Science.gov

Sample records for affects leaf properties

  1. Leaf optical properties are affected by the location and type of deposited biominerals.

    PubMed

    Klančnik, Katja; Vogel-Mikuš, Katarina; Kelemen, Mitja; Vavpetič, Primož; Pelicon, Primož; Kump, Peter; Jezeršek, David; Gianoncelli, Alessandra; Gaberščik, Alenka

    2014-11-01

    This study aimed to relate the properties of incrusted plant tissues and structures as well as biomineral concentrations and localization with leaf reflectance and transmittance spectra from 280nm to 880nm in the grasses Phragmites australis, Phalaris arundinacea, Molinia caerulea and Deschampsia cespitosa, and the sedge Carex elata. Redundancy analysis revealed that prickle-hair length on adaxial surface and thickness of lower epidermis exerted significant effects in P. australis; prickle-hair density at abaxial leaf surface and thickness of epidermis on adaxial leaf surface in P. arundinacea; thickness of epidermis on adaxial leaf in D. cespitosa; prickle-hair density on adaxial leaf surface and thickness of cuticle in M. caerulea; and prickle-hair density on adaxial leaf surface and cuticle thickness of the lower side in C. elata. Micro-PIXE and LEXRF elemental localization analysis show that all of these structures and tissues are encrusted by Si and/or by Ca. Reflectance spectra were significantly affected by the Ca concentrations, while Si and Mg concentrations and the Ca concentrations significantly affected transmittance spectra. High concentrations of Mg were detected in epidermal vacuoles of P. arundinacea, M. caerulea and D. cespitosa. Al co-localises with Si in the cuticle, epidermis and/or prickle hairs. PMID:25194526

  2. Leaf biomechanical properties in Arabidopsis thaliana polysaccharide mutants affect drought survival.

    PubMed

    Balsamo, Ronald; Boak, Merewyn; Nagle, Kayla; Peethambaran, Bela; Layton, Bradley

    2015-11-26

    Individual sugars are the building blocks of cell wall polysaccharides, which in turn comprise a plant׳s overall architectural structure. But which sugars play the most prominent role in maintaining a plant׳s mechanical stability during large cellular deformations induced by drought? We investigated the individual contributions of several genes that are involved in the synthesis of monosaccharides which are important for cell wall structure. We then measured drought tolerance and mechanical integrity during simulated drought in Arabidopsis thaliana. To assess mechanical properties, we designed a small-scale tensile tester for measuring failure strain, ultimate tensile stress, work to failure, toughness, and elastic modulus of 6-week-old leaves in both hydrated and drought-simulated states. Col-0 mutants used in this study include those deficient in lignin, cellulose, components of hemicellulose such as xylose and fucose, the pectic components arabinose and rhamnose, as well as mutants with enhanced arabinose and total pectin content. We found that drought tolerance is correlated to the mechanical and architectural stability of leaves as they experience dehydration. Of the mutants, S096418 with mutations for reduced xylose and galactose was the least drought tolerant, while the arabinose-altered CS8578 mutants were the least affected by water loss. There were also notable correlations between drought tolerance and mechanical properties in the diminished rhamnose mutant, CS8575 and the dehydrogenase-disrupted S120106. Our findings suggest that components of hemicellulose and pectins affect leaf biomechanical properties and may play an important role in the ability of this model system to survive drought. PMID:26520913

  3. Verticillium longisporum Infection Affects the Leaf Apoplastic Proteome, Metabolome, and Cell Wall Properties in Arabidopsis thaliana

    PubMed Central

    Floerl, Saskia; Majcherczyk, Andrzej; Possienke, Mareike; Feussner, Kirstin; Tappe, Hella; Gatz, Christiane; Feussner, Ivo; Kües, Ursula; Polle, Andrea

    2012-01-01

    Verticillium longisporum (VL) is one of the most devastating diseases in important oil crops from the family of Brassicaceae. The fungus resides for much time of its life cycle in the extracellular fluid of the vascular system, where it cannot be controlled by conventional fungicides. To obtain insights into the biology of VL-plant interaction in the apoplast, the secretome consisting of the extracellular proteome and metabolome as well as cell wall properties were studied in the model Brassicaceae, Arabidopsis thaliana. VL infection resulted in increased production of cell wall material with an altered composition of carbohydrate polymers and increased lignification. The abundance of several hundred soluble metabolites changed in the apoplast of VL-infected plants including signalling and defence compounds such as glycosides of salicylic acid, lignans and dihydroxybenzoic acid as well as oxylipins. The extracellular proteome of healthy leaves was enriched in antifungal proteins. VL caused specific increases in six apoplast proteins (three peroxidases PRX52, PRX34, P37, serine carboxypeptidase SCPL20, α-galactosidase AGAL2 and a germin-like protein GLP3), which have functions in defence and cell wall modification. The abundance of a lectin-like, chitin-inducible protein (CILLP) was reduced. Since the transcript levels of most of the induced proteins were not elevated until late infection time points (>20 dpi), whereas those of CILLP and GLP3 were reduced at earlier time points, our results may suggest that VL enhances its virulence by rapid down-regulation and delay of induction of plant defence genes. PMID:22363647

  4. Verticillium longisporum infection affects the leaf apoplastic proteome, metabolome, and cell wall properties in Arabidopsis thaliana.

    PubMed

    Floerl, Saskia; Majcherczyk, Andrzej; Possienke, Mareike; Feussner, Kirstin; Tappe, Hella; Gatz, Christiane; Feussner, Ivo; Kües, Ursula; Polle, Andrea

    2012-01-01

    Verticillium longisporum (VL) is one of the most devastating diseases in important oil crops from the family of Brassicaceae. The fungus resides for much time of its life cycle in the extracellular fluid of the vascular system, where it cannot be controlled by conventional fungicides. To obtain insights into the biology of VL-plant interaction in the apoplast, the secretome consisting of the extracellular proteome and metabolome as well as cell wall properties were studied in the model Brassicaceae, Arabidopsis thaliana. VL infection resulted in increased production of cell wall material with an altered composition of carbohydrate polymers and increased lignification. The abundance of several hundred soluble metabolites changed in the apoplast of VL-infected plants including signalling and defence compounds such as glycosides of salicylic acid, lignans and dihydroxybenzoic acid as well as oxylipins. The extracellular proteome of healthy leaves was enriched in antifungal proteins. VL caused specific increases in six apoplast proteins (three peroxidases PRX52, PRX34, P37, serine carboxypeptidase SCPL20, α-galactosidase AGAL2 and a germin-like protein GLP3), which have functions in defence and cell wall modification. The abundance of a lectin-like, chitin-inducible protein (CILLP) was reduced. Since the transcript levels of most of the induced proteins were not elevated until late infection time points (>20 dpi), whereas those of CILLP and GLP3 were reduced at earlier time points, our results may suggest that VL enhances its virulence by rapid down-regulation and delay of induction of plant defence genes. PMID:22363647

  5. Photosynthesis affects following night leaf conductance in Vicia faba.

    PubMed

    Easlon, Hsien Ming; Richards, James H

    2009-01-01

    Night-time stomatal opening in C(3) plants may result in significant water loss when no carbon gain is possible. The objective of this study was to determine if endogenous patterns of night-time stomatal opening, as reflected in leaf conductance, in Vicia faba are affected by photosynthetic conditions the previous day. Reducing photosynthesis with low light or low CO(2) resulted in reduced night-time stomatal opening the following night, irrespective of the effects on daytime stomatal conductance. Likewise, increasing photosynthesis with enriched CO(2) levels resulted in increased night-time stomatal opening the following night. Reduced night-time stomatal opening was not the result of an inability to regulate stomatal aperture as leaves with reduced night-time stomatal opening were capable of greater night-time opening when exposed to low CO(2). After acclimating plants to long or short days, it was found that night-time leaf conductance was greater in plants acclimated to short days, and associated with greater leaf starch and nitrate accumulation, both of which may affect night-time guard cell osmotic potential. Direct measurement of guard cell contents during endogenous night-time stomatal opening will help identify the mechanism of the effect of daytime photosynthesis on subsequent night-time stomatal regulation. PMID:19076531

  6. Black leaf streak disease affects starch metabolism in banana fruit.

    PubMed

    Saraiva, Lorenzo de Amorim; Castelan, Florence Polegato; Shitakubo, Renata; Hassimotto, Neuza Mariko Aymoto; Purgatto, Eduardo; Chillet, Marc; Cordenunsi, Beatriz Rosana

    2013-06-12

    Black leaf streak disease (BLSD), also known as black sigatoka, represents the main foliar disease in Brazilian banana plantations. In addition to photosynthetic leaf area losses and yield losses, this disease causes an alteration in the pre- and postharvest behavior of the fruit. The aim of this work was to investigate the starch metabolism of fruits during fruit ripening from plants infected with BLSD by evaluating carbohydrate content (i.e., starch, soluble sugars, oligosaccharides, amylose), phenolic compound content, phytohormones, enzymatic activities (i.e., starch phosphorylases, α- and β-amylase), and starch granules. The results indicated that the starch metabolism in banana fruit ripening is affected by BLSD infection. Fruit from infested plots contained unusual amounts of soluble sugars in the green stage and smaller starch granules and showed a different pattern of superficial degradation. Enzymatic activities linked to starch degradation were also altered by the disease. Moreover, the levels of indole-acetic acid and phenolic compounds indicated an advanced fruit physiological age for fruits from infested plots. PMID:23692371

  7. Does leaf manipulation affect leaf appearance in italian ryegrass (Lolium multiflorum Lam.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mechanical stimuli such as rubbing, shaking, or flexing plants can alter their growth rates and morphologies. Plant response to mechanical stress can result in delayed plant growth, reduced leaf size, shorten and thicken stems, and reduced yields. Repeated measurements, such as leaf counting or me...

  8. Frequent Occurrence of Tomato Leaf Curl New Delhi Virus in Cotton Leaf Curl Disease Affected Cotton in Pakistan

    PubMed Central

    Zaidi, Syed Shan-e-Ali; Shafiq, Muhammad; Amin, Imran; Scheffler, Brian E.; Scheffler, Jodi A.; Briddon, Rob W.; Mansoor, Shahid

    2016-01-01

    Cotton leaf curl disease (CLCuD) is the major biotic constraint to cotton production on the Indian subcontinent, and is caused by monopartite begomoviruses accompanied by a specific DNA satellite, Cotton leaf curl Multan betasatellite (CLCuMB). Since the breakdown of resistance against CLCuD in 2001/2002, only one virus, the “Burewala” strain of Cotton leaf curl Kokhran virus (CLCuKoV-Bur), and a recombinant form of CLCuMB have consistently been identified in cotton across the major cotton growing areas of Pakistan. Unusually a bipartite isolate of the begomovirus Tomato leaf curl virus was identified in CLCuD-affected cotton recently. In the study described here we isolated the bipartite begomovirus Tomato leaf curl New Delhi virus (ToLCNDV) from CLCuD-affected cotton. To assess the frequency and geographic occurrence of ToLCNDV in cotton, CLCuD-symptomatic cotton plants were collected from across the Punjab and Sindh provinces between 2013 and 2015. Analysis of the plants by diagnostic PCR showed the presence of CLCuKoV-Bur in all 31 plants examined and ToLCNDV in 20 of the samples. Additionally, a quantitative real-time PCR analysis of the levels of the two viruses in co-infected plants suggests that coinfection of ToLCNDV with the CLCuKoV-Bur/CLCuMB complex leads to an increase in the levels of CLCuMB, which encodes the major pathogenicity (symptom) determinant of the complex. The significance of these results are discussed. PMID:27213535

  9. Frequent Occurrence of Tomato Leaf Curl New Delhi Virus in Cotton Leaf Curl Disease Affected Cotton in Pakistan.

    PubMed

    Zaidi, Syed Shan-E-Ali; Shafiq, Muhammad; Amin, Imran; Scheffler, Brian E; Scheffler, Jodi A; Briddon, Rob W; Mansoor, Shahid

    2016-01-01

    Cotton leaf curl disease (CLCuD) is the major biotic constraint to cotton production on the Indian subcontinent, and is caused by monopartite begomoviruses accompanied by a specific DNA satellite, Cotton leaf curl Multan betasatellite (CLCuMB). Since the breakdown of resistance against CLCuD in 2001/2002, only one virus, the "Burewala" strain of Cotton leaf curl Kokhran virus (CLCuKoV-Bur), and a recombinant form of CLCuMB have consistently been identified in cotton across the major cotton growing areas of Pakistan. Unusually a bipartite isolate of the begomovirus Tomato leaf curl virus was identified in CLCuD-affected cotton recently. In the study described here we isolated the bipartite begomovirus Tomato leaf curl New Delhi virus (ToLCNDV) from CLCuD-affected cotton. To assess the frequency and geographic occurrence of ToLCNDV in cotton, CLCuD-symptomatic cotton plants were collected from across the Punjab and Sindh provinces between 2013 and 2015. Analysis of the plants by diagnostic PCR showed the presence of CLCuKoV-Bur in all 31 plants examined and ToLCNDV in 20 of the samples. Additionally, a quantitative real-time PCR analysis of the levels of the two viruses in co-infected plants suggests that coinfection of ToLCNDV with the CLCuKoV-Bur/CLCuMB complex leads to an increase in the levels of CLCuMB, which encodes the major pathogenicity (symptom) determinant of the complex. The significance of these results are discussed. PMID:27213535

  10. BOREAS TE-10 Leaf Optical Properties

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Chan, Stephen S.; Middleton, Elizabeth

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-10 (Terrestrial Ecology) team collected several data sets in support of its efforts to characterize and interpret information on the reflectance, transmittance, gas exchange, oxygen evolution, and biochemical properties of boreal vegetation. This data set describes the spectral optical properties (reflectance and transmittance) of boreal forest conifers and broadleaf tree leaves as measured with a Spectron Engineering SE590 spectroradiometer at the Southern Study Area Old Black Spruce (SSA OBS), Old Jack Pine (OJP), Young Jack Pine (YJP), Old Aspen (OA), Old Aspen Auxiliary (OA-AUX), Young Aspen Auxiliary (YA-AUX), and Young Aspen (YA) sites. The data were collected during the growing seasons of 1994 and 1996 and are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  11. Bidirectional reflectance, leaf optical and physiological properties of prairie vegetation

    NASA Technical Reports Server (NTRS)

    Walter-Shea, E. A.; Blad, B. L.; Starks, P. J; Hays, C. J.; Mesarch, M. A.; Middleton, E. M.

    1990-01-01

    A modular multiband radiometer is used to measure reflected radiation from the vegetative surface of a prairie. The data are compared to estimates of incoming radiation by measuring the reflection from a molded halon panel, and the bidirectional reflectance factors are measured at seven view-zenith angles and various incidence angles. The canopy-reflectance results are compared to leaf-optical and other vegetative physiological properties, and a direct relationship is reported.

  12. Benzothiadiazole affects the leaf proteome in arctic bramble (Rubus arcticus).

    PubMed

    Hukkanen, Anne; Kokko, Harri; Buchala, Antony; Häyrinen, Jukka; Kärenlampi, Sirpa

    2008-11-01

    Benzothiadiazole (BTH) induces resistance to the downy mildew pathogen, Peronospora sparsa, in arctic bramble, but the basis for the BTH-induced resistance is unknown. Arctic bramble cv. Mespi was treated with BTH to study the changes in leaf proteome and to identify proteins with a putative role in disease resistance. First, BTH induced strong expression of one PR-1 protein isoform, which was also induced by salicylic acid (SA). The PR-1 was responsive to BTH and exogenous SA despite a high endogenous SA content (20-25 microg/g fresh weight), which increased to an even higher level after treatment with BTH. Secondly, a total of 792 protein spots were detected in two-dimensional gel electrophoresis, eight proteins being detected solely in the BTH-treated plants. BTH caused up- or down-regulation of 72 and 31 proteins, respectively, of which 18 were tentatively identified by mass spectrometry. The up-regulation of flavanone-3-hydroxylase, alanine aminotransferase, 1-aminocyclopropane-1-carboxylate oxidase, PR-1 and PR-10 proteins may partly explain the BTH-induced resistance against P. sparsa. Other proteins with changes in intensity appear to be involved in, for example, energy metabolism and protein processing. The decline in ATP synthase, triosephosphate isomerase, fructose bisphosphate aldolase and glutamine synthetase suggests that BTH causes significant changes in primary metabolism, which provides one possible explanation for the decreased vegetative growth of foliage and rhizome observed in BTH-treated plants. PMID:19019008

  13. Developmental changes in carbon and nitrogen metabolism affect tea quality in different leaf position.

    PubMed

    Li, Zhi-Xin; Yang, Wei-Jun; Ahammed, Golam Jalal; Shen, Chen; Yan, Peng; Li, Xin; Han, Wen-Yan

    2016-09-01

    Leaf position represents a specific developmental stage that influences both photosynthesis and respiration. However, the precise relationships between photosynthesis and respiration in different leaf position that affect tea quality are largely unknown. Here, we show that the effective quantum yield of photosystem II [ΦPSⅡ] as well as total chlorophyll concentration (TChl) of tea leaves increased gradually with leaf maturity. Moreover, respiration rate (RR) together with total nitrogen concentration (TN) decreased persistently, but total carbon remained unchanged during leaf maturation. Analyses of major N-based organic compounds revealed that decrease in TN was attributed to a significant decrease in the concentration of caffeine and amino acids (AA) in mature leaves. Furthermore, soluble sugar (SS) decreased, but starch concentration increased with leaf maturity, indicating that source-sink relationship was altered during tea leaf development. Detailed correlation analysis showed that ΦPSⅡ was negatively correlated with RR, SS, starch, tea polyphenol (TP), total catechins and TN, but positively correlated with TChl; while RR was positively correlated with TN, SS, TP and caffeine, but negatively correlated with TChl and starch concentrations. Our results suggest that biosynthesis of chlorophyll, catechins and polyphenols is closely associated with photosynthesis and respiration in different leaf position that greatly influences the relationship between primary and secondary metabolism in tea plants. PMID:27380366

  14. Auxin and LANCEOLATE affect leaf shape in tomato via different developmental processes.

    PubMed

    Ben-Gera, Hadas; Ori, Naomi

    2012-10-01

    Elaboration of a complex leaves depends on the morphogenetic activity of a specific tissue at the leaf margin termed marginal-blastozon (MB). In tomato (Solanum lycopersicym), prolonged activity of the MB leads to the development of compound leaves. The activity of the MB is restricted by the TCP transcription factor LANCEOLATE (LA). Plants harboring the dominant LA mutant allele La-2 have simple leaves with a uniform blade. Conversely, leaves of pFIL > > miR319 are compound and grow indeterminately in their margins due to leaf overexpression of miR319, a negative regulator of LA and additional miR319-sensitive genes. We have recently shown that the auxin-response sensor DR5::VENUS marks and precedes leaflet initiation events in the MB. Mutations in ENTIRE (E), an auxin signal inhibitor from the Aux/IAA family, lead to the expansion of the DR5::VENUS signal to throughout the leaf-primordia margin, and to a simplified leaf phenotype. Here, we examined the interaction between auxin, E, and LA in tomato leaf development. In La-2 leaf primordia, the auxin signal is very weak and is diffused to throughout the leaf margin, suggesting that auxin acts within the developmental-context of MB activity, which is controlled by LA. e La-2 double mutants showed an enhanced simple leaf phenotype and e pFIL > > miR319 leaves initiated less leaflets than wild-type, but their margins showed continuous growth. These results suggest that E and auxin affect leaflet initiation within the context of the extended MB activity, but their influence on the extent of indeterminate growth of the leaf is minor. PMID:22902691

  15. Factors affecting survival of bacteriophage on tomato leaf surfaces.

    PubMed

    Iriarte, F B; Balogh, B; Momol, M T; Smith, L M; Wilson, M; Jones, J B

    2007-03-01

    The ability of bacteriophage to persist in the phyllosphere for extended periods is limited by many factors, including sunlight irradiation, especially in the UV zone, temperature, desiccation, and exposure to copper bactericides. The effects of these factors on persistence of phage and formulated phage (phage mixed with skim milk) were evaluated. In field studies, copper caused significant phage reduction if applied on the day of phage application but not if applied 4 or 7 days in advance. Sunlight UV was evaluated for detrimental effects on phage survival on tomato foliage in the field. Phage was applied in the early morning, midmorning, early afternoon, and late evening, while UVA plus UVB irradiation and phage populations were monitored. The intensity of UV irradiation positively correlated with phage population decline. The protective formulation reduced the UV effect. In order to demonstrate direct effects of UV, phage suspensions were exposed to UV irradiation and assayed for effectiveness against bacterial spot of tomato. UV significantly reduced phage ability to control bacterial spot. Ambient temperature had a pronounced effect on nonformulated phage but not on formulated phages. The effects of desiccation and fluorescent light illumination on phage were investigated. Desiccation caused a significant but only slight reduction in phage populations after 60 days, whereas fluorescent light eliminated phages within 2 weeks. The protective formulation eliminated the reduction caused by both of these factors. Phage persistence was dramatically affected by UV, while the other factors had less pronounced effects. Formulated phage reduced deleterious effects of the studied environmental factors. PMID:17259361

  16. Habitat, food, and climate affecting leaf litter anuran assemblages in an Atlantic Forest remnant

    NASA Astrophysics Data System (ADS)

    Rievers, Camila Rabelo; Pires, Maria Rita Silvério; Eterovick, Paula Cabral

    2014-07-01

    Leaf litter anuran assemblages include both species that have terrestrial development and species that, during the breeding season, aggregate around bodies of water where their tadpoles develop. The resources used by these two groups in the leaf litter are likely to differ, as well as their sampled species richness, abundance and biomass as resource availability changes. We conducted a 12-month survey of leaf litter anuran assemblages at three forest areas in the largest Atlantic Forest remnant in the state of Minas Gerais in southeastern Brazil. Each month we estimated, based on capture rates, anuran species richness, abundance, and biomass as assemblage descriptors. We also measured variables that could potentially affect these descriptors in space and time: invertebrate litter fauna (abundance and richness of taxa), leaf litter biomass, and microclimatic conditions (air humidity, air and soil temperature, soil water content, and rainfall). We tested for differences in these variables among areas. We used general linear models to search for the variables that best explained variation in anuran abundance (based on capture rates) throughout the year. We analyzed species with terrestrial development (TD) and with aquatic larvae (AL) separately. We recorded 326 anurans of 15 species. Sampled anuran abundance (correlated to species richness and biomass) was explained by air humidity and/or invertebrate abundance for species with TD, and by soil water content or air humidity and leaf litter biomass for species with AL. The variability in the results of studies on leaf litter frogs that try to find variables to explain changes in community descriptors may be due to spatial variation of resources among areas and also to the fact that TD and AL species are frequently analyzed together, when in fact they are likely to show different responses to resources present in the leaf litter habitat, reflected on capture rates.

  17. Retrieving nitrogen isotopic signatures from fresh leaf reflectance spectra: disentangling δ15N from biochemical and structural leaf properties

    PubMed Central

    Hellmann, Christine; Große-Stoltenberg, André; Lauströ, Verena; Oldeland, Jens; Werner, Christiane

    2015-01-01

    Linking remote sensing methodology to stable isotope ecology provides a promising approach to study ecological processes from small to large spatial scales. Here, we show that δ15N can be detected in fresh leaf reflectance spectra of field samples along a spatial gradient of increasing nitrogen input from an N2-fixing invasive species. However, in field data it is unclear whether δ15N directly influences leaf reflectance spectra or if the relationship is based on covariation between δ15N and foliar nitrogen content or other leaf properties. Using a 15N-labeling approach, we experimentally varied δ15N independently of any other leaf properties in three plant species across different leaf developmental and physiological states. δ15N could successfully be modeled by means of partial least squares (PLSs) regressions, using leaf reflectance spectra as predictor variables. PLS models explained 53–73% of the variation in δ15N within species. Several wavelength regions important for predicting δ15N were consistent across species and could furthermore be related to known absorption features of N-containing molecular bonds. By eliminating covariation with other leaf properties as an explanation for the relationship between reflectance and δ15N, our results demonstrate that 15N itself has an inherent effect on leaf reflectance spectra. Thus, our study substantiates the use of spectroscopic measurements to retrieve isotopic signatures for ecological studies and encourages future development. Furthermore, our results highlight the great potential of optical measurements for up-scaling isotope ecology to larger spatial scales. PMID:25983740

  18. Root cooling strongly affects diel leaf growth dynamics, water and carbohydrate relations in Ricinus communis.

    PubMed

    Poiré, Richard; Schneider, Heike; Thorpe, Michael R; Kuhn, Arnd J; Schurr, Ulrich; Walter, Achim

    2010-03-01

    In laboratory and greenhouse experiments with potted plants, shoots and roots are exposed to temperature regimes throughout a 24 h (diel) cycle that can differ strongly from the regime under which these plants have evolved. In the field, roots are often exposed to lower temperatures than shoots. When the root-zone temperature in Ricinus communis was decreased below a threshold value, leaf growth occurred preferentially at night and was strongly inhibited during the day. Overall, leaf expansion, shoot biomass growth, root elongation and ramification decreased rapidly, carbon fluxes from shoot to root were diminished and carbohydrate contents of both root and shoot increased. Further, transpiration rate was not affected, yet hydrostatic tensions in shoot xylem increased. When root temperature was increased again, xylem tension reduced, leaf growth recovered rapidly, carbon fluxes from shoot to root increased, and carbohydrate pools were depleted. We hypothesize that the decreased uptake of water in cool roots diminishes the growth potential of the entire plant - especially diurnally, when the growing leaf loses water via transpiration. As a consequence, leaf growth and metabolite concentrations can vary enormously, depending on root-zone temperature and its heterogeneity inside pots. PMID:19968824

  19. Tadpoles of Early Breeding Amphibians are Negatively Affected by Leaf Litter From Invasive Chinese Tallow Trees

    NASA Astrophysics Data System (ADS)

    Leonard, N. E.

    2005-05-01

    As wetlands are invaded by Chinese tallow trees (Triadica sebifera), native trees are displaced and detrital inputs to amphibian breeding ponds are altered. I used a mesocosm experiment to examine the effect of Chinese tallow leaf litter on the survival to, size at, and time to metamorphosis of amphibian larvae. Fifty 1000-L cattle watering tanks were treated with 1500 g dry weight of one of five leaf litter treatments: Chinese tallow, laurel oak (Quercus laurifolia), water tupelo (Nyssa aquatica), slash pine (Pinus elliottii), or a 3:1:1:1 mixture. Each tank received 45 tadpoles of Pseudacris feriarum, Bufo terrestris, and Hyla cinerea in sequence according to their natural breeding phonologies. Every Pseudacris feriarum and Bufo terrestris tadpole exposed to Chinese tallow died prior to metamorphosis. Hyla cinerea survival in tanks with tallow-only was significantly lower than that observed for all other leaf treatments. Hyla cinerea tadpoles from tallow-only and mixed-leaf treatments were larger at metamorphosis and transformed faster than those in tanks with native leaves only. These results suggest that Chinese tallow leaf litter may negatively affect tadpoles of early breeding frogs and that Chinese tallow invasion may change the structure of amphibian communities in temporary ponds.

  20. Citrus Leaf Volatiles as Affected by Developmental Stage and Genetic Type

    PubMed Central

    Azam, Muhammad; Jiang, Qian; Zhang, Bo; Xu, Changjie; Chen, Kunsong

    2013-01-01

    Major volatiles from young and mature leaves of different citrus types were analyzed by headspace-solid phase microextraction (HS-SPME)-GC-MS. A total of 123 components were identified form nine citrus cultivars, including nine aldehydes, 19 monoterpene hydrocarbons, 27 oxygenated monoterpenes, 43 sesquiterpene hydrocarbons, eight oxygenated sesquiterpenes, two ketones, six esters and nine miscellaneous. Young leaves produced higher amounts of volatiles than mature leaves in most cultivars. The percentage of aldehyde and monoterpene hydrocarbons increased, whilst oxygenated monoterpenes and sesquiterpenes compounds decreased during leaf development. Linalool was the most abundant compound in young leaves, whereas limonene was the chief component in mature ones. Notably, linalool content decreased, while limonene increased, during leaf development in most cultivars. Leaf volatiles were also affected by genetic types. A most abundant volatile in one or several genotypes can be absent in another one(s), such as limonene in young leaves of lemon vs. Satsuma mandarin and β-terpinene in mature leaves of three genotypes vs. the other four. Compositional data was subjected to multivariate statistical analysis, and variations in leaf volatiles were identified and clustered into six groups. This research determining the relationship between production of major volatiles from different citrus varieties and leaf stages could be of use for industrial and culinary purposes. PMID:23994837

  1. Foraging on Individual Leaves by an Intracellular Feeding Insect Is Not Associated with Leaf Biomechanical Properties or Leaf Orientation

    PubMed Central

    Fiene, Justin; Kalns, Lauren; Nansen, Christian; Bernal, Julio; Harris, Marvin; Sword, Gregory A.

    2013-01-01

    Nearly all herbivorous arthropods make foraging-decisions on individual leaves, yet systematic investigations of the adaptive significance and ecological factors structuring these decisions are rare with most attention given to chewing herbivores. This study investigated why an intracellular feeding herbivore, Western flower thrips (WFT) Frankliniella occidentalis Pergande, generally avoids feeding on the adaxial leaf surface of cotton cotyledons. WFT showed a significant aversion to adaxial-feeding even when excised-cotyledons were turned up-side (abaxial-side ‘up’), suggesting that negative-phototaxis was not a primary cause of thrips foraging patterns. No-choice bioassays in which individual WFT females were confined to either the abaxial or adaxial leaf surface showed that 35% fewer offspring were produced when only adaxial feeding was allowed, which coincided with 32% less plant feeding on that surface. To test the hypothesis that leaf biomechanical properties inhibited thrips feeding on the adaxial surface, we used a penetrometer to measure two variables related to the ‘toughness’ of each leaf surface. Neither variable negatively co-varied with feeding. Thus, while avoiding the upper leaf surface was an adaptive foraging strategy, the proximate cause remains to be elucidated, but is likely due, in part, to certain leaf properties that inhibit feeding. PMID:24260510

  2. Leaf Areas And Spectral Properties Of Slash Pine

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.; Dungan, Jennifer L.; Gholz, Henry L.

    1993-01-01

    NASA technical memorandum describes experiments to test feasibility of estimating seasonal leaf areas of forest canopies from spectral radiances measured by remote instruments. Accurate estimates of seasonal leaf areas of forests necessary for studies of seasonal exchanges of energy between forest canopies and atmosphere. Potential use of remote sensing in estimating seasonal changes in leaf area index (LAI).

  3. Seasonal Variability May Affect Microbial Decomposers and Leaf Decomposition More Than Warming in Streams.

    PubMed

    Duarte, Sofia; Cássio, Fernanda; Ferreira, Verónica; Canhoto, Cristina; Pascoal, Cláudia

    2016-08-01

    Ongoing climate change is expected to affect the diversity and activity of aquatic microbes, which play a key role in plant litter decomposition in forest streams. We used a before-after control-impact (BACI) design to study the effects of warming on a forest stream reach. The stream reach was divided by a longitudinal barrier, and during 1 year (ambient year) both stream halves were at ambient temperature, while in the second year (warmed year) the temperature in one stream half was increased by ca. 3 °C above ambient temperature (experimental half). Fine-mesh bags containing oak (Quercus robur L.) leaves were immersed in both stream halves for up to 60 days in spring and autumn of the ambient and warmed years. We assessed leaf-associated microbial diversity by denaturing gradient gel electrophoresis and identification of fungal conidial morphotypes and microbial activity by quantifying leaf mass loss and productivity of fungi and bacteria. In the ambient year, no differences were found in leaf decomposition rates and microbial productivities either between seasons or stream halves. In the warmed year, phosphorus concentration in the stream water, leaf decomposition rates, and productivity of bacteria were higher in spring than in autumn. They did not differ between stream halves, except for leaf decomposition, which was higher in the experimental half in spring. Fungal and bacterial communities differed between seasons in both years. Seasonal changes in stream water variables had a greater impact on the activity and diversity of microbial decomposers than a warming regime simulating a predicted global warming scenario. PMID:27193000

  4. [A inversion model for remote sensing of leaf water content based on the leaf optical property].

    PubMed

    Fang, Mei-hong; Ju, Wei-min

    2015-01-01

    Leaf water content is a fundamental physiological characteristic parameter of crops, and plays an important role in the study of the ecological environment. The aim of the work reported in this paper was to focus upon the retrieval of leaf water content from leaf-scale reflectance spectra by developing a physical inversion model based on the radiative transfer theory and wavelet analysis techniques. A continuous wavelet transform was performed on each of leaf component specific absorption coefficients to pick wavelet coefficients that were identified as highly sensitive to leaf water content and insensitive to other components. In the present study, for identifying the most appropriate wavelet, the six frequently used wavelet functions available within MATLAB were tested. Two biorl. 5 wavelet coefficients observed at the scale of 200 nm are provided with good performance, their wave-length positions are located at 1 405 and 1 488 nm, respectively. Two factors (α and Δ) of the predictive theoretical models based on the biorl. 5 wavelet coefficients of the leaf-scale reflectance spectra were determined by leaf structure parameter N. We built a database composed of thousands of simulated leaf reflectance spectra with the PROSPECT model. The entire dataset was split into two parts, with 60% the calibration subset assigned to calibrating two factors (α and Δ) of the predictive theoretical model. The remaining 40% the validation subset combined with the LOPEX93 experimental dataset used for validating the models. The results showed that the accuracy of the models compare to the statistical regression models derived from the traditional vegetation indices has improved with the highest predictive coefficient of determination (R2) of 0. 987, and the model becomes more robust. This study presented that wavelet analysis has the potential to capture much more of the information contained with reflectance spectra than previous analytical approaches which have tended to

  5. Acaricidal properties of Ricinus communis leaf extracts against organophosphate and pyrethroids resistant Rhipicephalus (Boophilus) microplus.

    PubMed

    Ghosh, Srikanta; Tiwari, Shashi Shankar; Srivastava, Sharad; Sharma, Anil Kumar; Kumar, Sachin; Ray, D D; Rawat, A K S

    2013-02-18

    Indian cattle ticks have developed resistance to commonly used acaricides and an attempt has been made to formulate an ecofriendly herbal preparation for the control of acaricide resistant ticks. A 95% ethanolic extract of Ricinus communis was used to test the efficacy against reference acaricide resistant lines by in vitro assay. In in vitro assay, the extract significantly affects the mortality rate of ticks in dose-dependent manner ranging from 35.0 ± 5.0 to 95.0 ± 5.0% with an additional effect on reproductive physiology of ticks by inhibiting 36.4-63.1% of oviposition. The leaf extract was found effective in killing 48.0, 56.7 and 60.0% diazinon, deltamethrin and multi-acaricide resistant ticks, respectively. However, the cidal and oviposition limiting properties of the extract were separated when the extract was fractionated with hexane, chloroform, n-butanol and water. The HPTLC finger printing profile of R. communis leaf extract under λ(max.) - 254 showed presence of quercetin, gallic acid, flavone and kaempferol which seemed to have synergistic acaricidal action. In vivo experiment resulted in 59.9% efficacy on Ist challenge, however, following 2nd challenge the efficacy was reduced to 48.5%. The results indicated that the 95% ethanolic leaf extract of R. communis can be used effectively in integrated format for the control of acaricide resistant ticks. PMID:23084038

  6. Evidence for mild sediment Pb contamination affecting leaf-litter decomposition in a lake.

    PubMed

    Oguma, Andrew Y; Klerks, Paul L

    2015-08-01

    Much work has focused on the effects of metal-contaminated sediment on benthic community structure, but effects on ecosystem functions have received far less attention. Decomposition has been widely used as an integrating metric of ecosystem function in lotic systems, but not for lentic ones. We assessed the relationship between low-level sediment lead (Pb) contamination and leaf-litter decomposition in a lentic system. We measured 30-day weight loss in 30 litter-bags that were deployed along a Pb-contamination gradient in a cypress-forested lake. At each deployment site we also quantified macrobenthos abundance, dissolved oxygen, water depth, sediment organic content, sediment silt/clay content, and both total sediment and porewater concentrations of Cd, Cu, Ni, Pb and Zn. Principal components (PC) analysis revealed a negative relationship between Pb concentration and benthic macroinvertebrate abundance, and this covariation dominated the first PC axis (PC1). Subsequent correlation analyses revealed a negative relationship between PC1 and percent leaf-litter loss. Our results indicate that leaf-litter decomposition was related to sediment Pb and benthic macroinvertebrate abundance. They also showed that ecosystem function may be affected even where sediment Pb concentrations are mostly below threshold-effects sediment quality guidelines--a finding with potential implications for sediment risk assessment. Additionally, the litter-bag technique used in this study showed promise as a tool in risk assessments of metal-contaminated sediments in lentic systems. PMID:26115904

  7. Investigation of antioxidant properties of Nasturtium officinale (watercress) leaf extracts.

    PubMed

    Ozen, Tevfik

    2009-01-01

    The objective of this study was to examine the in vitro and in vivo antioxidative properties of aqueous and ethanolic extracts of the leaf of Nasturtium officinale R. Br. (watercress). Extracts were evaluated for total antioxidant activity by ferric thiocyanate method, total reducing power by potassium ferricyanide reduction method, 1,1-diphenyl-2-picrylhydrazyl (DPPH*) radical scavenging activities, superoxide anion radical scavenging activities in vitro and lipid peroxidation in vivo. Those various antioxidant activities were compared to standards such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and alpha-tocopherol. The ethanolic extract was found as the most active in total antioxidant activity, reducing power, DPPH* radicals and superoxide anion radicals scavenging activities. Administration of the ethanol extract to rats decreased lipid peroxidation in liver, brain and kidney. These results lead to the conclusion that N. officinale extracts show relevant antioxidant activity by means of reducing cellular lipid peroxidation and increasing antioxidant activity, reducing power, free radiacal and superoxide anion radical scavenging activities. In addition, total phenolic compounds in the aqueous and ethanolic extract of N. officinale were determined as pyrocatechol. PMID:19719054

  8. Increasing shrub abundance and N addition in Arctic tundra affect leaf and root litter decomposition differently

    NASA Astrophysics Data System (ADS)

    McLaren, J.; van de Weg, M. J.; Shaver, G. R.; Gough, L.

    2013-12-01

    Changes in global climate have resulted in a ';greening' of the Arctic as the abundance of deciduous shrub species increases. Consequently, not only the living plant community, but also the litter composition changes, which in turn can affect carbon turnover patterns in the Arctic. We examined effects of changing litter composition (both root and leaf litter) on decomposition rates with a litter bag study, and specifically focused on the impact of deciduous shrub Betula nana litter on litter decomposition from two evergreen shrubs (Ledum palustre, and Vaccinium vitis-idaea) and one graminoid (Eriophorum vaginatum) species. Additionally, we investigated how decomposition was affected by nutrient availability by placing the litterbags in an ambient and a fertilized moist acidic tundra environment. Measurements were carried out seasonally over 2 years (after snow melt, mid-growing season, end growing season). We measured litter mass loss over time, as well as the respiration rates (standardized for temperature and moisture) and temperature sensitivity of litter respiration at the time of harvesting the litter bags. For leaves, Betula litter decomposed faster than the other three species, with Eriophorum leaves decomposing the slowest. This pattern was observed for both mass loss and litter respiration rates, although the differences in respiration became smaller over time. Surprisingly, combining Betula with any other species resulted in slower overall weight loss rates than would be predicted based on monoculture weight loss rates. This contrasted with litter respiration at the time of sampling, which showed a positive mixing effect of adding Betula leaf liter to the other species. Apparently, during the first winter months (September - May) Betula litter decomposition is negatively affected by mixing the species and this legacy can still be observed in the total mass loss results later in the year. For root litter there were fewer effects of species identity on root

  9. Frequent Occurrence of Tomato Leaf Curl New Delhi Virus in Cotton Leaf Curl Disease Affected Cotton in Pakistan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton leaf curl disease (CLCuD) in the Indian subcontinent is associated with several distinct monopartite begomoviruses and DNA satellites. However, only a single begomovirus was associated with breakdown of resistance against CLCuD in previously resistant cotton varieties. The monopartite begomov...

  10. Does Initial Leaf Chemistry Affect the Contribution of Insects, Fungi, and Bacteria to Leaf Breakdown in a Lowland Tropical Stream?

