Sample records for affinity purification-tagged proteins

  1. Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.

    PubMed

    Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh

    2016-10-01

    Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a

  2. Affinity Purification of Proteins in Tag-Free Form: Split Intein-Mediated Ultrarapid Purification (SIRP).

    PubMed

    Guan, Dongli; Chen, Zhilei

    2017-01-01

    Proteins purified using affinity-based chromatography often exploit a recombinant affinity tag. Existing methods for the removal of the extraneous tag, needed for many applications, suffer from poor efficiency and/or high cost. Here we describe a simple, efficient, and potentially low-cost approach-split intein-mediated ultrarapid purification (SIRP)-for both the purification of the desired tagged protein from Escherichia coli lysate and removal of the tag in less than 1 h. The N- and C-fragment of a self-cleaving variant of a naturally split DnaE intein from Nostoc punctiforme are genetically fused to the N-terminus of an affinity tag and a protein of interest (POI), respectively. The N-intein/affinity tag is used to functionalize an affinity resin. The high affinity between the N- and C-fragment of DnaE intein enables the POI to be purified from the lysate via affinity to the resin, and the intein-mediated C-terminal cleavage reaction causes tagless POI to be released into the flow-through. The intein cleavage reaction is strongly inhibited by divalent ions (e.g., Zn 2+ ) under non-reducing conditions and is significantly enhanced by reducing conditions. The POI is cleaved efficiently regardless of the identity of the N-terminal amino acid except in the cases of threonine and proline, and the N-intein-functionalized affinity resin can be regenerated for multiple cycles of use.

  3. The Monitoring and Affinity Purification of Proteins Using Dual Tags with Tetracysteine Motifs

    NASA Astrophysics Data System (ADS)

    Giannone, Richard J.; Liu, Yie; Wang, Yisong

    Identification and characterization of protein-protein interaction networks is essential for the elucidation of biochemical mechanisms and cellular function. Affinity purification in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a very powerful tactic for the identification of specific protein-protein interactions. In this chapter, we describe a comprehensive methodology that uses our recently developed dual-tag affinity purification system for the enrichment and identification of mammalian protein complexes. The protocol covers a series of separate but sequentially related techniques focused on the facile monitoring and purification of a dual-tagged protein of interest and its interacting partners via a system built with tetracysteine motifs and various combinations of affinity tags. Using human telomeric repeat binding factor 2 (TRF2) as an example, we demonstrate the power of the system in terms of bait protein recovery after dual-tag affinity purification, detection of bait protein subcellular localization and expression, and successful identification of known and potentially novel TRF2 interacting proteins. Although the protocol described here has been optimized for the identification and characterization of TRF2-associated proteins, it is, in principle, applicable to the study of any other mammalian protein complexes that may be of interest to the research community.

  4. Simple and Efficient Purification of Recombinant Proteins Using the Heparin-Binding Affinity Tag.

    PubMed

    Jayanthi, Srinivas; Gundampati, Ravi Kumar; Kumar, Thallapuranam Krishnaswamy Suresh

    2017-11-01

    Heparin, a member of the glycosaminoglycan family, is known to interact with more than 400 different types of proteins. For the past few decades, significant progress has been made to understand the molecular details involved in heparin-protein interactions. Based on the structural knowledge available from the FGF1-heparin interaction studies, we have designed a novel heparin-binding peptide (HBP) affinity tag that can be used for the simple, efficient, and cost-effective purification of recombinant proteins of interest. HBP-tagged fusion proteins can be purified by heparin Sepharose affinity chromatography using a simple sodium chloride gradient to elute the bound fusion protein. In addition, owing to the high density of positive charges on the HBP tag, recombinant target proteins are preferably expressed in their soluble forms. The purification of HBP-fusion proteins can also be achieved in the presence of chemical denaturants, including urea. Additionally, polyclonal antibodies raised against the affinity tag can be used to detect HBP-fused target proteins with high sensitivity. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  5. Strep-Tagged Protein Purification.

    PubMed

    Maertens, Barbara; Spriestersbach, Anne; Kubicek, Jan; Schäfer, Frank

    2015-01-01

    The Strep-tag system can be used to purify recombinant proteins from any expression system. Here, protocols for lysis and affinity purification of Strep-tagged proteins from E. coli, baculovirus-infected insect cells, and transfected mammalian cells are given. Depending on the amount of Strep-tagged protein in the lysate, a protocol for batch binding and subsequent washing and eluting by gravity flow can be used. Agarose-based matrices with the coupled Strep-Tactin ligand are the resins of choice, with a binding capacity of up to 9 mg ml(-1). For purification of lower amounts of Strep-tagged proteins, the use of Strep-Tactin magnetic beads is suitable. In addition, Strep-tagged protein purification can also be automated using prepacked columns for FPLC or other liquid-handling chromatography instrumentation, but automated purification is not discussed in this protocol. The protocols described here can be regarded as an update of the Strep-Tag Protein Handbook (Qiagen, 2009). © 2015 Elsevier Inc. All rights reserved.

  6. Application of volcanic ash particles for protein affinity purification with a minimized silica-binding tag.

    PubMed

    Abdelhamid, Mohamed A A; Ikeda, Takeshi; Motomura, Kei; Tanaka, Tatsuya; Ishida, Takenori; Hirota, Ryuichi; Kuroda, Akio

    2016-11-01

    We recently reported that the spore coat protein, CotB1 (171 amino acids), from Bacillus cereus mediates silica biomineralization and that the polycationic C-terminal sequence of CotB1 (14 amino acids), designated CotB1p, serves as a silica-binding tag when fused to other proteins. Here, we reduced the length of this silica-binding tag to only seven amino acids (SB7 tag: RQSSRGR) while retaining its affinity for silica. Alanine scanning mutagenesis indicated that the three arginine residues in the SB7 tag play important roles in binding to a silica surface. Monomeric l-arginine, at concentrations of 0.3-0.5 M, was found to serve as a competitive eluent to release bound SB7-tagged proteins from silica surfaces. To develop a low-cost, silica-based affinity purification procedure, we used natural volcanic ash particles with a silica content of ∼70%, rather than pure synthetic silica particles, as an adsorbent for SB7-tagged proteins. Using green fluorescent protein, mCherry, and mKate2 as model proteins, our purification method achieved 75-90% recovery with ∼90% purity. These values are comparable to or even higher than that of the commonly used His-tag affinity purification. In addition to low cost, another advantage of our method is the use of l-arginine as the eluent because its protein-stabilizing effect would help minimize alteration of the intrinsic properties of the purified proteins. Our approach paves the way for the use of naturally occurring materials as adsorbents for simple, low-cost affinity purification. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications.

    PubMed

    Young, Carissa L; Britton, Zachary T; Robinson, Anne S

    2012-05-01

    Protein fusion tags are indispensible tools used to improve recombinant protein expression yields, enable protein purification, and accelerate the characterization of protein structure and function. Solubility-enhancing tags, genetically engineered epitopes, and recombinant endoproteases have resulted in a versatile array of combinatorial elements that facilitate protein detection and purification in microbial hosts. In this comprehensive review, we evaluate the most frequently used solubility-enhancing and affinity tags. Furthermore, we provide summaries of well-characterized purification strategies that have been used to increase product yields and have widespread application in many areas of biotechnology including drug discovery, therapeutics, and pharmacology. This review serves as an excellent literature reference for those working on protein fusion tags. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Development of RAP Tag, a Novel Tagging System for Protein Detection and Purification.

    PubMed

    Fujii, Yuki; Kaneko, Mika K; Ogasawara, Satoshi; Yamada, Shinji; Yanaka, Miyuki; Nakamura, Takuro; Saidoh, Noriko; Yoshida, Kanae; Honma, Ryusuke; Kato, Yukinari

    2017-04-01

    Affinity tag systems, possessing high affinity and specificity, are useful for protein detection and purification. The most suitable tag for a particular purpose should be selected from many available affinity tag systems. In this study, we developed a novel affinity tag called the "RAP tag" system, which comprises a mouse antirat podoplanin monoclonal antibody (clone PMab-2) and the RAP tag (DMVNPGLEDRIE). This system is useful not only for protein detection in Western blotting, flow cytometry, and sandwich enzyme-linked immunosorbent assay, but also for protein purification.

  9. Challenges and opportunities in the purification of recombinant tagged proteins.

    PubMed

    Pina, Ana Sofia; Lowe, Christopher R; Roque, Ana Cecília A

    2014-01-01

    The purification of recombinant proteins by affinity chromatography is one of the most efficient strategies due to the high recovery yields and purity achieved. However, this is dependent on the availability of specific affinity adsorbents for each particular target protein. The diversity of proteins to be purified augments the complexity and number of specific affinity adsorbents needed, and therefore generic platforms for the purification of recombinant proteins are appealing strategies. This justifies why genetically encoded affinity tags became so popular for recombinant protein purification, as these systems only require specific ligands for the capture of the fusion protein through a pre-defined affinity tag tail. There is a wide range of available affinity pairs "tag-ligand" combining biological or structural affinity ligands with the respective binding tags. This review gives a general overview of the well-established "tag-ligand" systems available for fusion protein purification and also explores current unconventional strategies under development. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. The Use of Affinity Tags to Overcome Obstacles in Recombinant Protein Expression and Purification.

    PubMed

    Amarasinghe, Chinthaka; Jin, Jian-Ping

    2015-01-01

    Research and industrial demands for recombinant proteins continue to increase over time for their broad applications in structural and functional studies and as therapeutic agents. These applications often require large quantities of recombinant protein at desirable purity, which highlights the importance of developing and improving production approaches that provide high level expression and readily achievable purity of recombinant protein. E. coli is the most widely used host for the expression of a diverse range of proteins at low cost. However, there are common pitfalls that can severely limit the expression of exogenous proteins, such as stability, low solubility and toxicity to the host cell. To overcome these obstacles, one strategy that has found to be promising is the use of affinity tags or carrier peptide to aid in the folding of the target protein, increase solubility, lower toxicity and increase the level of expression. In the meantime, the tags and fusion proteins can be designed to facilitate affinity purification. Since the fusion protein may not exhibit the native conformation of the target protein, various strategies have been developed to remove the tag during or after purification to avoid potential complications in structural and functional studies and to obtain native biological activities. Despite extensive research and rapid development along these lines, there are unsolved problems and imperfect applications. This focused review compares and contrasts various strategies that employ affinity tags to improve bacterial expression and to facilitate purification of recombinant proteins. The pros and cons of the approaches are discussed for more effective applications and new directions of future improvement.

  11. Tryptophan tags and de novo designed complementary affinity ligands for the expression and purification of recombinant proteins.

    PubMed

    Pina, Ana Sofia; Carvalho, Sara; Dias, Ana Margarida G C; Guilherme, Márcia; Pereira, Alice S; Caraça, Luciana T; Coroadinha, Ana Sofia; Lowe, Christopher R; Roque, A Cecília A

    2016-11-11

    A common strategy for the production and purification of recombinant proteins is to fuse a tag to the protein terminal residues and employ a "tag-specific" ligand for fusion protein capture and purification. In this work, we explored the effect of two tryptophan-based tags, NWNWNW and WFWFWF, on the expression and purification of Green Fluorescence Protein (GFP) used as a model fusion protein. The titers obtained with the expression of these fusion proteins in soluble form were 0.11mgml -1 and 0.48mgml -1 for WFWFWF and NWNWNW, respectively. A combinatorial library comprising 64 ligands based on the Ugi reaction was prepared and screened for binding GFP-tagged and non-tagged proteins. Complementary ligands A2C2 and A3C1 were selected for the effective capture of NWNWNW and WFWFWF tagged proteins, respectively, in soluble forms. These affinity pairs displayed 10 6 M -1 affinity constants and Qmax values of 19.11±2.60ugg -1 and 79.39ugg -1 for the systems WFWFWF AND NWNWNW, respectively. GFP fused to the WFWFWF affinity tag was also produced as inclusion bodies, and a refolding-on column strategy was explored using the ligand A4C8, selected from the combinatorial library of ligands but in presence of denaturant agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. New trends and affinity tag designs for recombinant protein purification.

    PubMed

    Wood, David W

    2014-06-01

    Engineered purification tags can facilitate very efficient purification of recombinant proteins, resulting in high yields and purities in a few standard steps. Over the years, many different purification tags have been developed, including short peptides, epitopes, folded protein domains, non-chromatographic tags and more recently, compound multifunctional tags with optimized capabilities. Although classic proteases are still primarily used to remove the tags from target proteins, new self-cleaving methods are gaining traction as a highly convenient alternative. In this review, we discuss some of these emerging trends, and examine their potential impacts and remaining challenges in recombinant protein research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Tab2, a novel recombinant polypeptide tag offering sensitive and specific protein detection and reliable affinity purification.

    PubMed

    Crusius, Kerstin; Finster, Silke; McClary, John; Xia, Wei; Larsen, Brent; Schneider, Douglas; Lu, Hong-Tao; Biancalana, Sara; Xuan, Jian-Ai; Newton, Alicia; Allen, Debbie; Bringmann, Peter; Cobb, Ronald R

    2006-10-01

    The detection and purification of proteins are often time-consuming and frequently involve complicated protocols. The addition of a peptide tag to recombinant proteins can make this process more efficient. Many of the commonly used tags, such as Flagtrade mark, Myc, HA and V5 are recognized by specific monoclonal antibodies and therefore, allow immunoaffinity-based purification. Enhancing the current scope of flexibility in using diverse peptide tags, we report here the development of a novel, short polypeptide tag (Tab2) for detection and purification of recombinant proteins. The Tab2 epitope corresponds to the NH2-terminal seven amino acid residues of human TGFalpha. A monoclonal anti-Tab2 antibody was raised and characterized. To investigate the potential of this peptide sequence as a novel tag for recombinant proteins, we expressed several different recombinant proteins containing this tag in E. coli, baculovirus, and mammalian cells. The data presented demonstrates the Tab2 tag-anti-Tab2 antibody combination is a reliable tool enabling specific Western blot detection, FACS analysis, and immunoprecipitation as well as non-denaturing protein affinity purification.

  14. Improved Tandem Affinity Purification Tag and Methods for Isolation of Proteins and Protein Complexes from Schizosaccharomyces pombe.

