistance. However, the contributions of SMS2 to glucose metabolism in tissues and its possible therapeutic mechanisms remain unclear. Thus, to determine whole-body glucose utilization and the contributions of each insulin-targeted tissue to glucose uptake, we performed a glucose kinetics study, using the radiolabeled glucose analog (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG), in wild-type (WT) and SMS2 knockout (KO) mice. Insulin signaling was enhanced in the liver, white adipose tissue and skeletal muscle of SMS2 KO mice compared with those of WT mice. In addition, compared with in WT mice, blood clearance of (18)F-FDG was accelerated in SMS2 KO mice when they were fed either a normal or a high fat diet. (18)F-FDG uptake was also increased in insulin-targeted tissues such as skeletal muscle in the SMS2 KO mice. Whereas skeletal muscle sphingolipid content was not clearly affected, plasma levels of very long-chain fatty acid (VLCFA)-containing ceramides were markedly increased in SMS2 KO mice, compared with in WT mice. We also generated liver-conditional SMS2 KO mice and performed glucose and insulin tolerance tests on mice with a high fat diet. However, no significant effect was observed. Thus, our study provided evidence that genetic inhibition of SMS2 elevated glucose clearance through activation of glucose uptake into insulin-targeted tissues such as skeletal muscle by a mechanism independent of hepatic SMS2. Our findings further indicate that this occurs, at least in part, via indirect mechanisms such as elevation of VLCFA-containing ceramides. PMID:27151272

  3. Impaired glucose and lipid metabolism in ageing aryl hydrocarbon receptor deficient mice

    PubMed Central

    Biljes, Daniel; Hammerschmidt-Kamper, Christiane; Kadow, Stephanie; Diel, Patrick; Weigt, Carmen; Burkart, Volker; Esser, Charlotte

    2015-01-01

    Disturbed homeostasis of glucose and lipid metabolism are dominant features of the so-called metabolic syndrome (MetS) and can increase the risk for the development of type 2 diabetes (T2D), a severe metabolic disease. T2D prevalence increases with age. The aryl hydrocarbon receptor (AHR) is a sensor of small molecules including dietary components. AHR has been identified as potential regulator of glucose homeostasis and lipid metabolism. Epidemiologically, exposure to xenobiotic AHR ligands such as polycyclic aromatic hydrocarbons is linked to T2D. We assess here the potential role of the AHR in disturbances of glucose and lipid metabolism in young (age 2-5 months) and old (age > 1,5 years) AHR-deficient (AHR KO) mice. Fasted young wildtype (WT) and AHR-KO mice displayed similar blood glucose kinetics after challenge with intra-peritoneal glucose injection. However, old AHR-KO mice showed lower tolerance than WT to i.p. administered glucose, i.e. glucose levels rose higher and returned more slowly to normal levels. Old mice had overall higher insulin levels than young mice, and old AHR-KO had a somewhat disturbed insulin kinetic in the serum after glucose challenge. Surprisingly, young AHR-KO mice had significantly lower triglycerides, cholesterol, high density lipoprotein values than WT, i.e., a dyslipidemic profile. With ageing, AHR-KO and WT mice did not differ in these lipid levels, except for slightly reduced levels of triglycerides and cholesterol. In conclusion, our findings in AHR KO mice suggest that AHR expression is relevant for the maintenance of glucose and lipid homeostasis in old mice. PMID:26664351

  4. Heritability of metabolic response to the intravenous glucose tolerance test in German Holstein Friesian bulls.

    PubMed

    Pieper, Laura; Staufenbiel, Rudolf; Christ, Jana; Panicke, Lothar; Müller, Uwe; Brockmann, Gudrun A

    2016-09-01

    Selection for improved health and welfare in farm animals is of increasing interest worldwide. Peripartum energy balance is a key factor for pathogenesis of diseases in dairy cows. The intravenous glucose tolerance test (ivGTT) can be used to study the metabolic response to a glucose stimulus. The aim of this study was to estimate heritability of ivGTT traits in German Holstein bulls. A total of 541 Holstein bulls aged 7 to 17 mo from 2 breeding stations were subjected to the ivGTT. Serum glucose concentrations were measured at 0, 7, 14, 21, 28, 35, 42, 49, 56, and 63 min relative to glucose infusion. The maximum increase in blood glucose concentration, glucose area equivalent, and blood glucose half-life period were calculated. Heritabilities were estimated using a univariate animal model including station-year-season and age as fixed effects, and animal additive genetic and residual as random effects. The estimated heritabilities were 0.19 for fasting glucose concentration, 0.43 for glucose area equivalent, 0.40 for glucose half-life period, 0.14 for the peak glucose concentration, and 0.12 for the maximum increase of blood glucose concentration. Correlations between ivGTT traits and breeding values for milk yield and composition were not found. The results indicate that heritability for response to glucose is high, which warrants further investigation of this trait for genetic improvement of metabolic disorders. Research is necessary to determine the target levels of ivGTT traits and potential associations between ivGTT traits in breeding bulls and periparturient diseases in their offspring. PMID:27394937

  5. Factors affecting metabolic syndrome by lifestyle

    PubMed Central

    Ki, Nam-Kyun; Lee, Hae-Kag; Cho, Jae-Hwan; Kim, Seon-Chil; Kim, Nak-Sang

    2016-01-01

    [Purpose] The aim of this study was to explore lifestyle factors in relation to metabolic syndrome so as to be able to utilize the results as baseline data for the furtherance of health-care and medical treatment. [Subjects and Methods] This study was conducted with patients who visited a health care center located in Seoul and had abdominal ultrasonography between 2 March 2013 and 28 February, 2014. Heights, weights, and blood pressures were measured by automatic devices. Three radiologists examined the patients using abdominal ultrasonography for gallstone diagnosis. The statuses of patients with regard to smoking, alcohol, coffee, and physical activities were explored for the lifestyle investigation. For investigating baseline demographics, we first used descriptive statistics. We then used the χ2 test to analyze lifestyles and gallstone prevalence with regard to the presence of metabolic syndrome. Lastly, logistic regression analysis was conducted to discover the risk factors of metabolic syndrome. [Results] For men, body mass index, maximum gallstone size, and waist circumference were revealed as risk factors for metabolic syndrome, in descending order of the degree of risk. For females, gallstone presence was the most significant risk factor, followed by waist circumference. [Conclusion] Metabolic disease mainly presents itself along with obesity, and we should become more focused on preventing and treating this disease. A large-scale prospective study is needed in the future, as the cause of nonalcoholic steatohepatitis remained unclear in this study. PMID:26957725

  6. Age-related metabolic fatigue during low glucose conditions in rat hippocampus

    PubMed Central

    Galeffi, Francesca; Shetty, Pavan K.; Sadgrove, Matthew P.; Turner, Dennis A.

    2015-01-01

    Previous reports have indicated that with aging, intrinsic brain tissue changes in cellular bioenergetics may hamper the brain’s ability to cope with metabolic stress. Therefore, we analyzed the effects of age on neuronal sensitivity to glucose deprivation by monitoring changes in field excitatory postsynaptic potentials (fEPSPs), tissue Po2, and NADH fluorescence imaging in the CA1 region of hippocampal slices obtained from F344 rats (1–2, 3–6, 12–20, and >22 months). Forty minutes of moderate low glucose (2.5 mM) led to approximately 80% decrease of fEPSP amplitudes and NADH decline in all 4 ages that reversed after reintroduction of 10 mM glucose. However, tissue slices from 12 to 20 months and >22-month-old rats were more vulnerable to low glucose: fEPSPs decreased by 50% on average 8 minutes faster compared with younger slices. Tissue oxygen utilization increased after onset of 2.5 mM glucose in all ages of tissue slices, which persisted for 40 minutes in younger tissue slices. But, in older tissue slices the increased oxygen utilization slowly faded and tissue Po2 levels increased toward baseline values after approximately 25 minutes of glucose deprivation. In addition, with age the ability to regenerate NADH after oxidation was diminished. The NAD+/NADH ratio remained relatively oxidized after low glucose, even during recovery. In young slices, glycogen levels were stable throughout the exposure to low glucose. In contrast, with aging utilization of glycogen stores was increased during low glucose, particularly in hippocampal slices from >22 months old rats, indicating both inefficient metabolism and increased demand for glucose. Lactate addition (20 mM) improved oxidative metabolism by directly supplementing the mitochondrial NADH pool and maintained fEPSPs in young as well as aged tissue slices, indicating that inefficient metabolism in the aging tissue can be improved by directly enhancing NADH regeneration. PMID:25443286

  7. Differential control of glucoregulatory hormone response and glucose metabolism by NMDA and kainate.

    PubMed

    Yousef, K A; Tepper, P G; Molina, P E; Abumrad, N N; Lang, C H

    1994-01-14

    The aim of the present study was to elucidate the effect of kainate and N-methyl-D-aspartate (NMDA), two different excitatory amino acid (EAA) agonists, on glucoregulatory hormone production and whole body glucose metabolism. Rates of hepatic glucose production (HGP) and peripheral glucose utilization (GU) were assessed in overnight fasted, catheterized, conscious rats using [3-3H]glucose. At the highest dose of kainate examined (16 mg/kg), glucose levels increased 97% after 1 h; thereafter, glucose fell towards basal values but was still elevated 25% at the end of the 3 h experiment. This hyperglycemia resulted from a rapid increase in HGP that exceeded an increased rate of GU. Both HGP and GU were elevated 86% throughout the final 2 h of the experiment. NMDA induced changes in glucose flux that were qualitatively similar, yet of smaller magnitude and of shorter duration, than those produced by kainate. Kainate-induced increases in glucose metabolism were associated with an early transient hyperinsulinemia followed by a period of insulinopenia, and sustained increases in the plasma concentrations of glucagon, corticosterone, epinephrine and norepinephrine. In contrast, sustained increases in glucagon and catecholamines, as well as the late hypoinsulinemia were not detected in NMDA-treated rats. Adrenergic blockade attenuated the kainate- but not the NMDA-induced increase in glucose metabolism. These results indicate that EAA agonists that bind preferentially to different receptor subtypes produce qualitatively similar changes in glucose metabolism. Whereas the increased HGP in kainate-injected rats was associated with sustained elevations in glucagon, catecholamines and corticosterone, NMDA only transiently elevated circulating glucocorticoid levels, suggesting a different mechanism of action. These data, support the involvement of EAA in various aspects of glucoregulation. PMID:8156383

  8. Subcellular Localization of Hexokinases I and II Directs the Metabolic Fate of Glucose

    PubMed Central

    John, Scott; Weiss, James N.; Ribalet, Bernard

    2011-01-01

    Background The first step in glucose metabolism is conversion of glucose to glucose 6-phosphate (G-6-P) by hexokinases (HKs), a family with 4 isoforms. The two most common isoforms, HKI and HKII, have overlapping tissue expression, but different subcellular distributions, with HKI associated mainly with mitochondria and HKII associated with both mitochondrial and cytoplasmic compartments. Here we tested the hypothesis that these different subcellular distributions are associated with different metabolic roles, with mitochondrially-bound HK's channeling G-6-P towards glycolysis (catabolic use), and cytoplasmic HKII regulating glycogen formation (anabolic use). Methodology/Principal Findings To study subcellular translocation of HKs in living cells, we expressed HKI and HKII linked to YFP in CHO cells. We concomitantly recorded the effects on glucose handling using the FRET based intracellular glucose biosensor, FLIPglu-600 mM, and glycogen formation using a glycogen-associated protein, PTG, tagged with GFP. Our results demonstrate that HKI remains strongly bound to mitochondria, whereas HKII translocates between mitochondria and the cytosol in response to glucose, G-6-P and Akt, but not ATP. Metabolic measurements suggest that HKI exclusively promotes glycolysis, whereas HKII has a more complex role, promoting glycolysis when bound to mitochondria and glycogen synthesis when located in the cytosol. Glycogen breakdown upon glucose removal leads to HKII inhibition and dissociation from mitochondria, probably mediated by increases in glycogen-derived G-6-P. Conclusions/Significance These findings show that the catabolic versus anabolic fate of glucose is dynamically regulated by extracellular glucose via signaling molecules such as intracellular glucose, G-6-P and Akt through regulation and subcellular translocation of HKII. In contrast, HKI, which activity and regulation is much less sensitive to these factors, is mainly committed to glycolysis. This may be an

  9. Cerebral glucose metabolism in corticobasal degeneration comparison with progressive supranuclear palsy using statistical mapping analysis.

    PubMed

    Juh, Rahyeong; Pae, Chi-Un; Kim, Tae-Suk; Lee, Chang-Uk; Choe, Boyoung; Suh, Taesuk

    This study measured the cerebral glucose metabolism in patients suffering from corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP). The aim was to determine if there is a different metabolic pattern using (18)F-labeled 2-deoxyglucose ((18)F-FDG) positron emission tomography (PET). The regional cerebral glucose metabolism was examined in 8 patients diagnosed clinically with CBD (mean age 69.6 +/- 7.8 years; male/female: 5/3), 8 patients with probable PSP (mean age 67.8 +/- 4.5 years; male/female: 4/4) and 22 healthy controls. The regional cerebral glucose metabolism between the three groups was compared using statistical parametric mapping (SPM) with a voxel-by-voxel approach (p < 0.001, 200-voxel level). Compared with the normal controls, asymmetry in the regional glucose metabolism was observed in the parietal, frontal and cingulate in the CBD patients. In the PSP patients, the glucose metabolism was lower in the orbitofrontal, middle frontal, cingulate, thalamus and mid-brain than their age matched normal controls. A comparison of the two patient groups demonstrated relative hypometabolism in the thalamus, the mid-brain in the PSP patients and the parietal lobe in CBD patients. These results suggest that when making a differential diagnosis of CBD and PSP, voxel-based analysis of the (18)F-FDG PET images using a SPM might be a useful tool in clinical examinations. PMID:15936506

  10. Age differences in intercorrelations between regional cerebral metabolic rates for glucose

    SciTech Connect

    Horwitz, B.; Duara, R.; Rapoport, S.I.

    1986-01-01

    Patterns of cerebral metabolic intercorrelations were compared in the resting state in 15 healthy young men (ages 20 to 32 years) and 15 healthy elderly men (ages 64 to 83 years). Controlling for whole-brain glucose metabolism, partial correlation coefficients were determined between pairs of regional cerebral metabolic rates for glucose determined by positron emission tomography using (18F)fluorodeoxyglucose and obtained in 59 brain regions. Compared with the young men, the elderly men had fewer statistically significant correlations, with the most notable reductions observed between the parietal lobe regions, and between the parietal and frontal lobe regions. These results suggest that cerebral functional interactions are reduced in healthy elderly men.

  11. TAp63 is a master transcriptional regulator of lipid and glucose metabolism.

    PubMed

    Su, Xiaohua; Gi, Young Jin; Chakravarti, Deepavali; Chan, Io Long; Zhang, Aijun; Xia, Xuefeng; Tsai, Kenneth Y; Flores, Elsa R

    2012-10-01

    TAp63 prevents premature aging, suggesting a link to genes that regulate longevity. Further characterization of TAp63-/- mice revealed that these mice develop obesity, insulin resistance, and glucose intolerance similar to those seen in mice lacking two key metabolic regulators, Silent information regulator T1 (Sirt1) and AMPK. While the roles of Sirt1 and AMPK in metabolism have been well studied, their upstream regulators are not well understood. We found that TAp63 is important in regulating energy metabolism by accumulating in response to metabolic stress and transcriptionally activating Sirt1, AMPKα2, and LKB1, resulting in increased fatty acid synthesis and decreased fatty acid oxidation. Moreover, we found that TAp63 lowers blood glucose levels in response to metformin. Restoration of Sirt1, AMPKα2, and LKB1 in TAp63-/- mice rescued some of the metabolic defects of the TAp63-/- mice. Our study defines a role for TAp63 in metabolism and weight control. PMID:23040072

  12. Quantitative PET imaging of bone marrow glucose metabolic response to hematopoietic cytokines

    SciTech Connect

    Yao, W.J.; Hoh, C.K.; Hawkins, R.A.

    1995-05-01

    To evaluate the effects of hematopoietic cytokines on bone marrow glucose metabolism noninvasively, the authors studied serial quantitative FDG-PET images in 18 patients with metastic melanoma and normal bone marrow who were undergoing granulocyte-macrophage colony-stimulating factor (GMCSF) or macrophage colony-stimulating factor (MCSF) administration as an adjunct to chemotherapy. All patients received 14 days of cytokine therapy in three groups; four patients were treated with GMCSF (5 {mu}g/kg/d SQ), eight patients were treated with GMCSF (5 {mu}g/kg/d SQ) and monoclonal antibody (MAbR24) and six patients were treated with MCSF (80 {mu}g/kg/d IVCI) and MAbR24. Dynamic FDG-PET imaging was performed over the lower thoracic or upper lumbar spine at four time points in each patient. Baseline glucose metabolic rates in the bone marrow of these three groups of patients were similar (5.2 {plus_minus} 0.7, 4.4 {plus_minus} 0.8 and 4.8 {plus_minus} 1.2 {mu}g/min/g as mean value and standard deviations, respectively). In both GMCSF and GMCSF + R24 groups, rapid increases in bone marrow glucose metabolic rates were observed during therapy. After GMCSF was stopped, bone marrow glucose metabolic rates rapdily decreased in both groups. The glucose metabolic response in these two groups was not significantly different by pooled t-statistics (p = 0.105). In the MCSF + R24 group, the increase of glucose metabolic rate on Days 3 and 10 was 35% and 31% above baseline on the average, but was not significant. The results support the use of parametric FDG-PET imaging for noninvasive quantitation of bone marrow glucose metabolic changes to hematopoietic cytokines in vivo. 32 refs., 2 figs., 2 tabs.

  13. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    SciTech Connect

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-05-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.

  14. Program for PET image alignment: Effects on calculated differences in cerebral metabolic rates for glucose

    SciTech Connect

    Phillips, R.L.; London, E.D.; Links, J.M.; Cascella, N.G. )

    1990-12-01

    A program was developed to align positron emission tomography images from multiple studies on the same subject. The program allowed alignment of two images with a fineness of one-tenth the width of a pixel. The indications and effects of misalignment were assessed in eight subjects from a placebo-controlled double-blind crossover study on the effects of cocaine on regional cerebral metabolic rates for glucose. Visual examination of a difference image provided a sensitive and accurate tool for assessing image alignment. Image alignment within 2.8 mm was essential to reduce variability of measured cerebral metabolic rates for glucose. Misalignment by this amount introduced errors on the order of 20% in the computed metabolic rate for glucose. These errors propagate to the difference between metabolic rates for a subject measured in basal versus perturbed states.

  15. Pancreatic islet function in omega3 fatty acid-depleted rats: Glucose metabolism and nutrient-stimulated insulin release.

    PubMed

    Oguzhan, Berrin; Zhang, Ying; Louchami, Karim; Courtois, Philippe; Portois, Laurence; Chardigny, Jean-Michel; Malaisse, Willy J; Carpentier, Yvon A; Sener, Abdullah

    2006-06-01

    In order to gain information on the determinism of the perturbation of fuel homeostasis in situations characterized by a depletion in long-chain polyunsaturated omega3 fatty acids (omega3), the metabolic and hormonal status of omega3-depleted rats (second generation) was examined. When required, these rats were injected intravenously 120 min before sacrifice with a novel medium-chain triglyceride-fish oil emulsion able to provoke a rapid and sustained increase of the omega3 content in cell phospholipids. The measurement of plasma glucose, insulin, phospholipid, triglyceride, and unesterified fatty acid concentration indicated modest insulin resistance in the omega3-depleted rats. The plasma triglyceride and phospholipid concentrations were decreased in the omega3-depleted rats with abnormally low contribution of omega3 in both circulating and pancreatic islet lipids. The protein, insulin, and lipid content of the islets, as well as their intracellular and extracellular spaces, were little affected in the omega3-depleted rats. The metabolism of D-glucose in the islets of omega3-depleted rats was characterized by a lesser increase in D-[5-3H]glucose utilization and D-[U-14C]glucose oxidation in response to a given rise in hexose concentration and an abnormally low ratio between D-glucose oxidation and utilization. These abnormalities could be linked to an increased metabolism of endogenous fatty acids with resulting alteration of glucokinase kinetics. The release of insulin evoked by D-glucose, at a close-to-physiological concentration (8.3 mM), was increased in the omega3-depleted rats, this being considered as consistent with their insulin resistance. Relative to such a release, that evoked by a further rise in D-glucose concentration or by non-glucidic nutrients was abnormally high in omega3-depleted rats, and restored to a normal level after of the intravenous injection of the omega3-rich medium-chain triglyceride-fish oil emulsion. Because the latter procedure

  16. Glucose consumption of inflammatory cells masks metabolic deficits in the brain

    PubMed Central

    Backes, Heiko; Walberer, Maureen; Ladwig, Anne; Rueger, Maria A.; Neumaier, Bernd; Endepols, Heike; Hoehn, Mathias; Fink, Gereon R.; Schroeter, Michael; Graf, Rudolf

    2016-01-01

    Inflammatory cells such as microglia need energy to exert their functions and to maintain their cellular integrity and membrane potential. Subsequent to cerebral ischemia, inflammatory cells infiltrate tissue with limited blood flow where neurons and astrocytes died due to insufficient supply with oxygen and glucose. Using dual tracer positron emission tomography (PET), we found that concomitant with the presence of inflammatory cells, transport and consumption of glucose increased up to normal levels but returned to pathological levels as soon as inflammatory cells disappeared. Thus, inflammatory cells established sufficient glucose supply to satisfy their energy demands even in regions with insufficient supply for neurons and astrocytes to survive. Our data suggest that neurons and astrocytes died from oxygen deficiency and inflammatory cells metabolized glucose non-oxidatively in regions with residual availability. As a consequence, glucose metabolism of inflammatory cells can mask metabolic deficits in neurodegenerative diseases. We further found that the PET tracer did not bind to inflammatory cells in severely hypoperfused regions and thus only a part of the inflammation was detected. We conclude that glucose consumption of inflammatory cells should be taken into account when analyzing disease-related alterations of local cerebral metabolism. PMID:26747749

  17. Glucose consumption of inflammatory cells masks metabolic deficits in the brain.

    PubMed

    Backes, Heiko; Walberer, Maureen; Ladwig, Anne; Rueger, Maria A; Neumaier, Bernd; Endepols, Heike; Hoehn, Mathias; Fink, Gereon R; Schroeter, Michael; Graf, Rudolf

    2016-03-01

    Inflammatory cells such as microglia need energy to exert their functions and to maintain their cellular integrity and membrane potential. Subsequent to cerebral ischemia, inflammatory cells infiltrate tissue with limited blood flow where neurons and astrocytes died due to insufficient supply with oxygen and glucose. Using dual tracer positron emission tomography (PET), we found that concomitant with the presence of inflammatory cells, transport and consumption of glucose increased up to normal levels but returned to pathological levels as soon as inflammatory cells disappeared. Thus, inflammatory cells established sufficient glucose supply to satisfy their energy demands even in regions with insufficient supply for neurons and astrocytes to survive. Our data suggest that neurons and astrocytes died from oxygen deficiency and inflammatory cells metabolized glucose non-oxidatively in regions with residual availability. As a consequence, glucose metabolism of inflammatory cells can mask metabolic deficits in neurodegenerative diseases. We further found that the PET tracer did not bind to inflammatory cells in severely hypoperfused regions and thus only a part of the inflammation was detected. We conclude that glucose consumption of inflammatory cells should be taken into account when analyzing disease-related alterations of local cerebral metabolism. PMID:26747749

  18. Glucose metabolism in different regions of the rat brain under hypokinetic stress influence

    NASA Technical Reports Server (NTRS)

    Konitzer, K.; Voigt, S.

    1980-01-01

    Glucose metabolism in rats kept under long term hypokinetic stress was studied in 7 brain regions. Determination was made of the regional levels of glucose, lactate, glutamate, glutamine, aspartate, gamma-aminobutyrate and the incorporation of C-14 from plasma glucose into these metabolites, in glycogen and protein. From the content and activity data the regional glucose flux was approximated quantitatively. Under normal conditions the activity gradient cortex and frontal pole cerebellum, thalamus and mesencephalon, hypothalamus and pons and medulla is identical with that of the regional blood supply (measured with I131 serum albumin as the blood marker). Within the first days of immobilization a functional hypoxia occurred in all brain regions and the utilization of cycle amino acids for protein synthesis was strongly diminished. After the first week of stress the capillary volumes of all regions increased, aerobic glucose metabolism was enhanced (factors 1.3 - 2.0) and the incorporation of glucose C-14 via cycle amino acids into protein was considerably potentiated. The metabolic parameters normalized between the 7th and 11th week of stress. Blood supply and metabolic rate increased most in the hypothalamus.

  19. Retinal lipid and glucose metabolism dictates angiogenesis through lipid sensor Ffar1

    PubMed Central

    Joyal, Jean-Sébastien; Sun, Ye; Gantner, Marin L.; Shao, Zhuo; Evans, Lucy P.; Saba, Nicholas; Fredrick, Thomas; Burnim, Samuel; Kim, Jin Sung; Patel, Gauri; Juan, Aimee M.; Hurst, Christian G.; Hatton, Colman J.; Cui, Zhenghao; Pierce, Kerry A.; Bherer, Patrick; Aguilar, Edith; Powner, Michael B.; Vevis, Kristis; Boisvert, Michel; Fu, Zhongjie; Levy, Emile; Fruttiger, Marcus; Packard, Alan; Rezende, Flavio A.; Maranda, Bruno; Sapieha, Przemyslaw; Chen, Jing; Friedlander, Martin; Clish, Clary B.; Smith, Lois E.H.

    2016-01-01

    Tissues with high metabolic rates often use lipid as well as glucose for energy, conferring a survival advantage during feast and famine.1 Current dogma suggests that high-energy consuming photoreceptors depend on glucose.2,3 Here we show that retina also uses fatty acids (FA) β-oxidation for energy. Moreover, we identify a lipid sensor Ffar1 that curbs glucose uptake when FA are available. Very low-density lipoprotein receptor (VLDLR), expressed in tissues with a high metabolic rate, facilitates the uptake of triglyceride-derived FA.4,5 Vldlr is present in photoreceptors.6 In Vldlr−/− retinas, Ffar1, sensing high circulating lipid levels despite decreased FA uptake5, suppresses glucose transporter Glut1. This impaired glucose entry into photoreceptors results in a dual lipid/glucose fuel shortage and reduction in the Krebs cycle intermediate α-ketoglutarate (KG). Low α-KG levels promote hypoxia-induced factor-1α (Hif1a) stabilization and vascular endothelial growth factor (Vegfa) secretion by starved Vldlr−/− photoreceptors, attracting neovessels to supply fuel. These aberrant vessels invading normally avascular photoreceptors in Vldlr−/− retinas are reminiscent of retinal angiomatous proliferation (RAP), a subset of neovascular age-related macular degeneration (AMD)7, associated with high vitreous VEGF levels in humans. Dysregulated lipid and glucose photoreceptor energy metabolism may therefore be a driving force in neovascular AMD and other retinal diseases. PMID:26974308

  20. Diurnal variation in glucose and leucine metabolism in non-insulin-dependent diabetes.

    PubMed

    Umpleby, A M; Scobie, I N; Boroujerdi, M A; Carson, E R; Sonksen, P H

    1990-04-01

    Glucose and leucine metabolism were investigated in 5 poorly controlled non-insulin-dependent diabetics (NIDDM) following an i.v. injection of 3-[3H]glucose and 1-[14C]leucine in the morning and evening. In the morning glucose concentration (11.2 +/- 0.8 mmol/l) (mean +/- SEM) and production rate (14.2 +/- 1.3 mumol/min/kg) were significantly greater (P less than 0.001, P less than 0.05) and glucose metabolic clearance rate (MCR) (1.3 +/- 0.2 ml/min/kg) significantly lower (P less than 0.05) than in a group of control subjects. Glucose concentration was lower in the evening (P less than 0.05) as a result of a decrease in glucose production rate (P less than 0.05). Leucine concentration and production rate were not significantly different from normal but leucine oxidation rate was increased (P less than 0.05). There was no diurnal variation in leucine metabolism. Since leucine production is a measure of protein breakdown, the higher morning glucose production rate was not due to an increased supply of gluconeogenic precursors from protein catabolism. PMID:2190784

  1. Abomasal amino acid infusion in postpartum dairy cows: Effect on whole-body, splanchnic, and mammary glucose metabolism.

    PubMed

    Galindo, C; Larsen, M; Ouellet, D R; Maxin, G; Pellerin, D; Lapierre, H

    2015-11-01

    gradually as lactation advanced. Net portal, hepatic, splanchnic, and mammary fluxes of lactate, glycerol, and BHBA were not affected by AA infusion. Increasing the supply of AA in postpartum dairy cows elevated the WB-Ra of glucose without affecting the true liver glucose release. The greater WB-Ra of glucose with abomasal AA infusion seemed to originate mainly from greater true portal-drained viscera release of glucose. Glucose utilization by the portal-drained viscera was unaffected by abomasal AA infusion, but the exact mechanism behind the greater true portal glucose release could not be assessed in the current study. The increased mammary glucose uptake was in line with the increased milk lactose yield. In early postpartum lactation, the demand for AA seems to be so high that even with increased AA supply, cows have metabolic priorities for AA other than hepatic gluconeogenesis. PMID:26319765

  2. Glucose metabolism in sediments of a eutrophic lake: tracer analysis of uptake and product formation.

    PubMed

    King, G M; Klug, M J

    1982-12-01

    The uptake of glucose and the formation of end products from glucose catabolism have been measured for sediments of eutrophic Wintergreen Lake with a combination of tritiated and C-labeled tracers. Time course analyses of the loss of [H]glucose from sediments were used to establish rate constants for glucose uptake at natural substrate concentrations. Turnover times from these analyses were about 1 min for littoral and profundal sediments. No seasonal or site differences were noted in turnover times. Time course analyses of [U-C]glucose uptake and C-labeled end product formation indicated that glucose mass flow could not be calculated from end product formation since the specific activity of added [C]glucose was significantly diluted by pools of intracellular glucose and glucose metabolites. Mass flow could only be accurately estimated by use of rates of uptake from tracer studies. Intermediate fermentation end products included acetate (71%), propionate (15%), lactate (9%), and only minor amounts of butyrates or valerates. Addition of H(2) to sediments resulted in greater production of lactate (28%) and decreased formation of acetate (50%), but did not affect glucose turnover. Depth profiles of glucose uptake indicated that rates of uptake decreased with depth over the 0- to 18-cm interval and that glucose uptake accounted for 30 to 40% of methanogenesis in profundal sediments. PMID:16346148

  3. Microbial Regulation of Glucose Metabolism and Cell-Cycle Progression in Mammalian Colonocytes

    PubMed Central

    Donohoe, Dallas R.; Wali, Aminah; Brylawski, Bruna P.; Bultman, Scott J.

    2012-01-01

    A prodigious number of microbes inhabit the human body, especially in the lumen of the gastrointestinal (GI) tract, yet our knowledge of how they regulate metabolic pathways within our cells is rather limited. To investigate the role of microbiota in host energy metabolism, we analyzed ATP levels and AMPK phosphorylation in tissues isolated from germfree and conventionally-raised C57BL/6 mice. These experiments demonstrated that microbiota are required for energy homeostasis in the proximal colon to a greater extent than other segments of the GI tract that also harbor high densities of bacteria. This tissue-specific effect is consistent with colonocytes utilizing bacterially-produced butyrate as their primary energy source, whereas most other cell types utilize glucose. However, it was surprising that glucose did not compensate for butyrate deficiency. We measured a 3.5-fold increase in glucose uptake in germfree colonocytes. However, 13C-glucose metabolic-flux experiments and biochemical assays demonstrated that they shifted their glucose metabolism away from mitochondrial oxidation/CO2 production and toward increased glycolysis/lactate production, which does not yield enough ATPs to compensate. The mechanism responsible for this metabolic shift is diminished pyruvate dehydrogenase (PDH) levels and activity. Consistent with perturbed PDH function, the addition of butyrate, but not glucose, to germfree colonocytes ex vivo stimulated oxidative metabolism. As a result of this energetic defect, germfree colonocytes exhibited a partial block in the G1-to-S-phase transition that was rescued by a butyrate-fortified diet. These data reveal a mechanism by which microbiota regulate glucose utilization to influence energy homeostasis and cell-cycle progression of mammalian host cells. PMID:23029553

  4. Plant Oils Were Associated with Low Prevalence of Impaired Glucose Metabolism in Japanese Workers

    PubMed Central

    Kurotani, Kayo; Kochi, Takeshi; Nanri, Akiko; Tsuruoka, Hiroko; Kuwahara, Keisuke; Pham, Ngoc Minh; Kabe, Isamu; Mizoue, Tetsuya

    2013-01-01

    Fatty acid has been suggested to be involved in development of diabetes. However, its association is unclear among Japanese populations, which consume large amounts of fish rich in n-3 polyunsaturated fatty acids. The present cross-sectional study examined the association of individual dietary fatty acids and dietary fatty acid patterns with abnormal glucose metabolism among 1065 Japanese employees, aged 18–69 years. Impaired glucose metabolism is defined if a person has a history of diabetes, current use of anti-diabetic drug, fasting plasma glucose of 110 mg/dl (≥6.1 mmol/L) or greater, or hemoglobin A1C of 6.0% (≥42 mmol/mol) or greater. Dietary intake was assessed with a self-administered diet history questionnaire. Dietary fatty acid patterns were extracted by principal component analysis. Odds ratios of impaired glucose metabolism according to tertile categories of each fatty acids and dietary fatty acid patterns were estimated using logistic regression with adjustment for potential confounding variables. A higher intake of polyunsaturated fatty acid, n-6 fatty acid, linoleic acid, and oleic acid were significantly associated with a decreased prevalence of impaired glucose metabolism (P for trend = 0.03, 0.01, 0.02, and 0.04, respectively). Alpha-linolenic acid was marginally significantly associated with a decreased prevalence of impaired glucose metabolism (P for trend = 0.12). Of three fatty acid patterns identified, a higher plant oil pattern score, which characterized by high intake of alpha-linolenic acid, linoleic acid, and oleic acid, was associated with a decreased prevalence of impaired glucose metabolism (P for trend = 0.03). No association was observed for other patterns. In conclusion, plant source fatty acids might be protectively associated with development of diabetes in Japanese adults. PMID:23741386

  5. Plant oils were associated with low prevalence of impaired glucose metabolism in Japanese workers.

    PubMed

    Kurotani, Kayo; Kochi, Takeshi; Nanri, Akiko; Tsuruoka, Hiroko; Kuwahara, Keisuke; Pham, Ngoc Minh; Kabe, Isamu; Mizoue, Tetsuya

    2013-01-01

    Fatty acid has been suggested to be involved in development of diabetes. However, its association is unclear among Japanese populations, which consume large amounts of fish rich in n-3 polyunsaturated fatty acids. The present cross-sectional study examined the association of individual dietary fatty acids and dietary fatty acid patterns with abnormal glucose metabolism among 1065 Japanese employees, aged 18-69 years. Impaired glucose metabolism is defined if a person has a history of diabetes, current use of anti-diabetic drug, fasting plasma glucose of 110 mg/dl (≥6.1 mmol/L) or greater, or hemoglobin A1C of 6.0% (≥42 mmol/mol) or greater. Dietary intake was assessed with a self-administered diet history questionnaire. Dietary fatty acid patterns were extracted by principal component analysis. Odds ratios of impaired glucose metabolism according to tertile categories of each fatty acids and dietary fatty acid patterns were estimated using logistic regression with adjustment for potential confounding variables. A higher intake of polyunsaturated fatty acid, n-6 fatty acid, linoleic acid, and oleic acid were significantly associated with a decreased prevalence of impaired glucose metabolism (P for trend = 0.03, 0.01, 0.02, and 0.04, respectively). Alpha-linolenic acid was marginally significantly associated with a decreased prevalence of impaired glucose metabolism (P for trend = 0.12). Of three fatty acid patterns identified, a higher plant oil pattern score, which characterized by high intake of alpha-linolenic acid, linoleic acid, and oleic acid, was associated with a decreased prevalence of impaired glucose metabolism (P for trend = 0.03). No association was observed for other patterns. In conclusion, plant source fatty acids might be protectively associated with development of diabetes in Japanese adults. PMID:23741386

  6. The effect of vagal nerve blockade using electrical impulses on glucose metabolism in nondiabetic subjects

    PubMed Central

    Sathananthan, Matheni; Ikramuddin, Sayeed; Swain, James M; Shah, Meera; Piccinini, Francesca; Dalla Man, Chiara; Cobelli, Claudio; Rizza, Robert A; Camilleri, Michael; Vella, Adrian

    2014-01-01

    Purpose Vagal interruption causes weight loss in humans and decreases endogenous glucose production in animals. However, it is unknown if this is due to a direct effect on glucose metabolism. We sought to determine if vagal blockade using electrical impulses alters glucose metabolism in humans. Patients and methods We utilized a randomized, cross-over study design where participants were studied after 2 weeks of activation or inactivation of vagal nerve blockade (VNB). Seven obese subjects with impaired fasting glucose previously enrolled in a long-term study to examine the effect of VNB on weight took part. We used a standardized triple-tracer mixed meal to enable measurement of the rate of meal appearance, endogenous glucose production, and glucose disappearance. The 550 kcal meal was also labeled with 111In-diethylene triamine pentaacetic acid (DTPA) to measure gastrointestinal transit. Insulin action and β-cell responsivity indices were estimated using the minimal model. Results Integrated glucose, insulin, and glucagon concentrations did not differ between study days. This was also reflected in a lack of effect on β-cell responsivity and insulin action. Furthermore, fasting and postprandial endogenous glucose production, integrated meal appearance, and glucose disposal did not differ in the presence or absence of VNB. Similarly, gastric emptying and colonic transit were unchanged by VNB. Conclusion In this pilot study in nondiabetic humans, electrical vagal blockade had no acute effects on glucose metabolism, insulin secretion and action, or gastric emptying. It remains to be determined if more pronounced effects would be observed in diabetic subjects. PMID:25050073

  7. Simultaneous utilization of glucose and gluconate in Penicillium chrysogenum during overflow metabolism.

    PubMed

    Schmitz, Katja; Peter, Vivien; Meinert, Sabine; Kornfeld, Georg; Hardiman, Timo; Wiechert, Wolfgang; Noack, Stephan

    2013-12-01

    The filamentous fungus Penicillium chrysogenum is one of the most important production organism for β-lactam antibiotics, especially penicillin. A specific feature of P. chrysogenum is the formation of gluconate as the primary overflow metabolite under non-limiting growth on glucose. Gluconate can be formed extracellularly by the enzyme glucose oxidase (GOD) that shows high activities under glucose excess conditions. Currently, it is assumed that under these conditions glucose is the preferred carbon substrate for P. chrysogenum and gluconate consumption first starts after glucose becomes limiting. Here, we specifically address this hypothesis by combining batch cultivation experiments on defined glucose media, time-dependent GOD activity measurements, and (13)C-tracer studies. Our data prove that both substrates are metabolized simultaneously independent from the actual glucose concentration and therefore suggest that no distinct mechanism of carbon catabolite repression exists for gluconate in P. chrysogenum. Moreover, gluconate consumption does not interfere with penicillin V production by repression of the penicillin genes. Finally, by following a model-driven approach the specific uptake rates for glucose and gluconate were quantified and found to be significantly higher for gluconate. In summary, our results show that P. chrysogenum metabolizes gluconate directly and at high rates making it an interesting alternative carbon source for production purposes. PMID:23775209