    NASA Astrophysics Data System (ADS)

    Ardon, M.; Pringle, C. M.

    2005-05-01

    We examined effects of initial leaf chemistry of six common riparian species on the relative contribution of fungi, bacteria, and invertebrates to leaf breakdown in a lowland stream in Costa Rica. We hypothesized that fungi and bacteria would contribute more to the breakdown of species with low concentrations of secondary (tannins and phenolics) and structural (cellulose and lignin) compounds, while invertebrates would be more important in the processing of species with high concentrations of secondary and structural compounds. We incubated single species leaf bags of six common riparian species, representing a range in secondary and structural compounds, in a third-order stream at La Selva Biological Station, Costa Rica. We measured leaf chemistry during the breakdown process. We determined fungal biomass using ergosterol methods, bacteria using DAPI counts, and invertebrate biomass using length-weight regressions. We then used biomass estimates for each group to determine their contribution to the overall breakdown process. Breakdown rates ranged from very fast (Trema integerima, k = 0.23 day-1) to slow (Zygia longifolia , k = 0.011 day-1). While analyses are still under way, preliminary results support our initial hypothesis that fungi contribute more to the break down of leaves from tree species with low concentrations of secondary and structural compounds.

  11. Diversity and Composition of the Leaf Mycobiome of Beech (Fagus sylvatica) Are Affected by Local Habitat Conditions and Leaf Biochemistry

    PubMed Central

    Unterseher, Martin; Siddique, Abu Bakar; Brachmann, Andreas; Peršoh, Derek

    2016-01-01

    Comparative investigations of plant-associated fungal communities (mycobiomes) in distinct habitats and under distinct climate regimes have been rarely conducted in the past. Nowadays, high-throughput sequencing allows routine examination of mycobiome responses to environmental changes and results at an unprecedented level of detail. In the present study, we analysed Illumina-generated fungal ITS1 sequences from European beech (Fagus sylvatica) originating from natural habitats at two different altitudes in the German Alps and from a managed tree nursery in northern Germany. In general, leaf-inhabiting mycobiome diversity and composition correlated significantly with the origin of the trees. Under natural condition the mycobiome was more diverse at lower than at higher elevation, whereas fungal diversity was lowest in the artificial habitat of the tree nursery. We further identified significant correlation of leaf chlorophylls and flavonoids with both habitat parameters and mycobiome biodiversity. The present results clearly point towards a pronounced importance of local stand conditions for the structure of beech leaf mycobiomes and for a close interrelation of phyllosphere fungi and leaf physiology. PMID:27078859

  12. Diversity and Composition of the Leaf Mycobiome of Beech (Fagus sylvatica) Are Affected by Local Habitat Conditions and Leaf Biochemistry.

    PubMed

    Unterseher, Martin; Siddique, Abu Bakar; Brachmann, Andreas; Peršoh, Derek

    2016-01-01

    Comparative investigations of plant-associated fungal communities (mycobiomes) in distinct habitats and under distinct climate regimes have been rarely conducted in the past. Nowadays, high-throughput sequencing allows routine examination of mycobiome responses to environmental changes and results at an unprecedented level of detail. In the present study, we analysed Illumina-generated fungal ITS1 sequences from European beech (Fagus sylvatica) originating from natural habitats at two different altitudes in the German Alps and from a managed tree nursery in northern Germany. In general, leaf-inhabiting mycobiome diversity and composition correlated significantly with the origin of the trees. Under natural condition the mycobiome was more diverse at lower than at higher elevation, whereas fungal diversity was lowest in the artificial habitat of the tree nursery. We further identified significant correlation of leaf chlorophylls and flavonoids with both habitat parameters and mycobiome biodiversity. The present results clearly point towards a pronounced importance of local stand conditions for the structure of beech leaf mycobiomes and for a close interrelation of phyllosphere fungi and leaf physiology. PMID:27078859

  13. Use of spectral analogy to evaluate canopy reflectance sensitivity to leaf optical property

    NASA Technical Reports Server (NTRS)

    Baret, Frederic; Vanderbilt, Vern C.; Steven, Michael D.; Jacquemoud, Stephane

    1993-01-01

    The spectral variation of canopy reflectance is mostly governed by the absorption properties of the elements, hence the leaves, since their intrinsic scattering properties show very little spectral variation. The relationship between canopy reflectance and leaf reflectance measured at the red edge over sugar beet canopies was used to simulate canopy reflectance from leaf reflectance spectra measured over the whole spectral domain. The results show that the spectral analogies found allows accurate reconstruction of canopy reflectance spectra. Explicit assumptions about the very low spectral variation of leaf intrinsic scattering properties are thus indirectly justified. The sensitivity of canopy reflectance (rho(sub c)) to leaf optical properties can then be investigated from concurrent spectral variations of canopy (delta rho(sub c)/delta lambda) and leaf reflectance (delta rho(sub l)/delta lambda): (delta rho(sub c))/(delta rho(sub l)) = ((delta rho(sub c))/(delta lambda) ((delta rho( sub l))/(delta lambda))(sup -1)). This expression is strictly valid only when the optical properties of the soil background or the other vegetation elements such as bark are either spectrally flat or do not contribute significantly to canopy reflectance. Simulations using the SAIL and PROSPECT models demonstrate that the sensitivity of canopy reflectance to leaf reflectance is significant for large vegetation cover fractions in spectral domains where absorption is low. In these conditions, multiple, scattering enhances the leaf absorption features by a factor that can be greater than 2.0. To override the limitations of the SAIL model for the description of the canopy architecture, we tested the previous findings on experimental data. Concurrent canopy and leaf reflectance spectra were measured for a range of sugar beet canopies. The results show good agreement with the theoretical findings. Conclusions are drawn about the applicability of these findings, with particular attention to

  14. Do variations in leaf phenology affect radial growth variations in Fagus sylvatica?

    NASA Astrophysics Data System (ADS)

    Čufar, Katarina; De Luis, Martin; Prislan, Peter; Gričar, Jožica; Črepinšek, Zalika; Merela, Maks; Kajfež-Bogataj, Lučka

    2015-08-01

    We used a dendrochronological and leaf phenology network of European beech ( Fagus sylvatica) in Slovenia, a transitional area between Mediterranean, Alpine and continental climatic regimes, for the period 1955-2007 to test whether year to year variations in leaf unfolding and canopy duration (i.e. time between leaf unfolding and colouring) influence radial growth (annual xylem production and tree ring widths) and if such influences are more pronounced at higher altitudes. We showed that variability in leaf phenology has no significant effect on variations in radial growth. The results are consistent in the entire region, irrespective of the climatic regime or altitude, although previous studies have shown that leaf phenology and tree ring variation depend on altitude. The lack of relationship between year to year variability in leaf phenology and radial growth may suggest that earlier leaf unfolding—as observed in a previous study—probably does not cause increased tree growth rates in beech in Slovenia.

  15. Prior Hydrologic Disturbance Affects Competition between Aedes Mosquitoes via Changes in Leaf Litter.

    PubMed

    Smith, Cassandra D; Freed, T Zachary; Leisnham, Paul T

    2015-01-01

    Allochthonous leaf litter is often the main resource base for invertebrate communities in ephemeral water-filled containers, and detritus quality can be affected by hydrologic conditions. The invasive mosquito Aedes albopictus utilizes container habitats for its development where it competes as larvae for detritus and associated microorganisms with the native Aedes triseriatus. Different hydrologic conditions that containers are exposed to prior to mosquito utilization affect litter decay and associated water quality. We tested the hypothesis that larval competition between A. albopictus and A. triseriatus would be differentially affected by prior hydrologic conditions. Experimental microcosms provisioned with Quercus alba L. litter were subjected to one of three different hydrologic treatments prior to the addition of water and mosquito larvae: dry, flooded, and a wet/dry cycle. Interspecific competition between A. albopictus and A. triseriatus was mediated by hydrologic treatment, and was strongest in the dry treatment vs. the flooded or wet/dry treatments. Aedes triseriatus estimated rate of population change (λ') was lowest in the dry treatment. Aedes albopictus λ' was unaffected by hydrologic treatment, and was on average always increasing (i.e., > 1). Aedes triseriatus λ' was affected by the interaction of hydrologic treatment with interspecific competition, and was on average declining (i.e., < 1.0), at the highest interspecific densities in the dry treatment. Dry treatment litter had the slowest decay rate and leached the highest concentration of tannin-lignin, but supported more total bacteria than the other treatments. These results suggest that dry conditions negatively impact A. triseriatus population performance and may result in the competitive exclusion of A. triseriatus by A. albopictus, possibly by reducing microbial taxa that Aedes species browse. Changing rainfall patterns with climate change are likely to affect competition between A

  16. Prior Hydrologic Disturbance Affects Competition between Aedes Mosquitoes via Changes in Leaf Litter

    PubMed Central

    Smith, Cassandra D.; Freed, T. Zachary; Leisnham, Paul T.

    2015-01-01

    Allochthonous leaf litter is often the main resource base for invertebrate communities in ephemeral water-filled containers, and detritus quality can be affected by hydrologic conditions. The invasive mosquito Aedes albopictus utilizes container habitats for its development where it competes as larvae for detritus and associated microorganisms with the native Aedes triseriatus. Different hydrologic conditions that containers are exposed to prior to mosquito utilization affect litter decay and associated water quality. We tested the hypothesis that larval competition between A. albopictus and A. triseriatus would be differentially affected by prior hydrologic conditions. Experimental microcosms provisioned with Quercus alba L. litter were subjected to one of three different hydrologic treatments prior to the addition of water and mosquito larvae: dry, flooded, and a wet/dry cycle. Interspecific competition between A. albopictus and A. triseriatus was mediated by hydrologic treatment, and was strongest in the dry treatment vs. the flooded or wet/dry treatments. Aedes triseriatus estimated rate of population change (λ') was lowest in the dry treatment. Aedes albopictus λ' was unaffected by hydrologic treatment, and was on average always increasing (i.e., > 1). Aedes triseriatus λ' was affected by the interaction of hydrologic treatment with interspecific competition, and was on average declining (i.e., < 1.0), at the highest interspecific densities in the dry treatment. Dry treatment litter had the slowest decay rate and leached the highest concentration of tannin-lignin, but supported more total bacteria than the other treatments. These results suggest that dry conditions negatively impact A. triseriatus population performance and may result in the competitive exclusion of A. triseriatus by A. albopictus, possibly by reducing microbial taxa that Aedes species browse. Changing rainfall patterns with climate change are likely to affect competition between A

  17. Psychometric properties of the Affect Phobia Test.

    PubMed

    Frankl, My; Philips, Björn; Berggraf, Lene; Ulvenes, Pål; Johansson, Robert; Wennberg, Peter

    2016-10-01

    The aim of this study was to make the first evaluation of the psychometric properties of the Affect Phobia Test, using the Swedish translation - a test developed to screen the ability to experience, express and regulate emotions. Data was collected from a clinical sample (N = 82) of patients with depression and/or anxiety participating in randomized controlled trial of Internet-based affect-focused treatment, and a university student sample (N = 197). The internal consistency for the total score was satisfactory (Clinical sample α = 0.88/Student sample α = 0.84) as well as for all the affective domains, except Anger/Assertion (α = 0.44/0.36), Sadness/Grief (α = 0.24/0.46) and Attachment/Closeness (α = 0.67/0.69). Test retest reliability was satisfactory (ICC > 0.77) for the total score and for all the affective domains except for Sadness/Grief (ICC = 0.04). The exploratory factor analysis resulted in a six-factor solution and did only moderately match the test's original affective domains. An empirical cut-off between the clinical and the university student sample were calculated and yielded a cut-off of 72 points. As expected, the Affect Phobia test showed negative significant correlations in the clinical group with measures on depression (rxy  = -0.229; p < 0.01) and anxiety (rxy  = -0.315; p < 0.05). The conclusion is that the psychometric properties are satisfactory for the total score of the Affect Phobia Test but not for some of the test's affective domains. Consequently the domains should not be used as subscales. The test can discriminate between individuals who seek help for psychological problems and those who do not. PMID:27461917

  18. Epigenetic Mutation of RAV6 Affects Leaf Angle and Seed Size in Rice.

    PubMed

    Zhang, Xiangqian; Sun, Jing; Cao, Xiaofeng; Song, Xianwei

    2015-11-01

    Heritable epigenetic variants of genes, termed epialleles, can broaden genetic and phenotypic diversity in eukaryotes. Epialleles may also provide a new source of beneficial traits for crop breeding, but very few epialleles related to agricultural traits have been identified in crops. Here, we identified Epi-rav6, a gain-of-function epiallele of rice (Oryza sativa) RELATED TO ABSCISIC ACID INSENSITIVE3 (ABI3)/VIVIPAROUS1 (VP1) 6 (RAV6), which encodes a B3 DNA-binding domain-containing protein. The Epi-rav6 plants show larger lamina inclination and smaller grain size; these agronomically important phenotypes are inherited in a semidominant manner. We did not find nucleotide sequence variation of RAV6. Instead, we found hypomethylation in the promoter region of RAV6, which caused ectopic expression of RAV6 in Epi-rav6 plants. Bisulfite analysis revealed that cytosine methylation of four CG and two CNG loci within a continuous 96-bp region plays essential roles in regulating RAV6 expression; this region contains a conserved miniature inverted repeat transposable element transposon insertion in cultivated rice genomes. Overexpression of RAV6 in the wild type phenocopied the Epi-rav6 phenotype. The brassinosteroid (BR) receptor BR INSENSITIVE1 and BR biosynthetic genes EBISU DWARF, DWARF11, and BR-DEFICIENT DWARF1 were ectopically expressed in Epi-rav6 plants. Also, treatment with a BR biosynthesis inhibitor restored the leaf angle defects of Epi-rav6 plants. This indicates that RAV6 affects rice leaf angle by modulating BR homeostasis and demonstrates an essential regulatory role of epigenetic modification on a key gene controlling important agricultural traits. Thus, our work identifies a unique rice epiallele, which may represent a common phenomenon in complex crop genomes. PMID:26351308

  19. Linking the near-surface camera-based phenological metrics with leaf chemical and spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Yang, X.; Tang, J.; Mustard, J. F.; Schmitt, J.

    2012-12-01

    Plant phenology is an important indicator of climate change. Near-surface cameras provide a way to continuously monitor plant canopy development at the scale of several hundred meters, which is rarely feasible by either traditional phenological monitoring methods or remote sensing. Thus, digital cameras are being deployed in national networks such as the National Ecological Observatory Network (NEON) and PhenoCam. However, it is unclear how the camera-based phenological metrics are linked with plant physiology as measured from leaf chemical and spectroscopic properties throughout the growing season. We used the temporal trajectories of leaf chemical properties (chlorophyll a and b, carotenoids, leaf water content, leaf carbon/nitrogen content) and leaf reflectance/transmittance (300 to 2500 nm) to understand the temporal changes of camera-based phenological metrics (e.g., relative greenness), which was acquired from our Standalone Phenological Observation System installed on a tower on the island of Martha's Vineyard, MA (dominant species: Quercus alba). Leaf chemical and spectroscopic properties of three oak trees near the tower were measured weekly from June to November, 2011. We found that the chlorophyll concentration showed similar temporal trajectories to the relative greenness. However, the change of chlorophyll concentration lagged behind the change of relative greenness for about 20 days both in the spring and the fall. The relative redness is a better indicator of leaf senescence in the fall than the relative greenness. We derived relative greenness from leaf spectroscopy and found that the relative greenness from camera matched well with that from the spectroscopy in the mid-summer, but this relationship faded as leaves start to fall, exposing the branches and soil background. This work suggests that we should be cautious to interpret camera-based phenological metrics, and the relative redness could potentially be a useful indicator of fall senescence.

  20. Alterations in lignin content and phenylpropanoids pathway in date palm (Phoenix dactylifera L.) tissues affected by brittle leaf disease.

    PubMed

    Saidi, Mohammed Najib; Bouaziz, Donia; Hammami, Ines; Namsi, Ahmed; Drira, Noureddine; Gargouri-Bouzid, Radhia

    2013-10-01

    Brittle leaf disease or Maladie de la Feuille Cassante (MFC) is a lethal disorder of date palm that has assumed epidemic proportions in the oases of Tunisia and Algeria. No pathogen could ever be associated with the disease, while leaflets of affected palms have been previously shown to be deficient in manganese. The work reported here aims to understand the biochemical basis of the date palm response to this disorder. Since the typical disease symptom is the leaf fragility, we have investigated lignin content in leaves and roots. Strong decrease in total lignin content was observed in affected leaves, while lignin content increased in affected roots. Histochemical analyses showed hyperlignification thicker suberin layer in roots cortical cells. The phenylpropanoids pathway was also disrupted in leaves and roots, cinnamoyl-CoA reductase and cinnamyl-alcohol dehydrogenase gene expression was affected by the disease which severely affects the cell wall integrity. PMID:23987806

  1. The ASYMMETRIC LEAVES Complex Employs Multiple Modes of Regulation to Affect Adaxial-Abaxial Patterning and Leaf Complexity[OPEN

    PubMed Central

    Husbands, Aman Y.; Benkovics, Anna H.; Nogueira, Fabio T.S.; Lodha, Mukesh; Timmermans, Marja C.P.

    2015-01-01

    Flattened leaf architecture is not a default state but depends on positional information to precisely coordinate patterns of cell division in the growing primordium. This information is provided, in part, by the boundary between the adaxial (top) and abaxial (bottom) domains of the leaf, which are specified via an intricate gene regulatory network whose precise circuitry remains poorly defined. Here, we examined the contribution of the ASYMMETRIC LEAVES (AS) pathway to adaxial-abaxial patterning in Arabidopsis thaliana and demonstrate that AS1-AS2 affects this process via multiple, distinct regulatory mechanisms. AS1-AS2 uses Polycomb-dependent and -independent mechanisms to directly repress the abaxial determinants MIR166A, YABBY5, and AUXIN RESPONSE FACTOR3 (ARF3), as well as a nonrepressive mechanism in the regulation of the adaxial determinant TAS3A. These regulatory interactions, together with data from prior studies, lead to a model in which the sequential polarization of determinants, including AS1-AS2, explains the establishment and maintenance of adaxial-abaxial leaf polarity. Moreover, our analyses show that the shared repression of ARF3 by the AS and trans-acting small interfering RNA (ta-siRNA) pathways intersects with additional AS1-AS2 targets to affect multiple nodes in leaf development, impacting polarity as well as leaf complexity. These data illustrate the surprisingly multifaceted contribution of AS1-AS2 to leaf development showing that, in conjunction with the ta-siRNA pathway, AS1-AS2 keeps the Arabidopsis leaf both flat and simple. PMID:26589551

  2. Leaf physico-chemical and physiological properties of maize (Zea mays L.) populations from different origins.

    PubMed

    Revilla, Pedro; Fernández, Victoria; Álvarez-Iglesias, Lorena; Medina, Eva T; Cavero, José

    2016-10-01

    In this study we evaluated the leaf surface properties of maize populations native to different water availability environments. Leaf surface topography, wettability and gas exchange performance of five maize populations from the Sahara desert, dry (south) and humid (north-western) areas of Spain were analysed. Differences in wettability, stomatal and trichome densities, surface free energy and solubility parameter values were recorded between populations and leaf sides. Leaves from the humid Spanish population with special regard to the abaxial side, were less wettable and less susceptible to polar interactions. The higher wettability and hydrophilicity of Sahara populations with emphasis on the abaxial leaf surfaces, may favour dew deposition and foliar water absorption, hence improving water use efficiency under extremely dry conditions. Compared to the other Saharan populations, the dwarf one had a higher photosynthesis rate suggesting that dwarfism may be a strategy for improving plant tolerance to arid conditions. The results obtained for different maize populations suggest that leaf surfaces may vary in response to drought, but further studies will be required to examine the potential relationship between leaf surface properties and plant stress tolerance. PMID:27368072

  3. Structure-Property Characterization of the Crinkle-Leaf Peach Wood Phenotype: A Future Model System for Wood Properties Research?

    NASA Astrophysics Data System (ADS)

    Wiedenhoeft, Alex C.; Arévalo, Rafael; Ledbetter, Craig; Jakes, Joseph E.

    2016-08-01

    Nearly 400 million years of evolution and field-testing by the natural world has given humans thousands of wood types, each with unique structure-property relationships to study, exploit, and ideally, to manipulate, but the slow growth of trees makes them a recalcitrant experimental system. Variations in wood features of two genotypes of peach (Prunus persica L.) trees, wild-type and crinkle-leaf, were examined to elucidate the nature of weak wood in crinkle-leaf trees. Crinkle-leaf is a naturally-occurring mutation in which wood strength is altered in conjunction with an easily observed `crinkling' of the leaves' surface. Trees from three vigor classes (low growth rate, average growth rate, and high growth rate) of each genotype were sampled. No meaningful tendency of dissimilarities among the different vigor classes was found, nor any pattern in features in a genotype-by-vigor analysis. Wild-type trees exhibited longer vessels and fibers, wider rays, and slightly higher specific gravity. Neither cell wall mechanical properties measured with nanoindentation nor cell wall histochemical properties were statistically or observably different between crinkle-leaf and wild-type wood. The crinkle-leaf mutant has the potential to be a useful model system for wood properties investigation and manipulation if it can serve as a field-observable vegetative marker for altered wood properties.

  4. Leaf Associated Microbial Activities in a Stream Affected by Acid Mine Drainage

    NASA Astrophysics Data System (ADS)

    Schlief, Jeanette

    2004-11-01

    Microbial activity was assessed on birch leaves and plastic strips during 140 days of exposure at three sites in an acidic stream of the Lusatian post-mining landscape, Germany. The sites differed in their degrees of ochre deposition and acidification. The aim of the study was (1) to follow the microbial activities during leaf colonization, (2) to compare the effect of different environmental conditions on leaf associated microbial activities, and (3) to test the microbial availability of leaf litter in acidic mining waters. The activity peaked after 49 days and subsequently decreased gradually at all sites. A formation of iron plaques on leaf surfaces influenced associated microbial activity. It seemed that these plaques inhibit the microbial availability of leaf litter and serve as a microbial habitat by itself. (

  5. Rolling-leaf14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves.

    PubMed

    Fang, Likui; Zhao, Fangming; Cong, Yunfei; Sang, Xianchun; Du, Qing; Wang, Dezhong; Li, Yunfeng; Ling, Yinghua; Yang, Zhenglin; He, Guanghua

    2012-06-01

    As an important agronomic trait, leaf rolling in rice (Oryza sativa L.) has attracted much attention from plant biologists and breeders. Moderate leaf rolling increases the amount of photosynthesis in cultivars and hence raises grain yield. Here, we describe the map-based cloning of the gene RL14, which was found to encode a 2OG-Fe (II) oxygenase of unknown function. rl14 mutant plants had incurved leaves because of the shrinkage of bulliform cells on the adaxial side. In addition, rl14 mutant plants displayed smaller stomatal complexes and decreased transpiration rates, as compared with the wild type. Defective development could be rescued functionally by the expression of wild-type RL14. RL14 was transcribed in sclerenchymatous cells in leaves that remained wrapped inside the sheath. In mature leaves, RL14 accumulated mainly in the mesophyll cells that surround the vasculature. Expression of genes related to secondary cell wall formation was affected in rl14-1 mutants, and cellulose and lignin content were altered in rl14-1 leaves. These results reveal that the RL14 gene affects water transport in leaves by affecting the composition of the secondary cell wall. This change in water transport results in water deficiency, which is the major reason for the abnormal shape of the bulliform cells. PMID:22329407

  6. Chemical composition and antioxidant properties of clove leaf essential oil.

    PubMed

    Jirovetz, Leopold; Buchbauer, Gerhard; Stoilova, Ivanka; Stoyanova, Albena; Krastanov, Albert; Schmidt, Erich

    2006-08-23

    The antioxidant activity of a commercial rectified clove leaf essential oil (Eugenia caryophyllus) and its main constituent eugenol was tested. This essential oil comprises in total 23 identified constituents, among them eugenol (76.8%), followed by beta-caryophyllene (17.4%), alpha-humulene (2.1%), and eugenyl acetate (1.2%) as the main components. The essential oil from clove demonstrated scavenging activity against the 2,2-diphenyl-1-picryl hydracyl (DPPH) radical at concentrations lower than the concentrations of eugenol, butylated hydroxytoluene (BHT), and butylated hydroxyanisole (BHA). This essential oil also showed a significant inhibitory effect against hydroxyl radicals and acted as an iron chelator. With respect to the lipid peroxidation, the inhibitory activity of clove oil determined using a linoleic acid emulsion system indicated a higher antioxidant activity than the standard BHT. PMID:16910723

  7. Herbivore-induced maize leaf volatiles affect attraction and feeding behavior of Spodoptera littoralis caterpillars.

    PubMed

    von Mérey, Georg E; Veyrat, Nathalie; D'Alessandro, Marco; Turlings, Ted C J

    2013-01-01

    Plants under herbivore attack emit volatile organic compounds (VOCs) that can serve as foraging cues for natural enemies. Adult females of Lepidoptera, when foraging for host plants to deposit eggs, are commonly repelled by herbivore-induced VOCs, probably to avoid competition and natural enemies. Their larval stages, on the other hand, have been shown to be attracted to inducible VOCs. We speculate that this contradicting behavior of lepidopteran larvae is due to a need to quickly find a new suitable host plant if they have fallen to the ground. However, once they are on a plant they might avoid the sites with fresh damage to limit competition and risk of cannibalism by conspecifics, as well as exposure to natural enemies. To test this we studied the effect of herbivore-induced VOCs on the attraction of larvae of the moth Spodoptera littoralis and on their feeding behavior. The experiments further considered the importance of previous feeding experience on the responses of the larvae. It was confirmed that herbivore-induced VOCs emitted by maize plants are attractive to the larvae, but exposure to the volatiles decreased the growth rate of caterpillars at early developmental stages. Larvae that had fed on maize previously were more attracted by VOCs of induced maize than larvae that had fed on artificial diet. At relatively high concentrations synthetic green leaf volatiles, indicative of fresh damage, also negatively affected the growth rate of caterpillars, but not at low concentrations. In all cases, feeding by the later stages of the larvae was not affected by the VOCs. The results are discussed in the context of larval foraging behavior under natural conditions, where there may be a trade-off between using available host plant signals and avoiding competitors and natural enemies. PMID:23825475

  8. Beyond leaf color: Comparing camera-based phenological metrics with leaf biochemical, biophysical, and spectral properties throughout the growing season of a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Tang, Jianwu; Mustard, John F.

    2014-03-01

    Plant phenology, a sensitive indicator of climate change, influences vegetation-atmosphere interactions by changing the carbon and water cycles from local to global scales. Camera-based phenological observations of the color changes of the vegetation canopy throughout the growing season have become popular in recent years. However, the linkages between camera phenological metrics and leaf biochemical, biophysical, and spectral properties are elusive. We measured key leaf properties including chlorophyll concentration and leaf reflectance on a weekly basis from June to November 2011 in a white oak forest on the island of Martha's Vineyard, Massachusetts, USA. Concurrently, we used a digital camera to automatically acquire daily pictures of the tree canopies. We found that there was a mismatch between the camera-based phenological metric for the canopy greenness (green chromatic coordinate, gcc) and the total chlorophyll and carotenoids concentration and leaf mass per area during late spring/early summer. The seasonal peak of gcc is approximately 20 days earlier than the peak of the total chlorophyll concentration. During the fall, both canopy and leaf redness were significantly correlated with the vegetation index for anthocyanin concentration, opening a new window to quantify vegetation senescence remotely. Satellite- and camera-based vegetation indices agreed well, suggesting that camera-based observations can be used as the ground validation for satellites. Using the high-temporal resolution dataset of leaf biochemical, biophysical, and spectral properties, our results show the strengths and potential uncertainties to use canopy color as the proxy of ecosystem functioning.

  9. Antioxidant and anti-dermatophytic properties leaf and stem bark of Xylosma longifolium clos

    PubMed Central

    2013-01-01

    Background The present study was carried out to assess the phytochemical and anti-dermatophytic effect of the leaf and bark extracts of Xylosma longifolium Clos. The leaf and stem bark are used by the indigenous people of Manipur, India for treatment of skin diseases. Methods The leaves and stem barks of Xylosma longifolium were extracted using petroleum ether, chloroform and methanol respectively. The different extracts of each plant parts were tested for antioxidant activity using DPPH assay. The phenolic content was assayed using Folin-Ciocalteu colorimetric method. Each extracts was further analysed by RP-HPLC to quantify some individual flavonoid components. The anti-dermatophytic activity was evaluated both by agar diffusion method and micro wells dilution method against the Microsporum boullardii MTCC 6059, M. canis (MTCC 2820 and MTCC 32700), M. gypseum MTCC 2819, Trichophyton ajelloi MTCC 4878, T. rubrum (MTCC 296 and MTCC 3272). Results The free radical scavenging activity values were ranged from 0.7 to 1.41 mg/ml and 0.6 to 1.23 mg/ml, respectively for leaf and stem bark extracts. The amount of total phenolic contents of the extracts occurred in both leaf and bark in the range of 12 to 56.6 mg GAE/100 g and 16 to 58 mg GAE/100 g respectively. RP-HPLC analysis for flavonoids revealed the presence of two major flavonoid compounds, rutin and catechin. Kaempferol was in trace or absent. Methanol leaf extract showed significant low inhibitory effect against tested fungus Trichophyton ajelloi MTCC 4878 (0.140625 mg/ml) as the most sensitive. These finding suggest that the methanol leaf extract tested contain compounds with antimicrobial properties. Conclusion The results of our study may partially justify the folkloric uses on the plant studied and further provide an evidence that the leaf extract of Xylosma longifolium might be indeed a potential sources of antimicrobial agents. PMID:23819459

  10. Modulation of Leaf Economic Traits and Rates by Soil Properties, at Global Scale

    NASA Astrophysics Data System (ADS)

    Maire, V.; Wright, I. J.; Reich, P. B.; Batjes, N. H., Jr.; van Bodegom, P. M.; Bhaskar, R.; Santiago, L. S.; Ellsworth, D.; Niinemets, U.; Cornwell, W.

    2014-12-01

    Photosynthesis can be construed as an economic process that optimises the costs of acquisition, transport and utilisation of two substitutable photosynthetic resources: water and nitrogen. The influence of soil fertility on photosynthetic rates and leaf 'economic' traits related with H2O and N costs is poorly quantified in higher plants in comparison with the effects of climate. We set out to address this situation by quantifying the unique and shared contributions to global leaf-trait variation from soils and climate. Using a trait dataset comprising 1509 species from 288 sites, with climate and soil data derived from global datasets, we quantified the effects of soil and climate properties on photosynthetic traits: light-saturated photosynthetic rate (Aarea), stomatal conductance to water vapour (gs), leaf N and P (Narea and Parea) and specific leaf area (SLA). We used mixed regression models, multivariate analyses and variance partitioning. Along a first dimension of soil fertility, soil pH covaried positively with measures of base status and climatic aridity, and negatively with soil organic C content. Along this dimension from low to high soil pH, Narea, Parea and Aarea increased and SLA decreased. Along an independent dimension of soil fertility, gs declined and Parea increased with soil available P (Pavail). Overall, soil variables were stronger predictors of leaf traits than were climate variables, except for SLA. Importantly, soils and climate were not redundant information to explain leaf trait variation but were not additive either. Shared effects of soil and climate dominated over their independent effects on Narea and Parea, while unique effects of soils dominated for Aarea and gs. Three environmental variables were key for explaining variation in leaf traits: soil pH and Pavail, and climatic aridity. Although the reliability of global soils datasets lags behind that of climate datasets our results nonetheless provide compelling evidence that both can

  11. KINETICS OF LEAF TEMPERATURE FLUCTUATION AFFECT ISOPRENE EMISSION FROM RED OAK (QUERCUS RUBRA) LEAVES

    EPA Science Inventory

    Because the rate of isoprene (2-methyl-1,3-butadiene) emission from plants is highly temperature-dependent, we investigated the natural fluctuations on leaf temperature and the effects of rapid temperature change on isoprene emission of red oak (Quercus rubra L.) leaves at the to...

  12. Dynamic spatial patterns of leaf traits affect total respiration on the crown scale

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Zhou, Hongxuan; Han, Fengsen; Li, Yuanzheng; Hu, Dan

    2016-05-01

    Temporal and spatial variations of leaf traits caused conflicting conclusions and great estimating errors of total carbon budget on crown scales. However, there is no effective method to quantitatively describe and study heterogeneous patterns of crowns yet. In this study, dynamic spatial patterns of typical ecological factors on crown scales were investigated during two sky conditions, and CEZs (crown ecological zones) method was developed for spatial crown zoning, within which leaf traits were statistically unchanged. The influencing factors on hourly and spatial variations of leaf dark respiration (Rd) were analysed, and total crown respiration (Rt) was estimated based on patterns of CEZs. The results showed that dynamic spatial patterns of air temperature and light intensity changed significantly by CEZs in special periods and positions, but not continuously. The contributions of influencing factors on variations of Rd changed with crown depth and sky conditions, and total contributions of leaf structural and chemical traits were higher during sunny days than ecological factors, but lower during cloudy days. The estimated errors of Rt may be obviously reduced with CEZs. These results provided some references for scaling from leaves to crown, and technical foundations for expanding lab-control experiments to open field ones.

  13. Dynamic spatial patterns of leaf traits affect total respiration on the crown scale

    PubMed Central

    Wang, Xiaolin; Zhou, Hongxuan; Han, Fengsen; Li, Yuanzheng; Hu, Dan

    2016-01-01

    Temporal and spatial variations of leaf traits caused conflicting conclusions and great estimating errors of total carbon budget on crown scales. However, there is no effective method to quantitatively describe and study heterogeneous patterns of crowns yet. In this study, dynamic spatial patterns of typical ecological factors on crown scales were investigated during two sky conditions, and CEZs (crown ecological zones) method was developed for spatial crown zoning, within which leaf traits were statistically unchanged. The influencing factors on hourly and spatial variations of leaf dark respiration (Rd) were analysed, and total crown respiration (Rt) was estimated based on patterns of CEZs. The results showed that dynamic spatial patterns of air temperature and light intensity changed significantly by CEZs in special periods and positions, but not continuously. The contributions of influencing factors on variations of Rd changed with crown depth and sky conditions, and total contributions of leaf structural and chemical traits were higher during sunny days than ecological factors, but lower during cloudy days. The estimated errors of Rt may be obviously reduced with CEZs. These results provided some references for scaling from leaves to crown, and technical foundations for expanding lab-control experiments to open field ones. PMID:27225586

  14. Dynamic spatial patterns of leaf traits affect total respiration on the crown scale.

    PubMed

    Wang, Xiaolin; Zhou, Hongxuan; Han, Fengsen; Li, Yuanzheng; Hu, Dan

    2016-01-01

    Temporal and spatial variations of leaf traits caused conflicting conclusions and great estimating errors of total carbon budget on crown scales. However, there is no effective method to quantitatively describe and study heterogeneous patterns of crowns yet. In this study, dynamic spatial patterns of typical ecological factors on crown scales were investigated during two sky conditions, and CEZs (crown ecological zones) method was developed for spatial crown zoning, within which leaf traits were statistically unchanged. The influencing factors on hourly and spatial variations of leaf dark respiration (Rd) were analysed, and total crown respiration (Rt) was estimated based on patterns of CEZs. The results showed that dynamic spatial patterns of air temperature and light intensity changed significantly by CEZs in special periods and positions, but not continuously. The contributions of influencing factors on variations of Rd changed with crown depth and sky conditions, and total contributions of leaf structural and chemical traits were higher during sunny days than ecological factors, but lower during cloudy days. The estimated errors of Rt may be obviously reduced with CEZs. These results provided some references for scaling from leaves to crown, and technical foundations for expanding lab-control experiments to open field ones. PMID:27225586

  15. The Liguleless narrow mutation affects proximal distal signaling and leaf growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    How cells acquire competence to differentiate according to position is an essential question in developmental biology. Maize leaves provide a unique opportunity to study positional information. In the developing leaf primordium, a line is drawn across a field of seemingly identical cells. Above the ...

  16. Genome-wide association study of maize identifies genes affecting leaf architecture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    U.S. maize yield has increased eightfold in the past 80 years with half of the improvement attributed to genetics. Changes in maize leaf angle and size provided a basis for more efficient light capture as plant densities increased. Through a genome wide association study (GWAS) of the maize nested a...

  17. Leaf litter quality affects aquatic insect emergence: contrasting patterns from two foundation trees.

    PubMed

    Compson, Zacchaeus G; Adams, Kenneth J; Edwards, Joeseph A; Maestas, Jesse M; Whitham, Thomas G; Marks, Jane C

    2013-10-01

    Reciprocal subsidies between rivers and terrestrial habitats are common where terrestrial leaf litter provides energy to aquatic invertebrates while emerging aquatic insects provide energy to terrestrial predators (e.g., birds, lizards, spiders). We examined how aquatic insect emergence changed seasonally with litter from two foundation riparian trees, whose litter often dominates riparian streams of the southwestern United States: Fremont (Populus fremontii) and narrowleaf (Populus angustifolia) cottonwood. P. fremontii litter is fast-decomposing and lower in defensive phytochemicals (i.e., condensed tannins, lignin) relative to P. angustifolia. We experimentally manipulated leaf litter from these two species by placing them in leaf enclosures with emergence traps attached in order to determine how leaf type influenced insect emergence. Contrary to our initial predictions, we found that packs with slow-decomposing leaves tended to support more emergent insects relative to packs with fast-decomposing leaves. Three findings emerged. Firstly, abundance (number of emerging insects m(-2) day(-1)) was 25% higher on narrowleaf compared to Fremont leaves for the spring but did not differ in the fall, demonstrating that leaf quality from two dominant trees of the same genus yielded different emergence patterns and that these patterns changed seasonally. Secondly, functional feeding groups of emerging insects differed between treatments and seasons. Specifically, in the spring collector-gatherer abundance and biomass were higher on narrowleaf leaves, whereas collector-filterer abundance and biomass were higher on Fremont leaves. Shredder abundance and biomass were higher on narrowleaf leaves in the fall. Thirdly, diversity (Shannon's H') was higher on Fremont leaves in the spring, but no differences were found in the fall, showing that fast-decomposing leaves can support a more diverse, complex emergent insect assemblage during certain times of the year. Collectively, these

  18. Plant Water Stress Detection Using Radar: The Influence Of Water Stress On Leaf Dielectric Properties

    NASA Astrophysics Data System (ADS)

    van Emmerik, Tim; Steele-Dunne, Susan; Judge, Jasmeet; van de Giesen, Nick

    2015-04-01

    Recent research on an agricultural maize canopy has demonstrated that leaf water content can change considerably during the day and in response to water stress. Model simulations suggest that these changes have a significant impact on radar backscatter, particularly in times of water stress. Radar is already used for several vegetation and soil monitoring applications, and might be used for water stress detection in agricultural canopies. Radar observations of the land surface are sensitive because it results in two-way attenuation of the reflected signal from the soil surface, and vegetation contributes to total backscatter from the canopy itself. An important driver that determines the impact of vegetation on backscatter is the dielectric constant of the leaves, which is primarily a function of their moisture content. Understanding the effects of water stress on the dynamics of leaf dielectric properties might shed light on how radar can be used to detect vegetation water stress. Previous studies have investigated the dielectric properties of vegetation. However, this has mainly been done using destructive sampling or in-vivo measurements of tree trunks. Unfortunately, few in-vivo measurements of leaf dielectric properties exist. This study presents datasets of in-vivo dielectric measurements of maize leaves, taken during two field experiments. One experiment was done using was done during a period of water stress, the other during a period without. Field measurements revealed a different vertical profile in dielectric properties for the period with and without water stress. During a period of increased water stress, the diurnal dynamics of leaves at different heights responded differently to a decrease in bulk moisture content. This study provides insight in the effect of water stress on leaf dielectric properties and water content, and highlights the potential use of radar for water stress detection in agricultural canopies.