    PubMed

    Zilio, Nicola; Boddy, Michael N

    2017-03-01

    The tandem affinity purification (TAP) method uses an epitope that contains two different affinity purification tags separated by a site-specific protease site to isolate a protein rapidly and easily. Proteins purified via the TAP tag are eluted under mild conditions, allowing them to be used for structural and biochemical analyses. The original TAP tag contains a calmodulin-binding peptide and the IgG-binding domain from protein A separated by a tobacco etch virus (TEV) protease cleavage site. After capturing the Protein A epitope on an IgG resin, bound proteins are released by incubation with the TEV protease and then isolated on a calmodulin matrix in the presence of calcium; elution from this resin is achieved by chelating calcium with EGTA. However, because the robustness of the calmodulin-binding step in this procedure is highly variable, we replaced the calmodulin-binding peptide with three copies of the FLAG epitope, (3× FLAG)-TEV-Protein A, which can be isolated using an anti-FLAG resin. Elution from this matrix is achieved in the presence of an excess of a 3× FLAG peptide. In addition to allowing proteins to be released under mild conditions, elution by the 3× FLAG peptide adds an extra layer of specificity to the TAP procedure, because it liberates only FLAG-tagged proteins. © 2017 Cold Spring Harbor Laboratory Press.

  15. A tandem affinity purification tag of TGA2 for isolation of interacting proteins in Arabidopsis thaliana

    PubMed Central

    Stotz, Henrik U; Findling, Simone; Nukarinen, Ella; Weckwerth, Wolfram; Mueller, Martin J; Berger, Susanne

    2014-01-01

    Tandem affinity purification (TAP) tagging provides a powerful tool for isolating interacting proteins in vivo. TAP-tag purification offers particular advantages for the identification of stimulus-induced protein interactions. Type II bZIP transcription factors (TGA2, TGA5 and TGA6) play key roles in pathways that control salicylic acid, ethylene, xenobiotic and reactive oxylipin signaling. Although proteins interacting with these transcription factors have been identified through genetic and yeast 2-hybrid screening, others are still elusive. We have therefore generated a C-terminal TAP-tag of TGA2 to isolate additional proteins that interact with this transcription factor. Three lines most highly expressing TAP-tagged TGA2 were functional in that they partially complemented reactive oxylipin-responsive gene expression in a tga2 tga5 tga6 triple mutant. TAP-tagged TGA2 in the most strongly overexpressing line was proteolytically less stable than in the other 2 lines. Only this overexpressing line could be used in a 2-step purification process, resulting in isolation of co-purifying bands of larger molecular weight than TGA2. TAP-tagged TGA2 was used to pull down NPR1, a protein known to interact with this transcription factor. Mass spectrometry was used to identify peptides that co-purified with TAP-tagged TGA2. Having generated this TGA2 TAP-tag line will therefore be an asset to researchers interested in stimulus-induced signal transduction processes. PMID:25482810

  16. Batch affinity adsorption of His-tagged proteins with EDTA-based chitosan.

    PubMed

    Hua, Weiwei; Lou, Yimin; Xu, Weiyuan; Cheng, Zhixian; Gong, Xingwen; Huang, Jianying

    2016-01-01

    Affinity adsorption purification of hexahistidine-tagged (His-tagged) proteins using EDTA-chitosan-based adsorption was designed and carried out. Chitosan was elaborated with ethylenediaminetetraacetic acid (EDTA), and the resulting polymer was characterized by FTIR, TGA, and TEM. Different metals including Ni(2+), Cu(2+), and Zn(2+) were immobilized with EDTA-chitosan, and their capability to the specific adsorption of His-tagged proteins were then investigated. The results showed that Ni(2+)-EDTA-chitosan and Zn(2+)-EDTA-chitosan had high affinity toward the His-tagged proteins, thus isolating them from protein mixture. The target fluorescent-labeled hexahistidine protein remained its fluorescent characteristic throughout the purification procedure when Zn(2+)-EDTA-chitosan was used as a sorbent, wherein the real-time monitor was performed to examine the immigration of fluorescent-labeled His-tagged protein. Comparatively, Zn(2+)-EDTA-chitosan showed more specific binding ability for the target protein, but with less binding capacity. It was further proved that this purification system could be recovered and reused at least for 5 times and could run on large scales. The presented M(2+)-EDTA-chitosan system, with the capability to specifically bind His-tagged proteins, make the purification of His-tagged proteins easy to handle, leaving out fussy preliminary treatment, and with the possibility of continuous processing and a reduction in operational cost in relation to the costs of conventional processes.

  17. Two-step purification of His-tagged Nef protein in native condition using heparin and immobilized metal ion affinity chromatographies.

    PubMed

    Finzi, Andrés; Cloutier, Jonathan; Cohen, Eric A

    2003-07-01

    The Nef protein encoded by human immunodeficiency virus type 1 (HIV-1) has been shown to be an important factor of progression of viral growth and pathogenesis in both in vitro and in vivo. The lack of a simple procedure to purify Nef in its native conformation has limited molecular studies on Nef function. A two-step procedure that includes heparin and immobilized metal ion affinity chromatographies (IMACs) was developed to purify His-tagged Nef (His(6)-Nef) expressed in bacteria in native condition. During the elaboration of this purification procedure, we identified two closely SDS-PAGE-migrating contaminating bacterial proteins, SlyD and GCHI, that co-eluted with His(6)-Nef in IMAC in denaturing condition and developed purification steps to eliminate these contaminants in native condition. Overall, this study describes a protocol that allows rapid purification of His(6)-Nef protein expressed in bacteria in native condition and that removes metal affinity resin-binding bacterial proteins that can contaminate recombinant His-tagged protein preparation.

  18. High Level Expression and Purification of Recombinant Proteins from Escherichia coli with AK-TAG

    PubMed Central

    Luo, Dan; Wen, Caixia; Zhao, Rongchuan; Liu, Xinyu; Liu, Xinxin; Cui, Jingjing; Liang, Joshua G.; Liang, Peng

    2016-01-01

    Adenylate kinase (AK) from Escherichia coli was used as both solubility and affinity tag for recombinant protein production. When fused to the N-terminus of a target protein, an AK fusion protein could be expressed in soluble form and purified to near homogeneity in a single step from Blue-Sepherose via affinity elution with micromolar concentration of P1, P5- di (adenosine—5’) pentaphosphate (Ap5A), a transition-state substrate analog of AK. Unlike any other affinity tags, the level of a recombinant protein expression in soluble form and its yield of recovery during each purification step could be readily assessed by AK enzyme activity in near real time. Coupled to a His-Tag installed at the N-terminus and a thrombin cleavage site at the C terminus of AK, the streamlined method, here we dubbed AK-TAG, could also allow convenient expression and retrieval of a cleaved recombinant protein in high yield and purity via dual affinity purification steps. Thus AK-TAG is a new addition to the arsenal of existing affinity tags for recombinant protein expression and purification, and is particularly useful where soluble expression and high degree of purification are at stake. PMID:27214237

  19. A dual protease approach for expression and affinity purification of recombinant proteins.

    PubMed

    Raran-Kurussi, Sreejith; Waugh, David S

    2016-07-01

    We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to "stick" to its fusion partners during affinity purification. Published by Elsevier Inc.

  20. A Dual Protease Approach for Expression and Affinity Purification of Recombinant Proteins

    PubMed Central

    Raran-Kurussi, Sreejith; Waugh, David S.

    2016-01-01

    We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to “stick” to its fusion partners during affinity purification. PMID:27105777

  1. A novel expression system for intracellular production and purification of recombinant affinity-tagged proteins in Aspergillus niger.

    PubMed

    Roth, Andreas H F J; Dersch, Petra

    2010-03-01

    A set of different integrative expression vectors for the intracellular production of recombinant proteins with or without affinity tag in Aspergillus niger was developed. Target genes can be expressed under the control of the highly efficient, constitutive pkiA promoter or the novel sucrose-inducible promoter of the beta-fructofuranosidase (sucA) gene of A. niger in the presence or absence of alternative carbon sources. All expression plasmids contain an identical multiple cloning sequence that allows parallel construction of N- or C-terminally His6- and StrepII-tagged versions of the target proteins. Production of two heterologous model proteins, the green fluorescence protein and the Thermobifida fusca hydrolase, proved the functionality of the vector system. Efficient production and easy detection of the target proteins as well as their fast purification by a one-step affinity chromatography, using the His6- or StrepII-tag sequence, was demonstrated.

  2. High-throughput purification of recombinant proteins using self-cleaving intein tags.

    PubMed

    Coolbaugh, M J; Shakalli Tang, M J; Wood, D W

    2017-01-01

    High throughput methods for recombinant protein production using E. coli typically involve the use of affinity tags for simple purification of the protein of interest. One drawback of these techniques is the occasional need for tag removal before study, which can be hard to predict. In this work, we demonstrate two high throughput purification methods for untagged protein targets based on simple and cost-effective self-cleaving intein tags. Two model proteins, E. coli beta-galactosidase (βGal) and superfolder green fluorescent protein (sfGFP), were purified using self-cleaving versions of the conventional chitin-binding domain (CBD) affinity tag and the nonchromatographic elastin-like-polypeptide (ELP) precipitation tag in a 96-well filter plate format. Initial tests with shake flask cultures confirmed that the intein purification scheme could be scaled down, with >90% pure product generated in a single step using both methods. The scheme was then validated in a high throughput expression platform using 24-well plate cultures followed by purification in 96-well plates. For both tags and with both target proteins, the purified product was consistently obtained in a single-step, with low well-to-well and plate-to-plate variability. This simple method thus allows the reproducible production of highly pure untagged recombinant proteins in a convenient microtiter plate format. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Single-step affinity and cost-effective purification of recombinant proteins using the Sepharose-binding lectin-tag from the mushroom Laetiporus sulphureus as fusion partner.

    PubMed

    Li, Xiao-Jing; Liu, Jin-Ling; Gao, Dong-Sheng; Wan, Wen-Yan; Yang, Xia; Li, Yong-Tao; Chang, Hong-Tao; Chen, Lu; Wang, Chuan-Qing; Zhao, Jun

    2016-03-01

    Previous research showed that a lectin from the mushroom Laetiporus sulphureus, designed LSL, bound to Sepharose and could be eluted by lactose. In this study, by taking advantage of the strong affinity of LSL-tag for Sepharose, we developed a single-step purification method for LSL-tagged fusion proteins. We utilized unmodified Sepharose-4B as a specific adsorbent and 0.2 M lactose solution as an elution buffer. Fusion proteins of LSL-tag and porcine circovirus capsid protein, designated LSL-Cap was recovered with purity of 90 ± 4%, and yield of 87 ± 3% from crude extract of recombinant Escherichia coli. To enable the remove of LSL-tag, tobacco etch virus (TEV) protease recognition sequence was placed downstream of LSL-tag in the expression vector, and LSL-tagged TEV protease, designated LSL-TEV, was also expressed in E. coli., and was recovered with purity of 82 ± 5%, and yield of 85 ± 2% from crude extract of recombinant E. coli. After digestion of LSL-tagged recombinant proteins with LSL-TEV, the LSL tag and LSL-TEV can be easily removed by passing the digested products through the Sepharose column. It is of worthy noting that the Sepharose can be reused after washing with PBS. The LSL affinity purification method enables rapid and inexpensive purification of LSL-tagged fusion proteins and scale-up production of native proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Tandem Affinity Purification of Protein Complexes from Eukaryotic Cells.

    PubMed

    Ma, Zheng; Fung, Victor; D'Orso, Iván

    2017-01-26

    The purification of active protein-protein and protein-nucleic acid complexes is crucial for the characterization of enzymatic activities and de novo identification of novel subunits and post-translational modifications. Bacterial systems allow for the expression and purification of a wide variety of single polypeptides and protein complexes. However, this system does not enable the purification of protein subunits that contain post-translational modifications (e.g., phosphorylation and acetylation), and the identification of novel regulatory subunits that are only present/expressed in the eukaryotic system. Here, we provide a detailed description of a novel, robust, and efficient tandem affinity purification (TAP) method using STREP- and FLAG-tagged proteins that facilitates the purification of protein complexes with transiently or stably expressed epitope-tagged proteins from eukaryotic cells. This protocol can be applied to characterize protein complex functionality, to discover post-translational modifications on complex subunits, and to identify novel regulatory complex components by mass spectrometry. Notably, this TAP method can be applied to study protein complexes formed by eukaryotic or pathogenic (viral and bacterial) components, thus yielding a wide array of downstream experimental opportunities. We propose that researchers working with protein complexes could utilize this approach in many different ways.

  5. Application of Strep-Tactin XT for affinity purification of Twin-Strep-tagged CB2, a G protein-coupled cannabinoid receptor

    PubMed Central

    Yeliseev, Alexei; Zoubak, Lioudmila; Schmidt, Thomas G.M.

    2017-01-01

    Human cannabinoid receptor CB2 belongs to the class A of G protein-coupled receptor (GPCR). High resolution structural studies of CB2 require milligram quantities of purified, structurally intact protein. Here we describe an efficient protocol for purification of this protein using the Twin-Strep-tag/Strep-Tactin XT system. To improve the affinity of interaction of the recombinant CB2 with the resin, the double repeat of the Strep-tag was attached either to the N- or C-terminus of CB2 via a short linker. The CB2 was isolated at high purity from dilute solutions containing high concentrations of detergents, glycerol and salts, by capturing onto the Strep-Tactin XT resin, and was eluted from the resin under mild conditions upon addition of biotin. Surface plasmon resonance studies performed demonstrate the high affinity of interaction between the Twin-Strep-tag fused to the CB2 and Strep-Tactin XT with an estimated Kd in the low nanomolar range. The affinity of binding did not vary significantly in response to the position of the tag at either N- or C-termini of the fusion. The variation in the length of the linker between the double repeats of the Strep-tag from 6 to 12 amino acid residues did not significantly affect the binding. The novel purification protocol reported here enables efficient isolation of a recombinant GPCR expressed at low titers in host cells. This procedure is suitable for preparation of milligram quantities of stable isotope-labelled receptor for high-resolution NMR studies. PMID:27867058

  6. SwellGel: an affinity chromatography technology for high-capacity and high-throughput purification of recombinant-tagged proteins.

    PubMed

    Draveling, C; Ren, L; Haney, P; Zeisse, D; Qoronfleh, M W

    2001-07-01

    The revolution in genomics and proteomics is having a profound impact on drug discovery. Today's protein scientist demands a faster, easier, more reliable way to purify proteins. A high capacity, high-throughput new technology has been developed in Perbio Sciences for affinity protein purification. This technology utilizes selected chromatography media that are dehydrated to form uniform aggregates. The SwellGel aggregates will instantly rehydrate upon addition of the protein sample, allowing purification and direct performance of multiple assays in a variety of formats. SwellGel technology has greater stability and is easier to handle than standard wet chromatography resins. The microplate format of this technology provides high-capacity, high-throughput features, recovering milligram quantities of protein suitable for high-throughput screening or biophysical/structural studies. Data will be presented applying SwellGel technology to recombinant 6x His-tagged protein and glutathione-S-transferase (GST) fusion protein purification. Copyright 2001 Academic Press.

