Science.gov

Sample records for afferent synaptic transmission

  1. Stochastic resonance in the synaptic transmission between hair cells and vestibular primary afferents in development.

    PubMed

    Flores, A; Manilla, S; Huidobro, N; De la Torre-Valdovinos, B; Kristeva, R; Mendez-Balbuena, I; Galindo, F; Treviño, M; Manjarrez, E

    2016-05-13

    The stochastic resonance (SR) is a phenomenon of nonlinear systems in which the addition of an intermediate level of noise improves the response of such system. Although SR has been studied in isolated hair cells and in the bullfrog sacculus, the occurrence of this phenomenon in the vestibular system in development is unknown. The purpose of the present study was to explore for the existence of SR via natural mechanical-stimulation in the hair cell-vestibular primary afferent transmission. In vitro experiments were performed on the posterior semicircular canal of the chicken inner ear during development. Our experiments showed that the signal-to-noise ratio of the afferent multiunit activity from E15 to P5 stages of development exhibited the SR phenomenon, which was characterized by an inverted U-like response as a function of the input noise level. The inverted U-like graphs of SR acquired their higher amplitude after the post-hatching stage of development. Blockage of the synaptic transmission with selective antagonists of the NMDA and AMPA/Kainate receptors abolished the SR of the afferent multiunit activity. Furthermore, computer simulations on a model of the hair cell - primary afferent synapse qualitatively reproduced this SR behavior and provided a possible explanation of how and where the SR could occur. These results demonstrate that a particular level of mechanical noise on the semicircular canals can improve the performance of the vestibular system in their peripheral sensory processing even during embryonic stages of development. PMID:26926966

  2. Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog

    NASA Technical Reports Server (NTRS)

    Cochran, S. L.

    1995-01-01

    The concentrations of inorganic cations (K+, Na+, and Ca2+) bathing the isolated frog labyrinth were varied in order to assess their role in influencing and mediating synaptic transmission at the hair cell-afferent fiber synapse. Experiments employed intracellular recordings of synaptic activity from VIIIth nerve afferents. Recordings were digitized continuously at 50 kHz, and excitatory postsynaptic potentials were detected and parameters quantified by computer algorithms. Particular attention was focused on cationic effects upon excitatory postsynaptic potential frequency of occurrence and excitatory postsynaptic potential amplitude, in order to discriminate between pre- and postsynaptic actions. Because the small size of afferents preclude long term stable recordings, alterations in cationic concentrations were applied transiently and their peak effects on synaptic activity were assessed. Increases in extracellular K+ concentration of a few millimolar produced a large increase in the frequency of occurrence of excitatory postsynaptic potentials with little change in amplitude, indicating that release of transmitter from the hair cell is tightly coupled to its membrane potential. Increasing extracellular Na+ concentration resulted in an increase in excitatory postsynaptic potential amplitude with no significant change in excitatory postsynaptic potential frequency of occurrence, suggesting that the transmitter-gated subsynaptic channel conducts Na+ ions. Decreases in extracellular Ca2+ concentration had little effect upon excitatory postsynaptic potential frequency, but increased excitatory postsynaptic potential frequency and amplitude. These findings suggest that at higher concentrations Ca2+ act presynaptically to prevent transmitter release and postsynaptically to prevent Na+ influx during the generation of the excitatory postsynaptic potential. The influences of these ions on synaptic activity at this synapse are remarkably similar to those reported at the

  3. External QX-314 inhibits evoked cranial primary afferent synaptic transmission independent of TRPV1.

    PubMed

    Hofmann, Mackenzie E; Largent-Milnes, Tally M; Fawley, Jessica A; Andresen, Michael C

    2014-12-01

    The cell-impermeant lidocaine derivative QX-314 blocks sodium channels via intracellular mechanisms. In somatosensory nociceptive neurons, open transient receptor potential vanilloid type 1 (TRPV1) receptors provide a transmembrane passageway for QX-314 to produce long-lasting analgesia. Many cranial primary afferents express TRPV1 at synapses on neurons in the nucleus of the solitary tract and caudal trigeminal nucleus (Vc). Here, we investigated whether QX-314 interrupts neurotransmission from primary afferents in rat brain-stem slices. Shocks to the solitary tract (ST) activated highly synchronous evoked excitatory postsynaptic currents (ST-EPSCs). Application of 300 μM QX-314 increased the ST-EPSC latency from TRPV1+ ST afferents, but, surprisingly, it had similar actions at TRPV1- ST afferents. Continued exposure to QX-314 blocked evoked ST-EPSCs at both afferent types. Neither the time to onset of latency changes nor the time to ST-EPSC failure differed between responses for TRPV1+ and TRPV1- inputs. Likewise, the TRPV1 antagonist capsazepine failed to prevent the actions of QX-314. Whereas QX-314 blocked ST-evoked release, the frequency and amplitude of spontaneous EPSCs remained unaltered. In neurons exposed to QX-314, intracellular current injection evoked action potentials suggesting a presynaptic site of action. QX-314 acted similarly at Vc neurons to increase latency and block EPSCs evoked from trigeminal tract afferents. Our results demonstrate that QX-314 blocked nerve conduction in cranial primary afferents without interrupting the glutamate release mechanism or generation of postsynaptic action potentials. The TRPV1 independence suggests that QX-314 either acted extracellularly or more likely entered these axons through an undetermined pathway common to all cranial primary afferents. PMID:25185814

  4. External QX-314 inhibits evoked cranial primary afferent synaptic transmission independent of TRPV1

    PubMed Central

    Largent-Milnes, Tally M.; Fawley, Jessica A.; Andresen, Michael C.

    2014-01-01

    The cell-impermeant lidocaine derivative QX-314 blocks sodium channels via intracellular mechanisms. In somatosensory nociceptive neurons, open transient receptor potential vanilloid type 1 (TRPV1) receptors provide a transmembrane passageway for QX-314 to produce long-lasting analgesia. Many cranial primary afferents express TRPV1 at synapses on neurons in the nucleus of the solitary tract and caudal trigeminal nucleus (Vc). Here, we investigated whether QX-314 interrupts neurotransmission from primary afferents in rat brain-stem slices. Shocks to the solitary tract (ST) activated highly synchronous evoked excitatory postsynaptic currents (ST-EPSCs). Application of 300 μM QX-314 increased the ST-EPSC latency from TRPV1+ ST afferents, but, surprisingly, it had similar actions at TRPV1− ST afferents. Continued exposure to QX-314 blocked evoked ST-EPSCs at both afferent types. Neither the time to onset of latency changes nor the time to ST-EPSC failure differed between responses for TRPV1+ and TRPV1− inputs. Likewise, the TRPV1 antagonist capsazepine failed to prevent the actions of QX-314. Whereas QX-314 blocked ST-evoked release, the frequency and amplitude of spontaneous EPSCs remained unaltered. In neurons exposed to QX-314, intracellular current injection evoked action potentials suggesting a presynaptic site of action. QX-314 acted similarly at Vc neurons to increase latency and block EPSCs evoked from trigeminal tract afferents. Our results demonstrate that QX-314 blocked nerve conduction in cranial primary afferents without interrupting the glutamate release mechanism or generation of postsynaptic action potentials. The TRPV1 independence suggests that QX-314 either acted extracellularly or more likely entered these axons through an undetermined pathway common to all cranial primary afferents. PMID:25185814

  5. Injury-specific functional alteration of N-type voltage-gated calcium channels in synaptic transmission of primary afferent C-fibers in the rat spinal superficial dorsal horn.

    PubMed

    Takasu, Keiko; Ogawa, Koichi; Minami, Kazuhisa; Shinohara, Shunji; Kato, Akira

    2016-02-01

    We investigated functional alterations of voltage-gated calcium channels (VGCCs) in excitatory synaptic transmission from primary afferent A- and C-fibers after peripheral nerve injury. Patch-clamp recordings were performed on substantia gelatinosa (SG) neurons of spinal cord slices with an attached dorsal root, prepared from L5 spinal nerve-ligated (SNL) rats. The effects of neuronal VGCC blockers, ω-conotoxin GVIA (ω-CgTX) for N-type channels and ω-agatoxin IVA (ω-AgaIVA) for P/Q-type channels, on evoked excitatory postsynaptic currents (eEPSCs) by stimulation of A- or C-fibers were studied. Besides, electrophysiological assay using dorsal root ganglion (DRG) and immunohistochemistry were done. In naïve rats, ω-CgTX (0.1-1μM) reduced more effectively A-fiber eEPSCs than C-fiber ones. After nerve injury, ω-CgTX produced great inhibition of C-fiber eEPSCs in slices with the injured L5 dorsal root of SNL model rats, as compared to sham-operated rats. By contrast, in slices with the non-injured L4 one, inhibitory effects of ω-CgTX were not changed. This occurred concurrently with increased expression of N-type VGCCs in L5 spinal dorsal horn and with enhanced Ca(2+) currents through N-type VGCCs in small-sized (C-type) L5 DRG. In terms of A-fiber eEPSCs, ω-CgTX elicited similar inhibition in nerve-injured and sham-operated rats. ω-AgaIVA (0.1μM) had less effect on A- or C-fiber eEPSCs. These results indicate that N-type, but not P/Q-type, VGCCs mainly contribute to excitatory synaptic transmission from A- and C-fibers in the spinal dorsal horn. More importantly, following nerve injury, the functional contribution of N-type VGCCs to nociceptive transmission is increased in the pre-synaptic terminals of injured C-fibers. PMID:26708163

  6. Follistatin-like 1 suppresses sensory afferent transmission by activating Na+,K+-ATPase.

    PubMed

    Li, Kai-Cheng; Zhang, Fang-Xiong; Li, Chang-Lin; Wang, Feng; Yu, Ming-Yan; Zhong, Yan-Qing; Zhang, Kai-Hua; Lu, Ying-Jin; Wang, Qiong; Ma, Xiao-Li; Yao, Jun-Ru; Wang, Jin-Yuan; Lin, Li-Bo; Han, Mei; Zhang, Yu-Qiu; Kuner, Rohini; Xiao, Hua-Sheng; Bao, Lan; Gao, Xiang; Zhang, Xu

    2011-03-10

    Excitatory synaptic transmission is modulated by inhibitory neurotransmitters and neuromodulators. We found that the synaptic transmission of somatic sensory afferents can be rapidly regulated by a presynaptically secreted protein, follistatin-like 1 (FSTL1), which serves as a direct activator of Na(+),K(+)-ATPase (NKA). The FSTL1 protein is highly expressed in small-diameter neurons of the dorsal root ganglion (DRG). It is transported to axon terminals via small translucent vesicles and secreted in both spontaneous and depolarization-induced manners. Biochemical assays showed that FSTL1 binds to the α1 subunit of NKA and elevates NKA activity. Extracellular FSTL1 induced membrane hyperpolarization in cultured cells and inhibited afferent synaptic transmission in spinal cord slices by activating NKA. Genetic deletion of FSTL1 in small DRG neurons of mice resulted in enhanced afferent synaptic transmission and sensory hypersensitivity, which could be reduced by intrathecally applied FSTL1 protein. Thus, FSTL1-dependent activation of NKA regulates the threshold of somatic sensation. PMID:21382556

  7. The correlated blanching of synaptic bodies and reduction in afferent firing rates caused by transmitter-depleting agents in the frog semicircular canal

    NASA Technical Reports Server (NTRS)

    Guth, P.; Norris, C.; Fermin, C. D.; Pantoja, M.

    1993-01-01

    Synaptic bodies (SBs) associated with rings of synaptic vesicles and well-defined, pre- and post-synaptic membrane structures are indicators of maturity in most hair cell-afferent nerve junctions. The role of the SBs remains elusive despite several experiments showing that they may be involved in storage of neurotransmitter. Our results demonstrate that SBs of the adult posterior semicircular canal (SCC) cristae hair cells become less electron dense following incubation of the SCC with the transmitter-depleting drug tetrabenazine (TBZ). Objective quantification and comparison of the densities of the SBs in untreated and TBZ-treated frog SCC demonstrated that TBZ significantly decreased the electron density of SBs. This reduction in electron density was accompanied by a reduction in firing rates of afferent fibers innervating the posterior SCC. A second transmitter-depleting drug, guanethidine, previously shown to reduce the electron density of hair cell SBs, also reduced the firing rates of afferent fibers innervating the posterior SCC. In contrast, the electron density of dense granules (DG), similar in size and shape to synaptic bodies (SB) in hair cells, did not change after incubation in TBZ, thus indicating that granules and SBs are not similar in regard to their electron density. The role of SBs in synaptic transmission and the transmitter, if any, stored in the SBs remain unknown. Nonetheless, the association of the lessening of electron density with a reduction in afferent firing rate provides impetus for the further investigation of the SB's role in neurotransmission.

  8. Functional specializations of primary auditory afferents on the Mauthner cells: interactions between membrane and synaptic properties.

    PubMed

    Curti, Sebastian; Pereda, Alberto E

    2010-01-01

    Primary auditory afferents are usually perceived as passive, timing-preserving, lines of communication. Contrasting this view, a special class of auditory afferents to teleost Mauthner cells, a command neuron that organizes tail-flip escape responses, undergoes potentiation of their mixed (electrical and chemical) synapses in response to high frequency cellular activity. This property is likely to represent a mechanism of input sensitization as these neurons provide the Mauthner cell with essential information for the initiation of an escape response. We review here the anatomical and physiological specializations of these identifiable auditory afferents. In particular, we discuss how their membrane and synaptic properties act in concert to more efficaciously activate the Mauthner cells. The striking functional specializations of these neurons suggest that primary auditory afferents might be capable of more sophisticated contributions to auditory processing than has been generally recognized. PMID:19941953

  9. Synaptic Transmission Correlates of General Mental Ability

    ERIC Educational Resources Information Center

    McRorie, Margaret; Cooper, Colin

    2004-01-01

    Nerve conduction velocity (NCV) and efficiency of synaptic transmission are two possible biological mechanisms that may underpin intelligence. Direct assessments of NCV, without synaptic transmission, show few substantial or reliable correlations with cognitive abilities ["Intelligence" 16 (1992) 273]. We therefore assessed the latencies of…

  10. Astroglial Metabolic Networks Sustain Hippocampal Synaptic Transmission

    NASA Astrophysics Data System (ADS)

    Rouach, Nathalie; Koulakoff, Annette; Abudara, Veronica; Willecke, Klaus; Giaume, Christian

    2008-12-01

    Astrocytes provide metabolic substrates to neurons in an activity-dependent manner. However, the molecular mechanisms involved in this function, as well as its role in synaptic transmission, remain unclear. Here, we show that the gap-junction subunit proteins connexin 43 and 30 allow intercellular trafficking of glucose and its metabolites through astroglial networks. This trafficking is regulated by glutamatergic synaptic activity mediated by AMPA receptors. In the absence of extracellular glucose, the delivery of glucose or lactate to astrocytes sustains glutamatergic synaptic transmission and epileptiform activity only when they are connected by gap junctions. These results indicate that astroglial gap junctions provide an activity-dependent intercellular pathway for the delivery of energetic metabolites from blood vessels to distal neurons.

  11. Lateral regulation of synaptic transmission by astrocytes.

    PubMed

    Covelo, A; Araque, A

    2016-05-26

    Fifteen years ago the concept of the "tripartite synapse" was proposed to conceptualize the functional view that astrocytes are integral elements of synapses. The signaling exchange between astrocytes and neurons within the tripartite synapse results in the synaptic regulation of synaptic transmission and plasticity through an autocrine form of communication. However, recent evidence indicates that the astrocyte synaptic regulation is not restricted to the active tripartite synapse but can be manifested through astrocyte signaling at synapses relatively distant from active synapses, a process termed lateral astrocyte synaptic regulation. This phenomenon resembles the classical heterosynaptic modulation but is mechanistically different because it involves astrocytes and its properties critically depend on the morphological and functional features of astrocytes. Therefore, the functional concept of the tripartite synapse as a fundamental unit must be expanded to include the interaction between tripartite synapses. Through lateral synaptic regulation, astrocytes serve as an active processing bridge for synaptic interaction and crosstalk between synapses with no direct neuronal connectivity, supporting the idea that neural network function results from the coordinated activity of astrocytes and neurons. PMID:25732135

  12. Turn Down That Noise: Synaptic Encoding of Afferent SNR in a Single Spiking Neuron.

    PubMed

    Afshar, Saeed; George, Libin; Thakur, Chetan Singh; Tapson, Jonathan; van Schaik, André; de Chazal, Philip; Hamilton, Tara Julia

    2015-04-01

    We have added a simplified neuromorphic model of Spike Time Dependent Plasticity (STDP) to the previously described Synapto-dendritic Kernel Adapting Neuron (SKAN), a hardware efficient neuron model capable of learning spatio-temporal spike patterns. The resulting neuron model is the first to perform synaptic encoding of afferent signal-to-noise ratio in addition to the unsupervised learning of spatio-temporal spike patterns. The neuron model is particularly suitable for implementation in digital neuromorphic hardware as it does not use any complex mathematical operations and uses a novel shift-based normalization approach to achieve synaptic homeostasis. The neuron's noise compensation properties are characterized and tested on random spatio-temporal spike patterns as well as a noise corrupted subset of the zero images of the MNIST handwritten digit dataset. Results show the simultaneously learning common patterns in its input data while dynamically weighing individual afferents based on their signal to noise ratio. Despite its simplicity the interesting behaviors of the neuron model and the resulting computational power may also offer insights into biological systems. PMID:25910252

  13. Compartmental modeling of rat macular primary afferents from three-dimensional reconstructions of transmission electron micrographs of serial sections.

    PubMed

    Chimento, T C; Doshay, D G; Ross, M D

    1994-05-01

    1. We cut serial sections through the medial part of the rat vestibular macula for transmission electron microscopic (TEM) examination, computer-assisted three-dimensional (3-D) reconstruction, and compartmental modeling. The ultrastructural research showed that many primary vestibular neurons have an unmyelinated segment, often branched, that extends between the heminode [putative site of the spike initiation zone (SIZ)] and the expanded terminal(s) (calyx, calyces). These segments, termed the neuron branches, and the calyces frequently have spinelike processes of various dimensions that morphologically are afferent, efferent, or reciprocal to other macular neural elements. The purpose of this research was to determine whether morphometric data obtained ultrastructurally were essential to compartmental models [i.e., they influenced action potential (AP) generation, latency, or amplitude] or whether afferent parts could be collapsed into more simple units without markedly affecting results. We used the compartmental modeling program NEURON for this research. 2. In the first set of simulations we studied the relative importance of small variations in process morphology on distant depolarization. A process was placed midway along an isolated piece of a passive neuron branch. The dimensions of the four processes corresponded to actual processes in the serial sections. A synapse, placed on the head of each process, was activated and depolarization was recorded at the end of the neuron branch. When we used 5 nS synaptic conductance, depolarization varied by 3 mV. In a systematic study over a representative range of stem dimensions, depolarization varied by 15.7 mV. Smaller conductances produced smaller effects. Increasing membrane resistivity from 5,000 to 50,000 omega cm2 had no significant effect. 3. In a second series of simulations, using whole primary afferents, we examined the combined effects of process location and afferent morphology on depolarization magnitude

  14. Archaerhodopsin Selectively and Reversibly Silences Synaptic Transmission through Altered pH.

    PubMed

    El-Gaby, Mohamady; Zhang, Yu; Wolf, Konstantin; Schwiening, Christof J; Paulsen, Ole; Shipton, Olivia A

    2016-08-23

    Tools that allow acute and selective silencing of synaptic transmission in vivo would be invaluable for understanding the synaptic basis of specific behaviors. Here, we show that presynaptic expression of the proton pump archaerhodopsin enables robust, selective, and reversible optogenetic synaptic silencing with rapid onset and offset. Two-photon fluorescence imaging revealed that this effect is accompanied by a transient increase in pH restricted to archaerhodopsin-expressing boutons. Crucially, clamping intracellular pH abolished synaptic silencing without affecting the archaerhodopsin-mediated hyperpolarizing current, indicating that changes in pH mediate the synaptic silencing effect. To verify the utility of this technique, we used trial-limited, archaerhodopsin-mediated silencing to uncover a requirement for CA3-CA1 synapses whose afferents originate from the left CA3, but not those from the right CA3, for performance on a long-term memory task. These results highlight optogenetic, pH-mediated silencing of synaptic transmission as a spatiotemporally selective approach to dissecting synaptic function in behaving animals. PMID:27524609

  15. Synaptic adhesion molecule IgSF11 regulates synaptic transmission and plasticity

    PubMed Central

    Shin, Hyewon; van Riesen, Christoph; Whitcomb, Daniel; Warburton, Julia M.; Jo, Jihoon; Kim, Doyoun; Kim, Sun Gyun; Um, Seung Min; Kwon, Seok-kyu; Kim, Myoung-Hwan; Roh, Junyeop Daniel; Woo, Jooyeon; Jun, Heejung; Lee, Dongmin; Mah, Won; Kim, Hyun; Kaang, Bong-Kiun; Cho, Kwangwook; Rhee, Jeong-Seop; Choquet, Daniel; Kim, Eunjoon

    2016-01-01

    Summary Synaptic adhesion molecules regulate synapse development and plasticity through mechanisms including trans-synaptic adhesion and recruitment of diverse synaptic proteins. We report here that the immunoglobulin superfamily member 11 (IgSF11), a homophilic adhesion molecule preferentially expressed in the brain, is a novel and dual-binding partner of the postsynaptic scaffolding protein PSD-95 and AMPAR glutamate receptors (AMPARs). IgSF11 requires PSD-95 binding for its excitatory synaptic localization. In addition, IgSF11 stabilizes synaptic AMPARs, as shown by IgSF11 knockdown-induced suppression of AMPAR-mediated synaptic transmission and increased surface mobility of AMPARs, measured by high-throughput, single-molecule tracking. IgSF11 deletion in mice leads to suppression of AMPAR-mediated synaptic transmission in the dentate gyrus and long-term potentiation in the CA1 region of the hippocampus. IgSF11 does not regulate the functional characteristics of AMPARs, including desensitization, deactivation, or recovery. These results suggest that IgSF11 regulates excitatory synaptic transmission and plasticity through its tripartite interactions with PSD-95 and AMPARs. PMID:26595655

  16. Effects of prostaglandin E2 on synaptic transmission in the rat spinal trigeminal subnucleus caudalis.

    PubMed

    Mizutani, Yuka; Ohi, Yoshiaki; Kimura, Satoko; Miyazawa, Ken; Goto, Shigemi; Haji, Akira

    2015-11-01

    The spinal trigeminal subnucleus caudalis (Vc) receives preferentially nociceptive afferent signals from the orofacial area. Nociceptive stimuli to the orofacial area induce cyclooxygenase both peripherally and centrally, which can synthesize a major prostanoid prostaglandin E2 (PGE2) that implicates in diverse physiological functions. To clarify the roles of centrally-synthesized PGE2 in nociception, effects of exogenous PGE2 on synaptic transmission in the Vc neurons were investigated in the rat brainstem slice. Spontaneously occurring excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) were recorded, respectively, under pharmacological blockade of inhibitory and excitatory transmission by whole-cell patch-clamp mode. Perfusion of PGE2 (1-5 μM) increased the frequency of sIPSCs in a concentration-dependent manner but had no significant effect on the amplitude. Similarly to the effects on sIPSCs, PGE2 increased the sEPSC frequency without any effect on the amplitude. These facilitatory effects of PGE2 on spontaneous synaptic transmissions were blocked by an EP1 antagonist SC19220 but not by an EP4 antagonist AH23848. Electrical stimulation of the trigeminal tract evoked short latency EPSCs (eEPSCs) in the Vc neurons. PGE2 (5 μM) was ineffective on the eEPSCs. The present study demonstrated that PGE2 facilitated spontaneous synaptic transmissions in the Vc neurons through activating the presynaptic EP1 receptors but had no effect on the trigeminal tract-mediated excitatory transmission. These results suggest that centrally-synthesized PGE2 modifies the synaptic transmission in the Vc region, thereby contributing to the processing of nociceptive signals originated from the orofacial area. PMID:26320551

  17. Synaptic unreliability facilitates information transmission in balanced cortical populations

    NASA Astrophysics Data System (ADS)

    Gatys, Leon A.; Ecker, Alexander S.; Tchumatchenko, Tatjana; Bethge, Matthias

    2015-06-01

    Synaptic unreliability is one of the major sources of biophysical noise in the brain. In the context of neural information processing, it is a central question how neural systems can afford this unreliability. Here we examine how synaptic noise affects signal transmission in cortical circuits, where excitation and inhibition are thought to be tightly balanced. Surprisingly, we find that in this balanced state synaptic response variability actually facilitates information transmission, rather than impairing it. In particular, the transmission of fast-varying signals benefits from synaptic noise, as it instantaneously increases the amount of information shared between presynaptic signal and postsynaptic current. Furthermore we show that the beneficial effect of noise is based on a very general mechanism which contrary to stochastic resonance does not reach an optimum at a finite noise level.

  18. Synaptic transmission at retinal ribbon synapses

    PubMed Central

    Heidelberger, Ruth; Thoreson, Wallace B.; Witkovsky, Paul

    2006-01-01

    The molecular organization of ribbon synapses in photoreceptors and ON bipolar cells is reviewed in relation to the process of neurotransmitter release. The interactions between ribbon synapse-associated proteins, synaptic vesicle fusion machinery and the voltage-gated calcium channels that gate transmitter release at ribbon synapses are discussed in relation to the process of synaptic vesicle exocytosis. We describe structural and mechanistic specializations that permit the ON bipolar cell to release transmitter at a much higher rate than the photoreceptor does, under in vivo conditions. We also consider the modulation of exocytosis at photoreceptor synapses, with an emphasis on the regulation of calcium channels. PMID:16027025

  19. GluN3A promotes NMDA spiking by enhancing synaptic transmission in Huntington's disease models.

    PubMed

    Mahfooz, Kashif; Marco, Sonia; Martínez-Turrillas, Rebeca; Raja, Mathan K; Pérez-Otaño, Isabel; Wesseling, John F

    2016-09-01

    Age-inappropriate expression of juvenile NMDA receptors (NMDARs) containing GluN3A subunits has been linked to synapse loss and death of spiny projection neurons of the striatum (SPNs) in Huntington's disease (HD). Here we show that suppressing GluN3A expression prevents a multivariate synaptic transmission phenotype that precedes morphological signs at early prodromal stages. We start by confirming that afferent fiber stimulation elicits larger synaptic responses mediated by both AMPA receptors and NMDARs in SPNs in the YAC128 mouse model of HD. We then show that the enhancement mediated by both is fully prevented by suppressing GluN3A expression. Strong fiber-stimulation unexpectedly elicited robust NMDAR-mediated electrogenic events (termed "upstates" or "NMDA spikes"), and the effective threshold for induction was more than 2-fold lower in YAC128 SPNs because of the enhanced synaptic transmission. The threshold could be restored to control levels by suppressing GluN3A expression or by applying the weak NMDAR blocker memantine. However, the threshold was not affected by preventing glutamate spillover from synaptic clefts. Instead, long-lasting NMDAR responses interpreted previously as activation of extrasynaptic receptors by spilled-over glutamate were caused by NMDA spikes occurring in voltage clamp mode as escape potentials. Together, the results implicate GluN3A reactivation in a broad spectrum of early-stage synaptic transmission deficits in YAC128 mice; question the current concept that NMDAR mislocalization is the pathological trigger in HD; and introduce NMDA spikes as a new candidate mechanism for coupling NMDARs to neurodegeneration. PMID:27072890

  20. Odor-Specific Habituation Arises from Interaction of Afferent Synaptic Adaptation and Intrinsic Synaptic Potentiation in Olfactory Cortex

    ERIC Educational Resources Information Center

    Linster, Christiane; Menon, Alka V.; Singh, Christopher Y.; Wilson, Donald A.

    2009-01-01

    Segmentation of target odorants from background odorants is a fundamental computational requirement for the olfactory system and is thought to be behaviorally mediated by olfactory habituation memory. Data from our laboratory have shown that odor-specific adaptation in piriform neurons, mediated at least partially by synaptic adaptation between…

  1. Naturalistic Stimuli Increase the Rate and Efficiency of Information Transmission by Primary Auditory Afferents

    NASA Astrophysics Data System (ADS)

    Rieke, F.; Bodnar, D. A.; Bialek, W.

    1995-12-01

    Natural sounds, especially communication sounds, have highly structured amplitude and phase spectra. We have quantified how structure in the amplitude spectrum of natural sounds affects coding in primary auditory afferents. Auditory afferents encode stimuli with naturalistic amplitude spectra dramatically better than broad-band stimuli (approximating white noise); the rate at which the spike train carries information about the stimulus is 2-6 times higher for naturalistic sounds. Furthermore, the information rates can reach 90% of the fundamental limit to information transmission set by the statistics of the spike response. These results indicate that the coding strategy of the auditory nerve is matched to the structure of natural sounds; this `tuning' allows afferent spike trains to provide higher processing centres with a more complete description of the sensory world.

  2. Neuronal excitability: voltage-dependent currents and synaptic transmission.

    PubMed

    Rutecki, P A

    1992-04-01

    Neuronal membrane excitability and the synaptic connections among neurons produce behavior and cognition. The intracellular compartment of neurons is negatively charged relative to the extracellular space, and this charge, as well as current flow, is produced by ions. From the perspective of charged ions, the lipid bilayer of the neuronal membrane acts as a capacitor, and transmembrane glycoprotein pores or channels act as resistors. The open and closed states of ionic channels determine the membrane potential. At equilibrium, the lowest resistance or greatest permeability is for potassium, and the resting membrane potential is close to the equilibrium potential for potassium. When a channel is opened, permeable ions diffuse down their electrochemical gradients and the membrane potential is changed. Channels are gated (opened or closed) by voltage, neurotransmitters, and second messengers. The neuron integrates synaptic potentials produced by transmitter-gated channel activity and either generates a subthreshold potential, or a suprathreshold depolarization that generates an action potential or a burst of action potentials. Action potential generation is mediated by a large, brief sodium influx that is followed by activation of a voltage-dependent potassium eflux. The pattern of action potential firing is dependent on the interaction of a repertoire of voltage-dependent ion conductances. The action potential is the main signaling mechanism to activate synaptic transmission at axon terminals. Synaptic transmission is graded depending on the amount of calcium entering the presynaptic terminal. The number of action potentials, or the shape of the action potential, will determine the amount of calcium entering the terminal and the efficacy of synaptic transmission. Presynaptic ion channels may also be controlled by neurotransmitters or modulators and affect synaptic transmission by altering the amount of calcium influx. PMID:1375602

  3. Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

    PubMed Central

    Hirata, Hiromi; Carta, Eloisa; Yamanaka, Iori; Harvey, Robert J.; Kuwada, John Y.

    2009-01-01

    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho) mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch-once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch-once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs. PMID:20161699

  4. Progesterone Regulation of Synaptic Transmission and Plasticity in Rodent Hippocampus

    ERIC Educational Resources Information Center

    Foy, Michael R.; Akopian, Garnik; Thompson, Richard F.

    2008-01-01

    Ovarian hormones influence memory formation by eliciting changes in neural activity. The effects of various concentrations of progesterone (P4) on synaptic transmission and plasticity associated with long-term potentiation (LTP) and long-term depression (LTD) were studied using in vitro hippocampal slices. Extracellular studies show that the…

  5. Afferent modulation of neonatal rat respiratory rhythm in vitro: cellular and synaptic mechanisms.

    PubMed

    Mellen, Nicholas M; Roham, Maryam; Feldman, Jack L

    2004-05-01

    In mammals, expiration is lengthened by mid-expiratory lung inflation (Breuer-Hering Expiratory reflex; BHE). The central pathway mediating the BHE is paucisynaptic, converging on neurones in the rostral ventrolateral medulla. An in vitro neonatal rat brainstem-lung preparation in which mid-expiratory inflation lengthens expiration was used to study afferent modulation of respiratory neurone activity. Recordings were made from respiratory neurones in or near the pre-Bötzinger Complex (preBötC). Respiratory neurone membrane properties and BHE-induced changes in activity were characterized. Our findings suggest the following mechanisms for the BHE: (i) lung afferent signals strongly excite biphasic neurones that convey these signals to respiratory neurones in ventrolateral medulla; (ii) expiratory lengthening is mediated by inhibition of rhythmogenic and (pre)motoneuronal networks; and (iii) pre-inspiratory (Pre-I) neurones, some of which project to abdominal expiratory motoneurones, are excited during the BHE. These findings are qualitatively similar to studies of the BHE in vivo. Where there are differences, they can largely be accounted for by developmental changes and experimental conditions. PMID:14766932

  6. Adenomatous Polyposis Coli Protein Deletion in Efferent Olivocochlear Neurons Perturbs Afferent Synaptic Maturation and Reduces the Dynamic Range of Hearing

    PubMed Central

    Hickman, Tyler T.; Liberman, M. Charles

    2015-01-01

    Normal hearing requires proper differentiation of afferent ribbon synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) that carry acoustic information to the brain. Within individual IHCs, presynaptic ribbons show a size gradient with larger ribbons on the modiolar face and smaller ribbons on the pillar face. This structural gradient is associated with a gradient of spontaneous rates and threshold sensitivity, which is essential for a wide dynamic range of hearing. Despite their importance for hearing, mechanisms that direct ribbon differentiation are poorly defined. We recently identified adenomatous polyposis coli protein (APC) as a key regulator of interneuronal synapse maturation. Here, we show that APC is required for ribbon size heterogeneity and normal cochlear function. Compared with wild-type littermates, APC conditional knock-out (cKO) mice exhibit decreased auditory brainstem responses. The IHC ribbon size gradient is also perturbed. Whereas the normal-developing IHCs display ribbon size gradients before hearing onset, ribbon sizes are aberrant in APC cKOs from neonatal ages on. Reporter expression studies show that the CaMKII-Cre used to delete the floxed APC gene is present in efferent olivocochlear (OC) neurons, not IHCs or SGNs. APC loss led to increased volumes and numbers of OC inhibitory dopaminergic boutons on neonatal SGN fibers. Our findings identify APC in efferent OC neurons as essential for regulating ribbon heterogeneity, dopaminergic terminal differentiation, and cochlear sensitivity. This APC effect on auditory epithelial cell synapses resembles interneuronal and nerve–muscle synapses, thereby defining a global role for APC in synaptic maturation in diverse cell types. Significance Statement This study identifies novel molecules and cellular interactions that are essential for the proper maturation of afferent ribbon synapses in sensory cells of the inner ear, and for normal hearing. PMID:26085645

  7. proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus.

    PubMed

    Yang, Jianmin; Harte-Hargrove, Lauren C; Siao, Chia-Jen; Marinic, Tina; Clarke, Roshelle; Ma, Qian; Jing, Deqiang; Lafrancois, John J; Bath, Kevin G; Mark, Willie; Ballon, Douglas; Lee, Francis S; Scharfman, Helen E; Hempstead, Barbara L

    2014-05-01

    Experience-dependent plasticity shapes postnatal development of neural circuits, but the mechanisms that refine dendritic arbors, remodel spines, and impair synaptic activity are poorly understood. Mature brain-derived neurotrophic factor (BDNF) modulates neuronal morphology and synaptic plasticity, including long-term potentiation (LTP) via TrkB activation. BDNF is initially translated as proBDNF, which binds p75(NTR). In vitro, recombinant proBDNF modulates neuronal structure and alters hippocampal long-term plasticity, but the actions of endogenously expressed proBDNF are unclear. Therefore, we generated a cleavage-resistant probdnf knockin mouse. Our results demonstrate that proBDNF negatively regulates hippocampal dendritic complexity and spine density through p75(NTR). Hippocampal slices from probdnf mice exhibit depressed synaptic transmission, impaired LTP, and enhanced long-term depression (LTD) in area CA1. These results suggest that proBDNF acts in vivo as a biologically active factor that regulates hippocampal structure, synaptic transmission, and plasticity, effects that are distinct from those of mature BDNF. PMID:24746813

  8. Xyloside primed glycosaminoglycans alter hair bundle micromechanical coupling and synaptic transmission: Pharmacokinetics

    NASA Astrophysics Data System (ADS)

    Holman, Holly A.; Tran, Vy M.; Nguyen, Lynn Y.; Arungundram, Sailaja; Kalita, Mausam; Kuberan, Balagurunathan; Rabbitt, Richard D.

    2015-12-01

    Glycosaminoglycans (GAGs) are ubiquitous in the inner ear, and disorders altering their structure or production often result in debilitating hearing and balance deficits. The specific mechanisms responsible for loss of hair-cell function are not well understood. We recently reported that introduction of a novel BODIPY conjugated xyloside (BX) into the endolymph primes fluorescent GAGs in vivo [6, 15]. Confocal and two-photon fluorescence imaging revealed rapid turnover and assembly of a glycocalyx enveloping the kinocilia and extending into the cupula, a structure that presumably serves as a mechanical link between the hair bundle and the cupula. Extracellular fluorescence was also observed around the basolateral surface of hair cells and surrounding afferent nerve projections into the crista. Single unit afferent recordings during mechanical hair bundle stimulation revealed temporary interruption of synaptic transmission following BX administration followed by recovery, demonstrating an essential role for GAGs in function of the hair cell synapse. In the present work we present a pharmacokinetic model to quantify the time course of BX primed GAG production and turnover in the ear.

  9. Xyloside primed glycosaminoglycans alter hair bundle micromechanical coupling and synaptic transmission: Pharmacokinetics

    SciTech Connect

    Holman, Holly A.; Nguyen, Lynn Y.; Tran, Vy M.; Arungundram, Sailaja; Kalita, Mausam; Kuberan, Balagurunathan; Rabbitt, Richard D.

    2015-12-31

    Glycosaminoglycans (GAGs) are ubiquitous in the inner ear, and disorders altering their structure or production often result in debilitating hearing and balance deficits. The specific mechanisms responsible for loss of hair-cell function are not well understood. We recently reported that introduction of a novel BODIPY conjugated xyloside (BX) into the endolymph primes fluorescent GAGs in vivo [6, 15]. Confocal and two-photon fluorescence imaging revealed rapid turnover and assembly of a glycocalyx enveloping the kinocilia and extending into the cupula, a structure that presumably serves as a mechanical link between the hair bundle and the cupula. Extracellular fluorescence was also observed around the basolateral surface of hair cells and surrounding afferent nerve projections into the crista. Single unit afferent recordings during mechanical hair bundle stimulation revealed temporary interruption of synaptic transmission following BX administration followed by recovery, demonstrating an essential role for GAGs in function of the hair cell synapse. In the present work we present a pharmacokinetic model to quantify the time course of BX primed GAG production and turnover in the ear.

  10. Orexin-A modulates excitatory synaptic transmission and neuronal excitability in the spinal cord substantia gelatinosa.

    PubMed

    Jeon, Younghoon; Park, Ki Bum; Pervin, Rokeya; Kim, Tae Wan; Youn, Dong-ho

    2015-09-14

    Although intrathecal orexin-A has been known to be antinociceptive in various pain models, the role of orexin-A in antinociception is not well characterized. In the present study, we examined whether orexin-A modulates primary afferent fiber-mediated or spontaneous excitatory synaptic transmission using transverse spinal cord slices with attached dorsal root. Bath-application of orexin-A (100nM) reduced the amplitude of excitatory postsynaptic currents (EPSCs) evoked by electrical stimulation of Aδ- or C-primary afferent fibers. The magnitude of reduction was much larger for EPSCs evoked by polysynaptic C-fibers than polysynaptic Aδ-fibers, whereas it was similar in EPSCs evoked by monosynaptic Aδ- or C-fibers. SB674042, an orexin-1 receptor antagonist, but not EMPA, an orexin-2 receptor antagonist, significantly inhibited the orexin-A-induced reduction in EPSC amplitude from mono- or polysynaptic Aδ-fibers, as well as from mono- or polysynaptic C-fibers. Furthermore, orexin-A significantly increased the frequency of spontaneous EPSCs but not the amplitude. This increase was almost completely blocked by both SB674042 and EMPA. On the other hand, orexin-A produced membrane oscillations and inward currents in the SG neurons that were partially or completely inhibited by SB674042 or EMPA, respectively. Thus, this study suggests that the spinal actions of orexin-A underlie orexin-A-induced antinociceptive effects via different subtypes of orexin receptors. PMID:26254164

  11. Brain-derived neurotrophic factor and nerve growth factor potentiate excitatory synaptic transmission in the rat visual cortex.

    PubMed Central

    Carmignoto, G; Pizzorusso, T; Tia, S; Vicini, S

    1997-01-01

    1. The effect of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) on excitatory synaptic transmission in the developing visual cortex was studied by whole-cell patch-clamp recordings from rat brain slices. 2. Both neurotrophins induced a rapid increase in the amplitude of impulse-evoked excitatory postsynaptic currents (EPSCs). BDNF also increased the frequency of spontaneous EPSCs. 3. Analysis of the currents revealed that alpha-amino-3-hydroxy-5-methyl-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor-mediated components contributing to the EPSC peak amplitude were equally potentiated by the neurotrophins. 4. When synaptic transmission was studied by minimal stimulation of intracortical afferents, neurotrophins induced a decrease in the occurrence of release failures. 5. A number of neurones were insensitive to the effects of the neurotrophins, possibly related to the considerable heterogeneity of neuronal types and to the uneven distribution of neurotrophin receptors in the visual cortex. 6. The probability of neurotransmitter release represents a rapidly modifiable synaptic feature by which neurotrophins can potentiate the efficacy of excitatory synaptic transmission in the visual cortex. PMID:9023775

  12. Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants.

    PubMed

    Nonet, M L; Saifee, O; Zhao, H; Rand, J B; Wei, L

    1998-01-01

    Synaptobrevins are vesicle-associated proteins implicated in neurotransmitter release by both biochemical studies and perturbation experiments that use botulinum toxins. To test these models in vivo, we have isolated and characterized the first synaptobrevin mutants in metazoans and show that neurotransmission is severely disrupted in mutant animals. Mutants lacking snb-1 die just after completing embryogenesis. The dying animals retain some capability for movement, although they are extremely uncoordinated and incapable of feeding. We also have isolated and characterized several hypomorphic snb-1 mutants. Although fully viable, these mutants exhibit a variety of behavioral abnormalities that are consistent with a general defect in the efficacy of synaptic transmission. The viable mutants are resistant to the acetylcholinesterase inhibitor aldicarb, indicating that cholinergic transmission is impaired. Extracellular recordings from pharyngeal muscle also demonstrate severe defects in synaptic transmission in the mutants. The molecular lesions in the hypomorphic alleles reside on the hydrophobic face of a proposed amphipathic-helical region implicated biochemically in interacting with the t-SNAREs syntaxin and SNAP-25. Finally, we demonstrate that double mutants lacking both the v-SNAREs synaptotagmin and snb-1 are phenotypically similar to snb-1 mutants and less severe than syntaxin mutants. Our work demonstrates that synaptobrevin is essential for viability and is required for functional synaptic transmission. However, our analysis also suggests that transmitter release is not completely eliminated by removal of either one or both v-SNAREs. PMID:9412487

  13. MPTP-meditated hippocampal dopamine deprivation modulates synaptic transmission and activity-dependent synaptic plasticity

    SciTech Connect

    Zhu Guoqi; Chen Ying; Huang Yuying; Li Qinglin; Behnisch, Thomas

    2011-08-01

    Parkinson's disease (PD)-like symptoms including learning deficits are inducible by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Therefore, it is possible that MPTP may disturb hippocampal memory processing by modulation of dopamine (DA)- and activity-dependent synaptic plasticity. We demonstrate here that intraperitoneal (i.p.) MPTP injection reduces the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) within 7 days. Subsequently, the TH expression level in SN and hippocampus and the amount of DA and its metabolite DOPAC in striatum and hippocampus decrease. DA depletion does not alter basal synaptic transmission and changes pair-pulse facilitation (PPF) of field excitatory postsynaptic potentials (fEPSPs) only at the 30 ms inter-pulse interval. In addition, the induction of long-term potentiation (LTP) is impaired whereas the duration of long-term depression (LTD) becomes prolonged. Since both LTP and LTD depend critically on activation of NMDA and DA receptors, we also tested the effect of DA depletion on NMDA receptor-mediated synaptic transmission. Seven days after MPTP injection, the NMDA receptor-mediated fEPSPs are decreased by about 23%. Blocking the NMDA receptor-mediated fEPSP does not mimic the MPTP-LTP. Only co-application of D1/D5 and NMDA receptor antagonists during tetanization resembled the time course of fEPSP potentiation as observed 7 days after i.p. MPTP injection. Together, our data demonstrate that MPTP-induced degeneration of DA neurons and the subsequent hippocampal DA depletion alter NMDA receptor-mediated synaptic transmission and activity-dependent synaptic plasticity. - Highlights: > I.p. MPTP-injection mediates death of dopaminergic neurons. > I.p. MPTP-injection depletes DA and DOPAC in striatum and hippocampus. > I.p. MPTP-injection does not alter basal synaptic transmission. > Reduction of LTP and enhancement of LTD after i.p. MPTP-injection. > Attenuation of NMDA-receptors mediated f

  14. Presynaptic clathrin levels are a limiting factor for synaptic transmission.

    PubMed

    López-Murcia, Francisco J; Royle, Stephen J; Llobet, Artur

    2014-06-18

    To maintain communication, neurons must recycle their synaptic vesicles with high efficiency. This process places a huge burden on the clathrin-mediated endocytic machinery, but the consequences of this are poorly understood. We found that the amount of clathrin in a presynaptic terminal is not fixed. During stimulation, clathrin moves out of synapses as a function of stimulus strength and neurotransmitter release probability, which, together with membrane coat formation, transiently reduces the available pool of free clathrin triskelia. Correlative functional and morphological experiments in cholinergic autapses established by superior cervical ganglion neurons in culture show that presynaptic terminal function is compromised if clathrin levels fall by 20% after clathrin heavy chain knock down using RNAi. Synaptic transmission is depressed due to a reduction of cytoplasmic and readily releasable pools of vesicles. However, synaptic depression reverts after dialysis of exogenous clathrin, thus compensating RNAi-induced depletion. Lowering clathrin levels also reduces quantal size, which occurs concomitantly with a decrease in the size of synaptic vesicles. Large dense-core vesicles are unaffected by clathrin knock down. Together, our results show that clathrin levels are a dynamic property of presynaptic terminals that can influence short-term plasticity in a stimulus-dependent manner. PMID:24948816

  15. From Synaptic Transmission to Cognition: An Intermediary Role for Dendritic Spines

    ERIC Educational Resources Information Center

    Gonzalez-Burgos, Ignacio

    2012-01-01

    Dendritic spines are cytoplasmic protrusions that develop directly or indirectly from the filopodia of neurons. Dendritic spines mediate excitatory neurotransmission and they can isolate the electrical activity generated by synaptic impulses, enabling them to translate excitatory afferent information via several types of plastic changes, including…

  16. Pre-Synaptic Inhibition of Afferent Feedback in the Macaque Spinal Cord Does Not Modulate with Cycles of Peripheral Oscillations Around 10 Hz

    PubMed Central

    Galán, Ferran; Baker, Stuart N.