  19. Hormonal activity in detached lettuce leaves as affected by leaf water content.

    PubMed

    Aharoni, N; Blumenfeld, A; Richmond, A E

    1977-06-01

    The interrelationship between water deficiency and hormonal makeup in plants was investigated in detached leaves of romaine lettuce (Lactuca sativa L. cv. ;Hazera Yellow'). Water stress was imposed by desiccating the leaves for several hours in light or darkness at different air temperatures and relative humidity. In the course of desiccation, a rise in abscisic acid content and a decline in gibberellin and cytokinin activity were observed by gas-liquid chromatography, by both the barley endosperm bioassay and radioimmunoassay and by the soybean callus bioassay. Gibberellin activity began to decline in the stressed leaves before the rise in abscisic acid, the rate of this decline being positively correlated with the rate of increase in leaf water saturation deficit. Recovery from water stress was effected by immersing the leaf petioles in water while exposing the blades to high relative humidity. This resulted in a decrease in leaf water saturation deficit, a reduction in abscisic acid content, and an increase in gibberellin and cytokinin activity.Application of abscisic acid to the leaves caused partial stomatal closure in turgid lettuce leaves, whereas treatment with gibberellic acid and kinetin of such leaves had no effect on the stomatal aperture. In desiccating leaves, however, gibberellic acid and kinetin treatment considerably retarded stomatal closure, thus enhancing the increase in leaf water saturation deficit. These results suggest that the effect of desiccation in changing leaf hormonal make-up, i.e. a rapid increase in abscisic acid and a decrease in both cytokinin and gibberellin activity, is related to a mechanism designed to curtail water loss under conditions inducing water deficiency. PMID:16660015

  20. Coating agents affected toward magnetite nanoparticles properties

    NASA Astrophysics Data System (ADS)

    Petcharoen, Karat; Sirivat, Anuvat

    2012-02-01

    Magnetite nanoparticles --MNPs-- are innovative materials used in biological and medical applications. They respond to magnetic field through the superparamagnetic behavior at room temperature. In this study, the MNPs were synthesized via the chemical co-precipitation method using various coating agents. Fatty acids, found naturally in the animal fats, can be used as a coating agent. Oleic acid and hexanoic acid were chosen as the surface modification agents to study the improvement in the suspension of MNPs in water and the magnetite properties. Suspension stability, particle size, and electrical conductivity of MNPs are critically affected by the modification process. The well-dispersed MNPs in water can be improved by the surface modification and the oleic acid coated MNPs possess excellent suspension stability over 1 week. The particle size of MNPs increases up to 40 nm using oleic acid coated MNPs. The electrical conductivity of the smallest particle size is 1.3x10-3 S/cm, which is 5 times higher than that of the largest particle, suggesting potential applications as a biomedical material under both of the electrical and magnetic fields.

  1. Hemostatic and Wound Healing Properties of Chromolaena odorata Leaf Extract

    PubMed Central

    Pandith, Hataichanok; Liggett, Jason; Min, Kyung-Won; Gritsanapan, Wandee; Baek, Seung Joon

    2013-01-01

    Chromolaena odorata (L.) King and Robinson (Siam weed) extract has been used to stop bleeding and in wound healing in many tropical countries. However, its detailed mechanisms have not been elucidated. In this study, we examined the molecular mechanisms by which Siam weed extract (SWE) affected hemostatic and wound healing activities. SWE promoted Balb/c 3T3 fibroblast cell migration and proliferation. Subsequently, we found that heme oxygenase-1 (HO-1), the accelerating wound healing enzyme, was increased at the transcriptional and translational levels by SWE treatments. The HO-1 promoter analyzed with luciferase assay was also increased by treatment of SWE in a dose-dependent manner. This induction may be mediated by several kinase pathways including MEK, p38MAPK, AKT, and JNK. Quantitative real-time PCR using undifferentiated promonocytic cell lines revealed that thromboxane synthase (TXS), a potent vasoconstrictor and platelet aggregator, was increased and MMP-9, an anti platelet aggregator, was decreased in the presence of SWE. Our studies presented that SWE accelerated hemostatic and wound healing activities by altering the expression of genes, including HO-1, TXS, and MMP-9. PMID:23984087

  2. Hemostatic and Wound Healing Properties of Chromolaena odorata Leaf Extract.

    PubMed

    Pandith, Hataichanok; Zhang, Xiaobo; Liggett, Jason; Min, Kyung-Won; Gritsanapan, Wandee; Baek, Seung Joon

    2013-01-01

    Chromolaena odorata (L.) King and Robinson (Siam weed) extract has been used to stop bleeding and in wound healing in many tropical countries. However, its detailed mechanisms have not been elucidated. In this study, we examined the molecular mechanisms by which Siam weed extract (SWE) affected hemostatic and wound healing activities. SWE promoted Balb/c 3T3 fibroblast cell migration and proliferation. Subsequently, we found that heme oxygenase-1 (HO-1), the accelerating wound healing enzyme, was increased at the transcriptional and translational levels by SWE treatments. The HO-1 promoter analyzed with luciferase assay was also increased by treatment of SWE in a dose-dependent manner. This induction may be mediated by several kinase pathways including MEK, p38MAPK, AKT, and JNK. Quantitative real-time PCR using undifferentiated promonocytic cell lines revealed that thromboxane synthase (TXS), a potent vasoconstrictor and platelet aggregator, was increased and MMP-9, an anti platelet aggregator, was decreased in the presence of SWE. Our studies presented that SWE accelerated hemostatic and wound healing activities by altering the expression of genes, including HO-1, TXS, and MMP-9. PMID:23984087

  3. Leaf surface chemicals fromNicotiana affecting germination ofPeronospora tabacina (adam) sporangia.

    PubMed

    Kennedy, B S; Nielsen, M T; Severson, R F; Sisson, V A; Stephenson, M K; Jackson, D M

    1992-09-01

    A bioassay was used to evaluate the effects of cuticular leaf components, isolated fromN. tabacum, N. glutinosa (accessions 24 and 24a), and 23other Nicotiana species, on germinationof P. tabacina (blue mold). The leaf surface compounds includedα- andβ-4,8,13,-duvatriene-l,3-diols (DVT-diols), (13-E)-labda-13-ene-8α-,15-diol (labdenediol), (12-Z)-labda-12,14-diene-8α-ol (cis-abienol), (13-R)-labda-8,14-diene-13-ol (manool), 2-hydroxymanool, a mixture of (13-R)-labda-14-ene-8α,13-diol (sclareol), and (13-S)-labda-14-ene-8α,13-diol (episclareol), and various glucose and/or sucrose ester isolates. The above in acetone were applied onto leaf disks of the blue moldsusceptibleN. tabacum cv. TI 1406, which was then inoculated with blue mold sporangia. Estimated IC50 values (inhibitory concentration) were 3.0μg/cm(2) forα-DVT-diol, 2.9μ/cm(2) forβ-DVT-diol, 0.4μg/cm(2) for labdenediol and 4.7μg/cm(2) for the sclareol mixture. Manool, 2-hydroxymanool, andcis-abienol at application rates up to 30μg/cm(2) had little or no effect on sporangium germination. Glucose and/or sucrose ester isolates from the cuticular leaf extracts of 23Nicotiana species and three different fractions fromN. bigelovii were also evaluated for antimicrobial activity at a concentration of 30μg/cm(2). Germination was inhibited by >20% when exposed to sugar esters isolated fromN. acuminata, N. benthamiana, N. attenuata, N. clevelandii, andN. miersii, and accessions 10 and 12 ofN. bigelovii. These results imply that a number of compounds may influence resistance to blue mold in tobacco. PMID:24254279

  4. Leaf damage and gender but not flower damage affect female fitness in Nemophila menziesii (Hydrophyllaceae).

    PubMed

    McCall, Andrew C

    2007-03-01

    Researchers can answer questions about the evolution or maintenance of separate sexes using dioecious plant systems. Because females in these species typically put more resources into reproductive effort than male plants, researchers have hypothesized that females may be less tolerant of the stresses found in marginal habitats. Herbivory can act as a biotic stressor that reduces resources in plants much like a marginal habitat can. Females may be limited by resources, and may thus be less tolerant to herbivory than males. Here, I explore the relationships between florivory, leaf herbivory, and gender in a gynodioecious, annual plant, Nemophila menziesii (Hydrophyllaceae, senso lato). I performed a crossed design experiment examining the main effects and interactions of plant gender, artificial leaf damage, and artificial flower damage on components of female plant fitness. Leaf damage decreased fruit set and females made significantly more fruit than hermaphrodites. However, contrary to theory, I found little evidence for a gender by damage interaction for either type of artificial herbivory. Based on these results, I propose more work exploring the effects of both source and sink damage in dioecious species to help elucidate where and when different sexual morphs are favored by natural selection. PMID:21636414

  5. How environmental conditions affect canopy leaf-level photosynthesis in four deciduous tree species

    SciTech Connect

    Bassow, S.L.; Bazzaz, F.A.

    1998-12-01

    Species composition of temperate forests vary with successional age and seems likely to change in response to significant global climate change. Because photosynthesis rates in co-occurring tree species can differ in their sensitivity to environmental conditions, these changes in species composition are likely to alter the carbon dynamics of temperate forests. To help improve their understanding of such atmosphere-biosphere interactions, the authors explored changes in leaf-level photosynthesis in a 60--70 yr old temperate mixed-deciduous forest in Petersham, Massachusetts (USA). Diurnally and seasonally varying environmental conditions differentially influenced in situ leaf-level photosynthesis rates in the canopies of four mature temperate deciduous tree species: red oak (Quercus rubra), red maple (Acer rubrum), white birch (Betula papyrifera), and yellow birch (Betula alleghaniensis). The authors measured in situ photosynthesis at two heights within the canopies through a diurnal time course on 7 d over two growing seasons. They simultaneously measured a suite of environmental conditions surrounding the leaf at the time of each measurement. The authors used path analysis to examine the influence of environmental factors on in situ photosynthesis in the tree canopies.

  6. Daytime and nighttime wind differentially affects hydraulic properties and thigmomorphogenic response of poplar saplings.

    PubMed

    Huang, Ping; Wan, Xianchong; Lieffers, Victor J

    2016-05-01

    This study tested how wind in daytime and nighttime affects hydraulic properties and thigmomorphogenic response of poplar saplings. It shows that wind in daytime interrupted water balance of poplar plants by aggravating cavitation in the stem xylem under high xylem tension in the daytime, reducing water potential in midday and hence reducing gas exchange, including stomatal conductance and CO2 assimilation. The wind blowing in daytime significantly reduced plant growth, including height, diameter, leaf size, leaf area, root and whole biomass, whereas wind blowing in nighttime only caused a reduction in radial and height growth at the early stage compared with the control but decreased height:diameter ratios. In summary, the interaction between wind loading and xylem tension exerted a negative impact on water balance, gas exchanges and growth of poplar plants, and wind in nighttime caused only a small thigmomorphogenic response. PMID:26541407

  7. In vitro erythrocyte membrane stabilization properties of Carica papaya L. leaf extracts

    PubMed Central

    Ranasinghe, Priyanga; Ranasinghe, Pathmasiri; Abeysekera, W. P. Kaushalya M.; Premakumara, G. A. Sirimal; Perera, Yashasvi S.; Gurugama, Padmalal; Gunatilake, Saman B.

    2012-01-01

    Background: Carica papaya L. fruit juice and leaf extracts are known to have many beneficial medical properties. Recent reports have claimed possible beneficial effects of C. papaya L. leaf juice in treating patients with dengue viral infections. This study aims to evaluate the membrane stabilization potential of C. papaya L. leaf extracts using an in vitro hemolytic assay. Materials and Methods: The study was conducted in between June and August 2010. Two milliliters of blood from healthy volunteers and patients with serologically confirmed current dengue infection were freshly collected and used in the assays. Fresh papaya leaves at three different maturity stages (immature, partly matured, and matured) were cleaned with distilled water, crushed, and the juice was extracted with 10 ml of cold distilled water. Freshly prepared cold water extracts of papaya leaves (1 ml containing 30 μl of papaya leaf extracts, 20 μl from 40% erythrocytes suspension, and 950 μl of phosphate buffered saline) were used in the heat-induced and hypotonic-induced hemolytic assays. In dose response experiments, six different concentrations (9.375, 18.75, 37.5, 75, 150, and 300 μg/ml) of freeze dried extracts of the partly matured leaves were used. Membrane stabilization properties were investigated with heat-induced and hypotonicity-induced hemolysis assays. Results: Extracts of papaya leaves of all three maturity levels showed a significant reduction in heat-induced hemolysis compared to controls (P < 0.05). Papaya leaf extracts of all three maturity levels showed more than 25% inhibition at a concentration of 37.5 μg/ml. The highest inhibition of heat-induced hemolysis was observed at 37.5 μg/ml. Inhibition activity of different maturity levels was not significantly (P < 0.05) different from one another. Heat-induced hemolysis inhibition activity did not demonstrate a linear dose response relationship. At 37.5 μg/ml concentration of the extract, a marked inhibition of

  8. Oral administration of leaf extracts of Momordica charantia affect reproductive hormones of adult female Wistar rats

    PubMed Central

    Adewale, Osonuga Odusoga; Oduyemi, Osonuga Ifabunmi; Ayokunle, Osonuga

    2014-01-01

    Objective To determine the effect of graded doses of aqueous leaf extracts of Momordica charantia on fertility hormones of female albino rats. Methods Twenty adult, healthy, female Wistar rats were divided into four groups: low dose (LD), moderate dose (MD) and high dose (HD) groups which received 12.5 g, 25.0 g, 50.0 g of the leaf extract respectively and control group that was given with water ad libatum. Result Estrogen levels reduced by 6.40 nmol/L, 10.80 nmol/L and 28.00 nmol/L in the LD, MD and HD groups respectively while plasma progesterone of rats in the LD, MD and HD groups reduced by 24.20 nmol/L, 40.8 nmol/L and 59.20 nmol/L respectively. Conclusion Our study has shown that the antifertility effect of Momordica charantia is achieved in a dose dependent manner. Hence, cautious use of such medication should be advocated especially when managing couples for infertility. PMID:25183143

  9. Tillage system affects microbiological properties of soil

    NASA Astrophysics Data System (ADS)

    Delgado, A.; de Santiago, A.; Avilés, M.; Perea, F.

    2012-04-01

    Soil tillage significantly affects organic carbon accumulation, microbial biomass, and subsequently enzymatic activity in surface soil. Microbial activity in soil is a crucial parameter contributing to soil functioning, and thus a basic quality factor for soil. Since enzymes remain soil after excretion by living or disintegrating cells, shifts in their activities reflect long-term fluctuations in microbial biomass. In order to study the effects of no-till on biochemical and microbiological properties in comparison to conventional tillage in a representative soil from South Spain, an experiment was conducted since 1982 on the experimental farm of the Institute of Agriculture and Fisheries Research of Andalusia (IFAPA) in Carmona, SW Spain (37o24'07''N, 5o35'10''W). The soil at the experimental site was a very fine, montomorillonitic, thermic Chromic Haploxerert (Soil Survey Staff, 2010). A randomized complete block design involving three replications and the following two tillage treatments was performed: (i) Conventional tillage, which involved mouldboard plowing to a depth of 50 cm in the summer (once every three years), followed by field cultivation to a depth of 15 cm before sowing; crop residues being burnt, (ii) No tillage, which involved controlling weeds before sowing by spraying glyphosate and sowing directly into the crop residue from the previous year by using a planter with double-disk openers. For all tillage treatments, the crop rotation (annual crops) consisted of winter wheat, sunflower, and legumes (pea, chickpea, or faba bean, depending on the year), which were grown under rainfed conditions. Enzymatic activities (ß-glucosidase, dehydrogenase, aryl-sulphatase, acid phosphatase, and urease), soil microbial biomass by total viable cells number by acridine orange direct count, the density of cultivable groups of bacteria and fungi by dilution plating on semi-selective media, the physiological profiles of the microbial communities by BiologR, and the

  10. Sorghum mutant RG displays antithetic leaf shoot lignin accumulation resulting in improved stem saccharification properties

    PubMed Central

    2013-01-01

    Background Improving saccharification efficiency in bioenergy crop species remains an important challenge. Here, we report the characterization of a Sorghum (Sorghum bicolor L.) mutant, named REDforGREEN (RG), as a bioenergy feedstock. Results It was found that RG displayed increased accumulation of lignin in leaves and depletion in the stems, antithetic to the trend observed in wild type. Consistent with these measurements, the RG leaf tissue displayed reduced saccharification efficiency whereas the stem saccharification efficiency increased relative to wild type. Reduced lignin was linked to improved saccharification in RG stems, but a chemical shift to greater S:G ratios in RG stem lignin was also observed. Similarities in cellulose content and structure by XRD-analysis support the correlation between increased saccharification properties and reduced lignin instead of changes in the cellulose composition and/or structure. Conclusion Antithetic lignin accumulation was observed in the RG mutant leaf-and stem-tissue, which resulted in greater saccharification efficiency in the RG stem and differential thermochemical product yield in high lignin leaves. Thus, the red leaf coloration of the RG mutant represents a potential marker for improved conversion of stem cellulose to fermentable sugars in the C4 grass Sorghum. PMID:24103129

  11. Do cluster properties affect the quenching rate?

    NASA Astrophysics Data System (ADS)

    Raichoor, A.; Andreon, S.

    2014-10-01

    The quenching rate is known to depend on galaxy stellar mass and environment, however, possible dependences on the hosting halo properties, such as mass, richness, and dynamical status, are still debated. The determination of these dependences is hampered by systematics, induced by noisy estimates of cluster mass or by the lack of control on galaxy stellar mass, which may mask existing trends or introduce fake trends. We studied a sample of local clusters (20 with 0.02 < z < 0.1 and log (M200/M⊙) ≳ 14), selected independent of the galaxy properties under study, having homogeneous optical photometry and X-ray estimated properties. Using those top quality measurements of cluster mass, hence of cluster scale, richness, iron abundance, and cooling time/presence of a cool-core, we study the simultaneous dependence of quenching on these cluster properties on galaxy stellar mass M and normalised cluster-centric distance r/r200. We found that the quenching rate can be completely described by two variables only, galaxy stellar mass and normalised cluster-centric distance, and is independent of halo properties (mass, richness, iron abundance, and central cooling time/presence of a cool-core). These halo properties change, in most cases, by less than 3% the probability that a galaxy is quenched, once the mass-size (M200 - r200) scaling relation is accounted for through cluster-centric distance normalisation. Appendix A is available in electronic form at http://www.aanda.org

  12. Phragmites australis and Quercus robur leaf extracts affect antioxidative system and photosynthesis of Ceratophyllum demersum.

    PubMed

    Kamara, Sheku; Pflugmacher, Stephan

    2007-06-01

    During senescence, leaves are deposited on aquatic bodies and decay under water releasing chemical substances that might exert physiological stress to aquatic organisms. Leaf litter alone contributes 30% of the total dissolved organic carbon (DOC) in streams. We investigated the impact of leaves extract from Phragmites australis and Quercus robur on the antioxidative system and photosynthetic rate of the aquatic macrophyte Ceratophyllum demersum exposed for 24h. Rate of photosynthetic oxygen release and antioxidant enzyme activity (glutathione S-transferases, glutathione reductases and peroxidases) as well as lipid peroxidation in C. demersum were measured. Significant (P<0.01) elevations of antioxidative enzyme activity in C. demersum which tends to plateau at high DOC concentrations were observed. There was no detectable effect on lipid peroxidation. A significant dose-dependent reduction in photosynthetic oxygen production was measured. PMID:16996134

  13. In vitro evaluation of the cytotoxic and apoptogenic properties of aloe whole leaf and gel materials.

    PubMed

    du Plessis, Lissinda H; Hamman, Josias H

    2014-04-01

    Aloe gel and whole-leaf materials have shown biological effects with potential therapeutic applications, and recently, their drug-absorption enhancement properties have been discovered. It is important to establish a safety profile for these materials before they can be used in pharmaceutical products. The aim of the study was to investigate the in vitro cytotoxicity of Aloe vera, Aloe marlothii, Aloe speciosa and Aloe ferox against human hepatocellular (HepG2), human neuroblastoma cells (SH-SY5Y) and human adenocarcinoma epithelial cells (HeLa). Flow cytometry was used to measure cell viability, apoptosis and reactive oxygen species (ROS). The aloe gel materials investigated only decreased cell viability at concentrations of >10 mg/mL and exhibited half-maximal cytotoxic concentration (CC(50)) values above 1000 mg/mL, except for A. vera gel in HepG2 cells (CC(50) = 269.3 mg/mL). A. speciosa whole-leaf material showed a significant decrease in viability of Hela cells, whereas the other whole-leaf materials did not show a similar effect. The aloe gel materials in general showed low levels of apoptosis, whereas A. vera and A. speciosa whole-leaf materials caused a dose-dependent increase of apoptosis in HeLa cells. None of the aloe materials investigated exhibited a significant increase in ROS. It can be concluded that the selected aloe materials caused only limited reduction in cell viability with limited in vitro cytotoxicity effects. Further, neither significant apoptosis effects were observed nor induction of ROS. PMID:24111784

  14. Nutritional Composition and Antioxidant Properties of Cucumis dipsaceus Ehrenb. ex Spach Leaf

    PubMed Central

    Chandran, Rahul; Nivedhini, V.; Parimelazhagan, Thangaraj

    2013-01-01

    The leaf of C. dipsaceus was evaluated for its nutritional and antioxidant properties. From the present investigation, significant amount of almost all essential amino acids and important minerals were quantified. Low levels of trypsin inhibitory units, phenolics, and tannins content were found as antinutritional content. Further, hot water extract of C. dipsaceus showed good activity especially in ABTS+, metal chelating, nitric oxide, and DPPH assays. Hence, the results conclude that C. dipsaceus could be a valuable nutraceutical supplement to the human diet. PMID:24288509

  15. Rediscovering leaf optical properties: New insights into plant acclimation to solar UV radiation.

    PubMed

    Barnes, Paul W; Flint, Stephan D; Ryel, Ronald J; Tobler, Mark A; Barkley, Anne E; Wargent, Jason J

    2015-08-01

    The accumulation of UV-absorbing compounds (flavonoids and other phenylpropanoid derivatives) and resultant decrease in the UV transmittance of the epidermis in leaves (TUV), is a primary protective mechanism against the potentially deleterious effects of UV radiation and is a critical component of the overall acclimation response of plants to changing UV environments. Traditional measurements of TUV were laborious, time-consuming and destructive or invasive, thus limiting their ability to efficiently make multiple measurements of the optical properties of plants in the field. The development of rapid, nondestructive optical methods of determining TUV has permitted the examination of UV optical properties of leaves with increased replication, on a finer time scale, and enabled repeated sampling of the same leaf over time. This technology has therefore allowed for studies examining acclimation responses to UV in plants in ways not previously possible. Here we provide a brief review of these earlier studies examining leaf UV optical properties and some of their important contributions, describe the principles by which the newer non-invasive measurements of epidermal UV transmittance are made, and highlight several case studies that reveal how this technique is providing new insights into this UV acclimation response in plants, which is far more plastic and dynamic than previously thought. PMID:25465528

  16. Factors Affecting the Textural Properties of Pork

    ERIC Educational Resources Information Center

    Holmer, Sean Frederick

    2009-01-01

    Research concerning rate and extent of tenderization has focused on beef or lamb. However, it is critical to understand these processes in pork, especially as retailers move towards minimally processed or non-enhanced product. The objectives of this experiment were to evaluate the textural properties of pork (firmness and tenderness) by examining…

  17. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream.

    PubMed

    Mora-Gómez, Juanita; Elosegi, Arturo; Duarte, Sofia; Cássio, Fernanda; Pascoal, Cláudia; Romaní, Anna M

    2016-08-01

    Microorganisms are key drivers of leaf litter decomposition; however, the mechanisms underlying the dynamics of different microbial groups are poorly understood. We investigated the effects of seasonal variation and invertebrates on fungal and bacterial dynamics, and on leaf litter decomposition. We followed the decomposition of Populus nigra litter in a Mediterranean stream through an annual cycle, using fine and coarse mesh bags. Irrespective of the season, microbial decomposition followed two stages. Initially, bacterial contribution to total microbial biomass was higher compared to later stages, and it was related to disaccharide and lignin degradation; in a later stage, bacteria were less important and were associated with hemicellulose and cellulose degradation, while fungi were related to lignin decomposition. The relevance of microbial groups in decomposition differed among seasons: fungi were more important in spring, whereas in summer, water quality changes seemed to favour bacteria and slowed down lignin and hemicellulose degradation. Invertebrates influenced litter-associated microbial assemblages (especially bacteria), stimulated enzyme efficiencies and reduced fungal biomass. We conclude that bacterial and fungal assemblages play distinctive roles in microbial decomposition and differ in their sensitivity to environmental changes, ultimately affecting litter decomposition, which might be particularly relevant in highly seasonal ecosystems, such as intermittent streams. PMID:27288197

  18. Vertical Chlorophyll Canopy Structure Affects the Remote Sensing Based Predictability of LAI, Chlorophyll and Leaf Nitrogen in Agricultural Fields

    NASA Astrophysics Data System (ADS)

    Boegh, E.; Houborg, R.; Bienkowski, J.; Braban, C. F.; Dalgaard, T.; van Dijk, N.; Dragosits, U.; Holmes, E.; Magliulo, V.; Schelde, K.; Di Tommasi, P.; Vitale, L.; Theobald, M.; Cellier, P.; Sutton, M.

    2012-12-01

    SVIs require field data for empirical model building, the REGFLEC model was applied without calibration. LAI and SPAD meter data were measured in 93 fields representing 10 crop types of the five European landscapes. SPAD meter data were measured at five canopy height levels and converted to CHL and N using laboratory calibration. The data showed strong vertical leaf chlorophyll gradient profiles in 20 % of fields. This affected the predictability of SVIs and REGFLEC. However, selecting only homogeneous canopies with uniform CHL distributions as reference data for statistical evaluation, significant predictions were achieved for all landscapes, by all methods, with the best overall results given by REGFLEC. Predictabilities of SVIs and REGFLEC simulations improved when constrained to single land use categories across the European landscapes, reflecting sensitivity to canopy structures, and predictabilities further improved when constrained to local (10 x 10 km2) landscapes, thereby reflecting sensitivity to local environmental conditions. The Enhanced Vegetation Index-2 tended to be the best method in landscapes with high vegetation densities, REGFLEC worked best in a landscape with large contrasts in vegetation density, and the Simple Ratio worked best in a landscape characterized by low vegetation density.

  19. Oleuropein-Enriched Olive Leaf Extract Affects Calcium Dynamics and Impairs Viability of Malignant Mesothelioma Cells.

    PubMed

    Marchetti, Carla; Clericuzio, Marco; Borghesi, Barbara; Cornara, Laura; Ribulla, Stefania; Gosetti, Fabio; Marengo, Emilio; Burlando, Bruno

    2015-01-01

    Malignant mesothelioma is a poor prognosis cancer in urgent need of alternative therapies. Oleuropein, the major phenolic of olive tree (Olea europaea L.), is believed to have therapeutic potentials for various diseases, including tumors. We obtained an oleuropein-enriched fraction, consisting of 60% w/w oleuropein, from olive leaves, and assessed its effects on intracellular Ca(2+) and cell viability in mesothelioma cells. Effects of the oleuropein-enriched fraction on Ca(2+) dynamics and cell viability were studied in the REN mesothelioma cell line, using fura-2 microspectrofluorimetry and MTT assay, respectively. Fura-2-loaded cells, transiently exposed to the oleuropein-enriched fraction, showed dose-dependent transient elevations of cytosolic Ca(2+) concentration ([Ca(2+)]i). Application of standard oleuropein and hydroxytyrosol, and of the inhibitor of low-voltage T-type Ca(2+) channels NNC-55-0396, suggested that the effect is mainly due to oleuropein acting through its hydroxytyrosol moiety on T-type Ca(2+) channels. The oleuropein-enriched fraction and standard oleuropein displayed a significant antiproliferative effect, as measured on REN cells by MTT cell viability assay, with IC50 of 22 μg/mL oleuropein. Data suggest that our oleuropein-enriched fraction from olive leaf extract could have pharmacological application in malignant mesothelioma anticancer therapy, possibly by targeting T-type Ca(2+) channels and thereby dysregulating intracellular Ca(2+) dynamics. PMID:26693247

  20. Oleuropein-Enriched Olive Leaf Extract Affects Calcium Dynamics and Impairs Viability of Malignant Mesothelioma Cells

    PubMed Central

    Marchetti, Carla; Clericuzio, Marco; Borghesi, Barbara; Cornara, Laura; Ribulla, Stefania; Gosetti, Fabio; Marengo, Emilio; Burlando, Bruno

    2015-01-01

    Malignant mesothelioma is a poor prognosis cancer in urgent need of alternative therapies. Oleuropein, the major phenolic of olive tree (Olea europaea L.), is believed to have therapeutic potentials for various diseases, including tumors. We obtained an oleuropein-enriched fraction, consisting of 60% w/w oleuropein, from olive leaves, and assessed its effects on intracellular Ca2+ and cell viability in mesothelioma cells. Effects of the oleuropein-enriched fraction on Ca2+ dynamics and cell viability were studied in the REN mesothelioma cell line, using fura-2 microspectrofluorimetry and MTT assay, respectively. Fura-2-loaded cells, transiently exposed to the oleuropein-enriched fraction, showed dose-dependent transient elevations of cytosolic Ca2+ concentration ([Ca2+]i). Application of standard oleuropein and hydroxytyrosol, and of the inhibitor of low-voltage T-type Ca2+ channels NNC-55-0396, suggested that the effect is mainly due to oleuropein acting through its hydroxytyrosol moiety on T-type Ca2+ channels. The oleuropein-enriched fraction and standard oleuropein displayed a significant antiproliferative effect, as measured on REN cells by MTT cell viability assay, with IC50 of 22 μg/mL oleuropein. Data suggest that our oleuropein-enriched fraction from olive leaf extract could have pharmacological application in malignant mesothelioma anticancer therapy, possibly by targeting T-type Ca2+ channels and thereby dysregulating intracellular Ca2+ dynamics. PMID:26693247

  1. The bacterial pathogen Xylella fastidiosa affects the leaf ionome of plant hosts during infection.

    PubMed

    De La Fuente, Leonardo; Parker, Jennifer K; Oliver, Jonathan E; Granger, Shea; Brannen, Phillip M; van Santen, Edzard; Cobine, Paul A

    2013-01-01

    Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition) were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen. PMID:23667547

  2. Plant Water Stress Detection Using Radar: The Influence Of Water Stress On Leaf Dielectric Properties

    NASA Astrophysics Data System (ADS)

    van Emmerik, T. H. M.; Steele-Dunne, S. C.; Judge, J.; Van De Giesen, N.

    2014-12-01

    Recent research on an agricultural maize canopy has demonstrated that leaf water content can change considerably during the day and in response to water stress. Model simulations suggest that these changes have a significant impact on backscatter, particularly in times of water stress. Radar is already used for several vegetation and soil monitoring applications and might be used for water stress detection in agricultural canopies. Radar observations of the land surface are sensitive because it results in two-way attenuation of the reflected signal from the soil surface, and vegetation contributes to total backscatter from the canopy itself. An important driver that determines the impact of vegetation on backscatter is the dielectric constant of the leaves, which is primarily a function of their moisture content. Understanding the effects of water stress on the dynamics of leaf dielectric properties might shed light on how radar can be used to detect vegetation water stress. Previous studies have investigated the dielectric properties of vegetation. However this has mainly been done using destructive sampling rather than in-vivo measurements. Unfortunately, few in-vivo measurements of vegetation dielectric properties exist. This study presents datasets of in-vivo dielectric measurements of maize leaves, taken during two field experiments. One experiment was done using was done during a period of water stress, the other during a period without. Field measurements revealed a vertical profile in dielectric properties during both the period with and without water stress. During a period of increased water stress, the diurnal dynamics of leaves at different heights responded differently to a decrease in bulk moisture content. This study provides insight in the effect of water stress on vegetation dielectric properties and highlights the potential use of radar for water stress detection in agricultural canopies.

  3. City snow's physicochemical property affects snow disposal

    NASA Astrophysics Data System (ADS)

    Dovbysh, V. O.; Sharukha, A. V.; Evtin, P. V.; Vershinina, S. V.

    2015-10-01

    At the present day the industrial cities run into severe problem: fallen snow in a city it's a concentrator of pollutants and their quantity is constantly increasing by technology development. Pollution of snow increases because of emission of gases to the atmosphere by cars and factories. Large accumulation of polluted snow engenders many vexed ecological problems. That's why we need a new, non-polluting, scientifically based method of snow disposal. This paper investigates polluted snow's physicochemical property effects on snow melting. A distinctive feature of the ion accelerators with self-magnetically insulated diode is that there.

  4. A mutation, tl2, in pea (Pisum sativum L.) affects leaf development only in the heterozygous state.

    PubMed

    Berdnikov, V A; Gorel, F L

    2005-04-01

    After gamma irradiation of pea seeds, a mutation designated as tendril-less2 (tl2) was induced. In the heterozygous state, it transforms tendrils into very narrow leaflets that resemble the heterozygote phenotype of the classic tl mutation. The tendrils of the double heterozygote tl2/+, tl/+ are converted into oval leaflets. Unlike tl, the novel mutation in the homozygous state does not affect tendrils. The leaf phenotype of homozygotes tl2/tl2 and Tl2/Tl2 do not differ in the tl/+ background. However, the anthocyanin pigmentation is strongly suppressed in petals of tl2/tl2 plants. Some hypotheses to explain the unusual phenotypic manifestation of tl2 are suggested. PMID:15714325

  5. Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf.

    PubMed

    Grams, Thorsten E E; Lautner, Silke; Felle, Hubert H; Matyssek, Rainer; Fromm, Jörg

    2009-04-01

    Combining measurements of electric potential and pH with such of chlorophyll fluorescence and leaf gas exchange showed heat stimulation to evoke an electrical signal (propagation speed: 3-5 mm s(-1)) that travelled through the leaf while reducing the net CO(2) uptake rate and the photochemical quantum yield of both photosystems (PS). Two-dimensional imaging analysis of the chlorophyll fluorescence signal of PS II revealed that the yield reduction spread basipetally via the veins through the leaf at a speed of 1.6 +/- 0.3 mm s(-1) while the propagation speed in the intervein region was c. 50 times slower. Propagation of the signal through the veins was confirmed because PS I, which is present in the bundle sheath cells around the leaf vessels, was affected first. Hence, spreading of the signal along the veins represents a path with higher travelling speed than within the intervein region of the leaf lamina. Upon the electrical signal, cytoplasmic pH decreased transiently from 7.0 to 6.4, while apoplastic pH increased transiently from 4.5 to 5.2. Moreover, photochemical quantum yield of isolated chloroplasts was strongly affected by pH changes in the surrounding medium, indicating a putative direct influence of electrical signalling via changes of cytosolic pH on leaf photosynthesis. PMID:19054346

  6. Tree Species Composition and Harvest Intensity Affect Herbivore Density and Leaf Damage on Beech, Fagus sylvatica, in Different Landscape Contexts.

    PubMed

    Mangels, Jule; Blüthgen, Nico; Frank, Kevin; Grassein, Fabrice; Hilpert, Andrea; Mody, Karsten

    2015-01-01

    Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that - despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees - suggesting the action of associational resistance processes - and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores. PMID:25938417

  7. Tree Species Composition and Harvest Intensity Affect Herbivore Density and Leaf Damage on Beech, Fagus sylvatica, in Different Landscape Contexts

    PubMed Central

    Mangels, Jule; Blüthgen, Nico; Frank, Kevin; Grassein, Fabrice; Hilpert, Andrea; Mody, Karsten

    2015-01-01

    Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that – despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees – suggesting the action of associational resistance processes – and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores. PMID:25938417

  8. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis

    PubMed Central

    Kieffer, Martin; Master, Vera; Waites, Richard; Davies, Brendan

    2011-01-01

    TCP transcription factors constitute a small family of plant-specific bHLH-containing, DNA-binding proteins that have been implicated in the control of cell proliferation in plants. Despite the significant role that is likely to be played by genes that control cell division in the elaboration of plant architecture, functional analysis of this family by forward and reverse genetics has been hampered by genetic redundancy. Here we show that mutants in two related class I TCP genes display a range of growth-related phenotypes, consistent with their dynamic expression patterns; these phenotypes are enhanced in the double mutant. Together, the two genes influence plant stature by promoting cell division in young internodes. Reporter gene analysis and use of SRDX fusions suggested that TCP14 and TCP15 modulate cell proliferation in the developing leaf blade and specific floral tissues; a role that was not apparent in our phenotypic analysis of single or double mutants. However, when the relevant mutants were subjected to computer-aided morphological analysis of the leaves, the consequences of loss of either or both genes became obvious. The effects on cell proliferation of perturbing the function of TCP14 and TCP15 vary with tissue, as has been suggested for other TCP factors. These findings indicate that the precise elaboration of plant form is dependent on the cumulative influence of many TCP factors acting in a context-dependent fashion. The study highlights the need for advanced methods of phenotypic analysis in order to characterize phenotypes and to construct a dynamic model for TCP gene function. PMID:21668538

  9. Selection of grapevine leaf varieties for culinary process based on phytochemical composition and antioxidant properties.

    PubMed

    Lima, Adriano; Bento, Albino; Baraldi, Ilton; Malheiro, Ricardo

    2016-12-01

    Grapevine leaves are an abundant sub-product of vineyards which is devalued in many regions. The objective of this work is to study the antioxidant activity and phytochemical composition of ten grapevine leaf varieties (four red varieties: Tinta Amarela, Tinta Roriz, Touriga Franca, and Touriga Nacional; and six white varieties: Côdega do Larinho, Fernão Pires, Gouveio, Malvasia Fina, Rabigato, and Viosinho) to select varieties to be used as food ingredients. White grapevine leaves revealed higher antioxidant potential. Malvasia Fina reported better antioxidant properties contrasting with Touriga Franca. Phenolic content varied between 112 and 150mgGAEg(-1) of extract (gallic acid equivalents), hydroxycinnamic acid derivatives and flavonols varied between 76 and 108mgCAEg(-1) of extract (caffeic acid equivalents) and 39 and 54mgQEg(-1) of extract (quercetin equivalents). Malvasia Fina is a good candidate for culinary treatment due to its antioxidant properties and composition in bioactive compounds. PMID:27374535

  10. Satellite based remote sensing technique as a tool for real time monitoring of leaf retention in natural rubber plantations affected by abnormal leaf fall disease

    NASA Astrophysics Data System (ADS)

    Pradeep, B.; Meti, S.; James, J.

    2014-11-01

    Most parts of the traditional natural rubber growing regions of India, extending from Kanyakumari district of Tamil Nadu in the South to Kasaragod district of Kerala in the North received excess and prolonged rains during 2013. This led to severe incidence of Abnormal Leaf Fall (ALF) disease caused by the fungus, Phytophthora sp. The present study demonstrated the first time use of satellite remote sensing technique to monitor ALF disease by estimating Leaf Area Index (LAI) in natural rubber holdings in near real time. Leaf retention was monitored in between April and December 2012 and 2013 by estimating LAI using MODIS 15A2 product covering rubber holdings spread across all districts in the traditional rubber growing region of the country that was mapped using Resourcesat LISS III 2012 and 2013 data. It was found that as the monsoon advanced, LAI decreased substantially in both years, but the reduction was much more substantial and prolonged in many districts during 2013 than 2012 reflecting increased leaf fall due to ALF disease in 2013. The decline was more pronounced in central and northern Kerala than in the South. Kanyakumari district of Tamil Nadu is generally known to be free from ALF disease, but there was considerable leaf loss due to ALF in June 2012 and June and July 2013 even as the monsoon was unusually severe in 2013. Weighted mean LAI during for the entire period of April to December was estimated as a weighted average of LAI and per cent of total area under rubber in each district in the study area for the two years. This was markedly less in 2013 than 2012. The implications of poor leaf retention for biomass production (net primary productivity), carbon sequestration and rubber yield are discussed.

