Sample records for afferent sensory nerve

  1. The visceromotor and somatic afferent nerves of the penis.

    PubMed

    Diallo, Djibril; Zaitouna, Mazen; Alsaid, Bayan; Quillard, Jeanine; Ba, Nathalie; Allodji, Rodrigue Sètchéou; Benoit, Gérard; Bedretdinova, Dina; Bessede, Thomas

    2015-05-01

    Innervation of the penis supports erectile and sensory functions. This article aims to study the efferent autonomic (visceromotor) and afferent somatic (sensory) nervous systems of the penis and to investigate how these systems relate to vascular pathways. Penises obtained from five adult cadavers were studied via computer-assisted anatomic dissection (CAAD). The number of autonomic and somatic nerve fibers was compared using the Kruskal-Wallis test. Proximally, penile innervation was mainly somatic in the extra-albugineal sector and mainly autonomic in the intracavernosal sector. Distally, both sectors were almost exclusively supplied by somatic nerve fibers, except the intrapenile vascular anastomoses that accompanied both somatic and autonomic (nitrergic) fibers. From this point, the neural immunolabeling within perivascular nerve fibers was mixed (somatic labeling and autonomic labeling). Accessory afferent, extra-albugineal pathways supplied the outer layers of the penis. There is a major change in the functional type of innervation between the proximal and distal parts of the intracavernosal sector of the penis. In addition to the pelvis and the hilum of the penis, the intrapenile neurovascular routes are the third level where the efferent autonomic (visceromotor) and the afferent somatic (sensory) penile nerve fibers are close. Intrapenile neurovascular pathways define a proximal penile segment, which guarantees erectile rigidity, and a sensory distal segment. © 2015 International Society for Sexual Medicine.

  2. A bioinspired flexible organic artificial afferent nerve

    NASA Astrophysics Data System (ADS)

    Kim, Yeongin; Chortos, Alex; Xu, Wentao; Liu, Yuxin; Oh, Jin Young; Son, Donghee; Kang, Jiheong; Foudeh, Amir M.; Zhu, Chenxin; Lee, Yeongjun; Niu, Simiao; Liu, Jia; Pfattner, Raphael; Bao, Zhenan; Lee, Tae-Woo

    2018-06-01

    The distributed network of receptors, neurons, and synapses in the somatosensory system efficiently processes complex tactile information. We used flexible organic electronics to mimic the functions of a sensory nerve. Our artificial afferent nerve collects pressure information (1 to 80 kilopascals) from clusters of pressure sensors, converts the pressure information into action potentials (0 to 100 hertz) by using ring oscillators, and integrates the action potentials from multiple ring oscillators with a synaptic transistor. Biomimetic hierarchical structures can detect movement of an object, combine simultaneous pressure inputs, and distinguish braille characters. Furthermore, we connected our artificial afferent nerve to motor nerves to construct a hybrid bioelectronic reflex arc to actuate muscles. Our system has potential applications in neurorobotics and neuroprosthetics.

  3. Afferent Nerve Regulation of Bladder Function in Health and Disease

    PubMed Central

    de Groat, William C.; Yoshimura, Naoki

    2012-01-01

    The afferent innervation of the urinary bladder consists primarily of small myelinated (Aδ) and unmyelinated (C-fiber) axons that respond to chemical and mechanical stimuli. Immunochemical studies indicate that bladder afferent neurons synthesize several putative neurotransmitters, including neuropeptides, glutamic acid, aspartic acid, and nitric oxide. The afferent neurons also express various types of receptors and ion channels, including transient receptor potential channels, purinergic, muscarinic, endothelin, neurotrophic factor, and estrogen receptors. Patch-clamp recordings in dissociated bladder afferent neurons and recordings of bladder afferent nerve activity have revealed that activation of many of these receptors enhances neuronal excitability. Afferent nerves can respond to chemicals present in urine as well as chemicals released in the bladder wall from nerves, smooth muscle, inflammatory cells, and epithelial cells lining the bladder lumen. Pathological conditions alter the chemical and electrical properties of bladder afferent pathways, leading to urinary urgency, increased voiding frequency, nocturia, urinary incontinence, and pain. Neurotrophic factors have been implicated in the pathophysiological mechanisms underlying the sensitization of bladder afferent nerves. Neurotoxins such as capsaicin, resiniferatoxin, and botulinum neurotoxin that target sensory nerves are useful in treating disorders of the lower urinary tract. PMID:19655106

  4. Permanent reorganization of Ia afferent synapses on motoneurons after peripheral nerve injuries

    PubMed Central

    Alvarez, Francisco J.; Bullinger, Katie L.; Titus, Haley E.; Nardelli, Paul; Cope, Timothy C.

    2010-01-01

    After peripheral nerve injuries to a motor nerve the axons of motoneurons and proprioceptors are disconnected from the periphery and monosynaptic connections from group I afferents and motoneurons become diminished in the spinal cord. Following successful reinnervation in the periphery, motor strength, proprioceptive sensory encoding, and Ia afferent synaptic transmission on motoneurons partially recover. Muscle stretch reflexes, however, never recover and motor behaviors remain uncoordinated. In this review, we summarize recent findings that suggest that lingering motor dysfunction might be in part related to decreased connectivity of Ia afferents centrally. First, sensory afferent synapses retract from lamina IX causing a permanent relocation of the inputs to more distal locations and significant disconnection from motoneurons. Second, peripheral reconnection between proprioceptive afferents and muscle spindles is imperfect. As a result, a proportion of sensory afferents that retain central connections with motoneurons might not reconnect appropriately in the periphery. A hypothetical model is proposed in which the combined effect of peripheral and central reconnection deficits might explain the failure of muscle stretch to initiate or modulate firing of many homonymous motoneurons. PMID:20536938

  5. Role of renal sensory nerves in physiological and pathophysiological conditions

    PubMed Central

    2014-01-01

    Whether activation of afferent renal nerves contributes to the regulation of arterial pressure and sodium balance has been long overlooked. In normotensive rats, activating renal mechanosensory nerves decrease efferent renal sympathetic nerve activity (ERSNA) and increase urinary sodium excretion, an inhibitory renorenal reflex. There is an interaction between efferent and afferent renal nerves, whereby increases in ERSNA increase afferent renal nerve activity (ARNA), leading to decreases in ERSNA by activation of the renorenal reflexes to maintain low ERSNA to minimize sodium retention. High-sodium diet enhances the responsiveness of the renal sensory nerves, while low dietary sodium reduces the responsiveness of the renal sensory nerves, thus producing physiologically appropriate responses to maintain sodium balance. Increased renal ANG II reduces the responsiveness of the renal sensory nerves in physiological and pathophysiological conditions, including hypertension, congestive heart failure, and ischemia-induced acute renal failure. Impairment of inhibitory renorenal reflexes in these pathological states would contribute to the hypertension and sodium retention. When the inhibitory renorenal reflexes are suppressed, excitatory reflexes may prevail. Renal denervation reduces arterial pressure in experimental hypertension and in treatment-resistant hypertensive patients. The fall in arterial pressure is associated with a fall in muscle sympathetic nerve activity, suggesting that increased ARNA contributes to increased arterial pressure in these patients. Although removal of both renal sympathetic and afferent renal sensory nerves most likely contributes to the arterial pressure reduction initially, additional mechanisms may be involved in long-term arterial pressure reduction since sympathetic and sensory nerves reinnervate renal tissue in a similar time-dependent fashion following renal denervation. PMID:25411364

  6. Afferent fibers and sensory ganglion cells within the oculomotor nerve in some mammals and man. II. Electrophysiological investigations.

    PubMed

    Manni, E; Bortolami, R; Pettorossi, V E; Lucchi, M L; Callegari, E

    1978-01-01

    The main aim of the present study was to localize with electrophysiological techniques the central projections and terminations of the aberrant trigeminal fibres contained in the oculomotor nerve of the lamb. After severing a trigeminal root, single-shock electrical stimulation of the trigeminal axons present in the central stump of the ipsilateral oculomotor nerve evoked field potentials in the area of, i) the subnucleus gelatinosus of the nucleus caudalis trigemini at the level of C1-C2; ii) the main sensory trigeminal nucleus; iii) the descending trigeminal nucleus and tract; iv) the adjacent reticular formation. Units whose discharge rate was influenced by such a stimulation were also found in the same territories. These regions actually exhibited degenerations after cutting an oculomotor nerve. We conclude, therefore, that the trigeminal fibres which leave the Vth nerve at the level of the cavernous sinus and enter the brain stem through the IIIrd nerve, end in the same structures which receive the terminations of the afferent fibres entering the brain stem through the sensory trigeminal root.

  7. Effects of omega-conotoxin GVIA on the activation of capsaicin-sensitive afferent sensory nerves in guinea pig airway tissues.

    PubMed

    Morimoto, H; Matsuda, A; Ohori, M; Fujii, T

    1996-06-01

    We examined the effects of Ca2+ channel antagonists on various respiratory reactions induced by the activation of capsaicin-sensitive afferent sensory nerves. Intravenous (i.v.) injection of the N-type Ca2+ channel antagonist omega-conotoxin GVIA (CgTX) (1-20 micrograms/kg) dose-dependently inhibited capsaicin-induced guinea pig bronchoconstriction, whereas i.v. administration of the L-type antagonist nicardipine (100 micrograms/kg), the P-type antagonist omega-agatoxin IVA (AgaTX) (20 micrograms/kg) or the OPQ family-type antagonist omega-conotoxin MVIIC (CmTX) (20 micrograms/kg) had no effect. However, CgTX (20 micrograms/kg) failed to inhibit substance P-induced guinea pig bronchoconstriction. CgTX (20 micrograms/kg) significantly inhibited cigarette smoke-induced guinea pig tracheal plasma extravasation, but not the substance P-induced reaction. CgTX also reduced electrical field stimulation-induced guinea pig bronchial smooth muscle contraction (0.01-10 microM) and capsaicin-induced substance P-like immunoreactivity release from guinea pig lung (0.14 microM). This evidence suggests that N-type Ca2+ channels modulate tachykinin release from capsaicin-sensitive afferent sensory nerve endings in guinea pig airway tissue.

  8. On the nature of the afferent fibers of oculomotor nerve.

    PubMed

    Manni, E; Draicchio, F; Pettorossi, V E; Carobi, C; Grassi, S; Bortolami, R; Lucchi, M L

    1989-03-01

    The oculogyric nerves contain afferent fibers originating from the ophthalmic territory, the somata of which are located in the ipsilateral semilunar ganglion. These primary sensory neurons project to the Subnucleus Gelatinosus of the Nucleus Caudalis Trigemini, where they make presynaptic contact with the central endings of the primary trigeminal afferents running in the fifth cranial nerve. After complete section of the trigeminal root, the antidromic volleys elicited in the trunk of the third cranial nerve by stimulating SG of NCT consisted of two waves belonging to the A delta and C groups. The area of both components of the antidromic volleys decreased both after bradykinin and hystamine injection into the corresponding cutaneous region and after thermic stimulation of the ipsilateral trigeminal ophthalmic territory. The reduction of such potentials can be explained in terms of collision between the antidromic volleys and those elicited orthodromically by chemical and thermic stimulation. Also, capsaicin applied on the nerve induced an immediate increase, followed by a long lasting decrease, of orthodromic evoked response area. These findings bring further support to the nociceptive nature of the afferent fibers running into the oculomotor nerve.

  9. Deep tissue afferents, but not cutaneous afferents, mediate transcutaneous electrical nerve stimulation-Induced antihyperalgesia.

    PubMed

    Radhakrishnan, Rajan; Sluka, Kathleen A

    2005-10-01

    In this study we investigated the involvement of cutaneous versus knee joint afferents in the antihyperalgesia produced by transcutaneous electrical nerve stimulation (TENS) by differentially blocking primary afferents with local anesthetics. Hyperalgesia was induced in rats by inflaming one knee joint with 3% kaolin-carrageenan and assessed by measuring paw withdrawal latency to heat before and 4 hours after injection. Skin surrounding the inflamed knee joint was anesthetized using an anesthetic cream (EMLA). Low (4 Hz) or high (100 Hz) frequency TENS was then applied to the anesthetized skin. In another group, 2% lidocaine gel was injected into the inflamed knee joint, and low or high frequency TENS was applied. Control experiments were done using vehicles. In control and EMLA groups, both low and high frequency TENS completely reversed hyperalgesia. However, injection of lidocaine into the knee joint prevented antihyperalgesia produced by both low and high frequency TENS. Recordings of cord dorsum potentials showed that both low and high frequency TENS at sensory intensity activates only large diameter afferent fibers. Increasing intensity to twice the motor threshold recruits Adelta afferent fibers. Furthermore, application of EMLA cream to the skin reduces the amplitude of the cord dorsum potential by 40% to 70% for both high and low frequency TENS, confirming a loss of large diameter primary afferent input after EMLA is applied to the skin. Thus, inactivation of joint afferents, but not cutaneous afferents, prevents the antihyperalgesia effects of TENS. We conclude that large diameter primary afferent fibers from deep tissue are required and that activation of cutaneous afferents is not sufficient for TENS-induced antihyperalgesia. Transcutaneous electrical nerve stimulation (TENS) is an accepted clinical modality used for pain relief. It is generally believed that TENS analgesia is caused mainly by cutaneous afferent activation. In this study by

  10. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia

    PubMed Central

    Longhurst, John C.

    2013-01-01

    Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischemia has not been studied. The present study tested the hypothesis that peripheral opioid receptors modulate cardiac spinal afferent nerve activity during myocardial ischemia by suppressing the responses of cardiac afferent nerve to ischemic mediators like bradykinin and extracellular ATP. The nerve activity of single unit cardiac afferents was recorded from the left sympathetic chain (T2–T5) in anesthetized cats. Forty-three ischemically sensitive afferent nerves (conduction velocity: 0.32–3.90 m/s) with receptive fields in the left and right ventricles were identified. The responses of these afferent nerves to repeat ischemia or ischemic mediators were further studied in the following protocols. First, epicardial administration of naloxone (8 μmol), a nonselective opioid receptor antagonist, enhanced the responses of eight cardiac afferent nerves to recurrent myocardial ischemia by 62%, whereas epicardial application of vehicle (PBS) did not alter the responses of seven other cardiac afferent nerves to ischemia. Second, naloxone applied to the epicardial surface facilitated the responses of seven cardiac afferent nerves to epicardial ATP by 76%. Third, administration of naloxone enhanced the responses of seven other afferent nerves to bradykinin by 85%. In contrast, in the absence of naloxone, cardiac afferent nerves consistently responded to repeated application of ATP (n = 7) or bradykinin (n = 7). These data suggest that peripheral opioid peptides suppress the

  11. Implications for bidirectional signaling between afferent nerves and urothelial cells-ICI-RS 2014.

    PubMed

    Kanai, Anthony; Fry, Christopher; Ikeda, Youko; Kullmann, Florenta Aura; Parsons, Brian; Birder, Lori

    2016-02-01

    To present a synopsis of the presentations and discussions from Think Tank I, "Implications for afferent-urothelial bidirectional communication" of the 2014 International Consultation on Incontinence-Research Society (ICI-RS) meeting in Bristol, UK. The participants presented what is new, currently understood or still unknown on afferent-urothelial signaling mechanisms. New avenues of research and experimental methodologies that are or could be employed were presented and discussed. It is clear that afferent-urothelial interactions are integral to the regulation of normal bladder function and that its disruption can have detrimental consequences. The urothelium is capable of releasing numerous signaling factors that can affect sensory neurons innervating the suburothelium. However, the understanding of how factors released from urothelial cells and afferent nerve terminals regulate one another is incomplete. Utilization of techniques such as viruses that genetically encode Ca(2+) sensors, based on calmodulin and green fluorescent protein, has helped to address the cellular mechanisms involved. Additionally, the epithelial-neuronal interactions in the urethra may also play a significant role in lower urinary tract regulation and merit further investigation. The signaling capabilities of the urothelium and afferent nerves are well documented, yet how these signals are integrated to regulate bladder function is unclear. There is unquestionably a need for expanded methodologies to further our understanding of lower urinary tract sensory mechanisms and their contribution to various pathologies. © 2016 Wiley Periodicals, Inc.

  12. Resting Afferent Renal Nerve Discharge and Renal Inflammation: Elucidating the Role of Afferent and Efferent Renal Nerves in Deoxycorticosterone Acetate Salt Hypertension.

    PubMed

    Banek, Christopher T; Knuepfer, Mark M; Foss, Jason D; Fiege, Jessica K; Asirvatham-Jeyaraj, Ninitha; Van Helden, Dusty; Shimizu, Yoji; Osborn, John W

    2016-12-01

    Renal sympathetic denervation (RDNx) has emerged as a novel therapy for hypertension; however, the therapeutic mechanisms remain unclear. Efferent renal sympathetic nerve activity has recently been implicated in trafficking renal inflammatory immune cells and inflammatory chemokine and cytokine release. Several of these inflammatory mediators are known to activate or sensitize afferent nerves. This study aimed to elucidate the roles of efferent and afferent renal nerves in renal inflammation and hypertension in the deoxycorticosterone acetate (DOCA) salt rat model. Uninephrectomized male Sprague-Dawley rats (275-300 g) underwent afferent-selective RDNx (n=10), total RDNx (n=10), or Sham (n=10) and were instrumented for the measurement of mean arterial pressure and heart rate by radiotelemetry. Rats received 100-mg DOCA (SC) and 0.9% saline for 21 days. Resting afferent renal nerve activity in DOCA and vehicle animals was measured after the treatment protocol. Renal tissue inflammation was assessed by renal cytokine content and T-cell infiltration and activation. Resting afferent renal nerve activity, expressed as a percent of peak afferent nerve activity, was substantially increased in DOCA than in vehicle (35.8±4.4 versus 15.3±2.8 %Amax). The DOCA-Sham hypertension (132±12 mm Hg) was attenuated by ≈50% in both total RDNx (111±8 mm Hg) and afferent-selective RDNx (117±5 mm Hg) groups. Renal inflammation induced by DOCA salt was attenuated by total RDNx and unaffected by afferent-selective RDNx. These data suggest that afferent renal nerve activity may mediate the hypertensive response to DOCA salt, but inflammation may be mediated primarily by efferent renal sympathetic nerve activity. Also, resting afferent renal nerve activity is elevated in DOCA salt rats, which may highlight a crucial neural mechanism in the development and maintenance of hypertension. © 2016 American Heart Association, Inc.

  13. Parallel processing of afferent olfactory sensory information

    PubMed Central

    Vaaga, Christopher E.

    2016-01-01

    Key points The functional synaptic connectivity between olfactory receptor neurons and principal cells within the olfactory bulb is not well understood.One view suggests that mitral cells, the primary output neuron of the olfactory bulb, are solely activated by feedforward excitation.Using focal, single glomerular stimulation, we demonstrate that mitral cells receive direct, monosynaptic input from olfactory receptor neurons.Compared to external tufted cells, mitral cells have a prolonged afferent‐evoked EPSC, which serves to amplify the synaptic input.The properties of presynaptic glutamate release from olfactory receptor neurons are similar between mitral and external tufted cells.Our data suggest that afferent input enters the olfactory bulb in a parallel fashion. Abstract Primary olfactory receptor neurons terminate in anatomically and functionally discrete cortical modules known as olfactory bulb glomeruli. The synaptic connectivity and postsynaptic responses of mitral and external tufted cells within the glomerulus may involve both direct and indirect components. For example, it has been suggested that sensory input to mitral cells is indirect through feedforward excitation from external tufted cells. We also observed feedforward excitation of mitral cells with weak stimulation of the olfactory nerve layer; however, focal stimulation of an axon bundle entering an individual glomerulus revealed that mitral cells receive monosynaptic afferent inputs. Although external tufted cells had a 4.1‐fold larger peak EPSC amplitude, integration of the evoked currents showed that the synaptic charge was 5‐fold larger in mitral cells, reflecting the prolonged response in mitral cells. Presynaptic afferents onto mitral and external tufted cells had similar quantal amplitude and release probability, suggesting that the larger peak EPSC in external tufted cells was the result of more synaptic contacts. The results of the present study indicate that the monosynaptic

  14. Abnormal afferent nerve endings in the soft palatal mucosa of sleep apnoics and habitual snorers.

    PubMed

    Friberg, D; Gazelius, B; Hökfelt, T; Nordlander, B

    1997-07-23

    Habitual snoring precedes obstructive sleep apnea (OSA), but the pathophysiological mechanisms behind progression are still unclear. The patency of upper airways depends on a reflexogen mechanism reacting on negative intrapharyngeal pressure at inspiration, probably mediated by mucosal receptors, i.e., via afferent nerve endings. Such nerves contain a specific nerve protein, protein-gene product 9.5 (PGP 9.5) and in some cases substance P (SP) and calcitonin gene-related (CGRP). Biopsies of the soft palatial mucosa were obtained from non-smoking men ten OSA patients, 11 habitual snorers and 11 non-snoring controls. The specimens were immunohistochemically analyzed for PGP 9.5, SP and CGRP. As compared to controls, an increased number of PGP-, SP- and CGRP-immunoreactive nerves were demonstrated in the mucosa in 9/10 OSA patients and 4/11 snorers, in addition to varicose nerve endings in the papillae and epithelium. Using double staining methodology, it could be shown that SP- and CGRP-like immunoreactivities (LIs) often coexisted in these fibres, as did CGRP- and PGP 9.5-LIs. The increased density in sensory nerve terminals are interpreted to indicate an afferent nerve lesion. Our results support the hypothesis of a progressive neurogenic lesion as a contributory factor to the collapse of upper airways during sleep in OSA patients.

  15. Enterocyte-afferent nerve interactions in dietary fat sensing.

    PubMed

    Mansouri, A; Langhans, W

    2014-09-01

    The central nervous system (CNS) constantly monitors nutrient availability in the body and, in particular, in the gastrointestinal (GI) tract to regulate nutrient and energy homeostasis. Extrinsic parasympathetic and sympathetic nerves are crucial for CNS nutrient sensing in the GI tract. These extrinsic afferent nerves detect the nature and amount of nutrients present in the GI tract and relay the information to the brain, which controls energy intake and expenditure accordingly. Dietary fat and fatty acids are sensed through various direct and indirect mechanisms. These sensing processes involve the binding of fatty acids to specific G protein-coupled receptors expressed either on the afferent nerve fibres or on the surface of enteroendocrine cells that release gut peptides, which themselves can modulate afferent nerve activity through their cognate receptors or have endocrine effects directly on the brain. Further dietary fat sensing mechanisms that are related to enterocyte fat handling and metabolism involve the release of several possible chemical mediators such as fatty acid ethanolamides or apolipoprotein A-IV. We here present evidence for yet another mechanism that may be based on ketone bodies resulting from enterocyte oxidation of dietary fat-derived fatty acids. The presently available evidence suggests that sympathetic rather than vagal afferents are involved, but further experiments are necessary to critically examine this concept. © 2014 John Wiley & Sons Ltd.

  16. Resting afferent renal nerve discharge and renal inflammation: Elucidating the role of afferent and efferent renal nerves in DOCA-salt hypertension

    PubMed Central

    Banek, Christopher T.; Knuepfer, Mark M.; Foss, Jason D.; Fiege, Jessica K.; Asirvatham-Jeyaraj, Ninitha; Van Helden, Dusty; Shimizu, Yoji; Osborn, John W.

    2016-01-01

    Renal sympathetic denervation (RDNx) has emerged as a novel therapy for hypertension; however, the therapeutic mechanisms remain unclear. Efferent renal sympathetic nerve activity (RSNA) has recently been implicated in trafficking renal inflammatory immune cells and inflammatory chemokine and cytokine release. Several of these inflammatory mediators are known to activate or sensitize afferent nerves. This study aimed to elucidate the roles of efferent and afferent renal nerves in renal inflammation and hypertension in the deoxycorticosterone acetate (DOCA)-salt rat model. Uninephrectomized male Sprague Dawley rats (275–300g) underwent selective afferent-selective RDNx (A-RDNx; n=10), total RDNx (T-RDNx; n=10), or Sham (n=10) and were instrumented for measurement of mean arterial pressure (MAP) and heart rate (HR) by radiotelemetry. Rats received 100mg DOCA (s.c.) and 0.9% saline for 21 days. Resting afferent renal nerve activity (ARNA) in DOCA and Vehicle animals was measured after the treatment protocol. Renal tissue inflammation was assessed by renal cytokine content and T-cell infiltration and activation. Resting ARNA, expressed as a percent of peak afferent nerve activity (%Amax), was substantially increased in DOCA vs. Vehicle (35.8±4.4 vs. 15.3±2.8%Amax). The DOCA-Sham hypertension (132±12 mmHg) was attenuated by ~50% in both T-RDNx (111±8) and A-RDNx (117±5mmHg) groups. Renal inflammation induced by DOCA-salt was attenuated by T-RDNx, and unaffected by A-RDNx. These data suggest ARNA may mediate the hypertensive response to DOCA-salt, but inflammation may be mediated primarily by efferent RSNA. Also, resting ARNA is elevated in DOCA-salt rats, which may highlight a crucial neural mechanism in the development and maintenance of hypertension. PMID:27698066

  17. Vagal Afferent Innervation of the Airways in Health and Disease

    PubMed Central

    Mazzone, Stuart B.

    2016-01-01

    Vagal sensory neurons constitute the major afferent supply to the airways and lungs. Subsets of afferents are defined by their embryological origin, molecular profile, neurochemistry, functionality, and anatomical organization, and collectively these nerves are essential for the regulation of respiratory physiology and pulmonary defense through local responses and centrally mediated neural pathways. Mechanical and chemical activation of airway afferents depends on a myriad of ionic and receptor-mediated signaling, much of which has yet to be fully explored. Alterations in the sensitivity and neurochemical phenotype of vagal afferent nerves and/or the neural pathways that they innervate occur in a wide variety of pulmonary diseases, and as such, understanding the mechanisms of vagal sensory function and dysfunction may reveal novel therapeutic targets. In this comprehensive review we discuss historical and state-of-the-art concepts in airway sensory neurobiology and explore mechanisms underlying how vagal sensory pathways become dysfunctional in pathological conditions. PMID:27279650

  18. Ionotropic and metabotropic receptor mediated airway sensory nerve activation.

    PubMed

    Lee, Min-Goo; Kollarik, Marian; Chuaychoo, Benjamas; Undem, Bradley J

    2004-01-01

    There are several receptors capable of inducing activating generator potentials in cough-associated afferent terminals in the airways. The chemical receptors leading to generator potentials can be subclassified into ionotropic and metabotropic types. An ionotropic receptor has an agonist-binding domain, and also serves directly as an ion channel that is opened upon binding of the agonist. Examples of ionotropic receptors found in airway sensory nerve terminals include receptors for serotonin (5-HT3 receptors), ATP (P2X receptors), acetylcholine (nicotinic receptors), receptors for capsaicin and related vanilloids (TRPV1 receptors), and acid receptors (acid sensing ion channels). Afferent nerve terminals can also be depolarized via activation of metabotropic or G-protein coupled receptors (GPCRs). Among the GPCRs that can lead to activation of airway afferent fibers include bradykinin B2 and adenosine A1 receptors. The signaling events leading to GPCR-mediated membrane depolarization are more complex than that seen with ionotropic receptors. The GPCR-mediated effects are thought to occur through classical second messenger systems such as activation of phospholipase C. This may lead to membrane depolarization through interaction with specific ionotropic receptors (such as TRPV1) and/or various types of calcium activated channels.

  19. Peripheral axotomy of the rat mandibular trigeminal nerve leads to an increase in VIP and decrease of other primary afferent neuropeptides in the spinal trigeminal nucleus.

    PubMed

    Atkinson, M E; Shehab, S A

    1986-12-01

    In the vasoactive intestinal polypeptide (VIP)-rich lumbosacral spinal cord, VIP increases at the expense of other neuropeptides after primary sensory nerve axotomy. This study was undertaken to ascertain whether similar changes occur in peripherally axotomised cranial sensory nerves. VIP immunoreactivity increased in the terminal region of the mandibular nerve in the trigeminal nucleus caudalis following unilateral section of the sensory root of the mandibular trigeminal nerve at the foramen orale. Other primary afferent neuropeptides (substance P, cholecystokinin and somatostatin) were depleted and fluoride-resistant acid phosphatase activity was abolished in the same circumscribed areas of the nucleus caudalis. The rise in VIP and depletion of other markers began 4 days postoperatively and was maximal by 10 days, these levels remaining unchanged up to 1 year postoperatively. VIP-immunoreactive cell bodies were absent from trigeminal ganglia from the unoperated side but small and medium cells stained intensely in the ganglia of the operated side after axotomy. These observations indicate that increase of VIP in sensory nerve terminals is a general phenomenon occurring in both cranial and spinal sensory terminal areas. The intense VIP immunoreactivity in axotomised trigeminal ganglia suggests that the increased levels of VIP in the nucleus caudalis are of peripheral origin, indicating a change in expression of neuropeptides within primary afferent neurons following peripheral axotomy.

  20. Transient receptor potential cation channel, subfamily V, member 4 and airway sensory afferent activation: Role of adenosine triphosphate.

    PubMed

    Bonvini, Sara J; Birrell, Mark A; Grace, Megan S; Maher, Sarah A; Adcock, John J; Wortley, Michael A; Dubuis, Eric; Ching, Yee-Man; Ford, Anthony P; Shala, Fisnik; Miralpeix, Montserrat; Tarrason, Gema; Smith, Jaclyn A; Belvisi, Maria G

    2016-07-01

    Sensory nerves innervating the airways play an important role in regulating various cardiopulmonary functions, maintaining homeostasis under healthy conditions and contributing to pathophysiology in disease states. Hypo-osmotic solutions elicit sensory reflexes, including cough, and are a potent stimulus for airway narrowing in asthmatic patients, but the mechanisms involved are not known. Transient receptor potential cation channel, subfamily V, member 4 (TRPV4) is widely expressed in the respiratory tract, but its role as a peripheral nociceptor has not been explored. We hypothesized that TRPV4 is expressed on airway afferents and is a key osmosensor initiating reflex events in the lung. We used guinea pig primary cells, tissue bioassay, in vivo electrophysiology, and a guinea pig conscious cough model to investigate a role for TRPV4 in mediating sensory nerve activation in vagal afferents and the possible downstream signaling mechanisms. Human vagus nerve was used to confirm key observations in animal tissues. Here we show TRPV4-induced activation of guinea pig airway-specific primary nodose ganglion cells. TRPV4 ligands and hypo-osmotic solutions caused depolarization of murine, guinea pig, and human vagus and firing of Aδ-fibers (not C-fibers), which was inhibited by TRPV4 and P2X3 receptor antagonists. Both antagonists blocked TRPV4-induced cough. This study identifies the TRPV4-ATP-P2X3 interaction as a key osmosensing pathway involved in airway sensory nerve reflexes. The absence of TRPV4-ATP-mediated effects on C-fibers indicates a distinct neurobiology for this ion channel and implicates TRPV4 as a novel therapeutic target for neuronal hyperresponsiveness in the airways and symptoms, such as cough. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Laryngeal and tracheal afferent nerve stimulation evokes swallowing in anaesthetized guinea pigs

    PubMed Central

    Tsujimura, Takanori; Udemgba, Chioma; Inoue, Makoto; Canning, Brendan J

    2013-01-01

    We describe swallowing reflexes evoked by laryngeal and tracheal vagal afferent nerve stimulation in anaesthetized guinea pigs. The swallowing reflexes evoked by laryngeal citric acid challenges were abolished by recurrent laryngeal nerve (RLN) transection and mimicked by electrical stimulation of the central cut ends of an RLN. By contrast, the number of swallows evoked by upper airway/pharyngeal distensions was not significantly reduced by RLN transection but they were virtually abolished by superior laryngeal nerve transection. Laryngeal citric acid-evoked swallowing was mimicked by laryngeal capsaicin challenges, implicating transient receptor potential vanilloid 1 (TRPV1)-expressing laryngeal afferent nerves arising from the jugular ganglia. The swallowing evoked by citric acid and capsaicin and evoked by electrical stimulation of either the tracheal or the laryngeal mucosa occurred at stimulation intensities that were typically subthreshold for evoking cough in these animals. Swallowing evoked by airway afferent nerve stimulation also desensitized at a much slower rate than cough. We speculate that swallowing is an essential component of airway protection from aspiration associated with laryngeal and tracheal afferent nerve activation. PMID:23858010

  2. OnabotulinumtoxinA significantly attenuates bladder afferent nerve firing and inhibits ATP release from the urothelium.

    PubMed

    Collins, Valerie M; Daly, Donna M; Liaskos, Marina; McKay, Neil G; Sellers, Donna; Chapple, Christopher; Grundy, David

    2013-11-01

    To investigate the direct effect of onabotulinumtoxinA (OnaBotA) on bladder afferent nerve activity and release of ATP and acetylcholine (ACh) from the urothelium. Bladder afferent nerve activity was recorded using an in vitro mouse preparation enabling simultaneous recordings of afferent nerve firing and intravesical pressure during bladder distension. Intraluminal and extraluminal ATP, ACh, and nitric oxide (NO) release were measured using the luciferin-luciferase and Amplex(®) Red assays (Molecular Probes, Carlsbad, CA, USA), and fluorometric assay kit, respectively. OnaBotA (2U), was applied intraluminally, during bladder distension, and its effect was monitored for 2 h after application. Whole-nerve activity was analysed to classify the single afferent units responding to physiological (low-threshold [LT] afferent <15 mmHg) and supra-physiological (high-threshold [HT] afferent >15 mmHg) distension pressures. Bladder distension evoked reproducible pressure-dependent increases in afferent nerve firing. After exposure to OnaBotA, both LT and HT afferent units were significantly attenuated. OnaBotA also significantly inhibited ATP release from the urothelium and increased NO release. These data indicate that OnaBotA attenuates the bladder afferent nerves involved in micturition and bladder sensation, suggesting that OnaBotA may exert its clinical effects on urinary urgency and the other symptoms of overactive bladder syndrome through its marked effect on afferent nerves. © 2013 The Authors. BJU International © 2013 BJU International.

  3. Renal sensory and sympathetic nerves reinnervate the kidney in a similar time-dependent fashion after renal denervation in rats

    PubMed Central

    Mulder, Jan; Hökfelt, Tomas; Knuepfer, Mark M.

    2013-01-01

    Efferent renal sympathetic nerves reinnervate the kidney after renal denervation in animals and humans. Therefore, the long-term reduction in arterial pressure following renal denervation in drug-resistant hypertensive patients has been attributed to lack of afferent renal sensory reinnervation. However, afferent sensory reinnervation of any organ, including the kidney, is an understudied question. Therefore, we analyzed the time course of sympathetic and sensory reinnervation at multiple time points (1, 4, and 5 days and 1, 2, 3, 4, 6, 9, and 12 wk) after renal denervation in normal Sprague-Dawley rats. Sympathetic and sensory innervation in the innervated and contralateral denervated kidney was determined as optical density (ImageJ) of the sympathetic and sensory nerves identified by immunohistochemistry using antibodies against markers for sympathetic nerves [neuropeptide Y (NPY) and tyrosine hydroxylase (TH)] and sensory nerves [substance P and calcitonin gene-related peptide (CGRP)]. In denervated kidneys, the optical density of NPY-immunoreactive (ir) fibers in the renal cortex and substance P-ir fibers in the pelvic wall was 6, 39, and 100% and 8, 47, and 100%, respectively, of that in the contralateral innervated kidney at 4 days, 4 wk, and 12 wk after denervation. Linear regression analysis of the optical density of the ratio of the denervated/innervated kidney versus time yielded similar intercept and slope values for NPY-ir, TH-ir, substance P-ir, and CGRP-ir fibers (all R2 > 0.76). In conclusion, in normotensive rats, reinnervation of the renal sensory nerves occurs over the same time course as reinnervation of the renal sympathetic nerves, both being complete at 9 to 12 wk following renal denervation. PMID:23408032

  4. Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.; Schuff, N. R.

    1994-01-01

    Vestibular nerve afferents innervating the bullfrog utriculus differ in their response dynamics and sensitivity to natural stimulation. They also supply hair cells that differ markedly in hair bundle morphology. To examine the peripheral innervation patterns of individual utricular afferents more closely, afferent fibers were labeled by the extracellular injection of horseradish peroxidase (HRP) into the vestibular nerve after sectioning the vestibular nerve medial to Scarpa's ganglion to allow the degeneration of sympathetic and efferent fibers. The peripheral arborizations of individual afferents were then correlated with the diameters of their parent axons, the regions of the macula they innervate, and the number and type of hair cells they supply. The utriculus is divided by the striola, a narrow zone of distinctive morphology, into media and lateral parts. Utiricular afferents were classified as striolar or extrastriolar according to the epithelial entrance of their parent axons and the location of their terminal fields. In general, striolar afferents had thicker parent axons, fewer subepithelial bifurcations, larger terminal fields, and more synaptic endings than afferents in extrstriolar regions. Afferents in a juxtastriolar zone, immediately adjacent to the medial striola, had innervation patterns transitional between those in the striola and more peripheral parts of the medial extrastriola. moast afferents innervated only a single macular zone. The terminal fields of striolar afferents, with the notable exception of a few afferents with thin parent axons, were generally confined to one side of the striola. Hair cells in the bullfrog utriculus have perviously been classified into four types based on hair bundle morphology. Afferents in the extrastriolar and juxtastriolar zones largely or exclusively innervated Type B hair cells, the predominant hair cell type in the utricular macula. Striolar afferents supplied a mixture of four hair cell types, but largely

  5. Allergen challenge sensitizes TRPA1 in vagal sensory neurons and afferent C-fiber subtypes in guinea pig esophagus.

    PubMed

    Liu, Zhenyu; Hu, Youtian; Yu, Xiaoyun; Xi, Jiefeng; Fan, Xiaoming; Tse, Chung-Ming; Myers, Allen C; Pasricha, Pankaj J; Li, Xingde; Yu, Shaoyong

    2015-03-15

    Transient receptor potential A1 (TRPA1) is a newly defined cationic ion channel, which selectively expresses in primary sensory afferent nerve, and is essential in mediating inflammatory nociception. Our previous study demonstrated that TRPA1 plays an important role in tissue mast cell activation-induced increase in the excitability of esophageal vagal nodose C fibers. The present study aims to determine whether prolonged antigen exposure in vivo sensitizes TRPA1 in a guinea pig model of eosinophilic esophagitis (EoE). Antigen challenge-induced responses in esophageal mucosa were first assessed by histological stains and Ussing chamber studies. TRPA1 function in vagal sensory neurons was then studied by calcium imaging and by whole cell patch-clamp recordings in 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-labeled esophageal vagal nodose and jugular neurons. Extracellular single-unit recordings were performed in vagal nodose and jugular C-fiber neuron subtypes using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. Antigen challenge significantly increased infiltrations of eosinophils and mast cells in the esophagus. TRPA1 agonist allyl isothiocyanate (AITC)-induced calcium influx in nodose and jugular neurons was significantly increased, and current densities in esophageal DiI-labeled nodose and jugular neurons were also significantly increased in antigen-challenged animals. Prolonged antigen challenge decreased esophageal epithelial barrier resistance, which allowed intraesophageal-infused AITC-activating nodose and jugular C fibers at their nerve endings. Collectively, these results demonstrated that prolonged antigen challenge sensitized TRPA1 in esophageal sensory neurons and afferent C fibers. This novel finding will help us to better understand the molecular mechanism underlying esophageal sensory and motor dysfunctions in EoE. Copyright © 2015 the American Physiological Society.

  6. Allergen challenge sensitizes TRPA1 in vagal sensory neurons and afferent C-fiber subtypes in guinea pig esophagus

    PubMed Central

    Liu, Zhenyu; Hu, Youtian; Yu, Xiaoyun; Xi, Jiefeng; Fan, Xiaoming; Tse, Chung-Ming; Myers, Allen C.; Pasricha, Pankaj J.; Li, Xingde

    2015-01-01

    Transient receptor potential A1 (TRPA1) is a newly defined cationic ion channel, which selectively expresses in primary sensory afferent nerve, and is essential in mediating inflammatory nociception. Our previous study demonstrated that TRPA1 plays an important role in tissue mast cell activation-induced increase in the excitability of esophageal vagal nodose C fibers. The present study aims to determine whether prolonged antigen exposure in vivo sensitizes TRPA1 in a guinea pig model of eosinophilic esophagitis (EoE). Antigen challenge-induced responses in esophageal mucosa were first assessed by histological stains and Ussing chamber studies. TRPA1 function in vagal sensory neurons was then studied by calcium imaging and by whole cell patch-clamp recordings in 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI)-labeled esophageal vagal nodose and jugular neurons. Extracellular single-unit recordings were performed in vagal nodose and jugular C-fiber neuron subtypes using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. Antigen challenge significantly increased infiltrations of eosinophils and mast cells in the esophagus. TRPA1 agonist allyl isothiocyanate (AITC)-induced calcium influx in nodose and jugular neurons was significantly increased, and current densities in esophageal DiI-labeled nodose and jugular neurons were also significantly increased in antigen-challenged animals. Prolonged antigen challenge decreased esophageal epithelial barrier resistance, which allowed intraesophageal-infused AITC-activating nodose and jugular C fibers at their nerve endings. Collectively, these results demonstrated that prolonged antigen challenge sensitized TRPA1 in esophageal sensory neurons and afferent C fibers. This novel finding will help us to better understand the molecular mechanism underlying esophageal sensory and motor dysfunctions in EoE. PMID:25591867

  7. Diagnostic value of the near-nerve needle sensory nerve conduction in sensory inflammatory demyelinating polyneuropathy.

    PubMed

    Odabasi, Zeki; Oh, Shin J

    2018-03-01

    In this study we report the diagnostic value of the near-nerve needle sensory nerve conduction study (NNN-SNCS) in sensory inflammatory demyelinating polyneuropathy (IDP) in which the routine nerve conduction study was normal or non-diagnostic. The NNN-SNCS was performed to identify demyelination in the plantar nerves in 14 patients and in the median or ulnar nerve in 2 patients with sensory IDP. In 16 patients with sensory IDP, routine NCSs were either normal or non-diagnostic for demyelination. Demyelination was identified by NNN-SNCS by dispersion and/or slow nerve conduction velocity (NCV) below the demyelination marker. Immunotherapy was initiated in 11 patients, 10 of whom improved or remained stable. NNN-SNCS played an essential role in identifying demyelinaton in 16 patients with sensory IDP, leading to proper treatment. Muscle Nerve 57: 414-418, 2018. © 2017 Wiley Periodicals, Inc.

  8. The renal nerves in chronic heart failure: efferent and afferent mechanisms

    PubMed Central

    Schiller, Alicia M.; Pellegrino, Peter R.; Zucker, Irving H.

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF. PMID:26300788

  9. Sensory Feedback in Interlimb Coordination: Contralateral Afferent Contribution to the Short-Latency Crossed Response during Human Walking.

    PubMed

    Gervasio, Sabata; Voigt, Michael; Kersting, Uwe G; Farina, Dario; Sinkjær, Thomas; Mrachacz-Kersting, Natalie

    2017-01-01

    A constant coordination between the left and right leg is required to maintain stability during human locomotion, especially in a variable environment. The neural mechanisms underlying this interlimb coordination are not yet known. In animals, interneurons located within the spinal cord allow direct communication between the two sides without the need for the involvement of higher centers. These may also exist in humans since sensory feedback elicited by tibial nerve stimulation on one side (ipsilateral) can affect the muscles activation in the opposite side (contralateral), provoking short-latency crossed responses (SLCRs). The current study investigated whether contralateral afferent feedback contributes to the mechanism controlling the SLCR in human gastrocnemius muscle. Surface electromyogram, kinematic and kinetic data were recorded from subjects during normal walking and hybrid walking (with the legs moving in opposite directions). An inverse dynamics model was applied to estimate the gastrocnemius muscle proprioceptors' firing rate. During normal walking, a significant correlation was observed between the magnitude of SLCRs and the estimated muscle spindle secondary afferent activity (P = 0.04). Moreover, estimated spindle secondary afferent and Golgi tendon organ activity were significantly different (P ≤ 0.01) when opposite responses have been observed, that is during normal (facilitation) and hybrid walking (inhibition) conditions. Contralateral sensory feedback, specifically spindle secondary afferents, likely plays a significant role in generating the SLCR. This observation has important implications for our understanding of what future research should be focusing on to optimize locomotor recovery in patient populations.

  10. Influence of oculomotor nerve afferents on central endings of primary trigeminal fibers.

    PubMed

    Manni, E; Bortolami, R; Pettorossi, V E; Lucchi, M L; Callegari, E; Draicchio, F

    1987-12-01

    Painful fibers running in the third nerve and originating from the ophthalmic trigeminal area send their central projections at level of substantia gelatinosa of nucleus caudalis trigemini. The central endings of these fibers form axoaxonic synapses with trigeminal fibers entering the brain stem through the trigeminal root. The effect of electrical stimulation of the third nerve central stump on the central endings of trigeminal afferent fibers consists in an increased excitability, possibly resulting in a presynaptic inhibition. This inhibitory influence is due to both direct and indirect connections of the third nerve afferent fibers with the trigeminal ones.

  11. Stimulation of proteinase-activated receptor 2 excites jejunal afferent nerves in anaesthetised rats

    PubMed Central

    Kirkup, Anthony J; Jiang, Wen; Bunnett, Nigel W; Grundy, David

    2003-01-01

    Proteinase-activated receptor 2 (PAR2) is a receptor for mast cell tryptase and trypsins and might participate in brain-gut communication. However, evidence that PAR2 activation can lead to afferent impulse generation is lacking. To address this issue, we examined the sensitivity of jejunal afferent nerves to a hexapeptide agonist of PAR2, SLIGRL-NH2, and the modulation of the resulting response to treatment with drugs and vagotomy. Multiunit recordings of jejunal afferent activity were made using extracellular recording techniques in anaesthetised male rats. SLIGRL-NH2 (0.001–1 mg kg−1, I.V.) increased jejunal afferent firing and intrajejunal pressure. The reverse peptide sequence (1 mg kg−1, I.V.), which does not stimulate PAR2, was inactive. Naproxen (10 mg kg−1, I.V.), but not a cocktail of ω-conotoxins GVIA and SVIB (each at 25 μg kg−1, I.V.), curtailed both the afferent response and the intrajejunal pressure rise elicited by the PAR2 agonist. Although neither treatment modulated the peak magnitude of the afferent firing, they each altered the intestinal motor response, unmasking an initial inhibitory component. Nifedipine (1 mg kg−1, I.V.) reduced the peak magnitude of the afferent nerve discharge and abolished the initial rise in intrajejunal pressure produced by SLIGRL-NH2. Vagotomy did not significantly influence the magnitude of the afferent response to the PAR2 agonist, which involves a contribution from capsaicin-sensitive fibres. In conclusion, intravenous administration of SLIGRL-NH2 evokes complex activation of predominantly spinally projecting extrinsic intestinal afferent nerves, an effect that involves both direct and indirect mechanisms. PMID:14561839

  12. Effects of stimulation of muscarinic receptors on bladder afferent nerves in the in vitro bladder-pelvic afferent nerve preparation of the rat.

    PubMed

    Yu, Yongbei; de Groat, William C

    2010-11-18

    Effects of a muscarinic receptor agonist oxotremorine-M (oxo-M) on bladder afferent nerve (BAN) activity were studied in an in vitro bladder-pelvic nerve preparation. Distension of the bladder induced rhythmic bladder contractions that were accompanied by multiunit afferent firing. Intravesical administration of 25 and 50 μM oxo-M significantly increased afferent firing from 41 ± 2 spikes/s to 51 ± 4 spikes/s and 60.5 ± 5 spikes/s, respectively, but did not change the maximum amplitude of spontaneous bladder contractions. The afferent nerve firing induced by isotonic distension of the bladder (10-40 cmH(2)O) was increased 22-100% by intravesical administration of 50 μM oxo-M. Electrical stimulation on the surface of the bladder elicited action potentials (AP) in BAN. Oxo-M significantly decreased the voltage threshold by 40% (p<0.05) and increased by 157% (p<0.05) the area of the AP evoked at a submaximal stimulus intensity. These effects were blocked by intravesical injection of 5 μM atropine methyl nitrate (AMN). Intravesical administration of 5 μM AMN alone did not alter BAN firing or the amplitude of bladder contractions. The facilitatory effects induced by oxo-M on BAN activity were also suppressed (p<0.05) by intravesical administration of 2',3'-0-trinitrophenyl-ATP (TNP-ATP) (30 μM). In preparations pretreated with capsaicin (125 mg/kg, s.c.) the facilitatory effects of 50 μM oxo-M on BAN activity were absent. These results suggest that activation of muscarinic receptors facilitates mechano-sensitive, capsaicin-sensitive BAN activity in part by mechanisms involving purinergic receptors located near the luminal surface of the bladder and ATP release which presumably occurs in the urothelium. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Evoked pain analgesia in chronic pelvic pain patients using respiratory-gated auricular vagal afferent nerve stimulation.

    PubMed

    Napadow, Vitaly; Edwards, Robert R; Cahalan, Christine M; Mensing, George; Greenbaum, Seth; Valovska, Assia; Li, Ang; Kim, Jieun; Maeda, Yumi; Park, Kyungmo; Wasan, Ajay D

    2012-06-01

    Previous vagus nerve stimulation (VNS) studies have demonstrated antinociceptive effects, and recent noninvasive approaches, termed transcutaneous-vagus nerve stimulation (t-VNS), have utilized stimulation of the auricular branch of the vagus nerve in the ear. The dorsal medullary vagal system operates in tune with respiration, and we propose that supplying vagal afferent stimulation gated to the exhalation phase of respiration can optimize t-VNS. Counterbalanced, crossover study. Patients with chronic pelvic pain (CPP) due to endometriosis in a specialty pain clinic. INTERVENTIONS/OUTCOMES: We evaluated evoked pain analgesia for respiratory-gated auricular vagal afferent nerve stimulation (RAVANS) compared with nonvagal auricular stimulation (NVAS). RAVANS and NVAS were evaluated in separate sessions spaced at least 1 week apart. Outcome measures included deep-tissue pain intensity, temporal summation of pain, and anxiety ratings, which were assessed at baseline, during active stimulation, immediately following stimulation, and 15 minutes after stimulus cessation. RAVANS demonstrated a trend for reduced evoked pain intensity and temporal summation of mechanical pain, and significantly reduced anxiety in N = 15 CPP patients, compared with NVAS, with moderate to large effect sizes (η(2) > 0.2). Chronic pain disorders such as CPP are in great need of effective, nonpharmacological options for treatment. RAVANS produced promising antinociceptive effects for quantitative sensory testing (QST) outcomes reflective of the noted hyperalgesia and central sensitization in this patient population. Future studies should evaluate longer-term application of RAVANS to examine its effects on both QST outcomes and clinical pain. Wiley Periodicals, Inc.

  14. The afferent pathways of discogenic low-back pain. Evaluation of L2 spinal nerve infiltration.

    PubMed

    Nakamura, S I; Takahashi, K; Takahashi, Y; Yamagata, M; Moriya, H

    1996-07-01

    The afferent pathways of discogenic low-back pain have not been fully investigated. We hypothesised that this pain was transmitted mainly by sympathetic afferent fibres in the L2 nerve root, and in 33 patients we used selective local anaesthesia of this nerve. Low-back pain disappeared or significantly decreased in all patients after the injection. Needle insertion provoked pain which radiated to the low back in 23 patients and the area of skin hypoalgesia produced included the area of pre-existing pain in all but one. None of the nine patients with related sciatica had relief of that component of their symptoms. Our findings show that the main afferent pathways of pain from the lower intervertebral discs are through the L2 spinal nerve root, presumably via sympathetic afferents from the sinuvertebral nerves. Discogenic low-back pain should be regarded as a visceral pain in respect of its neural pathways. Infiltration of the L2 nerve is a useful diagnostic test and also has some therapeutic value.

  15. Interdependency between mechanical parameters and afferent nerve discharge in remodeled diabetic Goto-Kakizaki rat intestine.

    PubMed

    Zhao, Jingbo; Yang, Jian; Liao, Donghua; Gregersen, Hans

    2017-01-01

    Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. We aimed to characterize the stimulus-response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK) type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress-strain, spike rate increase ratio (SRIR), and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity ( P <0.05). The stress relaxed less in the diabetic intestinal segment ( P <0.05). Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients.

  16. Interdependency between mechanical parameters and afferent nerve discharge in remodeled diabetic Goto-Kakizaki rat intestine

    PubMed Central

    Zhao, Jingbo; Yang, Jian; Liao, Donghua; Gregersen, Hans

    2017-01-01

    Background Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. Objective We aimed to characterize the stimulus–response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK) type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Design Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress–strain, spike rate increase ratio (SRIR), and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Results Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity (P<0.05). The stress relaxed less in the diabetic intestinal segment (P<0.05). Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Conclusion Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients. PMID:29238211

  17. Interplay between mast cells, enterochromaffin cells, and sensory signaling in the aging human bowel.

    PubMed

    Yu, Y; Daly, D M; Adam, I J; Kitsanta, P; Hill, C J; Wild, J; Shorthouse, A; Grundy, D; Jiang, W

    2016-10-01

    Advanced age is associated with a reduction in clinical visceral pain perception. However, the underlying mechanisms remain largely unknown. Previous studies have suggested that an abnormal interplay between mast cells, enterochromaffin (EC) cells, and afferent nerves contribute to nociception in gastrointestinal disorders. The aim of this study was to investigate how aging affects afferent sensitivity and neuro-immune association in the human bowel. Mechanical and chemical sensitivity of human bowel afferents were examined by ex vivo afferent nerve recordings. Age-related changes in the density of mast cells, EC cells, sensory nerve terminals, and mast cell-nerve micro-anatomical association were investigated by histological and immune staining. Human afferents could be broadly classified into subpopulations displaying mechanical and chemical sensitivity, adaptation, chemo-sensitization, and recruitment. Interestingly human bowel afferent nerve sensitivity was attenuated with age. The density of substance P-immunoreactive (SP-IR) nerve varicosities was also reduced with age. In contrast, the density of ileal and colonic mucosal mast cells was increased with age, as was ileal EC cell number. An increased proportion of mast cells was found in close apposition to SP-IR nerves. Afferent sensitivity in human bowel was reduced with advancing age. Augmentation of mast cells and EC cell numbers and the mast cell-nerve association suggest a compensatory mechanism for sensory neurodegeneration. © 2016 The Authors. Neurogastroenterology & Motility Published by John Wiley & Sons Ltd.

  18. A comparative analysis of the encapsulated end-organs of mammalian skeletal muscles and of their sensory nerve endings.

    PubMed

    Banks, R W; Hulliger, M; Saed, H H; Stacey, M J

    2009-06-01

    The encapsulated sensory endings of mammalian skeletal muscles are all mechanoreceptors. At the most basic functional level they serve as length sensors (muscle spindle primary and secondary endings), tension sensors (tendon organs), and pressure or vibration sensors (lamellated corpuscles). At a higher functional level, the differing roles of individual muscles in, for example, postural adjustment and locomotion might be expected to be reflected in characteristic complements of the various end-organs, their sensory endings and afferent nerve fibres. This has previously been demonstrated with regard to the number of muscle-spindle capsules; however, information on the other types of end-organ, as well as the complements of primary and secondary endings of the spindles themselves, is sporadic and inconclusive regarding their comparative provision in different muscles. Our general conclusion that muscle-specific variability in the provision of encapsulated sensory endings does exist demonstrates the necessity for the acquisition of more data of this type if we are to understand the underlying adaptive relationships between motor control and the structure and function of skeletal muscle. The present quantitative and comparative analysis of encapsulated muscle afferents is based on teased, silver-impregnated preparations. We begin with a statistical analysis of the number and distribution of muscle-spindle afferents in hind-limb muscles of the cat, particularly tenuissimus. We show that: (i) taking account of the necessity for at least one primary ending to be present, muscles differ significantly in the mean number of additional afferents per spindle capsule; (ii) the frequency of occurrence of spindles with different sensory complements is consistent with a stochastic, rather than deterministic, developmental process; and (iii) notwithstanding the previous finding, there is a differential distribution of spindles intramuscularly such that the more complex ones tend

  19. Endogenous angiotensin affects responses to stimulation of baroreceptor afferent nerves.

    PubMed

    DiBona, Gerald F; Jones, Susan Y

    2003-08-01

    To study effects of endogenous angiotensin II on responses to standardized stimulation of afferent neural input into the central portion of the arterial and cardiac baroreflexes. Different dietary sodium intakes were used to physiologically alter endogenous angiotensin II activity. Candesartan, an angiotensin II type 1 receptor antagonist, was used to assess dependency of observed effects on angiotensin II stimulation of angiotensin II type 1 receptors. Electrical stimulation of arterial and cardiac baroreflex afferent nerves was used to provide a standardized input to the central portion of the arterial and cardiac baroreflexes. In anesthetized rats in balance on low, normal and high dietary sodium intake, arterial pressure, heart rate and renal sympathetic nerve activity responses to electrical stimulation of vagus and aortic depressor nerves were determined. Compared with plasma renin activity values in normal dietary sodium intake rats, those from low dietary sodium intake rats were higher and those from high dietary sodium intake rats were lower. During vagus nerve stimulation, the heart rate, arterial pressure and renal sympathetic nerve activity responses were similar in all three dietary sodium intake groups. During aortic depressor nerve stimulation, the heart rate and arterial pressure responses were similar in all three dietary sodium intake groups. However, the renal sympathetic nerve activity response was significantly greater in the low sodium group than in the normal and high sodium group at 4, 8 and 16 Hz. Candesartan administered to low dietary sodium intake rats had no effect on the heart rate and arterial pressure responses to either vagus or aortic depressor nerve stimulation but increased the magnitude of the renal sympathoinhibitory responses. Increased endogenous angiotensin II in rats on a low dietary sodium intake attenuates the renal sympathoinhibitory response to activation of the cardiac and sinoaortic baroreflexes by standardized vagus

  20. [Myofibroblasts and afferent signalling in the urinary bladder. A concept].

    PubMed

    Neuhaus, J; Scholler, U; Freick, K; Schwalenberg, T; Heinrich, M; Horn, L C; Stolzenburg, J U

    2008-09-01

    Afferent signal transduction in the urinary bladder is still not clearly understood. An increasing body of evidence supports the view of complex interactions between urothelium, suburothelial myofibroblasts, and sensory nerves. Bladder tissue from tumour patients was used in this study. Methods included confocal immunofluorescence, polymerase chain reaction, calcium imaging, and fluorescence recovery after photobleaching (FRAP).Myofibroblasts express muscarinic and purinergic receptors. They show constitutive spontaneous activity in calcium imaging, which completely depends on extracellular calcium. Stimulation with carbachol and ATP-evoked intracellular calcium transients also depend on extracellular calcium. The intensive coupling between the cells is significantly diminished by incubation with TGF-beta 1. Myofibroblasts form an important cellular element within the afferent signalling of the urinary bladder. They possess all features required to take part in the complex interactions with urothelial cells and sensory nerves. Modulation of their function by cytokines may provide a pathomechanism for bladder dysfunction.

  1. Heightened motor and sensory (mirror-touch) referral induced by nerve block or topical anesthetic.

    PubMed

    Case, Laura K; Gosavi, Radhika; Ramachandran, Vilayanur S

    2013-08-01

    Mirror neurons allow us to covertly simulate the sensation and movement of others. If mirror neurons are sensory and motor neurons, why do we not actually feel this simulation- like "mirror-touch synesthetes"? Might afferent sensation normally inhibit mirror representations from reaching consciousness? We and others have reported heightened sensory referral to phantom limbs and temporarily anesthetized arms. These patients, however, had experienced illness or injury of the deafferented limb. In the current study we observe heightened sensory and motor referral to the face after unilateral nerve block for routine dental procedures. We also obtain double-blind, quantitative evidence of heightened sensory referral in healthy participants completing a mirror-touch confusion task after topical anesthetic cream is applied. We suggest that sensory and motor feedback exist in dynamic equilibrium with mirror representations; as feedback is reduced, the brain draws more upon visual information to determine- perhaps in a Bayesian manner- what to feel. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Patterns of primary afferent depolarization of segmental and ascending intraspinal collaterals of single joint afferents in the cat.

    PubMed

    Rudomin, P; Lomelí, J

    2007-01-01

    We have examined in the anesthetized cat the threshold changes produced by sensory and supraspinal stimuli on intraspinal collaterals of single afferents from the posterior articular nerve (PAN). Forty-eight fibers were tested in the L3 segment, in or close to Clarke's column, and 70 fibers in the L6-L7 segments within the intermediate zone. Of these, 15 pairs of L3 and L6-L7 collaterals were from the same afferent. Antidromically activated fibers had conduction velocities between 23 and 74 m/s and peripheral thresholds between 1.1 and 4.7 times the threshold of the most excitable fibers (xT), most of them below 3 xT. PAN afferents were strongly depolarized by stimulation of muscle afferents and by cutaneous afferents, as well as by stimulation of the bulbar reticular formation and the midline raphe nuclei. Stimulation of muscle nerves (posterior biceps and semitendinosus, quadriceps) produced a larger PAD (primary afferent depolarization) in the L6-L7 than in the L3 terminations. Group II were more effective than group I muscle afferents. As with group I muscle afferents, the PAD elicited in PAN afferents by stimulation of muscle nerves could be inhibited by conditioning stimulation of cutaneous afferents. Stimulation of the cutaneous sural and superficial peroneal nerves increased the threshold of few terminations (i.e., produced primary afferent hyperpolarization, PAH) and reduced the threshold of many others, particularly of those tested in the L6-L7 segments. Yet, there was a substantial number of terminals where these conditioning stimuli had minor or no effects. Autogenetic stimulation of the PAN with trains of pulses increased the intraspinal threshold in 46% and reduced the threshold in 26% of fibers tested in the L6-L7 segments (no tests were made with trains of pulses on fibers ending in L3). These observations indicate that PAN afferents have a rather small autogenetic PAD, particularly if this is compared with the effects of heterogenetic stimulation

  3. Sympatho-excitatory response to pulmonary chemosensitive spinal afferent activation in anesthetized, vagotomized rats.

    PubMed

    Shanks, Julia; Xia, Zhiqiu; Lisco, Steven J; Rozanski, George J; Schultz, Harold D; Zucker, Irving H; Wang, Han-Jun

    2018-06-01

    The sensory innervation of the lung is well known to be innervated by nerve fibers of both vagal and sympathetic origin. Although the vagal afferent innervation of the lung has been well characterized, less is known about physiological effects mediated by spinal sympathetic afferent fibers. We hypothesized that activation of sympathetic spinal afferent nerve fibers of the lung would result in an excitatory pressor reflex, similar to that previously characterized in the heart. In this study, we evaluated changes in renal sympathetic nerve activity (RSNA) and hemodynamics in response to activation of TRPV1-sensitive pulmonary spinal sensory fibers by agonist application to the visceral pleura of the lung and by administration into the primary bronchus in anesthetized, bilaterally vagotomized, adult Sprague-Dawley rats. Application of bradykinin (BK) to the visceral pleura of the lung produced an increase in mean arterial pressure (MAP), heart rate (HR), and RSNA. This response was significantly greater when BK was applied to the ventral surface of the left lung compared to the dorsal surface. Conversely, topical application of capsaicin (Cap) onto the visceral pleura of the lung, produced a biphasic reflex change in MAP, coupled with increases in HR and RSNA which was very similar to the hemodynamic response to epicardial application of Cap. This reflex was also evoked in animals with intact pulmonary vagal innervation and when BK was applied to the distal airways of the lung via the left primary bronchus. In order to further confirm the origin of this reflex, epidural application of a selective afferent neurotoxin (resiniferatoxin, RTX) was used to chronically ablate thoracic TRPV1-expressing afferent soma at the level of T1-T4 dorsal root ganglia pleura. This treatment abolished all sympatho-excitatory responses to both cardiac and pulmonary application of BK and Cap in vagotomized rats 9-10 weeks post-RTX. These data suggest the presence of an excitatory

  4. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse".

    PubMed

    Perez-Burgos, Azucena; Mao, Yu-Kang; Bienenstock, John; Kunze, Wolfgang A

    2014-07-01

    It is generally accepted that intestinal sensory vagal fibers are primary afferent, responding nonsynaptically to luminal stimuli. The gut also contains intrinsic primary afferent neurons (IPANs) that respond to luminal stimuli. A psychoactive Lactobacillus rhamnosus (JB-1) that affects brain function excites both vagal fibers and IPANs. We wondered whether, contrary to its primary afferent designation, the sensory vagus response to JB-1 might depend on IPAN to vagal fiber synaptic transmission. We recorded ex vivo single- and multiunit afferent action potentials from mesenteric nerves supplying mouse jejunal segments. Intramural synaptic blockade with Ca(2+) channel blockers reduced constitutive or JB-1-evoked vagal sensory discharge. Firing of 60% of spontaneously active units was reduced by synaptic blockade. Synaptic or nicotinic receptor blockade reduced firing in 60% of vagal sensory units that were stimulated by luminal JB-1. In control experiments, increasing or decreasing IPAN excitability, respectively increased or decreased nerve firing that was abolished by synaptic blockade or vagotomy. We conclude that >50% of vagal afferents function as interneurons for stimulation by JB-1, receiving input from an intramural functional "sensory synapse." This was supported by myenteric plexus nicotinic receptor immunohistochemistry. These data offer a novel therapeutic target to modify pathological gut-brain axis activity.-Perez-Burgos, A., Mao, Y.-K., Bienenstock, J., Kunze, W. A. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse." © FASEB.

  5. Sensory conduction of the sural nerve in polyneuropathy.

    PubMed

    Burke, D; Skuse, N F; Lethlean, A K

    1974-06-01

    Using surface electrodes, sensory nerve action potentials (SAP) have been recorded in the proximal segment (mid-calf to lateral malleolus) and the distal segment (lateral malleolus to toe 5) of the sural nerve and in the median nerve in 79 control subjects. The values obtained for the distal segment of the sural nerve varied widely and in seven apparently normal subjects no SAP could be distinguished. In the proximal segment conduction velocities were over 40 m/s and there was no significant change with age, unlike the median nerve in which a highly significant slowing occurred with age. Comparison of the results of sural and median sensory conduction studies in 300 consecutive patients screened for sensory polyneuropathy confirms the value of sural nerve sensory studies as a routine screening test, and confirms the belief that the changes in polyneuropathy are usually more prominent in lower limb nerves. It is therefore suggested that studies of sural sensory conduction form the single most useful test in the diagnosis of sensory polyneuropathy.

  6. Prognostic factors in sensory recovery after digital nerve repair.

    PubMed

    Bulut, Tuğrul; Akgün, Ulaş; Çıtlak, Atilla; Aslan, Cihan; Şener, Ufuk; Şener, Muhittin

    2016-01-01

    The prognostic factors that affect sensory nerve recovery after digital nerve repair are variable because of nonhomogeneous data, subjective tests, and different assessment/scoring methods. The aim of this study was to evaluate the success of sensory nerve recovery after digital nerve repair and to investigate the prognostic factors in sensorial healing. Ninety-six digital nerve repairs of 63 patients were retrospectively evaluated. All nerves were repaired with end-to-end neurorraphy. The static two-point discrimination (s2PD) and Semmes Weinstein monofilament (SWM) tests were performed to evaluate sensory recovery. The association between prognostic factors such as gender, age, involved digit, time from injury to repair, length of follow-up, smoking, concomitant injuries, type of injury, and sensory recovery results were assessed. The s2PD test demonstrated excellent results in 26 nerves (27%), good results in 61 nerves (64%), and poor results in 9 nerves (9%). The results of the SWM test according to Imai classification showed that 31 nerves (32%) were normal, light touch was diminished in 38 nerves (40%), protective sensation was diminished in 17 nerves (18%), loss of protective sensation occurred in 5 nerves (5%), and 5 nerves (5%) were anesthetic. There was a negative relationship between age, smoking, concomitant injuries, and sensory recovery. Our results demonstrate that concomitant tendon, bone and vascular injuries, older age, and smoking were associated with worse sensory nerve recovery results. However, all digital nerve injuries should be repaired, regardless of these prognostic factors.

  7. Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses

    PubMed Central

    Ikeda, Ryo; Cha, Myeounghoon; Ling, Jennifer; Jia, Zhanfeng; Coyle, Dennis; Gu, Jianguo G.

    2014-01-01

    SUMMARY Sensory systems for detecting tactile stimuli have evolved from touch-sensing nerves in invertebrates to complicated tactile end-organs in mammals. Merkel discs are tactile end-organs consisting of Merkel cells and Aβ-afferent nerve endings, and are localized in fingertips, whisker hair follicles and other touch-sensitive spots. Merkel discs transduce touch into slowly adapting impulses to enable tactile discrimination, but their transduction and encoding mechanisms remain unknown. Using rat whisker hair follicles, we show that Merkel cells rather than Aβ-afferent nerve endings are primary sites of tactile transduction, and identify the Piezo2 ion channel as the Merkel cell mechanical transducer. Piezo2 transduces tactile stimuli into Ca2+-action potentials in Merkel cells, which drive Aβ-afferent nerve endings to fire slowly adapting impulses. We further demonstrate that Piezo2 and Ca2+-action potentials in Merkel cells are required for behavioral tactile responses. Our findings provide insights into how tactile end-organs function and have clinical implications for tactile dysfunctions. PMID:24746027

  8. Chronic adriamycin treatment impairs CGRP-mediated functions of meningeal sensory nerves.

    PubMed

    Deák, Éva; Rosta, Judit; Boros, Krisztina; Kis, Gyöngyi; Sántha, Péter; Messlinger, Karl; Jancsó, Gábor; Dux, Mária

    2018-06-01

    Adriamycin is a potent anthracycline-type antitumor agent, but it also exerts potentially serious side effects due to its cardiotoxic and neurotoxic propensity. Multiple impairments in sensory nerve functions have been recently reported in various rat models. The present experiments were initiated in an attempt to reveal adriamycin-induced changes in sensory effector functions of chemosensitive meningeal afferents. Meningeal blood flow was measured with laser Doppler flowmetry in the parietal dura mater of adult male Wistar rats. The dura mater was repeatedly stimulated by topical applications of capsaicin, a transient receptor potential vanilloid 1 (TRPV1) receptor agonist, or acrolein, a transient receptor potential ankyrin 1 (TRPA1) receptor agonist, which induce the release of calcitonin gene-related peptide (CGRP) from meningeal afferents. The blood flow increasing effects of CGRP, histamine, acetylcholine and forskolin were also measured. Capsaicin- and acrolein-induced CGRP release was measured with enzyme-linked immunoassay in an ex vivo dura mater preparation. TRPV1 content of trigeminal ganglia and TRPV1-, CGRP- and CGRP receptor component-immunoreactive structures were examined in dura mater samples obtained from control and adriamycin-treated rats. The vasodilator effects of capsaicin, acrolein and CGRP were significantly reduced in adriamycin-treated animals while histamine-, acetylcholine- and forskolin-induced vasodilatation were unaffected. Measurements of CGRP release in an ex vivo dura mater preparation revealed an altered dynamic upon repeated stimulations of TRPV1 and TRPA1 receptors. In whole-mount dura mater preparations immunohistochemistry revealed altered CGRP receptor component protein (RCP)-immunoreactivity in adriamycin-treated animals, while CGRP receptor activity modifying protein (RAMP1)-, TRPV1- and CGRP-immunostaining were left apparently unaltered. Adriamycin-treatment slightly reduced TRPV1 protein content of trigeminal ganglia

  9. Effect of nitric oxide synthase inhibitor on increase in nasal mucosal blood flow induced by sensory and parasympathetic nerve stimulation in rats.

    PubMed

    Ogawa, Fumio; Hanamitsu, Masakazu; Ayajiki, Kazuhide; Aimi, Yoshinari; Okamura, Tomio; Shimizu, Takeshi

    2010-06-01

    Neural control of nasal blood flow (NBF) has not been systematically investigated. The aim of the present study was to evaluate the effect of electrical stimulation of both sensory and parasympathetic nerves innervating the nasal mucosal arteries on NBF in rats. In anesthetized rats, nasociliary (sensory) nerves and postganglionic (parasympathetic) nerves derived from the right sphenopalatine ganglion were electrically stimulated. We measured NBF with a laser-Doppler flowmeter. The nerve stimulation increased NBF on both sides and increased the mean arterial blood pressure. The increase in NBF was larger on the ipsilateral side than on the contralateral side. Hexamethonium bromide, a ganglion blocker, abolished the stimulation-induced pressure effect and the increase in NBF on the contralateral side, but did not abolish the increase in NBF on the ipsilateral side. The remaining increase in NBF was abolished by N(G)-nitro-L-arginine, a nitric oxide synthase inhibitor. Histochemical analysis with nicotinamide adenine dinucleotide phosphate-diaphorase showed neuronal nitric oxide synthase-containing nerves that innervate nasal mucosal arteries. Nitric oxide released from parasympathetic nitrergic nerves may contribute to an increase in NBF in rats. The afferent impulses induced by sensory nerve stimulation may lead to an increase in mean arterial blood pressure that is partly responsible for the increase in NBF.

  10. End-to-side neurorrhaphy repairs peripheral nerve injury: sensory nerve induces motor nerve regeneration.

    PubMed

    Yu, Qing; Zhang, She-Hong; Wang, Tao; Peng, Feng; Han, Dong; Gu, Yu-Dong

    2017-10-01

    End-to-side neurorrhaphy is an option in the treatment of the long segment defects of a nerve. It involves suturing the distal stump of the disconnected nerve (recipient nerve) to the side of the intimate adjacent nerve (donor nerve). However, the motor-sensory specificity after end-to-side neurorrhaphy remains unclear. This study sought to evaluate whether cutaneous sensory nerve regeneration induces motor nerves after end-to-side neurorrhaphy. Thirty rats were randomized into three groups: (1) end-to-side neurorrhaphy using the ulnar nerve (mixed sensory and motor) as the donor nerve and the cutaneous antebrachii medialis nerve as the recipient nerve; (2) the sham group: ulnar nerve and cutaneous antebrachii medialis nerve were just exposed; and (3) the transected nerve group: cutaneous antebrachii medialis nerve was transected and the stumps were turned over and tied. At 5 months, acetylcholinesterase staining results showed that 34% ± 16% of the myelinated axons were stained in the end-to-side group, and none of the myelinated axons were stained in either the sham or transected nerve groups. Retrograde fluorescent tracing of spinal motor neurons and dorsal root ganglion showed the proportion of motor neurons from the cutaneous antebrachii medialis nerve of the end-to-side group was 21% ± 5%. In contrast, no motor neurons from the cutaneous antebrachii medialis nerve of the sham group and transected nerve group were found in the spinal cord segment. These results confirmed that motor neuron regeneration occurred after cutaneous nerve end-to-side neurorrhaphy.

  11. End-to-side neurorrhaphy repairs peripheral nerve injury: sensory nerve induces motor nerve regeneration

    PubMed Central

    Yu, Qing; Zhang, She-hong; Wang, Tao; Peng, Feng; Han, Dong; Gu, Yu-dong

    2017-01-01

    End-to-side neurorrhaphy is an option in the treatment of the long segment defects of a nerve. It involves suturing the distal stump of the disconnected nerve (recipient nerve) to the side of the intimate adjacent nerve (donor nerve). However, the motor-sensory specificity after end-to-side neurorrhaphy remains unclear. This study sought to evaluate whether cutaneous sensory nerve regeneration induces motor nerves after end-to-side neurorrhaphy. Thirty rats were randomized into three groups: (1) end-to-side neurorrhaphy using the ulnar nerve (mixed sensory and motor) as the donor nerve and the cutaneous antebrachii medialis nerve as the recipient nerve; (2) the sham group: ulnar nerve and cutaneous antebrachii medialis nerve were just exposed; and (3) the transected nerve group: cutaneous antebrachii medialis nerve was transected and the stumps were turned over and tied. At 5 months, acetylcholinesterase staining results showed that 34% ± 16% of the myelinated axons were stained in the end-to-side group, and none of the myelinated axons were stained in either the sham or transected nerve groups. Retrograde fluorescent tracing of spinal motor neurons and dorsal root ganglion showed the proportion of motor neurons from the cutaneous antebrachii medialis nerve of the end-to-side group was 21% ± 5%. In contrast, no motor neurons from the cutaneous antebrachii medialis nerve of the sham group and transected nerve group were found in the spinal cord segment. These results confirmed that motor neuron regeneration occurred after cutaneous nerve end-to-side neurorrhaphy. PMID:29171436

  12. Different types of spinal afferent nerve endings in stomach and esophagus identified by anterograde tracing from dorsal root ganglia.

    PubMed

    Spencer, Nick J; Kyloh, Melinda; Beckett, Elizabeth A; Brookes, Simon; Hibberd, Tim

    2016-10-15

    In visceral organs of mammals, most noxious (painful) stimuli as well as innocuous stimuli are detected by spinal afferent neurons, whose cell bodies lie in dorsal root ganglia (DRGs). One of the major unresolved questions is the location, morphology, and neurochemistry of the nerve endings of spinal afferents that actually detect these stimuli in the viscera. In the upper gastrointestinal (GI) tract, there have been many anterograde tracing studies of vagal afferent endings, but none on spinal afferent endings. Recently, we developed a technique that now provides selective labeling of only spinal afferents. We used this approach to identify spinal afferent nerve endings in the upper GI tract of mice. Animals were anesthetized, and injections of dextran-amine were made into thoracic DRGs (T8-T12). Seven days post surgery, mice were euthanized, and the stomach and esophagus were removed, fixed, and stained for calcitonin gene-related peptide (CGRP). Spinal afferent axons were identified that ramified extensively through many rows of myenteric ganglia and formed nerve endings in discrete anatomical layers. Most commonly, intraganglionic varicose endings (IGVEs) were identified in myenteric ganglia of the stomach and varicose simple-type endings in the circular muscle and mucosa. Less commonly, nerve endings were identified in internodal strands, blood vessels, submucosal ganglia, and longitudinal muscle. In the esophagus, only IGVEs were identified in myenteric ganglia. No intraganglionic lamellar endings (IGLEs) were identified in the stomach or esophagus. We present the first identification of spinal afferent endings in the upper GI tract. Eight distinct types of spinal afferent endings were identified in the stomach, and most of them were CGRP immunoreactive. J. Comp. Neurol. 524:3064-3083, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Rat isolated phrenic nerve-diaphragm preparation for pharmacological study of muscle spindle afferent activity: effect of oxotremorine.

    PubMed Central

    Ganguly, D K; Nath, D N; Ross, H G; Vedasiromoni, J R

    1978-01-01

    1. Muscle spindle afferent discharges exhibiting an approximately linear length-frequency relation could be recorded from the phrenic nerve in the isolated phrenic nerve-diaphragm preparation of the rat. 2. Muscle spindle afferent discharges could be identified by their characteristic "spindle pause" during muscle contraction and by their response to succinylcholine. 3. Cholinergic influence on spontaneous and stretch-induced afferent discharges was indicated by the augmentation produced by physostigmine and acetylcholine. (+)-Tubocurarine, but not atropine, prevented this augmentation indicating the presence of curariform cholinoceptors in muscle spindles. 4. Acetylcholine did not appear to be involved in the genesis of spindle afferent discharges as incubation with hemicholinium-3 and (+)-tubocurarine failed to affect the rate of spontaneous and stretch-induced spindle discharges. 5. Oxotremorine markedly increased the rate of spontaneous and stretch-induced spindle afferent discharges and this effect was prevented in the presence of hemicholinium-3 and (+)-tubocurarine. 6. These results with oxotremorine are of interest in connection with the observation that muscle spindle afferents and hyperactive in Parkinsonian patients. PMID:151569

  14. Functional Organization of Cutaneous and Muscle Afferent Synapses onto Immature Spinal Lamina I Projection Neurons

    PubMed Central

    Li, Jie

    2017-01-01

    It is well established that sensory afferents innervating muscle are more effective at inducing hyperexcitability within spinal cord circuits compared with skin afferents, which likely contributes to the higher prevalence of chronic musculoskeletal pain compared with pain of cutaneous origin. However, the mechanisms underlying these differences in central nociceptive signaling remain incompletely understood, as nothing is known about how superficial dorsal horn neurons process sensory input from muscle versus skin at the synaptic level. Using a novel ex vivo spinal cord preparation, here we identify the functional organization of muscle and cutaneous afferent synapses onto immature rat lamina I spino-parabrachial neurons, which serve as a major source of nociceptive transmission to the brain. Stimulation of the gastrocnemius nerve and sural nerve revealed significant convergence of muscle and cutaneous afferent synaptic input onto individual projection neurons. Muscle afferents displayed a higher probability of glutamate release, although short-term synaptic plasticity was similar between the groups. Importantly, muscle afferent synapses exhibited greater relative expression of Ca2+-permeable AMPARs compared with cutaneous inputs. In addition, the prevalence and magnitude of spike timing-dependent long-term potentiation were significantly higher at muscle afferent synapses, where it required Ca2+-permeable AMPAR activation. Collectively, these results provide the first evidence for afferent-specific properties of glutamatergic transmission within the superficial dorsal horn. A larger propensity for activity-dependent strengthening at muscle afferent synapses onto developing spinal projection neurons could contribute to the enhanced ability of these sensory inputs to sensitize central nociceptive networks and thereby evoke persistent pain in children following injury. SIGNIFICANCE STATEMENT The neurobiological mechanisms underlying the high prevalence of chronic

  15. The sensory-motor bridge neurorraphy: an anatomic study of feasibility between sensory branch of the musculocutaneous nerve and deep branch of the radial nerve.

    PubMed

    Goubier, Jean-Noel; Teboul, Frédéric

    2011-05-01

    Restoring elbow flexion remains the first step in the management of total palsy of the brachial plexus. Non avulsed upper roots may be grafted on the musculocutaneous nerve. When this nerve is entirely grafted, some motor fibres regenerate within the sensory fibres quota. Aiming potential utilization of these lost motor fibres, we attempted suturing the sensory branch of the musculocutaneous nerve onto the deep branch of the radial nerve. The objective of our study was to assess the anatomic feasibility of such direct suturing of the terminal sensory branch of the musculocutaneous nerve onto the deep branch of the radial nerve. The study was carried out with 10 upper limbs from fresh cadavers. The sensory branch of the musculocutaneous muscle was dissected right to its division. The motor branch of the radial nerve was identified and dissected as proximally as possible into the radial nerve. Then, the distance separating the two nerves was measured so as to assess whether direct neurorraphy of the two branches was feasible. The excessive distance between the two branches averaged 6 mm (1-13 mm). Thus, direct neurorraphy of the sensory branch of the musculocutaneous nerve and the deep branch of the radial nerve was possible. When the whole musculocutaneous nerve is grafted, some of its motor fibres are lost amongst the sensory fibres (cutaneous lateral antebrachial nerve). By suturing this sensory branch onto the deep branch of the radial nerve, "lost" fibres may be retrieved, resulting in restoration of digital extension. Copyright © 2011 Wiley-Liss, Inc.

  16. Neurochemical diversity of afferent neurons that transduce sensory signals from dog ventricular myocardium

    PubMed Central

    Hoover, Donald B.; Shepherd, Angela V.; Southerland, E. Marie; Armour, J. Andrew; Ardell, Jeffrey L.

    2008-01-01

    While much is known about the influence of ventricular afferent neurons on cardiovascular function in the dog, identification of the neurochemicals transmitting cardiac afferent signals to central neurons is lacking. Accordingly, we identified ventricular afferent neurons in canine dorsal root ganglia (DRG) and nodose ganglia by retrograde labeling after injecting horseradish peroxidase (HRP) into the anterior right and left ventricles. Primary antibodies from three host species were used in immunohistochemical experiments to simultaneously evaluate afferent somata for the presence of HRP and markers for two neurotransmitters. Only a small percentage (2%) of afferent somata were labeled with HRP. About half of the HRP-identified ventricular afferent neurons in T3 DRG also stained for substance P (SP), calcitonin gene-related peptide (CGRP), or neuronal nitric oxide synthase (nNOS), either alone or with two markers colocalized. Ventricular afferent neurons and the general population of T3 DRG neurons showed the same labeling profiles; CGRP (alone or colocalized with SP) being the most common (30–40% of ventricular afferent somata in T3 DRG). About 30% of the ventricular afferent neurons in T2 DRG displayed CGRP immunoreactivity and binding of the putative nociceptive marker IB4. Ventricular afferent neurons of the nodose ganglia were distinct from those in the DRG by having smaller size and lacking immunoreactivity for SP, CGRP, and nNOS. These findings suggest that ventricular sensory information is transferred to the central nervous system by relatively small populations of vagal and spinal afferent neurons and that spinal afferents use a variety of neurotransmitters. PMID:18558516

  17. Neurochemical diversity of afferent neurons that transduce sensory signals from dog ventricular myocardium.

    PubMed

    Hoover, Donald B; Shepherd, Angela V; Southerland, E Marie; Armour, J Andrew; Ardell, Jeffrey L

    2008-08-18

    While much is known about the influence of ventricular afferent neurons on cardiovascular function in the dog, identification of the neurochemicals transmitting cardiac afferent signals to central neurons is lacking. Accordingly, we identified ventricular afferent neurons in canine dorsal root ganglia (DRG) and nodose ganglia by retrograde labeling after injecting horseradish peroxidase (HRP) into the anterior right and left ventricles. Primary antibodies from three host species were used in immunohistochemical experiments to simultaneously evaluate afferent somata for the presence of HRP and markers for two neurotransmitters. Only a small percentage (2%) of afferent somata were labeled with HRP. About half of the HRP-identified ventricular afferent neurons in T(3) DRG also stained for substance P (SP), calcitonin gene-related peptide (CGRP), or neuronal nitric oxide synthase (nNOS), either alone or with two markers colocalized. Ventricular afferent neurons and the general population of T(3) DRG neurons showed the same labeling profiles; CGRP (alone or colocalized with SP) being the most common (30-40% of ventricular afferent somata in T(3) DRG). About 30% of the ventricular afferent neurons in T(2) DRG displayed CGRP immunoreactivity and binding of the putative nociceptive marker IB(4). Ventricular afferent neurons of the nodose ganglia were distinct from those in the DRG by having smaller size and lacking immunoreactivity for SP, CGRP, and nNOS. These findings suggest that ventricular sensory information is transferred to the central nervous system by relatively small populations of vagal and spinal afferent neurons and that spinal afferents use a variety of neurotransmitters.

  18. Dual-afferent sensory input training for voluntary movement after stroke: A pilot randomized controlled study.

    PubMed

    Bae, Seahyun; Kim, Kyung-Yoon

    2017-01-01

    Stimulation through afferent sensory input is necessary to improve voluntary functional movement in stroke patients. Dual-afferent sensory input, which combines electromyography-triggered functional electric stimulation (ETFES) and action observation, was investigated to determine its effects on voluntary movements in stroke patients. This study was conducted on 18 patients with left hemiplegia diagnosed between 6 and 24 months prior. The 9 subjects in the dual-afferent sensory input (DASI) group underwent ETFES with action observation training for 4 weeks (20 min/d, 5 d/wk), while the 9 control group subjects underwent functional electric stimulation (FES) for the same duration. The outcome measures were the movement-related cortical potential (MRCP), H-reflex, electromyography (EMG), and balance. The control and DASI groups showed significant increases in MRCP, muscle activity, and balance, while H-reflex was significantly decreased. MRCP and balance showed significant differences between DASI and control groups. DASI stimulates voluntary movement in patients, causes rapid activation of the cerebral cortex, and reduces excessive excitation of spinal motor neurons. Therefore, DASI, which stimulates voluntary movement, has a greater effect on brain activation in stroke patients.

  19. Parkinson disease affects peripheral sensory nerves in the pharynx.

    PubMed

    Mu, Liancai; Sobotka, Stanislaw; Chen, Jingming; Su, Hungxi; Sanders, Ira; Nyirenda, Themba; Adler, Charles H; Shill, Holly A; Caviness, John N; Samanta, Johan E; Sue, Lucia I; Beach, Thomas G

    2013-07-01

    Dysphagia is very common in patients with Parkinson disease (PD) and often leads to aspiration pneumonia, the most common cause of death in PD. Current therapies are largely ineffective for dysphagia. Because pharyngeal sensation normally triggers the swallowing reflex, we examined pharyngeal sensory nerves in PD patients for Lewy pathology.Sensory nerves supplying the pharynx were excised from autopsied pharynges obtained from patients with clinically diagnosed and neuropathologically confirmed PD (n = 10) and healthy age-matched controls (n = 4). We examined the glossopharyngeal nerve (cranial nerve IX), the pharyngeal sensory branch of the vagus nerve (PSB-X), and the internal superior laryngeal nerve (ISLN) innervating the laryngopharynx. Immunohistochemistry for phosphorylated α-synuclein was used to detect Lewy pathology. Axonal α-synuclein aggregates in the pharyngeal sensory nerves were identified in all of the PD subjects but not in the controls. The density of α-synuclein-positive lesions was greater in PD patients with dysphagia versus those without dysphagia. In addition, α-synuclein-immunoreactive nerve fibers in the ISLN were much more abundant than those in cranial nerve IX and PSB-X. These findings suggest that pharyngeal sensory nerves are directly affected by pathologic processes in PD. These abnormalities may decrease pharyngeal sensation, thereby impairing swallowing and airway protective reflexes and contributing to dysphagia and aspiration.

  20. Central projections and entries of capsaicin-sensitive muscle afferents.

    PubMed

    Della Torre, G; Lucchi, M L; Brunetti, O; Pettorossi, V E; Clavenzani, P; Bortolami, R

    1996-03-25

    The entry pathway and central distribution of A delta and C muscle afferents within the central nervous system (CNS) were investigated by combining electron microscopy and electrophysiological analysis after intramuscular injection of capsaicin. The drug was injected into the rat lateral gastrocnemius (LG) and extraocular (EO) muscles. The compound action potentials of LG nerve and the evoked field potentials recorded in semilunar ganglion showed an immediate and permanent reduction in A delta and C components. The morphological data revealed degenerating unmyelinated axons and terminals in the inner sublamina II and in the border of laminae I-II of the dorsal horn at L4-L5 and C1-C2 (subnucleus caudalis trigemini) spinal cord segments. Most degenerating terminals were the central bouton (C) of type I and II synaptic glomeruli. Furthermore, degenerating peripheral axonal endings (V2) presynaptic to normal C were found. Since V2 were previously found degenerated after cutting the oculomotor nerve (ON) or L4 ventral root, we conclude that some A delta and C afferents from LG and EO muscles entering the CNS by ON or ventral roots make axoaxonic synapses on other primary afferents to promote an afferent control of sensory input.

  1. Neurogenin 1 Null Mutant Ears Develop Fewer, Morphologically Normal Hair Cells in Smaller Sensory Epithelia Devoid of Innervation

    PubMed Central

    Ma, Qiufu; Anderson, David J.

    2000-01-01

    The proneuronal gene neurogenin 1 (ngn1) is essential for development of the inner-ear sensory neurons that are completely absent in ngn1 null mutants. Neither afferent, efferent, nor autonomic nerve fibers were detected in the ears of ngn1 null mutants. We suggest that efferent and autonomic fibers are lost secondarily to the absence of afferents. In this article we show that ngn1 null mutants develop smaller sensory epithelia with morphologically normal hair cells. In particular, the saccule is reduced dramatically and forms only a small recess with few hair cells along a duct connecting the utricle with the cochlea. Hair cells of newborn ngn1 null mutants show no structural abnormalities, suggesting that embryonic development of hair cells is independent of innervation. However, the less regular pattern of dispersal within sensory epithelia may be caused by some effects of afferents or to the stunted growth of the sensory epithelia. Tracing of facial and stato-acoustic nerves in control and ngn1 null mutants showed that only the distal, epibranchial, placode-derived sensory neurons of the geniculate ganglion exist in mutants. Tracing further showed that these geniculate ganglion neurons project exclusively to the solitary tract. In addition to the normal complement of facial branchial and visceral motoneurons, ngn1 null mutants have some trigeminal motoneurons and contralateral inner-ear efferents projecting, at least temporarily, through the facial nerve. These data suggest that some neurons in the brainstem (e.g., inner-ear efferents, trigeminal motoneurons) require afferents to grow along and redirect to ectopic cranial nerve roots in the absence of their corresponding sensory roots. PMID:11545141

  2. Efferent-Mediated Responses in Vestibular Nerve Afferents of the Alert Macaque

    PubMed Central

    Sadeghi, Soroush G.; Goldberg, Jay M.; Minor, Lloyd B.; Cullen, Kathleen E.

    2009-01-01

    The peripheral vestibular organs have long been known to receive a bilateral efferent innervation from the brain stem. However, the functional role of the efferent vestibular system has remained elusive. In this study, we investigated efferent-mediated responses in vestibular afferents of alert behaving primates (macaque monkey). We found that efferent-mediated rotational responses could be obtained from vestibular nerve fibers innervating the semicircular canals after conventional afferent responses were nulled by placing the corresponding canal plane orthogonal to the plane of motion. Responses were type III, i.e., excitatory for rotational velocity trapezoids (peak velocity, 320°/s) in both directions of rotation, consistent with those previously reported in the decerebrate chinchilla. Responses consisted of both fast and slow components and were larger in irregular (∼10 spikes/s) than in regular afferents (∼2 spikes/s). Following unilateral labyrinthectomy (UL) on the side opposite the recording site, similar responses were obtained. To confirm the vestibular source of the efferent-mediated responses, the ipsilateral horizontal and posterior canals were plugged following the UL. Responses to high-velocity rotations were drastically reduced when the superior canal (SC), the only intact canal, was in its null position, compared with when the SC was pitched 50° upward from the null position. Our findings show that vestibular afferents in alert primates show efferent-mediated responses that are related to the discharge regularity of the afferent, are of vestibular origin, and can be the result of both afferent excitation and inhibition. PMID:19091917

  3. Efferent-mediated responses in vestibular nerve afferents of the alert macaque.

    PubMed

    Sadeghi, Soroush G; Goldberg, Jay M; Minor, Lloyd B; Cullen, Kathleen E

    2009-02-01

    The peripheral vestibular organs have long been known to receive a bilateral efferent innervation from the brain stem. However, the functional role of the efferent vestibular system has remained elusive. In this study, we investigated efferent-mediated responses in vestibular afferents of alert behaving primates (macaque monkey). We found that efferent-mediated rotational responses could be obtained from vestibular nerve fibers innervating the semicircular canals after conventional afferent responses were nulled by placing the corresponding canal plane orthogonal to the plane of motion. Responses were type III, i.e., excitatory for rotational velocity trapezoids (peak velocity, 320 degrees/s) in both directions of rotation, consistent with those previously reported in the decerebrate chinchilla. Responses consisted of both fast and slow components and were larger in irregular (approximately 10 spikes/s) than in regular afferents (approximately 2 spikes/s). Following unilateral labyrinthectomy (UL) on the side opposite the recording site, similar responses were obtained. To confirm the vestibular source of the efferent-mediated responses, the ipsilateral horizontal and posterior canals were plugged following the UL. Responses to high-velocity rotations were drastically reduced when the superior canal (SC), the only intact canal, was in its null position, compared with when the SC was pitched 50 degrees upward from the null position. Our findings show that vestibular afferents in alert primates show efferent-mediated responses that are related to the discharge regularity of the afferent, are of vestibular origin, and can be the result of both afferent excitation and inhibition.