    2015-01-01

    Spinal interneurons are partially phase-locked to physiological tremor around 10 Hz. The phase of spinal interneuron activity is approximately opposite to descending drive to motoneurons, leading to partial phase cancellation and tremor reduction. Pre-synaptic inhibition of afferent feedback modulates during voluntary movements, but it is not known whether it tracks more rapid fluctuations in motor output such as during tremor. In this study, dorsal root potentials (DRPs) were recorded from the C8 and T1 roots in two macaque monkeys following intra-spinal micro-stimulation (random inter-stimulus interval 1.5–2.5 s, 30–100 μA), whilst the animals performed an index finger flexion task which elicited peripheral oscillations around 10 Hz. Forty one responses were identified with latency < 5 ms; these were narrow (mean width 0.59 ms), and likely resulted from antidromic activation of afferents following stimulation near terminals. Significant modulation during task performance occurred in 16/41 responses, reflecting terminal excitability changes generated by pre-synaptic inhibition (Wall's excitability test). Stimuli falling during large-amplitude 8–12 Hz oscillations in finger acceleration were extracted, and sub-averages of DRPs constructed for stimuli delivered at different oscillation phases. Although some apparent phase-dependent modulation was seen, this was not above the level expected by chance. We conclude that, although terminal excitability reflecting pre-synaptic inhibition of afferents modulates over the timescale of a voluntary movement, it does not follow more rapid changes in motor output. This suggests that pre-synaptic inhibition is not part of the spinal systems for tremor reduction described previously, and that it plays a role in overall—but not moment-by-moment—regulation of feedback gain. PMID:26635536

  17. Cellular and molecular mechanisms of chemical synaptic transmission.

    PubMed

    Millhorn, D E; Bayliss, D A; Erickson, J T; Gallman, E A; Szymeczek, C L; Czyzyk-Krzeska, M; Dean, J B

    1989-12-01

    During the last decade much progress has been made in understanding the cellular and molecular mechanisms by which nerve cells communicate with each other and nonneural (e.g., muscle) target tissue. This review is intended to provide the reader with an account of this work. We begin with an historical overview of research on cell-to-cell communication and then discuss recent developments that, in some instances, have led to dramatic changes in the concept of synaptic transmission. For instance, the finding that single neurons often contain multiple messengers (i.e., neurotransmitters) invalidated the long-held theory (i.e., Dale's Law) that individual neurons contain and release one and only one type of neurotransmitter. Moreover, the last decade witnessed the inclusion of an entire group of compounds, the neuropeptides, as messenger molecules. Enormous progress has also been made in elucidating postsynaptic receptor complexes and biochemical intermediaries involved in synaptic transmission. Here the development of recombinant DNA technology has made it possible to clone and determine the molecular structure for a number of receptors. This information has been used to gain insight into how these receptors function either as a ligand-gated channel or as a G protein-linked ligand recognition molecule. Perhaps the most progress made during this era was in understanding the molecular linkage of G protein-linked receptors to intramembranous and cytoplasmic macromolecules involved in signal amplification and transduction. We conclude with a brief discussion of how synaptic transmission leads to immediate alterations in the electrical activity and, in some cases, to a change in phenotype by altering gene expression. These alterations in cellular behavior are believed to be mediated by phosphoproteins, the final biochemical product of signal transduction. PMID:2575357

  18. Quercetin Targets Cysteine String Protein (CSPα) and Impairs Synaptic Transmission

    PubMed Central

    Xu, Fenglian; Proft, Juliane; Gibbs, Sarah; Winkfein, Bob; Johnson, Jadah N.; Syed, Naweed; Braun, Janice E. A.

    2010-01-01

    Background Cysteine string protein (CSPα) is a synaptic vesicle protein that displays unique anti-neurodegenerative properties. CSPα is a member of the conserved J protein family, also called the Hsp40 (heat shock protein of 40 kDa) protein family, whose importance in protein folding has been recognized for many years. Deletion of the CSPα in mice results in knockout mice that are normal for the first 2–3 weeks of life followed by an unexplained presynaptic neurodegeneration and premature death. How CSPα prevents neurodegeneration is currently not known. As a neuroprotective synaptic vesicle protein, CSPα represents a promising therapeutic target for the prevention of neurodegenerative disorders. Methodology/Principal Findings Here, we demonstrate that the flavonoid quercetin promotes formation of stable CSPα-CSPα dimers and that quercetin-induced dimerization is dependent on the unique cysteine string region. Furthermore, in primary cultures of Lymnaea neurons, quercetin induction of CSPα dimers correlates with an inhibition of synapse formation and synaptic transmission suggesting that quercetin interfers with CSPα function. Quercetin's action on CSPα is concentration dependent and does not promote dimerization of other synaptic proteins or other J protein family members and reduces the assembly of CSPα:Hsc70 units (70kDa heat shock cognate protein). Conclusions/Significance Quercetin is a plant derived flavonoid and popular nutritional supplement proposed to prevent memory loss and altitude sickness among other ailments, although its precise mechanism(s) of action has been unclear. In view of the therapeutic promise of upregulation of CSPα and the undesired consequences of CSPα dysfunction, our data establish an essential proof of principle that pharmaceutical agents can selectively target the neuroprotective J protein CSPα. PMID:20548785

  19. Optogenetic inhibition of cortical afferents in the nucleus accumbens simultaneously prevents cue-induced transient synaptic potentiation and cocaine-seeking behavior.

    PubMed

    Stefanik, Michael T; Kupchik, Yonatan M; Kalivas, Peter W

    2016-04-01

    Animal models of relapse reveal that the motivation to seek drug is regulated by enduring morphological and physiological changes in the nucleus accumbens, as well as transient synaptic potentiation in the accumbens core (NAcore) that parallels drug-seeking behavior. The current study sought to examine the link between the behavioral and synaptic consequences of cue-induced cocaine seeking by optically silencing glutamatergic afferents to the NAcore from the prelimbic cortex (PL). Adeno-associated virus coding for the inhibitory opsin archaerhodopsin was microinjected into PL, and optical fibers were targeted to NAcore. Animals were trained to self-administer cocaine followed by extinction training, and then underwent cue-induced reinstatement in the presence or absence of 15 min of optically induced inhibition of PL fibers in NAcore. Inhibiting the PL-to-NAcore projection blocked reinstated behavior and was paralleled by decreased dendritic spine head diameter and AMPA/NMDA ratio relative to sham-laser control rats. Interestingly, while spine density was elevated after extinction training, no further effects were observed by cued reinstatement or optical inhibition. These findings validate the critical role for PL afferents to the NAcore in simultaneously regulating both reinstated behavior and the associated transient synaptic potentiation. PMID:25663648

  20. Porcupine controls hippocampal AMPAR levels, composition and synaptic transmission

    PubMed Central

    Erlenhardt, Nadine; Yu, Hong; Abiraman, Kavitha; Yamasaki, Tokiwa; Wadiche, Jacques I.; Tomita, Susumu; Bredt, David S.

    2016-01-01

    SUMMARY AMPAR (AMPAR) complexes contain auxiliary subunits that modulate receptor trafficking and gating. In addition to the transmembrane AMPAR regulatory proteins (TARPs) and cornichons (CNIH-2/3), recent proteomic studies identified a diverse array of additional AMPAR-associated transmembrane and secreted partners. We systematically surveyed these and found that PORCN and ABHD6 increase GluA1 levels in transfected cells. Knockdown of PORCN in rat hippocampal neurons, which express it in high amounts, selectively reduces levels of all tested AMPAR complex components. Regulation of AMPARs is independent of PORCN’s membrane-associated O-acyl transferase activity. PORCN knockdown in hippocampal neurons decreases AMPAR currents and accelerates desensitization, and leads to depletion of TARP γ-8 from AMPAR complexes. Conditional PORCN knockout mice also exhibit specific changes in AMPAR expression and gating that reduce basal synaptic transmission, but leave long-term potentiation intact. These studies define additional roles for PORCN in controlling synaptic transmission by regulating the level and composition of hippocampal AMPAR complexes. PMID:26776514

  1. Statistical analysis of synaptic transmission: model discrimination and confidence limits.

    PubMed Central

    Stricker, C; Redman, S; Daley, D

    1994-01-01

    Procedures for discriminating between competing statistical models of synaptic transmission, and for providing confidence limits on the parameters of these models, have been developed. These procedures were tested against simulated data and were used to analyze the fluctuations in synaptic currents evoked in hippocampal neurones. All models were fitted to data using the Expectation-Maximization algorithm and a maximum likelihood criterion. Competing models were evaluated using the log-likelihood ratio (Wilks statistic). When the competing models were not nested, Monte Carlo sampling of the model used as the null hypothesis (H0) provided density functions against which H0 and the alternate model (H1) were tested. The statistic for the log-likelihood ratio was determined from the fit of H0 and H1 to these probability densities. This statistic was used to determine the significance level at which H0 could be rejected for the original data. When the competing models were nested, log-likelihood ratios and the chi 2 statistic were used to determine the confidence level for rejection. Once the model that provided the best statistical fit to the data was identified, many estimates for the model parameters were calculated by resampling the original data. Bootstrap techniques were then used to obtain the confidence limits of these parameters. PMID:7948672

  2. Ketamine-mediated afferent-specific presynaptic transmission blocks in low-threshold and sex-specific subpopulation of myelinated Ah-type baroreceptor neurons of rats

    PubMed Central

    Wu, Di; Yin, Lei; Fan, Yao; Wang, Ye; Chen, Wei-Ran; Chen, Pei; Liu, Yang; Lu, Xiao-Long; Sun, Hong-Li; Shou, Weinian; Qiao, Guo-Fen; Li, Bai-Yan

    2015-01-01

    Background Ketamine enhances autonomic activity, and unmyelinated C-type baroreceptor afferents are more susceptible to be blocked by ketamine than myelinated A-types. However, the presynaptic transmission block in low-threshold and sex-specific myelinated Ah-type baroreceptor neurons (BRNs) is not elucidated. Methods Action potentials (APs) and excitatory post-synaptic currents (EPSCs) were investigated in BRNs/barosensitive neurons identified by conduction velocity (CV), capsaicin-conjugated with Iberiotoxin-sensitivity and fluorescent dye using intact nodose slice and brainstem slice in adult female rats. The expression of mRNA and targeted protein for NMDAR1 was also evaluated. Results Ketamine time-dependently blocked afferent CV in Ah-types in nodose slice with significant changes in AP discharge. The concentration-dependent inhibition of ketamine on AP discharge profiles were also assessed and observed using isolated Ah-type BRNs with dramatic reduction in neuroexcitability. In brainstem slice, the 2nd-order capsaicin-resistant EPSCs were identified and ∼50% of them were blocked by ketamine concentration-dependently with IC50 estimated at 84.4 μM compared with the rest (708.2 μM). Interestingly, the peak, decay time constant, and area under curve of EPSCs were significantly enhanced by 100 nM iberiotoxin in ketamine-more sensitive myelinated NTS neurons (most likely Ah-types), rather than ketamine-less sensitive ones (A-types). Conclusions These data have demonstrated, for the first time, that low-threshold and sex-specific myelinated Ah-type BRNs in nodose and Ah-type barosensitive neurons in NTS are more susceptible to ketamine and may play crucial roles in not only mean blood pressure regulation but also buffering dynamic changes in pressure, as well as the ketamine-mediated cardiovascular dysfunction through sexual-dimorphic baroreflex afferent pathway. PMID:26675761

  3. Organization of synaptic transmission in the mammalian solitary complex, studied in vitro.

    PubMed Central

    Champagnat, J; Denavit-Saubié, M; Grant, K; Shen, K F

    1986-01-01

    1. Synaptic transmission and neuronal morphology were studied in the nucleus tractus solitarius and in the dorsal vagal motor nucleus (solitary complex), in coronal brain-stem slices of rat or cat, superfused in vitro. 2. Electrical stimulation of afferent fibres of the solitary tract evoked two different types of post-synaptic response recorded intracellularly in different solitary complex neurones. Labelling with horseradish peroxidase showed that these two sorts of orthodromically evoked responses were correlated with different post-synaptic neuronal morphologies. 3. The majority of recorded neurones (n = 93) showed a prolonged reduction in excitability following the initial solitary-tract-evoked excitatory post-synaptic potential (e.p.s.p.). A smaller number of neurones (n = 53) showed a prolonged increase in excitability following solitary tract stimulation. In no case did the solitary tract stimulation induce a burst of action potentials at high frequency. 4. The time-to-peak and the half-width of the initial solitary-tract-evoked e.p.s.p. were shorter in neurones with prolonged increased excitability than in those with prolonged reduced excitability. In neurones with prolonged reduced excitability, this e.p.s.p. was followed by a hyperpolarization lasting 60-100 ms. The latency of this inhibitory post-synaptic potential (i.p.s.p.) was 3-5 ms longer than that of the initial e.p.s.p. and its reversal potential was 10 mV more negative than the reversal potential of the response measured following application of gamma-aminobutyric acid or glycine. In neurones with prolonged increased excitability, at a membrane potential of -40 to -50 mV, the initial solitary tract e.p.s.p. was followed by a prolonged depolarization lasting 100-400 ms. 5. Background synaptic activity was high in neurones with prolonged increased excitability, consisting of unitary e.p.s.p.s with an amplitude of more than 0.8 mV. This activity was increased for a period of 300-800 ms following

  4. Overexpression of Swedish mutant APP in aged astrocytes attenuates excitatory synaptic transmission.

    PubMed

    Katsurabayashi, Shutaro; Kawano, Hiroyuki; Ii, Miyuki; Nakano, Sachiko; Tatsumi, Chihiro; Kubota, Kaori; Takasaki, Kotaro; Mishima, Kenichi; Fujiwara, Michihiro; Iwasaki, Katsunori

    2016-01-01

    Amyloid precursor protein (APP), a type I transmembrane protein, has different aspects, namely, performs essential physiological functions and produces β-amyloid peptide (Aβ). Overexpression of neuronal APP is responsible for synaptic dysfunction. In the central nervous system, astrocytes - a major glial cell type - have an important role in the regulation of synaptic transmission. Although APP is expressed in astrocytes, it remains unclear whether astrocytic overexpression of mutant APP affects synaptic transmission. In this study, the effect of astrocytic overexpression of a mutant APP on the excitatory synaptic transmission was investigated using coculture system of the transgenic (Tg) cortical astrocytes that express the human APP695 polypeptide with the double mutation K670N + M671L found in a large Swedish family with early onset Alzheimer's disease, and wild-type hippocampal neuron. Significant secretion of Aβ 1-40 and 1-42 was observed in cultured cortical astrocytes from the Tg2576 transgenic mouse that genetically overexpresses Swedish mutant APP. Under the condition, Tg astrocytes did not affect excitatory synaptic transmission of cocultured wild-type neurons. However, aged Tg astrocytes cultured for 9 weeks elicited a significant decrease in excitatory synaptic transmission in cocultured neurons. Moreover, a reduction in the number of readily releasable synaptic vesicles accompanied a decrease in the number of excitatory synapses in neurons cocultured with aged Tg astrocytes. These observations indicate that astrocytic expression of the mutant APP is involved in the downregulation of synaptic transmission with age. PMID:26733247

  5. Extracellular ATP Hydrolysis Inhibits Synaptic Transmission by Increasing pH Buffering in the Synaptic Cleft

    PubMed Central

    Vroman, Rozan; Klaassen, Lauw J.; Howlett, Marcus H.C.; Cenedese, Valentina; Klooster, Jan; Sjoerdsma, Trijntje; Kamermans, Maarten

    2014-01-01

    Neuronal computations strongly depend on inhibitory interactions. One such example occurs at the first retinal synapse, where horizontal cells inhibit photoreceptors. This interaction generates the center/surround organization of bipolar cell receptive fields and is crucial for contrast enhancement. Despite its essential role in vision, the underlying synaptic mechanism has puzzled the neuroscience community for decades. Two competing hypotheses are currently considered: an ephaptic and a proton-mediated mechanism. Here we show that horizontal cells feed back to photoreceptors via an unexpected synthesis of the two. The first one is a very fast ephaptic mechanism that has no synaptic delay, making it one of the fastest inhibitory synapses known. The second one is a relatively slow (τ≈200 ms), highly intriguing mechanism. It depends on ATP release via Pannexin 1 channels located on horizontal cell dendrites invaginating the cone synaptic terminal. The ecto-ATPase NTPDase1 hydrolyses extracellular ATP to AMP, phosphate groups, and protons. The phosphate groups and protons form a pH buffer with a pKa of 7.2, which keeps the pH in the synaptic cleft relatively acidic. This inhibits the cone Ca2+ channels and consequently reduces the glutamate release by the cones. When horizontal cells hyperpolarize, the pannexin 1 channels decrease their conductance, the ATP release decreases, and the formation of the pH buffer reduces. The resulting alkalization in the synaptic cleft consequently increases cone glutamate release. Surprisingly, the hydrolysis of ATP instead of ATP itself mediates the synaptic modulation. Our results not only solve longstanding issues regarding horizontal cell to photoreceptor feedback, they also demonstrate a new form of synaptic modulation. Because pannexin 1 channels and ecto-ATPases are strongly expressed in the nervous system and pannexin 1 function is implicated in synaptic plasticity, we anticipate that this novel form of synaptic modulation

  6. Extracellular ATP hydrolysis inhibits synaptic transmission by increasing ph buffering in the synaptic cleft.

    PubMed

    Vroman, Rozan; Klaassen, Lauw J; Howlett, Marcus H C; Cenedese, Valentina; Klooster, Jan; Sjoerdsma, Trijntje; Kamermans, Maarten

    2014-05-01

    Neuronal computations strongly depend on inhibitory interactions. One such example occurs at the first retinal synapse, where horizontal cells inhibit photoreceptors. This interaction generates the center/surround organization of bipolar cell receptive fields and is crucial for contrast enhancement. Despite its essential role in vision, the underlying synaptic mechanism has puzzled the neuroscience community for decades. Two competing hypotheses are currently considered: an ephaptic and a proton-mediated mechanism. Here we show that horizontal cells feed back to photoreceptors via an unexpected synthesis of the two. The first one is a very fast ephaptic mechanism that has no synaptic delay, making it one of the fastest inhibitory synapses known. The second one is a relatively slow (τ≈200 ms), highly intriguing mechanism. It depends on ATP release via Pannexin 1 channels located on horizontal cell dendrites invaginating the cone synaptic terminal. The ecto-ATPase NTPDase1 hydrolyses extracellular ATP to AMP, phosphate groups, and protons. The phosphate groups and protons form a pH buffer with a pKa of 7.2, which keeps the pH in the synaptic cleft relatively acidic. This inhibits the cone Ca²⁺ channels and consequently reduces the glutamate release by the cones. When horizontal cells hyperpolarize, the pannexin 1 channels decrease their conductance, the ATP release decreases, and the formation of the pH buffer reduces. The resulting alkalization in the synaptic cleft consequently increases cone glutamate release. Surprisingly, the hydrolysis of ATP instead of ATP itself mediates the synaptic modulation. Our results not only solve longstanding issues regarding horizontal cell to photoreceptor feedback, they also demonstrate a new form of synaptic modulation. Because pannexin 1 channels and ecto-ATPases are strongly expressed in the nervous system and pannexin 1 function is implicated in synaptic plasticity, we anticipate that this novel form of synaptic

  7. Synaptic modulation of excitatory synaptic transmission by nicotinic acetylcholine receptors in spinal ventral horn neurons.

    PubMed

    Mine, N; Taniguchi, W; Nishio, N; Izumi, N; Miyazaki, N; Yamada, H; Nakatsuka, T; Yoshida, M

    2015-04-01

    Nicotinic acetylcholine receptors (nAChRs) are distributed widely in the central nervous system and play important roles in higher brain functions, including learning, memory, and recognition. However, functions of the cholinergic system in spinal motoneurons remain poorly understood. In this study, we investigated the actions of presynaptic and postsynaptic nAChRs in spinal ventral horn neurons by performing whole-cell patch-clamp recordings on lumbar slices from male rats. The application of nicotine or acetylcholine generated slow inward currents and increased the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). Slow inward currents by acetylcholine or nicotine were not inhibited by tetrodotoxin (TTX) or glutamate receptor antagonists. In the presence of TTX, the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) were also increased by acetylcholine or nicotine. A selective α4β2 nicotinic receptor antagonist, dihydro-β-erythroidine hydrobromide (DhβE), significantly decreased nicotine-induced inward currents without affecting the enhancement of sEPSCs and mEPSCs. In addition, a selective α7 nicotinic receptor antagonist, methyllycaconitine, did not affect either nicotine-induced inward currents or the enhancement of sEPSCs and mEPSCs. These results suggest that α4β2 AChRs are localized at postsynaptic sites in the spinal ventral horn, non-α4β2 and non-α7 nAChRs are located presynaptically, and nAChRs enhance excitatory synaptic transmission in the spinal ventral horn. PMID:25613686

  8. Synaptic transmission and the susceptibility of HIV infection to anti-viral drugs

    NASA Astrophysics Data System (ADS)

    Komarova, Natalia L.; Levy, David N.; Wodarz, Dominik

    2013-07-01

    Cell-to-cell viral transmission via virological synapses has been argued to reduce susceptibility of the virus population to anti-viral drugs through multiple infection of cells, contributing to low-level viral persistence during therapy. Using a mathematical framework, we examine the role of synaptic transmission in treatment susceptibility. A key factor is the relative probability of individual virions to infect a cell during free-virus and synaptic transmission, a currently unknown quantity. If this infection probability is higher for free-virus transmission, then treatment susceptibility is lowest if one virus is transferred per synapse, and multiple infection of cells increases susceptibility. In the opposite case, treatment susceptibility is minimized for an intermediate number of virions transferred per synapse. Hence, multiple infection via synapses does not simply lower treatment susceptibility. Without further experimental investigations, one cannot conclude that synaptic transmission provides an additional mechanism for the virus to persist at low levels during anti-viral therapy.

  9. Differential Roles of Postsynaptic Density-93 Isoforms in Regulating Synaptic Transmission

    PubMed Central

    Krüger, Juliane M.; Favaro, Plinio D.; Liu, Mingna; Kitlińska, Agata; Huang, Xiaojie; Raabe, Monika; Akad, Derya S.; Liu, Yanling; Urlaub, Henning; Dong, Yan; Xu, Weifeng

    2013-01-01

    In the postsynaptic density of glutamatergic synapses, the discs large (DLG)-membrane-associated guanylate kinase (MAGUK) family of scaffolding proteins coordinates a multiplicity of signaling pathways to maintain and regulate synaptic transmission. Postsynaptic density-93 (PSD-93) is the most variable paralog in this family; it exists in six different N-terminal isoforms. Probably because of the structural and functional variability of these isoforms, the synaptic role of PSD-93 remains controversial. To accurately characterize the synaptic role of PSD-93, we quantified the expression of all six isoforms in the mouse hippocampus and examined them individually in hippocampal synapses. Using molecular manipulations, including overexpression, gene knockdown, PSD-93 knock-out mice combined with biochemical assays, and slice electrophysiology both in rat and mice, we demonstrate that PSD-93 is required at different developmental synaptic states to maintain the strength of excitatory synaptic transmission. This strength is differentially regulated by the six isoforms of PSD-93, including regulations of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor-active and inactive synapses, and activity-dependent modulations. Collectively, these results demonstrate that alternative combinations of N-terminal PSD-93 isoforms and DLG-MAGUK paralogs can fine-tune signaling scaffolds to adjust synaptic needs to regulate synaptic transmission. PMID:24068818

  10. GluA2-Containing AMPA Receptors Distinguish Ribbon-Associated from Ribbonless Afferent Contacts on Rat Cochlear Hair Cells.

    PubMed

    Martinez-Monedero, Rodrigo; Liu, Chang; Weisz, Catherine; Vyas, Pankhuri; Fuchs, Paul Albert; Glowatzki, Elisabeth

    2016-01-01

    Mechanosensory hair cells release glutamate at ribbon synapses to excite postsynaptic afferent neurons, via AMPA-type ionotropic glutamate receptors (AMPARs). However, type II afferent neurons contacting outer hair cells in the mammalian cochlea were thought to differ in this respect, failing to show GluA immunolabeling and with many "ribbonless" afferent contacts. Here it is shown that antibodies to the AMPAR subunit GluA2 labeled afferent contacts below inner and outer hair cells in the rat cochlea, and that synaptic currents in type II afferents had AMPAR-specific pharmacology. Only half the postsynaptic densities of type II afferents that labeled for PSD-95, Shank, or Homer were associated with GluA2 immunopuncta or presynaptic ribbons, the "empty slots" corresponding to ribbonless contacts described previously. These results extend the universality of AMPAergic transmission by hair cells, and support the existence of silent afferent contacts. PMID:27257620

  11. A novel synaptic plasticity rule explains homeostasis of neuromuscular transmission

    PubMed Central

    Ouanounou, Gilles; Baux, Gérard; Bal, Thierry

    2016-01-01

    Excitability differs among muscle fibers and undergoes continuous changes during development and growth, yet the neuromuscular synapse maintains a remarkable fidelity of execution. Here we show in two evolutionarily distant vertebrates (Xenopus laevis cell culture and mouse nerve-muscle ex-vivo) that the skeletal muscle cell constantly senses, through two identified calcium signals, synaptic events and their efficacy in eliciting spikes. These sensors trigger retrograde signal(s) that control presynaptic neurotransmitter release, resulting in synaptic potentiation or depression. In the absence of spikes, synaptic events trigger potentiation. Once the synapse is sufficiently strong to initiate spiking, the occurrence of these spikes activates a negative retrograde feedback. These opposing signals dynamically balance the synapse in order to continuously adjust neurotransmitter release to a level matching current muscle cell excitability. DOI: http://dx.doi.org/10.7554/eLife.12190.001 PMID:27138195

  12. Salvia miltiorrhiza Bunge Blocks Ethanol-Induced Synaptic Dysfunction through Regulation of NMDA Receptor-Dependent Synaptic Transmission

    PubMed Central

    Park, Hye Jin; Lee, Seungheon; Jung, Ji Wook; Lee, Young Choon; Choi, Seong-Min; Kim, Dong Hyun

    2016-01-01

    Consumption of high doses of ethanol can lead to amnesia, which often manifests as a blackout. These blackouts experienced by ethanol consumers may be a major cause of the social problems associated with excess ethanol consumption. However, there is currently no established treatment for preventing these ethanol-induced blackouts. In this study, we tested the ethanol extract of the roots of Salvia miltiorrhiza (SM) for its ability to mitigate ethanol-induced behavioral and synaptic deficits. To test behavioral deficits, an object recognition test was conducted in mouse. In this test, ethanol (1 g/kg, i.p.) impaired object recognition memory, but SM (200 mg/kg) prevented this impairment. To evaluate synaptic deficits, NMDA receptor-mediated excitatory postsynaptic potential (EPSP) and long-term potentiation (LTP) in the mouse hippocampal slices were tested, as they are known to be vulnerable to ethanol and are associated with ethanol-induced amnesia. SM (10 and 100 μg/ml) significantly ameliorated ethanol-induced long-term potentiation and NMDA receptor-mediated EPSP deficits in the hippocampal slices. Therefore, these results suggest that SM prevents ethanol-induced amnesia by protecting the hippocampus from NMDA receptor-mediated synaptic transmission and synaptic plasticity deficits induced by ethanol. PMID:27257009

  13. Salvia miltiorrhiza Bunge Blocks Ethanol-Induced Synaptic Dysfunction through Regulation of NMDA Receptor-Dependent Synaptic Transmission.

    PubMed

    Park, Hye Jin; Lee, Seungheon; Jung, Ji Wook; Lee, Young Choon; Choi, Seong-Min; Kim, Dong Hyun

    2016-07-01

    Consumption of high doses of ethanol can lead to amnesia, which often manifests as a blackout. These blackouts experienced by ethanol consumers may be a major cause of the social problems associated with excess ethanol consumption. However, there is currently no established treatment for preventing these ethanol-induced blackouts. In this study, we tested the ethanol extract of the roots of Salvia miltiorrhiza (SM) for its ability to mitigate ethanol-induced behavioral and synaptic deficits. To test behavioral deficits, an object recognition test was conducted in mouse. In this test, ethanol (1 g/kg, i.p.) impaired object recognition memory, but SM (200 mg/kg) prevented this impairment. To evaluate synaptic deficits, NMDA receptor-mediated excitatory postsynaptic potential (EPSP) and long-term potentiation (LTP) in the mouse hippocampal slices were tested, as they are known to be vulnerable to ethanol and are associated with ethanol-induced amnesia. SM (10 and 100 μg/ml) significantly ameliorated ethanol-induced long-term potentiation and NMDA receptor-mediated EPSP deficits in the hippocampal slices. Therefore, these results suggest that SM prevents ethanol-induced amnesia by protecting the hippocampus from NMDA receptor-mediated synaptic transmission and synaptic plasticity deficits induced by ethanol. PMID:27257009

  14. High-Throughput All-Optical Analysis of Synaptic Transmission and Synaptic Vesicle Recycling in Caenorhabditis elegans

    PubMed Central

    Wabnig, Sebastian; Liewald, Jana Fiona; Yu, Szi-chieh; Gottschalk, Alexander

    2015-01-01

    Synaptic vesicles (SVs) undergo a cycle of biogenesis and membrane fusion to release transmitter, followed by recycling. How exocytosis and endocytosis are coupled is intensively investigated. We describe an all-optical method for identification of neurotransmission genes that can directly distinguish SV recycling factors in C. elegans, by motoneuron photostimulation and muscular RCaMP Ca2+ imaging. We verified our approach on mutants affecting synaptic transmission. Mutation of genes affecting SV recycling (unc-26 synaptojanin, unc-41 stonin, unc-57 endophilin, itsn-1 intersectin, snt-1 synaptotagmin) showed a distinct ‘signature’ of muscle Ca2+ dynamics, induced by cholinergic motoneuron photostimulation, i.e. faster rise, and earlier decrease of the signal, reflecting increased synaptic fatigue during ongoing photostimulation. To facilitate high throughput, we measured (3–5 times) ~1000 nematodes for each gene. We explored if this method enables RNAi screening for SV recycling genes. Previous screens for synaptic function genes, based on behavioral or pharmacological assays, allowed no distinction of the stage of the SV cycle in which a protein might act. We generated a strain enabling RNAi specifically only in cholinergic neurons, thus resulting in healthier animals and avoiding lethal phenotypes resulting from knockdown elsewhere. RNAi of control genes resulted in Ca2+ measurements that were consistent with results obtained in the respective genomic mutants, albeit to a weaker extent in most cases, and could further be confirmed by opto-electrophysiological measurements for mutants of some of the genes, including synaptojanin. We screened 95 genes that were previously implicated in cholinergic transmission, and several controls. We identified genes that clustered together with known SV recycling genes, exhibiting a similar signature of their Ca2+ dynamics. Five of these genes (C27B7.7, erp-1, inx-8, inx-10, spp-10) were further assessed in respective

  15. Wnt signaling pathway improves central inhibitory synaptic transmission in a mouse model of Duchenne muscular dystrophy.

    PubMed

    Fuenzalida, Marco; Espinoza, Claudia; Pérez, Miguel Ángel; Tapia-Rojas, Cheril; Cuitino, Loreto; Brandan, Enrique; Inestrosa, Nibaldo C

    2016-02-01

    The dystrophin-associated glycoprotein complex (DGC) that connects the cytoskeleton, plasma membrane and the extracellular matrix has been related to the maintenance and stabilization of channels and synaptic receptors, which are both essential for synaptogenesis and synaptic transmission. The dystrophin-deficient (mdx) mouse model of Duchenne muscular dystrophy (DMD) exhibits a significant reduction in hippocampal GABA efficacy, which may underlie the altered synaptic function and abnormal hippocampal long-term plasticity exhibited by mdx mice. Emerging studies have implicated Wnt signaling in the modulation of synaptic efficacy, neuronal plasticity and cognitive function. We report here that the activation of the non-canonical Wnt-5a pathway and Andrographolide, improves hippocampal mdx GABAergic efficacy by increasing the number of inhibitory synapses and GABA(A) receptors or GABA release. These results indicate that Wnt signaling modulates GABA synaptic efficacy and could be a promising novel target for DMD cognitive therapy. PMID:26626079

  16. Localization of Presynaptic Plasticity Mechanisms Enables Functional Independence of Synaptic and Ectopic Transmission in the Cerebellum

    PubMed Central

    Dobson, Katharine L.; Bellamy, Tomas C.

    2015-01-01

    In the cerebellar molecular layer parallel fibre terminals release glutamate from both the active zone and from extrasynaptic “ectopic” sites. Ectopic release mediates transmission to the Bergmann glia that ensheathe the synapse, activating Ca2+-permeable AMPA receptors and glutamate transporters. Parallel fibre terminals exhibit several forms of presynaptic plasticity, including cAMP-dependent long-term potentiation and endocannabinoid-dependent long-term depression, but it is not known whether these presynaptic forms of long-term plasticity also influence ectopic transmission to Bergmann glia. Stimulation of parallel fibre inputs at 16 Hz evoked LTP of synaptic transmission, but LTD of ectopic transmission. Pharmacological activation of adenylyl cyclase by forskolin caused LTP at Purkinje neurons, but only transient potentiation at Bergmann glia, reinforcing the concept that ectopic sites lack the capacity to express sustained cAMP-dependent potentiation. Activation of mGluR1 caused depression of synaptic transmission via retrograde endocannabinoid signalling but had no significant effect at ectopic sites. In contrast, activation of NMDA receptors suppressed both synaptic and ectopic transmission. The results suggest that the signalling mechanisms for presynaptic LTP and retrograde depression by endocannabinoids are restricted to the active zone at parallel fibre synapses, allowing independent modulation of synaptic transmission to Purkinje neurons and ectopic transmission to Bergmann glia. PMID:26171253

  17. Munc18-1 mutations that strongly impair SNARE-complex binding support normal synaptic transmission

    PubMed Central

    Meijer, Marieke; Burkhardt, Pawel; de Wit, Heidi; Toonen, Ruud F; Fasshauer, Dirk; Verhage, Matthijs

    2012-01-01

    Synaptic transmission depends critically on the Sec1p/Munc18 protein Munc18-1, but it is unclear whether Munc18-1 primarily operates as a integral part of the fusion machinery or has a more upstream role in fusion complex assembly. Here, we show that point mutations in Munc18-1 that interfere with binding to the free Syntaxin1a N-terminus and strongly impair binding to assembled SNARE complexes all support normal docking, priming and fusion of synaptic vesicles, and normal synaptic plasticity in munc18-1 null mutant neurons. These data support a prevailing role of Munc18-1 before/during SNARE-complex assembly, while its continued association to assembled SNARE complexes is dispensable for synaptic transmission. PMID:22446389

  18. Long-term plasticity determines the postsynaptic response to correlated afferents with multivesicular short-term synaptic depression

    PubMed Central

    Bird, Alex D.; Richardson, Magnus J. E.

    2014-01-01

    Synchrony in a presynaptic population leads to correlations in vesicle occupancy at the active sites for neurotransmitter release. The number of independent release sites per presynaptic neuron, a synaptic parameter recently shown to be modified during long-term plasticity, will modulate these correlations and therefore have a significant effect on the firing rate of the postsynaptic neuron. To understand how correlations from synaptic dynamics and from presynaptic synchrony shape the postsynaptic response, we study a model of multiple release site short-term plasticity and derive exact results for the crosscorrelation function of vesicle occupancy and neurotransmitter release, as well as the postsynaptic voltage variance. Using approximate forms for the postsynaptic firing rate in the limits of low and high correlations, we demonstrate that short-term depression leads to a maximum response for an intermediate number of presynaptic release sites, and that this leads to a tuning-curve response peaked at an optimal presynaptic synchrony set by the number of neurotransmitter release sites per presynaptic neuron. These effects arise because, above a certain level of correlation, activity in the presynaptic population is overly strong resulting in wastage of the pool of releasable neurotransmitter. As the nervous system operates under constraints of efficient metabolism it is likely that this phenomenon provides an activity-dependent constraint on network architecture. PMID:24523691

  19. Use-dependent inhibition of synaptic transmission by the secretion of intravesicularly accumulated antipsychotic drugs.

    PubMed

    Tischbirek, Carsten H; Wenzel, Eva M; Zheng, Fang; Huth, Tobias; Amato, Davide; Trapp, Stefan; Denker, Annette; Welzel, Oliver; Lueke, Katharina; Svetlitchny, Alexei; Rauh, Manfred; Deusser, Janina; Schwab, Annemarie; Rizzoli, Silvio O; Henkel, Andreas W; Müller, Christian P; Alzheimer, Christian; Kornhuber, Johannes; Groemer, Teja W

    2012-06-01

    Antipsychotic drugs are effective for the treatment of schizophrenia. However, the functional consequences and subcellular sites of their accumulation in nervous tissue have remained elusive. Here, we investigated the role of the weak-base antipsychotics haloperidol, chlorpromazine, clozapine, and risperidone in synaptic vesicle recycling. Using multiple live-cell microscopic approaches and electron microscopy of rat hippocampal neurons as well as in vivo microdialysis experiments in chronically treated rats, we demonstrate the accumulation of the antipsychotic drugs in synaptic vesicles and their release upon neuronal activity, leading to a significant increase in extracellular drug concentrations. The secreted drugs exerted an autoinhibitory effect on vesicular exocytosis, which was promoted by the inhibition of voltage-gated sodium channels and depended on the stimulation intensity. Taken together, these results indicate that accumulated antipsychotic drugs recycle with synaptic vesicles and have a use-dependent, autoinhibitory effect on synaptic transmission. PMID:22681688

  20. Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity

    PubMed Central

    De Pittà, Maurizio; Volman, Vladislav; Berry, Hugues; Parpura, Vladimir; Volterra, Andrea; Ben-Jacob, Eshel

    2012-01-01

    The complexity of the signaling network that underlies astrocyte-synapse interactions may seem discouraging when tackled from a theoretical perspective. Computational modeling is challenged by the fact that many details remain hitherto unknown and conventional approaches to describe synaptic function are unsuitable to explain experimental observations when astrocytic signaling is taken into account. Supported by experimental evidence is the possibility that astrocytes perform genuine information processing by means of their calcium signaling and are players in the physiological setting of the basal tone of synaptic transmission. Here we consider the plausibility of this scenario from a theoretical perspective, focusing on the modulation of synaptic release probability by the astrocyte and its implications on synaptic plasticity. The analysis of the signaling pathways underlying such modulation refines our notion of tripartite synapse and has profound implications on our understanding of brain function. PMID:23267326

  1. PSD-95 regulates synaptic transmission and plasticity in rat cerebral cortex

    PubMed Central

    Béïque, Jean-Claude; Andrade, Rodrigo

    2003-01-01

    PSD-95 is one of the most abundant proteins found in the postsynaptic density of excitatory synapses. However, the precise functional role played by PSD-95 in regulating synaptic transmission and plasticity remains undefined. To address this issue, we have overexpressed PSD-95 in cortical pyramidal neurons in organotypic brain slices using particle-mediated gene transfer and assessed the consequences on synaptic transmission and plasticity. The AMPA receptor/NMDA receptor (AMPAR/NMDAR) ratio of evoked EPSCs recorded at +40 mV was greater in PSD-95-transfected pyramidal neurons than in controls. This difference could not be accounted for by a change in rectification of AMPAR-mediated synaptic currents since the current-voltage curves obtained in controls and in PSD-95-transfected neurons were indistinguishable. However, the amplitude of AMPAR-mediated evoked EPSCs was larger in PSD-95-transfected neurons compared to matched controls. Paired-pulse ratio analysis suggested that overexpression of PSD-95 did not alter presynaptic release probability. Transfection of PSD-95 was further accompanied by an increase in the frequency, but not amplitude, of AMPAR-mediated mEPSCs. Together, these results indicate that transfection of PSD-95 increased AMPAR-mediated synaptic transmission. Furthermore, they suggest that this phenomenon reflects an increased number of synapses expressing AMPARs rather than an increased number or function of these receptors at individual synapses. We tested the consequences of these changes on synaptic plasticity and found that PSD-95 transfection greatly enhanced the probability of observing long-term depression. These results thus identify a physiological role for PSD-95 and demonstrate that this protein can play a decisive role in controlling synaptic strength and activity-dependent synaptic plasticity. PMID:12563010

  2. Slow GABAA mediated synaptic transmission in rat visual cortex

    PubMed Central

    Sceniak, Michael P; MacIver, M Bruce

    2008-01-01

    Background Previous reports of inhibition in the neocortex suggest that inhibition is mediated predominantly through GABAA receptors exhibiting fast kinetics. Within the hippocampus, it has been shown that GABAA responses can take the form of either fast or slow response kinetics. Our findings indicate, for the first time, that the neocortex displays synaptic responses with slow GABAA receptor mediated inhibitory postsynaptic currents (IPSCs). These IPSCs are kinetically and pharmacologically similar to responses found in the hippocampus, although the anatomical specificity of evoked responses is unique from hippocampus. Spontaneous slow GABAA IPSCs were recorded from both pyramidal and inhibitory neurons in rat visual cortex. Results GABAA slow IPSCs were significantly different from fast responses with respect to rise times and decay time constants, but not amplitudes. Spontaneously occurring GABAA slow IPSCs were nearly 100 times less frequent than fast sIPSCs and both were completely abolished by the chloride channel blocker, picrotoxin. The GABAA subunit-specific antagonist, furosemide, depressed spontaneous and evoked GABAA fast IPSCs, but not slow GABAA-mediated IPSCs. Anatomical specificity was evident using minimal stimulation: IPSCs with slow kinetics were evoked predominantly through stimulation of layer 1/2 apical dendritic zones of layer 4 pyramidal neurons and across their basal dendrites, while GABAA fast IPSCs were evoked through stimulation throughout the dendritic arborization. Many evoked IPSCs were also composed of a combination of fast and slow IPSC components. Conclusion GABAA slow IPSCs displayed durations that were approximately 4 fold longer than typical GABAA fast IPSCs, but shorter than GABAB-mediated inhibition. The anatomical and pharmacological specificity of evoked slow IPSCs suggests a unique origin of synaptic input. Incorporating GABAA slow IPSCs into computational models of cortical function will help improve our understanding of

  3. Purines released from astrocytes inhibit excitatory synaptic transmission in the ventral horn of the spinal cord

    PubMed Central

    Carlsen, Eva Meier; Perrier, Jean-François

    2014-01-01

    Spinal neuronal networks are essential for motor function. They are involved in the integration of sensory inputs and the generation of rhythmic motor outputs. They continuously adapt their activity to the internal state of the organism and to the environment. This plasticity can be provided by different neuromodulators. These substances are usually thought of being released by dedicated neurons. However, in other networks from the central nervous system synaptic transmission is also modulated by transmitters released from astrocytes. The star-shaped glial cell responds to neurotransmitters by releasing gliotransmitters, which in turn modulate synaptic transmission. Here we investigated if astrocytes present in the ventral horn of the spinal cord modulate synaptic transmission. We evoked synaptic inputs in ventral horn neurons recorded in a slice preparation from the spinal cord of neonatal mice. Neurons responded to electrical stimulation by monosynaptic EPSCs (excitatory monosynaptic postsynaptic currents). We used mice expressing the enhanced green fluorescent protein under the promoter of the glial fibrillary acidic protein to identify astrocytes. Chelating calcium with BAPTA in a single neighboring astrocyte increased the amplitude of synaptic currents. In contrast, when we selectively stimulated astrocytes by activating PAR-1 receptors with the peptide TFLLR, the amplitude of EPSCs evoked by a paired stimulation protocol was reduced. The paired-pulse ratio was increased, suggesting an inhibition occurring at the presynaptic side of synapses. In the presence of blockers for extracellular ectonucleotidases, TFLLR did not induce presynaptic inhibition. Puffing adenosine reproduced the effect of TFLLR and blocking adenosine A1 receptors with 8-Cyclopentyl-1,3-dipropylxanthine prevented it. Altogether our results show that ventral horn astrocytes are responsible for a tonic and a phasic inhibition of excitatory synaptic transmission by releasing ATP, which gets

  4. GluA2-Containing AMPA Receptors Distinguish Ribbon-Associated from Ribbonless Afferent Contacts on Rat Cochlear Hair Cells123

    PubMed Central

    Martinez-Monedero, Rodrigo

    2016-01-01

    Abstract Mechanosensory hair cells release glutamate at ribbon synapses to excite postsynaptic afferent neurons, via AMPA-type ionotropic glutamate receptors (AMPARs). However, type II afferent neurons contacting outer hair cells in the mammalian cochlea were thought to differ in this respect, failing to show GluA immunolabeling and with many “ribbonless” afferent contacts. Here it is shown that antibodies to the AMPAR subunit GluA2 labeled afferent contacts below inner and outer hair cells in the rat cochlea, and that synaptic currents in type II afferents had AMPAR-specific pharmacology. Only half the postsynaptic densities of type II afferents that labeled for PSD-95, Shank, or Homer were associated with GluA2 immunopuncta or presynaptic ribbons, the “empty slots” corresponding to ribbonless contacts described previously. These results extend the universality of AMPAergic transmission by hair cells, and support the existence of silent afferent contacts. PMID:27257620

  5. MATERNAL HYPOTHYROXENEMIA LEADS TO PERSISTENT DEFICITS IN HIPPOCAMPAL SYNAPTIC TRANSMISSION AND LEARNING IN OFFSPRING.

    EPA Science Inventory

    MATERNAL HYPOTHYROXINEMIA LEADS TO PERSISTENT DEFICITS IN HIPPOCAMPAL SYNAPTIC TRANSMISSION AND LEARNING IN RAT OFFSPRING. M.E. Gilbert1 and Li Sui2, Neurotoxicology Division, 1US EPA and 2National Research Council, Research Triangle Pk, NC 27711.
    While severe hypothyroidis...

  6. The Chemokine MIP-1α/CCL3 impairs mouse hippocampal synaptic transmission, plasticity and memory

    PubMed Central

    Marciniak, Elodie; Faivre, Emilie; Dutar, Patrick; Alves Pires, Claire; Demeyer, Dominique; Caillierez, Raphaëlle; Laloux, Charlotte; Buée, Luc; Blum, David; Humez, Sandrine

    2015-01-01

    Chemokines are signaling molecules playing an important role in immune regulations. They are also thought to regulate brain development, neurogenesis and neuroendocrine functions. While chemokine upsurge has been associated with conditions characterized with cognitive impairments, their ability to modulate synaptic plasticity remains ill-defined. In the present study, we specifically evaluated the effects of MIP1-α/CCL3 towards hippocampal synaptic transmission, plasticity and spatial memory. We found that CCL3 (50 ng/ml) significantly reduced basal synaptic transmission at the Schaffer collateral-CA1 synapse without affecting NMDAR-mediated field potentials. This effect was ascribed to post-synaptic regulations, as CCL3 did not impact paired-pulse facilitation. While CCL3 did not modulate long-term depression (LTD), it significantly impaired long-term potentiation (LTP), an effect abolished by Maraviroc, a CCR5 specific antagonist. In addition, sub-chronic intracerebroventricular (icv) injections of CCL3 also impair LTP. In accordance with these electrophysiological findings, we demonstrated that the icv injection of CCL3 in mouse significantly impaired spatial memory abilities and long-term memory measured using the two-step Y-maze and passive avoidance tasks. These effects of CCL3 on memory were inhibited by Maraviroc. Altogether, these data suggest that the chemokine CCL3 is an hippocampal neuromodulator able to regulate synaptic plasticity mechanisms involved in learning and memory functions. PMID:26511387

  7. [EFFECT OF HYPOXIA ON SYNAPTIC TRANSMISSION BETWEEN RETINAL GANGLION CELLS AND SUPERIOR COLLICULUS NEURONS IN COCULTURE].

    PubMed

    Dumanska, G V; Rikhalsky, O V; Veselovsky, N S

    2015-01-01

    In this study we conducted a series of experiments to characterize the effect and define the mechanisms of hypoxia on synaptic transmission between retinal ganglion cells and superior colliculus (SC) neurons. Application of hypoxic solution leads to a long lasting potentiation (LTP) NMDA-mediated synaptic transmission. Analysis of the oxygen deficiency effect on the spontaneous and miniature postsynaptic currents (sPSC and mPSC respectively) revealed an increase in the frequency of their occurrence and the appearance of the second peak in the mPSC histogram distribution. The assessment of quantum and binomial parameters reflects the complex pre- and postsynaptic changes during the potentiation, independent of the release probability. Most likely this LTP can be caused by an increase in the total number of active synapses. Glutamatergic synaptic transmission mediated by non-NMDA activation receptor-channel complexes, responded to application of deoxygenated solution by the brief depression, which is the result of presynaptic dysfunction and associates with decrease in release probability and number of active zones. GABAergic synaptic transmission mediated by activation GABA(A)-receptor-channel complexes, responded to hypoxic action by long term depression (LTD). Analysis of sPSC and mPSC showed a significant decrease in the frequency of their occurrence and significant (P = 0.05) decrease in the quantum over a period of oxygen deficiency. In general, the effect of hypoxia-induced LTD of GABAergic synaptic transmission is based on complex changes of presynaptic (independent on the release probability) and postsynaptic (reduction sensitivity of receptors in postsynaptic membrane) mechanisms. PMID:27025053

  8. Enhanced synaptic transmission at the squid giant synapse by artificial seawater based on physically modified saline

    PubMed Central

    Choi, Soonwook; Yu, Eunah; Rabello, Guilherme; Merlo, Suelen; Zemmar, Ajmal; Walton, Kerry D.; Moreno, Herman; Moreira, Jorge E.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.