  11. Edge type affects leaf-level water relations and estimated transpiration of Eucalyptus arenacea.

    PubMed

    Wright, Thomas E; Tausz, Michael; Kasel, Sabine; Volkova, Liubov; Merchant, Andrew; Bennett, Lauren T

    2012-03-01

    While edge effects on tree water relations are well described for closed forests, they remain under-examined in more open forest types. Similarly, there has been minimal evaluation of the effects of contrasting land uses on the water relations of open forest types in highly fragmented landscapes. We examined edge effects on the water relations and gas exchange of a dominant tree (Eucalyptus arenacea Marginson & Ladiges) in an open forest type (temperate woodland) of south-eastern Australia. Edge effects in replicate woodlands adjoined by cleared agricultural land (pasture edges) were compared with those adjoined by 7- to 9-year-old eucalypt plantation with a 25m fire break (plantation edges). Consistent with studies in closed forest types, edge effects were pronounced at pasture edges where photosynthesis, transpiration and stomatal conductance were greater for edge trees than interior trees (75m into woodlands), and were related to greater light availability and significantly higher branch water potentials at woodland edges than interiors. Nonetheless, gas exchange values were only ∼50% greater for edge than interior trees, compared with ∼200% previously found in closed forest types. In contrast to woodlands adjoined by pasture, gas exchange in winter was significantly lower for edge than interior trees in woodlands adjoined by plantations, consistent with shading and buffering effects of plantations on edge microclimate. Plantation edge effects were less pronounced in summer, although higher water use efficiency of edge than interior woodland trees indicated possible competition for water between plantation trees and woodland edge trees in the drier months (an effect that might have been more pronounced were there no firebreak between the two land uses). Scaling up of leaf-level water relations to stand transpiration using a Jarvis-type phenomenological model indicated similar differences between edge types. That is, transpiration was greater at pasture than

  12. Changes in oxidative properties of Kalanchoe blossfeldiana leaf mitochondria during development of Crassulacean acid metabolism.

    PubMed

    Rustin, P; Queiroz-Claret, C

    1985-06-01

    Kalanchoe blossfeldiana plants grown under long days (16 h light) exhibit a C3-type photosynthetic metabolism. Switching to short days (9 h light) leads to a gradual development of Crassulacean acid metabolism (CAM). Under the latter conditions, dark CO2 fixation produces large amounts of malate. During the first hours of the day, malate is rapidly decarboxylated into pyruvate through the action of a cytosolic NADP(+)-or a mitochondrial NAD(+)-dependent malic enzyme. Mitochondria were isolated from leaves of plants grown under long days or after treatment by an increasing number of short days. Tricarboxylic acid cycle intermediates as well as exogenous NADH and NADPH were readily oxidized by mitochondria isolated from the two types of plants. Glycine, known to be oxidized by C3-plant mitochondria, was still oxidized after CAM establishment. The experiments showed a marked parallelism in the increase of CAM level and the increase in substrate-oxidation capacity of the isolated mitochondria, particularly the capacity to oxidize malate in the presence of cyanide. These simultaneous variations in CAM level and in mitochondrial properties indicate that the mitochondrial NAD(+)-malic enzyme could account at least for a part of the oxidation of malate. The studies of whole-leaf respiration establish that mitochondria are implicated in malate degradation in vivo. Moreover, an increase in cyanide resistance of the leaf respiration has been observed during the first daylight hours, when malate was oxidized to pyruvate by cytosolic and mitochondrial malic enzymes. PMID:24249613

  13. Solar UV-B radiation affects leaf quality and insect herbivory in the southern beech tree Nothofagus antarctica.

    PubMed

    Rousseaux, M Cecilia; Julkunen-Tiitto, Riitta; Searles, Peter S; Scopel, Ana L; Aphalo, Pedro J; Ballaré, Carlos L

    2004-03-01

    We examined the effects of solar ultraviolet-B (UV-B) radiation on plant-insect interactions in Tierra del Fuego (55 degrees S), Argentina, an area strongly affected by ozone depletion because of its proximity to Antarctica. Solar UV-B under Nothofagus antarctica branches was manipulated using a polyester plastic film to attenuate UV-B (uvb-) and an Aclar film to provide near-ambient UV-B (uvb+). The plastic films were placed on both north-facing (i.e., high solar radiation in the Southern Hemisphere) and south-facing branches. Insects consumed 40% less leaf area from north- than from south-facing branches, and at least 30% less area from uvb+ branches than from uvb- branches. The reduced herbivory on leaves from uvb+ branches occurred for both branch orientations. Leaf mass per area increased and relative water content decreased on north- versus south-facing branches, while no differences were apparent between the UV-B treatments. Solar UV-B did lead to lower gallic acid concentration and higher flavonoid aglycone concentration in uvb+ leaves relative to uvb- leaves. Both the flavonoid aglycone and quercetin-3-arabinopyranoside were higher on north-facing branches. In laboratory preference experiments, larvae of the dominant insect in the natural community, Geometridae "Brown" (Lepidoptera), consumed less area from field-grown uvb+ leaves than from uvb- leaves in 1996-97, but not in 1997-98. Correlation analyses suggested that the reduction in insect herbivory in the field under solar UV-B may be mediated in part by the UV-B effects on gallic acid and flavonoid aglycone. PMID:14740287

  14. Physicochemical properties of bamboo leaf aerogels synthesized via different modes of gelation

    NASA Astrophysics Data System (ADS)

    Kow, Kien-Woh; Yusoff, Rozita; Aziz, A. R. Abdul; Abdullah, E. C.

    2014-05-01

    Aerogels with ultralow silica concentration (3.5 %) was synthesized using bamboo leaf. The synthesis of aerogel was carried out in different pH to study the effect of gelation mechanisms on the properties of aerogel. Aerogel synthesized at acidic pH has generally exhibits more attractive properties, i.e. low shrinkage (24.3%), large specific surface area (547.2 m2 g-1), large pore volume (2.72 cm3 g-1) and low thermal conductivity (0.024 W m-1 K-1). As comparison, the aerogel synthesized at basic condition has different properties, in which it has small pore volume (0.287 cm3 g-1) and pore size (11.44 nm), large primary particles (6.69 nm), small specific surface area (247.7 m2 g-1), low degree of fractality (6.69), strong absorption of water and relatively high thermal conductivity (0.0415 W m-1 K-1). Properties of aerogels synthesized were also compared with aerogels synthesized using conventional TEOS precursor. The difference in the gelation mechanisms was discussed in detailed.

  15. Leaf hydraulics I: scaling transport properties from single cells to tissues.

    PubMed

    Rockwell, Fulton E; Michele Holbrook, N; Stroock, Abraham D

    2014-01-01

    In leaf tissues, water may move through the symplast or apoplast as a liquid, or through the airspace as vapor, but the dominant path remains in dispute. This is due, in part, to a lack of models that describe these three pathways in terms of experimental variables. We show that, in plant water relations theory, the use of a hydraulic capacity in a manner analogous to a thermal capacity, though it ignores mechanical interactions between cells, is consistent with a special case of the more general continuum mechanical theory of linear poroelasticity. The resulting heat equation form affords a great deal of analytical simplicity at a minimal cost: we estimate an expected error of less than 12%, compared to the full set of equations governing linear poroelastic behavior. We next consider the case for local equilibrium between protoplasts, their cell walls, and adjacent air spaces during isothermal hydration transients to determine how accurately simple volume averaging of material properties (a 'composite' model) describes the hydraulic properties of leaf tissue. Based on typical hydraulic parameters for individual cells, we find that a composite description for tissues composed of thin walled cells with air spaces of similar size to the cells, as in photosynthetic tissues, is a reasonable preliminary assumption. We also expect isothermal transport in such cells to be dominated by the aquaporin-mediated cell-to-cell path. In the non-isothermal case, information on the magnitude of the thermal gradients is required to assess the dominant phase of water transport, liquid or vapor. PMID:24112968

  16. Effect of Elevated Atmospheric CO2 and Temperature on Leaf Optical Properties and Chlorophyll Content in Acer saccharum (Marsh.)

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Bahadur, Raj; Norby, Richard J.

    1999-01-01

    Elevated atmospheric CO2 pressure and numerous causes of plant stress often result in decreased leaf chlorophyll contents and thus would be expected to alter leaf optical properties. Hypotheses that elevated carbon dioxide pressure and air temperature would alter leaf optical properties were tested for sugar maple (Acer saccharum Marsh.) in the middle of its fourth growing season under treatment. The saplings had been growing since 1994 in open-top chambers at Oak Ridge, Tennessee under the following treatments: 1) Ambient CO2 pressure and air temperature (control); 2) CO2 pressure approximately 30 Pa above ambient; 3) Air temperatures 3 C above ambient; 4) Elevated CO2 and air temperature. Spectral reflectance, transmittance, and absorptance in the visible spectrum (400-720 nm) did not change significantly (rho = 0.05) in response to any treatment compared with control values. Although reflectance, transmittance, and absorptance at 700 nm correlated strongly with leaf chlorophyll content, chlorophyll content was not altered significantly by the treatments. The lack of treatment effects on pigmentation explained the non-significant change in optical properties in the visible spectrum. Optical properties in the near-infrared (721-850 nm) were similarly unresponsive to treatment with the exception of an increased absorptance in leaves that developed under elevated air temperature alone. This response could not be explained by the data, but might have resulted from effects of air temperature on leaf internal structure. Results indicated no significant potential for detecting leaf optical responses to elevated CO2 or temperature by the remote sensing of reflected radiation in the 400-850 nm spectrum.

  17. Switchgrass affects on soil property changes in the Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The capacity of perennial grasses to affect change in soil properties is well documented but soil property information on switchgrass (Panicum virgatum L.) managed for bioenergy is limited. Potential improvements in near-surface soil function are important should switchgrass be included as a perenn...

  18. Natural enemies of Atta vollenweideri (Hymenoptera: Formicidae) leaf-cutter ants negatively affected by synthetic pesticides, chlorpyrifos and fipronil.

    PubMed

    Guillade, Andrea C; Folgarait, Patricia J

    2014-02-01

    In southern South America, Ada vollenweideri Forel (Hymenoptera: Formicidae) is a significant pest of several crops and forestry, also considered to reduce the carrying capacity of pastures. The most usual control method used in Latin America is the application of synthetic pesticides, mainly chlorpyrifos and fipronil. However, no studies have assessed the effects of these agrochemicals on natural enemies of ants. We aimed to evaluate the efficiency of these pesticides on leaf-cutter ants' control and to test their effect on phorid fly parasitoids. Chlorpyrifos failed to exert complete control over ant colonies in the field and was gravely detrimental to specific parasitoids, reducing their percentage of parasitism, pupal survivorship, and adult longevity. Fipronil, however, exerted complete control over the treated colonies. Laboratory tests using both pesticides, either on ants from foraging trails or on pupariae, showed that chlorpyrifos and fipronil decreased larval and pupal survivorship, as well as adult longevity of parasitoids, in comparison to controls. In conclusion, these pesticides will likely affect parasitoids with regard to their reproductive capacity, leading to the decreased levels of natural parasitism observed in the field after treatments. We discuss why neither pesticide should be taken into account for integrated pest management programs. PMID:24665691

  19. A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa × hybrida but does not affect time to flower opening.

    PubMed

    Terfa, Meseret Tesema; Solhaug, Knut Asbjørn; Gislerød, Hans Ragnar; Olsen, Jorunn Elisabeth; Torre, Sissel

    2013-05-01

    Alterations in light quality affect plant morphogenesis and photosynthetic responses but the effects vary significantly between species. Roses exhibit an irradiance-dependent flowering control but knowledge on light quality responses is scarce. In this study we analyzed, the responses in morphology, photosynthesis and flowering of Rosa × hybrida to different blue (B) light proportions provided by light-emitting diodes (LED, high B 20%) and high pressure sodium (HPS, low B 5%) lamps. There was a strong morphological and growth effect of the light sources but no significant difference in total dry matter production and flowering. HPS-grown plants had significantly higher leaf area and plant height, yet a higher dry weight proportion was allocated to leaves than stems under LED. LED plants showed 20% higher photosynthetic capacity (Amax ) and higher levels of soluble carbohydrates. The increase in Amax correlated with an increase in leaf mass per unit leaf area, higher stomata conductance and CO2 exchange, total chlorophyll (Chl) content per area and Chl a/b ratio. LED-grown leaves also displayed a more sun-type leaf anatomy with more and longer palisade cells and a higher stomata frequency. Although floral initiation occurred at a higher leaf number in LED, the time to open flowers was the same under both light conditions. Thereby the study shows that a higher portion of B light is efficient in increasing photosynthesis performance per unit leaf area, enhancing growth and morphological changes in roses but does not affect the total Dry Matter (DM) production or time to open flower. PMID:23020549

  20. A comparison of tensile properties of polyester composites reinforced with pineapple leaf fiber and pineapple peduncle fiber

    NASA Astrophysics Data System (ADS)

    Juraidi, J. M.; Shuhairul, N.; Syed Azuan, S. A.; Intan Saffinaz Anuar, Noor

    2013-12-01

    Pineapple fiber which is rich in cellulose, relatively inexpensive, and abundantly available has the potential for polymer reinforcement. This research presents a study of the tensile properties of pineapple leaf fiber and pineapple peduncle fiber reinforced polyester composites. Composites were fabricated using leaf fiber and peduncle fiber with varying fiber length and fiber loading. Both fibers were mixed with polyester composites the various fiber volume fractions of 4, 8 and 12% and with three different fiber lengths of 10, 20 and 30 mm. The composites panels were fabricated using hand lay-out technique. The tensile test was carried out in accordance to ASTM D638. The result showed that pineapple peduncle fiber with 4% fiber volume fraction and fiber length of 30 mm give highest tensile properties. From the overall results, pineapple peduncle fiber shown the higher tensile properties compared to pineapple leaf fiber. It is found that by increasing the fiber volume fraction the tensile properties has significantly decreased but by increasing the fiber length, the tensile properties will be increased proportionally. Minitab software is used to perform the two-way ANOVA analysis to measure the significant. From the analysis done, there is a significant effect of fiber volume fraction and fiber length on the tensile properties.

  1. Aloe vera phenomenon: a review of the properties and modern uses of the leaf parenchyma gel

    SciTech Connect

    Grindlay, D.; Reynolds, T.

    1986-06-01

    The mucilaginous gel from the parenchymatous cells in the leaf pulp of Aloe vera has been used since early times for a host of curative purposes. This gel should be distinguished clearly from the bitter yellow exudate originating from the bundle sheath cells, which is used for its purgative effects. Aloe vera gel has come to play a prominent role as a contemporary folk remedy, and numerous optimistic, and in some cases extravagant, claims have been made for its medicinal properties. Modern clinical use of the gel began in the 1930s, with reports of successful treatment of X-ray and radium burns, which led to further experimental studies using laboratory animals in the following decades. The reports of these experiments and the numerous favourable case histories did not give conclusive evidence, since although positive results were usually described, much of the work suffered from poor experimental design and insufficiently large test samples. In addition some conflicting or inconsistent results were obtained. With the recent resurgence of interest in Aloe vera gel, however, new experimental work has indicated the possibility of distinct physiological effects. Chemical analysis has shown the gel to contain various carbohydrate polymers, notably either glucomannans or pectic acid, along with a range of other organic and inorganic components. Although many physiological properties of the gel have been described, there is no certain correlation between these and the identified gel components. 154 references.

  2. Molecular genetics of growth and development in Populus (Salicaceae). V. Mapping quantitative trait loci affecting leaf variation

    SciTech Connect

    Wu, R.; Bradshaw, H.D. Jr.; Stettler, R.F.

    1997-02-01

    The genetic variation of leaf morphology and development was studied in the 2-yr-old replicated plantation of an interspecific hybrid pedigree of Populus trichocarpa T. & G. and P. deltoides Marsh. via both molecular and quantitative genetic methods. Leaf traits chosen showed pronounced differences between the original parents, including leaf size, shape, orientation, color, structure, petiole size, and petiole cross section. In the F{sub 2} generation, leaf traits were all significantly different among genotypes, but with significant effects due to genotype X crown-position interaction. Variation in leaf pigmentation, petiole length, and petiole length proportion appeared to be under the control of few quantitative trait loci (QTLs). More QTLs were associated with single leaf area, leaf shape, lamina angle, abaxial color, and petiole flatness, and in these traits the number of QTLs varied among crown positions. In general the estimates of QTL numbers from Wright`s biometric method were close to those derived from molecular markers. For those traits with few underlying QTLs, a single marker interval could explain from 30-60% of the observed phenotypic variance. For multigenic traits, certain markers contributed more substantially to the observed variation than others. Genetic cluster analysis showed developmentally related traits to be more strongly associated with each other than with unrelated traits. This finding was also supported by the QTL mapping. For example, the same chromosomal segment of linkage group L seemed to account for 20% of the phenotypic variation of all dimension-related traits, leaf size, petiole length, and midrib angle. In both traits, the P. deltoides alleles had positive effects and were dominant to the P. trichocarpa alleles. Similar relationships were also found for lamina angle, abaxial greenness, and petiole flatness. 72 refs., 3 figs., 2 tabs.

  3. High Strength Stainless Steel Properties that Affect Resistance Welding

    SciTech Connect

    Kanne, W.R.

    2001-08-01

    This report discusses results of a study on selected high strength stainless steel alloy properties that affect resistance welding. The austenitic alloys A-286, JBK-75 (Modified A-286), 21-6-9, 22-13-5, 316 and 304L were investigated and compared. The former two are age hardenable, and the latter four obtain their strength through work hardening. Properties investigated include corrosion and its relationship to chemical cleaning, the effects of heat treatment on strength and surface condition, and the effect of mechanical properties on strength and weldability.

  4. Antiphase Light and Temperature Cycles Affect PHYTOCHROME B-Controlled Ethylene Sensitivity and Biosynthesis, Limiting Leaf Movement and Growth of Arabidopsis1[C][W

    PubMed Central

    Bours, Ralph; van Zanten, Martijn; Pierik, Ronald; Bouwmeester, Harro; van der Krol, Alexander

    2013-01-01

    In the natural environment, days are generally warmer than the night, resulting in a positive day/night temperature difference (+DIF). Plants have adapted to these conditions, and when exposed to antiphase light and temperature cycles (cold photoperiod/warm night [−DIF]), most species exhibit reduced elongation growth. To study the physiological mechanism of how light and temperature cycles affect plant growth, we used infrared imaging to dissect growth dynamics under +DIF and −DIF in the model plant Arabidopsis (Arabidopsis thaliana). We found that −DIF altered leaf growth patterns, decreasing the amplitude and delaying the phase of leaf movement. Ethylene application restored leaf growth in −DIF conditions, and constitutive ethylene signaling mutants maintain robust leaf movement amplitudes under −DIF, indicating that ethylene signaling becomes limiting under these conditions. In response to −DIF, the phase of ethylene emission advanced 2 h, but total ethylene emission was not reduced. However, expression analysis on members of the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase ethylene biosynthesis gene family showed that ACS2 activity is specifically suppressed in the petiole region under −DIF conditions. Indeed, petioles of plants under −DIF had reduced ACC content, and application of ACC to the petiole restored leaf growth patterns. Moreover, acs2 mutants displayed reduced leaf movement under +DIF, similar to wild-type plants under −DIF. In addition, we demonstrate that the photoreceptor PHYTOCHROME B restricts ethylene biosynthesis and constrains the −DIF-induced phase shift in rhythmic growth. Our findings provide a mechanistic insight into how fluctuating temperature cycles regulate plant growth. PMID:23979970

  5. Factors affecting the abundance of leaf-litter arthropods in unburned and thrice-burned seasonally-dry Amazonian forests.

    PubMed

    Silveira, Juliana M; Barlow, Jos; Louzada, Julio; Moutinho, Paulo

    2010-01-01

    Fire is frequently used as a land management tool for cattle ranching and annual crops in the Amazon. However, these maintenance fires often escape into surrounding forests, with potentially severe impacts for forest biodiversity. We examined the effect of experimental fires on leaf-litter arthropod abundance in a seasonally-dry forest in the Brazilian Amazon. The study plots (50 ha each) included a thrice-burned forest and an unburned control forest. Pitfall-trap samples were collected at 160 randomly selected points in both plots, with sampling stratified across four intra-annual replicates across the dry and wet seasons, corresponding to 6, 8, 10 and 12 months after the most recent fire. Arthropods were identified to the level of order (separating Formicidae). In order to better understand the processes that determine arthropod abundance in thrice-burned forests, we measured canopy openness, understory density and litter depth. All arthropod taxa were significantly affected by fire and season. In addition, the interactions between burn treatment and season were highly significant for all taxa but Isoptera. The burned plot was characterized by a more open canopy, lower understory density and shallower litter depth. Hierarchical partitioning revealed that canopy openness was the most important factor explaining arthropod order abundances in the thrice-burned plot, whereas all three environmental variables were significant in the unburned control plot. These results reveal the marked impact of recurrent wildfires and seasonality on litter arthropods in this transitional forest, and demonstrate the overwhelming importance of canopy-openness in driving post-fire arthropod abundance. PMID:20877720

  6. Factors Affecting the Abundance of Leaf-Litter Arthropods in Unburned and Thrice-Burned Seasonally-Dry Amazonian Forests

    PubMed Central

    Silveira, Juliana M.; Barlow, Jos; Louzada, Julio; Moutinho, Paulo

    2010-01-01

    Fire is frequently used as a land management tool for cattle ranching and annual crops in the Amazon. However, these maintenance fires often escape into surrounding forests, with potentially severe impacts for forest biodiversity. We examined the effect of experimental fires on leaf-litter arthropod abundance in a seasonally-dry forest in the Brazilian Amazon. The study plots (50 ha each) included a thrice-burned forest and an unburned control forest. Pitfall-trap samples were collected at 160 randomly selected points in both plots, with sampling stratified across four intra-annual replicates across the dry and wet seasons, corresponding to 6, 8, 10 and 12 months after the most recent fire. Arthropods were identified to the level of order (separating Formicidae). In order to better understand the processes that determine arthropod abundance in thrice-burned forests, we measured canopy openness, understory density and litter depth. All arthropod taxa were significantly affected by fire and season. In addition, the interactions between burn treatment and season were highly significant for all taxa but Isoptera. The burned plot was characterized by a more open canopy, lower understory density and shallower litter depth. Hierarchical partitioning revealed that canopy openness was the most important factor explaining arthropod order abundances in the thrice-burned plot, whereas all three environmental variables were significant in the unburned control plot. These results reveal the marked impact of recurrent wildfires and seasonality on litter arthropods in this transitional forest, and demonstrate the overwhelming importance of canopy-openness in driving post-fire arthropod abundance. PMID:20877720

  7. 7 CFR 1955.105 - Real property affected (CONACT).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 14 2011-01-01 2011-01-01 false Real property affected (CONACT). 1955.105 Section 1955.105 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE (CONTINUED) PROGRAM REGULATIONS...

  8. 7 CFR 1955.105 - Real property affected (CONACT).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Real property affected (CONACT). 1955.105 Section 1955.105 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE (CONTINUED) PROGRAM REGULATIONS...

  9. Larvicidal and pupicidal properties of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract and the microbial insecticide Metarhizium anisopliae (Metsch.) against lymphatic filarial vector, Culex quinquefasciatus..

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was made to determine the mosquitocidal properties of Acalypha alnifolia leaf extract combined with the use of Metarizhium anisopliae spores for control of the lymphatic filariasis vector Culex quinquefasciatus. The methanolic leaf extract showed larvicidal and pupicidal effects after 24...

  10. Antioxidant properties of Urtica pilulifera root, seed, flower, and leaf extract.

    PubMed

    Ozen, Tevfik; Cöllü, Zeynep; Korkmaz, Halil

    2010-10-01

    This study was conducted to evaluate the antioxidative properties of hydroalcoholic (80%) extracts from different parts of Urtica pilulifera L. (Family Urticaceae), including leaf (UPL), flower (UPF), seed (UPS), and root (UPR). Antioxidative activity of the extracts was measured using the ferric thiocyanate method, thiobarbituric acid method, reductive potential, metal chelating, free radical, superoxide anion radical, and hydrogen peroxide scavenging activity. In addition, the results were compared with antioxidants such as tert-butylated hydroxyanisole (BHA), tert-butylated hydroxytoluene (BHT), and α-tocopherol. Total antioxidant activities of UPS, UPF, UPL, UPR, BHA, BHT, and α-tocopherol were 88.79%, 85.13%, 86.72%, 78.46%, 81.31%, 76.12%, and 46.28%, respectively. Like the antioxidant activity, the reducing power and the superoxide anion radical and free radical scavenging activities of UPL, UPF, UPS, and UPR are concentration dependent. A correlation between higher antioxidant activity and the amount of total phenolics was found in the extracts. PMID:20828318

  11. Anticancer property of Bryophyllum pinnata (Lam.) Oken. leaf on human cervical cancer cells

    PubMed Central

    2012-01-01

    Background Bryophyllum pinnata (B. pinnata) is a common medicinal plant used in traditional medicine of India and of other countries for curing various infections, bowel diseases, healing wounds and other ailments. However, its anticancer properties are poorly defined. In view of broad spectrum therapeutic potential of B. pinnata we designed a study to examine anti-cancer and anti-Human Papillomavirus (HPV) activities in its leaf extracts and tried to isolate its active principle. Methods A chloroform extract derived from a bulk of botanically well-characterized pulverized B. pinnata leaves was separated using column chromatography with step- gradient of petroleum ether and ethyl acetate. Fractions were characterized for phyto-chemical compounds by TLC, HPTLC and NMR and Biological activity of the fractions were examined by MTT-based cell viability assay, Electrophoretic Mobility Shift Assay, Northern blotting and assay of apoptosis related proteins by immunoblotting in human cervical cancer cells. Results Results showed presence of growth inhibitory activity in the crude leaf extracts with IC50 at 552 μg/ml which resolved to fraction F4 (Petroleum Ether: Ethyl Acetate:: 50:50) and showed IC50 at 91 μg/ml. Investigations of anti-viral activity of the extract and its fraction revealed a specific anti-HPV activity on cervical cancer cells as evidenced by downregulation of constitutively active AP1 specific DNA binding activity and suppression of oncogenic c-Fos and c-Jun expression which was accompanied by inhibition of HPV18 transcription. In addition to inhibiting growth, fraction F4 strongly induced apoptosis as evidenced by an increased expression of the pro-apoptotic protein Bax, suppression of the anti-apoptotic molecules Bcl-2, and activation of caspase-3 and cleavage of PARP-1. Phytochemical analysis of fraction F4 by HPTLC and NMR indicated presence of activity that resembled Bryophyllin A. Conclusions Our study therefore demonstrates presence of

  12. Carbon Dioxide Fixation and Related Properties in Sections of the Developing Green Maize Leaf 1

    PubMed Central

    Perchorowicz, John T.; Gibbs, Martin

    1980-01-01

    Light and dark 14CO2 assimilation, pulse-chase (14CO2 followed by 12CO2) labeling experiments both in the light and in the dark, photorespiratory activity and some enzymes (ribulose 1,5-bisphosphate (RuBP) carboxylase, phosphoenolpyruvate (PEP) carboxylase, and NADP-malic enzyme) were followed in sections of 2.5 centimeters from the base (younger tissue) to the tip (oldest tissue) of the green maize leaf. Tissue was taken from the third leaf of 12- to 16-day-old plants consisting of sections 0 to 2.5 centimeters (base), 4.5 to 7.0 centimeters (center) and 9.0 to 11.5 centimeters (top) measured from the base. Some of these properties were also determined in the intact leaves of 4-day-old maize plants. Electron microscopy indicated a Kranz anatomy in all sections. Differentiation into mesophyll granal chloroplasts and bundle sheath agranal chloroplasts had taken place only in the center and top pieces. All of the sections contained PEP carboxylase, RuBP carboxylase, and NADP-malic enzyme. The ratio of PEP:RuBP carboxylase increased from 3.03 (top) to 4.66 (base) whereas the PEP carboxylase:NADP-malic enzyme ratio rose from 2.87 (top) to 9.57 (base). Under conditions of light or dark, the majority of the newly incorporated 14CO2 was found in malate and aspartate in all sections and in 4-day-old leaves. The 14C-labeling pattern typical of C4 plants was present in the center and top sections and to a lesser extent in the 4-day-old leaves. In the base tissue, the percentage of radioactivity in malate and aspartate remained relatively constant both during photosynthesis and pulse-chase experiments. In contrast, radioactivity in glycerate-3-phosphate decreased with time coupled to an increase in sugar phosphates. To account for the isotopic pattern in the base tissue, parallel fixation by PEP carboxylase and RuBP carboxylase was proposed with the photosynthetic carbon reduction cycle functioning to some extent independently within the bundle sheath chloroplasts. The

  13. Leaf Optical Properties in Higher Plants: Linking Spectral Characteristics with Plant Stress

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Knapp, Alan K.

    1999-01-01

    A number of studies have addressed responses of leaf spectral reflectance, transmittance, or absorptance to physiological stress. Stressors included dehydration, ozone, herbicides, disease, insufficient mycorrhizae and N fertilization, flooding and insects. Species included conifers, grasses, and broadleaved trees. Increased reflectance with maximum responses near 700 nm wavelength occurred in all cases. Varying the chlorophyll content in leaves or pigment extracts can simulate this effect. Thus, common optical responses to stress result from decreases in leaf chlorophyll contents or the capacity of chloroplasts to absorb light. Leaf optic can be quite sensitive to any stressor that alters soil-plant-atmosphere processes.

  14. How forest fire affects the chemical properties of Andisols

    NASA Astrophysics Data System (ADS)

    Neris, Jonay; Hernández-Moreno, José Manuel; Tejedor, Marisa; Jiménez, Concepción

    2013-04-01

    Forest fires affect soil physical, chemical and mineralogical properties. However, the magnitude of these changes depends on both fire properties, such as the peak temperature reached and duration or depth achieved; and initial soil properties (soil type) as for example soil moisture, organic matter content or soil structure characteristics. Although many works have studied the effects of fire on the chemical properties of different soil types, its effects on Andisols properties have been omitted until now. Taking into account the high susceptibility to drying processes showed by the properties of Andisols affected by land use changes, it could be expected that the fire effects on their chemical properties may differ from those shown by other types of soil. In this study, the main chemical properties in addition to the specific andic properties of burned pine forest Andisols were compared to their unburned control. The chemical properties of ashes found after fire at the soil surface were also studied. The results show a slightly increase in EC and pH after the fire due mainly to the higher content of cations of the soil solution. Ashes derived from the vegetation and soil organic matter consumption by fire could be the main source of these elements in the soils after a fire, as they showed a high cation content. However, the rise in EC and pH is lower than the reported by most authors for other soil types. This behaviour could be related to the higher organic matter content of this soils, even after fire, and the buffering effect of organic compounds on the soil EC and pH changes after the fire. As other authors have shown, a decrease in both the total and active organic content after the fire was also observed as a result of the fire event. The specific andic properties of Andisols were also affected. The P retention of these soils slightly declines as a consequence of fire, while the content of short-range-order products was also modified, but no statistically

  15. Magnitude and Timing of Leaf Damage Affect Seed Production in a Natural Population of Arabidopsis thaliana (Brassicaceae)

    PubMed Central

    Akiyama, Reiko; Ågren, Jon

    2012-01-01

    Background The effect of herbivory on plant fitness varies widely. Understanding the causes of this variation is of considerable interest because of its implications for plant population dynamics and trait evolution. We experimentally defoliated the annual herb Arabidopsis thaliana in a natural population in Sweden to test the hypotheses that (a) plant fitness decreases with increasing damage, (b) tolerance to defoliation is lower before flowering than during flowering, and (c) defoliation before flowering reduces number of seeds more strongly than defoliation during flowering, but the opposite is true for effects on seed size. Methodology/Principal Findings In a first experiment, between 0 and 75% of the leaf area was removed in May from plants that flowered or were about to start flowering. In a second experiment, 0, 25%, or 50% of the leaf area was removed from plants on one of two occasions, in mid April when plants were either in the vegetative rosette or bolting stage, or in mid May when plants were flowering. In the first experiment, seed production was negatively related to leaf area removed, and at the highest damage level, also mean seed size was reduced. In the second experiment, removal of 50% of the leaf area reduced seed production by 60% among plants defoliated early in the season at the vegetative rosettes, and by 22% among plants defoliated early in the season at the bolting stage, but did not reduce seed output of plants defoliated one month later. No seasonal shift in the effect of defoliation on seed size was detected. Conclusions/Significance The results show that leaf damage may reduce the fitness of A. thaliana, and suggest that in this population leaf herbivores feeding on plants before flowering should exert stronger selection on defence traits than those feeding on plants during flowering, given similar damage levels. PMID:22276140

  16. Patterns of Leaf Biochemical and Structural Properties of Cerrado Life Forms: Implications for Remote Sensing

    PubMed Central

    Ball, Aaron; Sanchez-Azofeifa, Arturo; Portillo-Quintero, Carlos; Rivard, Benoit; Castro-Contreras, Saulo; Fernandes, Geraldo

    2015-01-01

    Aim The general goal of this study is to investigate and analyze patterns of ecophysiological leaf traits and spectral response among life forms (trees, shrubs and lianas) in the Cerrado ecosystem. In this study, we first tested whether life forms are discriminated through leaf level functional traits. We then explored the correlation between leaf-level plant functional traits and spectral reflectance. Location Serra do Cipo National Park, Minas Gerais, Brazil. Methods Six ecophysiological leaf traits were selected to best characterize differences between life forms in the woody plant community of the Cerrado. Results were compared to spectral vegetation indices to determine if plant groups provide means to separate leaf spectral responses. Results Values obtained from leaf traits were similar to results reported from other tropical dry sites. Trees and shrubs significantly differed from lianas in terms of the percentage of leaf water content and Specific Leaf Area. Spectral indices were insufficient to capture the differences of these key traits between groups, though indices were still adequately correlated to overall trait variation. Conclusion The importance of life forms as biochemical and structurally distinctive groups is a significant finding for future remote sensing studies of vegetation, especially in arid and semi-arid environments. The traits we found as indicative of these groups (SLA and water content) are good candidates for spectral characterization. Future studies need to use the full wavelength (400 nm–2500 nm) in order to capture the potential response of these traits. The ecological linkage to water balance and life strategies encourages these traits as starting points for modeling plant communities using hyperspectral remote sensing. PMID:25692675

  17. LEAF UV OPTICAL PROPERTIES OF 'RUMEX PATIENTIA' L. AND 'RUMEX OBTUSIFOLIUS L. IN REGARD TO A PROTECTIVE MECHANISM AGAINST SOLAR UV-B RADIATION INJURY

    EPA Science Inventory

    Effective UV attenuation in the outer leaf layers may represent an important protective mechanism against potentially damaging solar UV-B radiation. Epidermal optical properties for Rumex patientia and Rumex obtusifolius were examined on field collected and greenhouse grown plant...

  18. EPIDEMIOLOGY OF ALMOND LEAF SCORCH DISEASE IN THE SAN JOAQUIN VALLEY OF CALIFORNIA: FACTORS AFFECTING PATHOGEN DISTRIBUTION AND MOVEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Almond leaf scorch disease (ALSD) has recently reemerged as a serious threat to almond production areas throughout California’s San Joaquin Valley. This disease, which is caused by the xylem-limited bacterium Xylella fastidiousa, is vectored by xylophagous insects including sharpshooter leafhoppers ...

  19. RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology.

    PubMed

    Bi, Zhen; Merl-Pham, Juliane; Uehlein, Norbert; Zimmer, Ina; Mühlhans, Stefanie; Aichler, Michaela; Walch, Axel Karl; Kaldenhoff, Ralf; Palme, Klaus; Schnitzler, Jörg-Peter; Block, Katja

    2015-10-14

    Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement. PMID:26248320

  20. Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species.

    PubMed

    Nolf, Markus; Creek, Danielle; Duursma, Remko; Holtum, Joseph; Mayr, Stefan; Choat, Brendan

    2015-12-01

    Coordination of stem and leaf hydraulic traits allows terrestrial plants to maintain safe water status under limited water supply. Tropical rain forests, one of the world's most productive biomes, are vulnerable to drought and potentially threatened by increased aridity due to global climate change. However, the relationship of stem and leaf traits within the plant hydraulic continuum remains understudied, particularly in tropical species. We studied within-plant hydraulic coordination between stems and leaves in three tropical lowland rain forest tree species by analyses of hydraulic vulnerability [hydraulic methods and ultrasonic emission (UE) analysis], pressure-volume relations and in situ pre-dawn and midday water potentials (Ψ). We found finely coordinated stem and leaf hydraulic features, with a strategy of sacrificing leaves in favour of stems. Fifty percent of hydraulic conductivity (P50 ) was lost at -2.1 to -3.1 MPa in stems and at -1.7 to -2.2 MPa in leaves. UE analysis corresponded to hydraulic measurements. Safety margins (leaf P50 - stem P50 ) were very narrow at -0.4 to -1.4 MPa. Pressure-volume analysis and in situ Ψ indicated safe water status in stems but risk of hydraulic failure in leaves. Our study shows that stem and leaf hydraulics were finely tuned to avoid embolism formation in the xylem. PMID:26032606

  1. Change in hydraulic properties and leaf traits of a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics

    NASA Astrophysics Data System (ADS)

    Schuldt, B.; Leuschner, C.; Horna, V.; Moser, G.; Köhler, M.; Barus, H.

    2010-11-01

    In a throughfall displacement experiment on Sulawesi, Indonesia, three 0.16 ha stands of a premontane perhumid rainforest were exposed to a two-year soil desiccation period that reduced the soil moisture in the upper soil layers beyond the conventional wilting point. About 25 variables, including leaf morphological and chemical traits, stem diameter growth and hydraulic properties of the xylem in the trunk and terminal twigs, were investigated in trees of the tall-growing tree species Castanopsis acuminatissima (Fagaceae) by comparing desiccated roof plots with nearby control plots. We tested the hypotheses that this tall and productive species is particularly sensitive to drought, and the exposed upper sun canopy is more affected than the shade canopy. Hydraulic conductivity in the xylem of terminal twigs normalised to vessel lumen area was reduced by 25%, leaf area-specific conductivity by 10-33% during the desiccation treatment. Surprisingly, the leaves present at the end of the drought treatment were significantly larger, but not smaller in the roof plots, though reduced in number (about 30% less leaves per unit of twig sapwood area), which points to a drought effect on the leaf bud formation while the remaining leaves may have profited from a surplus of water. Mean vessel diameter and axial conductivity in the outermost xylem of the trunk were significantly reduced and wood density increased, while annual stem diameter increment decreased by 26%. In contradiction to our hypotheses, (i) we found no signs of major damage to the C. acuminatissima trees nor to any other drought sensitivity of tall trees, and (ii) the exposed upper canopy was not more drought susceptible than the shade canopy.

  2. Emergent Properties of Patch Shapes Affect Edge Permeability to Animals

    PubMed Central

    Nams, Vilis O.