  7. N-terminal processing of affinity-tagged recombinant proteins purified by IMAC procedures.

    PubMed

    Mooney, Jane T; Fredericks, Dale P; Christensen, Thorkild; Bruun Schiødt, Christine; Hearn, Milton T W

    2015-07-01

    The ability of a new class of metal binding tags to facilitate the purification of recombinant proteins, exemplified by the tagged glutathione S-transferase and human growth hormone, from Escherichia coli fermentation broths and lysates has been further investigated. These histidine-containing tags exhibit high affinity for borderline metal ions chelated to the immobilised ligand, 1,4,7-triazacyclononane (tacn). The use of this tag-tacn immobilised metal ion affinity chromatography (IMAC) system engenders high selectivity with regard to host cell protein removal and permits facile tag removal from the E. coli-expressed recombinant protein. In particular, these tags were specifically designed to enable their efficient removal by the dipeptidyl aminopeptidase 1 (DAP-1), thus capturing the advantages of high substrate specificity and rates of cleavage. MALDI-TOF MS analysis of the cleaved products from the DAP-1 digestion of the recombinant N-terminally tagged proteins confirmed the complete removal of the tag within 4-12 h under mild experimental conditions. Overall, this study demonstrates that the use of tags specifically designed to target tacn-based IMAC resins offers a comprehensive and flexible approach for the purification of E. coli-expressed recombinant proteins, where complete removal of the tag is an essential prerequisite for subsequent application of the purified native proteins in studies aimed at delineating the molecular and cellular basis of specific biological processes. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF.

    PubMed

    Cantu-Bustos, J Enrique; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Galbraith, David W; McEvoy, Megan M; Zarate, Xristo

    2016-05-01

    Production of recombinant proteins in Escherichia coli has been improved considerably through the use of fusion proteins, because they increase protein solubility and facilitate purification via affinity chromatography. In this article, we propose the use of CusF as a new fusion partner for expression and purification of recombinant proteins in E. coli. Using a cell-free protein expression system, based on the E. coli S30 extract, Green Fluorescent Protein (GFP) was expressed with a series of different N-terminal tags, immobilized on self-assembled protein microarrays, and its fluorescence quantified. GFP tagged with CusF showed the highest fluorescence intensity, and this was greater than the intensities from corresponding GFP constructs that contained MBP or GST tags. Analysis of protein production in vivo showed that CusF produces large amounts of soluble protein with low levels of inclusion bodies. Furthermore, fusion proteins can be exported to the cellular periplasm, if CusF contains the signal sequence. Taking advantage of its ability to bind copper ions, recombinant proteins can be purified with readily available IMAC resins charged with this metal ion, producing pure proteins after purification and tag removal. We therefore recommend the use of CusF as a viable alternative to MBP or GST as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Application of a new dual localization-affinity purification tag reveals novel aspects of protein kinase biology in Aspergillus nidulans.

    PubMed

    De Souza, Colin P; Hashmi, Shahr B; Osmani, Aysha H; Osmani, Stephen A

    2014-01-01

    Filamentous fungi occupy critical environmental niches and have numerous beneficial industrial applications but devastating effects as pathogens and agents of food spoilage. As regulators of essentially all biological processes protein kinases have been intensively studied but how they regulate the often unique biology of filamentous fungi is not completely understood. Significant understanding of filamentous fungal biology has come from the study of the model organism Aspergillus nidulans using a combination of molecular genetics, biochemistry, cell biology and genomic approaches. Here we describe dual localization-affinity purification (DLAP) tags enabling endogenous N or C-terminal protein tagging for localization and biochemical studies in A. nidulans. To establish DLAP tag utility we endogenously tagged 17 protein kinases for analysis by live cell imaging and affinity purification. Proteomic analysis of purifications by mass spectrometry confirmed association of the CotA and NimXCdk1 kinases with known binding partners and verified a predicted interaction of the SldABub1/R1 spindle assembly checkpoint kinase with SldBBub3. We demonstrate that the single TOR kinase of A. nidulans locates to vacuoles and vesicles, suggesting that the function of endomembranes as major TOR cellular hubs is conserved in filamentous fungi. Comparative analysis revealed 7 kinases with mitotic specific locations including An-Cdc7 which unexpectedly located to mitotic spindle pole bodies (SPBs), the first such localization described for this family of DNA replication kinases. We show that the SepH septation kinase locates to SPBs specifically in the basal region of apical cells in a biphasic manner during mitosis and again during septation. This results in gradients of SepH between G1 SPBs which shift along hyphae as each septum forms. We propose that SepH regulates the septation initiation network (SIN) specifically at SPBs in the basal region of G1 cells and that localized gradients

  10. Application of Strep-Tactin XT for affinity purification of Twin-Strep-tagged CB2, a G protein-coupled cannabinoid receptor.

    PubMed

    Yeliseev, Alexei; Zoubak, Lioudmila; Schmidt, Thomas G M

    2017-03-01

    Human cannabinoid receptor CB 2 belongs to the class A of G protein-coupled receptor (GPCR). CB 2 is predominantly expressed in membranes of cells of immune origin and is implicated in regulation of metabolic pathways of inflammation, neurodegenerative disorders and pain sensing. High resolution structural studies of CB 2 require milligram quantities of purified, structurally intact protein. While we previously reported on the methodology for expression of the recombinant CB 2 and its stabilization in a functional state, here we describe an efficient protocol for purification of this protein using the Twin-Strep-tag/Strep-Tactin XT system. To improve the affinity of interaction of the recombinant CB 2 with the resin, the double repeat of the Strep-tag (a sequence of eight amino acids WSHPQFEK), named the Twin-Strep-tag was attached either to the N- or C-terminus of CB 2 via a short linker, and the recombinant protein was expressed in cytoplasmic membranes of E. coli as a fusion with the N-terminal maltose binding protein (MBP). The CB 2 was isolated at high purity from dilute solutions containing high concentrations of detergents, glycerol and salts, by capturing onto the Strep-Tactin XT resin, and was eluted from the resin under mild conditions upon addition of biotin. Surface plasmon resonance studies performed on the purified protein demonstrate the high affinity of interaction between the Twin-Strep-tag fused to the CB 2 and Strep-Tactin XT with an estimated Kd in the low nanomolar range. The affinity of binding did not vary significantly in response to the position of the tag at either N- or C-termini of the fusion. The binding capacity of the resin was several-fold higher for the tag located at the N-terminus of the protein as opposed to the C-terminus- or middle of the fusion. The variation in the length of the linker between the double repeats of the Strep-tag from 6 to 12 amino acid residues did not significantly affect the binding. The novel purification

  11. Application of a New Dual Localization-Affinity Purification Tag Reveals Novel Aspects of Protein Kinase Biology in Aspergillus nidulans

    PubMed Central

    De Souza, Colin P.; Hashmi, Shahr B.; Osmani, Aysha H.; Osmani, Stephen A.

    2014-01-01

    Filamentous fungi occupy critical environmental niches and have numerous beneficial industrial applications but devastating effects as pathogens and agents of food spoilage. As regulators of essentially all biological processes protein kinases have been intensively studied but how they regulate the often unique biology of filamentous fungi is not completely understood. Significant understanding of filamentous fungal biology has come from the study of the model organism Aspergillus nidulans using a combination of molecular genetics, biochemistry, cell biology and genomic approaches. Here we describe dual localization-affinity purification (DLAP) tags enabling endogenous N or C-terminal protein tagging for localization and biochemical studies in A. nidulans. To establish DLAP tag utility we endogenously tagged 17 protein kinases for analysis by live cell imaging and affinity purification. Proteomic analysis of purifications by mass spectrometry confirmed association of the CotA and NimXCdk1 kinases with known binding partners and verified a predicted interaction of the SldABub1/R1 spindle assembly checkpoint kinase with SldBBub3. We demonstrate that the single TOR kinase of A. nidulans locates to vacuoles and vesicles, suggesting that the function of endomembranes as major TOR cellular hubs is conserved in filamentous fungi. Comparative analysis revealed 7 kinases with mitotic specific locations including An-Cdc7 which unexpectedly located to mitotic spindle pole bodies (SPBs), the first such localization described for this family of DNA replication kinases. We show that the SepH septation kinase locates to SPBs specifically in the basal region of apical cells in a biphasic manner during mitosis and again during septation. This results in gradients of SepH between G1 SPBs which shift along hyphae as each septum forms. We propose that SepH regulates the septation initiation network (SIN) specifically at SPBs in the basal region of G1 cells and that localized gradients

  12. A new pH-responsive peptide tag for protein purification.

    PubMed

    Nonaka, Takahiro; Tsurui, Noriko; Mannen, Teruhisa; Kikuchi, Yoshimi; Shiraki, Kentaro

    2018-06-01

    This paper describes a new pH-responsive peptide tag that adds a protein reversible precipitation and redissolution character. This peptide tag is a part of a cell surface protein B (CspB) derived from Corynebacterium glutamicum. Proinsulin that genetically fused with a peptide of N-terminal 6, 17, 50, or 250 amino acid residues of CspB showed that the reversible precipitation and redissolution depended on the pH. The transition occurred within a physiological and narrow pH range. A CspB50 tag comprising 50 amino acid residues of N-terminal CspB was further evaluated as a representative using other pharmaceutical proteins. Below pH 6.8, almost all CspB50-Teriparatide fusion formed an aggregated state. Subsequent addition of alkali turned the cloudy protein solution transparent above pH 7.3, in which almost all the CspB50-Teriparatide fusion redissolved. The CspB50-Bivalirudin fusion showed a similar behavior with slightly different pH range. This tag is offering a new protein purification method based on liquid-solid separation which does not require an affinity ligand. This sharp response around neutral pH is useful as a pH-responsive tag for the purification of unstable proteins at a non-physiological pH. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Characterization of the diatomite binding domain in the ribosomal protein L2 from E. coli and functions as an affinity tag.

    PubMed

    Li, Junhua; Zhang, Yang; Yang, Yanjun

    2013-03-01

    The ribosomal protein L2, a constituent protein of the 50S large ribosomal subunit, can be used as Si-tag using silica particles for the immobilization and purification of recombinant proteins (Ikeda et al. (Protein Expr Purif 71:91-95, 2010); Taniguchi et al. (Biotechnol Bioeng 96:1023-1029, 2007)). We applied a diatomite powder, a sedimentary rock mainly composed with diatoms silica, as an affinity solid phase and small ubiquitin-like modifier (SUMO) technology to release a target protein from the solid phase. The L2 (203-273) was the sufficient region for the adsorption of ribosomal protein L2 on diatomite. We comparatively analyzed the different adsorption properties of the two deleted proteins of L2 (L2 (1-60, 203-273) and L2 (203-273)) on diatomite. The time required to reach adsorption equilibrium of L2 (203-273) fusion protein on diatomite was shorter than that of L2 (1-60, 203-273) fusion protein. The maximum adsorption capacity of L2 (203-273) fusion protein was larger than that of L2 (1-60, 203-273) fusion protein. In order to study whether the L2 (203-273) can function as an affinity purification tag, SUMO was introduced as one specific protease cleavage site between the target protein and the purification tags. The L2 (203-273) and SUMO fusion protein purification method was tested using enhanced green fluorescent protein as a model protein; the result shows that the purification performance of this affinity purification method was good. The strong adsorption characteristic of L2 (203-273) on diatomite also provides a potential protein fusion tag for the immobilization of enzyme.

  14. Direct capture of His₆-tagged proteins using megaporous cryogels developed for metal-ion affinity chromatography.

    PubMed

    Singh, Naveen Kumar; DSouza, Roy N; Bibi, Noor Shad; Fernández-Lahore, Marcelo

    2015-01-01

    Immobilized metal-ion affinity chromatography (IMAC) has been developed for the rapid isolation and purification of recombinant proteins. In this chapter, megaporous cryogels were synthesized having metal-ion affinity functionality, and their adsorptive properties were investigated. These cryogels have large pore sizes ranging from 10 to 100 μm with corresponding porosities between 80 and 90%. The synthesized IMAC-cryogel had a total ligand density of 770 μmol/g. Twelve milligram of a His6-tagged protein (NAD(P)H-dependent 2-cyclohexen-1-one-reductase) can be purified from a crude cell extract per gram of IMAC-cryogels. The protein binding capacity is increased with higher degrees of grafting, although a slight decrease in column efficiency may result. This chapter provides methodologies for a rapid single-step purification of recombinant His6-tagged proteins from crude cell extracts using IMAC-cryogels.

  15. Immobilized palladium(II) ion affinity chromatography for recovery of recombinant proteins with peptide tags containing histidine and cysteine.

    PubMed

    Kikot, Pamela; Polat, Aise; Achilli, Estefania; Fernandez Lahore, Marcelo; Grasselli, Mariano

    2014-11-01

    Fusion of peptide-based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram-range amounts of proteins. IMAC-Ni(II) columns have become the natural partners of 6xHis-tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His-tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur-containing molecules. In this work, we evaluated two different cysteine- and histidine-containing six amino acid tags linked to the N-terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine-containing tagged GFPs were able to bind to IMAC-Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC-Ni(II) system reaches less than 20% recovery of the cysteine-containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC-Pd(II) yields a recovery of 45% with a purification factor of 13. Copyright © 2014 John Wiley & Sons, Ltd.

  16. In vivo phosphorylation of a peptide tag for protein purification.

    PubMed

    Goux, Marine; Fateh, Amina; Defontaine, Alain; Cinier, Mathieu; Tellier, Charles

    2016-05-01

    To design a new system for the in vivo phosphorylation of proteins in Escherichia coli using the co-expression of the α-subunit of casein kinase II (CKIIα) and a target protein, (Nanofitin) fused with a phosphorylatable tag. The level of the co-expressed CKIIα was controlled by the arabinose promoter and optimal phosphorylation was obtained with 2 % (w/v) arabinose as inductor. The effectiveness of the phosphorylation system was demonstrated by electrophoretic mobility shift assay (NUT-PAGE) and staining with a specific phosphoprotein-staining gel. The resulting phosphorylated tag was also used to purify the phosphoprotein by immobilized metal affinity chromatography, which relies on the specific interaction of phosphate moieties with Fe(III). The use of a single tag for both the purification and protein array anchoring provides a simple and straightforward system for protein analysis.