    2014-01-01

    Superfusion of the squid giant synapse with artificial seawater (ASW) based on isotonic saline containing oxygen nanobubbles (RNS60 ASW) generates an enhancement of synaptic transmission. This was determined by examining the postsynaptic response to single and repetitive presynaptic spike activation, spontaneous transmitter release, and presynaptic voltage clamp studies. In the presence of RNS60 ASW single presynaptic stimulation elicited larger postsynaptic potentials (PSP) and more robust recovery from high frequency stimulation than in control ASW. Analysis of postsynaptic noise revealed an increase in spontaneous transmitter release with modified noise kinetics in RNS60 ASW. Presynaptic voltage clamp demonstrated an increased EPSP, without an increase in presynaptic ICa++ amplitude during RNS60 ASW superfusion. Synaptic release enhancement reached stable maxima within 5–10 min of RNS60 ASW superfusion and was maintained for the entire recording time, up to 1 h. Electronmicroscopic morphometry indicated a decrease in synaptic vesicle density and the number at active zones with an increase in the number of clathrin-coated vesicles (CCV) and large endosome-like vesicles near junctional sites. Block of mitochondrial ATP synthesis by presynaptic injection of oligomycin reduced spontaneous release and prevented the synaptic noise increase seen in RNS60 ASW. After ATP block the number of vesicles at the active zone and CCV was reduced, with an increase in large vesicles. The possibility that RNS60 ASW acts by increasing mitochondrial ATP synthesis was tested by direct determination of ATP levels in both presynaptic and postsynaptic structures. This was implemented using luciferin/luciferase photon emission, which demonstrated a marked increase in ATP synthesis following RNS60 administration. It is concluded that RNS60 positively modulates synaptic transmission by up-regulating ATP synthesis, thus leading to synaptic transmission enhancement. PMID:24575037

  9. Enhanced synaptic transmission at the squid giant synapse by artificial seawater based on physically modified saline.

    PubMed

    Choi, Soonwook; Yu, Eunah; Rabello, Guilherme; Merlo, Suelen; Zemmar, Ajmal; Walton, Kerry D; Moreno, Herman; Moreira, Jorge E; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2014-01-01

    Superfusion of the squid giant synapse with artificial seawater (ASW) based on isotonic saline containing oxygen nanobubbles (RNS60 ASW) generates an enhancement of synaptic transmission. This was determined by examining the postsynaptic response to single and repetitive presynaptic spike activation, spontaneous transmitter release, and presynaptic voltage clamp studies. In the presence of RNS60 ASW single presynaptic stimulation elicited larger postsynaptic potentials (PSP) and more robust recovery from high frequency stimulation than in control ASW. Analysis of postsynaptic noise revealed an increase in spontaneous transmitter release with modified noise kinetics in RNS60 ASW. Presynaptic voltage clamp demonstrated an increased EPSP, without an increase in presynaptic ICa(++) amplitude during RNS60 ASW superfusion. Synaptic release enhancement reached stable maxima within 5-10 min of RNS60 ASW superfusion and was maintained for the entire recording time, up to 1 h. Electronmicroscopic morphometry indicated a decrease in synaptic vesicle density and the number at active zones with an increase in the number of clathrin-coated vesicles (CCV) and large endosome-like vesicles near junctional sites. Block of mitochondrial ATP synthesis by presynaptic injection of oligomycin reduced spontaneous release and prevented the synaptic noise increase seen in RNS60 ASW. After ATP block the number of vesicles at the active zone and CCV was reduced, with an increase in large vesicles. The possibility that RNS60 ASW acts by increasing mitochondrial ATP synthesis was tested by direct determination of ATP levels in both presynaptic and postsynaptic structures. This was implemented using luciferin/luciferase photon emission, which demonstrated a marked increase in ATP synthesis following RNS60 administration. It is concluded that RNS60 positively modulates synaptic transmission by up-regulating ATP synthesis, thus leading to synaptic transmission enhancement. PMID:24575037

  10. From synaptically localized to volume transmission by nitric oxide.

    PubMed

    Garthwaite, John

    2016-01-01

    Nitric oxide (NO) functions widely as a transmitter/diffusible second messenger in the central nervous system, exerting physiological effects in target cells by binding to specialized guanylyl cyclase-coupled receptors, resulting in cGMP generation. Despite having many context-dependent physiological roles and being implicated in numerous disease states, there has been a lack of clarity about the ways that NO operates at the cellular and subcellular levels. Recently, several approaches have been used to try to gain a more concrete, quantitative understanding of this unique signalling pathway. These approaches have included analysing the kinetics of NO receptor function, real-time imaging of cellular NO signal transduction in target cells, and the use of ultrasensitive detector cells to record NO as it is being generated from native sources in brain tissue. The current picture is that, when formed in a synapse, NO is likely to act only very locally, probably mostly within the confines of that synapse, and to exist only in picomolar concentrations. Nevertheless, closely neighbouring synapses may also be within reach, raising the possibility of synaptic crosstalk. By engaging its enzyme-coupled receptors, the low NO concentrations are able to stimulate physiological (submicromolar) increases in cGMP concentration in an activity-dependent manner. When many NO-emitting neurones or synapses are active simultaneously in a tissue region, NO can act more like a volume transmitter to influence, and perhaps coordinate, the behaviour of cells within that region, irrespective of their identity and anatomical connectivity. PMID:26486504

  11. Presynaptic inhibitory effects of fluvoxamine, a selective serotonin reuptake inhibitor, on nociceptive excitatory synaptic transmission in spinal superficial dorsal horn neurons of adult mice.

    PubMed

    Tomoyose, Orie; Kodama, Daisuke; Ono, Hideki; Tanabe, Mitsuo

    2014-01-01

    Fluvoxamine, a selective serotonin (5-HT) reuptake inhibitor, has been shown to exert analgesic effects in humans and laboratory animals. However, its effects on spinal nociceptive synaptic transmission have not been fully characterized. Here, whole-cell recordings were made from dorsal horn neurons in spinal slices with attached dorsal roots from adult mice, and the effects of fluvoxamine on monosynaptic A-fiber- and C-fiber-mediated excitatory postsynaptic currents (EPSCs) evoked in response to electrical stimulation of a dorsal root were studied. Fluvoxamine (10 - 100 μM) concentration-dependently suppressed both monosynaptic A-fiber- and C-fiber-mediated EPSCs, which were attenuated by the selective 5-HT1A receptor antagonist WAY100635. In the presence of the selective 5-HT3 receptor antagonist tropisetron, fluvoxamine hardly suppressed A-fiber-mediated EPSCs, whereas its inhibitory effect on C-fiber-mediated EPSCs was not affected. Although fluvoxamine increased the paired-pulse ratio of A-fiber-mediated EPSCs, it increased the frequency of spontaneous and miniature EPSCs (sEPSCs and mEPSCs). Since sEPSCs and mEPSCs appeared to arise largely from spinal interneurons, we then recorded strontium-evoked asynchronous events occurring after A-fiber stimulation, whose frequency was reduced by fluvoxamine. These results suggest that fluvoxamine reduces excitatory synaptic transmission from primary afferent fibers via presynaptic mechanisms involving 5-HT1A and/or 5-HT3 receptors, which may contribute to its analgesic effects. PMID:25252797

  12. Interactions of Human Autoantibodies with Hippocampal GABAergic Synaptic Transmission – Analyzing Antibody-Induced Effects ex vivo

    PubMed Central

    Haselmann, Holger; Röpke, Luise; Werner, Christian; Kunze, Albrecht; Geis, Christian

    2015-01-01

    Autoantibodies (aAB) to the presynaptic located enzyme glutamate decarboxylase 65 (GAD65) are a characteristic attribute for a variety of autoimmune diseases of the central nervous system including subtypes of limbic encephalitis, stiff person-syndrome, cerebellar ataxia, and Batten’s disease. Clinical signs of hyperexcitability and improvement of disease symptoms upon immunotherapy in some of these disorders suggest a possible pathogenic role of associated aAB. Recent experimental studies report inconsistent results regarding a direct pathogenic influence of anti-GAD65 aAB affecting inhibitory synaptic transmission in central GABAergic pathways. We here provide a method for direct evaluation of aAB-induced pathomechanisms in the intact hippocampal network. Purified patient IgG fractions containing aAB to GAD65 together with fixable lipophilic styryl dyes (FMdyes) are stereotactically injected into the hilus and the dentate gyrus in anesthetized mice. Twenty-four hours after intrahippocampal injection, acute hippocampal slices are prepared and transferred to a patch-clamp recording setup equipped with a fluorescence light source. Intraneural incorporated FMdyes show correct injection site for patch-clamp recording. Whole-cell patch-clamp recordings are performed from granule cells in the dentate gyrus and extracellular stimulation is applied in the border area of the dentate gyrus-hilus region to stimulate GABAergic afferents arising from parvalbumin positive basket cells. GABA-A receptor mediated inhibitory postsynaptic currents (IPSC) and miniature IPSC are recorded after blocking glutamatergic transmission. This approach allows investigation of potential aAB-induced effects on GABA-A receptor signaling ex vivo in an intact neuronal network. This offers several advantages compared to experimental procedures used in previous studies by in vitro AB preincubation of primary neurons or slice preparations. Furthermore, this method requires only small amounts of

  13. Effect of VGLUT inhibitors on glutamatergic synaptic transmission in the rodent hippocampus and prefrontal cortex.

    PubMed

    Neale, S A; Copeland, C S; Salt, T E

    2014-07-01

    Vesicular glutamate transporters (VGLUTs) are known to be important in the uptake of glutamate into vesicles in the presynaptic terminal; thereby playing a role in synaptic function. VGLUT dysfunction has also been suggested in neurological and psychiatric disorders such as epilepsy and schizophrenia. A number of compounds have been identified as VGLUT inhibitors; however, little is known as to how these compounds affect synaptic transmission. We therefore investigated the effects of structurally unrelated VGLUT inhibitors on synaptic transmission in the rodent hippocampus and prefrontal cortex. In the CA1 and dentate gyrus regions of the in vitro slice preparation of mouse hippocampus, AMPA receptor-mediated field excitatory postsynaptic potentials (fEPSPs) were evoked in response to Schaffer collateral/commissural pathway stimulation. Application of the VGLUT inhibitors Rose Bengal (RB), Congo Red (CR) or Chicago Sky Blue 6B (CB) resulted in a concentration-related reduction of fEPSP amplitudes. RB (30μM) or CB (300μM) also depressed NMDA receptor-mediated responses in the CA1 region. The naturally occurring kynurenine Xanthurenic Acid (XA) is reported to be a VGLUT inhibitor. We found XA attenuated both AMPA and NMDA receptor-mediated synaptic transmission. The potency order of the VGLUT inhibitors was consistent with literature Ki values for VGLUT inhibition. Impaired glutamatergic neurotransmission is believed to contribute to schizophrenia, and VGLUTs have also been implicated in this disease. We therefore investigated the effect of VGLUT inhibition in the prefrontal cortex. Application of the VGLUT inhibitors RB or CB resulted in a concentration-dependent reduction in the amplitude of glutamate receptor-mediated fEPSPs recorded in layer V/VI in response to stimulation in the forceps minor. We conclude that VGLUT inhibitors can modulate glutamatergic synaptic transmission in the PFC and hippocampus. This could be important in the pathophysiology of nervous

  14. Peripherally restricted viral challenge elevates extracellular glutamate and enhances synaptic transmission in the hippocampus.

    PubMed

    Hunsberger, Holly C; Wang, Desheng; Petrisko, Tiffany J; Alhowail, Ahmad; Setti, Sharay E; Suppiramaniam, Vishnu; Konat, Gregory W; Reed, Miranda N

    2016-07-01

    Peripheral infections increase the propensity and severity of seizures in susceptible populations. We have previously shown that intraperitoneal injection of a viral mimic, polyinosinic-polycytidylic acid (PIC), elicits hypersusceptibility of mice to kainic acid (KA)-induced seizures. This study was undertaken to determine whether this seizure hypersusceptibility entails alterations in glutamate signaling. Female C57BL/6 mice were intraperitoneally injected with PIC, and after 24 h, glutamate homeostasis in the hippocampus was monitored using the enzyme-based microelectrode arrays. PIC challenge robustly increased the level of resting extracellular glutamate. While pre-synaptic potassium-evoked glutamate release was not affected, glutamate uptake was profoundly impaired and non-vesicular glutamate release was augmented, indicating functional alterations of astrocytes. Electrophysiological examination of hippocampal slices from PIC-challenged mice revealed a several fold increase in the basal synaptic transmission as compared to control slices. PIC challenge also increased the probability of pre-synaptic glutamate release as seen from a reduction of paired-pulse facilitation and synaptic plasticity as seen from an enhancement of long-term potentiation. Altogether, our results implicate a dysregulation of astrocytic glutamate metabolism and an alteration of excitatory synaptic transmission as the underlying mechanism for the development of hippocampal hyperexcitability, and consequently seizure hypersusceptibility following peripheral PIC challenge. Peripheral infections/inflammations enhance seizure susceptibility. Here, we explored the effect of peritoneal inflammation induced by a viral mimic on glutamate homeostasis and glutamatergic neurotransmission in the mouse hippocampus. We found that peritoneal inflammation elevated extracellular glutamate concentration and enhanced the probability of pre-synaptic glutamate release resulting in hyperexcitability of

  15. Signal transmission from motor axons to group Ia muscle spindle afferents: frequency responses and second-order non-linearities.

    PubMed

    Windhorst, U; Kokkoroyiannis, T; Laouris, Y; Meyer-Lohmann, J

    1994-03-01

    Spinal recurrent inhibition via Renshaw cells and proprioceptive feedback via skeletal muscle and muscle spindle afferents have been hypothesized to constitute a compound feedback system [Windhorst (1989) Afferent Control of Posture and Locomotion; Windhorst (1993) Robots and Biological Systems--Towards a New Bionics]. To assess their detailed functions, it is necessary to know their dynamic characteristics. Previously we have extensively described the properties of signal transmission from motor axons to Renshaw cells using random motor axon stimulation and data analysis methods based thereupon. Using the same methods, we here compare these properties, in the cat, with those between motor axons and group Ia muscle spindle afferents in terms of frequency responses and nonlinear features. The frequency responses depend on the mean rate (carrier rate) of activation of motor axons and on the strength of coupling between motor units and spindles. In general, they are those of a second-order low-pass system with a cut-off at fairly low frequencies. This contrasts with the dynamics of motor axon-Renshaw cell couplings which are those of a much broader band-pass with its peak in the range of c. 2-15 Hz [Christakos (1987) Neuroscience 23, 613-623]. The second-order non-linearities in motor unit-muscle spindle signal lines are much more diverse than those in motor axon-Renshaw cell couplings. Although the average strength of response declines with mean stimulus rate in both subsystems, there is no systematic relationship between the amount of non-linearity and the average response in the former, whilst there is in the latter. The qualitative appearance of motor unit-muscle spindle non-linearities was complicated as was the average response to motor unit twitches. Thus, whilst Renshaw cells appear to dynamically reflect motor output rather faithfully, muscle spindles seem to signal local muscle fibre length changes and their dynamics. This would be consistent with the

  16. Calcium channel blockade attenuates abnormal synaptic transmission in the dentate gyrus elicited by entorhinal amyloidopathy.

    PubMed

    Gholami Pourbadie, Hamid; Naderi, Nima; Janahmadi, Mahyar; Mehranfard, Nasrin; Motamedi, Fereshteh

    2016-10-01

    Entorhinal-hippocampal network is one of the earliest circuits which is affected by Alzheimer's disease (AD). There are numerous data providing the evidence of synaptic deficit in the dentate gyrus (DG) of AD animal model. However, there is little known about how entorhinal cortex (EC) amyloidophaty affects each excitatory and/or inhibitory transmission in the early stage of AD. On the other hand, it is believed that calcium dyshomeostasis has a critical role in the etiology of AD. Here, the effect of the EC amyloid pathogenesis on excitatory or inhibitory post synaptic currents (EPSC and IPSC, respectively) in the DG granule cells and then the possible neuroprotective action of L-type calcium channel blockers (CCBs), nimodipine and isradipine, were examined. The amyloid beta (Aβ) 1-42 was injected bilaterally into the EC of male rats and one week later, synaptic currents in the DG granule cells were assessed by whole cell patch clamp. EPSCs were evoked by stimulating the perforant pathway. Voltage clamp recording showed profound decrease of evoked EPSC amplitude and paired pulse facilitation in the DG granule cells of Aβ treated rats. Furthermore, AMPA/NMDA ratio was significantly decreased in the Aβ treated animals. On the other hand, amplitude of IPSC currents was significantly increased in the DG granule cells of these animals. These modifications of synaptic currents were partially reversed by daily intracerebroventricular administration of isradipine or nimodipine. In conclusion, our results suggest that Aβ in the EC triggers decreased excitatory transmission in the DG with substantial decrement in AMPA currents, leading to a prominent activity of inhibitory circuits and increased inhibition of granule cells which may contribute to the development of AD-related neurological deficits in AD and treatment by CCBs could preserve normal synaptic transmission against Aβ toxicity. PMID:27240164

  17. Nitric oxide regulates synaptic transmission between spiny projection neurons

    PubMed Central

    Sagi, Yotam; Heiman, Myriam; Peterson, Jayms D.; Musatov, Sergei; Scarduzio, Mariangela; Logan, Stephen M.; Kaplitt, Michael G.; Surmeier, Dalton J.; Heintz, Nathaniel; Greengard, Paul

    2014-01-01

    Recurrent axon collaterals are a major means of communication between spiny projection neurons (SPNs) in the striatum and profoundly affect the function of the basal ganglia. However, little is known about the molecular and cellular mechanisms that underlie this communication. We show that intrastriatal nitric oxide (NO) signaling elevates the expression of the vesicular GABA transporter (VGAT) within recurrent collaterals of SPNs. Down-regulation of striatal NO signaling resulted in an attenuation of GABAergic signaling in SPN local collaterals, down-regulation of VGAT expression in local processes of SPNs, and impaired motor behavior. PKG1 and cAMP response element-binding protein are involved in the signal transduction that transcriptionally regulates VGAT by NO. These data suggest that transcriptional control of the vesicular GABA transporter by NO regulates GABA transmission and action selection. PMID:25413364

  18. Statistical models of synaptic transmission evaluated using the expectation-maximization algorithm.

    PubMed Central

    Stricker, C; Redman, S

    1994-01-01

    Amplitude fluctuations of evoked synaptic responses can be used to extract information on the probabilities of release at the active sites, and on the amplitudes of the synaptic responses generated by transmission at each active site. The parameters that describe this process must be obtained from an incomplete data set represented by the probability density of the evoked synaptic response. In this paper, the equations required to calculate these parameters using the Expectation-Maximization algorithm and the maximum likelihood criterion have been derived for a variety of statistical models of synaptic transmission. These models are ones where the probabilities associated with the different discrete amplitudes in the evoked responses are a) unconstrained, b) binomial, and c) compound binomial. The discrete amplitudes may be separated by equal (quantal) or unequal amounts, with or without quantal variance. Alternative models have been considered where the variance associated with the discrete amplitudes is sufficiently large such that no quantal amplitudes can be detected. These models involve the sum of a normal distribution (to represent failures) and a unimodal distribution (to represent the evoked responses). The implementation of the algorithm is described in each case, and its accuracy and convergence have been demonstrated. PMID:7948679

  19. Synaptic and circuit mechanisms promoting broadband transmission of olfactory stimulus dynamics.

    PubMed

    Nagel, Katherine I; Hong, Elizabeth J; Wilson, Rachel I

    2015-01-01

    Sensory stimuli fluctuate on many timescales. However, short-term plasticity causes synapses to act as temporal filters, limiting the range of frequencies that they can transmit. How synapses in vivo might transmit a range of frequencies in spite of short-term plasticity is poorly understood. The first synapse in the Drosophila olfactory system exhibits short-term depression, but can transmit broadband signals. Here we describe two mechanisms that broaden the frequency characteristics of this synapse. First, two distinct excitatory postsynaptic currents transmit signals on different timescales. Second, presynaptic inhibition dynamically updates synaptic properties to promote accurate transmission of signals across a wide range of frequencies. Inhibition is transient, but grows slowly, and simulations reveal that these two features of inhibition promote broadband synaptic transmission. Dynamic inhibition is often thought to restrict the temporal patterns that a neuron responds to, but our results illustrate a different idea: inhibition can expand the bandwidth of neural coding. PMID:25485755

  20. Synaptic and circuit mechanisms promoting broadband transmission of olfactory stimulus dynamics

    PubMed Central

    Nagel, Katherine I.; Hong, Elizabeth J.; Wilson, Rachel I.

    2014-01-01

    Sensory stimuli fluctuate on many timescales. However, short-term plasticity causes synapses to act as temporal filters, limiting the range of frequencies they can transmit. How synapses in vivo might transmit a range of frequencies in spite of short-term plasticity is poorly understood. The first synapse in the Drosophila olfactory system exhibits short-term depression, and yet can transmit broadband signals. Here we describe two mechanisms that broaden the frequency characteristics of this synapse. First, two distinct excitatory postsynaptic currents transmit signals on different timescales. Second, presynaptic inhibition dynamically updates synaptic properties to promote accurate transmission of signals across a wide range of frequencies. Inhibition is transient but grows slowly, and simulations show that these two features of inhibition promote broadband synaptic transmission. Dynamic inhibition is often thought to restrict the temporal patterns that a neuron responds to, but our results illustrate a different idea: inhibition can expand the bandwidth of neural coding. PMID:25485755

  1. Postsynaptic conversion of silent synapses during LTP affects synaptic gain and transmission dynamics.

    PubMed

    Poncer, J C; Malinow, R

    2001-10-01

    Synaptic transmission relies on both the gain and the dynamics of synapses. Activity-dependent changes in synaptic gain are well-documented at excitatory synapses and may represent a substrate for information storage in the brain. Here we examine the mechanisms of changes in transmission dynamics at excitatory synapses. We show that paired-pulse ratios (PPRs) of AMPAR and NMDAR EPSCs onto dentate gyrus granule cells are often different; this difference is reduced during LTP, reflecting PPR changes of AMPAR but not NMDAR EPSCs. Presynaptic manipulations, however, produce parallel changes in AMPAR and NMDAR EPSCs. LTP at these synapses reflects a reduction in the proportion of silent synapses lacking functional AMPARs. Changes in PPR during LTP therefore reflect the initial difference between PPRs of silent and functional synapses. Functional conversion of silent synapses permits postsynaptic sampling from additional release sites and thereby affects the dynamics and gain of signals conveyed between neurons. PMID:11544481

  2. Astrocytes contribute to the effects of etomidate on synaptic transmission in rat primary somatosensory cortex.

    PubMed

    Yang, Hao; Wang, Yuan; Zhang, Yu; Zhang, You; Xu, Mao-Sheng; Yuan, Jie; Yu, Tian

    2016-07-01

    Little is known about the mechanisms of unconsciousness induced by general anesthetics. Previous studies have shown that the primary somatosensory cortex (S1) is a sensitive region to a variety of intravenous general anesthetics. Etomidate is a widely used intravenous anesthetic that can influence synaptic transmission. Recently, there are some evidences suggesting that astrocytes, a type of glia cell, also contribute to information transmission in the brain, and modulate synaptic function by releasing neuroactive substances. However, it is unknown whether astrocytes influence the effects of etomidate on information transmission in S1 pyramidal neurons. In the present study, the role of astrocytes in etomidate-induced unconsciousness was investigated by using the whole-cell patch clamp technique. We observed etomidate at clinically relevant concentrations inhibited the spontaneous postsynaptic currents (sPSCs) of rat S1 pyramidal neurons in a concentration-dependent manner, and the EC50 value of etomidate for inhibiting sPSCs from the concentration-effect curve was 6.9μM. Furthermore, in the presence of fluorocitrate, a glia-selective metabolism inhibitor that blocks the aconitase enzyme, both the amplitude and frequency of sPSCs in rat S1 pyramidal neurons were reduced, and the inhibitory effects of etomidate on sPSCs amplitude was strengthened without affecting the effects of etomidate on frequency. From these data, we deduce that etomidate suppresses synaptic activity via presynaptic and postsynaptic components. Furthermore, astrocytes participate in synaptic transmission and influence the effects of etomidate on postsynaptic receptors. This study provides new insight into the role of astrocytes in etomidate-induced unconsciousness. PMID:27045115

  3. Regulation of Synaptic Transmission by RAB-3 and RAB-27 in Caenorhabditis elegans

    PubMed Central

    Mahoney, Timothy R.; Liu, Qiang; Itoh, Takashi; Luo, Shuo; Hadwiger, Gayla; Vincent, Rose; Wang, Zhao-Wen; Fukuda, Mitsunori

    2006-01-01

    Rab small GTPases are involved in the transport of vesicles between different membranous organelles. RAB-3 is an exocytic Rab that plays a modulatory role in synaptic transmission. Unexpectedly, mutations in the Caenorhabditis elegans RAB-3 exchange factor homologue, aex-3, cause a more severe synaptic transmission defect as well as a defecation defect not seen in rab-3 mutants. We hypothesized that AEX-3 may regulate a second Rab that regulates these processes with RAB-3. We found that AEX-3 regulates another exocytic Rab, RAB-27. Here, we show that C. elegans RAB-27 is localized to synapse-rich regions pan-neuronally and is also expressed in intestinal cells. We identify aex-6 alleles as containing mutations in rab-27. Interestingly, aex-6 mutants exhibit the same defecation defect as aex-3 mutants. aex-6; rab-3 double mutants have behavioral and pharmacological defects similar to aex-3 mutants. In addition, we demonstrate that RBF-1 (rabphilin) is an effector of RAB-27. Therefore, our work demonstrates that AEX-3 regulates both RAB-3 and RAB-27, that both RAB-3 and RAB-27 regulate synaptic transmission, and that RAB-27 potentially acts through its effector RBF-1 to promote soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) function. PMID:16571673

  4. Effects of Modafinil on Behavioral Learning and Hippocampal Synaptic Transmission in Rats

    PubMed Central

    Chen, Chong; Wang, Hai-Xia; Li, Chu-Hua; Huang, Jun-Ni; Xiao, Peng

    2015-01-01

    Purpose: Modafinil is a wake-promoting agent that has been proposed to improve cognitive performance at the preclinical and clinical levels. Since there is insufficient evidence for modafinil to be regarded as a cognitive enhancer, the aim of this study was to investigate the effects of chronic modafinil administration on behavioral learning in healthy adult rats. Methods: Y-maze training was used to assess learning performance, and the whole-cell patch clamp technique was used to assess synaptic transmission in pyramidal neurons of the hippocampal CA1 region of rats. Results: Intraperitoneal administration of modafinil at 200 mg/kg or 300 mg/kg significantly improved learning performance. Furthermore, perfusion with 1mM modafinil enhanced the frequency and amplitude of spontaneous postsynaptic currents and spontaneous excitatory postsynaptic currents in CA1 pyramidal neurons in hippocampal slices. However, the frequency and amplitude of spontaneous inhibitory postsynaptic currents in CA1 pyramidal neurons were inhibited by treatment with 1mM modafinil. Conclusions: These results indicate that modafinil improves learning and memory in rats possibly by enhancing glutamatergic excitatory synaptic transmission and inhibiting GABAergic (gamma-aminobutyric acid-ergic) inhibitory synaptic transmission. PMID:26739176

  5. Adult Onset-hypothyroidism has Minimal Effects on Synaptic Transmission in the Hippocampus of Rats Independent of Hypothermia

    EPA Science Inventory

    Introduction: Thyroid hormones (TH) influence central nervous system (CNS) function during development and in adulthood. The hippocampus, a brain area critical for learning and memory is sensitive to TH insufficiency. Synaptic transmission in the hippocampus is impaired following...

  6. LGI1 acts presynaptically to regulate excitatory synaptic transmission during early postnatal development.

    PubMed

    Boillot, Morgane; Lee, Chun-Yao; Allene, Camille; Leguern, Eric; Baulac, Stéphanie; Rouach, Nathalie

    2016-01-01

    The secreted leucine-rich glioma inactivated 1 (LGI1) protein is an important actor for human seizures of both genetic and autoimmune etiology: mutations in LGI1 cause inherited temporal lobe epilepsy, while LGI1 is involved in antibody-mediated encephalitis. Remarkably, Lgi1-deficient (Lgi1(-/-)) mice recapitulate the epileptic disorder and display early-onset spontaneous seizures. To understand how Lgi1-deficiency leads to seizures during postnatal development, we here investigated the early functional and structural defects occurring before seizure onset in Lgi1(-/-) mice. We found an increased excitatory synaptic transmission in hippocampal slices from Lgi1(-/-) mice. No structural alteration in the morphology of pyramidal cell dendrites and synapses was observed at this stage, indicating that Lgi1-deficiency is unlikely to trigger early developmental abnormalities. Consistent with the presynaptic subcellular localization of the protein, Lgi1-deficiency caused presynaptic defects, with no alteration in postsynaptic AMPA receptor activity in Lgi1-/- pyramidal cells before seizure onset. Presynaptic dysfunction led to increased synaptic glutamate levels, which were associated with hyperexcitable neuronal networks. Altogether, these data show that Lgi1 acts presynaptically as a negative modulator of excitatory synaptic transmission during early postnatal development. We therefore here reveal that increased presynaptic glutamate release is a key early event resulting from Lgi1-deficiency, which likely contributes to epileptogenesis. PMID:26878798

  7. LGI1 acts presynaptically to regulate excitatory synaptic transmission during early postnatal development

    PubMed Central

    Boillot, Morgane; Lee, Chun-Yao; Allene, Camille; Leguern, Eric; Baulac, Stéphanie; Rouach, Nathalie

    2016-01-01

    The secreted leucine-rich glioma inactivated 1 (LGI1) protein is an important actor for human seizures of both genetic and autoimmune etiology: mutations in LGI1 cause inherited temporal lobe epilepsy, while LGI1 is involved in antibody-mediated encephalitis. Remarkably, Lgi1-deficient (Lgi1−/−) mice recapitulate the epileptic disorder and display early-onset spontaneous seizures. To understand how Lgi1-deficiency leads to seizures during postnatal development, we here investigated the early functional and structural defects occurring before seizure onset in Lgi1−/− mice. We found an increased excitatory synaptic transmission in hippocampal slices from Lgi1−/− mice. No structural alteration in the morphology of pyramidal cell dendrites and synapses was observed at this stage, indicating that Lgi1-deficiency is unlikely to trigger early developmental abnormalities. Consistent with the presynaptic subcellular localization of the protein, Lgi1-deficiency caused presynaptic defects, with no alteration in postsynaptic AMPA receptor activity in Lgi1−/− pyramidal cells before seizure onset. Presynaptic dysfunction led to increased synaptic glutamate levels, which were associated with hyperexcitable neuronal networks. Altogether, these data show that Lgi1 acts presynaptically as a negative modulator of excitatory synaptic transmission during early postnatal development. We therefore here reveal that increased presynaptic glutamate release is a key early event resulting from Lgi1-deficiency, which likely contributes to epileptogenesis. PMID:26878798

  8. Thrombin regulation of synaptic transmission and plasticity: implications for health and disease

    PubMed Central

    Ben Shimon, Marina; Lenz, Maximilian; Ikenberg, Benno; Becker, Denise; Shavit Stein, Efrat; Chapman, Joab; Tanne, David; Pick, Chaim G.; Blatt, Ilan; Neufeld, Miri; Vlachos, Andreas; Maggio, Nicola

    2015-01-01

    Thrombin, a serine protease involved in the blood coagulation cascade has been shown to affect neural function following blood-brain barrier breakdown. However, several lines of evidence exist that thrombin is also expressed in the brain under physiological conditions, suggesting an involvement of thrombin in the regulation of normal brain functions. Here, we review ours’ as well as others’ recent work on the role of thrombin in synaptic transmission and plasticity through direct or indirect activation of Protease-Activated Receptor-1 (PAR1). These studies propose a novel role of thrombin in synaptic plasticity, both in physiology as well as in neurological diseases associated with increased brain thrombin/PAR1 levels. PMID:25954157

  9. Taurine-Induced Long-Lasting Enhancement of Synaptic Transmission in Mice: Role of Transporters

    PubMed Central

    Sergeeva, O A; Chepkova, A N; Doreulee, N; Eriksson, K S; Poelchen, W; Mönnighoff, I; Heller-Stilb, B; Warskulat, U; Häussinger, D; Haas, H L

    2003-01-01

    Taurine, a major osmolyte in the brain evokes a long-lasting enhancement (LLETAU) of synaptic transmission in hippocampal and cortico-striatal slices. Hippocampal LLETAU was abolished by the GABA uptake blocker nipecotic acid (NPA) but not by the taurine-uptake inhibitor guanidinoethyl sulphonate (GES). Striatal LLETAU was sensitive to GES but not to NPA. Semiquantitative PCR analysis and immunohistochemistry revealed that taurine transporter expression is significantly higher in the striatum than in the hippocampus. Taurine transporter-deficient mice displayed very low taurine levels in both structures and a low ability to develop LLETAU in the striatum, but not in the hippocampus. The different mechanisms of taurine-induced synaptic plasticity may reflect the different vulnerabilities of these brain regions under pathological conditions that are accompanied by osmotic changes such as hepatic encephalopathy. PMID:12824447

  10. Short-term plasticity and modulation of synaptic transmission at mammalian inhibitory cholinergic olivocochlear synapses

    PubMed Central

    Katz, Eleonora; Elgoyhen, Ana Belén

    2014-01-01

    The organ of Corti, the mammalian sensory epithelium of the inner ear, has two types of mechanoreceptor cells, inner hair cells (IHCs) and outer hair cells (OHCs). In this sensory epithelium, vibrations produced by sound waves are transformed into electrical signals. When depolarized by incoming sounds, IHCs release glutamate and activate auditory nerve fibers innervating them and OHCs, by virtue of their electromotile property, increase the amplification and fine tuning of sound signals. The medial olivocochlear (MOC) system, an efferent feedback system, inhibits OHC activity and thereby reduces the sensitivity and sharp tuning of cochlear afferent fibers. During neonatal development, IHCs fire Ca2+ action potentials which evoke glutamate release promoting activity in the immature auditory system in the absence of sensory stimuli. During this period, MOC fibers also innervate IHCs and are thought to modulate their firing rate. Both the MOC-OHC and the MOC-IHC synapses are cholinergic, fast and inhibitory and mediated by the α9α10 nicotinic cholinergic receptor (nAChR) coupled to the activation of calcium-activated potassium channels that hyperpolarize the hair cells. In this review we discuss the biophysical, functional and molecular data which demonstrate that at the synapses between MOC efferent fibers and cochlear hair cells, modulation of transmitter release as well as short term synaptic plasticity mechanisms, operating both at the presynaptic terminal and at the postsynaptic hair-cell, determine the efficacy of these synapses and shape the hair cell response pattern. PMID:25520631

  11. Developmental Exposure to Perchlorate Alters Synaptic Transmission in Hippocampus of the Adult Rat

    PubMed Central

    Gilbert, Mary E.; Sui, Li

    2008-01-01

    Background Perchlorate is an environmental contaminant that blocks iodine uptake into the thyroid gland and reduces thyroid hormones. This action of perchlorate raises significant concern over its effects on brain development. Objectives The purpose of this study was to evaluate neurologic function in rats after developmental exposure to perchlorate. Methods Pregnant rats were exposed to 0, 30, 300, or 1,000 ppm perchlorate in drinking water from gestational day 6 until weaning. Adult male offspring were evaluated on a series of behavioral tasks and neurophysiologic measures of synaptic function in the hippocampus. Results At the highest perchlorate dose, triiodothyronine (T3) and thyroxine (T4) were reduced in pups on postnatal day 21. T4 in dams was reduced relative to controls by 16%, 28%, and 60% in the 30-, 300-, and 1,000-ppm dose groups, respectively. Reductions in T4 were associated with increases in thyroid-stimulating hormone in the high-dose group. No changes were seen in serum T3. Perchlorate did not impair motor activity, spatial learning, or fear conditioning. However, significant reductions in baseline synaptic transmission were observed in hippocampal field potentials at all dose levels. Reductions in inhibitory function were evident at 300 and 1,000 ppm, and augmentations in long-term potentiation were observed in the population spike measure at the highest dose. Conclusions Dose-dependent deficits in hippocampal synaptic function were detectable with relatively minor perturbations of the thyroid axis, indicative of an irreversible impairment in synaptic transmission in response to developmental exposure to perchlorate. PMID:18560531

  12. Extended secondhand tobacco smoke exposure induces plasticity in nucleus tractus solitarius second-order lung afferent neurons in young guinea pigs.

    PubMed

    Sekizawa, Shin-Ichi; Chen, Chao-Yin; Bechtold, Andrea G; Tabor, Jocelyn M; Bric, John M; Pinkerton, Kent E; Joad, Jesse P; Bonham, Ann C

    2008-08-01

    Infants and young children experiencing extended exposure to secondhand smoke (SHS) have an increased occurrence of asthma, as well as increased cough, wheeze, mucus production and airway hyper-reactivity. Plasticity in lung reflex pathways has been implicated in causing these symptoms, as have changes in substance P-related mechanisms. Using whole-cell voltage-clamp recordings and immunohistochemistry in brainstem slices containing anatomically identified second-order lung afferent nucleus tractus solitarius (NTS) neurons, we determined whether extended SHS exposure during the equivalent period of human childhood modified evoked or spontaneous excitatory synaptic transmission, and whether those modifications were altered by endogenous substance P. SHS exposure enhanced evoked synaptic transmission between sensory afferents and the NTS second-order neurons by eliminating synaptic depression of evoked excitatory postsynaptic currents (eEPSCs), an effect reversed by the neurokinin-1-receptor antagonist (SR140333). The recruitment of substance P in enhancing evoked synaptic transmission was further supported by an increased number of substance P-expressing lung afferent central terminals synapsing onto the second-order lung afferent neurons. SHS exposure did not change background spontaneous EPSCs. The data suggest that substance P in the NTS augments evoked synaptic transmission of lung sensory input following extended exposure to a pollutant. The mechanism may help to explain some of the exaggerated respiratory responses of children exposed to SHS. PMID:18657181

  13. First effects of rising amyloid-β in transgenic mouse brain: synaptic transmission and gene expression

    PubMed Central

    Cummings, Damian M.; Liu, Wenfei; Portelius, Erik; Bayram, Sevinç; Yasvoina, Marina; Ho, Sui-Hin; Smits, Hélène; Ali, Shabinah S.; Steinberg, Rivka; Pegasiou, Chrysia-Maria; James, Owain T.; Matarin, Mar; Richardson, Jill C.; Zetterberg, Henrik; Blennow, Kaj; Hardy, John A.; Salih, Dervis A.

    2015-01-01

    Detecting and treating Alzheimer’s disease, before cognitive deficits occur, has become the health challenge of our time. The earliest known event in Alzheimer’s disease is rising amyloid-β. Previous studies have suggested that effects on synaptic transmission may precede plaque deposition. Here we report how relative levels of different soluble amyloid-β peptides in hippocampus, preceding plaque deposition, relate to synaptic and genomic changes. Immunoprecipitation-mass spectrometry was used to measure the early rise of different amyloid-β peptides in a mouse model of increasing amyloid-β (‘TASTPM’, transgenic for familial Alzheimer’s disease genes APP/PSEN1). In the third postnatal week, several amyloid-β peptides were above the limit of detection, including amyloid-β40, amyloid-β38 and amyloid-β42 with an intensity ratio of 6:3:2, respectively. By 2 months amyloid-β levels had only increased by 50% and although the ratio of the different peptides remained constant, the first changes in synaptic currents, compared to wild-type mice could be detected with patch-clamp recordings. Between 2 and 4 months old, levels of amyloid-β40 rose by ∼7-fold, but amyloid-β42 rose by 25-fold, increasing the amyloid-β42:amyloid-β40 ratio to 1:1. Only at 4 months did plaque deposition become detectable and only in some mice; however, synaptic changes were evident in all hippocampal fields. These changes included increased glutamate release probability (P < 0.001, n = 7–9; consistent with the proposed physiological effect of amyloid-β) and loss of spontaneous action potential-mediated activity in the cornu ammonis 1 (CA1) and dentate gyrus regions of the hippocampus (P < 0.001, n = 7). Hence synaptic changes occur when the amyloid-β levels and amyloid-β42:amyloid-β40 ratio are still low compared to those necessary for plaque deposition. Genome-wide microarray analysis revealed changes in gene expression at 2–4 months including synaptic genes being

  14. First effects of rising amyloid-β in transgenic mouse brain: synaptic transmission and gene expression.

    PubMed

    Cummings, Damian M; Liu, Wenfei; Portelius, Erik; Bayram, Sevinç; Yasvoina, Marina; Ho, Sui-Hin; Smits, Hélène; Ali, Shabinah S; Steinberg, Rivka; Pegasiou, Chrysia-Maria; James, Owain T; Matarin, Mar; Richardson, Jill C; Zetterberg, Henrik; Blennow, Kaj; Hardy, John A; Salih, Dervis A; Edwards, Frances A

    2015-07-01

    Detecting and treating Alzheimer's disease, before cognitive deficits occur, has become the health challenge of our time. The earliest known event in Alzheimer's disease is rising amyloid-β. Previous studies have suggested that effects on synaptic transmission may precede plaque deposition. Here we report how relative levels of different soluble amyloid-β peptides in hippocampus, preceding plaque deposition, relate to synaptic and genomic changes. Immunoprecipitation-mass spectrometry was used to measure the early rise of different amyloid-β peptides in a mouse model of increasing amyloid-β ('TASTPM', transgenic for familial Alzheimer's disease genes APP/PSEN1). In the third postnatal week, several amyloid-β peptides were above the limit of detection, including amyloid-β40, amyloid-β38 and amyloid-β42 with an intensity ratio of 6:3:2, respectively. By 2 months amyloid-β levels had only increased by 50% and although the ratio of the different peptides remained constant, the first changes in synaptic currents, compared to wild-type mice could be detected with patch-clamp recordings. Between 2 and 4 months old, levels of amyloid-β40 rose by ∼7-fold, but amyloid-β42 rose by 25-fold, increasing the amyloid-β42:amyloid-β40 ratio to 1:1. Only at 4 months did plaque deposition become detectable and only in some mice; however, synaptic changes were evident in all hippocampal fields. These changes included increased glutamate release probability (P < 0.001, n = 7-9; consistent with the proposed physiological effect of amyloid-β) and loss of spontaneous action potential-mediated activity in the cornu ammonis 1 (CA1) and dentate gyrus regions of the hippocampus (P < 0.001, n = 7). Hence synaptic changes occur when the amyloid-β levels and amyloid-β42:amyloid-β40 ratio are still low compared to those necessary for plaque deposition. Genome-wide microarray analysis revealed changes in gene expression at 2-4 months including synaptic genes being strongly

  15. Bidirectional regulation of synaptic transmission by BRAG1/IQSEC2 and its requirement in long-term depression

    PubMed Central

    Brown, Joshua C.; Petersen, Amber; Zhong, Ling; Himelright, Miranda L.; Murphy, Jessica A.; Walikonis, Randall S.; Gerges, Nashaat Z.

    2016-01-01

    Dysfunction of the proteins regulating synaptic function can cause synaptic plasticity imbalance that underlies neurological disorders such as intellectual disability. A study found that four distinct mutations within BRAG1, an Arf-GEF synaptic protein, each led to X-chromosome-linked intellectual disability (XLID). Although the physiological functions of BRAG1 are poorly understood, each of these mutations reduces BRAG1's Arf-GEF activity. Here we show that BRAG1 is required for the activity-dependent removal of AMPA receptors in rat hippocampal pyramidal neurons. Moreover, we show that BRAG1 bidirectionally regulates synaptic transmission. On one hand, BRAG1 is required for the maintenance of synaptic transmission. On the other hand, BRAG1 expression enhances synaptic transmission, independently of BRAG1 Arf-GEF activity or neuronal activity, but dependently on its C-terminus interactions. This study demonstrates a dual role of BRAG1 in synaptic function and highlights the functional relevance of reduced BRAG1 Arf-GEF activity as seen in the XLID-associated human mutations. PMID:27009485

  16. Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca(2+) Homeostasis, and Synaptic Transmission in Primary Cortical Neurons.

    PubMed

    Bramini, Mattia; Sacchetti, Silvio; Armirotti, Andrea; Rocchi, Anna; Vázquez, Ester; León Castellanos, Verónica; Bandiera, Tiziano; Cesca, Fabrizia; Benfenati, Fabio

    2016-07-26

    Graphene has the potential to make a very significant impact on society, with important applications in the biomedical field. The possibility to engineer graphene-based medical devices at the neuronal interface is of particular interest, making it imperative to determine the biocompatibility of graphene materials with neuronal cells. Here we conducted a comprehensive analysis of the effects of chronic and acute exposure of rat primary cortical neurons to few-layer pristine graphene (GR) and monolayer graphene oxide (GO) flakes. By combining a range of cell biology, microscopy, electrophysiology, and "omics" approaches we characterized the graphene-neuron interaction from the first steps of membrane contact and internalization to the long-term effects on cell viability, synaptic transmission, and cell metabolism. GR/GO flakes are found in contact with the neuronal membrane, free in the cytoplasm, and internalized through the endolysosomal pathway, with no significant impact on neuron viability. However, GO exposure selectively caused the inhibition of excitatory transmission, paralleled by a reduction in the number of excitatory synaptic contacts, and a concomitant enhancement of the inhibitory activity. This was accompanied by induction of autophagy, altered Ca(2+) dynamics, and a downregulation of some of the main players in the regulation of Ca(2+) homeostasis in both excitatory and inhibitory neurons. Our results show that, although graphene exposure does not impact neuron viability, it does nevertheless have important effects on neuronal transmission and network functionality, thus warranting caution when planning to employ this material for neurobiological applications. PMID:27359048

  17. Novel nootropic dipeptide Noopept increases inhibitory synaptic transmission in CA1 pyramidal cells.

    PubMed

    Kondratenko, Rodion V; Derevyagin, Vladimir I; Skrebitsky, Vladimir G

    2010-05-31

    Effects of newly synthesized nootropic and anxiolytic dipeptide Noopept on inhibitory synaptic transmission in hippocampal CA1 pyramidal cells were investigated using patch-clamp technique in whole-cell configuration. Bath application of Noopept (1 microM) significantly increased the frequency of spike-dependant spontaneous IPSCs whereas spike-independent mIPSCs remained unchanged. It was suggested that Noopept mediates its effect due to the activation of inhibitory interneurons terminating on CA1 pyramidal cells. Results of current clamp recording of inhibitory interneurons residing in stratum radiatum confirmed this suggestion. PMID:20382202

  18. Age-dependent enhancement of inhibitory synaptic transmission in CA1 pyramidal neurons via GluR5 kainate receptors.

    PubMed

    Xu, Changqing; Cui, Changhai; Alkon, Daniel L

    2009-08-01

    Changes in hippocampal synaptic networks during aging may contribute to age-dependent compromise of cognitive functions such as learning and memory. Previous studies have demonstrated that GABAergic synaptic transmission exhibits age-dependent changes. To better understand such age-dependent changes of GABAergic synaptic inhibition, we performed whole-cell recordings from pyramidal cells in the CA1 area of acute hippocampal slices on aged (24-26 months old) and young (2-4 months old) Brown-Norway rats. We found that the frequency and amplitude of spontaneous inhibitory postsynaptic current (IPSCs) were significantly increased in aged rats, but the frequency and amplitude of mIPSCs were decreased. Furthermore, the regulation of GABAergic synaptic transmission by GluR5 containing kainate receptors was enhanced in aged rats, which was revealed by using LY382884 (a GluR5 kainate receptor antagonist) and ATPA (a GluR5 kainate receptor agonist). Moreover, we demonstrated that vesicular glutamate transporters are involved in the kainate receptor dependent regulation of sIPSCs. Taken together, these results suggest that GABAergic synaptic transmission is potentiated in aged rats, and GluR5 containing kainate receptors regulate the inhibitory synaptic transmission through endogenous glutamate. These alterations of GABAergic input with aging could contribute to age-dependent cognitive decline. PMID:19123252

  19. Enhancement of synaptic transmission induced by BDNF in cultured cortical neurons

    NASA Astrophysics Data System (ADS)

    He, Jun; Gong, Hui; Zeng, Shaoqun; Li, Yanling; Luo, Qingming

    2005-03-01

    Brain-derived neurotrophic factor (BDNF), like other neurotrophins, has long-term effects on neuronal survival and differentiation; furthermore, BDNF has been reported to exert an acute potentiation of synaptic activity and are critically involved in long-term potentiation (LTP). We found that BDNF rapidly induced potentiation of synaptic activity and an increase in the intracellular Ca2+ concentration in cultured cortical neurons. Within minutes of BDNF application to cultured cortical neurons, spontaneous firing rate was dramatically increased as were the frequency and amplitude of excitatory spontaneous postsynaptic currents (EPSCs). Fura-2 recordings showed that BDNF acutely elicited an increase in intracellular calcium concentration ([Ca2+]c). This effect was partially dependent on [Ca2+]o; The BDNF-induced increase in [Ca2+]c can not be completely blocked by Ca2+-free solution. It was completely blocked by K252a and partially blocked by Cd2+ and TTX. The results demonstrate that BDNF can enhances synaptic transmission and that this effect is accompanied by a rise in [Ca2+]c that requires two route: the release of Ca2+ from intracellular calcium stores and influx of extracellular Ca2+ through voltage-dependent Ca2+ channels in cultured cortical neurons.