    2011-01-01

    Animal travel between habitat patches affects populations, communities and ecosystems. There are three levels of organization of edge properties, and each of these can affect animals. At the lowest level are the different habitats on each side of an edge, then there is the edge itself, and finally, at the highest level of organization, is the geometry or structure of the edge. This study used computer simulations to (1) find out whether effects of edge shapes on animal behavior can arise as emergent properties solely due to reactions to edges in general, without the animals reacting to the shapes of the edges, and to (2) generate predictions to allow field and experimental studies to test mechanisms of edge shape response. Individual animals were modeled traveling inside a habitat patch that had different kinds of edge shapes (convex, concave and straight). When animals responded edges of patches, this created an emergent property of responding to the shape of the edge. The response was mostly to absolute width of the shapes, and not the narrowness of them. When animals were attracted to edges, then they tended to collect in convexities and disperse from concavities, and the opposite happened when animals avoided edges. Most of the responses occurred within a distance of 40% of the perceptual range from the tip of the shapes. Predictions were produced for directionality at various locations and combinations of treatments, to be used for testing edge behavior mechanisms. These results suggest that edge shapes tend to either concentrate or disperse animals, simply because the animals are either attracted to or avoid edges, with an effect as great as 3 times the normal density. Thus edge shape could affect processes like pollination, seed predation and dispersal and predator abundance. PMID:21747965

  3. Study of the Properties of Bearberry Leaf Extract as a Natural Antioxidant in Model Foods.

    PubMed

    Mohd Azman, Nurul Aini; Gallego, Maria Gabriela; Segovia, Francisco; Abdullah, Sureena; Shaarani, Shalyda Md; Almajano Pablos, María Pilar

    2016-01-01

    The common bearberry (Arctostaphylos uva-ursi L. Sprengel) is a ubiquitous procumbent evergreen shrub located throughout North America, Asia, and Europe. The fruits are almost tasteless but the plant contains a high concentration of active ingredients. The antioxidant activity of bearberry leaf extract in the 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical cation assay was 90.42 mmol Trolox equivalents/g dry weight (DW). The scavenging ability of the methanol extract of bearberry leaves against methoxy radicals generated in the Fenton reaction was measured via electron paramagnetic resonance. Lipid oxidation was retarded in an oil-water emulsion by adding 1 g/kg lyophilised bearberry leaf extract. Also, 1 g/kg of lyophilised bearberry leaf extract incorporated into a gelatin-based film displayed high antioxidant activity to retard the degradation of lipids in muscle foods. The present results indicate the potential of bearberry leaf extract for use as a natural food antioxidant. PMID:27043639

  4. Study of the Properties of Bearberry Leaf Extract as a Natural Antioxidant in Model Foods

    PubMed Central

    Mohd Azman, Nurul Aini; Gallego, Maria Gabriela; Segovia, Francisco; Abdullah, Sureena; Shaarani, Shalyda Md; Almajano Pablos, María Pilar

    2016-01-01

    The common bearberry (Arctostaphylos uva-ursi L. Sprengel) is a ubiquitous procumbent evergreen shrub located throughout North America, Asia, and Europe. The fruits are almost tasteless but the plant contains a high concentration of active ingredients. The antioxidant activity of bearberry leaf extract in the 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical cation assay was 90.42 mmol Trolox equivalents/g dry weight (DW). The scavenging ability of the methanol extract of bearberry leaves against methoxy radicals generated in the Fenton reaction was measured via electron paramagnetic resonance. Lipid oxidation was retarded in an oil–water emulsion by adding 1 g/kg lyophilised bearberry leaf extract. Also, 1 g/kg of lyophilised bearberry leaf extract incorporated into a gelatin-based film displayed high antioxidant activity to retard the degradation of lipids in muscle foods. The present results indicate the potential of bearberry leaf extract for use as a natural food antioxidant. PMID:27043639

  5. Do Stretch Durations Affect Muscle Mechanical and Neurophysiological Properties?

    PubMed

    Opplert, J; Genty, J-B; Babault, N

    2016-08-01

    The aim of the study was to determine whether stretching durations influence acute changes of mechanical and neurophysiological properties of plantar flexor muscles. Plantar flexors of 10 active males were stretched in passive conditions on an isokinetic dynamometer. Different durations of static stretching were tested in 5 randomly ordered experimental trials (1, 2, 3, 4 and 10×30-s). Fascicle stiffness index, evoked contractile properties and spinal excitability (Hmax/Mmax) were examined before (PRE), immediately after (POST0) and 5 min after (POST5) stretching. No stretch duration effect was recorded for any variable. Moreover, whatever the stretching duration, stiffness index, peak twitch torque and rate of force development were significantly lower at POST0 and POST5 as compared to PRE (P<0.05). Electromechanical delay was longer at POST0 and POST5 as compared to PRE (P<0.05). Whatever the stretch duration, no significant changes of Hmax/Mmax ratio were recorded. In conclusion, 30 s of static stretching to maximum tolerated discomfort is sufficient enough to alter mechanical properties of plantar flexor muscles, but 10×30 s does not significantly affect these properties further. Stretching does not impair spinal excitability. PMID:27191211

  6. Viroid-like RNAs from cherry trees affected by leaf scorch disease: further data supporting their association with mycoviral double-stranded RNAs.

    PubMed

    Minoia, S; Navarro, B; Covelli, L; Barone, M; García-Becedas, M T; Ragozzino, A; Alioto, D; Flores, R; Di Serio, F

    2014-03-01

    Cherry trees from Spain affected by cherry leaf scorch (CLS), a fungal disease proposed to be caused by Apiognomonia erythrostoma, show symptoms (translucent-chlorotic leaf spots evolving into rusty areas) very similar to those of cherry chlorotic rusty spot disease (CCRS) and Amasya cherry disease, reported in Italy and Turkey, respectively. The three maladies are closely associated with 10-12 double-stranded viral RNAs, and CCRS is additionally associated with two cherry small circular RNAs (cscRNA1 and cscRNA2). Here, we report that a small viroid-like RNA similar to the CCRS-associated cscRNA1 is also present in CLS-affected trees, thus extending the link between the two diseases. Both CLS and CCRS cscRNA1 elements have common features, including sequence identity (88%), a predicted quasi rod-like conformation with short bifurcations at both termini, and the presence of hammerhead ribozymes in the strands of both polarities. However, cscRNA2, apparently derived from cscRNA1 by deletion of a short hairpin, was not detected in CLS-affected material. Although the biological nature of cscRNAs is unknown, the identification of at least cscRNA1 in different cherry cultivars and in two distinct geographic areas (Spain and Italy), always in close association with the same mycoviral dsRNAs, supports that these viroid-like RNAs could be satellite RNAs. PMID:24077656

  7. Viroid-like RNAs from cherry trees affected by leaf scorch disease: further data supporting their association with mycoviral double-stranded RNAs.

    PubMed

    Minoia, S; Navarro, B; Covelli, L; Barone, M; García-Becedas, M T; Ragozzino, A; Alioto, D; Flores, R; Di Serio, F

    2014-03-01

    Cherry trees from Spain affected by cherry leaf scorch (CLS), a fungal disease proposed to be caused by Apiognomonia erythrostoma, show symptoms (translucent-chlorotic leaf spots evolving into rusty areas) very similar to those of cherry chlorotic rusty spot disease (CCRS) and Amasya cherry disease, reported in Italy and Turkey, respectively. The three maladies are closely associated with 10-12 double-stranded viral RNAs, and CCRS is additionally associated with two cherry small circular RNAs (cscRNA1 and cscRNA2). Here, we report that a small viroid-like RNA similar to the CCRS-associated cscRNA1 is also present in CLS-affected trees, thus extending the link between the two diseases. Both CLS and CCRS cscRNA1 elements have common features, including sequence identity (88 %), a predicted quasi rod-like conformation with short bifurcations at both termini, and the presence of hammerhead ribozymes in the strands of both polarities. However, cscRNA2, apparently derived from cscRNA1 by deletion of a short hairpin, was not detected in CLS-affected material. Although the biological nature of cscRNAs is unknown, the identification of at least cscRNA1 in different cherry cultivars and in two distinct geographic areas (Spain and Italy), always in close association with the same mycoviral dsRNAs, supports that these viroid-like RNAs could be satellite RNAs. PMID:24757711

  8. Ecosystem Warming Affects Vertical Distribution of Leaf Gas Exchange Properties and Water Relations of Spring Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The vertical distribution of gas exchange and water relations responses to full-season in situ infrared (IR) warming were evaluated for hard red spring wheat (Triticum aestivum L. cv. Yecora Rojo) grown in an open field in a semiarid desert region of the Southwest USA. A Temperature Free-Air Contro...

  9. Elevated CO(2) concentration affects leaf photosynthesis-nitrogen relationships in Pinus taeda over nine years in FACE.

    PubMed

    Crous, Kristine Y; Walters, Michael B; Ellsworth, David S

    2008-04-01

    To investigate whether long-term elevated carbon dioxide concentration ([CO(2)]) causes declines in photosynthetic enhancement and leaf nitrogen (N) owing to limited soil fertility, we measured photosynthesis, carboxylation capacity and area-based leaf nitrogen concentration (N(a)) in Pinus taeda L. growing in a long-term free-air CO(2) enrichment (FACE) facility at an N-limited site. We also determined how maximum rates of carboxylation (V(cmax)) and electron transport (J(max)) varied with N(a) under elevated [CO(2)]. In trees exposed to elevated [CO(2)] for 5 to 9 years, the slope of the relationship between leaf photosynthetic capacity (A(net-Ca)) and N(a) was significantly reduced by 37% in 1-year-old needles, whereas it was unaffected in current-year needles. The slope of the relationships of both V(cmax) and J(max) with N(a) decreased in 1-year-old needles after up to 9 years of growth in elevated [CO(2)], which was accompanied by a 15% reduction in N allocation to the carboxylating enzyme. Nitrogen fertilization (110 kg N ha(-1)) in the ninth year of exposure to elevated [CO(2)] restored the slopes of the relationships of V(cmax) and J(max) with N(a) to those of control trees (i.e., in ambient [CO(2)]). The J(max):V(cmax) ratio was unaffected by either [CO(2)] or N fertilization. Changes in the apparent allocation of N to photosynthetic components may be an important adjustment in pines exposed to elevated [CO(2)] on low-fertility sites. We conclude that fundamental relationships between photosynthesis or its component processes with N(a) may be altered in aging pine needles after more than 5 years of exposure to elevated atmospheric [CO(2)]. PMID:18244946

  10. Structural characterization, antioxidant and anticancer properties of gold nanoparticles synthesized from leaf extract(decoction)of Antigonon leptopus Hook. &Arn.

    PubMed

    Balasubramani, Govindasamy; Ramkumar, Rajendiran; Krishnaveni, Narayanaswamy; Pazhanimuthu, Annamalai; Natarajan, Thillainathan; Sowmiya, Rajamani; Perumal, Pachiappan

    2015-04-01

    Tea is an aromatic beverage prepared by pouring boiling water over alleviated leaves of the tea plant. Tea prepared from the aerial parts of Antigonon leptopus has been traditionally used as remedy for cold, diabetes and pain in many countries. The gold nanoparticles (Au NPs) synthesized from powdered leaf extract (decoction) of A. leptopus were characterized by UV–visible spectroscopy (UV–vis), X-ray diffraction (XRD), Fourier transform-infrared (FT-IR), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED) pattern and energy dispersive X-ray (EDX) analyses to define the formation of Au NPs. Further, the synthesized Au NPs were well characterized based on their strong surface plasmon resonance (SPR), crystalline nature, functional groups, size and dispersed shapes, purity and Bragg's reflections of face centered cubic (fcc) structure of metallic gold. The Au NPs showed higher free radical scavenging property when compared to the effect of leaf extract. Cytotoxicity study of synthesized Au NPs exhibited the growth inhibitory property at the concentration (GI50) of 257.8 μg/mL in human adenocarcinoma breast cancer (MCF-7) cells after 48 h. Thus, the Au NPs synthesized from the Mexican creeper, A. leptopus revealed the important biological properties: as a free radical as well as anticancer agent. We conclude that the A. leptopus derived biological materials have promising potential as a source for the development of anticancer drug in future. PMID:25432487

  11. Mechanical Properties of Heat Affected Zone of High Strength Steels

    NASA Astrophysics Data System (ADS)

    Sefcikova, K.; Brtnik, T.; Dolejs, J.; Keltamaki, K.; Topilla, R.

    2015-11-01

    High Strength Steels became more popular as a construction material during last decade because of their increased availability and affordability. On the other hand, even though general use of Advanced High Strength Steels (AHSS) is expanding, the wide utilization is limited because of insufficient information about their behaviour in structures. The most widely used technique for joining steels is fusion welding. The welding process has an influence not only on the welded connection but on the area near this connection, the so-called heat affected zone, as well. For that reason it is very important to be able to determine the properties in the heat affected zone (HAZ). This area of investigation is being continuously developed in dependence on significant progress in material production, especially regarding new types of steels available. There are currently several types of AHSS on the world market. Two most widely used processes for AHSS production are Thermo-Mechanically Controlled Processing (TMCP) and Quenching in connection with Tempering. In the presented study, TMCP and QC steels grade S960 were investigated. The study is focused on the changes of strength, ductility, hardness and impact strength in heat affected zone based on the used amount of heat input.

  12. Canopy position affects the relationships between leaf respiration and associated traits in a tropical rainforest in Far North Queensland.

    PubMed

    Weerasinghe, Lasantha K; Creek, Danielle; Crous, Kristine Y; Xiang, Shuang; Liddell, Michael J; Turnbull, Matthew H; Atkin, Owen K

    2014-06-01

    We explored the impact of canopy position on leaf respiration (R) and associated traits in tree and shrub species growing in a lowland tropical rainforest in Far North Queensland, Australia. The range of traits quantified included: leaf R in darkness (RD) and in the light (RL; estimated using the Kok method); the temperature (T)-sensitivity of RD; light-saturated photosynthesis (Asat); leaf dry mass per unit area (LMA); and concentrations of leaf nitrogen (N), phosphorus (P), soluble sugars and starch. We found that LMA, and area-based N, P, sugars and starch concentrations were all higher in sun-exposed/upper canopy leaves, compared with their shaded/lower canopy and deep-shade/understory counterparts; similarly, area-based rates of RD, RL and Asat (at 28 °C) were all higher in the upper canopy leaves, indicating higher metabolic capacity in the upper canopy. The extent to which light inhibited R did not differ significantly between upper and lower canopy leaves, with the overall average inhibition being 32% across both canopy levels. Log-log RD-Asat relationships differed between upper and lower canopy leaves, with upper canopy leaves exhibiting higher rates of RD for a given Asat (both on an area and mass basis), as well as higher mass-based rates of RD for a given [N] and [P]. Over the 25-45 °C range, the T-sensitivity of RD was similar in upper and lower canopy leaves, with both canopy positions exhibiting Q10 values near 2.0 (i.e., doubling for every 10 °C rise in T) and Tmax values near 60 °C (i.e., T where RD reached maximal values). Thus, while rates of RD at 28 °C decreased with increasing depth in the canopy, the T-dependence of RD remained constant; these findings have important implications for vegetation-climate models that seek to predict carbon fluxes between tropical lowland rainforests and the atmosphere. PMID:24722001

  13. Numerical Studies of Scattering Properties of Leaves and Leaf Moisture Influences on the Scattering at Microwave Wavelengths

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Hu, Yongxiang; Sun, Wenbo; Min, Qilong

    2008-01-01

    This study uses 3-dimensional finite difference time domain method to accurately calculate single-scattering properties of randomly orientated leaves and evaluate the influences of vegetation water content (VWC) on these properties at 19 and 37 GHz frequencies. The studied leaves are assumed to be thin elliptic disks with two different sizes and have various VWC values. Although the leaf moisture produces considerable absorption during scattering processes, the effective efficiencies of extinction and scattering of leaves still near-linearly increase with VWC. Calculated asymmetry factors and phase functions indicate that there are significant amounts of scattering at large scattering angles in microwave wavelengths, which provides good opportunities for off-nadir microwave remote sensing of forests. This study lays a basic foundation in future quantifications of the relations between satellite measurements and physical properties of vegetation canopies.

  14. Does UV irradiation affect polymer properties relevant to tissue engineering?

    NASA Astrophysics Data System (ADS)

    Fischbach, Claudia; Tessmar, Jörg; Lucke, Andrea; Schnell, Edith; Schmeer, Georg; Blunk, Torsten; Göpferich, Achim

    2001-10-01

    For most tissue engineering approaches aiming at the repair or generation of living tissues the interaction of cells and polymeric biomaterials is of paramount importance. Prior to contact with cells or tissues, biomaterials have to be sterilized. However, many sterilization procedures such as steam autoclave or heat sterilization are known to strongly affect polymer properties. UV irradiation is used as an alternative sterilization method in many tissue engineering laboratories on a routine basis, however, potential alterations of polymer properties have not been extensively considered. In this study we investigated the effects of UV irradiation on spin-cast films made from biodegradable poly( D, L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers (Me.PEG-PLA) which have recently been developed for controlled cell-biomaterial interaction. After 2 h of UV irradiation, which is sufficient for sterilization, no alterations in cell adhesion to polymer films were detected, as demonstrated with 3T3-L1 preadipocytes. This correlated with unchanged film topography and molecular weight distribution. However, extended UV irradiation for 5-24 h elicited drastic responses regarding Me.PEG-PLA polymer properties and interactions with biological elements: Large increases in unspecific protein adsorption and subsequent cell adhesion were observed. Changes in polymer surface properties could be correlated with the observed alterations in cell/protein-polymer interactions. Atomic force microscopy analysis of polymer films revealed a marked "smoothing" of the polymer surface after UV irradiation. Investigations using GPC, 1H-NMR, mass spectrometry, and a PEG-specific colorimetric assay demonstrated that polymer film composition was time-dependently affected by exposure to UV irradiation, i.e., that large amounts of PEG were lost from the copolymer surface. The data indicate that sterilization using UV irradiation for 2 h is an appropriate technique for the

  15. Factors affecting mechanical properties of biomass pellet from compost.

    PubMed

    Zafari, A; Kianmehr, M H

    2014-01-01

    Effectiveness of a densification process to create strong and durable bonding in pellets can be determined by testing the mechanical properties such as compressive strength (CS) and durability. Mechanical properties of pellet from composted municipal solid waste were determined at different raw material and densification conditions. Ground compost samples were compressed with three levels of moisture content (35%, 40% and 45% (wb)), piston compaction speed (2, 6 and 10 mm/s), die length (8, 10 and 12mm) and raw material particle size (0.3, 0.9 and 1.5mm) into cylindrical pellets utilizing opened-end dies under axial stress from a vertical piston applied by a hydraulic press. The effects of independent variables on mechanical properties were determined using response surface methodology based on Box-Behnken design (BBD). All independent variables affected the durability significantly. However, different piston speed and die length not produce any significant difference on CS of pellets. Also in this research the electron photography method was used to identify the binding mechanism of compost particles. PMID:24600888

  16. Leaf Optical Properties in Higher Plants: Linking Spectral Characteristics to Stress and Chlorophyll Concentration

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Knapp, Alan K.

    2000-01-01

    A number of studies have linked responses in leaf spectral reflectance, transmittance or absorptance to physiological stress. A variety of stressors including dehydration, flooding,freezing, ozone, herbicides, competition, disease, insects and deficiencies in ectomycorrhizal development and N fertilization have been imposed on species ranging from grasses to conifers and deciduous trees. In this cases, the maximum difference in reflectance within the 400 - 850 nm wavelength range between control and stressed states occurred as a reflectance increase at wavelength near 700 nm. In studies that included transmittance and absorptance as well as reflectance, maximum differences occurred as increases and decreases, respectively, near 700 nm. This common optical response to stress could be simulated closely by varying the chlorophyll concentrations in senescent leaves of five species. The optical response to stress near 700 nm, as well as corresponding changes in reflectance that occur in the green-yellow spectrum, can be explained by the general tendency of stress to reduce leaf chlorophyll concentration.

  17. Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves.

    PubMed

    Junker, Laura Verena; Ensminger, Ingo

    2016-06-01

    The ability of plants to sequester carbon is highly variable over the course of the year and reflects seasonal variation in photosynthetic efficiency. This seasonal variation is most prominent during autumn, when leaves of deciduous tree species such as sugar maple (Acer saccharum Marsh.) undergo senescence, which is associated with downregulation of photosynthesis and a change of leaf color. The remote sensing of leaf color by spectral reflectance measurements and digital repeat images is increasingly used to improve models of growing season length and seasonal variation in carbon sequestration. Vegetation indices derived from spectral reflectance measurements and digital repeat images might not adequately reflect photosynthetic efficiency of red-senescing tree species during autumn due to the changes in foliar pigment content associated with autumn phenology. In this study, we aimed to assess how effectively several widely used vegetation indices capture autumn phenology and reflect the changes in physiology and photosynthetic pigments during autumn. Chlorophyll fluorescence and pigment content of green, yellow, orange and red leaves were measured to represent leaf senescence during autumn and used as a reference to validate and compare vegetation indices derived from leaf-level spectral reflectance measurements and color analysis of digital images. Vegetation indices varied in their suitability to track the decrease of photosynthetic efficiency and chlorophyll content despite increasing anthocyanin content. Commonly used spectral reflectance indices such as the normalized difference vegetation index and photochemical reflectance index showed major constraints arising from a limited representation of gradual decreases in chlorophyll content and an influence of high foliar anthocyanin levels. The excess green index and green-red vegetation index were more suitable to assess the process of senescence. Similarly, digital image analysis revealed that vegetation

  18. Mosquitocidal properties of Calotropis gigantea (Family: Asclepiadaceae) leaf extract and bacterial insecticide, Bacillus thuringiensis, against the mosquito vectors.

    PubMed

    Kovendan, Kalimuthu; Murugan, Kadarkarai; Prasanna Kumar, Kanagarajan; Panneerselvam, Chellasamy; Mahesh Kumar, Palanisamy; Amerasan, Duraisamy; Subramaniam, Jayapal; Vincent, Savariar

    2012-08-01

    Calotropis gigantea leaf extract and Bacillus thuringiensis were tested first to fourth-instar larvae and pupae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. The medicinal plants were collected from the area around Bharathiar University, Coimbatore, India. Calotropis gigantea leaf was washed with tap water and shade-dried at room temperature. An electrical blender powdered the dried plant materials (leaves). The powder 500 g of the leaf was extracted with 1.5 L of organic solvents of methanol for 8 h using a Soxhlet apparatus and filtered. The crude leaf extracts were evaporated to dryness in a rotary vacuum evaporator. The plant extract showed larvicidal and pupicidal effects after 24 h of exposure; no mortality was observed in the control group. For Calotropis gigantea, the median lethal concentration values (LC(50)) observed for the larvicidal and pupicidal activities against mosquito vector species Anopheles stephensi I to IV larval instars and pupae were 73.77, 89.64, 121.69, 155.49, and 213.79 ppm; Aedes aegypti values were 92.27, 106.60, 136.48, 164.01, and 202.56 ppm; and Culex quinquefasciatus values were 104.66, 127.71, 173.75, 251.65, and 314.70 ppm, respectively. For B. thuringiensis, the LC(50) values of I to IV larval instars and pupae of Anopheles stephensi were 37.24, 45.41, 57.82, 80.09, and 98.34 ppm; Aedes aegypti values were 42.38, 51.90, 71.02, 96.17, and 121.59 ppm; and Culex quinquefasciatus values were 55.85, 68.07, 94.11, 113.35, and 133.87 ppm, respectively. The study proved that the methanol leaf extract of Calotropis gigantea and bacterial insecticide B. thuringiensis has mosquitocidal property and was evaluated as target species of mosquito vectors. This is an ideal ecofriendly approach for the control of vector control programs. PMID:22382205

  19. Food properties affecting the digestion and absorption of carbohydrates.

    PubMed

    Björck, I; Granfeldt, Y; Liljeberg, H; Tovar, J; Asp, N G

    1994-03-01

    Carbohydrate foods differ considerably in their effects on postprandial glucose and insulin responses. Qualitative differences among starchy foods are particularly intriguing because of the dominance of starch in human diets. This paper focuses on food properties in cereal (eg, pasta, bread, Arepas, and porridge) and legume products (eg, red kidney beans and lentils) that affect metabolic responses to starch. Studies in healthy subjects have found that postprandial blood glucose and insulin responses are greatly affected by food structure. Any process that disrupts the physical or botanical structure of food ingredients will increase the plasma glucose and insulin responses. The glycemic responses to bread products were reduced by the use of ingredients with an intact botanical or physical structure or a high amylose content or by enrichment with viscous dietary fiber. However, the important of a moderate increase in the amylose-amylopectin ratio and the naturally occurring levels of viscous cereal fiber is less clear. The rate of starch digestion in vitro was shown to be a key determinant of metabolic responses to most products. Assuming the sample preparation mimics chewing, in vitro enzymic procedures can be used to facilitate ranking. One such procedure, based on chewed rather than artificially disintegrated products, was recently developed and correlates well with glycemic and insulinemic indices for several starchy foods. PMID:8116553

  20. PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice.

    PubMed

    Yang, Yaolong; Xu, Jie; Huang, Lichao; Leng, Yujia; Dai, Liping; Rao, Yuchun; Chen, Long; Wang, Yuqiong; Tu, Zhengjun; Hu, Jiang; Ren, Deyong; Zhang, Guangheng; Zhu, Li; Guo, Longbiao; Qian, Qian; Zeng, Dali

    2016-03-01

    Chlorophyll (Chl) b is a ubiquitous accessory pigment in land plants, green algae, and prochlorophytes. This pigment is synthesized from Chl a by chlorophyllide a oxygenase and plays a key role in adaptation to various environments. This study characterizes a rice mutant, pale green leaf (pgl), and isolates the gene PGL by using a map-based cloning approach. PGL, encoding chlorophyllide a oxygenase 1, is mainly expressed in the chlorenchyma and activated in the light-dependent Chl synthesis process. Compared with wild-type plants, pgl exhibits a lower Chl content with a reduced and disorderly thylakoid ultrastructure, which decreases the photosynthesis rate and results in reduced grain yield and quality. In addition, pgl exhibits premature senescence in both natural and dark-induced conditions and more severe Chl degradation and reactive oxygen species accumulation than does the wild-type. Moreover, pgl is sensitive to heat stress. PMID:26709310

  1. PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice

    PubMed Central

    Yang, Yaolong; Xu, Jie; Huang, Lichao; Leng, Yujia; Dai, Liping; Rao, Yuchun; Chen, Long; Wang, Yuqiong; Tu, Zhengjun; Hu, Jiang; Ren, Deyong; Zhang, Guangheng; Zhu, Li; Guo, Longbiao; Qian, Qian; Zeng, Dali

    2016-01-01

    Chlorophyll (Chl) b is a ubiquitous accessory pigment in land plants, green algae, and prochlorophytes. This pigment is synthesized from Chl a by chlorophyllide a oxygenase and plays a key role in adaptation to various environments. This study characterizes a rice mutant, pale green leaf (pgl), and isolates the gene PGL by using a map-based cloning approach. PGL, encoding chlorophyllide a oxygenase 1, is mainly expressed in the chlorenchyma and activated in the light-dependent Chl synthesis process. Compared with wild-type plants, pgl exhibits a lower Chl content with a reduced and disorderly thylakoid ultrastructure, which decreases the photosynthesis rate and results in reduced grain yield and quality. In addition, pgl exhibits premature senescence in both natural and dark-induced conditions and more severe Chl degradation and reactive oxygen species accumulation than does the wild-type. Moreover, pgl is sensitive to heat stress. PMID:26709310

  2. Leaf biochemistry of Lycopersicon esculentum Mill. at different stages of plant development as affected by mercury treatment.

    PubMed

    Gauba, Nidhi; Mahmooduzzafar; Siddiqi, T O; Umar, S; Iqbal, Muhammad

    2007-04-01

    The effect of mercury (Hg) on the biochemical parameters of Lycopersicon esculentum Mill leaf was studied. Application of mercuric chloride in varying concentrations (0.5, 1.0, 1.5 and 2.0 mM HgCl2 kg(-1) sand) caused significant reduction that went up to 89% and 72% chlorophyll a and chlorophyll b contents respectively (at flowering stage), 69% in carotenoid content, 64% in total soluble protein content and 91% in nitrate reductase activity (all at post-flowering stage). The amounts of nitrate and proline increased maximally (151% and 143% respectively) at the flowering stage, whereas total soluble sugar enhanced by 57% at the post-flowering stage. Changes observed in most of the parameters, were concentration dependent. Such studies seem to be able to discover suitable bioindicators of heavy metal pollution. PMID:17915770

  3. Knockdown of WHIRLY1 Affects Drought Stress-Induced Leaf Senescence and Histone Modifications of the Senescence-Associated Gene HvS40.

    PubMed

    Janack, Bianka; Sosoi, Paula; Krupinska, Karin; Humbeck, Klaus

    2016-01-01

    The plastid-nucleus located protein WHIRLY1 has been described as an upstream regulator of leaf senescence, binding to the promoter of senescence-associated genes like HvS40. To investigate the impact of WHIRLY1 on drought stress-induced, premature senescence, transgenic barley plants with an RNAi-mediated knockdown of the HvWHIRLY1 gene were grown under normal and drought stress conditions. The course of leaf senescence in these lines was monitored by physiological parameters and studies on the expression of senescence- and drought stress-related genes. Drought treatment accelerated leaf senescence in WT plants, whereas WHIRLY 1 knockdown lines (RNAi-W1) showed a stay-green phenotype. Expression of both senescence-associated and drought stress-responsive genes, was delayed in the transgenic plants. Notably, expression of transcription factors of the WRKY and NAC families, which are known to function in senescence- and stress-related signaling pathways, was affected in plants with impaired accumulation of WHIRLY1, indicating that WHIRLY1 acts as an upstream regulator of drought stress-induced senescence. To reveal the epigenetic indexing of HvS40 at the onset of drought-induced senescence in WT and RNAi-W1 lines, stress-responsive loading with histone modifications of promoter and coding sequences of HvS40 was analyzed by chromatin immunoprecipitation and quantified by qRT-PCR. In the wildtype, the euchromatic mark H3K9ac of the HvS40 gene was low under control conditions and was established in response to drought treatment, indicating the action of epigenetic mechanisms in response to drought stress. However, drought stress caused no significant increase in H3K9ac in plants impaired in accumulation of WHIRLY1. The results show that WHIRLY1 knockdown sets in motion a delay in senescence that involves all aspects of gene expression, including changes in chromatin structure. PMID:27608048

  4. Proteins associated with heat-induced leaf senescence in creeping bentgrass as affected by foliar application of nitrogen, cytokinins, and an ethylene inhibitor.

    PubMed

    Jespersen, David; Huang, Bingru

    2015-02-01

    Heat stress causes premature leaf senescence in cool-season grass species. The objective of this study was to identify proteins regulated by nitrogen, cytokinins, and ethylene inhibitor in relation to heat-induced leaf senescence in creeping bentgrass (Agrostis stolonifera). Plants (cv. Penncross) were foliar sprayed with 18 mM carbonyldiamide (N source), 25 μM aminoethoxyvinylglycine (AVG, ethylene inhibitor), 25 μM zeatin riboside (ZR, cytokinin), or a water control, and then exposed to 20/15°C (day/night) or 35/30°C (heat stress) in growth chambers. All treatments suppressed heat-induced leaf senescence, as shown by higher turf quality and chlorophyll content, and lower electrolyte leakage in treated plants compared to the untreated control. A total of 49 proteins were responsive to N, AVG, or ZR under heat stress. The abundance of proteins in photosynthesis increased, with ribulose-1,5-bisphosphate carboxylase/oxygenase affected by all three treatments, chlorophyll a/b-binding protein by AVG and N or Rubisco activase by AVG. Proteins for amino acid metabolism were upregulated, including alanine aminotransferase by three treatments and ferredoxin-dependent glutamate synthase by AVG and N. Upregulated proteins also included catalase by AVG and N and heat shock protein by ZR. Exogenous applications of AVG, ZR, or N downregulated proteins in respiration (enolase, glyceraldehyde 3-phosphate dehydrogenase, and succinate dehygrogenase) under heat stress. Alleviation of heat-induced senescence by N, AVG, or ZR was associated with enhanced protein abundance in photosynthesis and amino acid metabolism and stress defense systems (heat shock protection and antioxidants), as well as suppression of those imparting respiration metabolism. PMID:25407697

  5. Impact of light quality on leaf and shoot hydraulic properties: a case study in silver birch (Betula pendula).

    PubMed

    Sellin, Arne; Sack, Lawren; Õunapuu, Eele; Karusion, Annika

    2011-07-01

    Responses of leaf and shoot hydraulic conductance to light quality were examined on shoots of silver birch (Betula pendula), cut from lower ('shade position') and upper thirds of the crowns ('sun position') of trees growing in a natural temperate forest stand. Hydraulic conductances of leaf blades (K(lb) ), petioles (K(P) ) and branches (i.e. leafless stem; K(B) ) were determined using a high pressure flow meter in steady state mode. The shoots were exposed to photosynthetic photon flux density of 200-250 µmol m⁻² s⁻¹ using white, blue or red light. K(lb) depended significantly on both light quality and canopy position (P<0.001), K(B) on canopy position (P<0.001) and exposure time (P=0.014), and none of the three factors had effect on K(P) . The highest values of K(lb) were recorded under the blue light (3.63 and 3.13×10⁻⁴ kg m⁻² MPa⁻¹ s⁻¹ for the sun and shade leaves, respectively), intermediate values under white light (3.37 and 2.46×10⁻⁴ kg m⁻² MPa⁻¹ s⁻¹ , respectively) and lowest values under red light (2.83 and 2.02×10⁻⁴ kg m⁻² MPa⁻¹ s⁻¹, respectively). Light quality has an important impact on leaf hydraulic properties, independently of light intensity or of total light energy, and the specific light receptors involved in this response require identification. Given that natural canopy shade depletes blue and red light, K(lb) may be decreased both by reduced fluence and shifts in light spectra, indicating the need for studies of the natural heterogeneity of K(lb) within and under canopies, and its impacts on gas exchange. PMID:21414012

  6. Leaf optical properties reflect variation in photosynthetic metabolism and its sensitivity to temperature

    PubMed Central

    Serbin, Shawn P.; Dillaway, Dylan N.; Kruger, Eric L.; Townsend, Philip A.

    2012-01-01

    Researchers from a number of disciplines have long sought the ability to estimate the functional attributes of plant canopies, such as photosynthetic capacity, using remotely sensed data. To date, however, this goal has not been fully realized. In this study, fresh-leaf reflectance spectroscopy (λ=450–2500 nm) and a partial least-squares regression (PLSR) analysis were used to estimate key determinants of photosynthetic capacity—namely the maximum rates of RuBP carboxylation (Vcmax) and regeneration (Jmax)—measured with standard gas exchange techniques on leaves of trembling aspen and eastern cottonwood trees. The trees were grown across an array of glasshouse temperature regimes. The PLSR models yielded accurate and precise estimates of Vcmax and Jmax within and across species and glasshouse temperatures. These predictions were developed using unique contributions from different spectral regions. Most of the wavelengths selected were correlated with known absorption features related to leaf water content, nitrogen concentration, internal structure, and/or photosynthetic enzymes. In a field application of our PLSR models, spectral reflectance data effectively captured the short-term temperature sensitivities of Vcmax and Jmax in aspen foliage. These findings highlight a promising strategy for developing remote sensing methods to characterize dynamic, environmentally sensitive aspects of canopy photosynthetic metabolism at broad scales. PMID:21984647

  7. Antioxidative properties of Murraya koenigii leaf extracts in accelerated oxidation and deep-frying studies.

    PubMed

    Nor, Fatihanim Mohd; Suhaila, Mohamed; Aini, Idris Nor; Razali, Ismail

    2009-01-01

    Murraya koenigii leaf extract antioxidant potentials were evaluated in palm olein using accelerated oxidation storage and deep-frying studies at 180 degrees C for up to 40 h. The extracts (0.2%) retarded oil oxidation and deterioration significantly (P<0.05), slightly less effectively than 0.02% butylated hydroxytoluene in tests such as the peroxide value, anisidine value, iodine value, free fatty acid, Oxidative Stability Index, and polar and polymer compound content. Sensory evaluation on French fries indicated that the extract was useful in improving colour, flavour and overall acceptability and the quality of the fried product. All samples were more acceptable by panellists, especially after the 40th hour frying, compared with those similarly fried in the control oils and the oil containing butylated hydroxytoluene. M. koenigii leaf extract, had a polyphenol content of 109.5+/-0.3 mg gallic acid equivalents/g extract, and contain a heat-stable antioxidant that could be a natural alternative to synthetic antioxidants for the industry. PMID:19488917

  8. Evaluation of phytochemical and antimicrobial properties of leaf extract of Tapinanthus sessilifolius (P. Beauv) van Tiegh.

    PubMed

    Tarfa, Florence D; Obodozie, Obiageri O; Mshelia, Emmanuel; Ibrahim, Kolo; Temple, V J

    2004-03-01

    Leaf extracts of T. sessilifolius growing on five different host plants (Psidium guajava, Citrus lemon, Vernonia amygdalina, Persea americana and Jatropa curcas) were evaluated for antimicrobial activity of the plant. Powdered leaves of T. sessilifolius collected from each host plant was divided into two portions. One portion was used for aqueous infusion and the other portion was successively extracted with hexane, ethylacetate and methanol. Infusion of aqueous extract of powdered leaves did not show antimicrobial effect even at the concentration of 1000 and 2000 microg/ml on test microorganisms (Staph. aureus, E. coli, Bacillus subtilis, Pseudomonas aeruginosa and Candida albicans). However in broth culture, methanolic and hexane extract had MIC range of 62.5-500 microg/ml and ethylacetate extract had 250-500 microg/ml. Phytochemical screening of leaf samples of T. sessilifolius collected from different host plants showed positive test for hydrolysable tannins, saponins, flavonoids, terpenes, cardiac glycoside, reducing sugars and proteins. LD50 concentration was found to be > 1.500 mg/kg for samples from P. guajava; 489.89 mg/kg for J. curcas and C. lemon; and 692 mg/kg for V. amydalina in mice. PMID:15233306

  9. Enzymatic activities in different strains isolated from healthy and brittle leaf disease affected date palm leaves: study of amylase production conditions.

    PubMed

    Mouna, Jrad; Imen, Fendri; Choba Ines, Ben; Nourredine, Drira; Adel, Kadri; Néji, Gharsallah

    2015-02-01

    The present study aimed to investigate and compare the enzymatic production of endophytic bacteria isolated from healthy and brittle leaf disease affected date palm leaves (pectinase, cellulase, lipase, and amylase). The findings revealed that the enzymatic products from the bacterial isolates of healthy date palm leaves were primarily 33% amylolytic enzyme, 33 % cellulase, 25 % pectinase, and 25 % lipase. The isolates from brittle leaf disease date palm leaves, on the other hand, were noted to produce 16 % amylolytic enzyme, 20 % cellulose, 50 % pectinase, and 50 % lipase. The effects of temperature and pH on amylase, pectinase, and cellulose activities were investigated. The Bacillus subtilis JN934392 strain isolated from healthy date palm leaves produced higher levels of amylase activity at pH 7. A Box Behnken Design (BBD) was employed to optimize amylase extraction. Maximal activity was observed at pH and temperature ranges of pH 6-6.5 and 37-39 °C, respectively. Under those conditions, amylase activity was noted to be attained 9.37 U/ml. The results showed that the enzyme was able to maintain more than 50 % of its activity over a temperature range of 50-80 °C, with an optimum at 70 °C. This bacterial amylase showed high activity compared to other bacteria, which provides support for its promising candidacy for future industrial application. PMID:25432343

  10. Maternal nutrient restriction affects properties of skeletal muscle in offspring

    PubMed Central

    Zhu, Mei J; Ford, Stephen P; Means, Warrie J; Hess, Bret W; Nathanielsz, Peter W; Du, Min

    2006-01-01

    Maternal nutrient restriction (NR) affects fetal development with long-term consequences on postnatal health of offspring, including predisposition to obesity and diabetes. Most studies have been conducted in fetuses in late gestation, and little information is available on the persistent impact of NR from early to mid-gestation on properties of offspring skeletal muscle, which was the aim of this study. Pregnant ewes were subjected to 50% NR from day 28–78 of gestation and allowed to deliver. The longissimus dorsi muscle was sampled from 8-month-old offspring. Maternal NR during early to mid-gestation decreased the number of myofibres in the offspring and increased the ratio of myosin IIb to other isoforms by 17.6 ± 4.9% (P < 0.05) compared with offspring of ad libitum fed ewes. Activity of carnitine palmitoyltransferase-1, a key enzyme controlling fatty acid oxidation, was reduced by 24.7 ± 4.5% (P < 0.05) in skeletal muscle of offspring of NR ewes and would contribute to increased fat accumulation observed in offspring of NR ewes. Intramuscular triglyceride content (IMTG) was increased in skeletal muscle of NR lambs, a finding which may be linked to predisposition to diabetes in offspring of NR mothers, since enhanced IMTG predisposes to insulin resistance in skeletal muscle. Proteomic analysis by two-dimensional gel electrophoresis demonstrated downregulation of several catabolic enzymes in 8-month-old offspring of NR ewes. These data demonstrate that the early to mid-gestation period is important for skeletal muscle development. Impaired muscle development during this stage of gestation affects the number and composition of fibres in offspring which may lead to long-term physiological consequences, including predisposition to obesity and diabetes. PMID:16763001

  11. Transmission of Tomato Yellow Leaf Curl Virus by Bemisia tabaci as Affected by Whitefly Sex and Biotype

    PubMed Central

    Ning, Wenxi; Shi, Xiaobin; Liu, Baiming; Pan, Huipeng; Wei, Wanting; Zeng, Yang; Sun, Xinpei; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Cheng, Jiaxu; Peng, Zhengke; Zhang, Youjun

    2015-01-01

    Bemisia tabaci is a serious pest of vegetables and other crops worldwide. The most damaging and predominant B. tabaci biotypes are B and Q, and both are vectors of tomato yellow leaf curl virus (TYLCV). Previous research has shown that Q outperforms B in many respects but comparative research is lacking on the ability of B and Q to transmit viruses. In the present study, we tested the hypothesis that B and Q differ in their ability to transmit TYLCV and that this difference helps explain TYLCV outbreaks. We compared the acquisition, retention, and transmission of TYLCV by B and Q females and males. We found that Q females are more efficient than Q males, B females, and B males at TYLCV acquisition and transmission. Although TYLCV acquisition and transmission tended to be greater for B females than B males, the differences were not statistically significant. Based on electrical penetration graphs determination of phloem sap ingestion parameters, females fed better than males, and Q females fed better than Q males, B females, or B males. These results are consistent with the occurrences of TYLCV outbreaks in China, which have been associated with the spread of Q rather than B. PMID:26021483

  12. Transmission of Tomato Yellow Leaf Curl Virus by Bemisia tabaci as Affected by Whitefly Sex and Biotype.

    PubMed

    Ning, Wenxi; Shi, Xiaobin; Liu, Baiming; Pan, Huipeng; Wei, Wanting; Zeng, Yang; Sun, Xinpei; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Cheng, Jiaxu; Peng, Zhengke; Zhang, Youjun

    2015-01-01

    Bemisia tabaci is a serious pest of vegetables and other crops worldwide. The most damaging and predominant B. tabaci biotypes are B and Q, and both are vectors of tomato yellow leaf curl virus (TYLCV). Previous research has shown that Q outperforms B in many respects but comparative research is lacking on the ability of B and Q to transmit viruses. In the present study, we tested the hypothesis that B and Q differ in their ability to transmit TYLCV and that this difference helps explain TYLCV outbreaks. We compared the acquisition, retention, and transmission of TYLCV by B and Q females and males. We found that Q females are more efficient than Q males, B females, and B males at TYLCV acquisition and transmission. Although TYLCV acquisition and transmission tended to be greater for B females than B males, the differences were not statistically significant. Based on electrical penetration graphs determination of phloem sap ingestion parameters, females fed better than males, and Q females fed better than Q males, B females, or B males. These results are consistent with the occurrences of TYLCV outbreaks in China, which have been associated with the spread of Q rather than B. PMID:26021483

  13. Solanum tuberosum and Lycopersicon esculentum Leaf Extracts and Single Metabolites Affect Development and Reproduction of Drosophila melanogaster

    PubMed Central

    Ventrella, Emanuela; Adamski, Zbigniew; Chudzińska, Ewa; Miądowicz-Kobielska, Mariola; Marciniak, Paweł; Büyükgüzel, Ender; Büyükgüzel, Kemal; Erdem, Meltem; Falabella, Patrizia; Scrano, Laura; Bufo, Sabino Aurelio

    2016-01-01

    Glycoalkaloids are secondary metabolites commonly found in Solanaceae plants. They have anti-bacterial, anti-fungal and insecticidal activities. In the present study we examine the effects of potato and tomato leaf extracts and their main components, the glycoalkaloids α-solanine, α-chaconine and α-tomatine, on development and reproduction of Drosophila melanogaster wild-type flies at different stages. Parental generation was exposed to five different concentrations of tested substances. The effects were examined also on the next, non-exposed generation. In the first (exposed) generation, addition of each extract reduced the number of organisms reaching the pupal and imaginal stages. Parent insects exposed to extracts and metabolites individually applied showed faster development. However, the effect was weaker in case of single metabolites than in case of exposure to extracts. An increase of developmental rate was also observed in the next, non-exposed generation. The imagoes of both generations exposed to extracts and pure metabolites showed some anomalies in body size and malformations, such as deformed wings and abdomens, smaller black abdominal zone. Our results further support the current idea that Solanaceae can be an impressive source of molecules, which could efficaciously be used in crop protection, as natural extract or in formulation of single pure metabolites in sustainable agriculture. PMID:27213896

  14. Rosmarinus officinalis L. leaf extract improves memory impairment and affects acetylcholinesterase and butyrylcholinesterase activities in rat brain.