  17. Expression and affinity purification of recombinant proteins from plants

    NASA Technical Reports Server (NTRS)

    Desai, Urvee A.; Sur, Gargi; Daunert, Sylvia; Babbitt, Ruth; Li, Qingshun

    2002-01-01

    With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, beta-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the Agrobacterium-mediated system and the viral-vector-mediated transformation system. Copyright 2002 Elsevier Science (USA).

  18. Efficient and versatile one-step affinity purification of in vivo biotinylated proteins: Expression, characterization and structure analysis of recombinant human glutamate carboxypeptidase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tykvart, J.; Sacha, P.; Barinka, C.

    2012-02-07

    Affinity purification is a useful approach for purification of recombinant proteins. Eukaryotic expression systems have become more frequently used at the expense of prokaryotic systems since they afford recombinant eukaryotic proteins with post-translational modifications similar or identical to the native ones. Here, we present a one-step affinity purification set-up suitable for the purification of secreted proteins. The set-up is based on the interaction between biotin and mutated streptavidin. Drosophila Schneider 2 cells are chosen as the expression host, and a biotin acceptor peptide is used as an affinity tag. This tag is biotinylated by Escherichia coli biotin-protein ligase in vivo.more » We determined that localization of the ligase within the ER led to the most effective in vivo biotinylation of the secreted proteins. We optimized a protocol for large-scale expression and purification of AviTEV-tagged recombinant human glutamate carboxypeptidase II (Avi-GCPII) with milligram yields per liter of culture. We also determined the 3D structure of Avi-GCPII by X-ray crystallography and compared the enzymatic characteristics of the protein to those of its non-tagged variant. These experiments confirmed that AviTEV tag does not affect the biophysical properties of its fused partner. Purification approach, developed here, provides not only a sufficient amount of highly homogenous protein but also specifically and effectively biotinylates a target protein and thus enables its subsequent visualization or immobilization.« less

  19. Quantitative evaluation of his-tag purification and immunoprecipitation of tristetraprolin and its mutant proteins from transfected human cells

    USDA-ARS?s Scientific Manuscript database

    Histidine (His)-tag is widely used for affinity purification of recombinant proteins, but the yield and purity of expressed proteins are quite different. Little information is available about quantitative evaluation of this procedure. The objective of the current study was to evaluate the His-tag pr...

  20. Single step purification of recombinant proteins using the metal ion-inducible autocleavage (MIIA) domain as linker for tag removal.

    PubMed

    Ibe, Susan; Schirrmeister, Jana; Zehner, Susanne

    2015-08-20

    For fast and easy purification, proteins are typically fused with an affinity tag, which often needs to be removed after purification. Here, we present a method for the removal of the affinity tag from the target protein in a single step protocol. The protein VIC_001052 of the coral pathogen Vibrio coralliilyticus ATCC BAA-450 contains a metal ion-inducible autocatalytic cleavage (MIIA) domain. Its coding sequence was inserted into an expression vector for the production of recombinant fusion proteins. Following, the target proteins MalE and mCherry were produced as MIIA-Strep fusion proteins in Escherichia coli. The target proteins could be separated from the MIIA-Strep part simply by the addition of calcium or manganese(II) ions within minutes. The cleavage is not affected in the pH range from 5.0 to 9.0 or at low temperatures (6°C). Autocleavage was also observed with immobilized protein on an affinity column. The protein yield was similar to that achieved with a conventional purification protocol. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Isolation of viral ribonucleoprotein complexes from infected cells by tandem affinity purification.

    PubMed

    Mayer, Daniel; Baginsky, Sacha; Schwemmle, Martin

    2005-11-01

    The biochemical purification and analysis of viral ribonucleoprotein complexes (RNPs) of negative-strand RNA viruses is hampered by the lack of suitable tags that facilitate specific enrichment of these complexes. We therefore tested whether fusion of the tandem-affinity-purification (TAP) tag to the main component of viral RNPs, the nucleoprotein, might allow the isolation of these RNPs from cells. We constitutively expressed TAP-tagged nucleoprotein of Borna disease virus (BDV) in cells persistently infected with this virus. The TAP-tagged bait was efficiently incorporated into viral RNPs, did not interfere with BDV replication and was also packaged into viral particles. Native purification of the tagged protein complexes from BDV-infected cells by two consecutive affinity columns resulted in the isolation of several viral proteins, which were identified by MS analysis as the matrix protein, the two forms of the nucleoprotein and the phosphoprotein. In addition to the viral proteins, RT-PCR analysis revealed the presence of viral genomic RNA. Introduction of further protease cleavage sites within the TAP-tag significantly increased the purification yield. These results demonstrate that purification of TAP-tagged viral RNPs is possible and efficient, and may therefore provide new avenues for biochemical and functional studies of these complexes.

  2. Expression and purification of recombinant proteins in Escherichia coli tagged with a small metal-binding protein from Nitrosomonas europaea.

    PubMed

    Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2016-02-01

    Escherichia coli is still the preferred organism for large-scale production of recombinant proteins. The use of fusion proteins has helped considerably in enhancing the solubility of heterologous proteins and their purification with affinity chromatography. Here, the use of a small metal-binding protein (SmbP) from Nitrosomonas europaea is described as a new fusion protein for protein expression and purification in E. coli. Fluorescent proteins tagged at the N-terminal with SmbP showed high levels of solubility, compared with those of maltose-binding protein and glutathione S-transferase, and low formation of inclusion bodies. Using commercially available IMAC resins charged with Ni(II), highly pure recombinant proteins were obtained after just one chromatography step. Proteins may be purified from the periplasm of E. coli if SmbP contains the signal sequence at the N-terminal. After removal of the SmbP tag from the protein of interest, high-yields are obtained since SmbP is a protein of just 9.9 kDa. The results here obtained suggest that SmbP is a good alternative as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. The variable detergent sensitivity of proteases that are utilized for recombinant protein affinity tag removal

    PubMed Central

    Vergis, James M.; Wiener, Michael C.

    2011-01-01

    Recombinant proteins typically include one or more affinity tags to facilitate purification and/or detection. Expression constructs with affinity tags often include an engineered protease site for tag removal. Like other enzymes, the activities of proteases can be affected by buffer conditions. The buffers used for integral membrane proteins contain detergents, which are required to maintain protein solubility. We examined the detergent sensitivity of six commonly-used proteases (Enterokinase, Factor Xa, Human Rhinovirus 3C Protease, SUMOstar, Tobacco Etch Virus Protease, and Thrombin) by use of a panel of ninety-four individual detergents. Thrombin activity was insensitive to the entire panel of detergents, thus suggesting it as the optimal choice for use with membrane proteins. Enterokinase and Factor Xa were only affected by a small number of detergents, making them good choices as well. PMID:21539919

  4. Overview of the purification of recombinant proteins.

    PubMed

    Wingfield, Paul T

    2015-04-01

    When the first version of this unit was written in 1995, protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches, many of which were described and mentioned throughout Current Protocols in Protein Science. In the interim, there has been a shift toward an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein, and whether to engineer a self-cleavage system or simply leave them on. We will briefly address some of these issues. Also, although this overview focuses on E.coli, protein expression and purification, other commonly used expression systems are mentioned and, apart from cell-breakage methods, protein purification methods and strategies are essentially the same. Copyright © 2015 John Wiley & Sons, Inc.

  5. Overview of the Purification of Recombinant Proteins

    PubMed Central

    Wingfield, Paul T.

    2015-01-01

    When the first version of this unit was written in 1995 protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches many of which were described and mentioned in this unit and elsewhere in the book. In the interim there has been a shift towards an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein and whether to engineer a self cleavage system or simply leave them on. We will briefly address some of these issues. Also although this overview focuses on E.coli, protein expression and purification from the other commonly used expression systems are mentioned and apart from cell breakage methods, the protein purification methods and strategies are essentially the same. PMID:25829302

  6. Purification of phage display-modified bacteriophage T4 by affinity chromatography

    PubMed Central

    2011-01-01

    Background Affinity chromatography is one of the most efficient protein purification strategies. This technique comprises a one-step procedure with a purification level in the order of several thousand-fold, adaptable for various proteins, differentiated in their size, shape, charge, and other properties. The aim of this work was to verify the possibility of applying affinity chromatography in bacteriophage purification, with the perspective of therapeutic purposes. T4 is a large, icosahedral phage that may serve as an efficient display platform for foreign peptides or proteins. Here we propose a new method of T4 phage purification by affinity chromatography after its modification with affinity tags (GST and Histag) by in vivo phage display. As any permanent introduction of extraneous DNA into a phage genome is strongly unfavourable for medical purposes, integration of foreign motifs with the phage genome was not applied. The phage was propagated in bacteria expressing fusions of the phage protein Hoc with affinity tags from bacterial plasmids, independently from the phage expression system. Results Elution profiles of phages modified with the specific affinity motifs (compared to non-specific phages) document their binding to the affinity resins and effective elution with standard competitive agents. Non-specific binding was also observed, but was 102-105 times weaker than the specific one. GST-modified bacteriophages were also effectively released from glutathione Sepharose by proteolytic cleavage. The possibility of proteolytic release was designed at the stage of expression vector construction. Decrease in LPS content in phage preparations was dependent on the washing intensity; intensive washing resulted in preparations of 11-40 EU/ml. Conclusions Affinity tags can be successfully incorporated into the T4 phage capsid by the in vivo phage display technique and they strongly elevate bacteriophage affinity to a specific resin. Affinity chromatography can be

  7. Aptamer-based downstream processing of his-tagged proteins utilizing magnetic beads.

    PubMed

    Kökpinar, Öznur; Walter, Johanna-Gabriela; Shoham, Yuval; Stahl, Frank; Scheper, Thomas

    2011-10-01

    Aptamers are synthetic nucleic acid-based high affinity ligands that are able to capture their corresponding target via molecular recognition. Here, aptamer-based affinity purification for His-tagged proteins was developed. Two different aptamers directed against the His-tag were immobilized on magnetic beads covalently. The resulting aptamer-modified magnetic beads were characterized and successfully applied for purification of different His-tagged proteins from complex E. coli cell lysates. Purification effects comparable to conventional immobilized metal affinity chromatography were achieved in one single purification step. Moreover, we have investigated the possibility to regenerate and reuse the aptamer-modified magnetic beads and have shown their long-term stability over a period of 6 months. Copyright © 2011 Wiley Periodicals, Inc.

  8. Fcγ1 fragment of IgG1 as a powerful affinity tag in recombinant Fc-fusion proteins: immunological, biochemical and therapeutic properties.

    PubMed

    Soleimanpour, Saman; Hassannia, Tahereh; Motiee, Mahdieh; Amini, Abbas Ali; Rezaee, S A R

    2017-05-01

    Affinity tags are vital tools for the production of high-throughput recombinant proteins. Several affinity tags, such as the hexahistidine tag, maltose-binding protein, streptavidin-binding peptide tag, calmodulin-binding peptide, c-Myc tag, glutathione S-transferase and FLAG tag, have been introduced for recombinant protein production. The fragment crystallizable (Fc) domain of the IgG1 antibody is one of the useful affinity tags that can facilitate detection, purification and localization of proteins and can improve the immunogenicity, modulatory effects, physicochemical and pharmaceutical properties of proteins. Fcγ recombinant forms a group of recombinant proteins called Fc-fusion proteins (FFPs). FFPs are widely used in drug discovery, drug delivery, vaccine design and experimental research on receptor-ligand interactions. These fusion proteins have become successful alternatives to monoclonal antibodies for drug developments. In this review, the physicochemical, biochemical, immunological, pharmaceutical and therapeutic properties of recombinant FFPs were discussed as a new generation of bioengineering strategies.

  9. Highly efficient purification of protein complexes from mammalian cells using a novel streptavidin-binding peptide and hexahistidine tandem tag system: Application to Bruton's tyrosine kinase

    PubMed Central

    Li, Yifeng; Franklin, Sarah; Zhang, Michael J; Vondriska, Thomas M

    2011-01-01

    Tandem affinity purification (TAP) is a generic approach for the purification of protein complexes. The key advantage of TAP is the engineering of dual affinity tags that, when attached to the protein of interest, allow purification of the target protein along with its binding partners through two consecutive purification steps. The tandem tag used in the original method consists of two IgG-binding units of protein A from Staphylococcus aureus (ProtA) and the calmodulin-binding peptide (CBP), and it allows for recovery of 20–30% of the bait protein in yeast. When applied to higher eukaryotes, however, this classical TAP tag suffers from low yields. To improve protein recovery in systems other than yeast, we describe herein the development of a three-tag system comprised of CBP, streptavidin-binding peptide (SBP) and hexa-histidine. We illustrate the application of this approach for the purification of human Bruton's tyrosine kinase (Btk), which results in highly efficient binding and elution of bait protein in both purification steps (>50% recovery). Combined with mass spectrometry for protein identification, this TAP strategy facilitated the first nonbiased analysis of Btk interacting proteins. The high efficiency of the SBP-His6 purification allows for efficient recovery of protein complexes formed with a target protein of interest from a small amount of starting material, enhancing the ability to detect low abundance and transient interactions in eukaryotic cell systems. PMID:21080425

  10. Efficient, ultra-high-affinity chromatography in a one-step purification of complex proteins

    PubMed Central

    Vassylyeva, Marina N.; Klyuyev, Sergiy; Vassylyev, Alexey D.; Wesson, Hunter; Zhang, Zhuo; Renfrow, Matthew B.; Wang, Hengbin; Higgins, N. Patrick; Chow, Louise T.; Vassylyev, Dmitry G.

    2017-01-01

    Protein purification is an essential primary step in numerous biological studies. It is particularly significant for the rapidly emerging high-throughput fields, such as proteomics, interactomics, and drug discovery. Moreover, purifications for structural and industrial applications should meet the requirement of high yield, high purity, and high activity (HHH). It is, therefore, highly desirable to have an efficient purification system with a potential to meet the HHH benchmark in a single step. Here, we report a chromatographic technology based on the ultra-high-affinity (Kd ∼ 10−14–10−17 M) complex between the Colicin E7 DNase (CE7) and its inhibitor, Immunity protein 7 (Im7). For this application, we mutated CE7 to create a CL7 tag, which retained the full binding affinity to Im7 but was inactivated as a DNase. To achieve high capacity, we developed a protocol for a large-scale production and highly specific immobilization of Im7 to a solid support. We demonstrated its utility with one-step HHH purification of a wide range of traditionally challenging biological molecules, including eukaryotic, membrane, toxic, and multisubunit DNA/RNA-binding proteins. The system is simple, reusable, and also applicable to pulldown and kinetic activity/binding assays. PMID:28607052

  11. Rapid large-scale purification of myofilament proteins using a cleavable His6-tag

    PubMed Central

    Zhang, Mengjie; Martin, Jody L.; Kumar, Mohit; de Tombe, Pieter P.