  8. Fuel metabolism in Canada geese: effects of glucagon on glucose kinetics

    PubMed Central

    Weber, Jean-Michel

    2015-01-01

    During prolonged fasting, birds must rely on glucose mobilization to maintain normoglycemia. Glucagon is known to modulate avian energy metabolism during prolonged fasting, but the metabolic effects of this hormone on long-distance migrant birds have never been investigated. Our goal was to determine whether glucagon regulates the mobilization of the main lipid and carbohydrate fuels in migrant birds. Using the Canada goose (Branta canadensis) as a model species, we looked for evidence of fuel mobilization via changes in metabolite concentrations. No changes could be found for any lipid fraction, but glucagon elicited a strong increase in glucose concentration. Therefore, we aimed to quantify the effects of this hormone on glucose kinetics using continuous infusion of 6-[3H]-d-glucose. Glucagon was found to cause a 50% increase in glucose mobilization (from 22.2 ± 2.4 μmol·kg−1·min−1 to 33.5 ± 3.3 μmol·kg−1·min−1) and, together with an unchanged rate of carbohydrate oxidation, led to a 90% increase in plasma glucose concentration. This hormone also led to a twofold increase in plasma lactate concentration. No changes in plasma lipid concentration or composition were observed. This study is the first to demonstrate how glucagon modulates glucose kinetics in a long-distance migrant bird and to quantify its rates of glucose mobilization. PMID:26108869

  9. Causes and consequences of increased glucose metabolism of cancers.

    PubMed

    Gillies, Robert J; Robey, Ian; Gatenby, Robert A

    2008-06-01

    In this review we examine the mechanisms (causes) underlying the increased glucose consumption observed in tumors within a teleological context (consequences). In other words, we will ask not only "How do cancers have high glycolysis?" but also, "Why?" We believe that the insights gained from answering the latter question support the conclusion that elevated glucose consumption is a necessary component of carcinogenesis. Specifically we propose that glycolysis is elevated because it produces acid, which provides an evolutionary advantage to cancer cells vis-à-vis normal parenchyma into which they invade. PMID:18523064

  10. HexR Controls Glucose-Responsive Genes and Central Carbon Metabolism in Neisseria meningitidis

    PubMed Central

    Antunes, Ana; Golfieri, Giacomo; Ferlicca, Francesca; Giuliani, Marzia M.; Scarlato, Vincenzo

    2015-01-01

    ABSTRACT Neisseria meningitidis, an exclusively human pathogen and the leading cause of bacterial meningitis, must adapt to different host niches during human infection. N. meningitidis can utilize a restricted range of carbon sources, including lactate, glucose, and pyruvate, whose concentrations vary in host niches. Microarray analysis of N. meningitidis grown in a chemically defined medium in the presence or absence of glucose allowed us to identify genes regulated by carbon source availability. Most such genes are implicated in energy metabolism and transport, and some are implicated in virulence. In particular, genes involved in glucose catabolism were upregulated, whereas genes involved in the tricarboxylic acid cycle were downregulated. Several genes encoding surface-exposed proteins, including the MafA adhesins and Neisseria surface protein A, were upregulated in the presence of glucose. Our microarray analysis led to the identification of a glucose-responsive hexR-like transcriptional regulator that controls genes of the central carbon metabolism of N. meningitidis in response to glucose. We characterized the HexR regulon and showed that the hexR gene is accountable for some of the glucose-responsive regulation; in vitro assays with the purified protein showed that HexR binds to the promoters of the central metabolic operons of the bacterium. Based on DNA sequence alignment of the target sites, we propose a 17-bp pseudopalindromic consensus HexR binding motif. Furthermore, N. meningitidis strains lacking hexR expression were deficient in establishing successful bacteremia in an infant rat model of infection, indicating the importance of this regulator for the survival of this pathogen in vivo. IMPORTANCE Neisseria meningitidis grows on a limited range of nutrients during infection. We analyzed the gene expression of N. meningitidis in response to glucose, the main energy source available in human blood, and we found that glucose regulates many genes

  11. NAAG peptidase as a therapeutic target: Potential for regulating the link between glucose metabolism and cognition.

    PubMed

    Baslow, Morris H

    2006-04-01

    There is a new class of CNS drugs, N-acetylaspartylglutamate (NAAG) peptidase inhibitors, that can affect a two-step, neuron-astrocyte/astrocyte-vascular endothelium, signaling mechanism. Using this homeostatic mechanism, activated neurons continuously interact with the vascular system to indicate ongoing requirements for supplies of glucose (Glc) and oxygen needed to maintain cognitive functions. These new drugs impact the first step by inhibiting NAAG peptidase, located on the astrocyte surface, that cleaves glutamate (Glu) from the neuropeptide NAAG after it has docked with the astrocyte surface metabotropic Glu receptor 3 (mGluR3). As a result, this interferes with initiation of the second step, the astrocyte-vascular endothelium signal, activation of which results in a rapid hyperemic response that increases focal availability of energy supplies. Since NAAG is liberated upon each neuron depolarization, its release is linked to the level of neuronal spiking. This insures that its mGluR3 signal function reflects current levels of neuronal stimulation, so that Glc and oxygen can be supplied in a timely manner for metabolic replacement of ATP stocks depleted during the repolarization process. The metabolism of NAAG is very complex, being a component of the only metabolic sequence in the brain requiring three major brain cell types--neurons, astrocytes and oligodendrocytes--for its successful completion. In this review, we describe the unique NAAG tricellular metabolic cycle and survey some reported actions of these new and novel drugs. We also consider their probable site and mode of action and speculate upon their therapeutic potential. PMID:16804566

  12. Experimental Identification and Quantification of Glucose Metabolism in Seven Bacterial Species†

    PubMed Central

    Fuhrer, Tobias; Fischer, Eliane; Sauer, Uwe

    2005-01-01

    The structurally conserved and ubiquitous pathways of central carbon metabolism provide building blocks and cofactors for the biosynthesis of cellular macromolecules. The relative uses of pathways and reactions, however, vary widely among species and depend upon conditions, and some are not used at all. Here we identify the network topology of glucose metabolism and its in vivo operation by quantification of intracellular carbon fluxes from 13C tracer experiments. Specifically, we investigated Agrobacterium tumefaciens, two pseudomonads, Sinorhizobium meliloti, Rhodobacter sphaeroides, Zymomonas mobilis, and Paracoccus versutus, which grow on glucose as the sole carbon source, represent fundamentally different metabolic lifestyles (aerobic, anaerobic, photoheterotrophic, and chemoheterotrophic), and are phylogenetically distinct (firmicutes, γ-proteobacteria, and α-proteobacteria). Compared to those of the model bacteria Escherichia coli and Bacillus subtilis, metabolisms of the investigated species differed significantly in several respects: (i) the Entner-Doudoroff pathway was the almost exclusive catabolic route; (ii) the pentose phosphate pathway exhibited exclusively biosynthetic functions, in many cases also requiring flux through the nonoxidative branch; (iii) all aerobes exhibited fully respiratory metabolism without significant overflow metabolism; and (iv) all aerobes used the pyruvate bypass of the malate dehydrogenase reaction to a significant extent. Exclusively, Pseudomonas fluorescens converted most glucose extracellularly to gluconate and 2-ketogluconate. Overall, the results suggest that metabolic data from model species with extensive industrial and laboratory history are not representative of microbial metabolism, at least not quantitatively. PMID:15716428

  13. Downregulation of CPPED1 expression improves glucose metabolism in vitro in adipocytes.

    PubMed

    Vaittinen, Maija; Kaminska, Dorota; Käkelä, Pirjo; Eskelinen, Matti; Kolehmainen, Marjukka; Pihlajamäki, Jussi; Uusitupa, Matti; Pulkkinen, Leena

    2013-11-01

    We have previously demonstrated that the expression of calcineurin-like phosphoesterase domain containing 1 (CPPED1) decreases in adipose tissue (AT) after weight reduction. However, the function of CPPED1 in AT is unknown. Therefore, we investigated whether the change in CPPED1 expression is connected to changes in adipocyte glucose metabolism. First, we confirmed that the expression of CPPED1 decreased after weight loss in subcutaneous AT. Second, the expression of CPPED1 did not change during adipocyte differentiation. Third, CPPED1 knockdown with small interfering RNA increased expression of genes involved in glucose metabolism (adiponectin, adiponectin receptor 1, and GLUT4) and improved insulin-stimulated glucose uptake. To conclude, CPPED1 is a novel molecule involved in AT biology, and CPPED1 is involved in glucose uptake in adipocytes. PMID:23939394

  14. Downregulation of CPPED1 Expression Improves Glucose Metabolism In Vitro in Adipocytes

    PubMed Central

    Vaittinen, Maija; Kaminska, Dorota; Käkelä, Pirjo; Eskelinen, Matti; Kolehmainen, Marjukka; Pihlajamäki, Jussi; Uusitupa, Matti; Pulkkinen, Leena

    2013-01-01

    We have previously demonstrated that the expression of calcineurin-like phosphoesterase domain containing 1 (CPPED1) decreases in adipose tissue (AT) after weight reduction. However, the function of CPPED1 in AT is unknown. Therefore, we investigated whether the change in CPPED1 expression is connected to changes in adipocyte glucose metabolism. First, we confirmed that the expression of CPPED1 decreased after weight loss in subcutaneous AT. Second, the expression of CPPED1 did not change during adipocyte differentiation. Third, CPPED1 knockdown with small interfering RNA increased expression of genes involved in glucose metabolism (adiponectin, adiponectin receptor 1, and GLUT4) and improved insulin-stimulated glucose uptake. To conclude, CPPED1 is a novel molecule involved in AT biology, and CPPED1 is involved in glucose uptake in adipocytes. PMID:23939394

  15. Neuroendocrinology: Electromagnetogenetic Control over Feeding and Glucose Metabolism.

    PubMed

    Ruud, Johan; Brüning, Jens C

    2016-06-01

    Cutting-edge experiments show a new means to control the activity of specifically genetically targeted neurons in the hypothalamus using electromagnetic force. At the flip of a switch, the system bidirectionally regulates feeding behavior and glucose homeostasis, demonstrating wireless control over deep brain regions and their strong influence over energy balance. PMID:27269725

  16. Computational model of cellular metabolic dynamics: effect of insulin on glucose disposal in human skeletal muscle

    PubMed Central

    Li, Yanjun; Solomon, Thomas P. J.; Haus, Jacob M.; Saidel, Gerald M.; Cabrera, Marco E.

    2010-01-01

    Identifying the mechanisms by which insulin regulates glucose metabolism in skeletal muscle is critical to understanding the etiology of insulin resistance and type 2 diabetes. Our knowledge of these mechanisms is limited by the difficulty of obtaining in vivo intracellular data. To quantitatively distinguish significant transport and metabolic mechanisms from limited experimental data, we developed a physiologically based, multiscale mathematical model of cellular metabolic dynamics in skeletal muscle. The model describes mass transport and metabolic processes including distinctive processes of the cytosol and mitochondria. The model simulated skeletal muscle metabolic responses to insulin corresponding to human hyperinsulinemic-euglycemic clamp studies. Insulin-mediated rate of glucose disposal was the primary model input. For model validation, simulations were compared with experimental data: intracellular metabolite concentrations and patterns of glucose disposal. Model variations were simulated to investigate three alternative mechanisms to explain insulin enhancements: Model 1 (M.1), simple mass action; M.2, insulin-mediated activation of key metabolic enzymes (i.e., hexokinase, glycogen synthase, pyruvate dehydrogenase); or M.3, parallel activation by a phenomenological insulin-mediated intracellular signal that modifies reaction rate coefficients. These simulations indicated that models M.1 and M.2 were not sufficient to explain the experimentally measured metabolic responses. However, by application of mechanism M.3, the model predicts metabolite concentration changes and glucose partitioning patterns consistent with experimental data. The reaction rate fluxes quantified by this detailed model of insulin/glucose metabolism provide information that can be used to evaluate the development of type 2 diabetes. PMID:20332360

  17. A Physiology-Based Model Describing Heterogeneity in Glucose Metabolism

    PubMed Central

    Maas, Anne H.; Rozendaal, Yvonne J. W.; van Pul, Carola; Hilbers, Peter A. J.; Cottaar, Ward J.; Haak, Harm R.; van Riel, Natal A. W.

    2014-01-01

    Background: Current diabetes education methods are costly, time-consuming, and do not actively engage the patient. Here, we describe the development and verification of the physiological model for healthy subjects that forms the basis of the Eindhoven Diabetes Education Simulator (E-DES). E-DES shall provide diabetes patients with an individualized virtual practice environment incorporating the main factors that influence glycemic control: food, exercise, and medication. Method: The physiological model consists of 4 compartments for which the inflow and outflow of glucose and insulin are calculated using 6 nonlinear coupled differential equations and 14 parameters. These parameters are estimated on 12 sets of oral glucose tolerance test (OGTT) data (226 healthy subjects) obtained from literature. The resulting parameter set is verified on 8 separate literature OGTT data sets (229 subjects). The model is considered verified if 95% of the glucose data points lie within an acceptance range of ±20% of the corresponding model value. Results: All glucose data points of the verification data sets lie within the predefined acceptance range. Physiological processes represented in the model include insulin resistance and β-cell function. Adjusting the corresponding parameters allows to describe heterogeneity in the data and shows the capabilities of this model for individualization. Conclusion: We have verified the physiological model of the E-DES for healthy subjects. Heterogeneity of the data has successfully been modeled by adjusting the 4 parameters describing insulin resistance and β-cell function. Our model will form the basis of a simulator providing individualized education on glucose control. PMID:25526760

  18. Mechanism of bile acid-regulated glucose and lipid metabolism in duodenal-jejunal bypass

    PubMed Central

    Chai, Jie; Zou, Lei; Li, Xirui; Han, Dali; Wang, Shan; Hu, Sanyuan; Guan, Jie

    2015-01-01

    Bile acid plays an important role in regulating blood glucose, lipid and energy metabolism. The present study was implemented to determine the effect of duodenal-jejunal bypass (DJB) on FXR, TGR-5expression in terminal ileum and its bile acid-related mechanism on glucose and lipid metabolism. Immunohistochemistry was used to detect relative gene or protein expression in liver and intestine. Firstly, we found that expression of FXR in liver and terminal ileum of DJB group was significantly higher than that in S-DJB group (P<0.05). In addition, DJB dramatically increased the activation of TGR-5 in the liver of rats. Furthermore, PEPCK, G6Pase, FBPase 1 and GLP-1 were up-regulated by DJB. In conclusion, these results showed that bile acid ameliorated glucose and lipid metabolism through bile acid-FXR and bile acid- TGR-5 signaling pathway. PMID:26884847

  19. Honeybee retinal glial cells transform glucose and supply the neurons with metabolic substrate

    SciTech Connect

    Tsacopoulos, M.; Evequoz-Mercier, V.; Perrottet, P.; Buchner, E.

    1988-11-01

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy(/sup 3/H)glucose convert this glucose analogue to 2-deoxy(/sup 3/H)glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O/sub 2/ and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system.

  20. Depressive symptoms linked to 1-h plasma glucose concentrations during the oral glucose tolerance test in men and women with the metabolic syndrome

    PubMed Central

    Birnbaum-Weitzman, O.; Goldberg, R.; Hurwitz, B. E.; Llabre, M. M.; Gellman, M. D.; Gutt, M.; McCalla, J. R.; Mendez, A. J.; Schneiderman, N.

    2014-01-01

    Aims The addition of the 1-h plasma glucose concentration measure from an oral glucose tolerance test to prediction models of future Type 2 diabetes has shown to significantly strengthen their predictive power. The present study examined the relationship between severity of depressive symptoms and hyperglycaemia, focusing on the 1-h glucose concentration vs. fasting and 2-h oral glucose tolerance test glucose measures. Methods Participants included 140 adults with the metabolic syndrome and without diabetes who completed a baseline psychobiological assessment and a 2-h oral glucose tolerance test, with measurements taken every 30 min. Depressive symptoms were assessed using the Beck Depression Inventory. Results Multivariate linear regression revealed that higher levels of depressive symptoms were associated with higher levels of 1-h plasma glucose concentrations after adjusting for age, gender, ethnicity, BMI, antidepressant use and high-sensitivity C-reactive protein. Results were maintained after controlling for fasting glucose as well as for indices of insulin resistance and secretion. Neither fasting nor 2-h plasma glucose concentrations were significantly associated with depressive symptoms. Conclusions Elevated depressive symptoms in persons with the metabolic syndrome were associated with greater glycaemic excursion 1-h following a glucose load that was not accounted for by differences in insulin secretory function or insulin sensitivity. Consistent with previous findings, this study highlights the value of the 1-h oral glucose tolerance test plasma glucose measurement in the relation between depressive symptoms and glucose metabolism as an indicator of metabolic abnormalities not visible when focusing on fasting and 2-h post-oral glucose tolerance test measurements alone. PMID:24344735

  1. Chlorogenic acid differentially affects postprandial glucose and glucose-dependent insulinotropic polypeptide response in rats.

    PubMed

    Tunnicliffe, Jasmine M; Eller, Lindsay K; Reimer, Raylene A; Hittel, Dustin S; Shearer, Jane

    2011-10-01

    Regular coffee consumption significantly lowers the risk of type 2 diabetes (T2D). Coffee contains thousands of compounds; however, the specific component(s) responsible for this reduced risk is unknown. Chlorogenic acids (CGA) found in brewed coffee inhibit intestinal glucose uptake in vitro. The objective of this study was to elucidate the mechanisms by which CGA acts to mediate blood glucose response in vivo. Conscious, unrestrained, male Sprague-Dawley rats were chronically catheterized and gavage-fed a standardized meal (59% carbohydrate, 25% fat, 12% protein), administered with or without CGA (120 mg·kg(-1)), in a randomized crossover design separated by a 3-day washout period. Acetaminophen was co-administered to assess the effects of CGA on gastric emptying. The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) were measured. GLP-1 response in the presence of glucose and CGA was further examined, using the human colon cell line NCI-H716. Total area under the curve (AUC) for blood glucose was significantly attenuated in rats fed CGA (p < 0.05). Despite this, no differences in plasma insulin or nonesterified fatty acids were observed, and gastric emptying was not altered. Plasma GIP response was blunted in rats fed CGA, with a lower peak concentration and AUC up to 180 min postprandially (p < 0.05). There were no changes in GLP-1 secretion in either the in vivo or in vitro study. In conclusion, CGA treatment resulted in beneficial effects on blood glucose response, with alterations seen in GIP concentrations. Given the widespread consumption and availability of coffee, CGA may be a viable prevention tool for T2D. PMID:21977912

  2. The activity of isolated snail neurons controlling locomotion is affected by glucose

    PubMed Central

    Dyakonova, Varvara; Hernádi, László; Ito, Etsuro; Dyakonova, Taisia; Zakharov, Igor; Sakharov, Dmitri

    2015-01-01

    The involvement of serotonin in mediating hunger-related changes in behavioral state has been described in many invertebrates. However, the mechanisms by which hunger signals to serotonergic cells remain unknown. We tested the hypothesis that serotonergic neurons can directly sense the concentration of glucose, a metabolic indicator of nutritional state. In the snail Lymnaea stagnalis, we demonstrate that completely isolated pedal serotonergic neurons that control locomotion changed their biophysical characteristics in response to glucose application by lowering membrane potential and decreasing the firing rate. Additionally, the excitatory response of the isolated serotonergic neurons to the neuroactive microenvironment of the pedal ganglia was significantly lowered by glucose application. Because hunger has been reported to increase the activity of select neurons and their responses to the pedal ganglia microenvironment, these responses to glucose are in accordance with the hypothesis that direct glucose signaling is involved in the mediation of the hunger-related behavioral state. PMID:27493515

  3. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides

    NASA Astrophysics Data System (ADS)

    Birsoy, Kıvanç; Possemato, Richard; Lorbeer, Franziska K.; Bayraktar, Erol C.; Thiru, Prathapan; Yucel, Burcu; Wang, Tim; Chen, Walter W.; Clish, Clary B.; Sabatini, David M.

    2014-04-01

    As the concentrations of highly consumed nutrients, particularly glucose, are generally lower in tumours than in normal tissues, cancer cells must adapt their metabolism to the tumour microenvironment. A better understanding of these adaptations might reveal cancer cell liabilities that can be exploited for therapeutic benefit. Here we developed a continuous-flow culture apparatus (Nutrostat) for maintaining proliferating cells in low-nutrient media for long periods of time, and used it to undertake competitive proliferation assays on a pooled collection of barcoded cancer cell lines cultured in low-glucose conditions. Sensitivity to low glucose varies amongst cell lines, and an RNA interference (RNAi) screen pinpointed mitochondrial oxidative phosphorylation (OXPHOS) as the major pathway required for optimal proliferation in low glucose. We found that cell lines most sensitive to low glucose are defective in the OXPHOS upregulation that is normally caused by glucose limitation as a result of either mitochondrial DNA (mtDNA) mutations in complex I genes or impaired glucose utilization. These defects predict sensitivity to biguanides, antidiabetic drugs that inhibit OXPHOS, when cancer cells are grown in low glucose or as tumour xenografts. Notably, the biguanide sensitivity of cancer cells with mtDNA mutations was reversed by ectopic expression of yeast NDI1, a ubiquinone oxidoreductase that allows bypass of complex I function. Thus, we conclude that mtDNA mutations and impaired glucose utilization are potential biomarkers for identifying tumours with increased sensitivity to OXPHOS inhibitors.

  4. Opioid effects on glucose and eicosanoid metabolism in isolated uterus of ovariectomized and non-ovariectomized restricted diet rats.

    PubMed

    Campos, M L; Casalino-Matsuda, S M; Linares, J A; Goldraij, A

    2001-09-01

    The effect of a 25-day restricted diet (50% of the normal food intake) on uterine glucose metabolism of ovariectomized (25 days) and non-ovariectomized rats, was studied. Underfeeding reduces (14)CO(2) production from U(14)C-glucose in intact animal. However, in spayed rats, results are the opposite. In intact rats receiving a low food intake, the effect of the addition to the KRB medium of various agonist opioids, was studied. Dinorphin A did not bring about any change. On the other hand, beta endorphin increased glucose metabolism. Also, the addition of Dago and Dadle increased (14)CO(2) production, while their corresponding specific blockers, beta-FNA and Naltrindole, reversed it. Ovariectomized rats subjected to food restriction are not affected by opioid agonists. In vitro morphine, like endogenous opioids, increased (14)CO(2) in intact restricted diet rats. Arachidonic acid metabolism in these rats show that underfeeding brings about a decrease in PGF(2 alpha) and PGE(2), but the addition of morphine does not alter this situation, for which eicosanoids metabolites are not related to the effect of morphine. The morphine effect was not altered by naloxone. The subcutaneous injection of morphine increased glucose metabolism in intact underfed animals, while naloxone reduced (14)CO(2) in spayed rats subjected to underfeeding. It can be concluded that uteri from ovariectomized rats receiving a restricted diet are influenced by a mechanism of upregulation related to endogenous opioids. These likely originate in other tissues, and so prevent us from seeing the morphine effect. PMID:11728161

  5. Effects of glucose metabolism during in vitro maturation on cytoplasmic maturation of mouse oocytes.

    PubMed

    Xie, Hong-Li; Wang, Yan-Bo; Jiao, Guang-Zhong; Kong, De-Ling; Li, Qing; Li, Hong; Zheng, Liang-Liang; Tan, Jing-He

    2016-01-01

    Although there are many reports on the effect of glucose metabolism on oocyte nuclear maturation, there are few studies on its effect on ooplasmic maturation. By manipulating glucose metabolism pathways using a maturation medium that could support oocyte nuclear maturation but only a limited blastocyst formation without glucose, this study determined effects of glucose metabolism pathways on ooplasmic maturation. During maturation of cumulus-oocyte-complexes (COCs) with glucose, the presence of PPP inhibitor, DHEA or glycolysis inhibitor, iodoacetate significantly decreased blastocyst rates, intraoocyte glutathione and ATP. While blastocyst rates, GSH/GSSG ratio and NADPH were higher, ROS was lower significantly in COCs matured with iodoacetate than with DHEA. Fructose-6-phosphate overcame the inhibitory effect of DHEA on PPP. During maturation of COCs with pyruvate, electron transport inhibitor, rotenone or monocarboxylate transfer inhibitor, 4-CIN significantly decreased blastocyst rates. Cumulus-denuded oocytes had a limited capacity to use glucose or lactate, but they could use pyruvate to support maturation. In conclusion, whereas glycolysis promoted ooplasmic maturation mainly by supplying energy, PPP facilitated ooplasmic maturation to a greater extent by both reducing oxidative stress and supplying energy through providing fructose-6-phosphate for glycolysis. Pyruvate was transferred by monocarboxylate transporters and utilized through mitochondrial electron transport to sustain ooplasmic maturation. PMID:26857840

  6. Three Peptides from Soy Glycinin Modulate Glucose Metabolism in Human Hepatic HepG2 Cells.

    PubMed

    Lammi, Carmen; Zanoni, Chiara; Arnoldi, Anna

    2015-01-01

    Ile-Ala-Val-Pro-Gly-Glu-Val-Ala (IAVPGEVA), Ile-Ala-Val-Pro-Thr-Gly-Val-Ala (IAVPTGVA) and Leu-Pro-Tyr-Pro (LPYP), three peptides deriving from soy glycinin hydrolysis, are known to regulate cholesterol metabolism in human hepatic HepG2 cells. We have recently demonstrated that the mechanism of action involves the activation of adenosine monophosphate-activated protein kinase (AMPK). This fact suggested a potential activity of the same peptides on glucose metabolism that prompted us to also investigate this aspect in the same cells. After treatment with IAVPGEVA, IAVPTGVA and LPYP, HepG2 cells were analyzed using a combination of molecular techniques, including western blot analysis, glucose uptake experiments and fluorescence microscopy evaluation. The results showed that these peptides are indeed able to enhance the capacity of HepG2 cells to uptake glucose, via glucose transporter 1 GLUT1 and glucose transporter 4 GLUT4 activation, through the stimulation of protein kinase B Akt and adenosine monophosphate-activated protein kinase AMPK pathways, both involved in glucose metabolism. PMID:26580610

  7. Three Peptides from Soy Glycinin Modulate Glucose Metabolism in Human Hepatic HepG2 Cells

    PubMed Central

    Lammi, Carmen; Zanoni, Chiara; Arnoldi, Anna

    2015-01-01

    Ile-Ala-Val-Pro-Gly-Glu-Val-Ala (IAVPGEVA), Ile-Ala-Val-Pro-Thr-Gly-Val-Ala (IAVPTGVA) and Leu-Pro-Tyr-Pro (LPYP), three peptides deriving from soy glycinin hydrolysis, are known to regulate cholesterol metabolism in human hepatic HepG2 cells. We have recently demonstrated that the mechanism of action involves the activation of adenosine monophosphate-activated protein kinase (AMPK). This fact suggested a potential activity of the same peptides on glucose metabolism that prompted us to also investigate this aspect in the same cells. After treatment with IAVPGEVA, IAVPTGVA and LPYP, HepG2 cells were analyzed using a combination of molecular techniques, including western blot analysis, glucose uptake experiments and fluorescence microscopy evaluation. The results showed that these peptides are indeed able to enhance the capacity of HepG2 cells to uptake glucose, via glucose transporter 1 GLUT1 and glucose transporter 4 GLUT4 activation, through the stimulation of protein kinase B Akt and adenosine monophosphate-activated protein kinase AMPK pathways, both involved in glucose metabolism. PMID:26580610

  8. Glucose metabolism during fasting is altered in experimental porphobilinogen deaminase deficiency.

    PubMed

    Collantes, María; Serrano-Mendioroz, Irantzu; Benito, Marina; Molinet-Dronda, Francisco; Delgado, Mercedes; Vinaixa, María; Sampedro, Ana; Enríquez de Salamanca, Rafael; Prieto, Elena; Pozo, Miguel A; Peñuelas, Iván; Corrales, Fernando J; Barajas, Miguel; Fontanellas, Antonio

    2016-04-01

    Porphobilinogen deaminase (PBGD) haploinsufficiency (acute intermittent porphyria, AIP) is characterized by neurovisceral attacks when hepatic heme synthesis is activated by endogenous or environmental factors including fasting. While the molecular mechanisms underlying the nutritional regulation of hepatic heme synthesis have been described, glucose homeostasis during fasting is poorly understood in porphyria. Our study aimed to analyse glucose homeostasis and hepatic carbohydrate metabolism during fasting in PBGD-deficient mice. To determine the contribution of hepatic PBGD deficiency to carbohydrate metabolism, AIP mice injected with a PBGD-liver gene delivery vector were included. After a 14 h fasting period, serum and liver metabolomics analyses showed that wild-type mice stimulated hepatic glycogen degradation to maintain glucose homeostasis while AIP livers activated gluconeogenesis and ketogenesis due to their inability to use stored glycogen. The serum of fasted AIP mice showed increased concentrations of insulin and reduced glucagon levels. Specific over-expression of the PBGD protein in the liver tended to normalize circulating insulin and glucagon levels, stimulated hepatic glycogen catabolism and blocked ketone body production. Reduced glucose uptake was observed in the primary somatosensorial brain cortex of fasted AIP mice, which could be reversed by PBGD-liver gene delivery. In conclusion, AIP mice showed a different response to fasting as measured by altered carbohydrate metabolism in the liver and modified glucose consumption in the brain cortex. Glucose homeostasis in fasted AIP mice was efficiently normalized after restoration of PBGD gene expression in the liver. PMID:26908609

  9. Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death

    PubMed Central

    Graham, Nicholas A; Tahmasian, Martik; Kohli, Bitika; Komisopoulou, Evangelia; Zhu, Maggie; Vivanco, Igor; Teitell, Michael A; Wu, Hong; Ribas, Antoni; Lo, Roger S; Mellinghoff, Ingo K; Mischel, Paul S; Graeber, Thomas G

    2012-01-01

    The altered metabolism of cancer can render cells dependent on the availability of metabolic substrates for viability. Investigating the signaling mechanisms underlying cell death in cells dependent upon glucose for survival, we demonstrate that glucose withdrawal rapidly induces supra-physiological levels of phospho-tyrosine signaling, even in cells expressing constitutively active tyrosine kinases. Using unbiased mass spectrometry-based phospho-proteomics, we show that glucose withdrawal initiates a unique signature of phospho-tyrosine activation that is associated with focal adhesions. Building upon this observation, we demonstrate that glucose withdrawal activates a positive feedback loop involving generation of reactive oxygen species (ROS) by NADPH oxidase and mitochondria, inhibition of protein tyrosine phosphatases by oxidation, and increased tyrosine kinase signaling. In cells dependent on glucose for survival, glucose withdrawal-induced ROS generation and tyrosine kinase signaling synergize to amplify ROS levels, ultimately resulting in ROS-mediated cell death. Taken together, these findings illustrate the systems-level cross-talk between metabolism and signaling in the maintenance of cancer cell homeostasis. PMID:22735335

  10. Intermittent administration of brain-derived neurotrophic factor ameliorates glucose metabolism in obese diabetic mice.

    PubMed

    Ono, M; Itakura, Y; Nonomura, T; Nakagawa, T; Nakayama, C; Taiji, M; Noguchi, H

    2000-01-01

    We have previously shown that brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, interacts with the endocrine system in obese diabetic mice, and systemic peripheral administration of BDNF regulates glucose metabolism in this model. Results from the present study show that the hypoglycemic effect induced by 2 weeks' daily administration of BDNF (20 mg/kg/d) to db/db mice lasts for several weeks after treatment cessation, irrespective of food reduction. On the other hand, the antidiabetic agent, metformin had no lasting effect. This duration of the BDNF hypoglycemic action prompted us to examine the efficacy of BDNF intermittent administration on glucose metabolism. BDNF administered once or twice per week (70 mg/kg/wk) to db/db mice for 3 weeks significantly reduced blood glucose concentrations and hemoglobin A(1c), (HbA(1c)) as compared with ad libitum-fed phosphate-buffered saline (PBS)-treated and pair-fed PBS-treated groups. This suggests that BDNF not only temporarily reduced blood glucose concentrations but also ameliorated systemic glucose balance in this obese diabetic mouse model during the experimental period. Our results indicate that BDNF could be a novel hypoglycemic agent with an exceptional ability to normalize glucose metabolism even with treatment as infrequently as once per week. PMID:10647076

  11. Effects of glucose metabolism during in vitro maturation on cytoplasmic maturation of mouse oocytes

    PubMed Central

    Xie, Hong-Li; Wang, Yan-Bo; Jiao, Guang-Zhong; Kong, De-Ling; Li, Qing; Li, Hong; Zheng, Liang-Liang; Tan, Jing-He

    2016-01-01

    Although there are many reports on the effect of glucose metabolism on oocyte nuclear maturation, there are few studies on its effect on ooplasmic maturation. By manipulating glucose metabolism pathways using a maturation medium that could support oocyte nuclear maturation but only a limited blastocyst formation without glucose, this study determined effects of glucose metabolism pathways on ooplasmic maturation. During maturation of cumulus-oocyte-complexes (COCs) with glucose, the presence of PPP inhibitor, DHEA or glycolysis inhibitor, iodoacetate significantly decreased blastocyst rates, intraoocyte glutathione and ATP. While blastocyst rates, GSH/GSSG ratio and NADPH were higher, ROS was lower significantly in COCs matured with iodoacetate than with DHEA. Fructose-6-phosphate overcame the inhibitory effect of DHEA on PPP. During maturation of COCs with pyruvate, electron transport inhibitor, rotenone or monocarboxylate transfer inhibitor, 4-CIN significantly decreased blastocyst rates. Cumulus-denuded oocytes had a limited capacity to use glucose or lactate, but they could use pyruvate to support maturation. In conclusion, whereas glycolysis promoted ooplasmic maturation mainly by supplying energy, PPP facilitated ooplasmic maturation to a greater extent by both reducing oxidative stress and supplying energy through providing fructose-6-phosphate for glycolysis. Pyruvate was transferred by monocarboxylate transporters and utilized through mitochondrial electron transport to sustain ooplasmic maturation. PMID:26857840

  12. Metabolic Networks and Metabolites Underlie Associations Between Maternal Glucose During Pregnancy and Newborn Size at Birth.

    PubMed

    Scholtens, Denise M; Bain, James R; Reisetter, Anna C; Muehlbauer, Michael J; Nodzenski, Michael; Stevens, Robert D; Ilkayeva, Olga; Lowe, Lynn P; Metzger, Boyd E; Newgard, Christopher B; Lowe, William L

    2016-07-01

    Maternal metabolites and metabolic networks underlying associations between maternal glucose during pregnancy and newborn birth weight and adiposity demand fuller characterization. We performed targeted and nontargeted gas chromatography/mass spectrometry metabolomics on maternal serum collected at fasting and 1 h following glucose beverage consumption during an oral glucose tolerance test (OGTT) for 400 northern European mothers at ∼28 weeks' gestation in the Hyperglycemia and Adverse Pregnancy Outcome Study. Amino acids, fatty acids, acylcarnitines, and products of lipid metabolism decreased and triglycerides increased during the OGTT. Analyses of individual metabolites indicated limited maternal glucose associations at fasting, but broader associations, including amino acids, fatty acids, carbohydrates, and lipids, were found at 1 h. Network analyses modeling metabolite correlations provided context for individual metabolite associations and elucidated collective associations of multiple classes of metabolic fuels with newborn size and adiposity, including acylcarnitines, fatty acids, carbohydrates, and organic acids. Random forest analyses indicated an improved ability to predict newborn size outcomes by using maternal metabolomics data beyond traditional risk factors, including maternal glucose. Broad-scale association of fuel metabolites with maternal glucose is evident during pregnancy, with unique maternal metabolites potentially contributing specifically to newborn birth weight and adiposity. PMID:27207545

  13. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B-cells

    PubMed Central

    Le, Anne; Lane, Andrew N.; Hamaker, Max; Bose, Sminu; Gouw, Arvin; Barbi, Joseph; Tsukamoto, Takashi; Rojas, Camilio J.; Slusher, Barbara S.; Zhang, Haixia; Zimmerman, Lisa J.; Liebler, Daniel C.; Slebos, Robbert J.C.; Lorkiewicz, Pawel K.; Higashi, Richard M.; Fan, Teresa W. M.; Dang, Chi V.

    2012-01-01

    Summary Because MYC plays a causal role in many human cancers, including those with hypoxic and nutrient-poor tumor microenvironments, we have determined the metabolic responses of a MYC-inducible human Burkitt lymphoma model P493 cell line to aerobic and hypoxic conditions, and to glucose deprivation, using Stable Isotope Resolved Metabolomics. Using [U-13C]-glucose as the tracer, both glucose consumption and lactate production were increased by MYC expression and hypoxia. Using [U-13C,15N]-glutamine as the tracer, glutamine import and metabolism through the TCA cycle persisted under hypoxia, and glutamine contributed significantly to citrate carbons. Under glucose deprivation, glutamine-derived fumarate, malate, and citrate were significantly increased. Their 13C labeling patterns demonstrate an alternative energy-generating glutaminolysis pathway involving a glucose-independent TCA cycle. The essential role of glutamine metabolism in cell survival and proliferation under hypoxia and glucose deficiency, makes them susceptible to the glutaminase inhibitor BPTES, and hence could be targeted for cancer therapy. PMID:22225880

  14. Brain metabolism is significantly impaired at blood glucose below 6 mM and brain glucose below 1 mM in patients with severe traumatic brain injury

    PubMed Central

    2010-01-01

    Introduction The optimal blood glucose target following severe traumatic brain injury (TBI) must be defined. Cerebral microdialysis was used to investigate the influence of arterial blood and brain glucose on cerebral glucose, lactate, pyruvate, glutamate, and calculated indices of downstream metabolism. Methods In twenty TBI patients, microdialysis catheters inserted in the edematous frontal lobe were dialyzed at 1 μl/min, collecting samples at 60 minute intervals. Occult metabolic alterations were determined by calculating the lactate- pyruvate (L/P), lactate- glucose (L/Glc), and lactate- glutamate (L/Glu) ratios. Results Brain glucose was influenced by arterial blood glucose. Elevated L/P and L/Glc were significantly reduced at brain glucose above 1 mM, reaching lowest values at blood and brain glucose levels between 6-9 mM (P < 0.001). Lowest cerebral glutamate was measured at brain glucose 3-5 mM with a significant increase at brain glucose below 3 mM and above 6 mM. While L/Glu was significantly increased at low brain glucose levels, it was significantly decreased at brain glucose above 5 mM (P < 0.001). Insulin administration increased brain glutamate at low brain glucose, but prevented increase in L/Glu. Conclusions Arterial blood glucose levels appear to be optimal at 6-9 mM. While low brain glucose levels below 1 mM are detrimental, elevated brain glucose are to be targeted despite increased brain glutamate at brain glucose >5 mM. Pathogenity of elevated glutamate appears to be relativized by L/Glu and suggests to exclude insulin- induced brain injury. PMID:20141631

  15. Factors Affecting Blood Glucose Monitoring: Sources of Errors in Measurement

    PubMed Central

    Ginsberg, Barry H.

    2009-01-01

    Glucose monitoring has become an integral part of diabetes care but has some limitations in accuracy. Accuracy may be limited due to strip manufacturing variances, strip storage, and aging. They may also be due to limitations on the environment such as temperature or altitude or to patient factors such as improper coding, incorrect hand washing, altered hematocrit, or naturally occurring interfering substances. Finally, exogenous interfering substances may contribute errors to the system evaluation of blood glucose. In this review, I discuss the measurement of error in blood glucose, the sources of error, and their mechanism and potential solutions to improve accuracy in the hands of the patient. I also discuss the clinical measurement of system accuracy and methods of judging the suitability of clinical trials and finally some methods of overcoming the inaccuracies. I have included comments about additional information or education that could be done today by manufacturers in the appropriate sections. Areas that require additional work are discussed in the final section. PMID:20144340

  16. Energizing eukaryotic cell-free protein synthesis with glucose metabolism.

    PubMed

    Anderson, Mark J; Stark, Jessica C; Hodgman, C Eric; Jewett, Michael C

    2015-07-01

    Eukaryotic cell-free protein synthesis (CFPS) is limited by the dependence on costly high-energy phosphate compounds and exogenous enzymes to power protein synthesis (e.g., creatine phosphate and creatine kinase, CrP/CrK). Here, we report the ability to use glucose as a secondary energy substrate to regenerate ATP in a Saccharomyces cerevisiae crude extract CFPS platform. We observed synthesis of 3.64±0.35 μg mL(-1) active luciferase in batch reactions with 16 mM glucose and 25 mM phosphate, resulting in a 16% increase in relative protein yield (μg protein/$ reagents) compared to the CrP/CrK system. Our demonstration provides the foundation for development of cost-effective eukaryotic CFPS platforms. PMID:26054976

  17. [Pathogenetic correction of metabolic disturbances in chronic liver affections].