  20. Mice deficient for prion protein exhibit normal neuronal excitability and synaptic transmission in the hippocampus.

    PubMed Central

    Lledo, P M; Tremblay, P; DeArmond, S J; Prusiner, S B; Nicoll, R A

    1996-01-01

    We recorded in the CA1 region from hippocampal slices of prion protein (PrP) gene knockout mice to investigate whether the loss of the normal form of prion protein (PrPC) affects neuronal excitability as well as synaptic transmission in the central nervous system. No deficit in synaptic inhibition was found using field potential recordings because (i) responses induced by stimulation in stratum radiatum consisted of a single population spike in PrP gene knockout mice similar to that recorded from control mice and (ii) the plot of field excitatory postsynaptic potential slope versus the population spike amplitude showed no difference between the two groups of mice. Intracellular recordings also failed to detect any difference in cell excitability and the reversal potential for inhibitory postsynaptic potentials. Analysis of the kinetics of inhibitory postsynaptic current revealed no modification. Finally, we examined whether synaptic plasticity was altered and found no difference in long-term potentiation between control and PrP gene knockout mice. On the basis of our findings, we propose that the loss of the normal form of prion protein does not alter the physiology of the CA1 region of the hippocampus. PMID:8637886

  1. Mice Deficient for Prion Protein Exhibit Normal Neuronal Excitability and Synaptic Transmission in the Hippocampus

    NASA Astrophysics Data System (ADS)

    Lledo, Pierre-Marie; Tremblay, Patrick; Dearmond, Stephen J.; Prusiner, Stanley B.; Nicoll, Roger A.

    1996-03-01

    We recorded in the CA1 region from hippocampal slices of prion protein (PrP) gene knockout mice to investigate whether the loss of the normal form of prion protein (PrPC) affects neuronal excitability as well as synaptic transmission in the central nervous system. No deficit in synaptic inhibition was found using field potential recordings because (i) responses induced by stimulation in stratum radiatum consisted of a single population spike in PrP gene knockout mice similar to that recorded from control mice and (ii) the plot of field excitatory postsynaptic potential slope versus the population spike amplitude showed no difference between the two groups of mice. Intracellular recordings also failed to detect any difference in cell excitability and the reversal potential for inhibitory postsynaptic potentials. Analysis of the kinetics of inhibitory postsynaptic current revealed no modification. Finally, we examined whether synaptic plasticity was altered and found no difference in long-term potentiation between control and PrP gene knockout mice. On the basis of our findings, we propose that the loss of the normal form of prion protein does not alter the physiology of the CA1 region of the hippocampus.

  2. Selective Activation of Microglia Facilitates Synaptic Strength

    PubMed Central

    Clark, Anna K.; Gruber-Schoffnegger, Doris; Drdla-Schutting, Ruth; Gerhold, Katharina J.; Malcangio, Marzia

    2015-01-01

    Synaptic plasticity is thought to be initiated by neurons only, with the prevailing view assigning glial cells mere specify supportive functions for synaptic transmission and plasticity. We now demonstrate that glial cells can control synaptic strength independent of neuronal activity. Here we show that selective activation of microglia in the rat is sufficient to rapidly facilitate synaptic strength between primary afferent C-fibers and lamina I neurons, the first synaptic relay in the nociceptive pathway. Specifically, the activation of the CX3CR1 receptor by fractalkine induces the release of interleukin-1β from microglia, which modulates NMDA signaling in postsynaptic neurons, leading to the release of an eicosanoid messenger, which ultimately enhances presynaptic neurotransmitter release. In contrast to the conventional view, this form of plasticity does not require enhanced neuronal activity to trigger the events leading to synaptic facilitation. Augmentation of synaptic strength in nociceptive pathways represents a cellular model of pain amplification. The present data thus suggest that, under chronic pain states, CX3CR1-mediated activation of microglia drives the facilitation of excitatory synaptic transmission in the dorsal horn, which contributes to pain hypersensitivity in chronic pain states. PMID:25788673

  3. A TRPV Channel in Drosophila Motor Neurons Regulates Presynaptic Resting Ca2+ Levels, Synapse Growth, and Synaptic Transmission

    PubMed Central

    Wong, Ching-On; Chen, Kuchuan; Lin, Yong Qi; Chao, Yufang; Duraine, Lita; Lu, Zhongmin; Yoon, Wan Hee; Sullivan, Jeremy M.; Broadhead, Geoffrey T.; Sumner, Charlotte J.; Lloyd, Thomas E.; Macleod, Gregory T.; Bellen, Hugo J.; Venkatachalam, Kartik

    2014-01-01

    SUMMARY Presynaptic resting Ca2+ influences synaptic vesicle (SV) release probability. Here, we report that a TRPV channel, Inactive (Iav), maintains presynaptic resting [Ca2+] by promoting Ca2+ release from the endoplasmic reticulum in Drosophila motor neurons, and is required for both synapse development and neurotransmission. We find that Iav activates the Ca2+/calmodulin-dependent protein phosphatase, calcineurin, which is essential for presynaptic microtubule stabilization at the neuromuscular junction. Thus, loss of Iav induces destabilization of presynaptic microtubules resulting in diminished synaptic growth. Interestingly, expression of human TRPV1 in Iav-deficient motor neurons rescues these defects. We also show that the absence of Iav causes lower SV release probability and diminished synaptic transmission, whereas Iav overexpression elevates these synaptic parameters. Together, our findings indicate that Iav acts as a key regulator of synaptic development and function by influencing presynaptic resting [Ca2+]. PMID:25451193

  4. Functional contributions of synaptically localized NR2B subunits of the NMDA receptor to synaptic transmission and long-term potentiation in the adult mouse CNS

    PubMed Central

    Miwa, Hideki; Fukaya, Masahiro; Watabe, Ayako M; Watanabe, Masahiko; Manabe, Toshiya

    2008-01-01

    The NMDA-type glutamate receptor is a heteromeric complex composed of the NR1 and at least one of the NR2 subunits. Switching from the NR2B to the NR2A subunit is thought to underlie functional alteration of the NMDA receptor during synaptic maturation, and it is generally believed that it results in preferential localization of NR2A subunits on the synaptic site and that of NR2B subunits on the extracellular site in the mature brain. It has also been proposed that activation of the NR2A and NR2B subunits results in long-term potentiation (LTP) and long-term depression (LTD), respectively. Furthermore, recent reports suggest that synaptic and extrasynaptic receptors may have distinct roles in synaptic plasticity as well as in gene expression associated with neuronal death. Here, we have investigated whether NR2B subunit-containing receptors are present and functional at mature synapses in the lateral nucleus of the amygdala (LA) and the CA1 region of the hippocampus, comparing their properties between the two brain regions. We have found, in contrast to the above hypotheses, that the NR2B subunit significantly contributes to synaptic transmission as well as LTP induction. Furthermore, its contribution is greater in the LA than in the CA1 region, and biophysical properties of NMDA receptors and the NR2B/NR2A ratio are different between the two brain regions. These results indicate that NR2B subunit-containing NMDA receptors accumulate on the synaptic site and are responsible for the unique properties of synaptic function and plasticity in the amygdala. PMID:18372311

  5. Roles of N-Type and Q-Type Ca2+ Channels in Supporting Hippocampal Synaptic Transmission

    NASA Astrophysics Data System (ADS)

    Wheeler, David B.; Randall, Andrew; Tsien, Richard W.

    1994-04-01

    Several types of calcium channels found in the central nervous system are possible participants in triggering neurotransmitter release. Synaptic transmission between hippocampal CA3 and CA1 neurons was mediated by N-type calcium channels, together with calcium channels whose pharmacology differs from that of L- and P-type channels but resembles that of the Q-type channel encoded by the α1A subunit gene. Blockade of either population of channels strongly increased enhancement of synaptic transmission with repetitive stimuli. Even after complete blockade of N-type channels, transmission was strongly modulated by stimulation of neurotransmitter receptors or protein kinase C. These findings suggest a role for α1A subunits in synaptic transmission and support the idea that neurotransmitter release may depend on multiple types of calcium channels under physiological conditions.

  6. NR2B-dependent cyclophilin D translocation suppresses the recovery of synaptic transmission after oxygen-glucose deprivation.

    PubMed

    Zhang, Zhihua; Wang, Yongfu; Yan, Shijun; Du, Fang; Yan, Shirley Shidu

    2015-10-01

    N-methyl d-aspartate receptor (NMDA) subunit 2B (NR2B)-containing NMDA receptors and mitochondrial protein cyclophilin D (CypD) are well characterized in mediating neuronal death after ischemia, respectively. However, whether and how NR2B and CypD work together in mediating synaptic injury after ischemia remains elusive. Using an ex vivo ischemia model of oxygen-glucose deprivation (OGD) in hippocampal slices, we identified a NR2B-dependent mechanism for CypD translocation onto the mitochondrial inner membrane. CypD depletion (CypD null mice) prevented OGD-induced impairment in synaptic transmission recovery. Overexpression of neuronal CypD mice (CypD+) exacerbated OGD-induced loss of synaptic transmission. Inhibition of CypD-dependent mitochondrial permeability transition pore (mPTP) opening by cyclosporine A (CSA) attenuated ischemia-induced synaptic perturbation in CypD+ and non-transgenic (non-Tg) mice. The treatment of antioxidant EUK134 to suppress mitochondrial oxidative stress rescued CypD-mediated synaptic dysfunction following OGD in CypD+ slices. Furthermore, OGD provoked the interaction of CypD with P53, which was enhanced in slices overexpressing CypD but was diminished in CypD-null slices. Inhibition of p53 using a specific inhibitor of p53 (pifithrin-μ) attenuated the CypD/p53 interaction following OGD, along with a restored synaptic transmission in both non-Tg and CypD+ hippocampal slices. Our results indicate that OGD-induced CypD translocation potentiates CypD/P53 interaction in a NR2B dependent manner, promoting oxidative stress and loss of synaptic transmission. We also evaluate a new ex vivo chronic OGD-induced ischemia model for studying the effect of oxidative stress on synaptic damage. PMID:26232180

  7. Synchronous and asynchronous modes of synaptic transmission utilize different calcium sources.

    PubMed

    Wen, Hua; Hubbard, Jeffrey M; Rakela, Benjamin; Linhoff, Michael W; Mandel, Gail; Brehm, Paul

    2013-01-01

    Asynchronous transmission plays a prominent role at certain synapses but lacks the mechanistic insights of its synchronous counterpart. The current view posits that triggering of asynchronous release during repetitive stimulation involves expansion of the same calcium domains underlying synchronous transmission. In this study, live imaging and paired patch clamp recording at the zebrafish neuromuscular synapse reveal contributions by spatially distinct calcium sources. Synchronous release is tied to calcium entry into synaptic boutons via P/Q type calcium channels, whereas asynchronous release is boosted by a propagating intracellular calcium source initiated at off-synaptic locations in the axon and axonal branch points. This secondary calcium source fully accounts for the persistence following termination of the stimulus and sensitivity to slow calcium buffers reported for asynchronous release. The neuromuscular junction and CNS neurons share these features, raising the possibility that secondary calcium sources are common among synapses with prominent asynchronous release. DOI: http://dx.doi.org/10.7554/eLife.01206.001. PMID:24368731

  8. Depression of Serotonin Synaptic Transmission by the Dopamine Precursor L-DOPA.

    PubMed

    Gantz, Stephanie C; Levitt, Erica S; Llamosas, Nerea; Neve, Kim A; Williams, John T

    2015-08-11

    Imbalance between the dopamine and serotonin (5-HT) neurotransmitter systems has been implicated in the comorbidity of Parkinson's disease (PD) and psychiatric disorders. L-DOPA, the leading treatment of PD, facilitates the production and release of dopamine. This study assessed the action of L-DOPA on monoamine synaptic transmission in mouse brain slices. Application of L-DOPA augmented the D2-receptor-mediated inhibitory postsynaptic current (IPSC) in dopamine neurons of the substantia nigra. This augmentation was largely due to dopamine release from 5-HT terminals. Selective optogenetic stimulation of 5-HT terminals evoked dopamine release, producing D2-receptor-mediated IPSCs following treatment with L-DOPA. In the dorsal raphe, L-DOPA produced a long-lasting depression of the 5-HT1A-receptor-mediated IPSC in 5-HT neurons. When D2 receptors were expressed in the dorsal raphe, application of L-DOPA resulted in a D2-receptor-mediated IPSC. Thus, treatment with L-DOPA caused ectopic dopamine release from 5-HT terminals and a loss of 5-HT-mediated synaptic transmission. PMID:26235617

  9. TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice

    PubMed Central

    Liu, Tong; Berta, Temugin; Xu, Zhen-Zhong; Park, Chul-Kyu; Zhang, Ling; Lü, Ning; Liu, Qin; Liu, Yang; Gao, Yong-Jing; Liu, Yen-Chin; Ma, Qiufu; Dong, Xinzhong; Ji, Ru-Rong

    2012-01-01

    Itch, also known as pruritus, is a common, intractable symptom of several skin diseases, such as atopic dermatitis and xerosis. TLRs mediate innate immunity and regulate neuropathic pain, but their roles in pruritus are elusive. Here, we report that scratching behaviors induced by histamine-dependent and -independent pruritogens are markedly reduced in mice lacking the Tlr3 gene. TLR3 is expressed mainly by small-sized primary sensory neurons in dorsal root ganglions (DRGs) that coexpress the itch signaling pathway components transient receptor potential subtype V1 and gastrin-releasing peptide. Notably, we found that treatment with a TLR3 agonist induces inward currents and action potentials in DRG neurons and elicited scratching in WT mice but not Tlr3–/– mice. Furthermore, excitatory synaptic transmission in spinal cord slices and long-term potentiation in the intact spinal cord were impaired in Tlr3–/– mice but not Tlr7–/– mice. Consequently, central sensitization–driven pain hypersensitivity, but not acute pain, was impaired in Tlr3–/– mice. In addition, TLR3 knockdown in DRGs also attenuated pruritus in WT mice. Finally, chronic itch in a dry skin condition was substantially reduced in Tlr3–/– mice. Our findings demonstrate a critical role of TLR3 in regulating sensory neuronal excitability, spinal cord synaptic transmission, and central sensitization. TLR3 may serve as a new target for developing anti-itch treatment. PMID:22565312

  10. GSG1L suppresses AMPA receptor-mediated synaptic transmission and uniquely modulates AMPA receptor kinetics in hippocampal neurons

    PubMed Central

    Gu, Xinglong; Mao, Xia; Lussier, Marc P.; Hutchison, Mary Anne; Zhou, Liang; Hamra, F. Kent; Roche, Katherine W.; Lu, Wei

    2016-01-01

    Regulation of AMPA receptor (AMPAR)-mediated synaptic transmission is a key mechanism for synaptic plasticity. In the brain, AMPARs assemble with a number of auxiliary subunits, including TARPs, CNIHs and CKAMP44, which are important for AMPAR forward trafficking to synapses. Here we report that the membrane protein GSG1L negatively regulates AMPAR-mediated synaptic transmission. Overexpression of GSG1L strongly suppresses, and GSG1L knockout (KO) enhances, AMPAR-mediated synaptic transmission. GSG1L-dependent regulation of AMPAR synaptic transmission relies on the first extracellular loop domain and its carboxyl-terminus. GSG1L also speeds up AMPAR deactivation and desensitization in hippocampal CA1 neurons, in contrast to the effects of TARPs and CNIHs. Furthermore, GSG1L association with AMPARs inhibits CNIH2-induced slowing of the receptors in heterologous cells. Finally, GSG1L KO rats have deficits in LTP and show behavioural abnormalities in object recognition tests. These data demonstrate that GSG1L represents a new class of auxiliary subunit with distinct functional properties for AMPARs. PMID:26932439

  11. M-type potassium channels modulate Schaffer collateral-CA1 glutamatergic synaptic transmission.

    PubMed

    Sun, Jianli; Kapur, Jaideep

    2012-08-15

    Previous studies have suggested that muscarinic receptor activation modulates glutamatergic transmission. M-type potassium channels mediate the effects of muscarinic activation in the hippocampus, and it has been proposed that they modulate glutamatergic synaptic transmission. We tested whether M1 muscarinic receptor activation enhances glutamatergic synaptic transmission via the inhibition of the M-type potassium channels that are present in Schaffer collateral axons and terminals. Miniature excitatory postsynaptic currents (mEPSCs) were recorded from CA1 pyramidal neurons. The M1 receptor agonist, NcN-A-343, increased the frequency of mEPSCs, but did not alter their amplitude. The M-channel blocker XE991 and its analogue linopirdine also increased the frequency of mEPSCs. Flupirtine, which opens M-channels, had the opposite effect. XE991 did not enhance mEPSCs frequency in a calcium-free external medium. Blocking P/Q- and N-type calcium channels abolished the effect of XE991 on mEPSCs. These data suggested that the inhibition of M-channels increases presynaptic calcium-dependent glutamate release in CA1 pyramidal neurons. The effects of these agents on the membrane potentials of presynaptic CA3 pyramidal neurons were studied using current clamp recordings; activation of M1 receptors and blocking M-channels depolarized neurons and increased burst firing. The input resistance of CA3 neurons was increased by the application of McN-A-343 and XE991; these effects were consistent with the closure of M-channels. Muscarinic activation inhibits M-channels in CA3 pyramidal neurons and its efferents – Schaffer collateral, which causes the depolarization, activates voltage-gated calcium channels, and ultimately elevates the intracellular calcium concentration to increase the release of glutamate on CA1 pyramidal neurons. PMID:22674722

  12. A computational model to investigate astrocytic glutamate uptake influence on synaptic transmission and neuronal spiking.

    PubMed

    Allam, Sushmita L; Ghaderi, Viviane S; Bouteiller, Jean-Marie C; Legendre, Arnaud; Ambert, Nicolas; Greget, Renaud; Bischoff, Serge; Baudry, Michel; Berger, Theodore W

    2012-01-01

    Over the past decades, our view of astrocytes has switched from passive support cells to active processing elements in the brain. The current view is that astrocytes shape neuronal communication and also play an important role in many neurodegenerative diseases. Despite the growing awareness of the importance of astrocytes, the exact mechanisms underlying neuron-astrocyte communication and the physiological consequences of astrocytic-neuronal interactions remain largely unclear. In this work, we define a modeling framework that will permit to address unanswered questions regarding the role of astrocytes. Our computational model of a detailed glutamatergic synapse facilitates the analysis of neural system responses to various stimuli and conditions that are otherwise difficult to obtain experimentally, in particular the readouts at the sub-cellular level. In this paper, we extend a detailed glutamatergic synaptic model, to include astrocytic glutamate transporters. We demonstrate how these glial transporters, responsible for the majority of glutamate uptake, modulate synaptic transmission mediated by ionotropic AMPA and NMDA receptors at glutamatergic synapses. Furthermore, we investigate how these local signaling effects at the synaptic level are translated into varying spatio-temporal patterns of neuron firing. Paired pulse stimulation results reveal that the effect of astrocytic glutamate uptake is more apparent when the input inter-spike interval is sufficiently long to allow the receptors to recover from desensitization. These results suggest an important functional role of astrocytes in spike timing dependent processes and demand further investigation of the molecular basis of certain neurological diseases specifically related to alterations in astrocytic glutamate uptake, such as epilepsy. PMID:23060782

  13. Extracellular Ca2+ depletion contributes to fast activity-dependent modulation of synaptic transmission in the brain.

    PubMed

    Rusakov, D A; Fine, A

    2003-01-23

    Synaptic activation is associated with rapid changes in intracellular Ca(2+), while the extracellular Ca(2+) level is generally assumed to be constant. Here, using a novel optical method to measure changes in extracellular Ca(2+) at high spatial and temporal resolution, we find that brief trains of synaptic transmission in hippocampal area CA1 induce transient depletion of extracellular Ca(2+). We show that this depletion, which depends on postsynaptic NMDA receptor activation, decreases the Ca(2+) available to enter individual presynaptic boutons of CA3 pyramidal cells. This in turn reduces the probability of consecutive synaptic releases at CA3-CA1 synapses and therefore contributes to short-term paired-pulse depression of minimal responses. This activity-dependent depletion of extracellular Ca(2+) represents a novel form of fast retrograde synaptic signaling that can modulate glutamatergic information transfer in the brain. PMID:12546823

  14. Extracellular Ca2+ Depletion Contributes to Fast Activity-Dependent Modulation of Synaptic Transmission in the Brain

    PubMed Central

    Rusakov, D.A.; Fine, A.

    2012-01-01

    Summary Synaptic activation is associated with rapid changes in intracellular Ca2+, while the extracellular Ca2+ level is generally assumed to be constant. Here, using a novel optical method to measure changes in extracellular Ca2+ at high spatial and temporal resolution, we find that brief trains of synaptic transmission in hippocampal area CA1 induce transient depletion of extracellular Ca2+. We show that this depletion, which depends on postsynaptic NMDA receptor activation, decreases the Ca2+ available to enter individual presynaptic boutons of CA3 pyramidal cells. This in turn reduces the probability of consecutive synaptic releases at CA3–CA1 synapses and therefore contributes to short-term paired-pulse depression of minimal responses. This activity-dependent depletion of extracellular Ca2+ represents a novel form of fast retrograde synaptic signaling that can modulate glutamatergic information transfer in the brain. PMID:12546823

  15. Melatonin receptor activation increases glutamatergic synaptic transmission in the rat medial lateral habenula.

    PubMed

    Evely, Katherine M; Hudson, Randall L; Dubocovich, Margarita L; Haj-Dahmane, Samir

    2016-05-01

    Melatonin (MLT) is secreted from the pineal gland and mediates its physiological effects through activation of two G protein-coupled receptors, MT1 and MT2 . These receptors are expressed in several brain areas, including the habenular complex, a pair of nuclei that relay information from forebrain to midbrain and modulate a plethora of behaviors, including sleep, mood, and pain. However, so far, the precise mechanisms by which MLT control the function of habenula neurons remain unknown. Using whole cell recordings from male rat brain slices, we examined the effects of MLT on the excitability of medial lateral habenula (MLHb) neurons. We found that MLT had no significant effects on the intrinsic excitability of MLHb neurons, but profoundly increased the amplitude of glutamate-mediated evoked excitatory post-synaptic currents (EPSC). The increase in strength of glutamate synapses onto MLHb neurons was mediated by an increase in glutamate release. The MLT-induced increase in glutamatergic synaptic transmission was blocked by the competitive MT1 /MT2 receptor antagonist luzindole (LUZ). These results unravel a potential cellular mechanism by which MLT receptor activation enhances the excitability of MLHb neurons. The MLT-mediated control of glutamatergic inputs to the MLHb may play a key role in the modulation of various behaviors controlled by the habenular complex. PMID:26799638

  16. Chronic activation of CB2 cannabinoid receptors in the hippocampus increases excitatory synaptic transmission

    PubMed Central

    Kim, Jimok; Li, Yong

    2015-01-01

    The roles of CB1 cannabinoid receptors in regulating neuronal activity have been extensively characterized. Although early studies show that CB1 receptors are present in the nervous system and CB2 cannabinoid receptors are in the immune system, recent evidence indicates that CB2 receptors are also expressed in the brain. Activation or blockade of CB2 receptors in vivo induces neuropsychiatric effects, but the cellular mechanisms of CB2 receptor function are unclear. The aim of this study is to determine how activation of CB2 receptors present in the hippocampus regulates synaptic function. Here, we show that when organotypic cultures of rodent hippocampal slices were treated with a CB2 receptor agonist (JWH133 or GP1a) for 7–10 days, quantal glutamate release became more frequent and spine density was increased via extracellular signal-regulated kinases. Chronic intraperitoneal injection of JWH133 into mice also increased excitatory synaptic transmission. These effects were blocked by a CB2 receptor antagonist (SR144528) or absent from hippocampal slices of CB2 receptor knock-out mice. This study reveals a novel cellular function of CB2 cannabinoid receptors in the hippocampus and provides insights into how cannabinoid receptor subtypes diversify the roles of cannabinoids in the brain. PMID:25504573

  17. Smaller Dendritic Spines, Weaker Synaptic Transmission, but Enhanced Spatial Learning in Mice Lacking Shank1

    PubMed Central

    Hung, Albert Y.; Futai, Kensuke; Sala, Carlo; Valtschanoff, Juli G.; Ryu, Jubin; Woodworth, Mollie A.; Kidd, Fleur L.; Sung, Clifford C.; Miyakawa, Tsuyoshi; Bear, Mark F.; Weinberg, Richard J.; Sheng, Morgan

    2009-01-01

    Experience-dependent changes in the structure of dendritic spines may contribute to learning and memory. Encoded by three genes, the Shank family of postsynaptic scaffold proteins are abundant and enriched in the postsynaptic density (PSD) of central excitatory synapses. When expressed in cultured hippocampal neurons, Shank promotes the maturation and enlargement of dendritic spines. Recently, Shank3 has been genetically implicated in human autism, suggesting an important role for Shank proteins in normal cognitive development. Here, we report the phenotype of Shank1 knock-out mice. Shank1 mutants showed altered PSD protein composition; reduced size of dendritic spines; smaller, thinner PSDs; and weaker basal synaptic transmission. Standard measures of synaptic plasticity were normal. Behaviorally, they had increased anxiety-related behavior and impaired contextual fear memory. Remarkably, Shank1-deficient mice displayed enhanced performance in a spatial learning task; however, their long-term memory retention in this task was impaired. These results affirm the importance of Shank1 for synapse structure and function in vivo, and they highlight a differential role for Shank1 in specific cognitive processes, a feature that may be relevant to human autism spectrum disorders. PMID:18272690

  18. LAMP5 Fine-Tunes GABAergic Synaptic Transmission in Defined Circuits of the Mouse Brain

    PubMed Central

    Tiveron, Marie-Catherine; Beurrier, Corinne; Céni, Claire; Andriambao, Naly; Combes, Alexis; Koehl, Muriel; Maurice, Nicolas; Gatti, Evelina; Abrous, Dhoher Nora; Kerkerian-Le Goff, Lydia; Pierre, Philippe; Cremer, Harold

    2016-01-01

    LAMP5 is member of the LAMP family of membrane proteins. In contrast to the canonical members of this protein family, LAMP1 and LAMP2, which show widespread expression in many tissues, LAMP 5 is brain specific in mice. In C. elegans, the LAMP5 ortholog UNC-46 has been suggested to act a trafficking chaperone, essential for the correct targeting of the nematode vesicular GABA-transporter UNC-47. We show here that in the mouse brain LAMP5 is expressed in subpopulations of GABAergic forebrain neurons in the striato-nigral system and the olfactory bulb. The protein was present at synaptic terminals, overlapping with the mammalian vesicular GABA-transporter VGAT. In LAMP5-deficient mice localization of the transporter was unaffected arguing against a conserved role in VGAT trafficking. Electrophysiological analyses in mutants showed alterations in short term synaptic plasticity suggesting that LAMP5 is involved in controlling the dynamics of evoked GABAergic transmission. At the behavioral level, LAMP5 mutant mice showed decreased anxiety and deficits in olfactory discrimination. Altogether, this work implicates LAMP5 function in GABAergic neurotransmission in defined neuronal subpopulations. PMID:27272053

  19. The neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) alters hippocampal excitatory synaptic transmission by modulation of the GABAergic system.

    PubMed

    Huang, YuYing; Chen, JunFang; Chen, Ying; Zhuang, YingHan; Sun, Mu; Behnisch, Thomas

    2015-01-01

    The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces Parkinson's disease-like symptoms following administration to mice, monkeys, and humans. A common view is that MPTP is metabolized to 1-methyl-4-phenylpyridinium ion (MPP(+)) to induce its neurodegenerative effects on dopaminergic neurons in the substantia nigra (SN). Moreover, the hippocampus contains dopaminergic fibers, which are projecting from the ventral tegmental area, SN and pars compacta and contain the whole machinery required for dopamine synthesis making them sensitive to MPTP and MPP(+). Here, we present data showing that acute bath-application of MPP(+) elicited a dose-dependent facilitation followed by a depression of synaptic transmission of hippocampal Schaffer collaterals-CA1 synapses in mice. The effects of MPP(+) were not mediated by D1/D5- and D2-like receptor activation. Inhibition of the dopamine transporters did not prevent but increased the depression of excitatory post-synaptic field potentials. In the search for a possible mechanism, we observed that MPP(+) reduced the appearance of polyspikes in population spikes recorded in str. pyramidale and increased the frequency of miniature inhibitory post-synaptic currents. The acute effect of MPP(+) on synaptic transmission was attenuated by co-application of a GABAA receptor antagonist. Taking these data together, we suggest that MPP(+) affects hippocampal synaptic transmission by enhancing some aspects of the hippocampal GABAergic system. PMID:26300734

  20. Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission

    PubMed Central

    Accardi, Michael V.; Daniels, Bryan A.; Brown, Patricia M.G.E.; Fritschy, Jean-Marc; Tyagarajan, Shiva K.; Bowie, Derek

    2016-01-01

    Neuronal communication imposes a heavy metabolic burden in maintaining ionic gradients essential for action potential firing and synaptic signaling. Although cellular metabolism is known to regulate excitatory neurotransmission, it is still unclear whether the brain’s energy supply affects inhibitory signaling. Here we show that mitochondrial-derived reactive oxygen species (mROS) regulate the strength of postsynaptic GABAA receptors at inhibitory synapses of cerebellar stellate cells. Inhibition is strengthened through a mechanism that selectively recruits α3-containing GABAA receptors into synapses with no discernible effect on resident α1-containing receptors. Since mROS promotes the emergence of postsynaptic events with unique kinetic properties, we conclude that newly-recruited α3-containing GABAA receptors are activated by neurotransmitter released onto discrete postsynaptic sites. Although traditionally associated with oxidative stress in neurodegenerative disease, our data identifies mROS as a putative homeostatic signaling molecule coupling cellular metabolism to the strength of inhibitory transmission. PMID:24430741

  1. High-frequency electroacupuncture evidently reinforces hippocampal synaptic transmission in Alzheimer's disease rats

    PubMed Central

    Li, Wei; Kong, Li-hong; Wang, Hui; Shen, Feng; Wang, Ya-wen; Zhou, Hua; Sun, Guo-jie

    2016-01-01

    The frequency range of electroacupuncture in treatment of Alzheimer's disease in rats is commonly 2–5 Hz (low frequency) and 50–100 Hz (high frequency). We established a rat model of Alzheimer's disease by injecting β-amyloid 1–42 (Aβ1–42) into the bilateral hippocampal dentate gyrus to verify which frequency may be better suited in treatment. Electroacupuncture at 2 Hz or 50 Hz was used to stimulate Baihui (DU20) and Shenshu (BL23) acupoints. The water maze test and electrophysiological studies demonstrated that spatial memory ability was apparently improved, and the ranges of long-term potentiation and long-term depression were increased in Alzheimer's disease rats after electroacupuncture treatment. Moreover, the effects of electroacupuncture at 50 Hz were better than that at 2 Hz. These findings suggest that high-frequency electroacupuncture may enhance hippocampal synaptic transmission and potentially improve memory disorders in Alzheimer's disease rats. PMID:27335565

  2. A transducible nuclear/nucleolar protein, mLLP, regulates neuronal morphogenesis and synaptic transmission

    PubMed Central

    Yu, Nam-Kyung; Kim, Hyoung F.; Shim, Jaehoon; Kim, Somi; Kim, Dae Won; Kwak, Chuljung; Sim, Su-Eon; Choi, Jun-Hyeok; Ahn, Seohee; Yoo, Juyoun; Choi, Sun-Lim; Jang, Deok-Jin; Lim, Chae-Seok; Lee, Yong-Seok; Kang, Chulhun; Choi, Soo Young; Kaang, Bong-Kiun

    2016-01-01

    Cell-permeable proteins are emerging as unconventional regulators of signal transduction and providing a potential for therapeutic applications. However, only a few of them are identified and studied in detail. We identify a novel cell-permeable protein, mouse LLP homolog (mLLP), and uncover its roles in regulating neural development. We found that mLLP is strongly expressed in developing nervous system and that mLLP knockdown or overexpression during maturation of cultured neurons affected the neuronal growth and synaptic transmission. Interestingly, extracellular addition of mLLP protein enhanced dendritic arborization, demonstrating the non-cell-autonomous effect of mLLP. Moreover, mLLP interacts with CCCTC-binding factor (CTCF) as well as transcriptional machineries and modulates gene expression involved in neuronal growth. Together, these results illustrate the characteristics and roles of previously unknown cell-permeable protein mLLP in modulating neural development. PMID:26961175

  3. Synaptic transmission from rods to rod-dominated bipolar cells in the tiger salamander retina.

    PubMed

    Yang, X L; Wu, S M

    1993-06-11

    Synaptic transmission between photoreceptors and bipolar cells was studied in dark-adapted tiger salamander retinas. Based on the relative light sensitivity, bipolar cells, either depolarizing (DBC) or hyperpolarizing (HBC), fell into two groups: one receives inputs primarily from rods (rod-dominated bipolar cells, DBCR and HBCR) and the other receives inputs primarily from cones (cone-dominated bipolar cells, DBCC and HBCC). The input-output relations of the rod-DBCR and rod-HBCR synapses were determined by plotting the voltage responses of the rod and DBCR (or HBCR) to dim 500-nm light steps, which polarizes only the rods but not the cones. The slope gains of both synapses were the highest near the dark rod voltage (-2.5 for the rod-DBCR synapse and 4.0 for the rod-HBCR synapse), and they (the absolute values) became progressively smaller at more hyperpolarized rod voltages. PMID:8186975

  4. Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission

    NASA Astrophysics Data System (ADS)

    Accardi, Michael V.; Daniels, Bryan A.; Brown, Patricia M. G. E.; Fritschy, Jean-Marc; Tyagarajan, Shiva K.; Bowie, Derek

    2014-01-01

    Neuronal communication imposes a heavy metabolic burden in maintaining ionic gradients essential for action potential firing and synaptic signalling. Although cellular metabolism is known to regulate excitatory neurotransmission, it is still unclear whether the brain’s energy supply affects inhibitory signalling. Here we show that mitochondrial-derived reactive oxygen species (mROS) regulate the strength of postsynaptic GABAA receptors at inhibitory synapses of cerebellar stellate cells. Inhibition is strengthened through a mechanism that selectively recruits α3-containing GABAA receptors into synapses with no discernible effect on resident α1-containing receptors. Since mROS promotes the emergence of postsynaptic events with unique kinetic properties, we conclude that newly recruited α3-containing GABAA receptors are activated by neurotransmitter released onto discrete postsynaptic sites. Although traditionally associated with oxidative stress in neurodegenerative disease, our data identify mROS as a putative homeostatic signalling molecule coupling cellular metabolism to the strength of inhibitory transmission.

  5. A transducible nuclear/nucleolar protein, mLLP, regulates neuronal morphogenesis and synaptic transmission.

    PubMed

    Yu, Nam-Kyung; Kim, Hyoung F; Shim, Jaehoon; Kim, Somi; Kim, Dae Won; Kwak, Chuljung; Sim, Su-Eon; Choi, Jun-Hyeok; Ahn, Seohee; Yoo, Juyoun; Choi, Sun-Lim; Jang, Deok-Jin; Lim, Chae-Seok; Lee, Yong-Seok; Kang, Chulhun; Choi, Soo Young; Kaang, Bong-Kiun

    2016-01-01

    Cell-permeable proteins are emerging as unconventional regulators of signal transduction and providing a potential for therapeutic applications. However, only a few of them are identified and studied in detail. We identify a novel cell-permeable protein, mouse LLP homolog (mLLP), and uncover its roles in regulating neural development. We found that mLLP is strongly expressed in developing nervous system and that mLLP knockdown or overexpression during maturation of cultured neurons affected the neuronal growth and synaptic transmission. Interestingly, extracellular addition of mLLP protein enhanced dendritic arborization, demonstrating the non-cell-autonomous effect of mLLP. Moreover, mLLP interacts with CCCTC-binding factor (CTCF) as well as transcriptional machineries and modulates gene expression involved in neuronal growth. Together, these results illustrate the characteristics and roles of previously unknown cell-permeable protein mLLP in modulating neural development. PMID:26961175

  6. Propagation of Epileptiform Activity Can Be Independent of Synaptic Transmission, Gap Junctions, or Diffusion and Is Consistent with Electrical Field Transmission

    PubMed Central

    Zhang, Mingming; Ladas, Thomas P.; Qiu, Chen; Shivacharan, Rajat S.; Gonzalez-Reyes, Luis E.

    2014-01-01

    The propagation of activity in neural tissue is generally associated with synaptic transmission, but epileptiform activity in the hippocampus can propagate with or without synaptic transmission at a speed of ∼0.1 m/s. This suggests an underlying common nonsynaptic mechanism for propagation. To study this mechanism, we developed a novel unfolded hippocampus preparation, from CD1 mice of either sex, which preserves the transverse and longitudinal connections and recorded activity with a penetrating microelectrode array. Experiments using synaptic transmission and gap junction blockers indicated that longitudinal propagation is independent of chemical or electrical synaptic transmission. Propagation speeds of 0.1 m/s are not compatible with ionic diffusion or pure axonal conduction. The only other means of communication between neurons is through electric fields. Computer simulations revealed that activity can indeed propagate from cell to cell solely through field effects. These results point to an unexpected propagation mechanism for neural activity in the hippocampus involving endogenous field effect transmission. PMID:24453330

  7. New tools for targeted disruption of cholinergic synaptic transmission in Drosophila melanogaster.

    PubMed

    Mejia, Monica; Heghinian, Mari D; Marí, Frank; Godenschwege, Tanja A

    2013-01-01

    Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. The α7 subtype of nAChRs is involved in neurological pathologies such as Parkinson's disease, Alzheimer's disease, addiction, epilepsy and autism spectrum disorders. The Drosophila melanogaster α7 (Dα7) has the closest sequence homology to the vertebrate α7 subunit and it can form homopentameric receptors just as the vertebrate counterpart. The Dα7 subunits are essential for the function of the Giant Fiber circuit, which mediates the escape response of the fly. To further characterize the receptor function, we generated different missense mutations in the Dα7 nAChR's ligand binding domain. We characterized the effects of targeted expression of two UAS-constructs carrying a single mutation, D197A and Y195T, as well as a UAS-construct carrying a triple D77T, L117Q, I196P mutation in a Dα7 null mutant and in a wild type background. Expression of the triple mutation was able to restore the function of the circuit in Dα7 null mutants and had no disruptive effects when expressed in wild type. In contrast, both single mutations severely disrupted the synaptic transmission of Dα7-dependent but not glutamatergic or gap junction dependent synapses in wild type background, and did not or only partially rescued the synaptic defects of the null mutant. These observations are consistent with the formation of hybrid receptors, consisting of D197A or Y195T subunits and wild type Dα7 subunits, in which the binding of acetylcholine or acetylcholine-induced conformational changes of the Dα7 receptor are altered and causes inhibition of cholinergic responses. Thus targeted expression of D197A or Y195T can be used to selectively disrupt synaptic transmission of Dα7-dependent synapses in neuronal circuits. Hence, these constructs can be used as tools to study learning and memory or addiction associated behaviors by allowing the manipulation of neuronal processing in the circuits without

  8. Modulation of GABA-mediated synaptic transmission by endogenous zinc in the immature rat hippocampus in vitro.

    PubMed Central

    Xie, X; Hider, R C; Smart, T G

    1994-01-01

    1. Intracellular recordings from postnatal 2- to 12-day-old (P2-12) rat hippocampal CA3 pyramidal neurones exhibited spontaneous synaptic potentials mediated by GABAA receptors. These potentials can be separated on the basis of amplitude into two classes which are referred to as small and large. 2. The large depolarizing potentials were reversibly inhibited by the Zn2+ chelator 1,2-diethyl-3-hydroxypyridin-4-one (CP94). The small inhibitory postsynaptic potentials. (IPSPs) were apparently unaffected. 3. Stimulation of the mossy fibre pathway evoked composite excitatory postsynaptic potentials (EPSPs) and IPSPs. Threshold stimulus-evoked synaptic potentials were mediated by GABAA receptors and were reversibly blocked by CP94. The responses evoked by suprathreshold stimulation and persisting in the presence of bicuculline or CP94 were partially inhibited by 2-amino-5-phosphonopropionic acid (AP5) and were completely blocked with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). 4. L-Histidine, which preferentially forms complexes with Cu2+ > Zn2+ > Fe2+ > Mn2+, inhibited both naturally occurring spontaneous and evoked GABAA-mediated large synaptic potentials without affecting the neuronal resting membrane properties. Exogenously applied Zn2+ induced large spontaneous synaptic potentials and prolonged the duration of the evoked potentials. These effects were reversibly blocked by histidine. 5. The metal chelating agent diethyldithiocarbamate had little effect on the large amplitude synaptic potentials. 6. The transition metal divalent cations Fe2+ and Mn2+ did not initiate large synaptic potentials in CA3 neurones; however, Cu2+ depolarized the membrane and enhanced both excitatory and inhibitory synaptic transmission, resulting in a transient increase in the frequency of the large amplitude events. In comparison, zinc increased the frequency of the large potentials and also induced such events in neurons (P4-21) where innate potentials were absent. The postsynaptic

  9. TRPV1 receptors augment basal synaptic transmission in CA1 and CA3 pyramidal neurons in epilepsy.

    PubMed

    Saffarzadeh, F; Eslamizade, M J; Mousavi, S M M; Abraki, S B; Hadjighassem, M R; Gorji, A

    2016-02-01

    Temporal lobe epilepsy in human and animals is attributed to alterations in brain function especially hippocampus formation. Changes in synaptic activity might be causally related to the alterations during epileptogenesis. Transient receptor potential vanilloid 1 (TRPV1) as one of the non-selective ion channels has been shown to be involved in synaptic transmission. However, the potential role of TRPV1 receptors in synaptic function in the epileptic brain needs to be elucidated. In the present study, we used quantitative real-time PCR (qRT-PCR), western blotting, and immunohistochemistry to assess hippocampal TRPV1 mRNA expression, protein content, and distribution. Moreover, the effects of pharmacologic activation and inhibition of TRPV1 receptors on the slope of evoked field excitatory postsynaptic potentials (fEPSPs) were analyzed in CA1 and CA3 pyramidal neurons, after 3months of pilocarpine-induced status epilepticus (SE). SE induced an upregulation of TRPV1 mRNA and protein content in the whole hippocampal extract, as well as its distribution in both CA1 and CA3 regions. Activation and inhibition of TRPV1 receptors (via capsaicin 1μM and capsazepine 10μM, respectively) did not influence basal synaptic transmission in CA1 and CA3 regions of control slices, however, capsaicin increased and capsazepine decreased synaptic transmission in both regions in tissues from epileptic animals. Taken together, these findings suggest that a higher expression of TRPV1 in the epileptic condition is accompanied by alterations in basal synaptic transmission. PMID:26621124

  10. DAMGO depresses inhibitory synaptic transmission via different downstream pathways of μ opioid receptors in ventral tegmental area and periaqueductal gray.

    PubMed

    Zhang, W; Yang, H L; Song, J J; Chen, M; Dong, Y; Lai, B; Yu, Y G; Ma, L; Zheng, P

    2015-08-20

    Opioid-induced rewarding and motorstimulant effects are mediated by an increased activity of the ventral tegmental area (VTA) dopamine (DA) neurons. The excitatory mechanism of opioids on VTA-DA neurons has been proposed to be due to the depression of GABAergic synaptic transmission in VTA-DA neurons. However, how opioids depress GABAergic synaptic transmission in VTA-DA neurons remain to be studied. In the present study, we explored the mechanism of the inhibitory effect of [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO) on GABAergic synaptic transmission in VTA-DA neurons using multiple approaches and techniques. Our results showed that (1) DAMGO inhibits GABAergic inputs in VTA-DA neurons at presynaptic sites; (2) effect of DAMGO on GABAergic inputs in VTA-DA neurons is inhibited by potassium channel blocker 4-aminopyridine (4-AP) and Gi protein inhibitor N-ethylmaleimide (NEM); (3) phospholipase A2 (PLA2) does not mediate the effect of DAMGO on GABAergic inputs in VTA-DA neurons, but mediates it in the periaqueductal gray (PAG); (4) multiple downstream signaling molecules of μ receptors do not mediate the effect of DAMGO on GABAergic inputs in VTA-DA neurons. These results suggest that DAMGO depresses inhibitory synaptic transmission via μ receptor-Gi protein-Kv channel pathway in VTA-DA neurons, but via μ receptor-PLA2 pathway in PAG neurons. PMID:26047721

  11. Determinants of Spatial and Temporal Coding by Semicircular Canal Afferents

    PubMed Central

    Highstein, Stephen M.; Rabbitt, Richard D.; Holstein, Gay R.; Boyle, Richard D.