    2015-01-01

    With the advent of high-throughput DNA sequencing, the number of identified cardiomyopathy-causing mutations has increased tremendously. As the majority of these mutations affect myofilament proteins, there is a need to understand their functional consequence on contraction. Permeabilized myofilament preparations coupled with protein exchange protocols are a common method for examining into contractile mechanics. However, producing large quantities of myofilament proteins can be time consuming and requires different approaches for each protein of interest. In the present study, we describe a unified automated method to produce troponin C, troponin T, and troponin I as well as myosin light chain 2 fused to a His6-tag followed by a tobacco etch virus (TEV) protease site. TEV protease has the advantage of a relaxed P1′ cleavage site specificity, allowing for no residues left after proteolysis and preservation of the native sequence of the protein of interest. After expression in Esherichia coli, cells were lysed by sonication in imidazole-containing buffer. The His6-tagged protein was then purified using a HisTrap nickel metal affinity column, and the His6-tag was removed by His6-TEV protease digestion for 4 h at 30°C. The protease was then removed using a HisTrap column, and complex assembly was performed via column-assisted sequential desalting. This mostly automated method allows for the purification of protein in 1 day and can be adapted to most soluble proteins. It has the advantage of greatly increasing yield while reducing the time and cost of purification. Therefore, production and purification of mutant proteins can be accelerated and functional data collected in a faster, less expensive manner. PMID:26386113

  12. Automated multi-dimensional purification of tagged proteins.

    PubMed

    Sigrell, Jill A; Eklund, Pär; Galin, Markus; Hedkvist, Lotta; Liljedahl, Pia; Johansson, Christine Markeland; Pless, Thomas; Torstenson, Karin

    2003-01-01

    The capacity for high throughput purification (HTP) is essential in fields such as structural genomics where large numbers of protein samples are routinely characterized in, for example, studies of structural determination, functionality and drug development. Proteins required for such analysis must be pure and homogenous and available in relatively large amounts. AKTA 3D system is a powerful automated protein purification system, which minimizes preparation, run-time and repetitive manual tasks. It has the capacity to purify up to 6 different His6- or GST-tagged proteins per day and can produce 1-50 mg protein per run at >90% purity. The success of automated protein purification increases with careful experimental planning. Protocol, columns and buffers need to be chosen with the final application area for the purified protein in mind.

  13. Biotin-tagged proteins: Reagents for efficient ELISA-based serodiagnosis and phage display-based affinity selection

    PubMed Central

    Verma, Vaishali; Kaur, Charanpreet; Grover, Payal; Gupta, Amita

    2018-01-01

    The high-affinity interaction between biotin and streptavidin has opened avenues for using recombinant proteins with site-specific biotinylation to achieve efficient and directional immobilization. The site-specific biotinylation of proteins carrying a 15 amino acid long Biotin Acceptor Peptide tag (BAP; also known as AviTag) is effected on a specific lysine either by co-expressing the E. coli BirA enzyme in vivo or by using purified recombinant E. coli BirA enzyme in the presence of ATP and biotin in vitro. In this paper, we have designed a T7 promoter-lac operator-based expression vector for rapid and efficient cloning, and high-level cytosolic expression of proteins carrying a C-terminal BAP tag in E. coli with TEV protease cleavable N-terminal deca-histidine tag, useful for initial purification. Furthermore, a robust three-step purification pipeline integrated with well-optimized protocols for TEV protease-based H10 tag removal, and recombinant BirA enzyme-based site-specific in vitro biotinylation is described to obtain highly pure biotinylated proteins. Most importantly, the paper demonstrates superior sensitivities in indirect ELISA with directional and efficient immobilization of biotin-tagged proteins on streptavidin-coated surfaces in comparison to passive immobilization. The use of biotin-tagged proteins through specific immobilization also allows more efficient selection of binders from a phage-displayed naïve antibody library. In addition, for both these applications, specific immobilization requires much less amount of protein as compared to passive immobilization and can be easily multiplexed. The simplified strategy described here for the production of highly pure biotin-tagged proteins will find use in numerous applications, including those, which may require immobilization of multiple proteins simultaneously on a solid surface. PMID:29360877

  14. Biotin-tagged proteins: Reagents for efficient ELISA-based serodiagnosis and phage display-based affinity selection.

    PubMed

    Verma, Vaishali; Kaur, Charanpreet; Grover, Payal; Gupta, Amita; Chaudhary, Vijay K

    2018-01-01

    The high-affinity interaction between biotin and streptavidin has opened avenues for using recombinant proteins with site-specific biotinylation to achieve efficient and directional immobilization. The site-specific biotinylation of proteins carrying a 15 amino acid long Biotin Acceptor Peptide tag (BAP; also known as AviTag) is effected on a specific lysine either by co-expressing the E. coli BirA enzyme in vivo or by using purified recombinant E. coli BirA enzyme in the presence of ATP and biotin in vitro. In this paper, we have designed a T7 promoter-lac operator-based expression vector for rapid and efficient cloning, and high-level cytosolic expression of proteins carrying a C-terminal BAP tag in E. coli with TEV protease cleavable N-terminal deca-histidine tag, useful for initial purification. Furthermore, a robust three-step purification pipeline integrated with well-optimized protocols for TEV protease-based H10 tag removal, and recombinant BirA enzyme-based site-specific in vitro biotinylation is described to obtain highly pure biotinylated proteins. Most importantly, the paper demonstrates superior sensitivities in indirect ELISA with directional and efficient immobilization of biotin-tagged proteins on streptavidin-coated surfaces in comparison to passive immobilization. The use of biotin-tagged proteins through specific immobilization also allows more efficient selection of binders from a phage-displayed naïve antibody library. In addition, for both these applications, specific immobilization requires much less amount of protein as compared to passive immobilization and can be easily multiplexed. The simplified strategy described here for the production of highly pure biotin-tagged proteins will find use in numerous applications, including those, which may require immobilization of multiple proteins simultaneously on a solid surface.

  15. High-level expression of soluble recombinant proteins in Escherichia coli using an HE-maltotriose-binding protein fusion tag.

    PubMed

    Han, Yingqian; Guo, Wanying; Su, Bingqian; Guo, Yujie; Wang, Jiang; Chu, Beibei; Yang, Guoyu

    2018-02-01

    Recombinant proteins are commonly expressed in prokaryotic expression systems for large-scale production. The use of genetically engineered affinity and solubility enhancing fusion proteins has increased greatly in recent years, and there now exists a considerable repertoire of these that can be used to enhance the expression, stability, solubility, folding, and purification of their fusion partner. Here, a modified histidine tag (HE) used as an affinity tag was employed together with a truncated maltotriose-binding protein (MBP; consisting of residues 59-433) from Pyrococcus furiosus as a solubility enhancing tag accompanying a tobacco etch virus protease-recognition site for protein expression and purification in Escherichia coli. Various proteins tagged at the N-terminus with HE-MBP(Pyr) were expressed in E. coli BL21(DE3) cells to determine expression and solubility relative to those tagged with His6-MBP or His6-MBP(Pyr). Furthermore, four HE-MBP(Pyr)-fused proteins were purified by immobilized metal affinity chromatography to assess the affinity of HE with immobilized Ni 2+ . Our results showed that HE-MBP(Pyr) represents an attractive fusion protein allowing high levels of soluble expression and purification of recombinant protein in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Rapid large-scale purification of myofilament proteins using a cleavable His6-tag.

    PubMed

    Zhang, Mengjie; Martin, Jody L; Kumar, Mohit; Khairallah, Ramzi J; de Tombe, Pieter P

    2015-11-01

    With the advent of high-throughput DNA sequencing, the number of identified cardiomyopathy-causing mutations has increased tremendously. As the majority of these mutations affect myofilament proteins, there is a need to understand their functional consequence on contraction. Permeabilized myofilament preparations coupled with protein exchange protocols are a common method for examining into contractile mechanics. However, producing large quantities of myofilament proteins can be time consuming and requires different approaches for each protein of interest. In the present study, we describe a unified automated method to produce troponin C, troponin T, and troponin I as well as myosin light chain 2 fused to a His6-tag followed by a tobacco etch virus (TEV) protease site. TEV protease has the advantage of a relaxed P1' cleavage site specificity, allowing for no residues left after proteolysis and preservation of the native sequence of the protein of interest. After expression in Esherichia coli, cells were lysed by sonication in imidazole-containing buffer. The His6-tagged protein was then purified using a HisTrap nickel metal affinity column, and the His6-tag was removed by His6-TEV protease digestion for 4 h at 30°C. The protease was then removed using a HisTrap column, and complex assembly was performed via column-assisted sequential desalting. This mostly automated method allows for the purification of protein in 1 day and can be adapted to most soluble proteins. It has the advantage of greatly increasing yield while reducing the time and cost of purification. Therefore, production and purification of mutant proteins can be accelerated and functional data collected in a faster, less expensive manner. Copyright © 2015 the American Physiological Society.

  17. Broad host range vectors for expression of proteins with (Twin-) Strep-tag, His-tag and engineered, export optimized yellow fluorescent protein

    PubMed Central

    2013-01-01

    Background In current protein research, a limitation still is the production of active recombinant proteins or native protein associations to assess their function. Especially the localization and analysis of protein-complexes or the identification of modifications and small molecule interaction partners by co-purification experiments requires a controllable expression of affinity- and/or fluorescence tagged variants of a protein of interest in its native cellular background. Advantages of periplasmic and/or homologous expressions can frequently not be realized due to a lack of suitable tools. Instead, experiments are often limited to the heterologous production in one of the few well established expression strains. Results Here, we introduce a series of new RK2 based broad host range expression plasmids for inducible production of affinity- and fluorescence tagged proteins in the cytoplasm and periplasm of a wide range of Gram negative hosts which are designed to match the recently suggested modular Standard European Vector Architecture and database. The vectors are equipped with a yellow fluorescent protein variant which is engineered to fold and brightly fluoresce in the bacterial periplasm following Sec-mediated export, as shown from fractionation and imaging studies. Expression of Strep-tag®II and Twin-Strep-tag® fusion proteins in Pseudomonas putida KT2440 is demonstrated for various ORFs. Conclusion The broad host range constructs we have produced enable good and controlled expression of affinity tagged protein variants for single-step purification and qualify for complex co-purification experiments. Periplasmic export variants enable production of affinity tagged proteins and generation of fusion proteins with a novel engineered Aequorea-based yellow fluorescent reporter protein variant with activity in the periplasm of the tested Gram-negative model bacteria Pseudomonas putida KT2440 and Escherichia coli K12 for production, localization or co

  18. Identifying Protein-protein Interaction in Drosophila Adult Heads by Tandem Affinity Purification (TAP)

    PubMed Central

    Tian, Xiaolin; Zhu, Mingwei; Li, Long; Wu, Chunlai

    2013-01-01

    Genetic screens conducted using Drosophila melanogaster (fruit fly) have made numerous milestone discoveries in the advance of biological sciences. However, the use of biochemical screens aimed at extending the knowledge gained from genetic analysis was explored only recently. Here we describe a method to purify the protein complex that associates with any protein of interest from adult fly heads. This method takes advantage of the Drosophila GAL4/UAS system to express a bait protein fused with a Tandem Affinity Purification (TAP) tag in fly neurons in vivo, and then implements two rounds of purification using a TAP procedure similar to the one originally established in yeast1 to purify the interacting protein complex. At the end of this procedure, a mixture of multiple protein complexes is obtained whose molecular identities can be determined by mass spectrometry. Validation of the candidate proteins will benefit from the resource and ease of performing loss-of-function studies in flies. Similar approaches can be applied to other fly tissues. We believe that the combination of genetic manipulations and this proteomic approach in the fly model system holds tremendous potential for tackling fundamental problems in the field of neurobiology and beyond. PMID:24335807

  19. An Overview of Enzymatic Reagents for the Removal of Affinity Tags

    PubMed Central

    Waugh, David S.

    2011-01-01

    Although they are often exploited to facilitate the expression and purification of recombinant proteins, every affinity tag, whether large or small, has the potential to interfere with the structure and function of its fusion partner. For this reason, reliable methods for removing affinity tags are needed. Only enzymes have the requisite specificity to be generally useful reagents for this purpose. In this review, the advantages and disadvantages of some commonly used endo- and exoproteases are discussed in light of the latest information. PMID:21871965

  20. Preparative SDS PAGE as an Alternative to His-Tag Purification of Recombinant Amelogenin

    PubMed Central

    Gabe, Claire M.; Brookes, Steven J.; Kirkham, Jennifer

    2017-01-01

    Recombinant protein technology provides an invaluable source of proteins for use in structure-function studies, as immunogens, and in the development of therapeutics. Recombinant proteins are typically engineered with “tags” that allow the protein to be purified from crude host cell extracts using affinity based chromatography techniques. Amelogenin is the principal component of the developing enamel matrix and a frequent focus for biomineralization researchers. Several groups have reported the successful production of recombinant amelogenins but the production of recombinant amelogenin free of any tags, and at single band purity on silver stained SDS PAGE is technically challenging. This is important, as rigorous structure-function research frequently demands a high degree of protein purity and fidelity of protein sequence. Our aim was to generate His-tagged recombinant amelogenin at single band purity on silver stained SDS PAGE for use in functionality studies after His-tag cleavage. An acetic acid extraction technique (previously reported to produce recombinant amelogenin at 95% purity directly from E. coli) followed by repeated rounds of nickel column affinity chromatography, failed to generate recombinant amelogenin at single band purity. This was because following an initial round of nickel column affinity chromatography, subsequent cleavage of the His-tag was not 100% efficient. A second round of nickel column affinity chromatography, used in attempts to separate the cleaved His-tag free recombinant from uncleaved His-tagged contaminants, was still unsatisfactory as cleaved recombinant amelogenin exhibited significant affinity for the nickel column. To solve this problem, we used preparative SDS PAGE to successfully purify cleaved recombinant amelogenins to single band purity on silver stained SDS PAGE. The resolving power of preparative SDS PAGE was such that His-tag based purification of recombinant amelogenin becomes redundant. We suggest that acetic

  1. Protein-phosphotyrosine proteome profiling by superbinder-SH2 domain affinity purification mass spectrometry, sSH2-AP-MS.