    PubMed

    Romantsov, M G; Petrov, A Iu; Aleksandrova, L N; Sukhanov, D S; Kovalenko, A L

    2012-01-01

    The available drugs for the treatment of chronic liver affections (the adequate model is chronic hepatitis C) include agents of metabolic therapy, whose efficacy is not always enough, that required the search for original mitochondrial substrates on the basis of succinate. Such agents were composed as a pharmaceutical group named "Substrates of Energetic Metabolism" or "Substrate Antihypoxants". The review presents the description of the pharmacological effects of remaxole and cytoflavin, evident from lower levels of active metabolites of oxygen that increases the clinical efficacy of the therapy. Their role in the metabolic reactions in chronic liver affections is exclusive and rather actual. PMID:23700935

  18. Diabetes and Glucose Metabolism in Thalassemia Major: An Update.

    PubMed

    De Sanctis, Vincenzo; Soliman, Ashraf T; Elsedfy, Heba; Pepe, Alessia; Kattamis, Christos; El Kholy, Mohamed; Yassin, Mohamed

    2016-04-01

    In patients with TM, uncontrolled iron overload has serious clinical consequences with considerable morbidity and mortality. Complications include liver damage, cardiac disease and endocrine dysfunction. Diabetes is an important complication of TM. The mechanisms of abnormal glucose homeostasis are complex and multifactorial. This review updates the current knowledge about glycemic abnormalities in TM patients and directs the attention to an early diagnosis and proper management. PMID:26697756

  19. Alterations of hippocampal glucose metabolism by even versus uneven medium chain triglycerides

    PubMed Central

    McDonald, Tanya S; Tan, Kah Ni; Hodson, Mark P; Borges, Karin

    2014-01-01

    Medium chain triglycerides (MCTs) are used to treat neurologic disorders with metabolic impairments, including childhood epilepsy and early Alzheimer's disease. However, the metabolic effects of MCTs in the brain are still unclear. Here, we studied the effects of feeding even and uneven MCTs on brain glucose metabolism in the mouse. Adult mice were fed 35% (calories) of trioctanoin or triheptanoin (the triglycerides of octanoate or heptanoate, respectively) or a matching control diet for 3 weeks. Enzymatic assays and targeted metabolomics by liquid chromatography tandem mass spectrometry were used to quantify metabolites in extracts from the hippocampal formations (HFs). Both oils increased the levels of β-hydroxybutyrate, but no other significant metabolic alterations were observed after triheptanoin feeding. The levels of glucose 6-phosphate and fructose 6-phosphate were increased in the HF of mice fed trioctanoin, whereas levels of metabolites further downstream in the glycolytic pathway and the pentose phosphate pathway were reduced. This indicates that trioctanoin reduces glucose utilization because of a decrease in phosphofructokinase activity. Trioctanoin and triheptanoin showed similar anticonvulsant effects in the 6 Hz seizure model, but it remains unknown to what extent the anticonvulsant mechanism(s) are shared. In conclusion, triheptanoin unlike trioctanoin appears to not alter glucose metabolism in the healthy brain. PMID:24169853

  20. Alterations of hippocampal glucose metabolism by even versus uneven medium chain triglycerides.

    PubMed

    McDonald, Tanya S; Tan, Kah Ni; Hodson, Mark P; Borges, Karin

    2014-01-01

    Medium chain triglycerides (MCTs) are used to treat neurologic disorders with metabolic impairments, including childhood epilepsy and early Alzheimer's disease. However, the metabolic effects of MCTs in the brain are still unclear. Here, we studied the effects of feeding even and uneven MCTs on brain glucose metabolism in the mouse. Adult mice were fed 35% (calories) of trioctanoin or triheptanoin (the triglycerides of octanoate or heptanoate, respectively) or a matching control diet for 3 weeks. Enzymatic assays and targeted metabolomics by liquid chromatography tandem mass spectrometry were used to quantify metabolites in extracts from the hippocampal formations (HFs). Both oils increased the levels of β-hydroxybutyrate, but no other significant metabolic alterations were observed after triheptanoin feeding. The levels of glucose 6-phosphate and fructose 6-phosphate were increased in the HF of mice fed trioctanoin, whereas levels of metabolites further downstream in the glycolytic pathway and the pentose phosphate pathway were reduced. This indicates that trioctanoin reduces glucose utilization because of a decrease in phosphofructokinase activity. Trioctanoin and triheptanoin showed similar anticonvulsant effects in the 6 Hz seizure model, but it remains unknown to what extent the anticonvulsant mechanism(s) are shared. In conclusion, triheptanoin unlike trioctanoin appears to not alter glucose metabolism in the healthy brain. PMID:24169853

  1. MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids

    PubMed Central

    Fu, Xianghui; Dong, Bingning; Tian, Yan; Lefebvre, Philippe; Meng, Zhipeng; Wang, Xichun; Pattou, François; Han, Weidong; Wang, Xiaoqiong; Lou, Fang; Jove, Richard; Staels, Bart; Moore, David D.; Huang, Wendong

    2015-01-01

    Type 2 diabetes (T2D) is characterized by insulin resistance and increased hepatic glucose production, yet the molecular mechanisms underlying these abnormalities are poorly understood. MicroRNAs (miRs) are a class of small, noncoding RNAs that have been implicated in the regulation of human diseases, including T2D. miR-26a is known to play a critical role in tumorigenesis; however, its function in cellular metabolism remains unknown. Here, we determined that miR-26a regulates insulin signaling and metabolism of glucose and lipids. Compared with lean individuals, overweight humans had decreased expression of miR-26a in the liver. Moreover, miR-26 was downregulated in 2 obese mouse models compared with control animals. Global or liver-specific overexpression of miR-26a in mice fed a high-fat diet improved insulin sensitivity, decreased hepatic glucose production, and decreased fatty acid synthesis, thereby preventing obesity-induced metabolic complications. Conversely, silencing of endogenous miR-26a in conventional diet–fed mice impaired insulin sensitivity, enhanced glucose production, and increased fatty acid synthesis. miR-26a targeted several key regulators of hepatic metabolism and insulin signaling. These findings reveal miR-26a as a regulator of liver metabolism and suggest miR-26a should be further explored as a potential target for the treatment of T2D. PMID:25961460

  2. Return of the glucoreceptor: Glucose activates the glucose-sensing receptor T1R3 and facilitates metabolism in pancreatic β-cells.

    PubMed

    Kojima, Itaru; Nakagawa, Yuko; Ohtsu, Yoshiaki; Hamano, Kunihisa; Medina, Johan; Nagasawa, Masahiro

    2015-05-01

    Subunits of the sweet taste receptor, namely T1R2 and T1R3, are expressed in mouse pancreatic islets. Quantitatively, the expression of messenger ribonucleic acid for T1R2 is much lower than that of T1R3, and immunoreactive T1R2 is in fact undetectable. Presumably, a homodimer of T1R3 could function as a signaling receptor. Activation of this receptor by adding an artificial sweetener, sucralose, leads to an increase in intracellular adenosine triphosphate ([ATP]c). This increase in [ATP]c is observed in the absence of ambient glucose. Sucralose also augments elevation of [ATP]c induced by methylsuccinate, a substrate for mitochondria. Consequently, activation of T1R3 promotes metabolism in mitochondria and increases [ATP]c. 3-O-Methylglucose, a non-metabolizable analog of glucose, also increases [ATP]c. Conversely, knockdown of T1R3 attenuates elevation of [ATP]c induced by glucose. Hence, glucose promotes its own metabolism by activating T1R3 and augmenting ATP production. Collectively, a homodimer of T1R3 functions as a cell surface glucose-sensing receptor and participates in the action of glucose on insulin secretion. The glucose-sensing receptor T1R3 might be the putative glucoreceptor proposed decades ago by Niki et al. The glucose-sensing receptor is involved in the action of glucose and modulates glucose metabolism in pancreatic β-cells. PMID:25969708

  3. Return of the glucoreceptor: Glucose activates the glucose-sensing receptor T1R3 and facilitates metabolism in pancreatic β-cells

    PubMed Central

    Kojima, Itaru; Nakagawa, Yuko; Ohtsu, Yoshiaki; Hamano, Kunihisa; Medina, Johan; Nagasawa, Masahiro

    2015-01-01

    Subunits of the sweet taste receptor, namely T1R2 and T1R3, are expressed in mouse pancreatic islets. Quantitatively, the expression of messenger ribonucleic acid for T1R2 is much lower than that of T1R3, and immunoreactive T1R2 is in fact undetectable. Presumably, a homodimer of T1R3 could function as a signaling receptor. Activation of this receptor by adding an artificial sweetener, sucralose, leads to an increase in intracellular adenosine triphosphate ([ATP]c). This increase in [ATP]c is observed in the absence of ambient glucose. Sucralose also augments elevation of [ATP]c induced by methylsuccinate, a substrate for mitochondria. Consequently, activation of T1R3 promotes metabolism in mitochondria and increases [ATP]c. 3-O-Methylglucose, a non-metabolizable analog of glucose, also increases [ATP]c. Conversely, knockdown of T1R3 attenuates elevation of [ATP]c induced by glucose. Hence, glucose promotes its own metabolism by activating T1R3 and augmenting ATP production. Collectively, a homodimer of T1R3 functions as a cell surface glucose-sensing receptor and participates in the action of glucose on insulin secretion. The glucose-sensing receptor T1R3 might be the putative glucoreceptor proposed decades ago by Niki et al. The glucose-sensing receptor is involved in the action of glucose and modulates glucose metabolism in pancreatic β-cells. PMID:25969708

  4. Gut microbiome phenotypes driven by host genetics affect arsenic metabolism.

    PubMed

    Lu, Kun; Mahbub, Ridwan; Cable, Peter Hans; Ru, Hongyu; Parry, Nicola M A; Bodnar, Wanda M; Wishnok, John S; Styblo, Miroslav; Swenberg, James A; Fox, James G; Tannenbaum, Steven R

    2014-02-17

    Large individual differences in susceptibility to arsenic-induced diseases are well-documented and frequently associated with different patterns of arsenic metabolism. In this context, the role of the gut microbiome in directly metabolizing arsenic and triggering systemic responses in diverse organs raises the possibility that gut microbiome phenotypes affect the spectrum of metabolized arsenic species. However, it remains unclear how host genetics and the gut microbiome interact to affect the biotransformation of arsenic. Using an integrated approach combining 16S rRNA gene sequencing and HPLC-ICP-MS arsenic speciation, we demonstrate that IL-10 gene knockout leads to a significant taxonomic change of the gut microbiome, which in turn substantially affects arsenic metabolism. PMID:24490651

  5. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    SciTech Connect

    Buchsbaum, M.S.; Wu, J.; Hazlett, E.; Sicotte, N.; Bunney, W.E. Jr. ); Gillin, J.C. )

    1989-01-01

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep.

  6. DEPTOR in POMC neurons affects liver metabolism but is dispensable for the regulation of energy balance

    PubMed Central

    Caron, Alexandre; Labbé, Sébastien M.; Mouchiroud, Mathilde; Huard, Renaud; Richard, Denis

    2016-01-01

    We have recently demonstrated that specific overexpression of DEP-domain containing mTOR-interacting protein (DEPTOR) in the mediobasal hypothalamus (MBH) protects mice against high-fat diet-induced obesity, revealing DEPTOR as a significant contributor to energy balance regulation. On the basis of evidence that DEPTOR is expressed in the proopiomelanocortin (POMC) neurons of the MBH, the present study aimed to investigate whether these neurons mediate the metabolic effects of DEPTOR. Here, we report that specific DEPTOR overexpression in POMC neurons does not recapitulate any of the phenotypes observed when the protein was overexpressed in the MBH. Unlike the previous model, mice overexpressing DEPTOR only in POMC neurons 1) did not show differences in feeding behavior, 2) did not exhibit changes in locomotion activity and oxygen consumption, 3) did not show an improvement in systemic glucose metabolism, and 4) were not resistant to high-fat diet-induced obesity. These results support the idea that other neuronal populations are responsible for these phenotypes. Nonetheless, we observed a mild elevation in fasting blood glucose, insulin resistance, and alterations in liver glucose and lipid homeostasis in mice overexpressing DEPTOR in POMC neurons. Taken together, these results show that DEPTOR overexpression in POMC neurons does not affect energy balance regulation but could modulate metabolism through a brain-liver connection. PMID:27097662

  7. DEPTOR in POMC neurons affects liver metabolism but is dispensable for the regulation of energy balance.

    PubMed

    Caron, Alexandre; Labbé, Sébastien M; Mouchiroud, Mathilde; Huard, Renaud; Richard, Denis; Laplante, Mathieu

    2016-06-01

    We have recently demonstrated that specific overexpression of DEP-domain containing mTOR-interacting protein (DEPTOR) in the mediobasal hypothalamus (MBH) protects mice against high-fat diet-induced obesity, revealing DEPTOR as a significant contributor to energy balance regulation. On the basis of evidence that DEPTOR is expressed in the proopiomelanocortin (POMC) neurons of the MBH, the present study aimed to investigate whether these neurons mediate the metabolic effects of DEPTOR. Here, we report that specific DEPTOR overexpression in POMC neurons does not recapitulate any of the phenotypes observed when the protein was overexpressed in the MBH. Unlike the previous model, mice overexpressing DEPTOR only in POMC neurons 1) did not show differences in feeding behavior, 2) did not exhibit changes in locomotion activity and oxygen consumption, 3) did not show an improvement in systemic glucose metabolism, and 4) were not resistant to high-fat diet-induced obesity. These results support the idea that other neuronal populations are responsible for these phenotypes. Nonetheless, we observed a mild elevation in fasting blood glucose, insulin resistance, and alterations in liver glucose and lipid homeostasis in mice overexpressing DEPTOR in POMC neurons. Taken together, these results show that DEPTOR overexpression in POMC neurons does not affect energy balance regulation but could modulate metabolism through a brain-liver connection. PMID:27097662

  8. Energized by love: thinking about romantic relationships increases positive affect and blood glucose levels.

    PubMed

    Stanton, Sarah C E; Campbell, Lorne; Loving, Timothy J

    2014-10-01

    We assessed the impact of thinking of a current romantic partner on acute blood glucose responses and positive affect over a short period of time. Participants in romantic relationships were randomly assigned to reflect on their partner, an opposite-sex friend, or their morning routine. Blood glucose levels were assessed prior to reflection, as well as at 10 and 25 min postreflection. Results revealed that individuals in the routine and friend conditions exhibited a decline in glucose over time, whereas individuals in the partner condition did not exhibit this decline (rather, a slight increase) in glucose over time. Reported positive affect following reflection was positively associated with increases in glucose, but only for individuals who reflected on their partner, suggesting this physiological response reflects eustress. These findings add to the literature on eustress in relationships and have implications for relationship processes. PMID:24924647

  9. Noninvasive measurement of regional myocardial glucose metabolism by positron emission computed tomography. [Dogs

    SciTech Connect

    Schelbert, H.R.; Phelps, M.E.

    1980-06-01

    While the results of regional myocardial glucose metabolism measurements using positron emission computed tomography (/sup 13/N-ammonia) are promising, their utility and value remains to be determined in man. If this technique can be applied to patients with acute myocardial ischemia or infarction it may permit delineation of regional myocardial segments with altered, yet still active metabolism. Further, it may become possible to evaluate the effects of interventions designed to salvage reversibly injured myocardium by this technique.

  10. Accumulation of d-glucose from pentoses by metabolically engineered Escherichia coli.

    PubMed

    Xia, Tian; Han, Qi; Costanzo, William V; Zhu, Yixuan; Urbauer, Jeffrey L; Eiteman, Mark A

    2015-05-15

    Escherichia coli that is unable to metabolize d-glucose (with knockouts in ptsG, manZ, and glk) accumulates a small amount of d-glucose (yield of about 0.01 g/g) during growth on the pentoses d-xylose or l-arabinose as a sole carbon source. Additional knockouts in the zwf and pfkA genes, encoding, respectively, d-glucose-6-phosphate 1-dehydrogenase and 6-phosphofructokinase I (E. coli MEC143), increased accumulation to greater than 1 g/liter d-glucose and 100 mg/liter d-mannose from 5 g/liter d-xylose or l-arabinose. Knockouts of other genes associated with interconversions of d-glucose-phosphates demonstrate that d-glucose is formed primarily by the dephosphorylation of d-glucose-6-phosphate. Under controlled batch conditions with 20 g/liter d-xylose, MEC143 generated 4.4 g/liter d-glucose and 0.6 g/liter d-mannose. The results establish a direct link between pentoses and hexoses and provide a novel strategy to increase carbon backbone length from five to six carbons by directing flux through the pentose phosphate pathway. PMID:25746993

  11. Accumulation of d-Glucose from Pentoses by Metabolically Engineered Escherichia coli

    PubMed Central

    Xia, Tian; Han, Qi; Costanzo, William V.; Zhu, Yixuan; Urbauer, Jeffrey L.

    2015-01-01

    Escherichia coli that is unable to metabolize d-glucose (with knockouts in ptsG, manZ, and glk) accumulates a small amount of d-glucose (yield of about 0.01 g/g) during growth on the pentoses d-xylose or l-arabinose as a sole carbon source. Additional knockouts in the zwf and pfkA genes, encoding, respectively, d-glucose-6-phosphate 1-dehydrogenase and 6-phosphofructokinase I (E. coli MEC143), increased accumulation to greater than 1 g/liter d-glucose and 100 mg/liter d-mannose from 5 g/liter d-xylose or l-arabinose. Knockouts of other genes associated with interconversions of d-glucose-phosphates demonstrate that d-glucose is formed primarily by the dephosphorylation of d-glucose-6-phosphate. Under controlled batch conditions with 20 g/liter d-xylose, MEC143 generated 4.4 g/liter d-glucose and 0.6 g/liter d-mannose. The results establish a direct link between pentoses and hexoses and provide a novel strategy to increase carbon backbone length from five to six carbons by directing flux through the pentose phosphate pathway. PMID:25746993

  12. Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism

    PubMed Central

    Mikkelsen, Kristian H.; Frost, Morten; Bahl, Martin I.; Licht, Tine R.; Jensen, Ulrich S.; Rosenberg, Jacob; Pedersen, Oluf; Hansen, Torben; Rehfeld, Jens F.; Holst, Jens J.; Vilsbøll, Tina; Knop, Filip K.

    2015-01-01

    Objective The gut microbiota has been designated as an active regulator of glucose metabolism and metabolic phenotype in a number of animal and human observational studies. We evaluated the effect of removing as many bacteria as possible by antibiotics on postprandial physiology in healthy humans. Methods Meal tests with measurements of postprandial glucose tolerance and postprandial release of insulin and gut hormones were performed before, immediately after and 6 weeks after a 4-day, broad-spectrum, per oral antibiotic cocktail (vancomycin 500 mg, gentamycin 40 mg and meropenem 500 mg once-daily) in a group of 12 lean and glucose tolerant males. Faecal samples were collected for culture-based assessment of changes in gut microbiota composition. Results Acute and dramatic reductions in the abundance of a representative set of gut bacteria was seen immediately following the antibiotic course, but no changes in postprandial glucose tolerance, insulin secretion or plasma lipid concentrations were found. Apart from an acute and reversible increase in peptide YY secretion, no changes were observed in postprandial gut hormone release. Conclusion As evaluated by selective cultivation of gut bacteria, a broad-spectrum 4-day antibiotics course with vancomycin, gentamycin and meropenem induced shifts in gut microbiota composition that had no clinically relevant short or long-term effects on metabolic variables in healthy glucose-tolerant males. Trial Registration clinicaltrials.gov NCT01633762 PMID:26562532

  13. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock★

    PubMed Central

    Dyar, Kenneth A.; Ciciliot, Stefano; Wright, Lauren E.; Biensø, Rasmus S.; Tagliazucchi, Guidantonio M.; Patel, Vishal R.; Forcato, Mattia; Paz, Marcia I.P.; Gudiksen, Anders; Solagna, Francesca; Albiero, Mattia; Moretti, Irene; Eckel-Mahan, Kristin L.; Baldi, Pierre; Sassone-Corsi, Paolo; Rizzuto, Rosario; Bicciato, Silvio; Pilegaard, Henriette; Blaauw, Bert; Schiaffino, Stefano

    2013-01-01

    Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-stimulated glucose uptake with reduced protein levels of GLUT4, the insulin-dependent glucose transporter, and TBC1D1, a Rab-GTPase involved in GLUT4 translocation. Pyruvate dehydrogenase (PDH) activity was also reduced due to altered expression of circadian genes Pdk4 and Pdp1, coding for PDH kinase and phosphatase, respectively. PDH inhibition leads to reduced glucose oxidation and diversion of glycolytic intermediates to alternative metabolic pathways, as revealed by metabolome analysis. The impaired glucose metabolism induced by muscle-specific Bmal1 knockout suggests that a major physiological role of the muscle clock is to prepare for the transition from the rest/fasting phase to the active/feeding phase, when glucose becomes the predominant fuel for skeletal muscle. PMID:24567902

  14. An in vitro assessment of the effect of Athrixia phylicoides DC. aqueous extract on glucose metabolism.

    PubMed

    Chellan, N; Muller, C J F; de Beer, D; Joubert, E; Page, B J; Louw, J

    2012-06-15

    Athrixia phylicoides DC. is an aromatic shrub indigenous to the eastern parts of Southern Africa. Indigenous communities brew "bush tea" from dried twigs and leaves of A. phylicoides, which is consumed as a beverage and used for its medicinal properties. Plant polyphenols have been shown to be beneficial to Type 2 diabetes mellitus (T2D) and obesity. Aqueous extracts of the plant have been shown to be rich in polyphenols, in particular phenolic acids, which may enhance glucose uptake and metabolism. The aim of this study was to determine the phenolic composition of a hot water A. phylicoides extract and assess its in vitro effect on cellular glucose utilisation. The most abundant phenolic compounds in the extract were 6-hydroxyluteolin-7-O-glucoside, chlorogenic acid, protocatechuic acid, a di-caffeoylquinic acid and a methoxy-flavonol derivative. The extract increased glucose uptake in C2C12, Chang and 3T3-L1 cells, respectively. Intracellular glucose was utilised by both oxidation (C2C12 myocytes and Chang cells; p < 0.01 and p < 0.05, respectively) and by increased glycogen storage (Chang cells; p < 0.05). No cytotoxicity was observed in Chang cells at the concentrations tested. The effects of the extract were not dose-dependent. A. phylicoides aqueous extract stimulated in vitro glucose uptake and metabolism, suggesting that consumption of this phenolic-rich extract could potentially ameliorate metabolic disorders related to obesity and T2D. PMID:22516895

  15. Low non-oxidative glucose metabolism and violent offending: an 8-year prospective follow-up study.

    PubMed

    Virkkunen, Matti; Rissanen, Aila; Franssila-Kallunki, Anja; Tiihonen, Jari

    2009-06-30

    Violent offenders have abnormalities in their glucose metabolism as indicated by decreased glucose uptake in their prefrontal cortex and a low blood glucose nadir in the glucose tolerance test. We tested the hypothesis that low non-oxidative glucose metabolism (NOG) predicts forthcoming violent offending among antisocial males. Glucose metabolism was measured using the insulin clamp method among 49 impulsive, violent, antisocial offenders during a forensic psychiatric examination. Those offenders who committed at least one new violent crime during the 8-year follow-up had a mean NOG of 1.4 standard deviations lower than non-recidivistic offenders. In logistic regression analysis, NOG alone explained 27% of the variation in the recidivistic offending. Low non-oxidative metabolism may be a crucial component in the pathophysiology of habitually violent behavior among subjects with antisocial personality disorder. This might suggest that substances increasing glycogen formation and decreasing the risk of hypoglycemia might be potential treatments for impulsive violent behavior. PMID:19446886

  16. Neonatal and fetal exposure to trans-fatty acid retards early growth and adiposity while adversely affecting glucose in mice

    PubMed Central

    Kavanagh, Kylie; Sajadian, Soraya; Jenkins, Kurt A.; Wilson, Martha D.; Carr, J. Jeffery; Wagner, Janice D.; Rudel, Lawrence L.

    2010-01-01

    Industrially produced trans fatty acids (TFAs) consumed in western diets are incorporated into maternal and fetal tissues, and are passed linearly to offspring via breast milk. We hypothesized that TFA exposure in utero and during lactation in infants would promote obesity and poor glycemic control as compared to unmodified fatty acids. We further hypothesized that in utero exposure alone may program for these outcomes in adulthood. To test this hypothesis we fed female C57/BL6 mice identical western diets that differed only in cis- or trans-isomers of C18:1 and then aimed to determine whether maternal transfer of TFAs through pregnancy and lactation alters growth, body composition and glucose metabolism. Mice were unexposed, exposed during pregnancy, during lactation, or throughout pregnancy and lactation to TFA. Body weight and composition (by computed tomography), and glucose metabolism we assessed at weaning and adulthood. TFA exposure through breast milk caused significant early growth retardation (p<0.001) and higher fasting glucose (p=0.01) but insulin sensitivity was not different. Elevated plasma insulin-like growth factor-1 in mice consuming TFA-enriched milk (p=0.02) may contribute to later catch-up growth, leanness and preserved peripheral insulin sensitivity observed in these mice. Mice exposed to TFA in utero underwent rapid early neonatal growth with TFA-free breast milk and had significantly impaired insulin sensitivity (p<0.05) and greater abdominal fat (p=0.01). We conclude that very early catch-up growth resulted in impaired peripheral insulin sensitivity in this model of diet-related fetal and neonatal programming. TFA surprisingly retarded growth and adiposity while still adversely affecting glucose metabolism. PMID:20650350

  17. Metabolic responses to prolonged consumption of glucose- and fructose-sweetened beverages are not associated with postprandial or 24-hour glucose and insulin excursions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been proposed that the adverse metabolic effects of chronic consumption of sugar-sweetened beverages which contain both glucose and fructose are a consequence of increased circulating glucose and insulin excursions, i.e dietary glycemic index (GI). Objective: We determined if the greater adv...

  18. Non-Classical Gluconeogenesis-Dependent Glucose Metabolism in Rhipicephalus microplus Embryonic Cell Line BME26

    PubMed Central

    da Silva, Renato Martins; Della Noce, Bárbara; Waltero, Camila Fernanda; Costa, Evenilton Pessoa; de Abreu, Leonardo Araujo; Githaka, Naftaly Wang’ombe; Moraes, Jorge; Gomes, Helga Fernandes; Konnai, Satoru; da Silva Vaz, Itabajara; Ohashi, Kazuhiko; Logullo, Carlos

    2015-01-01

    In this work we evaluated several genes involved in gluconeogenesis, glycolysis and glycogen metabolism, the major pathways for carbohydrate catabolism and anabolism, in the BME26 Rhipicephalus microplus embryonic cell line. Genetic and catalytic control of the genes and enzymes associated with these pathways are modulated by alterations in energy resource availability (primarily glucose). BME26 cells in media were investigated using three different glucose concentrations, and changes in the transcription levels of target genes in response to carbohydrate utilization were assessed. The results indicate that several genes, such as glycogen synthase (GS), glycogen synthase kinase 3 (GSK3), phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6 phosphatase (GP) displayed mutual regulation in response to glucose treatment. Surprisingly, the transcription of gluconeogenic enzymes was found to increase alongside that of glycolytic enzymes, especially pyruvate kinase, with high glucose treatment. In addition, RNAi data from this study revealed that the transcription of gluconeogenic genes in BME26 cells is controlled by GSK-3. Collectively, these results improve our understanding of how glucose metabolism is regulated at the genetic level in tick cells. PMID:25594873

  19. Increased response to insulin of glucose metabolism in the 6-day unloaded rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Tischler, Marc E.; Johnson, David G.

    1986-01-01

    Hind leg muscles of female rats were unloaded by tail cast suspension for 6 days. In the fresh-frozen unloaded soleus, the significantly greater concentration of glycogen correlated with a lower activity ratio of glycogen phosphorylase (p less than 0.02). The activity ratio of glycogen synthase also was lower (p less than 0.001), possibly due to the higher concentration of glycogen. In isolated unloaded soleus, insulin (0.1 milliunit/ml) increased the oxidation of D(U-C-14) glucose, release of lactate and pyruvate, incorporation of D-(U-C-14) glucose into glycogen, and the concentration of glucose 6-phosphate more (p less than 0.05) than in the weight-bearing soleus. At physiological doses of insulin, the percent of maximal uptake of 2-deoxy-D-(1,2-H-3) glucose/muscle also was greater in the unloaded soleus. Unloading of the soleus increased, by 50 percent the concentration of insuling receptors, due to no decrease in total receptor number during muscle atrophy. This increase may account for the greater response of glucose metabolism to insulin in this muscle. The extensor digitorum longus, which generally shows little response to unloading, displayed no differential response of glucose metabolism to insulin.

  20. A clickable glutathione approach for identification of protein glutathionylation in response to glucose metabolism.

    PubMed

    Samarasinghe, Kusal T G; Munkanatta Godage, Dhanushka N P; Zhou, Yani; Ndombera, Fidelis T; Weerapana, Eranthie; Ahn, Young-Hoon

    2016-07-19

    Glucose metabolism and mitochondrial function are closely interconnected with cellular redox-homeostasis. Although glucose starvation, which mimics ischemic conditions or insufficient vascularization, is known to perturb redox-homeostasis, global and individual protein glutathionylation in response to glucose metabolism or mitochondrial activity remains largely unknown. In this report, we use our clickable glutathione approach, which forms clickable glutathione (azido-glutathione) by using a mutant of glutathione synthetase (GS M4), for detection and identification of protein glutathionylation in response to glucose starvation. We found that protein glutathionylation is readily induced in HEK293 cells in response to low glucose concentrations when mitochondrial reactive oxygen species (ROS) are elevated in cells, and glucose is the major determinant for inducing reversible glutathionylation. Proteomic and biochemical analysis identified over 1300 proteins, including SMYD2, PP2Cα, and catalase. We further showed that PP2Cα is glutathionylated at C314 in a C-terminal domain, and PP2Cα C314 glutathionylation disrupts the interaction with mGluR3, an important glutamate receptor associated with synaptic plasticity. PMID:27216279

  1. Berberine Improves Glucose Metabolism in Diabetic Rats by Inhibition of Hepatic Gluconeogenesis

    PubMed Central

    Xia, Xuan; Yan, Jinhua; Shen, Yunfeng; Tang, Kuanxiao; Yin, Jun; Zhang, Yanhua; Yang, Dongjie; Liang, Hua; Ye, Jianping; Weng, Jianping

    2011-01-01

    Berberine (BBR) is a compound originally identified in a Chinese herbal medicine Huanglian (Coptis chinensis French). It improves glucose metabolism in type 2 diabetic patients. The mechanisms involve in activation of adenosine monophosphate activated protein kinase (AMPK) and improvement of insulin sensitivity. However, it is not clear if BBR reduces blood glucose through other mechanism. In this study, we addressed this issue by examining liver response to BBR in diabetic rats, in which hyperglycemia was induced in Sprague-Dawley rats by high fat diet. We observed that BBR decreased fasting glucose significantly. Gluconeogenic genes, Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase), were decreased in liver by BBR. Hepatic steatosis was also reduced by BBR and expression of fatty acid synthase (FAS) was inhibited in liver. Activities of transcription factors including Forkhead transcription factor O1 (FoxO1), sterol regulatory element-binding protein 1c (SREBP1) and carbohydrate responsive element-binding protein (ChREBP) were decreased. Insulin signaling pathway was not altered in the liver. In cultured hepatocytes, BBR inhibited oxygen consumption and reduced intracellular adenosine triphosphate (ATP) level. The data suggest that BBR improves fasting blood glucose by direct inhibition of gluconeogenesis in liver. This activity is not dependent on insulin action. The gluconeogenic inhibition is likely a result of mitochondria inhibition by BBR. The observation supports that BBR improves glucose metabolism through an insulin-independent pathway. PMID:21304897

  2. Ionizing Radiation Impairs T Cell Activation by Affecting Metabolic Reprogramming

    PubMed Central

    Li, Heng-Hong; Wang, Yi-wen; Chen, Renxiang; Zhou, Bin; Ashwell, Jonathan D.; Fornace, Albert J.

    2015-01-01

    Ionizing radiation has a variety of acute and long-lasting adverse effects on the immune system. Whereas measureable effects of radiation on immune cell cytotoxicity and population change have been well studied in human and animal models, little is known about the functional alterations of the surviving immune cells after ionizing radiation. The objective of this study was to delineate the effects of radiation on T cell function by studying the alterations of T cell receptor activation and metabolic changes in activated T cells isolated from previously irradiated animals. Using a global metabolomics profiling approach, for the first time we demonstrate that ionizing radiation impairs metabolic reprogramming of T cell activation, which leads to substantial decreases in the efficiency of key metabolic processes required for activation, such as glucose uptake, glycolysis, and energy metabolism. In-depth understanding of how radiation impacts T cell function highlighting modulation of metabolism during activation is not only a novel approach to investigate the pivotal processes in the shift of T cell homeostasis after radiation, it also may lead to new targets for therapeutic manipulation in the combination of radiotherapy and immune therapy. Given that appreciable effects were observed with as low as 10 cGy, our results also have implications for low dose environmental exposures. PMID:26078715

  3. Chromium supplementation alters the glucose and lipid metabolism of feedlot cattle during the receiving period

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crossbreed steers (n = 20; 235 ± 4 kg) were fed 53 d during a receiving period to determine if supplementing chromium (Cr; KemTRACE®brand Chromium Propionate 0.04%, Kemin Industries) would alter the glucose or lipid metabolism of newly received cattle. Chromium premixes were supplemented to add 0 (C...

  4. Chromium supplementation alters both glucose and lipid metabolism in feedlot cattle during the receiving period

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crossbred steers (n = 20; 235 +/- 4 kg) were fed 53 days during a receiving period to determine if supplementing chromium (Cr; KemTRACE®brandChromium Propionate 0.04%, Kemin Industries) would alter the glucose or lipid metabolism of newly received cattle. Chromium premixes were supplemented to add 0...

  5. Insulin resistance for glucose metabolism in disused soleus muscle of mice

    NASA Technical Reports Server (NTRS)

    Seider, M. J.; Nicholson, W. F.; Booth, F. W.

    1981-01-01

    Results of this study on mice provide the first direct evidence of insulin resistance for glucose metabolism in skeletal muscle that has undergone a previous period of reduced muscle usage. This lack of responsiveness to insulin developed in one day and in the presence of hypoinsulinemia. Future studies will utilize the model of hindlimb immobilization to determine the causes of these changes.

  6. Oolong tea does not improve glucose metabolism in non-diabetic adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies of the influence of tea on glucose metabolism have produced inconsistent results, possibly due to lack of dietary control and/or unclear characterization of tea products. Therefore, a double-blind crossover study was conducted in which healthy males (n=19) consumed each of three oolong tea ...

  7. Brain Size and Cerebral Glucose Metabolic Rate in Nonspecific Retardation and Down Syndrome.

    ERIC Educational Resources Information Center

    Haier, Richard J.; And Others

    1995-01-01

    Brain size and cerebral glucose metabolic rate were determined for 10 individuals with mild mental retardation (MR), 7 individuals with Down syndrome (DS), and 10 matched controls. MR and DS groups both had brain volumes of about 80% compared to controls, with variance greatest within the MR group. (SLD)

  8. A new insulin-glucose metabolic model of type 1 diabetes mellitus: An in silico study.

    PubMed

    Fang, Qiang; Yu, Lei; Li, Peng

    2015-06-01

    Diabetes mellitus is a serious metabolic disease that threatens people's health. The artificial pancreas system (APS) has been generally considered as the ultimate cure of type 1 diabetes mellitus (T1DM). The simulation model of insulin-glucose metabolism is an essential part of an APS as it processes the measured glucose level and generates control signal to the insulin infusion system. This paper presents a new insulin-glucose metabolic model using model reduction methods applied to the popular but complex Cobelli's model. The performances of three different model reduction methods, namely Padé approximation, Routh approximation and system identification, are compared. The results of in silico simulation based on 30 virtual patients of three groups for adults, adolescents, and children show that the approximation error between this new model and the original Cobelli's model is so small that can be neglected. It can be concluded that the proposed simplified model can describe the insulin-glucose metabolism process rather accurately as well as can be easily implemented and integrated into an APS to make the APS technology more mature and closer to clinical use. The FPGA implementation, testing and further simplification possibility will be explored in the next stage of research. PMID:25896293

  9. Intelligence and Changes in Regional Cerebral Glucose Metabolic Rate Following Learning.

    ERIC Educational Resources Information Center

    Haier, Richard J.; And Others

    1992-01-01

    A study of eight normal right-handed men demonstrates widespread significant decreases in brain glucose metabolic rate (GMR) following learning a complex computer task, a computer game. Correlations between magnitude of GMR change and intelligence scores are also demonstrated. (SLD)

  10. Low Cerebral Glucose Metabolism: A Potential Predictor for the Severity of Vascular Parkinsonism and Parkinson's Disease.

    PubMed

    Xu, Yunqi; Wei, Xiaobo; Liu, Xu; Liao, Jinchi; Lin, Jiaping; Zhu, Cansheng; Meng, Xiaochun; Xie, Dongsi; Chao, Dongman; Fenoy, Albert J; Cheng, Muhua; Tang, Beisha; Zhang, Zhuohua; Xia, Ying; Wang, Qing

    2015-11-01

    This study explored the association between cerebral metabolic rates of glucose (CMRGlc) and the severity of Vascular Parkinsonism (VP) and Parkinson's disease (PD). A cross-sectional study was performed to compare CMRGlc in normal subjects vs. VP and PD patients. Twelve normal subjects, 22 VP, and 11 PD patients were evaluated with the H&Y and MMSE, and underwent 18F-FDG measurements. Pearson's correlations were used to identify potential associations between the severity of VP/PD and CMRGlc. A pronounced reduction of CMRGlc in the frontal lobe and caudate putamen was detected in patients with VP and PD when compared with normal subjects. The VP patients displayed a slight CMRGlc decrease in the caudate putamen and frontal lobe in comparison with PD patients. These decreases in CMRGlc in the frontal lobe and caudate putamen were significantly correlated with the VP patients' H&Y, UPDRS II, UPDRS III, MMSE, cardiovascular, and attention/memory scores. Similarly, significant correlations were observed in patients with PD. This is the first clinical study finding strong evidence for an association between low cerebral glucose metabolism and the severity of VP and PD. Our findings suggest that these changes in glucose metabolism in the frontal lobe and caudate putamen may underlie the pathophysiological mechanisms of VP and PD. As the scramble to find imaging biomarkers or predictors of the disease intensifies, a better understanding of the roles of cerebral glucose metabolism may give us insight into the pathogenesis of VP and PD. PMID:26618044

  11. Effect of interstitial irradiation and glucose metabolism and methionine uptake in glioma patients

    SciTech Connect

    Pietrzyk, U.; Herholz, K.; Wueker, M.

    1994-05-01

    Interstitial radiation by stereotactic I-125 seed implants is an established therapy for brain glioma. We studied its effect on tissue glucose metabolism and methionine uptake because of its relevance for therapy planning and monitoring. Six patients with gliomas of histological grade 2 or 3 received permanent CT-guided stereotactic implants of 100 to 490 MBq I-125. FDG PET, and in 3 subjects also C-11-methionine PET, was performed before and one year after seed implantation on a Siemens ECAT EXACT. All scans were 3-D matched to CT, isodose volumes were determined, and changes of glucose metabolism and methionine uptake were evaluated in tumor and brain tissue as a function of radiation dose. There was a consistent dose-dependent decrease of methionine uptake after one year: less than 20% change for cumulated doses {<=}60 Gy, then a decline down to a reduction by 30-70% for doses {>=}150 Gy. Glucose metabolism showed a much more variable response without clear dose dependency. Average maximum reduction was 23% (S.D. 24%), and an increase of glucose metabolic rates in irradiated tissue up to 43% was noted in 5 patients. In one case recurrent tumor outside of the 170 Gy isodose was most clearly seen by increased methionin uptake. In conclusion, C-11-methionine appears suited for monitoring of therapeutic radiation effects, whereas FDG shows a more variable response and often increased glycolysis in irradiated tissue.