    2010-01-01

    The vestibular semicircular canals are internal sensors that signal the magnitude, direction, and temporal properties of angular head motion. Fluid mechanics within the 3-canal labyrinth code the direction of movement and integrate angular acceleration stimuli over time. Directional coding is accomplished by decomposition of complex angular accelerations into 3 biomechanical components—one component exciting each of the 3 ampullary organs and associated afferent nerve bundles separately. For low-frequency angular motion stimuli, fluid displacement within each canal is proportional to angular acceleration. At higher frequencies, above the lower corner frequency, real-time integration is accomplished by viscous forces arising from the movement of fluid within the slender lumen of each canal. This results in angular velocity sensitive fluid displacements. Reflecting this, a subset of afferent fibers indeed report angular acceleration to the brain for low frequencies of head movement and report angular velocity for higher frequencies. However, a substantial number of afferent fibers also report angular acceleration, or a signal between acceleration and velocity, even at frequencies where the endolymph displacement is known to follow angular head velocity. These non-velocity-sensitive afferent signals cannot be attributed to canal biomechanics alone. The responses of non-velocity-sensitive cells include a mathematical differentiation (first-order or fractional) imparted by hair-cell and/or afferent complexes. This mathematical differentiation from velocity to acceleration cannot be attributed to hair cell ionic currents, but occurs as a result of the dynamics of synaptic transmission between hair cells and their primary afferent fibers. The evidence for this conclusion is reviewed below. PMID:15845995

  12. Plasticity of synaptic connections in sensory-motor pathways of the adult locust flight system.

    PubMed

    Wolf, H; Büschges, A

    1997-09-01

    We investigated possible roles of retrograde signals and competitive interactions in the lesion-induced reorganization of synaptic contacts in the locust CNS. Neuronal plasticity is elicited in the adult flight system by removal of afferents from the tegula, a mechanoreceptor organ at the base of the wing. We severed one hindwing organ and studied the resulting rearrangement of synaptic contacts between flight interneurons and afferent neurons from the remaining three tegulae (2 forewing, 1 hindwing). This was done by electric stimulation of afferents and intracellular recording from interneurons (and occasionally motoneurons). Two to three weeks after unilateral tegula lesion, connections between tegula afferents and flight interneurons were altered in the following way. 1) Axons from the forewing tegula on the operated side had established new synaptic contacts with metathoracic elevator interneurons. In addition, the amplitude of compound excitatory postsynaptic potentials elicited by electric stimulation was increased, indicating that a larger number of afferents connected to any given interneuron. 2) On the side contralateral to the lesion, connectivity between axons from the forewing tegula and elevator interneurons was decreased. 3) The efficacy of the (remaining) hindwing afferents appeared to be increased with regard to both synaptic transmission to interneurons and impact on flight motor pattern. 4) Flight motoneurons, which are normally restricted to the ipsilateral hemiganglion, sprouted across the ganglion midline after unilateral tegula removal and apparently established new synaptic contacts with tegula afferents on that side. The changes on the operated side are interpreted as occupation of synaptic space vacated on the interneurons by the severed hindwing afferents. On the contralateral side, the changes in synaptic contact must be elicited by retrograde signals from bilaterally arborizing flight interneurons, because tegula projections remain

  13. Syncrip/hnRNP Q influences synaptic transmission and regulates BMP signaling at the Drosophila neuromuscular synapse

    PubMed Central

    Halstead, James M.; Lin, Yong Qi; Durraine, Lita; Hamilton, Russell S.; Ball, Graeme; Neely, Greg G.; Bellen, Hugo J.; Davis, Ilan

    2014-01-01

    ABSTRACT Synaptic plasticity involves the modulation of synaptic connections in response to neuronal activity via multiple pathways. One mechanism modulates synaptic transmission by retrograde signals from the post-synapse that influence the probability of vesicle release in the pre-synapse. Despite its importance, very few factors required for the expression of retrograde signals, and proper synaptic transmission, have been identified. Here, we identify the conserved RNA binding protein Syncrip as a new factor that modulates the efficiency of vesicle release from the motoneuron and is required for correct synapse structure. We show that syncrip is required genetically and its protein product is detected only in the muscle and not in the motoneuron itself. This unexpected non-autonomy is at least partly explained by the fact that Syncrip modulates retrograde BMP signals from the muscle back to the motoneuron. We show that Syncrip influences the levels of the Bone Morphogenic Protein ligand Glass Bottom Boat from the post-synapse and regulates the pre-synapse. Our results highlight the RNA-binding protein Syncrip as a novel regulator of synaptic output. Given its known role in regulating translation, we propose that Syncrip is important for maintaining a balance between the strength of presynaptic vesicle release and postsynaptic translation. PMID:25171887

  14. Potentiation of synaptic transmission in Rat anterior cingulate cortex by chronic itch.

    PubMed

    Zhang, Ting-Ting; Shen, Feng-Yan; Ma, Li-Qing; Wen, Wen; Wang, Bin; Peng, Yuan-Zhi; Wang, Zhi-Ru; Zhao, Xuan

    2016-01-01

    Itch and pain share similar mechanisms. It has been well documented that the anterior cingulate cortex (ACC) is important for pain-related perception. ACC has also been approved to be a potential pruritus-associated brain region. However, the mechanism of sensitization in pruriceptive neurons in the ACC is not clear. In current study, a chronic itch model was established by diphenylcyclopropenone (DCP) application. We found that both the frequency and amplitude of miniature excitatory postsynaptic currents in the ACC were enhanced after the formation of chronic itch. The paired-pulse ratio in ACC neurons recorded from the DCP group were smaller than those recorded in control group at the 50-ms interval. We also observe a significant increase in the AMPA/NMDA ratio in the DCP group. Moreover, an increased inward rectification of AMPARs in ACC pyramidal neurons was observed in the DCP group. Interestingly, the calculated ratio of silent synapses was significantly reduced in the DCP group compared with controls. Taken together, we conclude that a potentiation of synaptic transmission in the ACC can be induced by chronic itch, and unsilencing silent synapses, which probably involved recruitment of AMPARS, contributed to the potentiation of postsynaptic transmission. PMID:27472923

  15. Recording long-term potentiation of synaptic transmission by three-dimensional multi-electrode arrays

    PubMed Central

    Kopanitsa, Maksym V; Afinowi, Nurudeen O; Grant, Seth GN

    2006-01-01

    Background Multi-electrode arrays (MEAs) have become popular tools for recording spontaneous and evoked electrical activity of excitable tissues. The majority of previous studies of synaptic transmission in brain slices employed MEAs with planar electrodes that had limited ability to detect signals coming from deeper, healthier layers of the slice. To overcome this limitation, we used three-dimensional (3D) MEAs with tip-shaped electrodes to probe plasticity of field excitatory synaptic potentials (fEPSPs) in the CA1 area of hippocampal slices of 129S5/SvEvBrd and C57BL/6J-TyrC-Brd mice. Results Using 3D MEAs, we were able to record larger fEPSPs compared to signals measured by planar MEAs. Several stimulation protocols were used to induce long-term potentiation (LTP) of synaptic responses in the CA1 area recorded following excitation of Schäffer collateral/commissural fibres. Either two trains of high frequency tetanic stimulation or three trains of theta-burst stimulation caused a persistent, pathway specific enhancement of fEPSPs that remained significantly elevated for at least 60 min. A third LTP induction protocol that comprised 150 pulses delivered at 5 Hz, evoked moderate LTP if excitation strength was increased to 1.5× of the baseline stimulus. In all cases, we observed a clear spatial plasticity gradient with maximum LTP levels detected in proximal apical dendrites of pyramidal neurones. No significant differences in the manifestation of LTP were observed between 129S5/SvEvBrd and C57BL/6J-TyrC-Brd mice with the three protocols used. All forms of plasticity were sensitive to inhibition of N-methyl-D-aspartate (NMDA) receptors. Conclusion Principal features of LTP (magnitude, pathway specificity, NMDA receptor dependence) recorded in the hippocampal slices using MEAs were very similar to those seen in conventional glass electrode experiments. Advantages of using MEAs are the ability to record from different regions of the slice and the ease of conducting

  16. De Novo Mutations in Synaptic Transmission Genes Including DNM1 Cause Epileptic Encephalopathies

    PubMed Central

    Appenzeller, Silke; Balling, Rudi; Barisic, Nina; Baulac, Stéphanie; Caglayan, Hande; Craiu, Dana; De Jonghe, Peter; Depienne, Christel; Dimova, Petia; Djémié, Tania; Gormley, Padhraig; Guerrini, Renzo; Helbig, Ingo; Hjalgrim, Helle; Hoffman-Zacharska, Dorota; Jähn, Johanna; Klein, Karl Martin; Koeleman, Bobby; Komarek, Vladimir; Krause, Roland; Kuhlenbäumer, Gregor; Leguern, Eric; Lehesjoki, Anna-Elina; Lemke, Johannes R.; Lerche, Holger; Linnankivi, Tarja; Marini, Carla; May, Patrick; Møller, Rikke S.; Muhle, Hiltrud; Pal, Deb; Palotie, Aarno; Pendziwiat, Manuela; Robbiano, Angela; Roelens, Filip; Rosenow, Felix; Selmer, Kaja; Serratosa, Jose M.; Sisodiya, Sanjay; Stephani, Ulrich; Sterbova, Katalin; Striano, Pasquale; Suls, Arvid; Talvik, Tiina; von Spiczak, Sarah; Weber, Yvonne; Weckhuysen, Sarah; Zara, Federico; Abou-Khalil, Bassel; Alldredge, Brian K.; Andermann, Eva; Andermann, Frederick; Amron, Dina; Bautista, Jocelyn F.; Berkovic, Samuel F.; Bluvstein, Judith; Boro, Alex; Cascino, Gregory; Consalvo, Damian; Crumrine, Patricia; Devinsky, Orrin; Dlugos, Dennis; Epstein, Michael P.; Fiol, Miguel; Fountain, Nathan B.; French, Jacqueline; Friedman, Daniel; Geller, Eric B.; Glauser, Tracy; Glynn, Simon; Haas, Kevin; Haut, Sheryl R.; Hayward, Jean; Helmers, Sandra L.; Joshi, Sucheta; Kanner, Andres; Kirsch, Heidi E.; Knowlton, Robert C.; Kossoff, Eric H.; Kuperman, Rachel; Kuzniecky, Ruben; Lowenstein, Daniel H.; McGuire, Shannon M.; Motika, Paul V.; Novotny, Edward J.; Ottman, Ruth; Paolicchi, Juliann M.; Parent, Jack; Park, Kristen; Poduri, Annapurna; Sadleir, Lynette; Scheffer, Ingrid E.; Shellhaas, Renée A.; Sherr, Elliott; Shih, Jerry J.; Singh, Rani; Sirven, Joseph; Smith, Michael C.; Sullivan, Joe; Thio, Liu Lin; Venkat, Anu; Vining, Eileen P.G.; Von Allmen, Gretchen K.; Weisenberg, Judith L.; Widdess-Walsh, Peter; Winawer, Melodie R.; Allen, Andrew S.; Berkovic, Samuel F.; Cossette, Patrick; Delanty, Norman; Dlugos, Dennis; Eichler, Evan E.; Epstein, Michael P.; Glauser, Tracy; Goldstein, David B.; Han, Yujun; Heinzen, Erin L.; Johnson, Michael R.; Kuzniecky, Ruben; Lowenstein, Daniel H.; Marson, Anthony G.; Mefford, Heather C.; Nieh, Sahar Esmaeeli; O’Brien, Terence J.; Ottman, Ruth; Petrou, Stephen; Petrovski, Slavé; Poduri, Annapurna; Ruzzo, Elizabeth K.; Scheffer, Ingrid E.; Sherr, Elliott

    2014-01-01

    Emerging evidence indicates that epileptic encephalopathies are genetically highly heterogeneous, underscoring the need for large cohorts of well-characterized individuals to further define the genetic landscape. Through a collaboration between two consortia (EuroEPINOMICS and Epi4K/EPGP), we analyzed exome-sequencing data of 356 trios with the “classical” epileptic encephalopathies, infantile spasms and Lennox Gastaut syndrome, including 264 trios previously analyzed by the Epi4K/EPGP consortium. In this expanded cohort, we find 429 de novo mutations, including de novo mutations in DNM1 in five individuals and de novo mutations in GABBR2, FASN, and RYR3 in two individuals each. Unlike previous studies, this cohort is sufficiently large to show a significant excess of de novo mutations in epileptic encephalopathy probands compared to the general population using a likelihood analysis (p = 8.2 × 10−4), supporting a prominent role for de novo mutations in epileptic encephalopathies. We bring statistical evidence that mutations in DNM1 cause epileptic encephalopathy, find suggestive evidence for a role of three additional genes, and show that at least 12% of analyzed individuals have an identifiable causal de novo mutation. Strikingly, 75% of mutations in these probands are predicted to disrupt a protein involved in regulating synaptic transmission, and there is a significant enrichment of de novo mutations in genes in this pathway in the entire cohort as well. These findings emphasize an important role for synaptic dysregulation in epileptic encephalopathies, above and beyond that caused by ion channel dysfunction. PMID:25262651

  17. Synaptic transmission changes in fear memory circuits underlie key features of an animal model of schizophrenia.

    PubMed

    Pollard, Marie; Varin, Christophe; Hrupka, Brian; Pemberton, Darrel J; Steckler, Thomas; Shaban, Hamdy

    2012-02-01

    Non-competitive antagonists of the N-methyl-d-aspartate receptor (NMDA) such as phencyclidine (PCP) elicit schizophrenia-like symptoms in healthy individuals. Similarly, PCP dosing in rats produces typical behavioral phenotypes that mimic human schizophrenia symptoms. Although schizophrenic behavioral phenotypes of the PCP model have been extensively studied, the underlying alterations of intrinsic neuronal properties and synaptic transmission in relevant limbic brain microcircuits remain elusive. Acute brain slice electrophysiology and immunostaining of inhibitory neurons were used to identify neuronal circuit alterations of the amygdala and hippocampus associated with changes in extinction of fear learning in rats following PCP treatment. Subchronic PCP application led to impaired long-term potentiation (LTP) and marked increases in the ratio of NMDA to 2-amino-3(5-methyl-3-oxo-1,2-oxazol-4-yl)propionic acid (AMPA) receptor-mediated currents at lateral amygdala (LA) principal neurons without alterations in parvalbumin (PV) as well as non-PV, glutamic acid decarboxylase 67 (GAD 67) immunopositive neurons. In addition, LTP was impaired at the Schaffer collateral to CA1 hippocampal pathway coincident with a reduction in colocalized PV and GAD67 immunopositive neurons in the CA3 hippocampal area. These effects occurred without changes in spontaneous events or intrinsic membrane properties of principal cells in the LA. The impairment of LTP at both amygdalar and hippocampal microcircuits, which play a key role in processing relevant survival information such as fear and extinction memory concurred with a disruption of extinction learning of fear conditioned responses. Our results show that subchronic PCP administration in rats impairs synaptic functioning in the amygdala and hippocampus as well as processing of fear-related memories. PMID:22085880

  18. Vibrodissociation of Neurons from Rodent Brain Slices to Study Synaptic Transmission and Image Presynaptic Terminals

    PubMed Central

    Jun, Sang Beom; Cuzon Carlson, Verginia; Ikeda, Stephen; Lovinger, David

    2011-01-01

    Mechanical dissociation of neurons from the central nervous system has the advantage that presynaptic boutons remain attached to the isolated neuron of interest. This allows for examination of synaptic transmission under conditions where the extracellular and postsynaptic intracellular environments can be well controlled. A vibration-based technique without the use of proteases, known as vibrodissociation, is the most popular technique for mechanical isolation. A micropipette, with the tip fire-polished to the shape of a small ball, is placed into a brain slice made from a P1-P21 rodent. The micropipette is vibrated parallel to the slice surface and lowered through the slice thickness resulting in the liberation of isolated neurons. The isolated neurons are ready for study within a few minutes of vibrodissociation. This technique has advantages over the use of primary neuronal cultures, brain slices and enzymatically isolated neurons including: rapid production of viable, relatively mature neurons suitable for electrophysiological and imaging studies; superior control of the extracellular environment free from the influence of neighboring cells; suitability for well-controlled pharmacological experiments using rapid drug application and total cell superfusion; and improved space-clamp in whole-cell recordings relative to neurons in slice or cell culture preparations. This preparation can be used to examine synaptic physiology, pharmacology, modulation and plasticity. Real-time imaging of both pre- and postsynaptic elements in the living cells and boutons is also possible using vibrodissociated neurons. Characterization of the molecular constituents of pre- and postsynaptic elements can also be achieved with immunological and imaging-based approaches. PMID:21654624

  19. Different forms of decision-making involve changes in the synaptic strength of the thalamic, hippocampal, and amygdalar afferents to the medial prefrontal cortex

    PubMed Central

    López-Ramos, Juan Carlos; Guerra-Narbona, Rafael; Delgado-García, José M.

    2015-01-01

    Decision-making and other cognitive processes are assumed to take place in the prefrontal cortex. In particular, the medial prefrontal cortex (mPFC) is identified in rodents by its dense connectivity with the mediodorsal (MD) thalamus, and because of its inputs from other sites, such as hippocampus and amygdala (Amyg). The aim of this study was to find a putative relationship between the behavior of mice during the performance of decision-making tasks that involve penalties as a consequence of induced actions, and the strength of field postsynaptic potentials (fPSPs) evoked in the prefrontal cortex from its thalamic, hippocampal, and amygdalar afferents. Mice were chronically implanted with stimulating electrodes in the MD thalamus, the hippocampal CA1 area, or the basolateral amygdala (BLA), and with recording electrodes in the prelimbic/infralimbic area of the prefrontal cortex. Additional stimulating electrodes aimed at evoking negative reinforcements were implanted on the trigeminal nerve. FPSPs evoked at the mPFC from the three selected projecting areas during the food/shock decision-making task decreased in amplitude with shock intensity and animals’ avoidance of the reward. FPSPs collected during the operant task also decreased in amplitude (but that evoked by amygdalar stimulation) when lever presses were associated with a trigeminal shock. Results showed a general decrease in the strength of these potentials when animals inhibited their natural or learned appetitive behaviors, suggesting an inhibition of the prefrontal cortex in these conflicting situations. PMID:25688195

  20. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells.

    PubMed

    Maroteaux, Matthieu; Liu, Siqiong June

    2016-01-01

    The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current-voltage (I-V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I-V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I-V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I-V relationship of EPSCs at GluA2-lacking AMPAR synapses. PMID:27280156

  1. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells123

    PubMed Central

    2016-01-01

    Abstract The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current–voltage (I–V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I–V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I–V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I–V relationship of EPSCs at GluA2-lacking AMPAR synapses. PMID:27280156

  2. Familial hemiplegic migraine type-1 mutated cav2.1 calcium channels alter inhibitory and excitatory synaptic transmission in the lateral superior olive of mice.

    PubMed

    Inchauspe, Carlota González; Pilati, Nadia; Di Guilmi, Mariano N; Urbano, Francisco J; Ferrari, Michel D; van den Maagdenberg, Arn M J M; Forsythe, Ian D; Uchitel, Osvaldo D

    2015-01-01

    CaV2.1 Ca(2+) channels play a key role in triggering neurotransmitter release and mediating synaptic transmission. Familial hemiplegic migraine type-1 (FHM-1) is caused by missense mutations in the CACNA1A gene that encodes the α1A pore-forming subunit of CaV2.1 Ca(2+) channels. We used knock-in (KI) transgenic mice harbouring the pathogenic FHM-1 mutation R192Q to study inhibitory and excitatory neurotransmission in the principle neurons of the lateral superior olive (LSO) in the auditory brainstem. We tested if the R192Q FHM-1 mutation differentially affects excitatory and inhibitory synaptic transmission, disturbing the normal balance between excitation and inhibition in this nucleus. Whole cell patch-clamp was used to measure neurotransmitter elicited excitatory (EPSCs) and inhibitory (IPSCs) postsynaptic currents in wild-type (WT) and R192Q KI mice. Our results showed that the FHM-1 mutation in CaV2.1 channels has multiple effects. Evoked EPSC amplitudes were smaller whereas evoked and miniature IPSC amplitudes were larger in R192Q KI compared to WT mice. In addition, in R192Q KI mice, the release probability was enhanced compared to WT, at both inhibitory (0.53 ± 0.02 vs. 0.44 ± 0.01, P = 2.10(-5), Student's t-test) and excitatory synapses (0.60 ± 0.03 vs. 0.45 ± 0.02, P = 4 10(-6), Student's t-test). Vesicle pool size was diminished in R192Q KI mice compared to WT mice (68 ± 6 vs 91 ± 7, P = 0.008, inhibitory; 104 ± 13 vs 335 ± 30, P = 10(-6), excitatory, Student's t-test). R192Q KI mice present enhanced short-term plasticity. Repetitive stimulation of the afferent axons caused short-term depression (STD) of E/IPSCs that recovered significantly faster in R192Q KI mice compared to WT. This supports the hypothesis of a gain-of-function of the CaV2.1 channels in R192Q KI mice, which alters the balance of excitatory/inhibitory inputs and could also have implications in the altered cortical excitability responsible for FHM

  3. The C(2)B Ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo.

    PubMed

    Mackler, J M; Drummond, J A; Loewen, C A; Robinson, I M; Reist, N E

    2002-07-18

    Synaptotagmin is a synaptic vesicle protein that is postulated to be the Ca(2+) sensor for fast, evoked neurotransmitter release. Deleting the gene for synaptotagmin (syt(null)) strongly suppresses synaptic transmission in every species examined, showing that synaptotagmin is central in the synaptic vesicle cycle. The cytoplasmic region of synaptotagmin contains two C(2) domains, C(2)A and C(2)B. Five, highly conserved, acidic residues in both the C(2)A and C(2)B domains of synaptotagmin coordinate the binding of Ca(2+) ions, and biochemical studies have characterized several in vitro Ca(2+)-dependent interactions between synaptotagmin and other nerve terminal molecules. But there has been no direct evidence that any of the Ca(2+)-binding sites within synaptotagmin are required in vivo. Here we show that mutating two of the Ca(2+)-binding aspartate residues in the C(2)B domain (D(416,418)N in Drosophila) decreased evoked transmitter release by >95%, and decreased the apparent Ca(2+) affinity of evoked transmitter release. These studies show that the Ca(2+)-binding motif of the C(2)B domain of synaptotagmin is essential for synaptic transmission. PMID:12110842

  4. Structural elements that underlie Doc2β function during asynchronous synaptic transmission

    PubMed Central

    Xue, Renhao; Gaffaney, Jon D.; Chapman, Edwin R.

    2015-01-01

    Double C2-like domain-containing proteins alpha and beta (Doc2α and Doc2β) are tandem C2-domain proteins proposed to function as Ca2+ sensors for asynchronous neurotransmitter release. Here, we systematically analyze each of the negatively charged residues that mediate binding of Ca2+ to the β isoform. The Ca2+ ligands in the C2A domain were dispensable for Ca2+-dependent translocation to the plasma membrane, with one exception: neutralization of D220 resulted in constitutive translocation. In contrast, three of the five Ca2+ ligands in the C2B domain are required for translocation. Importantly, translocation was correlated with the ability of the mutants to enhance asynchronous release when overexpressed in neurons. Finally, replacement of specific Ca2+/lipid-binding loops of synaptotagmin 1, a Ca2+ sensor for synchronous release, with corresponding loops from Doc2β, resulted in chimeras that yielded slower kinetics in vitro and slower excitatory postsynaptic current decays in neurons. Together, these data reveal the key determinants of Doc2β that underlie its function during the slow phase of synaptic transmission. PMID:26195798

  5. The quantal component of synaptic transmission from sensory hair cells to the vestibular calyx.

    PubMed

    Highstein, Stephen M; Mann, Mary Anne; Holstein, Gay R; Rabbitt, Richard D

    2015-06-01

    Spontaneous and stimulus-evoked excitatory postsynaptic currents (EPSCs) were recorded in calyx nerve terminals from the turtle vestibular lagena to quantify key attributes of quantal transmission at this synapse. On average, EPSC events had a magnitude of ∼ 42 pA, a rise time constant of τ(0) ∼ 229 μs, decayed to baseline with a time constant of τ(R) ∼ 690 μs, and carried ∼ 46 fC of charge. Individual EPSCs varied in magnitude and decay time constant. Variability in the EPSC decay time constant was hair cell dependent and due in part to a slow protraction of the EPSC in some cases. Variability in EPSC size was well described by an integer summation of unitary quanta, with each quanta of glutamate gating a unitary postsynaptic current of ∼ 23 pA. The unitary charge was ∼ 26 fC for EPSCs with a simple exponential decay and increased to ∼ 48 fC for EPSCs exhibiting a slow protraction. The EPSC magnitude and the number of simultaneous unitary quanta within each event increased with presynaptic stimulus intensity. During tonic hair cell depolarization, both the EPSC magnitude and event rate exhibited adaptive run down over time. Present data from a reptilian calyx are remarkably similar to noncalyceal vestibular synaptic terminals in diverse species, indicating that the skewed EPSC size distribution and multiquantal release might be an ancestral property of inner ear ribbon synapses. PMID:25878150

  6. Systemic Hypoxia and the Depression of Synaptic Transmission in Rat Hippocampus after Carotid Artery Occlusion

    PubMed Central

    Fowler, J C; Gervitz, L M; Hamilton, M E; Walker, J A

    2003-01-01

    The relationship between step reductions in inspired oxygen and the amplitude of evoked field excitatory postsynaptic potentials (fEPSPs) recorded from hippocampal CA1 neurons was examined in anaesthetized rats with a unilateral common carotid artery occlusion. The amplitudes of fEPSPs recorded from the hippocampus ipsilateral to the occlusion were significantly more depressed with hypoxia than were the fEPSPs recorded from the contralateral hippocampus. The adenosine A1-selective antagonist, 8-cyclopentyl-1,3-dimethylxanthine (8-CPT), blunted the hypoxic depression of the fEPSP. Tissue partial pressure of oxygen (Ptiss,O2) was measured in the ipsilateral and contralateral hippocampus using glass Clark-style microelectrodes. Ptiss,O2 fell to similar levels as a function of inspired oxygen in the ipsilateral and contralateral hippocampus, and in the ipsilateral hippocampus after administration of 8-CPT. Hippocampal blood flow (HBF) was measured using laser Doppler flowmetry. A decline in HBF was associated with systemic hypoxia in both hippocampi. HBF, as a function of inspired oxygen, fell significantly more in the ipsilateral than in the contralateral hippocampus. We conclude that endogenous adenosine acting at the neuronal A1 receptor plays a major role in the depression of synaptic transmission during hypoxic ischaemia. The greater susceptibility of the fEPSP in the ipsilateral hippocampus to systemic hypoxia cannot be explained entirely by differences in Ptiss,O2 or HBF between the two hemispheres. PMID:12807994

  7. Structural elements that underlie Doc2β function during asynchronous synaptic transmission.

    PubMed

    Xue, Renhao; Gaffaney, Jon D; Chapman, Edwin R

    2015-08-01

    Double C2-like domain-containing proteins alpha and beta (Doc2α and Doc2β) are tandem C2-domain proteins proposed to function as Ca(2+) sensors for asynchronous neurotransmitter release. Here, we systematically analyze each of the negatively charged residues that mediate binding of Ca(2+) to the β isoform. The Ca(2+) ligands in the C2A domain were dispensable for Ca(2+)-dependent translocation to the plasma membrane, with one exception: neutralization of D220 resulted in constitutive translocation. In contrast, three of the five Ca(2+) ligands in the C2B domain are required for translocation. Importantly, translocation was correlated with the ability of the mutants to enhance asynchronous release when overexpressed in neurons. Finally, replacement of specific Ca(2+)/lipid-binding loops of synaptotagmin 1, a Ca(2+) sensor for synchronous release, with corresponding loops from Doc2β, resulted in chimeras that yielded slower kinetics in vitro and slower excitatory postsynaptic current decays in neurons. Together, these data reveal the key determinants of Doc2β that underlie its function during the slow phase of synaptic transmission. PMID:26195798

  8. Raised Intracellular Calcium Contributes to Ischemia-Induced Depression of Evoked Synaptic Transmission

    PubMed Central

    Jalini, Shirin; Ye, Hui; Tonkikh, Alexander A.; Charlton, Milton P.; Carlen, Peter L.

    2016-01-01

    Oxygen-glucose deprivation (OGD) leads to depression of evoked synaptic transmission, for which the mechanisms remain unclear. We hypothesized that increased presynaptic [Ca2+]i during transient OGD contributes to the depression of evoked field excitatory postsynaptic potentials (fEPSPs). Additionally, we hypothesized that increased buffering of intracellular calcium would shorten electrophysiological recovery after transient ischemia. Mouse hippocampal slices were exposed to 2 to 8 min of OGD. fEPSPs evoked by Schaffer collateral stimulation were recorded in the stratum radiatum, and whole cell current or voltage clamp recordings were performed in CA1 neurons. Transient ischemia led to increased presynaptic [Ca2+]i, (shown by calcium imaging), increased spontaneous miniature EPSP/Cs, and depressed evoked fEPSPs, partially mediated by adenosine. Buffering of intracellular Ca2+ during OGD by membrane-permeant chelators (BAPTA-AM or EGTA-AM) partially prevented fEPSP depression and promoted faster electrophysiological recovery when the OGD challenge was stopped. The blocker of BK channels, charybdotoxin (ChTX), also prevented fEPSP depression, but did not accelerate post-ischemic recovery. These results suggest that OGD leads to elevated presynaptic [Ca2+]i, which reduces evoked transmitter release; this effect can be reversed by increased intracellular Ca2+ buffering which also speeds recovery. PMID:26934214

  9. The quantal component of synaptic transmission from sensory hair cells to the vestibular calyx

    PubMed Central

    Highstein, Stephen M.; Mann, Mary Anne; Holstein, Gay R.

    2015-01-01

    Spontaneous and stimulus-evoked excitatory postsynaptic currents (EPSCs) were recorded in calyx nerve terminals from the turtle vestibular lagena to quantify key attributes of quantal transmission at this synapse. On average, EPSC events had a magnitude of ∼42 pA, a rise time constant of τ0 ∼229 μs, decayed to baseline with a time constant of τR ∼690 μs, and carried ∼46 fC of charge. Individual EPSCs varied in magnitude and decay time constant. Variability in the EPSC decay time constant was hair cell dependent and due in part to a slow protraction of the EPSC in some cases. Variability in EPSC size was well described by an integer summation of unitary quanta, with each quanta of glutamate gating a unitary postsynaptic current of ∼23 pA. The unitary charge was ∼26 fC for EPSCs with a simple exponential decay and increased to ∼48 fC for EPSCs exhibiting a slow protraction. The EPSC magnitude and the number of simultaneous unitary quanta within each event increased with presynaptic stimulus intensity. During tonic hair cell depolarization, both the EPSC magnitude and event rate exhibited adaptive run down over time. Present data from a reptilian calyx are remarkably similar to noncalyceal vestibular synaptic terminals in diverse species, indicating that the skewed EPSC size distribution and multiquantal release might be an ancestral property of inner ear ribbon synapses. PMID:25878150

  10. Acute lipopolysaccharide exposure facilitates epileptiform activity via enhanced excitatory synaptic transmission and neuronal excitability in vitro

    PubMed Central

    Gao, Fei; Liu, Zhiqiang; Ren, Wei; Jiang, Wen

    2014-01-01

    Growing evidence indicates brain inflammation has been involved in the genesis of seizures. However, the direct effect of acute inflammation on neuronal circuits is not well known. Lipopolysaccharide (LPS) has been used extensively to stimulate brain inflammatory responses both in vivo and in vitro. Here, we observed the contribution of inflammation induced by 10 μg/mL LPS to the excitability of neuronal circuits in acute hippocampal slices. When slices were incubated with LPS for 30 minutes, significant increased concentration of tumor necrosis factor α and interleukin 1β were detected by enzyme-linked immunosorbent assay. In electrophysiological recordings, we found that frequency of epileptiform discharges and spikes per burst increased 30 minutes after LPS application. LPS enhanced evoked excitatory postsynaptic currents but did not modify evoked inhibitory postsynaptic currents. In addition, exposure to LPS enhanced the excitability of CA1 pyramidal neurons, as demonstrated by a decrease in rheobase and an increase in action potential frequency elicited by depolarizing current injection. Our observations suggest that acute inflammation induced by LPS facilitates epileptiform activity in vitro and that enhancement of excitatory synaptic transmission and neuronal excitability may contribute to this facilitation. These results may provide new clues for treating seizures associated with brain inflammatory disease. PMID:25170268

  11. Regulation of Synaptic Transmission at the Caenorhabditis elegans M4 Neuromuscular Junction by an Antagonistic Relationship Between Two Calcium Channels

    PubMed Central

    Steciuk, Mark; Cheong, Mi Cheong; Waite, Christopher; You, Young-Jai; Avery, Leon

    2014-01-01

    In wild-type Caenorhabditis elegans, the synapse from motor neuron M4 to pharyngeal terminal bulb (TB) muscles is silent, and the muscles are instead excited by gap junction connections from adjacent muscles. An eat-5 innexin mutant lacking this electrical connection has few TB contractions and is unable to grow well on certain foods. We showed previously that this defect can be overcome by activation of the M4 → TB synapse. To identify genes that negatively regulate synaptic transmission, we isolated new suppressors of eat-5. To our surprise, these suppressors included null mutations in NPQR-type calcium channel subunit genes unc-2 and unc-36. Our results are consistent with the hypothesis that Ca2+ entry through the NPQR-type channel inhibits synaptic transmission by activating the calcium-activated K+ channel SLO-1, thus antagonizing the EGL-19 L-type calcium channel. PMID:25378475

  12. Cross-synaptic synchrony and transmission of signal and noise across the mouse retina.

    PubMed

    Grimes, William N; Hoon, Mrinalini; Briggman, Kevin L; Wong, Rachel O; Rieke, Fred

    2014-01-01

    Cross-synaptic synchrony--correlations in transmitter release across output synapses of a single neuron--is a key determinant of how signal and noise traverse neural circuits. The anatomical connectivity between rod bipolar and A17 amacrine cells in the mammalian retina, specifically that neighboring A17s often receive input from many of the same rod bipolar cells, provides a rare technical opportunity to measure cross-synaptic synchrony under physiological conditions. This approach reveals that synchronization of rod bipolar cell synapses is near perfect in the dark and decreases with increasing light level. Strong synaptic synchronization in the dark minimizes intrinsic synaptic noise and allows rod bipolar cells to faithfully transmit upstream signal and noise to downstream neurons. Desynchronization in steady light lowers the sensitivity of the rod bipolar output to upstream voltage fluctuations. This work reveals how cross-synaptic synchrony shapes retinal responses to physiological light inputs and, more generally, signaling in complex neural networks. PMID:25180102

  13. The Role of cGMP on Adenosine A1 Receptor-mediated Inhibition of Synaptic Transmission at the Hippocampus

    PubMed Central

    Pinto, Isa; Serpa, André; Sebastião, Ana M.; Cascalheira, José F.

    2016-01-01

    Both adenosine A1 receptor and cGMP inhibit synaptic transmission at the hippocampus and recently it was found that A1 receptor increased cGMP levels in hippocampus, but the role of cGMP on A1 receptor-mediated inhibition of synaptic transmission remains to be established. In the present work we investigated if blocking the NOS/sGC/cGMP/PKG pathway using nitric oxide synthase (NOS), protein kinase G (PKG), and soluble guanylyl cyclase (sGC) inhibitors modify the A1 receptor effect on synaptic transmission. Neurotransmission was evaluated by measuring the slope of field excitatory postsynaptic potentials (fEPSPs) evoked by electrical stimulation at hippocampal slices. N6-cyclopentyladenosine (CPA, 15 nM), a selective A1 receptor agonist, reversibly decreased the fEPSPs by 54 ± 5%. Incubation of the slices with an inhibitor of NOS (L-NAME, 200 μM) decreased the CPA effect on fEPSPs by 57 ± 9% in female rats. In males, ODQ (10 μM), an sGC inhibitor, decreased the CPA inhibitory effect on fEPSPs by 23 ± 6%, but only when adenosine deaminase (ADA,1 U/ml) was present; similar results were found in females, where ODQ decreased CPA-induced inhibition of fEPSP slope by 23 ± 7%. In male rats, the presence of the PKG inhibitor (KT5823, 1 nM) decreased the CPA effect by 45.0 ± 9%; similar results were obtained in females, where KT5823 caused a 32 ± 9% decrease on the CPA effect. In conclusion, the results suggest that the inhibitory action of adenosine A1 receptors on synaptic transmission at hippocampus is, in part, mediated by the NOS/sGC/cGMP/PKG pathway. PMID:27148059

  14. GSK-3β inhibitors reverse cocaine-induced synaptic transmission dysfunction in the nucleus accumbens.

    PubMed

    Zhao, Rui; Chen, Jiaojiao; Ren, Zhaoxiang; Shen, Hui; Zhen, Xuechu

    2016-11-01

    Nucleus accumbens receives glutamatergic projection from the prefrontal cortex (PFC) and dopaminergic input from the Ventral tegmental area (VTA). Recent studies have suggested a critical role for serine/threonine kinase glycogen synthase kinase 3β (GSK3β) in cocaine-induced hyperactivity; however, the effect of GSK3β on the modulation of glutamatergic and dopaminergic afferents is unclear. In this study, we found that the GSK3 inhibitors, LiCl (100 mg/kg, i.p.) or SB216763 (2.5 mg/kg, i.p.), blocked the cocaine-induced hyperlocomotor activity in rats. By employing single-unit recordings in vivo, we found that pretreatment with either SB216763 or LiCl for 15 min reversed the cocaine-inhibited firing frequency of medium spiny neuron (MSN) in the nucleus accumbens (NAc). Preperfusion of SB216763 (5 μM) ameliorated the inhibitory effect of cocaine on both the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) (up to 99 ± 6.8% inhibition) and N-methyl-D-aspartic acid receptor (NMDAR)-mediate EPSC (up to 73 ± 9.7% inhibition) in the NAc in brain slices. The effect of cocaine on AMPA and NMDA receptor-mediate excitatory postsynaptic current (EPSC) were mimicked by the D1 -like receptor agonist SKF 38393 and blocked by the D1 -like receptor antagonist SCH 23390, whereas D2 -like receptor agonist or antagonist failed to mimic or to block the action of cocaine. Preperfusion of SB216763 for 5 min also ameliorated the inhibitory effect of SKF38393 on both AMPA and NMDA receptor-mediated components of EPSC, indicate the effect of SB216763 on cocaine was via the D1 -like receptor. Moreover, cocaine inhibited the presynaptic release of glutamate in the NAc, and SB216763 reversed this effect. In conclusion, D1 receptor-GSK3β pathway, which mediates glutamatergic transmission in the NAc core through a presynaptic mechanism, plays an important role in acute cocaine-induced hyperlocomotion. PMID:27377051

  15. ANKS1B Gene Product AIDA-1 Controls Hippocampal Synaptic Transmission by Regulating GluN2B Subunit Localization

    PubMed Central

    Tindi, Jaafar O.; Chávez, Andrés E.; Cvejic, Svetlana; Calvo-Ochoa, Erika; Castillo, Pablo E.

    2015-01-01

    NMDA receptors (NMDARs) are key mediators of glutamatergic transmission and synaptic plasticity, and their dysregulation has been linked to diverse neuropsychiatric and neurodegenerative disorders. While normal NMDAR function requires regulated expression and trafficking of its different subunits, the molecular mechanisms underlying these processes are not fully understood. Here we report that the amyloid precursor protein intracellular domain associated-1 protein (AIDA-1), which associates with NMDARs and is encoded by ANKS1B, a gene recently linked to schizophrenia, regulates synaptic NMDAR subunit composition. Forebrain-specific AIDA-1 conditional knock-out (cKO) mice exhibit reduced GluN2B-mediated and increased GluN2A-mediated synaptic transmission, and biochemical analyses show AIDA-1 cKO mice have low GluN2B and high GluN2A protein levels at isolated hippocampal synaptic junctions compared with controls. These results are corroborated by immunocytochemical and electrophysiological analyses in primary neuronal cultures following acute lentiviral shRNA-mediated knockdown of AIDA-1. Moreover, hippocampal NMDAR-dependent but not metabotropic glutamate receptor-dependent plasticity is impaired in AIDA-1 cKO mice, further supporting a role for AIDA-1 in synaptic NMDAR function. We also demonstrate that AIDA-1 preferentially associates with GluN2B and with the adaptor protein Ca2+/calmodulin-dependent serine protein kinase and kinesin KIF17, which regulate the transport of GluN2B-containing NMDARs from the endoplasmic reticulum (ER) to synapses. Consistent with this function, GluN2B accumulates in ER-enriched fractions in AIDA-1 cKO mice. These findings suggest that AIDA-1 regulates NMDAR subunit composition at synapses by facilitating transport of GluN2B from the ER to synapses, which is critical for NMDAR plasticity. Our work provides an explanation for how AIDA-1 dysfunction might contribute to neuropsychiatric conditions, such as schizophrenia. PMID:26085624

  16. Dynamic effects of TNF-α on synaptic transmission in mice over time following sciatic nerve chronic constriction injury

    PubMed Central

    Zhang, Hongmei; Zhang, Haijun

    2013-01-01

    Nerve injury-induced central sensitization can manifest as an increase in excitatory synaptic transmission and/or as a decrease in inhibitory synaptic transmission in spinal dorsal horn neurons. Cytokines such as tumor necrosis factor-α (TNF-α) are induced in the spinal cord under various injury conditions and contribute to neuropathic pain. In this study we examined the effect of TNF-α in modulating excitatory and inhibitory synaptic input to spinal substantia gelatinosa (SG) neurons over time in mice following chronic constriction injury (CCI) of the sciatic nerve. Whole cell patch-clamp studies from SG neurons showed that TNF-α enhanced overall excitability of the spinal cord early in time following nerve injury 3 days after CCI compared with that in sham control mice. In contrast, the effects of TNF were blunted 14 days after CCI in nerve-injured mice compared with sham surgery mice. Immunohistochemical staining showed that the expression of TNF-α receptor 1 (TNFR1) was increased at 3 days but decreased at 14 days following CCI in the ipsilateral vs. the contralateral spinal cord dorsal horn. These results suggest that TNF-α acting at TNFR1 is important in the development of neuropathic pain by facilitating excitatory synaptic signaling in the acute phases after nerve injury but has a reduced effect on spinal neuron signaling in the later phases of nerve injury-induced pain. Failure of the facilatory effects of TNF-α on excitatory synaptic signaling in the dorsal horn to resolve following nerve injury may be an important component in the transition between acute and chronic pain conditions. PMID:23864372

  17. Light-evoked recovery from wortmannin-induced inhibition of catecholamine secretion and synaptic transmission.

    PubMed

    Warashina, A

    1999-07-15

    Wortmannin (WT) is known to inhibit catecholamine (CA) secretion in chromaffin cells. This effect was found to be sensitive to UV light in experiments designed to perform simultaneous monitoring of changes in [Ca2+]i and CA secretion in perfused rat adrenal medullas. When the change in [Ca2+]i was measured using calcium green-1 (490 nm excitation), a 35-min treatment with 10 microM WT caused a 69% inhibition of CA secretion evoked by excess (30 mM) extracellular K+ and a moderate inhibition of the [Ca2+]i response. In contrast, the same treatment of fura-2-loaded cells with WT caused only an 11% inhibition of the high-K+-evoked secretion and no significant attenuation of the [Ca2+]i response. However, during interruption of fluorometry with fura-2, the inhibitory effect of WT developed at a rate similar to that exhibited in calcium green-1-loaded cells. The WT-induced inhibition of high-K+- or bradykinin-evoked secretory responses, which was otherwise irreversible, was reversed by exposing WT-treated chromaffin cells to 380-nm light. When WT was reapplied to the cells of which the secretory ability had been restored by light irradiation, the secretory response was inhibited with a time course similar to that shown during the initial treatment with WT. The photosensitive effect of WT was also demonstrated using bullfrog sympathetic ganglia in which WT-induced inhibition of synaptic transmission was reversed by irradiation with 380-nm light. These results suggest that UV light removes the inhibitory effects of WT by disrupting the covalent bond formed between WT and a target molecule which remains to be determined, although myosin light chain kinase has been reported as the target molecule in both cases examined in this study. PMID:10395748

  18. Mechanisms underlying H(2)O(2)-mediated inhibition of synaptic transmission in rat hippocampal slices.

    PubMed

    Avshalumov, M V; Chen, B T; Rice, M E

    2000-11-01

    Hydrogen peroxide (H(2)O(2)) inhibits the population spike (PS) evoked by Schaffer collateral stimulation in hippocampal slices. Proposed mechanisms underlying this effect include generation of hydroxyl radicals (.OH) and inhibition of presynaptic Ca(2+) entry. We have examined these possible mechanisms in rat hippocampal slices. Inhibition of the evoked PS by H(2)O(2) was sharply concentration-dependent: 1.2 mM H(2)O(2) had no effect, whereas 1.5 and 2.0 mM H(2)O(2) reversibly depressed PS amplitude by roughly 80%. The iron chelator, deferoxamine (1 mM), and the endogenous.OH scavenger, ascorbate (400 microM), prevented PS inhibition, confirming.OH involvement. Isoascorbate (400 microM), which unlike ascorbate is not taken up by brain cells, also prevented PS inhibition, indicating an extracellular site of.OH generation or action. We then investigated whether H(2)O(2)-induced PS depression could be overcome by prolonged stimulation, which enhances Ca(2+) entry. During 5-s, 10-Hz trains under control conditions, PS amplitude increased to over 200% during the first three-four pulses, then stabilized. In the presence of H(2)O(2), PS amplitude was initially depressed, but began to recover after 2.5 s of stimulation, finally reaching 80% of the control maximum. In companion experiments, we assessed the effect of H(2)O(2) on presynaptic Ca(2+) entry by monitoring extracellular Ca(2+) concentration ([Ca(2+)](o)) during train stimulation in the presence of postsynaptic receptor blockers. Evoked [Ca(2+)](o) shifts were apparently unaltered by H(2)O(2), suggesting a lack of effect on Ca(2+) entry. Taken together, these findings suggest new ways in which reactive oxygen species (ROS) might act as signaling agents, specifically as modulators of synaptic transmission. PMID:11056187

  19. Environmental enrichment rescues the effects of early life inflammation on markers of synaptic transmission and plasticity.

    PubMed

    Kentner, Amanda C; Khoury, Antoine; Lima Queiroz, Erika; MacRae, Molly

    2016-10-01

    Environmental enrichment (EE) has been successful at rescuing the brain from a variety of early-life psychogenic stressors. However, its ability to reverse the behavioral and neural alterations induced by a prenatal maternal infection model of schizophrenia is less clear. Moreover, the specific interactions between the components (i.e. social enhancement, novelty, physical activity) of EE that lead to its success as a supportive intervention have not been adequately identified. In the current study, standard housed female Sprague-Dawley rats were administered either the inflammatory endotoxin lipopolysaccharide (LPS; 100μg/kg) or pyrogen-free saline (equivolume) on gestational day 15. On postnatal day 50, offspring were randomized into one of three conditions: EE (group housed in a large multi-level cage with novel toys, tubes and ramps), Colony Nesting (CN; socially-housed in a larger style cage), or Standard Care (SC; pair-housed in standard cages). Six weeks later we scored social engagement and performance in the object-in-place task. Afterwards hippocampus and prefrontal cortex (n=7-9) were collected and evaluated for excitatory amino acid transporter (EAAT) 1-3, brain-derived neurotrophic factor (BDNF), and neurotrophic tyrosine kinase, receptor type 2 (TrkB) gene expression (normalized to GAPDH) using qPCR methods. Overall, we show that gestational inflammation downregulates genes critical to synaptic transmission and plasticity, which may underlie the pathogenesis of neurodevelopmental disorders such as schizophrenia and autism. Additionally, we observed disruptions in both social engagement and spatial discrimination. Importantly, behavioral and neurophysiological effects were rescued in an experience dependent manner. Given the evidence that schizophrenia and autism may be associated with infection during pregnancy, these data have compelling implications for the prevention and reversibility of the consequences that follow immune activation in early in

  20. Excitability and Synaptic Transmission in the Enteric Nervous System: Does Diet Play a Role?

    PubMed

    Bertrand, Paul P; Polglaze, Kate E; Chen, Hui; Sandow, Shaun L; Walduck, Anna; Jenkins, Trisha A; Bertrand, Rebecca L; Lomax, Alan E; Liu, Lu

    2016-01-01

    Changes in diet are a challenge to the gastrointestinal tract which needs to alter its processing mechanisms to continue to process nutrients and maintain health. In particular, the enteric nervous system (ENS) needs to adapt its motor and secretory programs to deal with changes in nutrient type and load in order to optimise nutrient absorption.The nerve circuits in the gut are complex, and the numbers and types of neurons make recordings of specific cell types difficult, time-consuming, and prone to sampling errors. Nonetheless, traditional research methods like intracellular electrophysiological approaches have provided the basis for our understanding of the ENS circuitry. In particular, animal models of intestinal inflammation have shown us that we can document changes to neuronal excitability and synaptic transmission.Recent studies examining diet-induced changes to ENS programming have opted to use fast imaging techniques to reveal changes in neuron function. Advances in imaging techniques using voltage- or calcium-sensitive dyes to record neuronal activity promise to overcome many limitations inherent to electrophysiological approaches. Imaging techniques allow access to a wide range of ENS phenotypes and to the changes they undergo during dietary challenges. These sorts of studies have shown that dietary variation or obesity can change how the ENS processes information-in effect reprogramming the ENS. In this review, the data gathered from intracellular recordings will be compared with measurements made using imaging techniques in an effort to determine if the lessons learnt from inflammatory changes are relevant to the understanding of diet-induced reprogramming. PMID:27379647

  1. Acetyl-l-carnitine restores synaptic transmission and enhances the inducibility of stable LTP after oxygen-glucose deprivation.

    PubMed

    Kocsis, Kitti; Frank, Rita; Szabó, József; Knapp, Levente; Kis, Zsolt; Farkas, Tamás; Vécsei, László; Toldi, József

    2016-09-22

    Hypoxic circumstances result in functional and structural impairments of the brain. Oxygen-glucose deprivation (OGD) on hippocampal slices is a technique widely used to investigate the consequences of ischemic stroke and the potential neuroprotective effects of different drugs. Acetyl-l-carnitine (ALC) is a naturally occurring substance in the body, and it can therefore be administered safely even in relatively high doses. In previous experiments, ALC pretreatment proved to be effective against global hypoperfusion. In the present study, we investigated whether ALC can be protective in an OGD model. We are not aware of any earlier study in which the long-term potentiation (LTP) function on hippocampal slices was measured after OGD. Therefore, we set out to determine whether an effective ALC concentration has an effect on synaptic plasticity after OGD in the hippocampal CA1 subfield of rats. A further aim was to investigate the mechanism underlying the protective effect of this compound. The experiments revealed that ALC is neuroprotective against OGD in a dose-dependent manner, which is manifested not only in the regeneration of the impaired synaptic transmission after the OGD, but also in the inducibility and stability of the LTP. In the case of the most effective concentration of ALC (500μM), use of a phosphoinositide 3-kinase (PI3K) inhibitor (LY294002) revealed that the PI3K/Akt signaling pathway has a key role in the restoration of the synaptic transmission and plasticity reached by ALC treatment. PMID:27378558

  2. Increased Gene Dosage of Ube3a Results in Autism Traits and Decreased Glutamate Synaptic Transmission in Mice

    PubMed Central

    Smith, Stephen E. P.; Zhou, Yu-Dong; Zhang, Guangping; Jin, Zhe; Stoppel, David C.; Anderson, Matthew P.