  4. Parkinson Disease Affects Peripheral Sensory Nerves in the Pharynx

    PubMed Central

    Mu, Liancai; Sobotka, Stanislaw; Chen, Jingming; Su, Hungxi; Sanders, Ira; Nyirenda, Themba; Adler, Charles H.; Shill, Holly A.; Caviness, John N.; Samanta, Johan E.; Sue, Lucia I.; Beach, Thomas G.

    2013-01-01

    Dysphagia is very common in patients with Parkinson’s disease (PD) and often leads to aspiration pneumonia, the most common cause of death in PD. Unfortunately, current therapies are largely ineffective for dysphagia. As pharyngeal sensation normally triggers the swallowing reflex, we examined pharyngeal sensory nerves in PD for Lewy pathology. Sensory nerves supplying the pharynx were excised from autopsied pharynges obtained from patients with clinically diagnosed and neuropathologically confirmed PD (n = 10) and healthy age-matched controls (n = 4). We examined: the glossopharyngeal nerve (IX); the pharyngeal sensory branch of the vagus nerve (PSB-X); and the internal superior laryngeal nerve (ISLN) innervating the laryngopharynx. Immunohistochemistry for phosphorylated α-synuclein was used to detect potential Lewy pathology. Axonal α-synuclein aggregates in the pharyngeal sensory nerves were identified in all of the PD subjects but not in the controls. The density of α-synuclein-positive lesions was significantly greater in PD subjects with documented dysphagia compared to those without dysphagia. In addition, α-synuclein-immunoreactive nerve fibers in the ISLN were much more abundant than those in the IX and PSBX. These findings suggest that pharyngeal sensory nerves are directly affected by the pathologic process of PD. This anatomic pathology may decrease pharyngeal sensation impairing swallowing and airway protective reflexes, thereby contributing to dysphagia and aspiration. PMID:23771215

  5. Morphological differences in skeletal muscle atrophy of rats with motor nerve and/or sensory nerve injury★

    PubMed Central

    Zhao, Lei; Lv, Guangming; Jiang, Shengyang; Yan, Zhiqiang; Sun, Junming; Wang, Ling; Jiang, Donglin

    2012-01-01

    Skeletal muscle atrophy occurs after denervation. The present study dissected the rat left ventral root and dorsal root at L4-6 or the sciatic nerve to establish a model of simple motor nerve injury, sensory nerve injury or mixed nerve injury. Results showed that with prolonged denervation time, rats with simple motor nerve injury, sensory nerve injury or mixed nerve injury exhibited abnormal behavior, reduced wet weight of the left gastrocnemius muscle, decreased diameter and cross-sectional area and altered ultrastructure of muscle cells, as well as decreased cross-sectional area and increased gray scale of the gastrocnemius muscle motor end plate. Moreover, at the same time point, the pathological changes were most severe in mixed nerve injury, followed by simple motor nerve injury, and the changes in simple sensory nerve injury were the mildest. These findings indicate that normal skeletal muscle morphology is maintained by intact innervation. Motor nerve injury resulted in larger damage to skeletal muscle and more severe atrophy than sensory nerve injury. Thus, reconstruction of motor nerves should be considered first in the clinical treatment of skeletal muscle atrophy caused by denervation. PMID:25337102

  6. Electrophysiological characterization of human rectal afferents

    PubMed Central

    Ng, Kheng-Seong; Brookes, Simon J.; Montes-Adrian, Noemi A.; Mahns, David A.

    2016-01-01

    It is presumed that extrinsic afferent nerves link the rectum to the central nervous system. However, the anatomical/functional existence of such nerves has never previously been demonstrated in humans. Therefore, we aimed to identify and make electrophysiological recordings in vitro from extrinsic afferents, comparing human rectum to colon. Sections of normal rectum and colon were procured from anterior resection and right hemicolectomy specimens, respectively. Sections were pinned and extrinsic nerves dissected. Extracellular visceral afferent nerve activity was recorded. Neuronal responses to chemical [capsaicin and “inflammatory soup” (IS)] and mechanical (Von Frey probing) stimuli were recorded and quantified as peak firing rate (range) in 1-s intervals. Twenty-eight separate nerve trunks from eight rectums were studied. Of these, spontaneous multiunit afferent activity was recorded in 24 nerves. Peak firing rates increased significantly following capsaicin [median 6 (range 3–25) spikes/s vs. 2 (1–4), P < 0.001] and IS [median 5 (range 2–18) spikes/s vs. 2 (1–4), P < 0.001]. Mechanosensitive “hot spots” were identified in 16 nerves [median threshold 2.0 g (range 1.4–6.0 g)]. In eight of these, the threshold decreased after IS [1.0 g (0.4–1.4 g)]. By comparison, spontaneous activity was recorded in only 3/30 nerves studied from 10 colons, and only one hot spot (threshold 60 g) was identified. This study confirms the anatomical/functional existence of extrinsic rectal afferent nerves and characterizes their chemo- and mechanosensitivity for the first time in humans. They have different electrophysiological properties to colonic afferents and warrant further investigation in disease states. PMID:27789454

  7. Differential role of afferent and efferent renal nerves in the maintenance of early- and late-phase Dahl S hypertension

    PubMed Central

    Foss, Jason D.; Fink, Gregory D.

    2015-01-01

    Clinical data suggest that renal denervation (RDNX) may be an effective treatment for human hypertension; however, it is unclear whether this therapeutic effect is due to ablation of afferent or efferent renal nerves. We have previously shown that RDNX lowers arterial pressure in hypertensive Dahl salt-sensitive (S) rats to a similar degree observed in clinical trials. In addition, we have recently developed a method for selective ablation of afferent renal nerves (renal-CAP). In the present study, we tested the hypothesis that the antihypertensive effect of RDNX in the Dahl S rat is due to ablation of afferent renal nerves by comparing the effect of complete RDNX to renal-CAP during two phases of hypertension in the Dahl S rat. In the early phase, rats underwent treatment after 3 wk of high-NaCl feeding when mean arterial pressure (MAP) was ∼140 mmHg. In the late phase, rats underwent treatment after 9 wk of high NaCl feeding, when MAP was ∼170 mmHg. RDNX reduced MAP ∼10 mmHg compared with sham surgery in both the early and late phase, whereas renal-CAP had no antihypertensive effect. These results suggest that, in the Dahl S rat, the antihypertensive effect of RDNX is not dependent on pretreatment arterial pressure, nor is it due to ablation of afferent renal nerves. PMID:26661098

  8. Effect of copper sulphate on the rate of afferent discharge in the gastric branch of the vagus nerve in the rat

    NASA Technical Reports Server (NTRS)

    Niijima, Akira; Jiang, Zheng-Yao; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    The afferent nerve activity was recorded from a nerve filament isolated from the peripheral cut end of the gastric branch of the vagus nerve. The gastric perfusion of 4 ml of two different concentrations (0.04 percent and 0.08 percent) of CuSO4 solution provoked an increase in afferent activity. The stimulating effect of the 0.08 percent solution was stronger than that of the 0.04 percent solution, and lasted for a longer period of time. The observations suggest a possible mechanism by which CuSO4 elicits emesis.

  9. The morphological substrate for Renal Denervation: Nerve distribution patterns and parasympathetic nerves. A post-mortem histological study.

    PubMed

    van Amsterdam, Wouter A C; Blankestijn, Peter J; Goldschmeding, Roel; Bleys, Ronald L A W

    2016-03-01

    Renal Denervation as a possible treatment for hypertension has been studied extensively, but knowledge on the distribution of nerves surrounding the renal artery is still incomplete. While sympathetic and sensory nerves have been demonstrated, there is no mention of the presence of parasympathetic nerve fibers. To provide a description of the distribution patterns of the renal nerves in man, and, in addition, provide a detailed representation of the relative contribution of the sympathetic, parasympathetic and afferent divisions of the autonomic nervous system. Renal arteries of human cadavers were each divided into four longitudinal segments and immunohistochemically stained with specific markers for afferent, parasympathetic and sympathetic nerves. Nerve fibers were semi-automatically quantified by computerized image analysis, and expressed as cross-sectional area relative to the distance to the lumen. A total of 3372 nerve segments were identified in 8 arteries of 7 cadavers. Sympathetic, parasympathetic and afferent nerves contributed for 73.5% (95% CI: 65.4-81.5%), 17.9% (10.7-25.1%) and 8.7% (5.0-12.3%) of the total cross-sectional nerve area, respectively. Nerves are closer to the lumen in more distal segments and larger bundles that presumably innervate the kidney lie at 1-3.5mm distance from the lumen. The tissue-penetration depth of the ablation required to destroy 50% of the nerve fibers is 2.37 mm in the proximal segment and 1.78 mm in the most distal segments. Sympathetic, parasympathetic and afferent nerves exist in the vicinity of the renal artery. The results warrant further investigation of the role of the parasympathetic nervous system on renal physiology, and may contribute to refinement of the procedure by focusing the ablation on the most distal segment. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Sensory nerve action potentials and sensory perception in women with arthritis of the hand.

    PubMed

    Calder, Kristina M; Martin, Alison; Lydiate, Jessica; MacDermid, Joy C; Galea, Victoria; MacIntyre, Norma J

    2012-05-10

    Arthritis of the hand can limit a person's ability to perform daily activities. Whether or not sensory deficits contribute to the disability in this population remains unknown. The primary purpose of this study was to determine if women with osteoarthritis (OA) or rheumatoid arthritis (RA) of the hand have sensory impairments. Sensory function in the dominant hand of women with hand OA or RA and healthy women was evaluated by measuring sensory nerve action potentials (SNAPs) from the median, ulnar and radial nerves, sensory mapping (SM), and vibratory and current perception thresholds (VPT and CPT, respectively) of the second and fifth digits. All SNAP amplitudes were significantly lower for the hand OA and hand RA groups compared with the healthy group (p < 0.05). No group differences were found for SNAP conduction velocities, SM, VPT, and CPT. We propose, based on these findings, that women with hand OA or RA may have axonal loss of sensory fibers in the median, ulnar and radial nerves. Less apparent were losses in conduction speed or sensory perception.

  11. Sensory nerve action potentials and sensory perception in women with arthritis of the hand

    PubMed Central

    2012-01-01

    Background Arthritis of the hand can limit a person’s ability to perform daily activities. Whether or not sensory deficits contribute to the disability in this population remains unknown. The primary purpose of this study was to determine if women with osteoarthritis (OA) or rheumatoid arthritis (RA) of the hand have sensory impairments. Methods Sensory function in the dominant hand of women with hand OA or RA and healthy women was evaluated by measuring sensory nerve action potentials (SNAPs) from the median, ulnar and radial nerves, sensory mapping (SM), and vibratory and current perception thresholds (VPT and CPT, respectively) of the second and fifth digits. Results All SNAP amplitudes were significantly lower for the hand OA and hand RA groups compared with the healthy group (p < 0.05). No group differences were found for SNAP conduction velocities, SM, VPT, and CPT. Discussion We propose, based on these findings, that women with hand OA or RA may have axonal loss of sensory fibers in the median, ulnar and radial nerves. Less apparent were losses in conduction speed or sensory perception. PMID:22575001

  12. Activation of colo-rectal high-threshold afferent nerves by Interleukin-2 is tetrodotoxin-sensitive and upregulated in a mouse model of chronic visceral hypersensitivity.

    PubMed

    Campaniello, M A; Harrington, A M; Martin, C M; Ashley Blackshaw, L; Brierley, S M; Hughes, P A

    2016-01-01

    Chronic visceral pain is a defining feature of irritable bowel syndrome (IBS). IBS patients often show alterations in innate and adaptive immune function which may contribute to symptoms. Immune mediators are known to modulate the activity of viscero-sensory afferent nerves, but the focus has been on the innate immune system. Interleukin-2 (IL-2) is primarily associated with adaptive immune responses but its effects on colo-rectal afferent function in health or disease are unknown. Myeloperoxidase (MPO) activity determined the extent of inflammation in health, acute trinitrobenzene-sulfonic acid (TNBS) colitis, and in our post-TNBS colitis model of chronic visceral hypersensitivity (CVH). The functional effects of IL-2 on high-threshold colo-rectal afferents and the expression of IL-2R and NaV 1.7 mRNA in colo-rectal dorsal root ganglia (DRG) neurons were compared between healthy and CVH mice. MPO activity was increased during acute colitis, but subsided to levels comparable to health in CVH mice. IL-2 caused direct excitation of colo-rectal afferents that was blocked by tetrodotoxin. IL-2 did not affect afferent mechanosensitivity in health or CVH. However, an increased proportion of afferents responded directly to IL-2 in CVH mice compared with controls (73% vs 33%; p < 0.05), and the abundance of IL-2R and NaV 1.7 mRNA was increased 3.5- and 2-fold (p < 0.001 for both) in colo-rectal DRG neurons. IL-2, an immune mediator from the adaptive arm of the immune response, affects colo-rectal afferent function, indicating these effects are not restricted to innate immune mediators. Colo-rectal afferent sensitivity to IL-2 is increased long after healing from inflammation. © 2015 John Wiley & Sons Ltd.

  13. Pre-implanted Sensory Nerve Could Enhance the Neurotization in Tissue-Engineered Bone Graft.

    PubMed

    Wu, Yan; Jing, Da; Ouyang, Hongwei; Li, Liang; Zhai, Mingming; Li, Yan; Bi, Long; Guoxian, Pei

    2015-08-01

    In our previous study, it was found that implanting the sensory nerve tract into the tissue-engineered bone to repair large bone defects can significantly result in better osteogenesis effect than tissue-engineered bone graft (TEBG) alone. To study the behavior of the preimplanted sensory nerve in the TEBG, the TEBG was constructed by seeding bone mesenchymal stem cells into β-tricalcium phosphate scaffold with (treatment group) or without (blank group) implantation of the sensory nerve. The expression of calcitonin gene-related peptide (CGRP), which helps in the healing of bone defect in the treatment group was significantly higher than the blank group at 4, 8, and 12 weeks. The expression of growth-associated protein 43 (GAP43), which might be expressed during nerve healing in the treatment group, was significantly higher than the blank group at 4 and 8 weeks. The nerve tracts of the preimplanted sensory nerve were found in the scaffold by the nerve tracing technique. The implanted sensory nerve tracts grew into the pores of scaffolds much earlier than the vascular. The implanted sensory nerve tracts traced by Dil could be observed at 4 weeks, but at the same time, no vascular was observed. In conclusion, the TEBG could be benefited from the preimplanted sensory nerve through the healing behavior of the sensory nerve. The sensory nerve fibers could grow into the pores of the TEBG rapidly, and increase the expression of CGRP, which is helpful in regulating the bone formation and the blood flow.

  14. Afferent fibres from pulmonary arterial baroreceptors in the left cardiac sympathetic nerve of the cat

    PubMed Central

    Nishi, K.; Sakanashi, M.; Takenaka, F.

    1974-01-01

    1. Afferent discharges were recorded from the left cardiac sympathetic nerve or the third sympathetic ramus communicans of anaesthetized cats. Twenty-one single units with baroreceptor activity were obtained. 2. The receptors of each unit were localized to the extrapulmonary part of the pulmonary artery, determined by direct mechanical probing of the wall of the pulmonary artery after death of the animals. Conduction velocity of the fibres ranged from 2·5 to 15·7 m/sec. 3. Afferent discharges occurred irregularly under artificial ventilation. The impulse activity was increased when pulmonary arterial pressure was raised by an intravenous infusion of Locke solution, or by occlusion of lung roots, and decreased by bleeding the animal from the femoral artery. 4. Above a threshold pressure, discharges occurred synchronously with the systolic pressure pulse in the pulmonary artery. A progressive further rise in pressure did not produce an increase in the number of impulses per heart beat. Occlusion of lung roots initially elicited a burst of discharges but the number of impulses for each cardiac cycle gradually decreased. 5. The receptors responded to repetitive mechanical stimuli up to a frequency of 10/sec, but failed to respond to stimuli delivered at 20/sec. 6. The results provide further evidence for the presence of afferent fibres in the cardiac sympathetic nerve. These afferent fibres are likely to provide the spinal cord with specific information only on transient changes in pulmonary arterial pressure. PMID:4850456

  15. Synergistic interactions between airway afferent nerve subtypes regulating the cough reflex in guinea-pigs

    PubMed Central

    Mazzone, Stuart B; Mori, Nanako; Canning, Brendan J

    2005-01-01

    Cough initiated from the trachea and larynx in anaesthetized guinea-pigs is mediated by capsaicin-insensitive, mechanically sensitive vagal afferent neurones. Tachykinin-containing, capsaicin-sensitive C-fibres also innervate the airways and have been implicated in the cough reflex. Capsaicin-sensitive nerves act centrally and synergistically to modify reflex bronchospasm initiated by airway mechanoreceptor stimulation. The hypothesis that polymodal mechanoreceptors and capsaicin-sensitive afferent nerves similarly interact centrally to regulate coughing was addressed in this study. Cough was evoked from the tracheal mucosa either electrically (16 Hz, 10 s trains, 1–10 V) or by citric acid (0.001–2 m). Neither capsaicin nor bradykinin evoked a cough when applied to the trachea of anaesthetized guinea-pigs, but they substantially reduced the electrical threshold for initiating the cough reflex. The TRPV1 receptor antagonist capsazepine prevented the increased cough sensitivity induced by capsaicin. These effects of topically applied capsaicin and bradykinin were not due to interactions between afferent nerve subtypes within the tracheal wall or a direct effect on the cough receptors, as they were mimicked by nebulizing 1 mg ml−1 bradykinin into the lower airways and by microinjecting 0.5 nmol capsaicin into nucleus of the solitary tract (nTS). Citric acid-induced coughing was also potentiated by inhalation of bradykinin. The effects of tracheal capsaicin challenge on cough were mimicked by microinjecting substance P (0.5–5 nmol) into the nTS and prevented by intracerebroventricular administration (20 nmol h−1) of the neurokinin receptor antagonists CP99994 or SB223412. Tracheal application of these antagonists was without effect. C-fibre activation may thus sensitize the cough reflex via central mechanisms. PMID:16051625

  16. CO-LOCALIZATION OF THE VANILLOID CAPSAICIN RECEPTOR AND SUBSTANCE P IN SENSORY NERVE FIBERS INNERVATING COCHLEAR AND VERTEBRO-BASILAR ARTERIES

    PubMed Central

    VASS, Z.; DAI, C. F.; STEYGER, P. S.; JANCSÓ, G.; TRUNE, D. R.; NUTTALL, A. L.

    2014-01-01

    Evidence suggests that capsaicin-sensitive substance P (SP)-containing trigeminal ganglion neurons innervate the spiral modiolar artery (SMA), radiating arterioles, and the stria vascularis of the cochlea. Antidromic electrical or chemical stimulation of trigeminal sensory nerves results in neurogenic plasma extravasation in inner ear tissues. The primary aim of this study was to reveal the possible morphological basis of cochlear vascular changes mediated by capsaicin-sensitive sensory nerves. Therefore, the distribution of SP and capsaicin receptor (transient receptor potential vanilloid type 1—TRPV1) was investigated by double immunolabeling to demonstrate the anatomical relationships between the cochlear and vertebro-basilar blood vessels and the trigeminal sensory fiber system. Extensive TRPV1 and SP expression and co-localization were observed in axons within the adventitial layer of the basilar artery, the anterior inferior cerebellar artery, the SMA, and the radiating arterioles of the cochlea. There appears to be a functional relationship between the trigeminal ganglion and the cochlear blood vessels since electrical stimulation of the trigeminal ganglion induced significant plasma extravasation from the SMA and the radiating arterioles. The findings suggest that stimulation of paravascular afferent nerves may result in permeability changes in the basilar and cochlear vascular bed and may contribute to the mechanisms of vertebro-basilar type of headache through the release of SP and stimulation of TPVR1, respectively. We propose that vertigo, tinnitus, and hearing deficits associated with migraine may arise from perturbations of capsaicin-sensitive trigeminal sensory ganglion neurons projecting to the cochlea. PMID:15026132

  17. Response of vestibular-nerve afferents to active and passive rotations under normal conditions and after unilateral labyrinthectomy.

    PubMed

    Sadeghi, Soroush G; Minor, Lloyd B; Cullen, Kathleen E

    2007-02-01

    We investigated the possible contribution of signals carried by vestibular-nerve afferents to long-term processes of vestibular compensation after unilateral labyrinthectomy. Semicircular canal afferents were recorded from the contralesional nerve in three macaque monkeys before [horizontal (HC) = 67, anterior (AC) = 66, posterior (PC) = 50] and 1-12 mo after (HC = 192, AC = 86, PC = 57) lesion. Vestibular responses were evaluated using passive sinusoidal rotations with frequencies of 0.5-15 Hz (20-80 degrees /s) and fast whole-body rotations reaching velocities of 500 degrees /s. Sensitivities to nonvestibular inputs were tested by: 1) comparing responses during active and passive head movements, 2) rotating the body with the head held stationary to activate neck proprioceptors, and 3) encouraging head-restrained animals to attempt to make head movements that resulted in the production of neck torques of < or =2 Nm. Mean resting discharge rate before and after the lesion did not differ for the regular, D (dimorphic)-irregular, or C (calyx)-irregular afferents. In response to passive rotations, afferents showed no change in sensitivity and phase, inhibitory cutoff, and excitatory saturation after unilateral labyrinthectomy. Moreover, head sensitivities were similar during voluntary and passive head rotations and responses were not altered by neck proprioceptive or efference copy signals before or after the lesion. The only significant change was an increase in the proportion of C-irregular units postlesion, accompanied by a decrease in the proportion of regular afferents. Taken together, our findings show that changes in response properties of the vestibular afferent population are not likely to play a major role in the long-term changes associated with compensation after unilateral labyrinthectomy.

  18. Vagus nerve is involved in the changes in body temperature induced by intragastric administration of 1,8-cineole via TRPM8 in mice.

    PubMed

    Urata, Tomomi; Mori, Noriyuki; Fukuwatari, Tsutomu

    2017-05-22

    Transient Receptor Potential Melastatin 8 (TRPM8) is a cold receptor activated by mild cold temperature (<28°C). TRPM8 expressed in cutaneous sensory nerves is involved in cold sensation and thermoregulation. TRPM8 mRNA is detected in various tissues, including the gastrointestinal mucosa, and in the vagal afferent nerve. The relationship between vagal afferent nerve-specific expression of TRPM8 and thermoregulation remains unclear. In this study, we aimed to investigate whether TRPM8 expression in the vagal afferent nerve is involved in autonomic thermoregulation. We found that intragastric administration of 1,8-cineole, a TRPM8 agonist, increased intrascapular brown adipose tissue and colonic temperatures, and M8-B-treatment (TRPM8 antagonist) inhibited these responses. Intravenous administration of 1,8-cineole also showed similar effects. In vagotomized mice, the responses induced by intragastric administration of 1,8-cineole were attenuated. These results suggest that TRPM8 expressed in tissues apart from cutaneous sensory nerves are involved in autonomic thermoregulation response. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Dynamics of the sensory response to urethral flow over multiple time scales in rat

    PubMed Central

    Danziger, Zachary C; Grill, Warren M

    2015-01-01

    The pudendal nerve carries sensory information from the urethra that controls spinal reflexes necessary to maintain continence and achieve efficient micturition. Despite the key role urethral sensory feedback plays in regulation of the lower urinary tract, there is little information about the characteristics of urethral sensory responses to physiological stimuli, and the quantitative relationship between physiological stimuli and the evoked sensory activation is unknown. Such a relation is critical to understanding the neural control of the lower urinary tract and how dysfunction arises in disease states. We systematically quantified pudendal afferent responses to fluid flow in the urethra in vivo in the rat. We characterized the sensory response across a range of stimuli, and describe a previously unreported long-term neural accommodation phenomenon. We developed and validated a compact mechanistic mathematical model capable of reproducing the pudendal sensory activity in response to arbitrary profiles of urethral flows. These results describe the properties and function of urethral afferents that are necessary to understand how sensory disruption manifests in lower urinary tract pathophysiology. Key points Sensory information from the urethra is essential to maintain continence and to achieve efficient micturition and when compromised by disease or injury can lead to substantial loss of function. Despite the key role urethral sensory information plays in the lower urinary tract, the relationship between physiological urethral stimuli, such as fluid flow, and the neural sensory response is poorly understood. This work systematically quantifies pudendal afferent responses to a range of fluid flows in the urethra in vivo and describes a previously unknown long-term neural accommodation phenomenon in these afferents. We present a compact mechanistic mathematical model that reproduces the pudendal sensory activity in response to urethral flow. These results have

  20. Capsaicin-sensitive sensory nerves exert complex regulatory functions in the serum-transfer mouse model of autoimmune arthritis

    PubMed Central

    Borbély, Éva; Botz, Bálint; Bölcskei, Kata; Kenyér, Tibor; Kereskai, László; Kiss, Tamás; Szolcsányi, János; Pintér, Erika; Csepregi, Janka Zsófia; Mócsai, Attila; Helyes, Zsuzsanna

    2015-01-01

    Objective The K/BxN serum-transfer arthritis is a widely-used translational mouse model of rheumatoid arthritis, in which the immunological components have thoroughly been investigated. In contrast, little is known about the role of sensory neural factors and the complexity of neuro–immune interactions. Therefore, we analyzed the involvement of capsaicin-sensitive peptidergic sensory nerves in autoantibody-induced arthritis with integrative methodology. Methods Arthritogenic K/BxN or control serum was injected to non-pretreated mice or resiniferatoxin (RTX)-pretreated animals where capsaicin-sensitive nerves were inactivated. Edema, touch sensitivity, noxious heat threshold, joint function, body weight and clinical arthritis severity scores were determined repeatedly throughout two weeks. Micro-CT and in vivo optical imaging to determine matrix-metalloproteinase (MMP) and neutrophil-derived myeloperoxidase (MPO) activities, semiquantitative histopathological scoring and radioimmunoassay to measure somatostatin in the joint homogenates were also performed. Results In RTX-pretreated mice, the autoantibody-induced joint swelling, arthritis severity score, MMP and MPO activities, as well as histopathological alterations were significantly greater compared to non-pretreated animals. Self-control quantification of the bone mass revealed decreased values in intact female mice, but significantly greater arthritis-induced pathological bone formation after RTX-pretreatment. In contrast, mechanical hyperalgesia from day 10 was smaller after inactivating capsaicin-sensitive afferents. Although thermal hyperalgesia did not develop, noxious heat threshold was significantly higher following RTX pretreatment. Somatostatin-like immunoreactivity elevated in the tibiotarsal joints in non-pretreated, which was significantly less in RTX-pretreated mice. Conclusions Although capsaicin-sensitive sensory nerves mediate mechanical hyperalgesia in the later phase of autoantibody

  1. Afferent control of central pattern generators: experimental analysis of locomotion in the decerebrate cat.

    PubMed

    Baev, K V; Esipenko, V B; Shimansky YuP

    1991-01-01

    Changes in the motor activity of the spinal locomotor generator evoked by tonic and phasic peripheral afferent signals during fictitious locomotion of both slow and fast rhythms were analysed in the cat. The tonic afferent inflow was conditioned by the position of the hindlimb. The phasic afferent signals were imitated by electrical stimulation of hindlimb nerves. The correlation between the kinematics of hindlimb locomotor movement and sensory inflow was investigated during actual locomotion. Reliable correlations between motor activity parameters during fictitious locomotion were revealed in cases of both slow and fast "locomotor" rhythms. The main difference between these cases was that correlations "duration-intensity" were positive in the first and negative in the second case. The functional role of "locomotor" pattern dependence on tonic sensory inflow consisted of providing stability for planting the hindlimb on the ground. For any investigated afferent input the phase moments in the "locomotor" cycle were found, in which an afferent signal caused no rearrangement in locomotor generator activity. These moments corresponded to the transitions between "flexion" and "extension" phases and to the bursts of integral afferent activity observed during real locomotion. The data obtained are compared with the results previously described for the scratching generator. The character of changes in "locomotor" activity in response to tonic and phasic sensory signals was similar to that of such changes in "scratching" rhythm in the case of fast "locomotion". Intensification of the "flexion" phase caused by phasic high-intensity stimulation of cutaneous afferents during low "locomotor" rhythm was changed to inhibition (such as observed during "scratching") when this rhythm was fast. It is concluded that the main regularities of peripheral afferent control for both the locomotor and scratching generators are the same. Moreover, these central pattern generators are just

  2. Differential aging of median and ulnar sensory nerve parameters.

    PubMed

    Werner, Robert A; Franzblau, Alfred; D'Arcy, Hannah J S; Evanoff, Bradley A; Tong, Henry C

    2012-01-01

    Nerve conduction velocity slows and amplitude declines with aging. Median and ulnar sensory nerves were tested at the annual meetings of the American Dental Association. Seven hundred four subjects had at least two observations. The rate of change in the nerve parameters was estimated while controlling for gender, age, change in hand temperature, baseline body mass index (BMI), and change in BMI. Amplitudes of the median sensory nerve action potentials decreased by 0.58 μV per year, whereas conduction velocity decreased at a rate of 0.41 m/s per year. Corresponding values for the ulnar nerve were 0.89 μV and 0.29 m/s per year. The rates of change in amplitudes did not differ, but the median nerve demonstrated a more rapid loss of conduction velocity. The rate of change for the median conduction velocity was higher than previously reported. The rate of change of median conduction velocity was significantly greater than for the ulnar nerve. Copyright © 2011 Wiley Periodicals, Inc.

  3. TRPV1 receptors on unmyelinated C-fibres mediate colitis-induced sensitization of pelvic afferent nerve fibres in rats

    PubMed Central

    De Schepper, H U; De Winter, B Y; Van Nassauw, L; Timmermans, J-P; Herman, A G; Pelckmans, P A; De Man, J G

    2008-01-01

    Patients with inflammatory bowel disease often suffer from gastrointestinal motility and sensitivity disorders. The aim of the current study was to investigate the role of transient receptor potential of the vanilloid type 1 (TRPV1) receptors in the pathophysiology of colitis-induced pelvic afferent nerve sensitization. Trinitrobenzene sulphate (TNBS) colitis (7.5 mg, 30% ethanol) was induced in Wistar rats 72 h prior to the experiment. Single-fibre recordings were made from pelvic nerve afferents in the decentralized S1 dorsal root. Fibres responding to colorectal distension (CRD) were identified in controls and rats with TNBS colitis. The effect of the TRPV1 antagonist N-(4-tertiarybutylphenyl)-4-(3-chlorophyridin-2-yl)tetrahydropyrazine-1(2H)carboxamide (BCTC; 0.25–5 mg kg−1) or its vehicle (hydroxypropyl-β-cyclodextrin) was tested on the afferent response to repetitive distensions (60 mmHg). Immunocytochemical staining of TRPV1 and NF200, a marker for A-fibre neurons, was performed in the dorsal root ganglia L6–S1. TNBS colitis significantly increased the response to colorectal distension of pelvic afferent C-fibres. BCTC did not significantly affect the C-fibre response in controls, but normalized the sensitized response in rats with colitis. TNBS colitis increased the spontaneous activity of C-fibres, an effect which was insensitive to administration of BCTC. TNBS colitis had no effect on Aδ-fibres, nor was their activity modulated by BCTC. TNBS colitis caused an immunocytochemical up-regulation of TRPV1 receptors in the cell bodies of pelvic afferent NF200 negative neurons. TRPV1 signalling mediates the colitis-induced sensitization of pelvic afferent C-fibres to CRD, while Aδ-fibres are neither sensitized by colitis nor affected by TRPV1 inhibition. PMID:18755744

  4. Functional recovery of anterior semicircular canal afferents following hair cell regeneration in birds

    NASA Technical Reports Server (NTRS)

    Boyle, Richard; Highstein, Stephen M.; Carey, John P.; Xu, Jinping

    2002-01-01

    Streptomycin sulfate (1.2 g/kg i.m.) was administered for 5 consecutive days to 5-7-day-old white Leghorn chicks; this causes damage to semicircular canal hair cells that ultimately regenerate to reform the sensory epithelium. During the recovery period, electrophysiological recordings were taken sequentially from anterior semicircular canal primary afferents using an indentation stimulus of the canal that has been shown to mimic rotational stimulation. Chicks were assigned to an early (14-18 days; n = 8), intermediate (28-34 days; n = 5), and late (38-58 days; n = 4) period based on days after treatment. Seven untreated chicks, 15-67 days old, provided control data. An absence of background and indent-induced discharge was the prominent feature of afferents in the early period: only "silent" afferents were encountered in 5/8 experiments. In several of these chicks, fascicles of afferent fibers were seen extending up to the epithelium that was void of hair cells, and intra- and extracellular biocytin labeling revealed afferent processes penetrating into the supporting cell layer of the crista. In 3/8 chicks 74 afferents could be characterized, and they significantly differed from controls (n = 130) by having a lower discharge rate and a negligible response to canal stimulation. In the intermediate period there was considerable variability in discharge properties of 121 afferents, but as a whole the number of "silent" fibers in the canal nerve diminished, the background rate increased, and a response to canal stimulation detected. Individually biocytin-labeled afferents had normal-appearing terminal specializations in the sensory epithelium by 28 days poststreptomycin. In the late period, afferents (n = 58) remained significantly different from controls in background discharge properties and response gain. The evidence suggests that a considerable amount of variability exists between chicks in the return of vestibular afferent function following ototoxic injury and

  5. Capsaicin-sensitive sensory nerves exert complex regulatory functions in the serum-transfer mouse model of autoimmune arthritis.

    PubMed

    Borbély, Éva; Botz, Bálint; Bölcskei, Kata; Kenyér, Tibor; Kereskai, László; Kiss, Tamás; Szolcsányi, János; Pintér, Erika; Csepregi, Janka Zsófia; Mócsai, Attila; Helyes, Zsuzsanna

    2015-03-01

    The K/BxN serum-transfer arthritis is a widely-used translational mouse model of rheumatoid arthritis, in which the immunological components have thoroughly been investigated. In contrast, little is known about the role of sensory neural factors and the complexity of neuro-immune interactions. Therefore, we analyzed the involvement of capsaicin-sensitive peptidergic sensory nerves in autoantibody-induced arthritis with integrative methodology. Arthritogenic K/BxN or control serum was injected to non-pretreated mice or resiniferatoxin (RTX)-pretreated animals where capsaicin-sensitive nerves were inactivated. Edema, touch sensitivity, noxious heat threshold, joint function, body weight and clinical arthritis severity scores were determined repeatedly throughout two weeks. Micro-CT and in vivo optical imaging to determine matrix-metalloproteinase (MMP) and neutrophil-derived myeloperoxidase (MPO) activities, semiquantitative histopathological scoring and radioimmunoassay to measure somatostatin in the joint homogenates were also performed. In RTX-pretreated mice, the autoantibody-induced joint swelling, arthritis severity score, MMP and MPO activities, as well as histopathological alterations were significantly greater compared to non-pretreated animals. Self-control quantification of the bone mass revealed decreased values in intact female mice, but significantly greater arthritis-induced pathological bone formation after RTX-pretreatment. In contrast, mechanical hyperalgesia from day 10 was smaller after inactivating capsaicin-sensitive afferents. Although thermal hyperalgesia did not develop, noxious heat threshold was significantly higher following RTX pretreatment. Somatostatin-like immunoreactivity elevated in the tibiotarsal joints in non-pretreated, which was significantly less in RTX-pretreated mice. Although capsaicin-sensitive sensory nerves mediate mechanical hyperalgesia in the later phase of autoantibody-induced chronic arthritis, they play important

  6. Deficient "sensory" beta synchronization in Parkinson's disease.

    PubMed

    Degardin, A; Houdayer, E; Bourriez, J-L; Destée, A; Defebvre, L; Derambure, P; Devos, D

    2009-03-01

    Beta rhythm movement-related synchronization (beta synchronization) reflects motor cortex deactivation and sensory afference processing. In Parkinson's disease (PD), decreased beta synchronization after active movement reflects abnormal motor cortex idling and may be involved in the pathophysiology of akinesia. The objectives of the present study were to (i) compare event-related synchronization after active and passive movement and electrical nerve stimulation in PD patients and healthy, age-matched volunteers and (ii) evaluate the effect of levodopa. Using a 128-electrode EEG system, we studied beta synchronization after active and passive index finger movement and electrical median nerve stimulation in 13 patients and 12 control subjects. Patients were recorded before and after 150% of their usual morning dose of levodopa. The peak beta synchronization magnitude in the contralateral primary sensorimotor (PSM) cortex was significantly lower in PD patients after active movement, passive movement and electrical median nerve stimulation, compared with controls. Levodopa partially reversed the drop in beta synchronization after active movement but not after passive movement or electrical median nerve stimulation. If one considers that beta synchronization reflects sensory processing, our results suggest that integration of somaesthetic afferences in the PSM cortex is abnormal in PD during active and passive movement execution and after simple electrical median nerve stimulation. Better understanding of the mechanisms involved in the deficient beta synchronization observed here could prompt the development of new therapeutic approaches aimed at strengthening defective processes. The lack of full beta synchronization restoration by levodopa might be related to the involvement of non-dopaminergic pathways.

  7. Synaptic activation of putative sensory neurons by hexamethonium-sensitive nerve pathways in mouse colon.

    PubMed

    Hibberd, Timothy J; Travis, Lee; Wiklendt, Lukasz; Costa, Marcello; Brookes, Simon J H; Hu, Hongzhen; Keating, Damien J; Spencer, Nick J

    2018-01-01

    The gastrointestinal tract contains its own independent population of sensory neurons within the gut wall. These sensory neurons have been referred to as intrinsic primary afferent neurons (IPANs) and can be identified by immunoreactivity to calcitonin gene-related peptide (CGRP) in mice. A common feature of IPANs is a paucity of fast synaptic inputs observed during sharp microelectrode recordings. Whether this is observed using different recording techniques is of particular interest for understanding the physiology of these neurons and neural circuit modeling. Here, we imaged spontaneous and evoked activation of myenteric neurons in isolated whole preparations of mouse colon and correlated recordings with CGRP and nitric oxide synthase (NOS) immunoreactivity, post hoc. Calcium indicator fluo 4 was used for this purpose. Calcium responses were recorded in nerve cell bodies located 5-10 mm oral to transmural electrical nerve stimuli. A total of 618 recorded neurons were classified for CGRP or NOS immunoreactivity. Aboral electrical stimulation evoked short-latency calcium transients in the majority of myenteric neurons, including ~90% of CGRP-immunoreactive Dogiel type II neurons. Activation of Dogiel type II neurons had a time course consistent with fast synaptic transmission and was always abolished by hexamethonium (300 μM) and by low-calcium Krebs solution. The nicotinic receptor agonist 1,1-dimethyl-4-phenylpiperazinium iodide (during synaptic blockade) directly activated Dogiel type II neurons. The present study suggests that murine colonic Dogiel type II neurons receive prominent fast excitatory synaptic inputs from hexamethonium-sensitive neural pathways. NEW & NOTEWORTHY Myenteric neurons in isolated mouse colon were recorded using calcium imaging and then neurochemically defined. Short-latency calcium transients were detected in >90% of calcitonin gene-related peptide-immunoreactive neurons to electrical stimulation of hexamethonium-sensitive pathways

  8. Comparative proteomic analysis of differentially expressed proteins between peripheral sensory and motor nerves.

    PubMed

    He, Qianru; Man, Lili; Ji, Yuhua; Zhang, Shuqiang; Jiang, Maorong; Ding, Fei; Gu, Xiaosong

    2012-06-01

    Peripheral sensory and motor nerves have different functions and different approaches to regeneration, especially their distinct ability to accurately reinervate terminal nerve pathways. To understand the molecular aspects underlying these differences, the proteomics technique by coupling isobaric tags for relative and absolute quantitation (iTRAQ) with online two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) was used to investigate the protein profile of sensory and motor nerve samples from rats. A total of 1472 proteins were identified in either sensory or motor nerve. Of them, 100 proteins showed differential expressions between both nerves, and some of them were validated by quantitative real time RT-PCR, Western blot analysis, and immunohistochemistry. In the light of functional categorization, the differentially expressed proteins in sensory and motor nerves, belonging to a broad range of classes, were related to a diverse array of biological functions, which included cell adhesion, cytoskeleton, neuronal plasticity, neurotrophic activity, calcium-binding, signal transduction, transport, enzyme catalysis, lipid metabolism, DNA-binding, synaptosome function, actin-binding, ATP-binding, extracellular matrix, and commitment to other lineages. The relatively higher expressed proteins in either sensory or motor nerve were tentatively discussed in combination with their specific molecular characteristics. It is anticipated that the database generated in this study will provide a solid foundation for further comprehensive investigation of functional differences between sensory and motor nerves, including the specificity of their regeneration.

  9. Inhibition of Parkinsonian tremor with cutaneous afferent evoked by transcutaneous electrical nerve stimulation.

    PubMed

    Hao, Man-Zhao; Xu, Shao-Qin; Hu, Zi-Xiang; Xu, Fu-Liang; Niu, Chuan-Xin M; Xiao, Qin; Lan, Ning

    2017-07-14

    Recent study suggests that tremor signals are transmitted by way of multi-synaptic corticospinal pathway. Neurophysiological studies have also demonstrated that cutaneous afferents exert potent inhibition to descending motor commands by way of spinal interneurons. We hypothesize in this study that cutaneous afferents could also affect the transmission of tremor signals, thus, inhibit tremor in patients with PD. We tested this hypothesis by activating cutaneous afferents in the dorsal hand skin innervated by superficial radial nerve using transcutaneous electrical nerve stimulation (TENS). Eight patients with PD having tremor dominant symptom were recruited to participate in this study using a consistent experimental protocol for tremor inhibition. Resting tremor and electromyogram (EMG) of muscles in the upper extremity of these subjects with PD were recorded, while surface stimulation was applied to the dorsal skin of the hand. Fifteen seconds of data were recorded for 5 s prior to, during and post stimulation. Power spectrum densities (PSDs) of tremor and EMG signals were computed for each data segment. The peak values of PSDs in three data segments were compared to detect evidence of tremor inhibition. At stimulation intensity from 1.5 to 1.75 times of radiating sensation threshold, apparent suppressions of tremor at wrist, forearm and upper arm and in the EMGs were observed immediately at the onset of stimulation. After termination of stimulation, tremor and rhythmic EMG bursts reemerged gradually. Statistical analysis of peak spectral amplitudes showed a significant difference in joint tremors and EMGs during and prior to stimulation in all 8 subjects with PD. The average percentage of suppression was 61.56% in tremor across all joints of all subjects, and 47.97% in EMG of all muscles. The suppression appeared to occur mainly in distal joints and muscles. There was a slight, but inconsistent effect on tremor frequency in the 8 patients with PD tested. Our

  10. Comparison of four different nerve conduction techniques of the superficial fibular sensory nerve.

    PubMed

    Saffarian, Mathew R; Condie, Nathan C; Austin, Erica A; Mccausland, Katie E; Andary, Michael T; Sylvain, James R; Mull, Iian R; Zemper, Eric D; Jannausch, Mary L

    2017-09-01

    There are many different nerve conduction study (NCS) techniques to study the superficial fibular sensory nerve (SFSN). We present reference distal latency values and comparative data regarding 4 different NCS for the SFSN. Four different NCS techniques, Spartan technique, Izzo techniques (medial and intermediate dorsal cutaneous branches), and Daube technique, were performed on (114) healthy volunteers. A total of 108 subjects with 164 legs were included. The mean latency of the Spartan technique was longest (3.9 ± 0.3 ms) while the Daube technique was the shortest (3.6 ± 0.7 ms). The mean amplitude of the Daube technique displayed the highest (15.2 ± 8.2 μV) with the Spartan technique having the lowest (8.7 ± 4.2 μV). Among the absent sensory nerve action potentials (SNAPs), the Spartan technique was absent only twice (1.2%) and the Izzo Medial technique was absent more than the other techniques (2.9%). All 4 techniques were reliable methods for obtaining the superficial fibular nerve SNAP, present in 95% of individuals. Muscle Nerve 56: 458-462, 2017. © 2017 Wiley Periodicals, Inc.

  11. Presence and Absence of Muscle Contraction Elicited by Peripheral Nerve Electrical Stimulation Differentially Modulate Primary Motor Cortex Excitability.

    PubMed

    Sasaki, Ryoki; Kotan, Shinichi; Nakagawa, Masaki; Miyaguchi, Shota; Kojima, Sho; Saito, Kei; Inukai, Yasuto; Onishi, Hideaki

    2017-01-01

    Modulation of cortical excitability by sensory inputs is a critical component of sensorimotor integration. Sensory afferents, including muscle and joint afferents, to somatosensory cortex (S1) modulate primary motor cortex (M1) excitability, but the effects of muscle and joint afferents specifically activated by muscle contraction are unknown. We compared motor evoked potentials (MEPs) following median nerve stimulation (MNS) above and below the contraction threshold based on the persistence of M-waves. Peripheral nerve electrical stimulation (PES) conditions, including right MNS at the wrist at 110% motor threshold (MT; 110% MNS condition), right MNS at the index finger (sensory digit nerve stimulation [DNS]) with stimulus intensity approximately 110% MNS (DNS condition), and right MNS at the wrist at 90% MT (90% MNS condition) were applied. PES was administered in a 4 s ON and 6 s OFF cycle for 20 min at 30 Hz. In Experiment 1 ( n = 15), MEPs were recorded from the right abductor pollicis brevis (APB) before (baseline) and after PES. In Experiment 2 ( n = 15), M- and F-waves were recorded from the right APB. Stimulation at 110% MNS at the wrist evoking muscle contraction increased MEP amplitudes after PES compared with those at baseline, whereas DNS at the index finger and 90% MNS at the wrist not evoking muscle contraction decreased MEP amplitudes after PES. M- and F-waves, which reflect spinal cord or muscular and neuromuscular junctions, did not change following PES. These results suggest that muscle contraction and concomitant muscle/joint afferent inputs specifically enhance M1 excitability.

  12. Presence and Absence of Muscle Contraction Elicited by Peripheral Nerve Electrical Stimulation Differentially Modulate Primary Motor Cortex Excitability

    PubMed Central

    Sasaki, Ryoki; Kotan, Shinichi; Nakagawa, Masaki; Miyaguchi, Shota; Kojima, Sho; Saito, Kei; Inukai, Yasuto; Onishi, Hideaki

    2017-01-01

    Modulation of cortical excitability by sensory inputs is a critical component of sensorimotor integration. Sensory afferents, including muscle and joint afferents, to somatosensory cortex (S1) modulate primary motor cortex (M1) excitability, but the effects of muscle and joint afferents specifically activated by muscle contraction are unknown. We compared motor evoked potentials (MEPs) following median nerve stimulation (MNS) above and below the contraction threshold based on the persistence of M-waves. Peripheral nerve electrical stimulation (PES) conditions, including right MNS at the wrist at 110% motor threshold (MT; 110% MNS condition), right MNS at the index finger (sensory digit nerve stimulation [DNS]) with stimulus intensity approximately 110% MNS (DNS condition), and right MNS at the wrist at 90% MT (90% MNS condition) were applied. PES was administered in a 4 s ON and 6 s OFF cycle for 20 min at 30 Hz. In Experiment 1 (n = 15), MEPs were recorded from the right abductor pollicis brevis (APB) before (baseline) and after PES. In Experiment 2 (n = 15), M- and F-waves were recorded from the right APB. Stimulation at 110% MNS at the wrist evoking muscle contraction increased MEP amplitudes after PES compared with those at baseline, whereas DNS at the index finger and 90% MNS at the wrist not evoking muscle contraction decreased MEP amplitudes after PES. M- and F-waves, which reflect spinal cord or muscular and neuromuscular junctions, did not change following PES. These results suggest that muscle contraction and concomitant muscle/joint afferent inputs specifically enhance M1 excitability. PMID:28392766

  13. Serotonin modulates substance P-induced plasma extravasation and vasodilatation in rat skin by an action through capsaicin-sensitive primary afferent nerves.

    PubMed

    Khalil, Z; Helme, R D

    1990-09-17

    Using a blister model of inflammation in the rat hind footpad, the present study was undertaken to examine the ability of serotonin (5-HT) to modulate an inflammatory reaction manifested as plasma extravasation and vasodilatation induced by the neuropeptide substance P (SP). In addition, the role of primary afferent sensory nerve fibres in these modulatory effects was studied in capsaicin pretreated rats. Using a protocol of simultaneous perfusion of amine and peptide over the blister base, no major modulatory effect was observed. On the other hand, using a protocol of sequential perfusion, 5-HT was found to extend the plasma extravasation and vasodilatation responses to SP. 5-HT maintained the plasma extravasation response to SP after cessation of stimulation (during the post-stimulation period). On the other hand, it extended the vasodilatation response to SP during the actual stimulation period by preventing the occurrence of tachyphylaxis. These modulatory effects were absent in capsacin-pretreated rats. The present study provides evidence for the first time in vivo to suggest that serotonin can modulate an inflammatory response to SP via a mechanism that involves capsaicin-sensitive sensory fibres.

  14. Phenotyping sensory nerve endings in vitro in the mouse

    PubMed Central

    Zimmermann, Katharina; Hein, Alexander; Hager, Ulrich; Kaczmarek, Jan Stefan; Turnquist, Brian P; Clapham, David E; Reeh, Peter W

    2014-01-01

    This protocol details methods to identify and record from cutaneous primary afferent axons in an isolated mammalian skin–saphenous nerve preparation. The method is based on extracellular recordings of propagated action potentials from single-fiber receptive fields. Cutaneous nerve endings show graded sensitivities to various stimulus modalities that are quantified by adequate and controlled stimulation of the superfused skin with heat, cold, touch, constant punctate pressure or chemicals. Responses recorded from single-fibers are comparable with those obtained in previous in vivo experiments on the same species. We describe the components and the setting-up of the basic equipment of a skin–nerve recording station (few days), the preparation of the skin and the adherent saphenous nerve in the mouse (15–45 min) and the isolation and recording of neurons (approximately 1–3 h per recording). In addition, stimulation techniques, protocols to achieve single-fiber recordings, issues of data acquisition and action potential discrimination are discussed in detail. PMID:19180088

  15. Neuropeotide Y changes the excitability of fine afferent units in the rat knee joint

    PubMed Central

    Just, Stefan; Heppelmann, Bernd

    2001-01-01

    The aim of the present study was to examine the effects of the sympathetic co-transmitter Neuropeotide Y on primary afferent nerve fibres of the rat knee joint. The responses to passive joint rotations at defined torque were recorded from 41 slowly conducting afferent nerve fibres (0.9 – 18.8 m s−1) innervating the knee joint capsule. About 70% of the joint afferents were significantly affected in their mechanosensitivity by topical application of Neuropeptide Y. Significant effects occurred at a concentration of 10 nM. Decreased mechanosensitivity was observed in about 40% of nerve fibres, whereas 30% of the units increased the mechanosensitivity. In addition, in about 35% of the fibres resting activity was induced or increased. Neither the conduction velocity nor the mechanical threshold of the units correlated with the described effects of Neuropeptide Y. NPY(13 – 36), a specific Y2-receptor agonist, only modulated the mechanosensitivity, with no effect on the resting activity. The effects on the mechanosensitivity were similar to Neuropeptide Y, i.e. increase and decrease of the response. Studies with the Y1-agonist (Leu31, Pro34)-NPY showed that activation of the Y1-receptor predominantly resulted in an enhanced mechanosensitivity and an induction or increase of a resting activity. The opposite effect was observed by application of BIBP 3226 BS, a Y1-receptor antagonist. In conclusion, these data indicate that Neuropeptide Y affects the excitability of sensory nerve fibre endings. PMID:11159723

  16. Pituitary adenylyl cyclase-activating polypeptide (PACAP) and its receptor (PAC1-R) are positioned to modulate afferent signaling in the cochlea.

    PubMed

    Drescher, M J; Drescher, D G; Khan, K M; Hatfield, J S; Ramakrishnan, N A; Abu-Hamdan, M D; Lemonnier, L A

    2006-09-29

    of whether the organ of Corti receives adrenergic innervation. We now demonstrate the existence of nerve fibers within the organ of Corti which are immunoreactive for the adrenergic marker dopamine beta-hydroxylase (DBH). DBH immunoreactivity was particularly prominent in nerve fibers both at the base and near the cuticular plate of outer hair cells of the apical turn, extending to the non-sensory Hensen's cell region. Evidence was obtained for limited co-localization of DBH with PAC1-R and PACAP. In the process of this investigation, we obtained evidence that efferent and afferent nerve fibers, in addition to adrenergic nerve fibers, are present at supranuclear sites on outer hair cells and distributed within the non-sensory epithelium of the apical cochlear turn for rat, based upon immunoreactivity for the corresponding neuronal markers. Overall, PACAP is hypothesized to act within the organ of Corti as an efferent neuromodulator of afferent signaling via PAC1-R that is present on type I afferent dendrites, in position to afford protection from excitotoxicity. Additionally, PACAP/PAC1-R may modulate secretion of catecholamines from adrenergic terminals within the organ of Corti.

  17. How many hair follicles are innervated by one afferent axon? A confocal microscopic analysis of palisade endings in the auricular skin of thy1-YFP transgenic mouse

    PubMed Central

    SUZUKI, Maasa; EBARA, Satomi; KOIKE, Taro; TONOMURA, Sotatsu; KUMAMOTO, Kenzo

    2012-01-01

    Hairs are known as a sensory apparatus for touch. Their follicles are innervated predominantly by palisade endings composed of longitudinal and circumferential lanceolate endings. However, little is known as to how their original primary neurons make up a part of the ending. In this study, innervation of the palisade endings was investigated in the auricular skin of thy1-YFP transgenic mouse. Major observations were 1) Only a small portion of PGP9.5-immunopositive axons showed YFP-positivity, 2) All of thy1-YFP-positive sensory axons were thick and myelinated, 3) Individual thy1-YFP-positive trunk axons innervated 4–54 hair follicles, 4) Most palisade endings had a gap of lanceolate ending arrangement, 5) PGP9.5-immunopositive 10–32 longitudinal lanceolate endings were closely arranged. Only a part of them were thy1-YFP-positive axons that originated from 1–3 afferents, and 6) Single nerve bundles of the dermal nerve network included both bidirectional afferents. Palisade endings innervated by multiple sensory neurons might be highly sensitive to hair movement. PMID:23229751

  18. How many hair follicles are innervated by one afferent axon? A confocal microscopic analysis of palisade endings in the auricular skin of thy1-YFP transgenic mouse.

    PubMed

    Suzuki, Maasa; Ebara, Satomi; Koike, Taro; Tonomura, Sotatsu; Kumamoto, Kenzo

    2012-01-01

    Hairs are known as a sensory apparatus for touch. Their follicles are innervated predominantly by palisade endings composed of longitudinal and circumferential lanceolate endings. However, little is known as to how their original primary neurons make up a part of the ending. In this study, innervation of the palisade endings was investigated in the auricular skin of thy1-YFP transgenic mouse. Major observations were 1) Only a small portion of PGP9.5-immunopositive axons showed YFP-positivity, 2) All of thy1-YFP-positive sensory axons were thick and myelinated, 3) Individual thy1-YFP-positive trunk axons innervated 4-54 hair follicles, 4) Most palisade endings had a gap of lanceolate ending arrangement, 5) PGP9.5-immunopositive 10-32 longitudinal lanceolate endings were closely arranged. Only a part of them were thy1-YFP-positive axons that originated from 1-3 afferents, and 6) Single nerve bundles of the dermal nerve network included both bidirectional afferents. Palisade endings innervated by multiple sensory neurons might be highly sensitive to hair movement.

  19. Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses.

    PubMed

    Vaughan, Cheryl H; Bartness, Timothy J

    2012-05-01

    Brown adipose tissue (BAT) thermogenic activity and growth are controlled by its sympathetic nervous system (SNS) innervation, but nerve fibers containing sensory-associated neuropeptides [substance P, calcitonin gene-related peptide (CGRP)] also suggest sensory innervation. The central nervous system (CNS) projections of BAT afferents are unknown. Therefore, we used the H129 strain of the herpes simplex virus-1 (HSV-1), an anterograde transneuronal viral tract tracer used to delineate sensory nerve circuits, to define these projections. HSV-1 was injected into interscapular BAT (IBAT) of Siberian hamsters and HSV-1 immunoreactivity (ir) was assessed 24, 48, 72, 96, and 114 h postinjection. The 96- and 114-h groups had the most HSV-1-ir neurons with marked infections in the hypothalamic paraventricular nucleus, periaqueductal gray, olivary areas, parabrachial nuclei, raphe nuclei, and reticular areas. These sites also are involved in sympathetic outflow to BAT suggesting possible BAT sensory-SNS thermogenesis feedback circuits. We tested the functional contribution of IBAT sensory innervation on thermogenic responses to an acute (24 h) cold exposure test by injecting the specific sensory nerve toxin capsaicin directly into IBAT pads and then measuring core (T(c)) and IBAT (T(IBAT)) temperature responses. CGRP content was significantly decreased in capsaicin-treated IBAT demonstrating successful sensory nerve destruction. T(IBAT) and T(c) were significantly decreased in capsaicin-treated hamsters compared with the saline controls at 2 h of cold exposure. Thus the central sensory circuits from IBAT have been delineated for the first time, and impairment of sensory feedback from BAT appears necessary for the appropriate, initial thermogenic response to acute cold exposure.

  20. Modulation of the masseteric reflex by gastric vagal afferents.

    PubMed

    Pettorossi, V E

    1983-04-01

    Several investigations have shown that the vagal nerve can affect the reflex responses of the masticatory muscles acting at level either of trigeminal motoneurons or of the mesencephalic trigeminal nucleus (MTN). The present experiments have been devoted to establish the origin of the vagal afferent fibres involved in modulating the masseteric reflex. In particular, the gastric vagal afferents were taken into consideration and selective stimulations of such fibres were performed in rabbit. Conditioning electrical stimulation of truncus vagalis ventralis (TVV) reduced the excitability of the MTN cells as shown by a decrease of the antidromic response recorded from the semilunar ganglion and elicited by MTN single-shock electrical stimulation. Sympathetic and cardiovascular influences were not involved in these responses. Mechanical stimulation of gastric receptors, by means of gastric distension, clearly diminished the amplitude of twitch tension of masseteric reflex and inhibited the discharge frequency of proprioceptive MTN units. The effect was phasic and depended upon the velocity of distension. Thus the sensory volleys originating from rapid adapting receptors reach the brain stem through vagal afferents and by means of a polysynaptic connection inhibits the masseteric reflex at level of MTN cells.

  1. Cortical presynaptic control of dorsal horn C-afferents in the rat.

    PubMed

    Moreno-López, Yunuen; Pérez-Sánchez, Jimena; Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C-fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C-fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C-fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C-fibers by means of GABAergic inhibitory interneurons.

  2. Cortical Presynaptic Control of Dorsal Horn C–Afferents in the Rat

    PubMed Central

    Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory

  3. Fiber diameter distributions in the chinchilla's ampullary nerves

    NASA Technical Reports Server (NTRS)

    Hoffman, Larry F.; Honrubia, Vicente

    2002-01-01

    A morphometric study of the chinchilla's ampullary nerves was conducted to produce an unbiased accounting of the diameter distribution of their constituent fibers. Diameter analyses were determined from 1 microm plastic-embedded nerve sections taken at a plane immediately proximal to the sensory epithelium. We found these nerves to be composed of 2094+/-573 fibers, having diameters that ranged from 0.5 to 8 microm. The distributions of diameters were positively skewed, where approximately 75% of the fibers were found to have diameters less than 3.5 microm. An analysis of the spatial distribution of diameters within the nerve section revealed that the lateralmost areas of the nerve contained larger fractions of fibers within the smallest diameter quintiles, and the central area harbored greater proportions of the larger diameter quintiles. However, significant fractions of all quintiles were found in all areas. These data were integrated with available data of Fernandez et al. (1998) to produce diameter estimates of calyx, dimorphic, and bouton morphology subpopulations. In view of a general relationship between diameter, innervation locus, and an afferent's physiologic characteristics, these data provide the basis for developing a perspective for the in situ distribution of afferent response dynamics.

  4. Permanent central synaptic disconnection of proprioceptors after nerve injury and regeneration. I. Loss of VGLUT1/IA synapses on motoneurons

    PubMed Central

    Titus-Mitchell, Haley E.; Bullinger, Katie L.; Kraszpulski, Michal; Nardelli, Paul; Cope, Timothy C.

    2011-01-01

    Motor and sensory proprioceptive axons reinnervate muscles after peripheral nerve transections followed by microsurgical reattachment; nevertheless, motor coordination remains abnormal and stretch reflexes absent. We analyzed the possibility that permanent losses of central IA afferent synapses, as a consequence of peripheral nerve injury, are responsible for this deficit. VGLUT1 was used as a marker of proprioceptive synapses on rat motoneurons. After nerve injuries synapses are stripped from motoneurons, but while other excitatory and inhibitory inputs eventually recover, VGLUT1 synapses are permanently lost on the cell body (75–95% synaptic losses) and on the proximal 100 μm of dendrite (50% loss). Lost VGLUT1 synapses did not recover, even many months after muscle reinnervation. Interestingly, VGLUT1 density in more distal dendrites did not change. To investigate whether losses are due to VGLUT1 downregulation in injured IA afferents or to complete synaptic disassembly and regression of IA ventral projections, we studied the central trajectories and synaptic varicosities of axon collaterals from control and regenerated afferents with IA-like responses to stretch that were intracellularly filled with neurobiotin. VGLUT1 was present in all synaptic varicosities, identified with the synaptic marker SV2, of control and regenerated afferents. However, regenerated afferents lacked axon collaterals and synapses in lamina IX. In conjunction with the companion electrophysiological study [Bullinger KL, Nardelli P, Pinter MJ, Alvarez FJ, Cope TC. J Neurophysiol (August 10, 2011). doi:10.1152/jn.01097.2010], we conclude that peripheral nerve injuries cause a permanent retraction of IA afferent synaptic varicosities from lamina IX and disconnection with motoneurons that is not recovered after peripheral regeneration and reinnervation of muscle by sensory and motor axons. PMID:21832035

  5. Activity-dependent sensitivity of proprioceptive sensory neurons in the stick insect femoral chordotonal organ.

    PubMed

    DiCaprio, Ralph A; Wolf, Harald; Büschges, Ansgar

    2002-11-01

    Mechanosensory neurons exhibit a wide range of dynamic changes in response, including rapid and slow adaptation. In addition to mechanical factors, electrical processes may also contribute to sensory adaptation. We have investigated adaptation of afferent neurons in the stick insect femoral chordotonal organ (fCO). The fCO contains sensory neurons that respond to position, velocity, and acceleration of the tibia. We describe the influence of random mechanical stimulation of the fCO on the response of fCO afferent neurons. The activity of individual sensory neurons was recorded intracellularly from their axons in the main leg nerve. Most fCO afferents (93%) exhibited a marked decrease in response to trapezoidal stimuli following sustained white noise stimulation (bandwidth = 60 Hz, amplitudes from +/-5 to +/-30 degrees ). Concurrent decreases in the synaptic drive to leg motoneurons and interneurons were also observed. Electrical stimulation of spike activity in individual fCO afferents in the absence of mechanical stimulation also led to a dramatic decrease in response in 15 of 19 afferents tested. This indicated that electrical processes are involved in the regulation of the generator potential or encoding of action potentials and partially responsible for the decreased response of the afferents. Replacing Ca(2+) with Ba(2+) in the saline surrounding the fCO greatly reduced or blocked the decrease in response elicited by electrically induced activity or mechanical stimulation when compared with control responses. Our results indicate that activity of fCO sensory neurons strongly affects their sensitivity, most likely via Ca(2+)-dependent processes.

  6. Microstimulation of the lumbar DRG recruits primary afferent neurons in localized regions of lower limb.

    PubMed

    Ayers, Christopher A; Fisher, Lee E; Gaunt, Robert A; Weber, Douglas J

    2016-07-01

    Patterned microstimulation of the dorsal root ganglion (DRG) has been proposed as a method for delivering tactile and proprioceptive feedback to amputees. Previous studies demonstrated that large- and medium-diameter afferent neurons could be recruited separately, even several months after implantation. However, those studies did not examine the anatomical localization of sensory fibers recruited by microstimulation in the DRG. Achieving precise recruitment with respect to both modality and receptive field locations will likely be crucial to create a viable sensory neuroprosthesis. In this study, penetrating microelectrode arrays were implanted in the L5, L6, and L7 DRG of four isoflurane-anesthetized cats instrumented with nerve cuff electrodes around the proximal and distal branches of the sciatic and femoral nerves. A binary search was used to find the recruitment threshold for evoking a response in each nerve cuff. The selectivity of DRG stimulation was characterized by the ability to recruit individual distal branches to the exclusion of all others at threshold; 84.7% (n = 201) of the stimulation electrodes recruited a single nerve branch, with 9 of the 15 instrumented nerves recruited selectively. The median stimulation threshold was 0.68 nC/phase, and the median dynamic range (increase in charge while stimulation remained selective) was 0.36 nC/phase. These results demonstrate the ability of DRG microstimulation to achieve selective recruitment of the major nerve branches of the hindlimb, suggesting that this approach could be used to drive sensory input from localized regions of the limb. This sensory input might be useful for restoring tactile and proprioceptive feedback to a lower-limb amputee. Copyright © 2016 the American Physiological Society.

  7. Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas

    NASA Technical Reports Server (NTRS)

    Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.

    1998-01-01

    Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.

  8. Putative roles of neuropeptides in vagal afferent signaling

    PubMed Central

    de Lartigue, Guillaume

    2014-01-01

    The vagus nerve is a major pathway by which information is communicated between the brain and peripheral organs. Sensory neurons of the vagus are located in the nodose ganglia. These vagal afferent neurons innervate the heart, the lung and the gastrointestinal tract, and convey information about peripheral signals to the brain important in the control of cardiovascular tone, respiratory tone, and satiation, respectively. Glutamate is thought to be the primary neurotransmitter involved in conveying all of this information to the brain. It remains unclear how a single neurotransmitter can regulate such an extensive list of physiological functions from a wide range of visceral sites. Many neurotransmitters have been identified in vagal afferent neurons and have been suggested to modulate the physiological functions of glutamate. Specifically, the anorectic peptide transmitters, cocaine and amphetamine regulated transcript (CART) and the orexigenic peptide transmitters, melanin concentrating hormone (MCH) are differentially regulated in vagal afferent neurons and have opposing effects on food intake. Using these two peptides as a model, this review will discuss the potential role of peptide transmitters in providing a more precise and refined modulatory control of the broad physiological functions of glutamate, especially in relation to the control of feeding. PMID:24650553

  9. Fiber type-specific afferent nerve activity induced by transient contractions of rat bladder smooth muscle in pathological states

    PubMed Central

    Kuga, Nahoko; Tanioka, Asao; Hagihara, Koichiro; Kawai, Tomoyuki

    2017-01-01

    Bladder smooth muscle shows spontaneous phasic contractions, which undergo a variety of abnormal changes depending on pathological conditions. How abnormal contractions affect the activity of bladder afferent nerves remains to be fully tested. In this study, we examined the relationship between transient increases in bladder pressure, representing transient contraction of bladder smooth muscle, and spiking patterns of bladder afferent fibers of the L6 dorsal root, in rat pathological models. All recordings were performed at a bladder pressure of approximately 10 cmH2O by maintaining the degree of bladder filling. In the cyclophosphamide-induced model, both Aδ and C fibers showed increased sensitivity to transient bladder pressure increases. In the prostaglandin E2-induced model, Aδ fibers, but not C fibers, specifically showed overexcitation that was time-locked with transient bladder pressure increases. These fiber type-specific changes in nerve spike patterns may underlie the symptoms of urinary bladder diseases. PMID:29267380

  10. Sensory Nerve Induced Inflammation Contributes to Heterotopic Ossification

    PubMed Central

    Salisbury, Elizabeth; Rodenberg, Eric; Sonnet, Corinne; Hipp, John; Gannon, Francis H.; Vadakkan, Tegy J.; Dickinson, Mary E.; Olmsted-Davis, Elizabeth A.; Davis, Alan R.

    2012-01-01

    Heterotopic ossification (HO), or bone formation in soft tissues, is often the result of traumatic injury. Much evidence has linked the release of BMPs (bone morphogenetic proteins) upon injury to this process. HO was once thought to be a rare occurrence, but recent statistics from the military suggest that as many as 60% of traumatic injuries, resulting from bomb blasts, have associated HO. In this study, we attempt to define the role of peripheral nerves in this process. Since BMP2 has been shown previously to induce release of the neuroinflammatory molecules, substance P (SP) and calcitonin gene related peptide (CGRP), from peripheral, sensory neurons, we examined this process in vivo. SP and CGRP are rapidly expressed upon delivery of BMP2 and remain elevated throughout bone formation. In animals lacking functional sensory neurons (TRPV1−/−), BMP2-mediated increases in SP and CGRP were suppressed as compared to the normal animals, and HO was dramatically inhibited in these deficient mice, suggesting that neuroinflammation plays a functional role. Mast cells, known to be recruited by SP and CGRP, were elevated after BMP2 induction. These mast cells were localized to the nerve structures and underwent degranulation. When degranulation was inhibited using cromolyn, HO was again reduced significantly. Immunohistochemical analysis revealed nerves expressing the stem cell markers nanog and Klf4, as well as the osteoblast marker osterix, after BMP2 induction, in mice treated with cromolyn. The data collectively suggest that BMP2 can act directly on sensory neurons to induce neurogenic inflammation, resulting in nerve remodeling and the migration/release of osteogenic and other stem cells from the nerve. Further, blocking this process significantly reduces HO, suggesting that the stem cell population contributes to bone formation. PMID:21678472

  11. Oral sensory nerve damage: Causes and consequences.

    PubMed

    Snyder, Derek J; Bartoshuk, Linda M

    2016-06-01

    Oral sensations (i.e., taste, oral somatosensation, retronasal olfaction) are integrated into a composite sense of flavor, which guides dietary choices with long-term health impact. The nerves carrying this input are vulnerable to peripheral damage from multiple sources (e.g., otitis media, tonsillectomy, head injury), and this regional damage can boost sensations elsewhere in the mouth because of central interactions among nerve targets. Mutual inhibition governs this compensatory process, but individual differences lead to variation in whole-mouth outcomes: some individuals are unaffected, others experience severe loss, and some encounter sensory increases that may (if experienced early in life) elevate sweet-fat palatability and body mass. Phantom taste, touch, or pain sensations (e.g., burning mouth syndrome) may also occur, particularly in those expressing the most taste buds. To identify and treat these conditions effectively, emerging clinical tests measure regional vs. whole-mouth sensation, stimulated vs. phantom cues, and oral anatomy. Scaling methods allowing valid group comparisons have strongly aided these efforts. Overall, advances in measuring oral sensory function in health and disease show promise for understanding the varied clinical consequences of nerve damage.

  12. Oral Sensory Nerve Damage: Causes and Consequences

    PubMed Central

    Snyder, Derek J.; Bartoshuk, Linda M.

    2016-01-01

    Oral sensations (i.e., taste, oral somatosensation, retronasal olfaction) are integrated into a composite sense of flavor, which guides dietary choices with long-term health impact. The nerves carrying this input are vulnerable to peripheral damage from multiple sources (e.g., otitis media, tonsillectomy, head injury), and this regional damage can boost sensations elsewhere in the mouth because of central interactions among nerve targets. Mutual inhibition governs this compensatory process, but individual differences lead to variation in whole-mouth outcomes: some individuals are unaffected, others experience severe loss, and some encounter sensory increases that may (if experienced early in life) elevate sweet-fat palatability and body mass. Phantom taste, touch, or pain sensations (e.g., burning mouth syndrome) may also occur, particularly in those expressing the most taste buds. To identify and treat these conditions effectively, emerging clinical tests measure regional vs. whole-mouth sensation, stimulated vs. phantom cues, and oral anatomy. Scaling methods allowing valid group comparisons have strongly aided these efforts. Overall, advances in measuring oral sensory function in health and disease show promise for understanding the varied clinical consequences of nerve damage. PMID:27511471

  13. Effect of Microgravity on Afferent Innervation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Presentations and publications are: (1) an audiovisual summary web presentation on results from SLM-MIR avian experiments. A color presentation summarizing results from the SLM-MIR and STS-29 avian experiments; (2) color threshold and ratio of S 100B MAP5, NF68/200, GABA and GAD; (3) chicken (Gallus domesticus) inner ear afferents; (4) microgravity in the STS-29 Space Shuttle Discovery affected the vestibular system of chick embryos; (5) expression of S 100B in sensory and secretory cells of the vertebrate inner ear; (6) otoconia biogenesis, phylogeny, composition and functional attributes;(7) the glycan keratin sulfate in inner ear crystals; (8) elliptical-P cells in the avian perilymphatic interface of the tegmentum vasculosum; and (9) LAMP2c and S100B upregulation in brain stem after VIIIth nerve deafferentation.

  14. Sonoanatomy of sensory branches of the ulnar nerve below the elbow in healthy subjects.

    PubMed

    Kim, Ki Hoon; Lee, Seok Jun; Park, Byung Kyu; Kim, Dong Hwee

    2018-04-01

    We identify sensory branches of the ulnar nerve-palmar ulnar cutaneous nerve (PUCN), dorsal ulnar cutaneous nerve (DUCN), and superficial sensory branch-using ultrasonography. In 60 forearms of 30 healthy adult volunteers, the origin and size of the PUCN, DUCN, and superficial sensory branch were measured by ultrasonography. The relative pathway of the DUCN to the ulnar styloid process was also investigated. The PUCN was observed in 47 forearms (78%), and the DUCN was observed in all forearms. Average distances from the pisiform to the origin of the PUCN and DUCN were 11.9 ± 1.4 and 7.0 ± 1.0 cm, respectively. Superficial and deep divisions split 0.9 ± 0.3 cm distal to the pisiform. Cross-sectional areas of the PUCN, DUCN, and superficial sensory branch were 0.3 ± 0.1, 1.5 ± 0.5, and 3.9 ± 1.0 mm 2 , respectively. Sensory branches of the ulnar nerve can be visualized by ultrasonography, helping to differentiate ulnar nerve injury originating at either wrist or elbow. Muscle Nerve 57: 569-573, 2018. © 2017 Wiley Periodicals, Inc.

  15. Mechanical ventilation increases substance P concentration in the vagus, sympathetic, and phrenic nerves.

    PubMed

    Balzamo, E; Joanny, P; Steinberg, J G; Oliver, C; Jammes, Y

    1996-01-01

    Substance P (SP), a neurotransmitter localized to primary sensory neurons, is found in the vagus nerve, nodose ganglion, sympathetic chain, and phrenic nerve in various animal species. However, the changes in endogeneous SP concentration under various circumstances that involve the participation of cardiorespiratory afferent nerves are still unexplored. In the present study, attention was focused on the variations in SP content measured by radioimmunoassay (RIA) in respiratory afferent nerves (vagus nerve, cervical sympathetic chain, phrenic nerve) and respiratory muscles (diaphragm, intercostal muscles) during positive inspiratory pressure (PIP) breathing alone or PIP with an expiratory threshold load (ETL) in rabbits. SP was found in all sampled structures in spontaneously breathing control animals, prevailing in the nodose ganglion. Left-versus right-sided differences were noticed in nerves. As compared with that in control animals, the SP concentration was markedly higher in vagal and sympathetic nervous structures during PIP or PIP with ETL, and also in the phrenic nerve during ETL breathing. The SP content did not vary in respiratory muscles. These observations suggest that two very common circumstances of mechanical ventilation are associated with an increased SP concentration in nervous structures participating in the control of breathing.

  16. Electrophysiological property and chemical sensitivity of primary afferent neurons that innervate rat whisker hair follicles.

    PubMed

    Ikeda, Ryo; Gu, Jianguo

    2016-01-01

    Whisker hair follicles are sensory organs that sense touch and perform tactile discrimination in animals, and they are sites where sensory impulses are initiated when whisker hairs touch an object. The sensory signals are then conveyed by whisker afferent fibers to the brain for sensory perception. Electrophysiological property and chemical sensitivity of whisker afferent fibers, important factors affecting whisker sensory processing, are largely not known. In the present study, we performed patch-clamp recordings from pre-identified whisker afferent neurons in whole-mount trigeminal ganglion preparations and characterized their electrophysiological property and sensitivity to ATP, serotonin and glutamate. Of 97 whisker afferent neurons examined, 67% of them are found to be large-sized (diameter ≥45 µm) cells and 33% of them are medium- to small-sized (diameter <45 µm) cells. Almost every large-sized whisker afferent neuron fires a single action potential but many (40%) small/medium-sized whisker afferent neurons fire multiple action potentials in response to prolonged stepwise depolarization. Other electrophysiological properties including resting membrane potential, action potential threshold, and membrane input resistance are also significantly different between large-sized and small/medium-sized whisker afferent neurons. Most large-sized and many small/medium-sized whisker afferent neurons are sensitive to ATP and/or serotonin, and ATP and/or serotonin could evoke strong inward currents in these cells. In contrast, few whisker afferent neurons are sensitive to glutamate. Our results raise a possibility that ATP and/or serotonin may be chemical messengers involving sensory signaling for different types of rat whisker afferent fibers.

  17. Undiscovered role of endogenous thromboxane A2 in activation of cardiac sympathetic afferents during ischaemia

    PubMed Central

    Fu, Liang-Wu; Guo, Zhi-Ling; Longhurst, John C

    2008-01-01

    Myocardial ischaemia activates blood platelets, which in turn stimulate cardiac sympathetic afferents, leading to chest pain and sympathoexcitatory reflex cardiovascular responses. Previous studies have shown that activated platelets stimulate ischaemically sensitive cardiac sympathetic afferents, and that thromboxane A2 (TxA2) is one of the mediators released from activated platelets during myocardial ischaemia. The present study tested the hypothesis that endogenous TxA2 stimulates cardiac afferents during ischaemia through direct activation of TxA2 (TP) receptors coupled with the phospholipase C–protein kinase C (PLC–PKC) cellular pathway. Nerve activity of single unit cardiac sympathetic afferents was recorded from the left sympathetic chain or rami communicantes (T2–T5) in anaesthetized cats. Single fields of 39 afferents (conduction velocity = 0.27–3.65 m s−1) were identified in the left or right ventricle initially with mechanical stimulation and confirmed with a stimulating electrode. Five minutes of myocardial ischaemia stimulated all 39 cardiac afferents (8 Aδ-, 31 C-fibres) and the responses of these 39 afferents to chemical stimuli were further studied in the following four protocols. In the first protocol, 2.5, 5 and 10 μg of the TxA2 mimetic, U46619, injected into the left atrium (LA), stimulated seven ischaemically sensitive cardiac afferents in a dose-dependent manner. Second, BM13,177, a selective TxA2 receptor antagonist, abolished the responses of six afferents to 5 μg of U46619 injected into the left atrium and attenuated the ischaemia-related increase in activity of seven other afferents by 44%. In contrast, cardiac afferents, in the absence of TP receptor blockade responded consistently to repeated administration of U46619 (n = 6) and to recurrent myocardial ischaemia (n = 7). In the fourth protocol, administration of PKC-(19–36), a selective PKC inhibitor, attenuated the responses of six other cardiac afferents to U46619 by 38

  18. Sensory-evoked perturbations of locomotor activity by sparse sensory input: a computational study

    PubMed Central

    Brownstone, Robert M.

    2015-01-01

    Sensory inputs from muscle, cutaneous, and joint afferents project to the spinal cord, where they are able to affect ongoing locomotor activity. Activation of sensory input can initiate or prolong bouts of locomotor activity depending on the identity of the sensory afferent activated and the timing of the activation within the locomotor cycle. However, the mechanisms by which afferent activity modifies locomotor rhythm and the distribution of sensory afferents to the spinal locomotor networks have not been determined. Considering the many sources of sensory inputs to the spinal cord, determining this distribution would provide insights into how sensory inputs are integrated to adjust ongoing locomotor activity. We asked whether a sparsely distributed set of sensory inputs could modify ongoing locomotor activity. To address this question, several computational models of locomotor central pattern generators (CPGs) that were mechanistically diverse and generated locomotor-like rhythmic activity were developed. We show that sensory inputs restricted to a small subset of the network neurons can perturb locomotor activity in the same manner as seen experimentally. Furthermore, we show that an architecture with sparse sensory input improves the capacity to gate sensory information by selectively modulating sensory channels. These data demonstrate that sensory input to rhythm-generating networks need not be extensively distributed. PMID:25673740

  19. Outcomes of short-gap sensory nerve injuries reconstructed with processed nerve allografts from a multicenter registry study.

    PubMed

    Rinker, Brian D; Ingari, John V; Greenberg, Jeffrey A; Thayer, Wesley P; Safa, Bauback; Buncke, Gregory M

    2015-06-01

    Short-gap digital nerve injuries are a common surgical problem, but the optimal treatment modality is unknown. A multicenter database was queried and analyzed to determine the outcomes of nerve gap reconstructions between 5 and 15 mm with processed nerve allograft. The current RANGER registry is designed to continuously monitor and compile injury, repair, safety, and outcomes data. Centers followed their own standard of care for treatment and follow-up. The database was queried for digital nerve injuries with a gap between 5 and 15 mm reporting sufficient follow-up data to complete outcomes analysis. Available quantitative outcome measures were reviewed and reported. Meaningful recovery was defined by the Medical Research Council Classification (MRCC) scale at S3-S4 for sensory function. Sufficient follow-up data were available for 24 subjects (37 repairs) in the prescribed gap range. Mean age was 43 years (range, 23-81). Mean gap was 11 ± 3 (5-15) mm. Time to repair was 13 ± 42 (0-215) days. There were 25 lacerations, 8 avulsion/amputations, 2 gunshots, 1 crush injury, and 1 injury of unknown mechanism. Meaningful recovery, defined as S3-S4 on the MRCC scales, was reported in 92% of repairs. Sensory recovery of S3+ or S4 was observed in 84% of repairs. Static 2PD was 7.1 ± 2.9 mm (n = 19). Return to light touch was observed in 23 out of 32 repairs reporting Semmes-Weinstein monofilament outcomes (SWMF). There were no reported nerve adverse events. Sensory outcomes for processed nerve allografts were equivalent to historical controls for nerve autograft and exceed those of conduit. Processed nerve allografts provide an effective solution for short-gap digital nerve reconstructions. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  20. Substance P immunoreactive nerve terminals in the dorsolateral nucleus of the tractus solitarius: roles in the baroreceptor reflex.

    PubMed

    Massari, V J; Shirahata, M; Johnson, T A; Lauenstein, J M; Gatti, P J

    1998-03-02

    Physiological and light microscopic evidence suggest that substance P (SP) may be a neurotransmitter contained in first-order sensory baroreceptor afferents; however, ultrastructural support for this hypothesis is lacking. We have traced the central projections of the carotid sinus nerve (CSN) in the cat by utilizing the transganglionic transport of horseradish peroxidase (HRP). The dorsolateral subnucleus of the nucleus tractus solitarius (dlNTS) was processed for the histochemical visualization of transganglionically labeled CSN afferents and for the immunocytochemical visualization of SP by dual labeling light and electron microscopic methods. Either HRP or SP was readily identified in single-labeled unmyelinated axons, myelinated axons, and nerve terminals in the dlNTS. SP immunoreactivity was also identified in unmyelinated axons, myelinated axons, and nerve terminals in the dlNTS, which were simultaneously identified as CSN primary afferents. However, only 15% of CSN terminals in the dlNTS were immunoreactive for SP. Therefore, while the ultrastructural data support the hypothesis that SP immunoreactive first-order neurons are involved in the origination of the baroreceptor reflex, they suggest that only a modest part of the total sensory input conveyed from the carotid sinus baroreceptors to the dlNTS is mediated by SP immunoreactive CSN terminals. Five types of axo-axonic synapses were observed in the dlNTS. SP immunoreactive CSN afferents were very rarely involved in these synapses. Furthermore, SP terminals were never observed to form the presynaptic element in an axo-axonic synapse with a CSN afferent. Therefore, SP does not appear to be involved in the modulation of the baroreceptor reflex in the dlNTS. Copyright 1998 Elsevier Science B.V.

  1. BREAST CANCER-INDUCED BONE REMODELING, SKELETAL PAIN AND SPROUTING OF SENSORY NERVE FIBERS

    PubMed Central

    Bloom, Aaron P.; Jimenez-Andrade, Juan M.; Taylor, Reid N.; Castañeda-Corral, Gabriela; Kaczmarska, Magdalena J.; Freeman, Katie T.; Coughlin, Kathleen A.; Ghilardi, Joseph R.; Kuskowski, Michael A.; Mantyh, Patrick W.

    2011-01-01

    Breast cancer metastasis to bone is frequently accompanied by pain. What remains unclear is why this pain tends to become more severe and difficult to control with disease progression. Here we test the hypothesis that with disease progression sensory nerve fibers that innervate the breast cancer bearing bone undergo a pathological sprouting and reorganization, which in other non-malignant pathologies has been shown to generate and maintain chronic pain. Injection of human breast cancer cells (MDA-MB-231-BO) into the femoral intramedullary space of female athymic nude mice induces sprouting of calcitonin gene-related peptide (CGRP+) sensory nerve fibers. Nearly all CGRP+ nerve fibers that undergo sprouting also co-express tropomyosin receptor kinase A (TrkA+) and growth associated protein-43 (GAP43+). This ectopic sprouting occurs in periosteal sensory nerve fibers that are in close proximity to breast cancer cells, tumor-associated stromal cells and remodeled cortical bone. Therapeutic treatment with an antibody that sequesters nerve growth factor (NGF), administered when the pain and bone remodeling were first observed, blocks this ectopic sprouting and attenuates cancer pain. The present data suggest that the breast cancer cells and tumor-associated stromal cells express and release NGF, which drives bone pain and the pathological reorganization of nearby CGRP+ / TrkA+ / GAP43+ sensory nerve fibers. PMID:21497141

  2. Mechanisms of reflex bladder activation by pudendal afferents

    PubMed Central

    Woock, John P.; Yoo, Paul B.

    2011-01-01

    Activation of pudendal afferents can evoke bladder contraction or relaxation dependent on the frequency of stimulation, but the mechanisms of reflex bladder excitation evoked by pudendal afferent stimulation are unknown. The objective of this study was to determine the contributions of sympathetic and parasympathetic mechanisms to bladder contractions evoked by stimulation of the dorsal nerve of the penis (DNP) in α-chloralose anesthetized adult male cats. Bladder contractions were evoked by DNP stimulation only above a bladder volume threshold equal to 73 ± 12% of the distension-evoked reflex contraction volume threshold. Bilateral hypogastric nerve transection (to eliminate sympathetic innervation of the bladder) or administration of propranolol (a β-adrenergic antagonist) decreased the stimulation-evoked and distension-evoked volume thresholds by −25% to −39%. Neither hypogastric nerve transection nor propranolol affected contraction magnitude, and robust bladder contractions were still evoked by stimulation at volume thresholds below the distension-evoked volume threshold. As well, inhibition of distention-evoked reflex bladder contractions by 10 Hz stimulation of the DNP was preserved following bilateral hypogastric nerve transection. Administration of phentolamine (an α-adrenergic antagonist) increased stimulation-evoked and distension-evoked volume thresholds by 18%, but again, robust contractions were still evoked by stimulation at volumes below the distension-evoked threshold. These results indicate that sympathetic mechanisms contribute to establishing the volume dependence of reflex contractions but are not critical to the excitatory pudendal to bladder reflex. A strong correlation between the magnitude of stimulation-evoked bladder contractions and bladder volume supports that convergence of pelvic afferents and pudendal afferents is responsible for bladder excitation evoked by pudendal afferents. Further, abolition of stimulation-evoked bladder

  3. Afferent renal denervation impairs baroreflex control of efferent renal sympathetic nerve activity.

    PubMed

    Kopp, Ulla C; Jones, Susan Y; DiBona, Gerald F

    2008-12-01

    Increasing efferent renal sympathetic nerve activity (ERSNA) increases afferent renal nerve activity (ARNA), which decreases ERSNA to prevent sodium retention. High-sodium diet enhances ARNA, suggesting an important role for ARNA in suppressing ERSNA during excess sodium intake. Mean arterial pressure (MAP) is elevated in afferent renal denervated by dorsal rhizotomy (DRX) rats fed high-sodium diet. We examined whether the increased MAP in DRX is due to impaired arterial baroreflex function. In DRX and sham DRX rats fed high-sodium diet, arterial baroreflex function was determined in conscious rats by intravenous nitroprusside and phenylephrine or calculation of transfer function gain from arterial pressure to ERSNA (spontaneous baroreflex sensitivity). Increasing MAP did not suppress ERSNA to the same extent in DRX as in sham DRX, -60 +/- 4 vs. -77 +/- 6%. Maximum gain, -4.22 +/- 0.45 vs. -6.04 +/- 0.90% DeltaERSNA/mmHg, and the maximum value of instantaneous gain, -4.19 +/- 0.45 vs. -6.04 +/- 0.81% DeltaERSNA/mmHg, were less in DRX than in sham DRX. Likewise, transfer function gain was lower in DRX than in sham DRX, 3.9 +/- 0.2 vs. 6.1 +/- 0.5 NU/mmHg. Air jet stress produced greater increases in ERSNA in DRX than in sham DRX, 35,000 +/- 4,900 vs. 20,900 +/- 3,410%.s (area under the curve). Likewise, the ERSNA responses to thermal cutaneous stimulation were greater in DRX than in sham DRX. These studies suggest impaired arterial baroreflex suppression of ERSNA in DRX fed high-sodium diet. There were no differences in arterial baroreflex function in DRX and sham DRX fed normal-sodium diet. Impaired arterial baroreflex function contributes to increased ERSNA, which would eventually lead to sodium retention and increased MAP in DRX rats fed high-sodium diet.

  4. Clitoral Epidermal Inclusion Cyst Resection With Intraoperative Sensory Nerve Mapping Technique.

    PubMed

    Wu, Cindy; Damitz, Lynn; Karrat, Kimberly M; Mintz, Alice; Zolnoun, Denniz

    2016-01-01

    Despite the ever increasing popularity of labial and clitoral surgeries, the best practices and long-term effects of reconstructive procedures in these regions remain unknown. This is particularly noteworthy because the presentation of nerve-related symptoms may be delayed up to a year. Despite the convention that these surgical procedures are low risk, little is known about the best practices that may reduce the postoperative complications as a result of these reconstructive surgeries. We describe a preoperative sensory mapping technique in the context of a symptomatic inclusion cyst in the clitoral region. This technique delineates anatomical and functional regions innervated by the dorsal clitoral nerve while minimizing the vascular watershed area in the midline. A prototypical case of a patient with a clitoral mass is discussed with clinical history and surgical approach. Prior to surgical excision, the dorsal clitoral nerve distribution was mapped in order to avoid a surgical incision in this sensual zone. In our practice, preoperative sensory mapping is a clinically useful planning tool that requires minimal instrumentation and no additional operating time. Sensory mapping allows identification of the functional zone innervated by the dorsal clitoral nerve, which can aid in minimizing damage to the area.

  5. Evoked Pain Analgesia in Chronic Pelvic Pain Patients using Respiratory-gated Auricular Vagal Afferent Nerve Stimulation

    PubMed Central

    Napadow, Vitaly; Edwards, Robert R; Cahalan, Christine M; Mensing, George; Greenbaum, Seth; Valovska, Assia; Li, Ang; Kim, Jieun; Maeda, Yumi; Park, Kyungmo; Wasan, Ajay D.