    PubMed

    Tong, Jiefei; Cao, Biyin; Martyn, Gregory D; Krieger, Jonathan R; Taylor, Paul; Yates, Bradley; Sidhu, Sachdev S; Li, Shawn S C; Mao, Xinliang; Moran, Michael F

    2017-03-01

    Recently, "superbinder" SH2 domain variants with three amino acid substitutions (sSH2) were reported to have 100-fold or greater affinity for protein-phosphotyrosine (pY) than natural SH2 domains. Here we report a protocol in which His-tagged Src sSH2 efficiently captures pY-peptides from protease-digested HeLa cell total protein extracts. Affinity purification of pY-peptides by this method shows little bias for pY-proximal amino acid sequences, comparable to that achieved by using antibodies to pY, but with equal or higher yield. Superbinder-SH2 affinity purification mass spectrometry (sSH2-AP-MS) therefore provides an efficient and economical approach for unbiased pY-directed phospho-proteome profiling without the use of antibodies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Aptamer facilitated purification of functional proteins.

    PubMed

    Beloborodov, Stanislav S; Bao, Jiayin; Krylova, Svetlana M; Shala-Lawrence, Agnesa; Johnson, Philip E; Krylov, Sergey N

    2018-01-15

    DNA aptamers are attractive capture probes for affinity chromatography since, in contrast to antibodies, they can be chemically synthesized and, in contrast to tag-specific capture probes (such as Nickel-NTA or Glutathione), they can be used for purification of proteins free of genetic modifications (such as His or GST tags). Despite these attractive features of aptamers as capture probes, there are only a few reports on aptamer-based protein purification and none of them includes a test of the purified protein's activity, thus, leaving discouraging doubts about method's ability to purify proteins in their active state. The goal of this work was to prove that aptamers could facilitate isolation of active proteins. We refined a complete aptamer-based affinity purification procedure, which takes 4 h to complete. We further applied this procedure to purify two recombinant proteins, MutS and AlkB, from bacterial cell culture: 0.21 mg of 85%-pure AlkB from 4 mL of culture and 0.24 mg of 82%-pure MutS from 0.5 mL of culture. Finally, we proved protein activity by two capillary electrophoresis based assays: an enzymatic assay for AlkB and a DNA-binding assay for MutS. We suggest that in combination with aptamer selection for non-purified protein targets in crude cell lysate, aptamer-based purification provides a means of fast isolation of tag-free recombinant proteins in their native state without the use of antibodies. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A photo-cleavable biotin affinity tag for the facile release of a photo-crosslinked carbohydrate-binding protein.

    PubMed

    Chang, Tsung-Che; Adak, Avijit K; Lin, Ting-Wei; Li, Pei-Jhen; Chen, Yi-Ju; Lai, Chain-Hui; Liang, Chien-Fu; Chen, Yu-Ju; Lin, Chun-Cheng

    2016-03-15

    The use of photo-crosslinking glycoprobes represents a powerful strategy for the covalent capture of labile protein complexes and allows detailed characterization of carbohydrate-mediated interactions. The selective release of target proteins from solid support is a key step in functional proteomics. We envisaged that light activation can be exploited for releasing labeled protein in a dual photo-affinity probe-based strategy. To investigate this possibility, we designed a trifunctional, galactose-based, multivalent glycoprobe for affinity labeling of carbohydrate-binding proteins. The resulting covalent protein-probe adduct is attached to a photo-cleavable biotin affinity tag; the biotin moiety enables specific presentation of the conjugate on streptavidin-coated beads, and the photolabile linker allows the release of the labeled proteins. This dual probe promotes both the labeling and the facile cleavage of the target protein complexes from the solid surfaces and the remainder of the cell lysate in a completely unaltered form, thus eliminating many of the common pitfalls associated with traditional affinity-based purification methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Production of recombinant proteins in Escherichia coli tagged with the fusion protein CusF3H.

    PubMed

    Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2017-04-01

    Recombinant protein expression in the bacterium Escherichia coli still is the number one choice for large-scale protein production. Nevertheless, many complications can arise using this microorganism, such as low yields, the formation of inclusion bodies, and the requirement for difficult purification steps. Most of these problems can be solved with the use of fusion proteins. Here, the use of the metal-binding protein CusF3H+ is described as a new fusion protein for recombinant protein expression and purification in E. coli. We have previously shown that CusF produces large amounts of soluble protein, with low levels of formation of inclusion bodies, and that proteins can be purified using IMAC resins charged with Cu(II) ions. CusF3H+ is an enhanced variant of CusF, formed by the addition of three histidine residues at the N-terminus. These residues then can bind Ni(II) ions allowing improved purity after affinity chromatography. Expression and purification of Green Fluorescent Protein tagged with CusF3H+ showed that the mutation did not alter the capacity of the fusion protein to increase protein expression, and purity improved considerably after affinity chromatography with immobilized nickel ions; high yields are obtained after tag-removal since CusF3H+ is a small protein of just 10 kDa. Furthermore, the results of experiments involving expression of tagged proteins having medium to large molecular weights indicate that the presence of the CusF3H+ tag improves protein solubility, as compared to a His-tag. We therefore endorse CusF3H+ as a useful alternative fusion protein/affinity tag for production of recombinant proteins in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Expression and Purification of Recombinant Proteins in Escherichia coli with a His6 or Dual His6-MBP Tag.

    PubMed

    Raran-Kurussi, Sreejith; Waugh, David S

    2017-01-01

    Rapid advances in bioengineering and biotechnology over the past three decades have greatly facilitated the production of recombinant proteins in Escherichia coli. Affinity-based methods that employ protein or peptide based tags for protein purification have been instrumental in this progress. Yet insolubility of recombinant proteins in E. coli remains a persistent problem. One way around this problem is to fuse an aggregation-prone protein to a highly soluble partner. E. coli maltose-binding protein (MBP) is widely acknowledged as a highly effective solubilizing agent. In this chapter, we describe how to construct either a His 6 - or a dual His 6 -MBP tagged fusion protein by Gateway ® recombinational cloning and how to evaluate their yield and solubility. We also describe a simple and rapid procedure to test the solubility of proteins after removing their N-terminal fusion tags by tobacco etch virus (TEV) protease digestion. The choice of whether to use a His 6 tag or a His 6 -MBP tag can be made on the basis of this solubility test.

  6. New ligation independent cloning vectors for expression of recombinant proteins with a self-cleaving CPD/6xHis-tag.

    PubMed

    Biancucci, Marco; Dolores, Jazel S; Wong, Jennifer; Grimshaw, Sarah; Anderson, Wayne F; Satchell, Karla J F; Kwon, Keehwan

    2017-01-05

    Recombinant protein purification is a crucial step for biochemistry and structural biology fields. Rapid robust purification methods utilize various peptide or protein tags fused to the target protein for affinity purification using corresponding matrices and to enhance solubility. However, affinity/solubility-tags often need to be removed in order to conduct functional and structural studies, adding complexities to purification protocols. In this work, the Vibrio cholerae MARTX toxin Cysteine Protease Domain (CPD) was inserted in a ligation-independent cloning (LIC) vector to create a C-terminal 6xHis-tagged inducible autoprocessing enzyme tag, called "the CPD-tag". The pCPD and alternative pCPD/ccdB cloning vectors allow for easy insertion of DNA and expression of the target protein fused to the CPD-tag, which is removed at the end of the purification step by addition of the inexpensive small molecule inositol hexakisphosphate to induce CPD autoprocessing. This process is demonstrated using a small bacterial membrane localization domain and for high yield purification of the eukaryotic small GTPase KRas. Subsequently, pCPD was tested with 40 proteins or sub-domains selected from a high throughput crystallization pipeline. pCPD vectors are easily used LIC compatible vectors for expression of recombinant proteins with a C-terminal CPD/6xHis-tag. Although intended only as a strategy for rapid tag removal, this pilot study revealed the CPD-tag may also increase expression and solubility of some recombinant proteins.

  7. Protein purification by aminosquarylium cyanine dye-affinity chromatography.

    PubMed

    Silva, M S; Graça, V C; Reis, L V; Santos, P F; Almeida, P; Queiroz, J A; Sousa, F

    2013-12-01

    The most selective purification method for proteins and other biomolecules is affinity chromatography. This method is based on the unique biological-based specificity of the biomolecule-ligand interaction and commonly uses biological ligands. However, these ligands may present some drawbacks, mainly because of their cost and lability. Dye-affinity chromatography overcomes the limitations of biological ligands and is widely used owing to the low cost of synthetic dyes and to their resistance to biological and chemical degradation. In this work, immobilized aminosquarylium cyanine dyes are used in order to exploit affinity interactions with standard proteins such as lysozyme, α-chymotrypsin and trypsin. These studies evaluate the affinity interactions occurring between the immobilized ligand and the different proteins, as a reflection of the sum of several molecular interactions, namely ionic, hydrophobic and van der Waals, spread throughout the structure, in a defined spatial manner. The results show the possibility of using an aminosquarylium cyanine dye bearing a N-hexyl pendant chain, with a ligand density of 1.8 × 10(-2) mmol of dye/g of chromatographic support, to isolate lysozyme, α-chymotrypsin and trypsin from a mixture. The application of a decreasing ammonium sulfate gradient resulted in the recovery of lysozyme in the flowthrough. On the other hand, α-chymotrypsin and trypsin were retained, involving different interactions with the ligand. In conclusion, this study demonstrates the potential applicability of ligands such as aminosquarylium cyanine dyes for the separation and purification of proteins by affinity chromatography. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Single-step affinity purification for fungal proteomics.

    PubMed

    Liu, Hui-Lin; Osmani, Aysha H; Ukil, Leena; Son, Sunghun; Markossian, Sarine; Shen, Kuo-Fang; Govindaraghavan, Meera; Varadaraj, Archana; Hashmi, Shahr B; De Souza, Colin P; Osmani, Stephen A

    2010-05-01

    A single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.

  9. GSyellow, a Multifaceted Tag for Functional Protein Analysis in Monocot and Dicot Plants.

    PubMed

    Besbrugge, Nienke; Van Leene, Jelle; Eeckhout, Dominique; Cannoot, Bernard; Kulkarni, Shubhada R; De Winne, Nancy; Persiau, Geert; Van De Slijke, Eveline; Bontinck, Michiel; Aesaert, Stijn; Impens, Francis; Gevaert, Kris; Van Damme, Daniel; Van Lijsebettens, Mieke; Inzé, Dirk; Vandepoele, Klaas; Nelissen, Hilde; De Jaeger, Geert

    2018-06-01

    The ability to tag proteins has boosted the emergence of generic molecular methods for protein functional analysis. Fluorescent protein tags are used to visualize protein localization, and affinity tags enable the mapping of molecular interactions by, for example, tandem affinity purification or chromatin immunoprecipitation. To apply these widely used molecular techniques on a single transgenic plant line, we developed a multifunctional tandem affinity purification tag, named GS yellow , which combines the streptavidin-binding peptide tag with citrine yellow fluorescent protein. We demonstrated the versatility of the GS yellow tag in the dicot Arabidopsis ( Arabidopsis thaliana ) using a set of benchmark proteins. For proof of concept in monocots, we assessed the localization and dynamic interaction profile of the leaf growth regulator ANGUSTIFOLIA3 (AN3), fused to the GS yellow tag, along the growth zone of the maize ( Zea mays ) leaf. To further explore the function of ZmAN3, we mapped its DNA-binding landscape in the growth zone of the maize leaf through chromatin immunoprecipitation sequencing. Comparison with AN3 target genes mapped in the developing maize tassel or in Arabidopsis cell cultures revealed strong conservation of AN3 target genes between different maize tissues and across monocots and dicots, respectively. In conclusion, the GS yellow tag offers a powerful molecular tool for distinct types of protein functional analyses in dicots and monocots. As this approach involves transforming a single construct, it is likely to accelerate both basic and translational plant research. © 2018 American Society of Plant Biologists. All rights reserved.

  10. Immobilized Metal Affinity Chromatography Co-Purifies TGF-β1 with Histidine-Tagged Recombinant Extracellular Proteins

    PubMed Central

    Kaur, Jasvir; Reinhardt, Dieter P.

    2012-01-01

    Extracellular recombinant proteins are commonly produced using HEK293 cells as histidine-tagged proteins facilitating purification by immobilized metal affinity chromatography (IMAC). Based on gel analyses, this one-step purification typically produces proteins of high purity. Here, we analyzed the presence of TGF-β1 in such IMAC purifications using recombinant extracellular fibrillin-1 fragments as examples. Analysis of various purified recombinant fibrillin-1 fragments by ELISA consistently revealed the presence of picomolar concentrations of active and latent TGF-β1, but not of BMP-2. These quantities of TGF-β1 were not detectable by Western blotting and mass spectrometry. However, the amounts of TGF-β1 were sufficient to consistently trigger Smad2 phosphorylation in fibroblasts. The purification mechanism was analyzed to determine whether the presence of TGF-β1 in these protein preparations represents a specific or non-specific co-purification of TGF-β1 with fibrillin-1 fragments. Control purifications using conditioned medium from non-transfected 293 cells yielded similar amounts of TGF-β1 after IMAC. IMAC of purified TGF-β1 and the latency associated peptide showed that these proteins bound to the immobilized nickel ions. These data clearly demonstrate that TGF-β1 was co-purified by specific interactions with nickel, and not by specific interactions with fibrillin-1 fragments. Among various chromatographic methods tested for their ability to eliminate TGF-β1 from fibrillin-1 preparations, gel filtration under high salt conditions was highly effective. As various recombinant extracellular proteins purified in this fashion are frequently used for experiments that can be influenced by the presence of TGF-β1, these findings have far-reaching implications for the required chromatographic schemes and quality controls. PMID:23119075

  11. Affinity purification combined with mass spectrometry to identify herpes simplex virus protein-protein interactions.

    PubMed

    Meckes, David G

    2014-01-01

    The identification and characterization of herpes simplex virus protein interaction complexes are fundamental to understanding the molecular mechanisms governing the replication and pathogenesis of the virus. Recent advances in affinity-based methods, mass spectrometry configurations, and bioinformatics tools have greatly increased the quantity and quality of protein-protein interaction datasets. In this chapter, detailed and reliable methods that can easily be implemented are presented for the identification of protein-protein interactions using cryogenic cell lysis, affinity purification, trypsin digestion, and mass spectrometry.