    2012-01-01

    People with autism spectrum disorder are characterized by impaired social interaction, reduced communication, and increased repetitive behaviors. The disorder has a substantial genetic component, and recent studies have revealed frequent genome copy number variations (CNVs) in some individuals. A common CNV that occurs in 1 to 3% of those with autism—maternal 15q11-13 duplication (dup15) and triplication (isodicentric extranumerary chromosome, idic15)—affects several genes that have been suggested to underlie autism behavioral traits. To test this, we tripled the dosage of one of these genes, the ubiquitin protein ligase Ube3a, which is expressed solely from the maternal allele in mature neurons, and reconstituted the three core autism traits in mice: defective social interaction, impaired communication, and increased repetitive stereotypic behavior. The penetrance of these autism traits depended on Ube3a gene copy number. In animals with increased Ube3a gene dosage, glutamatergic, but not GABAergic, synaptic transmission was suppressed as a result of reduced presynaptic release probability, synaptic glutamate concentration, and postsynaptic action potential coupling. These results suggest that Ube3a gene dosage may contribute to the autism traits of individuals with maternal 15q11-13 duplication and support the idea that increased E3A ubiquitin ligase gene dosage results in reduced excitatory synaptic transmission. PMID:21974935

  3. Changes in Synaptic Transmission and Long-term Potentiation Induction as a Possible Mechanism for Learning Disability in an Animal Model of Multiple Sclerosis

    PubMed Central

    2016-01-01

    Purpose: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. It has been shown that memory deficits is common in patients with MS. Recent studies using experimental autoimmune encephalomyelitis (EAE) as an animal model of MS have shown that indicated that EAE causes hippocampal-dependent impairment in learning and memory. Thus far, there have been no in vivo electrophysiological reports describing synaptic transmission in EAE animals. The aim of the present work is to evaluate the synaptic changes in the CA1 region of the hippocampus of EAE rats. Methods: To evaluate changes in synaptic transmission in the CA1 region of the hippocampus of EAE rats, field excitatory postsynaptic potentials (fEPSPs) from the stratum radiatum of CA1 neurons, were recorded following Schaffer collateral stimulation. Results: The results showed that EAE causes deficits in synaptic transmission and long-term potentiation (LTP) in the hippocampus. In addition, paired-pulse index with a 120 msec interstimulus interval was decreased in the EAE group. These findings indicate that EAE might induce suppression in synaptic transmission and LTP by increasing the inhibitory effect of GABAB receptors on the glutamate-mediated EPSP. Conclusions: In conclusion, influence of inflammation-triggered mechanisms on synaptic transmission may explain the negative effect of EAE on learning abilities in rats. PMID:27032554

  4. [The role of synaptic transmission in memory and neurodegeneration processes and effects of neurotropic preparations].

    PubMed

    Voronina, T A

    2003-01-01

    Academician Zakusov, in his book Pharmacology of Central Synapses (Moscow, 1973), emphasized the central role of synaptic processes in regulation of various forms of behavior, memory, and psychotropic drug action. The paper considers most promising directions in the search for substances possessing nootropic and neuroprotector properties, many of which were developed at the Institute of Pharmacology based on the notion about synaptic processes. These investigations led to the creation of well-known drugs such as mexidole, noopept, nooglutyl, beglimin, etc. Special attention is devoted to the implementation and modern development of the ideas of Academician Zakusov. Recent data are presented on the role of neuropeptides, neurotrophins, and intracellular signaling mechanisms in synaptic plasticity, memory processes, and development of neurodegenerative states. PMID:12962041

  5. Electroacupuncture and A-317491 depress the transmission of pain on primary afferent mediated by the P2X3 receptor in rats with chronic neuropathic pain states.

    PubMed

    Wang, Wan-Sheng; Tu, Wen-Zhan; Cheng, Rui-Dong; He, Rong; Ruan, Li-Hua; Zhang, Li; Gong, Yong-Sheng; Fan, Xiao-Fang; Hu, Jie; Cheng, Bo; Lai, Yin-Ping; Zou, En-Miao; Jiang, Song-He

    2014-12-01

    P2X is a family of ligand-gated ion channels that act through adenosine ATP. The P2X3 receptor plays a key role in the transmission of neuropathic pain at peripheral and spinal sites. Electroacupuncture (EA) has been used to treat neuropathic pain effectively. To determine the role of EA in neuropathic pain mediated through the P2X3 receptor in dorsal root ganglion neurons and the spinal cord, a chronic constriction injury (CCI) model was used. Sprague-Dawley rats were divided into four groups: sham CCI, CCI, CCI plus contralateral EA, and CCI plus ipsilateral EA. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were recorded. Furthermore, the expression of the P2X3 receptor was evaluated through Western blotting and immunofluorescence. The effects of EA and A-317491 were investigated through the whole-cell patch-clamp method and intrathecal administration. Our results show that the MWT and TWL of EA groups were higher than those in the CCI group, whereas the expression of the P2X3 receptor was lower than that in the CCI group. However, no significant difference was detected between the two EA groups. EA depressed the currents created by ATP and the upregulation of the P2X3 receptor in CCI rats. Additionally, EA was more potent in reducing mechanical allodynia and thermal hyperalgesia when combined with A-317491 through intrathecal administration. These results show that both contralateral and ipsilateral EA might inhibit the primary afferent transmission of neuropathic pain induced through the P2X3 receptor. In addition, EA and A-317491 might have an additive effect in inhibiting the transmission of pain mediated by the P2X3 receptor. PMID:25041872

  6. Disruption of Akt signaling decreases dopamine sensitivity in modulation of inhibitory synaptic transmission in rat prefrontal cortex.

    PubMed

    Li, Yan-Chun; Yang, Sha-Sha; Gao, Wen-Jun

    2016-09-01

    Akt is a serine/threonine kinase, which is dramatically reduced in the prefrontal cortex (PFC) of patients with schizophrenia, and a deficiency in Akt1 results in PFC function abnormalities. Although the importance of Akt in dopamine (DA) transmission is well established, how impaired Akt signaling affects the DA modulation of synaptic transmission in the PFC has not been characterized. Here we show that Akt inhibitors significantly decreased receptor sensitivity to DA by shifting DA modulation of GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) in prefrontal cortical neurons. Akt inhibition caused a significant decrease in synaptic dopamine D2 receptor (D2R) levels with high-dose DA exposure. In addition, Akt inhibition failed to affect DA modulation of IPSCs after blockade of β-arrestin 2. β-arrestin 2-mediated interaction of clathrin with D2R was enhanced by co-application of a Akt inhibitor and DA. Taken together, the reduced response in DA modulation of inhibitory transmission mainly involved β-arrestin 2-dependent D2R desensitization. PMID:27163190

  7. Effects of chronic stress in adolescence on learned fear, anxiety, and synaptic transmission in the rat prelimbic cortex.

    PubMed

    Negrón-Oyarzo, Ignacio; Pérez, Miguel Ángel; Terreros, Gonzalo; Muñoz, Pablo; Dagnino-Subiabre, Alexies

    2014-02-01

    The prelimbic cortex and amygdala regulate the extinction of conditioned fear and anxiety, respectively. In adult rats, chronic stress affects the dendritic morphology of these brain areas, slowing extinction of learned fear and enhancing anxiety. The aim of this study was to determine whether rats subjected to chronic stress in adolescence show changes in learned fear, anxiety, and synaptic transmission in the prelimbic cortex during adulthood. Male Sprague Dawley rats were subjected to seven days of restraint stress on postnatal day forty-two (PND 42, adolescence). Afterward, the fear-conditioning paradigm was used to study conditioned fear extinction. Anxiety-like behavior was measured one day (PND 50) and twenty-one days (PND 70, adulthood) after stress using the elevated-plus maze and dark-light box tests, respectively. With another set of rats, excitatory synaptic transmission was analyzed with slices of the prelimbic cortex. Rats that had been stressed during adolescence and adulthood had higher anxiety-like behavior levels than did controls, while stress-induced slowing of learned fear extinction in adolescence was reversed during adulthood. As well, the field excitatory postsynaptic potentials of stressed adolescent rats had significantly lower amplitudes than those of controls, although the amplitudes were higher in adulthood. Our results demonstrate that short-term stress in adolescence induces strong effects on excitatory synaptic transmission in the prelimbic cortex and extinction of learned fear, where the effect of stress on anxiety is more persistent than on the extinction of learned fear. These data contribute to the understanding of stress neurobiology. PMID:24216268

  8. Interaction of electrically evoked activity with intrinsic dynamics of cultured cortical networks with and without functional fast GABAergic synaptic transmission.

    PubMed

    Baltz, Thomas; Voigt, Thomas

    2015-01-01

    The modulation of neuronal activity by means of electrical stimulation is a successful therapeutic approach for patients suffering from a variety of central nervous system disorders. Prototypic networks formed by cultured cortical neurons represent an important model system to gain general insights in the input-output relationships of neuronal tissue. These networks undergo a multitude of developmental changes during their maturation, such as the excitatory-inhibitory shift of the neurotransmitter GABA. Very few studies have addressed how the output properties to a given stimulus change with ongoing development. Here, we investigate input-output relationships of cultured cortical networks by probing cultures with and without functional GABAAergic synaptic transmission with a set of stimulation paradigms at various stages of maturation. On the cellular level, low stimulation rates (<15 Hz) led to reliable neuronal responses; higher rates were increasingly ineffective. Similarly, on the network level, lowest stimulation rates (<0.1 Hz) lead to maximal output rates at all ages, indicating a network wide refractory period after each stimulus. In cultures aged 3 weeks and older, a gradual recovery of the network excitability within tens of milliseconds was in contrast to an abrupt recovery after about 5 s in cultures with absent GABAAergic synaptic transmission. In these GABA deficient cultures evoked responses were prolonged and had multiple discharges. Furthermore, the network excitability changed periodically, with a very slow spontaneous change of the overall network activity in the minute range, which was not observed in cultures with absent GABAAergic synaptic transmission. The electrically evoked activity of cultured cortical networks, therefore, is governed by at least two potentially interacting mechanisms: A refractory period in the order of a few seconds and a very slow GABA dependent oscillation of the network excitability. PMID:26236196

  9. Interaction of electrically evoked activity with intrinsic dynamics of cultured cortical networks with and without functional fast GABAergic synaptic transmission

    PubMed Central

    Baltz, Thomas; Voigt, Thomas

    2015-01-01

    The modulation of neuronal activity by means of electrical stimulation is a successful therapeutic approach for patients suffering from a variety of central nervous system disorders. Prototypic networks formed by cultured cortical neurons represent an important model system to gain general insights in the input–output relationships of neuronal tissue. These networks undergo a multitude of developmental changes during their maturation, such as the excitatory–inhibitory shift of the neurotransmitter GABA. Very few studies have addressed how the output properties to a given stimulus change with ongoing development. Here, we investigate input–output relationships of cultured cortical networks by probing cultures with and without functional GABAAergic synaptic transmission with a set of stimulation paradigms at various stages of maturation. On the cellular level, low stimulation rates (<15 Hz) led to reliable neuronal responses; higher rates were increasingly ineffective. Similarly, on the network level, lowest stimulation rates (<0.1 Hz) lead to maximal output rates at all ages, indicating a network wide refractory period after each stimulus. In cultures aged 3 weeks and older, a gradual recovery of the network excitability within tens of milliseconds was in contrast to an abrupt recovery after about 5 s in cultures with absent GABAAergic synaptic transmission. In these GABA deficient cultures evoked responses were prolonged and had multiple discharges. Furthermore, the network excitability changed periodically, with a very slow spontaneous change of the overall network activity in the minute range, which was not observed in cultures with absent GABAAergic synaptic transmission. The electrically evoked activity of cultured cortical networks, therefore, is governed by at least two potentially interacting mechanisms: A refractory period in the order of a few seconds and a very slow GABA dependent oscillation of the network excitability. PMID:26236196

  10. Shank1 regulates excitatory synaptic transmission in mouse hippocampal parvalbumin-expressing inhibitory interneurons.

    PubMed

    Mao, Wenjie; Watanabe, Takuya; Cho, Sukhee; Frost, Jeffrey L; Truong, Tina; Zhao, Xiaohu; Futai, Kensuke

    2015-04-01

    The Shank genes (SHANK1, 2, 3) encode scaffold proteins highly enriched in postsynaptic densities where they regulate synaptic structure in spiny neurons. Mutations in human Shank genes are linked to autism spectrum disorder and schizophrenia. Shank1 mutant mice exhibit intriguing cognitive phenotypes reminiscent of individuals with autism spectrum disorder. However, the molecular mechanisms leading to the human pathophysiological phenotypes and mouse behaviors have not been elucidated. In this study it is shown that Shank1 protein is highly localized in parvalbumin-expressing (PV+) fast-spiking inhibitory interneurons in the hippocampus. Importantly, a lack of Shank1 in hippocampal CA1 PV+ neurons reduced excitatory synaptic inputs and inhibitory synaptic outputs to pyramidal neurons. Furthermore, it is demonstrated that hippocampal CA1 pyramidal neurons in Shank1 mutant mice exhibit a shift in the excitatory and inhibitory balance (E-I balance), a pathophysiological hallmark of autism spectrum disorder. The mutant mice also exhibit lower expression of gephyrin (a scaffold component of inhibitory synapses), supporting the dysregulation of E-I balance in the hippocampus. These results suggest that Shank1 scaffold in PV+ interneurons regulates excitatory synaptic strength and participates in the maintenance of E-I balance in excitatory neurons. PMID:25816842

  11. Dendritic morphology, synaptic transmission, and activity of mature granule cells born following pilocarpine-induced status epilepticus in the rat

    PubMed Central

    Gao, Fei; Song, Xueying; Zhu, Dexiao; Wang, Xiaochen; Hao, Aijun; Nadler, J. Victor; Zhan, Ren-Zhi

    2015-01-01

    To understand the potential role of enhanced hippocampal neurogenesis after pilocarpine-induced status epilepticus (SE) in the development of epilepsy, we quantitatively analyzed the geometry of apical dendrites, synaptic transmission, and activation levels of normotopically distributed mature newborn granule cells in the rat. SE in male Sprague-Dawley rats (between 6 and 7 weeks old) lasting for more than 2 h was induced by an intraperitoneal injection of pilocarpine. The complexity, spine density, miniature post-synaptic currents, and activity-regulated cytoskeleton-associated protein (Arc) expression of granule cells born 5 days after SE were studied between 10 and 17 weeks after CAG-GFP retroviral vector-mediated labeling. Mature granule cells born after SE had dendritic complexity similar to that of granule cells born naturally, but with denser mushroom-like spines in dendritic segments located in the outer molecular layer. Miniature inhibitory post-synaptic currents (mIPSCs) were similar between the controls and rats subjected to SE; however, smaller miniature excitatory post-synaptic current (mEPSC) amplitude with a trend toward less frequent was found in mature granule cells born after SE. After maturation, granule cells born after SE did not show denser Arc expression in the resting condition or 2 h after being activated by pentylenetetrazol-induced transient seizure activity than vicinal GFP-unlabeled granule cells. Thus our results suggest that normotopic granule cells born after pilocarpine-induced SE are no more active when mature than age-matched, naturally born granule cells. PMID:26500490

  12. Frequency-dependent facilitation of synaptic throughput via postsynaptic NMDA receptors in the nucleus of the solitary tract.

    PubMed

    Zhao, Huan; Peters, James H; Zhu, Mingyan; Page, Stephen J; Ritter, Robert C; Appleyard, Suzanne M

    2015-01-01

    Hindbrain NMDA receptors play important roles in reflexive and behavioural responses to vagal activation. NMDA receptors have also been shown to contribute to the synaptic responses of neurons in the nucleus of the solitary tract (NTS), but their exact role remains unclear. In this study we used whole cell patch-clamping techniques in rat horizontal brain slice to investigate the role of NMDA receptors in the fidelity of transmission across solitary tract afferent-NTS neuron synapses. Results show that NMDA receptors contribute up to 70% of the charge transferred across the synapse at high (>5 Hz) firing rates, but have little contribution at lower firing frequencies. Results also show that NMDA receptors critically contribute to the fidelity of transmission across these synapses during high frequency (>5 Hz) afferent discharge rates. This novel role of NMDA receptors may explain in part how primary visceral afferents, including vagal afferents, can maintain fidelity of transmission across a broad range of firing frequencies. Neurons within the nucleus of the solitary tract (NTS) receive vagal afferent innervations that initiate gastrointestinal and cardiovascular reflexes. Glutamate is the fast excitatory neurotransmitter released in the NTS by vagal afferents, which arrive there via the solitary tract (ST). ST stimulation elicits excitatory postsynaptic currents (EPSCs) in NTS neurons mediated by both AMPA- and NMDA-type glutamate receptors (-Rs). Vagal afferents exhibit a high probability of vesicle release and exhibit robust frequency-dependent depression due to presynaptic vesicle depletion. Nonetheless, synaptic throughput is maintained even at high frequencies of afferent activation. Here we test the hypothesis that postsynaptic NMDA-Rs are essential in maintaining throughput across ST-NTS synapses. Using patch clamp electrophysiology in horizontal brainstem slices, we found that NMDA-Rs, including NR2B subtypes, carry up to 70% of the charge transferred

  13. Laser-evoked synaptic transmission in cultured hippocampal neurons expressing Channelrhodopsin-2 delivered by adeno-associated virus

    PubMed Central

    Wang, Jennifer; Hasan, Mazahir T.; Seung, H. Sebastian

    2009-01-01

    We present a method for studying synaptic transmission in mass cultures of dissociated hippocampal neurons based on patch clamp recording combined with laser stimulation of neurons expressing Channelrhodopsin-2 (ChR2). Our goal was to use the high spatial resolution of laser illumination to come as close as possible to the ideal of identifying monosynaptically coupled pairs of neurons, which is conventionally done using microisland rather than mass cultures. Using recombinant adeno-associated virus (rAAV) to deliver the ChR2 gene, we focused on the time period between 14 and 20 days in vitro, during which expression levels are high, and spontaneous bursting activity has not yet started. Stimulation by wide-field illumination is sufficient to make the majority of ChR2-expressing neurons spike. Stimulation with a laser spot at least 10 μm in diameter also produces action potentials, but in a reduced fraction of neurons. We studied synaptic transmission by voltage-clamping a neuron with low expression of ChR2 and scanning a 40 μm laser spot at surrounding locations. Responses were observed to stimulation at a subset of locations in the culture, indicating spatial localization of stimulation. Pharmacological means were used to identify responses that were synaptic. Many responses were of smaller amplitude than those typically found in microisland cultures. We were unable to find an entirely reliable criterion for distinguishing between monosynaptic and polysynaptic responses. However, we propose that postsynaptic currents with small amplitudes, simple shapes, and latencies not much greater than 8 msec are reasonable candidates for monosynaptic interactions. PMID:19560489

  14. Weak endogenous Ca2+ buffering supports sustained synaptic transmission by distinct mechanisms in rod and cone photoreceptors in salamander retina

    PubMed Central

    Van Hook, Matthew J; Thoreson, Wallace B

    2015-01-01

    Differences in synaptic transmission between rod and cone photoreceptors contribute to different response kinetics in rod- versus cone-dominated visual pathways. We examined Ca2+ dynamics in synaptic terminals of tiger salamander photoreceptors under conditions that mimicked endogenous buffering to determine the influence on kinetically and mechanistically distinct components of synaptic transmission. Measurements of ICl(Ca) confirmed that endogenous Ca2+ buffering is equivalent to ˜0.05 mmol/L EGTA in rod and cone terminals. Confocal imaging showed that with such buffering, depolarization stimulated large, spatially unconstrained [Ca2+] increases that spread throughout photoreceptor terminals. We calculated immediately releasable pool (IRP) size and release efficiency in rods by deconvolving excitatory postsynaptic currents and presynaptic Ca2+ currents. Peak efficiency of ˜0.2 vesicles/channel was similar to that of cones (˜0.3 vesicles/channel). Efficiency in both cell types was not significantly affected by using weak endogenous Ca2+ buffering. However, weak Ca2+ buffering speeded Ca2+/calmodulin (CaM)-dependent replenishment of vesicles to ribbons in both rods and cones, thereby enhancing sustained release. In rods, weak Ca2+ buffering also amplified sustained release by enhancing CICR and CICR-stimulated release of vesicles at nonribbon sites. By contrast, elevating [Ca2+] at nonribbon sites in cones with weak Ca2+ buffering and by inhibiting Ca2+ extrusion did not trigger additional release, consistent with the notion that exocytosis from cones occurs exclusively at ribbons. The presence of weak endogenous Ca2+ buffering in rods and cones facilitates slow, sustained exocytosis by enhancing Ca2+/CaM-dependent replenishment of ribbons in both rods and cones and by stimulating nonribbon release triggered by CICR in rods. PMID:26416977

  15. Nicotinic Transmission onto Layer 6 Cortical Neurons Relies on Synaptic Activation of Non-α7 Receptors.

    PubMed

    Hay, Y Audrey; Lambolez, Bertrand; Tricoire, Ludovic

    2016-06-01

    Nicotinic excitation in neocortex is mediated by low-affinity α7 receptors and by high-affinity α4β2 receptors. There is evidence that α7 receptors are synaptic, but it is unclear whether high-affinity receptors are activated by volume transmission or synaptic transmission. To address this issue, we characterized responses of excitatory layer 6 (L6) neurons to optogenetic release of acetylcholine (ACh) in cortical slices. L6 responses consisted in a slowly decaying α4β2 current and were devoid of α7 component. Evidence that these responses were mediated by synapses was 4-fold. 1) Channelrhodopsin-positive cholinergic varicosities made close appositions onto responsive neurons. 2) Inhibition of ACh degradation failed to alter onset kinetics and amplitude of currents. 3) Quasi-saturation of α4β2 receptors occurred upon ACh release. 4) Response kinetics were unchanged in low release probability conditions. Train stimulations increased amplitude and decay time of responses and these effects appeared to involve recruitment of extrasynaptic receptors. Finally, we found that the α5 subunit, known to be associated with α4β2 in L6, regulates short-term plasticity at L6 synapses. Our results are consistent with previous anatomical observations of widespread cholinergic synapses and suggest that a significant proportion of these small synapses operate via high-affinity nicotinic receptors. PMID:25934969

  16. Selective optical control of synaptic transmission in the subcortical visual pathway by activation of viral vector-expressed halorhodopsin.

    PubMed

    Kaneda, Katsuyuki; Kasahara, Hironori; Matsui, Ryosuke; Katoh, Tomoko; Mizukami, Hiroaki; Ozawa, Keiya; Watanabe, Dai; Isa, Tadashi

    2011-01-01

    The superficial layer of the superior colliculus (sSC) receives visual inputs via two different pathways: from the retina and the primary visual cortex. However, the functional significance of each input for the operation of the sSC circuit remains to be identified. As a first step toward understanding the functional role of each of these inputs, we developed an optogenetic method to specifically suppress the synaptic transmission in the retino-tectal pathway. We introduced enhanced halorhodopsin (eNpHR), a yellow light-sensitive, membrane-targeting chloride pump, into mouse retinal ganglion cells (RGCs) by intravitreously injecting an adeno-associated virus serotype-2 vector carrying the CMV-eNpHR-EYFP construct. Several weeks after the injection, whole-cell recordings made from sSC neurons in slice preparations revealed that yellow laser illumination of the eNpHR-expressing retino-tectal axons, putatively synapsing onto the recorded cells, effectively inhibited EPSCs evoked by electrical stimulation of the optic nerve layer. We also showed that sSC spike activities elicited by visual stimulation were significantly reduced by laser illumination of the sSC in anesthetized mice. These results indicate that photo-activation of eNpHR expressed in RGC axons enables selective blockade of retino-tectal synaptic transmission. The method established here can most likely be applied to a variety of brain regions for studying the function of individual inputs to these regions. PMID:21483674

  17. [Effect of narcotic analgesics on the cortical control process of impulse transmission in the afferent pathways of the sciatic nerve].

    PubMed

    Churiukanov, V V; Bilibin, D P

    1976-01-01

    The effect produced by narcotic analgetics with their intravenous administration on the process of cortical control over the transmission of impulses along specific routes of the sciatic nerve was studied. The conditioning stimulation of the cortex was effected by using a monopolar electrode through single electric impulses. The interval between conditioning and test (on sciatic nerve) impulses was of 80-120 ms. Morphine (1-2 mg/kg), promedol (trimeperidin) (1-2 mg/kg) and phentanyl (100 gamma/kg) potentiated the inhibition of evoked potentials in the nucleus gracilis and in VPL, observed upon stimulation of the cortex of optic lobuses. The intensification of inhibitory corticifugal mechanisms occurring under the effect of narcotic analgetics takes place both on the level of the medulla oblongata and of the thalamic one. PMID:6310

  18. P2Y Receptors in Synaptic Transmission and Plasticity: Therapeutic Potential in Cognitive Dysfunction

    PubMed Central

    Guzman, Segundo J.; Gerevich, Zoltan

    2016-01-01

    ATP released from neurons and astrocytes during neuronal activity or under pathophysiological circumstances is able to influence information flow in neuronal circuits by activation of ionotropic P2X and metabotropic P2Y receptors and subsequent modulation of cellular excitability, synaptic strength, and plasticity. In the present paper we review cellular and network effects of P2Y receptors in the brain. We show that P2Y receptors inhibit the release of neurotransmitters, modulate voltage- and ligand-gated ion channels, and differentially influence the induction of synaptic plasticity in the prefrontal cortex, hippocampus, and cerebellum. The findings discussed here may explain how P2Y1 receptor activation during brain injury, hypoxia, inflammation, schizophrenia, or Alzheimer's disease leads to an impairment of cognitive processes. Hence, it is suggested that the blockade of P2Y1 receptors may have therapeutic potential against cognitive disturbances in these states. PMID:27069691

  19. Modulation of synaptic transmission by adenosine in layer 2/3 of the rat visual cortex in vitro

    PubMed Central

    Bannon, Nicholas; Zhang, Pei; Ilin, Vladimir; Chistiakova, Marina; Volgushev, Maxim

    2014-01-01

    Adenosine is a wide-spread endogenous neuromodulator. In the central nervous system it activates A1 and A2A receptors (A1Rs and A2ARs) which have differential distributions, different affinities to adenosine, are coupled to different G-proteins, and have opposite effects on synaptic transmission. Although effects of adenosine are studied in detail in several brain areas, such as hippocampus and striatum, the heterogeneity of the effects of A1R and A 2A R activation and their differential distribution preclude generalization over brain areas and cell types. Here we study adenosine's effects on excitatory synaptic transmission to layer 2/3 pyramidal neurons in slices of the rat visual cortex. We measured effects of bath application of adenosine receptor ligands on evoked EPSPs, miniature EPSPs (mEPSPs), and membrane properties. Adenosine reduced the amplitude of evoked EPSPs and EPSCs, and reduced frequency of mEPSPs in a concentration dependent and reversible manner. Concurrent with EPSP/C amplitude reduction was an increase in the paired-pulse ratio. These effects were blocked by application of the selective A1R antagonist DPCPX, suggesting that activation of presynaptic A1Rs suppresses excitatory transmission by reducing release probability. Adenosine (20 μM) hyperpolarized the cell membrane from 65.3±1.5 to -67.7±1.8 mV, and reduced input resistance from 396.5±44.4 to 314.0±36.3 MOhm (~20%). These effects were also abolished by DPCPX, suggesting postsynaptic A1Rs. Application of the selective A2AR antagonist SCH-58261 on the background of high adenosine concentrations revealed an additional decrease in EPSP amplitude. Moreover, application of the A2AR agonist CGS-21680 led to an A1R-dependent increase in mEPSP frequency. Dependence of the A2AR effects on the A1R availability suggests interaction between these receptors, whereby A2ARs exert their facilitatory effect on synaptic transmission by inhibiting the A1R mediated suppression. Our results demonstrate

  20. Membrane-tethered AKT kinase regulates basal synaptic transmission and early phase LTP expression by modulation of post-synaptic AMPA receptor level.

    PubMed

    Pen, Y; Borovok, N; Reichenstein, M; Sheinin, A; Michaelevski, I

    2016-09-01

    The serine/threonine kinase AKT/PKB plays a fundamental role in a wide variety of neuronal functions, including neuronal cell development, axonal growth, and synaptic plasticity. Multiple evidence link AKT signaling pathways to regulation of late phase long-term synaptic plasticity, synaptogenesis, and spinogenesis, as well as long-term memory formation. Nevertheless, the downstream effectors mediating the effects of AKT on early phase long-term potentiation (eLTP) are currently unknown. Here we report that using different regimes of pharmacological activation and inhibition of AKT activity in acute hippocampal slices, we found that AKT regulates the post-synaptic expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA) receptors affecting solely the expression of eLTP, with no effect on its induction and maintenance. We further show that both maintenance of basal synaptic activity and expression of eLTP require plasma membrane tethering by activated AKT and that basal synaptic activity may be regulated via the direct effects of AKT1 on the expression level of post-synaptic AMPA receptors bypassing the canonical AKT signaling. Finally, we establish that eLTP expression requires the involvement of both the canonical AKT signaling pathways and the direct effect of AKT1 on AMPA receptor activity/expression in the post-synaptic membrane. © 2016 Wiley Periodicals, Inc. PMID:27068236

  1. Src, a Molecular Switch Governing Gain Control of Synaptic Transmission Mediated by N-methyl-D-Aspartate Receptors

    NASA Astrophysics Data System (ADS)

    Yu, Xian-Min; Salter, Michael W.

    1999-07-01

    The N-methyl-D-aspartate (NMDA) receptor is a principal subtype of glutamate receptor mediating fast excitatory transmission at synapses in the dorsal horn of the spinal cord and other regions of the central nervous system. NMDA receptors are crucial for the lasting enhancement of synaptic transmission that occurs both physiologically and in pathological conditions such as chronic pain. Over the past several years, evidence has accumulated indicating that the activity of NMDA receptors is regulated by the protein tyrosine kinase, Src. Recently it has been discovered that, by means of up-regulating NMDA receptor function, activation of Src mediates the induction of the lasting enhancement of excitatory transmission known as long-term potentiation in the CA1 region of the hippocampus. Also, Src has been found to amplify the up-regulation of NMDA receptor function that is produced by raising the intracellular concentration of sodium. Sodium concentration increases in neuronal dendrites during high levels of firing activity, which is precisely when Src becomes activated. Therefore, we propose that the boost in NMDA receptor function produced by the coincidence of activating Src and raising intracellular sodium may be important in physiological and pathophysiological enhancement of excitatory transmission in the dorsal horn of the spinal cord and elsewhere in the central nervous system.

  2. Layer- and area-specific actions of norepinephrine on cortical synaptic transmission.

    PubMed

    Salgado, Humberto; Treviño, Mario; Atzori, Marco

    2016-06-15

    The cerebral cortex is a critical target of the central noradrenergic system. The importance of norepinephrine (NE) in the regulation of cortical activity is underscored by clinical findings that involve this catecholamine and its receptor subtypes in the regulation of a large number of emotional and cognitive functions and illnesses. In this review, we highlight diverse effects of the LC/NE system in the mammalian cortex. Indeed, electrophysiological, pharmacological, and behavioral studies in the last few decades reveal that NE elicits a mixed repertoire of excitatory, inhibitory, and biphasic effects on the firing activity and transmitter release of cortical neurons. At the intrinsic cellular level, NE can produce a series of effects similar to those elicited by other monoamines or acetylcholine, associated with systemic arousal. At the synaptic level, NE induces numerous acute changes in synaptic function, and ׳gates' the induction of long-term plasticity of glutamatergic synapses, consisting in an enhancement of engaged and relevant cortical synapses and/or depression of unengaged synapses. Equally important in shaping cortical function, in many cortical areas NE promotes a characteristic, most often reversible, increase in the gain of local inhibitory synapses, whose extent and temporal properties vary between different areas and sometimes even between cortical layers of the same area. While we are still a long way from a comprehensive theory of the function of the LC/NE system, its cellular, synaptic, and plastic effects are consistent with the hypothesis that noradrenergic modulation is critical in coordinating the activity of cortical and subcortical circuits for the integration of sensory activity and working memory. This article is part of a Special Issue entitled SI: Noradrenergic System. PMID:26820639

  3. EPO induces changes in synaptic transmission and plasticity in the dentate gyrus of rats.

    PubMed

    Almaguer-Melian, William; Mercerón-Martínez, Daymara; Delgado-Ocaña, Susana; Pavón-Fuentes, Nancy; Ledón, Nuris; Bergado, Jorge A

    2016-06-01

    Erythropoietin has shown wide physiological effects on the central nervous system in animal models of disease, and in healthy animals. We have recently shown that systemic EPO administration 15 min, but not 5 h, after daily training in a water maze is able to induce the recovery of spatial memory in fimbria-fornix chronic-lesioned animals, suggesting that acute EPO triggers mechanisms which can modulate the active neural plasticity mechanism involved in spatial memory acquisition in lesioned animals. Additionally, this EPO effect is accompanied by the up-regulation of plasticity-related early genes. More remarkably, this time-dependent effects on learning recovery could signify that EPO in nerve system modulate specific living-cellular processes. In the present article, we focus on the question if EPO could modulate the induction of long-term synaptic plasticity like LTP and LTD, which presumably could support our previous published data. Our results show that acute EPO peripheral administration 15 min before the induction of synaptic plasticity is able to increase the magnitude of the LTP (more prominent in PSA than fEPSP-Slope) to facilitate the induction of LTD, and to protect LTP from depotentiation. These findings showing that EPO modulates in vivo synaptic plasticity sustain the assumption that EPO can act not only as a neuroprotective substance, but is also able to modulate transient neural plasticity mechanisms and therefore to promote the recovery of nerve function after an established chronic brain lesion. According to these results, EPO could be use as a molecular tool for neurorestaurative treatments. Synapse 70:240-252, 2016. © 2016 Wiley Periodicals, Inc. PMID:26860222

  4. DISC1 Protein Regulates γ-Aminobutyric Acid, Type A (GABAA) Receptor Trafficking and Inhibitory Synaptic Transmission in Cortical Neurons.

    PubMed

    Wei, Jing; Graziane, Nicholas M; Gu, Zhenglin; Yan, Zhen

    2015-11-13

    Association studies have suggested that Disrupted-in-Schizophrenia 1 (DISC1) confers a genetic risk at the level of endophenotypes that underlies many major mental disorders. Despite the progress in understanding the significance of DISC1 at neural development, the mechanisms underlying DISC1 regulation of synaptic functions remain elusive. Because alterations in the cortical GABA system have been strongly linked to the pathophysiology of schizophrenia, one potential target of DISC1 that is critically involved in the regulation of cognition and emotion is the GABAA receptor (GABAAR). We found that cellular knockdown of DISC1 significantly reduced GABAAR-mediated synaptic and whole-cell current, whereas overexpression of wild-type DISC1, but not the C-terminal-truncated DISC1 (a schizophrenia-related mutant), significantly increased GABAAR currents in pyramidal neurons of the prefrontal cortex. These effects were accompanied by DISC1-induced changes in surface GABAAR expression. Moreover, the regulation of GABAARs by DISC1 knockdown or overexpression depends on the microtubule motor protein kinesin 1 (KIF5). Our results suggest that DISC1 exerts an important effect on GABAergic inhibitory transmission by regulating KIF5/microtubule-based GABAAR trafficking in the cortex. The knowledge gained from this study would shed light on how DISC1 and the GABA system are linked mechanistically and how their interactions are critical for maintaining a normal mental state. PMID:26424793

  5. Mutation of the Dyslexia-Associated Gene Dcdc2 Enhances Glutamatergic Synaptic Transmission Between Layer 4 Neurons in Mouse Neocortex.

    PubMed

    Che, Alicia; Truong, Dongnhu T; Fitch, R Holly; LoTurco, Joseph J

    2016-09-01

    Variants in DCDC2 have been associated with reading disability in humans, and targeted mutation of Dcdc2 in mice causes impairments in both learning and sensory processing. In this study, we sought to determine whether Dcdc2 mutation affects functional synaptic circuitry in neocortex. We found mutation in Dcdc2 resulted in elevated spontaneous and evoked glutamate release from neurons in somatosensory cortex. The probability of release was decreased to wild-type level by acute application of N-methyl-d-aspartate receptor (NMDAR) antagonists when postsynaptic NMDARs were blocked by intracellular MK-801, and could not be explained by elevated ambient glutamate, suggesting altered, nonpostsynaptic NMDAR activation in the mutants. In addition, we determined that the increased excitatory transmission was present at layer 4-layer 4 but not thalamocortical connections in Dcdc2 mutants, and larger evoked synaptic release appeared to enhance the NMDAR-mediated effect. These results demonstrate an NMDAR activation-gated, increased functional excitatory connectivity between layer 4 lateral connections in somatosensory neocortex of the mutants, providing support for potential changes in cortical connectivity and activation resulting from mutation of dyslexia candidate gene Dcdc2. PMID:26250775

  6. Autism-Associated Insertion Mutation (InsG) of Shank3 Exon 21 Causes Impaired Synaptic Transmission and Behavioral Deficits.

    PubMed

    Speed, Haley E; Kouser, Mehreen; Xuan, Zhong; Reimers, Jeremy M; Ochoa, Christine F; Gupta, Natasha; Liu, Shunan; Powell, Craig M

    2015-07-01

    SHANK3 (also known as PROSAP2) is a postsynaptic scaffolding protein at excitatory synapses in which mutations and deletions have been implicated in patients with idiopathic autism, Phelan-McDermid (aka 22q13 microdeletion) syndrome, and other neuropsychiatric disorders. In this study, we have created a novel mouse model of human autism caused by the insertion of a single guanine nucleotide into exon 21 (Shank3(G)). The resulting frameshift causes a premature STOP codon and loss of major higher molecular weight Shank3 isoforms at the synapse. Shank3(G/G) mice exhibit deficits in hippocampus-dependent spatial learning, impaired motor coordination, altered response to novelty, and sensory processing deficits. At the cellular level, Shank3(G/G) mice also exhibit impaired hippocampal excitatory transmission and plasticity as well as changes in baseline NMDA receptor-mediated synaptic responses. This work identifies clear alterations in synaptic function and behavior in a novel, genetically accurate mouse model of autism mimicking an autism-associated insertion mutation. Furthermore, these findings lay the foundation for future studies aimed to validate and study region-selective and temporally selective genetic reversal studies in the Shank3(G/G) mouse that was engineered with such future experiments in mind. PMID:26134648

  7. Loss of Predominant Shank3 Isoforms Results in Hippocampus-Dependent Impairments in Behavior and Synaptic Transmission

    PubMed Central

    Kouser, Mehreen; Speed, Haley E.; Dewey, Colleen M.; Reimers, Jeremy M.; Widman, Allie J.; Gupta, Natasha; Liu, Shunan; Jaramillo, Thomas C.; Bangash, Muhammad; Xiao, Bo; Worley, Paul F.

    2013-01-01

    The Shank3 gene encodes a scaffolding protein that anchors multiple elements of the postsynaptic density at the synapse. Previous attempts to delete the Shank3 gene have not resulted in a complete loss of the predominant naturally occurring Shank3 isoforms. We have now characterized a homozygous Shank3 mutation in mice that deletes exon 21, including the Homer binding domain. In the homozygous state, deletion of exon 21 results in loss of the major naturally occurring Shank3 protein bands detected by C-terminal and N-terminal antibodies, allowing us to more definitively examine the role of Shank3 in synaptic function and behavior. This loss of Shank3 leads to an increased localization of mGluR5 to both synaptosome and postsynaptic density-enriched fractions in the hippocampus. These mice exhibit a decrease in NMDA/AMPA excitatory postsynaptic current ratio in area CA1 of the hippocampus, reduced long-term potentiation in area CA1, and deficits in hippocampus-dependent spatial learning and memory. In addition, these mice also exhibit motor-coordination deficits, hypersensitivity to heat, novelty avoidance, altered locomotor response to novelty, and minimal social abnormalities. These data suggest that Shank3 isoforms are required for normal synaptic transmission/plasticity in the hippocampus, as well as hippocampus-dependent spatial learning and memory. PMID:24259569

  8. Fear Conditioning Potentiates Synaptic Transmission onto Long-Range Projection Neurons in the Lateral Subdivision of Central Amygdala

    PubMed Central

    Penzo, Mario A.; Robert, Vincent

    2014-01-01

    Recent studies indicate that the lateral subdivision of the central amygdala (CeL) is essential for fear learning. Specifically, fear conditioning induces cell-type-specific synaptic plasticity in CeL neurons that is required for the storage of fear memories. The CeL also controls fear expression by gating the activity of the medial subdivision of the central amygdala (CeM), the canonical amygdala output to areas that mediate defensive responses. In addition to the connection with CeM, the CeL sends long-range projections to innervate extra-amygdala areas. However, the long-range projection CeL neurons have not been well characterized, and their role in fear regulation is unknown. Here we show in mice that a subset of CeL neurons directly project to the midbrain periaqueductal gray (PAG) and the paraventricular nucleus of the thalamus, two brain areas implicated in defensive behavior. These long-range projection CeL neurons are predominantly somatostatin-positive (SOM+) neurons, which can directly inhibit PAG neurons, and some of which innervate both the PAG and paraventricular nucleus of the thalamus. Notably, fear conditioning potentiates excitatory synaptic transmission onto these long-range projection CeL neurons. Thus, our study identifies a subpopulation of SOM+ CeL neurons that may contribute to fear learning and regulate fear expression independent of CeM. PMID:24523533

  9. Autism-Associated Insertion Mutation (InsG) of Shank3 Exon 21 Causes Impaired Synaptic Transmission and Behavioral Deficits

    PubMed Central

    Speed, Haley E.; Kouser, Mehreen; Xuan, Zhong; Reimers, Jeremy M.; Ochoa, Christine F.; Gupta, Natasha; Liu, Shunan

    2015-01-01

    SHANK3 (also known as PROSAP2) is a postsynaptic scaffolding protein at excitatory synapses in which mutations and deletions have been implicated in patients with idiopathic autism, Phelan–McDermid (aka 22q13 microdeletion) syndrome, and other neuropsychiatric disorders. In this study, we have created a novel mouse model of human autism caused by the insertion of a single guanine nucleotide into exon 21 (Shank3G). The resulting frameshift causes a premature STOP codon and loss of major higher molecular weight Shank3 isoforms at the synapse. Shank3G/G mice exhibit deficits in hippocampus-dependent spatial learning, impaired motor coordination, altered response to novelty, and sensory processing deficits. At the cellular level, Shank3G/G mice also exhibit impaired hippocampal excitatory transmission and plasticity as well as changes in baseline NMDA receptor-mediated synaptic responses. This work identifies clear alterations in synaptic function and behavior in a novel, genetically accurate mouse model of autism mimicking an autism-associated insertion mutation. Furthermore, these findings lay the foundation for future studies aimed to validate and study region-selective and temporally selective genetic reversal studies in the Shank3G/G mouse that was engineered with such future experiments in mind. PMID:26134648

  10. Similar oxysterols may lead to opposite effects on synaptic transmission: Olesoxime versus 5α-cholestan-3-one at the frog neuromuscular junction.

    PubMed

    Kasimov, M R; Zakyrjanova, G F; Giniatullin, A R; Zefirov, A L; Petrov, A M

    2016-07-01

    Cholesterol oxidation products frequently have a high biological activity. In the present study, we have used microelectrode recording of end plate currents and FM-based optical detection of synaptic vesicle exo-endocytosis to investigate the effects of two structurally similar oxysterols, olesoxime (cholest-4-en-3-one, oxime) and 5ɑ-cholestan-3-one (5ɑCh3), on neurotransmission at the frog neuromuscular junction. Olesoxime is an exogenous, potentially neuroprotective, substance and 5ɑCh3 is an intermediate product in cholesterol metabolism, which is elevated in the case of cerebrotendinous xanthomatosis. We found that olesoxime slightly increased evoked neurotransmitter release in response to a single stimulus and significantly reduced synaptic depression during high frequency activity. The last effect was due to an increase in both the number of synaptic vesicles involved in exo-endocytosis and the rate of synaptic vesicle recycling. In contrast, 5ɑCh3 reduced evoked neurotransmitter release during the low- and high frequency synaptic activities. The depressant action of 5ɑCh3 was associated with a reduction in the number of synaptic vesicles participating in exo- and endocytosis during high frequency stimulation, without a change in rate of the synaptic vesicle recycling. Of note, olesoxime increased the staining of synaptic membranes with the B-subunit of cholera toxin and the formation of fluorescent ganglioside GM1 clusters, and decreased the fluorescence of 22-NBD-cholesterol, while 5ɑCh3 had the opposite effects, suggesting that the two oxysterols have different effects on lipid raft stability. Taken together, these data show that these two structurally similar oxysterols induce marked different changes in neuromuscular transmission which are related with the alteration in synaptic vesicle cycle. PMID:27102612

  11. Enhanced GABAergic synaptic transmission at VLPAG neurons and potent modulation by oxycodone in a bone cancer pain model

    PubMed Central

    Takasu, Keiko; Ogawa, Koichi; Nakamura, Atsushi; Kanbara, Tomoe; Ono, Hiroko; Tomii, Takako; Morioka, Yasuhide; Hasegawa, Minoru; Shibasaki, Masahiro; Mori, Tomohisa; Suzuki, Tsutomu; Sakaguchi, Gaku

    2015-01-01

    Background and Purpose We demonstrated previously that oxycodone has potent antinociceptive effects at supraspinal sites. In this study, we investigated changes in neuronal function and antinociceptive mechanisms of oxycodone at ventrolateral periaqueductal gray (VLPAG) neurons, which are a major site of opioid action, in a femur bone cancer (FBC) model with bone cancer-related pain. Experimental Approach We characterized the supraspinal antinociceptive profiles of oxycodone and morphine on mechanical hypersensitivity in the FBC model. Based on the disinhibition mechanism underlying supraspinal opioid antinociception, the effects of oxycodone and morphine on GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) in VLPAG neurons were evaluated in slices from the FBC model. Key Results The supraspinal antinociceptive effects of oxycodone, but not morphine, were abolished by blocking G protein-gated inwardly rectifying potassium1 (Kir3.1) channels. In slices from the FBC model, GABAergic synaptic transmission at VLPAG neurons was enhanced, as indicated by a leftward shift of the input–output relationship curve of evoked IPSCs, the increased paired-pulse facilitation and the enhancement of miniature IPSC frequency. Following treatment with oxycodone and morphine, IPSCs were reduced in the FBC model, and the inhibition of presynaptic GABA release by oxycodone, but not morphine was enhanced and dependent on Kir3.1 channels. Conclusion and Implications Our results demonstrate that Kir3.1 channels are important for supraspinal antinociception and presynaptic GABA release inhibition by oxycodone in the FBC model. Enhanced GABAergic synaptic transmission at VLPAG neurons in the FBC model is an important site of supraspinal antinociception by oxycodone via Kir3.1 channel activation. PMID:25521524

  12. Investigation of the juxtamembrane region of neuronal-Synaptobrevin in synaptic transmission at the Drosophila neuromuscular junction.

    PubMed

    DeMill, Colin M; Qiu, Xinping; Kisiel, Marta; Bolotta, Alanna; Stewart, Bryan A

    2014-09-15

    In this study, the juxtamembrane region of the Drosophila SNARE protein neuronal-Synaptobrevin (n-Syb) was tested for its role in synaptic transmission. A transgenic approach was used to express n-Syb mutant genes. The transgenes carried engineered point mutations that alter the amino acid sequence of the conserved tryptophan residues in the juxtamembrane sequence. Such transgenes were expressed in an n-syb hypomorphic background, which produces little endogenous protein. On their own, hypomorphic flies displayed severe motor inhibition, limited life span, reduced evoked junctional potentials (EJPs), decreased synchronicity in EJP time to peak, and potentiation of EJPs with 10-Hz stimulation. All of these deficits were restored to wild-type levels with the expression of wild-type transgenic n-syb, regulated by the endogenous promoter (n-syb(WT)). We created transgenic mutants with one additional tryptophan (n-syb(WW)) or one less tryptophan (n-syb(AA)) than the wild-type sequence. While n-syb(WW) resembled n-syb(WT) in all variables listed, n-syb(AA) exhibited decreased EJP amplitude, synchronicity, and quantal content. To determine whether the n-syb juxtamembrane region is important for transduction of force arising from SNARE complex assembly during membrane fusion, we introduced short 6-amino acid (n-syb(L6)) or long 24-amino acid (n-syb(L24)) flexible linkers into the n-syb transgene. We observed a reduced EJP amplitude in n-syb(L6) but not n-syb(L24), while both linker mutants showed a decreased quantal content and an effect on the readily releasable and recycling vesicle pools. In conclusion, mutation of the juxtamembrane region of n-syb deleteriously affected synaptic transmission at the Drosophila neuromuscular junction. PMID:24944220

  13. Postnatal down-regulation of the GABAA receptor γ2 subunit in neocortical NG2 cells accompanies synaptic-to-extrasynaptic switch in the GABAergic transmission mode.