    2012-01-01

    Objective Previous Vagus Nerve Stimulation (VNS) studies have demonstrated anti-nociceptive effects, and recent non-invasive approaches; termed transcutaneous-VNS, or t-VNS, have utilized stimulation of the auricular branch of the vagus nerve in the ear. The dorsal medullary vagal system operates in tune with respiration, and we propose that supplying vagal afferent stimulation gated to the exhalation phase of respiration can optimize t-VNS. Design counterbalanced, crossover study. Patients patients with chronic pelvic pain (CPP) due to endometriosis in a specialty pain clinic. Interventions/Outcomes We evaluated evoked pain analgesia for Respiratory-gated Auricular Vagal Afferent Nerve Stimulation (RAVANS) compared with Non-Vagal Auricular Stimulation (NVAS). RAVANS and NVAS were evaluated in separate sessions spaced at least one week apart. Outcome measures included deep tissue pain intensity, temporal summation of pain, and anxiety ratings, which were assessed at baseline, during active stimulation, immediately following stimulation, and 15 minutes after stimulus cessation. Results RAVANS demonstrated a trend for reduced evoked pain intensity and temporal summation of mechanical pain, and significantly reduced anxiety in N=15 CPP patients, compared to NVAS, with moderate to large effect sizes (eta2>0.2). Conclusion Chronic pain disorders such as CPP are in great need of effective, non-pharmacological options for treatment. RAVANS produced promising anti-nociceptive effects for QST outcomes reflective of the noted hyperalgesia and central sensitization in this patient population. Future studies should evaluate longer-term application of RAVANS to examine its effects on both QST outcomes and clinical pain. PMID:22568773

  6. Distribution of sensory nerve endings around the human sinus tarsi: a cadaver study

    PubMed Central

    Rein, Susanne; Manthey, Suzanne; Zwipp, Hans; Witt, Andreas

    2014-01-01

    The aim of this study was to analyse the pattern of sensory nerve endings and blood vessels around the sinus tarsi. The superficial and deep parts of the fat pads at the inferior extensor retinaculum (IER) as well as the subtalar joint capsule inside the sinus tarsi from 13 cadaver feet were dissected. The distribution of the sensory nerve endings and blood vessels were analysed in the resected specimens as the number per cm2 after staining with haematoxylin-eosin, S100 protein, low-affinity neurotrophin receptor p75, and protein gene product 9.5 using the classification of Freeman and Wyke. Free nerve endings were the predominant sensory ending (P < 0.001). Ruffini and Golgi-like endings were rarely found and no Pacini corpuscles were seen. Significantly more free nerve endings (P < 0.001) and blood vessels (P = 0.01) were observed in the subtalar joint capsule than in the superficial part of the fat pad at the IER. The deep part of the fat pad at the IER had significantly more blood vessels than the superficial part of the fat pad at the IER (P = 0.012). Significantly more blood vessels than free nerve endings were seen in all three groups (P < 0.001). No significant differences in distribution were seen in terms of right or left side, except for free nerve endings in the superficial part of the fat pad at the IER (P = 0.003). A greater number of free nerve endings correlated with a greater number of blood vessels. The presence of sensory nerve endings between individual fat cells supports the hypothesis that the fat pad has a proprioceptive role monitoring changes and that it is a source of pain in sinus tarsi syndrome due to the abundance of free nerve endings. PMID:24472004

  7. The cellular localization of the neuropeptides substance P, neurokinin A, calcitonin gene-related peptide and neuropeptide Y in guinea-pig vestibular sensory organs: a high-resolution confocal microscopy study.

    PubMed

    Scarfone, E; Ulfendahl, M; Lundeberg, T

    1996-11-01

    Four neuropeptides, substance P, neurokinin A, calcitonin gene-related peptide and neuropeptide Y, were detected by radioimmunoassay in guinea-pig vestibular end-organs. High-resolution confocal microscopy visualization of immunofluorescence staining was used to determine the cellular localization of these peptides. Substance P- and neurokinin A-like immunoreactivities were found to co-exist in afferent fibers innervating the peripheral regions of both the utricular and ampullar sensory organs. The immunoreactivity was more concentrated in the distal ends of the calyceal-shaped nerve endings that innervate type I sensory cells. While in the guinea-pig, nerve calyces and type I cells are distributed in both the central and peripheral regions of the sensory epithelia, immunoreactive calyces were found only in the peripheral regions. Calcitonin gene-related peptide-like immunoreactivity was localized in small bouton endings situated at the level of the base of the hair cells. These boutons were in a position to make axosomatic contacts with type II sensory cells and axodendritic contacts with afferent nerve endings. Calcitonin gene-related peptide immunoreactivity co-existed with choline acetyltransferase immunoreactivity. The localization and shape of these boutons identified them as the axonal endings of efferent vestibular fibers. Neuropeptide Y-like immunoreactivity was not observed in the actual sensory epithelium but in the underlying connective tissue, where it was located in varicose fibers along blood vessels. The synaptic position of the tachykinins is clearly distinct from that of calcitonin gene-related peptide. This segregation distinguishes the vestibular end-organs from most peripheral tissues where these peptides are co-localized. The tachykinin-immunoreactive afferent fibers are postsynaptic to the hair cells. If, as in somatic sensory endings, these fibers can be triggered to release the neuropeptides by an axon reflex type of activation, then the

  8. Central vagal sensory and motor connections: human embryonic and fetal development.

    PubMed

    Cheng, Gang; Zhou, Xiangtian; Qu, Jia; Ashwell, Ken W S; Paxinos, G

    2004-07-30

    The embryonic and fetal development of the nuclear components and pathways of vagal sensorimotor circuits in the human has been studied using Nissl staining and carbocyanine dye tracing techniques. Eight fetal brains ranging from 8 to 28 weeks of development had DiI (1,1'-dioctadecyl-3,3,3',3' tetramethylindocarbocyanine perchlorate) inserted into either the thoracic vagus nerve at the level of the sternal angle (two specimens of 8 and 9 weeks of gestation) or into vagal rootlets at the surface of the medulla (at all other ages), while a further five were used for study of cytoarchitectural development. The first central labeling resulting from peripheral application of DiI to the thoracic vagus nerve was seen at 8 weeks. By 9 weeks, labeled bipolar cells at the ventricular surface around the sulcus limitans (sl) were seen after DiI application to the thoracic vagus nerve. Subnuclear organization as revealed by both Nissl staining and carbocyanine dye tracing was found to be advanced at a relatively early fetal age, with afferent segregation in the medial Sol apparent at 13 weeks and subnuclear organization of efferent magnocellular divisions of dorsal motor nucleus of vagus nerve noticeable at the same stage. The results of the present study also confirm that vagal afferents are distributed to the dorsomedial subnuclei of the human nucleus of the solitary tract, with particular concentrations of afferent axons in the gelatinosus subnucleus. These vagal afferents appeared to have a restricted zone of termination from quite early in development (13 weeks) suggesting that there is no initial exuberance in the termination field of vagal afferents in the developing human nucleus of the solitary tract. On the other hand, the first suggestion of afferents invading 10N from the medial Sol was not seen until 20 weeks and was not well developed until 24 weeks, suggesting that direct monosynaptic connections between the sensory and effector components of the vagal

  9. Immunohistochemical Mapping of Sensory Nerve Endings in the Human Triangular Fibrocartilage Complex.

    PubMed

    Rein, Susanne; Semisch, Manuel; Garcia-Elias, Marc; Lluch, Alex; Zwipp, Hans; Hagert, Elisabet

    2015-10-01

    The triangular fibrocartilage complex is the main stabilizer of the distal radioulnar joint. While static joint stability is constituted by osseous and ligamentous integrity, the dynamic aspects of joint stability chiefly concern proprioceptive control of the compressive and directional muscular forces acting on the joint. Therefore, an investigation of the pattern and types of sensory nerve endings gives more insight in dynamic distal radioulnar joint stability. We aimed to (1) analyze the general distribution of sensory nerve endings and blood vessels; (2) examine interstructural distribution of sensory nerve endings and blood vessels; (3) compare the number and types of mechanoreceptors in each part; and (4) analyze intrastructural distribution of nerve endings at different tissue depth. The subsheath of the extensor carpi ulnaris tendon sheath, the ulnocarpal meniscoid, the articular disc, the dorsal and volar radioulnar ligaments, and the ulnolunate and ulnotriquetral ligaments were dissected from 11 human cadaver wrists. Sensory nerve endings were counted in five levels per specimen as total cell amount/cm(2) after staining with low-affinity neurotrophin receptor p75, protein gene product 9.5, and S-100 protein and thereafter classified according to Freeman and Wyke. All types of sensory corpuscles were found in the various structures of the triangular fibrocartilage complex with the exception of the ulnolunate ligament, which contained only Golgi-like endings, free nerve endings, and unclassifiable corpuscles. The articular disc had only free nerve endings. Furthermore, free nerve endings were the predominant sensory nerve ending (median, 72.6/cm(2); range, 0-469.4/cm(2)) and more prevalent than all other types of mechanoreceptors: Ruffini (median, 0; range, 0-5.6/cm(2); difference of medians, 72.6; p < 0.001), Pacini (median, 0; range, 0-3.8/cm(2); difference of medians, 72.6; p < 0.001), Golgi-like (median, 0; range, 0-2.1/cm(2); difference of medians, 72

  10. Patterned sensory nerve stimulation enhances the reactivity of spinal Ia inhibitory interneurons.

    PubMed

    Kubota, Shinji; Hirano, Masato; Morishita, Takuya; Uehara, Kazumasa; Funase, Kozo

    2015-03-25

    Patterned sensory nerve stimulation has been shown to induce plastic changes in the reciprocal Ia inhibitory circuit. However, the mechanisms underlying these changes have not yet been elucidated in detail. The aim of the present study was to determine whether the reactivity of Ia inhibitory interneurons could be altered by patterned sensory nerve stimulation. The degree of reciprocal Ia inhibition, the conditioning effects of transcranial magnetic stimulation (TMS) on the soleus (SOL) muscle H-reflex, and the ratio of the maximum H-reflex amplitude versus maximum M-wave (H(max)/M(max)) were examined in 10 healthy individuals. Patterned electrical nerve stimulation was applied to the common peroneal nerve every 1 s (100 Hz-5 train) at the motor threshold intensity of tibialis anterior muscle to induce activity changes in the reciprocal Ia inhibitory circuit. Reciprocal Ia inhibition, the TMS-conditioned H-reflex amplitude, and H(max)/M(max) were recorded before, immediately after, and 15 min after the electrical stimulation. The patterned electrical nerve stimulation significantly increased the degree of reciprocal Ia inhibition and decreased the amplitude of the TMS-conditioned H-reflex in the short-latency inhibition phase, which was presumably mediated by Ia inhibitory interneurons. However, it had no effect on H(max)/M(max). Our results indicated that patterned sensory nerve stimulation could modulate the activity of Ia inhibitory interneurons, and this change may have been caused by the synaptic modification of Ia inhibitory interneuron terminals. These results may lead to a clearer understanding of the spinal cord synaptic plasticity produced by repetitive sensory inputs. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

  11. Sensory nerves are frequently involved in the spectrum of fisher syndrome.

    PubMed

    Shahrizaila, Nortina; Goh, Khean J; Kokubun, Norito; Tan, Ai H; Tan, Cheng Y; Yuki, Nobuhiro

    2014-04-01

    Differing patterns of neurophysiological abnormalities have been reported in patients with Fisher syndrome. Fisher syndrome is rare, and few series have incorporated prospective serial studies to define the natural history of nerve conduction studies in Guillain-Barré syndrome. In an ongoing prospective study of Guillain-Barré syndrome patients, patients who presented with Fisher syndrome and its spectrum of illness were assessed through serial neurological examinations, nerve conduction studies, and serological testing of IgG against gangliosides and ganglioside complexes. Of the 36 Guillain-Barré syndrome patients identified within 2 years, 17 had features of Fisher syndrome. Serial nerve conduction studies detected significant abnormalities in sensory nerve action potential amplitude in 94% of patients associated with 2 patterns of recovery-non-demyelinating reversible distal conduction failure and axonal regeneration. Similar changes were seen in motor nerves of 5 patients. Patients with the Fisher syndrome spectrum of illness have significant sensory involvement, which may only be evident with serial neurophysiological studies. Copyright © 2013 Wiley Periodicals, Inc.

  12. Non-invasive stimulation of the vibrissal pad improves recovery of whisking function after simultaneous lesion of the facial and infraorbital nerves in rats.

    PubMed

    Bendella, H; Pavlov, S P; Grosheva, M; Irintchev, A; Angelova, S K; Merkel, D; Sinis, N; Kaidoglou, K; Skouras, E; Dunlop, S A; Angelov, Doychin N

    2011-07-01

    We have recently shown that manual stimulation of target muscles promotes functional recovery after transection and surgical repair to pure motor nerves (facial: whisking and blink reflex; hypoglossal: tongue position). However, following facial nerve repair, manual stimulation is detrimental if sensory afferent input is eliminated by, e.g., infraorbital nerve extirpation. To further understand the interplay between sensory input and motor recovery, we performed simultaneous cut-and-suture lesions on both the facial and the infraorbital nerves and examined whether stimulation of the sensory afferents from the vibrissae by a forced use would improve motor recovery. The efficacy of 3 treatment paradigms was assessed: removal of the contralateral vibrissae to ensure a maximal use of the ipsilateral ones (vibrissal stimulation; Group 2), manual stimulation of the ipsilateral vibrissal muscles (Group 3), and vibrissal stimulation followed by manual stimulation (Group 4). Data were compared to controls which underwent surgery but did not receive any treatment (Group 1). Four months after surgery, all three treatments significantly improved the amplitude of vibrissal whisking to 30° versus 11° in the controls of Group 1. The three treatments also reduced the degree of polyneuronal innervation of target muscle fibers to 37% versus 58% in Group 1. These findings indicate that forced vibrissal use and manual stimulation, either alone or sequentially, reduce target muscle polyinnervation and improve recovery of whisking function when both the sensory and the motor components of the trigemino-facial system regenerate.

  13. Investigating the role of MRGPRC11 and capsaicin-sensitive afferent nerves in the anti-influenza effects exerted by SLIGRL-amide in murine airways.

    PubMed

    Chang, Amy Y; Mann, Tracy S; McFawn, Peter K; Han, Liang; Dong, Xinzhong; Henry, Peter J

    2016-05-23

    The hexapeptide SLIGRL-amide activates protease-activated receptor-2 (PAR-2) and mas-related G protein-coupled receptor C11 (MRGPRC11), both of which are known to be expressed on populations of sensory nerves. SLIGRL-amide has recently been reported to inhibit influenza A (IAV) infection in mice independently of PAR-2 activation, however the explicit roles of MRGPRC11 and sensory nerves in this process are unknown. Thus, the principal aim of this study was to determine whether SLIGRL-amide-induced inhibition of influenza infection is mediated by MRGPRC11 and/or by capsaicin-sensitive sensory nerves. The inhibitory effect of SLIGRL-amide on IAV infection observed in control mice in vivo was compared to effects produced in mice that did not express MRGPRC11 (mrgpr-cluster∆ (-/-) mice) or had impaired sensory nerve function (induced by chronic pre-treatment with capsaicin). Complementary mechanistic studies using both in vivo and ex vivo approaches investigated whether the anti-IAV activity of SLIGRL-amide was (1) mimicked by either activators of MRGPRC11 (BAM8-22) or by activators (acute capsaicin) or selected mediators (substance P, CGRP) of sensory nerve function, or (2) suppressed by inhibitors of sensory nerve function (e.g. NK1 receptor antagonists). SLIGRL-amide and BAM8-22 dose-dependently inhibited IAV infection in mrgpr-cluster∆ (-/-) mice that do not express MRGPRC11. In addition, SLIGRL-amide and BAM8-22 each inhibited IAV infection in capsaicin-pre-treated mice that lack functional sensory nerves. Furthermore, the anti-IAV activity of SLIGRL-amide was not mimicked by the sensory neuropeptides substance P or CGRP, nor blocked by either NK1 (L-703,606, RP67580) and CGRP receptor (CGRP8-37) antagonists. Direct stimulation of airway sensory nerves through acute exposure to the TRPV1 activator capsaicin also failed to mimic SLIGRL-amide-induced inhibition of IAV infectivity. The anti-IAV activity of SLIGRL-amide was mimicked by the purinoceptor agonist ATP

  14. More a finger than a nose: the trigeminal motor and sensory innervation of the Schnauzenorgan in the elephant-nose fish Gnathonemus petersii.

    PubMed

    Amey-Özel, Monique; von der Emde, Gerhard; Engelmann, Jacob; Grant, Kirsty

    2015-04-01

    The weakly electric fish Gnathonemus petersii uses its electric sense to actively probe the environment. Its highly mobile chin appendage, the Schnauzenorgan, is rich in electroreceptors. Physical measurements have demonstrated the importance of the position of the Schnauzenorgan in funneling the fish's self-generated electric field. The present study focuses on the trigeminal motor pathway that controls Schnauzenorgan movement and on its trigeminal sensory innervation and central representation. The nerves entering the Schnauzenorgan are very large and contain both motor and sensory trigeminal components as well as an electrosensory pathway. With the use of neurotracer techniques, labeled Schnauzenorgan motoneurons were found throughout the ventral main body of the trigeminal motor nucleus but not among the population of larger motoneurons in its rostrodorsal region. The Schnauzenorgan receives no motor or sensory innervation from the facial nerve. There are many anastomoses between the peripheral electrosensory and trigeminal nerves, but these senses remain separate in the sensory ganglia and in their first central relays. Schnauzenorgan trigeminal primary afferent projections extend throughout the descending trigeminal sensory nuclei, and a few fibers enter the facial lobe. Although no labeled neurons could be identified in the brain as the trigeminal mesencephalic root, some Schnauzenorgan trigeminal afferents terminated in the trigeminal motor nucleus, suggesting a monosynaptic, possibly proprioceptive, pathway. In this first step toward understanding multimodal central representation of the Schnauzenorgan, no direct interconnections were found between the trigeminal sensory and electromotor command system, or the electrosensory and trigeminal motor command. The pathways linking perception to action remain to be studied. © 2014 Wiley Periodicals, Inc.

  15. Morphology and Nanomechanics of Sensory Neurons Growth Cones following Peripheral Nerve Injury

    PubMed Central

    Szabo, Vivien; Végh, Attila-Gergely; Lucas, Olivier; Cloitre, Thierry; Scamps, Frédérique; Gergely, Csilla

    2013-01-01

    A prior peripheral nerve injury in vivo, promotes a rapid elongated mode of sensory neurons neurite regrowth in vitro. This in vitro model of conditioned axotomy allows analysis of the cellular and molecular mechanisms leading to an improved neurite re-growth. Our differential interference contrast microscopy and immunocytochemistry results show that conditioned axotomy, induced by sciatic nerve injury, did not increase somatic size of adult lumbar sensory neurons from mice dorsal root ganglia sensory neurons but promoted the appearance of larger neurites and growth cones. Using atomic force microscopy on live neurons, we investigated whether membrane mechanical properties of growth cones of axotomized neurons were modified following sciatic nerve injury. Our data revealed that neurons having a regenerative growth were characterized by softer growth cones, compared to control neurons. The increase of the growth cone membrane elasticity suggests a modification in the ratio and the inner framework of the main structural proteins. PMID:23418549

  16. Identification of the tracheal and laryngeal afferent neurones mediating cough in anaesthetized guinea-pigs

    PubMed Central

    Canning, Brendan J; Mazzone, Stuart B; Meeker, Sonya N; Mori, Nanako; Reynolds, Sandra M; Undem, Bradley J

    2004-01-01

    We have identified the tracheal and laryngeal afferent nerves regulating cough in anaesthetized guinea-pigs. Cough was evoked by electrical or mechanical stimulation of the tracheal or laryngeal mucosa, or by citric acid applied topically to the trachea or larynx. By contrast, neither capsaicin nor bradykinin challenges to the trachea or larynx evoked cough. Bradykinin and histamine administered intravenously also failed to evoke cough. Electrophysiological studies revealed that the majority of capsaicin-sensitive afferent neurones (both Aδ- and C-fibres) innervating the rostral trachea and larynx have their cell bodies in the jugular ganglia and project to the airways via the superior laryngeal nerves. Capsaicin-insensitive afferent neurones with cell bodies in the nodose ganglia projected to the rostral trachea and larynx via the recurrent laryngeal nerves. Severing the recurrent nerves abolished coughing evoked from the trachea and larynx whereas severing the superior laryngeal nerves was without effect on coughing. The data indicate that the tracheal and laryngeal afferent neurones regulating cough are polymodal Aδ-fibres that arise from the nodose ganglia. These afferent neurones are activated by punctate mechanical stimulation and acid but are unresponsive to capsaicin, bradykinin, smooth muscle contraction, longitudinal or transverse stretching of the airways, or distension. Comparing these physiological properties with those of intrapulmonary mechanoreceptors indicates that the afferent neurones mediating cough are quite distinct from the well-defined rapidly and slowly adapting stretch receptors innervating the airways and lungs. We propose that these airway afferent neurones represent a distinct subtype and that their primary function is regulation of the cough reflex. PMID:15004208

  17. The central projections of the laryngeal nerves in the rat

    PubMed Central

    Pascual-Font, Arán; Hernández-Morato, Ignacio; McHanwell, Stephen; Vázquez, Teresa; Maranillo, Eva; Sañudo, Jose; Valderrama-Canales, Francisco J

    2011-01-01

    The larynx serves respiratory, protective, and phonatory functions. The motor and sensory innervation to the larynx controlling these functions is provided by the superior laryngeal nerve (SLN) and the recurrent laryngeal nerve (RLN). Classical studies state that the SLN innervates the cricothyroid muscle and provides sensory innervation to the supraglottic cavity, whereas the RLN supplies motor innervation to the remaining intrinsic laryngeal muscles and sensory innervation to the infraglottic cavity, but recent data suggest a more complex anatomical and functional organisation. The current neuroanatomical tracing study was undertaken to provide a comprehensive description of the central brainstem connections of the axons within the SLN and the RLN, including those neurons that innervate the larynx. The study has been carried out in 41 adult male Sprague–Dawley rats. The central projections of the laryngeal nerves were labelled following application of biotinylated dextran amines onto the SLN, the RLN or both. The most remarkable result of the study is that in the rat the RLN does not contain any afferent axons from the larynx, in contrast to the pattern observed in many other species including man. The RLN supplied only special visceromotor innervation to the intrinsic muscles of the larynx from motoneurons in the nucleus ambiguus (Amb). All the afferent axons innervating the larynx are contained within the SLN, and reach the nucleus of the solitary tract. The SLN also contained secretomotor efferents originating from motoneurons in the dorsal motor nucleus of the vagus, and special visceral efferent fibres from the Amb. In conclusion, the present study shows that in the rat the innervation of the larynx differs in significant ways from that described in other species. PMID:21599662

  18. Double peak sensory nerve action potentials to single stimuli in nerve conduction studies.

    PubMed

    Leote, Joao; Pereira, Pedro; Valls-Sole, Josep

    2017-05-01

    In humans, sensory nerve action potentials (SNAPs) can show 2 separate deflections, i.e., double peak potentials (DPp), which necessarily means that 1 peak is delayed with respect to the other. DPps may have various origins and be due to either physical or physiological properties. We review the nature of commonly encountered DPps in clinical practice, provide the most likely interpretations for their physiological origin, and assess their reproducibility and clinical utility. We classified the DPps into 3 categories: (1) simultaneous anodal and cathodal stimulation. (2) simultaneous recording from 2 different nerves at the same site, and (3) SNAP desynchronization. Although the recording of DPps is not a standardized neurophysiological method, their study brings interesting cues about the physiology of nerve stimulation and paves the way for clinical application of such an observation. Muscle Nerve 55: 619-625, 2017. © 2016 Wiley Periodicals, Inc.

  19. Afferent renal denervation impairs baroreflex control of efferent renal sympathetic nerve activity

    PubMed Central

    Kopp, Ulla C.; Jones, Susan Y.; DiBona, Gerald F.

    2008-01-01

    Increasing efferent renal sympathetic nerve activity (ERSNA) increases afferent renal nerve activity (ARNA), which decreases ERSNA to prevent sodium retention. High-sodium diet enhances ARNA, suggesting an important role for ARNA in suppressing ERSNA during excess sodium intake. Mean arterial pressure (MAP) is elevated in afferent renal denervated by dorsal rhizotomy (DRX) rats fed high-sodium diet. We examined whether the increased MAP in DRX is due to impaired arterial baroreflex function. In DRX and sham DRX rats fed high-sodium diet, arterial baroreflex function was determined in conscious rats by intravenous nitroprusside and phenylephrine or calculation of transfer function gain from arterial pressure to ERSNA (spontaneous baroreflex sensitivity). Increasing MAP did not suppress ERSNA to the same extent in DRX as in sham DRX, −60 ± 4 vs. −77 ± 6%. Maximum gain, −4.22 ± 0.45 vs. −6.04 ± 0.90% ΔERSNA/mmHg, and the maximum value of instantaneous gain, −4.19 ± 0.45 vs. −6.04 ± 0.81% ΔERSNA/mmHg, were less in DRX than in sham DRX. Likewise, transfer function gain was lower in DRX than in sham DRX, 3.9 ± 0.2 vs. 6.1 ± 0.5 NU/mmHg. Air jet stress produced greater increases in ERSNA in DRX than in sham DRX, 35,000 ± 4,900 vs. 20,900 ± 3,410%·s (area under the curve). Likewise, the ERSNA responses to thermal cutaneous stimulation were greater in DRX than in sham DRX. These studies suggest impaired arterial baroreflex suppression of ERSNA in DRX fed high-sodium diet. There were no differences in arterial baroreflex function in DRX and sham DRX fed normal-sodium diet. Impaired arterial baroreflex function contributes to increased ERSNA, which would eventually lead to sodium retention and increased MAP in DRX rats fed high-sodium diet. PMID:18945951

  20. Reliability, reference values and predictor variables of the ulnar sensory nerve in disease free adults.

    PubMed

    Ruediger, T M; Allison, S C; Moore, J M; Wainner, R S

    2014-09-01

    The purposes of this descriptive and exploratory study were to examine electrophysiological measures of ulnar sensory nerve function in disease free adults to determine reliability, determine reference values computed with appropriate statistical methods, and examine predictive ability of anthropometric variables. Antidromic sensory nerve conduction studies of the ulnar nerve using surface electrodes were performed on 100 volunteers. Reference values were computed from optimally transformed data. Reliability was computed from 30 subjects. Multiple linear regression models were constructed from four predictor variables. Reliability was greater than 0.85 for all paired measures. Responses were elicited in all subjects; reference values for sensory nerve action potential (SNAP) amplitude from above elbow stimulation are 3.3 μV and decrement across-elbow less than 46%. No single predictor variable accounted for more than 15% of the variance in the response. Electrophysiologic measures of the ulnar sensory nerve are reliable. Absent SNAP responses are inconsistent with disease free individuals. Reference values recommended in this report are based on appropriate transformations of non-normally distributed data. No strong statistical model of prediction could be derived from the limited set of predictor variables. Reliability analyses combined with relatively low level of measurement error suggest that ulnar sensory reference values may be used with confidence. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity.

    PubMed

    Zanos, Theodoros P; Silverman, Harold A; Levy, Todd; Tsaava, Tea; Battinelli, Emily; Lorraine, Peter W; Ashe, Jeffrey M; Chavan, Sangeeta S; Tracey, Kevin J; Bouton, Chad E

    2018-05-22

    The nervous system maintains physiological homeostasis through reflex pathways that modulate organ function. This process begins when changes in the internal milieu (e.g., blood pressure, temperature, or pH) activate visceral sensory neurons that transmit action potentials along the vagus nerve to the brainstem. IL-1β and TNF, inflammatory cytokines produced by immune cells during infection and injury, and other inflammatory mediators have been implicated in activating sensory action potentials in the vagus nerve. However, it remains unclear whether neural responses encode cytokine-specific information. Here we develop methods to isolate and decode specific neural signals to discriminate between two different cytokines. Nerve impulses recorded from the vagus nerve of mice exposed to IL-1β and TNF were sorted into groups based on their shape and amplitude, and their respective firing rates were computed. This revealed sensory neural groups responding specifically to TNF and IL-1β in a dose-dependent manner. These cytokine-mediated responses were subsequently decoded using a Naive Bayes algorithm that discriminated between no exposure and exposures to IL-1β and TNF (mean successful identification rate 82.9 ± 17.8%, chance level 33%). Recordings obtained in IL-1 receptor-KO mice were devoid of IL-1β-related signals but retained their responses to TNF. Genetic ablation of TRPV1 neurons attenuated the vagus neural signals mediated by IL-1β, and distal lidocaine nerve block attenuated all vagus neural signals recorded. The results obtained in this study using the methodological framework suggest that cytokine-specific information is present in sensory neural signals within the vagus nerve. Copyright © 2018 the Author(s). Published by PNAS.

  2. Restoration of Trigeminal Cutaneous Sensation with Cross-Face Sural Nerve Grafts: A Novel Approach to Facial Sensory Rehabilitation.

    PubMed

    Catapano, Joseph; Scholl, David; Ho, Emily; Zuker, Ronald M; Borschel, Gregory H

    2015-09-01

    Although treating facial palsy is considered debilitating for patients, trigeminal nerve palsy and sensory deficits of the face are overlooked components of disability. Complete anesthesia leaves patients susceptible to occult injury, and facial sensation is an important component of interaction and activities of daily living. Sensory reconstruction is well established in the restoration of hand sensation; however, only one previous report proposed a surgical strategy for sensory nerve reconstruction of the face with use of nerve transfers. Nerve transfers, when used alone, have limited application because of their restricted arc of rotation in the face; extending their arc by adding nerve grafts greatly expands their utility. The following cases demonstrate the early results after V2 and V3 reconstruction with cross-face nerve grafts in three patients with acquired trigeminal nerve palsy. Cross-face nerve grafts using the sural nerve permit more proximal reconstruction of the infraorbital and mental nerves, which allows reinnervation of their entire cutaneous distribution. All patients demonstrated improved sensation in the reconstructed dermatomes, and no patients reported donor-site abnormalities. Cross-face nerve grafts result in minimal donor-site morbidity and are promising as a surgical strategy to address sensory deficits of the face. Therapeutic, V.

  3. Cutaneous afferents mediating the cutaneous silent period in the upper limbs: evidences for a role of low-threshold sensory fibres.

    PubMed

    Serrao, M; Parisi, L; Pierelli, F; Rossi, P

    2001-11-01

    To evaluate the contribution of the low-threshold afferents to the production of the cutaneous silent period (CSP) in the upper limbs. The CSP was studied in 10 healthy adults and 4 patients with Friedreich's ataxia. The following neurophysiological aspects were studied: (a) relationship between sensory threshold (ST), sensory action potential (SAP) amplitude and CSP parameters; (b) habituation and recovery cycle of the CSP at different stimulus intensities (2xST and 8xST); (c) pattern of responses in distal and proximal muscles at different stimulus intensities (2xST and 8xST). (a) The CSP occurred at low intensities (1xST and 2xST) and increased abruptly between 3.5xST and 4xST (corresponding to the pain threshold). The SAP amplitude was saturated before CSP saturation. In the patients with Friedreich's ataxia, the CSP appeared only at higher stimulus intensities (6xST-8xST). (b) The CSP evoked at 2xST showed a fast habituation and slow recovery cycle whereas the opposite behaviour was found at 8xST. (c) Low-threshold stimuli induced an inhibitory response restricted to the distal muscles. High-intensity stimulation produced an electromyographic suppression, significantly increasing from proximal to distal muscles. Our findings support the notion that low-threshold afferents participate in the production of the CSP in the upper limbs. The different afferents may activate different central neural networks with separate functional significance.

  4. Chronic recruitment of primary afferent neurons by microstimulation in the feline dorsal root ganglia

    NASA Astrophysics Data System (ADS)

    Fisher, Lee E.; Ayers, Christopher A.; Ciollaro, Mattia; Ventura, Valérie; Weber, Douglas J.; Gaunt, Robert A.

    2014-06-01

    Objective. This study describes results of primary afferent neural microstimulation experiments using microelectrode arrays implanted chronically in the lumbar dorsal root ganglia (DRG) of four cats. The goal was to test the stability and selectivity of these microelectrode arrays as a potential interface for restoration of somatosensory feedback after damage to the nervous system such as amputation. Approach. A five-contact nerve-cuff electrode implanted on the sciatic nerve was used to record the antidromic compound action potential response to DRG microstimulation (2-15 µA biphasic pulses, 200 µs cathodal pulse width), and the threshold for eliciting a response was tracked over time. Recorded responses were segregated based on conduction velocity to determine thresholds for recruiting Group I and Group II/Aβ primary afferent fibers. Main results. Thresholds were initially low (5.1 ± 2.3 µA for Group I and 6.3 ± 2.0 µA for Group II/Aβ) and increased over time. Additionally the number of electrodes with thresholds less than or equal to 15 µA decreased over time. Approximately 12% of tested electrodes continued to elicit responses at 15 µA up to 26 weeks after implantation. Higher stimulation intensities (up to 30 µA) were tested in one cat at 23 weeks post-implantation yielding responses on over 20 additional electrodes. Within the first six weeks after implantation, approximately equal numbers of electrodes elicited only Group I or Group II/Aβ responses at threshold, but the relative proportion of Group II/Aβ responses decreased over time. Significance. These results suggest that it is possible to activate Group I or Group II/Aβ primary afferent fibers in isolation with penetrating microelectrode arrays implanted in the DRG, and that those responses can be elicited up to 26 weeks after implantation, although it may be difficult to achieve a consistent response day-to-day with currently available electrode technology. The DRG are compelling targets

  5. Sensorimotor integration in chronic stroke: Baseline differences and response to sensory training.

    PubMed

    Brown, Katlyn E; Neva, Jason L; Feldman, Samantha J; Staines, W Richard; Boyd, Lara A

    2018-01-01

    The integration of somatosensory information from the environment into the motor cortex to inform movement is essential for motor function. As motor deficits commonly persist into the chronic phase of stroke recovery, it is important to understand potential contributing factors to these deficits, as well as their relationship with motor function. To date the impact of chronic stroke on sensorimotor integration has not been thoroughly investigated. The current study aimed to comprehensively examine the influence of chronic stroke on sensorimotor integration, and determine whether sensorimotor integration can be modified with an intervention. Further, it determined the relationship between neurophysiological measures of sensorimotor integration and motor deficits post-stroke. Fourteen individuals with chronic stroke and twelve older healthy controls participated. Motor impairment and function were quantified in individuals with chronic stroke. Baseline neurophysiology was assessed using nerve-based measures (short- and long-latency afferent inhibition, afferent facilitation) and vibration-based measures of sensorimotor integration, which paired vibration with single and paired-pulse TMS techniques. Neurophysiological assessment was performed before and after a vibration-based sensory training paradigm to assess changes within these circuits. Vibration-based, but not nerve-based measures of sensorimotor integration were different in individuals with chronic stroke, as compared to older healthy controls, suggesting that stroke differentially impacts integration of specific types of somatosensory information. Sensorimotor integration was behaviourally relevant in that it related to both motor function and impairment post-stroke. Finally, sensory training modulated sensorimotor integration in individuals with chronic stroke and controls. Sensorimotor integration is differentially impacted by chronic stroke based on the type of afferent feedback. However, both nerve

  6. Gut vagal sensory signaling regulates hippocampus function through multi-order pathways.

    PubMed

    Suarez, Andrea N; Hsu, Ted M; Liu, Clarissa M; Noble, Emily E; Cortella, Alyssa M; Nakamoto, Emily M; Hahn, Joel D; de Lartigue, Guillaume; Kanoski, Scott E

    2018-06-05

    The vagus nerve is the primary means of neural communication between the gastrointestinal (GI) tract and the brain. Vagally mediated GI signals activate the hippocampus (HPC), a brain region classically linked with memory function. However, the endogenous relevance of GI-derived vagal HPC communication is unknown. Here we utilize a saporin (SAP)-based lesioning procedure to reveal that selective GI vagal sensory/afferent ablation in rats impairs HPC-dependent episodic and spatial memory, effects associated with reduced HPC neurotrophic and neurogenesis markers. To determine the neural pathways connecting the gut to the HPC, we utilize monosynaptic and multisynaptic virus-based tracing methods to identify the medial septum as a relay connecting the medial nucleus tractus solitarius (where GI vagal afferents synapse) to dorsal HPC glutamatergic neurons. We conclude that endogenous GI-derived vagal sensory signaling promotes HPC-dependent memory function via a multi-order brainstem-septal pathway, thereby identifying a previously unknown role for the gut-brain axis in memory control.

  7. Sensory neurons that detect stretch and nutrients in the digestive system

    PubMed Central

    Williams, Erika K.; Chang, Rui B.; Strochlic, David E.; Umans, Benjamin D.; Lowell, Bradford B.; Liberles, Stephen D.

    2016-01-01

    SUMMARY Neural inputs from internal organs are essential for normal autonomic function. The vagus nerve is a key body-brain connection that monitors the digestive, cardiovascular, and respiratory systems. Within the gastrointestinal tract, vagal sensory neurons detect gut hormones and organ distension. Here, we investigate the molecular diversity of vagal sensory neurons and their roles in sensing gastrointestinal inputs. Genetic approaches allowed targeted investigation of gut-to-brain afferents involved in homeostatic responses to ingested nutrients (GPR65 neurons) and mechanical distension of the stomach and intestine (GLP1R neurons). Optogenetics, in vivo ganglion imaging, and genetically guided anatomical mapping provide direct links between neuron identity, peripheral anatomy, central anatomy, conduction velocity, response properties in vitro and in vivo, and physiological function. These studies clarify the roles of vagal afferents in mediating particular gut hormone responses. Moreover, genetic control over gut-to-brain neurons provides a molecular framework for understanding neural control of gastrointestinal physiology. PMID:27238020

  8. Ageing and gastrointestinal sensory function: altered colonic mechanosensory and chemosensory function in the aged mouse

    PubMed Central

    Keating, Christopher; Nocchi, Linda; Yu, Yang; Donovan, Jemma; Grundy, David

    2016-01-01

    Key points Remarkably little is known about how age affects the sensory signalling pathways in the gastrointestinal tract despite age‐related gastrointestinal dysfunction being a prime cause of morbidity amongst the elderly populationHigh‐threshold gastrointestinal sensory nerves play a key role in signalling distressing information from the gut to the brain.We found that ageing is associated with attenuated high‐threshold afferent mechanosensitivity in the murine colon, and associated loss of TRPV1 channel function.These units have the capacity to sensitise in response to injurious events, and their loss in ageing may predispose the elderly to lower awareness of GI injury or disease. Abstract Ageing has a profound effect upon gastrointestinal function through mechanisms that are poorly understood. Here we investigated the effect of age upon gastrointestinal sensory signalling pathways in order to address the mechanisms underlying these changes. In vitro mouse colonic and jejunal preparations with attached splanchnic and mesenteric nerves were used to study mechanosensory and chemosensory afferent function in 3‐, 12‐ and 24‐month‐old C57BL/6 animals. Quantitative RT‐PCR was used to investigate mRNA expression in colonic tissue and dorsal root ganglion (DRG) cells isolated from 3‐ and 24‐month animals, and immunohistochemistry was used to quantify the number of 5‐HT‐expressing enterochromaffin (EC) cells. Colonic and jejunal afferent mechanosensory function was attenuated with age and these effects appeared earlier in the colon compared to the jejunum. Colonic age‐related loss of mechanosensory function was more pronounced in high‐threshold afferents compared to low‐threshold afferents. Chemosensory function was attenuated in the 24‐month colon, affecting TRPV1 and serotonergic signalling pathways. High‐threshold mechanosensory afferent fibres and small‐diameter DRG neurons possessed lower functional TRPV1 receptor responses

  9. Impact of the Sensory Neurons on Melanoma Growth In Vivo

    PubMed Central

    Tapias, Victor; Watkins, Simon C.; Ma, Yang; Shurin, Michael R.; Shurin, Galina V.

    2016-01-01

    Nerve endings are often identified within solid tumors, but their impact on the tumor growth and progression remains poorly understood. Emerging data suggests that the central nervous system may affect cancer development and spreading via the hypothalamic-pituitary-adrenal axis and autonomous nervous system. However, the role of the afferent sensory neurons in tumor growth is unclear, except some reports on perineural invasion in prostate and pancreatic cancer and cancer-related pain syndrome. Here, we provide the results of primary testing of the concept that the interaction between melanoma cells and sensory neurons may induce the formation of tumor-supporting microenvironment via attraction of immune regulatory cells by the tumor-activated dorsal root ganglion (DRG) neurons. We report that despite DRG cells not directly up-regulating proliferation of melanoma cells in vitro, presence of DRG neurons allows tumors to grow significantly faster in vivo. This effect has been associated with increased production of chemokines by tumor-activated DRG neurons and attraction of myeloid-derived suppressor cells both in vitro and in vivo. These initial proof-of-concept results justify further investigations of the sensory (afferent) nervous system in the context of tumorigenesis and the local protumorigenic immunoenvironment. PMID:27227315

  10. Patients' views on early sensory relearning following nerve repair-a Q-methodology study.

    PubMed

    Vikström, Pernilla; Carlsson, Ingela; Rosén, Birgitta; Björkman, Anders

    2017-09-26

    Descriptive study. Early sensory relearning where the dynamic capacity of the brain is used has been shown to improve sensory outcome after nerve repair. However, no previous studies have examined how patients experience early sensory relearning. To describe patient's views on early sensory relearning. Statements' scores were analyzed by factor analysis. Thirty-seven consecutive adult patients with median and/or ulnar nerve repair who completed early sensory relearning were included. Three factors were identified, explaining 45% of the variance: (1) "Believe sensory relearning is meaningful, manage to get an illusion of touch and complete the sensory relearning"; (2) "Do not get an illusion of touch easily and need support in their sensory relearning" (3) "Are not motivated, manage to get an illusion of touch but do not complete sensory relearning". Many patients succeed in implementing their sensory relearning. However, a substantial part of the patient population need more support, have difficulties to create illusion of touch, and lack motivation to complete the sensory relearning. To enhance motivation and meaningfulness by relating the training clearly to everyday occupations and to the patient's life situation is a suggested way to proceed. The three unique factors indicate motivation and sense of meaningfulness as key components which should be taken into consideration in developing programs for person-centered early sensory relearning. 3. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  11. Prostaglandin potentiates 5-HT responses in stomach and ileum innervating visceral afferent sensory neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sojin; Jin, Zhenhua; Lee, Goeun

    2015-01-02

    Highlights: • Prostaglandin E2 (PGE{sub 2}) effect was tested on visceral afferent neurons. • PGE{sub 2} did not evoke response but potentiated serotonin (5-HT) currents up to 167%. • PGE{sub 2}-induced potentiation was blocked by E-prostanoid type 4 receptors antagonist. • PGE{sub 2} effect on 5-HT response was also blocked by protein kinase A inhibitor KT5720. • Thus, PGE{sub 2} modulate visceral afferent neurons via synergistic signaling with 5-HT. - Abstract: Gastrointestinal disorder is a common symptom induced by diverse pathophysiological conditions that include food tolerance, chemotherapy, and irradiation for therapy. Prostaglandin E{sub 2} (PGE{sub 2}) level increase was oftenmore » reported during gastrointestinal disorder and prostaglandin synthetase inhibitors has been used for ameliorate the symptoms. Exogenous administration of PGE{sub 2} induces gastrointestinal disorder, however, the mechanism of action is not known. Therefore, we tested PGE{sub 2} effect on visceral afferent sensory neurons of the rat. Interestingly, PGE{sub 2} itself did not evoked any response but enhanced serotonin (5-HT)-evoked currents up to 167% of the control level. The augmented 5-HT responses were completely inhibited by a 5-HT type 3 receptor antagonist, ondansetron. The PGE{sub 2}-induced potentiation were blocked by a selective E-prostanoid type4 (EP{sub 4}) receptors antagonist, L-161,982, but type1 and 2 receptor antagonist AH6809 has no effect. A membrane permeable protein kinase A (PKA) inhibitor, KT5720 also inhibited PGE{sub 2} effects. PGE{sub 2} induced 5-HT current augmentation was observed on 15% and 21% of the stomach and ileum projecting neurons, respectively. Current results suggest a synergistic signaling in visceral afferent neurons underlying gastrointestinal disorder involving PGE{sub 2} potentiation of 5-HT currents. Our findings may open a possibility for screen a new type drugs with lower side effects than currently using steroidal

  12. Intracranial stimulation of the trigeminal nerve in man. III. Sensory potentials.

    PubMed Central

    Cruccu, G; Inghilleri, M; Manfredi, M; Meglio, M

    1987-01-01

    Percutaneous electrical stimulation of the trigeminal root was performed in 18 subjects undergoing surgery for idiopathic trigeminal neuralgia or implantation of electrodes into Meckel's cave for recording of limbic epileptic activity. All subjects had normal trigeminal reflexes and evoked potentials. Sensory action potentials were recorded antidromically from the supraorbital (V1), infraorbital (V2) and mental (V3) nerves. In the awake subject, sensory potentials were usually followed by myogenic artifacts due to direct activation of masticatory muscles or reflex activation of facial muscles. In the anaesthetised and curarised subject, sensory potentials from the three nerves showed 1.4-2.2 ms onset latency, 1.9-2.7 ms peak latency and 17-29 microV amplitude. Sensory conduction velocity was computed at the onset latency (maximum CV) and at the peak latency (peak CV). On average, maximum and peak CV were 52 and 39 m/s for V1, 54 and 42 m/s for V2 and 54 and 44 m/s for V3. There was no apparent difference in CV between subjects with trigeminal neuralgia and those with epilepsy. A significant inverse correlation was found between CV and age, the overall maximum CV declining from 59 m/s (16 years) to 49 m/s (73 years). This range of CV is compatible both with histometric data and previous electrophysiological findings on trigeminal nerve conduction. Intraoperative intracranial stimulation is also proposed as a method of monitoring trigeminal function under general anaesthesia. Images PMID:3681311

  13. Effects from fine muscle and cutaneous afferents on spinal locomotion in cats

    PubMed Central

    Kniffki, K.-D.; Schomburg, E. D.; Steffens, H.

    1981-01-01

    1. The effects of chemically activated fine muscle afferents (groups III and IV) and electrically activated cutaneous afferents on motoneuronal discharges were studied before and during fictive locomotion induced pharmacologically by i.v. administration of nialamide and l-DOPA in high spinal cats. Efferent activity was recorded simultaneously from nerve filaments to ipsi- and contralateral extensor and flexor muscles. In addition, intracellular recordings were made from lumbar α-motoneurones. 2. After nialamide but before treatment with l-DOPA, in some cases, transient locomotor-like discharges were induced by an increased activity in fine muscle afferents. The response pattern in nerves to both hind limbs could be different showing e.g. only transient alternating activity between knee flexor and extensor of one limb but not of the other one. 3. Treatment with l-DOPA did not always cause fictive locomotion. Often not all motoneurone pools showed rhythmic activity. In these cases stimulation of group III and IV muscle afferents usually caused transient periodic activity. In cases with apparent rhythmic activity, algesic stimulation of the gastrocnemius—soleus muscle caused an accentuation of the rhythm by a more abrupt transition from the active phase to the non-active interval. Again, the response patterns on both sides were not uniform in all cases. 4. A second type of response to activation of fine muscle afferents had a quite different character: the rhythmic activity was more or less completely overridden by a strong transient tonic hyperactivity or the rhythm was transiently blocked. These phenomena did not occur in the same way in all nerves. 5. Electrical stimulation of cutaneous nerves of the hind limb generally induced the same response pattern as chemical stimulation of the group III and IV muscle afferents. The effects varied depending on the stimulus strength and the nerve. 6. The results revealed that cutaneous and fine muscle afferents not only

  14. Stimulus waveform determines the characteristics of sensory nerve action potentials.

    PubMed

    Pereira, Pedro; Leote, João; Cabib, Christopher; Casanova-Molla, Jordi; Valls-Sole, Josep

    2016-03-01

    In routine nerve conduction studies supramaximal electrical stimuli generate sensory nerve action potentials by depolarization of nerve fibers under the cathode. However, stimuli of submaximal intensity may give rise to action potentials generated under the anode. We tested if this phenomenon depends on the characteristics of stimulus ending. We added a circuit to our stimulation device that allowed us to modify the end of the stimulus by increasing the time constant of the decay phase. Increasing the fall time caused a reduction of anode action potential (anAP) amplitude, and eventually abolished it, in all tested subjects. We subsequently examined the stimulus waveform in a series of available electromyographs stimulators and found that the anAP could only be obtained with stimulators that issued stimuli ending sharply. Our results prove that the anAP is generated at stimulus end, and depends on the sharpness of current shut down. Electromyographs produce stimuli of varying characteristics, which limits the reproducibility of anAP results by interested researchers. The study of anodal action potentials might be a useful tool to have a quick appraisal of distal human sensory nerve excitability. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Ablation of capsaicin sensitive afferent nerves impairs defence but not rapid repair of rat gastric mucosa.

    PubMed

    Pabst, M A; Schöninkle, E; Holzer, P

    1993-07-01

    Capsaicin sensitive afferent neurones have previously been reported to play a part in gastric mucosal protection. The aim of this study was to investigate whether these nociceptive neurones strengthen mucosal defence against injury or promote rapid repair of the damaged mucosa, or both. This hypothesis was examined in anaesthetised rats whose stomachs were perfused with ethanol (25 or 50% in saline, wt/wt) for 30 minutes. The gastric mucosa was inspected 0 and 180 minutes after ethanol had been given at the macroscopic, light, and scanning electron microscopic level. Rapid repair of the ethanol injured gastric mucosa (reduction of deep injury, partial re-epithelialisation of the denuded surface) took place in rats anaesthetised with phenobarbital, but not in those anaesthetised with urethane. Afferent nerve ablation as a result of treating rats with a neurotoxic dose of capsaicin before the experiment significantly aggravated ethanol induced damage as shown by an increase in the area and depth of mucosal erosions. Rapid repair of the injured mucosa, however, as seen in rats anesthetised with phenobarbital 180 minutes after ethanol was given, was similar in capsaicin and vehicle pretreated animals. Ablation of capsaicin sensitive afferent neurones was verified by a depletion of calcitonin gene related peptide from the gastric corpus wall. These findings indicate that nociceptive neurones control mechanisms of defence against acute injury but are not required for rapid repair of injured mucosa.

  16. Sensory innervation of the temporomandibular joint in the mouse.

    PubMed

    Dreessen, D; Halata, Z; Strasmann, T

    1990-01-01

    The sensory innervation of the temporomandibular joints (TMJs) of 8 STR/IN mice was investigated by means of light and electron microscopy. Through the cutting of complete semithin sections in series it was possible to investigate the joints thoroughly. Additionally, one joint with its nerve supply was reconstructed three-dimensionally with a computerized three-dimensional programme. The reconstruction was based on one complete semithin section series. The joint's nerve supply originates from the nervus auriculotemporalis and additionally from motor branches of the n. mandibularis: n. massetericus, n. pterygoideus lateralis and the nn. temporales posteriores. The greatest number of nerve fibres and endings is located in the dorsolateral part of the joint capsule. They lie only in the stratum fibrosum and subsynovially. Neither the stratum synoviale nor the discus articularis contain any nerve fibres or endings, whereas the peri-articular loose connective tissue is richly innervated. The only type of nerve ending observed within the joint was the free nerve ending, which is assumed to serve not only as a nociceptor but also as a polymodal mechanoreceptor. Merely within the insertion of the musculus pterygoideus lateralis at the collum mandibulae single stretch receptors of the Ruffini type were observed. Ultrastructurally, they correspond to those described in the cat's knee joint. Neither lamellated nor nerve endings of the Golgi or Pacini type were observed in the joint or in the peri-articular connective tissue. The unexpected paucity of nerve fibres and endings in the TMJ itself of the mouse suggests that the afferent information from the joint is less important for position sense and movement than the afferent information from muscles, tendons and periodontal ligaments.

  17. Sensory signs in complex regional pain syndrome and peripheral nerve injury.

    PubMed

    Gierthmühlen, Janne; Maier, Christoph; Baron, Ralf; Tölle, Thomas; Treede, Rolf-Detlef; Birbaumer, Niels; Huge, Volker; Koroschetz, Jana; Krumova, Elena K; Lauchart, Meike; Maihöfner, Christian; Richter, Helmut; Westermann, Andrea

    2012-04-01

    This study determined patterns of sensory signs in complex regional pain syndrome (CRPS) type I and II and peripheral nerve injury (PNI). Patients with upper-limb CRPS-I (n=298), CRPS-II (n=46), and PNI (n=72) were examined with quantitative sensory testing according to the protocol of the German Research Network on Neuropathic Pain. The majority of patients (66%-69%) exhibited a combination of sensory loss and gain. Patients with CRPS-I had more sensory gain (heat and pressure pain) and less sensory loss than patients with PNI (thermal and mechanical detection, hypoalgesia to heat or pinprick). CRPS-II patients shared features of CRPS-I and PNI. CRPS-I and CRPS-II had almost identical somatosensory profiles, with the exception of a stronger loss of mechanical detection in CRPS-II. In CRPS-I and -II, cold hyperalgesia/allodynia (28%-31%) and dynamic mechanical allodynia (24%-28%) were less frequent than heat or pressure hyperalgesia (36%-44%, 67%-73%), and mechanical hypoesthesia (31%-55%) was more frequent than thermal hypoesthesia (30%-44%). About 82% of PNI patients had at least one type of sensory gain. QST demonstrates more sensory loss in CRPS-I than hitherto considered, suggesting either minimal nerve injury or central inhibition. Sensory profiles suggest that CRPS-I and CRPS-II may represent one disease continuum. However, in contrast to recent suggestions, small fiber deficits were less frequent than large fiber deficits. Sensory gain is highly prevalent in PNI, indicating a better similarity of animal models to human patients than previously thought. These sensory profiles should help prioritize approaches for translation between animal and human research. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  18. Sensory and motor peripheral nerve function and incident mobility disability.

    PubMed

    Ward, Rachel E; Boudreau, Robert M; Caserotti, Paolo; Harris, Tamara B; Zivkovic, Sasa; Goodpaster, Bret H; Satterfield, Suzanne; Kritchevsky, Stephen B; Schwartz, Ann V; Vinik, Aaron I; Cauley, Jane A; Simonsick, Eleanor M; Newman, Anne B; Strotmeyer, Elsa S

    2014-12-01

    To assess the relationship between sensorimotor nerve function and incident mobility disability over 10 years. Prospective cohort study with longitudinal analysis. Two U.S. clinical sites. Population-based sample of community-dwelling older adults with no mobility disability at 2000/01 examination (N = 2,148 [Corrected]; mean age ± SD 76.5 ± 2.9, body mass index 27.1 ± 4.6; 50.2% female, 36.6% black, 10.7% with diabetes mellitus). Motor nerve conduction amplitude (poor <1 mV) and velocity (poor <40 m/s) were measured on the deep peroneal nerve. Sensory nerve function was measured using 10- and 1.4-g monofilaments and vibration detection threshold at the toe. Lower extremity symptoms included numbness or tingling and aching or burning pain. Incident mobility disability assessed semiannually over 8.5 years (interquartile range 4.5-9.6 years) was defined as two consecutive self-reports of a lot of difficulty or inability to walk one-quarter of a mile or climb 10 steps. Nerve impairments were detected in 55% of participants, and 30% developed mobility disability. Worse motor amplitude (HR = 1.29 per SD, 95% CI = 1.16-1.44), vibration detection threshold (HR = 1.13 per SD, 95% CI = 1.04-1.23), symptoms (HR = 1.65, 95% CI = 1.26-2.17), two motor impairments (HR = 2.10, 95% CI = 1.43-3.09), two sensory impairments (HR = 1.91, 95% CI = 1.37-2.68), and three or more nerve impairments (HR = 2.33, 95% CI = 1.54-3.53) predicted incident mobility disability after adjustment. Quadriceps strength mediated relationships between certain nerve impairments and mobility disability, although most remained significant. Poor sensorimotor nerve function independently predicted mobility disability. Future work should investigate modifiable risk factors and interventions such as strength training for preventing disability and improving function in older adults with poor nerve function. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.

  19. Peripheral Motor and Sensory Nerve Conduction following Transplantation of Undifferentiated Autologous Adipose Tissue-Derived Stem Cells in a Biodegradable U.S. Food and Drug Administration-Approved Nerve Conduit.

    PubMed

    Klein, Silvan M; Vykoukal, Jody; Li, De-Pei; Pan, Hui-Lin; Zeitler, Katharina; Alt, Eckhard; Geis, Sebastian; Felthaus, Oliver; Prantl, Lukas

    2016-07-01

    Conduits preseeded with either Schwann cells or stem cells differentiated into Schwann cells demonstrated promising results for the outcome of nerve regeneration in nerve defects. The concept of this trial combines nerve repair by means of a commercially available nerve guidance conduit and preseeding with autologous, undifferentiated, adipose tissue-derived stem cells. Adipose tissue-derived stem cells were harvested from rats and subsequently seeded onto a U.S. Food and Drug Administration-approved type I collagen conduit. Sciatic nerve gaps 10 mm in length were created, and nerve repair was performed by the transplantation of either conduits preseeded with autologous adipose tissue-derived stem cells or acellular (control group) conduits. After 6 months, the motor and sensory nerve conduction velocity were assessed. Nerves were removed and examined by hematoxylin and eosin, van Gieson, and immunohistochemistry (S100 protein) staining for the quality of axonal regeneration. Nerve gaps treated with adipose tissue-derived stem cells showed superior nerve regeneration, reflected by higher motor and sensory nerve conduction velocity values. The motor and sensory nerve conduction velocity were significantly greater in nerves treated with conduits preseeded with adipose tissue-derived stem cells than in nerves treated with conduits alone (p < 0.05). Increased S100 immunoreactivity was detected for the adipose tissue-derived stem cell group. In this group, axon arrangement inside the conduits was more organized. Transplantation of adipose tissue-derived stem cells significantly improves motor and sensory nerve conduction velocity in peripheral nerve gaps. Preseeded conduits showed a more organized axon arrangement inside the conduit in comparison with nerve conduits alone. The approach used here could readily be translated into a clinical therapy. Therapeutic, V.

  20. Sonography-guided recording for superficial peroneal sensory nerve conduction study.

    PubMed

    Kim, Ki Hoon; Park, Byung Kyu; Kim, Dong Hwee; Kim, Yuntae

    2018-04-01

    We sought to establish the optimal recording position for antidromic conduction of the superficial peroneal nerve (SPN) by using ultrasonography (USG). The sensory nerve action potentials (SNAPs) of the intermediate dorsal cutaneous nerve (IDCN) and medial dorsal cutaneous nerve (MDCN) in 64 limbs of 32 healthy participants were recorded (nerve conduction study [NCS]-1). Both nerves were identified by using USG, and the SNAPs were obtained from the USG-guided repositioned electrodes (NCS-2). The IDCN and MDCN were located at 29.3% ± 5.1% and 43.9% ± 4.9% of the intermalleolar distance from the lateral malleolus, respectively. Significantly greater amplitude was shown for SNAPs of both nerves in NCS-2 versus NCS-1. The optimal recording position is likely to be lateral, one-third from the lateral malleolus for the IDCN, and just lateral to the midpoint of the intermalleolar line for the MDCN. When the SPN response is unexpectedly attenuated, USG-guided repositioning of the electrodes should be considered. Muscle Nerve 57: 628-633, 2018. © 2017 Wiley Periodicals, Inc.

  1. The effect of hyperbaric oxygen treatment on early regeneration of sensory axons after nerve crush in the rat.

    PubMed

    Bajrović, Fajko F; Sketelj, Janez; Jug, Marko; Gril, Iztok; Mekjavić, Igor B

    2002-09-01

    Abstract The effect of hyperbaric oxygen treatment (HBO) on sensory axon regeneration was examined in the rat. The sciatic nerve was crushed in both legs. In addition, the distal stump of the sural nerve on one side was made acellular and its blood perfusion was compromised by freezing and thawing. Two experimental groups received hyperbaric exposures (2.5 ATA) to either compressed air (pO2 = 0.5 ATA) or 100% oxygen (pO2 = 2.5 ATA) 90 minutes per day for 6 days. Sensory axon regeneration in the sural nerve was thereafter assessed by the nerve pinch test and immunohistochemical reaction to neurofilament. HBO treatment increased the distances reached by the fastest regenerating sensory axons by about 15% in the distal nerve segments with preserved and with compromised blood perfusion. There was no significant difference between the rats treated with different oxygen tensions. The total number of regenerated axons in the distal sural nerve segments after a simple crush injury was not affected, whereas in the nerve segments with compromised blood perfusion treated by the higher pO2, the axon number was about 30% lower than that in the control group. It is concluded that the beneficial effect of HBO on sensory axon regeneration is not dose-dependent between 0.5 and 2.5 ATA pO2. Although the exposure to 2.5 ATA of pO2 moderately enhanced early regeneration of the fastest sensory axons, it decreased the number of regenerating axons in the injured nerves with compromised blood perfusion of the distal nerve stump.

  2. A historical perspective on the role of sensory nerves in neurogenic inflammation.

    PubMed

    Sousa-Valente, João; Brain, Susan D

    2018-05-01

    The term 'neurogenic inflammation' is commonly used, especially with respect to the role of sensory nerves within inflammatory disease. However, despite over a century of research, we remain unclear about the role of these nerves in the vascular biology of inflammation, as compared with their interacting role in pain processing and of their potential for therapeutic manipulation. This chapter attempts to discuss the progress in understanding, from the initial discovery of sensory nerves until the present day. This covers pioneering findings that these nerves exist, are involved in vascular events and act as important sensors of environmental changes, including injury and infection. This is followed by discovery of the contents they release such as the established vasoactive neuropeptides substance P and CGRP as well as anti-inflammatory peptides such as the opioids and somatostatin. The more recent emergence of the importance of the transient receptor potential (TRP) channels has revealed some of the mechanisms by which these nerves sense environmental stimuli. This knowledge enables a platform from which to learn of the potential role of neurogenic inflammation in disease and in turn of novel therapeutic targets.

  3. Neuroregulation of a chemosensitive afferent system in the canine distal esophagus.

    PubMed

    Sandler, A D; Schlegel, J F; DeSautel, M G; Maher, J W

    1993-10-01

    Systemic and local responses mediated by chemonociceptive receptors located in the mucosa of the canine distal esophagus were examined following stimulation with capsaicin (8-methyl-N-vanillyl-6-nonenamide). The neural pathways and neurotransmitters mediating these sensory responses were also investigated. Topical application of capsaicin solution to the distal esophageal mucosa produced significant increases in lower esophageal sphincter pressure (LESP), mean arterial pressure (MAP), pulse rate (PR), and respiratory rate (RR) (P < 0.01). Pretreatment with tetrodotoxin completely abolished this reflex activity. Following truncal vagotomy and pyloroplasty, topical capsaicin application produced an increase in LESP, but the increases in MAP, PR, and RR were blocked. The initial increase in LESP was blocked by hexamethonium, atropine, and 4-diphenylacetoxy-N-methylpiperidine, but was not inhibited by phentolamine. Excitatory cardiovascular responses were inhibited by hexamethonium. Administration of a Substance P antagonist attenuated both local and systemic responses. These studies suggest that the vagus nerves serve as the primary afferent pathways through which chemonociceptive esophageal stimuli can induce cardiovascular and respiratory reflex excitation. The increase in lower esophageal sphincter pressure in response to mucosal capsaicin stimulation is mediated via an intrinsic neural pathway that functions independently of vagal innervation, but is dependent on both cholinergic ganglionic neurotransmission and muscarinic type 2 smooth muscle receptor excitation. Substance P appears to play a role in primary sensory afferents as a chemonociceptive neurotransmitter in the canine distal esophagus.

  4. Optogenetic Activation of Colon Epithelium of the Mouse Produces High-Frequency Bursting in Extrinsic Colon Afferents and Engages Visceromotor Responses.

    PubMed

    Makadia, Payal A; Najjar, Sarah A; Saloman, Jami L; Adelman, Peter; Feng, Bin; Margiotta, Joseph F; Albers, Kathryn M; Davis, Brian M

    2018-06-20

    Epithelial cells of the colon provide a vital interface between the internal environment (lumen of the colon) and colon parenchyma. To examine epithelial-neuronal signaling at this interface, we analyzed mice in which channelrhodopsin (ChR2) was targeted to either TRPV1-positive afferents or to villin-expressing colon epithelial cells. Expression of a ChR2-EYFP fusion protein was directed to either primary sensory neurons or to colon epithelial cells by crossing Ai32 mice with TRPV1-Cre or villin-Cre mice, respectively. An ex vivo preparation of the colon was used for single-fiber analysis of colon sensory afferents of the pelvic nerve. Afferents were characterized using previously described criteria as mucosal, muscular, muscular-mucosal, or serosal and then tested for blue light-induced activation. Light activation of colon epithelial cells produced robust firing of action potentials, similar to that elicited by physiologic stimulation (e.g., circumferential stretch), in 50.5% of colon afferents of mice homozygous for ChR2 expression. Light-induced activity could be reduced or abolished in most fibers using a cocktail of purinergic receptor blockers suggesting ATP release by the epithelium contributed to generation of sensory neuron action potentials. Using electromyographic recording of visceromotor responses we found that light stimulation of the colon epithelium evoked behavioral responses in Vil-ChR2 mice that was similar to that seen with balloon distension of the colon. These ex vivo and in vivo data indicate that light stimulation of colon epithelial cells alone, without added mechanical or chemical stimuli, can directly activate colon afferents and elicit behavioral responses. SIGNIFICANCE STATEMENT Abdominal pain that accompanies inflammatory diseases of the bowel is particularly vexing because it can occur without obvious changes in the structure or inflammatory condition of the colon. Pain reflects abnormal sensory neuron activity that may be

  5. Connexin36 Expression in Primary Afferent Neurons in Relation to the Axon Reflex and Modality Coding of Somatic Sensation.

    PubMed

    Nagy, J I; Lynn, B D; Senecal, J M M; Stecina, K

    2018-05-07

    Electrical coupling mediated by connexin36-containing gap junctions that form electrical synapses is known to be prevalent in the central nervous system, but such coupling was long ago reported also to occur between cutaneous sensory fibers. Here, we provide evidence supporting the capability of primary afferent fibers to engage in electrical coupling. In transgenic mice with enhanced green fluorescent protein (eGFP) serving as a reporter for connexin36 expression, immunofluorescence labeling of eGFP was found in subpopulations of neurons in lumbar dorsal root and trigeminal sensory ganglia, and in fibers within peripheral nerves and tissues. Immunolabeling of connexin36 was robust in the sciatic nerve, weaker in sensory ganglia than in peripheral nerve, and absent in these tissues from Cx36 null mice. Connexin36 mRNA was detected in ganglia from wild-type mice, but not in those from Cx36 null mice. Labeling of eGFP was localized within a subpopulation of ganglion cells containing substance P and calcitonin gene-releasing peptide, and in peripheral fibers containing these peptides. Expression of eGFP was also found in various proportions of sensory ganglion neurons containing transient receptor potential (TRP) channels, including TRPV1 and TRPM8. Ganglion cells labeled for isolectin B4 and tyrosine hydroxylase displayed very little co-localization with eGFP. Our results suggest that previously observed electrical coupling between peripheral sensory fibers occurs via electrical synapses formed by Cx36-containing gap junctions, and that some degree of selectivity in the extent of electrical coupling may occur between fibers belonging to subpopulations of sensory neurons identified according to their sensory modality responsiveness. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Afferent control of central pattern generators: experimental analysis of scratching in the decerebrate cat.

    PubMed

    Baev, K V; Esipenko, V B; Shimansky, Y P

    1991-01-01

    Systematic quantitative analysis of changes in the spinal scratching generator motor activity evoked by tonic and phasic peripheral afferent signals during "fictitious" scratching was carried out in the cat. Correlations between the kinematics of hindlimb scratching movement, sensory inflow, and primary afferent depolarization were investigated. Reliable correlations between the parameters of generator motor activity during fictitious scratching were revealed: they depended on tonic peripheral afferent inflow. The functional role of these dependencies consists of providing stability for aiming the hindlimb to the itch site. It was shown that scratching generator reaction to a phasic sensory signal depended significantly on afferent input, signal intensity, and its arrival phase in the cycle of motor activity. Phase correction of "scratching" rhythm was performed by inhibition of the current stage of "scratching" cycle, the inhibition magnitude depending on the intensity of a sensory signal run along high threshold afferent fibers. The moments in the scratching cycle, in which the afferent signal caused no rearrangement in scratching generator activity, were discovered for all investigated afferent inputs. These moments corresponded to the transitions from one scratching cycle phase to another. Integral afferent activity was distributed unevenly in the cycle during real scratching. The main part of it was observed just in that scratching cycle part which included the above mentioned no rearrangement phase points. The data obtained allowed us to conclude that the scratching generator should be considered as a working program for the motor optimal control system containing the intrinsic model of the controlled object dynamics (e.g. hindlimb scratching movement dynamics), which produces an inner analog of peripheral flow. This inner flow interacts with peripheral afferent inflow just as one of the latter components. Centrally originated modulation of primary afferent

  7. Effects of gastric distension and infusion of umami and bitter taste stimuli on vagal afferent activity.

    PubMed

    Horn, Charles C; Murat, Chloé; Rosazza, Matthew; Still, Liz

    2011-10-24

    Until recently, sensory nerve pathways from the stomach to the brain were thought to detect distension and play little role in nutritional signaling. Newer data have challenged this view, including reports on the presence of taste receptors in the gastrointestinal lumen and the stimulation of multi-unit vagal afferent activity by glutamate infusions into the stomach. However, assessing these chemosensory effects is difficult because gastric infusions typically evoke a distension-related vagal afferent response. In the current study, we recorded gastric vagal afferent activity in the rat to investigate the possibility that umami (glutamate, 150 mM) and bitter (denatonium, 10 mM) responses could be dissociated from distension responses by adjusting the infusion rate and opening or closing the drainage port in the stomach. Slow infusions of saline (5 ml over 2 min, open port) produced no significant effects on vagal activity. Using the same infusion rate, glutamate or denatonium solutions produced little or no effects on vagal afferent activity. In an attempt to reproduce a prior report that showed distention and glutamate responses, we produced a distension response by closing the exit port. Under this condition, response to the infusion of glutamate or denatonium was similar to saline. In summary, we found little or no effect of gastric infusion of glutamate or denatonium on gastric vagal afferent activity that could be distinguished from distension responses. The current results suggest that sensitivity to umami or bitter stimuli is not a common property of gastric vagal afferent fibers. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Central projections of antennular chemosensory and mechanosensory afferents in the brain of the terrestrial hermit crab (Coenobita clypeatus; Coenobitidae, Anomura)

    PubMed Central

    Tuchina, Oksana; Koczan, Stefan; Harzsch, Steffen; Rybak, Jürgen; Wolff, Gabriella; Strausfeld, Nicholas J.; Hansson, Bill S.

    2015-01-01

    The Coenobitidae (Decapoda, Anomura, Paguroidea) is a taxon of hermit crabs that includes two genera with a fully terrestrial life style as adults. Previous studies have shown that Coenobitidae have evolved a sense of spatial odor localization that is behaviorally highly relevant. Here, we examined the central olfactory pathway of these animals by analyzing central projections of the antennular nerve of Coenobita clypeatus, combining backfilling of the nerve with dextran-coupled dye, Golgi impregnations and three-dimensional reconstruction of the primary olfactory center, the antennular lobe. The principal pattern of putative olfactory sensory afferents in C. clypeatus is in many aspects similar to what have been established for aquatic decapod crustaceans, such as the spiny lobster Panulirus argus. However, there are also obvious differences that may, or may not represent adaptations related to a terrestrial lifestyle. In C. clypeatus, the antennular lobe dominates the deutocerebrum, having more than one thousand allantoid-shaped subunits. We observed two distinct patterns of sensory neuron innervation: putative olfactory afferents from the aesthetascs either supply the cap/subcap region of the subunits or they extend through its full depth. Our data also demonstrate that any one sensory axon can supply input to several subunits. Putative chemosensory (non-aesthetasc) and mechanosensory axons represent a different pathway and innervate the lateral and median antennular neuropils. Hence, we suggest that the chemosensory input in C. clypeatus might be represented via a dual pathway: aesthetascs target the antennular lobe, and bimodal sensilla target the lateral antennular neuropil and median antennular neuropil. The present data is compared to related findings in other decapod crustaceans. PMID:26236202

  9. Hydrogen peroxide preferentially activates capsaicin-sensitive high threshold afferents via TRPA1 channels in the guinea pig bladder.

    PubMed

    Nicholas, S; Yuan, S Y; Brookes, S J H; Spencer, N J; Zagorodnyuk, V P

    2017-01-01

    There is increasing evidence suggesting that ROS play a major pathological role in bladder dysfunction induced by bladder inflammation and/or obstruction. The aim of this study was to determine the effect of H 2 O 2 on different types of bladder afferents and its mechanism of action on sensory neurons in the guinea pig bladder. 'Close-to-target' single unit extracellular recordings were made from fine branches of pelvic nerves entering the guinea pig bladder, in flat sheet preparations, in vitro. H 2 O 2 (300-1000 μM) preferentially and potently activated capsaicin-sensitive high threshold afferents but not low threshold stretch-sensitive afferents, which were only activated by significantly higher concentrations of hydrogen peroxide. The TRPV1 channel agonist, capsaicin, excited 86% of high threshold afferents. The TRPA1 channel agonist, allyl isothiocyanate and the TRPM8 channel agonist, icilin activated 72% and 47% of capsaicin-sensitive high threshold afferents respectively. The TRPA1 channel antagonist, HC-030031, but not the TRPV1 channel antagonist, capsazepine or the TRPM8 channel antagonist, N-(2-aminoethyl)-N-[[3-methoxy-4-(phenylmethoxy)phenyl]methyl]thiophene-2-carboxamide, significantly inhibited the H 2 O 2 -induced activation of high threshold afferents. Dimethylthiourea and deferoxamine did not significantly change the effect of H 2 O 2 on high threshold afferents. The findings show that H 2 O 2 , in the concentration range detected in inflammation or reperfusion after ischaemia, evoked long-lasting activation of the majority of capsaicin-sensitive high threshold afferents, but not low threshold stretch-sensitive afferents. The data suggest that the TRPA1 channels located on these capsaicin-sensitive afferent fibres are probable targets of ROS released during oxidative stress. © 2016 The British Pharmacological Society.

  10. Hydrogen peroxide preferentially activates capsaicin‐sensitive high threshold afferents via TRPA1 channels in the guinea pig bladder

    PubMed Central

    Nicholas, S; Yuan, S Y; Brookes, S J H; Spencer, N J

    2016-01-01

    Background and Purpose There is increasing evidence suggesting that ROS play a major pathological role in bladder dysfunction induced by bladder inflammation and/or obstruction. The aim of this study was to determine the effect of H2O2 on different types of bladder afferents and its mechanism of action on sensory neurons in the guinea pig bladder. Experimental Approach ‘Close‐to‐target’ single unit extracellular recordings were made from fine branches of pelvic nerves entering the guinea pig bladder, in flat sheet preparations, in vitro. Key Results H2O2 (300–1000 μM) preferentially and potently activated capsaicin‐sensitive high threshold afferents but not low threshold stretch‐sensitive afferents, which were only activated by significantly higher concentrations of hydrogen peroxide. The TRPV1 channel agonist, capsaicin, excited 86% of high threshold afferents. The TRPA1 channel agonist, allyl isothiocyanate and the TRPM8 channel agonist, icilin activated 72% and 47% of capsaicin‐sensitive high threshold afferents respectively. The TRPA1 channel antagonist, HC‐030031, but not the TRPV1 channel antagonist, capsazepine or the TRPM8 channel antagonist, N‐(2‐aminoethyl)‐N‐[[3‐methoxy‐4‐(phenylmethoxy)phenyl]methyl]thiophene‐2‐carboxamide, significantly inhibited the H2O2‐induced activation of high threshold afferents. Dimethylthiourea and deferoxamine did not significantly change the effect of H2O2 on high threshold afferents. Conclusions and Implications The findings show that H2O2, in the concentration range detected in inflammation or reperfusion after ischaemia, evoked long‐lasting activation of the majority of capsaicin‐sensitive high threshold afferents, but not low threshold stretch‐sensitive afferents. The data suggest that the TRPA1 channels located on these capsaicin‐sensitive afferent fibres are probable targets of ROS released during oxidative stress. PMID:27792844

  11. Secretion of Growth Hormone in Response to Muscle Sensory Nerve Stimulation

    NASA Technical Reports Server (NTRS)

    Grindeland, Richard E.; Roy, R. R.; Edgerton, V. R.; Gosselink, K. L.; Grossman, E. J.; Sawchenko, P. E.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Growth hormone (GH) secretion is stimulated by aerobic and resistive exercise and inhibited by exposure to actual or simulated (bedrest, hindlimb suspension) microgravity. Moreover, hypothalamic growth hormone-releasing factor (GRF) and preproGRF mRNA are markedly decreased in spaceflight rats. These observations suggest that reduced sensory input from inactive muscles may contribute to the reduced secretion of GH seen in "0 G". Thus, the aim of this study was to determine the effect of muscle sensory nerve stimulation on secretion of GH. Fed male Wistar rats (304 +/- 23 g) were anesthetized (pentobarbital) and the right peroneal (Pe), tibial (T), and sural (S) nerves were cut. Electrical stimulation of the distal (D) or proximal (P) ends of the nerves was implemented for 15 min. to mimic the EMG activity patterns of ankle extensor muscles of a rat walking 1.5 mph. The rats were bled by cardiac puncture and their anterior pituitaries collected. Pituitary and plasma bioactive (BGH) and immunoactive (IGH) GH were measured by bioassay and RIA.

  12. The relationship of nerve fibre pathology to sensory function in entrapment neuropathy

    PubMed Central

    Schmid, Annina B.; Bland, Jeremy D. P.; Bhat, Manzoor A.

    2014-01-01

    Surprisingly little is known about the impact of entrapment neuropathy on target innervation and the relationship of nerve fibre pathology to sensory symptoms and signs. Carpal tunnel syndrome is the most common entrapment neuropathy; the aim of this study was to investigate its effect on the morphology of small unmyelinated as well as myelinated sensory axons and relate such changes to somatosensory function and clinical symptoms. Thirty patients with a clinical and electrophysiological diagnosis of carpal tunnel syndrome [17 females, mean age (standard deviation) 56.4 (15.3)] and 26 age and gender matched healthy volunteers [18 females, mean age (standard deviation) 51.0 (17.3)] participated in the study. Small and large fibre function was examined with quantitative sensory testing in the median nerve territory of the hand. Vibration and mechanical detection thresholds were significantly elevated in patients with carpal tunnel syndrome (P < 0.007) confirming large fibre dysfunction and patients also presented with increased thermal detection thresholds (P < 0.0001) indicative of C and Aδ-fibre dysfunction. Mechanical and thermal pain thresholds were comparable between groups (P > 0.13). A skin biopsy was taken from a median nerve innervated area of the proximal phalanx of the index finger. Immunohistochemical staining for protein gene product 9.5 and myelin basic protein was used to evaluate morphological features of unmyelinated and myelinated axons. Evaluation of intraepidermal nerve fibre density showed a striking loss in patients (P < 0.0001) confirming a significant compromise of small fibres. The extent of Meissner corpuscles and dermal nerve bundles were comparable between groups (P > 0.07). However, patients displayed a significant increase in the percentage of elongated nodes (P < 0.0001), with altered architecture of voltage-gated sodium channel distribution. Whereas neither neurophysiology nor quantitative sensory testing correlated with patients

  13. Factors predicting sensory and motor recovery after the repair of upper limb peripheral nerve injuries

    PubMed Central

    He, Bo; Zhu, Zhaowei; Zhu, Qingtang; Zhou, Xiang; Zheng, Canbin; Li, Pengliang; Zhu, Shuang; Liu, Xiaolin; Zhu, Jiakai

    2014-01-01

    OBJECTIVE: To investigate the factors associated with sensory and motor recovery after the repair of upper limb peripheral nerve injuries. DATA SOURCES: The online PubMed database was searched for English articles describing outcomes after the repair of median, ulnar, radial, and digital nerve injuries in humans with a publication date between 1 January 1990 and 16 February 2011. STUDY SELECTION: The following types of article were selected: (1) clinical trials describing the repair of median, ulnar, radial, and digital nerve injuries published in English; and (2) studies that reported sufficient patient information, including age, mechanism of injury, nerve injured, injury location, defect length, repair time, repair method, and repair materials. SPSS 13.0 software was used to perform univariate and multivariate logistic regression analyses and to investigate the patient and intervention factors associated with outcomes. MAIN OUTCOME MEASURES: Sensory function was assessed using the Mackinnon-Dellon scale and motor function was assessed using the manual muscle test. Satisfactory motor recovery was defined as grade M4 or M5, and satisfactory sensory recovery was defined as grade S3+ or S4. RESULTS: Seventy-one articles were included in this study. Univariate and multivariate logistic regression analyses showed that repair time, repair materials, and nerve injured were independent predictors of outcome after the repair of nerve injuries (P < 0.05), and that the nerve injured was the main factor affecting the rate of good to excellent recovery. CONCLUSION: Predictors of outcome after the repair of peripheral nerve injuries include age, gender, repair time, repair materials, nerve injured, defect length, and duration of follow-up. PMID:25206870

  14. Novel Neurostimulation of Autonomic Pelvic Nerves Overcomes Bladder-Sphincter Dyssynergia

    PubMed Central

    Peh, Wendy Yen Xian; Mogan, Roshini; Thow, Xin Yuan; Chua, Soo Min; Rusly, Astrid; Thakor, Nitish V.; Yen, Shih-Cheng

    2018-01-01

    The disruption of coordination between smooth muscle contraction in the bladder and the relaxation of the external urethral sphincter (EUS) striated muscle is a common issue in dysfunctional bladders. It is a significant challenge to overcome for neuromodulation approaches to restore bladder control. Bladder-sphincter dyssynergia leads to undesirably high bladder pressures, and poor voiding outcomes, which can pose life-threatening secondary complications. Mixed pelvic nerves are potential peripheral targets for stimulation to treat dysfunctional bladders, but typical electrical stimulation of pelvic nerves activates both the parasympathetic efferent pathway to excite the bladder, as well as the sensory afferent pathway that causes unwanted sphincter contractions. Thus, a novel pelvic nerve stimulation paradigm is required. In anesthetized female rats, we combined a low frequency (10 Hz) stimulation to evoke bladder contraction, and a more proximal 20 kHz stimulation of the pelvic nerve to block afferent activation, in order to produce micturition with reduced bladder-sphincter dyssynergia. Increasing the phase width of low frequency stimulation from 150 to 300 μs alone was able to improve voiding outcome significantly. However, low frequency stimulation of pelvic nerves alone evoked short latency (19.9–20.5 ms) dyssynergic EUS responses, which were abolished with a non-reversible proximal central pelvic nerve cut. We demonstrated that a proximal 20 kHz stimulation of pelvic nerves generated brief onset effects at lower current amplitudes, and was able to either partially or fully block the short latency EUS responses depending on the ratio of the blocking to stimulation current. Our results indicate that ratios >10 increased the efficacy of blocking EUS contractions. Importantly, we also demonstrated for the first time that this combined low and high frequency stimulation approach produced graded control of the bladder, while reversibly blocking afferent

  15. Pulmonary arterial distension and vagal afferent nerve activity in anaesthetized dogs.

    PubMed

    Moore, Jonathan P; Hainsworth, Roger; Drinkhill, Mark J

    2004-03-16

    Distension of the main pulmonary artery and its bifurcation are known to result in a reflex vasoconstriction and increased respiratory drive; however, these responses are observed at abnormally high distending pressures. In this study we recorded afferent activity from pulmonary arterial baroreceptors to investigate their stimulus-response characteristics and to determine whether they are influenced by physiological changes in intrathoracic pressure. In chloralose-anaesthetized dogs, a cardiopulmonary bypass was established, the pulmonary trunk and its main branches were vascularly isolated and perfused with venous blood at pulsatile pressures designed to simulate the normal pulmonary arterial pressure waveform. Afferent slips of a cervical vagus were dissected and nerve fibres identified that displayed discharge patterns with characteristics expected from pulmonary arterial baroreceptors. Recordings were obtained with (a) chest open (b) chest closed and resealed, and (c) with phasic negative intrathoracic pressures in the resealed chest. Pressure-discharge characteristics obtained in the open-chest animals indicated that the threshold pulmonary pressure (corresponding to 5% of the overall response) was 17.1 +/- 2.9 and the inflexion point of the curve was 29.2 +/- 3.3 mmHg (mean +/-S.E.M). In closed-chest animals the threshold and inflexion pressures were reduced to 12.0 +/- 1.7 and 20.7 +/- 1.8 mmHg. Application of phasic negative intrathoracic pressures further reduced the threshold and inflexion pressures to 9.5 +/- 1.2 mmHg (P < 0.05 vs. open) and 14.7 +/- 0.8 mmHg (P < 0.003 vs. open and P < 0.02 vs. atmospheric). These results indicate that under physiological conditions, with closed-chest and phasic negative intrathoracic pressure changes similar to those associated with normal breathing, activity from pulmonary baroreceptors is obtained at physiological pulmonary arterial pressures in intact animals.

  16. Transfer characteristics of the hair cell's afferent synapse

    NASA Astrophysics Data System (ADS)

    Keen, Erica C.; Hudspeth, A. J.

    2006-04-01

    The sense of hearing depends on fast, finely graded neurotransmission at the ribbon synapses connecting hair cells to afferent nerve fibers. The processing that occurs at this first chemical synapse in the auditory pathway determines the quality and extent of the information conveyed to the central nervous system. Knowledge of the synapse's input-output function is therefore essential for understanding how auditory stimuli are encoded. To investigate the transfer function at the hair cell's synapse, we developed a preparation of the bullfrog's amphibian papilla. In the portion of this receptor organ representing stimuli of 400-800 Hz, each afferent nerve fiber forms several synaptic terminals onto one to three hair cells. By performing simultaneous voltage-clamp recordings from presynaptic hair cells and postsynaptic afferent fibers, we established that the rate of evoked vesicle release, as determined from the average postsynaptic current, depends linearly on the amplitude of the presynaptic Ca2+ current. This result implies that, for receptor potentials in the physiological range, the hair cell's synapse transmits information with high fidelity. auditory system | exocytosis | glutamate | ribbon synapse | synaptic vesicle

  17. Capsaicin-sensitive intestinal mucosal afferent mechanism and body fat distribution.

    PubMed

    Leung, Felix W

    2008-07-04

    This report summarizes clinical and experimental data in support of the hypothesis that capsaicin-sensitive intestinal mucosal afferent mechanism plays a role in regulating body fat distribution. Epidemiological data have revealed that the consumption of foods containing capsaicin is associated with a lower prevalence of obesity. Rural Thai people consume diets containing 0.014% capsaicin. Rodents fed a diet containing 0.014% capsaicin showed no change in caloric intake but a significant 24% and 29% reduction in the visceral (peri-renal) fat weight. Increase in intestinal blood flow facilitates nutrient energy absorption and decrease in adipose tissue blood flow facilitates storage of nutrient energy in adipose tissue. Stimulation of intestinal mucosal afferent nerves increases intestinal blood flow, but decreases visceral (mesenteric) adipost tissue blood flow. In in vitro cell studies capsaicin has a direct effect on adipocytes. Intravenous capsaicin produces measurable plasma level and subcutaneous capsaicin retards accumulation of adipose tissue. The data on a direct effect of oral capsaicin on adipose tissue at remote sites, however, are conflicting. Capsaicin absorbed from the gut lumen is almost completely metabolized before reaching the general circulation. Oral capsaicin significantly increases transient receptor potential vanilloid type-1 (TRPV1) channel expression as well as TRPV1 messenger ribonucleic acid (mRNA) in visceral adipose tissue. In TRPV1 knockout mice on a high fat diet the body weight was not significantly different in the absence or presence of oral capsaicin. In rodent experiments, daily intragastric administration of capsaicin for two weeks led to defunctionalization of intestinal mucosal afferent nerves, manifested by loss of acute mucosal capsaicin-induced effects; but not the corneal afferent nerves, with preservation of the paw wiping reflex of the eye exposed briefly to dilute capsaicin. The latter indicated the absence of an oral

  18. Cutaneous sensory nerve as a substitute for auditory nerve in solving deaf-mutes’ hearing problem: an innovation in multi-channel-array skin-hearing technology

    PubMed Central

    Li, Jianwen; Li, Yan; Zhang, Ming; Ma, Weifang; Ma, Xuezong

    2014-01-01

    The current use of hearing aids and artificial cochleas for deaf-mute individuals depends on their auditory nerve. Skin-hearing technology, a patented system developed by our group, uses a cutaneous sensory nerve to substitute for the auditory nerve to help deaf-mutes to hear sound. This paper introduces a new solution, multi-channel-array skin-hearing technology, to solve the problem of speech discrimination. Based on the filtering principle of hair cells, external voice signals at different frequencies are converted to current signals at corresponding frequencies using electronic multi-channel bandpass filtering technology. Different positions on the skin can be stimulated by the electrode array, allowing the perception and discrimination of external speech signals to be determined by the skin response to the current signals. Through voice frequency analysis, the frequency range of the band-pass filter can also be determined. These findings demonstrate that the sensory nerves in the skin can help to transfer the voice signal and to distinguish the speech signal, suggesting that the skin sensory nerves are good candidates for the replacement of the auditory nerve in addressing deaf-mutes’ hearing problems. Scientific hearing experiments can be more safely performed on the skin. Compared with the artificial cochlea, multi-channel-array skin-hearing aids have lower operation risk in use, are cheaper and are more easily popularized. PMID:25317171

  19. Distribution of TRPV1- and TRPV2-immunoreactive afferent nerve endings in rat trachea.

    PubMed

    Yamamoto, Yoshio; Sato, Yoshikazu; Taniguchi, Kazuyuki

    2007-12-01

    Nociception in the trachea is important for respiratory modulation. We investigated the distribution, neurochemical characteristics, and origin of nerve endings with immunoreactivity for candidate sensor channels, TRPV1 and TRPV2, in rat trachea. In the epithelial layer, the intraepithelial nerve endings and dense subepithelial network of nerve fibers were immunoreactive for TRPV1. In contrast, TRPV2 immunoreactivity was observed mainly in nerve fibers of the tracheal submucosal layer and in several intrinsic ganglion cells in the peritracheal plexus. Double immunostaining revealed that some TRPV1-immunoreactive nerve fibers were also immunoreactive for substance P or calcitonin gene-related peptide, but neither neuropeptide colocalized with TRPV2. Injection of the retrograde tracer, fast blue, into the tracheal wall near the thoracic inlet demonstrated labeled neurons in the jugular, nodose, and dorsal root ganglia at segmental levels of C2-C8. In the jugular and nodose ganglia, 59.3% (70/118) and 10.7% (17/159), respectively, of fast blue-labeled neurons were immunoreactive for TRPV1, compared to 8.8% (8/91) and 2.6% (5/191) for TRPV2-immunoreactive. Our results indicate that TRPV1-immunoreactive nerve endings are important for tracheal nociception, and the different expression patterns of TRPV1 and TRPV2 with neuropeptides may reflect different subpopulations of sensory neurons.

  20. Free flap reconstruction of the sole of the foot with or without sensory nerve coaptation.

    PubMed

    Santanelli, Fabio; Tenna, Stefania; Pace, Andrea; Scuderi, Nicolò

    2002-06-01

    The authors present a retrospective study on major plantar foot reconstruction to evaluate the role of the free fasciocutaneous flap and the importance of sensory nerve reconstruction in improving long-term results. Between 1995 and 1999, 20 patients with major defects of the sole of the foot underwent free forearm flap reconstruction performed by the senior author (F.S.). Sensory nerve reconstruction was added to this technique in 1997. The age and sex of the patients and the cause, location, and dimensions of their defects were recorded. The patients were clinically and neurophysiologically evaluated at 3, 6, and 12 months after the procedure for the following parameters: flap contour, flap stability, load capacity, walking ability, touch sensation, pain sensation, static two-point discrimination, and thermal sensibility. Dermatomic somatosensory-evoked potentials were also tested at 12 months. Follow-up ranged from 1 to 5 years. Patients were divided into two groups according to sensory nerve reconstruction. Group A consisted of 11 patients with nerve repair, and group B consisted of nine patients without nerve repair. One patient from group A who had an idiopathic neuropathy was excluded from the study because of interference with the reinnervation process. Five more patients (three from group A and two from group B) were lost at follow-up and excluded from the study. The final sample size in each group was seven. Data from both groups were compared and statistically analyzed with the Mann-Whitney test and the Fisher exact test. Long-term results confirmed in all reconstructions long-lasting stability. During the first postoperative year, patients with sensory nerve reconstruction showed better sensibility. The statistical analyses confirmed significant differences between the two groups to be dependent upon surgical technique at 3 and 6 months. Two-point discrimination and dermatomic somatosensory-evoked potentials were recorded. After 12 months, flaps without

  1. Peripheral KV7 channels regulate visceral sensory function in mouse and human colon

    PubMed Central

    Hockley, James RF; Reed, David E; Smith, Ewan St. John; Bulmer, David C; Blackshaw, L Ashley

    2017-01-01

    Background Chronic visceral pain is a defining symptom of many gastrointestinal disorders. The KV7 family (KV7.1–KV7.5) of voltage-gated potassium channels mediates the M current that regulates excitability in peripheral sensory nociceptors and central pain pathways. Here, we use a combination of immunohistochemistry, gut-nerve electrophysiological recordings in both mouse and human tissues, and single-cell qualitative real-time polymerase chain reaction of gut-projecting sensory neurons, to investigate the contribution of peripheral KV7 channels to visceral nociception. Results Immunohistochemical staining of mouse colon revealed labelling of KV7 subtypes (KV7.3 and KV7.5) with CGRP around intrinsic enteric neurons of the myenteric plexuses and within extrinsic sensory fibres along mesenteric blood vessels. Treatment with the KV7 opener retigabine almost completely abolished visceral afferent firing evoked by the algogen bradykinin, in agreement with significant co-expression of mRNA transcripts by single-cell qualitative real-time polymerase chain reaction for KCNQ subtypes and the B2 bradykinin receptor in retrogradely labelled extrinsic sensory neurons from the colon. Retigabine also attenuated responses to mechanical stimulation of the bowel following noxious distension (0–80 mmHg) in a concentration-dependent manner, whereas the KV7 blocker XE991 potentiated such responses. In human bowel tissues, KV7.3 and KV7.5 were expressed in neuronal varicosities co-labelled with synaptophysin and CGRP, and retigabine inhibited bradykinin-induced afferent activation in afferent recordings from human colon. Conclusions We show that KV7 channels contribute to the sensitivity of visceral sensory neurons to noxious chemical and mechanical stimuli in both mouse and human gut tissues. As such, peripherally restricted KV7 openers may represent a viable therapeutic modality for the treatment of gastrointestinal pathologies. PMID:28566000

  2. Peripheral KV7 channels regulate visceral sensory function in mouse and human colon.

    PubMed

    Peiris, Madusha; Hockley, James Rf; Reed, David E; Smith, Ewan St John; Bulmer, David C; Blackshaw, L Ashley

    2017-01-01

    Background Chronic visceral pain is a defining symptom of many gastrointestinal disorders. The K V 7 family (K V 7.1-K V 7.5) of voltage-gated potassium channels mediates the M current that regulates excitability in peripheral sensory nociceptors and central pain pathways. Here, we use a combination of immunohistochemistry, gut-nerve electrophysiological recordings in both mouse and human tissues, and single-cell qualitative real-time polymerase chain reaction of gut-projecting sensory neurons, to investigate the contribution of peripheral K V 7 channels to visceral nociception. Results Immunohistochemical staining of mouse colon revealed labelling of K V 7 subtypes (K V 7.3 and K V 7.5) with CGRP around intrinsic enteric neurons of the myenteric plexuses and within extrinsic sensory fibres along mesenteric blood vessels. Treatment with the K V 7 opener retigabine almost completely abolished visceral afferent firing evoked by the algogen bradykinin, in agreement with significant co-expression of mRNA transcripts by single-cell qualitative real-time polymerase chain reaction for KCNQ subtypes and the B 2 bradykinin receptor in retrogradely labelled extrinsic sensory neurons from the colon. Retigabine also attenuated responses to mechanical stimulation of the bowel following noxious distension (0-80 mmHg) in a concentration-dependent manner, whereas the K V 7 blocker XE991 potentiated such responses. In human bowel tissues, K V 7.3 and K V 7.5 were expressed in neuronal varicosities co-labelled with synaptophysin and CGRP, and retigabine inhibited bradykinin-induced afferent activation in afferent recordings from human colon. Conclusions We show that K V 7 channels contribute to the sensitivity of visceral sensory neurons to noxious chemical and mechanical stimuli in both mouse and human gut tissues. As such, peripherally restricted K V 7 openers may represent a viable therapeutic modality for the treatment of gastrointestinal pathologies.