  12. In vivo expression and purification of aptamer-tagged small RNA regulators

    PubMed Central

    Said, Nelly; Rieder, Renate; Hurwitz, Robert; Deckert, Jochen; Urlaub, Henning; Vogel, Jörg

    2009-01-01

    Small non-coding RNAs (sRNAs) are an emerging class of post-transcriptional regulators of bacterial gene expression. To study sRNAs and their potential protein interaction partners, it is desirable to purify sRNAs from cells in their native form. Here, we used RNA-based affinity chromatography to purify sRNAs following their expression as aptamer-tagged variants in vivo. To this end, we developed a family of plasmids to express sRNAs with any of three widely used aptamer sequences (MS2, boxB, eIF4A), and systematically tested how the aptamer tagging impacted on intracellular accumulation and target regulation of the Salmonella GcvB, InvR or RybB sRNAs. In addition, we successfully tagged the chromosomal rybB gene with MS2 to observe that RybB-MS2 is fully functional as an envelope stress-induced repressor of ompN mRNA following induction of sigmaE. We further demonstrate that the common sRNA-binding protein, Hfq, co-purifies with MS2-tagged sRNAs of Salmonella. The presented affinity purification strategy may facilitate the isolation of in vivo assembled sRNA–protein complexes in a wide range of bacteria. PMID:19726584

  13. Nickel-Salen supported paramagnetic nanoparticles for 6-His-target recombinant protein affinity purification.

    PubMed

    Rashid, Zahra; Ghahremanzadeh, Ramin; Nejadmoghaddam, Mohammad-Reza; Nazari, Mahboobeh; Shokri, Mohammad-Reza; Naeimi, Hossein; Zarnani, Amir-Hassan

    2017-03-24

    In this research, a simple, efficient, inexpensive, rapid and high yield method for the purification of 6×histidine-tagged recombinant protein was developed. For this purpose, manganese ferrite magnetic nanoparticles (MNPs) were synthesized through a co-precipitation method and then they were conveniently surface-modified with tetraethyl orthosilicate (TEOS) in order to prevent oxidation and form high density of hydroxyl groups. Next, the salen ligand was prepared from condensation reaction of salicylaldehyde and 3-aminopropyl (trimethoxy) silane (APTMS) in 1:1 molar ratio; followed by complexation with Ni(OAc) 2 .4H 2 O. Finally, the prepared Ni(II)-salen complex conjugated to silica coated MNPs and MnFe 2 O 4 @SiO 2 @Ni-Salen complex nanoparticles were obtained. The functionalized nanoparticles were spherical with an average diameter around 70nm. The obtained MNPs had a saturation magnetization about 54 emu/g and had super paramagnetic character. These MNPs were used efficiently to enrich recombinant histidine-tagged (His-tagged) protein-A from bacterial cell lysate. In about 45min, highly pure His-tagged recombinant protein was obtained, as judged by SDS-PAGE analysis and silver staining. The amount of target protein in flow through and washing fractions was minimal denoting the high efficiency of purification process. The average capacity of the matrix was found to be high and about 180±15mgg -1 (protein/MnFe 2 O 4 @SiO 2 @Ni-Salen complex). Collectively, purification process with MnFe 2 O 4 @SiO 2 @Ni-Salen complex nanoparticles is rapid, efficient, selective and whole purification can be carried out in only a single tube without the need for expensive systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Isolation of centromeric-tandem repetitive DNA sequences by chromatin affinity purification using a HaloTag7-fused centromere-specific histone H3 in tobacco.

    PubMed

    Nagaki, Kiyotaka; Shibata, Fukashi; Kanatani, Asaka; Kashihara, Kazunari; Murata, Minoru

    2012-04-01

    The centromere is a multi-functional complex comprising centromeric DNA and a number of proteins. To isolate unidentified centromeric DNA sequences, centromere-specific histone H3 variants (CENH3) and chromatin immunoprecipitation (ChIP) have been utilized in some plant species. However, anti-CENH3 antibody for ChIP must be raised in each species because of its species specificity. Production of the antibodies is time-consuming and costly, and it is not easy to produce ChIP-grade antibodies. In this study, we applied a HaloTag7-based chromatin affinity purification system to isolate centromeric DNA sequences in tobacco. This system required no specific antibody, and made it possible to apply a highly stringent wash to remove contaminated DNA. As a result, we succeeded in isolating five tandem repetitive DNA sequences in addition to the centromeric retrotransposons that were previously identified by ChIP. Three of the tandem repeats were centromere-specific sequences located on different chromosomes. These results confirm the validity of the HaloTag7-based chromatin affinity purification system as an alternative method to ChIP for isolating unknown centromeric DNA sequences. The discovery of more than two chromosome-specific centromeric DNA sequences indicates the mosaic structure of tobacco centromeres. © Springer-Verlag 2011

  15. Utilizing a library of synthetic affinity ligands for the enrichment, depletion and one-step purification of leech proteins.

    PubMed

    Dong, Dexian; Gui, Yanli; Chen, Dezhao; Li, Rongxiu

    2008-01-01

    Although the concept of affinity purification using synthetic ligands had been utilized for many years, there are few articles related to this research area, and they focus only on the affinity purification of specific protein by a defined library of synthetic ligands. This study presents the design and construction of a 700-member library of synthetic ligands in detail. We selected 297 ligand columns from a 700-member library of synthetic ligands to screen leech protein extract. Of the 297, 154 columns had an enrichment effect, 83 columns had a depletion effect, 36 columns had a one-step purification effect, and 58 columns had a one-step purification via flowthrough effect. The experimental results achieved by this large library of affinity ligands provide solid convincing data for the theory that affinity chromatography could be used for the enrichment of proteins that are present in low abundance, the depletion of high abundance proteins, and one-step purification of special proteins. 2008 John Wiley & Sons, Ltd

  16. [Identification of the interacting proteins with S100A8 or S100A9 by affinity purification and mass spectrometry].

    PubMed

    Wang, Jing; Zhang, Xuemei; Li, Zheng; Li, Xiayu; Ma, Jian; Shen, Shourong

    2017-04-28

    To identify the interacting proteins with S100A8 or S100A9 in HEK293 cell line by flag-tag affinity purification and liquid chromatography mass spectrometry/mass spectrometry (LC-MS/MS).
 Methods: The p3×Flag-CMV-S100A8 and p3×Flag-CMV-S100A9 expression vectors were constructed by inserting S100A8 or S100A9 coding sequence. The recombinant plasmids were then transfected into HEK293 cells. Affinity purification and LC-MS/MS were applied to identify the proteins interacting with S100A8 or S100A9. Bioinformatics analysis was used to seek the gene ontology of the interacting proteins. Co-immunoprecipitation (Co-IP) was applied to confirm the proteins interacted with S100A8 or S100A9.
 Results: Fourteen proteins including pyruvate kinase, muscle (PKM), nucleophosmin (NPM1) and eukaryotic translation initiation factor 5A (EIF5A), which potentially interacted with S100A8, were successfully identified by Flag-tag affinity purification followed by LC-MS/MS analysis. Six proteins, such as tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon (14-3-3ε) and PKM, which potentially interacted with S100A9, were successfully identified. Gene ontology analysis of the identified proteins suggested that proteins interacted with S100A8 or S100A9 were involved in several biological pathways, including canonical glycolysis, positive regulation of NF-κB transcription factor activity, negative regulation of apoptotic process, cell-cell adhesion, etc. Co-IP experiment confirmed that PKM2 can interact with both S100A8 and S100A9, and 14-3-3ε can interact with S100A8.
 Conclusion: PKM2 is identified to interact with both S100A8 and S100A9, while 14-3-3ε can interact with S100A9. These results may provide a new clue for the role of S100A8 or S100A9 in the progression of colitis-associated colorectal cancer.

  17. Affinity purification and mass spectrometry: an attractive choice to investigate protein-protein interactions in plant immunity

    USDA-ARS?s Scientific Manuscript database

    Affinity purification of protein complexes from biological tissues, followed by liquid chromatography- tandem mass spectrometry (AP-MS/MS), has ballooned in recent years due to sizeable increases in nucleic acid sequence data essential for interpreting mass spectra, improvements in affinity purifica...

  18. Peptide nucleic acid probe for protein affinity purification based on biotin-streptavidin interaction and peptide nucleic acid strand hybridization.

    PubMed

    Tse, Jenny; Wang, Yuanyuan; Zengeya, Thomas; Rozners, Eriks; Tan-Wilson, Anna

    2015-02-01

    We describe a new method for protein affinity purification that capitalizes on the high affinity of streptavidin for biotin but does not require dissociation of the biotin-streptavidin complex for protein retrieval. Conventional reagents place both the selectively reacting group (the "warhead") and the biotin on the same molecule. We place the warhead and the biotin on separate molecules, each linked to a short strand of peptide nucleic acid (PNA), synthetic polymers that use the same bases as DNA but attached to a backbone that is resistant to attack by proteases and nucleases. As in DNA, PNA strands with complementary base sequences hybridize. In conditions that favor PNA duplex formation, the warhead strand (carrying the tagged protein) and the biotin strand form a complex that is held onto immobilized streptavidin. As in DNA, the PNA duplex dissociates at moderately elevated temperature; therefore, retrieval of the tagged protein is accomplished by a brief exposure to heat. Using iodoacetate as the warhead, 8-base PNA strands, biotin, and streptavidin-coated magnetic beads, we demonstrate retrieval of the cysteine protease papain. We were also able to use our iodoacetyl-PNA:PNA-biotin probe for retrieval and identification of a thiol reductase and a glutathione transferase from soybean seedling cotyledons. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Endotoxin depletion of recombinant protein preparations through their preferential binding to histidine tags.

    PubMed

    Mack, Laura; Brill, Boris; Delis, Natalia; Groner, Bernd

    2014-12-01

    The presence of endotoxins in preparations of recombinantly produced therapeutic proteins poses serious problems for patients. Endotoxins can cause fever, respiratory distress syndromes, intravascular coagulation, or endotoxic shock. A number of methods have been devised to remove endotoxins from protein preparations using separation procedures based on molecular mass or charge properties. Most of the methods are limited in their endotoxin removal capacities and lack general applicability. We are describing a biotechnological approach for endotoxin removal. This strategy exploits the observation that endotoxins form micelles that expose negative charges on their surface, leading to preferential binding of endotoxins to cationic surfaces, allowing the separation from their resident protein. Endotoxins exhibit high affinity to stretches of histidines, which are widely used tools to facilitate the purification of recombinant proteins. They bind to nickel ions and are the basis for protein purification from cellular extracts by immobilized metal affinity chromatography. We show that the thrombin-mediated cleavage of two histidine tags from the purified recombinant protein and the adsorption of these histidine tags and their associated endotoxins to a nickel affinity column result in an appreciable depletion of the endotoxins in the purified protein fraction. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. PDZ affinity chromatography: a general method for affinity purification of proteins based on PDZ domains and their ligands.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2014-06-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ∼90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Purification of CD47-streptavidin fusion protein from bacterial lysate using biotin-agarose affinity chromatography.

    PubMed

    Salehi, Nasrin; Peng, Ching-An

    2016-07-08

    CD47 is a widely expressed transmembrane glycoprotein that modulates the activity of a plethora of immune cells via its extracellular domain. Therefore, CD47 plays important roles in the regulation of immune responses and may serve as targets for the development of immunotherapeutic agents. To make sure CD47 functionality is intact under the process of protein conjugation, CD47-streptavidin fusion protein was expressed and purified because it can easily bind to biotin-tagged materials via the unique biotin-streptavidin affinity. In this study, gene sequences of CD47 extracellular domain (CD47ECD) and core streptavidin (coreSA) with a total 834 bp were inserted into pET20b plasmid to construct recombinant plasmid encoding CD47-SA fusion gene. After bacteria transformation, the CD47-SA fusion protein was expressed by isopropyl-β-d-thiogalactopyranoside (IPTG) induction. The collected bacteria lysate was loaded on biotinylated agarose to proceed the purification of CD47-SA fusion protein. Due to the unexpected high affinity between biotin and coreSA, standard washing and elution approaches (e.g., varying pH, using biotin, and applying guanidine hydrochloride) reported for biotin-streptavidin affinity chromatography were not able to separate the target fusion protein. Instead, using low concentration of the non-ionic detergent Triton X-100 followed with alkaline buffer could efficiently weaken the binding between biotin and coreSA, thereby eluting out CD47-SA fusion protein from the biotin agarose column. The purified CD47-SA fusion protein was further characterized by molecular biology methods and its antiphagocytic functionality was confirmed by the phagocytosis assay. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:949-958, 2016. © 2016 American Institute of Chemical Engineers.

  2. Generation of Recombinant Polioviruses Harboring RNA Affinity Tags in the 5′ and 3′ Noncoding Regions of Genomic RNAs

    PubMed Central

    Flather, Dylan; Cathcart, Andrea L.; Cruz, Casey; Baggs, Eric; Ngo, Tuan; Gershon, Paul D.; Semler, Bert L.

    2016-01-01

    Despite being intensely studied for more than 50 years, a complete understanding of the enterovirus replication cycle remains elusive. Specifically, only a handful of cellular proteins have been shown to be involved in the RNA replication cycle of these viruses. In an effort to isolate and identify additional cellular proteins that function in enteroviral RNA replication, we have generated multiple recombinant polioviruses containing RNA affinity tags within the 3′ or 5′ noncoding region of the genome. These recombinant viruses retained RNA affinity sequences within the genome while remaining viable and infectious over multiple passages in cell culture. Further characterization of these viruses demonstrated that viral protein production and growth kinetics were unchanged or only slightly altered relative to wild type poliovirus. However, attempts to isolate these genetically-tagged viral genomes from infected cells have been hindered by high levels of co-purification of nonspecific proteins and the limited matrix-binding efficiency of RNA affinity sequences. Regardless, these recombinant viruses represent a step toward more thorough characterization of enterovirus ribonucleoprotein complexes involved in RNA replication. PMID:26861382

  3. Preparation of silica coated cobalt ferrite magnetic nanoparticles for the purification of histidine-tagged proteins

    NASA Astrophysics Data System (ADS)

    Aygar, Gülfem; Kaya, Murat; Özkan, Necati; Kocabıyık, Semra; Volkan, Mürvet

    2015-12-01

    Surface modified cobalt ferrite (CoFe2O4) nanoparticles containing Ni-NTA affinity group were synthesized and used for the separation of histidine tag proteins from the complex matrices through the use of imidazole side chains of histidine molecules. Firstly, CoFe2O4 nanoparticles with a narrow size distribution were prepared in an aqueous solution using the controlled co-precipitation method. In order to obtain small CoFe2O4 agglomerates, oleic acid and sodium chloride were used as dispersants. The CoFe2O4 particles were coated with silica and subsequently the surface of these silica coated particles (SiO2-CoFe2O4) was modified by amine (NH2) groups in order to add further functional groups on the silica shell. Then, carboxyl (-COOH) functional groups were added to the SiO2-CoFe2O4 magnetic nanoparticles through the NH2 groups. After that Nα,Nα-Bis(carboxymethyl)-L-lysine hydrate (NTA) was attached to carboxyl ends of the structure. Finally, the surface modified nanoparticles were labeled with nickel (Ni) (II) ions. Furthermore, the modified SiO2-CoFe2O4 magnetic nanoparticles were utilized as a new system that allows purification of the N-terminal His-tagged recombinant small heat shock protein, Tpv-sHSP 14.3.