    PubMed

    Ozarowski, Marcin; Mikolajczak, Przemyslaw L; Bogacz, Anna; Gryszczynska, Agnieszka; Kujawska, Malgorzata; Jodynis-Liebert, Jadwiga; Piasecka, Anna; Napieczynska, Hanna; Szulc, Michał; Kujawski, Radoslaw; Bartkowiak-Wieczorek, Joanna; Cichocka, Joanna; Bobkiewicz-Kozlowska, Teresa; Czerny, Boguslaw; Mrozikiewicz, Przemyslaw M

    2013-12-01

    Rosmarinus officinalis L. leaf as part of a diet and medication can be a valuable proposal for the prevention and treatment of dementia. The aim of the study was to assess the effects of subchronic (28-fold) administration of a plant extract (RE) (200 mg/kg, p.o.) on behavioral and cognitive responses of rats linked with acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity and their mRNA expression level in the hippocampus and frontal cortex. The passive avoidance test results showed that RE improved long-term memory in scopolamine-induced rats. The extract inhibited the AChE activity and showed a stimulatory effect on BuChE in both parts of rat brain. Moreover, RE produced a lower mRNA BuChE expression in the cortex and simultaneously an increase in the hippocampus. The study suggests that RE led to improved long-term memory in rats, which can be partially explained by its inhibition of AChE activity in rat brain. PMID:24080468

  15. Solanum tuberosum and Lycopersicon esculentum Leaf Extracts and Single Metabolites Affect Development and Reproduction of Drosophila melanogaster.

    PubMed

    Ventrella, Emanuela; Adamski, Zbigniew; Chudzińska, Ewa; Miądowicz-Kobielska, Mariola; Marciniak, Paweł; Büyükgüzel, Ender; Büyükgüzel, Kemal; Erdem, Meltem; Falabella, Patrizia; Scrano, Laura; Bufo, Sabino Aurelio

    2016-01-01

    Glycoalkaloids are secondary metabolites commonly found in Solanaceae plants. They have anti-bacterial, anti-fungal and insecticidal activities. In the present study we examine the effects of potato and tomato leaf extracts and their main components, the glycoalkaloids α-solanine, α-chaconine and α-tomatine, on development and reproduction of Drosophila melanogaster wild-type flies at different stages. Parental generation was exposed to five different concentrations of tested substances. The effects were examined also on the next, non-exposed generation. In the first (exposed) generation, addition of each extract reduced the number of organisms reaching the pupal and imaginal stages. Parent insects exposed to extracts and metabolites individually applied showed faster development. However, the effect was weaker in case of single metabolites than in case of exposure to extracts. An increase of developmental rate was also observed in the next, non-exposed generation. The imagoes of both generations exposed to extracts and pure metabolites showed some anomalies in body size and malformations, such as deformed wings and abdomens, smaller black abdominal zone. Our results further support the current idea that Solanaceae can be an impressive source of molecules, which could efficaciously be used in crop protection, as natural extract or in formulation of single pure metabolites in sustainable agriculture. PMID:27213896

  16. Preparation of cellulose composites with in situ generated copper nanoparticles using leaf extract and their properties.

    PubMed

    Sadanand, V; Rajini, N; Varada Rajulu, A; Satyanarayana, B

    2016-10-01

    In the present work, copper nanoparticles (CuNPs) were in situ generated in cellulose matrix using Ocimum sanctum leaf extract as a reducing agent and aq. CuSO4 solution by diffusion process. Some CuNPs were also formed outside the film in the solution which were separated and viewed by Transmission electron microscope and Scanning electron microscope (SEM). The composite films showed good antibacterial activity against Escherichia coli bacteria when the CuNPs were generated using higher concentrated aq. CuSO4 solutions. The cellulose, matrix and the composite films were characterized by Fourier transform infrared spectroscopic, X-ray diffraction, thermogravimetric analysis and SEM techniques. The tensile strength of the composite films was lower than that of the matrix but still higher than the conventional polymers like polyethylene and polypropylene used for packaging applications. These biodegradable composite films can be considered for packaging and medical applications. PMID:27312610

  17. Optical and photocatalytic properties of Corymbia citriodora leaf extract synthesized ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Jinfeng; Hu, Binjie; Zhi, Jinhu

    2016-05-01

    ZnS nanoparticles were biosynthesized via a green and simple method using Corymbia citriodora leaf extract as reducing and stabilizing agent. The biosynthesized ZnS nanoparticles were in the size range of 45 nm with a surface plasmon resonance band at 325 nm. XRD analysis revealed that the nanoparticles were in the sphalerite phase. Quantum confinement effects of biosynthesized ZnS nanoparticles were observed using photoluminescence spectroscopy. The photocatalytic activity of the ZnS nanoparticles has been investigated by degradation methylene blue under UV light irradiation. Due to the smaller size and excellent dispersicity, the biosynthesized ZnS nanoparticles showed a superior photocatalytic performance compared with that of chemical synthesize ZnS nanoparticles.

  18. Factors affecting population dynamics of leaf beetles in a subarctic region: The interplay between climate warming and pollution decline.

    PubMed

    Zvereva, Elena L; Hunter, Mark D; Zverev, Vitali; Kozlov, Mikhail V

    2016-10-01

    Understanding the mechanisms by which abiotic drivers, such as climate and pollution, influence population dynamics of animals is important for our ability to predict the population trajectories of individual species under different global change scenarios. We monitored four leaf beetle species (Coleoptera: Chrysomelidae) feeding on willows (Salix spp.) in 13 sites along a pollution gradient in subarctic forests of north-western Russia from 1993 to 2014. During a subset of years, we also measured the impacts of natural enemies and host plant quality on the performance of one of these species, Chrysomela lapponica. Spring and fall temperatures increased by 2.5-3°C during the 21-year observation period, while emissions of sulfur dioxide and heavy metals from the nickel-copper smelter at Monchegorsk decreased fivefold. However, contrary to predictions of increasing herbivory with climate warming, and in spite of discovered increase in host plant quality with increase in temperatures, none of the beetle species became more abundant during the past 20years. No directional trends were observed in densities of either Phratora vitellinae or Plagiodera versicolora, whereas densities of both C. lapponica and Gonioctena pallida showed a simultaneous rapid 20-fold decline in the early 2000s, remaining at very low levels thereafter. Time series analysis and model selection indicated that these abrupt population declines were associated with decreases in aerial emissions from the smelter. Observed declines in the population densities of C. lapponica can be explained by increases in mortality from natural enemies due to the combined action of climate warming and declining pollution. This pattern suggests that at least in some tri-trophic systems, top-down factors override bottom-up effects and govern the impacts of environmental changes on insect herbivores. PMID:27266523

  19. How vision affects kinematic properties of pantomimed prehension movements.

    PubMed

    Fukui, Takao; Inui, Toshio

    2013-01-01

    When performing the reach-to-grasp movement, fingers open wider than the size of a target object and then stop opening. The recorded peak grip aperture (PGA) is significantly larger when this action is performed without vision during the movement than with vision, presumably due to an error margin that is retained in order to avoid collision with the object. People can also pretend this action based on an internal target representation (i.e., pantomimed prehension), and previous studies have shown that kinematic differences exist between natural and pantomimed prehension. These differences are regarded as a reflection of variations in information processing in the brain through the dorsal and ventral streams. Pantomimed action is thought to be mediated by the ventral stream. This implies that visual information during the movement, which is essential to the dorsal stream, has little effect on the kinematic properties of pantomimed prehension. We investigated whether an online view of the external world affects pantomimed grasping, and more specifically, whether the dorsal stream is involved in its execution. Participants gazed at a target object and were then subjected to a 3-s visual occlusion, during which time the experimenter removed the object. The participants were then required to pretend to make a reach-to-grasp action toward the location where the object had been presented. Two visual conditions (full vision and no vision) were imposed during the pantomimed action by manipulating shutter goggles. The PGA showed significant differences between the two visual conditions, whereas no significant difference was noted for terminal grip aperture, which was recorded at the movement end. This suggests the involvement of the dorsal stream in pantomimed action and implies that pantomimed prehension is a good probe for revealing the mechanism of interaction between the ventral and dorsal streams, which is also linked to embodied cognition. PMID:23404470

  20. 7 CFR 1955.105 - Real property affected (CONACT).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... planting, cultivating, growing, producing, harvesting, or storing a controlled substance (see 21 CFR Part... AGRICULTURE (CONTINUED) PROGRAM REGULATIONS (CONTINUED) PROPERTY MANAGEMENT Disposal of Inventory Property... and Waste Disposal (WWD); Reserve Conservation and Development (RC&D); Watershed (WS);...

  1. Antitumour properties of the leaf essential oil of Xylopia frutescens Aubl. (Annonaceae).

    PubMed

    Ferraz, Rosana P C; Cardoso, Gabriella M B; da Silva, Thanany B; Fontes, José Eraldo do N; Prata, Ana Paula do N; Carvalho, Adriana A; Moraes, Manoel O; Pessoa, Claudia; Costa, Emmanoel V; Bezerra, Daniel P

    2013-11-01

    The aim of this study was to investigate the chemical composition and anticancer effect of the leaf essential oil of Xylopia frutescens in experimental models. The chemical composition of the essential oil was analysed by GC/FID and GC/MS. In vitro cytotoxic activity of the essential oil was determined on cultured tumour cells. In vivo antitumour activity was assessed in Sarcoma 180-bearing mice. The major compounds identified were (E)-caryophyllene (31.48%), bicyclogermacrene (15.13%), germacrene D (9.66%), δ-cadinene (5.44%), viridiflorene (5.09%) and α-copaene (4.35%). In vitro study of the essential oil displayed cytotoxicity on tumour cell lines and showed IC50 values ranging from 24.6 to 40.0 μg/ml for the NCI-H358M and PC-3M cell lines, respectively. In the in vivo antitumour study, tumour growth inhibition rates were 31.0-37.5%. In summary, the essential oil was dominated by sesquiterpene constituents and has some interesting anticancer activity. PMID:23768347

  2. Repellent properties of Cardiospermum halicacabum Linn. (Family: Sapindaceae) plant leaf extracts against three important vector mosquitoes

    PubMed Central

    Govindarajan, M; Sivakumar, R

    2012-01-01

    Objective To determine repellent activity of hexane, ethyl acetate, benzene, chloroform and methanol extract of Cardiospermum halicacabum (C. halicacabum) against Culex quinquefasciatus (Cx. quinquefasciatus), Aedes aegypti (Ae. aegypti) and Anopheles stephensi (An. stephensi). Methods Evaluation was carried out in a net cage (45 cm×30 cm×25 cm) containing 100 blood starved female mosquitoes of three mosquito species and were assayed in the laboratory condition by using the protocol of WHO 2005; The plant leaf crude extracts of C. halicacabum was applied at 1.0, 2.5, and 5.0 mg/cm2 separately in the exposed area of the fore arm. Only ethanol served as control. Results In this observation, the plant crude extracts gave protection against mosquito bites without any allergic reaction to the test person, and also, the repellent activity was dependent on the strength of the plant extracts. The tested plant crude extracts had exerted promising repellent against all the three mosquitoes. Conclusions From the results it can be concluded the crude extract of C. halicacabum was potential for controlling Cx. quinquefasciatus, Ae. aegypti and An. stephensi mosquitoes. PMID:23569979

  3. A comparative study of flavonoid compounds, vitamin C, and antioxidant properties of baby leaf Brassicaceae species.

    PubMed

    Martínez-Sánchez, Ascensión; Gil-Izquierdo, Angel; Gil, María I; Ferreres, Federico

    2008-04-01

    A comparative study of antioxidant compounds, flavonoids and vitamin C, and also antioxidant activity was carried out in four species of Brassicaceae vegetables used for salads: watercress ( Nasturtium officinale R. Br.), mizuna [ Brassica rapa L. subsp. nipposinica (L.H. Bailey) Haneltand], wild rocket [ Diplotaxis tenuifolia (L.) DC.], and salad rocket [ Eruca vesicaria (L.) Cav.]. The characterization of individual phenolic compounds by HPLC-DAD-MS/MS-ESI in watercress and mizuna completes the polyphenol study previously reported for wild rocket and salad rocket. The qualitative study of flavonoids in watercress leaves showed a characteristic glycosylation pattern with rhamnose at the 7 position. Isorhamnetin 3,7-di- O-glucoside was identified in mizuna leaves and may be considered a chemotaxonomical marker in some B. rapa subspecies. Brassicaceae species showed differences in the quantitative study of flavonoids, and the highest content was detected in watercress leaves. Watercress and wild rocket leaves had the highest content of vitamin C. The antioxidant activity evaluated by different methods (ABTS, DPPH, and FRAP assays) showed a high correlation level with the content of polyphenols and vitamin C. In conclusion, the Brassicaceae leaves studied, watercress, mizuna, wild rocket, and salad rocket, presented a large variability in the composition and content of antioxidant compounds. These baby leaf species are good dietary sources of antioxidants with an important variability of bioactive compounds. PMID:18321050

  4. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf.

    PubMed

    Simonin, Kevin A; Burns, Emily; Choat, Brendan; Barbour, Margaret M; Dawson, Todd E; Franks, Peter J

    2015-03-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem-leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO₂ concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO₂ concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO₂ on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem-leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO₂ assimilation rate over the diurnal course of evaporative demand. PMID:25547915

  5. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf

    PubMed Central

    Simonin, Kevin A.; Burns, Emily; Choat, Brendan; Barbour, Margaret M.; Dawson, Todd E.; Franks, Peter J.

    2015-01-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem–leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO2 concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO2 concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO2 on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem–leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO2 assimilation rate over the diurnal course of evaporative demand. PMID:25547915

  6. [Sound duration and sound pattern affect the recovery cycles of inferior collicular neurons in leaf-nosed bat, Hipposideros armiger].

    PubMed

    Tang, Jia; Fu, Zi-Ying; Wu, Fei-Jian

    2010-10-25

    The effects of sound duration and sound pattern on the recovery cycles of inferior collicular (IC) neurons in constant frequency-frequency modulation (CF-FM) bats were explored in this study. Five leaf-nosed bats, Hipposideros armiger (4 males, 1 female, 43-50 g body weight), were used as subjects. The extracellular responses of IC neurons to paired sound stimuli with different duration and patterns were recorded, and the recovery was counted as the ratio of the second response to the first response. Totally, 169 sound-sensitive IC neurons were recorded in the experiment. According to the interpulse interval (IPI) of paired sounds when neurons reached 50% recovery (50% IPI), the recovery cycles of these IC neurons were classified into 3 types: fast recovery (F, the 50% IPI was less than 15 ms), short recovery (S, the 50% IPI was between 15.1 and 30 ms) and long recovery (L, the 50% IPI was more than 30 ms). When paired CF stimuli with 2 ms duration was used, the ratio of F neurons was 32.3%, and it decreased to 18.1% and 18.2% respectively when 5 and 7 ms CF stimuli were used. The ratios of S and L neurons were 41.5%, 33.7%, 29.1% and 26.2%, 48.2%, 52.7% respectively when 2, 5 and 7 ms CF stimuli were used. The average 50% IPI determined after stimulation with paired 2 ms, 5 ms and 7 ms CF sounds were (30.2 ± 27.6), (39.9 ± 29.1) and (49.4 ± 34.7) ms, respectively, and the difference among them was significant (P< 0.01). When the stimuli of paired 2 ms CF sounds were shifted to paired 2 ms FM sounds, the proportion of F, S and L neurons changed from 32.3%, 41.5%, 26.2% to 47.7%, 24.6%, 27.7%, respectively, and the average 50% IPI decreased from (30.2 ± 27.6) to (23.9 ± 19.0) ms (P< 0.05, n = 65). When paired 5+2 ms CF-FM pulses were used instead of 7 ms CF sounds, the proportion of F, S and L neurons changed from 18.2%, 29.1%, 52.7% to 29.1%, 27.3%, 43.6%, respectively, and the average 50% IPI decreased from (49.4 ± 34.7) to (36.3 ± 29.4) ms (P< 0.05, n = 55

  7. Waterlogging in late dormancy and the early growth phase affected root and leaf morphology in Betula pendula and Betula pubescens seedlings.

    PubMed

    Wang, Ai-Fang; Roitto, Marja; Sutinen, Sirkka; Lehto, Tarja; Heinonen, Jaakko; Zhang, Gang; Repo, Tapani

    2016-01-01

    The warmer winters of the future will increase snow-melt frequency and rainfall, thereby increasing the risk of soil waterlogging and its effects on trees in winter and spring at northern latitudes. We studied the morphology of roots and leaves of 1-year-old silver birch (Betula pendula Roth) and pubescent birch (Betula pubescens Ehrh.) seedlings exposed to waterlogging during dormancy or at the beginning of the growing season in a growth-chamber experiment. The experiment included 4-week dormancy (Weeks 1-4), a 4-week early growing season (Weeks 5-8) and a 4-week late growing season (Weeks 9-12). The treatments were: (i) no waterlogging, throughout the experiment ('NW'); (ii) 4-week waterlogging during dormancy (dormancy waterlogging 'DW'); (iii) 4-week waterlogging during the early growing season (growth waterlogging 'GW'); and (iv) 4-week DW followed by 4-week GW during the early growing season ('DWGW'). Dormancy waterlogging affected the roots of silver birch and GW the roots and leaf characteristics of both species. Leaf area was reduced in both species by GW and DWGW. In pubescent birch, temporarily increased formation of thin roots was seen in root systems of GW seedlings, which suggests an adaptive mechanism with respect to excess soil water. Additionally, the high density of non-glandular trichomes and their increase in DWGW leaves were considered possible morphological adaptations to excess water in the soil, as was the constant density of stem lenticels during stem-diameter growth. The higher density in glandular trichomes of DWGW silver birch suggests morphological acclimation in that species. The naturally low density of non-glandular trichomes, low density of stem lenticels in waterlogged seedlings and decrease in root growth seen in DWGW and DW silver birch seedlings explain, at least partly, why silver birch grows more poorly relative to pubescent birch in wet soils. PMID:26420790

  8. Summer (subarctic) versus winter (subtropic) production affects spinach (Spinacia oleracea L.) leaf bionutrients: vitamins (C, E, Folate, K1, provitamin A), lutein, phenolics, and antioxidants.

    PubMed

    Lester, Gene E; Makus, Donald J; Hodges, D Mark; Jifon, John L

    2013-07-24

    Comparison of spinach (Spinacia oleracea L.) cultivars Lazio and Samish grown during the summer solstice in the subarctic versus the winter solstice in the subtropics provided insight into interactions between production environment (light intensity), cultivar, and leaf age/maturity/position affecting bionutrient concentrations of vitamins (C, E, folate, K1, provitamin A), lutein, phenolics, and antioxidants. Growing spinach during the winter solstice in the subtropics resulted in increased leaf dry matter %, oxidized (dehydro) ascorbic acid (AsA), α- and γ-tocopherol, and total phenols but lower reduced (free) AsA, α-carotene, folate, and antioxidant capacity compared to summer solstice-grown spinach in the subarctic. Both cultivars had similar bionutrients, except for higher dehydroAsA, and lower α- and γ-tocopherol in 'Samish' compared to 'Lazio'. For most bionutrients measured, there was a linear, and sometimes quadratic, increase in concentrations from bottom to top canopy leaves. However, total phenolics and antioxidant capacity increased basipetally. The current study has thus demonstrated that dehydroAsA, α-tocopherol, and γ-tocopherol were substantially lower in subarctic compared to subtropical-grown spinach, whereas the opposite relationship was found for antioxidant capacity, α-carotene, and folates (vitamin B9). The observations are consistent with previously reported isolated effects of growth environment on bionutrient status of crops. The current results clearly highlight the effect of production environment (predominantly radiation capture), interacting with genetics and plant phenology to alter the bionutrient status of crops. While reflecting the effects of changing growing conditions, these results also indicate potential alterations in the nutritive value of foods with anticipated shifts in global climatic conditions. PMID:23834651

  9. Biophysical properties affecting vegetative canopy reflectance and absorbed photosynthetically active radiation at the FIFE site

    NASA Astrophysics Data System (ADS)

    Walter-Shea, E. A.; Blad, B. L.; Hays, C. J.; Mesarch, M. A.; Deering, D. W.; Middleton, E. M.

    1992-11-01

    Leaves of the dominant grass species of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) site reflect and transmit radiation in a similar manner to other healthy green leaves. Visible reflectance factors (RFs) and transmittance factors (TFs) were lower for older leaves than younger leaves except during senescence, when RF and TF values were higher. Near-infrared (NIR) RF values increased and TF values decreased with leaf age, with the reverse occurring as the leaf underwent senescence. Leaf optical properties were not found to be dependent on leaf water potential in the range from -0.5 to -3.0 MPa. Canopy bidirectional reflectance factor (BRF) values generally increased with increasing view zenith angle (θυ). Maximum values were in the backscatter direction, whereas BRF values in the visible region were lowest at oblique off-nadir θυ in the forward scatter direction and at or near nadir in the NIR region. Solar principal plane BRF values varied most at large solar zenith angles (θs). Visible and mid-infrared canopy BRF values decreased and NIR BRF values increased with leaf area index (LAI). Soil BRF distributions in the solar principal plane varied slightly with θs and θυ and varied considerably for wet and dry surfaces. Spectral vegetation indices (SVIs) varied with θs and θυ; values were lowest in the backscatter direction and highest in the forward scatter direction. The fraction of absorbed photosynthetically active radiation (APAR) increased with increasing θs. APAR had a strong linear relationship to nadir-derived SVI values but not to oblique off-nadir-derived SVI values. The relatively small dependence of off-nadir SVI values on θs should allow daily APAR values to be estimated from measurements made at any time of the day.

  10. Endocarp thickness affects seed removal speed by small rodents in a warm-temperate broad-leafed deciduous forest, China

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmao; Zhang, Zhibin

    2008-11-01

    Seed traits are important factors affecting seed predation by rodents and thereby the success of recruitment. Seeds of many tree species have hard hulls. These are thought to confer mechanical protection, but the effect of endocarp thickness on seed predation by rodents has not been well investigated. Wild apricot ( Prunus armeniaca), wild peach ( Amygdalus davidiana), cultivated walnut ( Juglans regia), wild walnut ( Juglans mandshurica Maxim) and Liaodong oak ( Quercus liaotungensis) are very common tree species in northwestern Beijing city, China. Their seeds vary greatly in size, endocarp thickness, caloric value and tannin content. This paper aims to study the effects of seed traits on seed removal speed of these five tree species by small rodents in a temperate deciduous forest, with emphasis on the effect of endocarp thickness. The results indicated that speed of removal of seeds released at stations in the field decreased significantly with increasing endocarp thickness. We found no significant correlations between seed removal speed and other seed traits such as seed size, caloric value and tannin content. In seed selection experiments in small cages, Père David's rock squirrel ( Sciurotamias davidianus), a large-bodied, strong-jawed rodent, selected all of the five seed species, and the selection order among the five seed species was determined by endocarp thickness and the ratio of endocarp mass/seed mass. In contrast, the Korean field mouse ( Apodemus peninsulae) and Chinese white-bellied rat ( Niviventer confucianus), with relatively small bodies and weak jaws, preferred to select small seeds like acorns of Q. liaotungensis and seeds of P. armeniaca, indicating that rodent body size is also an important factor affecting food selection based on seed size. These results suggest endocarp thickness significantly reduces seed removal speed by rodents and then negatively affects dispersal fitness of seeds before seed removal of tree species in the study

  11. Properties of a virus causing mosaic and leaf curl disease of Celosia argentea L. in Nigeria.

    PubMed

    Owolabi, T A; Taiwo, M A; Thottappilly, G A; Shoyinka, S A; Proll, E; Rabenstein, F

    1998-06-01

    A sap transmissible virus, causing mosaic and leaf curl disease of Celosia argentea, was isolated at vegetable farms in Amuwo Odofin, Tejuoso, and Abule Ado, Lagos, Nigeria. The virus had a restricted host range confined to a few species of the Amaranthaceae, Chenopodiaceae and Solanaceae families. It failed to infect several other species of the Aizoaceae, Brassicaceae, Cucurbitaceae, Fabaceae, Lamiaceae, Malvaceae, Poaceae and Tiliaceae families. The virus was transmitted in a non-persistent manner by Aphis spiraecola and Toxoptera citricidus but not by eight other aphid species tested. There was no evidence of transmission by seeds of C. argentae varieties. The viral coat protein had a relative molecular mass (M(r)) of about 30.2 K. Electron microscopy of purified virus preparations revealed flexuous rod shaped particles of about 750 nm in length. Serological studies were performed using the enzyme-linked immunosorbent assay (ELISA), immunosorbent electron microscopy (ISEM) and Western blot analysis. The virus reacted positively with an universal potyvirus group monoclonal antibody (MoAb) and MoAb P-3-3H8 raised against peanut stripe potyvirus. It also reacted with polyclonal antibodies raised against several potyviruses including asparagus virus-1 (AV-1), turnip mosaic virus (TuMV), maize dwarf mosaic virus (MDMV), watermelon mosaic virus (WMV-2), plum pox virus (PPV), soybean mosaic virus (SoyMV), lettuce mosaic virus (LMV), bean common mosaic virus (BCMV) and beet mosaic virus (BMV) in at least one of the serological assays used. On the basis of host range, mode of transmission, and available literature data, the celosia virus seems to be different from potyviruses previously reported to infect vegetables in Nigeria. The name celosia mosaic virus (CIMV) has been proposed for this virus. PMID:9842442

  12. Silencing of the tomato sugar partitioning affecting protein (SPA) modifies sink strength through a shift in leaf sugar metabolism.

    PubMed

    Bermúdez, Luisa; de Godoy, Fabiana; Baldet, Pierre; Demarco, Diego; Osorio, Sonia; Quadrana, Leandro; Almeida, Juliana; Asis, Ramón; Gibon, Yves; Fernie, Alisdair R; Rossi, Magdalena; Carrari, Fernando

    2014-03-01

    Limitations in our understanding about the mechanisms that underlie source-sink assimilate partitioning are increasingly becoming a major hurdle for crop yield enhancement via metabolic engineering. By means of a comprehensive approach, this work reports the functional characterization of a DnaJ chaperone related-protein (named as SPA; sugar partition-affecting) that is involved in assimilate partitioning in tomato plants. SPA protein was found to be targeted to the chloroplast thylakoid membranes. SPA-RNAi tomato plants produced more and heavier fruits compared with controls, thus resulting in a considerable increment in harvest index. The transgenic plants also displayed increased pigment levels and reduced sucrose, glucose and fructose contents in leaves. Detailed metabolic and enzymatic activities analyses showed that sugar phosphate intermediates were increased while the activity of phosphoglucomutase, sugar kinases and invertases was reduced in the photosynthetic organs of the silenced plants. These changes would be anticipated to promote carbon export from foliar tissues. The combined results suggested that the tomato SPA protein plays an important role in plastid metabolism and mediates the source-sink relationships by affecting the rate of carbon translocation to fruits. PMID:24372694

  13. Factors affecting the dielectric properties of agricultural and food products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric properties of materials are defined, and the major factors that influence these properties of agricultural and food materials, namely, frequency of the applied radio-frequency and microwave electric fields, water content, temperature, and density of the materials are discussed on the bas...

  14. Irradiation effects on color and functional properties of persimmon ( Diospyros kaki L. folium) leaf extract and licorice ( Glycyrrhiza Uralensis Fischer) root extract during storage

    NASA Astrophysics Data System (ADS)

    Jo, Cheorun; Son, Jun Ho; Shin, Myung Gon; Byun, Myung Woo

    2003-06-01

    Irradiation effects on color and functional properties of persimmon ( Diospyros kaki L. folium) leaf extract and licorice ( Glycyrrhiza Uralensis Fischer) root extract were studied. Persimmon leaf and licorice root extracts were irradiated using 60Co gamma irradiator at 0 and 20 kGy absorbed dose and stored at 4°C or -20°C for 2 weeks. Tyrosinase inhibition effect (TIE) of both extracts was not different by 20 kGy-irradiation but reduced during storage. Electron donating ability (EDA) of the persimmon leaf extract was generally consistent, but that of licorice root extract was reduced by irradiation except for 1 week of storage. Both TIE and EDA of persimmon leaf extract were higher than that of licorice root. Hunter color L*-, a*-, and b*-values were changed, resulting in a desirable brighter color by irradiation. During storage, the bright yellow color of irradiated sample changed to brown gradually, and especially the changes in the refrigeration condition (4°C) was faster than frozen (-20°C). Results indicate that irradiation can be a useful method to produce value-added natural ingredients with functions such as persimmon leaf or licorice root for food or cosmetic industry in addition to elimination of microbial load.

  15. Relation of Spectral and Physiological Properties to Leaf Structural Characteristics of Arsenic Treated Rice Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arsenic (As) is a widely spread soil contaminant which can cause toxicity in plants. Although many studies have investigated the spectral characteristics of affected plants, the extent to which different toxicities may result in correspondingly different spectral signatures has received little atte...

  16. Process Formulations And Curing Conditions That Affect Saltstone Properties

    SciTech Connect

    Reigel, M. M.; Pickenheim, B. R.; Daniel, W. E.

    2012-09-28

    The first objective of this study was to analyze saltstone fresh properties to determine the feasibility of reducing the formulation water to premix (w/p) ratio while varying the amount of extra water and admixtures used during processing at the Saltstone Production Facility (SPF). The second part of this study was to provide information for understanding the impact of curing conditions (cure temperature, relative humidity (RH)) and processing formulation on the performance properties of cured saltstone.

  17. Cyclic cryopreservation affects the nanoscale material properties of trabecular bone.

    PubMed

    Landauer, Alexander K; Mondal, Sumona; Yuya, Philip A; Kuxhaus, Laurel

    2014-11-01

    Tissues such as bone are often stored via freezing, or cryopreservation. During an experimental protocol, bone may be frozen and thawed a number of times. For whole bone, the mechanical properties (strength and modulus) do not significantly change throughout five freeze-thaw cycles. Material properties at the trabecular and lamellar scales are distinct from whole bone properties, thus the impact of freeze-thaw cycling at this scale is unknown. To address this, the effect of repeated freezing on viscoelastic material properties of trabecular bone was quantified via dynamic nanoindentation. Vertebrae from five cervine spines (1.5-year-old, male) were semi-randomly assigned, three-to-a-cycle, to 0-10 freeze-thaw cycles. After freeze-thaw cycling, the vertebrae were dissected, prepared and tested. ANOVA (factors cycle, frequency, and donor) on storage modulus, loss modulus, and loss tangent, were conducted. Results revealed significant changes between cycles for all material properties for most cycles, no significant difference across most of the dynamic range, and significant differences between some donors. Regression analysis showed a moderate positive correlation between cycles and material property for loss modulus and loss tangent, and weak negative correlation for storage modulus, all correlations were significant. These results indicate that not only is elasticity unpredictably altered, but also that damping and viscoelasticity tend to increase with additional freeze-thaw cycling. PMID:25278046

  18. Extraction, composition, and functional properties of dried alfalfa (Medicago sativa L.) leaf protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alfalfa, traditionally used for animal feed, has attracted attention as a potential feedstock for biofuels and the viability of the process would be enhanced by co-products with value-added uses. This study describes extraction of protein from dried alfalfa leaves and the functional properties of th...

  19. Acclimations to light quality on plant and leaf level affect the vulnerability of pepper (Capsicum annuum L.) to water deficit.

    PubMed

    Hoffmann, Anna M; Noga, Georg; Hunsche, Mauricio

    2015-03-01

    We investigated the influence of light quality on the vulnerability of pepper plants to water deficit. For this purpose plants were cultivated either under compact fluorescence lamps (CFL) or light-emitting diodes (LED) providing similar photon fluence rates (95 µmol m(-2) s(-1)) but distinct light quality. CFL emit a wide-band spectrum with dominant peaks in the green and red spectral region, whereas LEDs offer narrow band spectra with dominant peaks at blue (445 nm) and red (665 nm) regions. After one-week acclimation to light conditions plants were exposed to water deficit by withholding irrigation; this period was followed by a one-week regeneration period and a second water deficit cycle. In general, plants grown under CFL suffered more from water deficit than plants grown under LED modules, as indicated by the impairment of the photosynthetic efficiency of PSII, resulting in less biomass accumulation compared to respective control plants. As affected by water shortage, plants grown under CFL had a stronger decrease in the electron transport rate (ETR) and more pronounced increase in heat dissipation (NPQ). The higher amount of blue light suppressed plant growth and biomass formation, and consequently reduced the water demand of plants grown under LEDs. Moreover, pepper plants exposed to high blue light underwent adjustments at chloroplast level (e.g., higher Chl a/Chl b ratio), increasing the photosynthetic performance under the LED spectrum. Differently than expected, stomatal conductance was comparable for water-deficit and control plants in both light conditions during the stress and recovery phases, indicating only minor adjustments at the stomatal level. Our results highlight the potential of the target-use of light quality to induce structural and functional acclimations improving plant performance under stress situations. PMID:25626402

  20. Structure-function characterization of the crinkle-leaf peach wood phenotype: a future model system for wood properties research?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variations in wood features of two genotypes of Prunus persica L. trees, wild-type and crinkle-leaf, were examined to elucidate the nature of weak wood in crinkle-leaf trees. Trees from three vigor classes (low, average, and high) of each genotype were sampled. No meaningful tendency of dissimilarit...

  1. Preventive (myoglobin, transferrin) and scavenging (superoxide dismutase, glutathione peroxidase) anti-oxidative properties of raw liquid extract of Morinda lucida leaf in the traditional treatment of Plasmodium infection

    PubMed Central

    Olaniyan, Mathew Folaranmi; Babatunde, Elizabeth Moyinoluwa

    2016-01-01

    Background: Liquid extract of Morinda lucida leaf has been demonstrated to have antiplasmodial activities. Some phytochemicals act as preventive and or scavenging antioxidants. This study aimed to investigate the preventative and scavenging properties of the raw liquid extract of M. lucida leaf using plasma myoglobin, transferrin, superoxide dismutase (SOD), and glutathione (GSH) peroxidase. Materials and Methods: Forty-eight Plasmodium-infected patients aged 29-47 years that have not been treated with any antimalaria medication but have decided to be treated traditionally using M. lucida leaf extract were recruited from 15 traditional homes in ATISBO, Saki-East, and Saki-West local government areas of Oke-Ogun — the Northern part of Oyo State-Nigeria. Identification of Plasmodium in the blood of the test and normal control subjects were carried out by Giemsha thick film technique. Packed cell volume, total bile acids, blood glucose, blood pressure, plasma myoglobin, transferrin, SOD, and GSH peroxidase (GPx) were evaluated in the normal control subjects and in the Plasmodium-infected patients before and after the treatment with raw liquid extract of M. lucida leaf. Results: A significant (P < 0.05) biochemical alterations were observed in the plasma values of transferrin, SOD, and GPx in the Plasmodium-infected patients when compared with the normal control subjects and after treatment with the raw liquid extract of M. lucida leaf. Conclusion: Our study supports the possible preventative and scavenging antioxidative effect of the raw liquid extract of M. lucida leaf in the traditional treatment of Plasmodium infection. PMID:27003969

  2. Spray characteristics affected by physical properties of adjuvants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four drift adjuvants, Array, In-Place, Vector and Control, were tested and physical properties and spray spectrum parameters measured. Array had the highest conductivity, indicating a good potential for the electrostatic charging, and the highest shear viscosity. All adjuvants had very similar neut...

  3. Anti-Inflammatory Property of Plantago major Leaf Extract Reduces the Inflammatory Reaction in Experimental Acetaminophen-Induced Liver Injury.

    PubMed

    Hussan, Farida; Mansor, Adila Sofea; Hassan, Siti Nazihahasma; Tengku Nor Effendy Kamaruddin, Tg Nurul Tasnim; Budin, Siti Balkis; Othman, Faizah

    2015-01-01

    Hepatic injury induces inflammatory process and cell necrosis. Plantago major is traditionally used for various diseases. This study aimed to determine the anti-inflammatory property of P. major leaf extracts on inflammatory reaction following acetaminophen (APAP) hepatotoxicity. Thirty male Sprague-Dawley rats were divided into 5 groups, namely, normal control (C), APAP, aqueous (APAP + AQ), methanol (APAP + MT), and ethanol (APAP + ET) extract treated groups. All APAP groups received oral APAP (2 g/kg) at day 0. Then, 1000 mg/kg dose of P. major extracts was given for six days. The levels of liver transaminases were measured at day 1 and day 7 after APAP induction. At day 7, the blood and liver tissue were collected to determine plasma cytokines and tissue 11β-HSD type 1 enzyme. The in vitro anti-inflammatory activities of methanol, ethanol, and aqueous extracts were 26.74 ± 1.6%, 21.69 ± 2.81%, and 12.23 ± 3.15%, respectively. The ALT and AST levels were significantly higher in the APAP groups at day 1 whereas the enzyme levels of all groups showed no significant difference at day 7. The extracts treatment significantly reduced the proinflammatory cytokine levels and significantly increased the 11β-HSD type 1 enzyme activity (p < 0.05). In conclusion, the P. major extracts attenuate the inflammatory reaction following APAP-induced liver injury. PMID:26300946

  4. Phytochemical properties and anti-proliferative activity of Olea europaea L. leaf extracts against pancreatic cancer cells.