  3. Urothelial Tight Junction Barrier Dysfunction Sensitizes Bladder Afferents

    PubMed Central

    Rued, Anna C.; Taiclet, Stefanie N.; Birder, Lori A.; Kullmann, F. Aura

    2017-01-01

    Abstract Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic voiding disorder that presents with pain in the urinary bladder and surrounding pelvic region. A growing body of evidence suggests that an increase in the permeability of the urothelium, the epithelial barrier that lines the interior of the bladder, contributes to the symptoms of IC/BPS. To examine the consequence of increased urothelial permeability on pelvic pain and afferent excitability, we overexpressed in the urothelium claudin 2 (Cldn2), a tight junction (TJ)-associated protein whose message is significantly upregulated in biopsies of IC/BPS patients. Consistent with the presence of bladder-derived pain, rats overexpressing Cldn2 showed hypersensitivity to von Frey filaments applied to the pelvic region. Overexpression of Cldn2 increased the expression of c-Fos and promoted the activation of ERK1/2 in spinal cord segments receiving bladder input, which we conceive is the result of noxious stimulation of afferent pathways. To determine whether the mechanical allodynia observed in rats with reduced urothelial barrier function results from altered afferent activity, we examined the firing of acutely isolated bladder sensory neurons. In patch-clamp recordings, about 30% of the bladder sensory neurons from rats transduced with Cldn2, but not controls transduced with GFP, displayed spontaneous activity. Furthermore, bladder sensory neurons with tetrodotoxin-sensitive (TTX-S) action potentials from rats transduced with Cldn2 showed hyperexcitability in response to suprathreshold electrical stimulation. These findings suggest that as a result of a leaky urothelium, the diffusion of urinary solutes through the urothelial barrier sensitizes bladders afferents, promoting voiding at low filling volumes and pain. PMID:28560313

  4. Enhanced Muscle Afferent Signals during Motor Learning in Humans.

    PubMed

    Dimitriou, Michael

    2016-04-25

    Much has been revealed concerning human motor learning at the behavioral level [1, 2], but less is known about changes in the involved neural circuits and signals. By examining muscle spindle responses during a classic visuomotor adaptation task [3-6] performed by fully alert humans, I found substantial modulation of sensory afferent signals as a function of adaptation state. Specifically, spindle control was independent of concurrent muscle activity but was specific to movement direction (representing muscle lengthening versus shortening) and to different stages of learning. Increased spindle afferent responses to muscle stretch occurring early during learning reflected individual error size and were negatively related to subsequent antagonist activity (i.e., 60-80 ms thereafter). Relative increases in tonic afferent output early during learning were predictive of the subjects' adaptation rate. I also found that independent spindle control during sensory realignment (the "washout" stage) induced afferent signal "linearization" with respect to muscle length (i.e., signals were more tuned to hand position). The results demonstrate for the first time that motor learning also involves independent and state-related modulation of sensory mechanoreceptor signals. The current findings suggest that adaptive motor performance also relies on the independent control of sensors, not just of muscles. I propose that the "γ" motor system innervating spindles acts to facilitate the acquisition and extraction of task-relevant information at the early stages of sensorimotor adaptation. This designates a more active and targeted role for the human proprioceptive system during motor learning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The sensory innervation of the calvarial periosteum is nociceptive and contributes to headache-like behavior

    PubMed Central

    Zhao, Jun; Levy, Dan

    2014-01-01

    Headaches are thought to result from the activation and sensitization of nociceptors that innervate deep cephalic tissues. A large body of evidence supports the view that some types of headaches originate intracranially, from activation of sensory neurons that innervate the cranial meninges. However the notion of an extracranial origin of headaches continues to be entertained, although the identity of deep extracranial cephalic tissues which might contribute to headaches remains elusive. Here we employed anatomical, electrophysiological, and behavioral approaches in rats to test the hypothesis that the sensory innervation of the calvarial periosteum is nociceptive. Neural tracing indicated that the calvarial periosteum overlying the frontal and parietal bones is innervated primarily by small and medium-sized neurons in the trigeminal ganglion’s ophthalmic division. In vivo single unit recording in the trigeminal ganglion revealed that calvarial periosteal afferents have slowly conducting axons, are mechanosensitive and respond to inflammatory mediators, consistent with a nociceptive function. Two distinct neuronal populations were distinguished based on their peripheral axonal trajectory: one that reached the periosteum through extracranial branches of the trigeminal nerve, and another that took an intracranial trajectory, innervating the cranial dura and apparently reaching the periosteum via the calvarial sutures. In behavioral studies, inflammatory stimulation of these afferents promoted periorbital tactile hypersensitivity, a sensory change linked to primary headaches. Activation and sensitization of calvarial periosteal afferents could play a role in mediating primary headaches of extracranial and perhaps also intracranial origin, as well as secondary headaches such as post-craniotomy and post-traumatic headaches. Targeting calvarial periosteal afferents may be effective in ameliorating these headaches. PMID:24769138

  6. Impact of Aging on Proprioceptive Sensory Neurons and Intrafusal Muscle Fibers in Mice.

    PubMed

    Vaughan, Sydney K; Stanley, Olivia L; Valdez, Gregorio

    2017-06-01

    The impact of aging on proprioceptive sensory neurons and intrafusal muscle fibers (IMFs) remains largely unexplored despite the central function these cells play in modulating voluntary movements. Here, we show that proprioceptive sensory neurons undergo deleterious morphological changes in middle age (11- to 13-month-old) and old (15- to 21-month-old) mice. In the extensor digitorum longus and soleus muscles of middle age and old mice, there is a significant increase in the number of Ia afferents with large swellings that fail to properly wrap around IMFs compared with young adult (2- to 4-month-old) mice. Fewer II afferents were also found in the same muscles of middle age and old mice. Although these age-related changes in peripheral nerve endings were accompanied by degeneration of proprioceptive sensory neuron cell bodies in dorsal root ganglia (DRG), the morphology and number of IMFs remained unchanged. Our analysis also revealed normal levels of neurotrophin 3 (NT3) but dysregulated expression of the tyrosine kinase receptor C (TrkC) in aged muscles and DRGs, respectively. These results show that proprioceptive sensory neurons degenerate prior to atrophy of IMFs during aging, and in the presence of the NT3/TrkC signaling axis. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Direct reticular projections of trigeminal sensory fibers immunoreactive to CGRP: potential monosynaptic somatoautonomic projections

    PubMed Central

    Panneton, W. Michael; Gan, Qi

    2014-01-01

    Few trigeminal sensory fibers project centrally beyond the trigeminal sensory complex, with only projections of fibers carried in its sensory anterior ethmoidal (AEN) and intraoral nerves described. Fibers of the AEN project into the brainstem reticular formation where immunoreactivity against substance P and CGRP are found. We investigated whether the source of these peptides could be from trigeminal ganglion neurons by performing unilateral rhizotomies of the trigeminal root and looking for absence of label. After an 8–14 days survival, substance P immunoreactivity in the trigeminal sensory complex was diminished, but we could not conclude that the sole source of this peptide in the lateral parabrachial area and lateral reticular formation arises from primary afferent fibers. Immunoreactivity to CGRP after rhizotomy however was greatly diminished in the trigeminal sensory complex, confirming the observations of others. Moreover, CGRP immunoreactivity was nearly eliminated in fibers in the lateral parabrachial area, the caudal ventrolateral medulla, both the peri-ambiguus and ventral parts of the rostral ventrolateral medulla, in the external formation of the nucleus ambiguus, and diminished in the caudal pressor area. The nearly complete elimination of CGRP in the lateral reticular formation after rhizotomy suggests this peptide is carried in primary afferent fibers. Moreover, the arborization of CGRP immunoreactive fibers in these areas mimics that of direct projections from the AEN. Since electrical stimulation of the AEN induces cardiorespiratory adjustments including an apnea, peripheral vasoconstriction, and bradycardia similar to those seen in the mammalian diving response, we suggest these perturbations of autonomic behavior are enhanced by direct somatic primary afferent projections to these reticular neurons. We believe this to be first description of potential direct somatoautonomic projections to brainstem neurons regulating autonomic activity. PMID

  8. Direct reticular projections of trigeminal sensory fibers immunoreactive to CGRP: potential monosynaptic somatoautonomic projections.

    PubMed

    Panneton, W Michael; Gan, Qi

    2014-01-01

    Few trigeminal sensory fibers project centrally beyond the trigeminal sensory complex, with only projections of fibers carried in its sensory anterior ethmoidal (AEN) and intraoral nerves described. Fibers of the AEN project into the brainstem reticular formation where immunoreactivity against substance P and CGRP are found. We investigated whether the source of these peptides could be from trigeminal ganglion neurons by performing unilateral rhizotomies of the trigeminal root and looking for absence of label. After an 8-14 days survival, substance P immunoreactivity in the trigeminal sensory complex was diminished, but we could not conclude that the sole source of this peptide in the lateral parabrachial area and lateral reticular formation arises from primary afferent fibers. Immunoreactivity to CGRP after rhizotomy however was greatly diminished in the trigeminal sensory complex, confirming the observations of others. Moreover, CGRP immunoreactivity was nearly eliminated in fibers in the lateral parabrachial area, the caudal ventrolateral medulla, both the peri-ambiguus and ventral parts of the rostral ventrolateral medulla, in the external formation of the nucleus ambiguus, and diminished in the caudal pressor area. The nearly complete elimination of CGRP in the lateral reticular formation after rhizotomy suggests this peptide is carried in primary afferent fibers. Moreover, the arborization of CGRP immunoreactive fibers in these areas mimics that of direct projections from the AEN. Since electrical stimulation of the AEN induces cardiorespiratory adjustments including an apnea, peripheral vasoconstriction, and bradycardia similar to those seen in the mammalian diving response, we suggest these perturbations of autonomic behavior are enhanced by direct somatic primary afferent projections to these reticular neurons. We believe this to be first description of potential direct somatoautonomic projections to brainstem neurons regulating autonomic activity.

  9. The gut microbiome restores intrinsic and extrinsic nerve function in germ-free mice accompanied by changes in calbindin.

    PubMed

    McVey Neufeld, K A; Perez-Burgos, A; Mao, Y K; Bienenstock, J; Kunze, W A

    2015-05-01

    The microbiome is essential for normal myenteric intrinsic primary afferent neuron (IPAN) excitability. These neurons control gut motility and modulate gut-brain signaling by exciting extrinsic afferent fibers innervating the enteric nervous system via an IPAN to extrinsic fiber sensory synapse. We investigated effects of germ-free (GF) status and conventionalization on extrinsic sensory fiber discharge in the mesenteric nerve bundle and IPAN electrophysiology, and compared these findings with those from specific pathogen-free (SPF) mice. As we have previously shown that the IPAN calcium-dependent slow afterhyperpolarization (sAHP) is enhanced in GF mice, we also examined the expression of the calcium-binding protein calbindin in these neurons in these different animal groups. IPAN sAHP and mesenteric nerve multiunit discharge were recorded using ex vivo jejunal gut segments from SPF, GF, or conventionalized (CONV) mice. IPANs were excited by adding 5 μM TRAM-34 to the serosal superfusate. We probed for calbindin expression using immunohistochemical techniques. SPF mice had a 21% increase in mesenteric nerve multiunit firing rate and CONV mice a 41% increase when IPANs were excited by TRAM-34. For GF mice, this increase was barely detectable (2%). TRAM-34 changed sAHP area under the curve by -77 for SPF, +3 for GF, or -54% for CONV animals. Calbindin-immunopositive neurons per myenteric ganglion were 36% in SPF, 24% in GF, and 52% in CONV animals. The intact microbiome is essential for normal intrinsic and extrinsic nerve function and gut-brain signaling. © 2015 John Wiley & Sons Ltd.

  10. PLCγ-activated signalling is essential for TrkB mediated sensory neuron structural plasticity

    PubMed Central

    2010-01-01

    Background The vestibular system provides the primary input of our sense of balance and spatial orientation. Dysfunction of the vestibular system can severely affect a person's quality of life. Therefore, understanding the molecular basis of vestibular neuron survival, maintenance, and innervation of the target sensory epithelia is fundamental. Results Here we report that a point mutation at the phospholipase Cγ (PLCγ) docking site in the mouse neurotrophin tyrosine kinase receptor TrkB (Ntrk2) specifically impairs fiber guidance inside the vestibular sensory epithelia, but has limited effects on the survival of vestibular sensory neurons and growth of afferent processes toward the sensory epithelia. We also show that expression of the TRPC3 cation calcium channel, whose activity is known to be required for nerve-growth cone guidance induced by brain-derived neurotrophic factor (BDNF), is altered in these animals. In addition, we find that absence of the PLCγ mediated TrkB signalling interferes with the transformation of bouton type afferent terminals of vestibular dendrites into calyces (the largest synaptic contact of dendrites known in the mammalian nervous system) on type I vestibular hair cells; the latter are normally distributed in these mutants as revealed by an unaltered expression pattern of the potassium channel KCNQ4 in these cells. Conclusions These results demonstrate a crucial involvement of the TrkB/PLCγ-mediated intracellular signalling in structural aspects of sensory neuron plasticity. PMID:20932311

  11. Immunomodulation of afferent neurons in guinea-pig isolated airway.

    PubMed

    Riccio, M M; Myers, A C; Undem, B J

    1996-03-01

    1. The trachea, larynx and main bronchi with the right vagus nerve and nodose ganglion were isolated from guinea-pigs passively immunized 24 h previously with serum containing anti-ovalbumin antibody. 2. The airways were placed in one compartment of a Perspex chamber for recording of isometric tension while the nodose ganglion and attached vagus nerve were pulled into another compartment. Action potentials arriving from single airway afferent nerve endings were monitored extracellularly using a glass microelectrode positioned near neuronal cell bodies in the ganglion. Mechanosensitivity of the nerve endings was quantified using calibrated von Frey filaments immediately before and after exposure to antigen (10 micrograms ml-1 ovalbumin). 3. Ten endings responded to the force exerted by the lowest filament (0.078 mN) and were not further investigated. In airways from thirteen immunized guinea-pigs, the mechanical sensitivity of A delta afferent fibres (conduction velocity = 4.3 +/- 0.6 m s-1) was enhanced 4.1 +/- 0.9-fold following airway exposure to antigen (P < 0.005). Mechanical sensitivities of afferent fibres (conduction velocity = 4.3 +/- 0.6 m s-1) from non-immunized control guinea-pig airways were unaffected by antigen (n = 13). 4. Antigen did not overtly cause action potential generation except in one instance when the receptive field was located over the smooth muscle. This ending also responded to methacholine suggesting that spatial changes in the receptive field, induced by muscle contraction, were responsible for the activation. 5. The mediators responsible for these effects are unknown, although histamine, prostaglandins, leukotrienes and tachykinins do not appear to be essential. The increase in mechanical responsiveness was not associated with the smooth muscle contraction since leukotriene C4, histamine and tachykinins, which all caused a similar contraction to antigen, did not affect mechanical thresholds. Moreover, the antigen-induced increases in

  12. The effect of aging on the density of the sensory nerve fiber innervation of bone and acute skeletal pain.

    PubMed

    Jimenez-Andrade, Juan M; Mantyh, William G; Bloom, Aaron P; Freeman, Katie T; Ghilardi, Joseph R; Kuskowski, Michael A; Mantyh, Patrick W

    2012-05-01

    As humans age there is a decline in most sensory systems including vision, hearing, taste, smell, and tactile acuity. In contrast, the frequency and severity of musculoskeletal pain generally increases with age. To determine whether the density of sensory nerve fibers that transduce skeletal pain changes with age, calcitonin gene related peptide (CGRP) and neurofilament 200 kDa (NF200) sensory nerve fibers that innervate the femur were examined in the femurs of young (4-month-old), middle-aged (13-month-old) and old (36-month-old) male F344/BNF1 rats. Whereas the bone quality showed a significant age-related decline, the density of CGRP(+) and NF200(+) nerve fibers that innervate the bone remained remarkably unchanged as did the severity of acute skeletal fracture pain. Thus, while bone mass, quality, and strength undergo a significant decline with age, the density of sensory nerve fibers that transduce noxious stimuli remain largely intact. These data may in part explain why musculoskeletal pain increases with age. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Histamine excites groups III and IV afferents from the cat knee joint depending on their resting activity.

    PubMed

    Herbert, M K; Just, H; Schmidt, R F

    2001-06-08

    The effect of histamine on the sensory activity of primary afferents was studied in normal and acutely inflamed cat knee joints. A subpopulation of groups III and IV articular afferents could be activated by close-arterial bolus injections of histamine: units with a high resting activity (about 100/min) were particular sensitive to histamine and were excited even by 3.3 fg histamine. The lower the resting discharges of groups III and IV units both from normal and acutely inflamed joints, the higher the dose of histamine (up to 3.3 or 33 microg) necessary to excite the nerve fibres. Thirty-seven of 39 units without any resting activity were completely insensitive to histamine. In contrast to its clear excitatory effect, histamine caused only minor changes in the responses to joint movements. Movement-evoked activity remained unchanged in 22 of 28 units, 1 unit was sensitized and 5 units showed reduced activity after histamine (3.3 microg). The present results support the notion that histamine may participate in the mediation of pain from injured or inflamed tissue. It is remarkable that histamine has a profound excitatory action on a proportion of both groups III and IV articular afferents without changing their sensitivity to joint movements.

  14. Hemifacial Pain and Hemisensory Disturbance Referred from Occipital Neuralgia Caused by Pathological Vascular Contact of the Greater Occipital Nerve

    PubMed Central

    Choi, Jin-gyu

    2017-01-01

    Here we report a unique case of chronic occipital neuralgia caused by pathological vascular contact of the left greater occipital nerve. After 12 months of left-sided, unremitting occipital neuralgia, a hypesthesia and facial pain developed in the left hemiface. The decompression of the left greater occipital nerve from pathological contacts with the occipital artery resulted in immediate relief for hemifacial sensory change and facial pain, as well as chronic occipital neuralgia. Although referral of pain from the stimulation of occipital and cervical structures innervated by upper cervical nerves to the frontal head of V1 trigeminal distribution has been reported, the development of hemifacial sensory change associated with referred trigeminal pain from chronic occipital neuralgia is extremely rare. Chronic continuous and strong afferent input of occipital neuralgia caused by pathological vascular contact with the greater occipital nerve seemed to be associated with sensitization and hypersensitivity of the second-order neurons in the trigeminocervical complex, a population of neurons in the C2 dorsal horn characterized by receiving convergent input from dural and cervical structures. PMID:28331643

  15. Hemifacial Pain and Hemisensory Disturbance Referred from Occipital Neuralgia Caused by Pathological Vascular Contact of the Greater Occipital Nerve.

    PubMed

    Son, Byung-Chul; Choi, Jin-Gyu

    2017-01-01

    Here we report a unique case of chronic occipital neuralgia caused by pathological vascular contact of the left greater occipital nerve. After 12 months of left-sided, unremitting occipital neuralgia, a hypesthesia and facial pain developed in the left hemiface. The decompression of the left greater occipital nerve from pathological contacts with the occipital artery resulted in immediate relief for hemifacial sensory change and facial pain, as well as chronic occipital neuralgia. Although referral of pain from the stimulation of occipital and cervical structures innervated by upper cervical nerves to the frontal head of V1 trigeminal distribution has been reported, the development of hemifacial sensory change associated with referred trigeminal pain from chronic occipital neuralgia is extremely rare. Chronic continuous and strong afferent input of occipital neuralgia caused by pathological vascular contact with the greater occipital nerve seemed to be associated with sensitization and hypersensitivity of the second-order neurons in the trigeminocervical complex, a population of neurons in the C2 dorsal horn characterized by receiving convergent input from dural and cervical structures.

  16. Influence of limb temperature on cutaneous silent periods.

    PubMed

    Kofler, Markus; Valls-Solé, Josep; Vasko, Peter; Boček, Václav; Štetkárová, Ivana

    2014-09-01

    The cutaneous silent period (CSP) is a spinal inhibitory reflex mediated by small-diameter afferents (A-delta fibers) and large-diameter efferents (alpha motoneurons). The effect of limb temperature on CSPs has so far not been assessed. In 27 healthy volunteers (11 males; age 22-58 years) we recorded median nerve motor and sensory action potentials, median nerve F-wave and CSPs induced by noxious digit II stimulation in thenar muscles in a baseline condition at room temperature, and after randomly submersing the forearm in 42 °C warm or 15 °C cold water for 20 min each. In cold limbs, distal and proximal motor and sensory latencies as well as F-wave latencies were prolonged. Motor and sensory nerve conduction velocities were reduced. Compound motor and sensory nerve action potential amplitudes did not differ significantly from baseline. CSP onset and end latencies were more delayed than distal and proximal median nerve motor and sensory latencies, whereas CSP duration was not affected. In warm limbs, opposite but smaller changes were seen in nerve conduction studies and CSPs. The observed CSP shift "en bloc" towards longer latencies without affecting CSP duration during limb cooling concurs with slower conduction velocity in both afferent and efferent fibers. Disparate conduction slowing in afferents and efferents, however, suggests that nociceptive EMG suppression is mediated by fibers of different size in the afferent than in the efferent arm, indirectly supporting the contribution of A-delta fibers as the main afferent input. Limb temperature should be taken into account when testing CSPs in the clinical setting, as different limb temperatures affect CSP latencies more than large-diameter fiber conduction function. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Using Arrays of Microelectrodes Implanted in Residual Peripheral Nerves to Provide Dextrous Control of, and Modulated Sensory Feedback from, a Hand Prosthesis

    DTIC Science & Technology

    2015-10-01

    Modulated Sensory Feedback from, a Hand Prosthesis PRINCIPAL INVESTIGATOR: Bradley Greger, PhD CONTRACTING ORGANIZATION: Arizona State University...Residual Peripheral Nerves to Provide Dextrous Control of, and Modulated Sensory Feedback from, a Hand Prosthesis 5a. CONTRACT NUMBER 5b. GRANT...Peripheral Nerve Interface, Prosthetic Hand, Neural Prosthesis , Sensory Feedback, Micro-stimulation, Electrophysiology, Action Potentials, Micro

  18. The modulation of visceral functions by somatic afferent activity.

    PubMed

    Sato, A; Schmidt, R F

    1987-01-01

    We began by briefly reviewing the historical background of neurophysiological studies of the somato-autonomic reflexes and then discussed recent studies on somatic-visceral reflexes in combination with autonomic efferent nerve activity and effector organ responses. Most of the studies that have advanced our knowledge in this area have been carried out on anesthetized animals, thus eliminating emotional factors. We would like to emphasize again that the functions of many, or perhaps all visceral organs can be modulated by somato-sympathetic or somato-parasympathetic reflex activity induced by a appropriate somatic afferent stimulation in anesthetized animals. As mentioned previously, some autonomic nervous outflow, e.g. the adrenal sympathetic nerve activity, is involved in the control of hormonal secretion. John F. Fulton wrote in his famous textbook "Physiology of the Nervous System" (1949) that the posterior pituitary neurosecretion system (i.e. for oxytocin and vasopressin) could be considered a part of the parasympathetic nervous system. In the study of body homeostasis and environmental adaptation it would seem very important to further analyze the contribution of somatic afferent input to the autonomic nervous and hormonal regulation of visceral organ activity. Also, some immunological functions have been found to be influenced by autonomic nerves or hormones (e.g. adrenal cortical hormone and catecholamines). Finally, we must take into account, as we have briefly discussed, that visceral functions can be modulated by somatic afferent input via various degrees of integration of autonomic nerves, hormones, and immunological processes. We trust that such research will be expanded to higher species of mammals, and that ultimately this knowledge of somato-visceral reflexes obtained in the physiological laboratory will become clinically useful in influencing visceral functions.

  19. IRRITANT AGONISTS AND AIR POLLUTANTS: NEUROLOGICALLY MEDIATED RESPIRATORY AND CARDIOVASCULAR RESPONSES

    EPA Science Inventory

    Situated within and just beneath the airway epithelium is a dense plexus of sensory nerves. These sensory (afferent) nerves serve as sentinels at the gateway between the organism and the inhaled air. This airway mucosal nerve plexus is present from the nose to the most peripheral...

  20. TRP channel functions in the gastrointestinal tract.

    PubMed

    Yu, Xiaoyun; Yu, Mingran; Liu, Yingzhe; Yu, Shaoyong

    2016-05-01

    Transient receptor potential (TRP) channels are predominantly distributed in both somatic and visceral sensory nervous systems and play a crucial role in sensory transduction. As the largest visceral organ system, the gastrointestinal (GI) tract frequently accommodates external inputs, which stimulate sensory nerves to initiate and coordinate sensory and motor functions in order to digest and absorb nutrients. Meanwhile, the sensory nerves in the GI tract are also able to detect potential tissue damage by responding to noxious irritants. This nocifensive function is mediated through specific ion channels and receptors expressed in a subpopulation of spinal and vagal afferent nerve called nociceptor. In the last 18 years, our understanding of TRP channel expression and function in GI sensory nervous system has been continuously improved. In this review, we focus on the expressions and functions of TRPV1, TRPA1, and TRPM8 in primary extrinsic afferent nerves innervated in the esophagus, stomach, intestine, and colon and briefly discuss their potential roles in relevant GI disorders.

  1. Neural control of renal function.

    PubMed

    Johns, Edward J; Kopp, Ulla C; DiBona, Gerald F

    2011-04-01

    The kidney is innervated with efferent sympathetic nerve fibers that directly contact the vasculature, the renal tubules, and the juxtaglomerular granular cells. Via specific adrenoceptors, increased efferent renal sympathetic nerve activity decreases renal blood flow and glomerular filtration rate, increases renal tubular sodium and water reabsorption, and increases renin release. Decreased efferent renal sympathetic nerve activity produces opposite functional responses. This integrated system contributes importantly to homeostatic regulation of sodium and water balance under physiological conditions and to pathological alterations in sodium and water balance in disease. The kidney contains afferent sensory nerve fibers that are located primarily in the renal pelvic wall where they sense stretch. Stretch activation of these afferent sensory nerve fibers elicits an inhibitory renorenal reflex response wherein the contralateral kidney exhibits a compensatory natriuresis and diuresis due to diminished efferent renal sympathetic nerve activity. The renorenal reflex coordinates the excretory function of the two kidneys so as to facilitate homeostatic regulation of sodium and water balance. There is a negative feedback loop in which efferent renal sympathetic nerve activity facilitates increases in afferent renal nerve activity that in turn inhibit efferent renal sympathetic nerve activity so as to avoid excess renal sodium retention. In states of renal disease or injury, there is activation of afferent sensory nerve fibers that are excitatory, leading to increased peripheral sympathetic nerve activity, vasoconstriction, and increased arterial pressure. Proof of principle studies in essential hypertensive patients demonstrate that renal denervation produces sustained decreases in arterial pressure. © 2011 American Physiological Society. Compr Physiol 1:699-729, 2011.

  2. Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells

    PubMed Central

    Siembab, Valerie C.; Gomez-Perez, Laura; Rotterman, Travis M.; Shneider, Neil A.; Alvarez, Francisco J.

    2015-01-01

    Motor function in mammalian species depends on the maturation of spinal circuits formed by a large variety of interneurons that regulate motoneuron firing and motor output. Interneuron activity is in turn modulated by the organization of their synaptic inputs, but the principles governing the development of specific synaptic architectures unique to each premotor interneuron are unknown. For example, Renshaw cells receive, at least in the neonate, convergent inputs from sensory afferents (likely Ia) and motor axons raising the question of whether they interact during Renshaw cell development. In other well-studied neurons, like Purkinje cells, heterosynaptic competition between inputs from different sources shapes synaptic organization. To examine the possibility that sensory afferents modulate synaptic maturation on developing Renshaw cells, we used three animal models in which afferent inputs in the ventral horn are dramatically reduced (Er81(−/−) knockout), weakened (Egr3(−/−) knockout) or strengthened (mlcNT3(+/−) transgenic). We demonstrate that increasing the strength of sensory inputs on Renshaw cells prevents their de-selection and reduces motor axon synaptic density and, in contrast, absent or diminished sensory afferent inputs correlate with increased densities of motor axons synapses. No effects were observed on other glutamatergic inputs. We conclude that the early strength of Ia synapses influences their maintenance or weakening during later development and that heterosynaptic influences from sensory synapses during early development regulates the density and organization of motor inputs on mature Renshaw cells. PMID:26660356

  3. Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons

    PubMed Central

    Maina, Flavio; Hilton, Mark C.; Ponzetto, Carola; Davies, Alun M.; Klein, Rüdiger

    1997-01-01

    The development of the nervous system is a dynamic process during which factors act in an instructive fashion to direct the differentiation and survival of neurons, and to induce axonal outgrowth, guidance to, and terminal branching within the target tissue. Here we report that mice expressing signaling mutants of the hepatocyte growth factor (HGF) receptor, the Met tyrosine kinase, show a striking reduction of sensory nerves innervating the skin of the limbs and thorax, implicating the HGF/Met system in sensory neuron development. Using in vitro assays, we find that HGF cooperates with nerve growth factor (NGF) to enhance axonal outgrowth from cultured dorsal root ganglion (DRG) neurons. HGF also enhances the neurotrophic activities of NGF in vitro, and Met receptor signaling is required for the survival of a proportion of DRG neurons in vivo. This synergism is specific for NGF but not for the related neurotrophins BDNF and NT3. By using a mild signaling mutant of Met, we have demonstrated previously that Met requires signaling via the adapter molecule Grb2 to induce proliferation of myoblasts. In contrast, the actions of HGF on sensory neurons are mediated by Met effectors distinct from Grb2. Our findings demonstrate a requirement for Met signaling in neurons during development. PMID:9407027

  4. Degeneration and regeneration of motor and sensory nerves: a stereological study of crush lesions in rat facial and mental nerves.

    PubMed

    Barghash, Z; Larsen, J O; Al-Bishri, A; Kahnberg, K-E

    2013-12-01

    The aim of this study was to evaluate the degeneration and regeneration of a sensory nerve and a motor nerve at the histological level after a crush injury. Twenty-five female Wistar rats had their mental nerve and the buccal branch of their facial nerve compressed unilaterally against a glass rod for 30s. Specimens of the compressed nerves and the corresponding control nerves were dissected at 3, 7, and 19 days after surgery. Nerve cross-sections were stained with osmium tetroxide and toluidine blue and analysed using two-dimensional stereology. We found differences between the two nerves both in the normal anatomy and in the regenerative pattern. The mental nerve had a larger cross-sectional area including all tissue components. The mental nerve had a larger volume fraction of myelinated axons and a correspondingly smaller volume fraction of endoneurium. No differences were observed in the degenerative pattern; however, at day 19 the buccal branch had regenerated to the normal number of axons, whereas the mental nerve had only regained 50% of the normal number of axons. We conclude that the regenerative process is faster and/or more complete in the facial nerve (motor function) than it is in the mental nerve (somatosensory function). Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. Where is the spike generator of the cochlear nerve? Voltage-gated sodium channels in the mouse cochlea.

    PubMed

    Hossain, Waheeda A; Antic, Srdjan D; Yang, Yang; Rasband, Matthew N; Morest, D Kent

    2005-07-20

    The origin of the action potential in the cochlea has been a long-standing puzzle. Because voltage-dependent Na+ (Nav) channels are essential for action potential generation, we investigated the detailed distribution of Nav1.6 and Nav1.2 in the cochlear ganglion, cochlear nerve, and organ of Corti, including the type I and type II ganglion cells. In most type I ganglion cells, Nav1.6 was present at the first nodes flanking the myelinated bipolar cell body and at subsequent nodes of Ranvier. In the other ganglion cells, including type II, Nav1.6 clustered in the initial segments of both of the axons that flank the unmyelinated bipolar ganglion cell bodies. In the organ of Corti, Nav1.6 was localized in the short segments of the afferent axons and their sensory endings beneath each inner hair cell. Surprisingly, the outer spiral fibers and their sensory endings were well labeled beneath the outer hair cells over their entire trajectory. In contrast, Nav1.2 in the organ of Corti was localized to the unmyelinated efferent axons and their endings on the inner and outer hair cells. We present a computational model illustrating the potential role of the Nav channel distribution described here. In the deaf mutant quivering mouse, the localization of Nav1.6 was disrupted in the sensory epithelium and ganglion. Together, these results suggest that distinct Nav channels generate and regenerate action potentials at multiple sites along the cochlear ganglion cells and nerve fibers, including the afferent endings, ganglionic initial segments, and nodes of Ranvier.

  6. The effect of early relearning on sensory recovery 4 to 9 years after nerve repair: a report of a randomized controlled study.

    PubMed

    Vikström, Pernilla; Rosén, Birgitta; Carlsson, Ingela K; Björkman, Anders

    2018-01-01

    Twenty patients randomized to early sensory relearning (nine patients) or traditional relearning (11 patients) were assessed regarding sensory recovery 4 to 9 years after median or ulnar nerve repair. Outcomes were assessed with the Rosen score, questionnaires, and self-reported single-item questions regarding function and activity. The patients with early sensory relearning had significantly better sensory recovery in the sensory domain of the Rosen score, specifically, discriminative touch or tactile gnosis and dexterity. They had significantly less self-reported problems in gripping, clumsiness, and fine motor skills. No differences were found in questionnaires between the two groups. We conclude that early sensory relearning improves long-term sensory recovery following nerve repair. I.

  7. Changes in Afferent Activity After Spinal Cord Injury

    PubMed Central

    de Groat, William C.; Yoshimura, Naoki

    2010-01-01

    Aims To summarize the changes that occur in the properties of bladder afferent neurons following spinal cord injury. Methods Literature review of anatomical, immunohistochemical, and pharmacologic studies of normal and dysfunctional bladder afferent pathways. Results Studies in animals indicate that the micturition reflex is mediated by a spinobulbospinal pathway passing through coordination centers (periaqueductal gray and pontine micturition center) located in the rostral brain stem. This reflex pathway, which is activated by small myelinated (Aδ) bladder afferent nerves, is in turn modulated by higher centers in the cerebral cortex involved in the voluntary control of micturition. Spinal cord injury at cervical or thoracic levels disrupts voluntary voiding, as well as the normal reflex pathways that coordinate bladder and sphincter function. Following spinal cord injury, the bladder is initially areflexic but then becomes hyperreflexic due to the emergence of a spinal micturition reflex pathway. The recovery of bladder function after spinal cord injury is dependent in part on the plasticity of bladder afferent pathways and the unmasking of reflexes triggered by unmyelinated, capsaicin-sensitive, C-fiber bladder afferent neurons. Plasticity is associated with morphologic, chemical, and electrical changes in bladder afferent neurons and appears to be mediated in part by neurotrophic factors released in the spinal cord and the peripheral target organs. Conclusions Spinal cord injury at sites remote from the lumbosacral spinal cord can indirectly influence properties of bladder afferent neurons by altering the function and chemical environment in the bladder or the spinal cord. PMID:20025033

  8. Long-Standing Motor and Sensory Recovery following Acute Fibrin Sealant Based Neonatal Sciatic Nerve Repair

    PubMed Central

    Ferreira Junior, Rui Seabra

    2016-01-01

    Brachial plexus lesion results in loss of motor and sensory function, being more harmful in the neonate. Therefore, this study evaluated neuroprotection and regeneration after neonatal peripheral nerve coaptation with fibrin sealant. Thus, P2 neonatal Lewis rats were divided into three groups: AX: sciatic nerve axotomy (SNA) without treatment; AX+FS: SNA followed by end-to-end coaptation with fibrin sealant derived from snake venom; AX+CFS: SNA followed by end-to-end coaptation with commercial fibrin sealant. Results were analyzed 4, 8, and 12 weeks after lesion. Astrogliosis, microglial reaction, and synapse preservation were evaluated by immunohistochemistry. Neuronal survival, axonal regeneration, and ultrastructural changes at ventral spinal cord were also investigated. Sensory-motor recovery was behaviorally studied. Coaptation preserved synaptic covering on lesioned motoneurons and led to neuronal survival. Reactive gliosis and microglial reaction decreased in the same groups (AX+FS, AX+CFS) at 4 weeks. Regarding axonal regeneration, coaptation allowed recovery of greater number of myelinated fibers, with improved morphometric parameters. Preservation of inhibitory synaptic terminals was accompanied by significant improvement in the motor as well as in the nociceptive recovery. Overall, the present data suggest that acute repair of neonatal peripheral nerves with fibrin sealant results in neuroprotection and regeneration of motor and sensory axons. PMID:27446617

  9. Identifying motor and sensory myelinated axons in rabbit peripheral nerves by histochemical staining for carbonic anhydrase and cholinesterase activities

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Sanger, James R.; Matloub, Hani S.; Yousif, N. John; Bain, James L. W.

    1988-01-01

    Carbonic anhydrase (CA) and cholinesterase (CE) histochemical staining of rabbit spinal nerve roots and dorsal root ganglia demonstrated that among the reactive myeliated axons, with minor exceptions, sensory axons were CA positive and CE negative whereas motor axons were CA negative and CE positive. The high specificity was achieved by adjusting reaction conditions to stain subpopulations of myelinated axons selectively while leaving 50 percent or so unstained. Fixation with glutaraldehyde appeared necessary for achieving selectivity. Following sciatic nerve transection, the reciprocal staining pattern persisted in damaged axons and their regenerating processes which formed neuromas within the proximal nerve stump. Within the neuromas, CA-stained sensory processes were elaborated earlier and in greater numbers than CE-stained regenerating motor processes. The present results indicate that histochemical axon typing can be exploited to reveal heterogeneous responses of motor and sensory axons to injury.

  10. Sensory and motor peripheral nerve function and lower-extremity quadriceps strength: the health, aging and body composition study.

    PubMed

    Strotmeyer, Elsa S; de Rekeneire, Nathalie; Schwartz, Ann V; Resnick, Helaine E; Goodpaster, Bret H; Faulkner, Kimberly A; Shorr, Ronald I; Vinik, Aaron I; Harris, Tamara B; Newman, Anne B

    2009-11-01

    To determine whether sensory and motor nerve function is associated cross-sectionally with quadriceps or ankle dorsiflexion strength in an older community-based population. Cross-sectional analyses within a longitudinal cohort study. Two U.S. clinical sites. Two thousand fifty-nine Health, Aging and Body Composition Study (Health ABC) participants (49.5% male, 36.7% black, aged 73-82) in 2000/01. Quadriceps and ankle strength were measured using an isokinetic dynamometer. Sensory and motor peripheral nerve function in the legs and feet was assessed using 10-g and 1.4-g monofilaments, vibration threshold, and peroneal motor nerve conduction amplitude and velocity. Monofilament insensitivity, poorest vibration threshold quartile (>60 mu), and poorest motor nerve conduction amplitude quartile (<1.7 mV) were associated with 11%, 7%, and 8% lower quadriceps strength (all P<.01), respectively, than in the best peripheral nerve function categories in adjusted linear regression models. Monofilament insensitivity and lowest amplitude quartile were both associated with 17% lower ankle strength (P<.01). Multivariate analyses were adjusted for demographic characteristics, diabetes mellitus, body composition, lifestyle factors, and chronic health conditions and included all peripheral nerve measures in the same model. Monofilament insensitivity (beta=-7.19), vibration threshold (beta=-0.097), and motor nerve conduction amplitude (beta=2.01) each contributed independently to lower quadriceps strength (all P<.01). Monofilament insensitivity (beta=-5.29) and amplitude (beta=1.17) each contributed independently to lower ankle strength (all P<.01). Neither diabetes mellitus status nor lean mass explained the associations between peripheral nerve function and strength. Reduced sensory and motor peripheral nerve function is related to poorer lower extremity strength in older adults, suggesting a mechanism for the relationship with lower extremity disability.

  11. Skeletal muscle afferent regulation of bioassayable growth hormone in the rat pituitary

    NASA Technical Reports Server (NTRS)

    Gosselink, K. L.; Grindeland, R. E.; Roy, R. R.; Zhong, H.; Bigbee, A. J.; Grossman, E. J.; Edgerton, V. R.

    1998-01-01

    There are forms of growth hormone (GH) in the plasma and pituitary of the rat and in the plasma of humans that are undetected by presently available immunoassays (iGH) but can be measured by bioassay (bGH). Although the regulation of iGH release is well documented, the mechanism(s) of bGH release is unclear. On the basis of changes in bGH and iGH secretion in rats that had been exposed to microgravity conditions, we hypothesized that neural afferents play a role in regulating the release of these hormones. To examine whether bGH secretion can be modulated by afferent input from skeletal muscle, the proximal or distal ends of severed hindlimb fast muscle nerves were stimulated ( approximately 2 times threshold) in anesthetized rats. Plasma bGH increased approximately 250%, and pituitary bGH decreased approximately 60% after proximal nerve trunk stimulation. The bGH response was independent of muscle mass or whether the muscles were flexors or extensors. Distal nerve stimulation had little or no effect on plasma or pituitary bGH. Plasma iGH concentrations were unchanged after proximal nerve stimulation. Although there may be multiple regulatory mechanisms of bGH, the present results demonstrate that the activation of low-threshold afferents from fast skeletal muscles can play a regulatory role in the release of bGH, but not iGH, from the pituitary in anesthetized rats.

  12. The crosstalk between the kidney and the central nervous system: the role of renal nerves in blood pressure regulation.

    PubMed

    Nishi, Erika E; Bergamaschi, Cássia T; Campos, Ruy R

    2015-04-20

    What is the topic of this review? This review describes the role of renal nerves as the key carrier of signals from the kidneys to the CNS and vice versa; the brain and kidneys communicate through this carrier to maintain homeostasis in the body. What advances does it highlight? Whether renal or autonomic dysfunction is the predominant contributor to systemic hypertension is still debated. In this review, we focus on the role of the renal nerves in a model of renovascular hypertension. The sympathetic nervous system influences the renal regulation of arterial pressure and body fluid composition. Anatomical and physiological evidence has shown that sympathetic nerves mediate changes in urinary sodium and water excretion by regulating the renal tubular water and sodium reabsorption throughout the nephron, changes in the renal blood flow and the glomerular filtration rate by regulating the constriction of renal vasculature, and changes in the activity of the renin-angiotensin system by regulating the renin release from juxtaglomerular cells. Additionally, renal sensory afferent fibres project to the autonomic central nuclei that regulate blood pressure. Hence, renal nerves play a key role in the crosstalk between the kidneys and the CNS to maintain homeostasis in the body. Therefore, the increased sympathetic nerve activity to the kidney and the renal afferent nerve activity to the CNS may contribute to the outcome of diseases, such as hypertension. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  13. Correlation between afferent rearrangements and behavioral deficits after local excitotoxic insult in the mammalian vestibule: a rat model of vertigo symptoms.

    PubMed

    Gaboyard-Niay, Sophie; Travo, Cécile; Saleur, Aurélie; Broussy, Audrey; Brugeaud, Aurore; Chabbert, Christian

    2016-10-01

    Damage to inner ear afferent terminals is believed to result in many auditory and vestibular dysfunctions. The sequence of afferent injuries and repair, as well as their correlation with vertigo symptoms, remains poorly documented. In particular, information on the changes that take place at the primary vestibular endings during the first hours following a selective insult is lacking. In the present study, we combined histological analysis with behavioral assessments of vestibular function in a rat model of unilateral vestibular excitotoxic insult. Excitotoxicity resulted in an immediate but transient alteration of the balance function that was resolved within a week. Concomitantly, vestibular primary afferents underwent a sequence of structural changes followed by spontaneous repair. Within the first two hours after the insult, a first phase of pronounced vestibular dysfunction coincided with extensive swelling of afferent terminals. In the next 24 h, a second phase of significant but incomplete reduction of the vestibular dysfunction was accompanied by a resorption of swollen terminals and fiber retraction. Eventually, within 1 week, a third phase of complete balance restoration occurred. The slow and progressive withdrawal of the balance dysfunction correlated with full reconstitution of nerve terminals. Competitive re-innervation by afferent and efferent terminals that mimicked developmental synaptogenesis resulted in full re-afferentation of the sensory epithelia. By deciphering the sequence of structural alterations that occur in the vestibule during selective excitotoxic impairment, this study offers new understanding of how a vestibular insult develops in the vestibule and how it governs the heterogeneity of vertigo symptoms. © 2016. Published by The Company of Biologists Ltd.

  14. Thrombospondin-4 divergently regulates voltage-gated Ca2+ channel subtypes in sensory neurons after nerve injury.

    PubMed

    Pan, Bin; Guo, Yuan; Wu, Hsiang-En; Park, John; Trinh, Van Nancy; Luo, Z David; Hogan, Quinn H

    2016-09-01

    Loss of high-voltage-activated (HVA) calcium current (ICa) and gain of low-voltage-activated (LVA) ICa after painful peripheral nerve injury cause elevated excitability in sensory neurons. Nerve injury is also accompanied by increased expression of the extracellular matrix glycoprotein thrombospondin-4 (TSP4), and interruption of TSP4 function can reverse or prevent behavioral hypersensitivity after injury. We therefore investigated TSP4 regulation of ICa in dorsal root ganglion (DRG) neurons. During depolarization adequate to activate HVA ICa, TSP4 decreases both N- and L-type ICa and the associated intracellular calcium transient. In contrast, TSP4 increases ICa and the intracellular calcium signal after low-voltage depolarization, which we confirmed is due to ICa through T-type channels. These effects are blocked by gabapentin, which ameliorates neuropathic pain by targeting the α2δ1 calcium subunit. Injury-induced changes of HVA and LVA ICa are attenuated in TSP4 knockout mice. In the neuropathic pain model of spinal nerve ligation, TSP4 application did not further regulate ICa of injured DRG neurons. Taken together, these findings suggest that elevated TSP4 after peripheral nerve injury may contribute to hypersensitivity of peripheral sensory systems by decreasing HVA and increasing LVA in DRG neurons by targeting the α2δ1 calcium subunit. Controlling TSP4 overexpression in peripheral sensory neurons may be a target for analgesic drug development for neuropathic pain.

  15. Nerve Transfer Versus Nerve Graft for Reconstruction of High Ulnar Nerve Injuries.

    PubMed

    Sallam, Asser A; El-Deeb, Mohamed S; Imam, Mohamed A

    2017-04-01

    To assess the efficacy of nerve transfer versus nerve grafting in restoring motor and sensory hand function in patients with complete, isolated high ulnar nerve injuries. A retrospective chart review was performed, at a minimum 2 years of follow-up, of 52 patients suffering complete, isolated high ulnar nerve injury between January 2006 and June 2013 in one specialized hand surgery unit. Twenty-four patients underwent motor and sensory nerve transfers (NT group). Twenty-eight patients underwent sural nerve grafting (NG group). Motor recovery, return of sensibility and complications were examined as outcome measures. The Medical Research Council scale was applied to evaluate sensory and motor recovery. Grip and pinch strengths of the hand were measured. Twenty of 24 patients (83.33%) in the NT group regained M3 grade or greater for the adductor pollicis, the abductor digiti minimi, and the medial 2 lumbricals and interossei, compared with only 16 of 28 patients (57.14%) in the NG group. Means for percentage recovery of grip strengths compared with the other healthy hand were significantly higher for the NT group than the NG group. Sensory recovery of S3 or greater was achieved in more than half of each group with no significant difference between groups. Nerve transfer is favored over nerve grafting in managing high ulnar nerve injuries because of better improvement of motor power and better restoration of grip functions of the hand. Therapeutic IV. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  16. Sensation, mechanoreceptor, and nerve fiber function after nerve regeneration.

    PubMed

    Krarup, Christian; Rosén, Birgitta; Boeckstyns, Michel; Ibsen Sørensen, Allan; Lundborg, Göran; Moldovan, Mihai; Archibald, Simon J

    2017-12-01

    Sensation is essential for recovery after peripheral nerve injury. However, the relationship between sensory modalities and function of regenerated fibers is uncertain. We have investigated the relationships between touch threshold, tactile gnosis, and mechanoreceptor and sensory fiber function after nerve regeneration. Twenty-one median or ulnar nerve lesions were repaired by a collagen nerve conduit or direct suture. Quantitative sensory hand function and sensory conduction studies by near-nerve technique, including tactile stimulation of mechanoreceptors, were followed for 2 years, and results were compared to noninjured hands. At both repair methods, touch thresholds at the finger tips recovered to 81 ± 3% and tactile gnosis only to 20 ± 4% (p < 0.001) of control. The sensory nerve action potentials (SNAPs) remained dispersed and areas recovered to 23 ± 2% and the amplitudes only to 7 ± 1% (P < 0.001). The areas of SNAPs after tactile stimulation recovered to 61 ± 11% and remained slowed. Touch sensation correlated with SNAP areas (p < 0.005) and was negatively related to the prolongation of tactile latencies (p < 0.01); tactile gnosis was not related to electrophysiological parameters. The recovered function of regenerated peripheral nerve fibers and reinnervated mechanoreceptors may differentially influence recovery of sensory modalities. Touch was affected by the number and function of regenerated fibers and mechanoreceptors. In contrast, tactile gnosis depends on the input and plasticity of the central nervous system (CNS), which may explain the absence of a direct relation between electrophysiological parameters and poor recovery. Dispersed maturation of sensory nerve fibers with desynchronized inputs to the CNS also contributes to the poor recovery of tactile gnosis. Ann Neurol 2017. Ann Neurol 2017;82:940-950. © 2017 American Neurological Association.

  17. Histochemistry of nerve fibres double labelled with anti-TRPV2 antibodies and sensory nerve marker AM1-43 in the dental pulp of rat molars.

    PubMed

    Nishikawa, Sumio

    2008-09-01

    AM1-43 can label sensory nerve fibres and sensory neurons. Permeation of non-selective cation channels of the nerve cell membrane is suggested to be the mechanism responsible for labelling. To identify these channels, two candidates, TRPV1 and TRPV2 were examined by immunocytochemistry in the dental pulp and trigeminal ganglion of rats injected with AM1-43. A part of AM1-43-labelled nerve fibres was also positive for anti-TRPV2 antibody but negative for anti-TRPV1 antibody in the dental pulp. In the trigeminal ganglion, a part of the neuron showed both bright AM1-43 labelling and anti-TRPV2 immunolabelling, but neurons double labelled with AM1-43 and TRPV1 were rare. These results suggest that TRPV2 channels, but not TRPV1 channels, contribute to the fluorescent labelling of AM1-43 in the dental pulp.

  18. Roles of Sensory Nerves in the Regulation of Radiation-Induced Structural and Functional Changes in the Heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Vijayalakshmi; Tripathi, Preeti; Sharma, Sunil

    Purpose: Radiation-induced heart disease (RIHD) is a chronic severe side effect of radiation therapy of intrathoracic and chest wall tumors. The heart contains a dense network of sensory neurons that not only are involved in monitoring of cardiac events such as ischemia and reperfusion but also play a role in cardiac tissue homeostasis, preconditioning, and repair. The purpose of this study was to examine the role of sensory nerves in RIHD. Methods and Materials: Male Sprague-Dawley rats were administered capsaicin to permanently ablate sensory nerves, 2 weeks before local image-guided heart x-ray irradiation with a single dose of 21 Gy.more » During the 6 months of follow-up, heart function was assessed with high-resolution echocardiography. At 6 months after irradiation, cardiac structural and molecular changes were examined with histology, immunohistochemistry, and Western blot analysis. Results: Capsaicin pretreatment blunted the effects of radiation on myocardial fibrosis and mast cell infiltration and activity. By contrast, capsaicin pretreatment caused a small but significant reduction in cardiac output 6 months after irradiation. Capsaicin did not alter the effects of radiation on cardiac macrophage number or indicators of autophagy and apoptosis. Conclusions: These results suggest that sensory nerves, although they play a predominantly protective role in radiation-induced cardiac function changes, may eventually enhance radiation-induced myocardial fibrosis and mast cell activity.« less

  19. Sensory re-education after nerve injury of the upper limb: a systematic review.

    PubMed

    Oud, Tanja; Beelen, Anita; Eijffinger, Elianne; Nollet, Frans

    2007-06-01

    To systematically review the available evidence for the effectiveness of sensory re-education to improve the sensibility of the hand in patients with a peripheral nerve injury of the upper limb. Studies were identified by an electronic search in the databases MEDLINE, Cumulative Index to Nursing & Allied Health Literature (CINAHL), EMBASE, the Cochrane Library, the Physiotherapy Evidence Database (PEDro), and the database of the Dutch National Institute of Allied Health Professions (Doconline) and by screening the reference lists of relevant articles. Two reviewers selected studies that met the following inclusion criteria: all designs except case reports, adults with impaired sensibility of the hand due to a peripheral nerve injury of the upper limb, and sensibility and functional sensibility as outcome measures. The methodological quality of the included studies was independently assessed by two reviewers. A best-evidence synthesis was performed, based on design, methodological quality and significant findings on outcome measures. Seven studies, with sample sizes ranging from 11 to 49, were included in the systematic review and appraised for content. Five of these studies were of poor methodological quality. One uncontrolled study (N = 1 3 ) was considered to be of sufficient methodological quality, and one randomized controlled trial (N = 49) was of high methodological quality. Best-evidence synthesis showed that there is limited evidence for the effectiveness of sensory re-education, provided by a statistically significant improvement in sensibility found in one high-quality randomized controlled trial. There is a need for further well-defined clinical trials to assess the effectiveness of sensory re-education of patients with impaired sensibility of the hand due to a peripheral nerve injury.

  20. Congenital sensory neuropathy

    PubMed Central

    Barry, J. E.; Hopkins, I. J.; Neal, B. W.

    1974-01-01

    Two infants with sporadic congenital sensory neuropathy are described. The criteria of generalized lack of superficial sensory appreciation, hypotonia, areflexia, together with histological evidence of abnormalities of sensory neural structures in skin and peripheral nerves have been met. No abnormality of motor or autonomic nerves was shown. ImagesFIG. PMID:4131674

  1. Chicken (Gallus domesticus) inner ear afferents

    NASA Technical Reports Server (NTRS)

    Hara, H.; Chen, X.; Hartsfield, J. F.; Hara, J.; Martin, D.; Fermin, C. D.

    1998-01-01

    Neurons from the vestibular (VG) and the statoacoustic (SAG) ganglion of the chick (Gallus domesticus) were evaluated histologically and morphometrically. Embryos at stages 34 (E8 days), 39 (E13 days) and 44 (E18 days) were sacrificed and temporal bones microdissected. Specimens were embedded in JB-4 methacrylate plastic, and stained with a mixture of 0.2% toluidine blue (TB) and 0.1% basic Fuschin in 25% ethanol or with a mixture of 2% TB and 1% paraphenylenediamine (PDA) for axon and myelin measurement study. Images of the VIIIth nerve were produced by a V150 (R) color imaging system and the contour of 200-300 neuronal bodies (perikarya) was traced directly on a video screen with a mouse in real time. The cross-sectional area of VG perikarya was 67.29 micrometers2 at stage 34 (E8), 128.46 micrometers2 at stage 39 (E13) and 275.85 micrometers2 at stage 44 (E18). The cross-sectional area of SAG perikarya was 62.44 micrometers2 at stage 34 (E8), 102.05 micrometers2 at stage 39 (E13) and 165.02 micrometers2 at stage 44 (E18). A significant cross-sectional area increase of the VG perikarya between stage 39 (E13) and stage 44 (E18) was determined. We randomly measured the cross-sectional area of myelin and axoplasm of hatchling afferent nerves, and found a correspondence between axoplasmic and myelin cross-sectional area in the utricular, saccular and semicircular canal nerve branches of the nerve. The results suggest that the period between stage 34 (E8) and 39 (E13) is a critical period for afferent neuronal development. Physiological and behavioral vestibular properties of developing and maturing hatchlings may change accordingly. The results compliment previous work by other investigators and provide valuable anatomical measures useful to correlate physiological data obtained from stimulation of the whole nerve or its parts.

  2. Hericium erinaceus (Bull.: Fr.) Pers., a medicinal mushroom, activates peripheral nerve regeneration.

    PubMed

    Wong, Kah-Hui; Kanagasabapathy, Gowri; Naidu, Murali; David, Pamela; Sabaratnam, Vikineswary

    2016-10-01

    To study the ability of aqueous extract of Hericium erinaceus mushroom in the treatment of nerve injury following peroneal nerve crush in Sprague-Dawley rats. Aqueous extract of Hericium erinaceus was given by daily oral administration following peroneal nerve crush injury in Sprague-Dawley rats. The expression of protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) signaling pathways; and c-Jun and c-Fos genes were studied in dorsal root ganglia (DRG) whereas the activity of protein synthesis was assessed in peroneal nerves by immunohistochemical method. Peripheral nerve injury leads to changes at the axonal site of injury and remotely located DRG containing cell bodies of sensory afferent neurons. Immunofluorescence studies showed that DRG neurons ipsilateral to the crush injury in rats of treated groups expressed higher immunoreactivities for Akt, MAPK, c-Jun and c-Fos as compared with negative control group (P <0.05). The intensity of nuclear ribonucleoprotein in the distal segments of crushed nerves of treated groups was significantly higher than in the negative control group (P <0.05). H. erinaceus is capable of promoting peripheral nerve regeneration after injury. Potential signaling pathways include Akt, MAPK, c-Jun, and c-Fos, and protein synthesis have been shown to be involved in its action.

  3. CO2 stimulation of the cornea: a comparison between human sensation and nerve activity in polymodal nociceptive afferents of the cat.

    PubMed

    Chen, X; Gallar, J; Pozo, M A; Baeza, M; Belmonte, C

    1995-06-01

    Excitation of nociceptors by low pH has been proposed as a cause of pain following tissue injury. Here we have studied the effect of pH reductions caused by application of CO2 pulses to the cornea on the activity of corneal afferent nerves of the cat and on the magnitude of pain sensations in humans. Single-unit activity was recorded from corneal afferent fibres in anaesthetized cats. The corneal receptive field of A-delta or C polymodal nociceptive units was exposed for 30 s to a gas mixture with different concentrations of CO2 in air (0, 35, 50, 65, 80 and 98.5%). Responses to CO2 were evoked at a mean threshold concentration of 40 +/- 3% CO2. They consisted of a discharge of impulses that decayed gradually to a tonic level. In 15% of the units the initial burst was absent. The CO2 concentration and firing frequency data could be fitted to a power function with an exponent of 1.12. Pulses of CO2 were also applied to the cornea of 16 human volunteers. Sensations experienced were measured by means of a visual analogue scale and a verbal descriptor scale. Flow was adjusted below the mechanical stimulation threshold (2.8 +/- 0.5 mg). When mixtures containing 10-90% CO2 in 5% steps were applied as 3 s pulses, threshold sensation, described as a mild stinging pain, was evoked at 33.5 +/- 4.0% CO2. This sensation became overtly painful with higher CO2 concentrations (47.5 +/- 3.6% CO2). For the same subject the sensory threshold was remarkably constant, though it changed with longer exposure times. The relationship between CO2 concentration and magnitude of pain could be adjusted to a power function with a power exponent of 1.12. Curves of CO2 concentration versus neural discharges in the cat and versus psychophysical sensation in humans were very similar. These results show that corneal polymodal nociceptors respond to protons, and encode changes in CO2 concentration presumably reflecting pH changes. The same stimulus evokes corneal pain sensations in humans, thus

  4. Sensory Recovery Outcome after Digital Nerve Repair in Relation to Different Reconstructive Techniques: Meta-Analysis and Systematic Review

    PubMed Central

    Wolf, Petra; Harder, Yves; Kern, Yasmin; Paprottka, Philipp M.; Machens, Hans-Günther; Lohmeyer, Jörn A.

    2013-01-01

    Good clinical outcome after digital nerve repair is highly relevant for proper hand function and has a significant socioeconomic impact. However, level of evidence for competing surgical techniques is low. The aim is to summarize and compare the outcomes of digital nerve repair with different methods (end-to-end and end-to-side coaptations, nerve grafts, artificial conduit-, vein-, muscle, and muscle-in-vein reconstructions, and replantations) to provide an aid for choosing an individual technique of nerve reconstruction and to create reference values of standard repair for nonrandomized clinical studies. 87 publications including 2,997 nerve repairs were suitable for a precise evaluation. For digital nerve repairs there was practically no particular technique superior to another. Only end-to-side coaptation had an inferior two-point discrimination in comparison to end-to-end coaptation or nerve grafting. Furthermore, this meta-analysis showed that youth was associated with an improved sensory recovery outcome in patients who underwent digital replantation. For end-to-end coaptations, recent publications had significantly better sensory recovery outcomes than older ones. Given minor differences in outcome, the main criteria in choosing an adequate surgical technique should be gap length and donor site morbidity caused by graft material harvesting. Our clinical experience was used to provide a decision tree for digital nerve repair. PMID:23984064

  5. Differential central projections of vestibular afferents in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Fang, Q.

    1996-01-01

    The question of whether a differential distribution of vestibular afferent information to central nuclear neurons is present in pigeons was studied using neural tracer compounds. Discrete tracing of afferent fibers innervating the individual semicircular canal and otolith organs was produced by sectioning individual branches of the vestibular nerve that innervate the different receptor organs and applying crystals of horseradish peroxidase, or a horseradish peroxidase/cholera toxin mixture, or a biocytin compound for neuronal uptake and transport. Afferent fibers and their terminal distributions within the brainstem and cerebellum were visualized subsequently. Discrete areas in the pigeon central nervous system that receive primary vestibular input include the superior, dorsal lateral, ventral lateral, medial, descending, and tangential vestibular nuclei; the A and B groups; the intermediate, medial, and lateral cerebellar nuclei; and the nodulus, the uvula, and the paraflocculus. Generally, the vertical canal afferents projected heavily to medial regions in the superior and descending vestibular nuclei as well as the A group. Vertical canal projections to the medial and lateral vestibular nuclei were observed but were less prominent. Horizontal canal projections to the superior and descending vestibular nuclei were much more centrally located than those of the vertical canals. A more substantial projection to the medial and lateral vestibular nuclei was seen with horizontal canal afferents compared to vertical canal fibers. Afferents innervating the utricle and saccule terminated generally in the lateral regions of all vestibular nuclei in areas that were separate from the projections of the semicircular canals. In addition, utricular fibers projected to regions in the vestibular nuclei that overlapped with the horizontal semicircular canal terminal fields, whereas saccular afferents projected to regions that received vertical canal fiber terminations. Lagenar

  6. Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy.

    PubMed

    Peters, James H; Gallaher, Zachary R; Ryu, Vitaly; Czaja, Krzysztof

    2013-10-15

    Vagotomy, a severing of the peripheral axons of the vagus nerve, has been extensively utilized to determine the role of vagal afferents in viscerosensory signaling. Vagotomy is also an unavoidable component of some bariatric surgeries. Although it is known that peripheral axons of the vagus nerve degenerate and then regenerate to a limited extent following vagotomy, very little is known about the response of central vagal afferents in the dorsal vagal complex to this type of damage. We tested the hypothesis that vagotomy results in the transient withdrawal of central vagal afferent terminals from their primary central target, the nucleus of the solitary tract (NTS). Sprague-Dawley rats underwent bilateral subdiaphragmatic vagotomy and were sacrificed 10, 30, or 60 days later. Plastic changes in vagal afferent fibers and synapses were investigated at the morphological and functional levels by using a combination of an anterograde tracer, synapse-specific markers, and patch-clamp electrophysiology in horizontal brain sections. Morphological data revealed that numbers of vagal afferent fibers and synapses in the NTS were significantly reduced 10 days following vagotomy and were restored to control levels by 30 days and 60 days, respectively. Electrophysiology revealed transient decreases in spontaneous glutamate release, glutamate release probability, and the number of primary afferent inputs. Our results demonstrate that subdiaphragmatic vagotomy triggers transient withdrawal and remodeling of central vagal afferent terminals in the NTS. The observed vagotomy-induced plasticity within this key feeding center of the brain may be partially responsible for the response of bariatric patients following gastric bypass surgery. Copyright © 2013 Wiley Periodicals, Inc.

  7. Chronic implantation of cuff electrodes on the pelvic nerve in rats is well tolerated and does not compromise afferent or efferent fibre functionality

    NASA Astrophysics Data System (ADS)

    Crook, J. J.; Brouillard, C. B. J.; Irazoqui, P. P.; Lovick, T. A.

    2018-04-01

    Objective. Neuromodulation of autonomic nerve activity to regulate physiological processes is an emerging field. Vagal stimulation has received most attention whereas the potential of modulate visceral function by targeting autonomic nerves within the abdominal cavity remains under-exploited. Surgery to locate intra-abdominal targets is inherently more stressful than for peripheral nerves. Electrode leads risk becoming entrapped by intestines and loss of functionality in the nerve-target organ connection could result from electrode migration or twisting. Since nociceptor afferents are intermingled with similar-sized visceral autonomic fibres, stimulation may induce pain. In anaesthetised rats high frequency stimulation of the pelvic nerve can suppress urinary voiding but it is not known how conscious animals would react to this procedure. Our objective therefore was to determine how rats tolerated chronic implantation of cuff electrodes on the pelvic nerve, whether nerve stimulation would be aversive and whether nerve-bladder functionality would be compromised. Approach. We carried out a preliminary de-risking study to investigate how conscious rats tolerated chronic implantation of electrodes on the pelvic nerve, their responsiveness to intermittent high frequency stimulation and whether functionality of the nerve-bladder connection became compromised. Main results. Implantation of cuff electrodes was well-tolerated. The normal diurnal pattern of urinary voiding was not disrupted. Pelvic nerve stimulation (up to 4 mA, 3 kHz) for 30 min periods evoked mild alerting at stimulus onset but no signs of pain. Stimulation evoked a modest (<0.5 °C) increase in nerve temperature but the functional integrity of the nerve-bladder connection, reflected by contraction of the detrusor muscle in response to 10 Hz nerve stimulation, was not compromised. Significance. Chronic implantation of cuff electrodes on the pelvic nerve was found to be a well-tolerated procedure in

  8. Differential motor and sensory functional recovery in male but not female adult rats is associated with remyelination rather than axon regeneration after sciatic nerve crush.

    PubMed

    Tong, Ling-Ling; Ding, You-Quan; Jing, Hong-Bo; Li, Xuan-Yang; Qi, Jian-Guo

    2015-05-06

    Peripheral nerve functional recovery after injuries relies on both axon regeneration and remyelination. Both axon regeneration and remyelination require intimate interactions between regenerating neurons and their accompanying Schwann cells. Previous studies have shown that motor and sensory neurons are intrinsically different in their regeneration potentials. Moreover, denervated Schwann cells accompanying myelinated motor and sensory axons have distinct gene expression profiles for regeneration-associated growth factors. However, it is unknown whether differential motor and sensory functional recovery exists. If so, the particular one among axon regeneration and remyelination responsible for this difference remains unclear. Here, we aimed to establish an adult rat sciatic nerve crush model with the nonserrated microneedle holders and measured rat motor and sensory functions during regeneration. Furthermore, axon regeneration and remyelination was evaluated by morphometric analysis of electron microscopic images on the basis of nerve fiber classification. Our results showed that Aα fiber-mediated motor function was successfully recovered in both male and female rats. Aδ fiber-mediated sensory function was partially restored in male rats, but completely recovered in female littermates. For both male and female rats, the numbers of regenerated motor and sensory axons were quite comparable. However, remyelination was diverse among myelinated motor and sensory nerve fibers. In detail, Aβ and Aδ fibers incompletely remyelinated in male, but not female rats, whereas Aα fibers fully remyelinated in both sexes. Our result indicated that differential motor and sensory functional recovery in male but not female adult rats is associated with remyelination rather than axon regeneration after sciatic nerve crush.

  9. Development of regenerative peripheral nerve interfaces for motor control of neuroprosthetic devices

    NASA Astrophysics Data System (ADS)

    Kemp, Stephen W. P.; Urbanchek, Melanie G.; Irwin, Zachary T.; Chestek, Cynthia A.; Cederna, Paul S.

    2017-05-01

    Traumatic peripheral nerve injuries suffered during amputation commonly results in debilitating neuropathic pain in the affected limb. Modern prosthetic technologies allow for intuitive, simultaneous control of multiple degrees of freedom. However, these state-of-the-art devices require separate, independent control signals for each degree of freedom, which is currently not possible. As a result, amputees reject up to 75% of myoelectric devices preferring instead to use body-powered artificial limbs which offer subtle sensory feedback. Without meaningful and intuitive sensory feedback, even the most advanced myoelectric prostheses remain insensate, burdensome, and are associated with enormous cognitive demand and mental fatigue. The ideal prosthetic device is one which is capable of providing intuitive somatosensory feedback essential for interaction with the environment. Critical to the design of such a bioprosthetic device is the development of a reliable biologic interface between human and machine. This ideal patient-prosthetic interface allows for transmission of both afferent somatosensory information and efferent motor signals for a closed-loop feedback system of neural control. Our lab has developed the Regenerative Peripheral Nerve Interface (RPNI) as a biologic nerve interface designed for stable integration of a prosthetic device with transected peripheral nerves in a residual limb. The RPNI is constructed by surgically implanting the distal end of a transected peripheral nerve into an autogenous muscle graft. Animal experiments in our lab have shown recording of motor signals from RPNI's implanted into both rodents and monkeys. Here, we achieve high amplitude EMG signals with a high signal to noise (SNR) ratio.

  10. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves.

    PubMed

    Davis, T S; Wark, H A C; Hutchinson, D T; Warren, D J; O'Neill, K; Scheinblum, T; Clark, G A; Normann, R A; Greger, B

    2016-06-01

    An important goal of neuroprosthetic research is to establish bidirectional communication between the user and new prosthetic limbs that are capable of controlling >20 different movements. One strategy for achieving this goal is to interface the prosthetic limb directly with efferent and afferent fibres in the peripheral nervous system using an array of intrafascicular microelectrodes. This approach would provide access to a large number of independent neural pathways for controlling high degree-of-freedom prosthetic limbs, as well as evoking multiple-complex sensory percepts. Utah Slanted Electrode Arrays (USEAs, 96 recording/stimulating electrodes) were implanted for 30 days into the median (Subject 1-M, 31 years post-amputation) or ulnar (Subject 2-U, 1.5 years post-amputation) nerves of two amputees. Neural activity was recorded during intended movements of the subject's phantom fingers and a linear Kalman filter was used to decode the neural data. Microelectrode stimulation of varying amplitudes and frequencies was delivered via single or multiple electrodes to investigate the number, size and quality of sensory percepts that could be evoked. Device performance over time was assessed by measuring: electrode impedances, signal-to-noise ratios (SNRs), stimulation thresholds, number and stability of evoked percepts. The subjects were able to proportionally, control individual fingers of a virtual robotic hand, with 13 different movements decoded offline (r = 0.48) and two movements decoded online. Electrical stimulation across one USEA evoked >80 sensory percepts. Varying the stimulation parameters modulated percept quality. Devices remained intrafascicularly implanted for the duration of the study with no significant changes in the SNRs or percept thresholds. This study demonstrated that an array of 96 microelectrodes can be implanted into the human peripheral nervous system for up to 1 month durations. Such an array could provide intuitive control of a

  11. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves

    NASA Astrophysics Data System (ADS)

    Davis, T. S.; Wark, H. A. C.; Hutchinson, D. T.; Warren, D. J.; O'Neill, K.; Scheinblum, T.; Clark, G. A.; Normann, R. A.; Greger, B.

    2016-06-01

    Objective. An important goal of neuroprosthetic research is to establish bidirectional communication between the user and new prosthetic limbs that are capable of controlling >20 different movements. One strategy for achieving this goal is to interface the prosthetic limb directly with efferent and afferent fibres in the peripheral nervous system using an array of intrafascicular microelectrodes. This approach would provide access to a large number of independent neural pathways for controlling high degree-of-freedom prosthetic limbs, as well as evoking multiple-complex sensory percepts. Approach. Utah Slanted Electrode Arrays (USEAs, 96 recording/stimulating electrodes) were implanted for 30 days into the median (Subject 1-M, 31 years post-amputation) or ulnar (Subject 2-U, 1.5 years post-amputation) nerves of two amputees. Neural activity was recorded during intended movements of the subject’s phantom fingers and a linear Kalman filter was used to decode the neural data. Microelectrode stimulation of varying amplitudes and frequencies was delivered via single or multiple electrodes to investigate the number, size and quality of sensory percepts that could be evoked. Device performance over time was assessed by measuring: electrode impedances, signal-to-noise ratios (SNRs), stimulation thresholds, number and stability of evoked percepts. Main results. The subjects were able to proportionally, control individual fingers of a virtual robotic hand, with 13 different movements decoded offline (r = 0.48) and two movements decoded online. Electrical stimulation across one USEA evoked >80 sensory percepts. Varying the stimulation parameters modulated percept quality. Devices remained intrafascicularly implanted for the duration of the study with no significant changes in the SNRs or percept thresholds. Significance. This study demonstrated that an array of 96 microelectrodes can be implanted into the human peripheral nervous system for up to 1 month durations. Such an

  12. Different Effects of Implanting Sensory Nerve or Blood Vessel on the Vascularization, Neurotization, and Osteogenesis of Tissue-Engineered Bone In Vivo

    PubMed Central

    Fan, Jun-jun; Mu, Tian-wang; Qin, Jun-jun; Bi, Long; Pei, Guo-xian

    2014-01-01

    To compare the different effects of implanting sensory nerve tracts or blood vessel on the osteogenesis, vascularization, and neurotization of the tissue-engineered bone in vivo, we constructed the tissue engineered bone and implanted the sensory nerve tracts (group SN), blood vessel (group VB), or nothing (group Blank) to the side channel of the bone graft to repair the femur defect in the rabbit. Better osteogenesis was observed in groups SN and VB than in group Blank, and no significant difference was found between groups SN and VB at 4, 8, and 12 weeks postoperatively. The neuropeptides expression and the number of new blood vessels in the bone tissues were increased at 8 weeks and then decreased at 12 weeks in all groups and were highest in group VB and lowest in group Blank at all three time points. We conclude that implanting either blood vessel or sensory nerve tract into the tissue-engineered bone can significantly enhance both the vascularization and neurotization simultaneously to get a better osteogenesis effect than TEB alone, and the method of implanting blood vessel has a little better effect of vascularization and neurotization but almost the same osteogenesis effect as implanting sensory nerve. PMID:25101279

  13. Inhibitory effects of retigabine, a Kv7 channel activator, on mechanosensitive primary bladder afferent activities and nociceptive behaviors in rats.

    PubMed

    Aizawa, Naoki; Wakamatsu, Daisuke; Kida, Jun; Otsuki, Takeya; Saito, Yasuho; Matsuya, Hidekazu; Homma, Yukio; Igawa, Yasuhiko

    2017-02-01

    Kv7 voltage-gated potassium channels have been suggested to modulate mechano-afferent transduction and nociception in the bladder. We investigated the effects of retigabine, a Kv7 channel activator, on rhythmic bladder contractions (RBCs), and single-unit afferent activities (SAAs) of the primary bladder mechanosensitive afferent nerve fibers in urethane-anesthetized rats. In addition, the effects of pretreatment with retigabine on the nociceptive behaviors provoked by an intravesical instillation of resiniferatoxin (RTX) were evaluated in the conscious condition. Female Sprague-Dawley rats were used. Under urethane anesthesia, saline was instilled into the bladder until RBCs were induced reproducibly. Then, the effects of intravenous, cumulative administrations of retigabine (0.1-3 mg/kg) or vehicle (saline) on RBCs were assessed. In separate animals, SAAs of Aδ- and C-fibers were identified by electrical stimulation of the pelvic nerve and by bladder distention with saline. After baseline recording, vehicle or retigabine (0.01-1 mg/kg) was administered intravenously and further recordings were performed. Under pretreatment with vehicle or retigabine (3 mg/kg intraperitoneally), the frequencies of lower abdominal licking and freezing were counted and scored as the bladder nociceptive behaviors induced by intravesical RTX instillation (3 µM, 0.3 ml). Retigabine dose-dependently decreased both the frequency and the amplitude of RBCs and SAAs of both Aδ- and C-fibers. The effect on RBCs was more potent on the frequency than the amplitude. Retigabine inhibited the RTX-induced abdominal licking, but not freezing. Kv7 channels are likely to be implicated in inhibition of bladder mechano- and nociceptive sensory transduction. Neurourol. Urodynam. 36:280-285, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  14. Pudendal and median nerve sensory perception threshold: a comparison between normative studies.

    PubMed

    Quaghebeur, Jörgen; Wyndaele, Jean Jacques

    2014-12-01

    For the evaluation of sensory innervation, normative data are necessary as a comparison. To compare our current perception thresholds (CPTs) with normative data from other research. Healthy volunteers were assessed for 2000, 250, and 5 Hz CPTs of the median and pudendal nerve and data were compared with other studies. Normative data in the studied group n = 41 (male: 21; female: 20) for the median nerve, 2 kHz, 250 Hz, and 5 Hz were respectively: 241.85 ± 67.72 (140-444); 106.27 ± 39.12 (45-229); 82.05 ± 43.40 (13-271). Pudendal nerve CPTs 250 Hz were: 126.44 ± 69.46 (6-333). For men 2 kHz: 349.95 ± 125.76 (100-588); 5 Hz: 132.67 ± 51.81 (59-249) and women 2 kHz:226.20 ± 119.65 (64-528); 5 Hz: 92.45 ± 44.66 (35-215). For the median nerve no statistical differences for gender were shown. For the pudendal nerve, only 250 Hz showed no difference for gender (t-test: 0.516). Comparison of our data with CPTs of other normative data showed no agreement for the pudendal nerve. For the median nerve only 2 kHz showed agreement in three studies and for 5 Hz with one study. Comparing normative data of multiple studies shows a variety of results and poor agreement. Therefore, referring to normative data of other studies should be handled with caution.

  15. Haemangioblastoma of a cervical sensory nerve root in Von Hippel-Lindau syndrome.

    PubMed

    McEvoy, A W; Benjamin, E; Powell, M P

    2000-10-01

    Spinal haemangioblastomas are rare, accounting for only about 7% of all central nervous system cases. The case of a 40-year-old woman with a haemangioblastoma arising solely from a cervical sensory nerve root is presented. At operation via a cervical laminectomy, it was possible to resect the tumour en masse with the sensory ramus, by extending the laminectomy through the exit foramen for C6. Haemangioblastomas are commonly intramedullary, and have only been reported in this location on one previous occasion. The patient has Von Hippel-Lindau syndrome and a history of multiple solid tumours. The possible role of the Von Hippel-Lindau tumour suppressor gene in the pathogenesis of these neoplasms is discussed.

  16. Effect of walking and resting after three cryotherapy modalities on the recovery of sensory and motor nerve conduction velocity in healthy subjects.

    PubMed

    Herrera, Esperanza; Sandoval, Maria Cristina; Camargo, Diana M; Salvini, Tania F

    2011-01-01

    Different cryotherapy modalities have distinct effects on sensory and motor nerve conduction parameters. However, it is unclear how these parameters change during the post-cooling period and how the exercise carried out in this period would influence the recovery of nerve conduction velocity (NCV). To compare the effects of three cryotherapy modalities on post-cooling NCV and to analyze the effect of walking on the recovery of sensory and motor NCV. Thirty six healthy young subjects were randomly allocated into three groups: ice massage (n=12), ice pack (n=12) and cold water immersion (n=12). The modalities were applied to the right leg. The subjects of each modality group were again randomized to perform a post-cooling activity: a) 30 min rest, b) walking 15 min followed by 15 min rest. The NCV of sural (sensory) and posterior tibial (motor) nerves was evaluated. Initial (pre-cooling) and final (30 min post-cooling) NCV were compared using a paired t-test. The effects of the modalities and the post-cooling activities on NCV were evaluated by an analysis of covariance. The significance level was α=0.05. There was a significant difference between immersion and ice massage on final sensory NCV (p=0.009). Ice pack and ice massage showed similar effects (p>0.05). Walking accelerated the recovery of sensory and motor NCV, regardless of the modality previously applied (p<0.0001). Cold water immersion was the most effective modality for maintaining reduced sensory nerve conduction after cooling. Walking after cooling, with any of the three modalities, enhances the recovery of sensory and motor NCV.

  17. Proteinase-Activated Receptor-2 Sensitivity of Amplified TRPA1 Activity in Skeletal Muscle Afferent Nerves and Exercise Pressor Reflex in Rats with Femoral Artery Occlusion

    PubMed Central

    Xing, Jihong; Li, Jianhua

    2017-01-01

    Background/Aims Limb ischemia occurs in peripheral artery disease (PAD). Sympathetic nerve activity (SNA) that regulates blood flow directed to the ischemic limb is exaggerated during exercise in this disease, and transient receptor potential channel A1 (TRPA1) in thin-fiber muscle afferents contributes to the amplified sympathetic response. The purpose of the present study was to determine the role of proteinase-activated receptor-2 (PAR2) in regulating abnormal TRPA1 function and the TRPA1-mediated sympathetic component of the exercise pressor reflex. Methods A rat model of femoral artery ligation was employed to study PAD. Dorsal root ganglion (DRG) tissues were obtained to examine the protein levels of PAR2 using western blot analysis. Current responses induced by activation of TRPA1 in skeletal muscle DRG neurons were characterized using whole-cell patch clamp methods. The blood pressure response to static exercise (i.e., muscle contraction) and stimulation of TRPA1 was also examined after a blockade of PAR2. Results The expression of PAR2 was amplified in DRG neurons of the occluded limb, and PAR2 activation with SL-NH2 (a PAR2 agonist) increased the amplitude of TRPA1 currents to a greater degree in DRG neurons of the occluded limb. Moreover, FSLLRY-NH2 (a PAR antagonist) injected into the arterial blood supply of the hindlimb muscles significantly attenuated the pressor response to muscle contraction and TRPA1 stimulation in rats with occluded limbs. Conclusions The PAR2 signal in muscle sensory nerves contributes to the amplified exercise pressor reflex via TRPA1 mechanisms in rats with femoral artery ligation. These findings provide a pathophysiological basis for autonomic responses during exercise activity in PAD, which may potentially aid in the development of therapeutic approaches for improvement of blood flow in this disease. PMID:29131007

  18. Activation of somatosensory afferents elicit changes in vaginal blood flow and the urethrogenital reflex via autonomic efferents.

    PubMed

    Cai, R S; Alexander, M Sipski; Marson, L

    2008-09-01

    We examined the effects of pudendal sensory nerve stimulation and urethral distention on vaginal blood flow and the urethrogenital reflex, and the relationship between somatic and autonomic pathways regulating sexual responses. Distention of the urethra and stimulation of the pudendal sensory nerve were used to evoke changes in vaginal blood flow (laser Doppler perfusion monitoring) and pudendal motor nerve activity in anesthetized, spinally transected female rats. Bilateral cuts of either the pelvic or hypogastric nerve or both autonomic nerves were made, and blood flow and pudendal nerve responses were reexamined. Stimulation of the pudendal sensory nerve or urethral distention elicited consistent increases in vaginal blood flow and rhythmic firing of the pudendal motor nerve. Bilateral cuts of the pelvic plus hypogastric nerves significantly reduced vaginal blood flow responses without altering pudendal motor nerve responses. Pelvic nerve cuts also significantly reduced vaginal blood flow responses. In contrast, hypogastric nerve cuts did not significantly change vaginal blood flow. Bilateral cuts of the pudendal sensory nerve blocked pudendal motor nerve responses but stimulation of the central end evoked vaginal blood flow and pudendal motor nerve responses. Stimulation of the sensory branch of the pudendal nerve elicits vasodilatation of the vagina. The likely mechanism is via activation of spinal pathways that in turn activate pelvic nerve efferents to produced changes in vaginal blood flow. Climatic-like responses (firing of the pudendal motor nerve) occur in response to stimulation of the pudendal sensory nerve and do not require intact pelvic or hypogastric nerves.

  19. Alpha-Synuclein Pathology in Sensory Nerve Terminals of the Upper Aerodigestive Tract of Parkinson's Disease Patients.

    PubMed

    Mu, Liancai; Chen, Jingming; Sobotka, Stanislaw; Nyirenda, Themba; Benson, Brian; Gupta, Fiona; Sanders, Ira; Adler, Charles H; Caviness, John N; Shill, Holly A; Sabbagh, Marwan; Samanta, Johan E; Sue, Lucia I; Beach, Thomas G

    2015-08-01

    Dysphagia is common in Parkinson's disease (PD) and causes significant morbidity and mortality. PD dysphagia has usually been explained as dysfunction of central motor control, much like other motor symptoms that are characteristic of the disease. However, PD dysphagia does not correlate with severity of motor symptoms nor does it respond to motor therapies. It is known that PD patients have sensory deficits in the pharynx, and that impaired sensation may contribute to dysphagia. However, the underlying cause of the pharyngeal sensory deficits in PD is not known. We hypothesized that PD dysphagia with sensory deficits may be due to degeneration of the sensory nerve terminals in the upper aerodigestive tract (UAT). We have previously shown that Lewy-type synucleinopathy (LTS) is present in the main pharyngeal sensory nerves of PD patients, but not in controls. In this study, the sensory terminals in UAT mucosa were studied to discern the presence and distribution of LTS. Whole-mount specimens (tongue-pharynx-larynx-upper esophagus) were obtained from 10 deceased human subjects with clinically diagnosed and neuropathologically confirmed PD (five with dysphagia and five without) and four age-matched healthy controls. Samples were taken from six sites and immunostained for phosphorylated α-synuclein (PAS). The results showed the presence of PAS-immunoreactive (PAS-ir) axons in all the PD subjects and in none of the controls. Notably, PD patients with dysphagia had more PAS-ir axons in the regions that are critical for initiating the swallowing reflex. These findings suggest that Lewy pathology affects mucosal sensory axons in specific regions of the UAT and may be related to PD dysphagia.

  20. Presynaptic Inhibition of Diverse Afferents to the Locus Coeruleus by Kappa Opiate Receptors: a Novel Mechanism for Regulating the Central Norepinephrine System

    PubMed Central

    Kreibich, Arati S.; Reyes, Beverly A. S.; Curtis, Andre L.; Ecke, Laurel; Chavkin, Charles; Van Bockstaele, Elisabeth J.; Valentino, Rita J.

    2008-01-01

    The norepinephrine nucleus, locus coeruleus (LC), is activated by diverse stimuli and modulates arousal and behavioral strategies in response to these stimuli through its divergent efferent system. Afferents communicating information to the LC include excitatory amino acids (EAA), corticotropin-releasing factor (CRF) and endogenous opioids acting at μ-opiate receptors. As the LC is also innervated by the endogenous κ-opiate receptor (κ-OR) ligand, dynorphin, and expresses κ-ORs, this study investigated κ-OR regulation of LC neuronal activity in rat. Immunoelectron microscopy revealed a prominent localization of κ-ORs in axon terminals in the LC that also contained either the vesicular glutamate transporter or CRF. Microinfusion of the κ-OR agonist, U50488, into the LC did not alter LC spontaneous discharge but attenuated phasic discharge evoked by stimuli that engage EAA afferents to the LC, including sciatic nerve stimulation and auditory stimuli and the tonic activation associated with opiate withdrawal. Inhibitory effects of the κ-OR agonist were not restricted to EAA afferents, as U50488 also attenuated tonic LC activation by hypotensive stress, an effect mediated by CRF afferents. Together, these results indicate that κ-ORs are poised to presynaptically inhibit diverse afferent signaling to the LC. This is a novel and potentially powerful means of regulating the LC-NE system that can impact on forebrain processing of stimuli and the organization of behavioral strategies in response to environmental stimuli. The results implicate κ-ORs as a novel target for alleviating symptoms of opiate withdrawal, stress-related disorders or disorders characterized by abnormal sensory responses, such as autism. PMID:18562623

  1. Presynaptic inhibition of diverse afferents to the locus ceruleus by kappa-opiate receptors: a novel mechanism for regulating the central norepinephrine system.

    PubMed

    Kreibich, Arati; Reyes, Beverly A S; Curtis, Andre L; Ecke, Laurel; Chavkin, Charles; Van Bockstaele, Elisabeth J; Valentino, Rita J

    2008-06-18

    The norepinephrine nucleus, locus ceruleus (LC), is activated by diverse stimuli and modulates arousal and behavioral strategies in response to these stimuli through its divergent efferent system. Afferents communicating information to the LC include excitatory amino acids (EAAs), corticotropin-releasing factor (CRF), and endogenous opioids acting at mu-opiate receptors. Because the LC is also innervated by the endogenous kappa-opiate receptor (kappa-OR) ligand dynorphin and expresses kappa-ORs, this study investigated kappa-OR regulation of LC neuronal activity in rat. Immunoelectron microscopy revealed a prominent localization of kappa-ORs in axon terminals in the LC that also contained either the vesicular glutamate transporter or CRF. Microinfusion of the kappa-OR agonist (trans)-3,4-dichloro-N-methyl-N-[2-1-pyrrolidinyl)-cyclo-hexyl] benzeneacetamide (U50488) into the LC did not alter LC spontaneous discharge but attenuated phasic discharge evoked by stimuli that engage EAA afferents to the LC, including sciatic nerve stimulation and auditory stimuli and the tonic activation associated with opiate withdrawal. Inhibitory effects of the kappa-OR agonist were not restricted to EAA afferents, as U50488 also attenuated tonic LC activation by hypotensive stress, an effect mediated by CRF afferents. Together, these results indicate that kappa-ORs are poised to presynaptically inhibit diverse afferent signaling to the LC. This is a novel and potentially powerful means of regulating the LC-norepinephrine system that can impact on forebrain processing of stimuli and the organization of behavioral strategies in response to environmental stimuli. The results implicate kappa-ORs as a novel target for alleviating symptoms of opiate withdrawal, stress-related disorders, or disorders characterized by abnormal sensory responses, such as autism.

  2. Sensory Afferents Use Different Coding Strategies for Heat and Cold.

    PubMed

    Wang, Feng; Bélanger, Erik; Côté, Sylvain L; Desrosiers, Patrick; Prescott, Steven A; Côté, Daniel C; De Koninck, Yves

    2018-05-15

    Primary afferents transduce environmental stimuli into electrical activity that is transmitted centrally to be decoded into corresponding sensations. However, it remains unknown how afferent populations encode different somatosensory inputs. To address this, we performed two-photon Ca 2+ imaging from thousands of dorsal root ganglion (DRG) neurons in anesthetized mice while applying mechanical and thermal stimuli to hind paws. We found that approximately half of all neurons are polymodal and that heat and cold are encoded very differently. As temperature increases, more heating-sensitive neurons are activated, and most individual neurons respond more strongly, consistent with graded coding at population and single-neuron levels, respectively. In contrast, most cooling-sensitive neurons respond in an ungraded fashion, inconsistent with graded coding and suggesting combinatorial coding, based on which neurons are co-activated. Although individual neurons may respond to multiple stimuli, our results show that different stimuli activate distinct combinations of diversely tuned neurons, enabling rich population-level coding. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. The role of a trigeminal sensory nucleus in the initiation of locomotion.

    PubMed

    Buhl, Edgar; Roberts, Alan; Soffe, Stephen R

    2012-05-15

    While we understand how stimuli evoke sudden, ballistic escape responses, like fish fast-starts, a precise pathway from sensory stimulation to the initiation of rhythmic locomotion has not been defined for any vertebrate. We have now asked how head skin stimuli evoke swimming in hatchling frog tadpoles. Whole-cell recordings and dye filling revealed a nucleus of ∼20 trigeminal interneurons (tINs) in the hindbrain, at the level of the auditory nerve, with long, ipsilateral, descending axons. Stimulation of touch-sensitive trigeminal afferents with receptive fields anywhere on the head evoked large, monosynaptic EPSPs (∼5-20 mV) in tINs, at mixed AMPAR/NMDAR synapses. Following stimuli sufficient to elicit swimming, tINs fired up to six spikes, starting 4-8 ms after the stimulus. Paired whole-cell recordings showed that tINs produce small (∼2-6 mV), monosynaptic, glutamatergic EPSPs in the hindbrain reticulospinal neurons (descending interneurons, dINs) that drive swimming. Modelling suggested that summation of EPSPs from 18-24 tINs can make 20-50% of dINs fire. We conclude that: brief activity in a few sensory afferents is amplified by recruitment of many tINs; these relay summating excitation to hindbrain reticulospinal dINs; dIN firing then initiates activity for swimming on the stimulated side. During fictive swimming, tINs are depolarised and receive rhythmic inhibition but do not fire. Our recordings demonstrate a neuron-by-neuron pathway from head skin afferents to the reticulospinal neurons and motoneurons that drive locomotion in a vertebrate. This direct pathway, which has an important amplifier function, implies a simple origin for the complex routes to initiate locomotion in higher vertebrates.

  4. Continuous detection of weak sensory signals in afferent spike trains: the role of anti-correlated interspike intervals in detection performance.