  12. Glucose metabolism transporters and epilepsy: only GLUT1 has an established role.

    PubMed

    Hildebrand, Michael S; Damiano, John A; Mullen, Saul A; Bellows, Susannah T; Oliver, Karen L; Dahl, Hans-Henrik M; Scheffer, Ingrid E; Berkovic, Samuel F

    2014-02-01

    The availability of glucose, and its glycolytic product lactate, for cerebral energy metabolism is regulated by specific brain transporters. Inadequate energy delivery leads to neurologic impairment. Haploinsufficiency of the glucose transporter GLUT1 causes a characteristic early onset encephalopathy, and has recently emerged as an important cause of a variety of childhood or later-onset generalized epilepsies and paroxysmal exercise-induced dyskinesia. We explored whether mutations in the genes encoding the other major glucose (GLUT3) or lactate (MCT1/2/3/4) transporters involved in cerebral energy metabolism also cause generalized epilepsies. A cohort of 119 cases with myoclonic astatic epilepsy or early onset absence epilepsy was screened for nucleotide variants in these five candidate genes. No epilepsy-causing mutations were identified, indicating that of the major energetic fuel transporters in the brain, only GLUT1 is clearly associated with generalized epilepsy. PMID:24483274

  13. Functional integration changes in regional brain glucose metabolism from childhood to adulthood.

    PubMed

    Trotta, Nicola; Archambaud, Frédérique; Goldman, Serge; Baete, Kristof; Van Laere, Koen; Wens, Vincent; Van Bogaert, Patrick; Chiron, Catherine; De Tiège, Xavier

    2016-08-01

    The aim of this study was to investigate the age-related changes in resting-state neurometabolic connectivity from childhood to adulthood (6-50 years old). Fifty-four healthy adult subjects and twenty-three pseudo-healthy children underwent [(18) F]-fluorodeoxyglucose positron emission tomography at rest. Using statistical parametric mapping (SPM8), age and age squared were first used as covariate of interest to identify linear and non-linear age effects on the regional distribution of glucose metabolism throughout the brain. Then, by selecting voxels of interest (VOI) within the regions showing significant age-related metabolic changes, a psychophysiological interaction (PPI) analysis was used to search for age-induced changes in the contribution of VOIs to the metabolic activity in other brain areas. Significant linear or non-linear age-related changes in regional glucose metabolism were found in prefrontal cortices (DMPFC/ACC), cerebellar lobules, and thalamo-hippocampal areas bilaterally. Decreases were found in the contribution of thalamic, hippocampal, and cerebellar regions to DMPFC/ACC metabolic activity as well as in the contribution of hippocampi to preSMA and right IFG metabolic activities. Increases were found in the contribution of the right hippocampus to insular cortex and of the cerebellar lobule IX to superior parietal cortex metabolic activities. This study evidences significant linear or non-linear age-related changes in regional glucose metabolism of mesial prefrontal, thalamic, mesiotemporal, and cerebellar areas, associated with significant modifications in neurometabolic connectivity involving fronto-thalamic, fronto-hippocampal, and fronto-cerebellar networks. These changes in functional brain integration likely represent a metabolic correlate of age-dependent effects on sensory, motor, and high-level cognitive functional networks. Hum Brain Mapp 37:3017-3030, 2016. © 2016 Wiley Periodicals, Inc. PMID:27133021

  14. Relationship between insulin-mediated glucose disposal and lipid metabolism in man.

    PubMed Central

    Lillioja, S; Bogardus, C; Mott, D M; Kennedy, A L; Knowler, W C; Howard, B V

    1985-01-01

    To assess the possible effects of lipid metabolism on insulin-mediated glucose disposal, 18 nondiabetic Pima Indian women (age 18-35 yr) were studied using 1-14C-palmitate infusion to measure free fatty acid turnover rate followed by a euglycemic clamp (clamp) to measure in vivo insulin-mediated glucose disposal (M). Indirect calorimetry was performed in the basal state and during the clamp. This was used to assess glucose oxidation rate, lipid oxidation rate, and to calculate nonoxidative glucose disposal (storage). Basal and clamp lipid oxidation rate correlated with basal plasma free fatty acid concentration (r = 0.81, P less than or equal to 0.0001, r = 0.67, P less than 0.003, respectively). The fall in lipid oxidation was highly correlated with the increase in glucose oxidation during the insulin infusion (r = 0.96, P less than or equal to 0.0001). The clamp lipid oxidation rate negatively correlated with the glucose oxidation rate (r = -0.85, P less than 0.0001) and with the M value (r = -0.60, P less than 0.01) but was not correlated with the clamp glucose storage (r = -0.2, P = 0.4). On the other hand, glucose storage appeared to make a greater contribution to the difference in M value between the upper and lower extremes of M than did glucose oxidation, as evidenced by an increase in glucose storage of 0.59 mg/kg fat-free mass times minute per 1 mg/kg fat-free mass times minute increase in glucose disposal. The M value was negatively correlated with obesity as measured by percent body fat (r = -0.64, P less than 0.004), but neither basal free fatty acid concentration, basal free fatty acid turnover, basal lipid oxidation, nor clamp lipid oxidation correlated with percent body fat. We conclude that an interaction of lipid and glucose metabolism in a glucose fatty acid cycle, as proposed by Randle et al. (1), may be operative in the regulation of glucose oxidation in man. The disposal of glucose however has two components. The storage component does not

  15. Polydatin improves glucose and lipid metabolism in experimental diabetes through activating the Akt signaling pathway.

    PubMed

    Hao, Jie; Chen, Cheng; Huang, Kaipeng; Huang, Junying; Li, Jie; Liu, Peiqing; Huang, Heqing

    2014-12-15

    Recently, the effect of polydatin on lipid regulation has gained considerable attention. And previous study has demonstrated that polydatin has hypoglycemic effect on experimental diabetic rats. Repressed Akt pathway contributes to glucose and lipid disorders in diabetes. Thus, whether polydatin regulates glucose and lipid metabolism in experimental diabetic models through the Akt pathway arouses interest. The purpose was to explore the regulatory mechanism of polydain on glucose and lipid through Akt pathway. We used a diabetic rat model induced by high-fat and -sugar diet with low-dose of streptozocin and an insulin resistant HepG2 cell model induced by palmitic acid to clarify the role of polydatin on glucose and lipid metabolism. Here, we found that polydatin significantly attenuated fasting blood–glucose, glycosylated hemoglobin, glycosylated serum protein, total cholesterol, triglyceride, and low-density lipoprotein cholesterol in diabetic rats. Furthermore, polydatin significantly increased glucose uptake and consumption and decreased lipid accumulation in insulin resistant HepG2 cells. Polydatin markedly increased serum insulin levels in diabetic rats, and obviously activated the Akt signaling pathway in diabetic rat livers and insulin resistant HepG2 cells. Polydatin markedly increased phosphorylated GSK-3β, decreased the protein levels of G6Pase and SREBP-1c, and increased protein levels of GCK, LDLR, and phosphorylated IRS in livers and HepG2 cells. Overall, the results indicate that polydatin regulates glucose and lipid metabolism in experimental diabetic models, the underlying mechanism is probably associated with regulating the Akt pathway. The effect of polydatin on increased Akt phosphorylation is independent of prompting insulin secretion, but dependent of increasing IRS phosphorylation. PMID:25310908

  16. Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1.

    PubMed

    Joyal, Jean-Sébastien; Sun, Ye; Gantner, Marin L; Shao, Zhuo; Evans, Lucy P; Saba, Nicholas; Fredrick, Thomas; Burnim, Samuel; Kim, Jin Sung; Patel, Gauri; Juan, Aimee M; Hurst, Christian G; Hatton, Colman J; Cui, Zhenghao; Pierce, Kerry A; Bherer, Patrick; Aguilar, Edith; Powner, Michael B; Vevis, Kristis; Boisvert, Michel; Fu, Zhongjie; Levy, Emile; Fruttiger, Marcus; Packard, Alan; Rezende, Flavio A; Maranda, Bruno; Sapieha, Przemyslaw; Chen, Jing; Friedlander, Martin; Clish, Clary B; Smith, Lois E H

    2016-04-01

    Tissues with high metabolic rates often use lipids, as well as glucose, for energy, conferring a survival advantage during feast and famine. Current dogma suggests that high-energy-consuming photoreceptors depend on glucose. Here we show that the retina also uses fatty acid β-oxidation for energy. Moreover, we identify a lipid sensor, free fatty acid receptor 1 (Ffar1), that curbs glucose uptake when fatty acids are available. Very-low-density lipoprotein receptor (Vldlr), which is present in photoreceptors and is expressed in other tissues with a high metabolic rate, facilitates the uptake of triglyceride-derived fatty acid. In the retinas of Vldlr(-/-) mice with low fatty acid uptake but high circulating lipid levels, we found that Ffar1 suppresses expression of the glucose transporter Glut1. Impaired glucose entry into photoreceptors results in a dual (lipid and glucose) fuel shortage and a reduction in the levels of the Krebs cycle intermediate α-ketoglutarate (α-KG). Low α-KG levels promotes stabilization of hypoxia-induced factor 1a (Hif1a) and secretion of vascular endothelial growth factor A (Vegfa) by starved Vldlr(-/-) photoreceptors, leading to neovascularization. The aberrant vessels in the Vldlr(-/-) retinas, which invade normally avascular photoreceptors, are reminiscent of the vascular defects in retinal angiomatous proliferation, a subset of neovascular age-related macular degeneration (AMD), which is associated with high vitreous VEGFA levels in humans. Dysregulated lipid and glucose photoreceptor energy metabolism may therefore be a driving force in macular telangiectasia, neovascular AMD and other retinal diseases. PMID:26974308

  17. A new application of electrical impedance spectroscopy for measuring glucose metabolism: a phantom study

    NASA Astrophysics Data System (ADS)

    Dhurjaty, Sreeram; Qiu, Yuchen; Tan, Maxine; Liu, Hong; Zheng, Bin

    2015-03-01

    Glucose metabolism relates to biochemical processes in living organisms and plays an important role in diabetes and cancer-metastasis. Although many methods are available for measuring glucose metabolism-activities, from simple blood tests to positron emission tomography, currently there is no robust and affordable device that enables monitoring of glucose levels in real-time. In this study we tested feasibility of applying a unique resonance-frequency based electronic impedance spectroscopy (REIS) device that has been, recently developed to measure and monitor glucose metabolism levels using a phantom study. In this new testing model, a multi-frequency electrical signal sequence is applied and scanned through the subject. When the positive reactance of an inductor inside the device cancels out the negative reactance of the capacitance of the subject, the electrical impedance reaches a minimum value and this frequency is defined as the resonance frequency. The REIS system has a 24-bit analog-to-digital signal convertor and a frequency-resolution of 100Hz. In the experiment, two probes are placed inside a 100cc container initially filled with distilled water. As we gradually added liquid-glucose in increments of 1cc (250mg), we measured resonance frequencies and minimum electrical signal values (where A/D was normalized to a full scale of 1V). The results showed that resonance frequencies monotonously decreased from 243kHz to 178kHz, while the minimum voltages increased from 405mV to 793mV as the added amount of glucose increased from 0 to 5cc. The study demonstrated the feasibility of applying this new REIS technology to measure and/or monitor glucose levels in real-time in future.

  18. End products of glucose and glutamine metabolism by L929 cells.

    PubMed

    Lanks, K W

    1987-07-25

    Products of glucose and glutamine metabolism by L929 cells were detected and quantitated by gas chromatography and mass spectrometry of the oxime-trimethylsilyl derivatives. This method allowed detection and identification of all major carboxylic and amino acids produced in the system. Although lactic acid was expected to be the major product, alanine, citric, glutamic, aspartic, and pyruvic acids were also released into the culture medium at significant rates. Incorporation of labeled carbon from D-[U-13C]glucose showed that the alanine, lactic, and pyruvic acids were derived from glucose as was one-third of the citric acid carbon. The rate of glucose utilization for production of these end products was 29-fold greater than the rate of glucose oxidation to CO2, and calculated ATP production from alanine and pyruvate synthesis exceeded that from lactate synthesis by nearly 2-fold. Utilization of glutamine for synthesis of aspartic, glutamic, and citric acids also exceeded the rate of glutamine oxidation, thereby making end-product synthesis from glucose and glutamine the dominant cellular metabolic activity. In the absence of glucose, synthesis and intracellular levels of aspartic and glutamic acids increased, whereas synthesis and cell content of the other acids decreased markedly. This response is consistent with the metabolic pattern proposed by Moreadith and Lehninger (Moreadith, R.W., and Lehninger, A.L. (1984) J. Biol. Chem. 259, 6215-6221) in which much of the glutamine used by these cells is converted to aspartate in the absence of a pyruvate source and to aspartate or citrate in the presence of pyruvate. PMID:3611053

  19. Recovery of glucose metabolism in reperfused canine myocardium demonstrated by positron-CT (PCT)

    SciTech Connect

    Schwaiger, M.; Sochor, H.; Parodi, O.; Grover, M.; Hansen, H.W.; Selin, C.; Schelbert, H.R.

    1984-01-01

    The authors previously examined with PCT in chronic dogs the long term metabolic recovery during reperfusion after a 3 hr ischemic insult. Increased regional glucose utilization at 24 hrs of R accurately identified reversible tissue injury documented by late improvement in segmental function by ultrasonic crystals. To define the early metabolic events after a 3 hr LAD balloon occlusion, regional blood flow and glucose utilization was studied in 8 dogs with PCT, N-13 ammonia (NA) and F-18 deoxyglucose (FDG) at 2 hrs and at 24 hrs after R. The dogs were then thoracotomized and MBF by microspheres, arterio-venous differences for glucose, lactate and O/sub 2/ across the reperfused segment (LAD vein) and the left ventricle (coronary sinus) measured. Immediately after reperfusion, MBF and FDG uptake were 27 +- 24% and 21 +- 48% lower in the reperfused territory (RT) than in control myocardium (C). At 24 hrs, MBF by microspheres was and 22 +- 25% lower and FDG uptake 175 +- 73% higher in RT than in C. In the RT, consumption of glucose (by Fick method) was 202 +- 107% higher, of lactate 96 +- 85% lower and of O/sub 2/ 42 +- 26% lower than in the entire LV. PCT measured FDG uptake correlated with glucose consumption (r=0.94) and confirmed that the segmentally increased FDG uptake at 24 hrs reflected increased glucose utilization that, as indicated by the reduced lactate consumption, was partly anaerobic. The authors conclude that initially after R, glucose metabolism is depressed but increases above C within 24 hrs, a time course that now can be determined noninvasively with PCT and is useful for predicting functional recovery.

  20. Deletion of Cyclophilin D Impairs β-Oxidation and Promotes Glucose Metabolism

    PubMed Central

    Tavecchio, Michele; Lisanti, Sofia; Bennett, Michael J.; Languino, Lucia R.; Altieri, Dario C.

    2015-01-01

    Cyclophilin D (CypD) is a mitochondrial matrix protein implicated in cell death, but a potential role in bioenergetics is not understood. Here, we show that loss or depletion of CypD in cell lines and mice induces defects in mitochondrial bioenergetics due to impaired fatty acid β-oxidation. In turn, CypD loss triggers a global compensatory shift towards glycolysis, with transcriptional upregulation of effectors of glucose metabolism, increased glucose consumption and higher ATP production. In vivo, the glycolytic shift secondary to CypD deletion is associated with expansion of insulin-producing β-cells, mild hyperinsulinemia, improved glucose tolerance, and resistance to high fat diet-induced liver damage and weight gain. Therefore, CypD is a novel regulator of mitochondrial bioenergetics, and unexpectedly controls glucose homeostasis, in vivo. PMID:26515038

  1. Effects of glucose, fructose and 5-hydroxymethyl-2-furaldehyde on the presystemic metabolism and absorption of glycyrrhizin in rabbits.

    PubMed

    Hou, Y C; Ching, H; Chao, P D L; Tsai, S Y; Wen, K C; Hsieh, P H; Hsiu, S L

    2005-02-01

    Our previous study reported that co-administration of honey significantly increased the serum levels of glycyrrhetic acid (GA) after oral administration of glycyrrhizin (GZ) in rabbits. The components of honey are sucrose, glucose, fructose and 5-hydroxymethyl-furaldehyde (HMF). To clarify the causative component(s) in honey that altered the metabolic pharmacokinetics of GZ, rabbits were given GZ (150 mg kg(-1)) with and without glucose (5 g/rabbit), fructose (5 g/rabbit) and HMF (1 mg kg(-1)), respectively, in crossover designs. An HPLC method was used to determine concentrations of GZ and GA in serum as well as GA and 3-dehydroglycyrrhetic acid (3-dehydroGA) in faeces suspension. A noncompartment model was used to calculate the pharmacokinetic parameters and analysis of variance was used for statistical comparison. Our results indicated that the area under curve (AUC) of GA was significantly increased by 29% when HMF was coadministered, whereas the pharmacokinetics of GZ and GA were not significantly altered by coadministration of glucose or fructose. An in-vitro study, using faeces to incubate GZ and GA individually, indicated that HMF significantly inhibited the oxidation of GA to 3-dehydroGA and this may explain the enhanced GA absorption in-vivo. It was concluded that HMF is the causative component in honey that affects the presystemic metabolism and pharmacokinetics of GZ in-vivo. PMID:15720790

  2. Quantitative analysis of drug effects at the whole-body level: a case study for glucose metabolism in malaria patients.

    PubMed

    Snoep, Jacky L; Green, Kathleen; Eicher, Johann; Palm, Daniel C; Penkler, Gerald; du Toit, Francois; Walters, Nicolas; Burger, Robert; Westerhoff, Hans V; van Niekerk, David D

    2015-12-01

    We propose a hierarchical modelling approach to construct models for disease states at the whole-body level. Such models can simulate effects of drug-induced inhibition of reaction steps on the whole-body physiology. We illustrate the approach for glucose metabolism in malaria patients, by merging two detailed kinetic models for glucose metabolism in the parasite Plasmodium falciparum and the human red blood cell with a coarse-grained model for whole-body glucose metabolism. In addition we use a genome-scale metabolic model for the parasite to predict amino acid production profiles by the malaria parasite that can be used as a complex biomarker. PMID:26614654

  3. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    SciTech Connect

    Dalgaard, Louise T.

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. Black-Right-Pointing-Pointer UCP2 mRNA up-regulation by glucose is dependent on glucokinase. Black-Right-Pointing-Pointer Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. Black-Right-Pointing-Pointer This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic {beta}-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was to examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/- islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2-/- and GK+/- islets compared with GK+/- islets and UCP2 deficiency improved glucose tolerance of GK+/- mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/- mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.

  4. Effects of dry period length on milk production, body condition, metabolites, and hepatic glucose metabolism in dairy cows.

    PubMed

    Weber, C; Losand, B; Tuchscherer, A; Rehbock, F; Blum, E; Yang, W; Bruckmaier, R M; Sanftleben, P; Hammon, H M

    2015-03-01

    Dry period (DP) length affects energy metabolism around calving in dairy cows as well as milk production in the subsequent lactation. The aim of the study was to investigate milk production, body condition, metabolic adaptation, and hepatic gene expression of gluconeogenic enzymes in Holstein cows (>10,000 kg milk/305 d) with 28- (n=18), 56- (n=18), and 90-d DP (n=22) length (treatment groups) in a commercial farm. Cows were fed total mixed rations ad libitum adjusted for far-off (not for 28-d DP) and close-up DP and lactation. Milk yield was recorded daily and body condition score (BCS), back fat thickness (BFT), and body weight (BW) were determined at dry off, 1 wk before expected and after calving, and on wk 2, 4, and 8 postpartum (pp). Blood samples were taken on d -56, -28, -7, 1, 7, 14, 28, and 56 relative to calving to measure plasma concentrations of metabolites and hormones. Liver biopsies (n=11 per treatment) were taken on d -10 and 10 relative to calving to determine glycogen and total liver fat concentration (LFC) and to quantify mRNA levels of pyruvate carboxylase (PC), cytosolic phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase. Time course of milk yield during first 8 wk in lactation differed among treatment. Milk protein content was higher in 28-d than in 90-d DP cows. Milk fat to protein ratio was highest and milk urea was lowest in 90-d DP cows. Differences in BW, BFT, and BCS were predominantly seen before calving with greatest BW, BFT, and BCS in 90-d DP cows. Plasma concentrations of NEFA and BHBA were elevated during the transition period in all cows, and the greatest increase pp was seen in 90-d DP cows. Plasma glucose concentration decreased around calving and was greater in 28-d than in 90-d DP cows. Dry period length also affected plasma concentrations of urea, cholesterol, aspartate transaminase, and glutamate dehydrogenase. Plasma insulin concentration decreased around calving in all cows, but insulin concentration pp was

  5. Metabolic block at early stages of the glycolytic pathway activates the Rcs phosphorelay system via increased synthesis of dTDP-glucose in Escherichia coli.

    PubMed

    El-Kazzaz, Waleed; Morita, Teppei; Tagami, Hideaki; Inada, Toshifumi; Aiba, Hiroji

    2004-02-01

    A mutational block in the early stages of the glycolytic pathway facilitates the degradation of the ptsG mRNA encoding the major glucose transporter IICBGlc in Escherichia coli. The degradation is RNase E dependent and is correlated with the accumulation of either glucose-6-P or fructose-6-P (Kimata et al., 2001, EMBO J 20: 3587-3595; Morita et al., 2003, J Biol Chem 278: 15608-15614). In this paper, we investigate additional physiological effects resulting from the accumulation of glucose-6-P caused by a mutation in pgi encoding phosphoglucose isomerase, focusing on changes in gene expression. The addition of glucose to the pgi strain caused significant growth inhibition, in particular in the mlc background. Cell growth then gradually resumed as the level of IICBGlc decreased. We found that the transcription of the cps operon, encoding a series of proteins responsible for the synthesis of colanic acid, was markedly but transiently induced under this metabolic stress. Both genetic and biochemical studies revealed that the metabolic stress induces cps transcription by activating the RcsC/YojN/RcsB signal transduction system. Overexpression of glucose-6-P dehydrogenase eliminated both growth inhibition and cps induction by reducing the glucose-6-P level. Mutations in genes responsible for the synthesis of glucose-1-P and/or dTDP-glucose eliminated the activation of the Rcs system by the metabolic stress. Taken together, we conclude that an increased synthesis of dTDP-glucose activates the Rcs phosphorelay system, presumably by affecting the synthesis of oligosaccharides for enterobacterial common antigen and O-antigen. PMID:14763984

  6. Cereal Processing Influences Postprandial Glucose Metabolism as Well as the GI Effect

    PubMed Central

    Vinoy, Sophie; Normand, Sylvie; Meynier, Alexandra; Sothier, Monique; Louche-Pelissier, Corinne; Peyrat, Jocelyne; Maitrepierre, Christine; Nazare, Julie-Anne; Brand-Miller, Jeannie; Laville, Martine

    2013-01-01

    Objective: Technological processes may influence the release of glucose in starch. The aim of this study was to compare the metabolic response and the kinetics of appearance of exogenous glucose from 2 cereal products consumed at breakfast. Methods: Twenty-five healthy men were submitted to a randomized, open, crossover study that was divided into 2 parts: 12 of the 25 subjects were included in the “isotope part,” and the 13 other subjects were included in the “glycemic part.” On test days, subjects received biscuits (low glycemic index [GI], high slowly available glucose [SAG]) or extruded cereals (medium GI, low SAG) as part of a breakfast similar in terms of caloric and macronutrient content. The postprandial phase lasted 270 minutes. Results: The rate of appearance (RaE) of exogenous glucose was significantly lower after consumption of biscuits in the first part of the morning (90–150 minutes) than after consumption of extruded cereals (p ≤ 0.05). Conversely, at 210 minutes, it was significantly higher with biscuits (p ≤ 0.01). For the first 2 hours, plasma glucose and insulin were significantly lower after biscuits during the glycemic part. C-peptide plasma concentrations were significantly lower at 90, 120, and 150 minutes after ingestion of the biscuits (p ≤ 0.05). Conclusion: The consumption of biscuits with a high content of slowly digestible starch reduces the appearance rate of glucose in the first part of the morning and prolongs this release in the late phase of the morning (210 minutes). Our results also emphasize that modulation of glucose availability at breakfast is an important factor for metabolic control throughout the morning in healthy subjects due to the lowering of blood glucose and insulin excursions. PMID:24015715

  7. Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution

    PubMed Central

    Liu, Jianguo; Wang, Qunhui; Zou, Hui; Liu, Yingying; Wang, Juan; Gan, Kemin; Xiang, Juan

    2013-01-01

    The 13C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden–Meyerhof–Parnas (EMP) to produce lactic acid, whereas 36.4% of the glucose entered the pentose phosphate metabolic pathway (HMP). After solid–liquid separation of the KWSS, the addition of Fe3+ during fermentation enhanced the NADPH production efficiency and increased the NADH content. The flux to the EMP was also effectively increased. Compared with the control (60.6% flux to EMP without Fe3+ addition), the flux to the EMP with the addition of Fe3+ (74.3%) increased by 23.8%. In the subsequent pyruvate metabolism, Fe3+ also increased lactate dehydrogenase activity, and inhibited alcohol dehydrogenase, pyruvate dehydrogenase and pyruvate carboxylase, thereby increasing the lactic acid production to 9.03 g l−1, an increase of 8% compared with the control. All other organic acid by-products were lower than in the control. However, the addition of Zn2+ showed an opposite effect, decreasing the lactic acid production. In conclusion it is feasible and effective means using GC-MS, isotope experiment and MATLAB software to integrate research the metabolic flux distribution of lactic acid bacteria, and the results provide the theoretical foundation for similar metabolic flux distribution. PMID:23489617

  8. Regional Cerebral Glucose Metabolism in Novelty Seeking and Antisocial Personality: A Positron Emission Tomography Study

    PubMed Central

    Park, So Hyeon; Park, Hyun Soo

    2016-01-01

    Novelty seeking (NS) and antisocial personality (ASP) are commonly exhibited by those who suffer from addictions, such as substance abuse. NS has been suggested to be a fundamental aspect of ASP. To investigate the neurobiological substrate of NS and ASP, we tested the relationship between regional cerebral glucose metabolism and the level of NS, determining the differences between individuals with and without ASP. Seventy-two healthy adults (43 males, mean age±SD=38.8±16.6 years, range=20~70 years; 29 females, 44.2±20.1 years, range=19~72 years) underwent resting-state brain positron emission tomography (PET) 40 minutes after 18F-fluorodeoxyglucose (FDG) injection. Within 10 days of the FDG PET study, participants completed Cloninger's 240-item Temperament and Character Inventory (TCI) to determine NS scores. Participants with and without ASP were grouped according to their TCI profiles. Statistical parametric mapping analysis was performed using the FDG PET and TCI profile data. NS scores positively correlated with metabolism in the left anterior cingulate gyrus and the insula on both sides of the brain and negatively correlated with metabolism in the right pallidum and putamen. Participants with ASP showed differences in cerebral glucose metabolism across various cortical and subcortical regions, mainly in the frontal and prefrontal areas. These data demonstrate altered regional cerebral glucose metabolism in individuals with NS and ASP and inform our understanding of the neurobiological substrates of problematic behaviors and personality disorders. PMID:27574485

  9. 2-Deoxy-2-fluoro-d-glucose metabolism in Arabidopsis thaliana

    PubMed Central

    Fatangare, Amol; Paetz, Christian; Saluz, Hanspeter; Svatoš, Aleš

    2015-01-01

    2-Deoxy-2-fluoro-d-glucose (FDG) is glucose analog routinely used in clinical and animal radiotracer studies to trace glucose uptake but it has rarely been used in plants. Previous studies analyzed FDG translocation and distribution pattern in plants and proposed that FDG could be used as a tracer for photoassimilates in plants. Elucidating FDG metabolism in plants is a crucial aspect for establishing its application as a radiotracer in plant imaging. Here, we describe the metabolic fate of FDG in the model plant species Arabidopsis thaliana. We fed FDG to leaf tissue and analyzed leaf extracts using MS and NMR. On the basis of exact mono-isotopic masses, MS/MS fragmentation, and NMR data, we identified 2-deoxy-2-fluoro-gluconic acid, FDG-6-phosphate, 2-deoxy-2-fluoro-maltose, and uridine-diphosphate-FDG as four major end products of FDG metabolism. Glycolysis and starch degradation seemed to be the important pathways for FDG metabolism. We showed that FDG metabolism in plants is considerably different than animal cells and goes beyond FDG-phosphate as previously presumed. PMID:26579178

  10. Regional Cerebral Glucose Metabolism in Novelty Seeking and Antisocial Personality: A Positron Emission Tomography Study.

    PubMed

    Park, So Hyeon; Park, Hyun Soo; Kim, Sang Eun

    2016-08-01

    Novelty seeking (NS) and antisocial personality (ASP) are commonly exhibited by those who suffer from addictions, such as substance abuse. NS has been suggested to be a fundamental aspect of ASP. To investigate the neurobiological substrate of NS and ASP, we tested the relationship between regional cerebral glucose metabolism and the level of NS, determining the differences between individuals with and without ASP. Seventy-two healthy adults (43 males, mean age±SD=38.8±16.6 years, range=20~70 years; 29 females, 44.2±20.1 years, range=19~72 years) underwent resting-state brain positron emission tomography (PET) 40 minutes after (18)F-fluorodeoxyglucose (FDG) injection. Within 10 days of the FDG PET study, participants completed Cloninger's 240-item Temperament and Character Inventory (TCI) to determine NS scores. Participants with and without ASP were grouped according to their TCI profiles. Statistical parametric mapping analysis was performed using the FDG PET and TCI profile data. NS scores positively correlated with metabolism in the left anterior cingulate gyrus and the insula on both sides of the brain and negatively correlated with metabolism in the right pallidum and putamen. Participants with ASP showed differences in cerebral glucose metabolism across various cortical and subcortical regions, mainly in the frontal and prefrontal areas. These data demonstrate altered regional cerebral glucose metabolism in individuals with NS and ASP and inform our understanding of the neurobiological substrates of problematic behaviors and personality disorders. PMID:27574485

  11. Determination of patterns of regional cerebral glucose metabolism in normal aging and dementia

    SciTech Connect

    Alavi, A.; Chawluk, J.; Hurtig, H.; Dann, R.; Rosen, M.; Kushner, M.; Silver, F.; Reivich, M.

    1985-05-01

    Regional cerebral metabolic rates for glucose (rCMRGlc) were measured using 18F-FDG and positron emission tomography (PET) in 14 patients with probable Alzheimer's disease (AD) (age=64), 9 elderly controls (age=61), and 9 young controls (age=28). PET studies were performed without sensory stimulation or deprivation. Metabolic rates in individual brain regions were determined using an atlas overlay. Relative metabolic rates (rCMRGl c/global CMRGlc) were determined for all subjects. Comparison of young and elderly controls demonstrated significant decreases in frontal metabolism (rho<0.005) and right inferior parietal (IP) metabolism (rho<0.02) with normal aging. Patients with mild-moderate AD (NMAD) (n=8) when compared to age-matched controls, showed further reduction in right IP metabolism (rho<0.02). SAD patients also demonstrated metabolic decrements in left hemisphere language areas (rho<0.01). This latter finding is consistent with language disturbance observed late in the course of the disease. Out data reveal progressive changes in patterns of cerebral glucose utilization with aging and demential with reflect salient clinical features of these processes.

  12. The role of BRD7 in embryo development and glucose metabolism.

    PubMed

    Kim, Yoo; Andrés Salazar Hernández, Mario; Herrema, Hilde; Delibasi, Tuncay; Park, Sang Won

    2016-08-01

    Bromodomain-containing protein 7 (BRD7) is a member of bromodomain-containing protein family and its function has been implicated in several diseases. We have previously shown that BRD7 plays a role in metabolic processes. However, the effect of BRD7 deficiency in glucose metabolism and its role in in vivo have not been fully revealed. Here, we report the essential role of BRD7 during embryo development. Mice homozygous for BRD7 led to embryonic lethality at mid-gestation. Homozygous BRD7 knockout (KO) mice showed retardation in development, and eventually all BRD7 KO embryos died in utero prior to E16.5. Partial knockdown of Brd7 gene displayed mild changes in glucose metabolism. PMID:27444544

  13. Deoxyglucose method for the estimation of local myocardial glucose metabolism with positron computed tomography

    SciTech Connect

    Ratib, O.; Phelps, M.E.; Huang, S.C.; Henze, E.; Selin, C.E.; Schelbert, H.R.

    1981-01-01

    The deoxyglucose method originally developed for measurements of the local cerebral metabolic rate for glucose has been investigated in terms of its application to studies of the heart with positron computed tomography (PCT) and FDG. Studies were performed in dogs to measure the tissue kinetics of FDG with PCT and by direct arterial-venous sampling. The operational equation developed in our laboratory as an extension of the Sokoloff model was used to analyze the data. The FDG method accurately predicted the true MMRGlc even when the glucose metabolic rate was normal but myocardial blood flow (MBF) was elevated 5 times the control value or when metabolism was reduced to 10% of normal and MBF increased 5 times normal. Improvements in PCT resolution are required to improve the accuracy of the estimates of the rate constants and the MMRGlc.

  14. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy.

    PubMed

    Wu, Junjun; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2013-03-01

    Flavonoids are valuable natural products widely used in human health and nutrition. Recent advances in synthetic biology and metabolic engineering have yielded improved strain titers and yields. However, current fermentation strategies often require supplementation of expensive phenylpropanoic precursors in the media and separate evaluation of each strategy in turn as part of the flavonoid pathway, implicitly assuming the modifications are additive. In this study, an Escherichia coli fermentation system was developed to bypass both of these problems. An eight-step pathway, consisting of 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHPS), chorismate mutase/prephenate dehydratase (CM/PDT), phenylalanine ammonia lyase (PAL), 4-coumarate:CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), malonate synthetase, and malonate carrier protein, was assembled on four vectors in order to produce the flavonoid precursor (2S)-pinocembrin directly from glucose. Furthermore, a modular metabolic strategy was employed to identify conditions that optimally balance the four pathway modules. Once this metabolic balance was achieved, such strains were capable of producing 40.02mg/L (2S)-pinocembrin directly from glucose. These results were attained by culturing engineered cells in minimal medium without additional precursor supplementation. The fermentation platform described here paves the way for the development of an economical process for microbial production of flavonoids directly from glucose. PMID:23246524

  15. Blood glucose concentration for predicting poor outcomes in patients with and without impaired glucose metabolism undergoing off-pump coronary artery bypass surgery – long-term observational study

    PubMed Central

    Majstrak, Franciszek; Opolski, Grzegorz; Filipiak, Krzysztof J.

    2016-01-01

    Introduction Strict glucose control is an everyday practice in the perioperative period. Elevated glucose level has a deleterious impact on clinical results, but a therapeutic target has not been stated yet. Aim To determine a glucose concentration range affecting long-term outcomes after coronary artery bypass surgery (CABG). Material and methods This study is a retrospective evaluation of consecutive patients treated in a university hospital in Poland from 2004 to 2008. Patients were divided into 2 groups: an impaired glucose metabolism group (IGM) if they had 1) known DM or 2) perioperative hyperglycaemia defined as ≥ 200 mg/dl; and a non-IGM group. The end point (EP) was all-cause mortality. Results One thousand two hundred and eleven patients were covered by the analysis. The observation time was from 01.01.2004 until 01.08.2012. Patients who had maximal glucose concentrations < 242 mg/dl had the lowest mortality risk (EP in 21.1%); a higher risk was noted in the group with glucose concentrations 242–324 mg/dl (EP in 30.8%); and a very high risk was found for the group where glucose concentration was > 324 mg/dl (EP in 44.2%) (p = 0.041). Patients with IGM had a shorter survival at the end of the study (p < 0.001). The longest survival was observed in patients whose maximal glucose level was ≤ 242 mg/dl (p < 0.001) and the minimal glucose concentration was in the range 61–110 mg/dl (p < 0.001). Conclusions Tight glucose concentration control should be performed irrespective of a diabetes diagnosis and proper treatment introduced when necessary. Maximal glucose concentration should be kept < 242 mg/dl, while the minimum should be in the range 60–110 mg/dl. PMID:27625687

  16. Acute alcohol intoxication decreases glucose metabolism but increases acetate uptake in the human brain.

    PubMed

    Volkow, Nora D; Kim, Sung Won; Wang, Gene-Jack; Alexoff, David; Logan, Jean; Muench, Lisa; Shea, Colleen; Telang, Frank; Fowler, Joanna S; Wong, Christopher; Benveniste, Helene; Tomasi, Dardo

    2013-01-01

    Alcohol intoxication results in marked reductions in brain glucose metabolism, which we hypothesized reflect not just its GABAergic enhancing effects but also the metabolism of acetate as an alternative brain energy source. To test this hypothesis we separately assessed the effects of alcohol intoxication on brain glucose and acetate metabolism using Positron Emission Tomography (PET). We found that alcohol intoxication significantly decreased whole brain glucose metabolism (measured with FDG) with the largest decrements in cerebellum and occipital cortex and the smallest in the thalamus. In contrast, alcohol intoxication caused a significant increase in [1-(11)C]acetate brain uptake (measured as standard uptake value, SUV), with the largest increases occurring in the cerebellum and the smallest in the thalamus. In heavy alcohol drinkers [1-(11)C]acetate brain uptake during alcohol challenge tended to be higher than in occasional drinkers (p<0.06) and the increases in [1-(11)C]acetate uptake in cerebellum with alcohol were positively associated with the reported amount of alcohol consumed (r=0.66, p<0.01). Our findings corroborate a reduction of brain glucose metabolism during intoxication and document an increase in brain acetate uptake. The opposite changes observed between regional brain metabolic decrements and regional increases in [1-(11)C]acetate uptake support the hypothesis that during alcohol intoxication the brain may rely on acetate as an alternative brain energy source and provides preliminary evidence that heavy alcohol exposures may facilitate the use of acetate as an energy substrate. These findings raise the question of the potential therapeutic benefits that increasing plasma acetate concentration (i.e. ketogenic diets) may have in alcoholics undergoing alcohol detoxification. PMID:22947541

  17. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    SciTech Connect

    Bass, V.; Gordon, C.J.; Jarema, K.A.; MacPhail, R.C.; Cascio, W.E.; Phillips, P.M.; Ledbetter, A.D.; Schladweiler, M.C.; Andrews, D.; Miller, D.; Doerfler, D.L.; Kodavanti, U.P.