    PubMed

    Goldsmith, Chloe D; Vuong, Quan V; Sadeqzadeh, Elham; Stathopoulos, Costas E; Roach, Paul D; Scarlett, Christopher J

    2015-01-01

    Olea europaea L. leaves are an agricultural waste product with a high concentration of phenolic compounds; especially oleuropein. Oleuropein has been shown to exhibit anti-proliferative activity against a number of cancer types. However, they have not been tested against pancreatic cancer, the fifth leading cause of cancer related death in Western countries. Therefore, water, 50% ethanol and 50% methanol extracts of Corregiola and Frantoio variety Olea europaea L. leaves were investigated for their total phenolic compounds, total flavonoids and oleuropein content, antioxidant capacity and anti-proliferative activity against MiaPaCa-2 pancreatic cancer cells. The extracts only had slight differences in their phytochemical properties, and at 100 and 200 μg/mL, all decreased the viability of the pancreatic cancer cells relative to controls. At 50 μg/mL, the water extract from the Corregiola leaves exhibited the highest anti-proliferative activity with the effect possibly due to early eluting HPLC peaks. For this reason, olive leaf extracts warrant further investigation into their potential anti-pancreatic cancer benefits. PMID:26193251

  5. Antidiabetic properties of Hibiscus rosa sinensis L. leaf extract fractions on nonobese diabetic (NOD) mouse.

    PubMed

    Moqbel, Fahmi S; Naik, Prakash R; Najma, Habeeb M; Selvaraj, S

    2011-01-01

    On fractionation the ethanolic extract of H. rosa sinensis leaves, 5 fractions were obtained. Of these, fraction-3 (F3) and fraction-5 (F5) were chosen for detailed investigation on non obese diabetic (NOD) mouse to study anti-diabetic properties because they were more active than others. Serum glucose, glycosylated hemoglobin, triglyceride, cholesterol, blood urea, insulin, LDL, VLDL, and HDL were estimated. Both fractions F3 and F5 on oral feeding (100 and 200 mg/kg body weight) demonstrated insulinotropic nature and protective effect in NOD mice. These fractions may contain potential oral hypoglycemic agent. PMID:21365992

  6. Soil properties affecting wheat yields following drilling-fluid application.

    PubMed

    Bauder, T A; Barbarick, K A; Ippolito, J A; Shanahan, J F; Ayers, P D

    2005-01-01

    Oil and gas drilling operations use drilling fluids (mud) to lubricate the drill bit and stem, transport formation cuttings to the surface, and seal off porous geologic formations. Following completion of the well, waste drilling fluid is often applied to cropland. We studied potential changes in soil compaction as indicated by cone penetration resistance, pH, electrical conductivity (EC(e)), sodium adsorption ratio (SAR), extractable soil and total straw and grain trace metal and nutrient concentrations, and winter wheat (Triticum aestivum L. 'TAM 107') grain yield following water-based, bentonitic drilling-fluid application (0-94 Mg ha(-1)) to field test plots. Three methods of application (normal, splash-plate, and spreader-bar) were used to study compaction effects. We measured increasing SAR, EC(e), and pH with drilling-fluid rates, but not to levels detrimental to crop production. Field measurements revealed significantly higher compaction within areas affected by truck travel, but also not enough to affect crop yield. In three of four site years, neither drilling-fluid rate nor application method affected grain yield. Extractions representing plant availability and plant analyses results indicated that drilling fluid did not significantly increase most trace elements or nutrient concentrations. These results support land application of water-based bentonitic drilling fluids as an acceptable practice on well-drained soils using controlled rates. PMID:16091622

  7. Mutation of the Light-Induced Yellow Leaf 1 Gene, Which Encodes a Geranylgeranyl Reductase, Affects Chlorophyll Biosynthesis and Light Sensitivity in Rice

    PubMed Central

    Yuan, Yuan; Zhu, Jinyan; Wang, Man; Yuan, Fuhai; Wu, Shujun; Wang, Zhiqin; Yi, Chuandeng; Xu, Tinghua; Ryom, MyongChol; Gu, Minghong; Liang, Guohua

    2013-01-01

    Chlorophylls (Chls) are crucial for capturing light energy for photosynthesis. Although several genes responsible for Chl biosynthesis were characterized in rice (Oryza sativa), the genetic properties of the hydrogenating enzyme involved in the final step of Chl synthesis remain unknown. In this study, we characterized a rice light-induced yellow leaf 1-1 (lyl1-1) mutant that is hypersensitive to high-light and defective in the Chl synthesis. Light-shading experiment suggested that the yellowing of lyl1-1 is light-induced. Map-based cloning of LYL1 revealed that it encodes a geranylgeranyl reductase. The mutation of LYL1 led to the majority of Chl molecules are conjugated with an unsaturated geranylgeraniol side chain. LYL1 is the firstly defined gene involved in the reduction step from Chl-geranylgeranylated (ChlGG) and geranylgeranyl pyrophosphate (GGPP) to Chl-phytol (ChlPhy) and phytyl pyrophosphate (PPP) in rice. LYL1 can be induced by light and suppressed by darkness which is consistent with its potential biological functions. Additionally, the lyl1-1 mutant suffered from severe photooxidative damage and displayed a drastic reduction in the levels of α-tocopherol and photosynthetic proteins. We concluded that LYL1 also plays an important role in response to high-light in rice. PMID:24058671

  8. Biochar physico-chemical properties as affected by environmental exposure.

    PubMed

    Sorrenti, Giovambattista; Masiello, Caroline A; Dugan, Brandon; Toselli, Moreno

    2016-09-01

    To best use biochar as a sustainable soil management and carbon (C) sequestration technique, we must understand the effect of environmental exposure on its physical and chemical properties because they likely vary with time. These properties play an important role in biochar's environmental behavior and delivery of ecosystem services. We measured biochar before amendment and four years after amendment to a commercial nectarine orchard at rates of 5, 15 and 30tha(-1). We combined two pycnometry techniques to measure skeletal (ρs) and envelope (ρe) density and to estimate the total pore volume of biochar particles. We also examined imbibition, which can provide information about soil hydraulic conductivity. Finally, we investigated the chemical properties, surface, inner layers atomic composition and C1s bonding state of biochar fragments through X-ray photoelectron spectroscopy (XPS). Ageing increased biochar skeletal density and reduced the water imbibition rate within fragments as a consequence of partial pore clogging. However, porosity and the volume of water stored in particles remained unchanged. Exposure reduced biochar pH, EC, and total C, but enhanced total N, nitrate-N, and ammonium-N. X-ray photoelectron spectroscopy analyses showed an increase of O, Si, N, Na, Al, Ca, Mn, and Fe surface (0-5nm) atomic composition (at%) and a reduction of C and K in aged particles, confirming the interactions of biochar with soil inorganic and organic phases. Oxidation of aged biochar fragments occurred mainly in the particle surface, and progressively decreased down to 75nm. Biochar surface chemistry changes included the development of carbonyl and carboxylate functional groups, again mainly on the particle surface. However, changes were noticeable down to 75nm, while no significant changes were measured in the deepest layer, up to 110nm. Results show unequivocal shifts in biochar physical and chemical properties/characteristics over short (~years) timescales. PMID

  9. In Vitro Antioxidant Properties of Methanolic Leaf Extract of Vernonia Amygdalina Del.

    PubMed

    Adesanoye, O A; Farombi, E O

    2014-01-01

    Various methods employed in evaluating antioxidant activities of various samples gives varying results depending on the specificity of the free radical or oxidant used as a reactant. This study investigated the antioxidant /radical scavenging properties of the methanolic extract of Vernonia amygdalina (MEVA) leaves and studied the relationship between the assay methods. Antioxidant capacity of MEVA was evaluated by measuring the radical scavenging activity (RSA) of MEVA on 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•), nitric oxide (NO) and hydrogen peroxide (HP), hydroxyl radical (OH•) scavenging activity (HRSA), lipid peroxidation inhibition activity (LPIA) against 2,2,-azobis(2-amidinopropane) hydrochloride (AAPH) and Trolox Equivalent Antioxidant Capacity (TEAC) of MEVA against 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+) radicals as well as the reducing power (RP). Assay methods were subjected to regression analysis and their correlation coefficients calculated. Results were analysed using student‟s t-test and ANOVA. MEVA exhibited highest percentage RSA of 85.8% on HP, followed by DPPH• (29.6%), OH• (26.4%) and least on NO• (21.8%). MEVA inhibited AAPH-induced lipid peroxidation by 30.0% and ABTS-induced radical by 1489% with a marked RP of 0.242±0.01. DPPH correlated excellently with RP (r2 = 0.86), TEAC (r2 = 0.94) and HRSA (r2 = 0.89), the four having good relationship with each other, while LPIA correlated moderately with HP (r2 = 0.48 and NO (r2 = 0.34). MEVA exhibited significant free radical scavenging and antioxidant activities. The assay methods correlates very well and could therefore be employed for investigating and understanding antioxidant properties and scavenging activities of plant materials. PMID:26196573

  10. The Affect and Arousal Scales: Psychometric Properties of the Dutch Version and Multigroup Confirmatory Factor Analyses

    ERIC Educational Resources Information Center

    De Bolle, Marleen; De Fruyt, Filip; Decuyper, Mieke

    2010-01-01

    Psychometric properties of the Dutch version of the Affect and Arousal Scales (AFARS) were inspected in a combined clinical and population sample (N = 1,215). The validity of the tripartite structure and the relations between Negative Affect, Positive Affect, and Physiological Hyperarousal (PH) were investigated for boys and girls, younger (8-11…

  11. How Molecular Structure Affects Mechanical Properties of an Advanced Polymer

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.

    2000-01-01

    density was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength all as a function of molecular weight and test temperature were determined. For the uncrosslinked SI material, it was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. For the crosslinked PETI-SI material, it was shown that the effect of crosslinking significantly enhances the mechanical performance of the low molecular weight material; comparable to that exhibited by the high molecular weight material.

  12. Carboxymethyl modification of konjac glucomannan affects water binding properties.

    PubMed

    Xiao, Man; Dai, Shuhong; Wang, Le; Ni, Xuewen; Yan, Wenli; Fang, Yapeng; Corke, Harold; Jiang, Fatang

    2015-10-01

    The water binding properties of konjac glucomannan (KGM) and carboxymethyl konjac glucomannan (CMKGM) are important for their application in food, pharmaceutical, and chemical engineering fields. The equilibrium moisture content of CMKGM was lower than that of KGM at the relative humidity in the range 30-95% at 25°C. The water absorption and solubility of CMKGM in water solution were lower than that of KGM at 25°C. Carboxymethyl modification of KGM reduces the water adsorption, absorption, and solubility. Both carboxymethylation and deacetylation could confer hydrophobicity for CMKGM. These data provide the basis for expanding CMKGM application. PMID:26076594

  13. Does severity of dermatochalasis in aging affect corneal biomechanical properties?

    PubMed Central

    Atalay, Kurşat; Gurez, Ceren; Kirgiz, Ahmet; Serefoglu Cabuk, Kubra

    2016-01-01

    Purpose The aim of this study was to investigate the possibility of a relationship between corneal biomechanical properties and different grades of dermatochalasis. Patients and methods Patients were assigned to four groups according to the severity of their dermatochalasis: normal (Group 1), mild (Group 2), moderate (Group 3), and severe (Group 4). An Ocular Response Analyzer device was used to measure corneal hysteresis (CH), corneal resistance factor (CRF), and corneal-compensated intraocular pressure (IOPcc). Results We found no significant differences in the mean values of the CH, CRF, and IOPcc of all groups (P=0.75, P=0.93, and P=0.11, respectively). However, CH and IOPcc were negatively correlated in Group 1, Group 2, and Group 3 patients (P=0.013, r=−0.49; P=0.015, r=−0.52; and P=0.011, r=−0.47, respectively), but this correlation was not apparent in the Group 4 patients (P=0.57, r=0.12). CRF and IOPcc were correlated, but only in Group 4 (P=0.001, r=0.66). Conclusion Severe dermatochalasis was associated with altered corneal biomechanical properties. Some of the important visual consequences of dermatochalasis and related diseases (such as floppy eyelid syndrome) can be understood by considering corneal biomechanical alterations. PMID:27274214

  14. Ferric Phosphate Hydroxide Microstructures Affect Their Magnetic Properties

    PubMed Central

    Zhao, Junhong; Zhang, Youjuan; Run, Zhen; Li, Pengwei; Guo, Qifei; Pang, Huan

    2015-01-01

    Uniformly sized and shape-controlled nanoparticles are important due to their applications in catalysis, electrochemistry, ion exchange, molecular adsorption, and electronics. Several ferric phosphate hydroxide (Fe4(OH)3(PO4)3) microstructures were successfully prepared under hydrothermal conditions. Using controlled variations in the reaction conditions, such as reaction time, temperature, and amount of hexadecyltrimethylammonium bromide (CTAB), the crystals can be grown as almost perfect hyperbranched microcrystals at 180 °C (without CTAB) or relatively monodisperse particles at 220 °C (with CTAB). The large hyperbranched structure of Fe4(OH)3(PO4)3 with a size of ∼19 μm forms with the “fractal growth rule” and shows many branches. More importantly, the magnetic properties of these materials are directly correlated to their size and micro/nanostructure morphology. Interestingly, the blocking temperature (TB) shows a dependence on size and shape, and a smaller size resulted in a lower TB. These crystals are good examples that prove that physical and chemical properties of nano/microstructured materials are related to their structures, and the precise control of the morphology of such functional materials could allow for the control of their performance. PMID:26246988

  15. 12 CFR 617.7630 - Does this Federal requirement affect any state property laws?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... property laws? 617.7630 Section 617.7630 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM BORROWER RIGHTS Right of First Refusal § 617.7630 Does this Federal requirement affect any state property... first refusal under the law of the state in which the property is located....

  16. 12 CFR 617.7630 - Does this Federal requirement affect any state property laws?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... property laws? 617.7630 Section 617.7630 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM BORROWER RIGHTS Right of First Refusal § 617.7630 Does this Federal requirement affect any state property... first refusal under the law of the state in which the property is located....

  17. 12 CFR 617.7630 - Does this Federal requirement affect any state property laws?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... property laws? 617.7630 Section 617.7630 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM BORROWER RIGHTS Right of First Refusal § 617.7630 Does this Federal requirement affect any state property... first refusal under the law of the state in which the property is located....

  18. 12 CFR 617.7630 - Does this Federal requirement affect any state property laws?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... property laws? 617.7630 Section 617.7630 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM BORROWER RIGHTS Right of First Refusal § 617.7630 Does this Federal requirement affect any state property... first refusal under the law of the state in which the property is located....

  19. 12 CFR 617.7630 - Does this Federal requirement affect any state property laws?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... property laws? 617.7630 Section 617.7630 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM BORROWER RIGHTS Right of First Refusal § 617.7630 Does this Federal requirement affect any state property... first refusal under the law of the state in which the property is located....

  20. Phytochemical Analysis and Antioxidant Property of Leaf Extracts of Vitex doniana and Mucuna pruriens.

    PubMed

    Agbafor, K N; Nwachukwu, N

    2011-01-01

    Oxidative stress and impaired antioxidant system have been implicated in the pathophysiology of diverse disease states. The phytochemical screening and antioxidant property of fresh leaves of Vitex doniana and Mucuna pruriens, used in the management and treatment of various diseases, were studied. The extracts (ethanol and distilled water) were screened for the presence of phytochemicals, and their inhibition of 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical was used to evaluate their free radical scavenging activity. Liver levels of malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) in carbon tetrachloride- (CCl(4)) treated albino rats were also used to assess the antioxidant activity of the extracts. The animals were treated with 250 mg/kg body weight of the extracts for six consecutive days before a single dose (2.5 mL/kg body weight) of CCl(4). Vitamin C was used as the standard antioxidant. Phytochemical screening revealed the presence of saponins, tannins, anthraquinones, terpenoids, and flavonoids in all the extracts, while alkaloids were detected in extracts of Vitex doniana only, and cardiac glycosides occurred in extracts of Mucuna pruriens only. All the extracts inhibited DPPH radical in a concentration-dependent manner, water extract of Vitex doniana producing highest inhibition which was not significantly different (P > .05) from vitamin C. The extracts produced a significant decrease (P < .05) in liver MDA, while the levels of SOD and CAT significantly increased (P < .05) relative to the positive control. These results are an indication of antioxidant potential of the extracts and may be responsible for some of the therapeutic uses of these plants. PMID:21547085

  1. Rheological properties of ovalbumin hydrogels as affected by surfactants addition.

    PubMed

    Hassan, Natalia; Messina, Paula V; Dodero, Veronica I; Ruso, Juan M

    2011-04-01

    The gel properties of ovalbumin mixtures with three different surfactants (sodium perfluorooctanoate, sodium octanoate and sodium dodecanoate) have been studied by rheological techniques. The gel elasticities were determined as a function of surfactant concentration and surfactant type. The fractal dimension of the formed structures was evaluated from plots of storage modulus against surfactant concentration. The role of electrostatic, hydrophobic and disulfide SS interactions in these systems has been demonstrated to be the predominant. The viscosity of these structures tends to increase with surfactant concentration, except for the fluorinated one. Unfolded ovalbumin molecules tend to form fibrillar structures that tend to increase with surfactant concentration, except for the fluorinated one. This fact has been related to the particular nature of this molecule. PMID:21262258

  2. Protein composition affects variation in coagulation properties of buffalo milk.

    PubMed

    Bonfatti, V; Gervaso, M; Rostellato, R; Coletta, A; Carnier, P

    2013-07-01

    The aim of this study was to investigate the effects exerted by the content of casein and whey protein fractions on variation of pH, rennet-coagulation time (RCT), curd-firming time (K20), and curd firmness of Mediterranean buffalo individual milk. Measures of milk protein composition and assessment of genotypes at CSN1S1 and CSN3 were obtained by reversed-phase HPLC analysis of 621 individual milk samples. Increased content of αS1-casein (CN) was associated with delayed coagulation onset and increased K20, whereas average pH, RCT, and K20 decreased when β-CN content increased. Milk with low κ-CN content exhibited low pH and RCT relative to milk with high content of κ-CN. Increased content of glycosylated κ-CN was associated with unfavorable effects on RCT. Effects of milk protein composition on curd firmness were less important than those on pH, RCT, and K20. Likely, this occurred as a consequence of the very short RCT of buffalo milk, which guaranteed a complete strengthening of the curd even in the restricted 31 min time of analysis of coagulation properties and for samples initially showing soft curds. Effects of CSN1S1-CSN3 genotypes on coagulation properties were not to be entirely ascribed to existing variation in milk protein composition associated with polymorphisms at CSN1S1 and CSN3 genes. Although the role of detailed milk protein composition in variation of cheese yield needs to be further investigated, findings of this study suggest that modification of the relative content of specific CN fractions can relevantly influence the behavior of buffalo milk during processing. PMID:23684020

  3. How SN Ia host-galaxy properties affect cosmological parameters

    NASA Astrophysics Data System (ADS)

    Campbell, H.; Fraser, M.; Gilmore, G.

    2016-04-01

    We present a systematic study of the relationship between Type Ia Supernova (SN Ia) properties, and the characteristics of their host galaxies, using a sample of 581 SNe Ia from the full Sloan Digital Sky Survey II (SDSS-II) SN Survey. We also investigate the effects of this on the cosmological constraints derived from SNe Ia. Compared to previous studies, our sample is larger by a factor of >4, and covers a substantially larger redshift range (up to z ˜ 0.5), which is directly applicable to the volume of cosmological interest. We measure a significant correlation (>5σ) between the host-galaxy stellar-mass and the SN Ia Hubble Residuals (HR). We find a weak correlation (1.4σ) between the host-galaxy metallicity as measured from emission lines in the spectra, and the SN Ia HR. We also find evidence that the slope of the correlation between host-galaxy mass and HR is -0.11 mag/log(Mhost/M⊙) steeper in lower metallicity galaxies. We test the effects on a cosmological analysis using both the derived best-fitting correlations between host parameters and HR, and by allowing an additional free parameter in the fit to account for host properties which we then marginalize over when determining cosmological parameters. We see a shift towards more negative values of the equation-of-state parameter w, along with a shift to lower values of Ωm after applying mass or metallicity corrections. The shift in cosmological parameters with host-galaxy stellar-mass correction is consistent with previous studies. We find a best-fitting cosmology of Ω m =0.266_{-0.016}^{+0.016}, Ω _{Λ }=0.740_{-0.018}^{+0.018} and w=-1.151_{-0.121}^{+0.123} (statistical errors only).

  4. Autumn leaf subsidies influence spring dynamics of freshwater plankton communities.

    PubMed

    Fey, Samuel B; Mertens, Andrew N; Cottingham, Kathryn L

    2015-07-01

    While ecologists primarily focus on the immediate impact of ecological subsidies, understanding the importance of ecological subsidies requires quantifying the long-term temporal dynamics of subsidies on recipient ecosystems. Deciduous leaf litter transferred from terrestrial to aquatic ecosystems exerts both immediate and lasting effects on stream food webs. Recently, deciduous leaf additions have also been shown to be important subsidies for planktonic food webs in ponds during autumn; however, the inter-seasonal effects of autumn leaf subsidies on planktonic food webs have not been studied. We hypothesized that autumn leaf drop will affect the spring dynamics of freshwater pond food webs by altering the availability of resources, water transparency, and the metabolic state of ponds. We created leaf-added and no-leaf-added field mesocosms in autumn 2012, allowed mesocosms to ice-over for the winter, and began sampling the physical, chemical, and biological properties of mesocosms immediately following ice-off in spring 2013. At ice-off, leaf additions reduced dissolved oxygen, elevated total phosphorus concentrations and dissolved materials, and did not alter temperature or total nitrogen. These initial abiotic effects contributed to higher bacterial densities and lower chlorophyll concentrations, but by the end of spring, the abiotic environment, chlorophyll and bacterial densities converged. By contrast, zooplankton densities diverged between treatments during the spring, with leaf additions stimulating copepods but inhibiting cladocerans. We hypothesized that these differences between zooplankton orders resulted from resource shifts following leaf additions. These results suggest that leaf subsidies can alter both the short- and long-term dynamics of planktonic food webs, and highlight the importance of fully understanding how ecological subsidies are integrated into recipient food webs. PMID:25761444

  5. Physicochemical properties of foal meat as affected by cooking methods.

    PubMed

    Lorenzo, José M; Cittadini, Aurora; Munekata, Paulo E; Domínguez, Rubén

    2015-10-01

    The present study deals with the effect of four different cooking techniques (roasting, grilling, microwave baking and frying with olive oil) on physicochemical parameters (cooking loss, WHC, texture and colour) and lipid oxidation (by TBARS measurement) of foal meat. Thermal treatments induced water loss (P<0.001), being lower in foal steaks cooked in the grill (25.8%) and higher in foal samples cooked in the microwave (39.5%). As it was expected, all the cooking methods increased TBARS index, since high temperature during cooking seems to cause an increase of the lipid oxidation in foal steaks. Statistical analysis displayed that WHC was affected (P<0.001) by thermal treatment, since the smallest WHC values were observed in samples from microwave treatment. Thermal treatment also caused a significant (P<0.001) increase in the force needed to cut the foal steaks. Regarding colour parameter, cooking led to an increase of L*-value (lightness) and b*-value (yellowness), while a*-value (redness) markedly decreased in all samples. PMID:26042921

  6. The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 Gene Affects Branch Production and Plays a Role in Leaf Senescence, Root Growth, and Flower Development

    PubMed Central

    Snowden, Kimberley C.; Simkin, Andrew J.; Janssen, Bart J.; Templeton, Kerry R.; Loucas, Holly M.; Simons, Joanne L.; Karunairetnam, Sakuntala; Gleave, Andrew P.; Clark, David G.; Klee, Harry J.

    2005-01-01

    Carotenoids and carotenoid cleavage products play an important and integral role in plant development. The Decreased apical dominance1 (Dad1)/PhCCD8 gene of petunia (Petunia hybrida) encodes a hypothetical carotenoid cleavage dioxygenase (CCD) and ortholog of the MORE AXILLARY GROWTH4 (MAX4)/AtCCD8 gene. The dad1-1 mutant allele was inactivated by insertion of an unusual transposon (Dad-one transposon), and the dad1-3 allele is a revertant allele of dad1-1. Consistent with its role in producing a graft-transmissible compound that can alter branching, the Dad1/PhCCD8 gene is expressed in root and shoot tissue. This expression is upregulated in the stems of the dad1-1, dad2, and dad3 increased branching mutants, indicating feedback regulation of the gene in this tissue. However, this feedback regulation does not affect the root expression of Dad1/PhCCD8. Overexpression of Dad1/PhCCD8 in the dad1-1 mutant complemented the mutant phenotype, and RNA interference in the wild type resulted in an increased branching phenotype. Other differences in phenotype associated with the loss of Dad1/PhCCD8 function included altered timing of axillary meristem development, delayed leaf senescence, smaller flowers, reduced internode length, and reduced root growth. These data indicate that the substrate(s) and/or product(s) of the Dad1/PhCCD8 enzyme are mobile signal molecules with diverse roles in plant development. PMID:15705953

  7. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration.

    PubMed

    Chevalier, N R; Gazguez, E; Bidault, L; Guilbert, T; Vias, C; Vian, E; Watanabe, Y; Muller, L; Germain, S; Bondurand, N; Dufour, S; Fleury, V

    2016-01-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development. PMID:26887292

  8. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    PubMed Central

    Chevalier, N.R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-01-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development. PMID:26887292

  9. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    NASA Astrophysics Data System (ADS)

    Chevalier, N. R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-02-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.

  10. Perturbation amplitude affects linearly estimated neuromechanical wrist joint properties.

    PubMed

    Klomp, Asbjorn; de Groot, Jurriaan H; de Vlugt, Erwin; Meskers, Carel G M; Arendzen, J Hans; van der Helm, Frans C T

    2014-04-01

    System identification techniques have been used to separate intrinsic muscular and reflexive contributions to joint impedance, which is an essential step in the proper choice of patient specific treatment. These techniques are, however, only well developed for linear systems. Assuming linearity prescribes the neuromuscular system to be perturbed only around predefined operating points. In this study, we test the validity of a commonly used linear model by analyzing the effects of flexion-extension displacement amplitude (2(°), 4(°), and 8(°)) on damping, stiffness, and reflex gain of the wrist joint, at different background torque levels (0, 1, and 2 N · m). With displacement amplitude, intrinsic damping increased, while intrinsic stiffness and reflex gains decreased. These changes were dependent on the level of wrist torque. The dependency of the neuromuscular system properties on even small variations in angular displacement is evident and has to be accounted for when comparing different studies and clinical interpretations using linear identification techniques. Knowledge of the behavior of the neuromuscular system around operating points is an essential step toward the development of nonlinear models that allow for discrimination between patients and controls in a larger range of loading conditions. PMID:24216632

  11. Anti-Inflammatory Activity and Changes in Antioxidant Properties of Leaf and Stem Extracts from Vitex mollis Kunth during In Vitro Digestion.

    PubMed

    Morales-Del-Rio, Juan Alfredo; Gutiérrez-Lomelí, Melesio; Robles-García, Miguel Angel; Aguilar, Jose Antonio; Lugo-Cervantes, Eugenia; Guerrero-Medina, Pedro Javier; Ruiz-Cruz, Saul; Cinco-Moroyoqui, Francisco J; Wong-Corral, Francisco J; Del-Toro-Sánchez, Carmen Lizette

    2015-01-01

    Vitex mollis is used in traditional Mexican medicine for the treatment of some ailments. However, there are no studies on what happens to the anti-inflammatory activity or antioxidant properties and total phenolic content of leaves and stem extracts of Vitex mollis during the digestion process; hence, this is the aim of this work. Methanolic, acetonic, and hexanic extracts were obtained from both parts of the plant. Extract yields and anti-inflammatory activity (elastase inhibition) were measured. Additionally, changes in antioxidant activity (DPPH and ABTS) and total phenols content of plant extracts before and after in vitro digestion were determined. The highest elastase inhibition to prevent inflammation was presented by hexanic extracts (leaf = 94.63% and stem = 98.30%). On the other hand, the major extract yield (16.14%), antioxidant properties (ABTS = 98.51% and DPPH = 94.47% of inhibition), and total phenols (33.70 mg GAE/g of dried sample) were showed by leaf methanolic extract. Finally, leaf and stem methanolic extracts presented an antioxidant activity increase of 35.25% and 27.22%, respectively, in comparison to their initial values after in vitro digestion process. All samples showed a decrease in total phenols at the end of the digestion. These results could be the basis to search for new therapeutic agents from Vitex mollis. PMID:26451153

  12. Development of a novel cup cake with unique properties of essential oil of betel leaf (Piper betle L.) for sustainable entrepreneurship.

    PubMed

    Roy, Arnab; Guha, Proshanta

    2015-08-01

    Betel vine (Piper betle L.) is a root climber with deep green heart shaped leaves. It belongs to the Piperaceae family. There is a huge wastage of the leaves during glut season and it can be reduced by various means including extraction of medicinal essential oil which can be considered as GRAS (generally recognized as safe) materials. Therefore, attempts were made to develop a novel cup cake by incorporating essential oil of betel leaf. The textural properties of the cakes were measured by texture analyzer instrument; whereas the organoleptic properties were adjudged by human preferences using sensory tables containing 9-point hedonic scale. Price estimation was done considering all costs and charges. Finally, all parameters of the developed cake were compared with different cup cakes available in the market for ascertaining consumer acceptability of the newly developed product in terms of quality and market price. Results revealed that the Novel cup cake developed with 0.005 % (v/w) essential oil of betel leaf occupied the 1st place among the four developed novel cup cakes. However, it occupied 4th place among the nine cup cakes in the overall preference list prepared based on the textural and organoleptic qualities, though its market price was calculated to be comparable to all the leading cupcakes available in the market. This indicates that manufacturing of novel cup cake with essential oil of betel leaf would be a profitable and self-sustaining entrepreneurship. PMID:26243908

  13. Anti-Inflammatory Activity and Changes in Antioxidant Properties of Leaf and Stem Extracts from Vitex mollis Kunth during In Vitro Digestion

    PubMed Central

    Morales-Del-Rio, Juan Alfredo; Gutiérrez-Lomelí, Melesio; Robles-García, Miguel Angel; Aguilar, Jose Antonio; Lugo-Cervantes, Eugenia; Guerrero-Medina, Pedro Javier; Ruiz-Cruz, Saul; Cinco-Moroyoqui, Francisco J.; Wong-Corral, Francisco J.; Del-Toro-Sánchez, Carmen Lizette

    2015-01-01

    Vitex mollis is used in traditional Mexican medicine for the treatment of some ailments. However, there are no studies on what happens to the anti-inflammatory activity or antioxidant properties and total phenolic content of leaves and stem extracts of Vitex mollis during the digestion process; hence, this is the aim of this work. Methanolic, acetonic, and hexanic extracts were obtained from both parts of the plant. Extract yields and anti-inflammatory activity (elastase inhibition) were measured. Additionally, changes in antioxidant activity (DPPH and ABTS) and total phenols content of plant extracts before and after in vitro digestion were determined. The highest elastase inhibition to prevent inflammation was presented by hexanic extracts (leaf = 94.63% and stem = 98.30%). On the other hand, the major extract yield (16.14%), antioxidant properties (ABTS = 98.51% and DPPH = 94.47% of inhibition), and total phenols (33.70 mg GAE/g of dried sample) were showed by leaf methanolic extract. Finally, leaf and stem methanolic extracts presented an antioxidant activity increase of 35.25% and 27.22%, respectively, in comparison to their initial values after in vitro digestion process. All samples showed a decrease in total phenols at the end of the digestion. These results could be the basis to search for new therapeutic agents from Vitex mollis. PMID:26451153

  14. Does leaf position within a canopy affect acclimation of photosynthesis to elevated CO{sub 2}? Analysis of a wheat crop under free-air CO{sub 2} enrichment

    SciTech Connect

    Osborne, C.P.; LaRoche, J.; Hendrey, G.R.; Garcia, R.L.; Kimball, B.A.; Wall, G.W.; Pinter, P.J. Jr.; LaMorte, R.L.; Long, S.P. |

    1998-07-01

    Previous studies of photosynthetic acclimation to elevated CO{sub 2} have focused on the most recently expanded, sunlit leaves in the canopy. The authors examined acclimation in a vertical profile of leaves through a canopy of wheat (Triticum aestivum L.). The crop was grown at an elevated CO{sub 2} partial pressure of 55 Pa within a replicated field experiment using free-air CO{sub 2} enrichment. Gas exchange was used to estimate in vivo carboxylation capacity and the maximum rate of ribulose-1,5-bisphosphate-limited photosynthesis. Net photosynthetic CO{sub 2} uptake was measured for leaves in situ within the canopy. Leaf contents of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), light-harvesting-complex (LHC) proteins, and total N were determined. Elevated CO{sub 2} did not affect carboxylation capacity in the most recently expanded leaves but led to a decrease in lower, shaded leaves during grain development. Despite this acclimation, in situ photosynthetic CO{sub 2} uptake remained higher under elevated CO{sub 2}. Acclimation at elevated CO{sub 2} was accompanied by decreases in both Rubisco and total leaf N contents and an increase in LHC content. Elevated CO{sub 2} led to a larger increase in LHC/Rubisco in lower canopy leaves than in the uppermost leaf. Acclimation of leaf photosynthesis to elevated CO{sub 2} therefore depended on both vertical position within the canopy and the developmental stage.

  15. Optical properties of bud scales and protochlorophyll(ide) forms in leaf primordia of closed and opened buds.

    PubMed

    Solymosi, Katalin; Böddi, Béla

    2006-08-01

    The transmission spectra of bud scales of 14 woody species and the 77 K fluorescence emission spectra of the innermost leaf primordia of closed and opened buds of 37 woody species were studied. Pigment concentrations were determined in some species. Bud scales had low transmittance between 400 and 680 nm with a local minimum around 680 nm. Transmittance increased steeply above 680 nm and was > 80% in the 700-800 nm spectral region. Significant protochlorophyllide (Pchlide) accumulation was observed in leaf primordia of tightly packed, closed buds with relatively thick, dark bud scales. In common ash (Fraxinus excelsior L.) and Hungarian ash (Fraxinus angustifolia Vahl.), the innermost leaf primordia of the closed buds contained protochlorophyll (Pchl) and Pchlide (abbreviated as Pchl(ide)), but no chlorophyll. We observed Pchl(ide) forms with emission maxima at 633, 643 and 655 nm in these leaves. Complete transformation of Pchlide(655) (protochlorophyllide form with maximum emission at 655 nm) into Chlide(692) (chlorophyllide form with maximum emission at 692 nm) occurred after irradiation for 10 s. The innermost leaf primordia of the buds of four species (flowering ash (Fraxinus ornus L.), horse chestnut (Aesculus hippocastanum L.), tree of heaven (Ailanthus altissima P. Mill.) and common walnut (Juglans regia L.)) contained Pchl(ide)(633), Pchl(ide)(643) and Pchlide(655) as well as an emission band at 688 nm corresponding to a chlorophyll form. The Pchlide(655) was fully photoactive in these species. The outermost leaf primordia of these four species and the innermost leaf primordia of 28 other species contained all of the above described Pchl(ide) forms in various ratios but in small amounts. In addition, Chl forms were present and the main bands in the fluorescence emission spectra were at 690 or 740 nm, or both. The results indicate that Pchl(ide) accumulation occurs in leaf primordia in near darkness inside the tightly closed buds, where the bud scales and

  16. Psychometric Properties of the Affect Intensity and Reactivity Measure Adapted for Youth (AIR-Y)

    ERIC Educational Resources Information Center

    Jones, Rachel E.; Leen-Feldner, Ellen W.; Olatunji, Bunmi O.; Reardon, Laura E.; Hawks, Erin

    2009-01-01

    A valid and reliable instrument for measuring affect intensity does not exist for adolescents; such a measure may help to refine understanding of emotion among youths. The purpose of the current study was to evaluate the psychometric properties and clinical relevance of a measure of affect intensity adapted for youths. Two hundred five community…

  17. Affective Properties of Mothers' Speech to Infants with Hearing Impairment and Cochlear Implants

    ERIC Educational Resources Information Center

    Kondaurova, Maria V.; Bergeson, Tonya R.; Xu, Huiping; Kitamura, Christine

    2015-01-01

    Purpose: The affective properties of infant-directed speech influence the attention of infants with normal hearing to speech sounds. This study explored the affective quality of maternal speech to infants with hearing impairment (HI) during the 1st year after cochlear implantation as compared to speech to infants with normal hearing. Method:…

  18. The Properties of Terrestrial Laser System Intensity for Measuring Leaf Geometries: A Case Study with Conference Pear Trees (Pyrus Communis)

    PubMed Central

    Balduzzi, Mathilde A.F.; Van der Zande, Dimitry; Stuckens, Jan; Verstraeten, Willem W.; Coppin, Pol

    2011-01-01

    Light Detection and Ranging (LiDAR) technology can be a valuable tool for describing and quantifying vegetation structure. However, because of their size, extraction of leaf geometries remains complicated. In this study, the intensity data produced by the Terrestrial Laser System (TLS) FARO LS880 is corrected for the distance effect and its relationship with the angle of incidence between the laser beam and the surface of the leaf of a Conference Pear tree (Pyrus Commmunis) is established. The results demonstrate that with only intensity, this relationship has a potential for determining the angle of incidence with the leaves surface with a precision of ±5° for an angle of incidence smaller than 60°, whereas it is more variable for an angle of incidence larger than 60°. It appears that TLS beam footprint, leaf curvatures and leaf wrinkles have an impact on the relationship between intensity and angle of incidence, though, this analysis shows that the intensity of scanned leaves has a potential to eliminate ghost points and to improve their meshing. PMID:22319374

  19. Bioefficacy of larvicdial and pupicidal properties of Carica papaya (Caricaceae) leaf extract and bacterial insecticide, spinosad, against chikungunya vector, Aedes aegypti (Diptera: Culicidae).

    PubMed

    Kovendan, Kalimuthu; Murugan, Kadarkarai; Naresh Kumar, Arjunan; Vincent, Savariar; Hwang, Jiang-Shiou

    2012-02-01

    The present study was carried out to establish the properties of Carica papaya leaf extract and bacterial insecticide, spinosad on larvicidal and pupicidal activity against the chikungunya vector, Aedes aegypti. The medicinal plants were collected from the area around Bharathiar University, Coimbatore, India. C. papaya leaf was washed with tap water and shade-dried at room temperature. An electrical blender powdered the dried plant materials (leaves). The powder (500 g) of the leaf was extracted with 1.5 l of organic solvents of methanol for 8 h using a Soxhlet apparatus and then filtered. The crude leaf extracts were evaporated to dryness in a rotary vacuum evaporator. The plant extract showed larvicidal and pupicidal effects after 24 h of exposure; however, the highest larval and pupal mortality was found in the leaf extract of methanol C. papaya against the first- to fourth-instar larvae and pupae of values LC(50) = I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 440.65 ppm, respectively, and bacterial insecticide, spinosad against the first to fourth instar larvae and pupae of values LC(50) = I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 93.44 ppm, respectively. Moreover, combined treatment of values of LC(50) = I instar was 55.77 ppm, II instar was 65.77 ppm, III instar was 76.36 ppm, and IV instar was 92.78 ppm, and pupae was 107.62 ppm, respectively. No mortality was observed in the control. The results that the leaves extract of C. papaya and bacterial insecticide, Spinosad is promising as good larvicidal and pupicidal properties of against chikungunya vector, A. aegypti. This is an ideal eco-friendly approach for the control of chikungunya vector, A. aegypti as target species of vector control programs. PMID:21750871

  20. Leaf Development

    PubMed Central

    2013-01-01

    Leaves are the most important organs for plants. Without leaves, plants cannot capture light energy or synthesize organic compounds via photosynthesis. Without leaves, plants would be unable perceive diverse environmental conditions, particularly those relating to light quality/quantity. Without leaves, plants would not be able to flower because all floral organs are modified leaves. Arabidopsis thaliana is a good model system for analyzing mechanisms of eudicotyledonous, simple-leaf development. The first section of this review provides a brief history of studies on development in Arabidopsis leaves. This history largely coincides with a general history of advancement in understanding of the genetic mechanisms operating during simple-leaf development in angiosperms. In the second section, I outline events in Arabidopsis leaf development, with emphasis on genetic controls. Current knowledge of six important components in these developmental events is summarized in detail, followed by concluding remarks and perspectives. PMID:23864837

  1. Examining leaf and canopy optical properties for the assessment of chlorophyll content to determine nitrogen management strategies

    NASA Astrophysics Data System (ADS)

    Schlemmer, Michael R.