    PubMed

    Goense, J B M; Ratnam, R

    2003-10-01

    An important problem in sensory processing is deciding whether fluctuating neural activity encodes a stimulus or is due to variability in baseline activity. Neurons that subserve detection must examine incoming spike trains continuously, and quickly and reliably differentiate signals from baseline activity. Here we demonstrate that a neural integrator can perform continuous signal detection, with performance exceeding that of trial-based procedures, where spike counts in signal- and baseline windows are compared. The procedure was applied to data from electrosensory afferents of weakly electric fish (Apteronotus leptorhynchus), where weak perturbations generated by small prey add approximately 1 spike to a baseline of approximately 300 spikes s(-1). The hypothetical postsynaptic neuron, modeling an electrosensory lateral line lobe cell, could detect an added spike within 10-15 ms, achieving near ideal detection performance (80-95%) at false alarm rates of 1-2 Hz, while trial-based testing resulted in only 30-35% correct detections at that false alarm rate. The performance improvement was due to anti-correlations in the afferent spike train, which reduced both the amplitude and duration of fluctuations in postsynaptic membrane activity, and so decreased the number of false alarms. Anti-correlations can be exploited to improve detection performance only if there is memory of prior decisions.

  5. Sensory and motor peripheral nerve function and longitudinal changes in quadriceps strength.

    PubMed

    Ward, Rachel E; Boudreau, Robert M; Caserotti, Paolo; Harris, Tamara B; Zivkovic, Sasa; Goodpaster, Bret H; Satterfield, Suzanne; Kritchevsky, Stephen; Schwartz, Ann V; Vinik, Aaron I; Cauley, Jane A; Newman, Anne B; Strotmeyer, Elsa S

    2015-04-01

    Poor peripheral nerve function is common in older adults and may be a risk factor for strength decline, although this has not been assessed longitudinally. We assessed whether sensorimotor peripheral nerve function predicts strength longitudinally in 1,830 participants (age = 76.3 ± 2.8, body mass index = 27.2 ± 4.6kg/m(2), strength = 96.3 ± 34.7 Nm, 51.0% female, 34.8% black) from the Health ABC study. Isokinetic quadriceps strength was measured semiannually over 6 years. Peroneal motor nerve conduction amplitude and velocity were recorded. Sensory nerve function was assessed with 10-g and 1.4-g monofilaments and average vibration detection threshold at the toe. Lower-extremity neuropathy symptoms were self-reported. Worse vibration detection threshold predicted 2.4% lower strength in men and worse motor amplitude and two symptoms predicted 2.5% and 8.1% lower strength, respectively, in women. Initial 10-g monofilament insensitivity predicted 14.2% lower strength and faster strength decline in women and 6.6% lower strength in men (all p < .05). Poor nerve function predicted lower strength and faster strength decline. Future work should examine interventions aimed at preventing declines in strength in older adults with impaired nerve function. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Aberrant gastrocnemius muscle innervation by tibial nerve afferents after implantation of chitosan tubes impregnated with progesterone favored locomotion recovery in rats with transected sciatic nerve.

    PubMed

    Sarabia-Estrada, Rachel; Bañuelos-Pineda, Jacinto; Osuna Carrasco, Laura P; Jiménez-Vallejo, Salvador; Jiménez-Estrada, Ismael; Rivas-Celis, Efrain; Dueñas-Jiménez, Judith M; Dueñas-Jiménez, Sergio H

    2015-07-01

    Transection of peripheral nerves produces loss of sensory and/or motor function. After complete nerve cutting, the distal and proximal segment ends retract, but if both ends are bridged with unaltered chitosan, progesterone-impregnated chitosan, or silicone tubes, an axonal repair process begins. Progesterone promotes nerve repair and has neuroprotective effects thwarting regulation of neuron survival, inflammation, and edema. It also modulates aberrant axonal sprouting and demyelination. The authors compared the efficacy of nerve recovery after implantation of progesterone-loaded chitosan, unaltered chitosan, or silicone tubes after sciatic nerve transection in rats. After surgical removal of a 5-mm segment of the proximal sciatic nerve, rats were implanted with progesterone-loaded chitosan, unaltered chitosan, or silicone tubes in the transected nerve for evaluating progesterone and chitosan effects on sciatic nerve repair and ipsilateral hindlimb kinematic function, as well as on gastrocnemius electro-myographic responses. In some experiments, tube implantation was performed 90 minutes after nerve transection. At 90 days after sciatic nerve transection and tube implantation, rats with progesterone-loaded chitosan tubes showed knee angular displacement recovery and better outcomes for step length, velocity of locomotion, and normal hindlimb raising above the ground. In contrast, rats with chitosan-only tubes showed reduced normal raising and pendulum-like hindlimb movements. Aberrant fibers coming from the tibial nerve innervated the gastrocnemius muscle, producing electromyographic responses. Electrical responses in the gastrocnemius muscle produced by sciatic nerve stimulation occurred only when the distal nerve segment was stimulated; they were absent when the proximal or intratubular segment was stimulated. A clear sciatic nerve morphology with some myelinated fiber fascicles appeared in the tube section in rats with progesterone-impregnated chitosan tubes

  7. Strategies for providing upper extremity amputees with tactile and hand position feedback--moving closer to the bionic arm.

    PubMed

    Riso, R R

    1999-01-01

    A continuing challenge for prostheses developers is to replace the sensory function of the hand. This includes tactile sensitivity such as finger contact, grip force, object slippage, surface texture and temperature, as well as proprioceptive sense. One approach is sensory substitution whereby an intact sensory system such as vision, hearing or cutaneous sensation elsewhere on the body is used as an input channel for information related to the prosthesis. A second technique involves using electrical stimulation to deliver sensor derived information directly to the peripheral afferent nerves within the residual limb. Stimulation of the relevant afferent nerves can ultimately come closest to restoring the original sensory perceptions of the hand, and to this end, researchers have already demonstrated some degree of functionality of the transected sensory nerves in studies with amputee subjects. This paper provides an overview of different types of nerve interface components and the advantages and disadvantages of employing each of them in sensory feedback systems. Issues of sensory perception, neurophysiology and anatomy relevant to hand sensation and function are discussed with respect to the selection of the different types of nerve interfaces. The goal of this paper is to outline what can be accomplished for implementing sensation into artificial arms in the near term by applying what is present or presently attainable technology.

  8. Alpha-Synuclein Pathology in Sensory Nerve Terminals of the Upper Aerodigestive Tract of Parkinson’s Disease Patients

    PubMed Central

    Mu, Liancai; Chen, Jingming; Sobotka, Stanislaw; Nyirenda, Themba; Benson, Brian; Gupta, Fiona; Sanders, Ira; Adler, Charles H.; Caviness, John N.; Shill, Holly A.; Sabbagh, Marwan; Samanta, Johan E.; Sue, Lucia I.; Beach, Thomas G.

    2015-01-01

    Dysphagia is common in Parkinson’s disease (PD) and causes significant morbidity and mortality. PD dysphagia has usually been explained as dysfunction of central motor control, much like other motor symptoms that are characteristic of the disease. However, PD dysphagia does not correlate with severity of motor symptoms nor does it respond to motor therapies. It is known that PD patients have sensory deficits in the pharynx, and that impaired sensation may contribute to dysphagia. However, the underlying cause of the pharyngeal sensory deficits in PD is not known. We hypothesized that PD dysphagia with sensory deficits may be due to degeneration of the sensory nerve terminals in the upper aerodigestive tract (UAT). We have previously shown that Lewy-type synucleinopathy (LTS) is present in the main pharyngeal sensory nerves of PD patients, but not in controls. In this study, the sensory terminals in UAT mucosa were studied to discern the presence and distribution of LTS. Whole-mount specimens (tongue-pharynx-larynx-upper esophagus) were obtained from 10 deceased human subjects with clinically diagnosed and neuropathologically confirmed PD (five with dysphagia and five without) and four age-matched healthy controls. Samples were taken from six sites and immunostained for phosphorylated α-synuclein (PAS). The results showed the presence of PAS-immunoreactive (PAS-ir) axons in all the PD subjects and in none of the controls. Notably, PD patients with dysphagia had more PAS-ir axons in the regions that are critical for initiating the swallowing reflex. These findings suggest that Lewy pathology affects mucosal sensory axons in specific regions of the UAT and may be related to PD dysphagia. PMID:26041249

  9. Changes in crossed spinal reflexes after peripheral nerve injury and repair.

    PubMed

    Valero-Cabré, Antoni; Navarro, Xavier

    2002-04-01

    , reflexes mediated by myelinated sensory afferents showed, after nerve injuries, a higher degree of facilitation than those mediated by unmyelinated fibers. These changes tended to decline toward baseline values with progressive reinnervation but still remained significant 3 mo after injury.

  10. The vestibulocochlear nerve (VIII).

    PubMed

    Benoudiba, F; Toulgoat, F; Sarrazin, J-L

    2013-10-01

    The vestibulocochlear nerve (8th cranial nerve) is a sensory nerve. It is made up of two nerves, the cochlear, which transmits sound and the vestibular which controls balance. It is an intracranial nerve which runs from the sensory receptors in the internal ear to the brain stem nuclei and finally to the auditory areas: the post-central gyrus and superior temporal auditory cortex. The most common lesions responsible for damage to VIII are vestibular Schwannomas. This report reviews the anatomy and various investigations of the nerve. Copyright © 2013. Published by Elsevier Masson SAS.

  11. Impairment of sensory-motor plasticity in mild Alzheimer's disease.

    PubMed

    Terranova, Carmen; Carmen, Terranova; SantAngelo, Antonino; Antonino, Sant'Angelo; Morgante, Francesca; Francesca, Morgante; Rizzo, Vincenzo; Vincenzo, Rizzo; Allegra, Roberta; Roberta, Allegra; Arena, Maria Grazia; Grazia, Arena Maria; Ricciardi, Lucia; Lucia, Ricciardi; Ghilardi, Marie Felice; Felice, Ghilardi Maria; Girlanda, Paolo; Paolo, Girlanda; Quartarone, Angelo; Angelo, Quartarone

    2013-01-01

    Primary motor cortex (M1) is relatively spared in the early stages of Alzheimer's disease (AD). Aim of the present study was to investigate whether abnormal M1 synaptic plasticity is present at an early stage of AD. We employed an electrophysiological protocol, named rapid paired associative stimulation (rPAS), involving repetitive transcranial magnetic stimulation (rTMS) paired with electrical stimulation of the contralateral median nerve, that modifies corticospinal excitability and short latency afferent inhibition (SAI). We studied 10 patients with a diagnosis of probable mild AD according to the Mini Mental State Examination score (minimum 21) and 14 age-matched control subjects. Motor evoked potentials (MEP) amplitudes and short-afferent inhibition (SAI) were measured at baseline before and for up to 60 min after 5Hz-rPAS in abductor pollicis brevis (APB). rPAS consisted of 600 pairs of transcranial magnetic stimuli, at a rate of 5 Hz for 2 min, coupled with electrical median nerve stimulation preceding TMS over the contralateral M1 at an inter-stimulus interval of 25 ms. Baseline SAI was significantly reduced in AD patients. In the control subjects rPAS induced a significant increase in MEP amplitudes and a decrease of SAI in the APB muscle persistently for up to 1 h. Conversely 5Hz-rPAS did not induce any significant changes in MEP amplitudes and SAI in mild AD patients. Sensory-motor plasticity is impaired in the motor cortex of AD at an early stage of the disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Central anatomy of individual rapidly adapting low-threshold mechanoreceptors innervating the "hairy" skin of newborn mice: early maturation of hair follicle afferents.

    PubMed

    Woodbury, C J; Ritter, A M; Koerber, H R

    2001-07-30

    Adult skin sensory neurons exhibit characteristic projection patterns in the dorsal horn of the spinal gray matter that are tightly correlated with modality. However, little is known about how these patterns come about during the ontogeny of the distinct subclasses of skin sensory neurons. To this end, we have developed an intact ex vivo somatosensory system preparation in neonatal mice, allowing single, physiologically identified cutaneous afferents to be iontophoretically injected with Neurobiotin for subsequent histological analyses. The present report, centered on rapidly adapting mechanoreceptors, represents the first study of the central projections of identified skin sensory neurons in neonatal animals. Cutaneous afferents exhibiting rapidly adapting responses to sustained natural stimuli were encountered as early as recordings were made. Well-stained representatives of coarse (tylotrich and guard) and fine-diameter (down) hair follicle afferents, along with a putative Pacinian corpuscle afferent, were recovered from 2-7-day-old neonates. All were characterized by narrow, uninflected somal action potentials and generally low mechanical thresholds, and many could be activated via deflection of recently erupted hairs. The central collaterals of hair follicle afferents formed recurrent, flame-shaped arbors that were essentially miniaturized replicas of their adult counterparts, with identical laminar terminations. The terminal arbors of down hair afferents, previously undescribed in rodents, were distinct and consistently occupied a more superficial position than tylotrich and guard hair afferents. Nevertheless, the former extended no higher than the middle of the incipient substantia gelatinosa, leaving a clear gap more dorsally. In all major respects, therefore, hair follicle afferents display the same laminar specificity in neonates as they do in adults. The widely held misperception that their collaterals extend exuberant projections into pain

  13. Differential localization of vesicular glutamate transporters and peptides in corneal afferents to trigeminal nucleus caudalis.

    PubMed

    Hegarty, Deborah M; Tonsfeldt, Karen; Hermes, Sam M; Helfand, Helen; Aicher, Sue A

    2010-09-01

    Trigeminal afferents convey nociceptive information from the corneal surface of the eye to the trigeminal subnucleus caudalis (Vc). Trigeminal afferents, like other nociceptors, are thought to use glutamate and neuropeptides as neurotransmitters. The current studies examined whether corneal afferents contain both neuropeptides and vesicular glutamate transporters. Corneal afferents to the Vc were identified by using cholera toxin B (CTb). Corneal afferents project in two clusters to the rostral and caudal borders of the Vc, regions that contain functionally distinct nociceptive neurons. Thus, corneal afferents projecting to these two regions were examined separately. Dual immunocytochemical studies combined CTb with either calcitonin gene-related peptide (CGRP), substance P (SP), vesicular glutamate transporter 1 (VGluT1), or VGluT2. Corneal afferents were more likely to contain CGRP than SP, and corneal afferents projecting to the rostral region were more likely to contain CGRP than afferents projecting caudally. Overall, corneal afferents were equally likely to contain VGluT1 or VGluT2. Together, 61% of corneal afferents contained either VGluT1 or VGluT2, suggesting that some afferents lack a VGluT. Caudal corneal afferents were more likely to contain VGluT2 than VGluT1, whereas rostral corneal afferents were more likely to contain VGluT1 than VGluT2. Triple-labeling studies combining CTb, CGRP, and VGluT2 showed that very few corneal afferents contain both CGRP and VGluT2, caudally (1%) and rostrally (2%). These results suggest that most corneal afferents contain a peptide or a VGluT, but rarely both. Our results are consistent with a growing literature suggesting that glutamatergic and peptidergic sensory afferents may be distinct populations.

  14. Chitin biological absorbable catheters bridging sural nerve grafts transplanted into sciatic nerve defects promote nerve regeneration.

    PubMed

    Wang, Zhi-Yong; Wang, Jian-Wei; Qin, Li-Hua; Zhang, Wei-Guang; Zhang, Pei-Xun; Jiang, Bao-Guo

    2018-06-01

    To investigate the efficacy of chitin biological absorbable catheters in a rat model of autologous nerve transplantation. A segment of sciatic nerve was removed to produce a sciatic nerve defect, and the sural nerve was cut from the ipsilateral leg and used as a graft to bridge the defect, with or without use of a chitin biological absorbable catheter surrounding the graft. The number and morphology of regenerating myelinated fibers, nerve conduction velocity, nerve function index, triceps surae muscle morphology, and sensory function were evaluated at 9 and 12 months after surgery. All of the above parameters were improved in rats in which the nerve graft was bridged with chitin biological absorbable catheters compared with rats without catheters. The results of this study indicate that use of chitin biological absorbable catheters to surround sural nerve grafts bridging sciatic nerve defects promotes recovery of structural, motor, and sensory function and improves muscle fiber morphology. © 2018 John Wiley & Sons Ltd.

  15. Parasympathetic, sympathetic, and sensory interactions in the iris: nerve growth factor regulates cholinergic ciliary ganglion innervation in vivo.

    PubMed

    Kessler, J A

    1985-10-01

    Interactions between peptidergic sensory nerves, noradrenergic sympathetic nerves, and cholinergic parasympathetic fibers were examined in the rat iris. The putative peptide neurotransmitter, substance P (SP), was used as an index of the trigeminal sensory innervation, tyrosine hydroxylase (TH) activity served to monitor the sympathetic fibers, and choline acetyltransferase (CAT) activity was used as an index of the parasympathetic innervation. Destruction of the sympathetic innervation by neonatal administration of 6-hydroxydopamine resulted in increased SP development and a smaller increase in CAT activity in the iris. Moreover, trigeminal ablation resulted in an increase in both TH and CAT activities. Finally, ciliary ganglionectomy resulted in increased SP and a smaller increase in TH activity in the iris. Administration of nerve growth factor (NGF) into the anterior chamber substantially increased both SP and TH activity in the iris and also increased CAT activity to a lesser extent. Moreover, administration of anti-NGF into the anterior chamber prevented both the sympathectomy-induced increases in SP and CAT, and the increases in TH and CAT activities after trigeminal ablation, suggesting that NGF mediated these increases. These observations suggest that the sympathetic, sensory, and parasympathetic innervations of the iris interact by altering availability of NGF elaborated by the iris. Regulation of iris CAT activity was examined in greater detail. Injection of the cholinergic toxin, AF64A, into the anterior chamber concurrently with ablation of the sympathetic and sensory innervations paradoxically increased CAT activity, whereas AF64A alone decreased CAT activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Anatomy and physiology of the afferent visual system.

    PubMed

    Prasad, Sashank; Galetta, Steven L

    2011-01-01

    The efficient organization of the human afferent visual system meets enormous computational challenges. Once visual information is received by the eye, the signal is relayed by the retina, optic nerve, chiasm, tracts, lateral geniculate nucleus, and optic radiations to the striate cortex and extrastriate association cortices for final visual processing. At each stage, the functional organization of these circuits is derived from their anatomical and structural relationships. In the retina, photoreceptors convert photons of light to an electrochemical signal that is relayed to retinal ganglion cells. Ganglion cell axons course through the optic nerve, and their partial decussation in the chiasm brings together corresponding inputs from each eye. Some inputs follow pathways to mediate pupil light reflexes and circadian rhythms. However, the majority of inputs arrive at the lateral geniculate nucleus, which relays visual information via second-order neurons that course through the optic radiations to arrive in striate cortex. Feedback mechanisms from higher cortical areas shape the neuronal responses in early visual areas, supporting coherent visual perception. Detailed knowledge of the anatomy of the afferent visual system, in combination with skilled examination, allows precise localization of neuropathological processes and guides effective diagnosis and management of neuro-ophthalmic disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Reciprocal synapses between outer hair cells and their afferent terminals: evidence for a local neural network in the mammalian cochlea.

    PubMed

    Thiers, Fabio A; Nadol, Joseph B; Liberman, M Charles

    2008-12-01

    Cochlear outer hair cells (OHCs) serve both as sensory receptors and biological motors. Their sensory function is poorly understood because their afferent innervation, the type-II spiral ganglion cell, has small unmyelinated axons and constitutes only 5% of the cochlear nerve. Reciprocal synapses between OHCs and their type-II terminals, consisting of paired afferent and efferent specialization, have been described in the primate cochlea. Here, we use serial and semi-serial-section transmission electron microscopy to quantify the nature and number of synaptic interactions in the OHC area of adult cats. Reciprocal synapses were found in all OHC rows and all cochlear frequency regions. They were more common among third-row OHCs and in the apical half of the cochlea, where 86% of synapses were reciprocal. The relative frequency of reciprocal synapses was unchanged following surgical transection of the olivocochlear bundle in one cat, confirming that reciprocal synapses were not formed by efferent fibers. In the normal ear, axo-dendritic synapses between olivocochlear terminals and type-II terminals and/or dendrites were as common as synapses between olivocochlear terminals and OHCs, especially in the first row, where, on average, almost 30 such synapses were seen in the region under a single OHC. The results suggest that a complex local neuronal circuitry in the OHC area, formed by the dendrites of type-II neurons and modulated by the olivocochlear system, may be a fundamental property of the mammalian cochlea, rather than a curiosity of the primate ear. This network may mediate local feedback control of, and bidirectional communication among, OHCs throughout the cochlear spiral.

  18. The role of a trigeminal sensory nucleus in the initiation of locomotion

    PubMed Central

    Buhl, Edgar; Roberts, Alan; Soffe, Stephen R

    2012-01-01

    While we understand how stimuli evoke sudden, ballistic escape responses, like fish fast-starts, a precise pathway from sensory stimulation to the initiation of rhythmic locomotion has not been defined for any vertebrate. We have now asked how head skin stimuli evoke swimming in hatchling frog tadpoles. Whole-cell recordings and dye filling revealed a nucleus of ∼20 trigeminal interneurons (tINs) in the hindbrain, at the level of the auditory nerve, with long, ipsilateral, descending axons. Stimulation of touch-sensitive trigeminal afferents with receptive fields anywhere on the head evoked large, monosynaptic EPSPs (∼5–20 mV) in tINs, at mixed AMPAR/NMDAR synapses. Following stimuli sufficient to elicit swimming, tINs fired up to six spikes, starting 4–8 ms after the stimulus. Paired whole-cell recordings showed that tINs produce small (∼2–6 mV), monosynaptic, glutamatergic EPSPs in the hindbrain reticulospinal neurons (descending interneurons, dINs) that drive swimming. Modelling suggested that summation of EPSPs from 18–24 tINs can make 20–50% of dINs fire. We conclude that: brief activity in a few sensory afferents is amplified by recruitment of many tINs; these relay summating excitation to hindbrain reticulospinal dINs; dIN firing then initiates activity for swimming on the stimulated side. During fictive swimming, tINs are depolarised and receive rhythmic inhibition but do not fire. Our recordings demonstrate a neuron-by-neuron pathway from head skin afferents to the reticulospinal neurons and motoneurons that drive locomotion in a vertebrate. This direct pathway, which has an important amplifier function, implies a simple origin for the complex routes to initiate locomotion in higher vertebrates. PMID:22393253

  19. Women's clitoris, vagina and cervix mapped on the sensory cortex: fMRI evidence

    PubMed Central

    Komisaruk, Barry R.; Wise, Nan; Frangos, Eleni; Liu, Wen-Ching; Allen, Kachina; Brody, Stuart

    2011-01-01

    Introduction The projection of vagina, uterine cervix, and nipple to the sensory cortex in humans has not been reported. Aims To map the sensory cortical fields of the clitoris, vagina, cervix and nipple, toward an elucidation of the neural systems underlying sexual response. Methods Using functional Magnetic Resonance Imaging (fMRI) we mapped sensory cortical responses to clitoral, vaginal, cervical, and nipple self-stimulation. For points of reference on the homunculus, we also mapped responses to the thumb and great toe (hallux) stimulation. Main Outcome Measures fMRI of brain regions activated by the various sensory stimuli. Results Clitoral, vaginal, and cervical self-stimulation activate differentiable sensory cortical regions, all clustered in the medial cortex (medial paracentral lobule). Nipple self-stimulation activated the genital sensory cortex (as well as the thoracic) region of the homuncular map. Conclusion The genital sensory cortex, identified in the classical Penfield homunculus based on electrical stimulation of the brain only in men, was confirmed for the first time in the literature by the present study in women, applying clitoral, vaginal, and cervical self-stimulation, and observing their regional brain responses using fMRI. Vaginal, clitoral, and cervical regions of activation were differentiable, consistent with innervation by different afferent nerves and different behavioral correlates. Activation of the genital sensory cortex by nipple self-stimulation was unexpected, but suggests a neurological basis for women’s reports of its erotogenic quality. PMID:21797981

  20. Stance-phase force on the opposite limb dictates swing-phase afferent presynaptic inhibition during locomotion

    PubMed Central

    Hayes, Heather Brant; Chang, Young-Hui

    2012-01-01

    Presynaptic inhibition is a powerful mechanism for selectively and dynamically gating sensory inputs entering the spinal cord. We investigated how hindlimb mechanics influence presynaptic inhibition during locomotion using pioneering approaches in an in vitro spinal cord–hindlimb preparation. We recorded lumbar dorsal root potentials to measure primary afferent depolarization-mediated presynaptic inhibition and compared their dependence on hindlimb endpoint forces, motor output, and joint kinematics. We found that stance-phase force on the opposite limb, particularly at toe contact, strongly influenced the magnitude and timing of afferent presynaptic inhibition in the swinging limb. Presynaptic inhibition increased in proportion to opposite limb force, as well as locomotor frequency. This form of presynaptic inhibition binds the sensorimotor states of the two limbs, adjusting sensory inflow to the swing limb based on forces generated by the stance limb. Functionally, it may serve to adjust swing-phase sensory transmission based on locomotor task, speed, and step-to-step environmental perturbations. PMID:22442562

  1. Bradykinin activates a cross-signaling pathway between sensory and adrenergic nerve endings in the heart: a novel mechanism of ischemic norepinephrine release?

    PubMed

    Seyedi, N; Maruyama, R; Levi, R

    1999-08-01

    We had shown that bradykinin (BK) generated by cardiac sympathetic nerve endings (i.e., synaptosomes) promotes exocytotic norepinephrine (NE) release in an autocrine mode. Because the synaptosomal preparation may include sensory C-fiber endings, which BK is known to stimulate, sensory nerves could contribute to the proadrenergic effects of BK in the heart. We report that BK is a potent releaser of NE from guinea pig heart synaptosomes (EC(50) approximately 20 nM), an effect mediated by B(2) receptors, and almost completely abolished by prior C-fiber destruction or blockade of calcitonin gene-related peptide and neurokinin-1 receptors. C-fiber destruction also greatly decreased BK-induced NE release from the intact heart, whereas tyramine-induced NE release was unaffected. Furthermore, C-fiber stimulation with capsaicin and activation of calcitonin gene-related peptide and neurokinin-1 receptors initiated NE release from cardiac synaptosomes, indicating that stimulation of sensory neurons in turn activates sympathetic nerve terminals. Thus, BK is likely to release NE in the heart in part by first liberating calcitonin gene-related peptide and Substance P from sensory nerve endings; these neuropeptides then stimulate specific receptors on sympathetic terminals. This action of BK is positively modulated by cyclooxygenase products, attenuated by activation of histamine H(3) receptors, and potentiated at a lower pH. The NE-releasing action of BK is likely to be enhanced in myocardial ischemia, when protons accumulate, C fibers become activated, and the production of prostaglandins and BK increases. Because NE is a major arrhythmogenic agent, the activation of this interneuronal signaling system between sensory and adrenergic neurons may contribute to ischemic dysrhythmias and sudden cardiac death.

  2. Phase correlated adequate afferent action potentials as a drive of human spinal oscillators.

    PubMed

    Schalow, G

    1993-12-01

    1. By recording, with 2 pairs of wire electrodes, single-fibre action potentials (APs) from lower sacral nerve roots of a brain-dead human and a patient with spinal cord lesion, impulse patterns of afferent APs and impulse trains of oscillatory firing motoneurons could be identified and correlated. 2. Two highly activated secondary muscle spindle afferents increased and decreased their activity at about 0.3 Hz. The duration of the doublet interspike interval of a secondary spindle afferent fibre showed no correlation to the oscillation period of the motoneuron. 3. A continuously oscillatory firing motoneuron innervating the external and sphincter showed more transient breaks with the reduction of the number of phase correlated APs from 2 spindle afferents, indicating a looser oscillation. A transient brake of a 157 msec period alpha 2-oscillation could be correlated to the shift of a interspike interval distribution peak from 150 to 180 msec of the adequate afferent input, which suggests a transient loss of the necessary phase relation. 4. Oscillatory firing alpha 2-motoneurons innervating the external bladder and anal sphincters fired independently according to their phase correlated APs from the urinary bladder stretch receptor and muscle spindle afferents respectively; the bladder motoneuron slightly inhibited the anal motoneuron. 5. Receptors of the afferents and innervation sites of oscillatory firing motoneurons could be located within the urinary tract and the anal canal.

  3. Role of TRPV1 in acupuncture modulation of reflex excitatory cardiovascular responses.

    PubMed

    Guo, Zhi-Ling; Fu, Liang-Wu; Su, Hou-Fen; Tjen-A-Looi, Stephanie C; Longhurst, John C

    2018-05-01

    We have shown that acupuncture, including manual and electroacupuncture (MA and EA), at the P5-6 acupoints stimulates afferent fibers in the median nerve (MN) to modulate sympathoexcitatory cardiovascular reflexes through central regulation of autonomic function. However, the mechanisms underlying acupuncture activation of these sensory afferent nerves and their cell bodies in the dorsal root ganglia (DRG) are unclear. Transient receptor potential vanilloid type 1 (TRPV1) is present in sensory nerve fibers distributed in the general region of acupoints like ST36 and BL 40 located in the hindlimb. However, the contribution of TRPV1 to activation of sensory nerves by acupuncture, leading to modulation of pressor responses, has not been studied. We hypothesized that TRPV1 participates in acupuncture's activation of sensory afferents and their associated cell bodies in the DRG to modulate pressor reflexes. Local injection of iodoresiniferatoxin (Iodo-RTX; a selective TRPV1 antagonist), but not 5% DMSO (vehicle), into the P6 acupoint on the forelimb reversed the MA's inhibition of pressor reflexes induced by gastric distension (GD). Conversely, inhibition of GD-induced sympathoexcitatory responses by EA at P5-6 was unchanged after administration of Iodo-RTX into P5-6. Single-unit activity of Group III or IV bimodal afferents sensitive to both mechanical and capsaicin stimuli responded to MA stimulation at P6. MA-evoked activity was attenuated significantly ( P < 0.05) by local administration of Iodo-RTX ( n = 12) but not by 5% DMSO ( n = 12) into the region of the P6 acupoint in rats. Administration of Iodo-RTX into P5-6 did not reduce bimodal afferent activity evoked by EA stimulation ( n = 8). Finally, MA at P6 and EA at P5-6 induced phosphorylation of extracellular signal-regulated kinases (ERK; an intracellular signaling messenger involved in cellular excitation) in DRG neurons located at C 7-8 spinal levels receiving MN inputs. After TRPV1 was knocked down in the

  4. Reflex regulation of airway sympathetic nerves in guinea-pigs

    PubMed Central

    Oh, Eun Joo; Mazzone, Stuart B; Canning, Brendan J; Weinreich, Daniel

    2006-01-01

    Sympathetic nerves innervate the airways of most species but their reflex regulation has been essentially unstudied. Here we demonstrate sympathetic nerve-mediated reflex relaxation of airway smooth muscle measured in situ in the guinea-pig trachea. Retrograde tracing, immunohistochemistry and electrophysiological analysis identified a population of substance P-containing capsaicin-sensitive spinal afferent neurones in the upper thoracic (T1–T4) dorsal root ganglia (DRG) that innervate the airways and lung. After bilateral vagotomy, atropine pretreatment and precontraction of the trachealis with histamine, nebulized capsaicin (10–60 μm) evoked a 63 ± 7% reversal of the histamine-induced contraction of the trachealis. Either the β-adrenoceptor antagonist propranolol (2 μm, administered directly to the trachea) or bilateral sympathetic nerve denervation of the trachea essentially abolished these reflexes (10 ± 9% and 6 ± 4% relaxations, respectively), suggesting that they were mediated primarily, if not exclusively, by sympathetic adrenergic nerve activation. Cutting the upper thoracic dorsal roots carrying the central processes of airway spinal afferents also markedly blocked the relaxations (9 ± 5% relaxation). Comparable inhibitory effects were observed following intravenous pretreatment with neurokinin receptor antagonists (3 ± 7% relaxations). These reflexes were not accompanied by consistent changes in heart rate or blood pressure. By contrast, stimulating the rostral cut ends of the cervical vagus nerves also evoked a sympathetic adrenergic nerve-mediated relaxation that were accompanied by marked alterations in blood pressure. The results indicate that the capsaicin-induced reflex-mediated relaxation of airway smooth muscle following vagotomy is mediated by sequential activation of tachykinin-containing spinal afferent and sympathetic efferent nerves innervating airways. This sympathetic nerve-mediated response may serve to oppose airway

  5. Mechanoreceptor afferent activity compared with receptor field dimensions and pressure changes in feline urinary bladder.

    PubMed

    Downie, J W; Armour, J A

    1992-11-01

    The relationship between vesical mechanoreceptor field dimensions and afferent nerve activity recorded in pelvic plexus nerve filaments was examined in chloralose-anesthetized cats. Orthogonal receptor field dimensions were monitored with piezoelectric ultrasonic crystals. Reflexly generated bladder contractile activity made measurements difficult, therefore data were collected from cats subjected to actual sacral rhizotomy. Afferent activity was episodic and was initiated at different pressure and receptor field dimension thresholds. Maximum afferent activity did not correlate with maximum volume or pressure. Furthermore, activity was not linearly related to intravesical pressure, receptor field dimensions, or calculated wall tension. Pressure-length hysteresis of the receptor fields occurred. The responses of identified afferent units and their associated receptor field dimensions to brief contractions elicited by the ganglion stimulant 1,1-dimethyl-4-phenylpiperazinium iodide (2.5-20 micrograms i.a.), studied under constant volume or constant pressure conditions, are compatible with bladder mechanoreceptors behaving as tension receptors. Because activity generated by bladder mechanoreceptors did not correlate in a simple fashion with intravesical pressure or receptor field dimensions, it is concluded that such receptors are influenced by the viscoelastic properties of the bladder wall. Furthermore, as a result of the heterogeneity of the bladder wall, receptor field tension appears to offer a more precise relationship with the activity of bladder wall mechanoreceptors than does intravesical pressure.

  6. Influence of local noxious heat stimulation on sensory nerve activity in the feline dental pulp.

    PubMed

    Ahlberg, K F

    1978-05-01

    The present investigation was undertaken to develop an experimental model in which noxious heat stimulation was used to produce increased intradental sensory nerve activity in canine teeth of anesthetized cats. Two techniques were evaluated in which both the method of recording and the nature of the stimulus varied. Slow heating (approx 1 degree C/s) to 47 degree C of the tooth surface (combined with recording from electrodes in open dentinal cavities) did not produce any persistent nerve activity. Repeated periods of brief intense heating (approx 60 degrees C/s) (combined with recording from amalgam electrodes placed on cavity floors) resulted in an immediate response and an afterdischarge (phase 3) generally persisting for 20--60 min. Maximum phase 3 activity was characteristic for the individual cat and ranged from 0.2 to 50.2 imp/s. mean value 10.6 imp/s (S.D. +/- 9.2). A systematically higher phase 3 activity was recorded in lower compared to upper canine teeth (p less than 0.05). The maximum phase 3 response generally occurred after 3-8 stimulations; the median number of required stimuli was 3. Repeated brief heat stimulations combined with the closed cavity recording technique may be used as an experimental model by which the mechanisms behind increases in intradental sensory nerve activity associated with tissue damage can be studied.

  7. Microstimulation of primary afferent neurons in the L7 dorsal root ganglia using multielectrode arrays in anesthetized cats: thresholds and recruitment properties

    NASA Astrophysics Data System (ADS)

    Gaunt, R. A.; Hokanson, J. A.; Weber, D. J.

    2009-10-01

    Current research in motor neural prosthetics has focused primarily on issues related to the extraction of motor command signals from the brain (e.g. brain-machine interfaces) to direct the motion of prosthetic limbs. Patients using these types of systems could benefit from a somatosensory neural interface that conveys natural tactile and kinesthetic sensations for the prosthesis. Electrical microstimulation within the dorsal root ganglia (DRG) has been proposed as one method to accomplish this, yet little is known about the recruitment properties of electrical microstimulation in activating nerve fibers in this structure. Current-controlled microstimulation pulses in the range of 1-15 µA (200 µs, leading cathodic pulse) were delivered to the L7 DRG in four anesthetized cats using penetrating microelectrode arrays. Evoked responses and their corresponding conduction velocities (CVs) were measured in the sciatic nerve with a 5-pole nerve cuff electrode arranged as two adjacent tripoles. It was found that in 76% of the 69 electrodes tested, the stimulus threshold was less than or equal to 3 µA, with the lowest recorded threshold being 1.1 µA. The CVs of afferents recruited at threshold had a bimodal distribution with peaks at 70 m s-1 and 85 m s-1. In 53% of cases, the CV of the response at threshold was slower (i.e. smaller diameter fiber) than the CVs of responses observed at increasing stimulation amplitudes. In summary, we found that microstimulation applied through penetrating microelectrodes in the DRG provides selective recruitment of afferent fibers from a range of sensory modalities (as identified by CVs) at very low stimulation intensities. We conclude that the DRG may serve as an attractive location from which to introduce surrogate somatosensory feedback into the nervous system.

  8. Glucose-dependent trafficking of 5-HT3 receptors in rat gastrointestinal vagal afferent neurons

    PubMed Central

    Babic, Tanja; Troy, Amanda E; Fortna, Samuel R; Browning, Kirsteen N

    2012-01-01

    Background Intestinal glucose induces gastric relaxation via vagally mediated sensory-motor reflexes. Glucose can alter the activity of gastrointestinal (GI) vagal afferent (sensory) neurons directly, via closure of ATP-sensitive potassium channels, as well as indirectly, via the release of 5-hydroxytryptamine (5-HT) from mucosal enteroendocrine cells. We hypothesized that glucose may also be able to modulate the ability of GI vagal afferent neurons to respond to the released 5-HT, via regulation of neuronal 5-HT3 receptors. Methods Whole cell patch clamp recordings were made from acutely dissociated GI-projecting vagal afferent neurons exposed to equiosmolar Krebs’ solution containing different concentrations of D-glucose (1.25–20mM) and the response to picospritz application of 5-HT assessed. The distribution of 5-HT3 receptors in neurons exposed to different glucose concentrations was also assessed immunohistochemically. Key Results Increasing or decreasing extracellular D-glucose concentration increased or decreased, respectively, the 5-HT-induced inward current as well as the proportion of 5-HT3 receptors associated with the neuronal membrane. These responses were blocked by the Golgi-disrupting agent Brefeldin-A (5µM) suggesting involvement of a protein trafficking pathway. Furthermore, L-glucose did not mimic the response of D-glucose implying that metabolic events downstream of neuronal glucose uptake are required in order to observe the modulation of 5-HT3 receptor mediated responses. Conclusions & Inferences These results suggest that, in addition to inducing the release of 5-HT from enterochromaffin cells, glucose may also increase the ability of GI vagal sensory neurons to respond to the released 5-HT, providing a means by which the vagal afferent signal can be amplified or prolonged. PMID:22845622

  9. Thoracic spinal cord and cervical vagosympathetic neuromodulation obtund nodose sensory transduction of myocardial ischemia.

    PubMed

    Salavatian, Siamak; Beaumont, Eric; Gibbons, David; Hammer, Matthew; Hoover, Donald B; Armour, J Andrew; Ardell, Jeffrey L

    2017-12-01

    Autonomic regulation therapy involving either vagus nerve stimulation (VNS) or spinal cord stimulation (SCS) represents emerging bioelectronic therapies for heart disease. The objective of this study was to determine if VNS and/or SCS modulate primary cardiac afferent sensory transduction of the ischemic myocardium. Using extracellular recordings in 19 anesthetized canines, of 88 neurons evaluated, 36 ventricular-related nodose ganglia sensory neurons were identified by their functional activity responses to epicardial touch, chemical activation of their sensory neurites (epicardial veratridine) and great vessel (descending aorta or inferior vena cava) occlusion. Neural responses to 1min left anterior descending (LAD) coronary artery occlusion (CAO) were then evaluated. These interventions were then studied following either: i) SCS [T1-T3 spinal level; 50Hz, 90% motor threshold] or ii) cervical VNS [15-20Hz; 1.2× threshold]. LAD occlusion activated 66% of identified nodose ventricular sensory neurons (0.33±0.08-0.79±0.20Hz; baseline to CAO; p<0.002). Basal activity of cardiac-related nodose neurons was differentially reduced by VNS (0.31±0.11 to 0.05±0.02Hz; p<0.05) as compared to SCS (0.36±0.12 to 0.28±0.14, p=0.59), with their activity response to transient LAD CAO being suppressed by either SCS (0.85±0.39-0.11±0.04Hz; p<0.03) or VNS (0.75±0.27-0.12±0.05Hz; p<0.04). VNS did not alter evoked neural responses of cardiac-related nodose neurons to great vessel occlusion. Both VNS and SCS obtund ventricular ischemia induced enhancement of nodose afferent neuronal inputs to the medulla. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. An artificial arm/hand system with a haptic sensory function using electric stimulation of peripheral sensory nerve fibers.

    PubMed

    Mabuchi, Kunihiko

    2013-01-01

    We are currently developing an artificial arm/hand system which is capable of sensing stimuli and then transferring these stimuli to users as somatic sensations. Presently, we are evoking the virtual somatic sensations by electrically stimulating a sensory nerve fiber which innervates a single mechanoreceptor unit at the target area; this is done using a tungsten microelectrode that was percutaneously inserted into the use's peripheral nerve (a microstimulation method). The artificial arm/hand system is composed of a robot hand equipped with a pressure sensor system on its fingers. The sensor system detects mechanical stimuli, which are transferred to the user by means of the microstimulation method so that the user experiences the stimuli as the corresponding somatic sensations. In trials, the system worked satisfactorily and there was a good correlation between the pressure applied to the pressure sensors on the robot fingers and the subjective intensities of the evoked pressure sensations.

  11. Effect of Ranirestat on Sensory and Motor Nerve Function in Japanese Patients with Diabetic Polyneuropathy: A Randomized Double-Blind Placebo-Controlled Study

    PubMed Central

    Satoh, Jo; Kohara, Nobuo; Sekiguchi, Kenji; Yamaguchi, Yasuyuki

    2016-01-01

    We conducted a 26-week oral-administration study of ranirestat (an aldose reductase inhibitor) at a once-daily dose of 20 mg to evaluate its efficacy and safety in Japanese patients with diabetic polyneuropathy (DPN). The primary endpoint was summed change in sensory nerve conduction velocity (NCV) for the bilateral sural and proximal median sensory nerves. The sensory NCV was significantly (P = 0.006) improved by ranirestat. On clinical symptoms evaluated with the use of modified Toronto Clinical Neuropathy Score (mTCNS), obvious efficacy was not found in total score. However, improvement in the sensory test domain of the mTCNS was significant (P = 0.037) in a subgroup of patients diagnosed with neuropathy according to the TCNS severity classification. No clinically significant effects on safety parameters including hepatic and renal functions were observed. Our results indicate that ranirestat is effective on DPN (Japic CTI-121994). PMID:26881251

  12. Multifocal sensory demyelinating neuropathy: Report of a case.

    PubMed

    Oh, Shin J

    2017-10-01

    Multifocal sensory demyelinating neuropathy has not been adequately reported in the literature. A 42-year-old man with numbness of the left hand for 3 years and of the right hand for 6 months had a pure multifocal sensory neuropathy involving both hands, most prominently affecting 2-point discrimination, number writing, and object recognition of the left hand. Near-nerve needle sensory and mixed nerve conduction studies were performed on the left ulnar nerve. Studies of the left ulnar nerve documented a demyelinating neuropathy characterized by temporal dispersion and marked decrease in the amplitudes of the sensory and mixed compound nerve potentials in the above-elbow-axilla segment. With intravenous immunoglobulin treatment, there was improvement in his neuropathic condition. In this study I describe a case of multifocal sensory demyelinating neuropathy as a counterpart of multifocal motor neuropathy. Muscle Nerve 56: 825-828, 2017. © 2016 Wiley Periodicals, Inc.

  13. Sympathetic, sensory, and nonneuronal contributions to the cutaneous vasoconstrictor response to local cooling.

    PubMed

    Johnson, John M; Yen, Tony C; Zhao, Kun; Kosiba, Wojciech A

    2005-04-01

    Previous work indicates that sympathetic nerves participate in the vascular responses to direct cooling of the skin in humans. We evaluated this hypothesis further in a four-part series by measuring changes in cutaneous vascular conductance (CVC) from forearm skin locally cooled from 34 to 29 degrees C for 30 min. In part 1, bretylium tosylate reversed the initial vasoconstriction (-14 +/- 6.6% control CVC, first 5 min) to one of vasodilation (+19.7 +/- 7.7%) but did not affect the response at 30 min (-30.6 +/- 9% control, -38.9 +/- 6.9% bretylium; both P < 0.05, P > 0.05 between treatments). In part 2, yohimbine and propranolol (YP) also reversed the initial vasoconstriction (-14.3 +/- 4.2% control) to vasodilation (+26.3 +/- 12.1% YP), without a significant effect on the 30-min response (-26.7 +/- 6.1% YP, -43.2 +/- 6.5% control; both P < 0.05, P > 0.05 between sites). In part 3, the NPY Y1 receptor antagonist BIBP 3226 had no significant effect on either phase of vasoconstriction (P > 0.05 between sites both times). In part 4, sensory nerve blockade by anesthetic cream (Emla) also reversed the initial vasoconstriction (-20.1 +/- 6.4% control) to one of vasodilation (+213.4 +/- 87.0% Emla), whereas the final levels did not differ significantly (-37.7 +/- 10.1% control, -37.2 +/- 8.7% Emla; both P < 0.05, P > 0.05 between treatments). These results indicate that local cooling causes cold-sensitive afferents to activate sympathetic nerves to release norepinephrine, leading to a local cutaneous vasoconstriction that masks a nonneurogenic vasodilation. Later, a vasoconstriction develops with or without functional sensory or sympathetic nerves.

  14. Changes in the frequency of swallowing during electrical stimulation of superior laryngeal nerve in rats.

    PubMed

    Tsuji, Kojun; Tsujimura, Takanori; Magara, Jin; Sakai, Shogo; Nakamura, Yuki; Inoue, Makoto

    2015-02-01

    The aim of the present study was to investigate the adaptation of the swallowing reflex in terms of reduced swallowing reflex initiation following continuous superior laryngeal nerve stimulation. Forty-four male Sprague Dawley rats were anesthetized with urethane. To identify swallowing, electromyographic activity of the left mylohyoid and thyrohyoid muscles was recorded. To evoke the swallowing response, the superior laryngeal nerve (SLN), recurrent laryngeal nerve, or cortical swallowing area was electrically stimulated. Repetitive swallowing evoked by continuous SLN stimulation was gradually reduced, and this reduction was dependent on the resting time duration between stimulations. Prior SLN stimulation also suppressed subsequent swallowing initiation. The reduction in evoked swallows induced by recurrent laryngeal nerve or cortical swallowing area stimulation was less than that following superior laryngeal nerve stimulation. Decerebration had no effect on the reduction in evoked swallows. Prior subthreshold stimulation reduced subsequent initiation of swallowing, suggesting that there was no relationship between swallowing movement evoked by prior stimulation and the subsequent reduction in swallowing initiation. Overall, these data suggest that reduced sensory afferent nerve firing and/or trans-synaptic responses, as well as part of the brainstem central pattern generator, are involved in adaptation of the swallowing reflex following continuous stimulation of swallow-inducing peripheral nerves and cortical areas. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Mechanisms of Selective Induction of Gastric Mucosal Eicosanoids in Response to Potentially Noxious Stimuli

    DTIC Science & Technology

    1991-04-30

    the proposed source of leukotrienes. Lidocaine (2.2 mg/kg iv bolus followed by 66 /ig/kg/min iv Infusion) was used to inhibit sensory afferents... Lidocaine significantly inhibited LTC4 generation following acid or bile, but had no effect on PGE2 synthesis after bile. Thus, the release of LTĈ...viil Effect of Inhibition of Sensory Afferent Nerves by Lidocaine on Gastric Emptying and Mucosal Eicosanoid Generation After Exposure of the

  16. Direct and Indirect Regulation of Spinal Cord Ia Afferent Terminal Formation by the γ-Protocadherins

    PubMed Central

    Prasad, Tuhina; Weiner, Joshua A.

    2011-01-01

    The Pcdh-γ gene cluster encodes 22 protocadherin adhesion molecules that interact as homophilic multimers and critically regulate synaptogenesis and apoptosis of interneurons in the developing spinal cord. Unlike interneurons, the two primary components of the monosynaptic stretch reflex circuit, dorsal root ganglion sensory neurons and ventral motor neurons (MNs), do not undergo excessive apoptosis in Pcdh-γdel/del null mutants, which die shortly after birth. However, as we show here, mutants exhibit severely disorganized Ia proprioceptive afferent terminals in the ventral horn. In contrast to the fine net-like pattern observed in wild-type mice, central Ia terminals in Pcdh-γ mutants appear clumped, and fill the space between individual MNs; quantitative analysis shows a ~2.5-fold increase in the area of terminals. Concomitant with this, there is a 70% loss of the collaterals that Ia afferents extend to ventral interneurons (vINs), many of which undergo apoptosis in the mutants. The Ia afferent phenotype is ameliorated, though not entirely rescued, when apoptosis is blocked in Pcdh-γ null mice by introduction of a Bax null allele. This indicates that loss of vINs, which act as collateral Ia afferent targets, contributes to the disorganization of terminals on motor pools. Restricted mutation of the Pcdh-γ cluster using conditional mutants and multiple Cre transgenic lines (Wnt1-Cre for sensory neurons; Pax2-Cre for vINs; Hb9-Cre for MNs) also revealed a direct requirement for the γ-Pcdhs in Ia neurons and vINs, but not in MNs themselves. Together, these genetic manipulations indicate that the γ-Pcdhs are required for the formation of the Ia afferent circuit in two ways: First, they control the survival of vINs that act as collateral Ia targets; and second, they provide a homophilic molecular cue between Ia afferents and target vINs. PMID:22275881

  17. Direct and Indirect Regulation of Spinal Cord Ia Afferent Terminal Formation by the γ-Protocadherins.

    PubMed

    Prasad, Tuhina; Weiner, Joshua A

    2011-01-01

    The Pcdh-γ gene cluster encodes 22 protocadherin adhesion molecules that interact as homophilic multimers and critically regulate synaptogenesis and apoptosis of interneurons in the developing spinal cord. Unlike interneurons, the two primary components of the monosynaptic stretch reflex circuit, dorsal root ganglion sensory neurons and ventral motor neurons (MNs), do not undergo excessive apoptosis in Pcdh-γ(del/del) null mutants, which die shortly after birth. However, as we show here, mutants exhibit severely disorganized Ia proprioceptive afferent terminals in the ventral horn. In contrast to the fine net-like pattern observed in wild-type mice, central Ia terminals in Pcdh-γ mutants appear clumped, and fill the space between individual MNs; quantitative analysis shows a ~2.5-fold increase in the area of terminals. Concomitant with this, there is a 70% loss of the collaterals that Ia afferents extend to ventral interneurons (vINs), many of which undergo apoptosis in the mutants. The Ia afferent phenotype is ameliorated, though not entirely rescued, when apoptosis is blocked in Pcdh-γ null mice by introduction of a Bax null allele. This indicates that loss of vINs, which act as collateral Ia afferent targets, contributes to the disorganization of terminals on motor pools. Restricted mutation of the Pcdh-γ cluster using conditional mutants and multiple Cre transgenic lines (Wnt1-Cre for sensory neurons; Pax2-Cre for vINs; Hb9-Cre for MNs) also revealed a direct requirement for the γ-Pcdhs in Ia neurons and vINs, but not in MNs themselves. Together, these genetic manipulations indicate that the γ-Pcdhs are required for the formation of the Ia afferent circuit in two ways: First, they control the survival of vINs that act as collateral Ia targets; and second, they provide a homophilic molecular cue between Ia afferents and target vINs.

  18. Fate of combat nerve injury.

    PubMed

    Beltran, Michael J; Burns, Travis C; Eckel, Tobin T; Potter, Benjamin K; Wenke, Joseph C; Hsu, Joseph R

    2012-11-01

    Assess a cohort of combat-related type III open tibia fractures with peripheral nerve injury to determine the injury mechanism and likelihood for recovery or improvement in nerve function. Retrospective study. Three military medical centers. Out of a study cohort of 213 type III open tibia fractures, 32 fractures (in 32 patients) with a total of 43 peripheral nerve injuries (peroneal or tibial) distal to the popliteal fossa met inclusion criteria and were available for follow-up at an average of 20 months (range, 2-48 months). Clinical assessment of motor and sensory nerve improvement. There was a 22% incidence of peripheral nerve injury in the study cohort. At an average follow-up of 20 months (range, 2-48 months), 89% of injured motor nerves were functional, whereas the injured sensory nerves had function in 93%. Fifty percent and 27% of motor and sensory injuries demonstrated improvement, respectively (P = 0.043). With the numbers available, there was no difference in motor or sensory improvement based on mechanism of injury, fracture severity or location, soft tissue injury, or specific nerve injured. In the subset of patients with an initially impaired sensory examination, full improvement was related to fracture location (P = 0.0164). Type III open tibia fractures sustained in combat are associated with a 22% incidence of peripheral nerve injury, and the majority are due to multiple projectile penetrating injury. Despite the severe nature of these injuries, the vast majority of patients had a functional nerve status by an average of 2-year follow-up. Based on these findings, discussions regarding limb salvage and amputation should not be overly influenced by the patient's peripheral nerve status. Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence.

  19. Increased thrombospondin-4 after nerve injury mediates disruption of intracellular calcium signaling in primary sensory neurons

    PubMed Central

    Guo, Yuan; Zhang, Zhiyong; Wu, Hsiang-en; Luo, Z. David; Hogan, Quinn H.; Pan, Bin

    2017-01-01

    Painful nerve injury disrupts Ca2+ signaling in primary sensory neurons by elevating plasma membrane Ca2+-ATPase (PMCA) function and depressing sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) function, which decreases endoplasmic reticulum (ER) Ca2+ stores and stimulates store-operated Ca2+ entry (SOCE). The extracellular matrix glycoprotein thrombospondin-4 (TSP4), which is increased after painful nerve injury, decreases Ca2+ current (ICa) through high-voltage–activated Ca2+ channels and increases ICa through low-voltage–activated Ca2+ channels in dorsal root ganglion neurons, which are events similar to the effect of nerve injury. We therefore examined whether TSP4 plays a critical role in injury-induced disruption of intracellular Ca2+ signaling. We found that TSP4 increases PMCA activity, inhibits SERCA, depletes ER Ca2+ stores, and enhances store-operated Ca2+ influx. Injury-induced changes of SERCA and PMCA function are attenuated in TSP4 knock-out mice. Effects of TSP4 on intracellular Ca2+ signaling are attenuated in voltage-gated Ca2+ channel α2δ1 subunit (Cavα2δ1) conditional knock-out mice and are also Protein Kinase C (PKC) signaling dependent. These findings suggest that TSP4 elevation may contribute to the pathogenesis of chronic pain following nerve injury by disrupting intracellular Ca2+ signaling via interacting with the Cavα2δ1 and the subsequent PKC signaling pathway. Controlling TSP4 mediated intracellular Ca2+ signaling in peripheral sensory neurons may be a target for analgesic drug development for neuropathic pain. PMID:28232180

  20. Differential effects of lipopolysaccharide on mouse sensory TRP channels.

    PubMed

    Boonen, Brett; Alpizar, Yeranddy A; Sanchez, Alicia; López-Requena, Alejandro; Voets, Thomas; Talavera, Karel

    2018-04-14

    Acute neurogenic inflammation and pain associated to bacterial infection have been traditionally ascribed to sensitization and activation of sensory nerve afferents secondary to immune cell stimulation. However, we recently showed that lipopolysaccharides (LPS) directly activate the Transient Receptor Potential channels TRPA1 in sensory neurons and TRPV4 in airway epithelial cells. Here we investigated whether LPS activates other sensory TRP channels expressed in sensory neurons. Using intracellular Ca 2+ imaging and patch-clamp we determined the effects of LPS on recombinant TRPV1, TRPV2, TRPM3 and TRPM8, heterologously expressed in HEK293T cells. We found that LPS activates TRPV1, although with lower potency than for TRPA1. Activation of TRPV1 by LPS was not affected by mutations of residues required for activation by electrophilic agents or by diacylglycerol and capsaicin. On the other hand, LPS weakly activated TRPM3, activated TRPM8 at 25 °C, but not at 35 °C, and was ineffective on TRPV2. Experiments performed in mouse dorsal root ganglion (DRG) neurons revealed that genetic ablation of Trpa1 did not abolish the responses to LPS, but remain detected in 30% of capsaicin-sensitive cells. The population of neurons responding to LPS was dramatically lower in double Trpa1/Trpv1 KO neurons. Our results show that, in addition to TRPA1, other TRP channels in sensory neurons can be targets of LPS, suggesting that they may contribute to trigger and regulate innate defenses against gram-negative bacterial infections. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings

    PubMed Central

    Passmore, Gayle M.; Reilly, Joanne M.; Thakur, Matthew; Keasberry, Vanessa N.; Marsh, Stephen J.; Dickenson, Anthony H.; Brown, David A.

    2012-01-01

    M-channels carry slowly activating potassium currents that regulate excitability in a variety of central and peripheral neurons. Functional M-channels and their Kv7 channel correlates are expressed throughout the somatosensory nervous system where they may play an important role in controlling sensory nerve activity. Here we show that Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary afferents. Electrophysiological recordings from single afferents in vitro showed that block of M-channels by 3 μM XE991 sensitized Aδ- but not C-fibers to noxious heat stimulation and induced spontaneous, ongoing activity at 32°C in many Aδ-fibers. These observations were extended in vivo: intraplantar injection of XE991 selectively enhanced the response of deep dorsal horn (DH) neurons to peripheral mid-range mechanical and higher range thermal stimuli, consistent with a selective effect on Aδ-fiber peripheral terminals. These results demonstrate an important physiological role of M-channels in controlling nociceptive Aδ-fiber responses and provide a rationale for the nocifensive behaviors that arise following intraplantar injection of the M-channel blocker XE991. PMID:22593734

  2. Mechanisms of Disease: involvement of the urothelium in bladder dysfunction

    PubMed Central

    Birder, Lori A; de Groat, William C

    2011-01-01

    SUMMARY Although the urinary bladder urothelium has classically been thought of as a passive barrier to ions and solutes, a number of novel properties have been recently attributed to urothelial cells. Studies have revealed that the urothelium is involved in sensory mechanisms (i.e. the ability to express a number of sensor molecules or respond to thermal, mechanical and chemical stimuli) and can release chemical mediators. Localization of afferent nerves next to the urothelium suggests that urothelial cells could be targets for neurotransmitters released from bladder nerves or that chemicals released by urothelial cells could alter afferent nerve excitability. Taken together, these and other findings highlighted in this article suggest a sensory function for the urothelium. Elucidation of mechanisms that influence urothelial function might provide insights into the pathology of bladder dysfunction. PMID:17211425

  3. Rehabilitation of the trigeminal nerve

    PubMed Central

    Iro, Heinrich; Bumm, Klaus; Waldfahrer, Frank

    2005-01-01

    When it comes to restoring impaired neural function by means of surgical reconstruction, sensory nerves have always been in the role of the neglected child when compared with motor nerves. Especially in the head and neck area, with its either sensory, motor or mixed cranial nerves, an impaired sensory function can cause severe medical conditions. When performing surgery in the head and neck area, sustaining neural function must not only be highest priority for motor but also for sensory nerves. In cases with obvious neural damage to sensory nerves, an immediate neural repair, if necessary with neural interposition grafts, is desirable. Also in cases with traumatic trigeminal damage, an immediate neural repair ought to be considered, especially since reconstructive measures at a later time mostly require for interposition grafts. In terms of the trigeminal neuralgia, commonly thought to arise from neurovascular brainstem compression, a pharmaceutical treatment is considered as the state of the art in terms of conservative therapy. A neurovascular decompression of the trigeminal root can be an alternative in some cases when surgical treatment is sought after. Besides the above mentioned therapeutic options, alternative treatments are available. PMID:22073060

  4. Vagal Sensory Innervation of the Gastric Sling Muscle and Antral Wall: Implications for GERD?

    PubMed Central

    Powley, Terry L.; Gilbert, Jared M.; Baronowsky, Elizabeth A.; Billingsley, Cherie N.; Martin, Felecia N.; Phillips, Robert J.

    2012-01-01

    Background The gastric sling muscle has not been investigated for possible sensory innervation, in spite of the key roles the structure plays in lower esophageal sphincter (LES) function and gastric physiology. Thus, the present experiment used tracing techniques to label vagal afferents and survey their projections in the lesser curvature. Methods Sprague Dawley rats received injections of dextran biotin into the nodose ganglia. Fourteen days post-injection, animals were euthanized and their stomachs were processed to visualize the vagal afferent innervation. In different cases, neurons, muscle cells, or interstitial cells of Cajal were counterstained. Key Results The sling muscle is innervated throughout its length by vagal afferent intramuscular arrays (IMAs) associated with interstitial cells of Cajal. In addition, the distal antral attachment site of the sling muscle is innervated by a novel vagal afferent terminal specialization, an antral web ending. The muscle wall of the distal antrum is also innervated by conventional IMAs and intraganglionic laminar endings (IGLEs), the two types of mechanoreceptors found throughout stomach smooth muscle. Conclusions & Inferences The innervation of sling muscle by IMAs, putative stretch receptors, suggests that sling sensory feedback may generate vago-vagal or other reflexes with vagal afferent limbs. The restricted distribution of afferent web endings near the antral attachments of sling fibers suggests the possibility of specialized mechanoreceptor functions linking antral and pyloric activity to the operation of the LES. Dysfunctional sling afferents could generate LES motor disturbances, or normative compensatory sensory feedback from the muscle could compromise therapies targeting only effectors. PMID:22925069

  5. Kv1 channels and neural processing in vestibular calyx afferents.

    PubMed

    Meredith, Frances L; Kirk, Matthew E; Rennie, Katherine J

    2015-01-01

    Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K(+) channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K(+) channels could help alleviate vestibular dysfunction on earth and in space.

  6. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis.

    PubMed

    Schiefer, Matthew; Tan, Daniel; Sidek, Steven M; Tyler, Dustin J

    2016-02-01

    Tactile feedback is critical to grip and object manipulation. Its absence results in reliance on visual and auditory cues. Our objective was to assess the effect of sensory feedback on task performance in individuals with limb loss. Stimulation of the peripheral nerves using implanted cuff electrodes provided two subjects with sensory feedback with intensity proportional to forces on the thumb, index, and middle fingers of their prosthetic hand during object manipulation. Both subjects perceived the sensation on their phantom hand at locations corresponding to the locations of the forces on the prosthetic hand. A bend sensor measured prosthetic hand span. Hand span modulated the intensity of sensory feedback perceived on the thenar eminence for subject 1 and the middle finger for subject 2. We performed three functional tests with the blindfolded subjects. First, the subject tried to determine whether or not a wooden block had been placed in his prosthetic hand. Second, the subject had to locate and remove magnetic blocks from a metal table. Third, the subject performed the Southampton Hand Assessment Procedure (SHAP). We also measured the subject's sense of embodiment with a survey and his self-confidence. Blindfolded performance with sensory feedback was similar to sighted performance in the wooden block and magnetic block tasks. Performance on the SHAP, a measure of hand mechanical function and control, was similar with and without sensory feedback. An embodiment survey showed an improved sense of integration of the prosthesis in self body image with sensory feedback. Sensory feedback by peripheral nerve stimulation improved object discrimination and manipulation, embodiment, and confidence. With both forms of feedback, the blindfolded subjects tended toward results obtained with visual feedback.

  7. Anodal sensory nerve action potentials: From physiological understanding to potential clinical applicability.

    PubMed

    Leote, Joao; Pereira, Pedro; Cabib, Christopher; Cipullo, Federica; Valls-Sole, Josep

    2016-06-01

    Low-intensity electrical stimuli of digital nerves may generate a double peak potential (DPp), composed of a cathodal (caAP) and an anodal (anAP) potential in orthodromic recordings. We studied the effects on caAP and anAP of stimuli of variable intensity, duration, and frequency. We also applied a conditioning stimulus to study potential differences in recovery time. The anAP was obtained in 33 of 40 healthy subjects (82.5%) and 4 of 20 patients with various types of sensory neuropathies (20%). Changes in stimulus duration and intensity had reciprocal effects on the amplitude of the anAP and the caAP. There were significant differences in recovery time between caAP and anAP after a conditioning stimulus. The caAP and anAP are 2 interdependent waveforms generated by different effects of the same stimulus over axons at the verge of depolarization. Muscle Nerve 53: 897-905, 2016. © 2015 Wiley Periodicals, Inc.

  8. A collagen-based nerve guide conduit for peripheral nerve repair: an electrophysiological study of nerve regeneration in rodents and nonhuman primates.

    PubMed

    Archibald, S J; Krarup, C; Shefner, J; Li, S T; Madison, R D

    1991-04-22

    When a peripheral nerve is severed and left untreated, the most likely result is the formation of an endbulb neuroma; this tangled mass of disorganized nerve fibers blocks functional recovery following nerve injury. Although there are several different approaches for promoting nerve repair, which have been greatly refined over recent years, the clinical results of peripheral nerve repair remain very disappointing. In this paper we compare the results of a collagen nerve guide conduit to the more standard clinical procedure of nerve autografting to promote repair of transected peripheral nerves in rats and nonhuman primates. In rats, we tested recovery from sciatic nerve transection and repair by 1) direct microsurgical suture, 2) 4 mm autograft, or 3) entubulation repair with collagen-based nerve guide conduits. Evoked muscle action potentials (MAP) were recorded from the gastrocnemius muscle at 4 and 12 weeks following sciatic nerve transection. At 4 weeks the repair group of direct suture demonstrated a significantly greater MAP, compared to the other surgical repair groups. However, at 12 weeks all four surgical repair groups displayed similar levels of recovery of the motor response. In six adult male Macaca fascicularis monkeys the median nerve was transected 2 cm above the wrist and repaired by either a 4 mm nerve autograft or a collagen-based nerve guide conduit leaving a 4 mm gap between nerve ends. Serial studies of motor and sensory fibers were performed by recording the evoked MAP from the abductor pollicis brevis muscle (APB) and the sensory action potential (SAP) evoked by stimulation of digital nerves (digit II), respectively, up to 760 days following surgery. Evoked muscle responses returned to normal baseline levels in all cases. Statistical analysis of the motor responses, as judged by the slope of the recovery curves, indicated a significantly more rapid rate of recovery for the nerve guide repair group. The final level of recovery of the MAP

  9. Bladder sensory physiology: neuroactive compounds and receptors, sensory transducers, and target-derived growth factors as targets to improve function

    PubMed Central

    Gonzalez, Eric J.; Merrill, Liana

    2014-01-01

    Urinary bladder dysfunction presents a major problem in the clinical management of patients suffering from pathological conditions and neurological injuries or disorders. Currently, the etiology underlying altered visceral sensations from the urinary bladder that accompany the chronic pain syndrome, bladder pain syndrome (BPS)/interstitial cystitis (IC), is not known. Bladder irritation and inflammation are histopathological features that may underlie BPS/IC that can change the properties of lower urinary tract sensory pathways (e.g., peripheral and central sensitization, neurochemical plasticity) and contribute to exaggerated responses of peripheral bladder sensory pathways. Among the potential mediators of peripheral nociceptor sensitization and urinary bladder dysfunction are neuroactive compounds (e.g., purinergic and neuropeptide and receptor pathways), sensory transducers (e.g., transient receptor potential channels) and target-derived growth factors (e.g., nerve growth factor). We review studies related to the organization of the afferent limb of the micturition reflex and discuss neuroplasticity in an animal model of urinary bladder inflammation to increase the understanding of functional bladder disorders and to identify potential novel targets for development of therapeutic interventions. Given the heterogeneity of BPS/IC and the lack of consistent treatment benefits, it is unlikely that a single treatment directed at a single target in micturition reflex pathways will have a mass benefit. Thus, the identification of multiple targets is a prudent approach, and use of cocktail treatments directed at multiple targets should be considered. PMID:24760999

  10. Percutaneous freezing of sensory nerves prior to total knee arthroplasty.

    PubMed

    Dasa, Vinod; Lensing, Gabriel; Parsons, Miles; Harris, Justin; Volaufova, Julia; Bliss, Ryan

    2016-06-01

    Total knee arthroplasty (TKA) is a common procedure resulting in significant post-operative pain. Percutaneous cryoneurolysis targeting the infrapatellar branch of the saphenous nerve and anterior femoral cutaneous nerve could relieve post-operative knee pain by temporarily blocking sensory nerve conduction. A retrospective chart review of 100 patients who underwent TKA was conducted to assess the value of adding perioperative cryoneurolysis to a multimodal pain management program. The treatment group consisted of the first 50 patients consecutively treated after the practice introduced perioperative (five days prior to surgery) cryoneurolysis as part of its standard pain management protocol. The control group consisted of the 50 patients treated before cryoneurolysis was introduced. Outcomes included hospital length of stay (LOS), post-operative opioid requirements, and patient-reported outcomes of pain and function. A significantly lower proportion of patients in the treatment group had a LOS of ≥2days compared with the control group (6% vs. 67%, p<0.0001) and required 45% less opioids during the first 12weeks after surgery. The treatment group reported a statistically significant reduction in symptoms at the six- and 12-week follow-up compared with the control group and within-group significant reductions in pain intensity and pain interference at two- and six-week follow-up, respectively. Perioperative cryoneurolysis in combination with multimodal pain management may significantly improve outcomes in patients undergoing TKA. Promising results from this preliminary retrospective study warrant further investigation of this novel treatment in prospective, randomized trials. III. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. The RNA binding and transport proteins staufen and fragile X mental retardation protein are expressed by rat primary afferent neurons and localize to peripheral and central axons.

    PubMed

    Price, T J; Flores, C M; Cervero, F; Hargreaves, K M

    2006-09-15

    Neuronal proteins have been traditionally viewed as being derived solely from the soma; however, accumulating evidence indicates that dendritic and axonal sites are capable of a more autonomous role in terms of new protein synthesis. Such extra-somal translation allows for more rapid, on-demand regulation of neuronal structure and function than would otherwise be possible. While mechanisms of dendritic RNA transport have been elucidated, it remains unclear how RNA is trafficked into the axon for this purpose. Primary afferent neurons of the dorsal root (DRG) and trigeminal (TG) ganglia have among the longest axons in the neuraxis and such axonal protein synthesis would be advantageous, given the greater time involved for protein trafficking to occur via axonal transport. Therefore, we hypothesized that these primary sensory neurons might express proteins involved in RNA transport. Rat DRG and TG neurons expressed staufen (stau) 1 and 2 (detected at the mRNA level) and stau2 and fragile x mental retardation protein (FMRP; detected at the protein level). Stau2 mRNA was also detected in human TG neurons. Stau2 and FMRP protein were localized to the sciatic nerve and dorsal roots by immunohistochemistry and to dorsal roots by Western blot. Stau2 and FMRP immunoreactivities colocalized with transient receptor potential channel type 1 immunoreactivity in sensory axons of the sciatic nerve and dorsal root, suggesting that these proteins are being transported into the peripheral and central terminals of nociceptive sensory axons. Based on these findings, we propose that stau2 and FMRP proteins are attractive candidates to subserve RNA transport in sensory neurons, linking somal transcriptional events to axonal translation.

  12. THE RNA BINDING AND TRANSPORT PROTEINS STAUFEN AND FRAGILE X MENTAL RETARDATION PROTEIN ARE EXPRESSED BY RAT PRIMARY AFFERENT NEURONS AND LOCALIZE TO PERIPHERAL AND CENTRAL AXONS

    PubMed Central

    PRICE, T. J.; FLORES, C. M.; CERVERO, F.; HARGREAVES, K. M.

    2007-01-01

    Neuronal proteins have been traditionally viewed as being derived solely from the soma; however, accumulating evidence indicates that dendritic and axonal sites are capable of a more autonomous role in terms of new protein synthesis. Such extra-somal translation allows for more rapid, on-demand regulation of neuronal structure and function than would otherwise be possible. While mechanisms of dendritic RNA transport have been elucidated, it remains unclear how RNA is trafficked into the axon for this purpose. Primary afferent neurons of the dorsal root (DRG) and trigeminal (TG) ganglia have among the longest axons in the neuraxis and such axonal protein synthesis would be advantageous, given the greater time involved for protein trafficking to occur via axonal transport. Therefore, we hypothesized that these primary sensory neurons might express proteins involved in RNA transport. Rat DRG and TG neurons expressed staufen (stau) 1 and 2 (detected at the mRNA level) and stau2 and fragile × mental retardation protein (FMRP; detected at the protein level). Stau2 mRNA was also detected in human TG neurons. Stau2 and FMRP protein were localized to the sciatic nerve and dorsal roots by immunohistochemistry and to dorsal roots by Western blot. Stau2 and FMRP immunoreactivities colocalized with transient receptor potential channel type 1 immunoreactivity in sensory axons of the sciatic nerve and dorsal root, suggesting that these proteins are being transported into the peripheral and central terminals of nociceptive sensory axons. Based on these findings, we propose that stau2 and FMRP proteins are attractive candidates to subserve RNA transport in sensory neurons, linking somal transcriptional events to axonal translation. PMID:16809002

  13. Bladder outlet obstruction triggers neural plasticity in sensory pathways and contributes to impaired sensitivity in erectile dysfunction.

    PubMed

    Malykhina, Anna P; Lei, Qi; Chang, Shaohua; Pan, Xiao-Qing; Villamor, Antonio N; Smith, Ariana L; Seftel, Allen D

    2013-05-15

    Lower urinary tract symptoms (LUTS) and erectile dysfunction (ED) are common problems in aging males worldwide. The objective of this work was to evaluate the effects of bladder neck nerve damage induced by partial bladder outlet obstruction (PBOO) on sensory innervation of the corpus cavernosum (CC) and CC smooth muscle (CCSM) using a rat model of PBOO induced by a partial ligation of the bladder neck. Retrograde labeling technique was used to label dorsal root ganglion (DRG) neurons that innervate the urinary bladder and CC. Contractility and relaxation of the CCSM was studied in vitro, and expression of nitric oxide synthase (NOS) was evaluated by Western blotting. Concentration of the sensory neuropeptides substance P (SP) and calcitonin gene-related peptide was measured by ELISA. Partial obstruction of the bladder neck caused a significant hypertrophy of the urinary bladders (2.5-fold increase at 2 wk). Analysis of L6-S2 DRG sections determined that sensory ganglia received input from both the urinary bladder and CC with 5-7% of all neurons double labeled from both organs. The contractile responses of CC muscle strips to KCl and phenylephrine were decreased after PBOO, followed by a reduced relaxation response to nitroprusside. A significant decrease in neuronal NOS expression, but not in endothelial NOS or protein kinase G (PKG-1), was detected in the CCSM of the obstructed animals. Additionally, PBOO caused some impairment to sensory nerves as evidenced by a fivefold downregulation of SP in the CC (P ≤ 0.001). Our results provide evidence that PBOO leads to the impairment of bladder neck afferent innervation followed by a decrease in CCSM relaxation, downregulation of nNOS expression, and reduced content of sensory neuropeptides in the CC smooth muscle. These results suggest that nerve damage in PBOO may contribute to LUTS-ED comorbidity and trigger secondary changes in the contraction/relaxation mechanisms of CCSM.

  14. The Increased Sensitivity of Irregular Peripheral Canal and Otolith Vestibular Afferents Optimizes their Encoding of Natural Stimuli

    PubMed Central

    Schneider, Adam D.; Jamali, Mohsen; Carriot, Jerome; Chacron, Maurice J.

    2015-01-01

    Efficient processing of incoming sensory input is essential for an organism's survival. A growing body of evidence suggests that sensory systems have developed coding strategies that are constrained by the statistics of the natural environment. Consequently, it is necessary to first characterize neural responses to natural stimuli to uncover the coding strategies used by a given sensory system. Here we report for the first time the statistics of vestibular rotational and translational stimuli experienced by rhesus monkeys during natural (e.g., walking, grooming) behaviors. We find that these stimuli can reach intensities as high as 1500 deg/s and 8 G. Recordings from afferents during naturalistic rotational and linear motion further revealed strongly nonlinear responses in the form of rectification and saturation, which could not be accurately predicted by traditional linear models of vestibular processing. Accordingly, we used linear–nonlinear cascade models and found that these could accurately predict responses to naturalistic stimuli. Finally, we tested whether the statistics of natural vestibular signals constrain the neural coding strategies used by peripheral afferents. We found that both irregular otolith and semicircular canal afferents, because of their higher sensitivities, were more optimized for processing natural vestibular stimuli as compared with their regular counterparts. Our results therefore provide the first evidence supporting the hypothesis that the neural coding strategies used by the vestibular system are matched to the statistics of natural stimuli. PMID:25855169

  15. Structure and Development of the Subesophageal Zone of the Drosophila Brain. II. Sensory Compartments

    PubMed Central

    Kendroud, Sarah; Bohra, Ali Asgar; Kuert, Philipp A.; Nguyen, Bao; Guillermin, Oriane; Sprecher, Simon G.; Reichert, Heinrich; VijayRaghavan, Krishnaswamy; Hartenstein, Volker

    2018-01-01

    The subesophageal zone (SEZ) of the Drosophila brain processes mechanosensory and gustatory sensory input from sensilla located on the head, mouth cavity and trunk. Motor output from the SEZ directly controls the movements involved in feeding behavior. In an accompanying paper (Hartenstein et al., 2017) we analyzed the systems of fiber tracts and secondary lineages to establish reliable criteria for defining boundaries between the four neuromeres of the SEZ, as well as discrete longitudinal neuropil domains within each SEZ neuromere. Here we use this anatomical framework to systematically map the sensory projections entering the SEZ throughout development. Our findings show a continuity between larval and adult sensory neuropils. Gustatory axons from internal and external taste sensilla of the larva and adult form two closely related sensory projections, (1) the anterior central sensory center (ACSC) located deep in the ventromedial neuropil of the tritocerebrum and mandibular neuromere, and (2) the anterior ventral sensory center (AVSC), occupying a superficial layer within the ventromedial tritocerebrum. Additional, presumed mechanosensory terminal axons entering via the labial nerve define the ventromedial sensory center (VMSC) in the maxilla and labium. Mechanosensory afferents of the massive array of chordotonal organs (Johnston’s organ) of the adult antenna project into the centrolateral neuropil column of the anterior SEZ, creating the antenno-mechanosensory and motor center (AMMC). Dendritic projections of dye back-filled motor neurons extend throughout a ventral layer of the SEZ, overlapping widely with the AVSC and VMSC. Our findings elucidate fundamental structural aspects of the developing sensory systems in Drosophila. PMID:28875566

  16. A computational model for estimating recruitment of primary afferent fibers by intraneural stimulation in the dorsal root ganglia

    NASA Astrophysics Data System (ADS)

    Bourbeau, D. J.; Hokanson, J. A.; Rubin, J. E.; Weber, D. J.

    2011-10-01

    Primary afferent microstimulation has been proposed as a method for activating cutaneous and muscle afferent fibers to restore tactile and proprioceptive feedback after limb loss or peripheral neuropathy. Large populations of primary afferent fibers can be accessed directly by implanting microelectrode arrays in the dorsal root ganglia (DRG), which provide a compact and stable target for stimulating a diverse group of sensory fibers. To gain insight into factors affecting the number and types of primary afferents activated, we developed a computational model that simulates the recruitment of fibers in the feline L7 DRG. The model comprises two parts. The first part is a single-fiber model used to describe the current-distance relation and was based on the McIntyre-Richardson-Grill model for excitability. The second part uses the results of the singe-fiber model and published data on fiber size distributions to predict the probability of recruiting a given number of fibers as a function of stimulus intensity. The range of intensities over which exactly one fiber was recruited was approximately 0.5-5 µA (0.1-1 nC per phase); the stimulus intensity at which the probability of recruiting exactly one fiber was maximized was 2.3 µA. However, at 2.3 µA, it was also possible to recruit up to three fibers, albeit with a lower probability. Stimulation amplitudes up to 6 µA were tested with the population model, which showed that as the amplitude increased, the number of fibers recruited increased exponentially. The distribution of threshold amplitudes predicted by the model was similar to that previously reported by in vivo experimentation. Finally, the model suggested that medium diameter fibers (7.3-11.5 µm) may be recruited with much greater probability than large diameter fibers (12.8-16 µm). This model may be used to efficiently test a range of stimulation parameters and nerve morphologies to complement results from electrophysiology experiments and to aid in the

  17. Sensory and motor neuropathy in a Border Collie.

    PubMed

    Harkin, Kenneth R; Cash, Walter C; Shelton, G Diane

    2005-10-15

    A 5-month-old female Border Collie was evaluated because of progressive hind limb ataxia. The predominant clinical findings suggested a sensory neuropathy. Sensory nerve conduction velocity was absent in the tibial, common peroneal, and radial nerves and was decreased in the ulnar nerve; motor nerve conduction velocity was decreased in the tibial, common peroneal, and ulnar nerves. Histologic examination of nerve biopsy specimens revealed considerable nerve fiber depletion; some tissue sections had myelin ovoids, foamy macrophages, and axonal degeneration in remaining fibers. Marked depletion of most myelinated fibers within the peroneal nerve (a mixed sensory and motor nerve) supported the electrodiagnostic findings indicative of sensorimotor neuropathy. Progressive deterioration in motor function occurred over the following 19 months until the dog was euthanatized. A hereditary link was not established, but a littermate was similarly affected. The hereditary characteristic of this disease requires further investigation.

  18. Peripheral ionotropic glutamate receptors contribute to Fos expression increase in the spinal cord through antidromic electrical stimulation of sensory nerves.

    PubMed

    Li, Jia-Heng; He, Pei-Yao; Fan, Dan-Ni; Alemujiang, Dilinapa; Huo, Fu-Quan; Zhao, Yan; Cao, Dong-Yuan

    2018-06-21

    Previous studies have shown that peripheral ionotropic glutamate receptors are involved in the increase in sensitivity of a cutaneous branch of spinal dorsal ramus (CBDR) through antidromic electrical stimulation (ADES) of another CBDR in the adjacent segment. CBDR in the thoracic segments run parallel to each other and no synaptic contact at the periphery is reported. The present study investigated whether the increased sensitivity of peripheral sensory nerves via ADES of a CBDR induced Fos expression changes in the adjacent segments of the spinal cord. Fos expression increased in the T8 - T12 segments of the spinal cord evoked by ADES of the T10 CBDR in rats. The increased Fos expression in the T11 and T12, but not T8 - T10 spinal cord segments, was significantly blocked by local application of either N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine maleate (MK-801) or non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) into the receptive field of T11 CBDR. The results suggest that endogenous glutamate released by ADES of sensory nerve may bind to peripheral ionotropic glutamate receptors and activate adjacent sensory nerve endings to increase the sensitivity of the spinal cord. These data reveal the potential mechanisms of neuron activation in the spinal cord evoked by peripheral sensitization. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Co-cultures provide a new tool to probe communication between adult sensory neurons and urothelium.

    PubMed

    O'Mullane, Lauren M; Keast, Janet R; Osborne, Peregrine B

    2013-08-01

    Recent evidence suggests that the urothelium functions as a sensory transducer of chemical, mechanical or thermal stimuli and signals to nerve terminals and other cells in the bladder wall. The cellular and molecular basis of neuro-urothelial communication is not easily studied in the intact bladder. This led us to establish a method of co-culturing dorsal root ganglion sensory neurons and bladder urothelial cells. Sensory neurons and urothelial cells obtained from dorsal root ganglia and bladders dissected from adult female Sprague-Dawley® rats were isolated by enzyme treatment and mechanical dissociation. They were plated together or separately on collagen coated substrate and cultured in keratinocyte medium for 48 to 72 hours. Retrograde tracer labeling was performed to identify bladder afferents used for functional testing. Neurite growth and complexity in neurons co-cultured with urothelial cells was increased relative to that in neuronal monocultures. The growth promoting effect of urothelial cells was reduced by the tyrosine kinase inhibitor K252a but upstream inhibition of nerve growth factor signaling with TrkA-Fc had no effect. Fura-2 calcium imaging of urothelial cells showed responses to adenosine triphosphate (100 μM) and activation of TRPV4 (4α-PDD, 10 μM) but not TRPV1 (capsaicin, 1 μM), TRPV3 (farnesyl pyrophosphate, 1 μM) or TRPA1 (mustard oil, 100 μM). In contrast, co-cultured neurons were activated by all agonists except farnesyl pyrophosphate. Co-culturing provides a new methodology for investigating neuro-urothelial interactions in animal models of urological conditions. Results suggest that neuronal properties are maintained in the presence of urothelium and neurite growth is potentiated by a nerve growth factor independent mechanism. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. Miconazole enhances nerve regeneration and functional recovery after sciatic nerve crush injury.

    PubMed

    Lin, Tao; Qiu, Shuai; Yan, Liwei; Zhu, Shuang; Zheng, Canbin; Zhu, Qingtang; Liu, Xiaolin

    2018-05-01

    Improving axonal outgrowth and remyelination is crucial for peripheral nerve regeneration. Miconazole appears to enhance remyelination in the central nervous system. In this study we assess the effect of miconazole on axonal regeneration using a sciatic nerve crush injury model in rats. Fifty Sprague-Dawley rats were divided into control and miconazole groups. Nerve regeneration and myelination were determined using histological and electrophysiological assessment. Evaluation of sensory and motor recovery was performed using the pinprick assay and sciatic functional index. The Cell Counting Kit-8 assay and Western blotting were used to assess the proliferation and neurotrophic expression of RSC 96 Schwann cells. Miconazole promoted axonal regrowth, increased myelinated nerve fibers, improved sensory recovery and walking behavior, enhanced stimulated amplitude and nerve conduction velocity, and elevated proliferation and neurotrophic expression of RSC 96 Schwann cells. Miconazole was beneficial for nerve regeneration and functional recovery after peripheral nerve injury. Muscle Nerve 57: 821-828, 2018. © 2017 Wiley Periodicals, Inc.

  1. Vagal sensory innervation of the gastric sling muscle and antral wall: implications for gastro-esophageal reflux disease?

    PubMed

    Powley, T L; Gilbert, J M; Baronowsky, E A; Billingsley, C N; Martin, F N; Phillips, R J

    2012-10-01

    The gastric sling muscle has not been investigated for possible sensory innervation, in spite of the key roles the structure plays in lower esophageal sphincter (LES) function and gastric physiology. Thus, the present experiment used tracing techniques to label vagal afferents and survey their projections in the lesser curvature. Sprague-Dawley rats received injections of dextran biotin into the nodose ganglia. Fourteen days postinjection, animals were euthanized and their stomachs were processed to visualize the vagal afferent innervation. In different cases, neurons, muscle cells, or interstitial cells of Cajal (ICC) were counterstained. The sling muscle is innervated throughout its length by vagal afferent intramuscular arrays (IMAs) associated with ICC. In addition, the distal antral attachment site of the sling muscle is innervated by a novel vagal afferent terminal specialization, an antral web ending. The muscle wall of the distal antrum is also innervated by conventional IMAs and intraganglionic laminar endings, the two types of mechanoreceptors found throughout stomach smooth muscle. The innervation of sling muscle by IMAs, putative stretch receptors, suggests that sling sensory feedback may generate vago-vagal or other reflexes with vagal afferent limbs. The restricted distribution of afferent web endings near the antral attachments of sling fibers suggests the possibility of specialized mechanoreceptor functions linking antral and pyloric activity to the operation of the LES. Dysfunctional sling afferents could generate LES motor disturbances, or normative compensatory sensory feedback from the muscle could compromise therapies targeting only effectors. © 2012 Blackwell Publishing Ltd.

  2. Role of the vagus nerve in the development and treatment of diet‐induced obesity

    PubMed Central

    2016-01-01

    Abstract This review highlights evidence for a role of the vagus nerve in the development of obesity and how targeting the vagus nerve with neuromodulation or pharmacology can be used as a therapeutic treatment of obesity. The vagus nerve innervating the gut plays an important role in controlling metabolism. It communicates peripheral information about the volume and type of nutrients between the gut and the brain. Depending on the nutritional status, vagal afferent neurons express two different neurochemical phenotypes that can inhibit or stimulate food intake. Chronic ingestion of calorie‐rich diets reduces sensitivity of vagal afferent neurons to peripheral signals and their constitutive expression of orexigenic receptors and neuropeptides. This disruption of vagal afferent signalling is sufficient to drive hyperphagia and obesity. Furthermore neuromodulation of the vagus nerve can be used in the treatment of obesity. Although the mechanisms are poorly understood, vagal nerve stimulation prevents weight gain in response to a high‐fat diet. In small clinical studies, in patients with depression or epilepsy, vagal nerve stimulation has been demonstrated to promote weight loss. Vagal blockade, which inhibits the vagus nerve, results in significant weight loss. Vagal blockade is proposed to inhibit aberrant orexigenic signals arising in obesity as a putative mechanism of vagal blockade‐induced weight loss. Approaches and molecular targets to develop future pharmacotherapy targeted to the vagus nerve for the treatment of obesity are proposed. In conclusion there is strong evidence that the vagus nerve is involved in the development of obesity and it is proving to be an attractive target for the treatment of obesity. PMID:26959077

  3. The firing characteristics of foot sole cutaneous mechanoreceptor afferents in response to vibration stimuli.

    PubMed

    Strzalkowski, Nicholas D J; Ali, R Ayesha; Bent, Leah R

    2017-10-01

    Single unit microneurography was used to record the firing characteristics of the four classes of foot sole cutaneous afferents [fast and slowly adapting type I and II (FAI, FAII, SAI, and SAII)] in response to sinusoidal vibratory stimuli. Frequency (3-250 Hz) and amplitude (0.001-2 mm) combinations were applied to afferent receptive fields through a 6-mm diameter probe. The impulses per cycle, defined as the number of action potentials evoked per vibration sine wave, were measured over 1 s of vibration at each frequency-amplitude combination tested. Afferent entrainment threshold (lowest amplitude at which an afferent could entrain 1:1 to the vibration frequency) and afferent firing threshold (minimum amplitude for which impulses per cycle was greater than zero) were then obtained for each frequency. Increases in vibration frequency are generally associated with decreases in expected impulses per cycle ( P < 0.001), but each foot sole afferent class appears uniquely tuned to vibration stimuli. FAII afferents tended to have the lowest entrainment and firing thresholds ( P < 0.001 for both); however, these afferents seem to be sensitive across frequency. In contrast to FAII afferents, SAI and SAII afferents tended to demonstrate optimal entrainment to frequencies below 20 Hz and FAI afferents faithfully encoded frequencies between 8 and 60 Hz. Contrary to the selective activation of distinct afferent classes in the hand, application of class-specific frequencies in the foot sole is confounded due to the high sensitivity of FAII afferents. These findings may aid in the development of sensorimotor control models or the design of balance enhancement interventions. NEW & NOTEWORTHY Our work provides a mechanistic look at the capacity of foot sole cutaneous afferents to respond to vibration of varying frequency and amplitude. We found that foot sole afferent classes are uniquely tuned to vibration stimuli; however, unlike in the hand, they cannot be independently

  4. Enlargement of Ribbons in Zebrafish Hair Cells Increases Calcium Currents But Disrupts Afferent Spontaneous Activity and Timing of Stimulus Onset

    PubMed Central

    Schreck, Mary; Petralia, Ronald S.; Wang, Ya-Xian; Zhang, Qiuxiang

    2017-01-01

    In sensory hair cells of auditory and vestibular organs, the ribbon synapse is required for the precise encoding of a wide range of complex stimuli. Hair cells have a unique presynaptic structure, the synaptic ribbon, which organizes both synaptic vesicles and calcium channels at the active zone. Previous work has shown that hair-cell ribbon size is correlated with differences in postsynaptic activity. However, additional variability in postsynapse size presents a challenge to determining the specific role of ribbon size in sensory encoding. To selectively assess the impact of ribbon size on synapse function, we examined hair cells in transgenic zebrafish that have enlarged ribbons, without postsynaptic alterations. Morphologically, we found that enlarged ribbons had more associated vesicles and reduced presynaptic calcium-channel clustering. Functionally, hair cells with enlarged ribbons had larger global and ribbon-localized calcium currents. Afferent neuron recordings revealed that hair cells with enlarged ribbons resulted in reduced spontaneous spike rates. Additionally, despite larger presynaptic calcium signals, we observed fewer evoked spikes with longer latencies from stimulus onset. Together, our work indicates that hair-cell ribbon size influences the spontaneous spiking and the precise encoding of stimulus onset in afferent neurons. SIGNIFICANCE STATEMENT Numerous studies support that hair-cell ribbon size corresponds with functional sensitivity differences in afferent neurons and, in the case of inner hair cells of the cochlea, vulnerability to damage from noise trauma. Yet it is unclear whether ribbon size directly influences sensory encoding. Our study reveals that ribbon enlargement results in increased ribbon-localized calcium signals, yet reduces afferent spontaneous activity and disrupts the timing of stimulus onset, a distinct aspect of auditory and vestibular encoding. These observations suggest that varying ribbon size alone can influence

  5. Allodynia mediated by C-tactile afferents in human hairy skin.

    PubMed

    Nagi, Saad S; Rubin, Troy K; Chelvanayagam, David K; Macefield, Vaughan G; Mahns, David A

    2011-08-15

    We recently showed a contribution of low-threshold cutaneous mechanoreceptors to vibration-evoked changes in the perception of muscle pain. Neutral-touch stimulation (vibration) of the hairy skin during underlying muscle pain evoked an overall increase in pain intensity, i.e. allodynia. This effect appeared to be dependent upon cutaneous afferents, as allodynia was abolished by intradermal anaesthesia. However, it remains unclear whether allodynia results from activation of a single class of cutaneous afferents or the convergence of inputs from multiple classes. Intriguingly, no existing human study has examined the contribution of C-tactile (CT) afferents to allodynia. Detailed psychophysical observations were made in 29 healthy subjects (18 males and 11 females). Sustained muscle pain was induced by infusing hypertonic saline (HS: 5%) into tibialis anterior muscle (TA). Sinusoidal vibration (200 Hz–200 μm) was applied to the hairy skin overlying TA. Pain ratings were recorded using a visual analogue scale (VAS). In order to evaluate the role of myelinated and unmyelinated cutaneous afferents in the expression of vibration-evoked allodynia, compression block of the sciatic nerve, and low-dose intradermal anaesthesia (Xylocaine 0.25%) were used, respectively. In addition, the modulation of muscle pain by gentle brushing (1.0 and 3.0 cm s(−1))--known to excite CT fibres--was examined. Brushing stimuli were applied to the hairy skin with all fibres intact and following the blockade of myelinated afferents. During tonic muscle pain (VAS 4–6), vibration evoked a significant and reproducible increase in muscle pain (allodynia) that persisted following compression of myelinated afferents. During compression block, the sense of vibration was abolished, but the vibration-evoked allodynia persisted. In contrast, selective anaesthesia of unmyelinated cutaneous afferents abolished the allodynia, whereas the percept of vibration remained unaffected. Furthermore

  6. Effects of peripheral sensory nerve stimulation plus task-oriented training on upper extremity function in patients with subacute stroke: a pilot randomized crossover trial.