    2013-12-15

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α{sub 2}-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone

  18. Cellular pathways of energy metabolism in the brain: is glucose used by neurons or astrocytes?

    PubMed

    Nehlig, Astrid; Coles, Jonathan A

    2007-09-01

    Most techniques presently available to measure cerebral activity in humans and animals, i.e. positron emission tomography (PET), autoradiography, and functional magnetic resonance imaging, do not record the activity of neurons directly. Furthermore, they do not allow the investigator to discriminate which cell type is using glucose, the predominant fuel provided to the brain by the blood. Here, we review the experimental approaches aimed at determining the percentage of glucose that is taken up by neurons and by astrocytes. This review is integrated in an overview of the current concepts on compartmentation and substrate trafficking between astrocytes and neurons. In the brain in vivo, about half of the glucose leaving the capillaries crosses the extracellular space and directly enters neurons. The other half is taken up by astrocytes. Calculations suggest that neurons consume more energy than do astrocytes, implying that astrocytes transfer an intermediate substrate to neurons. Experimental approaches in vitro on the honeybee drone retina and on the isolated vagus nerve also point to a continuous transfer of intermediate metabolites from glial cells to neurons in these tissues. Solid direct evidence of such transfer in the mammalian brain in vivo is still lacking. PET using [(18)F]fluorodeoxyglucose reflects in part glucose uptake by astrocytes but does not indicate to which step the glucose taken up is metabolized within this cell type. Finally, the sequence of metabolic changes occurring during a transient increase of electrical activity in specific regions of the brain remains to be clarified. PMID:17659529

  19. Effect of enoxacin, felbinac, and sparfloxacin on fatty acid metabolism and glucose concentrations in rat tissues.

    PubMed

    Kasuya, Fumiyo; Miwa, Yasushi; Kazumi, Maya; Inoue, Hiroyuki; Ohta, Hiroyuki

    2011-05-01

    Multiple changes in metabolic levels could be useful for understanding physiological toxicity. To explore further risk factors for the convulsions induced by the interaction of nonsteroidal anti-inflammatory and new quinolone antimicrobial drugs, the effect of sparfloxacin, enoxacin, and felbinac on fatty acid metabolism and glucose concentrations in the liver, brain, and blood of rats was investigated. The levels of long-chain acyl-CoAs (C(18:1) and C(20:4)) in the liver and brain were decreased at the onset of convulsions induced by the coadministration of enoxacin with felbinac. Then, glucose concentrations in the liver and blood were decreased, whereas they were increased in a dose-dependant manner in the brain. However, the formation of acyl-CoAs and glucose levels in the liver, brain, and blood was not significantly influenced by enoxacin, felbinac, and sparfloxacin alone, respectively. The disturbance of both fatty acid metabolism and glucose levels might be associated with the increased susceptibility to convulsions, which may contribute to further understanding of the toxic effects associated with these drugs. PMID:21633127

  20. Energy balance and metabolic changes with sodium-glucose co-transporter 2 inhibition.

    PubMed

    Rajeev, S P; Cuthbertson, D J; Wilding, J P H

    2016-02-01

    Sodium-glucose co-transporter 2 (SGLT2) inhibitors are the latest addition to the class of oral glucose-lowering drugs. They have been rapidly adopted into clinical practice because of therapeutic advantages, including weight loss and reduction in blood pressure, in addition to glycaemic benefits and a low intrinsic risk of hypoglycaemia. Although there are extensive data on the clinical effects of SGLT2 inhibition, the metabolic effects of inhibiting renal glucose reabsorption have not been fully described. Recent studies have identified compensatory metabolic effects, such as an increase in endogenous glucose production, and have also shown an increase in glucagon secretion during SGLT2 inhibition. In addition, there is a discrepancy between the expected and observed weight loss found in clinical studies on SGLT2 inhibitors, probably as a result of changes in energy balance with this treatment approach. SGLT2 inhibition is likely to have intriguing effects on whole body metabolism which have not been fully elucidated, and which, if explained, might help optimize the use of this new class of medicines. PMID:26403227

  1. Long-Term Feeding of Chitosan Ameliorates Glucose and Lipid Metabolism in a High-Fructose-Diet-Impaired Rat Model of Glucose Tolerance

    PubMed Central

    Liu, Shing-Hwa; Cai, Fang-Ying; Chiang, Meng-Tsan

    2015-01-01

    This study was designed to investigate the effects of long-term feeding of chitosan on plasma glucose and lipids in rats fed a high-fructose (HF) diet (63.1%). Male Sprague-Dawley rats aged seven weeks were used as experimental animals. Rats were divided into three groups: (1) normal group (normal); (2) HF group; (3) chitosan + HF group (HF + C). The rats were fed the experimental diets and drinking water ad libitum for 21 weeks. The results showed that chitosan (average molecular weight was about 3.8 × 105 Dalton and degree of deacetylation was about 89.8%) significantly decreased body weight, paraepididymal fat mass, and retroperitoneal fat mass weight, but elevated the lipolysis rate in retroperitoneal fats of HF diet-fed rats. Supplementation of chitosan causes a decrease in plasma insulin, tumor necrosis factor (TNF)-α, Interleukin (IL)-6, and leptin, and an increase in plasma adiponectin. The HF diet increased hepatic lipids. However, intake of chitosan reduced the accumulation of hepatic lipids, including total cholesterol (TC) and triglyceride (TG) contents. In addition, chitosan elevated the excretion of fecal lipids in HF diet-fed rats. Furthermore, chitosan significantly decreased plasma TC, low-density lipoprotein cholesterol (LDL-C), very-low-density lipoprotein cholesterol (VLDL-C), the TC/high-density lipoprotein cholesterol (HDL-C) ratio, and increased the HDL-C/(LDL-C + VLDL-C) ratio, but elevated the plasma TG and free fatty acids concentrations in HF diet-fed rats. Plasma angiopoietin-like 4 (ANGPTL4) protein expression was not affected by the HF diet, but it was significantly increased in chitosan-supplemented, HF-diet-fed rats. The high-fructose diet induced an increase in plasma glucose and impaired glucose tolerance, but chitosan supplementation decreased plasma glucose and improved impairment of glucose tolerance and insulin tolerance. Taken together, these results indicate that supplementation with chitosan can improve the impairment of

  2. Novel roles of hypoxia response system in glucose metabolism and obesity.

    PubMed

    Ichiki, Toshihiro; Sunagawa, Kenji

    2014-07-01

    Oxygen is essential for ATP production in mitochondria through oxidative phosphorylation. Metazoans are equipped with the hypoxia response system that includes hypoxia-inducible factor (HIF), prolyl hydroxylase domain protein (PHD), and von Hippel-Lindau ubiquitin ligase system to combat or adapt hypoxic conditions. PHD is an oxygen-sensing enzyme that is responsible for HIF-α hydroxylation and subsequent proteasomal degradation at normoxic conditions. In hypoxic conditions, PHD activity is inhibited and transcriptional activity of HIF is increased, resulting in the induction of a broad range of genes that are involved in glucose metabolism, angiogenesis, and erythropoiesis. A worldwide epidemic of obesity, a critical risk factor for diabetes and cardiovascular diseases, has led to intense studies on adipose tissue biology, which revealed that adipose tissue functions as an endocrine organ that affects the whole body. Recent studies also suggest that inflammation and hypoxia of adipose tissue that occur as adipose tissue mass expands play an important role in the development of insulin resistance, in which PHD/HIF pathway is critically involved. The PHD/HIF pathway may be an attractive and potential target for the treatment of obesity and associated diseases. PMID:24774124

  3. Abnormal Glucose Tolerance Is Associated with a Reduced Myocardial Metabolic Flexibility in Patients with Dilated Cardiomyopathy.

    PubMed

    Tricò, Domenico; Baldi, Simona; Frascerra, Silvia; Venturi, Elena; Marraccini, Paolo; Neglia, Danilo; Natali, Andrea

    2016-01-01

    Dilated cardiomyopathy (DCM) is characterized by a metabolic shift from fat to carbohydrates and failure to increase myocardial glucose uptake in response to workload increments. We verified whether this pattern is influenced by an abnormal glucose tolerance (AGT). In 10 patients with DCM, 5 with normal glucose tolerance (DCM-NGT) and 5 with AGT (DCM-AGT), and 5 non-DCM subjects with AGT (N-AGT), we measured coronary blood flow and arteriovenous differences of oxygen and metabolites during Rest, Pacing (at 130 b/min), and Recovery. Myocardial lactate exchange and oleate oxidation were also measured. At Rest, DCM patients showed a reduced nonesterified fatty acids (NEFA) myocardial uptake, while glucose utilization increased only in DCM-AGT. In response to Pacing, glucose uptake promptly rose in N-AGT (from 72 ± 21 to 234 ± 73 nmol/min/g, p < 0.05), did not change in DCM-AGT, and slowly increased in DCM-NGT. DCM-AGT sustained the extra workload by increasing NEFA oxidation (from 1.3 ± 0.2 to 2.9 ± 0.1 μmol/min/gO2 equivalents, p < 0.05), while DCM-NGT showed a delayed increase in glucose uptake. Substrate oxidation rates paralleled the metabolites data. The presence of AGT in patients with DCM exacerbates both the shift from fat to carbohydrates in resting myocardial metabolism and the reduced myocardial metabolic flexibility in response to an increased workload. This trial is registered with ClinicalTrial.gov NCT02440217. PMID:26798650

  4. Abnormal Glucose Tolerance Is Associated with a Reduced Myocardial Metabolic Flexibility in Patients with Dilated Cardiomyopathy

    PubMed Central

    Tricò, Domenico; Baldi, Simona; Frascerra, Silvia; Venturi, Elena; Marraccini, Paolo; Neglia, Danilo; Natali, Andrea

    2016-01-01

    Dilated cardiomyopathy (DCM) is characterized by a metabolic shift from fat to carbohydrates and failure to increase myocardial glucose uptake in response to workload increments. We verified whether this pattern is influenced by an abnormal glucose tolerance (AGT). In 10 patients with DCM, 5 with normal glucose tolerance (DCM-NGT) and 5 with AGT (DCM-AGT), and 5 non-DCM subjects with AGT (N-AGT), we measured coronary blood flow and arteriovenous differences of oxygen and metabolites during Rest, Pacing (at 130 b/min), and Recovery. Myocardial lactate exchange and oleate oxidation were also measured. At Rest, DCM patients showed a reduced nonesterified fatty acids (NEFA) myocardial uptake, while glucose utilization increased only in DCM-AGT. In response to Pacing, glucose uptake promptly rose in N-AGT (from 72 ± 21 to 234 ± 73 nmol/min/g, p < 0.05), did not change in DCM-AGT, and slowly increased in DCM-NGT. DCM-AGT sustained the extra workload by increasing NEFA oxidation (from 1.3 ± 0.2 to 2.9 ± 0.1 μmol/min/gO2 equivalents, p < 0.05), while DCM-NGT showed a delayed increase in glucose uptake. Substrate oxidation rates paralleled the metabolites data. The presence of AGT in patients with DCM exacerbates both the shift from fat to carbohydrates in resting myocardial metabolism and the reduced myocardial metabolic flexibility in response to an increased workload. This trial is registered with ClinicalTrial.gov NCT02440217. PMID:26798650

  5. MicroRNA-26a regulates glucose metabolism by direct targeting PDHX in colorectal cancer cells

    PubMed Central

    2014-01-01

    Background Reprogramming energy metabolism has been an emerging hallmark of cancer cells. MicroRNAs play important roles in glucose metabolism. Methods The targets of microRNA-26a (miR-26a) were predicted by bioinformatics tools. The efficacy of miR-26a binding the 3′-untranslated region (UTR) of pyruvate dehydrogenase protein X component (PDHX) mRNA was evaluated using a dual-luciferase reporter assay. The PDHX expression at the mRNA and protein level in several colon cancer cell lines was quantified with real-time PCR and Western blot analysis respectively. The effects of miR-26a on glucose metabolism were determined by detecting the content of glucose consumption, production of lactate, pyruvate, and acetyl-coenzyme A. Results The expression of miR-26a is inversely associated with the level of its targeting protein PDHX in several colon cancer cell lines with different malignancy potentials. MiR-26a inhibits PDHX expression by direct targeting the 3′-UTR of PDHX mRNA. The glucose consumption and lactate concentration were both greatly increased in colon cancer cells than the normal colon mucosal epithelia under physiological conditions. The overexpression of miR-26a in HCT116 cells efficiently improved the accumulation of pyruvate and decreased the production of acetyl coenzyme A. Meanwhile the inhibition of miR-26a expression induced inverse biological effects. Conclusions MiR-26a regulates glucose metabolism of colorectal cancer cells by direct targeting the PDHX, which inhibits the conversion of pyruvate to acetyl coenzyme A in the citric acid cycle. PMID:24935220

  6. A Kinetic Model of Whole-Body Glucose Metabolism with Reference to the Domestic Dog (Canis lupus familiaris)

    PubMed Central

    McKnight, Leslie L.; Shoveller, Anna K.; Lopez, Secundino

    2015-01-01

    A new two-pool model to describe glucose kinetics in the steady state is presented. The pools are plasma glucose, Q1, and tissue glucose, Q2 (both µmol). The flows (all µmol/min) into the plasma pool (Pool 1) are absorbed glucose entry from dietary sources, labelled glucose infusion, and hepatic glucose production. There is one flow out of Pool 1, glucose uptake by the tissues. Inflows to the tissues pool (Pool 2) are from plasma and glycogenolysis. Outflows from Pool 2 are to plasma, glucose oxidation, and glycogenesis and other metabolism. Application of the model was illustrated using experimental data derived from healthy adult Labrador Retrievers in the fasted and fed (repeated meal feeding) states. In general, model derived estimates of glucose kinetics were representative of normal glucose metabolism, where rates of glucose production and uptake are similar and act to maintain blood glucose concentrations. Furthermore, estimates of within tissue glucose cycling indicated glycogenolysis in fasting and glycogenesis when fed. In the fasted state, model outputs were consistent with those reported in the canine literature derived using a single pool model.

  7. Fructose Alters Intermediary Metabolism of Glucose in Human Adipocytes and Diverts Glucose to Serine Oxidation in the One–Carbon Cycle Energy Producing Pathway

    PubMed Central

    Varma, Vijayalakshmi; Boros, László G.; Nolen, Greg T.; Chang, Ching-Wei; Wabitsch, Martin; Beger, Richard D.; Kaput, Jim

    2015-01-01

    Increased consumption of sugar and fructose as sweeteners has resulted in the utilization of fructose as an alternative metabolic fuel that may compete with glucose and alter its metabolism. To explore this, human Simpson-Golabi-Behmel Syndrome (SGBS) preadipocytes were differentiated to adipocytes in the presence of 0, 1, 2.5, 5 or 10 mM of fructose added to a medium containing 5 mM of glucose representing the normal blood glucose concentration. Targeted tracer [1,2-13C2]-d-glucose fate association approach was employed to examine the influence of fructose on the intermediary metabolism of glucose. Increasing concentrations of fructose robustly increased the oxidation of [1,2-13C2]-d-glucose to 13CO2 (p < 0.000001). However, glucose-derived 13CO2 negatively correlated with 13C labeled glutamate, 13C palmitate, and M+1 labeled lactate. These are strong markers of limited tricarboxylic acid (TCA) cycle, fatty acid synthesis, pentose cycle fluxes, substrate turnover and NAD+/NADP+ or ATP production from glucose via complete oxidation, indicating diminished mitochondrial energy metabolism. Contrarily, a positive correlation was observed between glucose-derived 13CO2 formed and 13C oleate and doses of fructose which indicate the elongation and desaturation of palmitate to oleate for storage. Collectively, these results suggest that fructose preferentially drives glucose through serine oxidation glycine cleavage (SOGC pathway) one-carbon cycle for NAD+/NADP+ production that is utilized in fructose-induced lipogenesis and storage in adipocytes. PMID:26087138

  8. Long-term exposure to abnormal glucose levels alters drug metabolism pathways and insulin sensitivity in primary human hepatocytes

    PubMed Central

    Davidson, Matthew D.; Ballinger, Kimberly R.; Khetani, Salman R.

    2016-01-01

    Hyperglycemia in type 2 diabetes mellitus has been linked to non-alcoholic fatty liver disease, which can progress to inflammation, fibrosis/cirrhosis, and hepatocellular carcinoma. Understanding how chronic hyperglycemia affects primary human hepatocytes (PHHs) can facilitate the development of therapeutics for these diseases. Conversely, elucidating the effects of hypoglycemia on PHHs may provide insights into how the liver adapts to fasting, adverse diabetes drug reactions, and cancer. In contrast to declining PHH monocultures, micropatterned co-cultures (MPCCs) of PHHs and 3T3-J2 murine embryonic fibroblasts maintain insulin-sensitive glucose metabolism for several weeks. Here, we exposed MPCCs to hypo-, normo- and hyperglycemic culture media for ~3 weeks. While albumin and urea secretion were not affected by glucose level, hypoglycemic MPCCs upregulated CYP3A4 enzyme activity as compared to other glycemic states. In contrast, hyperglycemic MPCCs displayed significant hepatic lipid accumulation in the presence of insulin, while also showing decreased sensitivity to insulin-mediated inhibition of glucose output relative to a normoglycemic control. In conclusion, we show for the first time that PHHs exposed to hypo- and hyperglycemia can remain highly functional, but display increased CYP3A4 activity and selective insulin resistance, respectively. In the future, MPCCs under glycemic states can aid in novel drug discovery and mechanistic investigations. PMID:27312339

  9. Long-term exposure to abnormal glucose levels alters drug metabolism pathways and insulin sensitivity in primary human hepatocytes.

    PubMed

    Davidson, Matthew D; Ballinger, Kimberly R; Khetani, Salman R

    2016-01-01

    Hyperglycemia in type 2 diabetes mellitus has been linked to non-alcoholic fatty liver disease, which can progress to inflammation, fibrosis/cirrhosis, and hepatocellular carcinoma. Understanding how chronic hyperglycemia affects primary human hepatocytes (PHHs) can facilitate the development of therapeutics for these diseases. Conversely, elucidating the effects of hypoglycemia on PHHs may provide insights into how the liver adapts to fasting, adverse diabetes drug reactions, and cancer. In contrast to declining PHH monocultures, micropatterned co-cultures (MPCCs) of PHHs and 3T3-J2 murine embryonic fibroblasts maintain insulin-sensitive glucose metabolism for several weeks. Here, we exposed MPCCs to hypo-, normo- and hyperglycemic culture media for ~3 weeks. While albumin and urea secretion were not affected by glucose level, hypoglycemic MPCCs upregulated CYP3A4 enzyme activity as compared to other glycemic states. In contrast, hyperglycemic MPCCs displayed significant hepatic lipid accumulation in the presence of insulin, while also showing decreased sensitivity to insulin-mediated inhibition of glucose output relative to a normoglycemic control. In conclusion, we show for the first time that PHHs exposed to hypo- and hyperglycemia can remain highly functional, but display increased CYP3A4 activity and selective insulin resistance, respectively. In the future, MPCCs under glycemic states can aid in novel drug discovery and mechanistic investigations. PMID:27312339

  10. Insulin sensitizes FGF21 in glucose and lipid metabolisms via activating common AKT pathway.

    PubMed

    Yu, Dan; Ye, Xianlong; Wu, Qiang; Li, Shujie; Yang, Yongbi; He, Jinjiao; Liu, Yunye; Zhang, Xiaoyu; Yuan, Qingyan; Liu, Mingyao; Li, Deshan; Ren, Guiping

    2016-06-01

    Previous studies reveal that fibroblast growth factor 21 (FGF21) sensitizes insulin to achieve a synergy in regulating glucose metabolism. Here, we report that insulin sensitizes FGF21 in regulating both glucose and lipid metabolisms. db/db diabetic mice were subcutaneously administrated once a day for 6 weeks. Effective dose of insulin (1 U) could control blood glucose level of the db/db mice for maximum of 2 h, increased the body weight of the db/db mice and did not improve serum lipid parameters. In contrast, effective dose of FGF21 (0.5 mg/kg) could maintain blood glucose of the db/db mice at normal level for at least 24 h, repressed the weight gain of the mice and significantly improved lipid parameters. Ineffective doses of FGF21 (0.125 mg/kg) and insulin had no effect on blood glucose level of the db/db mice after 24 h administration, body weight or lipid parameters. However, combination of the two ineffective doses could maintain blood glucose level of the db/db mice for at least 24 h, suppressed weight gain and significantly improved lipid parameters. These results suggest that insulin sensitizes FGF21 in regulating both glucose and lipid metabolism. The results aimed to study the molecular basis of FGF21 sensitization indicates that combination of the two ineffective doses increased the mRNA expression of glut1, glut4, β-Klotho, sirt1, pgc-1α, ucp-1 and AKT phosphorylation, decreased fasn. The results demonstrate that insulin sensitizes FGF21 through elevating the phosphorylation of common gene Akt and amplifying FGF21 downstream signaling, including increasing expression of glut1 sirt1, pgc-1α, ucp-1, and decreasing fasn expression. In summary, we reports herein for the first time that insulin sensitizes FGF21 to achieve a synergy in regulating glucose and lipid metabolism. Along with previous studies, we conclude that the synergistic effect between FGF21 and insulin is realized through mutual sensitization. PMID:26607153

  11. Prenatal Exposures to Multiple Thyroid Hormone Disruptors: Effects on Glucose and Lipid Metabolism.

    PubMed

    Molehin, Deborah; Dekker Nitert, Marloes; Richard, Kerry

    2016-01-01

    Background. Thyroid hormones (THs) are essential for normal human fetal development and play a major role in the regulation of glucose and lipid metabolism. Delivery of TH to target tissues is dependent on processes including TH synthesis, transport, and metabolism. Thyroid hormone endocrine disruptors (TH-EDCs) are chemical substances that interfere with these processes, potentially leading to adverse pregnancy outcomes. Objectives. This review focuses on the effects of prenatal exposures to combinations of TH-EDCs on fetal and neonatal glucose and lipid metabolism and also discusses the various mechanisms by which TH-EDCs interfere with other hormonal pathways. Methods. We conducted a comprehensive narrative review on the effects of TH-EDCs with particular emphasis on exposure during pregnancy. Discussion. TH imbalance has been linked to many metabolic processes and the effects of TH imbalance are particularly pronounced in early fetal development due to fetal dependence on maternal TH for proper growth and development. The pervasive presence of EDCs in the environment results in ubiquitous exposure to either single or mixtures of EDCs with deleterious effects on metabolism. Conclusions. Further evaluation of combined effects of TH-EDCs on fetal metabolic endpoints could improve advice provided to expectant mothers. PMID:26989557

  12. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients

    PubMed Central

    Stender, Johan; Kupers, Ron; Rodell, Anders; Thibaut, Aurore; Chatelle, Camille; Bruno, Marie-Aurélie; Gejl, Michael; Bernard, Claire; Hustinx, Roland; Laureys, Steven; Gjedde, Albert

    2015-01-01

    The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function of these patients. However, no quantitative comparisons of cerebral glucose metabolism in VS/UWS and MCS have yet been reported. We calculated the regional and whole-brain CMRglc of 41 patients in the states of VS/UWS (n=14), MCS (n=21) or emergence from MCS (EMCS, n=6), and healthy volunteers (n=29). Global cortical CMRglc in VS/UWS and MCS averaged 42% and 55% of normal, respectively. Differences between VS/UWS and MCS were most pronounced in the frontoparietal cortex, at 42% and 60% of normal. In brainstem and thalamus, metabolism declined equally in the two conditions. In EMCS, metabolic rates were indistinguishable from those of MCS. Ordinal logistic regression predicted that patients are likely to emerge into MCS at CMRglc above 45% of normal. Receiver-operating characteristics showed that patients in MCS and VS/UWS can be differentiated with 82% accuracy, based on cortical metabolism. Together these results reveal a significant correlation between whole-brain energy metabolism and level of consciousness, suggesting that quantitative values of CMRglc reveal consciousness in severely brain-injured patients. PMID:25294128

  13. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients.

    PubMed

    Stender, Johan; Kupers, Ron; Rodell, Anders; Thibaut, Aurore; Chatelle, Camille; Bruno, Marie-Aurélie; Gejl, Michael; Bernard, Claire; Hustinx, Roland; Laureys, Steven; Gjedde, Albert

    2015-01-01

    The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function of these patients. However, no quantitative comparisons of cerebral glucose metabolism in VS/UWS and MCS have yet been reported. We calculated the regional and whole-brain CMRglc of 41 patients in the states of VS/UWS (n=14), MCS (n=21) or emergence from MCS (EMCS, n=6), and healthy volunteers (n=29). Global cortical CMRglc in VS/UWS and MCS averaged 42% and 55% of normal, respectively. Differences between VS/UWS and MCS were most pronounced in the frontoparietal cortex, at 42% and 60% of normal. In brainstem and thalamus, metabolism declined equally in the two conditions. In EMCS, metabolic rates were indistinguishable from those of MCS. Ordinal logistic regression predicted that patients are likely to emerge into MCS at CMRglc above 45% of normal. Receiver-operating characteristics showed that patients in MCS and VS/UWS can be differentiated with 82% accuracy, based on cortical metabolism. Together these results reveal a significant correlation between whole-brain energy metabolism and level of consciousness, suggesting that quantitative values of CMRglc reveal consciousness in severely brain-injured patients. PMID:25294128

  14. Prenatal Exposures to Multiple Thyroid Hormone Disruptors: Effects on Glucose and Lipid Metabolism

    PubMed Central

    Molehin, Deborah

    2016-01-01

    Background. Thyroid hormones (THs) are essential for normal human fetal development and play a major role in the regulation of glucose and lipid metabolism. Delivery of TH to target tissues is dependent on processes including TH synthesis, transport, and metabolism. Thyroid hormone endocrine disruptors (TH-EDCs) are chemical substances that interfere with these processes, potentially leading to adverse pregnancy outcomes. Objectives. This review focuses on the effects of prenatal exposures to combinations of TH-EDCs on fetal and neonatal glucose and lipid metabolism and also discusses the various mechanisms by which TH-EDCs interfere with other hormonal pathways. Methods. We conducted a comprehensive narrative review on the effects of TH-EDCs with particular emphasis on exposure during pregnancy. Discussion. TH imbalance has been linked to many metabolic processes and the effects of TH imbalance are particularly pronounced in early fetal development due to fetal dependence on maternal TH for proper growth and development. The pervasive presence of EDCs in the environment results in ubiquitous exposure to either single or mixtures of EDCs with deleterious effects on metabolism. Conclusions. Further evaluation of combined effects of TH-EDCs on fetal metabolic endpoints could improve advice provided to expectant mothers. PMID:26989557

  15. TAp63 is a master transcriptional regulator of lipid and glucose metabolism

    PubMed Central

    Su, Xiaohua; Gi, Young Jin; Chakravarti, Deepavali; Chan, Io Long; Zhang, Aijun; Xia, Xuefeng; Tsai, Kenneth Y.; Flores, Elsa R.

    2012-01-01

    SUMMARY TAp63 prevents premature aging suggesting a link to genes that regulate longevity. Further characterization of TAp63−/− mice revealed that these mice develop obesity, insulin resistance, and glucose intolerance, similar to those seen in mice lacking two key metabolic regulators, Silent information regulator T1 (Sirt1) and AMPK. While the roles of Sirt1 and AMPK in metabolism have been well studied, their upstream regulators are not well understood. We found that TAp63 is important in regulating energy metabolism by accumulating in response to metabolic stress and transcriptionally activating Sirt1, AMPKα2, and LKB1 resulting in increased fatty acid synthesis and decreased fatty acid oxidation. Moreover, we found that TAp63 lowers blood glucose levels in response to metformin. Restoration of Sirt1, AMPKα2, and LKB1 in TAp63−/− mice rescued some of the metabolic defects of the TAp63−/− mice. Our study defines a role for TAp63 in metabolism and weight control. PMID:23040072

  16. Preserved pontine glucose metabolism in Alzheimer disease: A reference region for functional brain image (PET) analysis

    SciTech Connect

    Minoshima, Satoshi; Frey, K.A.; Foster, N.L.; Kuhl, D.W.

    1995-07-01

    Our goal was to examine regional preservation of energy metabolism in Alzheimer disease (AD) and to evaluate effects of PET data normalization to reference regions. Regional metabolic rates in the pons, thalamus, putamen, sensorimotor cortex, visual cortex, and cerebellum (reference regions) were determined stereotaxically and examined in 37 patients with probable AD and 22 normal controls based on quantitative {sup 18}FDG-PET measurements. Following normalization of metabolic rates of the parietotemporal association cortex and whole brain to each reference region, distinctions of the two groups were assessed. The pons showed the best preservation of glucose metabolism in AD. Other reference regions showed relatively preserved metabolism compared with the parietotemporal association cortex and whole brain, but had significant metabolic reduction. Data normalization to the pons not only enhanced statistical significance of metabolic reduction in the parietotemporal association cortex, but also preserved the presence of global cerebral metabolic reduction indicated in analysis of the quantitative data. Energy metabolism in the pons in probable AD is well preserved. The pons is a reliable reference for data normalization and will enhance diagnostic accuracy and efficiency of quantitative and nonquantitative functional brain imaging. 39 refs., 2 figs., 3 tabs.

  17. Retinoblastoma Protein Knockdown Favors Oxidative Metabolism and Glucose and Fatty Acid Disposal in Muscle Cells.

    PubMed

    Petrov, Petar D; Ribot, Joan; López-Mejía, Isabel C; Fajas, Lluís; Palou, Andreu; Bonet, M Luisa

    2016-03-01

    Deficiency in the retinoblastoma protein (Rb) favors leanness and a healthy metabolic profile in mice largely attributed to activation of oxidative metabolism in white and brown adipose tissues. Less is known about Rb modulation of skeletal muscle metabolism. This was studied here by transiently knocking down Rb expression in differentiated C2C12 myotubes using small interfering RNAs. Compared with control cells transfected with non-targeting RNAs, myotubes silenced for Rb (by 80-90%) had increased expression of genes related to fatty acid uptake and oxidation such as Cd36 and Cpt1b (by 61% and 42%, respectively), increased Mitofusin 2 protein content (∼2.5-fold increase), increased mitochondrial to nuclear DNA ratio (by 48%), increased oxygen consumption (by 65%) and decreased intracellular lipid accumulation. Rb silenced myotubes also displayed up-regulated levels of glucose transporter type 4 expression (∼5-fold increase), increased basal glucose uptake, and enhanced insulin-induced Akt phosphorylation. Interestingly, exercise in mice led to increased Rb phosphorylation (inactivation) in skeletal muscle as evidenced by immunohistochemistry analysis. In conclusion, the silencing of Rb enhances mitochondrial oxidative metabolism and fatty acid and glucose disposal in skeletal myotubes, and changes in Rb status may contribute to muscle physiological adaptation to exercise. PMID:26241807

  18. ULK1/2 Constitute a Bifurcate Node Controlling Glucose Metabolic Fluxes in Addition to Autophagy.

    PubMed

    Li, Terytty Yang; Sun, Yu; Liang, Yu; Liu, Qing; Shi, Yuzhe; Zhang, Chen-Song; Zhang, Cixiong; Song, Lintao; Zhang, Pu; Zhang, Xianzhong; Li, Xiaotong; Chen, Tao; Huang, Hui-Ying; He, Xiadi; Wang, Yi; Wu, Yu-Qing; Chen, Shaoxuan; Jiang, Ming; Chen, Canhe; Xie, Changchuan; Yang, James Y; Lin, Yan; Zhao, Shimin; Ye, Zhiyun; Lin, Shu-Yong; Chiu, Daniel Tsun-Yee; Lin, Sheng-Cai

    2016-05-01

    Metabolic reprogramming is fundamental to biological homeostasis, enabling cells to adjust metabolic routes after sensing altered availability of fuels and growth factors. ULK1 and ULK2 represent key integrators that relay metabolic stress signals to the autophagy machinery. Here, we demonstrate that, during deprivation of amino acid and growth factors, ULK1/2 directly phosphorylate key glycolytic enzymes including hexokinase (HK), phosphofructokinase 1 (PFK1), enolase 1 (ENO1), and the gluconeogenic enzyme fructose-1,6-bisphosphatase (FBP1). Phosphorylation of these enzymes leads to enhanced HK activity to sustain glucose uptake but reduced activity of FBP1 to block the gluconeogenic route and reduced activity of PFK1 and ENO1 to moderate drop of glucose-6-phosphate and to repartition more carbon flux to pentose phosphate pathway (PPP), maintaining cellular energy and redox homeostasis at cellular and organismal levels. These results identify ULK1/2 as a bifurcate-signaling node that sustains glucose metabolic fluxes besides initiation of autophagy in response to nutritional deprivation. PMID:27153534

  19. First-pass uptake and oxidation of glucose by the splanchnic tissue in young goats fed soy protein-based milk diets with or without amino acid supplementation: glucose metabolism in goat kids after soy feeding.

    PubMed

    Schönhusen, U; Junghans, P; Flöter, A; Steinhoff-Wagner, J; Görs, S; Schneider, F; Metges, C C; Hammon, H M

    2013-04-01

    The study was designed to examine whether feeding soy protein isolate as partial replacement of casein (CN) affects glucose metabolism in young goats and whether effects may be ameliorated by supplementation of those AA known to be lower concentrated in soy than in CN. Goat kids (d 20 of age) were fed comparable milk protein diets, in which 50% of the crude protein was either CN (control, CON), soy protein isolate (SPI), or soy protein isolate supplemented with AA (SPIA) for 43 d (n=8 per group). On d 62 of age, a single bolus dose of d-[(13)C6]glucose (10mg/kg of BW) was given with the morning diet, and simultaneously, a single bolus dose of d-[6,6-(2)H2]glucose (5mg/kg of BW) was injected into a jugular vein. Blood samples were collected between -30 and +420 min relative to the tracer administration to measure the (13)C and (2)H enrichments of plasma glucose and the (13)C enrichment of blood CO2. Glucose first-pass uptake by the splanchnic tissues was calculated from the rate of appearance of differentially labeled glucose tracer in plasma. Glucose oxidation was calculated from (13)C enrichment in blood CO2. In addition, plasma concentrations of triglycerides, nonesterified fatty acids, glucose, insulin, and glucagon were measured. On d 63 of age, kids were killed and jejunal mucosa and liver samples were collected to measure lactase mRNA levels and lactase and maltase activities in the jejunum and activities of pyruvate carboxylase and phosphoenolpyruvate carboxykinase (PEPCK) in the liver. Basal plasma glucose concentration tended to be higher in the CON than the SPIA group, whereas basal insulin was higher in the CON group than the SPI and SPIA groups, and glucagon was higher in the CON than the SPIA group. Plasma glucose and insulin concentrations increased during the first hour after feeding, whereas plasma glucagon increased immediately after feeding and after 1h of feeding. First-pass uptake and glucose oxidation were not affected by diet. Maltase

  20. Generalized decrease in brain glucose metabolism during fasting in humans studied by PET

    SciTech Connect

    Redies, C.; Hoffer, L.J.; Beil, C.; Marliss, E.B.; Evans, A.C.; Lariviere, F.; Marrett, S.; Meyer, E.; Diksic, M.; Gjedde, A.

    1989-06-01

    In prolonged fasting, the brain derives a large portion of its oxidative energy from the ketone bodies, beta-hydroxybutyrate and acetoacetate, thereby reducing whole body glucose consumption. Energy substrate utilization differs regionally in the brain of fasting rat, but comparable information has hitherto been unavailable in humans. We used positron emission tomography (PET) to study regional brain glucose and oxygen metabolism, blood flow, and blood volume in four obese subjects before and after a 3-wk total fast. Whole brain glucose utilization fell to 54% of control (postabsorptive) values (P less than 0.002). The whole brain rate constant for glucose tracer phosphorylation fell to 51% of control values (P less than 0.002). Both parameters decreased uniformly throughout the brain. The 2-fluoro-2-deoxy-D-glucose lumped constant decreased from a control value of 0.57 to 0.43 (P less than 0.01). Regional blood-brain barrier transfer coefficients for glucose tracer, regional oxygen utilization, blood flow, and blood volume were unchanged.

  1. Changes in rat adipocyte and liver glucose metabolism following repeated restraint stress.

    PubMed

    Zhou, J; Shi, M X; Mitchell, T D; Smagin, G N; Thomas, S R; Ryan, D H; Harris, R B

    2001-04-01

    Rats exposed to repeated restraint weigh less than controls even 8 weeks after stress. Stress-induced weight loss is lean tissue, but the post-stress difference in weight between control and restrained rats is lean and fat mass. Whole-body glucose clearance is enhanced 1 day after stress, but adipocyte glucose utilization is inhibited and muscle glucose transport is unchanged. The studies described here demonstrated that glucose transport was increased in both restrained and pair-fed rats, but that glycogen synthesis was increased only in restrained rats, which may account for the improved whole-body glucose clearance. Adipocyte glucose transport was inhibited and adipose plasma membrane beta-adrenergic receptor number was increased 1 day post-stress in restrained rats when weight loss was lean tissue, but were not different from control rats 5 days post-stress, when both fat and lean tissue were reduced. Thus, repeated restraint induces reversible changes in adipocyte metabolism that may represent a transition from the catabolic state of stress to a new energetic equilibrium in rats that maintain a reduced body weight for an extended period of time. PMID:11368423

  2. Enhanced muscle glucose metabolism after exercise in the rat: the two phases.

    PubMed

    Garetto, L P; Richter, E A; Goodman, M N; Ruderman, N B

    1984-06-01

    Thirty minutes after a treadmill run, glucose utilization and glycogen synthesis in perfused rat skeletal muscle are enhanced due to an increase in insulin sensitivity (Richter et al., J. Clin. Invest. 69: 785-793, 1982). The exercise used in these studies was of moderate intensity, and muscle glycogen was substantially repleted at the time (30 min postexercise) that glucose metabolism was examined. When rats were run at twice the previous rate (36 m/min), muscle glycogen was still substantially diminished 30 min after the run. At this time the previously noted increase in insulin sensitivity was still observed in perfused muscle; however, glucose utilization was also increased in the absence of added insulin (1.5 vs. 4.2 mumol X g-1 X h-1). In contrast 2.5 h after the run, muscle glycogen had returned to near preexercise values, and only the insulin-induced increase in glucose utilization was evident. The data suggest that the restoration of muscle glycogen after exercise occurs in two phases. In phase I, muscle glycogen is depleted and insulin-stimulated glucose utilization and glucose utilization in the absence of added insulin may both be enhanced. In phase II glycogen levels have returned to near base-line values and only the increase in insulin sensitivity persists. It is proposed that phase I corresponds to the period of rapid glycogen repletion that immediately follows exercise and phase II to the period of supercompensation. PMID:6377909

  3. Exercise effects on postprandial glucose metabolism in type 1 diabetes: a triple-tracer approach

    PubMed Central

    Mallad, Ashwini; Hinshaw, Ling; Schiavon, Michele; Dalla Man, Chiara; Dadlani, Vikash; Basu, Rita; Lingineni, Ravi; Cobelli, Claudio; Johnson, Matthew L.; Carter, Rickey; Kudva, Yogish C.

    2015-01-01

    To determine the effects of exercise on postprandial glucose metabolism and insulin action in type 1 diabetes (T1D), we applied the triple tracer technique to study 16 T1D subjects on insulin pump therapy before, during, and after 75 min of moderate-intensity exercise (50% V̇o2max) that started 120 min after a mixed meal containing 75 g of labeled glucose. Prandial insulin bolus was administered as per each subject's customary insulin/carbohydrate ratio adjusted for meal time meter glucose and the level of physical activity. Basal insulin infusion rates were not altered. There were no episodes of hypoglycemia during the study. Plasma dopamine and norepinephrine concentrations rose during exercise. During exercise, rates of endogenous glucose production rose rapidly to baseline levels despite high circulating insulin and glucose concentrations. Interestingly, plasma insulin concentrations increased during exercise despite no changes in insulin pump infusion rates, implying increased mobilization of insulin from subcutaneous depots. Glucagon concentrations rose before and during exercise. Therapeutic approaches for T1D management during exercise will need to account for its effects on glucose turnover, insulin mobilization, glucagon, and sympathetic response and possibly other blood-borne feedback and afferent reflex mechanisms to improve both hypoglycemia and hyperglycemia. PMID:25898950

  4. [Investigation of a compound, compatibility of Rhodiola crenulata, Cordyceps militaris, and Rheum palmatum, on metabolic syndrome treatment. V--Mechanisms on improving glucose metabolic disorders].