    Controlled application of agricultural nitrogen (N) has recently become a focus of remote sensing technology research. Escalating energy and fertilizer prices along with the potential of adverse environmental impacts have forced growers to consider technologies that deliver nutrients in a more effective way. Assessing leaf and canopy chlorophyll (chl) contents can provide an indirect measure that expresses the condition of the crop's environment. Nitrogen content at the scale of the leaf and the entire canopy will have a strong association to chl content at that same scale. Therefore, N stresses can be inferred through changes in chl content. Remote sensing is rapidly becoming recognized as a tool that has the potential to quickly assess chl content over a large area at both the leaf and canopy scale non-destructively. These studies examined the relationship of corn (Zea mays L.) leaf and canopy spectral response to chl and N content. The effects of N stress on leaf and canopy spectra, chl content, and N content were examined. Nitrogen stress will visibly present itself through the degradation of chl content. Chlorophyll content and N content continue to exhibit a strong relationship throughout the vegetative stages of growth for both measurement scales. As a result, instruments that measure chl content can also be used to estimate N content. A variety of spectral indices have been introduced for the purpose of quantifying plant status. A few of these indices were selected for these studies and evaluated for their ability to assess N stress. The indices selected were those that utilize the chl spectral reflective segments of the spectrum (green, and red edge). These regions show more promise than do the chl absorbance segments of the spectrum (blue, and red). Our results suggest that instrumentation that measures spectral reflectance holds promise for the assessment of chl and N stress at both the canopy and leaf level. The ability to non-destructively measure chl

  2. Effect of herbivore damage on broad leaf motion in wind

    NASA Astrophysics Data System (ADS)

    Burnett, Nicholas; Kothari, Adit

    2015-11-01

    Terrestrial plants regularly experience wind that imposes aerodynamic forces on the plants' leaves. Passive leaf motion (e.g. fluttering) and reconfiguration (e.g. rolling into a cone shape) in wind can affect the drag on the leaf. In the study of passive leaf motion in wind, little attention has been given to the effect of herbivory. Herbivores may alter leaf motion in wind by making holes in the leaf. Also, a small herbivore (e.g. snail) on a leaf can act as a point mass, thereby affecting the leaf's motion in wind. Conversely, accelerations imposed on an herbivore sitting on a leaf by the moving leaf may serve as a defense by dislodging the herbivore. In the present study, we investigated how point masses (>1 g) and holes in leaves of the tuliptree affected passive leaf motion in turbulent winds of 1 and 5 m s-1. Leaf motion was unaffected by holes in the leaf surface (about 10% of leaf area), but an herbivore's mass significantly damped the accelerations of fluttering leaves. These results suggest that an herbivore's mass, but not the damage it inflicts, can affect leaf motion in the wind. Furthermore, the damping of leaf fluttering from an herbivore's mass may prevent passive leaf motions from being an effective herbivore defense.

  3. Theoretical Explanation of the Lotus Effect: Superhydrophobic Property Changes by Removal of Nanostructures from the Surface of a Lotus Leaf.

    PubMed

    Yamamoto, Minehide; Nishikawa, Naoki; Mayama, Hiroyuki; Nonomura, Yoshimune; Yokojima, Satoshi; Nakamura, Shinichiro; Uchida, Kingo

    2015-07-01

    Theoretical study is presented on the wetting behaviors of water droplets over a lotus leaf. Experimental results are interpreted to clarify the trade-offs among the potential energy change, the local pinning energy, and the adhesion energy. The theoretical parameters, calculated from the experimental results, are used to qualitatively explain the relations among surface fractal dimension, surface morphology, and dynamic wetting behaviors. The surface of a lotus leaf, which shows the superhydrophobic lotus effect, was dipped in ethanol to remove the plant waxes. As a result, the lotus effect is lost. The contact angle of a water drop decreased dramatically from 161° of the original surface to 122°. The water droplet was pinned on the surface. From the fractal analysis, the fractal region of the original surface was divided into two regions: a smaller-sized roughness region of 0.3-1.7 μm with D of 1.48 and a region of 1.7-19 μm with D of 1.36. By dipping the leaf in ethanol, the former fractal region, characterized by wax tubes, was lost, and only the latter large fractal region remained. The lotus effect is attributed to a surface structure that is covered with needle-shaped wax tubes, and the remaining surface allows invasion of the water droplet and enlarges the interaction with water. PMID:26075949

  4. Analgesic and anti-inflammatory properties of the leaf extracts of Anacardium occidentalis in the laboratory rodents.

    PubMed

    Onasanwo, S A; Fabiyi, T D; Oluwole, F S; Olaleye, S B

    2012-06-01

    Anacardium occidentalis (family: Anacardiaceae) is a plant of the tropical climate widely used by folklore to treat pain and inflammation. This study was conducted to evaluate the analgesic and anti-inflammatory effects of the leaf extracts in rat and mice using different models in other to confirm folkloric claims. The aqueous, hexane, dichloromethane and methanol extracts (AEAO, HEAO, DEAO and MEAO respectively) were investigated for analgesic effects in acetic acid induced pain in mice. They significantly reduced the number of writhing (p<0.001) and the highest analgesic effect was seen in DEAO extract. DEAO was further studied on various analgesic and anti-inflammatory models in graded doses. The extract significantly reduced writhing induced by acetic acid and the number and time of paw licking induced by formalin in a dose related manner. It inhibited the neurogenic and inflammatory phases of formalin. Analgesia was shown in the inhibition of nociception induced by tail immersion in 55oC hot water. The extract prolonged the latencies of tail withdrawal to a similar degree as pentazocine. The extract caused significant inhibition of carrageenan induced paw oedema in rats in a dose dependent manner. These findings suggest that the leaf extracts of Anacardium occidentalis are highly potent analgesic and anti-inflammatory agents. Phytochemical analysis showed that the leaf extracts contain alkaloids, tannins, saponins and cardenolides. PMID:23235310

  5. SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics

    PubMed Central

    Xiong, Dongliang; Chen, Jia; Yu, Tingting; Gao, Wanlin; Ling, Xiaoxia; Li, Yong; Peng, Shaobing; Huang, Jianliang

    2015-01-01

    Chlorophyll meters are widely used to guide nitrogen (N) management by monitoring leaf N status in agricultural systems, but the effects of environmental factors and leaf characteristics on leaf N estimations are still unclear. In the present study, we estimated the relationships among SPAD readings, chlorophyll content and leaf N content per leaf area for seven species grown in multiple environments. There were similar relationships between SPAD readings and chlorophyll content per leaf area for the species groups, but the relationship between chlorophyll content and leaf N content per leaf area, and the relationship between SPAD readings and leaf N content per leaf area varied widely among the species groups. A significant impact of light-dependent chloroplast movement on SPAD readings was observed under low leaf N supplementation in both rice and soybean but not under high N supplementation. Furthermore, the allocation of leaf N to chlorophyll was strongly influenced by short-term changes in growth light. We demonstrate that the relationship between SPAD readings and leaf N content per leaf area is profoundly affected by environmental factors and leaf features of crop species, which should be accounted for when using a chlorophyll meter to guide N management in agricultural systems. PMID:26303807

  6. Peach leaf responses to soil and cement dust pollution.

    PubMed

    Maletsika, Persefoni A; Nanos, George D; Stavroulakis, George G

    2015-10-01

    Dust pollution can negatively affect plant productivity in hot, dry and with high irradiance areas during summer. Soil or cement dust were applied on peach trees growing in a Mediterranean area with the above climatic characteristics. Soil and cement dust accumulation onto the leaves decreased the photosynthetically active radiation (PAR) available to the leaves without causing any shade effect. Soil and mainly cement dust deposition onto the leaves decreased stomatal conductance, photosynthetic and transpiration rates, and water use efficiency due possibly to stomatal blockage and other leaf cellular effects. In early autumn, rain events removed soil dust and leaf functions partly recovered, while cement dust created a crust partially remaining onto the leaves and causing more permanent stress. Leaf characteristics were differentially affected by the two dusts studied due to their different hydraulic properties. Leaf total chlorophyll decreased and total phenol content increased with dust accumulation late in the summer compared to control leaves due to intense oxidative stress. The two dusts did not cause serious metal imbalances to the leaves, except of lower leaf K content. PMID:26054460

  7. Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes.

    PubMed

    Veerakumar, Kaliyan; Govindarajan, Marimuthu

    2014-11-01

    Mosquito-borne diseases with an economic impact create loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates. Mosquito control is facing a threat because of the emergence of resistance to synthetic insecticides. Extracts from plants may be alternative sources of mosquito control agents because they constitute a rich source of bioactive compounds that are biodegradable into nontoxic products and potentially suitable for use to control mosquitoes. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, in the present study, the adulticidal activity of silver nanoparticles (AgNPs) synthesized using Feronia elephantum plant leaf extract against adults of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus was determined. The range of concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 μg mL(-1)) and aqueous leaf extract (40, 80, 120, 160, and 200 μg mL(-1)) were tested against the adults of A. stephensi, A. aegypti, and C. quinquefasciatus. Adults were exposed to varying concentrations of aqueous crude extract and synthesized AgNPs for 24 h. Considerable mortality was evident after the treatment of F. elephantum for all three important vector mosquitoes. The synthesized AgNPs from F. elephantum were highly toxic than crude leaf aqueous extract to three important vector mosquito species. The results were recorded from UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy analysis (EDX), and transmission electron microscopy (TEM). Synthesized AgNPs against the vector mosquitoes A. stephensi, A. aegypti, and C. quinquefasciatus had the following lethal dose (LD)₅₀ and LD₉₀ values: A. stephensi had LD₅₀ and LD₉₀ values of 18

  8. Ozone gas affects the physical and chemical properties of wheat (Triticum aestivum L.) starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ozone can oxidize hydroxyl groups present at C2, C3, and C6 positions on the starch molecule and affect its physicochemical properties. In this experiment, bread wheat flour and isolated wheat starch were treated with ozone gas (1,500 ppm, gas flow rate 2.5 L/minutes) for 45 minutes and 30 minutes, ...

  9. Dry heat treatment affects wheat bran surface properties and hydration kinetics.

    PubMed

    Jacobs, Pieter J; Hemdane, Sami; Delcour, Jan A; Courtin, Christophe M

    2016-07-15

    Heat stabilization of wheat bran aims at inactivation of enzymes which may cause rancidity and processability issues. Such treatments may however cause additional unanticipated phenomena which may affect wheat bran technological properties. In this work, the impact of toasting on wheat bran hydration capacity and hydration kinetics was studied. Hydration properties were assessed using the Enslin-Neff and drainage centrifugation water retention capacity methods, thermogravimetric analysis and contact angle goniometry, next to more traditional methods. While equilibrium hydration properties of bran were not affected by the heat treatment, the rate at which the heat treated bran hydrated was, however, very significantly reduced compared to the untreated bran. This phenomenon was found to originate from the formation of a lipid coating during the treatment rendering the bran surface hydrophobic. These insights help to understand and partially account for the modified processability of heat treated bran in food applications. PMID:26948645

  10. LeafJ: an ImageJ plugin for semi-automated leaf shape measurement.

    PubMed

    Maloof, Julin N; Nozue, Kazunari; Mumbach, Maxwell R; Palmer, Christine M

    2013-01-01

    High throughput phenotyping (phenomics) is a powerful tool for linking genes to their functions (see review and recent examples). Leaves are the primary photosynthetic organ, and their size and shape vary developmentally and environmentally within a plant. For these reasons studies on leaf morphology require measurement of multiple parameters from numerous leaves, which is best done by semi-automated phenomics tools. Canopy shade is an important environmental cue that affects plant architecture and life history; the suite of responses is collectively called the shade avoidance syndrome (SAS). Among SAS responses, shade induced leaf petiole elongation and changes in blade area are particularly useful as indices. To date, leaf shape programs (e.g. SHAPE, LAMINA, LeafAnalyzer, LEAFPROCESSOR) can measure leaf outlines and categorize leaf shapes, but can not output petiole length. Lack of large-scale measurement systems of leaf petioles has inhibited phenomics approaches to SAS research. In this paper, we describe a newly developed ImageJ plugin, called LeafJ, which can rapidly measure petiole length and leaf blade parameters of the model plant Arabidopsis thaliana. For the occasional leaf that required manual correction of the petiole/leaf blade boundary we used a touch-screen tablet. Further, leaf cell shape and leaf cell numbers are important determinants of leaf size. Separate from LeafJ we also present a protocol for using a touch-screen tablet for measuring cell shape, area, and size. Our leaf trait measurement system is not limited to shade-avoidance research and will accelerate leaf phenotyping of many mutants and screening plants by leaf phenotyping. PMID:23380664

  11. Identification of Plants That Inhibit Lipid Droplet Formation in Liver Cells: Rubus suavissimus Leaf Extract Protects Mice from High-Fat Diet-Induced Fatty Liver by Directly Affecting Liver Cells

    PubMed Central

    Takahashi, Tomohiro; Sugawara, Wataru; Takiguchi, Yuya; Takizawa, Kento; Nakabayashi, Ami; Nakamura, Mitsuo; Nagano-Ito, Michiyo; Ichikawa, Shinichi

    2016-01-01

    Fatty liver disease is a condition in which abnormally large numbers of lipid droplets accumulate in liver cells. Fatty liver disease induces inflammation under conditions of oxidative stress and may result in cancer. To identify plants that protect against fatty liver disease, we examined the inhibitory effects of plant extracts on lipid droplet formation in mouse hepatoma cells. A screen of 98 water extracts of plants revealed 4 extracts with inhibitory effects. One of these extracts, Rubus suavissimus S. Lee (Tien-cha or Chinese sweet tea) leaf extract, which showed strong inhibitory effects, was tested in a mouse fatty liver model. In these mouse experiments, intake of the plant extract significantly protected mice against fatty liver disease without affecting body weight gain. Our results suggest that RSE directly affects liver cells and protects them from fatty liver disease. PMID:27429636

  12. Identification of Plants That Inhibit Lipid Droplet Formation in Liver Cells: Rubus suavissimus Leaf Extract Protects Mice from High-Fat Diet-Induced Fatty Liver by Directly Affecting Liver Cells.

    PubMed

    Takahashi, Tomohiro; Sugawara, Wataru; Takiguchi, Yuya; Takizawa, Kento; Nakabayashi, Ami; Nakamura, Mitsuo; Nagano-Ito, Michiyo; Ichikawa, Shinichi

    2016-01-01

    Fatty liver disease is a condition in which abnormally large numbers of lipid droplets accumulate in liver cells. Fatty liver disease induces inflammation under conditions of oxidative stress and may result in cancer. To identify plants that protect against fatty liver disease, we examined the inhibitory effects of plant extracts on lipid droplet formation in mouse hepatoma cells. A screen of 98 water extracts of plants revealed 4 extracts with inhibitory effects. One of these extracts, Rubus suavissimus S. Lee (Tien-cha or Chinese sweet tea) leaf extract, which showed strong inhibitory effects, was tested in a mouse fatty liver model. In these mouse experiments, intake of the plant extract significantly protected mice against fatty liver disease without affecting body weight gain. Our results suggest that RSE directly affects liver cells and protects them from fatty liver disease. PMID:27429636

  13. Effect of jasmonic acid elicitation on the yield, chemical composition, and antioxidant and anti-inflammatory properties of essential oil of lettuce leaf basil (Ocimum basilicum L.).

    PubMed

    Złotek, Urszula; Michalak-Majewska, Monika; Szymanowska, Urszula

    2016-12-15

    The effect of elicitation with jasmonic acid (JA) on the plant yield, the production and composition of essential oils of lettuce leaf basil was evaluated. JA-elicitation slightly affected the yield of plants and significantly increased the amount of essential oils produced by basil - the highest oil yield (0.78±0.005mL/100gdw) was achieved in plants elicited with 100μM JA. The application of the tested elicitor also influenced the chemical composition of basil essential oils - 100μM JA increased the linalool, eugenol, and limonene levels, while 1μM JA caused the highest increase in the methyl eugenol content. Essential oils from JA-elicited basil (especially 1μM and 100μM) exhibited more effective antioxidant and anti-inflammatory potential; therefore, this inducer may be a very useful biochemical tool for improving production and composition of herbal essential oils. PMID:27451148

  14. Affective Properties of Mothers' Speech to Infants With Hearing Impairment and Cochlear Implants

    PubMed Central

    Bergeson, Tonya R.; Xu, Huiping; Kitamura, Christine

    2015-01-01

    Purpose The affective properties of infant-directed speech influence the attention of infants with normal hearing to speech sounds. This study explored the affective quality of maternal speech to infants with hearing impairment (HI) during the 1st year after cochlear implantation as compared to speech to infants with normal hearing. Method Mothers of infants with HI and mothers of infants with normal hearing matched by age (NH-AM) or hearing experience (NH-EM) were recorded playing with their infants during 3 sessions over a 12-month period. Speech samples of 25 s were low-pass filtered, leaving intonation but not speech information intact. Sixty adults rated the stimuli along 5 scales: positive/negative affect and intention to express affection, to encourage attention, to comfort/soothe, and to direct behavior. Results Low-pass filtered speech to HI and NH-EM groups was rated as more positive, affective, and comforting compared with the such speech to the NH-AM group. Speech to infants with HI and with NH-AM was rated as more directive than speech to the NH-EM group. Mothers decreased affective qualities in speech to all infants but increased directive qualities in speech to infants with NH-EM over time. Conclusions Mothers fine-tune communicative intent in speech to their infant's developmental stage. They adjust affective qualities to infants' hearing experience rather than to chronological age but adjust directive qualities of speech to the chronological age of their infants. PMID:25679195

  15. Laboratory study on the mosquito larvicidal properties of leaf and seed extract of the plant Agave americana.

    PubMed

    Dharmshaktu, N S; Prabhakaran, P K; Menon, P K

    1987-04-01

    Experiments on the leaf extract tested against three mosquito species led to 100% mortality of stage 4 Anopheles, Aedes and Culex larvae at a concentration of 0.08% within 24-48 h, whereas 100% mortality of stage 1 larvae occurred at lower concentrations: 0.0032% for Aedes aegypti, 0.016% for Culex quinquefasciatus and 0.08% for Anopheles stephensi, and was more rapid. At the end of 24 h, the highest dilution of the seed extract studied (1:200) produces a larval mortality of 100% for Anopheles and Aedes and 56% for Culex spp., when 4th instar larvae were exposed at room temperature. The comparative mortality in the control group was negligible. One hundred per cent mortality of Anopheles larvae took place by the end of 10 h, and of Aedes larvae by 17 h, at a dilution of 1:200 with water. PMID:2882030

  16. Nelumbo nucifera leaf extract mediated synthesis of silver nanoparticles and their antimicrobial properties against some human pathogens

    NASA Astrophysics Data System (ADS)

    Premanand, G.; Shanmugam, N.; Kannadasan, N.; Sathishkumar, K.; Viruthagiri, G.

    2016-03-01

    In the present report, bio-reduction of silver nitrate into silver nanoparticles using the leaf extract of Nelumbo nucifera is explained. The synthesized nanoparticles exhibited surface Plasmon resonance at 410 nm. The crystalline nature of the biosynthesized silver nanoparticles was confirmed from the X-ray diffraction pattern. The functional groups responsible for bio-reduction of silver nitrate into silver were analyzed by Fourier transform infrared spectroscopy and confirmed by X-ray photoelectron spectrum. Field emission transmission electron microscope micrographs showed the formation of well-separated silver nanoparticles of size in the range of 30-40 nm. The result of dynamic light scattering also confirms the mono-dispersed silver nanoparticles with average size of 35 nm. The synthesized nanoparticles exhibited excellent antibacterial activity against the Gram-positive bacteria B. subtilis.

  17. The Antimicrobial Properties of Cedar Leaf (Thuja plicata) Oil; A Safe and Efficient Decontamination Agent for Buildings

    PubMed Central

    Hudson, James; Kuo, Michael; Vimalanathan, Selvarani

    2011-01-01

    Cedar leaf oil (CLO), derived from the Western red cedar, Thuja plicata, was evaluated as a safe and acceptable broad spectrum antimicrobial agent, with a view to its potential applications in buildings, including the alleviation of sick building syndrome. Various Gram-positive and Gram-negative human bacteria, and two fungal organisms, all known to be common environmental sources of potential infection, were selected and tested quantitatively, and all of them were found to be susceptible to CLO liquid and vapor. Bacterial spores and Aspergillus niger were sensitive, although less so than the vegetative bacteria. Similar tests with cultured human lung cells showed that continuous exposure to CLO vapor for at least 60 minutes was not toxic to the cells. Based on these results, CLO shows promise as a prospective safe, green, broad-spectrum anti-microbial agent for decontamination of buildings. PMID:22408584

  18. The effect of electron beam irradiation on the mechanical properties of pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites

    NASA Astrophysics Data System (ADS)

    Siregar, J. P.; Sapuan, S. M.; Rahman, M. Z. A.; Zaman, H. M. D. K.

    2010-05-01

    The effects of electron beam irradiation on the mechanical properties of pineapple leaf fibre reinforced high impact polystyrene (HIPS) composites were studied. Two types of crosslinking agent that has been used in this study were trimethylolpropane triacrylate (TMPTA) and tripropylene gylcol diacrylate (TPGDA). A 50 wt.% of PALF was blended with HIPS and crosslinking agent using Brabender melt mixer at 165 °C. The composites were then irradiated using a 3 MeV electron beam accelerator with dosage of 0-100 kGy. The tensile strength, tensile modulus, flexural strength, flexural modulus, notched and unnotched impat and hardness of composites were measured and the effects of crosslinking agent were also compared.

  19. Positive and negative affect schedule: psychometric properties for the Brazilian Portuguese version.

    PubMed

    Pires, Pedro; Filgueiras, Alberto; Ribas, Rodolfo; Santana, Cristina

    2013-01-01

    This study is about the validity and item analysis for the Positive and Negative Affect Schedule (PANAS), respectively through the Exploratory Factor Analysis (principal components method) and the Partial Credit Model (PCM). The scale has been largely used in areas ranging from clinical to social psychology since its release in 1988 by Watson, Clark, and Tellegen. In order to assess validity and item properties (Item Response Theory paradigm), this is study administered PANAS to 354 respondents, 115 male and 239 female subjects, with an average age of 29.5 (SD = 10,18). The results show PANAS's excellent psychometric properties, with consistent dimensions and reliable item functioning, considering the Rasch measurement paradigm expressed in the PCM as an Item Response Theory model for polytomous data. The study considers important cultural issues and the results support more cautious translations for scales as well as further studies concerned with cross-cultural differences on the perception of affect states. PMID:24230921

  20. Hormonal regulation of leaf senescence in Lilium.

    PubMed

    Arrom, Laia; Munné-Bosch, Sergi

    2012-10-15

    In addition to floral senescence and longevity, the control of leaf senescence is a major factor determining the quality of several cut flowers, including Lilium, in the commercial market. To better understand the physiological process underlying leaf senescence in this species, we evaluated: (i) endogenous variation in the levels of phytohormones during leaf senescence, (ii) the effects of leaf darkening in senescence and associated changes in phytohormones, and (iii) the effects of spray applications of abscisic acid (ABA) and pyrabactin on leaf senescence. Results showed that while gibberellin 4 (GA(4)) and salicylic acid (SA) contents decreased, that of ABA increased during the progression of leaf senescence. However, dark-induced senescence increased ABA levels, but did not affect GA(4) and SA levels, which appeared to correlate more with changes in air temperature and/or photoperiod than with the induction of leaf senescence. Furthermore, spray applications of pyrabactin delayed the progression of leaf senescence in cut flowers. Thus, we conclude that (i) ABA plays a major role in the regulation of leaf senescence in Lilium, (ii) darkness promotes leaf senescence and increases ABA levels, and (iii) exogenous applications of pyrabactin inhibit leaf senescence in Lilium, therefore suggesting that it acts as an antagonist of ABA in senescing leaves of cut lily flowers. PMID:22854182

  1. Modifications of histamine receptor signaling affect bone mechanical properties in rats.

    PubMed

    Folwarczna, Joanna; Janas, Aleksandra; Pytlik, Maria; Śliwiński, Leszek; Wiercigroch, Marek; Brzęczek, Anna

    2014-02-01

    Histamine receptors are expressed on bone cells and histamine may be involved in regulation of bone metabolism. The aim of the present study was to investigate the effects of loratadine (an H(1) receptor antagonist), ranitidine (an H(2) receptor antagonist) and betahistine (an H(3) receptor antagonist and H(1) receptor agonist) on bone mechanical properties in rats. Loratadine (5 mg/kg/day, po), ranitidine (50 mg/kg/day, po), or betahistine dihydrochloride (5 mg/kg/day, po), were administered for 4 weeks to non-ovariectomized and bilaterally ovariectomized (estrogen-deficient) 3-month-old rats, and their effects were compared with appropriate controls. Serum levels of bone turnover markers, bone mineralization and mechanical properties of the proximal tibial metaphysis, femoral diaphysis and femoral neck were studied. In rats with normal estrogen level, administration of loratadine slightly favorably affected mechanical properties of compact bone, significantly increasing the strength of the femoral neck (p < 0.05), and tending to increase the strength of the femoral diaphysis. Ranitidine did not significantly affect the investigated parameters, and betahistine decreased the strength of the tibial metaphysis (cancellous bone, p < 0.01). There were no significant effects of the drugs on serum bone turnover markers. In estrogen-deficient rats, the drugs did not significantly affect the investigated skeletal parameters. In conclusion, the effects of histamine H(1), H(2) and H(3) receptor antagonists on the skeletal system in rats were differential and dependent on estrogen status. PMID:24905313

  2. Purification, some properties of a D-galactose-binding leaf lectin from Erythrina indica and further characterization of seed lectin.

    PubMed

    Konozy, Emadeldin H E; Mulay, Ranjana; Faca, Vitor; Ward, Richard John; Greene, Lewis Joel; Roque-Barriera, Maria Cristina; Sabharwal, Sushma; Bhide, Shobhana V

    2002-10-01

    Lectin from a leaf of Erythrina indica was isolated by affinity chromatography on Lactamyl-Seralose 4B. Lectin gave a single band in polyacrylamide gel electrophoresis (PAGE). In SDS-gel electrophoresis under reducing and non-reducing conditions Erythrina indica leaf lectin (EiLL) split into two bands with subunit molecular weights of 30 and 33 kDa, whereas 58 kDa was obtained for the intact lectin by gel filtration on Sephadex G-100. EiLL agglutinated all human RBC types, with a slight preference for the O blood group. Lectin was found to be a glycoprotein with a neutral sugar content of 9.5%. The carbohydrate specificity of lectin was directed towards D-galactose and its derivatives with pronounced preference for lactose. EiLL had pH optima at pH 7.0; above and below this pH lectin lost sugar-binding capability rapidly. Lectin showed broad temperature optima from 25 to 50 degrees C; however, at 55 degrees C EiLL lost more than 90% of its activity and at 60 degrees C it was totally inactivated. The pI of EiLL was found to be 7.6. The amino acid analysis of EiLL indicated that the lectin was rich in acidic as well as hydrophobic amino acids and totally lacked cysteine and methionine. The N-terminal amino acids were Val-Glu-Thr-IIe-Ser-Phe-Ser-Phe-Ser-Glu-Phe-Glu-Ala-Gly-Asn-Asp-X-Leu-Thr-Gln-Glu-Gly-Ala-Ala-Leu-. Chemical modification studies of both EiLL and Erythrina indica seed lectin (EiSL) with phenylglyoxal, DEP and DTNB revealed an absence of arginine, histidine and cysteine, respectively, in or near the ligand-binding site of both lectins. Modification of tyrosine with NAI led to partial inactivation of EiLL and EiSL; however, total inactivation was observed upon NBS-modification of two tryptophan residues in EiSL. Despite the apparent importance of these tryptophan residues for lectin activity they did not seem to have a direct role in binding haptenic sugar as D-galactose did not protect lectin from inactivation by NBS. PMID:12504284

  3. Biophysical properties affecting vegetative canopy reflectance and absorbed photosynthetically active radiation at the FIFE site

    NASA Technical Reports Server (NTRS)

    Walter-Shea, E. A.; Blad, B. L.; Hays, C. J.; Mesarch, M. A.; Deering, D. W.; Middleton, E. M.

    1992-01-01

    Leaves of the dominant grass species of the ISCLP FIFE site reflect and transmit radiation in a like manner to other healthy green leaves. Visible reflectance factors (RFs) and transmittance factors (TFs) were less for older leaves than younger leaves except during senescence, when RF and TF values were greater. NIR-RF values increased and TF values decreased with leaf age, with the reverse occurring as the leaf went through senescence.

  4. Anti-inflammatory, antinociceptive and antipyretic properties of the aqueous extract of Clematis brachiata leaf in male rats.

    PubMed

    Mostafa, Mohammad; Appidi, Jaipal R; Yakubu, Musa T; Afolayan, Anthony J

    2010-06-01

    Clematis brachiata Thunb. (Ranunculaceae) is used as a folk remedy for the treatment of pain, fever and inflammatory ailments. Aqueous extract of Clematis brachiata leaf was screened for its phytochemical constituents. The anti-inflammatory investigations were carried out using carrageenan and histamine-induced edema models; acetic acid writhing, formalin-induced pain and tail immersion models were used to evaluate antinociceptive activity while a Brewer's yeast-induced hyperthermia model was employed for the antipyretic experiment. Phytochemical screening of the extract revealed the presence of tannins, saponins, flavonoids and cardiac glycosides. The extract at 100, 200 and 400 mg/kg body weight significantly (P<0.05) reduced the edema paw volumes induced by carrageenan and histamine with the 400 mg/kg body weight extract being the most potent. On the antinociceptive front, while the extract reduced the writhing caused by acetic acid and the number of licks induced by formalin in a dose dependent manner, the increase in the reaction time by the extract in the tail immersion model was not dose-dependent. Again, there was significant (P<0.05) lowering of the Brewer's yeast-provoked elevated body temperature. The results suggest that the aqueous extract of Clematis brachiata leaves can be employed in the management of inflammation, pain and fever. These activities may be due in part to the flavonoid content of the extract. PMID:20645742

  5. Resource quality affects weapon and testis size and the ability of these traits to respond to selection in the leaf-footed cactus bug, Narnia femorata.

    PubMed

    Sasson, Daniel A; Munoz, Patricio R; Gezan, Salvador A; Miller, Christine W

    2016-04-01

    The size of weapons and testes can be central to male reproductive success. Yet, the expression of these traits is often extremely variable. Studies are needed that take a more complete organism perspective, investigating the sources of variation in both traits simultaneously and using developmental conditions that mimic those in nature. In this study, we investigated the components of variation in weapon and testis sizes using the leaf-footed cactus bug, Narnia femorata (Hemiptera: Coreidae) on three natural developmental diets. We show that the developmental diet has profound effects on both weapon and testis expression and scaling. Intriguingly, males in the medium-quality diet express large weapons but have relatively tiny testes, suggesting complex allocation decisions. We also find that heritability, evolvability, and additive genetic variation are highest in the high-quality diet for testis and body mass. This result suggests that these traits may have an enhanced ability to respond to selection during a small window of time each year when this diet is available. Taken together, these results illustrate that normal, seasonal fluctuations in the nutritional environment may play a large role in the expression of sexually selected traits and the ability of these traits to respond to selection. PMID:27066225

  6. Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon assimilation, altering fruit ripening rates.

    PubMed

    Martínez-Lüscher, J; Morales, F; Sánchez-Díaz, M; Delrot, S; Aguirreolea, J; Gomès, E; Pascual, I

    2015-07-01

    The increase in grape berry ripening rates associated to climate change is a growing concern for wine makers as it rises the alcohol content of the wine. The present work studied the combined effects of elevated CO2, temperature and UV-B radiation on leaf physiology and berry ripening rates. Three doses of UV-B: 0, 5.98, 9.66 kJm(-2)d(-1), and two CO2-temperature regimes: ambient CO2-24/14 °C (day/night) (current situation) and 700 ppm CO2-28/18 °C (climate change) were imposed to grapevine fruit-bearing cuttings from fruit set to maturity under greenhouse-controlled conditions. Photosynthetic performance was always higher under climate change conditions. High levels of UV-B radiation down regulated carbon fixation rates. A transient recovery took place at veraison, through the accumulation of flavonols and the increase of antioxidant enzyme activities. Interacting effects between UV-B and CO2-temperature regimes were observed for the lipid peroxidation, which suggests that UV-B may contribute to palliate the signs of oxidative damage induced under elevated CO2-temperature. Photosynthetic and ripening rates were correlated. Thereby, the hastening effect of climate change conditions on ripening, associated to higher rates of carbon fixation, was attenuated by UV-B radiation. PMID:26025530

  7. Extraction of bioactive compounds and free radical scavenging activity of purple basil (Ocimum basilicum L.) leaf extracts as affected by temperature and time.

    PubMed

    Pedro, Alessandra C; Moreira, Fernanda; Granato, Daniel; Rosso, Neiva D

    2016-05-13

    In the current study, response surface methodology (RSM) was used to assess the effects of extraction time and temperature on the content of bioactive compounds and antioxidant activity of purple basil leaf (Ocimum basilicum L.) extracts. The stability of anthocyanins in relation to temperature, light and copigmentation was also studied. The highest anthocyanin content was 67.40 mg/100 g extracted at 30 °C and 60 min. The degradation of anthocyanins with varying temperatures and in the presence of light followed a first-order kinetics and the activation energy was 44.95 kJ/mol. All the extracts exposed to light showed similar half-lives. The extracts protected from light, in the presence of copigments, showed an increase in half-life from 152.67 h for the control to 856.49 and 923.17 h for extract in the presence of gallic acid and phytic acid, respectively. These results clearly indicate that purple basil is a potential source of stable bioactive compounds. PMID:27192193

  8. Association of tomato leaf curl Sudan virus with leaf curl disease of tomato in Jeddah, Saudi Arabia.

    PubMed

    Sohrab, Sayed Sartaj; Yasir, Muhammad; El-Kafrawy, Sherif Ali; Abbas, Ayman T; Mousa, Magdi Ali Ahmed; Bakhashwain, Ahmed A

    2016-06-01

    Tomato is an important vegetable crop and its production is adversely affected by leaf curl disease caused by begomovirus. Leaf curl disease is a serious concern for tomato crops caused by begomovirus in Jeddah, Kingdom of Saudi Arabia. Tomato leaf curl disease has been shown to be mainly caused either by tomato leaf curl Sudan virus or tomato yellow leaf curl virus as well as tomato leaf curl Oman virus. Many tomato plants infected with monopartite begomoviruses were also found to harbor a symptom enhancing betasatellites. Here we report the association of tomato leaf curl Sudan virus causing leaf curl disease of tomato in Jeddah, Kingdom of Saudi Arabia. The complete genome sequence analysis showed highest (99.9 %) identity with tomato leaf curl Sudan virus causing leaf curl disease in Arabian Peninsula. In phylogenetic relationships analysis, the identified virus formed closest cluster with tomato leaf curl Sudan virus. In recombination analysis study, the major parent was identified as tomato leaf curl Sudan virus. Findings of this study strongly supports the associated virus is a variant of tomato leaf curl Sudan virus causing disease in Sudan, Yemen and Arabian Peninsula. The betasatellites sequence analysis showed highest identity (99.8 %) with tomato leaf curl betasatellites-Amaranthus-Jeddah. The phylogenetic analysis result based on betasatellites formed closed cluster with tomato yellow leaf curl Oman betasatellites. The importance of these findings and occurrence of begomovirus in new geographic regions causing leaf curl disease of tomato in Jeddah, Kingdom of Saudi Arabia are discussed. PMID:27366765

  9. A pilot study on the DNA-protective, cytotoxic, and apoptosis-inducing properties of olive-leaf extracts.

    PubMed

    Anter, Jaouad; Fernández-Bedmar, Zahira; Villatoro-Pulido, Myriam; Demyda-Peyras, Sebastian; Moreno-Millán, Miguel; Alonso-Moraga, Angeles; Muñoz-Serrano, Andrés; Luque de Castro, María Dolores

    2011-08-16

    Leaves of olive trees are an abundant raw material in the Mediterranean basin. They contain large amounts of potentially useful phytochemicals and could play beneficial roles in health care. In the present study, the principal bioactive phenols in olive-leaf extracts (OLEs) have been identified and quantified, and their genotoxic/antigenotoxic, cytotoxic and apoptotic effects have been assessed. The Somatic Mutation and Recombination Test (SMART) in wing imaginal discs of Drosophila melanogaster has been performed to test the possible genotoxicity of overall OLE and the individual components oleuropein and luteolin at different concentrations. The same assay was able to detect antigenotoxic activity against hydrogen peroxide as oxidative genotoxicant. None of the extracts/phenols tested showed significant mutagenic activity. This fact, together with the antigenotoxic activity against H(2)O(2) detected for all these extracts/phenols, confirmed the safety of OLE, oleuropein and luteolin in terms of DNA protection. HL60 human promyelocytic leukemia cells were used to assess the cytotoxic effects of the extracts/phenols. OLE, oleuropein and luteolin showed a dose-dependent cytotoxic effect with different IC50 (10μl/ml, 170μM, and 40μM, respectively). DNA fragmentation patterns and cell staining with acridine orange and ethidium bromide indicated that the mechanism for the cytotoxic effect of OLE, oleuropein and luteolin was the apoptotic pathway, with DNA laddering and cytoplasmic and nuclear changes. These results could help explain the mechanism of action that underlies the beneficial effect of OLE, proposed as a nutraceutical in the prevention of human cancer. PMID:21620995

  10. The effects of leaf roughness, surface free energy and work of adhesion on leaf water drop adhesion.

    PubMed

    Wang, Huixia; Shi, Hui; Li, Yangyang; Wang, Yanhui

    2014-01-01

    The adhesion of water droplets to leaves is important in controlling rainfall interception, and affects a variety of hydrological processes. Leaf water drop adhesion (hereinafter, adhesion) depends not only on droplet formulation and parameters but also on the physical (leaf roughness) and physico-chemical (surface free energy, its components, and work-of-adhesion) properties of the leaf surface. We selected 60 plant species from Shaanxi Province, NW China, as experimental materials with the goal of gaining insight into leaf physical and physico-chemical properties in relation to the adhesion of water droplets on leaves. Adhesion covered a wide range of area, from 4.09 to 88.87 g/m(2) on adaxial surfaces and 0.72 to 93.35 g/m(2) on abaxial surfaces. Distinct patterns of adhesion were observed among species, between adaxial and abaxial surfaces, and between leaves with wax films and wax crystals. Adhesion decreased as leaf roughness increased (r =  -0.615, p = 0.000), but there were some outliers, such as Salix psammophila and Populus simonii with low roughness and low adhesion, and the abaxial surface of Hyoscyamus pusillus and the adaxial surface of Vitex negundo with high roughness and high adhesion. Meanwhile, adhesion was positively correlated with surface free energy (r = 0.535, p = 0.000), its dispersive component (r = 0.526, p = 0.000), and work of adhesion for water (r = 0.698, p = 0.000). However, a significant power correlation was observed between adhesion and the polar component of surface free energy (p = 0.000). These results indicated that leaf roughness, surface free energy, its components, and work-of-adhesion for water played important roles in hydrological characteristics, especially work-of-adhesion for water. PMID:25198355