    PubMed

    Ikuno, Koki; Kawaguchi, Saori; Kitabeppu, Shinsuke; Kitaura, Masaki; Tokuhisa, Kentaro; Morimoto, Shigeru; Matsuo, Atsushi; Shomoto, Koji

    2012-11-01

    To investigate the feasibility of peripheral sensory nerve stimulation combined with task-oriented training in patients with stroke during inpatient rehabilitation. A pilot randomized crossover trial. Two rehabilitation hospitals. Twenty-two patients with subacute stroke. Participants were randomly assigned to two groups and underwent two weeks of training in addition to conventional inpatient rehabilitation. The immediate group underwent peripheral sensory nerve stimulation combined with task-oriented training in the first week, followed by another week with task-oriented training alone. The delayed group underwent the same training in reverse order. Outcome measures were the level of fatigue and Wolf Motor Function Test. Patients were assessed at baseline, one and two weeks. All participants completed the study with no adverse events. There was no significant difference in level of fatigue between each treatment. From baseline to one week, the immediate group showed larger improvements than the delayed groups in the Wolf Motor Function Test (decrease in mean time (± SD) from 41.9 ± 16.2 seconds to 30.6 ± 11.4 seconds versus from 46.8 ± 19.4 seconds to 42.9 ± 14.7 seconds, respectively) but the difference did not reach significance after Bonferroni correction (P = 0.041). Within-group comparison showed significant improvements in the Wolf Motor Function Test mean time after the peripheral sensory nerve stimulation combined with task-oriented training periods in each group (P < 0.01). Peripheral sensory nerve stimulation is feasible in clinical settings and may enhance the effects of task-oriented training in patients with subacute stroke.

  7. Oligosynaptic inhibition of group Ia afferents from brachioradialis to triceps brachii motor neurons in humans.

    PubMed

    Sato, Toshiaki; Nito, Mitsuhiro; Suzuki, Katsuhiko; Fujii, Hiromi; Hashizume, Wataru; Miyasaka, Takuji; Shindo, Masaomi; Naito, Akira

    2018-01-01

    This study examines effects of low-threshold afferents from the brachioradialis (BR) on excitability of triceps brachii (TB) motor neurons in humans. We evaluated the effects using a post stimulus time histogram (PSTH) and electromyogram averaging (EMG-A) methods in 13 healthy human participants. Electrical conditioning stimulation to the radial nerve branch innervating BR with the intensity below the motor threshold was delivered. In the PSTH study, the stimulation produced a trough (inhibition) in 36/69 TB motor units for all the participants. A cutaneous stimulation never provoked such inhibition. The central latency of the inhibition was 1.5 ± 0.5 ms longer than that of the homonymous facilitation. In the EMG-A study, the stimulation produced inhibition in EMG-A of TB in all participants. The inhibition diminished with a tonic vibration stimulation to BR. These findings suggest that oligosynaptic inhibition mediated by group Ia afferents from BR to TB exists in humans. Muscle Nerve 57: 122-128, 2018. © 2017 Wiley Periodicals, Inc.

  8. Primary afferent neurons express functional delta opioid receptors in inflamed skin.

    PubMed

    Brederson, Jill-Desiree; Honda, Christopher N

    2015-07-21

    Peripherally-restricted opiate compounds attenuate hyperalgesia in experimental models of inflammatory pain, but have little discernable effect on nociceptive behavior in normal animals. This suggests that activation of opioid receptors on peripheral sensory axons contributes to decreased afferent activity after injury. Previously, we reported that direct application of morphine to cutaneous receptive fields decreased mechanical and heat-evoked responses in a population of C-fiber nociceptors in inflamed skin. Consistent with reported behavioral studies, direct application of morphine had no effect on fiber activity in control skin. The aim of the present study was to determine whether mechanical responsiveness of nociceptors innervating inflamed skin was attenuated by direct activation of delta opioid receptors (DORs) on peripheral terminals. An ex vivo preparation of rat plantar skin and tibial nerve was used to examine effects of a selective DOR agonist, deltorphin II, on responsiveness of single fibers innervating inflamed skin. Electrical recordings were made eighteen hours after injection of complete Freund's adjuvant into the hindpaw. Deltorphin II produced an inhibition of the mechanical responsiveness of single fibers innervating inflamed skin; an effect blocked by the DOR-selective antagonist, naltrindole. The population of units responsive to deltorphin II was identified as consisting of C fiber mechanical nociceptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Information analysis of posterior canal afferents in the turtle, Trachemys scripta elegans.

    PubMed

    Rowe, Michael H; Neiman, Alexander B

    2012-01-24

    We have used sinusoidal and band-limited Gaussian noise stimuli along with information measures to characterize the linear and non-linear responses of morpho-physiologically identified posterior canal (PC) afferents and to examine the relationship between mutual information rate and other physiological parameters. Our major findings are: 1) spike generation in most PC afferents is effectively a stochastic renewal process, and spontaneous discharges are fully characterized by their first order statistics; 2) a regular discharge, as measured by normalized coefficient of variation (cv*), reduces intrinsic noise in afferent discharges at frequencies below the mean firing rate; 3) coherence and mutual information rates, calculated from responses to band-limited Gaussian noise, are jointly determined by gain and intrinsic noise (discharge regularity), the two major determinants of signal to noise ratio in the afferent response; 4) measures of optimal non-linear encoding were only moderately greater than optimal linear encoding, indicating that linear stimulus encoding is limited primarily by internal noise rather than by non-linearities; and 5) a leaky integrate and fire model reproduces these results and supports the suggestion that the combination of high discharge regularity and high discharge rates serves to extend the linear encoding range of afferents to higher frequencies. These results provide a framework for future assessments of afferent encoding of signals generated during natural head movements and for comparison with coding strategies used by other sensory systems. This article is part of a Special Issue entitled: Neural Coding. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Depressing effect of electroacupuncture on the spinal non-painful sensory input of the rat.

    PubMed

    Quiroz-González, Salvador; Segura-Alegría, Bertha; Jiménez-Estrada, Ismael

    2014-09-01

    The aim of this study was to explore the effect of electroacupuncture (EA) applied in the Zusanli (ST36) and Sanyinjiao (SP6) points on the N1 component of the cord dorsum potential (CDP) evoked by electrical stimulation of the sural nerve (SU) in the rat. The experiments were performed in 44 Wistar rats (250-300 g) anesthetized with ketamine (100 mg/kg) and xylazine (2 mg/kg). A bilateral laminectomy was performed to expose the L3 to S2 segments of the spinal cord. The SU nerve was exposed and placed on pairs of hook electrodes for electrical stimulation. The N1-CDPs were recorded with three silver-ball electrodes located on the dorsal surface of the L5 to S1 segments. Ipsilateral high and low EA stimulation (100, 2 Hz, 6 mA, 30 min) induced a considerable reduction in the amplitude (45 ± 5.6, 41 ± 6.2%) of the N1-CDP recorded at the L6 segmental level. Recovery of the N1-CDP amplitude occurred approximately 1-3 s after EA. Sectioning of the saphenous and superficial peroneal nerves reduced the depressing effect provoked by the EA stimulation (18.7 ± 1.3, 27 ± 3.8%). Similarly, sectioning of the posterior and anterior tibial, deep peroneal and gastrocnemius nerves partially reduced the effect provoked by EA (11 ± 1.5, 9.8 ± 1.1, 12.6 ± 1.9%). Intravenous picrotoxin (1 mg/kg) also reduced the action of low and high EA (23 ± 4.8, 27 ± 5.2%). It is suggested that EA stimulation depresses non-painful sensory pathways through the activation of specific inhibitory pathways that receive modulatory actions from other sensory and muscle afferent inputs in the rat spinal cord.

  11. Peripheral Nerve Repair in Rats Using Composite Hydrogel-Filled Aligned Nanofiber Conduits with Incorporated Nerve Growth Factor

    PubMed Central

    Jin, Jenny; Limburg, Sonja; Joshi, Sunil K.; Landman, Rebeccah; Park, Michelle; Zhang, Qia; Kim, Hubert T.

    2013-01-01

    Repair of peripheral nerve defects with current synthetic, tubular nerve conduits generally shows inferior recovery when compared with using nerve autografts, the current gold standard. We tested the ability of composite collagen and hyaluronan hydrogels, with and without the nerve growth factor (NGF), to stimulate neurite extension on a promising aligned, nanofiber poly-L-lactide-co-caprolactone (PLCL) scaffold. In vitro, the hydrogels significantly increased neurite extension from dorsal root ganglia explants. Consistent with these results, the addition of hydrogels as luminal fillers within aligned, nanofiber tubular PLCL conduits led to improved sensory function compared to autograft repair in a critical-size defect in the sciatic nerve in a rat model. Sensory recovery was assessed 3 and 12 weeks after repair using a withdrawal assay from thermal stimulation. The addition of hydrogel did not enhance recovery of motor function in the rat model. The NGF led to dose-dependent improvements in neurite out-growth in vitro, but did not have a significant effect in vivo. In summary, composite collagen/hyaluronan hydrogels enhanced sensory neurite outgrowth in vitro and sensory recovery in vivo. The use of such hydrogels as luminal fillers for tubular nerve conduits may therefore be useful in assisting restoration of protective sensation following peripheral nerve injury. PMID:23659607

  12. Interference in Ballistic Motor Learning: Specificity and Role of Sensory Error Signals

    PubMed Central

    Lundbye-Jensen, Jesper; Petersen, Tue Hvass; Rothwell, John C.; Nielsen, Jens Bo

    2011-01-01

    Humans are capable of learning numerous motor skills, but newly acquired skills may be abolished by subsequent learning. Here we ask what factors determine whether interference occurs in motor learning. We speculated that interference requires competing processes of synaptic plasticity in overlapping circuits and predicted specificity. To test this, subjects learned a ballistic motor task. Interference was observed following subsequent learning of an accuracy-tracking task, but only if the competing task involved the same muscles and movement direction. Interference was not observed from a non-learning task suggesting that interference requires competing learning. Subsequent learning of the competing task 4 h after initial learning did not cause interference suggesting disruption of early motor memory consolidation as one possible mechanism underlying interference. Repeated transcranial magnetic stimulation (rTMS) of corticospinal motor output at intensities below movement threshold did not cause interference, whereas suprathreshold rTMS evoking motor responses and (re)afferent activation did. Finally, the experiments revealed that suprathreshold repetitive electrical stimulation of the agonist (but not antagonist) peripheral nerve caused interference. The present study is, to our knowledge, the first to demonstrate that peripheral nerve stimulation may cause interference. The finding underscores the importance of sensory feedback as error signals in motor learning. We conclude that interference requires competing plasticity in overlapping circuits. Interference is remarkably specific for circuits involved in a specific movement and it may relate to sensory error signals. PMID:21408054

  13. Tonic Investigation Concept of Cervico-vestibular Muscle Afferents

    PubMed Central

    Dorn, Linda Josephine; Lappat, Annabelle; Neuhuber, Winfried; Scherer, Hans; Olze, Heidi; Hölzl, Matthias

    2016-01-01

    Introduction Interdisciplinary research has contributed greatly to an improved understanding of the vestibular system. To date, however, very little research has focused on the vestibular system's somatosensory afferents. To ensure the diagnostic quality of vestibular somatosensory afferent data, especially the extra cranial afferents, stimulation of the vestibular balance system has to be precluded. Objective Sophisticated movements require intra- and extra cranial vestibular receptors. The study's objective is to evaluate an investigation concept for cervico-vestibular afferents with respect to clinical feasibility. Methods A dedicated chair was constructed, permitting three-dimensional trunk excursions, during which the volunteer's head remains fixed. Whether or not a cervicotonic provocation nystagmus (c-PN) can be induced with static trunk excursion is to be evaluated and if this can be influenced by cervical monophasic transcutaneous electrical nerve stimulation (c-TENS) with a randomized test group. 3D-video-oculography (VOG) was used to record any change in cervico-ocular examination parameters. The occurring nystagmuses were evaluated visually due to the small caliber of nystagmus amplitudes in healthy volunteers. Results The results demonstrate: no influence of placebo-controlled c-TENS on the spontaneous nystagmus; a significant increase of the vertical nystagmus on the 3D-trunk-excursion chair in static trunk flexion with cervical provocation in all young healthy volunteers (n = 49); and a significant difference between vertical and horizontal nystagmuses during static trunk excursion after placebo-controlled c-TENS, except for the horizontal nystagmus during trunk torsion. Conclusion We hope this cervicotonic investigation concept on the 3D trunk-excursion chair will contribute to new diagnostic and therapeutic perspectives on cervical pathologies in vestibular head-to-trunk alignment. PMID:28050208

  14. Sensory feedback from the urethra evokes state-dependent lower urinary tract reflexes in rat.

    PubMed

    Danziger, Zachary C; Grill, Warren M

    2017-08-15

    The lower urinary tract is regulated by reflexes responsible for maintaining continence and producing efficient voiding. It is unclear how sensory information from the bladder and urethra engages differential, state-dependent reflexes to either maintain continence or promote voiding. Using a new in vivo experimental approach, we quantified how sensory information from the bladder and urethra are integrated to switch reflex responses to urethral sensory feedback from maintaining continence to producing voiding. The results demonstrate how sensory information regulates state-dependent reflexes in the lower urinary tract and contribute to our understanding of the pathophysiology of urinary retention and incontinence where sensory feedback may engage these reflexes inappropriately. Lower urinary tract reflexes are mediated by peripheral afferents from the bladder (primarily in the pelvic nerve) and the urethra (in the pudendal and pelvic nerves) to maintain continence or initiate micturition. If fluid enters the urethra at low bladder volumes, reflexes relax the bladder and evoke external urethral sphincter (EUS) contraction (guarding reflex) to maintain continence. Conversely, urethral flow at high bladder volumes, excites the bladder (micturition reflex) and relaxes the EUS (augmenting reflex). We conducted measurements in a urethane-anaesthetized in vivo rat preparation to characterize systematically the reflexes evoked by fluid flow through the urethra. We used a novel preparation to manipulate sensory feedback from the bladder and urethra independently by controlling bladder volume and urethral flow. We found a distinct bladder volume threshold (74% of bladder capacity) above which flow-evoked bladder contractions were 252% larger and evoked phasic EUS activation 2.6 times as often as responses below threshold, clearly demonstrating a discrete transition between continence (guarding) and micturition (augmenting) reflexes. Below this threshold urethral flow evoked

  15. Capsaicin-Sensitive Sensory Nerves Are Necessary for the Protective Effect of Ghrelin in Cerulein-Induced Acute Pancreatitis in Rats

    PubMed Central

    Bonior, Joanna; Warzecha, Zygmunt; Ceranowicz, Piotr; Gajdosz, Ryszard; Pierzchalski, Piotr; Kot, Michalina; Leja-Szpak, Anna; Nawrot-Porąbka, Katarzyna; Link-Lenczowski, Paweł; Olszanecki, Rafał; Bartuś, Krzysztof; Trąbka, Rafał; Kuśnierz-Cabala, Beata; Dembiński, Artur; Jaworek, Jolanta

    2017-01-01

    Ghrelin was shown to exhibit protective and therapeutic effect in the gut. Aim of the study was to investigate the role of sensory nerves (SN) in the protective effect of ghrelin in acute pancreatitis (AP). Studies were performed on male Wistar rats or isolated pancreatic acinar cells. After capsaicin deactivation of sensory nerves (CDSN) or treatment with saline, rats were pretreated intraperitoneally with ghrelin or saline. In those rats, AP was induced by cerulein or pancreases were used for isolation of pancreatic acinar cells. Pancreatic acinar cells were incubated in cerulein-free or cerulein containing solution. In rats with intact SN, pretreatment with ghrelin led to a reversal of the cerulein-induced increase in pancreatic weight, plasma activity of lipase and plasma concentration of tumor necrosis factor-α (TNF-α). These effects were associated with an increase in plasma interleukin-4 concentration and reduction in histological signs of pancreatic damage. CDSN tended to increase the severity of AP and abolished the protective effect of ghrelin. Exposure of pancreatic acinar cells to cerulein led to increase in cellular expression of mRNA for TNF-α and cellular synthesis of this cytokine. Pretreatment with ghrelin reduced this alteration, but this effect was only observed in acinar cells obtained from rats with intact SN. Moreover, CDSN inhibited the cerulein- and ghrelin-induced increase in gene expression and synthesis of heat shock protein 70 (HSP70) in those cells. Ghrelin exhibits the protective effect in cerulein-induced AP on the organ and pancreatic acinar cell level. Sensory nerves ablation abolishes this effect. PMID:28665321

  16. Early sensory re-education of the hand after peripheral nerve repair based on mirror therapy: a randomized controlled trial.

    PubMed

    Paula, Mayara H; Barbosa, Rafael I; Marcolino, Alexandre M; Elui, Valéria M C; Rosén, Birgitta; Fonseca, Marisa C R

    2016-01-01

    Mirror therapy has been used as an alternative stimulus to feed the somatosensory cortex in an attempt to preserve hand cortical representation with better functional results. To analyze the short-term functional outcome of an early re-education program using mirror therapy compared to a late classic sensory program for hand nerve repair. This is a randomized controlled trial. We assessed 20 patients with median and ulnar nerve and flexor tendon repair using the Rosen Score combined with the DASH questionnaire. The early phase group using mirror therapy began on the first postoperative week and lasted 5 months. The control group received classic sensory re-education when the protective sensation threshold was restored. All participants received a patient education booklet and were submitted to the modified Duran protocol for flexor tendon repair. The assessments were performed by the same investigator blinded to the allocated treatment. Mann-Whitney Test and Effect Size using Cohen's d score were used for inter-group comparisons at 3 and 6 months after intervention. The primary outcome (Rosen score) values for the Mirror Therapy group and classic therapy control group after 3 and 6 months were 1.68 (SD=0.5); 1.96 (SD=0.56) and 1.65 (SD=0.52); 1.51 (SD=0.62), respectively. No between-group differences were observed. Although some clinical improvement was observed, mirror therapy was not shown to be more effective than late sensory re-education in an intermediate phase of nerve repair in the hand. Replication is needed to confirm these findings.

  17. Early sensory re-education of the hand after peripheral nerve repair based on mirror therapy: a randomized controlled trial

    PubMed Central

    Paula, Mayara H.; Barbosa, Rafael I.; Marcolino, Alexandre M.; Elui, Valéria M. C.; Rosén, Birgitta; Fonseca, Marisa C. R.

    2016-01-01

    BACKGROUND: Mirror therapy has been used as an alternative stimulus to feed the somatosensory cortex in an attempt to preserve hand cortical representation with better functional results. OBJECTIVE: To analyze the short-term functional outcome of an early re-education program using mirror therapy compared to a late classic sensory program for hand nerve repair. METHOD: This is a randomized controlled trial. We assessed 20 patients with median and ulnar nerve and flexor tendon repair using the Rosen Score combined with the DASH questionnaire. The early phase group using mirror therapy began on the first postoperative week and lasted 5 months. The control group received classic sensory re-education when the protective sensation threshold was restored. All participants received a patient education booklet and were submitted to the modified Duran protocol for flexor tendon repair. The assessments were performed by the same investigator blinded to the allocated treatment. Mann-Whitney Test and Effect Size using Cohen's d score were used for inter-group comparisons at 3 and 6 months after intervention. RESULTS: The primary outcome (Rosen score) values for the Mirror Therapy group and classic therapy control group after 3 and 6 months were 1.68 (SD=0.5); 1.96 (SD=0.56) and 1.65 (SD=0.52); 1.51 (SD=0.62), respectively. No between-group differences were observed. CONCLUSION: Although some clinical improvement was observed, mirror therapy was not shown to be more effective than late sensory re-education in an intermediate phase of nerve repair in the hand. Replication is needed to confirm these findings. PMID:26786080

  18. Excitatory and inhibitory synaptic mechanisms at the first stage of integration in the electroreception system of the shark

    PubMed Central

    Rotem, Naama; Sestieri, Emanuel; Hounsgaard, Jorn; Yarom, Yosef

    2014-01-01

    High impulse rate in afferent nerves is a common feature in many sensory systems that serve to accommodate a wide dynamic range. However, the first stage of integration should be endowed with specific properties that enable efficient handling of the incoming information. In elasmobranches, the afferent nerve originating from the ampullae of Lorenzini targets specific neurons located at the Dorsal Octavolateral Nucleus (DON), the first stage of integration in the electroreception system. Using intracellular recordings in an isolated brainstem preparation from the shark we analyze the properties of this afferent pathway. We found that stimulating the afferent nerve activates a mixture of excitatory and inhibitory synapses mediated by AMPA-like and GABAA receptors, respectively. The excitatory synapses that are extremely efficient in activating the postsynaptic neurons display unusual voltage dependence, enabling them to operate as a current source. The inhibitory input is powerful enough to completely eliminate the excitatory action of the afferent nerve but is ineffective regarding other excitatory inputs. These observations can be explained by the location and efficiency of the synapses. We conclude that the afferent nerve provides powerful and reliable excitatory input as well as a feed-forward inhibitory input, which is partially presynaptic in origin. These results question the cellular location within the DON where cancelation of expected incoming signals occurs. PMID:24639631

  19. A pilot study of sensory feedback by transcutaneous electrical nerve stimulation to improve manipulation deficit caused by severe sensory loss after stroke

    PubMed Central

    2013-01-01

    Background Sensory disturbance is common following stroke and can exacerbate functional deficits, even in patients with relatively good motor function. In particular, loss of appropriate sensory feedback in severe sensory loss impairs manipulation capability. We hypothesized that task-oriented training with sensory feedback assistance would improve manipulation capability even without sensory pathway recovery. Methods We developed a system that provides sensory feedback by transcutaneous electrical nerve stimulation (SENS) for patients with sensory loss, and investigated the feasibility of the system in a stroke patient with severe sensory impairment and mild motor deficit. The electrical current was modulated by the force exerted by the fingertips so as to allow the patient to identify the intensity. The patient had severe sensory loss due to a right thalamic hemorrhage suffered 27 months prior to participation in the study. The patient first practiced a cylindrical grasp task with SENS for 1 hour daily over 29 days. Pressure information from the affected thumb was fed back to the unaffected shoulder. The same patient practiced a tip pinch task with SENS for 1 hour daily over 4 days. Pressure information from the affected thumb and index finger was fed back to the unaffected and affected shoulders, respectively. We assessed the feasibility of SENS and examined the improvement of manipulation capability after training with SENS. Results The fluctuation in fingertip force during the cylindrical grasp task gradually decreased as the training progressed. The patient was able to maintain a stable grip force after training, even without SENS. Pressure exerted by the tip pinch of the affected hand was unstable before intervention with SENS compared with that of the unaffected hand. However, they were similar to each other immediately after SENS was initiated, suggesting that the somatosensory information improved tip pinch performance. The patient’s manipulation

  20. A pilot study of sensory feedback by transcutaneous electrical nerve stimulation to improve manipulation deficit caused by severe sensory loss after stroke.

    PubMed

    Kita, Kahori; Otaka, Yohei; Takeda, Kotaro; Sakata, Sachiko; Ushiba, Junichi; Kondo, Kunitsugu; Liu, Meigen; Osu, Rieko

    2013-06-13

    Sensory disturbance is common following stroke and can exacerbate functional deficits, even in patients with relatively good motor function. In particular, loss of appropriate sensory feedback in severe sensory loss impairs manipulation capability. We hypothesized that task-oriented training with sensory feedback assistance would improve manipulation capability even without sensory pathway recovery. We developed a system that provides sensory feedback by transcutaneous electrical nerve stimulation (SENS) for patients with sensory loss, and investigated the feasibility of the system in a stroke patient with severe sensory impairment and mild motor deficit. The electrical current was modulated by the force exerted by the fingertips so as to allow the patient to identify the intensity. The patient had severe sensory loss due to a right thalamic hemorrhage suffered 27 months prior to participation in the study. The patient first practiced a cylindrical grasp task with SENS for 1 hour daily over 29 days. Pressure information from the affected thumb was fed back to the unaffected shoulder. The same patient practiced a tip pinch task with SENS for 1 hour daily over 4 days. Pressure information from the affected thumb and index finger was fed back to the unaffected and affected shoulders, respectively. We assessed the feasibility of SENS and examined the improvement of manipulation capability after training with SENS. The fluctuation in fingertip force during the cylindrical grasp task gradually decreased as the training progressed. The patient was able to maintain a stable grip force after training, even without SENS. Pressure exerted by the tip pinch of the affected hand was unstable before intervention with SENS compared with that of the unaffected hand. However, they were similar to each other immediately after SENS was initiated, suggesting that the somatosensory information improved tip pinch performance. The patient's manipulation capability assessed by the Box

  1. Morphological studies of the vestibular nerve

    NASA Technical Reports Server (NTRS)

    Bergstroem, B.

    1973-01-01

    The anatomy of the intratemporal part of the vestibular nerve in man, and the possible age related degenerative changes in the nerve were studied. The form and structure of the vestibular ganglion was studied with the light microscope. A numerical analysis of the vestibular nerve, and caliber spectra of the myelinated fibers in the vestibular nerve branches were studied in individuals of varying ages. It was found that the peripheral endings of the vestibular nerve form a complicated pattern inside the vestibular sensory epithelia. A detailed description of the sensory cells and their surface organelles is included.

  2. Afferent thermosensory function in relapsing-remitting multiple sclerosis following exercise-induced increases in body temperature.

    PubMed

    Filingeri, Davide; Chaseling, Georgia; Hoang, Phu; Barnett, Michael; Davis, Scott L; Jay, Ollie

    2017-08-01

    What is the central question of this study? Between 60 and 80% of multiple sclerosis (MS) patients experience transient worsening of symptoms with increased body temperature (heat sensitivity). As sensory abnormalities are common in MS, we asked whether afferent thermosensory function is altered in MS following exercise-induced increases in body temperature. What is the main finding and its importance? Increases in body temperature of as little as ∼0.4°C were sufficient to decrease cold, but not warm, skin thermosensitivity (∼10%) in MS, across a wider temperature range than in age-matched healthy individuals. These findings provide new evidence on the impact of heat sensitivity on afferent function in MS, which could be useful for clinical evaluation of this neurological disease. In multiple sclerosis (MS), increases in body temperature result in transient worsening of clinical symptoms (heat sensitivity or Uhthoff's phenomenon). Although the impact of heat sensitivity on efferent physiological function has been investigated, the effects of heat stress on afferent sensory function in MS are unknown. Hence, we quantified afferent thermosensory function in MS following exercise-induced increases in body temperature with a new quantitative sensory test. Eight relapsing-remitting MS patients (three men and five women; 51.4 ± 9.1 years of age; Expanded Disability Status Scale score 2.8 ± 1.1) and eight age-matched control (CTR) subjects (five men and three women; 47.4 ± 9.1 years of age) rated the perceived magnitude of two cold (26 and 22°C) and two warm stimuli (34 and 38°C) applied to the dorsum of the hand before and after 30 min cycling in the heat (30°C air; 30% relative humidity). Exercise produced similar increases in mean body temperature in MS [+0.39°C (95% CI: +0.21, +0.53) P = 0.001] and CTR subjects [+0.41°C (95% CI: +0.25, +0.58) P = 0.001]. These changes were sufficient to decrease thermosensitivity significantly to all cold [26

  3. Breadth of tuning in taste afferent neurons varies with stimulus strength

    PubMed Central

    Wu, An; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D.

    2015-01-01

    Gustatory stimuli are detected by taste buds and transmitted to the hindbrain via sensory afferent neurons. Whether each taste quality (sweet, bitter and so on) is encoded by separate neurons (‘labelled lines') remains controversial. We used mice expressing GCaMP3 in geniculate ganglion sensory neurons to investigate taste-evoked activity. Using confocal calcium imaging, we recorded responses to oral stimulation with prototypic taste stimuli. Up to 69% of neurons respond to multiple tastants. Moreover, neurons tuned to a single taste quality at low concentration become more broadly tuned when stimuli are presented at higher concentration. Responses to sucrose and monosodium glutamate are most related. Although mice prefer dilute NaCl solutions and avoid concentrated NaCl, we found no evidence for two separate populations of sensory neurons that encode this distinction. Altogether, our data suggest that taste is encoded by activity in patterns of peripheral sensory neurons and challenge the notion of strict labelled line coding. PMID:26373451

  4. Sensory chronic inflammatory demyelinating polyneuropathy: an under-recognized entity?

    PubMed

    Ayrignac, Xavier; Viala, Karine; Koutlidis, Régine Morizot; Taïeb, Guillaume; Stojkovic, Tanya; Musset, Lucille; Léger, Jean-Marc; Fournier, Emmanuel; Maisonobe, Thierry; Bouche, Pierre

    2013-11-01

    Sensory chronic inflammatory demyelinating polyneuropathy (CIDP) can be difficult to diagnose. We report 22 patients with chronic sensory polyneuropathy with ≥1 clinical sign atypical for chronic idiopathic axonal polyneuropathy (CIAP) but no electrodiagnostic criteria for CIDP. Clinical signs atypical for CIAP were: sensory ataxia (59%), generalized areflexia (36%), cranial nerve involvement (32%), rapid upper limb involvement (40%), and age at onset ≤55 years (50%). Additional features were: normal sensory nerve action potentials (36%), abnormal radial/normal sural pattern (23%), abnormal somatosensory evoked potentials (SSEPs) (100%), elevated cerebrospinal fluid (CSF) protein (73%), and demyelinating features in 5/7 nerve biopsies. Over 90% of patients responded to immunotherapy. We conclude that all patients had sensory CIDP. Sensory CIDP patients can be misdiagnosed as having CIAP. If atypical clinical/electrophysiologic features are present, we recommend performing SSEPs and CSF examination. Nerve biopsy should be restricted to disabled patients if other examinations are inconclusive. Copyright © 2013 Wiley Periodicals, Inc.

  5. A quantitative sensory analysis of peripheral neuropathy in colorectal cancer and its exacerbation by oxaliplatin chemotherapy.

    PubMed

    de Carvalho Barbosa, Mariana; Kosturakis, Alyssa K; Eng, Cathy; Wendelschafer-Crabb, Gwen; Kennedy, William R; Simone, Donald A; Wang, Xin S; Cleeland, Charles S; Dougherty, Patrick M

    2014-11-01

    Peripheral neuropathy caused by cytotoxic chemotherapy, especially platins and taxanes, is a widespread problem among cancer survivors that is likely to continue to expand in the future. However, little work to date has focused on understanding this challenge. The goal in this study was to determine the impact of colorectal cancer and cumulative chemotherapeutic dose on sensory function to gain mechanistic insight into the subtypes of primary afferent fibers damaged by chemotherapy. Patients with colorectal cancer underwent quantitative sensory testing before and then prior to each cycle of oxaliplatin. These data were compared with those from 47 age- and sex-matched healthy volunteers. Patients showed significant subclinical deficits in sensory function before any therapy compared with healthy volunteers, and they became more pronounced in patients who received chemotherapy. Sensory modalities that involved large Aβ myelinated fibers and unmyelinated C fibers were most affected by chemotherapy, whereas sensory modalities conveyed by thinly myelinated Aδ fibers were less sensitive to chemotherapy. Patients with baseline sensory deficits went on to develop more symptom complaints during chemotherapy than those who had no baseline deficit. Patients who were tested again 6 to 12 months after chemotherapy presented with the most numbness and pain and also the most pronounced sensory deficits. Our results illuminate a mechanistic connection between the pattern of effects on sensory function and the nerve fiber types that appear to be most vulnerable to chemotherapy-induced toxicity, with implications for how to focus future work to ameloirate risks of peripheral neuropathy. ©2014 American Association for Cancer Research.

  6. Cardiac-locked bursts of muscle sympathetic nerve activity are absent in familial dysautonomia

    PubMed Central

    Macefield, Vaughan G; Norcliffe-Kaufmann, Lucy; Axelrod, Felicia B; Kaufmann, Horacio

    2013-01-01

    Familial dysautonomia (Riley–Day syndrome) is an hereditary sensory and autonomic neuropathy (HSAN type III), expressed at birth, that is associated with reduced pain and temperature sensibilities and absent baroreflexes, causing orthostatic hypotension as well as labile blood pressure that increases markedly during emotional excitement. Given the apparent absence of functional baroreceptor afferents, we tested the hypothesis that the normal cardiac-locked bursts of muscle sympathetic nerve activity (MSNA) are absent in patients with familial dysautonomia. Tungsten microelectrodes were inserted percutaneously into muscle or cutaneous fascicles of the common peroneal nerve in 12 patients with familial dysautonomia. Spontaneous bursts of MSNA were absent in all patients, but in five patients we found evidence of tonically firing sympathetic neurones, with no cardiac rhythmicity, that increased their spontaneous discharge during emotional arousal but not during a manoeuvre that unloads the baroreceptors. Conversely, skin sympathetic nerve activity (SSNA), recorded in four patients, appeared normal. We conclude that the loss of phasic bursts of MSNA and the loss of baroreflex modulation of muscle vasoconstrictor drive contributes to the poor control of blood pressure in familial dysautonomia, and that the increase in tonic firing of muscle vasoconstrictor neurones contributes to the increase in blood pressure during emotional excitement. PMID:23165765

  7. Axon-Sorting Multifunctional Nerve Guides: Accelerating Restoration of Nerve Function

    DTIC Science & Technology

    2014-10-01

    factor (singly & in selected combinations) in the organotypic model system for preferential sensory or motor axon extension. Use confocal microscopy to...track axon extension of labeled sensory or motor neurons from spinal cord slices (motor) or dorsal root ganglia ( DRG ) (sensory). 20 Thy1-YFP mice...RESEARCH ACCOMPLISHMENTS: • Established a system of color-coded mixed nerve tracking using GFP and RFP expressing motor and sensory neurons (Figure 1

  8. Functional sensibility assessment. Part II: Effects of sensory improvement on precise pinch force modulation after transverse carpal tunnel release.

    PubMed

    Hsu, Hsiu-Yun; Kuo, Li-Chieh; Chiu, Haw-Yen; Jou, I-Ming; Su, Fong-Chin

    2009-11-01

    Patients with median nerve compression at the carpal tunnel often have poor sensory afferents. Without adequate sensory modulation control, these patients frequently exhibit clumsy performance and excessive force output in the affected hand. We analyzed precision grip function after the sensory recovery of patients with carpal tunnel syndrome (CTS) who underwent carpal tunnel release (CTR). Thirteen CTS patients were evaluated using a custom-designed pinch device and conventional sensory tools before and after CTR to measure sensibility, maximum pinch strength, and anticipated pinch force adjustments to movement-induced load fluctuations in a pinch-holding-up activity. Based on these tests, five force-related parameters and sensory measurements were used to determine improvements in pinch performance after sensory recovery. The force ratio between the exerted pinch force and maximum load force of the lifting object was used to determine pinch force coordination and to prove that CTR enabled precision motor output. The magnitude of peak pinch force indicated an economic force output during manipulations following CTR. The peak pinch force, force ratio, and percentage of maximum pinch force also demonstrated a moderate correlation with the Semmes-Weinstein test. Analysis of these tests revealed that improved sensory function helped restore patients' performance in precise pinch force control evaluations. These results suggest that sensory information plays an important role in adjusting balanced force output in dexterous manipulation. (c) 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. The sensory but not muscular pelvic nerve branch is necessary for parturition in the rat.

    PubMed

    Martínez-Gómez, M; Cruz, Y; Pacheco, P; Aguilar-Roblero, R; Hudson, R

    1998-03-01

    In the rat the pelvic nerve consists of a viscerocutaneous (sensory) branch which receives information from pelvic viscera and the midline perineal region, and a somatomotor (muscular) branch which innervates the ilio- and pubococcygeous muscles. To investigate the contribution of these branches to the parturition process, the length of gestation and course of delivery were closely monitored in 43 pregnant, Wistar-strain rats randomly assigned to five groups: untreated control animals, animals in which the somatomotor branch of the pelvic nerve was bilaterally sectioned on Day 14 of gestation, animals in which the viscerocutaneous branch of the pelvic nerve was bilaterally sectioned on Day 14 of gestation, animals treated similarly to the previous group but with young delivered by C-section at term, and sham-operated controls. Sectioning the viscerocutaneous branch seriously disrupted parturition and resulted in major dystocia and a high percentage of stillbirths in all females. In contrast, sectioning the somatomotor branch had no apparent effect on parturition and no significant differences were found between females of this group and sham or control dams on any of the measures recorded. It is concluded that the viscerocutaneous branch of the pelvic nerve is vital for the normal course of parturition in the rat but that the somatomotor branch plays little role, if any.

  10. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity

    PubMed Central

    2012-01-01

    Background This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF) modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity. In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) and cholinergic nerves (ChAT) was studied one week after one or two intravesical instillations of the growth factor. To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG) neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. Results In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment) reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation) caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na+ channels (VGSC) in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. Conclusions For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a key modulator of

  11. μ-Opioid receptor inhibition of substance P release from primary afferents disappears in neuropathic pain but not inflammatory pain.

    PubMed

    Chen, W; McRoberts, J A; Marvizón, J C G

    2014-05-16

    Opiate analgesia in the spinal cord is impaired during neuropathic pain. We hypothesized that this is caused by a decrease in μ-opioid receptor inhibition of neurotransmitter release from primary afferents. To investigate this possibility, we measured substance P release in the spinal dorsal horn as neurokinin 1 receptor (NK1R) internalization in rats with chronic constriction injury (CCI) of the sciatic nerve. Noxious stimulation of the paw with CCI produced inconsistent NK1R internalization, suggesting that transmission of nociceptive signals by the injured nerve was variably impaired after CCI. This idea was supported by the fact that CCI produced only small changes in the ability of exogenous substance P to induce NK1R internalization or in the release of substance P evoked centrally from site of nerve injury. In subsequent experiments, NK1R internalization was induced in spinal cord slices by stimulating the dorsal root ipsilateral to CCI. We observed a complete loss of the inhibition of substance P release by the μ-opioid receptor agonist [D-Ala(2), NMe-Phe(4), Gly-ol(5)]-enkephalin (DAMGO) in CCI rats but not in sham-operated rats. In contrast, DAMGO still inhibited substance P release after inflammation of the hind paw with complete Freund's adjuvant and in naïve rats. This loss of inhibition was not due to μ-opioid receptor downregulation in primary afferents, because their colocalization with substance P was unchanged, both in dorsal root ganglion neurons and primary afferent fibers in the dorsal horn. In conclusion, nerve injury eliminates the inhibition of substance P release by μ-opioid receptors, probably by hindering their signaling mechanisms. Published by Elsevier Ltd.

  12. μ-Opioid receptor inhibition of substance P release from primary afferents disappears in neuropathic pain but not inflammatory pain

    PubMed Central

    Chen, Wenling; McRoberts, James A.; Marvizón, Juan Carlos G.

    2014-01-01

    Opiate analgesia in the spinal cord is impaired during neuropathic pain. We hypothesized that this is caused by a decrease in μ-opioid receptor inhibition of neurotransmitter release from primary afferents. To investigate this possibility, we measured substance P release in the spinal dorsal horn as neurokinin 1 receptor (NK1R) internalization in rats with chronic constriction injury (CCI) of the sciatic nerve. Noxious stimulation of the paw with CCI produced inconsistent NK1R internalization, suggesting that transmission of nociceptive signals by the injured nerve was variably impaired after CCI. This idea was supported by the fact that CCI produced only small changes in the ability of exogenous substance P to induce NK1R internalization or in the release of substance P evoked centrally from site of nerve injury. In subsequent experiments, NK1R internalization was induced in spinal cord slices by stimulating the dorsal root ipsilateral to CCI. We observed a complete loss of the inhibition of substance P release by the μ-opioid receptor agonist [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin (DAMGO) in CCI rats but not in sham-operated rats. In contrast, DAMGO still inhibited substance P release after inflammation of the hind paw with complete Freund’s adjuvant and in naïve rats. This loss of inhibition was not due to μ-opioid receptor downregulation in primary afferents, because their colocalization with substance P was unchanged, both in dorsal root ganglion neurons and primary afferent fibers in the dorsal horn. In conclusion, nerve injury eliminates the inhibition of substance P release by μ-opioid receptors, probably by hindering their signaling mechanisms. PMID:24583035

  13. Modulation of jaw muscle spindle afferent activity following intramuscular injections with hypertonic saline.

    PubMed

    Ro, J Y; Capra, N F

    2001-05-01

    Transient noxious chemical stimulation of small diameter muscle afferents modulates jaw movement-related responses of caudal brainstem neurons. While it is likely that the effect is mediated from the spindle afferents in the mesencephalic nucleus (Vmes) via the caudally projecting Probst's tract, the mechanisms of pain induced modulations of jaw muscle spindle afferents is not known. In the present study, we tested the hypothesis that jaw muscle nociceptors gain access to muscle spindle afferents in the same muscle via central mechanisms and alter their sensitivity. Thirty-five neurons recorded from the Vmes were characterized as muscle spindle afferents based on their responses to passive jaw movements, muscle palpation, and electrical stimulation of the masseter nerve. Each cell was tested by injecting a small volume (250 microl) of either 5% hypertonic and/or isotonic saline into the receptor-bearing muscle. Twenty-nine units were tested with 5% hypertonic saline, of which 79% (23/29) showed significant modulation of mean firing rates (MFRs) during one or more phases of ramp-and-hold movements. Among the muscle spindle primary-like units (n = 12), MFRs of 4 units were facilitated, five reduced, two showed mixed responses and one unchanged. In secondary-like units (n = 17), MFRs of 9 were facilitated, three reduced and five unchanged. Thirteen units were tested with isotonic saline, of which 77% showed no significant changes of MFRs. Further analysis revealed that the hypertonic saline not only affected the overall output of muscle spindle afferents, but also increased the variability of firing and altered the relationship between afferent signal and muscle length. These results demonstrated that activation of muscle nociceptors significantly affects proprioceptive properties of jaw muscle spindles via central neural mechanisms. The changes can have deleterious effects on oral motor function as well as kinesthetic sensibility.

  14. Directional selectivity of afferent neurons in zebrafish neuromasts is regulated by Emx2 in presynaptic hair cells

    PubMed Central

    Ji, Young Rae; Warrier, Sunita; Jiang, Tao

    2018-01-01

    The orientation of hair bundles on top of sensory hair cells (HCs) in neuromasts of the lateral line system allows fish to detect direction of water flow. Each neuromast shows hair bundles arranged in two opposing directions and each afferent neuron innervates only HCs of the same orientation. Previously, we showed that this opposition is established by expression of Emx2 in half of the HCs, where it mediates hair bundle reversal (Jiang et al., 2017). Here, we show that Emx2 also regulates neuronal selection: afferent neurons innervate either Emx2-positive or negative HCs. In emx2 knockout and gain-of-function neuromasts, all HCs are unidirectional and the innervation patterns and physiological responses of the afferent neurons are dependent on the presence or absence of Emx2. Our results indicate that Emx2 mediates the directional selectivity of neuromasts by two distinct processes: regulating hair bundle orientation in HCs and selecting afferent neuronal targets. PMID:29671737

  15. Contribution of sensory nerves to LPS-induced hyperresponsiveness of human isolated bronchi.

    PubMed

    Calzetta, Luigino; Luongo, Livio; Cazzola, Mario; Page, Clive; Rogliani, Paola; Facciolo, Francesco; Maione, Sabatino; Capuano, Annalisa; Rinaldi, Barbara; Matera, Maria Gabriella

    2015-06-15

    Bacterial lipopolysaccharide (LPS) can induce bronchial hyperresponsiveness (BHR), but the underlying mechanisms remain to be determined. Here, the possible contribution of sensory nerves to LPS-induced BHR was examined in human isolated bronchi to pharmacologically identify the mechanisms underlying this phenomenon. Human isolated bronchial tone was induced by electrical field stimulation (EFS). The responses of airways to LPS, with or without capsaicin desensitization or thiorphan treatment were studied and the transient receptor potential vanilloid type 1 (TRPV1) expression was assessed. We performed similar experiments in the presence of a TRPV1 or a neurokinin (NK) 2 receptor antagonist using SB366791 and GR159897, respectively. LPS increased (≃2.3-fold, P<0.001) the contraction induced by EFS, compared to control tissues. Acute administration of capsaicin enhanced (≃2.3-fold, P<0.001) the EFS-mediated contraction, but did not potentiate the effect of LPS. Thiorphan increased (≃1.3-fold, P<0.05) the contractile response of LPS treated tissues and, at lower frequencies, it enhanced (≃1.7-fold, P<0.001) the capsaicin-induced contraction. In capsaicin-desensitized bronchi, LPS did not modify (P>0.05) the EFS contractile response, nor after treatment with thiorphan. Capsaicin desensitization reduced (≃0.4-fold, P<0.001) the LPS-induced BHR. SB366791 and GR159897 prevented the LPS-induced BHR and the release of NKA. LPS increased (+85.3±9.5%, P<0.01) the surface membrane expression of TRPV1 in parasympathetic ganglia. Our results demonstrate the involvement of capsaicin-sensitive sensory nerves and neutral endopeptidases in LPS-induced BHR of the human bronchi, associated with an upregulation of TRPV1 and release of NKA. Copyright © 2015. Published by Elsevier Inc.

  16. Bicuculline and strychnine suppress the mesencephalic locomotor region-induced inhibition of group III muscle afferent input to the dorsal horn.

    PubMed

    Degtyarenko, A M; Kaufman, M P

    2003-01-01

    We examined the effect of iontophoretic application of bicuculline methiodide and strychnine hydrochloride on the mesencephalic locomotor region (MLR)-induced inhibition of dorsal horn cells in paralyzed cats. The activity of 60 dorsal horn cells was recorded extracellularly in laminae I, II, V-VII of spinal segments L7-S1. Each of the cells was shown to receive group III muscle afferent input as demonstrated by their responses to electrical stimulation of the tibial nerve (mean latency and threshold of activation: 20.1+/-6.4 ms and 15.2+/-1.4 times motor threshold, respectively). Electrical stimulation of the MLR suppressed transmission in group III muscle afferent pathways to dorsal horn cells. Specifically the average number of impulses generated by the dorsal horn neurons in response to a single pulse applied to the tibial nerve was decreased by 78+/-2.8% (n=60) during the MLR stimulation. Iontophoretic application (10-50 nA) of bicuculline and strychnine (5-10 mM) suppressed the MLR-induced inhibition of transmission of group III afferent input to laminae I and II cells by 69+/-5% (n=10) and 29+/-7% (n=7), respectively. Likewise, bicuculline and strychnine suppressed the MLR-induced inhibition of transmission of group III afferent input to lamina V cells by 59+/-13% (n=14) and 39+/-11% (n=10), respectively. Our findings raise the possibility that GABA and glycine release onto dorsal horn neurons in the spinal cord may play an important role in the suppression by central motor command of thin fiber muscle afferent-reflex pathways.

  17. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents.

    PubMed

    Perez-Burgos, Azucena; Wang, Bingxian; Mao, Yu-Kang; Mistry, Bhavik; McVey Neufeld, Karen-Anne; Bienenstock, John; Kunze, Wolfgang

    2013-01-15

    Mounting evidence supports the influence of the gut microbiome on the local enteric nervous system and its effects on brain chemistry and relevant behavior. Vagal afferents are involved in some of these effects. We previously showed that ingestion of the probiotic bacterium Lactobacillus rhamnosus (JB-1) caused extensive neurochemical changes in the brain and behavior that were abrogated by prior vagotomy. Because information can be transmitted to the brain via primary afferents encoded as neuronal spike trains, our goal was to record those induced by JB-1 in vagal afferents in the mesenteric nerve bundle and thus determine the nature of the signals sent to the brain. Male Swiss Webster mice jejunal segments were cannulated ex vivo, and serosal and luminal compartments were perfused separately. Bacteria were added intraluminally. We found no evidence for translocation of labeled bacteria across the epithelium during the experiment. We recorded extracellular multi- and single-unit neuronal activity with glass suction pipettes. Within minutes of application, JB-1 increased the constitutive single- and multiunit firing rate of the mesenteric nerve bundle, but Lactobacillus salivarius (a negative control) or media alone were ineffective. JB-1 significantly augmented multiunit discharge responses to an intraluminal distension pressure of 31 hPa. Prior subdiaphragmatic vagotomy abolished all of the JB-1-evoked effects. This detailed exploration of the neuronal spike firing that encodes behavioral signaling to the brain may be useful to identify effective psychoactive bacteria and thereby offer an alternative new perspective in the field of psychiatry and comorbid conditions.

  18. [Peripheral nerve repair: 30 centuries of scientific research].

    PubMed

    Desouches, C; Alluin, O; Mutaftschiev, N; Dousset, E; Magalon, G; Boucraut, J; Feron, F; Decherchi, P

    2005-11-01

    Nerve injury compromises sensory and motor functions. Techniques of peripheral nerve repair are based on our knowledge regarding regeneration. Microsurgical techniques introduced in the late 1950s and widely developed for the past 20 years have improved repairs. However, functional recovery following a peripheral mixed nerve injury is still incomplete. Good motor and sensory function after nerve injury depends on the reinnervation of the motor end plates and sensory receptors. Nerve regeneration does not begin if the cell body has not survived the initial injury or if it is unable to initiate regeneration. The regenerated axons must reach and reinnervate the appropriate target end-organs in a timely fashion. Recovery of motor function requires a critical number of motor axons reinnervating the muscle fibers. Sensory recovery is possible if the delay in reinnervation is short. Many additional factors influence the success of nerve repair or reconstruction. The timing of the repair, the level of injury, the extent of the zone of injury, the technical skill of the surgeon, and the method of repair and reconstruction contribute to the functional outcome after nerve injury. This review presents the recent advances in understanding of neural regeneration and their application to the management of primary repairs and nerve gaps.

  19. Models of utricular bouton afferents: role of afferent-hair cell connectivity in determining spike train regularity.

    PubMed

    Holmes, William R; Huwe, Janice A; Williams, Barbara; Rowe, Michael H; Peterson, Ellengene H

    2017-05-01

    Vestibular bouton afferent terminals in turtle utricle can be categorized into four types depending on their location and terminal arbor structure: lateral extrastriolar (LES), striolar, juxtastriolar, and medial extrastriolar (MES). The terminal arbors of these afferents differ in surface area, total length, collecting area, number of boutons, number of bouton contacts per hair cell, and axon diameter (Huwe JA, Logan CJ, Williams B, Rowe MH, Peterson EH. J Neurophysiol 113: 2420-2433, 2015). To understand how differences in terminal morphology and the resulting hair cell inputs might affect afferent response properties, we modeled representative afferents from each region, using reconstructed bouton afferents. Collecting area and hair cell density were used to estimate hair cell-to-afferent convergence. Nonmorphological features were held constant to isolate effects of afferent structure and connectivity. The models suggest that all four bouton afferent types are electrotonically compact and that excitatory postsynaptic potentials are two to four times larger in MES afferents than in other afferents, making MES afferents more responsive to low input levels. The models also predict that MES and LES terminal structures permit higher spontaneous firing rates than those in striola and juxtastriola. We found that differences in spike train regularity are not a consequence of differences in peripheral terminal structure, per se, but that a higher proportion of multiple contacts between afferents and individual hair cells increases afferent firing irregularity. The prediction that afferents having primarily one bouton contact per hair cell will fire more regularly than afferents making multiple bouton contacts per hair cell has implications for spike train regularity in dimorphic and calyx afferents. NEW & NOTEWORTHY Bouton afferents in different regions of turtle utricle have very different morphologies and afferent-hair cell connectivities. Highly detailed

  20. Functional analysis of ultra high information rates conveyed by rat vibrissal primary afferents

    PubMed Central

    Chagas, André M.; Theis, Lucas; Sengupta, Biswa; Stüttgen, Maik C.; Bethge, Matthias; Schwarz, Cornelius

    2013-01-01

    Sensory receptors determine the type and the quantity of information available for perception. Here, we quantified and characterized the information transferred by primary afferents in the rat whisker system using neural system identification. Quantification of “how much” information is conveyed by primary afferents, using the direct method (DM), a classical information theoretic tool, revealed that primary afferents transfer huge amounts of information (up to 529 bits/s). Information theoretic analysis of instantaneous spike-triggered kinematic stimulus features was used to gain functional insight on “what” is coded by primary afferents. Amongst the kinematic variables tested—position, velocity, and acceleration—primary afferent spikes encoded velocity best. The other two variables contributed to information transfer, but only if combined with velocity. We further revealed three additional characteristics that play a role in information transfer by primary afferents. Firstly, primary afferent spikes show preference for well separated multiple stimuli (i.e., well separated sets of combinations of the three instantaneous kinematic variables). Secondly, neurons are sensitive to short strips of the stimulus trajectory (up to 10 ms pre-spike time), and thirdly, they show spike patterns (precise doublet and triplet spiking). In order to deal with these complexities, we used a flexible probabilistic neuron model fitting mixtures of Gaussians to the spike triggered stimulus distributions, which quantitatively captured the contribution of the mentioned features and allowed us to achieve a full functional analysis of the total information rate indicated by the DM. We found that instantaneous position, velocity, and acceleration explained about 50% of the total information rate. Adding a 10 ms pre-spike interval of stimulus trajectory achieved 80–90%. The final 10–20% were found to be due to non-linear coding by spike bursts. PMID:24367295

  1. Role of TRPV1 in high-threshold rat colonic splanchnic afferents is revealed by inflammation.

    PubMed

    Phillis, Benjamin D; Martin, Chris M; Kang, Daiwu; Larsson, Håkan; Lindström, Erik A; Martinez, Vicente; Blackshaw, L Ashley

    2009-08-07

    The vanilloid-1 receptor TRPV1 is known to play a role in extrinsic gastrointestinal afferent function. We investigated the role of TRPV1 in mechanosensitivity in afferents from normal and inflamed tissue. Colonic mechanosensitivity was determined in an in vitro rat colon preparation by recording from attached splanchnic nerves. Recordings were made from serosal/mesenteric afferents responding only at high thresholds to graded mechanical stimulation with von Frey probes. Colonic inflammation was induced by adding 5% dextran sulphate sodium (DSS) to the drinking water for 5 days, and was confirmed by histopathology. The selective TRPV1 antagonist, SB-750364 (10(-8) to 10(-6)M), was tested on mechanosensory stimulus response functions of afferents from normal and inflamed preparations (N=7 each). Mechanosensory responses had thresholds of 1-2g, and maximal responses were observed at 12 g. The stimulus response function was not affected by DSS-induced colitis. SB-750364 had no effect on stimulus response functions in normal preparations, but reduced (up to 60%) in a concentration-dependent manner those in inflammation (2-way ANOVA, p<0.05). Moreover, in inflamed tissue, spontaneous afferent activity showed a dose-dependent trend toward reduction with SB-750364. We conclude that mechanosensitivity of high-threshold serosal colonic splanchnic afferents to graded stimuli is unaffected during DSS colitis. However, there is a positive influence of TRPV1 in mechanosensitivity in inflammation, suggesting up-regulation of excitatory TRPV1-mediated mechanisms.

  2. Receptor units responding to movement in the octopus mantle.

    PubMed

    Boyle, P R

    1976-08-01

    1. A preparation of the mantle of Octopus which is inverted over a solid support and which exposes the stellate ganglion and associated nerves is described. 2. Afferent activity can be recorded from stellar nerves following electrical stimulation of the pallial nerve. The latency and frequency of the phasic sensory response is correlated with the contraction of the mantle musculature. 3. It is proposed that receptors cells located in the muscle, and their activity following mantle contraction, form part of a sensory feedback system in the mantle. Large, multipolar nerve cells that were found between the two main layers of circular muscle in the mantle could be such receptors.

  3. Blockade of Nogo Receptor Ligands Promotes Functional Regeneration of Sensory Axons After Dorsal Root Crush

    PubMed Central

    Harvey, Pamela A.; Lee, Daniel H.S.; Qian, Fang; Weinreb, Paul H.; Frank, Eric

    2010-01-01

    A major impediment for regeneration of axons within the central nervous system is the presence of multiple inhibitory factors associated with myelin. Three of these factors bind to the Nogo receptor, NgR, which is expressed on axons. Administration of exogenous blockers of NgR or NgR ligands promotes the regeneration of descending axonal projections after spinal cord hemisection. A more detailed analysis of CNS regeneration can be made by examining the growth of specific classes of sensory axons into the spinal cord after dorsal root crush injury . In this study, we assessed whether administration of a soluble peptide fragment of the NgR that binds to and blocks all three NgR ligands can promote regeneration after brachial dorsal root crush in adult rats. Intraventricular infusion of sNgR for one month results in extensive regrowth of myelinated sensory axons into the white and gray matter of the dorsal spinal cord, but unmyelinated sensory afferents do not regenerate. In concert with the anatomical growth of sensory axons into the cord, there is a gradual restoration of synaptic function in the denervated region, as revealed by extracellular microelectrode recordings from the spinal gray matter in response to stimulation of peripheral nerves. These positive synaptic responses are correlated with substantial improvements in use of the forelimb, as assessed by paw preference, paw withdrawal to tactile stimuli and the ability to grasp. These results suggest that sNgR may be a potential therapy for restoring sensory function following injuries to sensory roots. PMID:19439606

  4. Exuberant sprouting of sensory and sympathetic nerve fibers in nonhealed bone fractures and the generation and maintenance of chronic skeletal pain

    PubMed Central

    Chartier, Stephane R.; Thompson, Michelle L.; Longo, Geraldine; Fealk, Michelle N.; Majuta, Lisa A.; Mantyh, Patrick W.

    2014-01-01

    Skeletal injury is a leading cause of chronic pain and long-term disability worldwide. While most acute skeletal pain can be effectively managed with nonsteroidal anti-inflammatory drugs and opiates, chronic skeletal pain is more difficult to control using these same therapy regimens. One possibility as to why chronic skeletal pain is more difficult to manage over time is that there may be nerve sprouting in non-healed areas of the skeleton that normally receive little (mineralized bone) to no (articular cartilage) innervation. If such ectopic sprouting did occur, it could result in normally nonnoxious loading of the skeleton being perceived as noxious and/or the generation of a neuropathic pain state. To explore this possibility, a mouse model of skeletal pain was generated by inducing a closed fracture of the femur. Examined animals had comminuted fractures and did not fully heal even at 90+ days post fracture. In all mice with nonhealed fractures, exuberant sensory and sympathetic nerve sprouting, an increase in the density of nerve fibers, and the formation of neuroma-like structures near the fracture site were observed. Additionally, all of these animals exhibited significant pain behaviors upon palpation of the nonhealed fracture site. In contrast, sprouting of sensory and sympathetic nerve fibers or significant palpation-induced pain behaviors was never observed in naïve animals. Understanding what drives this ectopic nerve sprouting and the role it plays in skeletal pain may allow a better understanding and treatment of this currently difficult-to-control pain state. PMID:25196264

  5. EFFECTS OF METHYLMERCURY ON SPINAL CORD AFFERENTS AND EFFERENTS—A REVIEW

    PubMed Central

    Colón-Rodríguez, Alexandra; Hannon, Heidi E.; Atchison, William D.

    2017-01-01

    Methylmercury (MeHg) is an environmental neurotoxicant of public health concern. It readily accumulates in exposed humans, primarily in neuronal tissue. Exposure to MeHg, either acutely or chronically, causes severe neuronal dysfunction in the central nervous system and spinal neurons; dysfunction of susceptible neuronal populations results in neurodegeneration, at least in part through Ca2+-mediated pathways. Biochemical and morphologic changes in peripheral neurons precede those in central brain regions, despite the fact that MeHg readily crosses the blood-brain barrier. Consequently, it is suggested that unique characteristics of spinal cord afferents and efferents could heighten their susceptibility to MeHg toxicity. Transient receptor potential (TRP) ion channels are a class of Ca2+-permeable cation channels that are highly expressed in spinal afferents, among other sensory and visceral organs. These channels can be activated in numerous ways, including directly via chemical irritants or indirectly via Ca2+ release from intracellular storage organelles. Early studies demonstrated that MeHg interacts with heterologous TRPs, though definitive mechanisms of MeHg toxicity on sensory neurons may involve more complex interaction with, and among, differentially-expressed TRP populations. In spinal efferents, glutamate receptors of the N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and possibly kainic acid (KA) classes are thought to play a major role in MeHg-induced neurotoxicity. Specifically, the Ca2+-permeable AMPA receptors, which are abundant in motor neurons, have been identified as being involved in MeHg-induced neurotoxicity. In this review, we will describe the mechanisms that could contribute to MeHg-induced spinal cord afferent and efferent neuronal degeneration, including the possible mediators, such as uniquely expressed Ca2+-permeable ion channels. PMID:28041893

  6. Low- and high-threshold primary afferent inputs to spinal lamina III antenna-type neurons.

    PubMed

    Fernandes, Elisabete C; Santos, Ines C; Kokai, Eva; Luz, Liliana L; Szucs, Peter; Safronov, Boris V

    2018-06-21

    and non-nociceptive sensory information. Antenna-type neurons with cell bodies located in lamina III and large dendritic trees extending from the superficial lamina I to deep lamina IV are best shaped for the integration of a wide variety of inputs arising from primary afferent fibers and intrinsic spinal circuitries. While the somatodendritic morphology, the hallmark of antenna neurons, has been well studied, little is still known about the axon structure and basic physiological properties of these cells. Here we did whole-cell recordings in a rat (P9-P12) spinal cord preparation with attached dorsal roots to examine the axon course, intrinsic firing properties and primary afferent inputs of antenna cells. Nine antenna cells were identified from a large sample of biocytin-filled lamina III neurons (n = 46). Axon of antenna cells showed intensive branching in laminae III-IV and, in half of the cases, issued dorsally directed collaterals reaching lamina I. Antenna cells exhibited tonic and rhythmic firing patterns; single spikes were followed by hyper- or depolarization. The neurons received monosynaptic inputs from the low-threshold Aβ afferents, Aδ afferents as well as from the high-threshold Aδ and C afferents. When selectively activated, C-fiber-driven mono- and polysynaptic EPSPs were sufficiently strong to evoke firing in the neurons. Thus, lamina III antenna neurons integrate low-threshold and nociceptive high-threshold primary afferent inputs, and can function as wide-dynamic-range neurons able to directly connect deep dorsal horn with the major nociceptive projection area lamina I.

  7. Mechanisms underpinning sympathetic nervous activity and its modulation using transcutaneous vagus nerve stimulation.

    PubMed

    Deuchars, Susan A; Lall, Varinder K; Clancy, Jennifer; Mahadi, Mohd; Murray, Aaron; Peers, Lucy; Deuchars, Jim

    2018-03-01

    What is the topic of this review? This review briefly considers what modulates sympathetic nerve activity and how it may change as we age or in pathological conditions. It then focuses on transcutaneous vagus nerve stimulation, a method of neuromodulation in autonomic cardiovascular control. What advances does it highlight? The review considers the pathways involved in eliciting the changes in autonomic balance seen with transcutaneous vagus nerve stimulation in relationship to other neuromodulatory techniques. The autonomic nervous system, consisting of the sympathetic and parasympathetic branches, is a major contributor to the maintenance of cardiovascular variables within homeostatic limits. As we age or in certain pathological conditions, the balance between the two branches changes such that sympathetic activity is more dominant, and this change in dominance is negatively correlated with prognosis in conditions such as heart failure. We have shown that non-invasive stimulation of the tragus of the ear increases parasympathetic activity and reduces sympathetic activity and that the extent of this effect is correlated with the baseline cardiovascular parameters of different subjects. The effects could be attributable to activation of the afferent branch of the vagus and, potentially, other sensory nerves in that region. This indicates that tragus stimulation may be a viable treatment in disorders where autonomic activity to the heart is compromised. © 2017 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  8. elPBN neurons regulate rVLM activity through elPBN-rVLM projections during activation of cardiac sympathetic afferent nerves

    PubMed Central

    Longhurst, John C.; Tjen-A-Looi, Stephanie C.; Fu, Liang-Wu

    2016-01-01

    The external lateral parabrachial nucleus (elPBN) within the pons and rostral ventrolateral medulla (rVLM) contributes to central processing of excitatory cardiovascular reflexes during stimulation of cardiac sympathetic afferent nerves (CSAN). However, the importance of elPBN cardiovascular neurons in regulation of rVLM activity during CSAN activation remains unclear. We hypothesized that CSAN stimulation excites the elPBN cardiovascular neurons and, in turn, increases rVLM activity through elPBN-rVLM projections. Compared with controls, in rats subjected to microinjection of retrograde tracer into the rVLM, the numbers of elPBN neurons double-labeled with c-Fos (an immediate early gene) and the tracer were increased after CSAN stimulation (P < 0.05). The majority of these elPBN neurons contain vesicular glutamate transporter 3. In cats, epicardial bradykinin and electrical stimulation of CSAN increased the activity of elPBN cardiovascular neurons, which was attenuated (n = 6, P < 0.05) after blockade of glutamate receptors with iontophoresis of kynurenic acid (Kyn, 25 mM). In separate cats, microinjection of Kyn (1.25 nmol/50 nl) into the elPBN reduced rVLM activity evoked by both bradykinin and electrical stimulation (n = 5, P < 0.05). Excitation of the elPBN with microinjection of dl-homocysteic acid (2 nmol/50 nl) significantly increased basal and CSAN-evoked rVLM activity. However, the enhanced rVLM activity induced by dl-homocysteic acid injected into the elPBN was reversed following iontophoresis of Kyn into the rVLM (n = 7, P < 0.05). These data suggest that cardiac sympathetic afferent stimulation activates cardiovascular neurons in the elPBN and rVLM sequentially through a monosynaptic (glutamatergic) excitatory elPBN-rVLM pathway. PMID:27225950

  9. Npn-1 Contributes to Axon-Axon Interactions That Differentially Control Sensory and Motor Innervation of the Limb

    PubMed Central

    Bianchi, Elisa; Novitch, Bennett G.; Huber, Andrea B.

    2011-01-01

    The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1) in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG), we have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and within the plexus region of the limbs. PMID:21364975

  10. Differential Role of Inhibition in Habituation of Two Independent Afferent Pathways to a Common Motor Output

    ERIC Educational Resources Information Center

    Bristol, Adam S.; Carew, Thomas J.

    2005-01-01

    Many studies of the neural mechanisms of learning have focused on habituation, a simple form of learning in which a response decrements with repeated stimulation. In the siphon-elicited siphon withdrawal reflex (S-SWR) of the marine mollusk "Aplysia," the prevailing view is that homosynaptic depression of primary sensory afferents underlies…

  11. Wavelet Packet Analysis for Angular Data Extraction from Muscle Afferent Cuff Electrode Signals

    DTIC Science & Technology

    2001-10-25

    from rabbits. In order to estimate ankle flexion/extension angles, we recorded ENG signals from the left Tibial and Peroneal nerves, both during FES...afferent ENG. II. METHODOLOGY A. Experimental Setup Acute experiments were conducted with 2 female New Zealand rabbits. The rabbits were pre-anesthetized...fixating the knee and ankle joints in place (see [3] for more details) . For extracting the ENG signals, tripolar cuff electrodes were implanted onto the

  12. Afferent and motoneuron activity in response to single neuromast stimulation in the posterior lateral line of larval zebrafish

    PubMed Central

    Haehnel-Taguchi, Melanie; Akanyeti, Otar

    2014-01-01

    The lateral line system of fishes contains mechanosensory receptors along the body surface called neuromasts, which can detect water motion relative to the body. The ability to sense flow informs many behaviors, such as schooling, predator avoidance, and rheotaxis. Here, we developed a new approach to stimulate individual neuromasts while either recording primary sensory afferent neuron activity or swimming motoneuron activity in larval zebrafish (Danio rerio). Our results allowed us to characterize the transfer functions between a controlled lateral line stimulus, its representation by primary sensory neurons, and its subsequent behavioral output. When we deflected the cupula of a neuromast with a ramp command, we found that the connected afferent neuron exhibited an adapting response which was proportional in strength to deflection velocity. The maximum spike rate of afferent neurons increased sigmoidally with deflection velocity, with a linear range between 0.1 and 1.0 μm/ms. However, spike rate did not change when the cupula was deflected below 8 μm, regardless of deflection velocity. Our findings also reveal an unexpected sensitivity in the larval lateral line system: stimulation of a single neuromast could elicit a swimming response which increased in reliability with increasing deflection velocities. At high deflection velocities, we observed that lateral line evoked swimming has intermediate values of burst frequency and duty cycle that fall between electrically evoked and spontaneous swimming. An understanding of the sensory capabilities of a single neuromast will help to build a better picture of how stimuli are encoded at the systems level and ultimately translated into behavior. PMID:24966296

  13. Use of Nerve Conduction Velocity to Assess Peripheral Nerve Health in Aging Mice

    PubMed Central

    Walsh, Michael E.; Sloane, Lauren B.; Fischer, Kathleen E.; Austad, Steven N.; Richardson, Arlan

    2015-01-01

    Nerve conduction velocity (NCV), the speed at which electrical signals propagate along peripheral nerves, is used in the clinic to evaluate nerve function in humans. A decline in peripheral nerve function is associated with a number of age-related pathologies. While several studies have shown that NCV declines with age in humans, there is little information on the effect of age on NCV in peripheral nerves in mice. In this study, we evaluated NCV in male and female C57Bl/6 mice ranging from 4 to 32 months of age. We observed a decline in NCV in both male and female mice after 20 months of age. Sex differences were detected in sensory NCV as well as the rate of decline during aging in motor nerves; female mice had slower sensory NCV and a slower age-related decline in motor nerves compared with male mice. We also tested the effect of dietary restriction on NCV in 30-month-old female mice. Dietary restriction prevented the age-related decline in sciatic NCV but not other nerves. Because NCV is clinically relevant to the assessment of nerve function, we recommend that NCV be used to evaluate healthspan in assessing genetic and pharmacological interventions that increase the life span of mice. PMID:25477428

  14. Evaluation of pediatric upper extremity peripheral nerve injuries.

    PubMed

    Ho, Emily S

    2015-01-01

    The evaluation of motor and sensory function of the upper extremity after a peripheral nerve injury is critical to diagnose the location and extent of nerve injury as well as document functional recovery in children. The purpose of this paper is to describe an approach to the evaluation of the pediatric upper extremity peripheral nerve injuries through a critical review of currently used tests of sensory and motor function. Outcome studies on pediatric upper extremity peripheral nerve injuries in the Medline database were reviewed. The evaluation of the outcome in children less than 10 years of age with an upper extremity peripheral nerve injury includes careful observation of preferred prehension patterns, examination of muscle atrophy and sudomotor function, provocative tests, manual muscle testing and tests of sensory threshold and tactile gnosis. The evaluation of outcome in children with upper extremity peripheral nerve injuries warrants a unique approach. Copyright © 2015 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  15. Attention modulates specific motor cortical circuits recruited by transcranial magnetic stimulation.

    PubMed

    Mirdamadi, J L; Suzuki, L Y; Meehan, S K

    2017-09-17

    Skilled performance and acquisition is dependent upon afferent input to motor cortex. The present study used short-latency afferent inhibition (SAI) to probe how manipulation of sensory afference by attention affects different circuits projecting to pyramidal tract neurons in motor cortex. SAI was assessed in the first dorsal interosseous muscle while participants performed a low or high attention-demanding visual detection task. SAI was evoked by preceding a suprathreshold transcranial magnetic stimulus with electrical stimulation of the median nerve at the wrist. To isolate different afferent intracortical circuits in motor cortex SAI was evoked using either posterior-anterior (PA) or anterior-posterior (PA) monophasic current. In an independent sample, somatosensory processing during the same attention-demanding visual detection tasks was assessed using somatosensory-evoked potentials (SEP) elicited by median nerve stimulation. SAI elicited by AP TMS was reduced under high compared to low visual attention demands. SAI elicited by PA TMS was not affected by visual attention demands. SEPs revealed that the high visual attention load reduced the fronto-central P20-N30 but not the contralateral parietal N20-P25 SEP component. P20-N30 reduction confirmed that the visual attention task altered sensory afference. The current results offer further support that PA and AP TMS recruit different neuronal circuits. AP circuits may be one substrate by which cognitive strategies shape sensorimotor processing during skilled movement by altering sensory processing in premotor areas. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Common theme for drugs effective in overactive bladder treatment: Inhibition of afferent signaling from the bladder

    PubMed Central

    Hood, Brandy; Andersson, Karl-Erik

    2013-01-01

    The overactive bladder syndrome and detrusor overactivity are conditions that can have major effects on quality of life and social functioning. Antimuscarinic drugs are still first-line treatment. These drugs often have good initial response rates, but adverse effects and decreasing efficacy cause long-term compliance problems, and alternatives are needed. The recognition of the functional contribution of the urothelium/suburothelium, the autonomous detrusor muscle activity during bladder filling and the diversity of nerve transmitters involved has sparked interest in both peripheral and central modulation of overactive bladder syndrome/detrusor overactivity pathophysiology. Three drugs recently approved for treatment of overactive bladder syndrome/detrusor overactivity (mirabegron, tadalafil and onabotulinum toxin A), representing different pharmacological mechanisms; that is, β-adrenoceptor agonism, phosphodiesterase type 5 inhibition, and inhibition of nerve release of efferent and afferent transmitters, all seem to have one effect in common: inhibition of the afferent nervous activity generated by the bladder during filling. In the present review, the different mechanisms forming the pharmacological basis for the use of these drugs are discussed. PMID:23072271

  17. Interaction of paired cortical and peripheral nerve stimulation on human motor neurons.

    PubMed

    Poon, David E; Roy, Francois D; Gorassini, Monica A; Stein, Richard B

    2008-06-01

    This paper contrasts responses in the soleus muscle of normal human subjects to two major inputs: the tibial nerve (TN) and the corticospinal tract. Paired transcranial magnetic stimulation (TMS) of the motor cortex at intervals of 10-25 ms strongly facilitated the motor evoked potential (MEP) produced by the second stimulus. In contrast, paired TN stimulation produced a depression of the reflex response to the second stimulus. Direct activation of the pyramidal tract did not facilitate a second response, suggesting that the MEP facilitation observed using paired TMS occurred in the cortex. A TN stimulus also depressed a subsequent MEP. Since the TN stimulus depressed both inputs, the mechanism is probably post-synaptic, such as afterhyperpolarization of motor neurons. Presynaptic mechanisms, such as homosynaptic depression, would only affect the pathway used as a conditioning stimulus. When TN and TMS pulses were paired, the largest facilitation occurred when TMS preceded TN by about 5 ms, which is optimal for summation of the two pathways at the level of the spinal motor neurons. A later, smaller facilitation occurred when a single TN stimulus preceded TMS by 50-60 ms, an interval that allows enough time for the sensory afferent input to reach the sensory cortex and be relayed to the motor cortex. Other work indicates that repetitively pairing nerve stimuli and TMS at these intervals, known as paired associative stimulation, produces long-term increases in the MEP and may be useful in strengthening residual pathways after damage to the central nervous system.

  18. Persistent pain after spinal cord injury is maintained by primary afferent activity.

    PubMed

    Yang, Qing; Wu, Zizhen; Hadden, Julia K; Odem, Max A; Zuo, Yan; Crook, Robyn J; Frost, Jeffrey A; Walters, Edgar T

    2014-08-06

    Chronic pain caused by insults to the CNS (central neuropathic pain) is widely assumed to be maintained exclusively by central mechanisms. However, chronic hyperexcitablility occurs in primary nociceptors after spinal cord injury (SCI), suggesting that SCI pain also depends upon continuing activity of peripheral sensory neurons. The present study in rats (Rattus norvegicus) found persistent upregulation after SCI of protein, but not mRNA, for a voltage-gated Na(+) channel, Nav1.8, that is expressed almost exclusively in primary afferent neurons. Selectively knocking down Nav1.8 after SCI suppressed spontaneous activity in dissociated dorsal root ganglion neurons, reversed hypersensitivity of hindlimb withdrawal reflexes, and reduced ongoing pain assessed by a conditioned place preference test. These results show that activity in primary afferent neurons contributes to ongoing SCI pain. Copyright © 2014 the authors 0270-6474/14/3410765-05$15.00/0.

  19. Inhibition of muscle spindle afferent activity during masseter muscle fatigue in the rat.

    PubMed

    Brunetti, Orazio; Della Torre, Giovannella; Lucchi, Maria Luisa; Chiocchetti, Roberto; Bortolami, Ruggero; Pettorossi, Vito Enrico

    2003-09-01

    The influence of muscle fatigue on the jaw-closing muscle spindle activity has been investigated by analyzing: (1) the field potentials evoked in the trigeminal motor nucleus (Vmot) by trigeminal mesencephalic nucleus (Vmes) stimulation, (2) the orthodromic and antidromic responses evoked in the Vmes by stimulation of the peripheral and central axons of the muscle proprioceptive afferents, and (3) the extracellular unitary discharge of masseter muscle spindles recorded in the Vmes. The masseter muscle was fatigued by prolonged tetanic masseter nerve electrical stimulation. Pre- and postsynaptic components of the potentials evoked in the Vmot showed a significant reduction in amplitude following muscle fatigue. Orthodromic and antidromic potentials recorded in the Vmes also showed a similar amplitude decrease. Furthermore, muscle fatigue caused a decrease of the discharge frequency of masseter muscle spindle afferents in most of the examined units. The inhibition of the potential amplitude and discharge frequency was strictly correlated with the extent of muscle fatigue and was mediated by the group III and IV afferent muscle fibers activated by fatigue. In fact, the inhibitory effect was abolished by capsaicin injection in the masseter muscle that provokes selective degeneration of small afferent muscle fibers containing neurokinins. We concluded that fatigue signals originating from the muscle and traveling through capsaicin-sensitive fibers are able to diminish the proprioceptive input by a central presynaptic influence. In the second part of the study, we examined the central projection of the masseter small afferents sensitive to capsaicin at the electron-microscopic level. Fiber degeneration was induced by injecting capsaicin into the masseter muscle. Degenerating terminals were found on the soma and stem process in Vmes and on the dendritic tree of neurons in Vmot. This suggests that small muscle afferents may influence the muscle spindle activity through

  20. Function and morphology correlates of rectal nerve mechanoreceptors innervating the guinea pig internal anal sphincter.

    PubMed

    Lynn, P A; Brookes, S J H

    2011-01-01

    Mechanoreceptors to the internal anal sphincter (IAS) contribute to continence and normal defecation, yet relatively little is known about their function or morphology. We investigated the function and structure of mechanoreceptors to the guinea pig IAS. Extracellular recordings from rectal nerve branches to the IAS in vitro, combined with anterograde labeling of recorded nerve trunks, were used to characterize extrinsic afferent nerve endings activated by circumferential distension. Slowly adapting, stretch-sensitive afferents were recorded in rectal nerves to the IAS. Ten of 11 were silent under basal conditions and responded to circumferential stretch in a saturating linear manner. Rectal nerve afferents responded to compression with von Frey hairs with low thresholds (0.3-0.5 mN) and 3.4 ± 0.5 discrete, elongated mechanosensitive fields of innervation aligned parallel to circular muscle bundles (length = 62 ± 16 mm, n = 10). Anterogradely labeled rectal nerve axons typically passed through sparse irregular myenteric ganglia adjacent to the IAS, before ending in extensive varicose arrays within the circular muscle and, to a lesser extent, the longitudinal muscle overlying the IAS. Few (8%) IAS myenteric ganglia contained intraganglionic laminar endings. In eight preparations, mechanotransduction sites were mapped in combination with successful anterograde fills. Mechanotransduction sites were strongly associated with extensive fine varicose arrays within the circular muscle (P < 0.05), and not with any other neural structures. Mechanotransduction sites for low-threshold, slowly adapting mechanoreceptors innervating the IAS are likely to correspond to extensive fine varicose arrays within the circular muscle. © 2010 Blackwell Publishing Ltd.

  1. N-cadherin expression in palisade nerve endings of rat vellus hairs.

    PubMed

    Kaidoh, Toshiyuki; Inoué, Takao

    2008-02-01

    Palisade nerve endings (PNs) are mechanoreceptors around vellus hairs of mammals. Each lanceolate nerve ending (LN) of the PN is characterized by a sensory nerve ending symmetrically sandwiched by two processes of type II terminal Schwann cells (tSCIIs). However, the molecular mechanisms underlying the structural organization of the PN are poorly understood. Electron microscopy showed that adherens junctions appeared to adhere to the sensory nerve ending and tSCII processes, so we examined the location of the N-cadherin adhesion system in PNs of rat vellus hairs by using immunoelectron microscopy. N-cadherin localized near both ends of the cell boundary between sensory nerve ending and tSCII processes, which corresponded to the sites of adherens junctions. We further found cadherin-associated proteins, alpha- and beta-catenins, at the linings of adherens junctions. Three-dimensional reconstruction of immunoelectron microscopic serial thin sections showed four linear arrays of N-cadherin arranged longitudinally along the LN beneath the four longitudinal borders of two tSCII processes. In contrast, sensory nerve fibers just proximal to the LNs formed common unmyelinated nerve fibers, in which N-cadherin was located mainly at the mesaxon of type I terminal Schwann cells (tSCIs). These results suggest that the four linear arrays of N-cadherin-mediated junctions adhere the sensory nerve ending and tSCII processes side by side to form the characteristic structure of the LN, and the structural differences between the LNs and the proximal unmyelinated nerve fibers possibly are due to the difference in the pattern of N-cadherin expression between sensory nerve endings and tSCII or tSCI processes. (c) 2007 Wiley-Liss, Inc.

  2. Modulation of experimental arthritis by vagal sensory and central brain stimulation.

    PubMed

    Bassi, Gabriel Shimizu; Dias, Daniel Penteado Martins; Franchin, Marcelo; Talbot, Jhimmy; Reis, Daniel Gustavo; Menezes, Gustavo Batista; Castania, Jaci Airton; Garcia-Cairasco, Norberto; Resstel, Leonardo Barbosa Moraes; Salgado, Helio Cesar; Cunha, Fernando Queiróz; Cunha, Thiago Mattar; Ulloa, Luis; Kanashiro, Alexandre

    2017-08-01

    Articular inflammation is a major clinical burden in multiple inflammatory diseases, especially in rheumatoid arthritis. Biological anti-rheumatic drug therapies are expensive and increase the risk of systemic immunosuppression, infections, and malignancies. Here, we report that vagus nerve stimulation controls arthritic joint inflammation by inducing local regulation of innate immune response. Most of the previous studies of neuromodulation focused on vagal regulation of inflammation via the efferent peripheral pathway toward the viscera. Here, we report that vagal stimulation modulates arthritic joint inflammation through a novel "afferent" pathway mediated by the locus coeruleus (LC) of the central nervous system. Afferent vagal stimulation activates two sympatho-excitatory brain areas: the paraventricular hypothalamic nucleus (PVN) and the LC. The integrity of the LC, but not that of the PVN, is critical for vagal control of arthritic joint inflammation. Afferent vagal stimulation suppresses articular inflammation in the ipsilateral, but not in the contralateral knee to the hemispheric LC lesion. Central stimulation is followed by subsequent activation of joint sympathetic nerve terminals inducing articular norepinephrine release. Selective adrenergic beta-blockers prevent the effects of articular norepinephrine and thereby abrogate vagal control of arthritic joint inflammation. These results reveals a novel neuro-immune brain map with afferent vagal signals controlling side-specific articular inflammation through specific inflammatory-processing brain centers and joint sympathetic innervations. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The neural response properties and cortical organization of a rapidly adapting muscle sensory group response that overlaps with the frequencies that elicit the kinesthetic illusion.

    PubMed

    Marasco, Paul D; Bourbeau, Dennis J; Shell, Courtney E; Granja-Vazquez, Rafael; Ina, Jason G

    2017-01-01

    Kinesthesia is the sense of limb movement. It is fundamental to efficient motor control, yet its neurophysiological components remain poorly understood. The contributions of primary muscle spindles and cutaneous afferents to the kinesthetic sense have been well studied; however, potential contributions from muscle sensory group responses that are different than the muscle spindles have not been ruled out. Electrophysiological recordings in peripheral nerves and brains of male Sprague Dawley rats with a degloved forelimb preparation provide evidence of a rapidly adapting muscle sensory group response that overlaps with vibratory inputs known to generate illusionary perceptions of limb movement in humans (kinesthetic illusion). This group was characteristically distinct from type Ia muscle spindle fibers, the receptor historically attributed to limb movement sensation, suggesting that type Ia muscle spindle fibers may not be the sole carrier of kinesthetic information. The sensory-neural structure of muscles is complex and there are a number of possible sources for this response group; with Golgi tendon organs being the most likely candidate. The rapidly adapting muscle sensory group response projected to proprioceptive brain regions, the rodent homolog of cortical area 3a and the second somatosensory area (S2), with similar adaption and frequency response profiles between the brain and peripheral nerves. Their representational organization was muscle-specific (myocentric) and magnified for proximal and multi-articulate limb joints. Projection to proprioceptive brain areas, myocentric representational magnification of muscles prone to movement error, overlap with illusionary vibrational input, and resonant frequencies of volitional motor unit contraction suggest that this group response may be involved with limb movement processing.

  4. The neural response properties and cortical organization of a rapidly adapting muscle sensory group response that overlaps with the frequencies that elicit the kinesthetic illusion

    PubMed Central

    Marasco, Paul D.; Bourbeau, Dennis J.; Shell, Courtney E.; Granja-Vazquez, Rafael; Ina, Jason G.

    2017-01-01

    Kinesthesia is the sense of limb movement. It is fundamental to efficient motor control, yet its neurophysiological components remain poorly understood. The contributions of primary muscle spindles and cutaneous afferents to the kinesthetic sense have been well studied; however, potential contributions from muscle sensory group responses that are different than the muscle spindles have not been ruled out. Electrophysiological recordings in peripheral nerves and brains of male Sprague Dawley rats with a degloved forelimb preparation provide evidence of a rapidly adapting muscle sensory group response that overlaps with vibratory inputs known to generate illusionary perceptions of limb movement in humans (kinesthetic illusion). This group was characteristically distinct from type Ia muscle spindle fibers, the receptor historically attributed to limb movement sensation, suggesting that type Ia muscle spindle fibers may not be the sole carrier of kinesthetic information. The sensory-neural structure of muscles is complex and there are a number of possible sources for this response group; with Golgi tendon organs being the most likely candidate. The rapidly adapting muscle sensory group response projected to proprioceptive brain regions, the rodent homolog of cortical area 3a and the second somatosensory area (S2), with similar adaption and frequency response profiles between the brain and peripheral nerves. Their representational organization was muscle-specific (myocentric) and magnified for proximal and multi-articulate limb joints. Projection to proprioceptive brain areas, myocentric representational magnification of muscles prone to movement error, overlap with illusionary vibrational input, and resonant frequencies of volitional motor unit contraction suggest that this group response may be involved with limb movement processing. PMID:29182648

  5. VGLUT2-dependent glutamatergic transmission in primary afferents is required for intact nociception in both acute and persistent pain modalities.

    PubMed

    Rogoz, Katarzyna; Lagerström, Malin C; Dufour, Sylvie; Kullander, Klas

    2012-07-01

    Glutamate is an essential transmitter in pain pathways. However, its broad usage in the central and peripheral nervous system prevents us from designing efficient glutamate-based pain therapies without causing harmful side effects. The discovery of vesicular glutamate transporters (VGLUT1-3) has been a crucial step in describing specific glutamatergic neuronal subpopulations and glutamate-dependent pain pathways. To assess the role of VGLUT2-mediated glutamatergic contribution to pain transmission from the entire primary sensory population, we crossed our Vglut2(f/f) line with the Ht-Pa-Cre line. Such Vglut2-deficient mice showed significantly decreased, but not completely absent, acute nociceptive responses. The animals were less prone to develop an inflammatory-related state of pain and were, in the partial sciatic nerve ligation chronic pain model, much less hypersensitive to mechanical stimuli and did not develop cold allodynia or heat hyperalgesia. To take advantage of this neuropathic pain-resistant model, we analyzed Vglut2-dependent transcriptional changes in the dorsal spinal cord after nerve injury, which revealed several novel candidate target genes potentially relevant for the development of neuropathic pain therapeutics. Taken together, we conclude that VGLUT2 is a major mediator of nociception in primary afferents, implying that glutamate is the key somatosensory neurotransmitter. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  6. Vagal Afferent Innervation of the Lower Esophageal Sphincter

    PubMed Central

    Powley, Terry L.; Baronowsky, Elizabeth A.; Gilbert, Jared M.; Hudson, Cherie N.; Martin, Felecia N.; Mason, Jacqueline K.; McAdams, Jennifer L.; Phillips, Robert J.

    2013-01-01

    To supply a fuller morphological characterization of the vagal afferents innervating the lower esophageal sphincter (LES), specifically to label vagal terminals in the tissues forming the LES in the gastroesophageal junction, the present experiment employed injections of dextran biotin into the nodose ganglia of rats. Four types of vagal afferents innervated the LES. Clasp and sling muscle fibers were directly and prominently innervated by intramuscular arrays (IMAs). Individual IMA terminals subtended about 16° of arc of the esophageal circumference, and, collectively, the terminal fields were distributed within the muscle ring to establish a 360° annulus of mechanoreceptors in the sphincter wall. 3D morphometry of the terminals established that, compared to sling muscle IMAs, clasp muscle IMAs had more extensive arbors and larger receptive fields. In addition, at the cardia, local myenteric ganglia between smooth muscle sheets and striated muscle bundles were innervated by intraganglionic laminar endings (IGLEs), in a pattern similar to the innervation of the myenteric plexus throughout the stomach and esophagus. Finally, as previously described, the principle bundle of sling muscle fibers that links LES sphincter tissue to the antropyloric region of the lesser curvature was innervated by exceptionally long IMAs as well as by unique web ending specializations at the distal attachment of the bundle. Overall, the specialized varieties of densely distributed vagal afferents innervating the LES underscore the conclusion that these sensory projections are critically involved in generating LES reflexes and may be promising targets for managing esophageal dysfunctions. PMID:23583280

  7. Excitatory glutamate is essential for development and maintenance of the piloneural mechanoreceptor.

    PubMed

    Woo, Seung-Hyun; Baba, Yoshichika; Franco, Alexa M; Lumpkin, Ellen A; Owens, David M

    2012-02-01

    The piloneural collar in mammalian hairy skin comprises an intricate pattern of circumferential and longitudinal sensory afferents that innervate primary and secondary pelage hairs. The longitudinal afferents tightly associate with terminal Schwann cell processes to form encapsulated lanceolate nerve endings of rapidly adapting mechanoreceptors. The molecular basis for piloneural development, maintenance and function is poorly understood. Here, we show that Nefh-expressing glutamatergic neurons represent a major population of longitudinal and circumferential sensory afferents innervating the piloneural collar. Our findings using a VGLUT2 conditional-null mouse model indicate that glutamate is essential for innervation, patterning and differentiation of NMDAR(+) terminal Schwann cells during piloneural collar development. Similarly, treatment of adult mice with a selective NMDAR antagonist severely perturbed piloneural collar structure and reduced excitability of these mechanosensory neurons. Collectively, these results show that DRG-derived glutamate is essential for the proper development, maintenance and sensory function of the piloneural mechanoreceptor.

  8. Renal artery nerve distribution and density in the porcine model: biologic implications for the development of radiofrequency ablation therapies.

    PubMed

    Tellez, Armando; Rousselle, Serge; Palmieri, Taylor; Rate, William R; Wicks, Joan; Degrange, Ashley; Hyon, Chelsea M; Gongora, Carlos A; Hart, Randy; Grundy, Will; Kaluza, Greg L; Granada, Juan F

    2013-12-01

    Catheter-based renal artery denervation has demonstrated to be effective in decreasing blood pressure among patients with refractory hypertension. The anatomic distribution of renal artery nerves may influence the safety and efficacy profile of this procedure. We aimed to describe the anatomic distribution and density of periarterial renal nerves in the porcine model. Thirty arterial renal sections were included in the analysis by harvesting a tissue block containing the renal arteries and perirenal tissue from each animal. Each artery was divided into 3 segments (proximal, mid, and distal) and assessed for total number, size, and depth of the nerves according to the location. Nerve counts were greatest proximally (45.62% of the total nerves) and decreased gradually distally (mid, 24.58%; distal, 29.79%). The distribution in nerve size was similar across all 3 sections (∼40% of the nerves, 50-100 μm; ∼30%, 0-50 μm; ∼20%, 100-200 μm; and ∼10%, 200-500 μm). In the arterial segments ∼45% of the nerves were located within 2 mm from the arterial wall whereas ∼52% of all nerves were located within 2.5 mm from the arterial wall. Sympathetic efferent fibers outnumbered sensory afferent fibers overwhelmingly, intermixed within the nerve bundle. In the porcine model, renal artery nerves are seen more frequently in the proximal segment of the artery. Nerve size distribution appears to be homogeneous throughout the artery length. Nerve bundles progress closer to the arterial wall in the distal segments of the artery. This anatomic distribution may have implications for the future development of renal denervation therapies. Crown Copyright © 2013. Published by Mosby, Inc. All rights reserved.

  9. Clinical neurophysiology and quantitative sensory testing in the investigation of orofacial pain and sensory function.