    PubMed

    Wang, Li; Zhang, Xiao-Lin; Li, Mo-Han; Tian, Jin-Ying; Zhang, Pei-Cheng; Ye, Fei

    2013-06-01

    To investigate the mechanisms of a compound (FF16), compatibility of Rhodiola crenulata, Cordyceps militaris, and Rheum palmatum, on glucose metabolic disorders, the IRF mice charactered with insulin resistance and glucose metabolic disorders induced by high-fat diet in C57BL/6J mice were randomly divided into 3 groups; IRF, rosiglitazone (Rosi) and FF16. The glucose metabolism was evaluated by fasting blood glucose (FBG) levels and intraperitoneal glucose tolerance test (IPGTT). The insulin sensitivity was estimated by insulin tolerance test (ITT), fasting serum insulin levels and the index of HOMA-IR. The expressions of Akt and its phosphorylation levels, GSK3beta and its phosphorylation levels in liver were detected by Western Blot. The results showed that FF16 significantly improved the glucose metabolic disorders through reducing FBG by 15.1%, decreasing AUC values in glucose tolerance tests by 22.3%. FF16 significantly improved the insulin sensitivity through decreasing AUC values in insulin tolerance tests by 22.1%, reducing the levels of serum insulin by 42.9% and of HOMA-IR by 49.5%, comparing with model control, respectively. After the treatment with FF16, the levels of p-Akt and p-GSK3beta were increased by 116.4% and 24.9%, respectively, in the liver of IRF mice. In conclusion, compound FF16 could improve glucose metabolic disorders in IRF mice through enhancing the glyconeogenesis. PMID:24066594

  5. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures

    PubMed Central

    2012-01-01

    Background The methylotrophic yeast Pichia pastoris has emerged as one of the most promising yeast hosts for the production of heterologous proteins. Mixed feeds of methanol and a multicarbon source instead of methanol as sole carbon source have been shown to improve product productivities and alleviate metabolic burden derived from protein production. Nevertheless, systematic quantitative studies on the relationships between the central metabolism and recombinant protein production in P. pastoris are still rather limited, particularly when growing this yeast on mixed carbon sources, thus hampering future metabolic network engineering strategies for improved protein production. Results The metabolic flux distribution in the central metabolism of P. pastoris growing on a mixed feed of glucose and methanol was analyzed by Metabolic Flux Analysis (MFA) using 13C-NMR-derived constraints. For this purpose, we defined new flux ratios for methanol assimilation pathways in P. pastoris cells growing on glucose:methanol mixtures. By using this experimental approach, the metabolic burden caused by the overexpression and secretion of a Rhizopus oryzae lipase (Rol) in P. pastoris was further analyzed. This protein has been previously shown to trigger the unfolded protein response in P. pastoris. A series of 13C-tracer experiments were performed on aerobic chemostat cultivations with a control and two different Rol producing strains growing at a dilution rate of 0.09 h−1 using a glucose:methanol 80:20 (w/w) mix as carbon source. The MFA performed in this study reveals a significant redistristribution of carbon fluxes in the central carbon metabolism when comparing the two recombinant strains vs the control strain, reflected in increased glycolytic, TCA cycle and NADH regeneration fluxes, as well as higher methanol dissimilation rates. Conclusions Overall, a further 13C-based MFA development to characterise the central metabolism of methylotrophic yeasts when growing on mixed

  6. Regulation of glucose and lipid metabolism by dietary carbohydrate levels and lipid sources in gilthead sea bream juveniles.

    PubMed

    Castro, Carolina; Corraze, Geneviève; Firmino-Diógenes, Alexandre; Larroquet, Laurence; Panserat, Stéphane; Oliva-Teles, Aires

    2016-07-01

    The long-term effects on growth performance, body composition, plasma metabolites, liver and intestine glucose and lipid metabolism were assessed in gilthead sea bream juveniles fed diets without carbohydrates (CH-) or carbohydrate-enriched (20 % gelatinised starch, CH+) combined with two lipid sources (fish oil; or vegetable oil (VO)). No differences in growth performance among treatments were observed. Carbohydrate intake was associated with increased hepatic transcripts of glucokinase but not of 6-phosphofructokinase. Expression of phosphoenolpyruvate carboxykinase was down-regulated by carbohydrate intake, whereas, unexpectedly, glucose 6-phosphatase was up-regulated. Lipogenic enzyme activities (glucose-6-phosphate dehydrogenase, malic enzyme, fatty acid synthase) and ∆6 fatty acyl desaturase (FADS2) transcripts were increased in liver of fish fed CH+ diets, supporting an enhanced potential for lipogenesis and long-chain PUFA (LC-PUFA) biosynthesis. Despite the lower hepatic cholesterol content in CH+ groups, no influence on the expression of genes related to cholesterol efflux (ATP-binding cassette G5) and biosynthesis (lanosterol 14 α-demethylase, cytochrome P450 51 cytochrome P450 51 (CYP51A1); 7-dehydrocholesterol reductase) was recorded at the hepatic level. At the intestinal level, however, induction of CYP51A1 transcripts by carbohydrate intake was recorded. Dietary VO led to decreased plasma phospholipid and cholesterol concentrations but not on the transcripts of proteins involved in phospholipid biosynthesis (glycerol-3-phosphate acyltransferase) and cholesterol metabolism at intestinal and hepatic levels. Hepatic and muscular fatty acid profiles reflected that of diets, despite the up-regulation of FADS2 transcripts. Overall, this study demonstrated that dietary carbohydrates mainly affected carbohydrate metabolism, lipogenesis and LC-PUFA biosynthesis, whereas effects of dietary lipid source were mostly related with tissue fatty acid composition

  7. Fluorodeoxyglucose rate constants, lumped constant, and glucose metabolic rate in rabbit heart

    SciTech Connect

    Krivokapich, J.; Huang, S.C.; Selin, C.E.; Phelps, M.E.

    1987-04-01

    The isolated arterial perfused rabbit interventricular septum was used to measure myocardial metabolic rate for glucose (MMRGlc) and rate constants and lumped constant (LC) for the glucose analogue (/sup 18/F)fluorodeoxyglucose (FDG) using a tracer kinetic model. FDG was delivered by constant infusion during coincidence counting of tissue /sup 18/F radioactivity. The MMRGlc was measured by the Fick method. Control septa were paced at 72 beats/min and perfused at 1.5 ml/min with oxygenated perfusate containing 5.6 mM glucose and 5 mU/ml insulin. The following conditions were tested: 3.0 and 4.5 ml/min; insulin increased to 25 mU/ml; insulin omitted; 2.8 mM and 11.2 mM glucose; 144 beats/min and 96 paired stimuli/min; and anoxia. Under all conditions studied the phosphorylation (hexokinase) reaction was rate limiting relative to transport. Compared with control conditions, the phosphorylation rate constant was significantly increased with 2.8 mM glucose as well as in anoxia. With 4.5 ml/min and 11.2 mM glucose, conditions that should increase glucose flux into tissue without increasing demand, the phosphorylation rate constant decreased significantly. With 11.2 mM glucose, 96 paired stimuli/min, and anoxia without insulin, a significant increase in the hydrolysis rate of FDG 6-phosphate was observed and suggests that hydrolysis is also an important mechanism for regulating the MMRGlc. Increased transport rate constants were observed with increased flow rates, 96 paired stimuli/min, and anoxia at 96 beats/min. The LC was not significantly different from control in 11 of 14 conditions studied. Therefore, under most conditions in average LC can be used to calculate MMRGlc estimates.

  8. Changes in metabolism during a fasting period and a subsequent vegetarian diet with particular reference to glucose metabolism.

    PubMed

    Lithell, H; Vessby, B; Hellsing, K; Ljunghall, K; Höglund, N J; Werner, I; Bruce, A

    1983-01-01

    During an investigation on the effect of fasting and a vegetarian diet on the symptoms and signs in chronic cutaneous and arthritic diseases studies were made of glucose metabolism, liver function and the plasma concentration and urine excretion of some minerals. The study was performed on 27 patients who stayed as in-patients on a metabolic ward for five weeks. After the fasting period the blood glucose and serum insulin concentrations were lower (p less than 0.01) than before the fast. At the end of the period on the vegetarian (vegan) diet (three weeks) the insulin/glucose ratio was lower than at the start of the fast. Serum enzyme concentrations reflecting liver function increased during the fast, but normalized during the vegan diet. The intake of vitamin B12 and of selenium due to the vegan diets was very low, which may give reason for some concern during long-term use of this type of vegetarian diet. PMID:6359625

  9. Testosterone deficiency induced by progressive stages of diabetes mellitus impairs glucose metabolism and favors glycogenesis in mature rat Sertoli cells.

    PubMed

    Rato, Luís; Alves, Marco G; Duarte, Ana I; Santos, Maria S; Moreira, Paula I; Cavaco, José E; Oliveira, Pedro F

    2015-09-01

    The incidence of type 2 diabetes mellitus and its prodromal stage, pre-diabetes, is rapidly increasing among young men, leading to disturbances in testosterone synthesis. However, the impact of testosterone deficiency induced by these progressive stages of diabetes on the metabolic behavior of Sertoli cells remains unknown. We evaluated the effects of testosterone deficiency associated with pre-diabetes and type 2 diabetes on Sertoli cells metabolism, by measuring (1) the expression and/or activities of glycolysis and glycogen metabolism-related proteins and (2) the metabolite secretion/consumption in Sertoli cells obtained from rat models of different development stages of the disease, to unveil the mechanisms by which testosterone deregulation may affect spermatogenesis. Glucose and pyruvate uptake were decreased in cells exposed to the testosterone concentration found in pre-diabetic rats (600nM), whereas the decreased testosterone concentrations found in type 2 diabetic rats (7nM) reversed this profile. Lactate production was not altered, although the expression and/or activity of lactate dehydrogenase and monocarboxylate transporter 4 were affected by progressive testosterone-deficiency. Sertoli cells exposed to type 2 diabetic conditions exhibited intracellular glycogen accumulation. These results illustrate that gradually reduced levels of testosterone, induced by progressive stages of diabetes mellitus, favor a metabolic reprogramming toward glycogen synthesis. Our data highlights a pivotal role for testosterone in the regulation of spermatogenesis metabolic support by Sertoli cells, particularly in individuals suffering from metabolic diseases. Such alterations may be in the basis of male subfertility/infertility associated with the progression of diabetes mellitus. PMID:26148570

  10. Hyperketonemia during lipopolysaccharide-induced mastitis affects systemic and local intramammary metabolism in dairy cows.

    PubMed

    Zarrin, M; Wellnitz, O; van Dorland, H A; Gross, J J; Bruckmaier, R M

    2014-01-01

    Hyperketonemia interferes with the metabolic regulation in dairy cows. It is assumed that metabolic and endocrine changes during hyperketonemia also affect metabolic adaptations during inflammatory processes. We therefore studied systemic and local intramammary effects of elevated plasma β-hydroxybutyrate (BHBA) before and during the response to an intramammary lipopolysaccharide (LPS) challenge. Thirteen dairy cows received intravenously either a Na-DL-β-OH-butyrate infusion (n = 5) to achieve a constant plasma BHBA concentration (1.7 ± 0.1 mmol/L), with adjustments of the infusion rates made based on immediate measurements of plasma BHBA every 15 min, or an infusion with a 0.9% NaCl solution (control; n = 8) for 56 h. Infusions started at 0900 h on d 1 and continued until 1700 h 2 d later. Two udder quarters were challenged with 200 μg of Escherichia coli LPS and 2 udder quarters were treated with 0.9% saline solution as control quarters at 48 h after the start of infusion. Blood samples were taken at 1 wk and 2h before the start of infusions as reference samples and hourly during the infusion. Mammary gland biopsies were taken 1 wk before, and 48 and 56 h (8h after LPS challenge) after the start of infusions. The mRNA abundance of key factors related to BHBA and fatty acid metabolism, and glucose transporters was determined in mammary tissue biopsies. Blood samples were analyzed for plasma glucose, BHBA, nonesterified fatty acid, urea, insulin, glucagon, and cortisol concentrations. Differences were not different for effects of BHBA infusion on the mRNA abundance of any of the measured target genes in the mammary gland before LPS challenge. Intramammary LPS challenge increased plasma glucose, cortisol, glucagon, and insulin concentrations in both groups but increases in plasma glucose and glucagon concentration were less pronounced in the Na-DL-β-OH-butyrate infusion group than in controls. In response to LPS challenge, plasma BHBA concentration decreased

  11. The Association of Glucose Metabolism and Eigenvector Centrality in Alzheimer's Disease.

    PubMed

    Adriaanse, Sofie M; Wink, Alle Meije; Tijms, Betty M; Ossenkoppele, Rik; Verfaillie, Sander C J; Lammertsma, Adriaan A; Boellaard, Ronald; Scheltens, Philip; van Berckel, Bart N M; Barkhof, Frederik

    2016-02-01

    Both fluorine-18-labeled fluorodeoxyglucose ([(18)F]FDG) positron emission tomography, examining glucose metabolism, and resting-state functional magnetic resonance imaging (rs-fMRI), using covarying blood oxygen levels, can be used to explore neuronal dysfunction in Alzheimer's disease (AD). Both measures are reported to identify similar brain regions affected in AD patients. The spatial overlap and association of [(18)F]FDG with rs-fMRI in AD patients and controls were examined to investigate whether these two measures are associated, and if so, to what extent. For 24 AD patients and 18 controls, [(18)F]FDG and rs-fMRI data were available. [(18)F]FDG standardized uptake value ratios (SUVr), with cerebellar gray matter (GM) as reference tissue, were calculated. Eigenvector centrality (EC) mapping was used to spatially analyze the functional brain network. Group differences were calculated for [(18)F]FDG and eigenvector centrality mapping (ECM) values in four cortical regions (occipital, parietal, frontal, and temporal) and across voxels, with age, gender, and GM as covariates. Correlation of [(18)F]FDG with ECM was calculated within groups. Both lowered [(18)F]FDG SUVr and EC values were seen in the parietal and occipital cortex of AD patients. However, [(18)F]FDG yielded more robust and widespread brain areas affected in AD patients; hypometabolism was also observed in the temporal cortex and regions within frontal brain areas. Poor spatial overlap of both measures was observed. No associations were found between local [(18)F]FDG SUVr and ECM. In conclusion, agreement of [(18)F]FDG and ECM in AD patients seems moderate at best. [(18)F]FDG was most accurate in distinguishing AD patients from controls. PMID:26414628

  12. Tumor glucose metabolism imaged in vivo in small animals with whole-body photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Chatni, Muhammad Rameez; Xia, Jun; Sohn, Rebecca; Maslov, Konstantin; Guo, Zijian; Zhang, Yu; Wang, Kun; Xia, Younan; Anastasio, Mark; Arbeit, Jeffrey; Wang, Lihong V.

    2012-07-01

    With the increasing use of small animals for human disease studies, small-animal whole-body molecular imaging plays an important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose molecular information, leading to higher costs of building dual-modality systems. Even with image co-registration, the spatial resolution of the molecular imaging modality is not improved. Utilizing a ring-shaped confocal photoacoustic computed tomography system, we demonstrate, for the first time, that both anatomy and glucose uptake can be imaged in a single modality. Anatomy was imaged with the endogenous hemoglobin contrast, and glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose.

  13. Tumor glucose metabolism imaged in vivo in small animals with whole-body photoacoustic computed tomography

    PubMed Central

    Chatni, Muhammad Rameez; Xia, Jun; Sohn, Rebecca; Maslov, Konstantin; Guo, Zijian; Zhang, Yu; Wang, Kun; Xia, Younan; Anastasio, Mark; Arbeit, Jeffrey

    2012-01-01

    Abstract. With the increasing use of small animals for human disease studies, small-animal whole-body molecular imaging plays an important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose molecular information, leading to higher costs of building dual-modality systems. Even with image co-registration, the spatial resolution of the molecular imaging modality is not improved. Utilizing a ring-shaped confocal photoacoustic computed tomography system, we demonstrate, for the first time, that both anatomy and glucose uptake can be imaged in a single modality. Anatomy was imaged with the endogenous hemoglobin contrast, and glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. PMID:22894495

  14. Tumor glucose metabolism imaged in vivo in small animals with whole-body photoacoustic computed tomography.

    PubMed

    Chatni, Muhammad Rameez; Xia, Jun; Sohn, Rebecca; Maslov, Konstantin; Guo, Zijian; Zhang, Yu; Wang, Kun; Xia, Younan; Anastasio, Mark; Arbeit, Jeffrey; Wang, Lihong V

    2012-07-01

    With the increasing use of small animals for human disease studies, small-animal whole-body molecular imaging plays an important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose molecular information, leading to higher costs of building dual-modality systems. Even with image co-registration, the spatial resolution of the molecular imaging modality is not improved. Utilizing a ring-shaped confocal photoacoustic computed tomography system, we demonstrate, for the first time, that both anatomy and glucose uptake can be imaged in a single modality. Anatomy was imaged with the endogenous hemoglobin contrast, and glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. PMID:22894495

  15. Dopamine transporters, D2 receptors, and glucose metabolism in corticobasal degeneration.

    PubMed

    Klaffke, Stefanie; Kuhn, Andrea A; Plotkin, Michail; Amthauer, Holger; Harnack, Daniel; Felix, Roland; Kupsch, Andreas

    2006-10-01

    Alterations in presynaptic and postsynaptic dopaminergic system and cerebral glucose metabolism in corticobasal degeneration (CBD) were assessed to evaluate the potential usefulness of different imaging methods for CBD. (123)I-FP-CIT/(123)I-beta-CIT SPECT and (123)I-IBZM SPECT as well as (18)F-FDG PET were performed in eight CBD patients. Decreased presynaptic dopamine transporter binding was found in all CBD patients while D2 receptor binding was reduced in only one patient. (18)F-FDG PET displayed a contralateral hypometabolism in cortical and subcortical areas in seven out of eight patients. Our results demonstrate that glucose metabolism and DAT are reduced, while D2 receptors may be frequently preserved in CBD. PMID:16773621

  16. Revisiting glucose uptake and metabolism in schistosomes: new molecular insights for improved schistosomiasis therapies

    PubMed Central

    You, Hong; Stephenson, Rachel J.; Gobert, Geoffrey N.; McManus, Donald P.

    2014-01-01

    A better understanding of the molecular mechanisms required for schistosomes to take up glucose, the major nutritional source exploited by these blood flukes from their mammalian hosts and the subsequent metabolism required to fuel growth and fecundity, can provide new avenues for developing novel interventions for the control of schistosomiasis. This aspect of parasitism is particularly important to paired adult schistosomes, due to their considerable requirements for the energy needed to produce the extensive numbers of eggs laid daily by the female worm. This review describes recent advances in characterizing glucose metabolism in adult schistosomes. Potential intervention targets are discussed within the insulin signaling and glycolysis pathways, both of which play critical roles in the carbohydrate and energy requirements of schistosomes. PMID:24966871

  17. Non-glucose metabolism in cancer cells--is it all in the fat?

    PubMed

    Biswas, Swethajit; Lunec, John; Bartlett, Kim

    2012-12-01

    Cancer biologists seem to have overlooked tumor metabolism in their research endeavors over the last 80 years of the last century, only to have "rediscovered Warburg" (Warburg et al. 1930; Warburg, Science 123(3191):309-314, 1956) within the first decade of the twenty-first century, as well as to suggest the importance of other, non-glucose-dependent, metabolic pathways such as such as fatty acid de novo synthesis and catabolism (β-oxidation) (Mashima et al., Br J Cancer 100:1369-1372, 2009) and glutamine catabolism (glutaminolysis) (DeBerardinis et al., Proc Nat Acad Sci 104(49):19345-19350, 2007). These non-glucose metabolic pathways seem to be just as important as the Warburg effect, if not potentially more so in human cancer. The purpose of this review is to highlight the importance of fatty acid metabolism in cancer cells and, where necessary, identify gaps in current knowledge and postulate hypothesis based upon findings in the cellular physiology of metabolic diseases and normal cells. PMID:22706846

  18. Type 2 Diabetes and Breast Cancer: The Interplay between Impaired Glucose Metabolism and Oxidant Stress

    PubMed Central

    Ferroni, Patrizia; Riondino, Silvia; Buonomo, Oreste; Palmirotta, Raffaele; Guadagni, Fiorella; Roselli, Mario

    2015-01-01

    Metabolic disorders, especially type 2 diabetes and its associated complications, represent a growing public health problem. Epidemiological findings indicate a close relationship between diabetes and many types of cancer (including breast cancer risk), which regards not only the dysmetabolic condition, but also its underlying risk factors and therapeutic interventions. This review discusses the advances in understanding of the mechanisms linking metabolic disorders and breast cancer. Among the proposed mechanisms to explain such an association, a major role is played by the dysregulated glucose metabolism, which concurs with a chronic proinflammatory condition and an associated oxidative stress to promote tumour initiation and progression. As regards the altered glucose metabolism, hyperinsulinaemia, both endogenous due to insulin-resistance and drug-induced, appears to promote tumour cell growth through the involvement of innate immune activation, platelet activation, increased reactive oxygen species, exposure to protumorigenic and proangiogenic cytokines, and increased substrate availability to neoplastic cells. In this context, understanding the relationship between metabolic disorders and cancer is becoming imperative, and an accurate analysis of these associations could be used to identify biomarkers able to predict disease risk and/or prognosis and to help in the choice of proper evidence-based diagnostic and therapeutic protocols. PMID:26171112

  19. Effects of GLP-1 on Forearm Vasodilator Function and Glucose Disposal During Hyperinsulinemia in the Metabolic Syndrome

    PubMed Central

    Tesauro, Manfredi; Schinzari, Francesca; Adamo, Angelo; Rovella, Valentina; Martini, Francesca; Mores, Nadia; Barini, Angela; Pitocco, Dario; Ghirlanda, Giovanni; Lauro, Davide; Campia, Umberto; Cardillo, Carmine

    2013-01-01

    OBJECTIVE Patients with the metabolic syndrome (MetS) have impaired insulin-induced enhancement of vasodilator responses. The incretin hormone glucagon-like peptide 1 (GLP-1), beyond its effects on blood glucose, has beneficial actions on vascular function. This study, therefore, aimed to assess whether GLP-1 affects insulin-stimulated vasodilator reactivity in patients with the MetS. RESEARCH DESIGN AND METHODS Forearm blood flow responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were assessed in MetS patients before and after the addition of GLP-1 to an intra-arterial infusion of saline (n = 5) or insulin (n = 5). The possible involvement of oxidative stress in the vascular effects of GLP-1 in this setting was investigated by infusion of vitamin C (n = 5). The receptor specificity of GLP-1 effect during hyperinsulinemia was assessed by infusing its metabolite GLP-1(9-36) (n = 5). The metabolic actions of GLP-1 were also tested by analyzing forearm glucose disposal during hyperinsulinemia (n = 5). RESULTS In MetS patients, GLP-1 enhanced endothelium-dependent and -independent responses to ACh and SNP, respectively, during hyperinsulinemia (P < 0.001 for both), but not during saline (P > 0.05 for both). No changes in vasodilator reactivity to ACh and SNP were seen after GLP-1 was added to insulin and vitamin C (P > 0.05 for both) and after GLP-1(9-36) was given during hyperinsulinemia (P > 0.05 for both). Also, GLP-1 did not affect forearm glucose extraction and uptake during hyperinsulinemia (P > 0.05 for both). CONCLUSIONS In patients with the MetS, GLP-1 improves insulin-mediated enhancement of endothelium-dependent and -independent vascular reactivity. This effect may be influenced by vascular oxidative stress and is possibly exerted through a receptor-mediated mechanism. PMID:23069838

  20. Bisphosphorylated metabolites of glycerate, glucose, and fructose: functions, metabolism and molecular pathology.

    PubMed

    Carreras, J; Bartrons, R; Climent, F; Cusso, R

    1986-12-01

    2,3-Bisphosphoglycerate, glucose 1,6-P2 and fructose 2,6-P2 have been recognized as regulatory signals implicated in the control of metabolism, oxygen affinity of red cells and other cellular functions. The alterations of their metabolism constitute a novel area in molecular pathology. The concentration of 2,3-bisphosphoglycerate in erythrocytes changes in a number of pathological conditions. An inherited deficiency of the multifunctional enzyme involved in the synthesis and breakdown of 2,3-bisphosphoglycerate in erythrocytes has been reported. The levels of glucose 1,6-P2 are reduced in the liver and in the muscle of rats with experimentally induced diabetes. In muscle of genetically dystrophic mice a decrease in the levels of glucose 1,6-P2 has been found, probably resulting from enhancement of glucose 1,6-P2 phosphatase activity. Fructose 2,6-P2 levels are decreased in the liver of experimental diabetic mice and rats, and elevated in the liver of genetically obese animals. PMID:3555887

  1. Effect of tangeretin, a polymethoxylated flavone on glucose metabolism in streptozotocin-induced diabetic rats.

    PubMed

    Sundaram, Ramalingam; Shanthi, Palanivelu; Sachdanandam, Panchanatham

    2014-05-15

    The present study was designed to evaluate the antihyperglycemic potential of tangeretin on the activities of key enzymes of carbohydrate and glycogen metabolism in control and streptozotocin induced diabetic rats. The daily oral administration of tangeretin (100mg/kg body weight) to diabetic rats for 30 days resulted in a significant reduction in the levels of plasma glucose, glycosylated hemoglobin (HbA1c) and increase in the levels of insulin and hemoglobin. The altered activities of the key enzymes of carbohydrate metabolism such as hexokinase, pyruvate kinase, lactate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, glycogen synthase and glycogen phosphorylase in liver of diabetic rats were significantly reverted to near normal levels by the administration of tangeretin. Further, tangeretin administration to diabetic rats improved hepatic glycogen content suggesting the antihyperglycemic potential of tangeretin in diabetic rats. The effect produced by tangeretin on various parameters was comparable to that of glibenclamide - a standard oral hypoglycemic drug. Thus, these results show that tangeretin modulates the activities of hepatic enzymes via enhanced secretion of insulin and decreases the blood glucose in streptozotocin induced diabetic rats by its antioxidant potential. PMID:24629597

  2. Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle

    PubMed Central

    Choi, Youngwoo; Kwon, Yonghoon; Kim, Dae-Kyum; Jeon, Jinseong; Jang, Su Chul; Wang, Taejun; Ban, Minjee; Kim, Min-Hye; Jeon, Seong Gyu; Kim, Min-Sun; Choi, Cheol Soo; Jee, Young-Koo; Gho, Yong Song; Ryu, Sung Ho; Kim, Yoon-Keun

    2015-01-01

    Gut microbes might influence host metabolic homeostasis and contribute to the pathogenesis of type 2 diabetes (T2D), which is characterized by insulin resistance. Bacteria-derived extracellular vesicles (EVs) have been suggested to be important in the pathogenesis of diseases once believed to be non-infectious. Here, we hypothesize that gut microbe-derived EVs are important in the pathogenesis of T2D. In vivo administration of stool EVs from high fat diet (HFD)-fed mice induced insulin resistance and glucose intolerance compared to regular diet (RD)-fed mice. Metagenomic profiling of stool EVs by 16S ribosomal DNA sequencing revealed an increased amount of EVs derived from Pseudomonas panacis (phylum Proteobacteria) in HFD mice compared to RD mice. Interestingly, P. panacis EVs blocked the insulin signaling pathway in both skeletal muscle and adipose tissue. Moreover, isolated P. panacis EVs induced typical diabetic phenotypes, such as glucose intolerance after glucose administration or systemic insulin injection. Thus, gut microbe-derived EVs might be key players in the development of insulin resistance and impairment of glucose metabolism promoted by HFD. PMID:26510393

  3. The Role of Circulating Amino Acids in the Hypothalamic Regulation of Liver Glucose Metabolism.

    PubMed

    Arrieta-Cruz, Isabel; Gutiérrez-Juárez, Roger

    2016-07-01

    A pandemic of diabetes and obesity has been developing worldwide in close association with excessive nutrient intake and a sedentary lifestyle. Variations in the protein content of the diet have a direct impact on glucose homeostasis because amino acids (AAs) are powerful modulators of insulin action. In this work we review our recent findings on how elevations in the concentration of the circulating AAs leucine and proline activate a metabolic mechanism located in the mediobasal hypothalamus of the brain that sends a signal to the liver via the vagus nerve, which curtails glucose output. This neurogenic signal is strictly dependent on the metabolism of leucine and proline to acetyl-coenzyme A (CoA) and the subsequent production of malonyl-CoA; the signal also requires functional neuronal ATP-sensitive potassium channels. The liver then responds by lowering the rate of gluconeogenesis and glycogenolysis, ultimately leading to a net decrease in glucose production and in concentrations of circulating glucose. Furthermore, we review here how our work with proline suggests a new role of astrocytes in the central regulation of glycemia. Last, we outline how factors such as the consumption of fat-rich diets can interfere with glucoregulatory mechanisms and, in the long term, may contribute to the development of hyperglycemia, a hallmark of type 2 diabetes. PMID:27422516

  4. HIF prolyl 4-hydroxylase-2 inhibition improves glucose and lipid metabolism and protects against obesity and metabolic dysfunction.

    PubMed

    Rahtu-Korpela, Lea; Karsikas, Sara; Hörkkö, Sohvi; Blanco Sequeiros, Roberto; Lammentausta, Eveliina; Mäkelä, Kari A; Herzig, Karl-Heinz; Walkinshaw, Gail; Kivirikko, Kari I; Myllyharju, Johanna; Serpi, Raisa; Koivunen, Peppi

    2014-10-01

    Obesity is a major public health problem, predisposing subjects to metabolic syndrome, type 2 diabetes, and cardiovascular diseases. Specific prolyl 4-hydroxylases (P4Hs) regulate the stability of the hypoxia-inducible factor (HIF), a potent governor of metabolism, with isoenzyme 2 being the main regulator. We investigated whether HIF-P4H-2 inhibition could be used to treat obesity and its consequences. Hif-p4h-2-deficient mice, whether fed normal chow or a high-fat diet, had less adipose tissue, smaller adipocytes, and less adipose tissue inflammation than their littermates. They also had improved glucose tolerance and insulin sensitivity. Furthermore, the mRNA levels of the HIF-1 targets glucose transporters, glycolytic enzymes, and pyruvate dehydrogenase kinase-1 were increased in their tissues, whereas acetyl-CoA concentration was decreased. The hepatic mRNA level of the HIF-2 target insulin receptor substrate-2 was higher, whereas that of two key enzymes of fatty acid synthesis was lower. Serum cholesterol levels and de novo lipid synthesis were decreased, and the mice were protected against hepatic steatosis. Oral administration of an HIF-P4H inhibitor, FG-4497, to wild-type mice with metabolic dysfunction phenocopied these beneficial effects. HIF-P4H-2 inhibition may be a novel therapy that not only protects against the development of obesity and its consequences but also reverses these conditions. PMID:24789921

  5. The effect of insulin on glucose and protein metabolism in the forearm of cancer patients.

    PubMed

    Newman, E; Heslin, M J; Wolf, R F; Pisters, P W; Brennan, M F

    1992-08-01

    This study was designed to study the effect of systemic hyperinsulinaemia (INS) on glucose and protein metabolism in cancer patients. Sixteen cancer patients (8 > 10% weight loss (WL); 8 < 10% weight loss (NWL)) were compared with 12 healthy controls. Glucose uptake (GU) and phenylalanine (PHE) exchange kinetics were measured across the forearm in the postabsorptive state (PA) and in response to INS (71 +/- 5 microU ml-1). At steady state in response to INS, the negative PA PHE net balance became significantly positive, and GU significantly increased, for cancer and control groups, with no significant differences between the two groups. Subset analysis of NWL cancer vs. WL cancer found no difference between WL and NWL for the change in PHE balance from PA and INS, however GU increased significantly only for the NWL group between PA and INS. These data indicate that cancer patients are not resistant to the anabolic effect of INS on protein metabolism, regardless of weight loss, but are resistant to the effect of INS on glucose metabolism when further along in the disease process as evident by more significant weight loss. This differential response to the effect of INS can be exploited in an attempt to promote protein accrual in weight-losing cancer patients. PMID:1341259

  6. Glucose and amino acid metabolism in rat brain during sustained hypoglycemia

    SciTech Connect

    Wong, K.L.; Tyce, G.M.

    1983-04-01

    The metabolism of glucose in brains during sustained hypoglycemia was studied. (U-/sup 14/C)Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. In the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia.

  7. Regulation of pyruvate dehydrogenase activity and glucose metabolism in post-ischaemic myocardium.

    PubMed

    Schöder, H; Knight, R J; Kofoed, K F; Schelbert, H R; Buxton, D B

    1998-02-27

    Pyruvate dehydrogenase (PDH) is regulated both by covalent modification and through modulation of the active enzyme by metabolites. In the isolated heart, post-ischaemic inhibition of PDH, leading to uncoupling of glycolysis and glucose oxidation and a decrease in cardiac efficiency, has been described. In vivo, post-ischaemic reperfusion leads to metabolic abnormalities consistent with PDH inhibition, but the effects of ischaemia/reperfusion on PDH are not well characterized. We therefore investigated PDH regulation following transient ischaemia in vivo. In 33 open-chest dogs, the left anterior descending (LAD) was occluded for 20 min followed by 4 h reperfusion. In 17 dogs, dichloroacetate (DCA) was injected prior to reperfusion, while 16 dogs served as controls. In dogs without DCA, glucose oxidation and lactate uptake were lower in reperfused than in remote tissue, suggesting reduced flux through PDH. However, percent active and total PDH measured in myocardial biopsies were similar in both territories, excluding covalent enzyme modification or loss of functional enzyme. DCA activated PDH activity similarly in both regions and abolished differences in glucose oxidation and lactate uptake. Thus, decreased PDH flux in reperfused myocardium does not result from covalent modification or loss of total enzyme activity, but more likely from metabolite inhibition of the active enzyme. DCA leads to essentially complete activation of PDH, increases overall glucose utilization and abolishes post-ischaemic inhibition of glucose oxidation. PMID:9545535

  8. Glucose and Stress Independently Regulate Source and Sink Metabolism and Defense Mechanisms via Signal Transduction Pathways Involving Protein Phosphorylation.

    PubMed Central

    Ehness, R.; Ecker, M.; Godt, D. E.; Roitsch, T.

    1997-01-01

    In higher plants, sugars are required not only to sustain heterotrophic growth but also to regulate the expression of a variety of genes. Environmental stresses, such as pathogen infection and wounding, activate a cascade of defense responses and may also affect carbohydrate metabolism. In this study, the relationship between sugar- and stress-activated signal transduction pathways and the underlying regulatory mechanism was analyzed. Photoautotrophically growing suspension culture cells of Chenopodium rubrum were used as a model system to study the effects of the metabolic regulator D-glucose and of different stress-related stimuli on photosynthesis, sink metabolism, and defense response by analyzing the regulation of mRNAs for representative enzymes of these pathways. Glucose as well as the fungal elicitor chitosan, the phosphatase inhibitor endothall, and benzoic acid were shown to result in a coordinated regulatory mechanism. The mRNAs for phenylalanine ammonia-lyase, a key enzyme of defense response, and for the sink-specific extracellular invertase were induced. In contrast, the mRNA for the Calvin cycle enzyme ribulose bisphosphate carboxylase was repressed. This inverse regulatory pattern was also observed in experiments with wounded leaves of C. rubrum plants. The differential effect of the protein kinase inhibitor staurosporine on mRNA regulation demonstrates that the carbohydrate signal and the stress-related stimuli independently activate different intracellular signaling pathways that ultimately are integrated to coordinately regulate source and sink metabolism and activate defense responses. The various stimuli triggered the transient and rapid activation of protein kinases that phosphorylate the myelin basic protein. The involvement of phosphorylation in signal transduction is further supported by the effect of the protein kinase inhibitor staurosporine on mRNA levels. PMID:12237349

  9. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism.

    PubMed

    Patti, Mary-Elizabeth; Houten, Sander M; Bianco, Antonio C; Bernier, Raquel; Larsen, P Reed; Holst, Jens J; Badman, Michael K; Maratos-Flier, Eleftheria; Mun, Edward C; Pihlajamaki, Jussi; Auwerx, Johan; Goldfine, Allison B

    2009-09-01

    The multifactorial mechanisms promoting weight loss and improved metabolism following Roux-en-Y gastric bypass (GB) surgery remain incompletely understood. Recent rodent studies suggest that bile acids can mediate energy homeostasis by activating the G-protein coupled receptor TGR5 and the type 2 thyroid hormone deiodinase. Altered gastrointestinal anatomy following GB could affect enterohepatic recirculation of bile acids. We assessed whether circulating bile acid concentrations differ in patients who previously underwent GB, which might then contribute to improved metabolic homeostasis. We performed cross-sectional analysis of fasting serum bile acid composition and both fasting and post-meal metabolic variables, in three subject groups: (i) post-GB surgery (n = 9), (ii) without GB matched to preoperative BMI of the index cohort (n = 5), and (iii) without GB matched to current BMI of the index cohort (n = 10). Total serum bile acid concentrations were higher in GB (8.90 +/- 4.84 micromol/l) than in both overweight (3.59 +/- 1.95, P = 0.005, Ov) and severely obese (3.86 +/- 1.51, P = 0.045, MOb). Bile acid subfractions taurochenodeoxycholic, taurodeoxycholic, glycocholic, glycochenodeoxycholic, and glycodeoxycholic acids were all significantly higher in GB compared to Ov (P < 0.05). Total bile acids were inversely correlated with 2-h post-meal glucose (r = -0.59, P < 0.003) and fasting triglycerides (r = -0.40, P = 0.05), and positively correlated with adiponectin (r = -0.48, P < 0.02) and peak glucagon-like peptide-1 (GLP-1) (r = 0.58, P < 0.003). Total bile acids strongly correlated inversely with thyrotropic hormone (TSH) (r = -0.57, P = 0.004). Together, our data suggest that altered bile acid levels and composition may contribute to improved glucose and lipid metabolism in patients who have had GB. PMID:19360006

  10. Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution.