    PubMed

    Balia, Maddalena; Vélez-Fort, Mateo; Passlick, Stefan; Schäfer, Christoph; Audinat, Etienne; Steinhäuser, Christian; Seifert, Gerald; Angulo, María Cecilia

    2015-04-01

    NG2 cells, a main pool of glial progenitors, express γ-aminobutyric acid A (GABA(A)) receptors (GABA(A)Rs), the functional and molecular properties of which are largely unknown. We recently reported that transmission between GABAergic interneurons and NG2 cells drastically changes during development of the somatosensory cortex, switching from synaptic to extrasynaptic communication. Since synaptic and extrasynaptic GABA(A)Rs of neurons differ in their subunit composition, we hypothesize that GABA(A)Rs of NG2 cells undergo molecular changes during cortical development accompanying the switch of transmission modes. Single-cell RT-PCR and the effects of zolpidem and α5IA on evoked GABAergic currents reveal the predominance of functional α1- and α5-containing GABA(A)Rs at interneuron-NG2 cell synapses in the second postnatal week, while the α5 expression declines later in development when responses are exclusively extrasynaptic. Importantly, pharmacological and molecular analyses demonstrate that γ2, a subunit contributing to the clustering of GABA(A)Rs at postsynaptic sites in neurons, is down-regulated in NG2 cells in a cell type-specific manner in concomitance with the decline of synaptic activity and the switch of transmission mode. In keeping with the synaptic nature of γ2 in neurons, the down-regulation of this subunit is an important molecular hallmark of the change of transmission modes between interneurons and NG2 cells during development. PMID:24217990

  14. Synaptic Vesicle Endocytosis

    PubMed Central

    Saheki, Yasunori; De Camilli, Pietro

    2012-01-01

    Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization. PMID:22763746

  15. Inhibitory synaptic transmission from the substantia nigra pars reticulata to the ventral medial thalamus in mice.

    PubMed

    Kase, Daisuke; Uta, Daisuke; Ishihara, Hiromi; Imoto, Keiji

    2015-08-01

    The cortico-basal ganglia-thalamic loop circuit is involved in variety of motor, association and limbic functions. The basal ganglia receive neural information from various areas of the cerebral cortex and transfer them back to the frontal and motor cortex via the ventral medial (VM), and the anterior-ventral lateral thalamic complex. The projection from the basal ganglia to the thalamus is GABAergic, and, therefore, the output from the basal ganglia cannot directly evoke excitation in the thalamic nuclei. The mechanism underlying the information transfer via the inhibitory projection remains unclear. To address this issue, we recorded electrophysiological properties of nigro-thalamic synapses from the VM neuron. We developed a nigro-thalamic slice preparation, in which the projection from the substantia nigra pars reticulata (SNr) to VM nucleus is stored, to enable the selective activation of the projection from the SNr. We characterized synaptic properties and membrane properties of the VM neuron, and developed a VM neuron model to simulate the impacts of SNr inputs on VM neuron activity. Neural simulation suggested that the inhibitory projection from SNr can control neural activity in two ways: a disinhibition from the spontaneous nigral inhibition and a β-band synchronization evoked by combination of excitation and inhibition of SNr activity. PMID:25887794

  16. Cholinergic Synaptic Transmissions Were Altered after Single Sevoflurane Exposure in Drosophila Pupa

    PubMed Central

    Chen, Rongfa; Zhang, Tao; Kuang, Liting; Chen, Zhen; Ran, Dongzhi; Niu, Yang; Gu, Huaiyu

    2015-01-01

    Purpose. Sevoflurane, one of the most used general anesthetics, is widely used in clinical practice all over the world. Previous studies indicated that sevoflurane could induce neuron apoptosis and neural deficit causing query in the safety of anesthesia using sevoflurane. The present study was designed to investigate the effects of sevoflurane on electrophysiology in Drosophila pupa whose excitatory neurotransmitter is acetylcholine early after sevoflurane exposure using whole brain recording technique. Methods. Wide types of Drosophila (canton-s flies) were allocated to control and sevoflurane groups randomly. Sevoflurane groups (1% sevoflurane; 2% sevoflurane; 3% sevoflurane) were exposed to sevoflurane and the exposure lasted 5 hours, respectively. All flies were subjected to electrophysiology experiment using patch clamp 24 hours after exposure. Results. The results showed that, 24 hours after sevoflurane exposure, frequency but not the amplitude of miniature excitatory postsynaptic currents (mEPSCs) was significantly reduced (P < 0.05). Furthermore, we explored the underlying mechanism and found that calcium currents density, which partially regulated the frequency of mEPSCs, was significantly reduced after sevoflurane exposure (P < 0.05). Conclusions. All these suggested that sevoflurane could alter the mEPSCs that are related to synaptic plasticity partially through modulating calcium channel early after sevoflurane exposure. PMID:25705662

  17. Mutation of Drosophila Focal Adhesion Kinase Induces Bang-Sensitive Behavior and Disrupts Glial Function, Axonal Conduction and Synaptic Transmission

    PubMed Central

    Ueda, Atsushi; Grabbe, Caroline; Lee, Jihye; Lee, Jisue; Palmer, Ruth H.; Wu, Chun-Fang

    2009-01-01

    The role of the conserved Focal Adhesion Kinase (FAK) family of protein tyrosine kinases (PTKs) in the development and physiological functions of the CNS has long been an area of interest among neuroscientists. In this report, we observe that Drosophila mutants lacking Fak56 exhibit a decreased life span, accompanied by a bang-sensitive phenotype, which is characterised by sensitivity to mechanical and high-frequency electrical stimulation. Fak56 mutant animals display lower thresholds and higher rates of seizures in response to electroconvulsive stimuli, and direct measurements of action potential conduction in larval segmental nerves demonstrate a slowed propagation speed and failure during high-frequency nerve stimulation. In addition, neuromuscular junctions in Fak56 mutant animals display transmission blockade during high-frequency activity as a result of action potential failure. Endogenous Fak56 protein is abundant in glial cells ensheathing the axon bundles, and structural alterations of segmental nerve bundles can be observed in mutants. Manipulation of Fak56 function specifically in glial cells also disrupts action potential conduction and neurotransmission, suggesting a glial component in the Fak56 bang-sensitive phenotype. Furthermore, we show that increased intracellular calcium levels result in the dephosphorylation of endogenous Fak56 protein in Drosophila cell lines, in parallel with our observations of highly variable synaptic potentials at a higher Ca2+ level in Fak56 mutant larvae. Together these findings suggest that modulation of Fak56 function is important for action potential propagation and Ca2+-regulated neuromuscular transmission in vivo. PMID:18540882

  18. Kv1 channels and neural processing in vestibular calyx afferents

    PubMed Central

    Meredith, Frances L.; Kirk, Matthew E.; Rennie, Katherine J.

    2015-01-01

    Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K+ channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K+ channels could help alleviate vestibular dysfunction on earth and in space. PMID:26082693

  19. Kv1 channels and neural processing in vestibular calyx afferents.

    PubMed

    Meredith, Frances L; Kirk, Matthew E; Rennie, Katherine J

    2015-01-01

    Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K(+) channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K(+) channels could help alleviate vestibular dysfunction on earth and in space. PMID:26082693

  20. Presynaptic group I metabotropic glutamate receptors modulate synaptic transmission in the rat superior colliculus via 4-AP sensitive K+ channels

    PubMed Central

    White, Anne-Marie; Kylänpää, Risto A; Christie, Louisa A; McIntosh, Simon J; Irving, Andrew J; Platt, Bettina

    2003-01-01

    Group I metabotropic glutamate receptors (mGluRs) are thought to be important modulators of neuronal function in the superior colliculus (SC). Here, we investigated the pharmacology and signalling mechanisms underlying group I mGluR-mediated inhibition of neuronal excitability and synaptic transmission in the rat SC slice. The group I agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) potently depressed synaptically evoked excitatory postsynaptic potentials (EPSPs), currents (EPSCs), and action potentials in a dose-dependent manner (IC50: 6.3 μM). This was strongly reduced by the broad-spectrum antagonist (+)-alpha-methyl-4-carboxyphenylglycine (MCPG, 1 mM, ∼95% reduction), by the mGluR1 antagonist LY367385 (100 μM, ∼80% reduction) but not by the mGluR5 antagonist 6-methyl-2-(phenylethynyl)-pyridine (MPEP, 1–100 μM). The putative mGluR5-specific agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG, 500 μM) also inhibited EPSPs. Interestingly, CHPG's actions were not blocked by MPEP, but LY367385 (100 μM) reduced the effect of CHPG by 50%. Inhibition induced by DHPG was independent of phospholipase C (PLC)/protein kinase C pathways, and did not require intact intracellular Ca2+ stores. It was not abolished but enhanced by the GABAA antagonist bicuculline (5 μM), suggesting that DHPG's action was not due to facilitated inhibition or changes in neuronal network activity. The K+ channel antagonist 4-aminopyridine (4-AP, 50–100 μM) converted the inhibitory effect of DHPG into facilitation. Paired-pulse depression was strongly reduced by DHPG, an effect that was also prevented by 4-AP. Our data indicate that group I agonists regulate transmitter release, presumably via an autoreceptor in the SC. This receptor may be involved in adaptation to repetitive stimulation via a non-PLC mediated pathway. PMID:14623765

  1. The effect of sevoflurane on the cognitive function of rats and its association with the inhibition of synaptic transmission

    PubMed Central

    Zhang, Deng-Xin; Jiang, Shan; Yu, Li-Na; Zhang, Feng-Jiang; Zhuang, Qing; Yan, Min

    2015-01-01

    To observe the effects of different concentrations of sevoflurane on synaptotagmin 1 (Syt1) expression, synaptic long term depression (LTD), and paired pulse depression (PPD) in the rat hippocampus as well as to investigate the association between these effects and the cognitive function of rats. A total of 24 male Sprague-Dawley (SD) rats were selected and randomly divided into 3 groups: the control group (group A), which inhaled air; group B, which inhaled 0.65 minimum alveolar concentration (MAC) sevoflurane for 2 h; and group C, which inhaled 1.30 MAC sevoflurane for 2 h. The subsequent experiments were performed after one day. (1) Y maze tests were performed, and the expression of Syt1 in hippocampal tissues was detected using western blot. (2) The changes in LTD and PPD in rat hippocampal slices were examined using electrophysiological techniques. Compared to the control group, the cognitive function was decreased and Syt1 expression in the hippocampus was significantly decreased in rats in the 1.30 MAC sevoflurane inhalation group. After 60 min of low frequency stimulation, the amplitudes of population spike (PS) potentials in rat hippocampal slices were significantly decreased. After induction of PPD, the P2/P1 ratio was significantly increased. No indicators in the 0.65 MAC sevoflurane inhalation group showed any significant changes. Inhalation of high concentrations of sevoflurane significantly reduced Syt1 protein levels in the rat hippocampus, significantly inhibited the release of presynaptic neurotransmitters, and reduced the efficiency of synaptic transmission, thus causing memory impairment. PMID:26885010

  2. Isoflurane-sensitive presynaptic R-type calcium channels contribute to inhibitory synaptic transmission in the rat thalamus

    PubMed Central

    Joksovic, Pavle M.; Weiergräber, Marco; Lee, WooYong; Struck, Henrik; Schneider, Toni; Todorovic, Slobodan M.

    2009-01-01

    Since inhibitory synaptic transmission is a major mechanism of general anesthesia, we examined the effects of isoflurane on properties of GABAergic inhibitory currents in the reticular thalamic nucleus (nRT) in brain slices. The evoked inhibitory postsynaptic currents (eIPSCs) and spontaneous miniature synaptic currents (mIPSCs) of visualized nRT cells in young and adult rats were recorded. Consistent with postsynaptic effects on GABAA receptors, isoflurane prolonged the decay-time constants of both eIPSCs and mIPCSs. Surprisingly, isoflurane completely inhibited the amplitude of eIPSCs at clinically relevant concentrations (IC50 of 240 ± 20 μM), increased the paired-pulse ratio, and decreased the frequency of mIPSCs, indicating that presynaptic mechanisms may also contribute to the effects of isoflurane on IPSCs. The overall effect of isoflurane on eIPSCs in nRT cells was a decrease of net charge-transfer across the postsynaptic membrane. The application of 100 μM nickel (Ni2+) and the more specific R-type Ca2+ channel blocker SNX-482 (0.5 μM) decreased eIPSC amplitudes, increased the paired-pulse ratio, and attenuated isoflurane-induced inhibition of eIPSCs. In addition, isoflurane potently blocked currents in recombinant human CaV2.3 (α1E) channels with an IC50 of 206 ± 22 μM. Importantly, in vivo electroencephalographic (EEG) recordings in adult CaV2.3 knockout mice demonstrated alterations in isoflurane-induced burst-suppression activity. Because the thalamus has a key function in processing sensory information, sleep, and cognition, modulation of its GABAergic tone by presynaptic R-type Ca2+ channels may contribute to the clinical effects of general anesthesia. PMID:19193890

  3. Mechanism underlying unaltered cortical inhibitory synaptic transmission in contrast with enhanced excitatory transmission in CaV2.1 knockin migraine mice.

    PubMed

    Vecchia, Dania; Tottene, Angelita; van den Maagdenberg, Arn M J M; Pietrobon, Daniela

    2014-09-01

    Familial hemiplegic migraine type 1 (FHM1), a monogenic subtype of migraine with aura, is caused by gain-of-function mutations in CaV2.1 (P/Q-type) calcium channels. In FHM1 knockin mice, excitatory neurotransmission at cortical pyramidal cell synapses is enhanced, but inhibitory neurotransmission at connected pairs of fast-spiking (FS) interneurons and pyramidal cells is unaltered, despite being initiated by CaV2.1 channels. The mechanism underlying the unaltered GABA release at cortical FS interneuron synapses remains unknown. Here, we show that the FHM1 R192Q mutation does not affect inhibitory transmission at autapses of cortical FS and other types of multipolar interneurons in microculture from R192Q knockin mice, and investigate the underlying mechanism. Lowering the extracellular [Ca(2+)] did not reveal gain-of-function of evoked transmission neither in control nor after prolongation of the action potential (AP) with tetraethylammonium, indicating unaltered AP-evoked presynaptic calcium influx at inhibitory autapses in FHM1 KI mice. Neither saturation of the presynaptic calcium sensor nor short duration of the AP can explain the unaltered inhibitory transmission in the mutant mice. Recordings of the P/Q-type calcium current in multipolar interneurons in microculture revealed that the current density and the gating properties of the CaV2.1 channels expressed in these interneurons are barely affected by the FHM1 mutation, in contrast with the enhanced current density and left-shifted activation gating of mutant CaV2.1 channels in cortical pyramidal cells. Our findings suggest that expression of specific CaV2.1 channels differentially sensitive to modulation by FHM1 mutations in inhibitory and excitatory cortical neurons underlies the gain-of-function of excitatory but unaltered inhibitory synaptic transmission and the likely consequent dysregulation of the cortical excitatory-inhibitory balance in FHM1. PMID:24907493

  4. In vivo synaptic transmission and morphology in mouse models of Tuberous sclerosis, Fragile X syndrome, Neurofibromatosis type 1, and Costello syndrome.

    PubMed

    Wang, Tiantian; de Kok, Laura; Willemsen, Rob; Elgersma, Ype; Borst, J Gerard G

    2015-01-01

    Defects in the rat sarcoma viral oncogene homolog (Ras)/extracellular-signal-regulated kinase and the phosphatidylinositol 3-kinase-mammalian target of rapamycin (mTOR) signaling pathways are responsible for several neurodevelopmental disorders. These disorders are an important cause for intellectual disability; additional manifestations include autism spectrum disorder, seizures, and brain malformations. Changes in synaptic function are thought to underlie the neurological conditions associated with these syndromes. We therefore studied morphology and in vivo synaptic transmission of the calyx of Held synapse, a relay synapse in the medial nucleus of the trapezoid body (MNTB) of the auditory brainstem, in mouse models of tuberous sclerosis complex (TSC), Fragile X syndrome (FXS), Neurofibromatosis type 1 (NF1), and Costello syndrome. Calyces from both Tsc1(+/-) and from Fmr1 knock-out (KO) mice showed increased volume and surface area compared to wild-type (WT) controls. In addition, in Fmr1 KO animals a larger fraction of calyces showed complex morphology. In MNTB principal neurons of Nf1 (+/) (-) mice the average delay between EPSPs and APs was slightly smaller compared to WT controls, which could indicate an increased excitability. Otherwise, no obvious changes in synaptic transmission, or short-term plasticity were observed during juxtacellular recordings in any of the four lines. Our results in these four mutants thus indicate that abnormalities of mTOR or Ras signaling do not necessarily result in changes in in vivo synaptic transmission. PMID:26190969

  5. In vivo synaptic transmission and morphology in mouse models of Tuberous sclerosis, Fragile X syndrome, Neurofibromatosis type 1, and Costello syndrome

    PubMed Central

    Wang, Tiantian; de Kok, Laura; Willemsen, Rob; Elgersma, Ype; Borst, J. Gerard G.

    2015-01-01

    Defects in the rat sarcoma viral oncogene homolog (Ras)/extracellular-signal-regulated kinase and the phosphatidylinositol 3-kinase-mammalian target of rapamycin (mTOR) signaling pathways are responsible for several neurodevelopmental disorders. These disorders are an important cause for intellectual disability; additional manifestations include autism spectrum disorder, seizures, and brain malformations. Changes in synaptic function are thought to underlie the neurological conditions associated with these syndromes. We therefore studied morphology and in vivo synaptic transmission of the calyx of Held synapse, a relay synapse in the medial nucleus of the trapezoid body (MNTB) of the auditory brainstem, in mouse models of tuberous sclerosis complex (TSC), Fragile X syndrome (FXS), Neurofibromatosis type 1 (NF1), and Costello syndrome. Calyces from both Tsc1+/- and from Fmr1 knock-out (KO) mice showed increased volume and surface area compared to wild-type (WT) controls. In addition, in Fmr1 KO animals a larger fraction of calyces showed complex morphology. In MNTB principal neurons of Nf1+/- mice the average delay between EPSPs and APs was slightly smaller compared to WT controls, which could indicate an increased excitability. Otherwise, no obvious changes in synaptic transmission, or short-term plasticity were observed during juxtacellular recordings in any of the four lines. Our results in these four mutants thus indicate that abnormalities of mTOR or Ras signaling do not necessarily result in changes in in vivo synaptic transmission. PMID:26190969

  6. Dissociation of μ- and δ-opioid inhibition of glutamatergic synaptic transmission in superficial dorsal horn

    PubMed Central

    2010-01-01

    Background There is anatomical and behavioural evidence that μ- and δ-opioid receptors modulate distinct nociceptive modalities within the superficial dorsal horn. The aim of the present study was to examine whether μ- and δ-opioid receptor activation differentially modulates TRP sensitive inputs to neurons within the superficial dorsal horn. To do this, whole cell patch clamp recordings were made from lamina I - II neurons in rat spinal cord slices in vitro to examine the effect of opioids on TRP agonist-enhanced glutamatergic spontaneous miniature excitatory postsynaptic currents (EPSCs). Results Under basal conditions the μ-opioid agonist DAMGO (3 μM) reduced the rate of miniature EPSCs in 68% of neurons, while the δ- and κ-opioid agonists deltorphin-II (300 nM) and U69593 (300 nM) did so in 13 - 17% of neurons tested. The TRP agonists menthol (400 μM) and icilin (100 μM) both produced a Ca2+-dependent increase in miniature EPSC rate which was unaffected by the voltage dependent calcium channel (VDCC) blocker Cd2+. The proportion of neurons in which deltorphin-II reduced the miniature EPSC rate was enhanced in the presence of icilin (83%), but not menthol (0%). By contrast, the proportion of DAMGO and U69593 responders was unaltered in the presence of menthol (57%, 0%), or icilin (57%, 17%). Conclusions These findings demonstrate that δ-opioid receptor activation selectively inhibits inputs activated by icilin, whereas μ-opioid receptor activation has a more widespread effect on synaptic inputs to neurons in the superficial dorsal horn. These findings suggest that δ-opioids may provide a novel analgesic approach for specific, TRPA1-like mediated pain modalities. PMID:20977770

  7. Biphasic modulation of synaptic transmission by hypertonicity at the embryonic Drosophila neuromuscular junction

    PubMed Central

    Suzuki, Kazuhiro; Okamoto, Tomonori; Kidokoro, Yoshiaki

    2002-01-01

    Puff-application of hypertonic saline (sucrose added to external saline) causes a transient increase in the frequency of spontaneous miniature synaptic currents (mSCs) at the neuromuscular junctions of Drosophila embryos. The frequency gradually returns to pre-application levels. External Ca2+ is not needed for this response, but it may modify it. At 50 mm added sucrose, for example, enhanced spontaneous release was observed only in the presence of external Ca2+, suggesting that Ca2+ augments the response. In a high-K+ solution, in which the basal mSC frequency was elevated, higher sucrose concentrations produced an increase in mSC frequency that was followed (during and after the hypertonic exposure) by depression, with the magnitude of both effects increasing with hypertonicity between 100 and 500 mm. Evoked release by nerve stimulation showed only depression in response to hypertonicity. We do not believe that the depression of spontaneous or evoked release can be explained by the depletion of releasable quanta, however, since the frequency of quantal release did not reach levels compatible with this explanation and the enhancement and depression could be obtained independent of one another. In a mutant lacking neuronal synaptobrevin, only the depression of mSC frequency was induced by hypertonicity. Conversely, only the enhancing effect was observed in wild-type embryos when the mSC frequency was elevated with forskolin in Ca2+-free saline. In cultured embryonic Drosophila neurons, Ca2+ signals that were induced by high K+ and detected by Fura-2, were reduced by hypertonicity, suggesting that the depressing response is due to a direct effect of hypertonicity on Ca2+ influx. PMID:12433954

  8. Carbamazepine and oxcarbazepine, but not eslicarbazepine, enhance excitatory synaptic transmission onto hippocampal CA1 pyramidal cells through an antagonist action at adenosine A1 receptors.

    PubMed

    Booker, Sam A; Pires, Nuno; Cobb, Stuart; Soares-da-Silva, Patrício; Vida, Imre

    2015-06-01

    This study assessed the anticonvulsant and seizure generation effects of carbamazepine (CBZ), oxcarbazepine (OXC) and eslicarbazepine (S-Lic) in wild-type mice. Electrophysiological recordings were made to discriminate potential cellular and synaptic mechanisms underlying anti- and pro-epileptic actions. The anticonvulsant and pro-convulsant effects were evaluated in the MES, the 6-Hz and the Irwin tests. Whole-cell patch-clamp recordings were used to investigate the effects on fast excitatory and inhibitory synaptic transmission in hippocampal area CA1. The safety window for CBZ, OXC and eslicarbazepine (ED50 value against the MES test and the dose that produces grade 5 convulsions in all mice), was 6.3, 6.0 and 12.5, respectively. At high concentrations the three drugs reduced synaptic transmission. CBZ and OXC enhanced excitatory postsynaptic currents (EPSCs) at low, therapeutically-relevant concentrations. These effects were associated with no change in inhibitory postsynaptic currents (IPSCs) resulting in altered balance between excitation and inhibition. S-Lic had no effect on EPSC or IPSC amplitudes over the same concentration range. The CBZ mediated enhancement of EPSCs was blocked by DPCPX, a selective antagonist, and occluded by CCPA, a selective agonist of the adenosine A1 receptor. Furthermore, reduction of endogenous adenosine by application of the enzyme adenosine deaminase also abolished the CBZ- and OXC-induced increase of EPSCs, indicating that the two drugs act as antagonists at native adenosine receptors. In conclusion, CBZ and OXC possess pro-epileptic actions at clinically-relevant concentrations through the enhancement of excitatory synaptic transmission. S-Lic by comparison has no such effect on synaptic transmission, explaining its lack of seizure exacerbation. PMID:25656478

  9. Melamine Alters Glutamatergic Synaptic Transmission of CA3-CA1 Synapses Presynaptically Through Autophagy Activation in the Rat Hippocampus.

    PubMed

    Zhang, Hui; Wang, Hui; Xiao, Xi; Zhang, Tao

    2016-01-01

    Melamine is an industrial chemical that can cause central nervous system disorders including excitotoxicity and cognitive impairment. Its illegal use in powdered baby formula was the focus of a milk scandal in China in 2008. One of our previous studies showed that melamine impaired glutamatergic transmission in rat hippocampal CA1 pyramidal cells. However, the underlying mechanism of action of melamine is unclear, and it is unknown if the CA3-CA1 pathway is directly involved. In the present study, a whole-cell patch-clamp technique was employed to investigate the effect of melamine on the hippocampal CA3-CA1 pathway in vitro. Both the evoked excitatory postsynaptic current (eEPSC) and the paired-pulse ratio (PPR) were recorded. Furthermore, we examined whether autophagy was involved in glutamatergic transmission alterations induced by melamine. Our data showed that melamine significantly increased the amplitude of eEPSCs in a dose-dependent manner. Inhibition of the N-methyl-D-aspartic acid receptor did not prevent the increase in eEPSC amplitude. In addition, the PPR was remarkably decreased by a melamine concentration of 5 × 10(-5) g/mL. It was found that autophagy could be activated by melamine and an autophagy inhibitor, 3-MA, prevented the melamine-induced increase in eEPSC amplitude. Overall, our results show that melamine presynaptically alters glutamatergic synaptic transmission of hippocampal CA3-CA1 synapses in vitro and this is likely associated with autophagy alteration. PMID:26530910

  10. Conditioned taste aversion prevents the long-lasting BDNF-induced enhancement of synaptic transmission in the insular cortex: A metaplastic effect.

    PubMed

    Rivera-Olvera, Alejandro; Rodríguez-Durán, Luis F; Escobar, Martha L

    2016-04-01

    Homeostatic plasticity mechanisms dynamically adjust synaptic strengths to promote stability that is crucial for memory storage. Metaplasticity is an example of these forms of plasticity that modify the capacity of synapses to experience subsequent Hebbian modifications. In particular, training in several behavioral tasks modifies the ability to induce long-term potentiation (LTP). Recently, we have reported that prior training in conditioned taste aversion (CTA) prevents the subsequent induction of LTP generated by high frequency stimulation in the projection from the basolateral nucleus of the amygdala (Bla) to the insular cortex (IC). One of the key molecular players that underlie long-term synaptic plasticity is brain-derived neurotrophic factor (BDNF). Previous studies from our group reported that acute microinfusion of BDNF in the IC induces a lasting potentiation of synaptic efficacy at the Bla-IC projection. Thus, the aim of the present study was to analyze whether CTA training modifies the ability to induce subsequent BDNF-induced potentiation of synaptic transmission in the Bla-IC projection in vivo. Accordingly, CTA trained rats received intracortical microinfusion of BDNF in order to induce lasting potentiation 48h after the aversion test. Our results show that CTA training prevents the induction of in vivo BDNF-LTP in the Bla-IC projection. The present results provide evidence that CTA modulates BDNF-dependent changes in IC synaptic strength. PMID:26854904

  11. Postsynaptic mGluR5 promotes evoked AMPAR-mediated synaptic transmission onto neocortical layer 2/3 pyramidal neurons during development

    PubMed Central

    Loerwald, Kristofer W.; Patel, Ankur B.; Huber, Kimberly M.

    2014-01-01

    Both short- and long-term roles for the group I metabotropic glutamate receptor number 5 (mGluR5) have been examined for the regulation of cortical glutamatergic synapses. However, how mGluR5 sculpts neocortical networks during development still remains unclear. Using a single cell deletion strategy, we examined how mGluR5 regulates glutamatergic synaptic pathways in neocortical layer 2/3 (L2/3) during development. Electrophysiological measurements were made in acutely prepared slices to obtain a functional understanding of the effects stemming from loss of mGluR5 in vivo. Loss of postsynaptic mGluR5 results in an increase in the frequency of action potential-independent synaptic events but, paradoxically, results in a decrease in evoked transmission in two separate synaptic pathways providing input to the same pyramidal neurons. Synaptic transmission through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, but not N-methyl-d-aspartate (NMDA) receptors, is specifically decreased. In the local L2/3 pathway, the decrease in evoked transmission appears to be largely due to a decrease in cell-to-cell connectivity and not in the strength of individual cell-to-cell connections. This decrease in evoked transmission correlates with a decrease in the total dendritic length in a region of the dendritic arbor that likely receives substantial input from these two pathways, thereby suggesting a morphological correlate to functional alterations. These changes are accompanied by an increase in intrinsic membrane excitability. Our data indicate that total mGluR5 function, incorporating both short- and long-term processes, promotes the strengthening of AMPA receptor-mediated transmission in multiple neocortical pathways. PMID:25392167

  12. Impaired Synaptic Development, Maintenance, and Neuromuscular Transmission in LRP4 Myasthenia

    PubMed Central

    Selcen, Duygu; Ohkawara, Bisei; Shen, Xin-Ming; McEvoy, Kathleen; Ohno, Kinji; Engel, Andrew G.

    2015-01-01

    IMPORTANCE Congenital myasthenic syndromes (CMS) are heterogeneous disorders. Defining the phenotypic features, genetic basis, and pathomechanisms of a CMS is relevant to prognosis, genetic counseling, and therapy. OBJECTIVE To characterize clinical, structural, electrophysiologic, and genetic features of a CMS and search for optimal therapy. DESIGN, SETTINGS, AND PARTICIPANTS Two sisters, 34 and 20 years of age suffering from a CMS affecting the limb-girdle muscles were investigated at an academic medical center by clinical observation, in vitro analysis of neuromuscular transmission, cytochemical and electron microscopy studies of the neuromuscular junction, exome sequencing, expression studies in HEK293 and COS-7 cells, and for response to therapy. MAIN OUTCOMES AND MEASURES We identified the disease gene and mutation, confirmed pathogenicity of the mutation by expression studies, and instituted optimal pharmacotherapy. RESULTS Intercostal muscle endplates (EPs) were abnormally small with attenuated reactivities for the acetylcholine receptor and acetylcholine esterase. Most EPs had poorly differentiated or degenerate junctional folds and some appeared denuded of nerve terminals. The amplitude of the EP potential (EPP), the miniature EPP, and the quantal content of the EPP were all markedly reduced. Exome sequencing identified a novel homozygous p.Glu1233Ala mutation in LRP4, a coreceptor for agrin to activate MuSK, required for EP development and maintenance. Expression studies indicate the mutation compromises ability of LRP4 to bind to, phosphorylate, and activate MuSK. Albuterol improved the patients’ symptoms. CONCLUSIONS AND RELEVANCE We identify a second CMS kinship harboring mutations in LRP4, identify the mechanisms that impair neuromuscular transmission, and mitigate the disease by appropriate therapy. PMID:26052878

  13. Signaling mechanism underlying α2A -adrenergic suppression of excitatory synaptic transmission in the medial prefrontal cortex of rats.

    PubMed

    Yi, Feng; Liu, Shu-Su; Luo, Fei; Zhang, Xue-Han; Li, Bao-Ming

    2013-08-01

    Stimulation of α2A -adrenoceptors (ARs) in the prefrontal cortex (PFC) produces a beneficial effect on cognitive functions such as working memory. A previous study in our laboratory showed that α2A -AR stimulation suppresses excitatory synaptic transmission in layer V-VI pyramidal cells of the rat medial PFC (mPFC). However, the intracellular mechanism underlying the α2A -AR suppression remains unclear. In the present study, we recorded evoked excitatory postsynaptic current (eEPSC) in layer V-VI pyramidal cells of the mPFC, using whole-cell patch-clamp recording. We found that the α2A -AR agonist guanfacine significantly suppresses eEPSC in mPFC pyramidal cells. The α2A -AR inhibition is mediated by the Gi-cAMP-PKA-PP1-CaMKII-AMPAR signaling pathway, as such inhibition no longer exists when each step of this pathway is blocked with NF023, Rp-cAMP, PKI5-24 or H89, tautomycin, and KN-62 or KN-93, respectively. PMID:23701442

  14. Altered neuronal intrinsic properties and reduced synaptic transmission of the rat's medial geniculate body in salicylate-induced tinnitus.

    PubMed

    Su, Yan-Yan; Luo, Bin; Jin, Yan; Wu, Shu-Hui; Lobarinas, Edward; Salvi, Richard J; Chen, Lin

    2012-01-01

    Sodium salicylate (NaSal), an aspirin metabolite, can cause tinnitus in animals and human subjects. To explore neural mechanisms underlying salicylate-induced tinnitus, we examined effects of NaSal on neural activities of the medial geniculate body (MGB), an auditory thalamic nucleus that provides the primary and immediate inputs to the auditory cortex, by using the whole-cell patch-clamp recording technique in MGB slices. Rats treated with NaSal (350 mg/kg) showed tinnitus-like behavior as revealed by the gap prepulse inhibition of acoustic startle (GPIAS) paradigm. NaSal (1.4 mM) decreased the membrane input resistance, hyperpolarized the resting membrane potential, suppressed current-evoked firing, changed the action potential, and depressed rebound depolarization in MGB neurons. NaSal also reduced the excitatory and inhibitory postsynaptic response in the MGB evoked by stimulating the brachium of the inferior colliculus. Our results demonstrate that NaSal alters neuronal intrinsic properties and reduces the synaptic transmission of the MGB, which may cause abnormal thalamic outputs to the auditory cortex and contribute to NaSal-induced tinnitus. PMID:23071681

  15. Prenatal Stress Enhances Excitatory Synaptic Transmission and Impairs Long-Term Potentiation in the Frontal Cortex of Adult Offspring Rats

    PubMed Central

    Sowa, Joanna; Bobula, Bartosz; Glombik, Katarzyna; Slusarczyk, Joanna; Basta-Kaim, Agnieszka; Hess, Grzegorz

    2015-01-01

    The effects of prenatal stress procedure were investigated in 3 months old male rats. Prenatally stressed rats showed depressive-like behavior in the forced swim test, including increased immobility, decreased mobility and decreased climbing. In ex vivo frontal cortex slices originating from prenatally stressed animals, the amplitude of extracellular field potentials (FPs) recorded in cortical layer II/III was larger, and the mean amplitude ratio of pharmacologically-isolated NMDA to the AMPA/kainate component of the field potential—smaller than in control preparations. Prenatal stress also resulted in a reduced magnitude of long-term potentiation (LTP). These effects were accompanied by an increase in the mean frequency, but not the mean amplitude, of spontaneous excitatory postsynaptic currents (sEPSCs) in layer II/III pyramidal neurons. These data demonstrate that stress during pregnancy may lead not only to behavioral disturbances, but also impairs the glutamatergic transmission and long-term synaptic plasticity in the frontal cortex of the adult offspring. PMID:25749097

  16. Retrograde Endocannabinoid Signaling Reduces GABAergic Synaptic Transmission to Gonadotropin-Releasing Hormone Neurons

    PubMed Central

    Farkas, Imre; Kalló, Imre; Deli, Levente; Vida, Barbara; Hrabovszky, Erik; Fekete, Csaba; Moenter, Suzanne M.; Watanabe, Masahiko; Liposits, Zsolt

    2010-01-01

    Cannabinoids suppress fertility via reducing hypothalamic GnRH output. γ-Aminobutyric acid (GABA)A receptor (GABAA-R)-mediated transmission is a major input to GnRH cells that can be excitatory. We hypothesized that cannabinoids act via inhibiting GABAergic input. We performed loose-patch electrophysiological studies of acute slices from adult male GnRH-green fluorescent protein transgenic mice. Bath application of type 1 cannabinoid receptor (CB1) agonist WIN55,212 decreased GnRH neuron firing rate. This action was detectable in presence of the glutamate receptor antagonist kynurenic acid but disappeared when bicuculline was also present, indicating GABAA-R involvement. In immunocytochemical experiments, CB1-immunoreactive axons formed contacts with GnRH neurons and a subset established symmetric synapses characteristic of GABAergic neurotransmission. Functional studies were continued with whole-cell patch-clamp electrophysiology in presence of tetrodotoxin. WIN55,212 decreased the frequency of GABAA-R-mediated miniature postsynaptic currents (mPSCs) (reflecting spontaneous vesicle fusion), which was prevented with the CB1 antagonist AM251, indicating collectively that activation of presynaptic CB1 inhibits GABA release. AM251 alone increased mPSC frequency, providing evidence that endocannabinoids tonically inhibit GABAA-R drive onto GnRH neurons. Increased mPSC frequency was absent when diacylglycerol lipase was blocked intracellularly with tetrahydrolipstatin, showing that tonic inhibition is caused by 2-arachidonoylglycerol production of GnRH neurons. CdCl2 in extracellular solution can maintain both action potentials and spontaneous vesicle fusion. Under these conditions, when endocannabinoid-mediated blockade of spontaneous vesicle fusion was blocked with AM251, GnRH neuron firing increased, revealing an endogenous endocannabinoid brake on GnRH neuron firing. Retrograde endocannabinoid signaling may represent an important mechanism under physiological and

  17. σ2-Adaptin Facilitates Basal Synaptic Transmission and Is Required for Regenerating Endo-Exo Cycling Pool Under High-Frequency Nerve Stimulation in Drosophila.

    PubMed

    Choudhury, Saumitra Dey; Mushtaq, Zeeshan; Reddy-Alla, Suneel; Balakrishnan, Sruthi S; Thakur, Rajan S; Krishnan, Kozhalmannom S; Raghu, Padinjat; Ramaswami, Mani; Kumar, Vimlesh

    2016-05-01

    The functional requirement of adapter protein 2 (AP2) complex in synaptic membrane retrieval by clathrin-mediated endocytosis is not fully understood. Here we isolated and functionally characterized a mutation that dramatically altered synaptic development. Based on the aberrant neuromuscular junction (NMJ) synapse, we named this mutation angur (a Hindi word meaning "grapes"). Loss-of-function alleles of angur show more than twofold overgrowth in bouton numbers and a dramatic decrease in bouton size. We mapped the angur mutation to σ2-adaptin, the smallest subunit of the AP2 complex. Reducing the neuronal level of any of the subunits of the AP2 complex or disrupting AP2 complex assembly in neurons phenocopied the σ2-adaptin mutation. Genetic perturbation of σ2-adaptin in neurons leads to a reversible temperature-sensitive paralysis at 38°. Electrophysiological analysis of the mutants revealed reduced evoked junction potentials and quantal content. Interestingly, high-frequency nerve stimulation caused prolonged synaptic fatigue at the NMJs. The synaptic levels of subunits of the AP2 complex and clathrin, but not other endocytic proteins, were reduced in the mutants. Moreover, bone morphogenetic protein (BMP)/transforming growth factor β (TGFβ) signaling was altered in these mutants and was restored by normalizing σ2-adaptin in neurons. Thus, our data suggest that (1) while σ2-adaptin facilitates synaptic vesicle (SV) recycling for basal synaptic transmission, its activity is also required for regenerating SVs during high-frequency nerve stimulation, and (2) σ2-adaptin regulates NMJ morphology by attenuating TGFβ signaling. PMID:26920756

  18. Autism-associated mutations in ProSAP2/Shank3 impair synaptic transmission and neurexin-neuroligin-mediated transsynaptic signaling.

    PubMed

    Arons, Magali H; Thynne, Charlotte J; Grabrucker, Andreas M; Li, Dong; Schoen, Michael; Cheyne, Juliette E; Boeckers, Tobias M; Montgomery, Johanna M; Garner, Craig C

    2012-10-24

    Mutations in several postsynaptic proteins have recently been implicated in the molecular pathogenesis of autism and autism spectrum disorders (ASDs), including Neuroligins, Neurexins, and members of the ProSAP/Shank family, thereby suggesting that these genetic forms of autism may share common synaptic mechanisms. Initial studies of ASD-associated mutations in ProSAP2/Shank3 support a role for this protein in glutamate receptor function and spine morphology, but these synaptic phenotypes are not universally penetrant, indicating that other core facets of ProSAP2/Shank3 function must underlie synaptic deficits in patients with ASDs. In the present study, we have examined whether the ability of ProSAP2/Shank3 to interact with the cytoplasmic tail of Neuroligins functions to coordinate pre/postsynaptic signaling through the Neurexin-Neuroligin signaling complex in hippocampal neurons of Rattus norvegicus. Indeed, we find that synaptic levels of ProSAP2/Shank3 regulate AMPA and NMDA receptor-mediated synaptic transmission and induce widespread changes in the levels of presynaptic and postsynaptic proteins via Neurexin-Neuroligin transsynaptic signaling. ASD-associated mutations in ProSAP2/Shank3 disrupt not only postsynaptic AMPA and NMDA receptor signaling but also interfere with the ability of ProSAP2/Shank3 to signal across the synapse to alter presynaptic structure and function. These data indicate that ASD-associated mutations in a subset of synaptic proteins may target core cellular pathways that coordinate the functional matching and maturation of excitatory synapses in the CNS. PMID:23100419

  19. Whisker-related afferents in superior colliculus.

    PubMed

    Castro-Alamancos, Manuel A; Favero, Morgana

    2016-05-01

    Rodents use their whiskers to explore the environment, and the superior colliculus is part of the neural circuits that process this sensorimotor information. Cells in the intermediate layers of the superior colliculus integrate trigeminotectal afferents from trigeminal complex and corticotectal afferents from barrel cortex. Using histological methods in mice, we found that trigeminotectal and corticotectal synapses overlap somewhat as they innervate the lower and upper portions of the intermediate granular layer, respectively. Using electrophysiological recordings and optogenetics in anesthetized mice in vivo, we showed that, similar to rats, whisker deflections produce two successive responses that are driven by trigeminotectal and corticotectal afferents. We then employed in vivo and slice experiments to characterize the response properties of these afferents. In vivo, corticotectal responses triggered by electrical stimulation of the barrel cortex evoke activity in the superior colliculus that increases with stimulus intensity and depresses with increasing frequency. In slices from adult mice, optogenetic activation of channelrhodopsin-expressing trigeminotectal and corticotectal fibers revealed that cells in the intermediate layers receive more efficacious trigeminotectal, than corticotectal, synaptic inputs. Moreover, the efficacy of trigeminotectal inputs depresses more strongly with increasing frequency than that of corticotectal inputs. The intermediate layers of superior colliculus appear to be tuned to process strong but infrequent trigeminal inputs and weak but more persistent cortical inputs, which explains features of sensory responsiveness, such as the robust rapid sensory adaptation of whisker responses in the superior colliculus. PMID:26864754

  20. Age-dependent actions of dopamine on inhibitory synaptic transmission in superficial layers of mouse prefrontal cortex.

    PubMed

    Paul, Kush; Cox, Charles L

    2013-03-01

    Numerous developmental changes in the nervous system occur during the first several weeks of the rodent lifespan. Therefore, many characteristics of neuronal function described at the cellular level from in vitro slice experiments conducted during this early time period may not generalize to adult ages. We investigated the effect of dopamine (DA) on inhibitory synaptic transmission in superficial layers of the medial prefrontal cortex (PFC) in prepubertal [postnatal age (P; days) 12-20], periadolescent (P30-48), and adult (P70-100) mice. The PFC is associated with higher-level cognitive functions, such as working memory, and is associated with initiation, planning, and execution of actions, as well as motivation and cognition. It is innervated by DA-releasing fibers that arise from the ventral tegmental area. In slices from prepubertal mice, DA produced a biphasic modulation of inhibitory postsynaptic currents (IPSCs) recorded in layer II/III pyramidal neurons. Activation of D2-like receptors leads to an early suppression of the evoked IPSC, which was followed by a longer-lasting facilitation of the IPSC mediated by D1-like DA receptors. In periadolescent mice, the D2 receptor-mediated early suppression was significantly smaller compared with the prepubertal animals and absent in adult animals. Furthermore, we found significant differences in the DA-mediated lasting enhancement of the inhibitory response among the developmental groups. Our findings suggest that behavioral paradigms that elicit dopaminergic release in the PFC differentially modulate inhibition of excitatory pyramidal neuron output in prepuberty compared with periadolescence and adulthood in the superficial layers (II/III) of the cortex. PMID:23221420

  1. Opioid Peptides Inhibit Excitatory But Not Inhibitory Synaptic Transmission in the Rat Dorsal Motor Nucleus of the Vagus

    PubMed Central

    Browning, Kirsteen N.; Kalyuzhny, Alexander E.; Travagli, R. Alberto

    2011-01-01

    Opioid peptides produce gastrointestinal inhibition and increase feeding when applied to the brainstem. The present studies were designed to determine the actions of opioid peptides on synaptic transmission within the dorsal motor nucleus of the vagus (DMV) and the localization of μ-opioid receptors. Whole-cell recordings were made from identified gastrointestinal-projecting DMV neurons in thin brainstem slices of the rat. Electrical stimulation of the nucleus of the tractus solitarius evoked EPSCs and IPSCs. In all neurons tested, methionine (Met)-enkephalin (0.003–30 μm) inhibited the peak amplitude of the EPSCs. The effect was prevented by naloxone (1 μm) as well as by naloxonazine (0.2 μm). An increase in the ratio of the evoked paired pulses indicated that the inhibition was attributable to actions at presynaptic receptors. This presynaptic inhibitory action was mimicked by [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (0.1 μm) and the analgesic dipeptide kyotorphin (10 μm) but not by cyclic[d-Pen2, d-Pen5]-enkephalin (1 μm) and trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]benzeneacetamide methanesulfonate (1 μm). In contrast, the amplitude of evoked IPSCs was not altered either by Met-enkephalin or by any of the opioid receptor-selective agonists. Immunohistochemical studies revealed that nerve terminals apposing DMV neurons showed immunoreactivity to μ-opioid receptors colocalized with glutamate immunoreactivity but not glutamic acid decarboxylase immunoreactivity. These results suggest that within the DMV, μ-opioid receptors are present on the nerve terminals of excitatory but not inhibitory inputs to GI motoneurons. Such specificity may imply that the central inhibitory action of opioid peptides on gastrointestinal function targets selected pathways. PMID:11943802

  2. Central dysmyelination reduces the temporal fidelity of synaptic transmission and the reliability of postsynaptic firing during high-frequency stimulation.

    PubMed

    Kim, Sei Eun; Turkington, Karl; Kushmerick, Christopher; Kim, Jun Hee

    2013-10-01

    Auditory brain stem circuits rely on fast, precise, and reliable neurotransmission to process auditory information. To determine the fundamental role of myelination in auditory brain stem function, we examined the evoked auditory brain stem response (ABR) from the Long Evans shaker (LES) rat, which lacks myelin due to a genetic deletion of myelin basic protein. In control rats, the ABR evoked by a click consisted of five well-defined waves (denoted waves I-V). In LES rats, waves I, IV, and V were present, but waves II and III were undetectable, indicating disrupted function in the earliest stages of central nervous system auditory processing. In addition, the developmental shortening of the interval between waves I and IV that normally occurs in control rats was arrested and resulted in a significant increase in the central conduction time in LES rats. In brain stem slices, action potential transmission between the calyx of Held terminals and the medial nucleus of the trapezoid body (MNTB) neurons was delayed and less reliable in LES rats, although the resting potential, threshold, input resistance, and length of the axon initial segment of the postsynaptic MNTB neurons were normal. The amplitude of glutamatergic excitatory postsynaptic currents (EPSCs) and the degree of synaptic depression during high-frequency stimulation were not different between LES rats and controls, but LES rats exhibited a marked slow component to the EPSC decay and a much higher rate of presynaptic failures. Together, these results indicate that loss of myelin disrupts brain stem auditory processing, increasing central conduction time and reducing the reliability of neurotransmission. PMID:23843435

  3. Changes in synaptic transmission and protein expression in the brains of adult offspring after prenatal inhibition of the kynurenine pathway.