    PubMed

    Jääskeläinen, Satu K

    2004-01-01

    Chronic orofacial pain represents a diagnostic and treatment challenge for the clinician. Some conditions, such as atypical facial pain, still lack proper diagnostic criteria, and their etiology is not known. The recent development of neurophysiological methods and quantitative sensory testing for the examination of the trigeminal somatosensory system offers several tools for diagnostic and etiological investigation of orofacial pain. This review presents some of these techniques and the results of their application in studies on orofacial pain and sensory dysfunction. Clinical neurophysiological investigation has greater diagnostic accuracy and sensitivity than clinical examination in the detection of the neurogenic abnormalities of either peripheral or central origin that may underlie symptoms of orofacial pain and sensory dysfunction. Neurophysiological testing may also reveal trigeminal pathology when magnetic resonance imaging has failed to detect it, so these methods should be considered complementary to each other in the investigation of orofacial pain patients. The blink reflex, corneal reflex, jaw jerk, sensory neurography of the inferior alveolar nerve, and the recording of trigeminal somatosensory-evoked potentials with near-nerve stimulation have all proved to be sensitive and reliable in the detection of dysfunction of the myelinated sensory fibers of the trigeminal nerve or its central connections within the brainstem. With appropriately small thermodes, thermal quantitative sensory testing is useful for the detection of trigeminal small-fiber dysfunction (Adelta and C). In neuropathic conditions, it is most sensitive to lesions causing axonal injury. By combining different techniques for investigation of the trigeminal system, an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. Neurophysiological and quantitative sensory tests have already highlighted some similarities among various orofacial pain conditions

  10. Microneurography as a tool in clinical neurophysiology to investigate peripheral neural traffic in humans.

    PubMed

    Mano, Tadaaki; Iwase, Satoshi; Toma, Shinobu

    2006-11-01

    Microneurography is a method using metal microelectrodes to investigate directly identified neural traffic in myelinated as well as unmyelinated efferent and afferent nerves leading to and coming from muscle and skin in human peripheral nerves in situ. The present paper reviews how this technique has been used in clinical neurophysiology to elucidate the neural mechanisms of autonomic regulation, motor control and sensory functions in humans under physiological and pathological conditions. Microneurography is particularly important to investigate efferent and afferent neural traffic in unmyelinated C fibers. The recording of efferent discharges in postganglionic sympathetic C efferent fibers innervating muscle and skin (muscle sympathetic nerve activity; MSNA and skin sympathetic nerve activity; SSNA) provides direct information about neural control of autonomic effector organs including blood vessels and sweat glands. Sympathetic microneurography has become a potent tool to reveal neural functions and dysfunctions concerning blood pressure control and thermoregulation. This recording has been used not only in wake conditions but also in sleep to investigate changes in sympathetic neural traffic during sleep and sleep-related events such as sleep apnea. The same recording was also successfully carried out by astronauts during spaceflight. Recordings of afferent discharges from muscle mechanoreceptors have been used to understand the mechanisms of motor control. Muscle spindle afferent information is particularly important for the control of fine precise movements. It may also play important roles to predict behavior outcomes during learning of a motor task. Recordings of discharges in myelinated afferent fibers from skin mechanoreceptors have provided not only objective information about mechanoreceptive cutaneous sensation but also the roles of these signals in fine motor control. Unmyelinated mechanoreceptive afferent discharges from hairy skin seem to be

  11. Use of sensory and motor action potentials to identify the position of trigeminal nerve divisions for radiofrequency thermocoagulation.

    PubMed

    Lin, Bo; Lu, Xuguang; Zhai, Xinli; Cai, Zhigang

    2014-12-01

    The objective of this study was to develop an electrophysiological method for intraoperative localization of the trigeminal nerve branches during radiofrequency thermocoagulation (RFTC). Twenty-three patients who were scheduled to undergo RFTC were included. The trigeminal nerve root was stimulated through the foramen ovale using the radiofrequency cannula. Antidromic responses were recorded from the target division through supraorbital, infraorbital, and mental foramina electrodes, and an additional electrode at the masseter muscle. Sensory and motor action responses, as well as verbal and masseter contraction responses, were recorded and correlated. The antidromic responses were easily recorded in the target division in all 23 patients, and they were invariably correlated with the patient's verbal responses. The potentials were recorded successively from V1 to V3. The amplitude in each division before and after RFTC showed little difference in response to electrical stimulation with the same current. The motor trigeminal nerve action potentials were recorded in 10 patients; 7 of these patients had postoperative masseter muscle weakness, while the remaining 3 had normal masseter muscle function. Potentials with low amplitudes were usually obtained from neighboring divisions, but no unexpected denervation of any branches was observed. All the patients experienced immediate pain relief after the procedure. This technique is sensitive and easy to apply. The sensory and motor potentials matched the verbal responses and the complications. Although it cannot completely substitute for the patient's verbal response, this approach is helpful in uncooperative patients, and it predicts and reduces the incidence of masseter muscle weakness. The use of these complementary techniques could increase the chances of treatment success.

  12. Afferent connections of nervus facialis and nervus glossopharyngeus in the pigeon (Columba livia) and their role in feeding behavior.

    PubMed

    Dubbeldam, J L

    1984-01-01

    The afferent connections of the facial nerve and glossopharyngeal nerve in the pigeon have been studied with the Fink-Heimer I method after ganglion lesions. The nucleus ventrolateralis anterior of the solitary complex and an indistinct cell group S VII medial to the nucleus interpolaris of the descending trigeminal tract are the terminal fields for facial afferents. The n. ventrolateralis anterior also receives an important projection from the distal glossopharyngeal ganglion. Other projection areas of this ganglion are the n. presulcalis , n. centralis anterior, n. intermedius anterior and the parasolitary nucleus. Both ganglia have only ipsilateral projections. A lesion in the jugular ganglion complex causes degeneration throughout the ipsilateral solitary complex, in the contralateral n. commissuralis and n. centralis posterior and in the n. cuneatus externus. The lack of a substantial contribution to the trigeminal system is ascribed to the absence of mechanoreceptors in the tongue. The implications for the organization of neuronal pathways related to the feeding behavior are discussed.

  13. Effects of clinical infrared laser on superficial radial nerve conduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greathouse, D.G.; Currier, D.P.; Gilmore, R.L.

    The purposes of this study were to demonstrate the effects of infrared laser radiation on the sensory nerve conduction of a specified peripheral nerve in man and determine temperature changes in the tissue surrounding the treated nerve. Twenty healthy adults were divided into three groups: control (n = 5); experimental (n = 10), infrared laser radiation at 20 sec/cm2; and experimental (n = 5), infrared laser radiation treatment at 120 sec/cm2. Antidromic sensory nerve conduction studies were performed on the superficial radial nerve of each subject's right forearm. The infrared laser radiation was applied at a fixed intensity for fivemore » 1-cm2 segments. Latency, amplitude, and temperature measurements were recorded pretest; posttest; and posttest intervals of 1, 3, 5, 10, and 15 minutes. An analysis of variance with repeated measures was used to examine the data. No significant change was noted in the distal sensory latency or amplitude of the evoked sensory potential in either experimental or control groups as a result of the applications of the infrared laser radiation treatment. This study demonstrates that infrared laser used at clinically applied intensities does not alter conduction of sensory nerves nor does it elevate the subcutaneous temperature.« less

  14. Inflammation and nerve injury induce expression of pancreatitis-associated protein-II in primary sensory neurons.

    PubMed

    He, Shao-Qiu; Yao, Jun-Ru; Zhang, Fang-Xiong; Wang, Qiong; Bao, Lan; Zhang, Xu

    2010-04-26

    Pancreatitis-associated protein (PAP)-I and -II, lectin-related secretory proteins, are members of the regenerating gene (Reg) family. Although expression of PAP-I was found in the dorsal root ganglion (DRG) neurons following peripheral nerve injury and cystitis, whether PAP-II could be expressed in DRG neurons in chronic pain models remains unclear. The present study shows an inflammation- and nerve injury-triggered expression of PAP-II in rat DRG neurons. In situ hybridization showed that only a few DRG neurons normally contained PAP-I and -II mRNAs. After peripheral inflammation, PAP-I and -II mRNAs were present in over half of small DRG neurons. Such an elevated expression of PAP-I and -II reached the peak level on the second day. Immunostaining showed that the expression of PAP-II was mostly increased in the isolectin B4-positive subset of small DRG neurons after inflammation. Furthermore, the expression of PAP-II was also induced in DRG neurons after peripheral nerve injury. Interestingly, PAP-II expression was shifted from small neurons on day 2 to large DRG neurons that expressed neuropeptide Y during the later post-injury days. These results suggest that PAP-II may play potential roles in the modulation of spinal sensory pathways in pathological pain states.

  15. Distinct Corticostriatal and Intracortical Pathways Mediate Bilateral Sensory Responses in the Striatum.

    PubMed

    Reig, Ramon; Silberberg, Gilad

    2016-12-01

    Individual striatal neurons integrate somatosensory information from both sides of the body, however, the afferent pathways mediating these bilateral responses are unclear. Whereas ipsilateral corticostriatal projections are prevalent throughout the neocortex, contralateral projections provide sparse input from primary sensory cortices, in contrast to the dense innervation from motor and frontal regions. There is, therefore, an apparent discrepancy between the observed anatomical pathways and the recorded striatal responses. We used simultaneous in vivo whole-cell and extracellular recordings combined with focal cortical silencing, to dissect the afferent pathways underlying bilateral sensory integration in the mouse striatum. We show that unlike direct corticostriatal projections mediating responses to contralateral whisker deflection, responses to ipsilateral stimuli are mediated mainly by intracortical projections from the contralateral somatosensory cortex (S1). The dominant pathway is the callosal projection from contralateral to ipsilateral S1. Our results suggest a functional difference between the cortico-basal ganglia pathways underlying bilateral sensory and motor processes. © The Author 2016. Published by Oxford University Press.

  16. The Changing Sensory and Sympathetic Innervation of the Young, Adult and Aging Mouse Femur.

    PubMed

    Chartier, Stephane R; Mitchell, Stefanie A T; Majuta, Lisa A; Mantyh, Patrick W

    2018-02-10

    Although bone is continually being remodeled and ultimately declines with aging, little is known whether similar changes occur in the sensory and sympathetic nerve fibers that innervate bone. Here, immunohistochemistry and confocal microscopy were used to examine changes in the sensory and sympathetic nerve fibers that innervate the young (10 days post-partum), adult (3 months) and aging (24 months) C57Bl/6 mouse femur. In all three ages examined, the periosteum was the most densely innervated bone compartment. With aging, the total number of sensory and sympathetic nerve fibers clearly declines as the cambium layer of the periosteum dramatically thins. Yet even in the aging femur, there remains a dense sensory and sympathetic innervation of the periosteum. In cortical bone, sensory and sympathetic nerve fibers are largely confined to vascularized Haversian canals and while there is no significant decline in the density of sensory fibers, there was a 75% reduction in sympathetic nerve fibers in the aging vs. adult cortical bone. In contrast, in the bone marrow the overall density/unit area of both sensory and sympathetic nerve fibers appeared to remain largely unchanged across the lifespan. The preferential preservation of sensory nerve fibers suggests that even as bone itself undergoes a marked decline with age, the nociceptors that detect injury and signal skeletal pain remain relatively intact. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Expression of vesicular glutamate transporters in sensory and autonomic neurons innervating the mouse bladder.

    PubMed

    Brumovsky, Pablo R; Seal, Rebecca P; Lundgren, Kerstin H; Seroogy, Kim B; Watanabe, Masahiko; Gebhart, G F

    2013-06-01

    VGLUTs, which are essential for loading glutamate into synaptic vesicles, are present in various neuronal systems. However, to our knowledge the expression of VGLUTs in neurons innervating the bladder has not yet been analyzed. We studied VGLUT1, VGLUT2 and VGLUT3 in mouse bladder neurons. We analyzed the expression of VGLUT1, VGLUT2 and calcitonin gene-related peptide by immunohistochemistry in the retrograde labeled primary afferent and autonomic neurons of BALB/c mice after injecting fast blue in the bladder wall. To study VGLUT3 we traced the bladder of transgenic mice, in which VGLUT3 is identified by enhanced green fluorescent protein detection. Most bladder dorsal root ganglion neurons expressed VGLUT2. A smaller percentage of neurons also expressed VGLUT1 or VGLUT3. Co-expression with calcitonin gene-related peptide was only observed for VGLUT2. Occasional VGLUT2 immunoreactive neurons were seen in the major pelvic ganglia. Abundant VGLUT2 immunoreactive nerves were detected in the bladder dome and trigone, and the urethra. VGLUT1 immunoreactive nerves were discretely present. We present what are to our knowledge novel data on VGLUT expression in sensory and autonomic neurons innervating the mouse bladder. The frequent association of VGLUT2 and calcitonin gene-related peptide in sensory neurons suggests interactions between glutamatergic and peptidergic neurotransmissions, potentially influencing commonly perceived sensations in the bladder, such as discomfort and pain. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Role of the vagal afferents in substance P-induced respiratory responses in anaesthetized rabbits.

    PubMed

    Prabhakar, N R; Runold, M; Yamamoto, Y; Lagercrantz, H; Cherniack, N S; von Euler, C

    1987-09-01

    Since substance P (SP)-like immunoreactivity has been demonstrated in vagal sensory fibres of bronchopulmonary origin, it was considered of interest to (1) characterize the pattern of responses to SP injected into the pulmonary as well as the systemic arterial system, and (2) assess the types of vagal afferents that are affected by SP. Experiments were performed on 15 pentobarbital-anaesthetized, spontaneously breathing rabbits. Efferent phrenic nerve activity was monitored as an index of central respiratory neural output. Intra-atrial injections of SP into the pulmonary circulation (100 ng kg-1) increased the respiratory rate, and peak integrated phrenic amplitude by 47 +/- 8 and 40 +/- 4%, respectively, above the controls. In addition, SP elicited augmented breaths (ABs) within 2-3 s in 67% of the trials. In contrast to right atrial injections, no ABs and no significant changes in respiratory rate were observed in response to intra-aortic injections of SP (100 ng kg-1). Tidal phrenic activity rise after aortic injections of SP was significantly less as compared with right atrial administrations of SP. Since both routes of administration decreased the arterial blood pressure to the same extent, these respiratory responses were not likely secondary to cardiovascular changes. After administration of an SP antagonist (D-Arg-D-Trp7,9, Leu11, SP), respiratory responses to SP were significantly attenuated. Also, the rate of occurrence of ABs elicited by releasing the tracheal occlusions was reduced (control 95 vs. 14% SP antagonist). Bilateral vagotomy abolished the tachypnoeic response and reduced the magnitude of the phrenic nerve increments caused by right atrial injection of SP.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Which Ultrasound-Guided Sciatic Nerve Block Strategy Works Faster? Prebifurcation or Separate Tibial-Peroneal Nerve Block? A Randomized Clinical Trial.

    PubMed

    Faiz, Seyed Hamid Reza; Imani, Farnad; Rahimzadeh, Poupak; Alebouyeh, Mahmoud Reza; Entezary, Saeed Reza; Shafeinia, Amineh

    2017-08-01

    Peripheral nerve block is an accepted method in lower limb surgeries regarding its convenience and good tolerance by the patients. Quick performance and fast sensory and motor block are highly demanded in this method. The aim of the present study was to compare 2 different methods of sciatic and tibial-peroneal nerve block in lower limb surgeries in terms of block onset. In this clinical trial, 52 candidates for elective lower limb surgery were randomly divided into 2 groups: sciatic nerve block before bifurcation (SG; n = 27) and separate tibial-peroneal nerve block (TPG; n = 25) under ultrasound plus nerve stimulator guidance. The mean duration of block performance, as well as complete sensory and motor block, was recorded and compared between the groups. The mean duration of complete sensory block in the SG and TPG groups was 35.4 ± 4.1 and 24.9 ± 4.2 minutes, respectively, which was significantly lower in the TPG group (P = 0.001). The mean duration of complete motor block in the SG and TPG groups was 63.3 ± 4.4 and 48.4 ± 4.6 minutes, respectively, which was significantly lower in the TPG group (P = 0.001). No nerve injuries, paresthesia, or other possible side effects were reported in patients. According to the present study, it seems that TPG shows a faster sensory and motor block than SG.

  20. Anatomic assessment of sympathetic peri-arterial renal nerves in man.

    PubMed

    Sakakura, Kenichi; Ladich, Elena; Cheng, Qi; Otsuka, Fumiyuki; Yahagi, Kazuyuki; Fowler, David R; Kolodgie, Frank D; Virmani, Renu; Joner, Michael

    2014-08-19

    Although renal sympathetic denervation therapy has shown promising results in patients with resistant hypertension, the human anatomy of peri-arterial renal nerves is poorly understood. The aim of our study was to investigate the anatomic distribution of peri-arterial sympathetic nerves around human renal arteries. Bilateral renal arteries were collected from human autopsy subjects, and peri-arterial renal nerve anatomy was examined by using morphometric software. The ratio of afferent to efferent nerve fibers was investigated by dual immunofluorescence staining using antibodies targeted for anti-tyrosine hydroxylase and anti-calcitonin gene-related peptide. A total of 10,329 nerves were identified from 20 (12 hypertensive and 8 nonhypertensive) patients. The mean individual number of nerves in the proximal and middle segments was similar (39.6 ± 16.7 per section and 39.9 ± 1 3.9 per section), whereas the distal segment showed fewer nerves (33.6 ± 13.1 per section) (p = 0.01). Mean subject-specific nerve distance to arterial lumen was greatest in proximal segments (3.40 ± 0.78 mm), followed by middle segments (3.10 ± 0.69 mm), and least in distal segments (2.60 ± 0.77 mm) (p < 0.001). The mean number of nerves in the ventral region (11.0 ± 3.5 per section) was greater compared with the dorsal region (6.2 ± 3.0 per section) (p < 0.001). Efferent nerve fibers were predominant (tyrosine hydroxylase/calcitonin gene-related peptide ratio 25.1 ± 33.4; p < 0.0001). Nerve anatomy in hypertensive patients was not considerably different compared with nonhypertensive patients. The density of peri-arterial renal sympathetic nerve fibers is lower in distal segments and dorsal locations. There is a clear predominance of efferent nerve fibers, with decreasing prevalence of afferent nerves from proximal to distal peri-arterial and renal parenchyma. Understanding these anatomic patterns is important for refinement of renal denervation procedures. Copyright © 2014

  1. From genes to pain: nerve growth factor and hereditary sensory and autonomic neuropathy type V.

    PubMed

    Capsoni, Simona

    2014-02-01

    Hereditary sensory and autonomic neuropathy type V (HSAN V) is an autosomal recessive disorder characterized by the loss of deep pain perception. The anomalous pain and temperature sensations are due to the absence of nociceptive sensory innervation. The neurotrophin nerve growth factor (NGF), by binding to tropomyosin receptor A (TrkA) and p75NTR receptors, is essential for the development and survival of sensory neurons, and for pain perception during adulthood. Recently a homozygous missense mutation (R100W) in the NGF gene has been identified in HSAN V patients. Interestingly, alterations in NGF signalling, due to mutations in the NGF TRKA gene, have also been involved in another congenital insensitivity to pain, HSAN IV, characterized not only by absence of reaction to painful stimuli, but also anhidrosis and mental retardation. These symptoms are absent in HSAN V patients. Unravelling the mechanisms that underlie the differences between HSAN IV and V could assist in better understanding NGF biology. This review highlights the recent key findings in the understanding of HSAN V, including insights into the molecular mechanisms of the disease, derived from genetic studies of patients with this disorder. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Chronic inflammatory pure sensory polyradiculoneuropathy: a rare CIDP variant with unusual electrophysiology.

    PubMed

    Rajabally, Yusuf A; Wong, Siew L

    2012-03-01

    We describe a patient presenting with progressive upper limb numbness and sensory ataxia of the 4 limbs. Motor nerve conduction studies were completely normal. Sensory electrophysiology showed reduced/absent upper limb sensory action potentials (SAPs). In the lower limbs, SAPs were mostly normal. Sensory conduction velocities were normal. Forearm sensory conduction blocks were present for both median nerves on antidromic testing. The maximal recordable sural SAP was preserved in comparison to maximal recordable radial SAP, consistent with an "abnormal radial normal sural" pattern. Somatosensory evoked potentials were unrecordable for tibial and median nerves. Cerebrospinal fluid protein was raised (0.99 g/L). The patient worsened on oral corticosteroids but subsequently made substantial functional recovery on intravenous immunoglobulins. This case is different to those previously reported of sensory chronic inflammatory demyelinating polyradiculoneuropathy, given its exclusive sensory electrophysiologic presentation, presence of predominant upper limb reduced sensory amplitudes, and detection of sensory conduction blocks. These electrophysiologic features were of paramount importance in establishing diagnosis and effective therapy.

  3. Brn3a/Pou4f1 Regulates Dorsal Root Ganglion Sensory Neuron Specification and Axonal Projection into the Spinal Cord

    PubMed Central

    Zou, Min; Li, Shengguo; Klein, William H.; Xiang, Mengqing

    2012-01-01

    The sensory neurons of the dorsal root ganglia (DRG) must project accurately to their central targets to convey proprioceptive, nociceptive and mechanoreceptive information to the spinal cord. How these different sensory modalities and central connectivities are specified and coordinated still remains unclear. Given the expression of the POU homeodomain transcription factors Brn3a/Pou4f1 and Brn3b/Pou4f2 in DRG and spinal cord sensory neurons, we determined the subtype specification of DRG and spinal cord sensory neurons as well as DRG central projections in Brn3a and Brn3b single and double mutant mice. Inactivation of either or both genes causes no gross abnormalities in early spinal cord neurogenesis; however, in Brn3a single and Brn3a;Brn3b double mutant mice, sensory afferent axons from the DRG fail to form normal trajectories in the spinal cord. The TrkA+ afferents remain outside the dorsal horn and fail to extend into the spinal cord, while the projections of TrkC+ proprioceptive afferents into the ventral horn are also impaired. Moreover, Brn3a mutant DRGs are defective in sensory neuron specification, as marked by the excessive generation of TrkB+ and TrkC+ neurons as well as TrkA+/TrkB+ and TrkA+/TrkC+ double positive cells at early embryonic stages. At later stages in the mutant, TrkB+, TrkC+ and parvalbumin+ neurons diminish while there is a significant increase of CGRP+ and c-ret+ neurons. In addition, Brn3a mutant DRGs display a dramatic down-regulation of Runx1 expression, suggesting that the regulation of DRG sensory neuron specification by Brn3a is mediated in part by Runx1. Our results together demonstrate a critical role for Brn3a in generating DRG sensory neuron diversity and regulating sensory afferent projections to the central targets. PMID:22326227

  4. Fatigue-induced changes in group IV muscle afferent activity: differences between high- and low-frequency electrically induced fatigues.

    PubMed

    Darques, J L; Jammes, Y

    1997-03-07

    Recordings of group IV afferent activity of tibialis anterior muscle were performed in paralysed rabbits during runs of electrically induced fatigue produced by direct muscle stimulation at a high (100 Hz, high-frequency fatigue HFF) or a low rate (10 Hz, low-frequency fatigue LFF). In addition to analysis of afferent nerve action potentials, muscle force and compound muscle action potentials (M waves) elicited by direct muscle stimulation with single shocks were recorded. Changes in M wave configuration were used as an index of the altered propagation of membrane potentials and the associated efflux of potassium from muscle fibers. The data show that increased group IV afferent activity occurred during LFF as well as HFF trials and developed parallel with force failure. Enhanced afferent activity was significantly higher during LFF (maximal delta f(impulses) = 249 +/- 35%) than HFF (147 +/- 45%). No correlation was obtained between the responses of group IV afferents to LFF or to pressure exerted on tibialis anterior muscle. On the other hand, decreased M wave amplitude was minimal with LFF while it was pronounced with HFF. Close correlations were found between fatigue-induced activation of group IV afferents and decreases in force or M wave amplitude, but their strength was significantly higher with LFF compared to HFF. Thus, electrically induced fatigue activates group IV muscle afferents with a prominent effect of low-frequency stimulation. The mechanism of muscle afferent stimulation does not seem to be due to the sole increase in extracellular potassium concentration, but also by the efflux of muscle metabolites, present during fatiguing contractions at low rate of stimulation.

  5. Ankle joint movements are encoded by both cutaneous and muscle afferents in humans.

    PubMed

    Aimonetti, Jean-Marc; Roll, Jean-Pierre; Hospod, Valérie; Ribot-Ciscar, Edith

    2012-08-01

    We analyzed the cutaneous encoding of two-dimensional movements by investigating the coding of movement velocity for differently oriented straight-line movements and the coding of complex trajectories describing cursive letters. The cutaneous feedback was then compared with that of the underlying muscle afferents previously recorded during the same "writing-like" movements. The unitary activity of 43 type II cutaneous afferents was recorded in the common peroneal nerve in healthy subjects during imposed ankle movements. These movements consisted first of ramp-and-hold movements imposed at two different and close velocities in seven directions and secondly of "writing-like" movements. In both cases, the responses were analyzed using the neuronal population vector model. The results show that movement velocity encoding depended on the direction of the ongoing movement. Discriminating between two velocities therefore involved processing the activity of afferent populations located in the various skin areas surrounding the moving joint, as shown by the statistically significant difference observed in the amplitude of the sum vectors. Secondly, "writing-like" movements induced cutaneous neuronal patterns of activity, which were reproducible and specific to each trajectory. Lastly, the "cutaneous neuronal trajectories," built by adding the sum vectors tip-to-tail, nearly matched both the movement trajectories and the "muscle neuronal trajectories," built from previously recorded muscle afferents. It was concluded that type II cutaneous and the underlying muscle afferents show similar encoding properties of two-dimensional movement parameters. This similarity is discussed in relation to a central gating process that would for instance increase the gain of cutaneous inputs when muscle information is altered by the fusimotor drive.

  6. Monosynaptic convergence of chorda tympani and glossopharyngeal afferents onto ascending relay neurons in the nucleus of the solitary tract: A high-resolution confocal and correlative electron microscopy approach

    PubMed Central

    Corson, James A.; Erisir, Alev

    2014-01-01

    While physiological studies suggested convergence of chorda tympani and glossopharyngeal afferent axons onto single neurons of the rostral nucleus of the solitary tract (rNTS), anatomical evidence has been elusive. The current study uses high-magnification confocal microscopy to identify putative synaptic contacts from afferent fibers of the two nerves onto individual projection neurons. Imaged tissue is re-visualized with electron microscopy, confirming that overlapping fluorescent signals in confocal z-stacks accurately identify appositions between labeled terminal and dendrite pairs. Monte Carlo modeling reveals that the probability of overlapping fluorophores is stochastically unrelated to the density of afferent label suggesting that convergent innervation in the rNTS is selective rather than opportunistic. Putative synaptic contacts from each nerve are often compartmentalized onto dendrite segments of convergently innervated neurons. These results have important implications for orosensory processing in the rNTS, and the techniques presented here have applications in investigations of neural microcircuitry with an emphasis on innervation patterning. PMID:23640852

  7. Activation of normal and inflamed fine articular afferent units by serotonin.

    PubMed

    Herbert, M K; Schmidt, R F

    1992-07-01

    In cats anesthetized with alpha-chloralose, extracellular recordings were made from fine afferent units belonging to the medial articular nerve (MAN) of the knee joint. The excitatory and sensitizing effects on articular afferents of serotonin (5-HT) applied intra-arterially close to the joint were examined. The joints were either normal or an experimental arthritis had been induced some hours before the recording session. Bolus injections of 1.35-135 micrograms 5-HT excited about 43% of group III (CV: 2.5-20 m/sec) and 73% of group IV units (CV: less than 2.5 m/sec) from normal joints. The latency was usually between 10 and 30 sec, and the duration and size of the responses were dose-dependent. Fast group III units (CV: greater than 16 m/sec) and group II units (CV: greater than 20 m/sec) were never excited by 5-HT. Repetitive administration led to pronounced tachyphylaxis of the 5-HT response. Inflammation induced an enhanced sensitivity of group III articular afferent units to close intra-arterial application of 5-HT. In particular the total duration of each response was considerably prolonged (4-10 min against 1-2 min under normal conditions). At the same time the tachyphylaxis seen under normal conditions was greatly reduced. In contrast, group IV articular afferent units did not become sensitized to 5-HT in the course of inflammation. In normal joints 5-HT did not sensitize fine afferent units for movement-induced responses. However, after inflammation, a distinct sensitization to such movements by 5-HT application could be observed both in group III and group IV fiber ranges. The sensitization had a short time course not exceeding 7 min. The tonic component of the movement-induced response was more enhanced than the phasic one. The bolus application of 5-HT led to temporary vasoconstriction of the knee joint vessels. This vasoconstriction was especially pronounced in inflamed joints and impeded the access of subsequently applied substances to the terminal

  8. Modulation of synaptic transmission from segmental afferents by spontaneous activity of dorsal horn spinal neurones in the cat.

    PubMed

    Manjarrez, E; Rojas-Piloni, J G; Jimenez, I; Rudomin, P

    2000-12-01

    We examined, in the anaesthetised cat, the influence of the neuronal ensembles producing spontaneous negative cord dorsum potentials (nCDPs) on segmental pathways mediating primary afferent depolarisation (PAD) of cutaneous and group I muscle afferents and on Ia monosynaptic activation of spinal motoneurones. The intraspinal distribution of the field potentials associated with the spontaneous nCDPs indicated that the neuronal ensembles involved in the generation of these potentials were located in the dorsal horn of lumbar segments, in the same region of termination of low-threshold cutaneous afferents. During the occurrence of spontaneous nCDPs, transmission from low-threshold cutaneous afferents to second order neurones in laminae III-VI, as well as transmission along pathways mediating PAD of cutaneous and Ib afferents, was facilitated. PAD of Ia afferents was instead inhibited. Monosynaptic reflexes of flexors and extensors were facilitated during the spontaneous nCDPs. The magnitude of the facilitation was proportional to the amplitude of the 'conditioning' spontaneous nCDPs. This led to a high positive correlation between amplitude fluctuations of spontaneous nCDPs and fluctuations of monosynaptic reflexes. Stimulation of low-threshold cutaneous afferents transiently reduced the probability of occurrence of spontaneous nCDPs as well as the fluctuations of monosynaptic reflexes. It is concluded that the spontaneous nCDPs were produced by the activation of a population of dorsal horn neurones that shared the same functional pathways and involved the same set of neurones as those responding monosynaptically to stimulation of large cutaneous afferents. The spontaneous activity of these neurones was probably the main cause of the fluctuations of the monosynaptic reflexes observed under anaesthesia and could provide a dynamic linkage between segmental sensory and motor pathways.

  9. Activity Regulates the Incidence of Heteronymous Sensory-Motor Connections

    PubMed Central

    Mendelsohn, Alana I.; Simon, Christian M.; Abbott, L. F.; Mentis, George Z.; Jessell, Thomas M.

    2015-01-01

    Summary The construction of spinal sensory-motor circuits involves the selection of appropriate synaptic partners and the allocation of precise synaptic input densities. Many aspects of spinal sensory-motor selectivity appear to be preserved when peripheral sensory activation is blocked, which has led to a view that sensory-motor circuits are assembled in an activity-independent manner. Yet it remains unclear whether activity-dependent refinement has a role in the establishment of connections between sensory afferents and those motor pools that have synergistic biomechanical functions. We show here that genetically abolishing central sensory-motor neurotransmission leads to a selective enhancement in the number and density of such “heteronymous” connections, whereas other aspects of sensory-motor connectivity are preserved. Spike-timing dependent synaptic refinement represents one possible mechanism for the changes in connectivity observed after activity blockade. Our findings therefore reveal that sensory activity does have a limited and selective role in the establishment of patterned monosynaptic sensory-motor connections. PMID:26094608

  10. Primary afferent activity, putative excitatory transmitters and extracellular potassium levels in frog spinal cord.

    PubMed Central

    Davidoff, R A; Hackman, J C; Holohean, A M; Vega, J L; Zhang, D X

    1988-01-01

    1. Changes in extracellular K+ activity were measured with ion-selective microelectrodes in the grey matter of the isolated hemisected frog spinal cord. The magnitude of the elevation of [K+]o (delta[K+]o) produced by repetitive stimulation (25 Hz, 10 s) of afferent fibres in the sciatic nerve was monotonically related to the strength of the electrical stimuli applied to the sciatic nerve. Repetitive stimulation of the largest diameter A alpha and A beta fibres, which were found histologically to comprise only 11% of the afferent axons in the dorsal root, elevated [K+]o to approximately 60% of the maximum level seen when all afferent fibres were stimulated. 2. Addition of Mg2+ (20 mM) to Ringer solution devoid of Mg2+ reduced delta[K+]o by over 85% suggesting that about 15% of delta[K+]o results from action potentials in presynaptic primary afferents. When 20 mM-Mg2+ was added to spinal cords bathed in Ringer solution containing a physiological (i.e. 1.0 mM) concentration of Mg2+, delta[K+]o was reduced by ca. 65-75% indicating that in spinal cords bathed in medium containing 'physiological' concentrations of Mg2+ about 25-35% of the K+ is released from primary afferent fibres. 3. Application of excitatory amino acids and agonists increased [K+]o with the following potency pattern: quisqualate greater than kainate greater than NMDA (N-methyl-D-aspartate) greater than glutamate greater than aspartate. 4. D(-)-2-Amino-5-phosphonovalerate (APV), an NMDA antagonist, reduced [K+]o by only about 50%, but kynurenate, an NMDA and non-NMDA antagonist, reduced [K+]o by approximately 85%; i.e. the same levels observed when synaptic transmission was blocked with 20 mM-Mg2+. These findings support the idea that synaptic release of excitatory amino acids such as L-glutamate and/or L-aspartate and subsequent activation of specific receptors by these putative transmitters are necessary for the postsynaptic component of delta[K+]o. 5. Addition of tachykinins elevated [K+]o but the

  11. Primary afferent activity, putative excitatory transmitters and extracellular potassium levels in frog spinal cord.

    PubMed

    Davidoff, R A; Hackman, J C; Holohean, A M; Vega, J L; Zhang, D X

    1988-03-01

    1. Changes in extracellular K+ activity were measured with ion-selective microelectrodes in the grey matter of the isolated hemisected frog spinal cord. The magnitude of the elevation of [K+]o (delta[K+]o) produced by repetitive stimulation (25 Hz, 10 s) of afferent fibres in the sciatic nerve was monotonically related to the strength of the electrical stimuli applied to the sciatic nerve. Repetitive stimulation of the largest diameter A alpha and A beta fibres, which were found histologically to comprise only 11% of the afferent axons in the dorsal root, elevated [K+]o to approximately 60% of the maximum level seen when all afferent fibres were stimulated. 2. Addition of Mg2+ (20 mM) to Ringer solution devoid of Mg2+ reduced delta[K+]o by over 85% suggesting that about 15% of delta[K+]o results from action potentials in presynaptic primary afferents. When 20 mM-Mg2+ was added to spinal cords bathed in Ringer solution containing a physiological (i.e. 1.0 mM) concentration of Mg2+, delta[K+]o was reduced by ca. 65-75% indicating that in spinal cords bathed in medium containing 'physiological' concentrations of Mg2+ about 25-35% of the K+ is released from primary afferent fibres. 3. Application of excitatory amino acids and agonists increased [K+]o with the following potency pattern: quisqualate greater than kainate greater than NMDA (N-methyl-D-aspartate) greater than glutamate greater than aspartate. 4. D(-)-2-Amino-5-phosphonovalerate (APV), an NMDA antagonist, reduced [K+]o by only about 50%, but kynurenate, an NMDA and non-NMDA antagonist, reduced [K+]o by approximately 85%; i.e. the same levels observed when synaptic transmission was blocked with 20 mM-Mg2+. These findings support the idea that synaptic release of excitatory amino acids such as L-glutamate and/or L-aspartate and subsequent activation of specific receptors by these putative transmitters are necessary for the postsynaptic component of delta[K+]o. 5. Addition of tachykinins elevated [K+]o but the

  12. Afferent projections to the deep mesencephalic nucleus in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veazey, R.B.; Severin, C.M.

    1982-01-10

    Afferent projections to the deep mesencephalic nucleus (DMN) of the rat were demonstrated with axonal transport techniques. Potential sources for projections to the DMN were first identified by injecting the nucleus with HRP and examining the cervical spinal cord, brain stem, and cortex for retrogradely labeled neurons. Areas consistently labeled were then injected with a tritiated radioisotope, the tissue processed for autoradiography, and the DMN examined for anterograde labeling. Afferent projections to the medial and/or lateral parts of the DMN were found to originate from a number of spinal, bulbar, and cortical centers. Rostral brain centers projecting to both medialmore » and lateral parts of the DMN include the ipsilateral motor and somatosensory cortex, the entopeduncular nucleus, and zona incerta. at the level of the midbrain, the ipsilateral substantia nigra and contralateral DMN likewise project to the DMN. Furthermore, the ipsilateral superior colliculus projects to the DMN, involving mainly the lateral part of the nucleus. Afferents from caudal centers include bilateral projections from the sensory nucleus of the trigeminal complex and the nucleus medulla oblongata centralis, as well as from the contralateral dentate nucleus. The projections from the trigeminal complex and nucleus medullae oblongatae centralis terminate in the intermediate and medial parts of the DMN, whereas projections from the contralateral dentate nucleus terminate mainly in its lateral part. In general, the afferent connections of the DMN arise from diverse areas of the brain. Although most of these projections distribute throughout the entire extent of the DMN, some of them project mainly to either medial or lateral parts of the nucleus, thus suggesting that the organization of the DMN is comparable, at least in part, to that of the reticular formation of the pons and medulla, a region in which hodological differences between medial and lateral subdivisions are known to exist.« less

  13. Identification of the visceral pain pathway activated by noxious colorectal distension in mice.

    PubMed

    Kyloh, Melinda; Nicholas, Sarah; Zagorodnyuk, Vladimir P; Brookes, Simon J; Spencer, Nick J

    2011-01-01

    In patients with irritable bowel syndrome, visceral pain is evoked more readily following distension of the colorectum. However, the identity of extrinsic afferent nerve pathway that detects and transmits visceral pain from the colorectum to the spinal cord is unclear. In this study, we identified which extrinsic nerve pathway(s) underlies nociception from the colorectum to the spinal cord of rodents. Electromyogram recordings were made from the transverse oblique abdominal muscles in anesthetized wild type (C57BL/6) mice and acute noxious intraluminal distension stimuli (100-120 mmHg) were applied to the terminal 15 mm of colorectum to activate visceromotor responses (VMRs). Lesioning the lumbar colonic nerves in vivo had no detectable effect on the VMRs evoked by colorectal distension. Also, lesions applied to the right or left hypogastric nerves failed to reduce VMRs. However, lesions applied to both left and right branches of the rectal nerves abolished VMRs, regardless of whether the lumbar colonic or hypogastric nerves were severed. Electrical stimulation applied to either the lumbar colonic or hypogastric nerves in vivo, failed to elicit a VMR. In contrast, electrical stimulation (2-5 Hz, 0.4 ms, 60 V) applied to the rectum reliably elicited VMRs, which were abolished by selective lesioning of the rectal nerves. DiI retrograde labeling from the colorectum (injection sites 9-15 mm from the anus, measured in unstretched preparations) labeled sensory neurons primarily in dorsal root ganglia (DRG) of the lumbosacral region of the spinal cord (L6-S1). In contrast, injection of DiI into the mid to proximal colon (injection sites 30-75 mm from the anus, measured in unstretched preparations) labeled sensory neurons in DRG primarily of the lower thoracic level (T6-L2) of the spinal cord. The visceral pain pathway activated by acute noxious distension of the terminal 15 mm of mouse colorectum is transmitted predominantly, if not solely, through rectal

  14. The kidney in the pathogenesis of hypertension: the role of renal nerves.

    PubMed

    DiBona, G F

    1985-04-01

    The intrinsic efferent innervation of the kidney consists of exclusively noradrenergic fibers that innervate the preglomerular and postgomerular vasculature, all elements of the juxtagomerular apparatus and virtually all segments of the nephron in both cortical and medullo-papillary regions. Increases in efferent renal sympathetic nerve activity produce renal vasoconstriction, release of renin, catecholamines, prostaglandins and other vasoactive substances, and increases in renal tubular sodium reabsorption; these responses are graded and differentiated. The intrinsic afferent innervation of the kidney consists of mechanoreceptors and chemoreceptors which participate in reno-renal and reno-systemic reflexes that modulate sympathetic neural outflow in an organ-specific differentiated pattern. Therefore, alterations in efferent and afferent renal nerve activity produce changes in several important renal functions known to contribute to the development and maintenance of hypertension.

  15. Nerve ultrasound shows subclinical peripheral nerve involvement in neurofibromatosis type 2.

    PubMed

    Telleman, Johan A; Stellingwerff, Menno D; Brekelmans, Geert J; Visser, Leo H

    2018-02-01

    Neurofibromatosis type 2 (NF2) is mainly associated with central nervous system (CNS) tumors. Peripheral nerve involvement is described in symptomatic patients, but evidence of subclinical peripheral nerve involvement is scarce. We conducted a cross-sectional pilot study in 2 asymptomatic and 3 minimally symptomatic patients with NF2 to detect subclinical peripheral nerve involvement. Patients underwent clinical examination, nerve conduction studies (NCS), and high-resolution ultrasonography (HRUS). A total of 30 schwannomas were found, divided over 20 nerve segments (33.9% of all investigated nerve segments). All patients had at least 1 schwannoma. Schwannomas were identified with HRUS in 37% of clinically unaffected nerve segments and 50% of nerve segments with normal NCS findings. HRUS shows frequent subclinical peripheral nerve involvement in NF2. Clinicians should consider peripheral nerve involvement as a cause of weakness and sensory loss in the extremities in patients with this disease. Muscle Nerve 57: 312-316, 2018. © 2017 Wiley Periodicals, Inc.

  16. Electrophysiology of Cranial Nerve Testing: Cranial Nerves IX and X.

    PubMed

    Martinez, Alberto R M; Martins, Melina P; Moreira, Ana Lucila; Martins, Carlos R; Kimaid, Paulo A T; França, Marcondes C

    2018-01-01

    The cranial nerves IX and X emerge from medulla oblongata and have motor, sensory, and parasympathetic functions. Some of these are amenable to neurophysiological assessment. It is often hard to separate the individual contribution of each nerve; in fact, some of the techniques are indeed a composite functional measure of both nerves. The main methods are the evaluation of the swallowing function (combined IX and X), laryngeal electromyogram (predominant motor vagal function), and heart rate variability (predominant parasympathetic vagal function). This review describes, therefore, the techniques that best evaluate the major symptoms presented in IX and X cranial nerve disturbance: dysphagia, dysphonia, and autonomic parasympathetic dysfunction.

  17. Muscle Activation During Peripheral Nerve Field Stimulation Occurs Due to Recruitment of Efferent Nerve Fibers, Not Direct Muscle Activation.

    PubMed

    Frahm, Ken Steffen; Hennings, Kristian; Vera-Portocarrero, Louis; Wacnik, Paul W; Mørch, Carsten Dahl

    2016-08-01

    Peripheral nerve field stimulation (PNFS) is a potential treatment for chronic low-back pain. Pain relief using PNFS is dependent on activation of non-nociceptive Aβ-fibers. However, PNFS may also activate muscles, causing twitches and discomfort. In this study, we developed a mathematical model, to investigate the activation of sensory and motor nerves, as well as direct muscle fiber activation. The extracellular field was estimated using a finite element model based on the geometry of CT scanned lumbar vertebrae. The electrode was modeled as being implanted to a depth of 10-15 mm. Three implant directions were modeled; horizontally, vertically, and diagonally. Both single electrode and "between-lead" stimulation between contralateral electrodes were modeled. The extracellular field was combined with models of sensory Aβ-nerves, motor neurons and muscle fibers to estimate their activation thresholds. The model showed that sensory Aβ fibers could be activated with thresholds down to 0.563 V, and the lowest threshold for motor nerve activation was 7.19 V using between-lead stimulation with the cathode located closest to the nerves. All thresholds for direct muscle activation were above 500 V. The results suggest that direct muscle activation does not occur during PNFS, and concomitant motor and sensory nerve fiber activation are only likely to occur when using between-lead configuration. Thus, it may be relevant to investigate the location of the innervation zone of the low-back muscles prior to electrode implantation to avoid muscle activation. © 2016 International Neuromodulation Society.

  18. Sensory integration balance training in patients with multiple sclerosis: A randomized, controlled trial.

    PubMed

    Gandolfi, Marialuisa; Munari, Daniele; Geroin, Christian; Gajofatto, Alberto; Benedetti, Maria Donata; Midiri, Alessandro; Carla, Fontana; Picelli, Alessandro; Waldner, Andreas; Smania, Nicola

    2015-10-01

    Impaired sensory integration contributes to balance disorders in patients with multiple sclerosis (MS). The objective of this paper is to compare the effects of sensory integration balance training against conventional rehabilitation on balance disorders, the level of balance confidence perceived, quality of life, fatigue, frequency of falls, and sensory integration processing on a large sample of patients with MS. This single-blind, randomized, controlled trial involved 80 outpatients with MS (EDSS: 1.5-6.0) and subjective symptoms of balance disorders. The experimental group (n = 39) received specific training to improve central integration of afferent sensory inputs; the control group (n = 41) received conventional rehabilitation (15 treatment sessions of 50 minutes each). Before, after treatment, and at one month post-treatment, patients were evaluated by a blinded rater using the Berg Balance Scale (BBS), Activities-specific Balance Confidence Scale (ABC), Multiple Sclerosis Quality of Life-54, Fatigue Severity Scale (FSS), number of falls and the Sensory Organization Balance Test (SOT). The experimental training program produced greater improvements than the control group training on the BBS (p < 0.001), the FSS (p < 0.002), number of falls (p = 0.002) and SOT (p < 0.05). Specific training to improve central integration of afferent sensory inputs may ameliorate balance disorders in patients with MS. Clinical Trial Registration (NCT01040117). © The Author(s), 2015.

  19. Effect of peripheral nerve injury on receptive fields of cells in the cat spinal cord.

    PubMed

    Devor, M; Wall, P D

    1981-06-20

    When the sciatic and saphenous nerves are cut and ligated in adult cats, the immediate effect is the production of a completely anesthetic foot and a region in medial lumbar dorsal horn where almost all cells have lost their natural receptive fields (RFs). Beginning at about 1 week and maturing by 4 weeks, some 40% of cells in the medial dorsal horn gain a novel RF on proximal skin, that is, upper and lower leg, thigh, lower back, or perineum. This new RF is supplied by intact proximal nerves and not by sciatic and saphenous nerve fibers that sprouted in the periphery. During the period of switching of RFs from distal to proximal skin there was no gross atrophy of dorsal horn grey matter and no Fink-Heimer stainable degeneration of central arbors and terminals of peripherally axotomized afferents. In intact animals medial dorsal horn cells showed no sign of response to mechanical stimulation of proximal skin. RFs of some of the cells had spontaneous variations in size and sensitivity, but these were not nearly sufficient to explain the large shifts observed after chronic nerve section. Tetanic electrical stimulation of skin or peripheral nerves often caused RFs to shrink, but never to expand. Although natural stimuli of proximal skin would not excite medial dorsal horn cells in intact or acutely deafferented animals, it was found that electrical stimulation of proximal nerves did excite many of these cells, often at short latencies. In the discussion we justify our working hypothesis that the appearance of novel RFs is due to the strengthening or unmasking of normally present but ineffective afferent terminals, rather than to long-distance sprouting of new afferent arbors within the spinal cord.

  20. Retrograde tracing and toe spreading after experimental autologous nerve transplantation and crush injury of the sciatic nerve: a descriptive methodological study.

    PubMed

    van Neerven, Sabien Ga; Bozkurt, Ahmet; O'Dey, Dan Mon; Scheffel, Juliane; Boecker, Arne H; Stromps, Jan-Philipp; Dunda, Sebastian; Brook, Gary A; Pallua, Norbert

    2012-04-30

    Evaluation of functional and structural recovery after peripheral nerve injury is crucial to determine the therapeutic effect of a nerve repair strategy. In the present study, we examined the relationship between the structural evaluation of regeneration by means of retrograde tracing and the functional analysis of toe spreading. Two standardized rat sciatic nerve injury models were used to address this relationship. As such, animals received either a 2 cm sciatic nerve defect (neurotmesis) followed by autologous nerve transplantation (ANT animals) or a crush injury with spontaneous recovery (axonotmesis; CI animals). Functional recovery of toe spreading was observed over an observation period of 84 days. In contrast to CI animals, ANT animals did not reach pre-surgical levels of toe spreading. After the observation period, the lipophilic dye DiI was applied to label sensory and motor neurons in dorsal root ganglia (DRG; sensory neurons) and spinal cord (motor neurons), respectively. No statistical difference in motor or sensory neuron counts could be detected between ANT and CI animals.In the present study we could indicate that there was no direct relationship between functional recovery (toe spreading) measured by SSI and the number of labelled (motor and sensory) neurons evaluated by retrograde tracing. The present findings demonstrate that a multimodal approach with a variety of independent evaluation tools is essential to understand and estimate the therapeutic benefit of a nerve repair strategy.

  1. Interpretation of fusimotor activity in cat masseter nerve during reflex jaw movements.

    PubMed Central

    Gottlieb, S; Taylor, A

    1983-01-01

    Simultaneous recordings were made from fusimotor axons in the central ends of filaments of the masseter nerve, and from masseter and temporalis spindle afferents in the mesencephalic nucleus of the fifth cranial nerve in lightly anaesthetized cats. Fusimotor and alpha-motor units in the masseter nerve were differentiated on the basis of their response to passive ramp and hold stretches applied to the jaw. Spindle afferents were identified as primary or secondary according to their dynamic index after administration of suxamethonium. The activity of a given fusimotor unit during reflex movements of the jaw followed one of two distinct patterns: so-called 'tonic' units showed a general increase in activity during a movement, without detailed relation to lengthening or shortening, while 'modulated' units displayed a striking modulation of their activity with shortening, and were usually silent during subsequent lengthening. Comparison of the simultaneously recorded fusimotor and spindle afferent activity suggests that modulated units may be representative of a population of static fusimotor neurones, and tonic units of a population of dynamic fusimotor neurones. In these lightly anaesthetized animals, both primary and secondary spindle afferents showed increased firing during muscle shortening as well as during lengthening. This increase during shortening is not usually seen in conscious animals and reasons are given for the view that it is due to greater depression of alpha-motor activity than of static fusimotor activity during anaesthesia. The results are discussed in relation to the theories of 'alpha-gamma co-activation' and of 'servo-assistance'; and it is suggested that static fusimotor neurones provide a 'temporal template' of the intended movement, while dynamic fusimotor neurones set the required dynamic sensitivity to deviations from the intended movement pattern. PMID:6229627

  2. Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) with chronic cough and preserved muscle stretch reflexes: evidence for selective sparing of afferent Ia fibres.

    PubMed

    Infante, Jon; García, Antonio; Serrano-Cárdenas, Karla M; González-Aguado, Rocío; Gazulla, José; de Lucas, Enrique M; Berciano, José

    2018-06-01

    The aim of this study was to describe five patients with cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) with chronic cough and preserved limb muscle stretch reflexes. All five patients were in the seventh decade of age, their gait imbalance having been initiated in the fifth decade. In four patients cough antedated gait imbalance between 15 and 29 years; cough was spasmodic and triggered by variable factors. Established clinical picture included severe hypopallesthesia predominating in the lower limbs with postural imbalance, and variable degree of cerebellar axial and appendicular ataxia, dysarthria and horizontal gaze-evoked nystagmus. Upper- and lower-limb tendon jerks were preserved, whereas jaw jerk was absent. Vestibular function testing showed bilateral impairment of the vestibulo-ocular reflex. Nerve conduction studies demonstrated normal motor conduction parameters and absence or severe attenuation of sensory nerve action potentials. Somatosensory evoked potentials were absent or severely attenuated. Biceps and femoral T-reflex recordings were normal, while masseter reflex was absent or attenuated. Sympathetic skin responses were normal. Cranial MRI showed vermian and hemispheric cerebellar atrophy predominating in lobules VI, VII and VIIa. We conclude that spasmodic cough may be an integral part of the clinical picture in CANVAS, antedating the appearance of imbalance in several decades and that sparing of muscle spindle afferents (Ia fibres) is probably the pathophysiological basis of normoreflexia.

  3. Spinal cord stimulation paresthesia and activity of primary afferents.

    PubMed

    North, Richard B; Streelman, Karen; Rowland, Lance; Foreman, P Jay

    2012-10-01

    A patient with failed back surgery syndrome reported paresthesia in his hands and arms during a spinal cord stimulation (SCS) screening trial with a low thoracic electrode. The patient's severe thoracic stenosis necessitated general anesthesia for simultaneous decompressive laminectomy and SCS implantation for chronic use. Use of general anesthesia gave the authors the opportunity to characterize the patient's unusual distribution of paresthesia. During SCS implantation, they recorded SCS-evoked antidromic potentials at physiologically relevant amplitudes in the legs to guide electrode placement and in the arms as controls. Stimulation of the dorsal columns at T-8 evoked potentials in the legs (common peroneal nerves) and at similar thresholds, consistent with the sensation of paresthesia in the arms, in the right ulnar nerve. The authors' electrophysiological observations support observations by neuroanatomical specialists that primary afferents can descend several (in this case, at least 8) vertebral segments in the spinal cord before synapsing or ascending. This report thus confirms a physiological basis for unusual paresthesia distribution associated with thoracic SCS.

  4. Early postnatal development of electrophysiological and histological properties of sensory sural nerves in male rats that were maternally deprived and artificially reared: Role of tactile stimulation.

    PubMed

    Zempoalteca, Rene; Porras, Mercedes G; Moreno-Pérez, Suelem; Ramirez-Funez, Gabriela; Aguirre-Benítez, Elsa L; González Del Pliego, Margarita; Mariscal-Tovar, Silvia; Mendoza-Garrido, Maria E; Hoffman, Kurt Leroy; Jiménez-Estrada, Ismael; Melo, Angel I

    2018-04-01

    Early adverse experiences disrupt brain development and behavior, but little is known about how such experiences impact on the development of the peripheral nervous system. Recently, we found alterations in the electrophysiological and histological characteristics of the sensory sural (SU) nerve in maternally deprived, artificially reared (AR) adult male rats, as compared with maternally reared (MR) control rats. In the present study, our aim was to characterize the ontogeny of these alterations. Thus, male pups of four postnatal days (PND) were (1) AR group, (2) AR and received daily tactile stimulation to the body and anogenital region (AR-Tactile group); or (3) reared by their mother (MR group). At PND 7, 14, or 21, electrophysiological properties and histological characteristics of the SU nerves were assessed. At PND 7, the electrophysiological properties and most histological parameters of the SU nerve did not differ among MR, AR, and AR-Tactile groups. By contrast, at PND 14 and/or 21, the SU nerve of AR rats showed a lower CAP amplitude and area, and a significant reduction in myelin area and myelin thickness, which were accompanied by a reduction in axon area (day 21 only) compared to the nerves of MR rats. Tactile stimulation (AR-Tactile group) partially prevented most of these alterations. These results suggest that sensory cues from the mother and/or littermates during the first 7-14 PND are relevant for the proper development and function of the adult SU nerve. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 351-362, 2018. © 2017 Wiley Periodicals, Inc.

  5. Raman spectroscopic detection of peripheral nerves towards nerve-sparing surgery

    NASA Astrophysics Data System (ADS)

    Minamikawa, Takeo; Harada, Yoshinori; Takamatsu, Tetsuro

    2017-02-01

    The peripheral nervous system plays an important role in motility, sensory, and autonomic functions of the human body. Preservation of peripheral nerves in surgery, namely nerve-sparing surgery, is now promising technique to avoid functional deficits of the limbs and organs following surgery as an aspect of the improvement of quality of life of patients. Detection of peripheral nerves including myelinated and unmyelinated nerves is required for the nerve-sparing surgery; however, conventional nerve identification scheme is sometimes difficult to identify peripheral nerves due to similarity of shape and color to non-nerve tissues or its limited application to only motor peripheral nerves. To overcome these issues, we proposed a label-free detection technique of peripheral nerves by means of Raman spectroscopy. We found several fingerprints of peripheral myelinated and unmyelinated nerves by employing a modified principal component analysis of typical spectra including myelinated nerve, unmyelinated nerve, and adjacent tissues. We finally realized the sensitivity of 94.2% and the selectivity of 92.0% for peripheral nerves including myelinated and unmyelinated nerves against adjacent tissues. Although further development of an intraoperative Raman spectroscopy system is required for clinical use, our proposed approach will serve as a unique and powerful tool for peripheral nerve detection for nerve-sparing surgery in the future.

  6. Selectivity and Longevity of Peripheral-Nerve and Machine Interfaces: A Review

    PubMed Central

    Ghafoor, Usman; Kim, Sohee; Hong, Keum-Shik

    2017-01-01

    For those individuals with upper-extremity amputation, a daily normal living activity is no longer possible or it requires additional effort and time. With the aim of restoring their sensory and motor functions, theoretical and technological investigations have been carried out in the field of neuroprosthetic systems. For transmission of sensory feedback, several interfacing modalities including indirect (non-invasive), direct-to-peripheral-nerve (invasive), and cortical stimulation have been applied. Peripheral nerve interfaces demonstrate an edge over the cortical interfaces due to the sensitivity in attaining cortical brain signals. The peripheral nerve interfaces are highly dependent on interface designs and are required to be biocompatible with the nerves to achieve prolonged stability and longevity. Another criterion is the selection of nerves that allows minimal invasiveness and damages as well as high selectivity for a large number of nerve fascicles. In this paper, we review the nerve-machine interface modalities noted above with more focus on peripheral nerve interfaces, which are responsible for provision of sensory feedback. The invasive interfaces for recording and stimulation of electro-neurographic signals include intra-fascicular, regenerative-type interfaces that provide multiple contact channels to a group of axons inside the nerve and the extra-neural-cuff-type interfaces that enable interaction with many axons around the periphery of the nerve. Section Current Prosthetic Technology summarizes the advancements made to date in the field of neuroprosthetics toward the achievement of a bidirectional nerve-machine interface with more focus on sensory feedback. In the Discussion section, the authors propose a hybrid interface technique for achieving better selectivity and long-term stability using the available nerve interfacing techniques. PMID:29163122

  7. Role of presynaptic inputs to proprioceptive afferents in tuning sensorimotor pathways of an insect joint control network.

    PubMed

    Sauer, A E; Büschges, A; Stein, W

    1997-04-01

    The femur-tibia (FT) joint of insects is governed by a neuronal network that controls activity in tibial motoneurons by processing sensory information about tibial position and movement provided by afferents of the femoral chordotonal organ (fCO). We show that central arborizations of fCO afferents receive presynaptic depolarizing synaptic inputs. With an average resting potential of -71.9 +/- 3.72 mV (n = 10), the reversal potential of these potentials is on average -62.8 +/- 2.3 mV (n = 5). These synaptic potentials occur either spontaneously or are related to movements at the fCO. They are thus induced by signals from other fCO afferents. Therefore, the synaptic inputs to fCO afferents are specific and depend on the sensitivity of the individual afferent affected. These potentials reduce the amplitude of concurrent afferent action potentials. Bath application of picrotoxin, a noncompetitive blocker of chloride ion channels, blocks these potentials, which indicates that they are mediated by chloride ions. From these results, it is concluded that these are inhibitory synaptic potentials generated in the central terminals of fCO afferents. Pharmacologic removal of these potentials affects the tuning of the complete FT control system. Following removal, the dependence of the FT control loop on the tibia position increases relative to the dependency on the velocity of tibia movements. This is due to changes in the relative weighting of the position and velocity signals in the parallel interneuronal pathways from the fCO onto tibial motoneurons. Consequently, the FT joint is no longer able to perform twig mimesis (i.e., catalepsy), which is known to rely on a low position compared to the high-velocity dependency of the FT control system.

  8. Microsurgical reconstruction of large nerve defects using autologous nerve grafts.

    PubMed

    Daoutis, N K; Gerostathopoulos, N E; Efstathopoulos, D G; Misitizis, D P; Bouchlis, G N; Anagnostou, S K

    1994-01-01

    Between 1986 and 1993, 643 patients with peripheral nerve trauma were treated in our clinic. Primary neurorraphy was performed in 431 of these patients and nerve grafting in 212 patients. We present the functional results after nerve grafting in 93 patients with large nerve defects who were followed for more than 2 years. Evaluation of function was based on the Medical Research Council (MRC) classification for motor and sensory recovery. Factors affecting functional outcome, such as age of the patient, denervation time, length of the defect, and level of the injury were noted. Good results according to the MRC classification were obtained in the majority of cases, although function remained less than that of the uninjured side.

  9. Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization

    PubMed Central

    Kiyatkin, Michael E.; Feng, Bin; Schwartz, Erica S.

    2013-01-01

    The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined channel contributions to behavioral responses to colorectal distension (CRD) and afferent fiber responses to colorectal stretch. Baseline responses to CRD were unexpectedly greater in TPDKO compared with control mice, but zymosan-produced CRD hypersensitivity was absent in TPDKO mice. Relative to control mice, proportions of mechanosensitive and -insensitive pelvic nerve afferent classes were not different in TPDKO mice. Responses of mucosal and serosal class afferents to mechanical probing were unaffected, whereas responses of muscular (but not muscular/mucosal) afferents to stretch were significantly attenuated in TPDKO mice; sensitization of both muscular and muscular/mucosal afferents by inflammatory soup was also significantly attenuated. In pharmacological studies, the TRPV1 antagonist A889425 and P2X3 antagonist TNP-ATP, alone and in combination, applied onto stretch-sensitive afferent endings attenuated responses to stretch; combined antagonism produced greater attenuation. In the aggregate, these observations suggest that 1) genetic manipulation of TRPV1 and P2X3 leads to reduction in colorectal mechanosensation peripherally and compensatory changes and/or disinhibition of other channels centrally, 2) combined pharmacological antagonism produces more robust attenuation of mechanosensation peripherally than does antagonism of either channel alone, and 3) the relative importance of these channels appears to be enhanced in colorectal hypersensitivity. PMID:23989007

  10. Anodal Direct Current Stimulation of the Cerebellum Reduces Cerebellar Brain Inhibition but Does Not Influence Afferent Input from the Hand or Face in Healthy Adults.

    PubMed

    Doeltgen, Sebastian H; Young, Jessica; Bradnam, Lynley V

    2016-08-01

    The cerebellum controls descending motor commands by outputs to primary motor cortex (M1) and the brainstem in response to sensory feedback. The cerebellum may also modulate afferent input en route to M1 and the brainstem. The objective of this study is to determine if anodal transcranial direct current stimulation (tDCS) to the cerebellum influences cerebellar brain inhibition (CBI), short afferent inhibition (SAI) and trigeminal reflexes (TRs) in healthy adults. Data from two studies evaluating effects of cerebellar anodal and sham tDCS are presented. The first study used a twin coil transcranial magnetic stimulation (TMS) protocol to investigate CBI and combined TMS and cutaneous stimulation of the digit to assess SAI. The second study evaluated effects on trigemino-cervical and trigemino-masseter reflexes using peripheral nerve stimulation of the face. Fourteen right-handed healthy adults participated in experiment 1. CBI was observed at baseline and was reduced by anodal cerebellar DCS only (P < 0.01). There was SAI at interstimulus intervals of 25 and 30 ms at baseline (both P < 0.0001), but cerebellar tDCS had no effect. Thirteen right-handed healthy adults participated in experiment 2. Inhibitory reflexes were evoked in the ipsilateral masseter and sternocleidomastoid muscles. There was no effect of cerebellar DCS on either reflex. Anodal DCS reduced CBI but did not change SAI or TRs in healthy adults. These results require confirmation in individuals with neurological impairment.

  11. Limb venous distension evokes sympathetic activation via stimulation of the limb afferents in humans.

    PubMed

    Cui, Jian; McQuillan, Patrick M; Blaha, Cheryl; Kunselman, Allen R; Sinoway, Lawrence I

    2012-08-15

    We have recently shown that a saline infusion in the veins of an arterially occluded human forearm evokes a systemic response with increases in muscle sympathetic nerve activity (MSNA) and blood pressure. In this report, we examined whether this response was a reflex that was due to venous distension. Blood pressure (Finometer), heart rate, and MSNA (microneurography) were assessed in 14 young healthy subjects. In the saline trial (n = 14), 5% forearm volume normal saline was infused in an arterially occluded arm. To block afferents in the limb, 90 mg of lidocaine were added to the same volume of saline in six subjects during a separate visit. To examine whether interstitial perfusion of normal saline alone induced the responses, the same volume of albumin solution (5% concentration) was infused in 11 subjects in separate studies. Lidocaine abolished the MSNA and blood pressure responses seen with saline infusion. Moreover, compared with the saline infusion, an albumin infusion induced a larger (MSNA: Δ14.3 ± 2.7 vs. Δ8.5 ± 1.3 bursts/min, P < 0.01) and more sustained MSNA and blood pressure responses. These data suggest that venous distension activates afferent nerves and evokes a powerful systemic sympathoexcitatory reflex. We posit that the venous distension plays an important role in evoking the autonomic adjustments seen with postural stress in human subjects.

  12. Heat pulse excitability of vestibular hair cells and afferent neurons

    PubMed Central

    Brichta, Alan M.; Tabatabaee, Hessam; Boutros, Peter J.; Ahn, JoongHo; Della Santina, Charles C.; Poppi, Lauren A.; Lim, Rebecca

    2016-01-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT. An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in <3 ms and decaying with a time constant of ∼24 ms. The inhibitory component dominated whole cell currents in 50% of hair cells at −68 mV and in 67% of hair cells at −60 mV. Responses were quantified and described on the basis of first principles of thermodynamics. Results identify key molecular targets underlying heat pulse excitability in vestibular sensory organs and provide quantitative methods for rational application of optical heat pulses to examine protein biophysics and manipulate cellular excitability. PMID:27226448

  13. Should sensory function after median nerve injury and repair be quantified using two-point discrimination as the critical measure?

    PubMed

    Jerosch-Herold, C

    2000-12-01

    Two-point discrimination (2PD) is widely used for evaluating outcome from peripheral nerve injury and repair. It is the only quantifiable measure used in the British Medical Research Council (MRC) classification that was developed by Highet in 1954. This paper reports the results of a study of 41 patients with complete median nerve lacerations to the wrist or forearm. Two-point discrimination thresholds were assessed together with locognosia (locognosia is the ability to localise a sensory stimulus on the body's surface), tactile gnosis, and touch threshold. Using the MRC classification 29 (71%) patients had a result of S2 or below, 11 (27%) were S3, and only one scored S3+. Patients scored much better on the other tests and showed progressive recovery. It remains too difficult for patients to obtain a measurable threshold value on 2PD and the test therefore lacks responsiveness. The rating of outcome from peripheral nerve repair should not be based solely on 2PD testing and must include other tests of tactile sensibility.

  14. Peripheral oxytocin activates vagal afferent neurons to suppress feeding in normal and leptin-resistant mice: a route for ameliorating hyperphagia and obesity.

    PubMed

    Iwasaki, Yusaku; Maejima, Yuko; Suyama, Shigetomo; Yoshida, Masashi; Arai, Takeshi; Katsurada, Kenichi; Kumari, Parmila; Nakabayashi, Hajime; Kakei, Masafumi; Yada, Toshihiko

    2015-03-01

    Oxytocin (Oxt), a neuropeptide produced in the hypothalamus, is implicated in regulation of feeding. Recent studies have shown that peripheral administration of Oxt suppresses feeding and, when infused subchronically, ameliorates hyperphagic obesity. However, the route through which peripheral Oxt informs the brain is obscure. This study aimed to explore whether vagal afferents mediate the sensing and anorexigenic effect of peripherally injected Oxt in mice. Intraperitoneal Oxt injection suppressed food intake and increased c-Fos expression in nucleus tractus solitarius to which vagal afferents project. The Oxt-induced feeding suppression and c-Fos expression in nucleus tractus solitarius were blunted in mice whose vagal afferent nerves were blocked by subdiaphragmatic vagotomy or capsaicin treatment. Oxt induced membrane depolarization and increases in cytosolic Ca(2+) concentration ([Ca(2+)]i) in single vagal afferent neurons. The Oxt-induced [Ca(2+)]i increases were markedly suppressed by Oxt receptor antagonist. These Oxt-responsive neurons also responded to cholecystokinin-8 and contained cocaine- and amphetamine-regulated transcript. In obese diabetic db/db mice, leptin failed to increase, but Oxt increased [Ca(2+)]i in vagal afferent neurons, and single or subchronic infusion of Oxt decreased food intake and body weight gain. These results demonstrate that peripheral Oxt injection suppresses food intake by activating vagal afferent neurons and thereby ameliorates obesity in leptin-resistant db/db mice. The peripheral Oxt-regulated vagal afferent neuron provides a novel target for treating hyperphagia and obesity. Copyright © 2015 the American Physiological Society.

  15. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Dickman, J. D.

    2000-01-01

    Spatiotemporal convergence and two-dimensional (2-D) neural tuning have been proposed as a major neural mechanism in the signal processing of linear acceleration. To examine this hypothesis, we studied the firing properties of primary otolith afferents and central otolith neurons that respond exclusively to horizontal linear accelerations of the head (0.16-10 Hz) in alert rhesus monkeys. Unlike primary afferents, the majority of central otolith neurons exhibited 2-D spatial tuning to linear acceleration. As a result, central otolith dynamics vary as a function of movement direction. During movement along the maximum sensitivity direction, the dynamics of all central otolith neurons differed significantly from those observed for the primary afferent population. Specifically at low frequencies (afferents that peaked in phase with linear acceleration. At least three different groups of central response dynamics were described according to the properties observed for motion along the maximum sensitivity direction. "High-pass" neurons exhibited increasing gains and phase values as a function of frequency. "Flat" neurons were characterized by relatively flat gains and constant phase lags (approximately 20-55 degrees ). A few neurons ("low-pass") were characterized by decreasing gain and phase as a function of frequency. The response dynamics of central otolith neurons suggest that the approximately 90 degrees phase lags observed at low frequencies are not the result of a neural integration but rather the effect of nonminimum phase behavior, which could arise at least partly through spatiotemporal convergence. Neither afferent nor central otolith neurons discriminated between gravitational and inertial components of linear acceleration. Thus response sensitivity was indistinguishable during 0.5-Hz pitch oscillations and fore-aft movements

  16. Proper development of relay somatic sensory neurons and D2/D4 interneurons requires homeobox genes Rnx/Tlx-3 and Tlx-1

    PubMed Central

    Qian, Ying; Shirasawa, Senji; Chen, Chih-Li; Cheng, Leping; Ma, Qiufu

    2002-01-01

    Trigeminal nuclei and the dorsal spinal cord are first-order relay stations for processing somatic sensory information such as touch, pain, and temperature. The origins and development of these neurons are poorly understood. Here we show that relay somatic sensory neurons and D2/D4 dorsal interneurons likely derive from Mash1-positive neural precursors, and depend on two related homeobox genes, Rnx and Tlx-1, for proper formation. Rnx and Tlx-1 maintain expression of Drg11, a homeobox gene critical for the development of pain circuitry, and are essential for the ingrowth of trkA+ nociceptive/thermoceptive sensory afferents to their central targets. We showed previously that Rnx is necessary for proper formation of the nucleus of solitary tract, the target for visceral sensory afferents. Together, our studies demonstrate a central role for Rnx and Tlx-1 in the development of two major classes of relay sensory neurons, somatic and visceral. PMID:12023301

  17. Proper development of relay somatic sensory neurons and D2/D4 interneurons requires homeobox genes Rnx/Tlx-3 and Tlx-1.

    PubMed

    Qian, Ying; Shirasawa, Senji; Chen, Chih-Li; Cheng, Leping; Ma, Qiufu

    2002-05-15

    Trigeminal nuclei and the dorsal spinal cord are first-order relay stations for processing somatic sensory information such as touch, pain, and temperature. The origins and development of these neurons are poorly understood. Here we show that relay somatic sensory neurons and D2/D4 dorsal interneurons likely derive from Mash1-positive neural precursors, and depend on two related homeobox genes, Rnx and Tlx-1, for proper formation. Rnx and Tlx-1 maintain expression of Drg11, a homeobox gene critical for the development of pain circuitry, and are essential for the ingrowth of trkA+ nociceptive/thermoceptive sensory afferents to their central targets. We showed previously that Rnx is necessary for proper formation of the nucleus of solitary tract, the target for visceral sensory afferents. Together, our studies demonstrate a central role for Rnx and Tlx-1 in the development of two major classes of relay sensory neurons, somatic and visceral.

  18. The rostral parvicellular reticular formation neurons mediate lingual nerve input to the rostral ventrolateral medulla.

    PubMed

    Ishizuka, Ken'Ichi; Satoh, Yoshihide

    2012-08-16

    In rats that had been anesthetized by urethane-chloralose, we investigated whether neurons in the rostral part of the parvicellular reticular formation (rRFp) mediate lingual nerve input to the rostral ventrolateral medulla (RVLM), which is involved in somato-visceral sensory integration and in controlling the cardiovascular system. We determined the effect of the lingual nerve stimulation on activity of the rRFp neurons that were activated antidromically by stimulation of the RVLM. Stimulation of the lingual trigeminal afferent gave rise to excitatory effects (10/26, 39%), inhibitory effects (6/26, 22%) and no effect (10/26, 39%) on the RVLM-projecting rRFp neurons. About two-thirds of RVLM-projecting rRFp neurons exhibited spontaneous activity; the remaining one-third did not. A half (13/26) of RVLM-projecting rRFp neurons exhibited a pulse-related activity, suggesting that they receive a variety of peripheral and CNS inputs involved in cardiovascular function. We conclude that the lingual trigeminal input exerts excitatory and/or inhibitory effects on a majority (61%) of the RVLM-projecting rRFp neurons, and their neuronal activity may be involved in the cardiovascular responses accompanied by the defense reaction. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Early compensatory sensory re-education.

    PubMed

    Daniele, Hugo R; Aguado, Leda

    2003-02-01

    After a neurorrhaphy, there will be a distal disconnection between the cortex and skin receptors, along with interruption of sensibility information. This report demonstrates the efficacy of a new sensory re-education program for achieving optimal sensation in a relatively short time. Between 1999 and 2001, in the authors' Hand Rehabilitation Department, 11 patients with previous neurorrhaphy were subjected to a program of early "compensatory sensory re-education." Lesions were caused by clean cut. There were 13 primary digital nerve procedures, 12 at the distal palmar MP level, and one at the radial dorsal branch of the index (just after emerging from the common digital nerve). The technique of compensatory sensory re-education was based on a previous, but modified, sensory re-education method. In order to evaluate the results in the compensatory sensory re-education series described, additional tests for evaluation of achieved functional sensibility were used. The authors' best results were achieved in a maximum of 8 weeks (4-8 weeks), much less time than with the original method (1-2 years). Using the British classification, it was possible to compare the achieved levels of sensibility and the time required for optimal results. The different methods of sensibility re-education may be similar, but with the authors' compensatory sensory re-education method, substantial time is saved.

  20. ACTIVATION OF TRPA1 ON DURAL AFFERENTS: A POTENTIAL MECHANISM OF HEADACHE PAIN

    PubMed Central

    Edelmayer, Rebecca M.; Le, Larry N.; Yan, Jin; Wei, Xiaomei; Nassini, Romina; Materazzi, Serena; Preti, Delia; Appendino, Giovanni; Geppetti, Pierangelo; Dodick, David W.; Vanderah, Todd W.; Porreca, Frank; Dussor, Gregory

    2012-01-01

    Activation of transient receptor potential ankyrin-1 (TRPA1) on meningeal nerve endings has been suggested to contribute to environmental irritant-induced headache but this channel may also contribute to other forms of headache such as migraine. The preclinical studies described here examined functional expression of TRPA1 on dural afferents and investigated whether activation of TRPA1 contributes to headache-like behaviors. Whole-cell patch-clamp recordings were performed in vitro using two TRPA1 agonists, mustard oil (MO) and the environmental irritant umbellulone (UMB), on dural-projecting trigeminal ganglion neurons. Application of MO and UMB to dural afferents produced TRPA1-like currents in approximately 42% and 38% of cells, respectively. Using an established in vivo behavioral model of migraine-related allodynia, dural application of MO and UMB produced robust time-related tactile facial and hindpaw allodynia that was attenuated by pretreatment with the TRPA1 antagonist HC-030031. Additionally, MO or UMB were applied to the dura and exploratory activity was monitored for 30 minutes using an automated open-field activity chamber. Dural MO and UMB decreased the number of vertical rearing episodes and the time spent rearing in comparison to vehicle treated animals. This change in activity was prevented in rats pretreated with HC-030031 as well as sumatriptan, a clinically effective anti-migraine agent. These data indicate that TRPA1 is expressed on a substantial fraction of dural afferents and activation of meningeal TRPA1 produces behaviors consistent with those seen in patients during migraine attacks. Further, they suggest that activation of meningeal TRPA1 via endogenous or exogenous mechanisms can lead to afferent signaling and headache. PMID:22809691

  1. Interganglionic segregation of distinct vagal afferent fibre phenotypes in guinea-pig airways.

    PubMed Central

    Ricco, M M; Kummer, W; Biglari, B; Myers, A C; Undem, B J

    1996-01-01

    1. The present study addressed the hypothesis that jugular and nodose vagal ganglia contain the somata of functionally and anatomically distinct airway afferent fibres. 2. Anatomical investigations were performed by injecting guinea-pig airways with the neuronal tracer Fast Blue. The animals were killed 7 days later, and the ganglia were removed and immunostained with antisera against substance P (SP) and neurofilament protein (NF). In the nodose ganglion, NF-immunoreactive neurones accounted for about 98% of the Fast Blue-labelled cells while in the jugular ganglion they accounted for approximately 48%. SP and NF immunoreactivity was never (n = 100) observed in the same cell suggesting that the antisera labelled distinct populations. 3. Electrophysiological investigations were performed using an in vitro guinea-pig tracheal and bronchial preparation with intact afferent vagal pathways, including nodose and jugular ganglia. Action potentials arriving from single airway afferent nerve endings were monitored extracellularly using a glass microelectrode positioned near neuronal cell bodies in either ganglion. 4. The nodose ganglion contained the somata of mainly fast-conducting tracheal A delta fibres whereas the jugular ganglion contained equal numbers of C fibre and A delta fibre tracheal afferent somata. The nodose A delta neurones adapted rapidly to mechanical stimulation, had relatively low mechanical thresholds, were not activated by capsaicin and adapted rapidly to a hyperosmotic stimulus. By contrast, jugular A delta and C fibres adapted slowly to mechanical stimulation, were often activated by capsaicin, had higher mechanical thresholds and displayed a slow adaptation to a hyperosmotic stimulus. 5. The anatomical, physiological and pharmacological data provide evidence to support the contention that the vagal ganglionic source of the fibre supplying the airways ultimately dictates its neurochemical and physiological phenotype. Images Figure 1 PMID:8910234

  2. [Regional nerve block in facial surgery].

    PubMed

    Gramkow, Christina; Sørensen, Jesper

    2008-02-11

    Regional nerve blocking techniques offer a suitable alternative to local infiltration anaesthesia for facial soft tissue-surgery. Moreover, they present several advantages over general anaesthesia, including smoother recovery, fewer side effects, residual analgesia into the postoperative period, earlier discharge from the recovery room and reduced costs. The branches of the trigeminal nerve and the sensory nerves originating from the upper cervical plexus can be targeted at several anatomical locations. We summarize current knowledge on facial nerve block techniques and recommend ten nerve blocks providing efficient anaesthesia for the entire head and upper-neck region.

  3. Recovery of function, peripheral sensitization and sensory neurone activation by novel pathways following axonal injury in Aplysia californica.

    PubMed

    Dulin, M F; Steffensen, I; Morris, C E; Walters, E T

    1995-10-01

    Recovery of behavioural and sensory function was examined following unilateral pedal nerve crush in Aplysia californica. Nerve crush that transected all axons connecting the tail to the central nervous system (CNS) eliminated the ipsilateral tail-evoked siphon reflex, whose sensory input travels in the crushed tail nerve (p9). The first reliable signs of recovery of this reflex were observed within 1 week, and most animals displayed tail-evoked siphon responses within 2 weeks. Wide-dynamic-range mechanosensory neurons with somata in the ventrocaudal (VC) cluster of the ipsilateral pleural ganglion exhibited a few receptive fields (RFs) on the tail 3 weeks after unilateral pedal nerve crush, indicating that the RFs had either regenerated or been reconnected to the central somata. These RFs were smaller and sensitized compared with corresponding RFs on the contralateral, uncrushed side. Centrally conducted axon responses of VC sensory neurones to electrical stimulation distal to the nerve crush site did not reappear until at least 10 days after the crush. Because the crush site was much closer to the CNS than to the tail, the failure of axon responses to be restored earlier than the behavioural responses indicates that early stages of reflex recovery are not due to regeneration of VC sensory neurone axons into the tail. Following nerve crush, VC sensory neurones often could be activated by stimulating central connectives or peripheral nerves that do not normally contain the sensory neurone's axons. These results suggest that recovery of behavioral function after nerve injury involves complex mechanisms, including regenerative growth of axotomized VC sensory neurones, sensitization of regenerating RFs and sprouting of VC sensory neurone fibres within the CNS. Furthermore, the rapidity of behavioural recovery indicates that its initial phases are mediated by additional mechanisms, perhaps centripetal regeneration of unidentified sensory neurones having peripheral

  4. Deficiency in Monocarboxylate Transporter 1 (MCT1) in Mice Delays Regeneration of Peripheral Nerves following Sciatic Nerve Crush

    PubMed Central

    Morrison, Brett M.; Tsingalia, Akivaga; Vidensky, Svetlana; Lee, Youngjin; Jin, Lin; Farah, Mohamed H.; Lengacher, Sylvain; Magistretti, Pierre J.; Pellerin, Luc; Rothstein, Jeffrey D.

    2014-01-01

    Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence and MCT1 tdTomato BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves in MCT1 heterozygous null mice are crushed and peripheral nerve regeneration quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21 days in wild-type mice to greater than 38 days in MCT1 heterozygote null mice. In fact, half of the MCT1 heterozygote null mice have no recovery of CMAP at 42 days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42 days post-crush in the MCT1 heterozygote null mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote null mice at 4 weeks and tibial mixed sensory and motor nerve at 3 weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly through failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush. PMID:25447940

  5. Effects of capsaicin in the motor nerve.

    PubMed

    Pettorossi, V E; Bortolami, R; Della Torre, G; Brunetti, O

    1994-08-01

    The injection of capsaicin into the lateral gastrocnemius (LG) muscle of the rat induced an immediate and sustained reduction in the A delta and C components of the compound action potential (CAP) of the LG motor nerve. Conversely, the drug did not immediately affect the CAP wave belonging to fast-conducting fibers or the motor responses to LG nerve stimulation. It seems that capsaicin only affects the group III and IV afferents of LG nerve. However, a week after the injection the capsaicin also altered the motor responses, as shown by the threshold enhancement and amplitude reduction of the muscle twitch and by the decrease of the A alpha-beta CAP components. This late motor impairment was attributed to a central depression following a reduction of capsaicin-sensitive neuron input into the CNS. However, this motor effect was transient since the LG nerve regained the preinjection excitability level in a week and the muscle twitch amplitude reached the control value in a month.

  6. Upper airway sensory function in children with obstructive sleep apnea syndrome.

    PubMed

    Tapia, Ignacio E; Bandla, Preetam; Traylor, Joel; Karamessinis, Laurie; Huang, Jingtao; Marcus, Carole L

    2010-07-01

    Children with the obstructive sleep apnea syndrome (OSAS) have impaired responses to hypercapnia, subatmospheric pressure, and inspiratory resistive loading during sleep. This may be due, in part, to an impairment in the afferent limb of the upper airway sensory pathway. Therefore, we hypothesized that children with OSAS had diminished upper airway sensation compared to controls. Case-control. Academic hospital. Subjects with OSAS aged 6-16 years, and age- and BMI-matched controls. Two-point discrimination (TPD) was measured during wakefulness with modified calipers in the anterior tongue, right interior cheek, and hard palate. Thirteen children with OSAS and 9 controls were tested. The age (mean +/- SD) for OSAS and controls was 11 +/- 4 vs. 13 +/- 2 years (NS); OSAS BMI Z score 2.4 +/- 0.5, controls 2.2 +/- 0.5 (NS); OSAS apnea hypopnea index 31 +/- 48, controls 0.4 +/- 0.5 events/hour (P < 0.001). Children with OSAS had impaired TPD in the anterior tongue (median [range]) = 9 [3-14] mm, controls 3 [1-7], P = 0.002) and hard palate (OSAS 6 [3-9] mm, controls 3 [1-4], P < 0.001). TPD in the cheek was similar between the groups (P = 0.12). TPD in the anterior tongue and hard palate was impaired in children with OSAS during wakefulness. We speculate that this impairment might be due to a primary sensory function abnormality or secondary to nerve damage and/or hypoxemia caused by OSAS. Further studies after treatment of OSAS are needed.

  7. Depressed perivascular sensory innervation of mouse mesenteric arteries with advanced age.

    PubMed

    Boerman, Erika M; Segal, Steven S

    2016-04-15

    The dilatory role for sensory innervation of mesenteric arteries (MAs) is impaired in Old (∼24 months) versus Young (∼4 months) mice. We investigated the nature of this impairment in isolated pressurized MAs. With perivascular sensory nerve stimulation, dilatation and inhibition of sympathetic vasoconstriction observed in Young MAs were lost in Old MAs along with impaired dilatation to calcitonin gene-related peptide (CGRP). Inhibiting NO and prostaglandin synthesis increased CGRP EC50 in Young and Old MAs. Endothelial denudation attenuated dilatation to CGRP in Old MAs yet enhanced dilatation to CGRP in Young MAs while abolishing all dilatations to ACh. In Old MAs, sensory nerve density was reduced and RAMP1 (CGRP receptor component) associated with nuclear regions of endothelial cells in a manner not seen in Young MAs or in smooth muscle cells of either age. With advanced age, loss of dilatory signalling mediated through perivascular sensory nerves may compromise perfusion of visceral organs. Vascular dysfunction and sympathetic nerve activity increase with advancing age. In the gut, blood flow is governed by perivascular sensory and sympathetic nerves but little is known of how their functional role is affected by advanced age. We tested the hypothesis that functional sensory innervation of mesenteric arteries (MAs) is impaired for Old (24 months) versus Young (4 months) C57BL/6 male mice. In cannulated pressurized MAs preconstricted 50% with noradrenaline and treated with guanethidine (to inhibit sympathetic neurotransmission), perivascular nerve stimulation (PNS) evoked dilatation in Young but not Old MAs while dilatations to ACh were not different between age groups. In Young MAs, capsaicin (to inhibit sensory neurotransmission) blocked dilatation and increased constriction during PNS. With no difference in efficacy, the EC50 of CGRP as a vasodilator was ∼6-fold greater in Old versus Young MAs. Inhibiting nitric oxide (l-NAME) and prostaglandin

  8. Vagus Nerve as Modulator of the Brain–Gut Axis in Psychiatric and Inflammatory Disorders

    PubMed Central

    Breit, Sigrid; Kupferberg, Aleksandra; Rogler, Gerhard; Hasler, Gregor

    2018-01-01

    The vagus nerve represents the main component of the parasympathetic nervous system, which oversees a vast array of crucial bodily functions, including control of mood, immune response, digestion, and heart rate. It establishes one of the connections between the brain and the gastrointestinal tract and sends information about the state of the inner organs to the brain via afferent fibers. In this review article, we discuss various functions of the vagus nerve which make it an attractive target in treating psychiatric and gastrointestinal disorders. There is preliminary evidence that vagus nerve stimulation is a promising add-on treatment for treatment-refractory depression, posttraumatic stress disorder, and inflammatory bowel disease. Treatments that target the vagus nerve increase the vagal tone and inhibit cytokine production. Both are important mechanism of resiliency. The stimulation of vagal afferent fibers in the gut influences monoaminergic brain systems in the brain stem that play crucial roles in major psychiatric conditions, such as mood and anxiety disorders. In line, there is preliminary evidence for gut bacteria to have beneficial effect on mood and anxiety, partly by affecting the activity of the vagus nerve. Since, the vagal tone is correlated with capacity to regulate stress responses and can be influenced by breathing, its increase through meditation and yoga likely contribute to resilience and the mitigation of mood and anxiety symptoms. PMID:29593576

  9. Recording nerve signals in canine sciatic nerves with a flexible penetrating microelectrode array

    NASA Astrophysics Data System (ADS)

    Byun, Donghak; Cho, Sung-Joon; Lee, Byeong Han; Min, Joongkee; Lee, Jong-Hyun; Kim, Sohee

    2017-08-01

    Objective. Previously, we presented the fabrication and characterization of a flexible penetrating microelectrode array (FPMA) as a neural interface device. In the present study, we aim to prove the feasibility of the developed FPMA as a chronic intrafascicular recording tool for peripheral applications. Approach. For recording from the peripheral nerves of medium-sized animals, the FPMA was integrated with an interconnection cable and other parts that were designed to fit canine sciatic nerves. The uniformity of tip exposure and in vitro electrochemical properties of the electrodes were characterized. The capability of the device to acquire in vivo electrophysiological signals was evaluated by implanting the FPMA assembly in canine sciatic nerves acutely as well as chronically for 4 weeks. We also examined the histology of implanted tissues to evaluate the damage caused by the device. Main results. Throughout recording sessions, we observed successful multi-channel recordings (up to 73% of viable electrode channels) of evoked afferent and spontaneous nerve unit spikes with high signal quality (SNR  >  4.9). Also, minor influences of the device implantation on the morphology of nerve tissues were found. Significance. The presented results demonstrate the viability of the developed FPMA device in the peripheral nerves of medium-sized animals, thereby bringing us a step closer to human applications. Furthermore, the obtained data provide a driving force toward a further study for device improvements to be used as a bidirectional neural interface in humans.

  10. Massive Oculomotor Nerve Enlargement: A Case of Presumed Schwannomatosis.

    PubMed

    Donaldson, Laura; Rebello, Ryan; Rodriguez, Amadeo

    2017-06-01

    A 45-year-old man presented with a slowly progressive pupil-involving third nerve palsy. Magnetic resonance imaging (MRI) revealed a tubular lesion extending from the interpeduncular cistern through the cavernous sinus and into the left orbit where it branched into a superior and an inferior division, clearly outlining the anatomy of the third cranial nerve. Multiple other, less pronounced, enlarged cranial nerves were noted. The differential diagnosis included chronic inflammatory demyelinating polyneuropathy (CIDP), hereditary motor and sensory neuropathy (HMSN), neurofibromatosis (NF), and schwannomatosis. The absence of other muscle weakness and of sensory symptoms combined with normal peripheral nerve conduction studies effectively ruled out the hypertrophic polyneuropathies and pointed to a syndromic cause of multiple benign peripheral nerve sheath tumours (PNSTs). The authors are treating this case as presumed schwannomatosis, a syndrome similar to NF2 with much lower frequency of acoustic neuromas.

  11. Internal tobacco industry research on olfactory and trigeminal nerve response to nicotine and other smoke components.

    PubMed

    Megerdichian, Christine L; Rees, Vaughan W; Wayne, Geoffrey Ferris; Connolly, Gregory N

    2007-11-01

    Evidence has shown that factors other than the central pharmacological effects of nicotine are important in promoting smoking behavior. One such non-nicotine effect includes sensory stimulation, which may promote smoking by developing learned associations with nicotine's rewarding effects, or by constituting a rewarding experience independent of nicotine. The present study used internal tobacco industry documents to examine industry efforts to understand and manipulate stimulation of the sensory nerves by tobacco smoke, and the influence of sensory stimulation on smoker behavior. Research focused on sensory nerves of the head and neck, including the olfactory nerve, which carries flavor and odor, and the trigeminal nerve, which carries irritant information. The tobacco industry maintained a systematic research program designed to elucidate an understanding of responses of sensory nerves to nicotine and other components of tobacco smoke, and attempted to develop nicotine-like compounds that would enhance sensory responses in smokers. Industry research appeared intended to aid in the development of new products with greater consumer appeal. The potential influence of sensory response in enhancing nicotine dependence through an associative mechanism was acknowledged by the tobacco industry, but evidence for research in this area was limited. These findings add to evidence of industry manipulation of sensory factors to enhance smoking behavior and may have implications for development of more effective treatment strategies, including more "acceptable" nicotine replacement therapies.

  12. The blood flow in the periodontal ligament regulated by the sympathetic and sensory nerves in the cat.

    PubMed

    Karita, K; Izumi, H; Tabata, T; Kuriwada, S; Sasano, T; Sanjo, D

    1989-01-01

    This study was carried out to investigate the nervous control of the blood flow in the periodontal ligament measured by laser Doppler flowmeter. Ten adult cats were anesthetized with pentobarbital sodium (initial dose of 30 mg/kg, i.v. and maintenance dose of 5 mg/kg, i.v.). After enucleating the left eye ball, the superior alveolar nerve was exposed. The bone overlying the labial aspect of the left maxillary canine tooth root was pared away until a transparent layer of bone was left covering the periodontal ligament. A laser light from a probe of the flowmeter fixed at the tooth was beamed through the thinned bone. Three different patterns of responses were observed following the electrical stimulation of the distal end of the cut superior alveolar nerve: an increasing, a decreasing and a biphasic change of blood flow. The application of capsaicin onto the superior alveolar nerve reduced the response of blood flow increase but had no effect on the response of blood flow decrease. On the other hand, the response of blood flow decrease was completely inhibited by the pretreatment with phentolamine while the response of blood flow increase was not affected. The present results suggest that blood flow in the periodontal ligament of cats is controlled by sympathetic alpha-adrenergic fibers for vasoconstriction and by sensory fibers for vasodilation.

  13. Sensory neuropathy in two Border collie puppies.

    PubMed

    Vermeersch, K; Van Ham, L; Braund, K G; Bhatti, S; Tshamala, M; Chiers, K; Schrauwen, E

    2005-06-01

    A peripheral sensory neuropathy was diagnosed in two Border collie puppies. Neurological, electrophysiological and histopathological examinations suggested a purely sensory neuropathy with mainly distal involvement. Urinary incontinence was observed in one of the puppies and histological examination of the vagus nerve revealed degenerative changes. An inherited disorder was suspected.