    PubMed

    Liu, Jianguo; Wang, Qunhui; Zou, Hui; Liu, Yingying; Wang, Juan; Gan, Kemin; Xiang, Juan

    2013-11-01

    The (13) C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden-Meyerhof-Parnas (EMP) to produce lactic acid, whereas 36.4% of the glucose entered the pentose phosphate metabolic pathway (HMP). After solid-liquid separation of the KWSS, the addition of Fe(3+) during fermentation enhanced the NADPH production efficiency and increased the NADH content. The flux to the EMP was also effectively increased. Compared with the control (60.6% flux to EMP without Fe(3+) addition), the flux to the EMP with the addition of Fe(3+) (74.3%) increased by 23.8%. In the subsequent pyruvate metabolism, Fe(3+) also increased lactate dehydrogenase activity, and inhibited alcohol dehydrogenase, pyruvate dehydrogenase and pyruvate carboxylase, thereby increasing the lactic acid production to 9.03 g l(-1) , an increase of 8% compared with the control. All other organic acid by-products were lower than in the control. However, the addition of Zn(2+) showed an opposite effect, decreasing the lactic acid production. In conclusion it is feasible and effective means using GC-MS, isotope experiment and MATLAB software to integrate research the metabolic flux distribution of lactic acid bacteria, and the results provide the theoretical foundation for similar metabolic flux distribution. PMID:23489617

  11. Metabolic fate of fructose ingested with and without glucose in a mixed meal.

    PubMed

    Theytaz, Fanny; de Giorgi, Sara; Hodson, Leanne; Stefanoni, Nathalie; Rey, Valentine; Schneiter, Philippe; Giusti, Vittorio; Tappy, Luc

    2014-07-01

    Ingestion of pure fructose stimulates de novo lipogenesis and gluconeogenesis. This may however not be relevant to typical nutritional situations, where fructose is invariably ingested with glucose. We therefore assessed the metabolic fate of fructose incorporated in a mixed meal without or with glucose in eight healthy volunteers. Each participant was studied over six hours after the ingestion of liquid meals containing either 13C-labelled fructose, unlabeled glucose, lipids and protein (Fr + G) or 13C-labelled fructose, lipids and protein, but without glucose (Fr), or protein and lipids alone (ProLip). After Fr + G, plasma 13C-glucose production accounted for 19.0% ± 1.5% and 13CO2 production for 32.2% ± 1.3% of 13C-fructose carbons. After Fr, 13C-glucose production (26.5% ± 1.4%) and 13CO2 production (36.6% ± 1.9%) were higher (p < 0.05) than with Fr + G. 13C-lactate concentration and very low density lipoprotein VLDL 13C-palmitate concentrations increased to the same extent with Fr + G and Fr, while chylomicron 13C-palmitate tended to increase more with Fr + G. These data indicate that gluconeogenesis, lactic acid production and both intestinal and hepatic de novo lipogenesis contributed to the disposal of fructose carbons ingested together with a mixed meal. Co-ingestion of glucose decreased fructose oxidation and gluconeogenesis and tended to increase 13C-pamitate concentration in gut-derived chylomicrons, but not in hepatic-borne VLDL-triacylglycerol (TG). This trial was approved by clinicaltrial. gov. Identifier is NCT01792089. PMID:25029210

  12. Impaired glucose metabolism and exercise capacity with muscle-specific glycogen synthase 1 (gys1) deletion in adult mice

    PubMed Central

    Xirouchaki, Chrysovalantou E.; Mangiafico, Salvatore P.; Bate, Katherine; Ruan, Zheng; Huang, Amy M.; Tedjosiswoyo, Bing Wilari; Lamont, Benjamin; Pong, Wynne; Favaloro, Jenny; Blair, Amy R.; Zajac, Jeffrey D.; Proietto, Joseph; Andrikopoulos, Sofianos

    2016-01-01

    Objective Muscle glucose storage and muscle glycogen synthase (gys1) defects have been associated with insulin resistance. As there are multiple mechanisms for insulin resistance, the specific role of glucose storage defects is not clear. The aim of this study was to examine the effects of muscle-specific gys1 deletion on glucose metabolism and exercise capacity. Methods Tamoxifen inducible and muscle specific gys-1 KO mice were generated using the Cre/loxP system. Mice were subjected to glucose tolerance tests, euglycemic/hyperinsulinemic clamps and exercise tests. Results gys1-KO mice showed ≥85% reduction in muscle gys1 mRNA and protein concentrations, 70% reduction in muscle glycogen levels, postprandial hyperglycaemia and hyperinsulinaemia and impaired glucose tolerance. Under insulin-stimulated conditions, gys1-KO mice displayed reduced glucose turnover and muscle glucose uptake, indicative of peripheral insulin resistance, as well as increased plasma and muscle lactate levels and reductions in muscle hexokinase II levels. gys1-KO mice also exhibited markedly reduced exercise and endurance capacity. Conclusions Thus, muscle-specific gys1 deletion in adult mice results in glucose intolerance due to insulin resistance and reduced muscle glucose uptake as well as impaired exercise and endurance capacity. In brief This study demonstrates why the body prioritises muscle glycogen storage over liver glycogen storage despite the critical role of the liver in supplying glucose to the brain in the fasting state and shows that glycogen deficiency results in impaired glucose metabolism and reduced exercise capacity. PMID:26977394

  13. The Entner-Doudoroff pathway in Escherichia coli is induced for oxidative glucose metabolism via pyrroloquinoline quinone-dependent glucose dehydrogenase

    SciTech Connect

    Fliege, R.; Suxiang Tong; Shibata, A.; Nickerson, K.W.; Conway, T. )

    1992-12-01

    The Entner-Doudoroff pathway forms the core of central metabolism in many bacteria. However, the physiological role of the Entner-Doudoroff pathway in Escherichia coli is still unclear, and formal proof that oxidative glucose metabolism occurs via this pathway has not been reported. This paper provides direct evidence that the Entner-Doudoroff pathway is turned on by oxidation of glucose to gluconate in the periplasm. In addition the role of limiting phosphate in regulating the Entener-Doudoroff pathway is examined in this study, and it is concluded that, for E. coli, a low phosphate concentration promotes use of the Entner-Doudoroff pathway indirectly by providing access of pyrroloquinoline quinone (PQQ) into the periplasm rather than directly by derepressing edd and eda. Oxidative glucose metabolism, as opposed to phosphotransferase transport and glycolysis, may provide an advantage in aerobic, low phosphate, aquatic environments.

  14. Effect of Chromium Supplementation on Glucose Metabolism and Lipids: A Systematic Review with Meta-Analysis of Randomized Controlled Trials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective. A systematic review of the effect of chromium supplementation on glucose metabolism and lipid levels. Research Design and Methods. Literature search conducted in MEDLINE and Commonwealth Agricultural Bureau. Eligible studies were English language randomized controlled trials of chromium ...

  15. Response of C2C12 Myoblasts to Hypoxia: The Relative Roles of Glucose and Oxygen in Adaptive Cellular Metabolism

    PubMed Central

    Li, Wei; Hu, Zhen-Fu; Chen, Bin; Ni, Guo-Xin

    2013-01-01

    Background. Oxygen and glucose are two important nutrients for mammalian cell function. In this study, the effect of glucose and oxygen concentrations on C2C12 cellular metabolism was characterized with an emphasis on detecting whether cells show oxygen conformance (OC) in response to hypoxia. Methods. After C2C12 cells being cultured in the levels of glucose at 0.6 mM (LG), 5.6 mM (MG), or 23.3 mM(HG) under normoxic or hypoxic (1% oxygen) condition, cellular oxygen consumption, glucose consumption, lactate production, and metabolic status were determined. Short-term oxygen consumption was measured with a novel oxygen biosensor technique. Longer-term measurements were performed with standard glucose, lactate, and cell metabolism assays. Results. It was found that oxygen depletion in normoxia is dependent on the glucose concentration in the medium. Cellular glucose uptake and lactate production increased significantly in hypoxia than those in normoxia. In hypoxia the cellular response to the level of glucose was different to that in normoxia. The metabolic activities decreased while glucose concentration increased in normoxia, while in hypoxia, metabolic activity was reduced in LG and MG, but unchanged in HG condition. The OC phenomenon was not observed in the present study. Conclusions. Our findings suggested that a combination of low oxygen and low glucose damages the viability of C2C12 cells more seriously than low oxygen alone. In addition, when there is sufficient glucose, C2C12 cells will respond to hypoxia by upregulating anaerobic respiration, as shown by lactate production. PMID:24294605

  16. Alcohol Decreases Baseline Brain Glucose Metabolism More in Heavy Drinkers Than Controls But Has No Effect on Stimulation-Induced Metabolic Increases

    PubMed Central

    Wang, Gene-Jack; Shokri Kojori, Ehsan; Fowler, Joanna S.; Benveniste, Helene; Tomasi, Dardo

    2015-01-01

    During alcohol intoxication, the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis, we compared the effects of alcohol intoxication (0.75 g/kg alcohol vs placebo) on brain glucose metabolism during video stimulation (VS) versus when given with no stimulation (NS), in 25 heavy drinkers (HDs) and 23 healthy controls, each of whom underwent four PET-18FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p = 0.04); that alcohol (compared with placebo) decreased metabolism more in HD (20 ± 13%) than controls (9 ± 11%, p = 0.005) and in proportion to daily alcohol consumption (r = 0.36, p = 0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10 ± 12%) compared with NS in both groups (15 ± 13%, p = 0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e., acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in HDs, which might make them vulnerable to energy deficits during withdrawal. PMID:25698759

  17. Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases

    DOE PAGESBeta

    Volkow, Nora D.; Fowler, Joanna S.; Wang, Gene-Jack; Kojori, Eshan Shokri; Benveniste, Helene; Tomasi, Dardo

    2015-02-18

    During alcohol intoxication the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis we compared the effects of alcohol intoxication (0.75g/kg alcohol versus placebo) on brain glucose metabolism during video-stimulation (VS) versus when given with no-stimulation (NS), in 25 heavy drinkers (HD) and 23 healthy controls each of whom underwent four PET-¹⁸FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p=0.04); that alcohol (compared tomore » placebo) decreased metabolism more in HD (20±13%) than controls (9±11%, p=0.005) and in proportion to daily alcohol consumption (r=0.36, p=0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10±12%) compared to NS in both groups (15±13%, p=0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e. acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in heavy drinkers, which might make them vulnerable to energy deficits during withdrawal.« less

  18. Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases

    SciTech Connect

    Volkow, Nora D.; Fowler, Joanna S.; Wang, Gene-Jack; Kojori, Eshan Shokri; Benveniste, Helene; Tomasi, Dardo

    2015-02-18

    During alcohol intoxication the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis we compared the effects of alcohol intoxication (0.75g/kg alcohol versus placebo) on brain glucose metabolism during video-stimulation (VS) versus when given with no-stimulation (NS), in 25 heavy drinkers (HD) and 23 healthy controls each of whom underwent four PET-¹⁸FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p=0.04); that alcohol (compared to placebo) decreased metabolism more in HD (20±13%) than controls (9±11%, p=0.005) and in proportion to daily alcohol consumption (r=0.36, p=0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10±12%) compared to NS in both groups (15±13%, p=0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e. acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in heavy drinkers, which might make them vulnerable to energy deficits during withdrawal.

  19. Critical Role of Glucose Metabolism in Rheumatoid Arthritis Fibroblast-like Synoviocytes

    PubMed Central

    Garcia-Carbonell, Ricard; Divakaruni, Ajit S.; Lodi, Alessia; Vicente-Suarez, Ildefonso; Saha, Arindam; Cheroutre, Hilde; Boss, Gerry R.; Tiziani, Stefano; Murphy, Anne N.; Guma, Monica

    2016-01-01

    Objective Up-regulation of glucose metabolism has been implicated not only in tumor cell growth but also in immune cells upon activation. However, little is known about the metabolite profile in rheumatoid arthritis (RA), particularly in fibroblast-like synoviocytes (FLS). This study was undertaken to evaluate whether changes in glucose metabolism in RA FLS could play a role in inflammation and joint damage. Methods Synovium and FLS were obtained from patients with RA and patients with osteoarthritis (OA). The rate of glycolysis after stimulation of FLS with lipopolysaccharide and platelet-derived growth factor BB was measured using glycolysis stress test technology. FLS function was evaluated using a glycolysis inhibitor, 2-deoxy-D-glucose (2-DG). After stimulation of the FLS, a migration scratch assay, MTT assay, and enzyme-linked immunosorbent assay were performed to measure the effect of 2-DG on FLS migration, viability of the FLS, and cytokine secretion, respectively. IRDye 800CW 2-DG was used to assess glucose uptake in the arthritic joints and stromal cells of mice after K/BxN mouse serum transfer. The mice were injected daily, intraperitoneally, with 3-bromopyruvate (BrPa; 5 mg/kg) to assess the effect of inhibition of glycolysis in vivo. Results Compared to human OA FLS, the balance between glycolysis and oxidative phosphorylation was shifted toward glycolysis in RA FLS. Glucose transporter 1 (GLUT1) messenger RNA (mRNA) expression correlated with baseline functions of the RA FLS. Glucose deprivation or incubation of the FLS with glycolytic inhibitors impaired cytokine secretion and decreased the rate of proliferation and migration of the cells. In a mouse model of inflammatory arthritis, GLUT1 mRNA expression in the synovial lining cells was observed, and increased levels of glucose uptake and glycolytic gene expression were detected in the stromal compartment of the arthritic mouse joints. Inhibition of glycolysis by BrPa, administered in vivo

  20. Insulin-dependent glucose metabolism in dairy cows with variable fat mobilization around calving.

    PubMed

    Weber, C; Schäff, C T; Kautzsch, U; Börner, S; Erdmann, S; Görs, S; Röntgen, M; Sauerwein, H; Bruckmaier, R M; Metges, C C; Kuhla, B; Hammon, H M

    2016-08-01

    Dairy cows undergo significant metabolic and endocrine changes during the transition from pregnancy to lactation, and impaired insulin action influences nutrient partitioning toward the fetus and the mammary gland. Because impaired insulin action during transition is thought to be related to elevated body condition and body fat mobilization, we hypothesized that over-conditioned cows with excessive body fat mobilization around calving may have impaired insulin metabolism compared with cows with low fat mobilization. Nineteen dairy cows were grouped according to their average concentration of total liver fat (LFC) after calving in low [LLFC; LFC <24% total fat/dry matter (DM); n=9] and high (HLFC; LFC >24.4% total fat/DM; n=10) fat-mobilizing cows. Blood samples were taken from wk 7 antepartum (ap) to wk 5 postpartum (pp) to determine plasma concentrations of glucose, insulin, glucagon, and adiponectin. We applied euglycemic-hyperinsulinemic (EGHIC) and hyperglycemic clamps (HGC) in wk 5 ap and wk 3 pp to measure insulin responsiveness in peripheral tissue and pancreatic insulin secretion during the transition period. Before and during the pp EGHIC, [(13)C6] glucose was infused to determine the rate of glucose appearance (GlucRa) and glucose oxidation (GOx). Body condition, back fat thickness, and energy-corrected milk were greater, but energy balance was lower in HLFC than in LLFC. Plasma concentrations of glucose, insulin, glucagon, and adiponectin decreased at calving, and this was followed by an immediate increase of glucagon and adiponectin after calving. Insulin concentrations ap were higher in HLFC than in LLFC cows, but the EGHIC indicated no differences in peripheral insulin responsiveness among cows ap and pp. However, GlucRa and GOx:GlucRa during the pp EGHIC were greater in HLFC than in LLFC cows. During HGC, pancreatic insulin secretion was lower, but the glucose infusion rate was higher pp than ap in both groups. Plasma concentrations of nonesterified

  1. Gsα deficiency in adipose tissue improves glucose metabolism and insulin sensitivity without an effect on body weight.

    PubMed

    Li, Yong-Qi; Shrestha, Yogendra B; Chen, Min; Chanturiya, Tatyana; Gavrilova, Oksana; Weinstein, Lee S

    2016-01-12

    Gsα, the G protein that transduces receptor-stimulated cAMP generation, mediates sympathetic nervous system stimulation of brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT), which are both potential targets for treating obesity, as well as lipolysis. We generated a mouse line with Gsα deficiency in mature BAT and WAT adipocytes (Ad-GsKO). Ad-GsKO mice had impaired BAT function, absent browning of WAT, and reduced lipolysis, and were therefore cold-intolerant. Despite the presence of these abnormalities, Ad-GsKO mice maintained normal energy balance on both standard and high-fat diets, associated with decreases in both lipolysis and lipid synthesis. In addition, Ad-GsKO mice maintained at thermoneutrality on a standard diet also had normal energy balance. Ad-GsKO mice had improved insulin sensitivity and glucose metabolism, possibly secondary to the effects of reduced lipolysis and lower circulating fatty acid binding protein 4 levels. Gsα signaling in adipose tissues may therefore affect whole-body glucose metabolism in the absence of an effect on body weight. PMID:26712027

  2. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane.

    PubMed

    Chichger, Havovi; Cleasby, Mark E; Srai, Surjit K; Unwin, Robert J; Debnam, Edward S; Marks, Joanne

    2016-06-01

    What is the central question of this study? Although SGLT2 inhibitors represent a promising treatment for patients suffering from diabetic nephropathy, the influence of metabolic disruption on the expression and function of glucose transporters is largely unknown. What is the main finding and its importance? In vivo models of metabolic disruption (Goto-Kakizaki type II diabetic rat and junk-food diet) demonstrate increased expression of SGLT1, SGLT2 and GLUT2 in the proximal tubule brush border. In the type II diabetic model, this is accompanied by increased SGLT- and GLUT-mediated glucose uptake. A fasted model of metabolic disruption (high-fat diet) demonstrated increased GLUT2 expression only. The differential alterations of glucose transporters in response to varying metabolic stress offer insight into the therapeutic value of inhibitors. SGLT2 inhibitors are now in clinical use to reduce hyperglycaemia in type II diabetes. However, renal glucose reabsorption across the brush border membrane (BBM) is not completely understood in diabetes. Increased consumption of a Western diet is strongly linked to type II diabetes. This study aimed to investigate the adaptations that occur in renal glucose transporters in response to experimental models of diet-induced insulin resistance. The study used Goto-Kakizaki type II diabetic rats and normal rats rendered insulin resistant using junk-food or high-fat diets. Levels of protein kinase C-βI (PKC-βI), GLUT2, SGLT1 and SGLT2 were determined by Western blotting of purified renal BBM. GLUT- and SGLT-mediated d-[(3) H]glucose uptake by BBM vesicles was measured in the presence and absence of the SGLT inhibitor phlorizin. GLUT- and SGLT-mediated glucose transport was elevated in type II diabetic rats, accompanied by increased expression of GLUT2, its upstream regulator PKC-βI and SGLT1 protein. Junk-food and high-fat diet feeding also caused higher membrane expression of GLUT2 and its upstream regulator PKC

  3. Cattle temperament influences metabolism: 1. Metabolic response to a glucose tolerance test in beef steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperamental cattle are behaviorally, physiologically, and immunologically different in comparison to calm cattle. Recently, the metabolic differences between temperamental and calm cattle have begun to be explored; temperamental cattle maintain greater circulating concentrations of non-esterified ...

  4. A new model for the aerobic metabolism of yeast allows the detailed analysis of the metabolic regulation during glucose pulse.

    PubMed

    Kesten, Duygu; Kummer, Ursula; Sahle, Sven; Hübner, Katrin

    2015-11-01

    The onset of aerobic fermentation (the so-called Crabtree effect) in yeast has long been of interest. However, the underlying mechanisms at the metabolic level are not yet fully understood. We developed a detailed kinetic model of the aerobic central metabolism of Saccharomyces cerevisiae comprising glycolysis, TCA cycle and major transport reactions across the mitochondrial membrane to investigate this phenomenon. It is the first one of this extent in the literature. The model is able to reproduce experimental steady state fluxes and time-course behavior after a glucose pulse. Due to the lack of parameter identifiability in the model, we analyze a model ensemble consisting of a set of differently parameterized models for robust findings. The model predicts that the cooperativity of pyruvate decarboxylase with respect to pyruvate and the capacity difference between alcohol dehydrogenase and the pyruvate dehydrogenase bypass play a major role for the onset of the Crabtree effect. PMID:26176974

  5. Lipopolysaccharide markedly changes glucose metabolism and mitochondrial function in the longissimus muscle of pigs.

    PubMed

    Sun, H; Huang, Y; Yin, C; Guo, J; Zhao, R; Yang, X

    2016-07-01

    Most previous studies on the effects of lipopolysaccharide (LPS) in pigs focused on the body's immune response, and few reports paid attention to body metabolism changes. To better understand the glucose metabolism changes in skeletal muscle following LPS challenge and to clarify the possible mechanism, 12 growing pigs were employed. Animals were treated with either 2 ml of saline or 15 µg/kg BW LPS, and samples were collected 6 h later. The glycolysis status and mitochondrial function in the longissimus dorsi (LD) muscle of pigs were analyzed. The results showed that serum lactate content and NADH content in LD muscle significantly increased compared with the control group. Most glycolysis-related genes expression, as well as hexokinase, pyruvate kinase and lactic dehydrogenase activity, in LD muscle was significantly higher compared with the control group. Mitochondrial complexes I and IV significantly increased, while mitochondrial ATP concentration markedly decreased. Significantly increased calcium content in the mitochondria was observed, and endoplasm reticulum (ER) stress has been demonstrated in the present study. The results showed that LPS treatment markedly changes glucose metabolism and mitochondrial function in the LD muscle of pigs, and increased calcium content induced by ER stress was possibly involved. The results provide new clues for clarifying metabolic diseases in muscle induced by LPS. PMID:26863995

  6. Effects of sleep disruption and high fat intake on glucose metabolism in mice.

    PubMed

    Ho, Jacqueline M; Barf, R Paulien; Opp, Mark R

    2016-06-01

    Poor sleep quality or quantity impairs glycemic control and increases risk of disease under chronic conditions. Recovery sleep may offset adverse metabolic outcomes of accumulated sleep debt, but the extent to which this occurs is unclear. We examined whether recovery sleep improves glucose metabolism in mice subjected to prolonged sleep disruption, and whether high fat intake during sleep disruption exacerbates glycemic control. Adult male C57BL/6J mice were subjected to 18-h sleep fragmentation daily for 9 days, followed by 1 day of recovery. During sleep disruption, one group of mice was fed a high-fat diet (HFD) while another group was fed standard laboratory chow. Insulin sensitivity and glucose tolerance were assessed by insulin and glucose tolerance testing at baseline, after 3 and 7 days of sleep disruption, and at the end of the protocol after 24h of undisturbed sleep opportunity (recovery). To characterize changes in sleep architecture that are associated with sleep debt and recovery, we quantified electroencephalogram (EEG) recordings during sleep fragmentation and recovery periods from an additional group of mice. We now report that 9 days of 18-h daily sleep fragmentation significantly reduces rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Mice respond with increases in REMS, but not NREMS, during the daily 6-h undisturbed sleep opportunity. However, both REMS and NREMS increase significantly during the 24-h recovery period. Although sleep disruption alone has no effect in this protocol, high fat feeding in combination with sleep disruption impairs glucose tolerance, effects that are reversed by recovery sleep. Insulin sensitivity modestly improves after 3 days of sleep fragmentation and after 24h of recovery, with significantly greater improvements in mice exposed to HFD during sleep disruption. Improvements in both glucose tolerance and insulin sensitivity are associated with NREMS rebound, raising the possibility that this

  7. Effects of novel neuroprotective and neurorestorative multifunctional drugs on iron chelation and glucose metabolism.

    PubMed

    Pollak, Yulia; Mechlovich, Danit; Amit, Tamar; Bar-Am, Orit; Manov, Irena; Mandel, Silvia A; Weinreb, Orly; Meyron-Holtz, Esther G; Iancu, Theodore C; Youdim, Moussa B H

    2013-01-01

    Iron accumulation and iron-related oxidative stress are involved in several pathological conditions and provide a rationale for the development of iron chelators as novel promising therapeutic strategies. Thus, we have recently synthesized multifunctional non-toxic, brain permeable iron chelating compounds, M30 and HLA20, possessing the neuroprotective N-propargyl moiety of the anti-Parkinsonian drug, monoamine oxidase (MAO)-B inhibitor, rasagiline and the antioxidant-iron chelating moiety of an 8-hydroxyquinoline derivative of the iron chelator, VK28. Here, we examined the hepatic regulatory effects of these novel compounds using two experimental approaches: chelation activity and glucose metabolism parameters. The present study demonstrated that M30 and HLA20 significantly decreased intracellular iron content and reduced ferritin expression levels in iron-loaded hepatoma Hep3B cells. In electron microscopy analysis, M30 was shown to reduce the electron-dense deposits of siderosomes by ~30 %, as well as down-regulate cytosolic ferritin particles observed in iron-overloaded cells. In vivo studies demonstrated that M30 administration (1 mg/kg, P.O. three times a week) reduced hepatic ferritin levels; increased hepatic insulin receptor and glucose transporter-1 levels and improved glucose tolerance in C57BL/6 mice and in a mouse model of type-2 diabetes, the ob/ob (leptin(-/-)). The results clearly indicate that the novel multifunctional drugs, especially M30, display significant capacity of chelating intracellular iron and regulating glucose metabolism parameters. Such effects can have therapeutic significance in conditions with abnormal local or systemic iron metabolism, including neurological diseases. PMID:22446839

  8. Glucose metabolism and NADH recycling by Treponema hyodysenteriae, the agent of swine dysentery.

    PubMed

    Stanton, T B

    1989-09-01

    Glucose metabolism and the mechanisms of NADH oxidation by Treponema hyodysenteriae were studied. Under an N2 atmosphere, washed cell suspensions of the spirochete consumed glucose and produced acetate, butyrate, H2, and CO2. Approximately twice as much H2 as CO2 was produced. Determinations of radioactivity in products of [14C]glucose and [14C]pyruvate metabolism and analyses of enzyme activities in cell lysates revealed that glucose was catabolized to pyruvate via the Embden-Meyerhof-Parnas pathway. The results of pyruvate exchange reactions with NaH14CO3 and Na14COOH demonstrated that pyruvate was converted to acetyl coenzyme A (acetyl-CoA), H2, and CO2 by a clostridium-type phosphoroclastic mechanism. NADH:ferredoxin oxidoreductase and hydrogenase activities were present in cell lysates and produced H2 from NADH oxidation. Phosphotransacetylase and acetate kinase catalyzed the formation of acetate from acetyl-CoA. Butyrate was formed from acetyl-CoA via a pathway that involved 3-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, butyryl-CoA dehydrogenase, and butyryl-CoA transferase. T. hyodysenteriae cell suspensions generated less H2 and butyrate under 10% O2-90% N2 than under 100% N2. Cell lysates contained NADH oxidase, NADH peroxidase, and superoxide dismutase activities. These findings indicated there are three major mechanisms that T. hyodysenteriae cells use to recycle NADH generated from the Embden-Meyerhof-Parnas pathway--enzymes in the pathway from acetyl-CoA to butyrate, NADH:ferredoxin oxidoreductase, and NADH oxidase. Versatility in methods of NADH oxidation and an ability to metabolize oxygen could benefit T. hyodysenteriae cells in the colonization of tissues of the swine large bowel. PMID:2802610

  9. Relevance of Mediterranean diet and glucose metabolism for nephrolithiasis in obese subjects

    PubMed Central

    2014-01-01

    Background Nephrolithiasis is more frequent and severe in obese patients from different western nations. This may be supported by higher calcium, urate, oxalate excretion in obese stone formers. Except these parameters, clinical characteristics of obese stone formers were not extensively explored. Aims In the present paper we studied the relationship between obesity and its metabolic correlates and nephrolithiasis. Materials and methods We studied 478 Caucasian subjects having BMI ≥ 25 kg/m2. The presence of nephrolithiasis, hypertension, diabetes mellitus and metabolic syndrome were noted. They underwent measurements of anthropometry (BMI and waist circumference, body composition), serum variables (fasting glucose, serum lipids and serum enzymes) and Mediterranean diet (MedDiet) nutritional questionnaire. Results 45 (9.4%) participants were stone formers. Subjects with high serum concentrations of triglycerides (≥150 mg/dl), fasting glucose (> 100 mg/dl) and AST (>30 U/I in F or >40 U/I in M) were more frequent among stone formers than non-stone formers. Multinomial logistic regression confirmed that kidney stone production was associated with high fasting glucose (OR = 2.6, 95% CI 1.2-5.2, P = 0.011), AST (OR = 4.3, 95% CI 1.1-16.7, P = 0.033) and triglycerides (OR = 2.7, 95% CI 1.3-5.7, P = 0.01). MedDiet score was not different in stone formers and non-stone formers. However, stone formers had a lower consumption frequency of olive oil and nuts, and higher consumption frequency of wine compared with non-stone formers. Conclusions Overweight and obese stone formers may have a defect in glucose metabolism and a potential liver damage. Some foods typical of Mediterranean diet may protect against nephrolithiasis. PMID:24502605

  10. Impaired glucose metabolism in HIV-infected pregnant women: a retrospective analysis.

    PubMed

    Moore, Rebecca; Adler, Hugh; Jackson, Valerie; Lawless, Mairead; Byrne, Maria; Eogan, Maeve; Lambert, John S

    2016-06-01

    Metabolic complications, including diabetes mellitus, have been increasingly recognised in HIV-infected individuals since the introduction of antiretroviral therapy, particularly protease inhibitors (PIs). Pregnancy is also a risk factor for impaired glucose metabolism, and previous studies have given conflicting results regarding the contribution of PIs to impaired glucose tolerance (IGT) and gestational diabetes mellitus (GDM) in pregnant HIV-infected women. We conducted a retrospective review of all HIV-infected women attending a combined infectious disease and antenatal clinic between 2007 and 2013 who underwent a 100 g oral glucose tolerance test (OGTT) at 24-28 weeks. We grouped the patients based on whether their OGTT result was normal or abnormal, and compared the groups using standard parametric tests (t-test and Fisher's exact test). Of 263 women with HIV who attended the clinic, 142 (53.9%) attended for OGTT and were eligible for inclusion. The mean age was 31 years (SD 5.37), all women were of European or African origin and 33.7% had a body mass index ≥30 kg/m(2) About 93.7% were on PI-based regimens. At delivery, the mean CD4 count was 526 cells/µL, and 13% of patients had a detectable viraemia. The prevalence of IGT was 2.8%, while the prevalence of GDM was 2.1%. Also, 71.4% (n = 5) of women with abnormal glucose metabolism were taking PIs versus 94.8% (n = 128) of normoglycaemic women (p = 0.06). We did not confirm an increased rate of GDM in HIV-infected women in our patient population and found no association between PI use and GDM. PMID:25999164

  11. Resistance to the tyrosine kinase inhibitor axitinib is associated with increased glucose metabolism in pancreatic adenocarcinoma.

    PubMed

    Hudson, C D; Hagemann, T; Mather, S J; Avril, N

    2014-01-01

    Alterations in energy (glucose) metabolism are key events in the development and progression of cancer. In pancreatic adenocarcinoma (PDAC) cells, we investigated changes in glucose metabolism induced by resistance to the receptor tyrosine kinase inhibitor (RTKI) axitinib. Here, we show that human cell lines and mouse PDAC cell lines obtained from the spontaneous pancreatic cancer mouse model (Kras(G12D)Pdx1-cre) were sensitive to axitinib. The anti-proliferative effect was due to a G2/M block resulting in loss of 70-75% cell viability in the most sensitive PDAC cell line. However, a surviving sub-population showed a 2- to 3-fold increase in [C-14]deoxyglucose ([C-14]DG) uptake. This was sustained in axitinib-resistant cell lines, which were derived from parental PDAC. In addition to the axitinib-induced increase in [C-14]DG uptake, we observed a translocation of glucose transporter-1 (Glut-1) transporters from cytosolic pools to the cell surface membrane and a 2-fold increase in glycolysis rates measured by the extracellular acidification rate (ECAR). We demonstrated an axitinib-induced increase in phosphorylated Protein Kinase B (pAkt) and by blocking pAkt with a phosphatidylinositol-3 kinase (PI3K) inhibitor we reversed the Glut-1 translocation and restored sensitivity to axitinib treatment. Combination treatment with both axitinib and Akt inhibitor in parental pancreatic cell line resulted in a decrease in cell viability beyond that conferred by single therapy alone. Our study shows that PDAC resistance to axitinib results in increased glucose metabolism mediated by activated Akt. Combining axitinib and an Akt inhibitor may improve treatment in PDAC. PMID:24722285

  12. The influence of social status on hepatic glucose metabolism in rainbow trout Oncorhynchus mykiss.

    PubMed

    Gilmour, Kathleen M; Kirkpatrick, Sheryn; Massarsky, Andrey; Pearce, Brenda; Saliba, Sarah; Stephany, Céleste-Élise; Moon, Thomas W

    2012-01-01

    The effects of chronic social stress on hepatic glycogen metabolism were examined in rainbow trout Oncorhynchus mykiss by comparing hepatocyte glucose production, liver glycogen phosphorylase (GP) activity, and liver β-adrenergic receptors in dominant, subordinate, control, fasted, and cortisol-treated fish. Hepatocyte glucose production in subordinate fish was approximately half that of dominant fish, reflecting hepatocyte glycogen stores in subordinate trout that were just 16% of those in dominant fish. Fasting and/or chronic elevation of cortisol likely contributed to these differences based on similarities among subordinate, fasted, and cortisol-treated fish. However, calculation of the "glycogen gap"--the difference between glycogen stores used and glucose produced--suggested an enhanced gluconeogenic potential in subordinate fish that was not present in fasted or cortisol-treated trout. Subordinate, fasted, and cortisol-treated trout also exhibited similar GP activities (both total activity and that of the active or a form), and these activities were in all cases significantly lower than those in control trout, perhaps reflecting an attempt to protect liver glycogen stores or a modified capacity to activate GP. Dominant trout exhibited the lowest GP activities (20%-24% of the values in control trout). Low GP activities, presumably in conjunction with incoming energy from feeding, allowed dominant fish to achieve the highest liver glycogen concentrations (double the value in control trout). Liver membrane β-adrenoceptor numbers (assessed as the number of (3)H-CGP binding sites) were significantly lower in subordinate than in dominant trout, although this difference did not translate into attenuated adrenergic responsiveness in hepatocyte glucose production in vitro. Transcriptional regulation, likely as a result of fasting, was indicated by significantly lower β(2)-adrenoceptor relative mRNA levels in subordinate and fasted trout. Collectively, the data

  13. Preweaning cocaine exposure alters brain glucose metabolic rates following repeated amphetamine administration in the adult rat.

    PubMed

    Melnick, Susan M; Torres-Reveron, Annelyn; Dow-Edwards, Diana L

    2004-10-15

    Developmental cocaine exposure produces long-term alterations in function of many neuronal circuits. This study examined glucose metabolic rates following repeated amphetamine administration in adult male and female rats pretreated with cocaine during postnatal days (PND) 11-20. PND11-20 cocaine increased the response to amphetamine in many components of the motor system and the dorsal caudate-putamen, in particular, and decreased the metabolic response in the hypothalamus. While amphetamine alone produced widespread increases in metabolism, there were no cocaine-related effects in the mesolimbic, limbic or sensory structures. These data suggest that a brief cocaine exposure during development can alter ontogeny and result in abnormal neuronal responses to repeated psychostimulant administration in adulthood. PMID:15464226

  14. Lactation Biology Symposium: role of colostrum and colostrum components on glucose metabolism in neonatal calves.

    PubMed

    Hammon, H M; Steinhoff-Wagner, J; Flor, J; Schönhusen, U; Metges, C C

    2013-02-01

    In neonatal calves, nutrient intake shifts from continuous glucose supply via the placenta to discontinuous colostrum and milk intake with lactose and fat as main energy sources. Calves are often born hypoglycemic and have to establish endogenous glucose production (eGP) and gluconeogenesis, because lactose intake by colostrum and milk does not meet glucose demands. Besides establishing a passive immunity, colostrum intake stimulates maturation and function of the neonatal gastrointestinal tract (GIT). Nutrients and nonnutritive factors, such as hormones and growth factors, which are present in high amounts in colostrum of first milking after parturition, affect intestinal growth and function and enhance the absorptive capacity of the GIT. Likely as a consequence of that, colostrum feeding improves the glucose status in neonatal calves by increasing glucose absorption, which results in elevated postprandial plasma glucose concentrations. Hepatic glycogen concentrations rise much greater when colostrum instead of a milk-based colostrum replacer (formula with same nutrient composition as colostrum but almost no biologically active substances, such as hormones and growth factors) is fed. In contrast, first-pass glucose uptake in the splanchnic tissue tended to be greater in calves fed formula. The greater plasma glucose rise and improved energy status in neonatal calves after colostrum intake lead to greater insulin secretion and accelerated stimulation of anabolic processes indicated by enhanced maturation of the postnatal somatotropic axis in neonatal calves. Hormones involved in stimulation of eGP, such as glucagon and cortisol, depend on neonatal diet, but their effects on eGP stimulation seem to be impaired. Although colostrum feeding affects systemic insulin, IGF-I, and leptin concentrations, evidence for systemic action of colostral insulin, IGF-I, and leptin in neonatal calves is weak. Studies so far indicate no absorption of insulin, IGF-I, and leptin from

  15. Impact of switching from lopinavir/ritonavir to boosted and un-boosted atazanavir on glucose metabolism: the ATAzanavir & GLUcose metabolism (ATAGLU) study.

    PubMed

    d'Ettorre, Gabriella; Ceccarelli, Giancarlo; Zaccarelli, Mauro; Ascoli-Bartoli, Tommaso; Bianchi, Luigi; Bellelli, Valeria; De Girolamo, Gabriella; Serafino, Sara; Giustini, Noemi; Mastroianni, Claudio M; Vullo, Vincenzo

    2016-07-01

    Previous studies have reported that protease inhibitors (PIs) can contribute to glycaemic alterations. However, there are few trials examining the direct effect of a single PI. The objective of the study was to evaluate the modifications of glucose and lipid profiles after a switch from lopinavir/ritonavir (LPV/r) to atazanavir, used as ritonavir-boosted (ATV/r) or un-boosted. We conducted a retrospective observational cohort study on the effect of ATV/(r) on glycaemic metabolism (ATAGLU) in patients with undetectable levels of HIV-RNA who switched from LPV/r. In total, 235 patients treated for 48 weeks with LPV/r plus two nucleoside reverse transcriptase inhibitors (NRTIs) and with undetectable HIV-RNA were included: 134 continued LPV/r after the initial 48 weeks and 101 switched to ATV(/r) (18.3% to ATV; 24.7% to ATV/r). A significant decrease in mean glucose level and insulin resistance was observed in patients who switched to ATV(/r). The mean cholesterol triglyceride levels increased in the LPV/r group and decreased among the patients who switched. A significant increase of CD4 T cells with undetectable levels of HIV-RNA was observed in all groups. The long-term results obtained in this real-life study suggest that patients who have achieved initial suppression on a regimen including LPV/r + two NRTIs can switch to ATV/(r) + two NRTIs with an improvement in lipid and glycaemic metabolism. PMID:26068963

  16. Characterizing the Network of Drugs and Their Affected Metabolic Subpathways

    PubMed Central

    Li, Jing; Han, Junwei; Wang, Shuyuan; Yao, Qianlan; Wang, Yingying; Zhang, Yunpeng; Zhang, Chunlong; Xu, Yanjun; Jiang, Wei; Li, Xia

    2012-01-01

    A fundamental issue in biology and medicine is illustration of the overall drug impact which is always the consequence of changes in local regions of metabolic pathways (subpathways). To gain insights into the global relationship between drugs and their affected metabolic subpathways, we constructed a drug–metabolic subpathway network (DRSN). This network included 3925 significant drug–metabolic subpathway associations representing drug dual effects. Through analyses based on network biology, we found that if drugs were linked to the same subpathways in the DRSN, they tended to share the same indications and side effects. Furthermore, if drugs shared more subpathways, they tended to share more side effects. We then calculated the association score by integrating drug-affected subpathways and disease-related subpathways to quantify the extent of the associations between each drug class and disease class. The results showed some close drug–disease associations such as sex hormone drugs and cancer suggesting drug dual effects. Surprisingly, most drugs displayed close associations with their side effects rather than their indications. To further investigate the mechanism of drug dual effects, we classified all the subpathways in the DRSN into therapeutic and non-therapeutic subpathways representing drug therapeutic effects and side effects. Compared to drug side effects, the therapeutic effects tended to work through tissue-specific genes and these genes tend to be expressed in the adrenal gland, liver and kidney; while drug side effects always occurred in the liver, bone marrow and trachea. Taken together, the DRSN could provide great insights into understanding the global relationship between drugs and metabolic subpathways. PMID:23112813

  17. Effects of Excess Energy Intake on Glucose and Lipid Metabolism in C57BL/6 Mice

    PubMed Central

    Huang, Xiuqing; Cui, Ju; Gong, Huan; Zhang, Tiemei

    2016-01-01

    Excess energy intake correlates with the development of metabolic disorders. However, different energy-dense foods have different effects on metabolism. To compare the effects of a high-fat diet, a high-fructose diet and a combination high-fat/high-fructose diet on glucose and lipid metabolism, male C57BL/6 mice were fed with one of four different diets for 3 months: standard chow; standard diet and access to fructose water; a high fat diet; and a high fat diet with fructose water. After 3 months of feeding, the high-fat and the combined high-fat/high-fructose groups showed significantly increased body weights, accompanied by hyperglycemia and insulin resistance; however, the high-fructose group was not different from the control group. All three energy-dense groups showed significantly higher visceral fat weights, total cholesterol concentrations, and low-density lipoprotein cholesterol concentrations compared with the control group. Assays of basal metabolism showed that the respiratory quotient of the high-fat, the high-fructose, and the high-fat/high-fructose groups decreased compared with the control group. The present study confirmed the deleterious effect of high energy diets on body weight and metabolism, but suggested that the energy efficiency of the high-fructose diet was much lower than that of the high-fat diet. In addition, fructose supplementation did not worsen the detrimental effects of high-fat feeding alone on metabolism in C57BL/6 mice. PMID:26745179

  18. Uncoupling of fatty acid and glucose metabolism in malignant lymphoma: a PET study.

    PubMed

    Nuutinen, J; Minn, H; Bergman, J; Haaparanta, M; Ruotasalainen, U; Laine, H; Knuuti, J

    1999-05-01

    Increased use of glucose through glycolysis is characteristic for neoplastic growth while the significance of serum-free fatty acids for regulation of energy metabolism in cancer is poorly understood. We studied whether serum-free fatty acids (FFA) interfere with glycolytic metabolism of lymphoproliferative neoplasms as assessed with 2-F18-fluoro-2-deoxy-D-glucose ([F18]FDG) and positron emission tomography (PET). Twelve patients with newly diagnosed non-Hodgkin's lymphoma (n = 9) or Hodgkin's disease (n = 3) participated in this study before start of oncologic treatment. Each patient underwent two [F18]FDG PET studies within 1 week after overnight fast: once during high fasting serum FFA concentrations and once after reduction of serum FFA by administration of acipimox. Acipimox is a nicotinic acid derivative that inhibits lipolysis in peripheral tissues and induces a striking reduction in circulating FFA concentration. In all cases, dynamic PET imaging over the tumour area was performed for 60 min after injection of [F18]FDG. Both graphical analysis (rMR(FDG)) and single scan approach (SUV) were used to compare tumour uptake of [F18]FDG under high fasting FFA concentrations and after pharmacologically decreased FFA concentrations. Serum FFA concentrations were reduced significantly from 0.92+/-0.42 mmol I(-1)at baseline to 0.26+/-0.31 mmol I(-1) after acipimox administration (P = 0.0003). Plasma glucose, serum insulin and lactate concentrations were similar during both approaches. The retention of glucose analogue [F18]FDG in tumour was similar between baseline and acipimox studies. Median rMR(FDG) of a total of 12 involved lymph nodes in 12 patients was 21.9 micromol 100 g(-1) min(-1) (range 8.7-82.5) at baseline and 20.1 micromol 100 g(-1) min(-1)(range 10.7-81.7) after acipimox. The respective values for median SUV were 7.8 (range 3.6-18.6) and 6.0 (range 4.1-20.2). As expected, [F18]FDG uptake in myocardium was clearly enhanced by acipimox due to reduction of

  19. Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures.