    PubMed

    Forrest, C M; Khalil, O S; Pisar, M; McNair, K; Kornisiuk, E; Snitcofsky, M; Gonzalez, N; Jerusalinsky, D; Darlington, L G; Stone, T W

    2013-12-19

    During early brain development, N-methyl-d-aspartate (NMDA) receptors are involved in cell migration, neuritogenesis, axon guidance and synapse formation, but the mechanisms which regulate NMDA receptor density and function remain unclear. The kynurenine pathway of tryptophan metabolism includes an agonist (quinolinic acid) and an antagonist (kynurenic acid) at NMDA receptors and we have previously shown that inhibition of the pathway using the kynurenine-3-monoxygenase inhibitor Ro61-8048 in late gestation produces rapid changes in protein expression in the embryos and effects on synaptic transmission lasting until postnatal day 21 (P21). The present study sought to determine whether any of these effects are maintained into adulthood. After prenatal injections of Ro61-8048 the litter was allowed to develop to P60 when some offspring were euthanized and the brains removed for examination. Analysis of protein expression by Western blotting revealed significantly reduced expression of the GluN2A subunit (32%) and the morphogenetic protein sonic hedgehog (31%), with a 29% increase in the expression of doublecortin, a protein associated with neurogenesis. No changes were seen in mRNA abundance using quantitative real-time polymerase chain reaction. Neuronal excitability was normal in the CA1 region of hippocampal slices but paired-pulse stimulation revealed less inhibition at short interpulse intervals. The amount of long-term potentiation was decreased by 49% in treated pups and recovery after low-frequency stimulation was delayed. The results not only strengthen the view that basal, constitutive kynurenine metabolism is involved in normal brain development, but also show that changes induced prenatally can affect the brains of adult offspring and those changes are quite different from those seen previously at weaning (P21). Those changes may be mediated by altered expression of NMDAR subunits and sonic hedgehog. PMID:24076085

  4. Excitatory and inhibitory synaptic transmission is differentially influenced by two ortho-substituted polychlorinated biphenyls in the hippocampal slice preparation

    SciTech Connect

    Kim, Kyung Ho; Inan, Salim Yalcin; Berman, Robert F.; Pessah, Isaac N.

    2009-06-01

    Exposure to polychlorinated biphenyls impairs cognition and behavior in children. Two environmental PCBs 2,2',3,3',4,4',5-heptachlorobiphenyl (PCB170) and 2,2',3,5',6-pentachlorobiphenyl (PCB95) were examined in vitro for influences on synaptic transmission in rat hippocampal slices. Field excitatory postsynaptic potentials (fEPSPs) were recorded in the CA1 region using a multi-electrode array. Perfusion with PCB170 (10 nM) had no effect on fEPSP slope relative to baseline period, whereas (100 nM) initially enhanced then depressed fEPSP slope. Perfusion of PCB95 (10 or 100 nM) persistently enhanced fEPSP slope > 200%, an effect that could be inhibited by dantrolene, a drug that attenuates ryanodine receptor signaling. Perfusion with picrotoxin (PTX) to block GABA neurotransmission resulted in a modest increase in fEPSP slope, whereas PTX + PCB170 (1-100 nM) persistently enhanced fEPSP slope in a dose dependent manner. fEPSP slope reached > 250% of baseline period in the presence of PTX + 100 nM PCB170, conditions that evoked marked epileptiform after-potential discharges. PCB95 and PCB170 were found to differentially influence the Ca{sup 2+}-dependence of [{sup 3}H]ryanodine-binding to hippocampal ryanodine receptors. Non-coplanar PCB congeners can differentially alter neurotransmission in a manner suggesting they can elicit imbalances between inhibitory and excitatory circuits within the hippocampus. Differential sensitization of ryanodine receptors by Ca{sup 2+} appears to mediate, at least in part, hippocampal excitotoxicity by non-coplanar PCBs.

  5. [Functional changes in the chromatophilic substance and RNA content of the cytoplasm of sympathetic neurons in the presence of synaptic transmission disorders].

    PubMed

    Gorelikov, P L

    1981-07-01

    At a disturbed synaptic transmission in the rabbit cranial sympathetic cervical ganglion in histological sections stained with gallocyanin chrome alum, distribution of the chromatophilic substance was studied, and in the same sections RNA content was determined cytophotometrically. In ganglia of intact animals three groups of neurons with various structure of the chromatophilic substance were defined and their quantitative relation was stated. After administration of various doses of the ganglio-blockader, there was an essential difference in the changes of the chromatophilic substance, but they were unitypical in mono- and double-nuclear neurons. In the same cells, the synaptic blockade produced a rather great increase in the content of the cytoplasmic RNA. Comparing the quantitative data with the visual observation results, a conclusion was made that it is not reliable to use any changes in the chromatophilic substance as a criterium on quantitative shifts in the neuronal RNA and for the morphological test of the neuronal functional activity. PMID:6170279

  6. Dysfunctional Astrocytic and Synaptic Regulation of Hypothalamic Glutamatergic Transmission in a Mouse Model of Early-Life Adversity: Relevance to Neurosteroids and Programming of the Stress Response

    PubMed Central

    Gunn, Benjamin G.; Cunningham, Linda; Cooper, Michelle A.; Corteen, Nicole L.; Seifi, Mohsen; Swinny, Jerome D.; Lambert, Jeremy J.

    2013-01-01

    Adverse early-life experiences, such as poor maternal care, program an abnormal stress response that may involve an altered balance between excitatory and inhibitory signals. Here, we explored how early-life stress (ELS) affects excitatory and inhibitory transmission in corticotrophin-releasing factor (CRF)-expressing dorsal-medial (mpd) neurons of the neonatal mouse hypothalamus. We report that ELS associates with enhanced excitatory glutamatergic transmission that is manifested as an increased frequency of synaptic events and increased extrasynaptic conductance, with the latter associated with dysfunctional astrocytic regulation of glutamate levels. The neurosteroid 5α-pregnan-3α-ol-20-one (5α3α-THPROG) is an endogenous, positive modulator of GABAA receptors (GABAARs) that is abundant during brain development and rises rapidly during acute stress, thereby enhancing inhibition to curtail stress-induced activation of the hypothalamic-pituitary-adrenocortical axis. In control mpd neurons, 5α3α-THPROG potently suppressed neuronal discharge, but this action was greatly compromised by prior ELS exposure. This neurosteroid insensitivity did not primarily result from perturbations of GABAergic inhibition, but rather arose functionally from the increased excitatory drive onto mpd neurons. Previous reports indicated that mice (dams) lacking the GABAAR δ subunit (δ0/0) exhibit altered maternal behavior. Intriguingly, δ0/0 offspring showed some hallmarks of abnormal maternal care that were further exacerbated by ELS. Moreover, in common with ELS, mpd neurons of δ0/0 pups exhibited increased synaptic and extrasynaptic glutamatergic transmission and consequently a blunted neurosteroid suppression of neuronal firing. This study reveals that increased synaptic and tonic glutamatergic transmission may be a common maladaptation to ELS, leading to enhanced excitation of CRF-releasing neurons, and identifies neurosteroids as putative early regulators of the stress

  7. Systemic dexmedetomidine augments inhibitory synaptic transmission in the superficial dorsal horn through activation of descending noradrenergic control: an in vivo patch-clamp analysis of analgesic mechanisms.

    PubMed

    Funai, Yusuke; Pickering, Anthony Edward; Uta, Daisuke; Nishikawa, Kiyonobu; Mori, Takashi; Asada, Akira; Imoto, Keiji; Furue, Hidemasa

    2014-03-01

    α2-Adrenoceptors are widely distributed throughout the central nervous system (CNS) and the systemic administration of α2-agonists such as dexmedetomidine produces clinically useful, centrally mediated sedation and analgesia; however, these same actions also limit the utility of these agents (ie, unwanted sedative actions). Despite a wealth of data on cellular and synaptic actions of α2-agonists in vitro, it is not known which neuronal circuits are modulated in vivo to produce the analgesic effect. To address this issue, we made in vivo recordings of membrane currents and synaptic activities in superficial spinal dorsal horn neurons and examined their responses to systemic dexmedetomidine. We found that dexmedetomidine at doses that produce analgesia (<10 μg/kg) enhanced inhibitory postsynaptic transmission within the superficial dorsal horn without altering excitatory synaptic transmission or evoking direct postsynaptic membrane currents. In contrast, higher doses of dexmedetomidine (>10 μg/kg) induced outward currents by a direct postsynaptic action. The dexmedetomidine-mediated inhibitory postsynaptic current facilitation was not mimicked by spinal application of dexmedetomidine and was absent in spinalized rats, suggesting that it acts at a supraspinal site. Furthermore, it was inhibited by spinal application of the α1-antagonist prazosin. In the brainstem, low doses of systemic dexmedetomidine produced an excitation of locus coeruleus neurons. These results suggest that systemic α2-adrenoceptor stimulation may facilitate inhibitory synaptic responses in the superficial dorsal horn to produce analgesia mediated by activation of the pontospinal noradrenergic inhibitory system. This novel mechanism may provide new targets for intervention, perhaps allowing analgesic actions to be dissociated from excessive sedation. PMID:24355412

  8. Systemic dexmedetomidine augments inhibitory synaptic transmission in the superficial dorsal horn through activation of descending noradrenergic control: an in vivo patch-clamp analysis of analgesic mechanisms

    PubMed Central

    Funai, Yusuke; Pickering, Anthony Edward; Uta, Daisuke; Nishikawa, Kiyonobu; Mori, Takashi; Asada, Akira; Imoto, Keiji; Furue, Hidemasa

    2014-01-01

    α2-adrenoceptors are widely distributed throughout the central nervous system (CNS) and the systemic administration of α2-agonists such as dexmedetomidine produces clinically useful, centrally-mediated sedation and analgesia; however, these same actions also limit the utility of these agents (ie unwanted sedative actions). Despite a wealth of data on cellular and synaptic actions of α2-agonists in vitro, it is not known which neuronal circuits are modulated in vivo to produce the analgesic effect. To address this issue, we made in vivo recordings of membrane currents and synaptic activities in superficial spinal dorsal horn neurons and examined their responses to systemic dexmedetomidine. We found that dexmedetomidine at doses that produce analgesia (<10 μg/kg) enhanced inhibitory postsynaptic transmission within the superficial dorsal horn without altering excitatory synaptic transmission or evoking direct postsynaptic membrane currents. In contrast, higher doses of dexmedetomidine (>10 μg/kg) induced outward currents by a direct postsynaptic action. The dexmedetomidine-mediated inhibitory postsynaptic current (IPSC) facilitation was not mimicked by spinal application of dexmedetomidine and was absent in spinalized rats, suggesting it acts at a supraspinal site. Further it was inhibited by spinal application of the α1-antagonist prazosin. In the brain stem, low doses of systemic dexmedetomidine produced an excitation of locus coeruleus neurons. These results suggest that systemic α2-adrenoceptor stimulation may facilitate inhibitory synaptic responses in the superficial dorsal horn to produce analgesia mediated by activation of the pontospinal noradrenergic inhibitory system. This novel mechanism may provide new targets for intervention perhaps allowing analgesic actions to be dissociated from excessive sedation. PMID:24355412

  9. Interplay of cell-autonomous and non-autonomous mechanisms tailors synaptic connectivity of converging axons in vivo

    PubMed Central

    Okawa, Haruhisa; Santina, Luca Della; Schwartz, Gregory W.; Rieke, Fred; Wong, Rachel O. L.

    2014-01-01

    Summary Neurons receive input from diverse afferents but form stereotypic connections with axons of each type to execute their precise functions. Developmental mechanisms that specify the connectivity of individual axons across populations of converging afferents are not well-understood. Here, we untangled the contributions of activity-dependent and independent interactions that regulate connections of two input types providing major and minor input onto a neuron. Individual transmission-deficient retinal bipolar cells (BCs) reduced synapses with retinal ganglion cells (RGCs), but active BCs of the same type sharing the dendrite surprisingly did not compensate for this loss. Genetic ablation of some BC neighbors resulted in increased synaptogenesis by the remaining axons in a transmission-independent manner. Presence but not transmission of the major BC input also dissuades wiring with the minor input, and with synaptically-compatible but functionally-mismatched afferents. Cell-autonomous, activity-dependent and non-autonomous, activity-independent mechanisms thus together tailor connections of individual axons amongst converging inner retinal afferents. PMID:24698272

  10. In pursuit of P2X3 antagonists: novel therapeutics for chronic pain and afferent sensitization.

    PubMed

    Ford, Anthony P

    2012-02-01

    Treating pain by inhibiting ATP activation of P2X3-containing receptors heralds an exciting new approach to pain management, and Afferent's program marks the vanguard in a new class of drugs poised to explore this approach to meet the significant unmet needs in pain management. P2X3 receptor subunits are expressed predominately and selectively in so-called C- and Aδ-fiber primary afferent neurons in most tissues and organ systems, including skin, joints, and hollow organs, suggesting a high degree of specificity to the pain sensing system in the human body. P2X3 antagonists block the activation of these fibers by ATP and stand to offer an alternative approach to the management of pain and discomfort. In addition, P2X3 is expressed pre-synaptically at central terminals of C-fiber afferent neurons, where ATP further sensitizes transmission of painful signals. As a result of the selectivity of the expression of P2X3, there is a lower likelihood of adverse effects in the brain, gastrointestinal, or cardiovascular tissues, effects which remain limiting factors for many existing pain therapeutics. In the periphery, ATP (the factor that triggers P2X3 receptor activation) can be released from various cells as a result of tissue inflammation, injury or stress, as well as visceral organ distension, and stimulate these local nociceptors. The P2X3 receptor rationale has aroused a formidable level of investigation producing many reports that clarify the potential role of ATP as a pain mediator, in chronic sensitized states in particular, and has piqued the interest of pharmaceutical companies. P2X receptor-mediated afferent activation has been implicated in inflammatory, visceral, and neuropathic pain states, as well as in airways hyperreactivity, migraine, itch, and cancer pain. It is well appreciated that oftentimes new mechanisms translate poorly from models into clinical efficacy and effectiveness; however, the breadth of activity seen from P2X3 inhibition in models offers

  11. Reactive oxygen species enhance excitatory synaptic transmission in rat spinal dorsal horn neurons by activating TRPA1 and TRPV1 channels.

    PubMed

    Nishio, N; Taniguchi, W; Sugimura, Y K; Takiguchi, N; Yamanaka, M; Kiyoyuki, Yasukuni; Yamada, H; Miyazaki, N; Yoshida, M; Nakatsuka, T

    2013-09-01

    Central neuropathic pain (CNP) in the spinal cord, such as chronic pain after spinal cord injury (SCI), is an incurable ailment. However, little is known about the spinal cord mechanisms underlying CNP. Recently, reactive oxygen species (ROS) have been recognized to play an important role in CNP of the spinal cord. However, it is unclear how ROS affect synaptic transmission in the dorsal horn of the spinal cord. To clarify how ROS impact on synaptic transmission, we investigated the effects of ROS on synaptic transmission in rat spinal cord substantia gelatinosa (SG) neurons using whole-cell patch-clamp recordings. Administration of tert-butyl hydroperoxide (t-BOOH), an ROS donor, into the spinal cord markedly increased the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) in SG neurons. This t-BOOH-induced enhancement was not suppressed by the Na(+) channel blocker tetrodotoxin. However, in the presence of a non-N-methyl-D-aspartate glutamate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, t-BOOH did not generate any sEPSCs. Furthermore, in the presence of a transient receptor potential ankyrin 1 (TRPA1) channel antagonist (HC-030031) or a transient receptor potential vanilloid 1 (TRPV1) channel antagonist (capsazepine or AMG9810), the t-BOOH-induced increase in the frequency of sEPSCs was inhibited. These results indicate that ROS enhance the spontaneous release of glutamate from presynaptic terminals onto SG neurons through TRPA1 and TRPV1 channel activation. Excessive activation of these ion channels by ROS may induce central sensitization in the spinal cord and result in chronic pain such as that following SCI. PMID:23707800

  12. Adenosine receptor activation is responsible for prolonged depression of synaptic transmission after spreading depolarization in brain slices.

    PubMed

    Lindquist, B E; Shuttleworth, C W

    2012-10-25

    Spreading depolarization (SD) is a slowly propagating, coordinated depolarization of brain tissue, which is followed by a transient (5-10min) depression of synaptic activity. The mechanisms for synaptic depression after SD are incompletely understood. We examined the relative contributions of action potential failure and adenosine receptor activation to the suppression of evoked synaptic activity in murine brain slices. Focal micro-injection of potassium chloride (KCl) was used to induce SD and synaptic potentials were evoked by electrical stimulation of Schaffer collateral inputs to hippocampal area Cornu Ammonis area 1 (CA1). SD was accompanied by loss of both presynaptic action potentials (as assessed from fiber volleys) and field excitatory postsynaptic potentials (fEPSPs). Fiber volleys recovered rapidly upon neutralization of the extracellular direct current (DC) potential, whereas fEPSPs underwent a secondary suppression phase lasting several minutes. Paired-pulse ratio was elevated during the secondary suppression period, consistent with a presynaptic mechanism of synaptic depression. A transient increase in extracellular adenosine concentration was detected during the period of secondary suppression. Antagonists of adenosine A1 receptors (8-cyclopentyl-1,3-dipropylxanthine [DPCPX] or 8-cyclopentyl-1,3-dimethylxanthine [8-CPT]) greatly accelerated fEPSP recovery and abolished increases in paired-pulse ratio normally observed after SD. The duration of fEPSP suppression was correlated with both the duration of the DC shift and the area of tissue depolarized, consistent with the model that adenosine accumulates in proportion to the metabolic burden of SD. These results suggest that in brain slices, the duration of the DC shift approximately defined the period of action potential failure, but the secondary depression of evoked responses was in large part due to endogenous adenosine accumulation after SD. PMID:22864185

  13. Botulinum and Tetanus Neurotoxin-Induced Blockade of Synaptic Transmission in Networked Cultures of Human and Rodent Neurons.

    PubMed

    Beske, Phillip H; Bradford, Aaron B; Grynovicki, Justin O; Glotfelty, Elliot J; Hoffman, Katie M; Hubbard, Kyle S; Tuznik, Kaylie M; McNutt, Patrick M

    2016-02-01

    Clinical manifestations of tetanus and botulism result from an intricate series of interactions between clostridial neurotoxins (CNTs) and nerve terminal proteins that ultimately cause proteolytic cleavage of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and functional blockade of neurotransmitter release. Although detection of cleaved SNARE proteins is routinely used as a molecular readout of CNT intoxication in cultured cells, impaired synaptic function is the pathophysiological basis of clinical disease. Work in our laboratory has suggested that the blockade of synaptic neurotransmission in networked neuron cultures offers a phenotypic readout of CNT intoxication that more closely replicates the functional endpoint of clinical disease. Here, we explore the value of measuring spontaneous neurotransmission frequencies as novel and functionally relevant readouts of CNT intoxication. The generalizability of this approach was confirmed in primary neuron cultures as well as human and mouse stem cell-derived neurons exposed to botulinum neurotoxin serotypes A-G and tetanus neurotoxin. The sensitivity and specificity of synaptic activity as a reporter of intoxication was evaluated in assays representing the principal clinical and research purposes of in vivo studies. Our findings confirm that synaptic activity offers a novel and functionally relevant readout for the in vitro characterizations of CNTs. They further suggest that the analysis of synaptic activity in neuronal cell cultures can serve as a surrogate for neuromuscular paralysis in the mouse lethal assay, and therefore is expected to significantly reduce the need for terminal animal use in toxin studies and facilitate identification of candidate therapeutics in cell-based screening assays. PMID:26615023

  14. Short-term synaptic plasticity contributes to the temporal filtering of electrosensory information.

    PubMed

    Fortune, E S; Rose, G J

    2000-09-15

    Short-term synaptic depression and facilitation often are elicited by different temporal patterns of activity. Short-term plasticity may contribute, therefore, to temporal filtering by impeding synaptic transmission for some temporal patterns of activity and facilitating transmission for other patterns. We examined this hypothesis by investigating whether short-term plasticity contributes to the temporal filtering properties of midbrain electrosensory neurons. Postsynaptic potentials were recorded in response to sensory stimuli and to direct stimulation of afferents, in vivo. Stimulating afferents with pairs of pulses at a rate of 20 pairs/sec ["tetanus (20 Hz)"] induced PSP depression. This PSP depression was similar to that observed for electrosensory stimuli of the same temporal frequency. Analysis of PSPs elicited by a pair of pulses that preceded versus followed the tetanus revealed that PSP depression was caused by synaptic depression, not by a loss of facilitation. Behavioral studies indicate that fish can detect slow changes in signal amplitude (slow AM) in backgrounds of fast fluctuations. Correspondingly, midbrain neurons respond well to slow AM even in the presence of fast AM. In many neurons, facilitation enhanced responses to trains (8-10 pulses; 100 Hz) that represented activity patterns elicited by slow AM, despite induction of synaptic depression by a tetanus (20 Hz). The interplay between synaptic depression and facilitation, therefore, can act as a filter of temporal information. Some neurons that showed little facilitation nonetheless responded to low temporal-frequency information after induction of depression by fast information; this likely results from the convergence of inputs with different temporal filtering properties. PMID:10995860

  15. Activation of Phosphatidylinositol-Linked Dopamine Receptors Induces a Facilitation of Glutamate-Mediated Synaptic Transmission in the Lateral Entorhinal Cortex

    PubMed Central

    Glovaci, Iulia; Chapman, C. Andrew

    2015-01-01

    The lateral entorhinal cortex receives strong inputs from midbrain dopamine neurons that can modulate its sensory and mnemonic function. We have previously demonstrated that 1 µM dopamine facilitates synaptic transmission in layer II entorhinal cortex cells via activation of D1-like receptors, increased cAMP-PKA activity, and a resulting enhancement of AMPA-receptor mediated currents. The present study assessed the contribution of phosphatidylinositol (PI)-linked D1 receptors to the dopaminergic facilitation of transmission in layer II of the rat entorhinal cortex, and the involvement of phospholipase C activity and release of calcium from internal stores. Whole-cell patch-clamp recordings of glutamate-mediated evoked excitatory postsynaptic currents were obtained from pyramidal and fan cells. Activation of D1-like receptors using SKF38393, SKF83959, or 1 µM dopamine induced a reversible facilitation of EPSCs which was abolished by loading cells with either the phospholipase C inhibitor U-73122 or the Ca2+ chelator BAPTA. Neither the L-type voltage-gated Ca2+ channel blocker nifedipine, nor the L/N-type channel blocker cilnidipine, blocked the facilitation of synaptic currents. However, the facilitation was blocked by blocking Ca2+ release from internal stores via inositol 1,4,5-trisphosphate (InsP3) receptors or ryanodine receptors. Follow-up studies demonstrated that inhibiting CaMKII activity with KN-93 failed to block the facilitation, but that application of the protein kinase C inhibitor PKC(19-36) completely blocked the dopamine-induced facilitation. Overall, in addition to our previous report indicating a role for the cAMP-PKA pathway in dopamine-induced facilitation of synaptic transmission, we demonstrate here that the dopaminergic facilitation of synaptic responses in layer II entorhinal neurons also relies on a signaling cascade dependent on PI-linked D1 receptors, PLC, release of Ca2+ from internal stores, and PKC activation which is likely dependent

  16. Defective synaptic transmission and structure in the dentate gyrus and selective fear memory impairment in the Rsk2 mutant mouse model of Coffin-Lowry syndrome.

    PubMed

    Morice, Elise; Farley, Séverine; Poirier, Roseline; Dallerac, Glenn; Chagneau, Carine; Pannetier, Solange; Hanauer, André; Davis, Sabrina; Vaillend, Cyrille; Laroche, Serge

    2013-10-01

    The Coffin-Lowry syndrome (CLS) is a syndromic form of intellectual disability caused by loss-of-function of the RSK2 serine/threonine kinase encoded by the rsk2 gene. Rsk2 knockout mice, a murine model of CLS, exhibit spatial learning and memory impairments, yet the underlying neural mechanisms are unknown. In the current study, we examined the performance of Rsk2 knockout mice in cued, trace and contextual fear memory paradigms and identified selective deficits in the consolidation and reconsolidation of hippocampal-dependent fear memories as task difficulty and hippocampal demand increase. Electrophysiological, biochemical and electron microscopy analyses were carried out in the dentate gyrus of the hippocampus to explore potential alterations in neuronal functions and structure. In vivo and in vitro electrophysiology revealed impaired synaptic transmission, decreased network excitability and reduced AMPA and NMDA conductance in Rsk2 knockout mice. In the absence of RSK2, standard measures of short-term and long-term potentiation (LTP) were normal, however LTP-induced CREB phosphorylation and expression of the transcription factors EGR1/ZIF268 were reduced and that of the scaffolding protein SHANK3 was blocked, indicating impaired activity-dependent gene regulation. At the structural level, the density of perforated and non-perforated synapses and of multiple spine boutons was not altered, however, a clear enlargement of spine neck width and post-synaptic densities indicates altered synapse ultrastructure. These findings show that RSK2 loss-of-function is associated in the dentate gyrus with multi-level alterations that encompass modifications of glutamate receptor channel properties, synaptic transmission, plasticity-associated gene expression and spine morphology, providing novel insights into the mechanisms contributing to cognitive impairments in CLS. PMID:23742761

  17. Ventral Tegmental Area Afferents and Drug-Dependent Behaviors

    PubMed Central

    Oliva, Idaira; Wanat, Matthew J.

    2016-01-01

    Drug-related behaviors in both humans and rodents are commonly thought to arise from aberrant learning processes. Preclinical studies demonstrate that the acquisition and expression of many drug-dependent behaviors involves the ventral tegmental area (VTA), a midbrain structure comprised of dopamine, GABA, and glutamate neurons. Drug experience alters the excitatory and inhibitory synaptic input onto VTA dopamine neurons, suggesting a critical role for VTA afferents in mediating the effects of drugs. In this review, we present evidence implicating the VTA in drug-related behaviors, highlight the diversity of neuronal populations in the VTA, and discuss the behavioral effects of selectively manipulating VTA afferents. Future experiments are needed to determine which VTA afferents and what neuronal populations in the VTA mediate specific drug-dependent behaviors. Further studies are also necessary for identifying the afferent-specific synaptic alterations onto dopamine and non-dopamine neurons in the VTA following drug administration. The identification of neural circuits and adaptations involved with drug-dependent behaviors can highlight potential neural targets for pharmacological and deep brain stimulation interventions to treat substance abuse disorders. PMID:27014097

  18. Loss of neuronal GSK3β reduces dendritic spine stability and attenuates excitatory synaptic transmission via β-catenin.

    PubMed

    Ochs, S M; Dorostkar, M M; Aramuni, G; Schön, C; Filser, S; Pöschl, J; Kremer, A; Van Leuven, F; Ovsepian, S V; Herms, J

    2015-04-01

    Central nervous glycogen synthase kinase 3β (GSK3β) is implicated in a number of neuropsychiatric diseases, such as bipolar disorder, depression, schizophrenia, fragile X syndrome or anxiety disorder. Many drugs employed to treat these conditions inhibit GSK3β either directly or indirectly. We studied how conditional knockout of GSK3β affected structural synaptic plasticity. Deletion of the GSK3β gene in a subset of cortical and hippocampal neurons in adult mice led to reduced spine density. In vivo imaging revealed that this was caused by a loss of persistent spines, whereas stabilization of newly formed spines was reduced. In electrophysiological recordings, these structural alterations correlated with a considerable drop in the frequency and amplitude of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-dependent miniature excitatory postsynaptic currents. Expression of constitutively active β-catenin caused reduction in spine density and electrophysiological alterations similar to GSK3β knockout, suggesting that the effects of GSK3β knockout were mediated by the accumulation of β-catenin. In summary, changes of dendritic spines, both in quantity and in morphology, are correlates of experience-dependent synaptic plasticity; thus, these results may help explain the mechanism of action of psychotropic drugs inhibiting GSK3β. PMID:24912492

  19. Sex differences in cerebellar synaptic transmission and sex-specific responses to autism-linked Gabrb3 mutations in mice

    PubMed Central

    Mercer, Audrey A; Palarz, Kristin J; Tabatadze, Nino; Woolley, Catherine S; Raman, Indira M

    2016-01-01

    Neurons of the cerebellar nuclei (CbN) transmit cerebellar signals to premotor areas. The cerebellum expresses several autism-linked genes, including GABRB3, which encodes GABAA receptor β3 subunits and is among the maternal alleles deleted in Angelman syndrome. We tested how this Gabrb3 m-/p+ mutation affects CbN physiology in mice, separating responses of males and females. Wild-type mice showed sex differences in synaptic excitation, inhibition, and intrinsic properties. Relative to females, CbN cells of males had smaller synaptically evoked mGluR1/5-dependent currents, slower Purkinje-mediated IPSCs, and lower spontaneous firing rates, but rotarod performances were indistinguishable. In mutant CbN cells, IPSC kinetics were unchanged, but mutant males, unlike females, showed enlarged mGluR1/5 responses and accelerated spontaneous firing. These changes appear compensatory, since mutant males but not females performed indistinguishably from wild-type siblings on the rotarod task. Thus, sex differences in cerebellar physiology produce similar behavioral output, but provide distinct baselines for responses to mutations. DOI: http://dx.doi.org/10.7554/eLife.07596.001 PMID:27077953

  20. 5-HT7 receptors as modulators of neuronal excitability, synaptic transmission and plasticity: physiological role and possible implications in autism spectrum disorders

    PubMed Central

    Ciranna, Lucia; Catania, Maria Vincenza

    2014-01-01

    Serotonin type 7 receptors (5-HT7) are expressed in several brain areas, regulate brain development, synaptic transmission and plasticity, and therefore are involved in various brain functions such as learning and memory. A number of studies suggest that 5-HT7 receptors could be potential pharmacotherapeutic target for cognitive disorders. Several abnormalities of serotonergic system have been described in patients with autism spectrum disorder (ASD), including abnormal activity of 5-HT transporter, altered blood and brain 5-HT levels, reduced 5-HT synthesis and altered expression of 5-HT receptors in the brain. A specific role for 5-HT7 receptors in ASD has not yet been demonstrated but some evidence implicates their possible involvement. We have recently shown that 5-HT7 receptor activation rescues hippocampal synaptic plasticity in a mouse model of Fragile X Syndrome, a monogenic cause of autism. Several other studies have shown that 5-HT7 receptors modulate behavioral flexibility, exploratory behavior, mood disorders and epilepsy, which include core and co-morbid symptoms of ASD. These findings further suggest an involvement of 5-HT7 receptors in ASD. Here, we review the physiological roles of 5-HT7 receptors and their implications in Fragile X Syndrome and other ASD. PMID:25221471

  1. Amplification of neuromuscular transmission by methylprednisolone involves activation of presynaptic facilitatory adenosine A2A receptors and redistribution of synaptic vesicles.

    PubMed

    Oliveira, L; Costa, A C; Noronha-Matos, J B; Silva, I; Cavalcante, W L G; Timóteo, M A; Corrado, A P; Dal Belo, C A; Ambiel, C R; Alves-do-Prado, W; Correia-de-Sá, P

    2015-02-01

    The mechanisms underlying improvement of neuromuscular transmission deficits by glucocorticoids are still a matter of debate despite these compounds have been used for decades in the treatment of autoimmune myasthenic syndromes. Besides their immunosuppressive action, corticosteroids may directly facilitate transmitter release during high-frequency motor nerve activity. This effect coincides with the predominant adenosine A2A receptor tonus, which coordinates the interplay with other receptors (e.g. muscarinic) on motor nerve endings to sustain acetylcholine (ACh) release that is required to overcome tetanic neuromuscular depression in myasthenics. Using myographic recordings, measurements of evoked [(3)H]ACh release and real-time video microscopy with the FM4-64 fluorescent dye, results show that tonic activation of facilitatory A2A receptors by endogenous adenosine accumulated during 50 Hz bursts delivered to the rat phrenic nerve is essential for methylprednisolone (0.3 mM)-induced transmitter release facilitation, because its effect was prevented by the A2A receptor antagonist, ZM 241385 (10 nM). Concurrent activation of the positive feedback loop operated by pirenzepine-sensitive muscarinic M1 autoreceptors may also play a role, whereas the corticosteroid action is restrained by the activation of co-expressed inhibitory M2 and A1 receptors blocked by methoctramine (0.1 μM) and DPCPX (2.5 nM), respectively. Inhibition of FM4-64 loading (endocytosis) by methylprednisolone following a brief tetanic stimulus (50 Hz for 5 s) suggests that it may negatively modulate synaptic vesicle turnover, thus increasing the release probability of newly recycled vesicles. Interestingly, bulk endocytosis was rehabilitated when methylprednisolone was co-applied with ZM241385. Data suggest that amplification of neuromuscular transmission by methylprednisolone may involve activation of presynaptic facilitatory adenosine A2A receptors by endogenous adenosine leading to synaptic

  2. Potentiation of Acetylcholine-Mediated Facilitation of Inhibitory Synaptic Transmission by an Azaindolizione Derivative, ZSET1446 (ST101), in the Rat Hippocampus.

    PubMed

    Takeda, Kentaro; Yamaguchi, Yoshimasa; Hino, Masataka; Kato, Fusao

    2016-02-01

    The integrity of the hippocampal network depends on the coordination of excitatory and inhibitory signaling, which are under dynamic control by various regulatory influences such as the cholinergic systems. ZSET1446 (ST101; spiro[imidazo[1,2-a]pyridine-3,2-indan]-2(3H)-one) is a newly synthesized azaindolizinone derivative that significantly improves learning deficits in various types of Alzheimer disease (AD) models in rats. We examined the effect of ZSET1446 on the nicotinic acetylcholine (ACh) receptor (nAChR)-mediated regulation of synaptic transmission in hippocampal slices of rats. ZSET1446 significantly potentiated the facilitatory effect of nicotine and ACh on the frequency of spontaneous postsynaptic currents (sPSCs) recorded in CA1 pyramidal neurons with a maximum effect at 100 pM (tested range, 10 pM-1000 pM). The basal sPSC frequency without ACh was not affected. Such potentiation by ZSET1446 was observed in both the pharmacologic isolations of inhibitory and excitatory sPSCs and markedly reduced by blockade of either α7 or α4β2 nAChRs. ZSET1446 did not affect ACh-activated inward currents or depolarization of interneurons in the stratum radiatum and the lacunosum moleculare. These results indicate that ZSET1446 potentiates the nicotine-mediated enhancement of synaptic transmission in the hippocampal neurons without affecting nAChRs themselves, providing a novel possible mechanism of procognitive action that might improve learning deficits in clinical therapy. PMID:26578264

  3. Virtual leak channels modulate firing dynamics and synaptic integration in rat sympathetic neurons: implications for ganglionic transmission in vivo

    PubMed Central

    Springer, Mitchell G; Kullmann, Paul H M; Horn, John P

    2015-01-01

    Abstract The excitability of rat sympathetic neurons and integration of nicotinic EPSPs were compared in primary cell culture and in the acutely isolated intact superior cervical ganglion using whole cell patch electrode recordings. When repetitive firing was classified by Hodgkin's criteria in cultured cells, 18% displayed tonic class 1 excitability, 36% displayed adapting class 2 excitability and 46% displayed phasic class 3 excitability. In the intact ganglion, 71% of cells were class 1 and 29% were class 2. This diverges from microelectrode reports that nearly 100% of superior cervical ganglion neurons show phasic class 3 firing. The hypothesis that the disparity between patch and microelectrode data arises from a shunt conductance was tested using the dynamic clamp in cell culture. Non-depolarizing shunts of 3–10 nS converted cells from classes 1 and 2 to class 3 dynamics with current–voltage relations that replicated microelectrode data. Primary and secondary EPSPs recorded from the intact superior cervical ganglion were modelled as virtual synapses in cell culture using the dynamic clamp. Stimulating sympathetic neurons with virtual synaptic activity, designed to replicate in vivo recordings of EPSPs in muscle vasoconstrictor neurons, produced a 2.4-fold amplification of presynaptic activity. This gain in postsynaptic output did not differ between neurons displaying the three classes of excitability. Mimicry of microelectrode damage by virtual leak channels reduced and eventually obliterated synaptic gain by inhibiting summation of subthreshold EPSPs. These results provide a framework for interpreting sympathetic activity recorded from intact animals and support the hypothesis that paravertebral ganglia function as activity-dependent amplifiers of spinal output from preganglionic circuitry. PMID:25398531

  4. Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells.

    PubMed

    Siembab, Valerie C; Gomez-Perez, Laura; Rotterman, Travis M; Shneider, Neil A; Alvarez, Francisco J

    2016-06-15

    Motor function in mammalian species depends on the maturation of spinal circuits formed by a large variety of interneurons that regulate motoneuron firing and motor output. Interneuron activity is in turn modulated by the organization of their synaptic inputs, but the principles governing the development of specific synaptic architectures unique to each premotor interneuron are unknown. For example, Renshaw cells receive, at least in the neonate, convergent inputs from sensory afferents (likely Ia) and motor axons, raising the question of whether they interact during Renshaw cell development. In other well-studied neurons, such as Purkinje cells, heterosynaptic competition between inputs from different sources shapes synaptic organization. To examine the possibility that sensory afferents modulate synaptic maturation on developing Renshaw cells, we used three animal models in which afferent inputs in the ventral horn are dramatically reduced (ER81(-/-) knockout), weakened (Egr3(-/-) knockout), or strengthened (mlcNT3(+/-) transgenic). We demonstrate that increasing the strength of sensory inputs on Renshaw cells prevents their deselection and reduces motor axon synaptic density, and, in contrast, absent or diminished sensory afferent inputs correlate with increased densities of motor axons synapses. No effects were observed on other glutamatergic inputs. We conclude that the early strength of Ia synapses influences their maintenance or weakening during later development and that heterosynaptic influences from sensory synapses during early development regulates the density and organization of motor inputs on mature Renshaw cells. J. Comp. Neurol. 524:1892-1919, 2016. © 2016 Wiley Periodicals, Inc. PMID:26660356

  5. DEEP BRAIN STIMULATION IN MIDLINE THALAMIC REGION FACILITATES SYNAPTIC TRANSMISSION AND SHORTTERM MEMORY IN A MOUSE MODEL OF ALZHEIMER'S DISEASE.

    PubMed

    Arrieta-Cruz, Isabel; Pavlides, Constantine; Pasinetti, Giulio Maria

    2010-09-01

    Based on evidence suggesting that deep brain stimulation (DBS) may promote certain cognitive processes, we have been interested in developing DBS as a means of mitigating memory and learning impairments in Alzheimer's disease (AD). In this study we used an animal model of AD (TgCRND8 mice) to determine the effects of high-frequency stimulation (HFS) on non-amyloidogenic α-secretase activity and DBS in short-term memory. We tested our hypothesis using hippocampal slices (in vitro studies) from TgCRND8 mice to evaluate whether HFS increases α-secretase activity (non-amyloidogenic pathway) in the CA1 region. In a second set of experiments, we performed in vivo studies to evaluate whether DBS in midline thalamic region re-establishes hippocampal dependent short-term memory in TgCRND8 mice. The results showed that application of HFS to isolated hippocampal slices significantly increased synaptic plasticity in the CA1 region and promoted a 2-fold increase of non-amyloidogenic α-secretase activity, in comparison to low frequency stimulated controls from TgCRND8 mice. In the in vivo studies, DBS treatment facilitated acquisition of object recognition memory in TgCRND8 mice, in comparison to their own baseline before treatment. These results provide evidence that DBS could enhance short-term memory in the CA1 region of hippocampus in a mouse model of AD. PMID:23227306

  6. Neuronal MHC Class I Molecules are Involved in Excitatory Synaptic Transmission at the Hippocampal Mossy Fiber Synapses of Marmoset Monkeys

    PubMed Central

    Zhang, Mingyue; Schlumbohm, Christina; Mätz-Rensing, Kerstin; Uchanska-Ziegler, Barbara; Flügge, Gabriele; Zhang, Weiqi; Walter, Lutz; Fuchs, Eberhard

    2010-01-01

    Several recent studies suggested a role for neuronal major histocompatibility complex class I (MHCI) molecules in certain forms of synaptic plasticity in the hippocampus of rodents. Here, we report for the first time on the expression pattern and functional properties of MHCI molecules in the hippocampus of a nonhuman primate, the common marmoset monkey (Callithrix jacchus). We detected a presynaptic, mossy fiber-specific localization of MHCI proteins within the marmoset hippocampus. MHCI molecules were present in the large, VGlut1-positive, mossy fiber terminals, which provide input to CA3 pyramidal neurons. Furthermore, whole-cell recordings of CA3 pyramidal neurons in acute hippocampal slices of the common marmoset demonstrated that application of antibodies which specifically block MHCI proteins caused a significant decrease in the frequency, and a transient increase in the amplitude, of spontaneous excitatory postsynaptic currents (sEPSCs) in CA3 pyramidal neurons. These findings add to previous studies on neuronal MHCI molecules by describing their expression and localization in the primate hippocampus and by implicating them in plasticity-related processes at the mossy fiber–CA3 synapses. In addition, our results suggest significant interspecies differences in the localization of neuronal MHCI molecules in the hippocampus of mice and marmosets, as well as in their potential function in these species. Electronic supplementary material The online version of this article (doi:10.1007/s10571-010-9510-3) contains supplementary material, which is available to authorized users. PMID:20232136

  7. Inhibitory effects of endomorphin-2 on excitatory synaptic transmission and the neuronal excitability of sacral parasympathetic preganglionic neurons in young rats.

    PubMed

    Chen, Ying-Biao; Huang, Fen-Sheng; Fen, Ban; Yin, Jun-Bin; Wang, Wei; Li, Yun-Qing

    2015-01-01

    The function of the urinary bladder is partly controlled by parasympathetic preganglionic neurons (PPNs) of the sacral parasympathetic nucleus (SPN). Our recent work demonstrated that endomorphin-2 (EM-2)-immunoreactive (IR) terminals form synapses with μ-opioid receptor (MOR)-expressing PPNs in the rat SPN. Here, we examined the effects of EM-2 on excitatory synaptic transmission and the neuronal excitability of the PPNs in young rats (24-30 days old) using a whole-cell patch-clamp approach. PPNs were identified by retrograde labeling with the fluorescent tracer tetramethylrhodamine-dextran (TMR). EM-2 (3 μM) markedly decreased both the amplitude and the frequency of the spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs) of PPNs. EM-2 not only decreased the resting membrane potentials (RMPs) in 61.1% of the examined PPNs with half-maximal response at the concentration of 0.282 μM, but also increased the rheobase current and reduced the repetitive action potential firing of PPNs. Analysis of the current-voltage relationship revealed that the EM-2-induced current was reversed at -95 ± 2.5 mV and was suppressed by perfusion of the potassium channel blockers 4-aminopyridine (4-AP) or BaCl2 or by the addition of guanosine 5'-[β-thio]diphosphate trilithium salt (GDP-β-S) to the pipette solution, suggesting the involvement of the G-protein-coupled inwardly rectifying potassium (GIRK) channel. The above EM-2-invoked inhibitory effects were abolished by the MOR selective antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), indicating that the effects of EM-2 on PPNs were mediated by MOR via pre- and/or post-synaptic mechanisms. EM-2 activated pre- and post-synaptic MORs, inhibiting excitatory neurotransmitter release from the presynaptic terminals and decreasing the excitability of PPNs due to hyperpolarization of their membrane potentials, respectively. These inhibitory effects of EM-2 on PPNs at the spinal cord level may explain

  8. Inhibitory effects of endomorphin-2 on excitatory synaptic transmission and the neuronal excitability of sacral parasympathetic preganglionic neurons in young rats

    PubMed Central

    Chen, Ying-Biao; Huang, Fen-Sheng; Fen, Ban; Yin, Jun-Bin; Wang, Wei; Li, Yun-Qing

    2015-01-01

    The function of the urinary bladder is partly controlled by parasympathetic preganglionic neurons (PPNs) of the sacral parasympathetic nucleus (SPN). Our recent work demonstrated that endomorphin-2 (EM-2)-immunoreactive (IR) terminals form synapses with μ-opioid receptor (MOR)-expressing PPNs in the rat SPN. Here, we examined the effects of EM-2 on excitatory synaptic transmission and the neuronal excitability of the PPNs in young rats (24–30 days old) using a whole-cell patch-clamp approach. PPNs were identified by retrograde labeling with the fluorescent tracer tetramethylrhodamine-dextran (TMR). EM-2 (3 μM) markedly decreased both the amplitude and the frequency of the spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs) of PPNs. EM-2 not only decreased the resting membrane potentials (RMPs) in 61.1% of the examined PPNs with half-maximal response at the concentration of 0.282 μM, but also increased the rheobase current and reduced the repetitive action potential firing of PPNs. Analysis of the current–voltage relationship revealed that the EM-2-induced current was reversed at −95 ± 2.5 mV and was suppressed by perfusion of the potassium channel blockers 4-aminopyridine (4-AP) or BaCl2 or by the addition of guanosine 5′-[β-thio]diphosphate trilithium salt (GDP-β-S) to the pipette solution, suggesting the involvement of the G-protein-coupled inwardly rectifying potassium (GIRK) channel. The above EM-2-invoked inhibitory effects were abolished by the MOR selective antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), indicating that the effects of EM-2 on PPNs were mediated by MOR via pre- and/or post-synaptic mechanisms. EM-2 activated pre- and post-synaptic MORs, inhibiting excitatory neurotransmitter release from the presynaptic terminals and decreasing the excitability of PPNs due to hyperpolarization of their membrane potentials, respectively. These inhibitory effects of EM-2 on PPNs at the spinal cord level may

  9. Effects of familial hemiplegic migraine type 1 mutations on neuronal P/Q-type Ca2+ channel activity and inhibitory synaptic transmission

    PubMed Central

    Cao, Yu-Qing; Tsien, Richard W.

    2005-01-01

    Inhibitory synapses play key roles in the modulatory circuitry that regulates pain signaling and generation of migraine headache. A rare, dominant form of this common disease, familial hemiplegic migraine type 1 (FHM1), arises from missense mutations in the pore-forming α1A subunit of P/Q-type Ca2+ channels. These channels are normally vital for presynaptic Ca2+ entry and neurotransmitter release at many central synapses, raising questions about effects of FHM1 mutations on neuronal Ca2+ influx and inhibitory and excitatory neurotransmission. We have expressed the four original FHM1 mutant channels in hippocampal neurons from α1A knockout mice. Whole-cell recordings indicated that FHM1 mutant channels were less effective than wild-type channels in their ability to conduct P/Q-type current, but not generally different from wild type in voltage-dependent channel gating. Ca2+ influx triggered by action potential waveforms was also diminished. In keeping with decreased channel activity, FHM1 mutant channels were correspondingly impaired in supporting the P/Q-type component of inhibitory neurotransmission. When expressed in wild-type inhibitory neurons, FHM1 mutant channels reduced the contribution of P/Q-type channels to GABAergic synaptic currents, consistent with a competition of mutant and endogenous channels for P/Q-specific slots. In all cases, N-type channels took up the burden of supporting transmission and homeostatic mechanisms maintained overall synaptic strength. The shift to reliance on N-type channels greatly increased the susceptibility to G protein-coupled modulation of neurotransmission, studied with the GABAB agonist baclofen. Thus, mutant-expressing synapses might be weakened in a heightened state of neuromodulation like that provoked by triggers of migraine such as stress. PMID:15699344

  10. Modulatory effects of serotonin on glutamatergic synaptic transmission and long-term depression in the deep cerebellar nuclei.

    PubMed

    Murano, M; Saitow, F; Suzuki, H

    2011-01-13

    The deep cerebellar nuclei (DCN) are the terminal components of the cerebellar circuitry and constitute its primary output structure. Their activity is important for certain forms of motor learning as well as generation and control of movement. DCN neurons receive glutamatergic excitatory inputs from the pontine nuclei via mossy fibres (MFs) and concomitantly receive inputs from 5-HT-containing neurons of the raphe nuclei. We aimed to explore the roles of 5-HT at MF-DCN synapses by using cerebellar slices from 11 to 15-day-old rats. Bath application of 5-HT reversibly decreased the amplitude of stimulation-evoked excitatory postsynaptic currents (eEPSCs) via the activation of 5-HT1B receptors at the presynaptic terminals of the MFs. Burst stimulation of the MFs elicited long-term depression (LTD) at the MF-DCN synapses that require activation of the group I metabotropic glutamate receptor (mGluR). In the presence of 5-HT, the extent of burst-induced LTD of MF EPSCs was significantly reduced. Application of 5-HT also decreased the amplitude of mGluR-dependent slow EPSCs evoked by similar burst stimulation. Furthermore, (S)-3,5-dihydroxyphenylglycine (DHPG), a group I mGluR agonist, induced chemical LTD of MF EPSCs, and 5-HT had no significant effect on this LTD. Taken together, the results suggest that 5-HT not only has transitory inhibitory effects on MF EPSCs but also plays a role in regulating the long-term synaptic efficacy. PMID:20969929