  14. Artificial sensory organs: latest progress.

    PubMed

    Nakamura, Tatsuo; Inada, Yuji; Shigeno, Keiji

    2018-03-01

    This study introduces the latest progress on the study of artificial sensory organs, with a special emphasis on the clinical results of artificial nerves and the concept of in situ tissue engineering. Peripheral nerves have a strong potential for regeneration. An artificial nerve uses this potential to recover a damaged peripheral nerve. The polyglycolic acid collagen tube (PGA-C tube) is a bio-absorbable tube stuffed with collagen of multi-chamber structure that consists of thin collagen films. The clinical application of the PGA-C tube began in 2002 in Japan. The number of PGA-C tubes used is now beyond 300, and satisfactory results have been reported on peripheral nerve repairs. This PGA-C tube is also effective for patients suffering from neuropathic pain.

  15. The dimensions and characteristics of the subepidermal nerve plexus in human skin--terminal Schwann cells constitute a substantial cell population within the superficial dermis.

    PubMed

    Reinisch, Christina M; Tschachler, Erwin

    2012-03-01

    The skin constitutes the largest sensorial organ. Its nervous system consists of different types of afferent nerve fibers which spread out immediately beneath the skin surface to sense temperature, touch and pain. Our aim was to investigate the dimension and topographic relationship of the different nerve fibers of the subepidermal nerve plexus in human hairy skin and to analyze numbers and marker expression of terminal Schwann cells. Nerve fibers and Schwann cells were investigated on dermal sheet preparations and thick sections of skin from various body regions of 10 individuals. The dimension of subepidermal nerve fibers varied between different body sites with highest values in chest skin (100 ± 18 mm/mm(2)) and lowest in posterior forearm skin (53 ± 10 mm/mm(2)). The majority of fibers (85.79%) were unmyelinated, thus representing C-fibers, of which 7.84% were peptidergic. Neurofilament-positive fibers (A-fibers) accounted for 14.21% and fibers positive for both neurofilament and myelin (Aβ-fibers) for only 0.18%. The number of Schwann cells varied in accordance with nerve fiber length from 453 ± 108 on chest skin to 184 ± 58/mm(2) in skin of the posterior forearm. Terminal Schwann cells showed a marker profile comparable to Schwann cells in peripheral nerves with the notable exception of expression of NGFr, NCAM, L1CAM and CD146 on myelinating Schwann cells in the dermis but not in peripheral nerves. Our data show that terminal Schwann cells constitute a substantial cell population within the papillary dermis and that both nerve fiber length and Schwann cell numbers vary considerably between different body sites. Copyright © 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Robo2 determines subtype-specific axonal projections of trigeminal sensory neurons

    PubMed Central

    Pan, Y. Albert; Choy, Margaret; Prober, David A.; Schier, Alexander F.

    2012-01-01

    How neurons connect to form functional circuits is central to the understanding of the development and function of the nervous system. In the somatosensory system, perception of sensory stimuli to the head requires specific connections between trigeminal sensory neurons and their many target areas in the central nervous system. Different trigeminal subtypes have specialized functions and downstream circuits, but it has remained unclear how subtype-specific axonal projection patterns are formed. Using zebrafish as a model system, we followed the development of two trigeminal sensory neuron subtypes: one that expresses trpa1b, a nociceptive channel important for sensing environmental chemicals; and a distinct subtype labeled by an islet1 reporter (Isl1SS). We found that Trpa1b and Isl1SS neurons have overall similar axon trajectories but different branching morphologies and distributions of presynaptic sites. Compared with Trpa1b neurons, Isl1SS neurons display reduced branch growth and synaptogenesis at the hindbrain-spinal cord junction. The subtype-specific morphogenesis of Isl1SS neurons depends on the guidance receptor Robo2. robo2 is preferentially expressed in the Isl1SS subset and inhibits branch growth and synaptogenesis. In the absence of Robo2, Isl1SS afferents acquire many of the characteristics of Trpa1b afferents. These results reveal that subtype-specific activity of Robo2 regulates subcircuit morphogenesis in the trigeminal sensory system. PMID:22190641

  17. Xenin Augments Duodenal Anion Secretion via Activation of Afferent Neural Pathways

    PubMed Central

    Kaji, Izumi; Akiba, Yasutada; Kato, Ikuo; Maruta, Koji; Kuwahara, Atsukazu

    2017-01-01

    Xenin-25, a neurotensin (NT)-related anorexigenic gut hormone generated mostly in the duodenal mucosa, is believed to increase the rate of duodenal ion secretion, because xenin-induced diarrhea is not present after Roux-en-Y gastric bypass surgery. Because the local effects of xenin on duodenal ion secretion have remained uninvestigated, we thus examined the neural pathways underlying xenin-induced duodenal anion secretion. Intravenous infusion of xenin-8, a bioactive C-terminal fragment of xenin-25, dose dependently increased the rate of duodenal HCO3− secretion in perfused duodenal loops of anesthetized rats. Xenin was immunolocalized to a subset of enteroendocrine cells in the rat duodenum. The mRNA of the xenin/NT receptor 1 (NTS1) was predominantly expressed in the enteric plexus, nodose and dorsal root ganglia, and in the lamina propria rather than in the epithelium. The serosal application of xenin-8 or xenin-25 rapidly and transiently increased short-circuit current in Ussing-chambered mucosa-submucosa preparations in a concentration-dependent manner in the duodenum and jejunum, but less so in the ileum and colon. The selective antagonist for NTS1, substance P (SP) receptor (NK1), or 5-hydroxytryptamine (5-HT)3, but not NTS2, inhibited the responses to xenin. Xenin-evoked Cl- secretion was reduced by tetrodotoxin (TTX) or capsaicin-pretreatment, and abolished by the inhibitor of TTX-resistant sodium channel Nav1.8 in combination with TTX, suggesting that peripheral xenin augments duodenal HCO3− and Cl− secretion through NTS1 activation on intrinsic and extrinsic afferent nerves, followed by release of SP and 5-HT. Afferent nerve activation by postprandial, peripherally released xenin may account for its secretory effects in the duodenum. PMID:28115552

  18. Stochastic resonance in the synaptic transmission between hair cells and vestibular primary afferents in development.

    PubMed

    Flores, A; Manilla, S; Huidobro, N; De la Torre-Valdovinos, B; Kristeva, R; Mendez-Balbuena, I; Galindo, F; Treviño, M; Manjarrez, E

    2016-05-13

    The stochastic resonance (SR) is a phenomenon of nonlinear systems in which the addition of an intermediate level of noise improves the response of such system. Although SR has been studied in isolated hair cells and in the bullfrog sacculus, the occurrence of this phenomenon in the vestibular system in development is unknown. The purpose of the present study was to explore for the existence of SR via natural mechanical-stimulation in the hair cell-vestibular primary afferent transmission. In vitro experiments were performed on the posterior semicircular canal of the chicken inner ear during development. Our experiments showed that the signal-to-noise ratio of the afferent multiunit activity from E15 to P5 stages of development exhibited the SR phenomenon, which was characterized by an inverted U-like response as a function of the input noise level. The inverted U-like graphs of SR acquired their higher amplitude after the post-hatching stage of development. Blockage of the synaptic transmission with selective antagonists of the NMDA and AMPA/Kainate receptors abolished the SR of the afferent multiunit activity. Furthermore, computer simulations on a model of the hair cell - primary afferent synapse qualitatively reproduced this SR behavior and provided a possible explanation of how and where the SR could occur. These results demonstrate that a particular level of mechanical noise on the semicircular canals can improve the performance of the vestibular system in their peripheral sensory processing even during embryonic stages of development. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. "Long-term stability of stimulating spiral nerve cuff electrodes on human peripheral nerves".

    PubMed

    Christie, Breanne P; Freeberg, Max; Memberg, William D; Pinault, Gilles J C; Hoyen, Harry A; Tyler, Dustin J; Triolo, Ronald J

    2017-07-11

    Electrical stimulation of the peripheral nerves has been shown to be effective in restoring sensory and motor functions in the lower and upper extremities. This neural stimulation can be applied via non-penetrating spiral nerve cuff electrodes, though minimal information has been published regarding their long-term performance for multiple years after implantation. Since 2005, 14 human volunteers with cervical or thoracic spinal cord injuries, or upper limb amputation, were chronically implanted with a total of 50 spiral nerve cuff electrodes on 10 different nerves (mean time post-implant 6.7 ± 3.1 years). The primary outcome measures utilized in this study were muscle recruitment curves, charge thresholds, and percent overlap of recruited motor unit populations. In the eight recipients still actively involved in research studies, 44/45 of the spiral contacts were still functional. In four participants regularly studied over the course of 1 month to 10.4 years, the charge thresholds of the majority of individual contacts remained stable over time. The four participants with spiral cuffs on their femoral nerves were all able to generate sufficient moment to keep the knees locked during standing after 2-4.5 years. The dorsiflexion moment produced by all four fibular nerve cuffs in the active participants exceeded the value required to prevent foot drop, but no tibial nerve cuffs were able to meet the plantarflexion moment that occurs during push-off at a normal walking speed. The selectivity of two multi-contact spiral cuffs was examined and both were still highly selective for different motor unit populations for up to 6.3 years after implantation. The spiral nerve cuffs examined remain functional in motor and sensory neuroprostheses for 2-11 years after implantation. They exhibit stable charge thresholds, clinically relevant recruitment properties, and functional muscle selectivity. Non-penetrating spiral nerve cuff electrodes appear to be a suitable option

  20. Afferent innervation patterns of the saccule in pigeons

    NASA Technical Reports Server (NTRS)

    Zakir, M.; Huss, D.; Dickman, J. D.

    2003-01-01

    The innervation patterns of vestibular saccular afferents were quantitatively investigated in pigeons using biotinylated dextran amine as a neural tracer and three-dimensional computer reconstruction. Type I hair cells were found throughout a large portion of the macula, with the highest density observed in the striola. Type II hair cells were located throughout the macula, with the highest density in the extrastriola. Three classes of afferent innervation patterns were observed, including calyx, dimorph, and bouton units, with 137 afferents being anatomically reconstructed and used for quantitative comparisons. Calyx afferents were located primarily in the striola, innervated a number of type I hair cells, and had small innervation areas. Most calyx afferent terminal fields were oriented parallel to the anterior-posterior axis and the morphological polarization reversal line. Dimorph afferents were located throughout the macula, contained fewer type I hair cells in a calyceal terminal than calyx afferents and had medium sized innervation areas. Bouton afferents were restricted to the extrastriola, with multi-branching fibers and large innervation areas. Most of the dimorph and bouton afferents had innervation fields that were oriented dorso-ventrally but were parallel to the neighboring reversal line. The organizational morphology of the saccule was found to be distinctly different from that of the avian utricle or lagena otolith organs and appears to represent a receptor organ undergoing evolutionary adaptation toward sensing linear motion in terrestrial and aerial species.

  1. An ultrastructural study of calcitonin gene-related peptide-immunoreactive nerve fibers innervating the rat posterior longitudinal ligament. A morphologic basis for their possible efferent actions.

    PubMed

    Imai, S; Konttinen, Y T; Tokunaga, Y; Maeda, T; Hukuda, S; Santavirta, S

    1997-09-01

    The present study investigated ultrastructural characteristics of calcitonin gene-related peptide-immunoreactive nerve fibers in the posterior longitudinal ligament of the rat lumbar spine. To provide a morphologic basis for assessment of the afferent and, in particular, efferent functions of calcitonin gene-related peptide immunoreactive nerves in the posterior longitudinal ligament and their eventual role in degenerative spondylarthropathies and low back pain. Previous studies using light-microscopic localization of sensory neuronal markers such as calcitonin gene-related peptide have reported the presence of sensory fibers in the supporting structures of the vertebral column. Meanwhile, accumulating research data have suggested efferent properties for calcitonin gene-related peptide, i.e., a trophic action that alters the intrinsic properties of target cells not through transient action of synaptic transmission, but through long-lasting signal transmission by the secreted neuropeptides. To verify such trophic, paracrine actions of the calcitonin gene-related peptide-containing fibers in the posterior longitudinal ligament, however, ultrastructural details of the terminals and their spatial relationship to their eventual target structures have to be elucidated. Rat posterior longitudinal ligaments were stained immunohistochemically for calcitonin gene-related peptide. Light-microscopic analysis of the semithin sections facilitated subsequent electron microscopy of specific sites of the posterior longitudinal ligament to determine ultrastructural details and nerve fiber-target relationships. The rat lumbar posterior longitudinal ligament was found to be innervated by two distinctive calcitonin gene-related peptide immunoreactive nerve networks. In immunoelectronmicroscopy, the fibers of the deep network had numerous free nerve endings, whereas those of the superficial network showed spatial associations with other non-calcitonin gene-related peptide immunoreactive

  2. Massive Oculomotor Nerve Enlargement: A Case of Presumed Schwannomatosis

    PubMed Central

    Donaldson, Laura; Rebello, Ryan; Rodriguez, Amadeo

    2017-01-01

    ABSTRACT A 45-year-old man presented with a slowly progressive pupil-involving third nerve palsy. Magnetic resonance imaging (MRI) revealed a tubular lesion extending from the interpeduncular cistern through the cavernous sinus and into the left orbit where it branched into a superior and an inferior division, clearly outlining the anatomy of the third cranial nerve. Multiple other, less pronounced, enlarged cranial nerves were noted. The differential diagnosis included chronic inflammatory demyelinating polyneuropathy (CIDP), hereditary motor and sensory neuropathy (HMSN), neurofibromatosis (NF), and schwannomatosis. The absence of other muscle weakness and of sensory symptoms combined with normal peripheral nerve conduction studies effectively ruled out the hypertrophic polyneuropathies and pointed to a syndromic cause of multiple benign peripheral nerve sheath tumours (PNSTs). The authors are treating this case as presumed schwannomatosis, a syndrome similar to NF2 with much lower frequency of acoustic neuromas. PMID:28512503

  3. Reduced Short- and Long-Latency Afferent Inhibition Following Acute Muscle Pain: A Potential Role in the Recovery of Motor Output.

    PubMed

    Burns, Emma; Chipchase, Lucinda Sian; Schabrun, Siobhan May

    2016-02-13

    . Corticomotor output is reduced in response to acute muscle pain, yet the mechanisms that underpin this effect remain unclear. Here the authors investigate the effect of acute muscle pain on short-latency afferent inhibition, long-latency afferent inhibition, and long-interval intra-cortical inhibition to determine whether these mechanisms could plausibly contribute to reduced motor output in pain. . Observational same subject pre-post test design. . Neurophysiology research laboratory. . Healthy, right-handed human volunteers (n = 22, 9 male; mean age ± standard deviation, 22.6 ± 7.8 years). . Transcranial magnetic stimulation was used to assess corticomotor output, short-latency afferent inhibition, long-latency afferent inhibition, and long-interval intra-cortical inhibition before, during, immediately after, and 15 minutes after hypertonic saline infusion into right first dorsal interosseous muscle. Pain intensity and quality were recorded using an 11-point numerical rating scale and the McGill Pain Questionnaire. . Compared with baseline, corticomotor output was reduced at all time points (p = 0.001). Short-latency afferent inhibition was reduced immediately after (p = 0.039), and long-latency afferent inhibition 15 minutes after (p = 0.035), the resolution of pain. Long-interval intra-cortical inhibition was unchanged at any time point (p = 0.36). . These findings suggest short- and long-latency afferent inhibition, mechanisms thought to reflect the integration of sensory information with motor output at the cortex, are reduced following acute muscle pain. Although the functional relevance is unclear, the authors hypothesize a reduction in these mechanisms may contribute to the restoration of normal motor output after an episode of acute muscle pain. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Breast Reinnervation: DIEP Neurotization Using the Third Anterior Intercostal Nerve

    PubMed Central

    Menn, Zachary K.; Eldor, Liron; Kaufman, Yoav; Dellon, A. Lee

    2013-01-01

    Background: The purpose of this article is to evaluate a new method of DIEP flap neurotization using a reliably located recipient nerve. We hypothesize that neurotization by this method (with either nerve conduit or direct nerve coaptation) will have a positive effect on sensory recovery. Methods: Fifty-seven deep inferior epigastric perforator (DIEP) flaps were performed on 35 patients. Neurotizations were performed to the third anterior intercostal nerve by directly coapting the flap donor nerve or coapting with a nerve conduit. Nine nonneurotized DIEP flaps served as controls and received no attempted neurotization. All patients were tested for breast sensibility in 9 areas of the flap skin-island and adjacent postmastectomy skin. Testing occurred at an average of 111 weeks (23–309) postoperatively. Results: At a mean of 111 weeks after breast reconstruction, neurotization of the DIEP flap resulted in recovery of sensibility that was statistically significantly better (lower threshold) in the flap skin (P < 0.01) and statistically significantly better than in the native mastectomy skin into which the DIEP flap was inserted (P < 0.01). Sensibility recovered in DIEP flaps neurotized using the nerve conduit was significantly better (lower threshold) than that in the corresponding areas of the DIEP flaps neurotized by direct coaptation (P < 0.01). Conclusion: DIEP flap neurotization using the third anterior intercostal nerve is an effective technique to provide a significant increase in sensory recovery for breast reconstruction patients, while adding minimal surgical time. Additionally, the use of a nerve conduit produces increased sensory recovery when compared direct coaptation. PMID:25289267

  5. Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog

    NASA Technical Reports Server (NTRS)

    Cochran, S. L.

    1995-01-01

    The concentrations of inorganic cations (K+, Na+, and Ca2+) bathing the isolated frog labyrinth were varied in order to assess their role in influencing and mediating synaptic transmission at the hair cell-afferent fiber synapse. Experiments employed intracellular recordings of synaptic activity from VIIIth nerve afferents. Recordings were digitized continuously at 50 kHz, and excitatory postsynaptic potentials were detected and parameters quantified by computer algorithms. Particular attention was focused on cationic effects upon excitatory postsynaptic potential frequency of occurrence and excitatory postsynaptic potential amplitude, in order to discriminate between pre- and postsynaptic actions. Because the small size of afferents preclude long term stable recordings, alterations in cationic concentrations were applied transiently and their peak effects on synaptic activity were assessed. Increases in extracellular K+ concentration of a few millimolar produced a large increase in the frequency of occurrence of excitatory postsynaptic potentials with little change in amplitude, indicating that release of transmitter from the hair cell is tightly coupled to its membrane potential. Increasing extracellular Na+ concentration resulted in an increase in excitatory postsynaptic potential amplitude with no significant change in excitatory postsynaptic potential frequency of occurrence, suggesting that the transmitter-gated subsynaptic channel conducts Na+ ions. Decreases in extracellular Ca2+ concentration had little effect upon excitatory postsynaptic potential frequency, but increased excitatory postsynaptic potential frequency and amplitude. These findings suggest that at higher concentrations Ca2+ act presynaptically to prevent transmitter release and postsynaptically to prevent Na+ influx during the generation of the excitatory postsynaptic potential. The influences of these ions on synaptic activity at this synapse are remarkably similar to those reported at the

  6. Evidence that antidromically stimulated vagal afferents activate inhibitory neurones innervating guinea-pig trachealis.

    PubMed Central

    Canning, B J; Undem, B J

    1994-01-01

    1. We recently described a capsaicin-sensitive vagal pathway mediating non-adrenergic, non-cholinergic (NANC) relaxations of an isolated, innervated rostral guinea-pig tracheal preparation. These afferent fibres are carried by the superior laryngeal nerves and relaxations elicited by their activation are insensitive to autonomic ganglion blockers such as hexamethonium. In the present study this vagal relaxant pathway was further characterized. 2. Relaxations of the trachealis elicited by electrical stimulation of capsaicin-sensitive vagal afferents were mimicked by bath application of capsaicin. Relaxations elicited by both methods were abolished when the tissue between the trachea and the adjacent oesophagus was disrupted. Indeed, separating the trachea from the oesophagus uncovered a contractile effect of capsaicin administration on the trachealis. 3. Capsaicin-induced, oesophagus-dependent relaxations of the trachealis were blocked by pretreatment with the fast sodium channel blocker tetrodotoxin (TTX). By contrast, capsaicin-induced contractions of the trachealis (obtained in the absence of the oesophagus) were unaffected by tetrodotoxin. 4. Substance P, neurokinin A (NKA) and neurokinin B (NKB) also elicited NANC relaxations of precontracted trachealis that were abolished by separating the trachea from the oesophagus or by TTX pretreatment. Like capsaicin, the tachykinins elicited only contractions of the trachealis following TTX pretreatment or separation of the trachea from the adjacent oesophagus. 5. Relaxations elicited by stimulation of the capsaicin-sensitive nerves were unaffected by a concentration of the tachykinin NK2 receptor-selective antagonist, SR 48968, that is selective for NK2 receptor blockade and were not mimicked by the NK2 receptor-selective agonist [beta-Ala8]-NKA(4-10). This suggests that NK2 receptors are not responsible for these relaxations. By contrast, the NK3 receptor-selective agonist, senktide analogue, and the NK1 receptor

  7. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in squirrel monkey vestibular nuclei. III. Correlation with vestibulospinal and vestibuloocular output pathways

    NASA Technical Reports Server (NTRS)

    Boyle, R.; Goldberg, J. M.; Highstein, S. M.

    1992-01-01

    1. A previous study measured the relative contributions made by regularly and irregularly discharging afferents to the monosynaptic vestibular nerve (Vi) input of individual secondary neurons located in and around the superior vestibular nucleus of barbiturate-anesthetized squirrel monkeys. Here, the analysis is extended to more caudal regions of the vestibular nuclei, which are a major source of both vestibuloocular and vestibulospinal pathways. As in the previous study, antidromic stimulation techniques are used to classify secondary neurons as oculomotor or spinal projecting. In addition, spinal-projecting neurons are distinguished by their descending pathways, their termination levels in the spinal cord, and their collateral projections to the IIIrd nucleus. 2. Monosynaptic excitatory postsynaptic potentials (EPSPs) were recorded intracellularly from secondary neurons as shocks of increasing strength were applied to Vi. Shocks were normalized in terms of the threshold (T) required to evoke field potentials in the vestibular nuclei. As shown previously, the relative contribution of irregular afferents to the total monosynaptic Vi input of each secondary neuron can be expressed as a %I index, the ratio (x100) of the relative sizes of the EPSPs evoked by shocks of 4 x T and 16 x T. 3. Antidromic stimulation was used to type secondary neurons as 1) medial vestibulospinal tract (MVST) cells projecting to spinal segments C1 or C6; 2) lateral vestibulospinal tract (LVST) cells projecting to C1, C6; or L1; 3) vestibulooculo-collic (VOC) cells projecting both to the IIIrd nucleus and by way of the MVST to C1 or C6; and 4) vestibuloocular (VOR) neurons projecting to the IIIrd nucleus but not to the spinal cord. Most of the neurons were located in the lateral vestibular nucleus (LV), including its dorsal (dLV) and ventral (vLV) divisions, and adjacent parts of the medial (MV) and descending nuclei (DV). Cells receiving quite different proportions of their direct inputs

  8. Involvement of substance P present in primary afferent neurones in modulation of cutaneous blood flow in the instep of rat hind paw.

    PubMed Central

    Yonehara, N.; Chen, J. Q.; Imai, Y.; Inoki, R.

    1992-01-01

    1. The participation of small-diameter afferent fibres in the microcirculatory haemodynamics of cutaneous tissue was examined by studies on the effects of antidromic stimulation of primary afferent neurones on cutaneous blood flow (CBF) and tachykinin release into the subcutaneous space in the instep of the hind paw of rats. 2. Antidromic stimulation of the sectioned sciatic nerve induced a biphasic flow response, an initial transient decrease followed by an increase, with no alteration in the blood pressure. 3. Neither phase was affected by pretreatment with phentolamine (0.1 mg kg-1, i.a.), propranolol (0.5 mg kg-1, i.a.), atropine (0.5 mg kg-1, i.a.), methysergide (0.5 mg kg-1, i.a.) or mepyramine (10 mg kg-1, i.a.) plus cimetidine (10 mg kg-1, i.a.), but both were significantly inhibited by pretreatment with capsaicin (50 mg kg-1, s.c.). 4. Spantide (1-2 mumol kg-1, i.a.), a substance P (SP) antagonist, reduced the basal CBF, and also inhibited both phases of the biphasic flow response evoked by antidromic stimulation of the sectioned sciatic nerve. 5. Intra-arterial infusion of SP (0.5 mumol kg-1, i.a.) induced a biphasic flow response similar to that elicited by antidromic stimulation of the sectioned sciatic nerve. 6. Antidromic stimulation of the sectioned sciatic nerve caused a marked increase in SP release into the subcutaneous perfusate of the instep of the rat hind paw, but no detectable increase in neurokinin A release.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1382777

  9. Decoding tactile afferent activity to obtain an estimate of instantaneous force and torque applied to the fingerpad

    PubMed Central

    Birznieks, Ingvars; Redmond, Stephen J.

    2015-01-01

    Dexterous manipulation is not possible without sensory information about object properties and manipulative forces. Fundamental neuroscience has been unable to demonstrate how information about multiple stimulus parameters may be continuously extracted, concurrently, from a population of tactile afferents. This is the first study to demonstrate this, using spike trains recorded from tactile afferents innervating the monkey fingerpad. A multiple-regression model, requiring no a priori knowledge of stimulus-onset times or stimulus combination, was developed to obtain continuous estimates of instantaneous force and torque. The stimuli consisted of a normal-force ramp (to a plateau of 1.8, 2.2, or 2.5 N), on top of which −3.5, −2.0, 0, +2.0, or +3.5 mNm torque was applied about the normal to the skin surface. The model inputs were sliding windows of binned spike counts recorded from each afferent. Models were trained and tested by 15-fold cross-validation to estimate instantaneous normal force and torque over the entire stimulation period. With the use of the spike trains from 58 slow-adapting type I and 25 fast-adapting type I afferents, the instantaneous normal force and torque could be estimated with small error. This study demonstrated that instantaneous force and torque parameters could be reliably extracted from a small number of tactile afferent responses in a real-time fashion with stimulus combinations that the model had not been exposed to during training. Analysis of the model weights may reveal how interactions between stimulus parameters could be disentangled for complex population responses and could be used to test neurophysiologically relevant hypotheses about encoding mechanisms. PMID:25948866

  10. Nerve Cross-Bridging to Enhance Nerve Regeneration in a Rat Model of Delayed Nerve Repair

    PubMed Central

    2015-01-01

    There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1) CP neurons that regenerated their axons within three months or 2) CP motor nerves that reinnervated the extensor digitorum longus (EDL) muscle within five months was determined by counting and motor unit number estimation (MUNE), respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays. PMID:26016986

  11. TUTORIAL: Beyond sensory substitution—learning the sixth sense

    NASA Astrophysics Data System (ADS)

    Nagel, Saskia K.; Carl, Christine; Kringe, Tobias; Märtin, Robert; König, Peter

    2005-12-01

    Rapid advances in neuroscience have sparked numerous efforts to study the neural correlate of consciousness. Prominent subjects include higher sensory area, distributed assemblies bound by synchronization of neuronal activity and neurons in specific cortical laminae. In contrast, it has been suggested that the quality of sensory awareness is determined by systematic change of afferent signals resulting from behaviour and knowledge thereof. Support for such skill-based theories of perception is provided by experiments on sensory substitution. Here, we pursue this line of thought and create new sensorimotor contingencies and, hence, a new quality of perception. Adult subjects received orientation information, obtained by a magnetic compass, via vibrotactile stimulation around the waist. After six weeks of training we evaluated integration of the new input by a battery of tests. The results indicate that the sensory information provided by the belt (1) is processed and boosts performance, (2) if inconsistent with other sensory signals leads to variable performance, (3) does interact with the vestibular nystagmus and (4) in half of the experimental subjects leads to qualitative changes of sensory experience. These data support the hypothesis that new sensorimotor contingencies can be learned and integrated into behaviour and affect perceptual experience.

  12. Plasticity of gastro-intestinal vagal afferent endings.

    PubMed

    Kentish, Stephen J; Page, Amanda J

    2014-09-01

    Vagal afferents are a vital link between the peripheral tissue and central nervous system (CNS). There is an abundance of vagal afferents present within the proximal gastrointestinal tract which are responsible for monitoring and controlling gastrointestinal function. Whilst essential for maintaining homeostasis there is a vast amount of literature emerging which describes remarkable plasticity of vagal afferents in response to endogenous as well as exogenous stimuli. This plasticity for the most part is vital in maintaining healthy processes; however, there are increased reports of vagal plasticity being disrupted in pathological states, such as obesity. Many of the disruptions, observed in obesity, have the potential to reduce vagal afferent satiety signalling which could ultimately perpetuate the obese state. Understanding how plasticity occurs within vagal afferents will open a whole new understanding of gut function as well as identify new treatment options for obesity. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Deficiency in monocarboxylate transporter 1 (MCT1) in mice delays regeneration of peripheral nerves following sciatic nerve crush.

    PubMed

    Morrison, Brett M; Tsingalia, Akivaga; Vidensky, Svetlana; Lee, Youngjin; Jin, Lin; Farah, Mohamed H; Lengacher, Sylvain; Magistretti, Pierre J; Pellerin, Luc; Rothstein, Jeffrey D

    2015-01-01

    Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence in wild-type mice and tdTomato fluorescence in MCT1 BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves of MCT1 heterozygous null mice are crushed and peripheral nerve regeneration was quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21 days in wild-type mice to greater than 38 days in MCT1 heterozygote null mice. In fact, half of the MCT1 heterozygote null mice have no recovery of CMAP at 42 days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42 days post-crush in the MCT1 heterozygote null mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote null mice at 4 weeks and tibial mixed sensory and motor nerve at 3 weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly due to failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Large Extremity Peripheral Nerve Repair

    DTIC Science & Technology

    2014-10-01

    Shahani B. Peripheral-nerve allotransplantation in rats immunosuppressed with transient or long-term FK-506. Journal of reconstructive microsurgery ...multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions . Microsurgery . 2012 Jan;32(1):1-14. PubMed PMID: 22121093...PTB method can provide fixation strengths 6 approaching that of conventional microsurgery and that the PTB repair is unlikely to be disturbed in

  15. Ulnar nerve entrapment in Guyon's canal due to a lipoma.

    PubMed

    Ozdemir, O; Calisaneller, T; Gerilmez, A; Gulsen, S; Altinors, N

    2010-09-01

    Guyon's canal syndrome is an ulnar nerve entrapment at the wrist or palm that can cause motor, sensory or combined motor and sensory loss due to various factors . In this report, we presented a 66-year-old man admitted to our clinic with a history of intermittent pain in the left palm and numbness in 4th and 5th finger for two years. His neurological examination revealed a sensory impairment in the right fifth finger. Also, physical examination displayed a subcutaneous mobile soft tissue in ulnar side of the wrist. Electromyographic examination confirmed the diagnosis of type-1 Guyon's canal syndrome. Under axillary blockage, a lipoma compressing the ulnar nerve was excised totally and ulnar nerve was decompressed. The symptoms were improved after the surgery and patient was symptom free on 3rd postoperative week.

  16. Reinnervation following catheter-based radio-frequency renal denervation.

    PubMed

    Booth, Lindsea C; Nishi, Erika E; Yao, Song T; Ramchandra, Rohit; Lambert, Gavin W; Schlaich, Markus P; May, Clive N

    2015-04-20

    were normal, indicating reinnervation. Anatomical measures of renal innervation by sympathetic efferent nerves (tissue noradrenaline and tyrosine hydroxylase) and afferent sensory nerves (calcitonin gene-related peptide) demonstrated large decreases at 1 week postdenervation, but normal levels at 11 months postdenervation. In summary, catheter-based renal denervation is effective, but reinnervation occurs. Studies of central and renal changes postdenervation are required to understand the causes of the prolonged hypotensive response to catheter-based renal denervation in human hypertension. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  17. Reliability of the nerve conduction monitor in repeated measures of median and ulnar nerve latencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington, I A

    According to the Bureau of Labor Statistics, carpal tunnel syndrome (CTS), one of the most rapidly growing work-related injuries, cost American businesses up to $10 billion dollars in medical costs each year (1992). Because conservative therapy can be implemented and CTS is more reversible in it early stages, early detection will not only save industry unnecessary health care costs, but also prevent employees from experiencing debilitating pain and unnecessary surgery. In response to the growing number of cases of CTS, many companies have introduced screening tools to detect early stages of carpal tunnel syndrome. Neurotron Medical (New Jersey) has designedmore » a portable nerve conduction monitor (Nervepace S-200) which measures motor and sensory nerve latencies. The slowing of these latencies is one diagnostic indicator of carpal tunnel syndrome. In this study, we determined the reliability of the Nervepace Monitor in measure ulnar and median nerve latencies during repeated testing. The testing was performed on 28 normal subjects between the ages of 20 and 35 who had no prior symptoms of CTS. They were tested at the same time each day for three consecutive days. Nerve latencies between different ethnic groups and genders were compared. Results show that there was no significant daily variation of the median motor and lunar sensory latencies or the median sensory latencies. No significant differences of latencies was observed among ethnic groups; however, a significant difference of latencies between male and female subjects was observed (p<0.05).« less

  18. The Trigeminal (V) and Facial (VII) Cranial Nerves

    PubMed Central

    Sanders, Richard D.

    2010-01-01

    There are close functional and anatomical relationships between cranial nerves V and VII in both their sensory and motor divisions. Sensation on the face is innervated by the trigeminal nerves (V) as are the muscles of mastication, but the muscles of facial expression are innervated mainly by the facial nerve (VII) as is the sensation of taste. This article briefly reviews the anatomy of these cranial nerves, disorders of these nerves that are of particular importance to psychiatry, and some considerations for differential diagnosis. PMID:20386632

  19. Urothelial effects of oral agents for overactive bladder.

    PubMed

    Andersson, Karl-Erik; Fullhase, Claudius; Soler, Roberto

    2008-11-01

    The cholinergic system of the bladder includes muscarinic receptors distributed to detrusor myocytes and structures within mucosa including bladder afferent (sensory) nerves. The receptors have been shown to be involved in afferent signaling from the bladder, but it has not been established to what extent effects on this mucosal signaling pathway contribute to the therapeutic efficacy of the clinically used antimuscarinics. Mucosa can be influenced by antimuscarinics via the bloodstream. However, some antimuscarinics and their active metabolites are excreted in urine in amounts that may affect the mucosal muscarinic receptors from the luminal side. This has not yet been demonstrated to imply superior clinical efficacy. Nevertheless, mucosal afferent signaling pathways are therapeutically interesting targets that should be further explored.

  20. MEAL PARAMETERS AND VAGAL GASTROINTESTINAL AFFERENTS IN MICE THAT EXPERIENCED EARLY POSTNATAL OVERNUTRITION

    PubMed Central

    Biddinger, Jessica E.; Fox, Edward A.

    2010-01-01

    Early postnatal overnutrition results in a predisposition to develop obesity due in part to hypothalamic and sympathetic dysfunction. Potential involvement of another major regulatory system component - the vagus nerve - has not been examined. Moreover, feeding disturbances have rarely been investigated prior to development of obesity when confounds due to obesity are minimized. To examine these issues, litters were culled on the day of birth to create small litters (SL; overnutrition), or normal-size litters (NL; normal nutrition). Body weight, fat pad weight, meal patterns, and vagal sensory duodenal innervation were compared between SL and NL adult mice prior to development of obesity. Meal patterns were studied 18 hour/day for 3 weeks using a balanced diet. Then vagal mechanoreceptors were labeled using anterograde transport of wheatgerm agglutinin-horseradish peroxidase injected into the nodose ganglion and their density and morphology were examined. Between postnatal day 1 and weaning, body weight of SL mice was greater than for NL mice. By young adulthood it was similar in both groups, whereas SL fat pad weight was greater in males, suggesting postnatal overnutrition produced a predisposition to obesity. SL mice exhibited increased food intake, decreased satiety ratio, and increased first meal rate (following mild food deprivation) compared to NL mice, suggesting postnatal overnutrition disrupted satiety. The density and structure of intestinal IGLEs appeared similar in SL and NL mice. Thus, although a vagal role cannot be excluded, our meal parameter and anatomical findings provided no evidence for significant postnatal overnutrition effects on vagal gastrointestinal afferents. PMID:20403369

  1. Meal parameters and vagal gastrointestinal afferents in mice that experienced early postnatal overnutrition.

    PubMed

    Biddinger, Jessica E; Fox, Edward A

    2010-08-04

    Early postnatal overnutrition results in a predisposition to develop obesity due in part to hypothalamic and sympathetic dysfunction. Potential involvement of another major regulatory system component--the vagus nerve--has not been examined. Moreover, feeding disturbances have rarely been investigated prior to development of obesity when confounds due to obesity are minimized. To examine these issues, litters were culled on the day of birth to create small litters (SL; overnutrition), or normal size litters (NL; normal nutrition). Body weight, fat pad weight, meal patterns, and vagal sensory duodenal innervation were compared between SL and NL adult mice prior to development of obesity. Meal patterns were studied 18 h/day for 3 weeks using a balanced diet. Then vagal mechanoreceptors were labeled using anterograde transport of wheatgerm agglutinin-horseradish peroxidase injected into the nodose ganglion and their density and morphology were examined. Between postnatal day 1 and weaning, body weight of SL mice was greater than for NL mice. By young adulthood it was similar in both groups, whereas SL fat pad weight was greater in males, suggesting postnatal overnutrition produced a predisposition to obesity. SL mice exhibited increased food intake, decreased satiety ratio, and increased first meal rate (following mild food deprivation) compared to NL mice, suggesting postnatal overnutrition disrupted satiety. The density and structure of intestinal IGLEs appeared similar in SL and NL mice. Thus, although a vagal role cannot be excluded, our meal parameter and anatomical findings provided no evidence for significant postnatal overnutrition effects on vagal gastrointestinal afferents. Copyright 2010 Elsevier Inc. All rights reserved.

  2. The pattern and diagnostic criteria of sensory neuronopathy: a case–control study

    PubMed Central

    Camdessanché, Jean-Philippe; Jousserand, Guillemette; Ferraud, Karine; Vial, Christophe; Petiot, Philippe; Honnorat, Jérôme

    2009-01-01

    Acquired sensory neuronopathies encompass a group of paraneoplastic, dysimmune, toxic or idiopathic disorders characterized by degeneration of peripheral sensory neurons in dorsal root ganglia. As dorsal root ganglia cannot easily be explored, the clinical diagnosis of these disorders may be difficult. The question as to whether there exists a common clinical pattern of sensory neuronopathies, allowing the establishment of validated and easy-to-use diagnostic criteria, has not yet been addressed. In this study, logistic regression was used to construct diagnostic criteria on a retrospective study population of 78 patients with sensory neuronopathies and 56 with other sensory neuropathies. For this, sensory neuronopathy was provisionally considered as unambiguous in 44 patients with paraneoplastic disorder or cisplatin treatment and likely in 34 with a dysimmune or idiopathic setting who may theoretically have another form of neuropathy. To test the homogeneity of the sensory neuronopathy population, likely candidates were compared with unambiguous cases and then the whole population was compared with the other sensory neuropathies population. Criteria accuracy was checked on 37 prospective patients referred for diagnosis of sensory neuropathy. In the study population, sensory neuronopathy showed a common clinical and electrophysiological pattern that was independent of the underlying cause, including unusual forms with only patchy sensory loss, mild electrical motor nerve abnormalities and predominant small fibre or isolated lower limb involvement. Logistic regression allowed the construction of a set of criteria that gave fair results with the following combination: ataxia in the lower or upper limbs + asymmetrical distribution + sensory loss not restricted to the lower limbs + at least one sensory action potential absent or three sensory action potentials <30% of the lower limit of normal in the upper limbs + less than two nerves with abnormal motor nerve

  3. The role of capsaicin-sensitive muscle afferents in fatigue-induced modulation of the monosynaptic reflex in the rat.

    PubMed

    Pettorossi, V E; Della Torre, G; Bortolami, R; Brunetti, O

    1999-03-01

    1. The role of group III and IV afferent fibres of the lateral gastrocnemious muscle (LG) in modulating the homonymous monosynaptic reflex was investigated during muscle fatigue in spinalized rats. 2. Muscle fatigue was induced by a series of increasing tetanic electrical stimuli (85 Hz, 600 ms) delivered to the LG muscle nerve. Series consisted of increasing train numbers from 1 to 60. 3. Potentials from the spinal cord LG motor pool and from the ventral root were recorded in response to proprioceptive afferent stimulation and analysed before and during tetanic muscle activations. Both the pre- and postsynaptic waves showed an initial enhancement and, after a '12-train' series, an increasing inhibition. 4. The enhancement of the responses to muscle fatiguing stimulation disappeared after L3-L6 dorsal root section, while a partial reflex inhibition was still present. Conversely, after section of the corresponding ventral root, there was only a reduction in the inhibitory effect. 5. The monosynaptic reflex was also studied in animals in which a large number of group III and IV muscle afferents were eliminated by injecting capsaicin (10 mM) into the LG muscle. As a result of capsaicin treatment, the fatigue-induced inhibition of the pre- and postsynaptic waves disappeared, while the response enhancement remained. 6. We concluded that the monosynaptic reflex inhibition, but not the enhancement, was mediated by those group III and IV muscle afferents that are sensitive to the toxic action of capsaicin. The afferents that are responsible for the response enhancement enter the spinal cord through the dorsal root, while those responsible for the inhibition enter the spinal cord through both the ventral and dorsal roots.

  4. The role of capsaicin-sensitive muscle afferents in fatigue-induced modulation of the monosynaptic reflex in the rat

    PubMed Central

    Pettorossi, V E; Torre, G Della; Bortolami, R; Brunetti, O

    1999-01-01

    The role of group III and IV afferent fibres of the lateral gastrocnemious muscle (LG) in modulating the homonymous monosynaptic reflex was investigated during muscle fatigue in spinalized rats. Muscle fatigue was induced by a series of increasing tetanic electrical stimuli (85 Hz, 600 ms) delivered to the LG muscle nerve. Series consisted of increasing train numbers from 1 to 60. Potentials from the spinal cord LG motor pool and from the ventral root were recorded in response to proprioceptive afferent stimulation and analysed before and during tetanic muscle activations. Both the pre- and postsynaptic waves showed an initial enhancement and, after a ‘12-train’ series, an increasing inhibition. The enhancement of the responses to muscle fatiguing stimulation disappeared after L3-L6 dorsal root section, while a partial reflex inhibition was still present. Conversely, after section of the corresponding ventral root, there was only a reduction in the inhibitory effect. The monosynaptic reflex was also studied in animals in which a large number of group III and IV muscle afferents were eliminated by injecting capsaicin (10 mM) into the LG muscle. As a result of capsaicin treatment, the fatigue-induced inhibition of the pre- and postsynaptic waves disappeared, while the response enhancement remained. We concluded that the monosynaptic reflex inhibition, but not the enhancement, was mediated by those group III and IV muscle afferents that are sensitive to the toxic action of capsaicin. The afferents that are responsible for the response enhancement enter the spinal cord through the dorsal root, while those responsible for the inhibition enter the spinal cord through both the ventral and dorsal roots. PMID:10050025

  5. Static γ-motoneurones couple group Ia and II afferents of single muscle spindles in anaesthetised and decerebrate cats

    PubMed Central

    Gladden, M H; Matsuzaki, H

    2002-01-01

    Ideas about the functions of static γ-motoneurones are based on the responses of primary and secondary endings to electrical stimulation of single static γ-axons, usually at high frequencies. We compared these effects with the actions of spontaneously active γ-motoneurones. In anaesthetised cats, afferents and efferents were recorded in intramuscular nerve branches to single muscle spindles. The occurrence of γ-spikes, identified by a spike shape recognition system, was linked to video-taped contractions of type-identified intrafusal fibres in the dissected muscle spindles. When some static γ-motoneurones were active at low frequency (< 15 Hz) they coupled the firing of group Ia and II afferents. Activity of other static γ-motoneurones which tensed the intrafusal fibres appeared to enhance this effect. Under these conditions the secondary ending responded at shorter latency than the primary ending. In another series of experiments on decerebrate cats, responses of primary and secondary endings of single muscle spindles to activation of γ-motoneurones by natural stimuli were compared with their responses to electrical stimulation of single γ-axons supplying the same spindle. Electrical stimulation mimicked the natural actions of γ-motoneurones on either the primary or the secondary ending, but not on both together. However, γ-activity evoked by natural stimuli coupled the firing of afferents with the muscle at constant length, and also when it was stretched. Analysis showed that the timing and tightness of this coupling determined the degree of summation of excitatory postsynaptic potentials (EPSPs) evoked by each afferent in α-motoneurones and interneurones contacted by terminals of both endings, and thus the degree of facilitation of reflex actions of group II afferents. PMID:12181298

  6. Implications of Sensory Stimulation in Self-Destructive Behavior.

    ERIC Educational Resources Information Center

    Edelson, Stephen M.

    1984-01-01

    The author extends the self stimulatory theory of self destructive behavior in autistic, schizophrenic, and mentally retarded individuals to suggest that damage of the skin's nerve structure lowers the tactile sensory threshold for physical input and enables individuals to obtain sensory stimulation by repeatedly depressing the damaged area. (CL)

  7. Assessment of nerve regeneration across nerve allografts treated with tacrolimus.

    PubMed

    Haisheng, Han; Songjie, Zuo; Xin, Li

    2008-01-01

    Although regeneration of nerve allotransplant is a major concern in the clinic, there have been few papers quantitatively assessing functional recovery of animals' nerve allografts in the long term. In this study, functional recovery, histopathological study, and immunohistochemistry changes of rat nerve allograft with FK506 were investigated up to 12 weeks without slaughtering. C57 and SD rats were used for transplantation. The donor's nerve was sliced and transplanted into the recipient. The sciatic nerve was epineurally sutured with 10-0 nylon. In total, 30 models of transplantation were performed and divided into 3 groups that were either treated with FK506 or not. Functional recovery of the grafted nerve was serially assessed by the pin click test, walking track analysis and electrophysiological evaluations. A histopathological study and immunohistochemistry study were done in the all of the models. Nerve allografts treated with FK506 have no immune rejection through 12 weeks. Sensibility had similarly improved in both isografts and allografts. There has been no difference in each graft. Walk track analysis demonstrates significant recovery of motor function of the nerve graft. No histological results of difference were found up to 12 weeks in each graft. In the rodent nerve graft model, FK506 prevented nerve allograft rejection across a major histocompatibility barrier. Sensory recovery seems to be superior to motor function. Nerve isograft and allograft treated with FK506 have no significant difference in function recovery, histopathological result, and immunohistochemistry changes.

  8. Histochemical discrimination of fibers in regenerating rat infraorbital nerve

    NASA Technical Reports Server (NTRS)

    Wilke, R. A.; Riley, D. A.; Sanger, J. R.

    1992-01-01

    In rat dorsal root ganglia, histochemical staining of carbonic anhydrase (CA) and cholinesterase (CE) yields a reciprocal pattern of activity: Sensory processes are CA positive and CE negative, whereas motor processes are CA negative and CE positive. In rat infraorbital nerve (a sensory peripheral nerve), we saw extensive CA staining of nearly 100% of the myelinated axons. Although CE reactivity in myelinated axons was extremely rare, we did observe CE staining of unmyelinated autonomic fibers. Four weeks after transection of infraorbital nerves, CA-stained longitudinal sections of the proximal stump demonstrated 3 distinct morphological zones. A fraction of the viable axons retained CA activity to within 2 mm of the distal extent of the stump, and the stain is capable of resolving growth sprouts being regenerated from these fibers. Staining of unmyelinated autonomic fibers in serial sections shows that CE activity was not retained as far distally as is the CA sensory staining.

  9. Determining the functional sensibility of the hand in patients with peripheral nerve repair: Feasibility of using a novel manual tactile test for monitoring the progression of nerve regeneration.

    PubMed

    Hsu, Hsiu-Yun; Kuo, Li-Chieh; Kuan, Ta-Shen; Yang, Hsiu-Ching; Su, Fong-Chin; Chiu, Haw-Yen; Shieh, Shyh-Jou

    Case-controlled cohort study. Sensory function is difficult to observe during nerve regeneration processes. Traditional sensory tests are limited to identifying the level of functioning hand sensation for sensory stimulus is given passively to the cutaneous surface of the hand. To examine the outcome changes in the manual tactile test (MTT), Semmes-Weinstein monofilament (SWM) and 2-point discrimination (2PD) tests for patients with nerve repair and to investigate the concurrent validity of MTT by comparing it with the results of traditional tests. Fifteen patients with nerve injury of the upper limbs were recruited, along with 15 matched healthy controls. The MTT, SWM, and 2PD tests were used to examine the sensory status of the subjects. Three subtests (barognosis, roughness differentiation, and stereognosis) in MTT showed that the patients improved with time. A moderate and mild correlation was found between the MTT and 2PD results and between the barognosis and SWM results. The MTT provides practical and functional perspectives on detecting nerve progression during the courses of degeneration and regeneration. IV. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  10. Is distal motor and/or sensory demyelination a distinctive feature of anti-MAG neuropathy?

    PubMed

    Lozeron, Pierre; Ribrag, Vincent; Adams, David; Brisset, Marion; Vignon, Marguerite; Baron, Marine; Malphettes, Marion; Theaudin, Marie; Arnulf, Bertrand; Kubis, Nathalie

    2016-09-01

    To report the frequency of the different patterns of sensory and motor electrophysiological demyelination distribution in patients with anti-MAG neuropathy in comparison with patients with IgM neuropathy without MAG reactivity (IgM-NP). Thirty-five anti-MAG patients at early disease stage (20.1 months) were compared to 23 patients with IgM-NP; 21 CIDP patients and 13 patients with CMT1a neuropathy were used as gold standard neuropathies with multifocal and homogeneous demyelination, respectively. In all groups, standard motor and sensory electrophysiological parameters, terminal latency index and modified F ratio were investigated. Motor electrophysiological demyelination was divided in four profiles: distal, homogeneous, proximal, and proximo-distal. Distal sensory and sensorimotor demyelination were evaluated. Anti-MAG neuropathy is a demyelinating neuropathy in 91 % of cases. In the upper limbs, reduced TLI is more frequent in anti-MAG neuropathy, compared to IgM-NP. But, predominant distal demyelination of the median nerve is encountered in only 43 % of anti-MAG neuropathy and is also common in IgM-NP (35 %). Homogeneous demyelination was the second most frequent pattern (31 %). Concordance of electrophysiological profiles across motor nerves trunks is low and median nerve is the main site of distal motor conduction slowing. Reduced sensory conduction velocities occurs in 14 % of patients without evidence of predominant distal slowing. Simultaneous sensory and motor distal slowing was more common in the median nerve of anti-MAG neuropathy than IgM-NP. Electrophysiological distal motor demyelination and sensory demyelination are not a distinctive feature of anti-MAG reactivity. In anti-MAG neuropathy it is mainly found in the median nerve suggesting a frequent nerve compression at wrist.

  11. A urodynamic study of surface neuromodulation versus sham in detrusor instability and sensory urgency.

    PubMed

    Bower, W F; Moore, K H; Adams, R D; Shepherd, R

    1998-12-01

    We studied the effect of surface neuromodulation on cystometric pressure and volume parameters in women with detrusor instability or sensory urgency. Electrical current was delivered to the suprapubic region and third sacral foramina via a transcutaneous electrical nerve stimulator with sham neuromodulation control. A consecutive series of women with proved detrusor instability or sensory urgency were randomized to 3 surface neuromodulation groups. Volume and pressure parameters were the main outcomes of transcutaneous electrical nerve stimulation applied during second cystometric fill. Sham transcutaneous electrical nerve stimulation did not alter the outcome measures. However, neuromodulation delivered across the suprapubic and sacral skin effected a reduction in mean maximum height of detrusor contraction. A current which inhibits motor activity was not superior to that which inhibits sensory perception in reducing detrusor pressure. Response in sensory urgency was poor. Results from our sham controlled study suggest that short-term surface neuromodulation via transcutaneous electrical nerve stimulation may have a role in the treatment of detrusor instability. Future studies must examine the clinical effect of long-term surface neuromodulation.

  12. Afferent Connectivity of the Zebrafish Habenulae

    PubMed Central

    Turner, Katherine J.; Hawkins, Thomas A.; Yáñez, Julián; Anadón, Ramón; Wilson, Stephen W.; Folgueira, Mónica

    2016-01-01

    The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates. Here we describe the main afferents to the habenulae in larval and adult zebrafish. We observe afferents from the subpallium, nucleus rostrolateralis, posterior tuberculum, posterior hypothalamic lobe, median raphe; we also see asymmetric afferents from olfactory bulb to the right habenula, and from the parapineal to the left habenula. In addition, we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus (vENT), confirming and extending observations of Amo et al. (2014). Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hour post-fertilization (hpf). No afferents to the habenula were observed from the dorsal entopeduncular nucleus (dENT). Consequently, we confirm that the vENT (and not the dENT) should be considered as the entopeduncular nucleus “proper” in zebrafish. Furthermore, comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus, being homologous to the entopeduncular nucleus of mammals (internal segment of the globus pallidus of primates) by both embryonic origin and projections, as previously suggested by Amo et al. (2014). PMID:27199671

  13. Large Extremity Peripheral Nerve Repair

    DTIC Science & Technology

    2014-10-01

    nerve allotransplantation in rats immunosuppressed with transient or long-term FK-506. Journal of reconstructive microsurgery . 1996 Oct;12(7):451-9...outcomes in sensory, mixed, and motor nerve reconstructions . Microsurgery . 2012 Jan;32(1):1-14. PubMed PMID: 22121093. Epub 2011/11/29. eng. 12...method can provide fixation strengths 5 approaching that of conventional microsurgery and that the PTB repair is unlikely to be disturbed in vivo

  14. A Proposed Neurologic Pathway for Scalp Acupuncture: Trigeminal Nerve-Meninges-Cerebrospinal Fluid-Contacting Neurons-Brain.

    PubMed

    Wang, Shuya; Liu, Kun; Wang, Yuan; Wang, Shuyou; He, Xun; Cui, Xiang; Gao, Xinyan; Zhu, Bing

    2017-10-01

    Objective: Scalp acupuncture is a somatic stimulation therapy that produces prominent clinical effects when used to treat cerebral diseases. However, this acupuncture's therapeutic mechanisms have not yet been well-addressed. Scalp acupoints are innervated by the trigeminal nerve, which is coincident with the intracranial sensory afferents as well as with the meningeal vessels. In recent years, cerebrospinal fluid-contacting neurons have been found and proved to transmit allergic substances between brain the parenchyma and meninges, representing a possible network between scalp acupuncture and the brain. The aim of the current study was to observe the connections between scalp acupoints and the meninges and to establish a possible mechanism for scalp acupuncture. Materials and Methods: Twenty-five adult Sprague-Dawley rats were used for the present study. Evans Blue dye (Sigma Chemical Co, St. Louis, MO) was injected though each rat's caudal vein after trigeminal stimulation for plasma extravasation observation. Cerebral blood flow (CBF) values of the rat's brain surface were measured at different timepoints before and after electroacupuncture (EA) on GB 15 ( Toulinqi ) or ST 36 ( Zusanli ). Results: These preliminary studies indicated that neurogenic plasma extravasation on a rat's skin and dura mater after mechanical or electrical stimulation of the trigeminal nerves is a reliable way to show the pathologic connection between scalp acupoints and the meninges. Moreover, CBF of the rat's brain surface is increased significantly after EA stimulation at GB 15 ( Toulinqi ), which is located in the receptive field of the supraorbital nerve. Conclusions: These findings suggest that the mechanism of scalp acupuncture might lie in the specific neurologic pathway that could be termed as trigeminal nerve-meninges-cerebrospinal fluid-contacting neurons-brain , which is a possible shortcut to brain functional regulation and cerebral disease treatment.

  15. Age-dependent effects on sensory axonal excitability in normal mice.

    PubMed

    Banzrai, Chimeglkham; Nodera, Hiroyuki; Higashi, Saki; Okada, Ryo; Osaki, Yusuke; Mori, Atsuko; Kaji, Ryuji

    2016-01-12

    Serial recordings were performed to measure sensory excitability in peripheral nerves and elucidate age-dependent changes in neuronal ion currents in the peripheral sensory nervous system. The threshold tracking technique was used to measure multiple excitability indices in the tail sensory nerves of five normal male mice at four time points (6, 10, 14, and 19 weeks of age). A separate group of four mice was also measured at 43 weeks and at 60 weeks of age. Maturation was accompanied by an increase in early hyperpolarization and superexcitability at 10 weeks. At 60 weeks, the hyperpolarizing electrotonus shifted downward, while superexcitability became greater and subexcitability (double stimuli) decreased. Computer modeling showed that the most notable age-related interval changes in excitability parameters were Barrett-Barrett, H, and slow K(+) conductances. Understanding age-related changes in the excitability of sensory axons may provide a platform for understanding age-dependent sensory symptoms and developing age-specific channel-targeting therapies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Optimal delineation of single C-tactile and C-nociceptive afferents in humans by latency slowing.

    PubMed

    Watkins, Roger H; Wessberg, Johan; Backlund Wasling, Helena; Dunham, James P; Olausson, Håkan; Johnson, Richard D; Ackerley, Rochelle

    2017-04-01

    plethora of touch interactions, and affective tactile information is primarily signaled by slowly conducting C-mechanoreceptive afferents. We show that electrical stimulation of low-threshold C-tactile afferents produces markedly different patterns of activity compared with high-threshold C-mechanoreceptive nociceptors, although the populations overlap in their responses to mechanical stimulation. This fundamental distinction demonstrates a divergence in affective touch signaling from the first stage of sensory processing, having implications for the processing of interpersonal touch. Copyright © 2017 the American Physiological Society.

  17. Afferent innervation of the utricular macula in pigeons

    NASA Technical Reports Server (NTRS)

    Si, Xiaohong; Zakir, Mridha Md; Dickman, J. David

    2003-01-01

    Biotinylated dextran amine (BDA) was used to retrogradely label afferents innervating the utricular macula in adult pigeons. The pigeon utriclar macula consists of a large rectangular-shaped neuroepithelium with a dorsally curved anterior edge and an extended medioposterior tail. The macula could be demarcated into several regions based on cytoarchitectural differences. The striola occupied 30% of the macula and contained a large density of type I hair cells with fewer type II hair cells. Medial and lateral extrastriola zones were located outside the striola and contained only type II hair cells. A six- to eight-cell-wide band of type II hair cells existed near the center of the striola. The reversal line marked by the morphological polarization of hair cells coursed throughout the epithelium, near the peripheral margin, and through the center of the type II band. Calyx afferents innervated type I hair cells with calyceal terminals that contained between 2 and 15 receptor cells. Calyx afferents were located only in the striola region, exclusive of the type II band, had small total fiber innervation areas and low innervation densities. Dimorph afferents innervated both type I and type II hair cells with calyceal and bouton terminals and were primarily located in the striola region. Dimorph afferents had smaller calyceal terminals with few type I hair cells, extended fiber branches with bouton terminals and larger innervation areas. Bouton afferents innervated only type II hair cells in the extrastriola and type II band regions. Bouton afferents innervating the type II band had smaller terminal fields with fewer bouton terminals and smaller innervation areas than fibers located in the extrastriolar zones. Bouton afferents had the most bouton terminals on the longest fibers, the largest innervation areas with the highest innervation densities of all afferents. Among all afferents, smaller terminal innervation fields were observed in the striola and large fields were

  18. Device-based approaches for renal nerve ablation for hypertension and beyond.

    PubMed

    Thorp, Alicia A; Schlaich, Markus P

    2015-01-01

    Animal and human studies have demonstrated that chronic activation of renal sympathetic nerves is critical in the pathogenesis and perpetuation of treatment-resistant hypertension. Bilateral renal denervation has emerged as a safe and effective, non-pharmacological treatment for resistant hypertension that involves the selective ablation of efferent and afferent renal nerves to lower blood pressure. However, the most recent and largest randomized controlled trial failed to confirm the primacy of renal denervation over a sham procedure, prompting widespread re-evaluation of the therapy's efficacy. Disrupting renal afferent sympathetic signaling to the hypothalamus with renal denervation lowers central sympathetic tone, which has the potential to confer additional clinical benefits beyond blood pressure control. Specifically, there has been substantial interest in the use of renal denervation as either a primary or adjunct therapy in pathological conditions characterized by central sympathetic overactivity such as renal disease, heart failure and metabolic-associated disorders. Recent findings from pre-clinical and proof-of-concept studies appear promising with renal denervation shown to confer cardiovascular and metabolic benefits, largely independent of changes in blood pressure. This review explores the pathological rationale for targeting sympathetic renal nerves for blood pressure control. Latest developments in renal nerve ablation modalities designed to improve procedural success are discussed along with prospective findings on the efficacy of renal denervation to lower blood pressure in treatment-resistant hypertensive patients. Preliminary evidence in support of renal denervation as a possible therapeutic option in disease states characterized by central sympathetic overactivity is also presented.

  19. Device-based approaches for renal nerve ablation for hypertension and beyond

    PubMed Central

    Thorp, Alicia A.; Schlaich, Markus P.

    2015-01-01

    Animal and human studies have demonstrated that chronic activation of renal sympathetic nerves is critical in the pathogenesis and perpetuation of treatment-resistant hypertension. Bilateral renal denervation has emerged as a safe and effective, non-pharmacological treatment for resistant hypertension that involves the selective ablation of efferent and afferent renal nerves to lower blood pressure. However, the most recent and largest randomized controlled trial failed to confirm the primacy of renal denervation over a sham procedure, prompting widespread re-evaluation of the therapy's efficacy. Disrupting renal afferent sympathetic signaling to the hypothalamus with renal denervation lowers central sympathetic tone, which has the potential to confer additional clinical benefits beyond blood pressure control. Specifically, there has been substantial interest in the use of renal denervation as either a primary or adjunct therapy in pathological conditions characterized by central sympathetic overactivity such as renal disease, heart failure and metabolic-associated disorders. Recent findings from pre-clinical and proof-of-concept studies appear promising with renal denervation shown to confer cardiovascular and metabolic benefits, largely independent of changes in blood pressure. This review explores the pathological rationale for targeting sympathetic renal nerves for blood pressure control. Latest developments in renal nerve ablation modalities designed to improve procedural success are discussed along with prospective findings on the efficacy of renal denervation to lower blood pressure in treatment-resistant hypertensive patients. Preliminary evidence in support of renal denervation as a possible therapeutic option in disease states characterized by central sympathetic overactivity is also presented. PMID:26217232

  20. Sensory neuropathy may cause central neuronal reorganization but does not respecify perceptual quality or localization of sensation.

    PubMed

    Ginanneschi, Federica; Mondelli, Mauro; Rossi, Alessandro

    2012-10-01

    Functional reorganization in the somatosensory network after peripheral nerve lesions has been suspected to modify the clinical expression of symptoms. However, no conclusive evidence exists to support this notion. We addressed this question by investigating the topographic distribution of the subjective sensory report in various chronic human mononeuropathies. We report the clinical results of 86 patients who were diagnosed with meralgia paresthetica, 86 patients with ulnar neuropathy at the elbow, and 203 patients with carpal tunnel syndrome. In the carpal tunnel syndrome group, 10% of the patients exhibited a spread of sensory symptoms beyond the innervation territory of the median nerve. As previously reported, this spread was contingent upon an indirect compressive lesion of the ulnar nerve at the wrist. In all of the patients who were affected with meralgia paresthetica or ulnar neuropathy at the elbow, the peripheral referral of sensation was always within the anatomic distribution of the affected nerve. In human neuropathies, the projected sensory symptoms are restricted to the innervation territories of the affected nerves, with no extraterritorial spread. Thus, the somatosensory localization function remains accurate, despite the central reorganization that presumably occurs after nerve injury. We conclude that reorganization of the sensory connections within the central nervous system after peripheral nerve injury in humans is a clinically silent adaptive phenomenon.

  1. Microsurgical Decompression of Inferior Alveolar Nerve After Endodontic Treatment Complications.

    PubMed

    Bianchi, Bernardo; Ferri, Andrea; Varazzani, Andrea; Bergonzani, Michela; Sesenna, Enrico

    2017-07-01

    Iatrogenic injury in oral surgery is the most frequent cause of sensory disturbance in the distribution of the inferior alveolar nerve (IAN) and mental nerve.Inferior alveolar nerve damage can occur during third molar extraction, implant location, orthognathic surgery, preprosthetic surgery, salivary gland surgery, local anesthetic injections or during the resection of benign or malignant tumors.Injuries to the IAN can be caused also by endodontic treatment of mandibular molars and premolars when filling material is forced into the tooth and mandibular canal.The sensory disturbances that could follow a damage of the IAN could be hypoesthesia, dysesthesia, hyperesthesia, anesthesia, and sometimes a painful anesthesia that strike ipsilateral lower lip, chin, and teeth. These can undermine life quality by affecting speech, chewing, and social interaction.Treatment of these complications is sometimes difficult and could consist in observation or in surgical decompression of the involved nerve to relieve the patient's symptoms and improve sensory recovery. The most debated points are the timing of intervention and the effective role of decompression in clinical outcome-improvement.The purpose of this article is to show authors' experience with 2 patients treated with microsurgical nerve decompression to remove endodontic material from the mandibular canal and providing also a comprehensive review of the literature.

  2. Expression of S100 beta in sensory and secretory cells of the vertebrate inner ear

    NASA Technical Reports Server (NTRS)

    Fermin, C. D.; Martin, D. S.

    1995-01-01

    We evaluated anti-S100 beta expression in the chick (Gallus domesticus) inner ear and determined that: 1) the monomer anti-S100 beta is expressed differentially in the vestibular and auditory perikarya; 2) expression of S100 beta in the afferent nerve terminals is time-related to synapse and myelin formation; 3) the expression of the dimer anti-S100 alpha alpha beta beta and monomer anti-S100 beta overlaps in most inner ear cell types. Most S100 alpha alpha beta beta positive cells express S100 beta, but S100 beta positive cells do not always express S100 alpha alpha beta beta. 4) the expression of S100 beta is diffused over the perikaryal cytoplasm and nuclei of the acoustic ganglia but is concentrated over the nuclei of the vestibular perikarya. 6) S100 beta is expressed in secretory cells, and it is co-localized with GABA in sensory cells. 7) Color thresholding objective quantitation indicates that the amount of S100 beta was higher (mean 22, SD +/- 4) at E19 than at E9 (mean 34, SD +/- 3) in afferent axons. 8) Moreover, S100 beta was unchanged between E11-E19 in the perikaryal cytoplasm, but did change over the nuclei. At E9, 74%, and at E21, 5% of vestibular perikarya were positive. The data suggest that S100 beta may be physically associated with neuronal and ionic controlling cells of the vertebrate inner ear, where it could provide a dual ionic and neurotrophic modulatory function.

  3. What Is the Contribution of Ia-Afference for Regulating Motor Output Variability during Standing?

    PubMed

    König, Niklas; Ferraro, Matteo G; Baur, Heiner; Taylor, William R; Singh, Navrag B

    2017-01-01

    Motor variability is an inherent feature of all human movements, and describes the system's stability and rigidity during the performance of functional motor tasks such as balancing. In order to ensure successful task execution, the nervous system is thought to be able to flexibly select the appropriate level of variability. However, it remains unknown which neurophysiological pathways are utilized for the control of motor output variability. In responding to natural variability (in this example sway), it is plausible that the neuro-physiological response to muscular elongation contributes to restoring a balanced upright posture. In this study, the postural sway of 18 healthy subjects was observed while their visual and mechano-sensory system was perturbed. Simultaneously, the contribution of Ia-afferent information for controlling the motor task was assessed by means of H-reflex. There was no association between postural sway and Ia-afference in the eyes open condition, however up to 4% of the effects of eye closure on the magnitude of sway can be compensated by increased reliance on Ia-afference. Increasing the biomechanical demands by adding up to 40% bodyweight around the trunk induced a specific sway response, such that the magnitude of sway remained unchanged but its dynamic structure became more regular and stable (by up to 18%). Such regular sway patterns have been associated with enhanced cognitive involvement in controlling motor tasks. It therefore appears that the nervous system applies different control strategies in response to the perturbations: The loss of visual information is compensated by increased reliance on other receptors; while the specific regular sway pattern associated with additional weight-bearing was independent of Ia-afferent information, suggesting the fundamental involvement of supraspinal centers for the control of motor output variability.

  4. Effect of simvastatin on sensorial, motor, and morphological parameters in sciatic nerve crush induced-neuropathic pain in rats.

    PubMed

    Corso, Claudia Rita; Martins, Daniel Fernandes; Borges, Stephanie Carvalho; Beltrame, Olair Carlos; Telles, José Ederaldo Queiroz; Buttow, Nilza Cristina; Werner, Maria Fernanda de Paula

    2018-06-01

    The present study compares the effects of a low and high doses of simvastatin in a model of peripheral neuropathy by evaluating sensorial, motor, and morphological parameters. First, male Wistar rats were orally treated with vehicle (saline, 1 mL/kg), simvastatin (2 and 80 mg/kg) or morphine (2 mg/kg, s.c.), 1 h before 2.5% formalin injection. Neuropathic pain was induced by crushing the sciatic nerve, and mechanical and cold allodynia, nerve function, histology, MPO and NAG concentrations, as well as mevalonate induced-nociception were evaluated. Animals were orally treated with vehicle, simvastatin, or gabapentin (30 mg/kg) for 18 days. Simvastatin (2 and 80 mg/kg) reduced the inflammatory pain induced by formalin, but failed to decrease the paw edema. Mechanical allodynia was reduced by the simvastatin (2 mg/kg) until the 12th day after injury and until the 18th day by gabapentin. However, both simvastatin and gabapentin treatments failed in attenuated cold allodynia or improved motor function. Interestingly, both doses of simvastatin showed a neuroprotective effect and inhibited MPO activity without altering kidney and hepatic parameters. Additionally, only the higher dose of simvastatin reduced the cholesterol levels and the nociception induced by mevalonate. Our results reinforce the antinociceptive, antiallodynic, and anti-inflammatory effects of oral simvastatin administration, which can strongly contribute to the sciatic nerve morphology preservation. Furthermore, our data suggest that lower and higher doses of simvastatin present beneficial effects that are dependent and independent of the mevalonate pathway, respectively, without causing signs of nerve damage.

  5. [Acute pancreatitis and afferent loop syndrome. Case report].

    PubMed

    Barajas-Fregoso, Elpidio Manuel; Romero-Hernández, Teodoro; Macías-Amezcua, Michel Dassaejv

    2013-01-01

    The afferent syndrome loop is a mechanic obstruction of the afferent limb before a Billroth II or Roux-Y reconstruction, secondary in most of case to distal or subtotal gastrectomy. Clinical case: Male 76 years old, with antecedent of cholecystectomy, gastric adenocarcinoma six years ago, with subtotal gastrectomy and Roux-Y reconstruction. Beginning a several abdominal pain, nausea and vomiting, abdominal distension, without peritoneal irritation sings. Amylase 1246 U/L, lipase 3381 U/L. Computed Tomography with thickness wall and dilatation of afferent loop, pancreas with diffuse enlargement diagnostic of acute pancreatitis secondary an afferent loop syndrome. The afferent loop syndrome is presented in 0.3%-1% in all cases with Billroth II reconstruction, with a mortality of up to 57%, the obstruction lead accumulation of bile, pancreatic and intestinal secretions, increasing the pressure and resulting in afferent limb, bile conduct and Wirsung conduct dilatation, triggering an inflammatory response that culminates in pancreatic inflammation. The severity of the presentation is related to the degree and duration of the blockage.

  6. Improvement of hand sensibility after selective temporary anaesthesia in combination with sensory re-education.

    PubMed

    Hassan-Zadeh, Roghiyeh; Lajevardi, Laleh; Esfahani, Ahmadreza Roofigari; Kamali, Mohammad

    2009-01-01

    The results of nerve repair in adults are often poor. The study aim was to investigate the effect of repeated sessions of cutaneous forearm anaesthesia of the injured limb, in combination with sensory re-education on the recovery of the tactile discrimination and perception of touch/pressure in the injured hand after median or ulnar nerve repair. A prospective, randomized, double-blind clinical trial was designed. During a 2-week period, a topical anaesthetic cream (Lidocaine-PTC, n = 6) or placebo (n = 7) was applied repeatedly (twice a week) with occlusive bandage for 1 hour on the flexor aspect of the forearm of the same side of the nerve injury and combined with sensory re-education. Assessments of sensory function were performed prior to the experiment and after the fourth application of Lidocaine-PTC/placebo. The patients were evaluated again 4 weeks after the last Lidocaine-PTC/placebo session. Touch perception measured with Semmes-Weinstein Monofilaments (SWM), improved significantly in the Lidocaine-PTC group (p = 0.005). In placebo group, no significant changes were seen. Two{-}point discrimination improved significantly only in the Lidocaine-PTC group (p = 0.005). This finding suggests that forearm deafferentation of injured limb in combination with sensory re-education can enhance sensory recovery after nerve repair.

  7. Peripheral nerve conduits: technology update

    PubMed Central

    Arslantunali, D; Dursun, T; Yucel, D; Hasirci, N; Hasirci, V

    2014-01-01

    Peripheral nerve injury is a worldwide clinical problem which could lead to loss of neuronal communication along sensory and motor nerves between the central nervous system (CNS) and the peripheral organs and impairs the quality of life of a patient. The primary requirement for the treatment of complete lesions is a tension-free, end-to-end repair. When end-to-end repair is not possible, peripheral nerve grafts or nerve conduits are used. The limited availability of autografts, and drawbacks of the allografts and xenografts like immunological reactions, forced the researchers to investigate and develop alternative approaches, mainly nerve conduits. In this review, recent information on the various types of conduit materials (made of biological and synthetic polymers) and designs (tubular, fibrous, and matrix type) are being presented. PMID:25489251

  8. Optogenetic Silencing of Nav1.8-Positive Afferents Alleviates Inflammatory and Neuropathic Pain123

    PubMed Central

    Daou, Ihab; Beaudry, Hélène; Ase, Ariel R.; Wieskopf, Jeffrey S.; Ribeiro-da-Silva, Alfredo; Mogil, Jeffrey S.

    2016-01-01

    Abstract We report a novel transgenic mouse model in which the terminals of peripheral nociceptors can be silenced optogenetically with high spatiotemporal precision, leading to the alleviation of inflammatory and neuropathic pain. Inhibitory archaerhodopsin-3 (Arch) proton pumps were delivered to Nav1.8+ primary afferents using the Nav1.8-Cre driver line. Arch expression covered both peptidergic and nonpeptidergic nociceptors and yellow light stimulation reliably blocked electrically induced action potentials in DRG neurons. Acute transdermal illumination of the hindpaws of Nav1.8-Arch+ mice significantly reduced mechanical allodynia under inflammatory conditions, while basal mechanical sensitivity was not affected by the optical stimulation. Arch-driven hyperpolarization of nociceptive terminals was sufficient to prevent channelrhodopsin-2 (ChR2)-mediated mechanical and thermal hypersensitivity in double-transgenic Nav1.8-ChR2+-Arch+mice. Furthermore, prolonged optical silencing of peripheral afferents in anesthetized Nav1.8-Arch+ mice led to poststimulation analgesia with a significant decrease in mechanical and thermal hypersensitivity under inflammatory and neuropathic conditions. These findings highlight the role of peripheral neuronal inputs in the onset and maintenance of pain hypersensitivity, demonstrate the plasticity of pain pathways even after sensitization has occurred, and support the involvement of Nav1.8+ afferents in both inflammatory and neuropathic pain. Together, we present a selective analgesic approach in which genetically identified subsets of peripheral sensory fibers can be remotely and optically inhibited with high temporal resolution, overcoming the compensatory limitations of genetic ablations. PMID:27022626

  9. Analysis of human acellular nerve allograft reconstruction of 64 injured nerves in the hand and upper extremity: a 3 year follow-up study.

    PubMed

    Zhu, Shuang; Liu, Jianghui; Zheng, Canbin; Gu, Liqiang; Zhu, Qingtang; Xiang, Jianping; He, Bo; Zhou, Xiang; Liu, Xiaolin

    2017-08-01

    Human acellular nerve allografts have been increasingly applied in clinical practice. This study was undertaken to investigate the functional outcomes of nerve allograft reconstruction for nerve defects in the upper extremity. A total of 64 patients from 13 hospitals were available for this follow-up study after nerve repair using human acellular nerve allografts. Sensory and motor recovery was examined according to the international standards for motor and sensory nerve recovery. Subgroup analysis and logistic regression analysis were conducted to identify the relationship between the known factors and the outcomes of nerve repair. Mean follow-up time was 355 ± 158 (35-819) days; mean age was 35 ± 11 (14-68) years; average nerve gap length was 27 ± 13 (10-60) mm; no signs of infection, tissue rejection or extrusion were observed among the patients; 48/64 (75%) repaired nerves experienced meaningful recovery. Univariate analysis showed that site and gap length significantly influenced prognosis after nerve repair using nerve grafts. Delay had a marginally significant relationship with the outcome. A multivariate logistic regression model revealed that gap length was an independent predictor of nerve repair using human acellular nerve allografts. The results indicated that the human acellular nerve allograft facilitated safe and effective nerve reconstruction for nerve gaps 10-60 mm in length in the hand and upper extremity. Factors such as site and gap length had a statistically significant influence on the outcomes of nerve allograft reconstruction. Gap length was an independent predictor of nerve repair using human acellular nerve allografts. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Relation between trinucleotide GAA repeat length and sensory neuropathy in Friedreich's ataxia.

    PubMed

    Santoro, L; De Michele, G; Perretti, A; Crisci, C; Cocozza, S; Cavalcanti, F; Ragno, M; Monticelli, A; Filla, A; Caruso, G

    1999-01-01

    To verify if GAA expansion size in Friedreich's ataxia could account for the severity of sensory neuropathy. Retrospective study of 56 patients with Friedreich's ataxia selected according to homozygosity for GAA expansion and availability of electrophysiological findings. Orthodromic sensory conduction velocity in the median nerve was available in all patients and that of the tibial nerve in 46 of them. Data of sural nerve biopsy and of a morphometric analysis were available in 12 of the selected patients. The sensory action potential amplitude at the wrist (wSAP) and at the medial malleolus (m mal SAP) and the percentage of myelinated fibres with diameter larger than 7, 9, and 11 microm in the sural nerve were correlated with disease duration and GAA expansion size on the shorter (GAA1) and larger (GAA2) expanded allele in each pair. Pearson's correlation test and stepwise multiple regression were used for statistical analysis. A significant inverse correlation between GAA1 size and wSAP, m mal SAP, and percentage of myelinated fibres was found. Stepwise multiple regression showed that GAA1 size significantly affects electrophysiological and morphometric data, whereas duration of disease has no effect. The data suggest that the severity of the sensory neuropathy is probably genetically determined and that it is not progressive.

  11. The neglected cranial nerve: nervus terminalis (cranial nerve N).

    PubMed

    Vilensky, Joel A

    2014-01-01

    The nervus terminalis (NT; terminal nerve) was clearly identified as an additional cranial nerve in humans more than a century ago yet remains mostly undescribed in modern anatomy textbooks. The nerve is referred to as the nervus terminalis because in species initially examined its fibers were seen entering the brain in the region of the lamina terminalis. It has also been referred to as cranial nerve 0, but because there is no Roman symbol for zero, an N for the Latin word nulla is a better numerical designation. This nerve is very distinct in human fetuses and infants but also has been repeatedly identified in adult human brains. The NT fibers are unmyelinated and emanate from ganglia. The fibers pass through the cribriform plate medial to those of the olfactory nerve fila. The fibers end in the nasal mucosa and probably arise from autonomic/neuromodulatory as well as sensory neurons. The NT has been demonstrated to release luteinizing-releasing luteinizing hormone and is therefore thought to play a role in reproductive behavior. Based on the available evidence, the NT appears to be functional in adult humans and should be taught in medical schools and incorporated into anatomy/neuroanatomy textbooks. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  12. Endoscopic Endonasal Optic Nerve Decompression for Fibrous Dysplasia

    PubMed Central

    DeKlotz, Timothy R.; Stefko, S. Tonya; Fernandez-Miranda, Juan C.; Gardner, Paul A.; Snyderman, Carl H.; Wang, Eric W.

    2016-01-01

    Objective To evaluate visual outcomes and potential complications for optic nerve decompression using an endoscopic endonasal approach (EEA) for fibrous dysplasia. Design Retrospective chart review of patients with fibrous dysplasia causing extrinsic compression of the canalicular segment of the optic nerve that underwent an endoscopic endonasal optic nerve decompression at the University of Pittsburgh Medical Center from 2010 to 2013. Main Outcome Measures The primary outcome measure assessed was best-corrected visual acuity (BCVA) with secondary outcomes, including visual field testing, color vision, and complications associated with the intervention. Results A total of four patients and five optic nerves were decompressed via an EEA. All patients were symptomatic preoperatively and had objective findings compatible with compressive optic neuropathy: decreased visual acuity was noted preoperatively in three patients while the remaining patient demonstrated an afferent pupillary defect. BCVA improved in all patients postoperatively. No major complications were identified. Conclusion EEA for optic nerve decompression appears to be a safe and effective treatment for patients with compressive optic neuropathy secondary to fibrous dysplasia. Further studies are required to identify selection criteria for an open versus an endoscopic approach. PMID:28180039

  13. N-Acetylcysteine Prevents Retrograde Motor Neuron Death after Neonatal Peripheral Nerve Injury.

    PubMed

    Catapano, Joseph; Zhang, Jennifer; Scholl, David; Chiang, Cameron; Gordon, Tessa; Borschel, Gregory H

    2017-05-01

    Neuronal death may be an overlooked and unaddressed component of disability following neonatal nerve injuries, such as obstetric brachial plexus injury. N-acetylcysteine and acetyl-L-carnitine improve survival of neurons after adult nerve injury, but it is unknown whether they improve survival after neonatal injury, when neurons are most susceptible to retrograde neuronal death. The authors' objective was to examine whether N-acetylcysteine or acetyl-L-carnitine treatment improves survival of neonatal motor or sensory neurons in a rat model of neonatal nerve injury. Rat pups received either a sciatic nerve crush or transection injury at postnatal day 3 and were then randomized to receive either intraperitoneal vehicle (5% dextrose), N-acetylcysteine (750 mg/kg), or acetyl-L-carnitine (300 mg/kg) once or twice daily. Four weeks after injury, surviving neurons were retrograde-labeled with 4% Fluoro-Gold. The lumbar spinal cord and L4/L5 dorsal root ganglia were then harvested and sectioned to count surviving motor and sensory neurons. Transection and crush injuries resulted in significant motor and sensory neuron loss, with transection injury resulting in significantly less neuron survival. High-dose N-acetylcysteine (750 mg/kg twice daily) significantly increased motor neuron survival after neonatal sciatic nerve crush and transection injury. Neither N-acetylcysteine nor acetyl-L-carnitine treatment improved sensory neuron survival. Proximal neonatal nerve injuries, such as obstetric brachial plexus injury, produce significant retrograde neuronal death after injury. High-dose N-acetylcysteine significantly increases motor neuron survival, which may improve functional outcomes after obstetrical brachial plexus injury.

  14. Stimuli of Sensory-Motor Nerves Terminate Arterial Contractile Effects of Endothelin-1 by CGRP and Dissociation of ET-1/ETA-Receptor Complexes

    PubMed Central

    Meens, Merlijn J. P. M. T.; Compeer, Matthijs G.; Hackeng, Tilman M.; van Zandvoort, Marc A.; Janssen, Ben J. A.; De Mey, Jo G. R.

    2010-01-01

    Background Endothelin-1 (ET-1), a long-acting paracrine mediator, is implicated in cardiovascular diseases but clinical trials with ET-receptor antagonists were not successful in some areas. We tested whether the quasi-irreversible receptor-binding of ET-1 (i) limits reversing effects of the antagonists and (ii) can be selectively dissociated by an endogenous counterbalancing mechanism. Methodology/Principal findings In isolated rat mesenteric resistance arteries, ETA-antagonists, endothelium-derived relaxing factors and synthetic vasodilators transiently reduced contractile effects of ET-1 but did not prevent persistent effects of the peptide. Stimuli of peri-vascular vasodilator sensory-motor nerves such as capsaicin not only reduced but also terminated long-lasting effects of ET-1. This was prevented by CGRP-receptor antagonists and was mimicked by exogenous calcitonin gene-related peptide (CGRP). Using 2-photon laser scanning microscopy in vital intact arteries, capsaicin and CGRP, but not ETA-antagonism, were observed to promote dissociation of pre-existing ET-1/ETA-receptor complexes. Conclusions Irreversible binding and activation of ETA-receptors by ET-1 (i) occur at an antagonist-insensitive site of the receptor and (ii) are selectively terminated by endogenously released CGRP. Hence, natural stimuli of sensory-motor nerves that stimulate release of endogenous CGRP can be considered for therapy of diseases involving ET-1. PMID:20532232

  15. Stimulus encoding and feature extraction by multiple sensory neurons.

    PubMed

    Krahe, Rüdiger; Kreiman, Gabriel; Gabbiani, Fabrizio; Koch, Christof; Metzner, Walter

    2002-03-15

    Neighboring cells in topographical sensory maps may transmit similar information to the next higher level of processing. How information transmission by groups of nearby neurons compares with the performance of single cells is a very important question for understanding the functioning of the nervous system. To tackle this problem, we quantified stimulus-encoding and feature extraction performance by pairs of simultaneously recorded electrosensory pyramidal cells in the hindbrain of weakly electric fish. These cells constitute the output neurons of the first central nervous stage of electrosensory processing. Using random amplitude modulations (RAMs) of a mimic of the fish's own electric field within behaviorally relevant frequency bands, we found that pyramidal cells with overlapping receptive fields exhibit strong stimulus-induced correlations. To quantify the encoding of the RAM time course, we estimated the stimuli from simultaneously recorded spike trains and found significant improvements over single spike trains. The quality of stimulus reconstruction, however, was still inferior to the one measured for single primary sensory afferents. In an analysis of feature extraction, we found that spikes of pyramidal cell pairs coinciding within a time window of a few milliseconds performed significantly better at detecting upstrokes and downstrokes of the stimulus compared with isolated spikes and even spike bursts of single cells. Coincident spikes can thus be considered "distributed bursts." Our results suggest that stimulus encoding by primary sensory afferents is transformed into feature extraction at the next processing stage. There, stimulus-induced coincident activity can improve the extraction of behaviorally relevant features from the stimulus.

  16. Nerve Injuries in Gynecologic Laparoscopy.

    PubMed

    Abdalmageed, Osama S; Bedaiwy, Mohamed A; Falcone, Tommaso

    2017-01-01

    Nerve injuries during gynecologic endoscopy are an infrequent but distressing complication. In benign gynecologic surgery, most of these injuries are associated with patient positioning, although some are related to port placement. Most are potentially preventable with attention to patient placement on the operating room bed and knowledge of the relative anatomy of the nerves. The highest risk group vulnerable to these injuries includes women who have extreme body mass index and those with longer surgical times in the Trendelenburg position. Upper and lower limb peripheral nerves are the most common nerves injured during gynecologic endoscopy. These injuries can result in transient or permanent sensory and motor disabilities that can interrupt patient recovery in an otherwise successful surgery. Numerous strategies are suggested to reduce the frequency of nerve injuries during gynecologic endoscopies. Proper patient positioning and proper padding of the pressure areas are mandatory to prevent malposition-related nerve injuries. Anatomic knowledge of the course of nerves, especially ilioinguinal and iliohypogastric, nerves can minimize injury. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.

  17. Sensory nerve crush and regeneration and the receptive fields and response properties of neurons in the primary somatosensory cerebral cortex of cats.

    PubMed

    Brandenberg, G A; Mann, M D

    1989-03-01

    Extracellular recordings were made of activity evoked in neurons of the forepaw focus of somatosensory cerebral cortex by electrical stimulation of each paw in control cats and cats that had undergone crush injury of all cutaneous sensory nerves to the contralateral forepaw 31 to 63 days previously. Neurons responding only to stimulation of the contralateral forepaw were classified as sa; neurons responding to stimulation of both forepaws were classified as sb; neurons responding to stimulation of both contralateral paws were classified as sc; and neurons responding to stimulation of at least three paws were classified as m. The ratio sa:sb:sc:m neurons was 46:3:0:0 in control cats and 104:15:3:26 in cats that had undergone nerve crush 1-2 months prior to study. sa neurons from experimental cats had depth distributions similar to those in controls and responded to contralateral forepaw stimulation with more spikes per discharge, longer latency, and higher threshold than sa neurons in control cats. m neurons from experimental cats were distributed deeper in the cortex than sa neurons, and, when compared to experimental sa neurons, they responded with longer latency and poorer frequency-following ability; however, the number of spikes per discharge and threshold were not significantly different. The appearance of wide-field neurons in this tissue may be explained in terms of strengthening of previously sub-threshold inputs to neurons in the somatosensory system. If the neurons in sensory cortex play a requisite role in cutaneous sensations and if changes similar to those reported here occur and persist in human cortex after nerve crush, then "complete" recovery of sensation in such patients may occur against a background of changed cortical neuronal responsiveness.

  18. Morphology of the utricular otolith organ in the toadfish, Opsanus tau.

    PubMed

    Boyle, Richard; Ehsanian, Reza; Mofrad, Alireza; Popova, Yekaterina; Varelas, Joseph

    2018-06-15

    The utricle provides the vestibular reflex pathways with the sensory codes of inertial acceleration of self-motion and head orientation with respect to gravity to control balance and equilibrium. Here we present an anatomical description of this structure in the adult oyster toadfish and establish a morphological basis for interpretation of subsequent functional studies. Light, scanning, and transmission electron microscopy techniques were applied to visualize the sensory epithelium at varying levels of detail, its neural innervation and its synaptic organization. Scanning electron microscopy was used to visualize otolith mass and morphological polarization patterns of hair cells. Afferent nerve fibers were visualized following labeling with biocytin, and light microscope images were used to make three-dimensional (3-D) reconstructions of individual labeled afferents to identify dendritic morphology with respect to epithelial location. Transmission electron micrographs were compiled to create a serial 3-D reconstruction of a labeled afferent over a segment of its dendritic field and to examine the cell-afferent synaptic contacts. Major observations are: a well-defined striola, medial and lateral extra-striolar regions with a zonal organization of hair bundles; prominent lacinia projecting laterally; dependence of hair cell density on macular location; narrow afferent dendritic fields that follow the hair bundle polarization; synaptic specializations issued by afferents are typically directed towards a limited number of 7-13 hair cells, but larger dendritic fields in the medial extra-striola can be associated with > 20 hair cells also; and hair cell synaptic bodies can be confined to only an individual afferent or can synapse upon several afferents. © 2018 Wiley Periodicals, Inc.

  19. Assessing Decreased Sensation and Increased Sensory Phenomena in Diabetic Polyneuropathies

    PubMed Central

    Herrmann, David N.; Staff, Nathan P.; Dyck, P. James B.

    2013-01-01

    Loss of sensation and increased sensory phenomena are major expressions of varieties of diabetic polyneuropathies needing improved assessments for clinical and research purposes. We provide a neurobiological explanation for the apparent paradox between decreased sensation and increased sensory phenomena. Strongly endorsed is the use of the 10-g monofilaments for screening of feet to detect sensation loss, with the goal of improving diabetic management and prevention of foot ulcers and neurogenic arthropathy. We describe improved methods to assess for the kind, severity, and distribution of both large- and small-fiber sensory loss and which approaches and techniques may be useful for conducting therapeutic trials. The abnormality of attributes of nerve conduction may be used to validate the dysfunction of large sensory fibers. The abnormality of epidermal nerve fibers/1 mm may be used as a surrogate measure of small-fiber sensory loss but appear not to correlate closely with severity of pain. Increased sensory phenomena are recognized by the characteristic words patients use to describe them and by the severity and persistence of these symptoms. Tests of tactile and thermal hyperalgesia are additional markers of neural hyperactivity that are useful for diagnosis and disease management. PMID:24158999

  20. Cell-Type-Specific Modulation of Sensory Responses in Olfactory Bulb Circuits by Serotonergic Projections from the Raphe Nuclei

    PubMed Central

    Brunert, Daniela; Tsuno, Yusuke; Rothermel, Markus; Shipley, Michael T.

    2016-01-01

    Serotonergic neurons in the brainstem raphe nuclei densely innervate the olfactory bulb (OB), where they can modulate the initial representation and processing of olfactory information. Serotonergic modulation of sensory responses among defined OB cell types is poorly characterized in vivo. Here, we used cell-type-specific expression of optical reporters to visualize how raphe stimulation alters sensory responses in two classes of GABAergic neurons of the mouse OB glomerular layer, periglomerular (PG) and short axon (SA) cells, as well as mitral/tufted (MT) cells carrying OB output to piriform cortex. In PG and SA cells, brief (1–4 s) raphe stimulation elicited a large increase in the magnitude of responses linked to inhalation of ambient air, as well as modest increases in the magnitude of odorant-evoked responses. Near-identical effects were observed when the optical reporter of glutamatergic transmission iGluSnFR was expressed in PG and SA cells, suggesting enhanced excitatory input to these neurons. In contrast, in MT cells imaged from the dorsal OB, raphe stimulation elicited a strong increase in resting GCaMP fluorescence with only a slight enhancement of inhalation-linked responses to odorant. Finally, optogenetically stimulating raphe serotonergic afferents in the OB had heterogeneous effects on presumptive MT cells recorded extracellularly, with an overall modest increase in resting and odorant-evoked responses during serotonergic afferent stimulation. These results suggest that serotonergic afferents from raphe dynamically modulate olfactory processing through distinct effects on multiple OB targets, and may alter the degree to which OB output is shaped by inhibition during behavior. SIGNIFICANCE STATEMENT Modulation of the circuits that process sensory information can profoundly impact how information about the external world is represented and perceived. This study investigates how the serotonergic system modulates the initial processing of olfactory