    PubMed

    Alff-Tuomala, Susanne; Salusjärvi, Laura; Barth, Dorothee; Oja, Merja; Penttilä, Merja; Pitkänen, Juha-Pekka; Ruohonen, Laura; Jouhten, Paula

    2016-01-01

    Xylose is present with glucose in lignocellulosic streams available for valorisation to biochemicals. Saccharomyces cerevisiae has excellent characteristics as a host for the bioconversion, except that it strongly prefers glucose to xylose, and the co-consumption remains a challenge. Further, since xylose is not a natural substrate of S. cerevisiae, the regulatory response it induces in an engineered strain cannot be expected to have evolved for its utilisation. Xylose-induced effects on metabolism and gene expression during anaerobic growth of an engineered strain of S. cerevisiae on medium containing both glucose and xylose medium were quantified. The gene expression of S. cerevisiae with an XR-XDH pathway for xylose utilisation was analysed throughout the cultivation: at early cultivation times when mainly glucose was metabolised, at times when xylose was co-consumed in the presence of low glucose concentrations, and when glucose had been depleted and only xylose was being consumed. Cultivations on glucose as a sole carbon source were used as a control. Genome-scale dynamic flux balance analysis models were simulated to analyse the metabolic dynamics of S. cerevisiae. The simulations quantitatively estimated xylose-dependent flux dynamics and challenged the utilisation of the metabolic network. A relative increase in xylose utilisation was predicted to induce the bi-directionality of glycolytic flux and a redox challenge even at low glucose concentrations. Remarkably, xylose was observed to specifically delay the glucose-dependent repression of particular genes in mixed glucose-xylose cultures compared to glucose cultures. The delay occurred at a cultivation time when the metabolic flux activities were similar in the both cultures. PMID:26454869

  20. Glucose metabolism and the channeling of glycolytic intermediates in permeabilized L-929 cells.

    PubMed

    Clegg, J S; Jackson, S A

    1990-05-01

    L-929 cells (mouse fibroblasts) permeabilized with dextran sulfate (DSP cells) carry out vigorous and linear rates of glycolysis when supplied with a suitable incubation medium. Glycolysis in DSP cells is pH dependent, being strongly inhibited at pH 6.5. Compared to their nonpermeabilized counterparts, DSP cells exhibit faster glycolytic rates, but tend to convert a smaller proportion of the glucose utilized to lactate. [14C]Glucose is converted to lactate by DSP cells without dilution from endogenous substrates. When exogenous 12C-labeled glycolytic intermediates (12C-I) are added to glycolyzing DSP cells the [14C]lactate produced from [14C]glucose is diluted to varying extents, depending on the intermediate. However, the extent of that dilution (reduced specific activity) is not that expected from the complete mixing of exogenous 12C-I with their corresponding 14C-labeled intermediates coming from [14C]-glucose. DSP cells also respire and convert glucose to CO2. The amount of 14CO2 produced from [14C]glucose is also reduced by addition of most 12C-I, an interesting exception being pyruvate, which had no measurable effect on 14CO2 production and caused only a modest stimulation of respiration in glycolyzing DSP cells. These results suggest that channeling, or some other form of coupling, takes place between the glycolytic production of pyruvate and its further oxidation. These observations confirm previously published data and add further support to the proposition that channeling of glycolytic intermediates occurs in DSP cells but is of the "leaky" type. Although abundant evidence in the literature indicates that various glycolytic enzymes associate with F-actin, as well as other elements of the cytomatrix, we observed no effect of cytochalasin D on lactate production even at very high concentrations of this compound. Our results are compared with those from other laboratories and discussed in the context of metabolic organization. PMID:2109584

  1. Diurnal Cortisol Patterns, Future Diabetes, and Impaired Glucose Metabolism in the Whitehall II Cohort Study

    PubMed Central

    Kivimäki, Mika; Kumari, Meena; Steptoe, Andrew

    2016-01-01

    Context: The hypothalamic pituitary-adrenal axis is thought to play a role in type 2 diabetes (T2D). However, evidence for an association between cortisol and future glucose disturbance is sparse. Objective: The aim was to examine the association of diurnal cortisol secretion with future T2D and impaired glucose metabolism in a community-dwelling population. Design: This is a prospective cohort study of salivary cortisol measured at the 2002–2004 clinical examination of the Whitehall II study, United Kingdom. We measured cortisol (nmol/l) from six saliva samples obtained over the course of a day: at waking, +30 minutes, +2.5 hours, +8 hours, +12 hours, and bedtime. Participants who were normoglycemic in 2002–2004 (phase 7) were reexamined in 2012–2013 (phase 11). Setting: The occupational cohort was originally recruited in 1985–1988. Participants: A total of 3270 men and women with an average age of 60.85 years at phase 7 (2002–2004). Outcome Measures: Incident T2D and impaired fasting glucose in 2012–2013 were measured. Results: Raised evening cortisol at phase 7 was predictive of new-onset T2D at phase 11 (odds ratio [OR], 1.18; 95% confidence interval [CI], 1.01–1.37) with a trend for a flatter slope in participants with incident T2D (odds ratio, 1.15; 95% CI, 0.99–1.33). When expanding this analysis to a broader category of glucose disturbance we found that a flattened diurnal cortisol slope at phase 7 was predictive of future impaired fasting glucose or T2D at phase 11 (OR, 1.12; 95% CI, 1.02–1.22), as was high bedtime cortisol (OR, 1.10; 95% CI, 1.01–1.20). Conclusions: In this nonclinical population, alterations in diurnal cortisol patterns were predictive of future glucose disturbance. PMID:26647151

  2. βIII-Tubulin alters glucose metabolism and stress response signaling to promote cell survival and proliferation in glucose-starved non-small cell lung cancer cells.

    PubMed

    Parker, Amelia L; Turner, Nigel; McCarroll, Joshua A; Kavallaris, Maria

    2016-08-01

    Non-small cell lung cancer (NSCLC) survival rates are dismal and high βIII-tubulin expression is associated with chemotherapy drug resistance and tumor aggressiveness in this disease. Mounting evidence supports a role for βIII-tubulin in promoting cell survival in the harsh tumor microenvironment, which is characterized by poor nutrient supply. This study aimed to investigate the role of βIII-tubulin in glucose stress response signaling and the survival and proliferation of NSCLC cells. This study revealed that βIII-tubulin regulates cellular metabolism and glucose stress response signaling in NSCLC cells to promote cell survival and proliferation in glucose starvation. βIII-Tubulin decreases the reliance of cells on glycolytic metabolism, priming them to cope with variable nutrient supply present within the tumor microenvironment. βIII-Tubulin protects cells from endoplasmic reticulum (ER) stress and reduces both basal and glucose starvation-induced autophagy to maintain cell survival and proliferation. βIII-Tubulin enables rapid Akt activation in response to glucose starvation and co-immunoprecipitates with the master regulator of the ER stress response GRP78. Furthermore, suppression of βIII-tubulin delays the association of GRP78 with Akt in response to glucose starvation with the potential to influence Akt activation and ER homeostasis under these conditions. Together these results identify that βIII-tubulin regulates glucose metabolism and alters glucose starvation stress signaling to promote cell proliferation and survival in NSCLC cells. This elucidates a hitherto unknown role for this microtubule protein and provides insight into correlations between high βIII-tubulin expression and poor patient outcome in this disease. PMID:27207668

  3. Glucose and Fat Metabolism in Narcolepsy and the Effect of Sodium Oxybate: A Hyperinsulinemic-Euglycemic Clamp Study

    PubMed Central

    Donjacour, Claire E. H. M.; Aziz, N. Ahmad; Overeem, Sebastiaan; Kalsbeek, Andries; Pijl, Hanno; Lammers, Gert Jan

    2014-01-01

    Introduction: Narcolepsy is associated with obesity though it is uncertain whether this is caused by changes in glucose and fat metabolism. Therefore, we performed a detailed analysis of systemic energy homeostasis in narcolepsy patients, and additionally, investigated whether it was affected by three months of sodium oxybate (SXB) treatment. Methods: Nine hypocretin deficient patients with narcolepsy-cataplexy, and nine healthy sex, age, and BMI matched controls were enrolled. A hyperinsulinemic-euglycemic clamp combined with stable isotopes ([6,6-2H2]-glucose and [2H5]- glycerol) was performed at baseline. In seven patients a second study was performed after three months of SXB treatment. Results: Glucose disposal rate (GDR) per unit serum insulin was significantly higher in narcolepsy patients compared to matched controls (1.6 ± 0.2 vs. 1.1 ± 0.3 μmol/kgFFM/min/mU×L; P = 0.024), whereas β-cell function was similar (P = 0.50). Basal steady state glycerol appearance rate tended to be lower in narcolepsy patients (5.2 ± 0.4 vs. 7.5 ± 1.3 μmol/kgFM/min; P = 0.058), suggesting a lower rate of lipolysis. SXB treatment induced a trend in reduction of the GDR (1.4 ± 0.1 vs. 1.1 ± 0.2 μmol/kgFFM/min/mU×L; P = 0.063) and a reduction in endogenous glucose production (0.24 ± 0.03 vs. 0.16 ± 0.03 μmol/kgFFM/min/mU×L: P = 0.028) per unit serum insulin. After SXB treatment lipolysis increased (4.9 ± 0.4 vs. 6.5 ± 0.6 μmol/kgFM/min; P = 0.018), and body weight decreased in narcolepsy patients (99.2 ± 6.0 vs. 94.0 ± 5.4 kg; P = 0.044). Conclusion: We show that narcolepsy patients are more insulin sensitive and may have a lower rate of lipolysis than matched controls. SXB stimulated lipolysis in narcolepsy patients, possibly accounting for the weight loss after treatment. While sodium oxybate tended to decrease systemic insulin sensitivity, it increased hepatic insulin sensitivity, suggesting tissue-specific effects. Citation: Donjacour CE; Aziz NA; Overeem S

  4. Magnetic Resonance Imaging of Glucose Uptake and Metabolism in Patients with Head and Neck Cancer.

    PubMed

    Wang, Jihong; Weygand, Joseph; Hwang, Ken-Pin; Mohamed, Abdallah S R; Ding, Yao; Fuller, Clifton D; Lai, Stephen Y; Frank, Steven J; Zhou, Jinyuan

    2016-01-01

    Imaging metabolic dysfunction, a hallmark of solid tumors, usually requires radioactive tracers. Chemical exchange saturation transfer (CEST) imaging can potentially detect and visualize glucose uptake and metabolism, without the need for radioisotopes. Here, we tested the feasibility of using glucose CEST (glucoCEST) to image unlabeled glucose uptake in head and neck cancer by using a clinical 3T magnetic resonance imaging (MRI) scanner. The average CEST contrast between tumors and normal tissue in 17 patients was 7.58% (P = 0.006) in the 3-4 ppm offset frequency range and 5.06% (P = 0.02) in 1-5 ppm range. In a subgroup of eight patients, glucoCEST signal enhancement was higher in tumors than in normal muscle (4.98% vs. 1.28%, P < 0.021). We conclude that glucoCEST images of head and neck cancer can be obtained with a clinical 3T MRI scanner. PMID:27461165

  5. Decreased carbon shunting from glucose towards oxidative metabolism in diet-induced ketotic rat brain

    PubMed Central

    Zhang, Yifan; Zhang, Shenghui; Marin-Valencia, Isaac; Puchowicz, Michelle A.

    2014-01-01

    The mechanistic link of ketosis to neuroprotection under certain pathological conditions continues to be explored. We investigated whether chronic ketosis induced by ketogenic diet results in the partitioning of ketone bodies towards oxidative metabolism in brain. We hypothesized that diet-induced ketosis results in increased shunting of ketone bodies towards citric acid cycle (CAC) and amino acids with decreased carbon shunting from glucose. Rats were fed standard (STD) or ketogenic (KG) diets for 3.5 weeks and then infused with [U-13C]glucose or [U-13C]acetoacetate tracers. Concentrations and 13C-labeling pattern of CAC intermediates and amino acids were analyzed from brain homogenates using stable isotopomer mass spectrometry analysis. The contribution of [U-13C]glucose to acetyl-CoA and amino acids decreased by ~30% in the KG group vs STD, whereas [U-13C]acetoacetate contributions were more than 2-fold higher. The concentration of GABA remained constant across all groups; however, the 13C-labeling of GABA was markedly increased in the KG group infused with [U-13C]acetoacetate compared to STD. This study reveals that there is a significant contribution of ketone bodies to oxidative metabolism and GABA in diet-induced ketosis. We propose that this represents a fundamental mechanism of neuroprotection under pathological conditions. PMID:25314677

  6. Decreased carbon shunting from glucose toward oxidative metabolism in diet-induced ketotic rat brain.

    PubMed

    Zhang, Yifan; Zhang, Shenghui; Marin-Valencia, Isaac; Puchowicz, Michelle A

    2015-02-01

    The mechanistic link of ketosis to neuroprotection under certain pathological conditions continues to be explored. We investigated whether chronic ketosis induced by ketogenic diet results in the partitioning of ketone bodies toward oxidative metabolism in brain. We hypothesized that diet-induced ketosis results in increased shunting of ketone bodies toward citric acid cycle and amino acids with decreased carbon shunting from glucose. Rats were fed standard (STD) or ketogenic (KG) diets for 3.5 weeks and then infused with [U-(13) C]glucose or [U-(13) C]acetoacetate tracers. Concentrations and (13) C-labeling pattern of citric acid cycle intermediates and amino acids were analyzed from brain homogenates using stable isotopomer mass spectrometry analysis. The contribution of [U-(13) C]glucose to acetyl-CoA and amino acids decreased by ~ 30% in the KG group versus STD, whereas [U-(13) C]acetoacetate contributions were more than two-fold higher. The concentration of GABA remained constant across groups; however, the (13) C labeling of GABA was markedly increased in the KG group infused with [U-(13) C]acetoacetate compared to STD. This study reveals that there is a significant contribution of ketone bodies to oxidative metabolism and GABA in diet-induced ketosis. We propose that this represents a fundamental mechanism of neuroprotection under pathological conditions. PMID:25314677

  7. Magnetic Resonance Imaging of Glucose Uptake and Metabolism in Patients with Head and Neck Cancer

    PubMed Central

    Wang, Jihong; Weygand, Joseph; Hwang, Ken-Pin; Mohamed, Abdallah S. R.; Ding, Yao; Fuller, Clifton D.; Lai, Stephen Y.; Frank, Steven J.; Zhou, Jinyuan

    2016-01-01

    Imaging metabolic dysfunction, a hallmark of solid tumors, usually requires radioactive tracers. Chemical exchange saturation transfer (CEST) imaging can potentially detect and visualize glucose uptake and metabolism, without the need for radioisotopes. Here, we tested the feasibility of using glucose CEST (glucoCEST) to image unlabeled glucose uptake in head and neck cancer by using a clinical 3T magnetic resonance imaging (MRI) scanner. The average CEST contrast between tumors and normal tissue in 17 patients was 7.58% (P = 0.006) in the 3–4 ppm offset frequency range and 5.06% (P = 0.02) in 1–5 ppm range. In a subgroup of eight patients, glucoCEST signal enhancement was higher in tumors than in normal muscle (4.98% vs. 1.28%, P < 0.021). We conclude that glucoCEST images of head and neck cancer can be obtained with a clinical 3T MRI scanner. PMID:27461165

  8. miR-184 Regulates Pancreatic β-Cell Function According to Glucose Metabolism.

    PubMed

    Tattikota, Sudhir G; Rathjen, Thomas; Hausser, Jean; Khedkar, Aditya; Kabra, Uma D; Pandey, Varun; Sury, Matthias; Wessels, Hans-Hermann; Mollet, Inês G; Eliasson, Lena; Selbach, Matthias; Zinzen, Robert P; Zavolan, Mihaela; Kadener, Sebastian; Tschöp, Matthias H; Jastroch, Martin; Friedländer, Marc R; Poy, Matthew N

    2015-08-14

    In response to fasting or hyperglycemia, the pancreatic β-cell alters its output of secreted insulin; however, the pathways governing this adaptive response are not entirely established. Although the precise role of microRNAs (miRNAs) is also unclear, a recurring theme emphasizes their function in cellular stress responses. We recently showed that miR-184, an abundant miRNA in the β-cell, regulates compensatory proliferation and secretion during insulin resistance. Consistent with previous studies showing miR-184 suppresses insulin release, expression of this miRNA was increased in islets after fasting, demonstrating an active role in the β-cell as glucose levels lower and the insulin demand ceases. Additionally, miR-184 was negatively regulated upon the administration of a sucrose-rich diet in Drosophila, demonstrating strong conservation of this pathway through evolution. Furthermore, miR-184 and its target Argonaute2 remained inversely correlated as concentrations of extracellular glucose increased, underlining a functional relationship between this miRNA and its targets. Lastly, restoration of Argonaute2 in the presence of miR-184 rescued suppression of miR-375-targeted genes, suggesting these genes act in a coordinated manner during changes in the metabolic context. Together, these results highlight the adaptive role of miR-184 according to glucose metabolism and suggest the regulatory role of this miRNA in energy homeostasis is highly conserved. PMID:26152724

  9. Overexpression of SIRT1 in Mouse Forebrain Impairs Lipid/Glucose Metabolism and Motor Function

    PubMed Central

    Wu, Dongmei; Qiu, Yifu; Gao, Xiang; Yuan, Xiao-Bing; Zhai, Qiwei

    2011-01-01

    SIRT1 plays crucial roles in glucose and lipid metabolism, and has various functions in different tissues including brain. The brain-specific SIRT1 knockout mice display defects in somatotropic signaling, memory and synaptic plasticity. And the female mice without SIRT1 in POMC neuron are more sensitive to diet-induced obesity. Here we created transgenic mice overexpressing SIRT1 in striatum and hippocampus under the control of CaMKIIα promoter. These mice, especially females, exhibited increased fat accumulation accompanied by significant upregulation of adipogenic genes in white adipose tissue. Glucose tolerance of the mice was also impaired with decreased Glut4 mRNA levels in muscle. Moreover, the SIRT1 overexpressing mice showed decreased energy expenditure, and concomitantly mitochondria-related genes were decreased in muscle. In addition, these mice showed unusual spontaneous physical activity pattern, decreased activity in open field and rotarod performance. Further studies demonstrated that SIRT1 deacetylated IRS-2, and upregulated phosphorylation level of IRS-2 and ERK1/2 in striatum. Meanwhile, the neurotransmitter signaling in striatum and the expression of endocrine hormones in hypothalamus and serum T3, T4 levels were altered. Taken together, our findings demonstrate that SIRT1 in forebrain regulates lipid/glucose metabolism and motor function. PMID:21738790

  10. Reduced cerebral glucose metabolism and increased brain capillary permeability following high-dose methotrexate chemotherapy: a positron emission tomographic study

    SciTech Connect

    Phillips, P.C.; Dhawan, V.; Strother, S.C.; Sidtis, J.J.; Evans, A.C.; Allen, J.C.; Rottenberg, D.A.

    1987-01-01

    Regional glucose metabolic rate constants and blood-to-brain transport of rubidium were estimated using positron emission tomography in an adolescent patient with a brain tumor, before and after chemotherapy with intravenous high-dose methotrexate. Widespread depression of cerebral glucose metabolism was apparent 24 hours after drug administration, which may reflect reduced glucose phosphorylation, and the influx rate constant for /sup 82/Rb was increased, indicating a drug-induced alteration in blood-brain barrier function. Associated changes in neuropsychological performance, electroencephalogram, and plasma amino acid concentration were identified in the absence of evidence of systemic methotrexate toxicity, suggesting primary methotrexate neurotoxicity.

  11. Nutritional complementation of oxidative glucose metabolism in Escherichia coli via pyrroloquinoline quinone-dependent glucose dehydrogenase and the Entner-Doudoroff pathway

    SciTech Connect

    Adamowicz, M.; Conway, T.; Nickerson, K.W. )

    1991-07-01

    Two glucose-negative Escherichia coli mutants (ZSC113 and DF214) were unable to grow on glucose as the sole carbon source unless supplemented with pyrroloquinoline quinone (PQQ). PQQ is the cofactor for the periplasmic enzyme glucose dehydrogenase, which converts glucose to gluconate. Aerobically, E. Coli ZSC113 grew on glucose plus PQQ with a generation time of 65 min, a generation time about the same as that for wild-type E. coli in a defined glucose-salts medium. Thus, for E. coli ZSC113 the Entner-Doudoroff pathway was fully able to replace the Embden-Meyerhof-Parnas pathway. In the presence of 5% sodium dodecyl sulfate, PQQ no longer acted as a growth factor. Sodium dodecyl sulfate inhibited the formation of gluconate from glucose but not gluconate metabolism. Adaptation to PQQ-dependent growth exhibited long lag periods, except under low-phosphate conditions, in which the PhoE porin would be expressed. The authors suggest that E. coli has maintained the apoenzyme for glucose dehydrogenase and the Entner-Doudoroff pathway as adaptations to an aerobic, low-phosphate, and low-detergent aquatic environment.

  12. Arctigenin preferentially induces tumor cell death under glucose deprivation by inhibiting cellular energy metabolism.

    PubMed

    Gu, Yuan; Qi, Chunting; Sun, Xiaoxiao; Ma, Xiuquan; Zhang, Haohao; Hu, Lihong; Yuan, Junying; Yu, Qiang

    2012-08-15

    Selectively eradicating cancer cells with minimum adverse effects on normal cells is a major challenge in the development of anticancer therapy. We hypothesize that nutrient-limiting conditions frequently encountered by cancer cells in poorly vascularized solid tumors might provide an opportunity for developing selective therapy. In this study, we investigated the function and molecular mechanisms of a natural compound, arctigenin, in regulating tumor cell growth. We demonstrated that arctigenin selectively promoted glucose-starved A549 tumor cells to undergo necrosis by inhibiting mitochondrial respiration. In doing so, arctigenin elevated cellular level of reactive oxygen species (ROS) and blocked cellular energy metabolism in the glucose-starved tumor cells. We also demonstrated that cellular ROS generation was caused by intracellular ATP depletion and played an essential role in the arctigenin-induced tumor cell death under the glucose-limiting condition. Furthermore, we combined arctigenin with the glucose analogue 2-deoxyglucose (2DG) and examined their effects on tumor cell growth. Interestingly, this combination displayed preferential cell-death inducing activity against tumor cells compared to normal cells. Hence, we propose that the combination of arctigenin and 2DG may represent a promising new cancer therapy with minimal normal tissue toxicity. PMID:22687625

  13. Drosophila glucome screening identifies Ck1alpha as a regulator of mammalian glucose metabolism

    PubMed Central

    Ugrankar, Rupali; Berglund, Eric; Akdemir, Fatih; Tran, Christopher; Kim, Min Soo; Noh, Jungsik; Schneider, Rebekka; Ebert, Benjamin; Graff, Jonathan M.

    2015-01-01

    Circulating carbohydrates are an essential energy source, perturbations in which are pathognomonic of various diseases, diabetes being the most prevalent. Yet many of the genes underlying diabetes and its characteristic hyperglycaemia remain elusive. Here we use physiological and genetic interrogations in D. melanogaster to uncover the ‘glucome', the complete set of genes involved in glucose regulation in flies. Partial genomic screens of ∼1,000 genes yield ∼160 hyperglycaemia ‘flyabetes' candidates that we classify using fat body- and muscle-specific knockdown and biochemical assays. The results highlight the minor glucose fraction as a physiological indicator of metabolism in Drosophila. The hits uncovered in our screen may have conserved functions in mammalian glucose homeostasis, as heterozygous and homozygous mutants of Ck1alpha in the murine adipose lineage, develop diabetes. Our findings demonstrate that glucose has a role in fly biology and that genetic screenings carried out in flies may increase our understanding of mammalian pathophysiology. PMID:25994086

  14. Probing the Metabolic Network in Bloodstream-Form Trypanosoma brucei Using Untargeted Metabolomics with Stable Isotope Labelled Glucose

    PubMed Central

    Creek, Darren J.; Mazet, Muriel; Achcar, Fiona; Anderson, Jana; Kim, Dong-Hyun; Kamour, Ruwida; Morand, Pauline; Millerioux, Yoann; Biran, Marc; Kerkhoven, Eduard J.; Chokkathukalam, Achuthanunni; Weidt, Stefan K.; Burgess, Karl E. V.; Breitling, Rainer; Watson, David G.; Bringaud, Frédéric; Barrett, Michael P.

    2015-01-01

    Metabolomics coupled with heavy-atom isotope-labelled glucose has been used to probe the metabolic pathways active in cultured bloodstream form trypomastigotes of Trypanosoma brucei, a parasite responsible for human African trypanosomiasis. Glucose enters many branches of metabolism beyond glycolysis, which has been widely held to be the sole route of glucose metabolism. Whilst pyruvate is the major end-product of glucose catabolism, its transamination product, alanine, is also produced in significant quantities. The oxidative branch of the pentose phosphate pathway is operative, although the non-oxidative branch is not. Ribose 5-phosphate generated through this pathway distributes widely into nucleotide synthesis and other branches of metabolism. Acetate, derived from glucose, is found associated with a range of acetylated amino acids and, to a lesser extent, fatty acids; while labelled glycerol is found in many glycerophospholipids. Glucose also enters inositol and several sugar nucleotides that serve as precursors to macromolecule biosynthesis. Although a Krebs cycle is not operative, malate, fumarate and succinate, primarily labelled in three carbons, were present, indicating an origin from phosphoenolpyruvate via oxaloacetate. Interestingly, the enzyme responsible for conversion of phosphoenolpyruvate to oxaloacetate, phosphoenolpyruvate carboxykinase, was shown to be essential to the bloodstream form trypanosomes, as demonstrated by the lethal phenotype induced by RNAi-mediated downregulation of its expression. In addition, glucose derivatives enter pyrimidine biosynthesis via oxaloacetate as a precursor to aspartate and orotate. PMID:25775470

  15. Persistence of disturbed thalamic glucose metabolism in a case of Wernicke-Korsakoff syndrome.

    PubMed

    Fellgiebel, Andreas; Scheurich, Armin; Siessmeier, Thomas; Schmidt, Lutz G; Bartenstein, Peter

    2003-10-30

    We report the case of a 40-year-old alcoholic male patient, hospitalized with an acute ataxia of stance and gait, ocular muscle weakness with nystagmus and a global apathetic-confusional state. After admission, an amnestic syndrome with confabulation was also observed and diagnosis of Wernicke-Korsakoff syndrome was made. Under treatment with intravenous thiamine, the patient recovered completely from gaze weakness and ataxia, whereas a severe amnestic syndrome persisted. Fluorodeoxyglucose (FDG) positron emission tomography (PET) showed bilateral thalamic and severe bilateral temporal-parietal hypometabolism resembling a pattern typical for Alzheimer's disease. Longitudinal assessment of the alcohol-abstinent and thiamine-substituted patient revealed improvements of clinical state and neuropsychological performance that were paralleled by recovered cerebral glucose metabolism. In contrast to metabolic rates that increased between 7.1% (anterior cingulate, left) and 23.5% (parietal, left) in cortical areas during a 9-month remission period, thalamic glucose metabolism remained severely disturbed over time (change: left +0.2%, right +0.3%). PMID:14561428

  16. Defective Glucose Metabolism in Polycystic Kidney Disease Identifies A Novel Therapeutic Paradigm

    PubMed Central

    Rowe, Isaline; Chiaravalli, Marco; Mannella, Valeria; Ulisse, Valeria; Quilici, Giacomo; Pema, Monika; Song, Xuewen W.; Xu, Hangxue; Mari, Silvia; Qian, Feng; Pei, York; Musco, Giovanna; Boletta, Alessandra

    2013-01-01

    Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a common genetic disorder characterized by bilateral renal cyst formation1. Recent identification of signaling cascades de-regulated in ADPKD has led to the initiation of several clinical trials, but an approved therapy is still lacking2,3. Using a metabolomic approach here we identify a pathogenic pathway in ADPKD which can be safely targeted for therapy. We show that mutation in PKD1 results in enhanced glycolysis in cells, in a murine model of PKD, and in human-derived ADPKD kidneys. Glucose deprivation reduced proliferation and sensitized PKD1 mutant cells to apoptosis. Notably, treatment of two distinct PKD mouse models with 2-deoxyglucose (2DG) ameliorates kidney volume, cystic index and reduced proliferation rates. These metabolic alterations depend on the ERK pathway acting in a dual manner by inhibiting the LKB1-AMPK axis on the one hand while activating the mTORC1-glycolytic cascade on the other. Enhanced metabolic rates further inhibit AMPK. Forced activation of AMPK acts in a negative feedback loop restoring normal ERK activity. Taken together, these data indicate that defective glucose metabolism is intimately involved in the pathobiology of ADPKD. Our findings provide a strong rationale for a novel therapeutic paradigm using existing drugs, either individually or in combination. PMID:23524344

  17. Effect of placental restriction and neonatal exendin-4 treatment on postnatal growth, adult body composition, and in vivo glucose metabolism in the sheep.

    PubMed

    Liu, Hong; Schultz, Christopher G; De Blasio, Miles J; Peura, Anita M; Heinemann, Gary K; Harryanto, Himawan; Hunter, Damien S; Wooldridge, Amy L; Kind, Karen L; Giles, Lynne C; Simmons, Rebecca A; Owens, Julie A; Gatford, Kathryn L

    2015-09-15

    Intrauterine growth restriction (IUGR) increases the risk of adult type 2 diabetes (T2D) and obesity. Neonatal exendin-4 treatment can prevent diabetes in the IUGR rat, but whether this will be effective in a species where the pancreas is more mature at birth is unknown. Therefore, we evaluated the effects of neonatal exendin-4 administration after experimental restriction of placental and fetal growth on growth and adult metabolic outcomes in sheep. Body composition, glucose tolerance, and insulin secretion and sensitivity were assessed in singleton-born adult sheep from control (CON; n = 6 females and 4 males) and placentally restricted pregnancies (PR; n = 13 females and 7 males) and in sheep from PR pregnancies that were treated with exendin-4 as neonates (daily sc injections of 1 nmol/kg exendin-4; PR + exendin-4; n = 11 females and 7 males). Placental restriction reduced birth weight (by 29%) and impaired glucose tolerance in the adult but did not affect adult adiposity, insulin secretion, or insulin sensitivity. Neonatal exendin-4 suppressed growth during treatment, followed by delayed catchup growth and unchanged adult adiposity. Neonatal exendin-4 partially restored glucose tolerance in PR progeny but did not affect insulin secretion or sensitivity. Although the effects on glucose tolerance are promising, the lack of effects on adult body composition, insulin secretion, and insulin sensitivity suggest that the neonatal period may be too late to fully reprogram the metabolic consequences of IUGR in species that are more mature at birth than rodents. PMID:26219868

  18. Effect of systemically increasing human full-length Klotho on glucose metabolism in db/db mice.

    PubMed

    Forsberg, E A; Olauson, H; Larsson, T; Catrina, S B

    2016-03-01

    The metabolic effects of antiaging Klotho were previously investigated in vivo by genetic manipulation. We have here studied the metabolic effect of physiologic levels of circulating full length Klotho in db/db mice. Increasing the full-length human Klotho levels has a positive effect on blood glucose through increasing insulin secretion. PMID:26806457

  19. OXIDATION OF GLUCOSE, GLUTAMATE, AND GLUTAMINE BY ISOLATED OVINE ENTEROCYTES IN VITRO IS DECREASED BY PRESENCE OF OTHER METABOLIC FUELS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate oxidative metabolism of glucose, glutamate, and glutamine by isolated ovine enterocytes in presence of other metabolic fuels in vitro. Mucosal enterocytes were isolated from crossbred wether sheep (n=6) fed a mixed forage-concentrate diet, and incubated f...

  20. Chromium and vanadium effects on glucose and lipid metabolism of guinea pigs and obese and diabetic mice

    SciTech Connect

    Li, Y.C.

    1987-01-01

    Severe chromium deficiency in experimental animals may contribute to insulin resistance, impaired glucose tolerance and elevated serum cholesterol concentration. Vanadium also has been reported to be a nutritionally important element for both chicks and rats, but its function and even its essentiality are still in question. Chromium absorption even from supplemented diets is poor, thus efforts were made to study the site of absorption of /sup 51/Cr from CrCl/sub 3/. /sup 51/Cr was found to move very rapidly through the GI tract and appears to flow with dietary and secreted water. It was not absorbed from the stomach. In a study with guinea pigs, vanadate supplementation appeared to affect cholesterol fraction. Chromium supplementation lowered serum triacylglycerol concentrations at the end of an 18-week study. Since the previous study and others have indicated a role for chromium and vanadium in lipid carbohydrate metabolism, experiments were designed to compare effects of chromium and vanadium supplements on related parameters.

  1. [Effects of exogenous glucose and starch on soil carbon metabolism of root zone and root function in potted sweet cherry].

    PubMed

    Zhou, Wen-jie; Zhang, Peng; Qin, Si-jun; Lyu, De-guo

    2015-11-01

    glucose and starch affected soil carbon metabolism and enhanced soil microbial activity, the root respiratory rate and root viability. PMID:26915183

  2. Characteristics of Glucose Metabolism in Nordic and South Asian Subjects with Type 2 Diabetes

    PubMed Central

    Eriksen, Erik Fink; Birkeland, Kåre Inge

    2013-01-01

    Background Insulin resistance and type 2 diabetes are more prevalent in people of South Asian ethnicity than in people of Western European origin. To investigate the source of these differences, we compared insulin sensitivity, insulin secretion, glucose and lipid metabolism in South Asian and Nordic subjects with type 2 diabetes. Methods Forty-three Nordic and 19 South Asian subjects with type 2 diabetes were examined with intra-venous glucose tolerance test, euglycemic clamp including measurement of endogenous glucose production, indirect calorimetry measuring glucose and lipid oxidation, and dual x-ray absorptiometry measuring body composition. Results Despite younger mean ± SD age (49.7±9.4 vs 58.3±8.3 years, p = 0.001), subjects of South Asian ethnicity had the same diabetes duration (9.3±5.5 vs 9.6±7.0 years, p = 0.86), significantly higher median [inter-quartile range] HbA1c (8.5 [1.6] vs 7.3 [1.6] %, p = 0.024) and lower BMI (28.7±4.0 vs 33.2±4.7 kg/m2, p<0.001). The South Asian group exhibited significantly higher basal endogenous glucose production (19.1 [9.1] vs 14.4 [6.8] µmol/kgFFM⋅min, p = 0.003). There were no significant differences between the groups in total glucose disposal (39.1±20.4 vs 39.2±17.6 µmol/kgFFM⋅min, p = 0.99) or first phase insulin secretion (AUC0–8 min: 220 [302] vs 124 [275] pM, p = 0.35). In South Asian subjects there was a tendency towards positive correlations between endogenous glucose production and resting and clamp energy expenditure. Conclusions Subjects of South Asian ethnicity with type 2 diabetes, despite being younger and leaner, had higher basal endogenous glucose production, indicating higher hepatic insulin resistance, and a trend towards higher use of carbohydrates as fasting energy substrate compared to Nordic subjects. These findings may contribute to the understanding of the observed differences in prevalence of type 2 diabetes between the ethnic groups. PMID:24391858

  3. Alterations in Glucose Metabolism on Cognition: A Possible Link Between Diabetes and Dementia.

    PubMed

    González-Reyes, Rodrigo E; Aliev, Gjumrakch; Ávila-Rodrigues, Marco; Barreto, George E

    2016-01-01

    The use of the carbohydrate glucose as an energetic source is essential for an adequate function of the human body. The complex regulation of this molecule involves the coordinated action of various organs such as pancreas, liver and brain. Any disruption of this physiological balance may result in a dangerous compromise of general metabolic activities increasing the possibility of developing T1DM, T2DM and possibly AD. Astrocytes convert glucose into lactate and transfer it to neurons. This lactate is essential for neuronal metabolism and for various processes including the formation of synapses, dendrites and the expression of genes involved in memory. The brain is highly susceptible to variations in glucose blood levels, and both hypoglycemia and hyperglycemia can be dangerous. Pathological hyperglycemia induces changes in plasmatic osmotic pressure, mitochondrial production of free radicals, oxidative stress and activation of neuronal apoptosis, among others. Both AD and diabetes are chronic diseases having age as an important risk factor. As the brain ages, it seems to become much more susceptible to cellular damage induced by excess of circulating glucose and this could explain the appearance of cognitive changes observed in some patients with diabetes. Excessive circulation of pro-inflammatory agents has been observed in insulin resistance and is likely that some of these mediators may cross the bloodbrain barrier and induce abnormal neuroinflammation. GSK-3 is overexpressed in diabetes and also has been reported to regulate tau phosphorylation and production of Aβ peptides in the brain. Currently, diabetes (hyperglycemia) is considered as a risk factor for the development of AD. A novel therapeutic approach, using intranasal insulin and anti-diabetic medications in patients suffering from AD is being explored and is discussed in this review. PMID:26648470

  4. Cyclin D1-CDK4 Controls Glucose Metabolism Independently of Cell Cycle Progression

    PubMed Central

    Lee, Yoonjin; Dominy, John E.; Choi, Yoon Jong; Jurczak, Michael; Tolliday, Nicola; Camporez, Joao Paulo; Chim, Helen; Lim, Ji-Hong; Ruan, Hai-Bin; Yang, Xiaoyong; Vazquez, Francisca; Sicinski, Piotr; Shulman, Gerald I.; Puigserver, Pere

    2014-01-01

    Insulin constitutes a major evolutionarily conserved hormonal axis for maintaining glucose homeostasis1-3; dysregulation of this axis causes diabetes2,4. PGC-1α links insulin signaling to the expression of glucose and lipid metabolic genes5-7. GCN5 acetylates PGC-1α and suppresses its transcriptional activity, whereas SIRT1 deacetylates and activates PGC-1α8,9. Although insulin is a mitogenic signal in proliferative cells10,11, whether components of the cell cycle machinery contribute to insulin’s metabolic action is poorly understood. Herein, we report that insulin activates cyclin D1-CDK4, which, in turn, increases GCN5 acetyltransferase activity and suppresses hepatic glucose production independently of cell cycle progression. Through a cell-based high throughput chemical screen, we identified a CDK4 inhibitor that potently decreases PGC-1α acetylation. Insulin/GSK3β signaling induces cyclin D1 protein stability via sequestering cyclin D1 in the nucleus. In parallel, dietary amino acids increase hepatic cyclin D1 mRNA transcripts. Activated cyclin D1-CDK4 kinase phosphorylates and activates GCN5, which then acetylates