  4. Expression and purification of the non-tagged LipL32 of pathogenic Leptospira.

    PubMed

    Hauk, P; Carvalho, E; Ho, P L

    2011-04-01

    Leptospirosis is a reemerging infectious disease and the most disseminated zoonosis worldwide. A leptospiral surface protein, LipL32, only occurs in pathogenic Leptospira, and is the most abundant protein on the bacterial surface, being described as an important factor in host immunogenic response and also in bacterial infection. We describe here an alternative and simple purification protocol for non-tagged recombinant LipL32. The recombinant LipL32(21-272) was expressed in Escherichia coli without His-tag or any other tag used to facilitate recombinant protein purification. The recombinant protein was expressed in the soluble form, and the purification was based on ion exchange (anionic and cationic) and hydrophobic interactions. The final purification yielded 3 mg soluble LipL32(21-272) per liter of the induced culture. Antiserum produced against the recombinant protein was effective to detect native LipL32 from cell extracts of several Leptospira serovars. The purified recombinant LipL32(21-272) produced by this protocol can be used for structural, biochemical and functional studies and avoids the risk of possible interactions and interferences of the tags commonly used as well as the time consuming and almost always inefficient methods to cleave these tags when a tag-free LipL32 is needed. Non-tagged LipL32 may represent an alternative antigen for biochemical studies, for serodiagnosis and for the development of a vaccine against leptospirosis.

  5. In situ affinity purification of his-tagged protein A from Bacillus megaterium cultivation using recyclable superparamagnetic iron oxide nanoparticles.

    PubMed

    Gädke, Johannes; Kleinfeldt, Lennart; Schubert, Chris; Rohde, Manfred; Biedendieck, Rebekka; Garnweitner, Georg; Krull, Rainer

    2017-01-20

    This paper discusses the use of recyclable functionalized nanoparticles for an improved downstream processing of recombinant products. The Gram-positive bacterium Bacillus megaterium was used to secrete recombinant protein A fused to a histidine tag into the culture supernatant in shaker flasks. Superparamagnetic iron oxide nanoparticles functionalized with 3-glycidoxypropyl-trimethoxysilane-coupled-nitrilotriacetic-acid groups (GNTA-SPION) were synthesized and added directly to the growing culture. After 10min incubation time, >85% of the product was adsorbed onto the particles. The particles were magnetically separated using handheld neodymium magnets and the product was eluted. The GNTA-SPION were successfully regenerated and reused in five consecutive cycles. In the one-step purification, the purity of the product reached >99.9% regarding protein A. A very low particle concentration of 0.5g/L was sufficient for effective product separation. Bacterial growth was not influenced negatively by this concentration. Particle analysis showed similar properties between freshly synthesized and regenerated GNTA-SPION. The overall process efficiency was however influenced by partial disintegration of particle agglomerates and thus loss of particles. The demonstration of very fast in situ product removal from growing bacterial culture combined with a very high product purity within one step shows possibilities for automated large scale purification combined with recycling of biomass. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Cloning, Expression, and Purification of Histidine-Tagged Escherichia coli Dihydrodipicolinate Reductase.

    PubMed

    Trigoso, Yvonne D; Evans, Russell C; Karsten, William E; Chooback, Lilian

    2016-01-01

    The enzyme dihydrodipicolinate reductase (DHDPR) is a component of the lysine biosynthetic pathway in bacteria and higher plants. DHDPR catalyzes the NAD(P)H dependent reduction of 2,3-dihydrodipicolinate to the cyclic imine L-2,3,4,5,-tetrahydropicolinic acid. The dapB gene that encodes dihydrodipicolinate reductase has previously been cloned, but the expression of the enzyme is low and the purification is time consuming. Therefore the E. coli dapB gene was cloned into the pET16b vector to improve the protein expression and simplify the purification. The dapB gene sequence was utilized to design forward and reverse oligonucleotide primers that were used to PCR the gene from Escherichia coli genomic DNA. The primers were designed with NdeI or BamHI restriction sites on the 5'and 3' terminus respectively. The PCR product was sequenced to confirm the identity of dapB. The gene was cloned into the expression vector pET16b through NdeI and BamHI restriction endonuclease sites. The resulting plasmid containing dapB was transformed into the bacterial strain BL21 (DE3). The transformed cells were utilized to grow and express the histidine-tagged reductase and the protein was purified using Ni-NTA affinity chromatography. SDS/PAGE gel analysis has shown that the protein was 95% pure and has approximate subunit molecular weight of 28 kDa. The protein purification is completed in one day and 3 liters of culture produced approximately 40-50 mgs of protein, an improvement on the previous protein expression and multistep purification.

  7. Identification of proteins associated with the yeast mitochondrial RNA polymerase by tandem affinity purification

    PubMed Central

    Markov, Dmitriy A; Savkina, Maria; Anikin, Michael; Del Campo, Mark; Ecker, Karen; Lambowitz, Alan M; De Gnore, Jon P; McAllister, William T

    2009-01-01

    The abundance of mitochondrial (mt) transcripts varies under different conditions, and is thought to depend upon rates of transcription initiation, transcription termination/attenuation and RNA processing/degradation. The requirement to maintain the balance between RNA synthesis and processing may involve coordination between these processes; however, little is known about factors that regulate the activity of mtRNA polymerase (mtRNAP). Recent attempts to identify mtRNAP–protein interactions in yeast by means of a generalized tandem affinity purification (TAP) protocol were not successful, most likely because they involved a C-terminal mtRNAP–TAP fusion (which is incompatible with mtRNAP function) and because of the use of whole-cell solubilization protocols that did not preserve the integrity of mt protein complexes. Based upon the structure of T7 RNAP (to which mtRNAPs show high sequence similarity), we identified positions in yeast mtRNAP that allow insertion of a small affinity tag, confirmed the mature N-terminus, constructed a functional N-terminal TAP–mtRNAP fusion, pulled down associated proteins, and identified them by LC–MS–MS. Among the proteins found in the pull-down were a DEAD-box protein (Mss116p) and an RNA-binding protein (Pet127p). Previous genetic experiments suggested a role for these proteins in linking transcription and RNA degradation, in that a defect in the mt degradadosome could be suppressed by overexpression of either of these proteins or, independently, by mutations in either mtRNAP or its initiation factor Mtf1p. Further, we found that Mss116p inhibits transcription by mtRNAP in vitro in a steady-state reaction. Our results support the hypothesis that Mss116p and Pet127p are involved in modulation of mtRNAP activity. Copyright © 2009 John Wiley & Sons, Ltd. PMID:19536766

  8. DNA aptamer affinity ligands for highly selective purification of human plasma-related proteins from multiple sources.

    PubMed

    Forier, Cynthia; Boschetti, Egisto; Ouhammouch, Mohamed; Cibiel, Agnès; Ducongé, Frédéric; Nogré, Michel; Tellier, Michel; Bataille, Damien; Bihoreau, Nicolas; Santambien, Patrick; Chtourou, Sami; Perret, Gérald

    2017-03-17

    Nucleic acid aptamers are promising ligands for analytical and preparative-scale affinity chromatography applications. However, a full industrial exploitation requires that aptamer-grafted chromatography media provide a number of high technical standards that remained largely untested. Ideally, they should exhibit relatively high binding capacity associated to a very high degree of specificity. In addition, they must be highly resistant to harsh cleaning/sanitization conditions, as well as to prolonged and repeated exposure to biological environment. Here, we present practical examples of aptamer affinity chromatography for the purification of three human therapeutic proteins from various sources: Factor VII, Factor H and Factor IX. In a single chromatographic step, three DNA aptamer ligands enabled the efficient purification of their target protein, with an unprecedented degree of selectivity (from 0.5% to 98% of purity in one step). Furthermore, these aptamers demonstrated a high stability under harsh sanitization conditions (100h soaking in 1M NaOH). These results pave the way toward a wider adoption of aptamer-based affinity ligands in the industrial-scale purification of not only plasma-derived proteins but also of any other protein in general. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Plasmid Vectors for Proteomic Analyses in Giardia: Purification of Virulence Factors and Analysis of the Proteasome

    PubMed Central

    Stadelmann, Britta; Birkestedt, Sandra; Hellman, Ulf; Svärd, Staffan G.

    2012-01-01

    In recent years, proteomics has come of age with the development of efficient tools for purification, identification, and characterization of gene products predicted by genome projects. The intestinal protozoan Giardia intestinalis can be transfected, but there is only a limited set of vectors available, and most of them are not user friendly. This work delineates the construction of a suite of cassette-based expression vectors for use in Giardia. Expression is provided by the strong constitutive ornithine carbamoyltransferase (OCT) promoter, and tagging is possible in both N- and C-terminal configurations. Taken together, the vectors are capable of providing protein localization and production of recombinant proteins, followed by efficient purification by a novel affinity tag combination, streptavidin binding peptide–glutathione S-transferase (SBP-GST). The option of removing the tags from purified proteins was provided by the inclusion of a PreScission protease site. The efficiency and feasibility of producing and purifying endogenous recombinant Giardia proteins with the developed vectors was demonstrated by the purification of active recombinant arginine deiminase (ADI) and OCT from stably transfected trophozoites. Moreover, we describe the tagging, purification by StrepTactin affinity chromatography, and compositional analysis by mass spectrometry of the G. intestinalis 26S proteasome by employing the Strep II-FLAG–tandem affinity purification (SF-TAP) tag. This is the first report of efficient production and purification of recombinant proteins in and from Giardia, which will allow the study of specific parasite proteins and protein complexes. PMID:22611020

  10. Affinity purification of bacterial outer membrane vesicles (OMVs) utilizing a His-tag mutant.

    PubMed

    Alves, Nathan J; Turner, Kendrick B; DiVito, Kyle A; Daniele, Michael A; Walper, Scott A

    To facilitate the rapid purification of bacterial outer membrane vesicles (OMVs), we developed two plasmid constructs that utilize a truncated, transmembrane protein to present an exterior histidine repeat sequence. We chose OmpA, a highly abundant porin protein, as the protein scaffold and utilized the lac promoter to allow for inducible control of the epitope-presenting construct. OMVs containing mutant OmpA-His6 were purified directly from Escherichia coli culture media on an immobilized metal affinity chromatography (IMAC) Ni-NTA resin. This enabling technology can be combined with other molecular tools directed at OMV packaging to facilitate the separation of modified/cargo-loaded OMV from their wt counterparts. In addition to numerous applications in the pharmaceutical and environmental remediation industries, this technology can be utilized to enhance basic research capabilities in the area of elucidating endogenous OMV function. Published by Elsevier Masson SAS.

  11. Intein-mediated one-step purification of Escherichia coli secreted human antibody fragments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wan-Yi; Miller, Keith D.; Coolbaugh, Michael

    In this work, we apply self-cleaving affinity tag technology to several target proteins secreted into the Escherichia coli periplasm, including two with disulfide bonds. The target proteins were genetically fused to a self-cleaving chitin-binding domain intein tag for purification via a chitin agarose affinity resin. By attaching the intein-tagged fusion genes to the PelB secretion leader sequence, the tagged target proteins were secreted to the periplasmic space and could be recovered in active form by simple osmotic shock. After chitin-affinity purification, the target proteins were released from the chitin-binding domain tag via intein self-cleaving. This was induced by a smallmore » change in pH from 8.5 to 6.5 at room temperature, allowing direct elution of the cleaved target protein from the chitin affinity resin. The target proteins include the E. coli maltose-binding protein and b-lactamase enzyme, as well as two human antibody fragments that contain disulfide bonds. In all cases, the target proteins were purified with good activity and yield, without the need for refolding. Overall, this work demonstrates the compatibility of the DI-CM intein with the PelB secretion system in E. coli, greatly expanding its potential to more complex proteins.« less

  12. Cloning, Expression, and Purification of Histidine-Tagged Escherichia coli Dihydrodipicolinate Reductase

    PubMed Central

    Trigoso, Yvonne D.; Evans, Russell C.; Karsten, William E.; Chooback, Lilian

    2016-01-01

    The enzyme dihydrodipicolinate reductase (DHDPR) is a component of the lysine biosynthetic pathway in bacteria and higher plants. DHDPR catalyzes the NAD(P)H dependent reduction of 2,3-dihydrodipicolinate to the cyclic imine L-2,3,4,5,-tetrahydropicolinic acid. The dapB gene that encodes dihydrodipicolinate reductase has previously been cloned, but the expression of the enzyme is low and the purification is time consuming. Therefore the E. coli dapB gene was cloned into the pET16b vector to improve the protein expression and simplify the purification. The dapB gene sequence was utilized to design forward and reverse oligonucleotide primers that were used to PCR the gene from Escherichia coli genomic DNA. The primers were designed with NdeI or BamHI restriction sites on the 5’and 3’ terminus respectively. The PCR product was sequenced to confirm the identity of dapB. The gene was cloned into the expression vector pET16b through NdeI and BamHI restriction endonuclease sites. The resulting plasmid containing dapB was transformed into the bacterial strain BL21 (DE3). The transformed cells were utilized to grow and express the histidine-tagged reductase and the protein was purified using Ni-NTA affinity chromatography. SDS/PAGE gel analysis has shown that the protein was 95% pure and has approximate subunit molecular weight of 28 kDa. The protein purification is completed in one day and 3 liters of culture produced approximately 40–50 mgs of protein, an improvement on the previous protein expression and multistep purification. PMID:26815040

  13. High-affinity gold nanoparticle pin to label and localize histidine-tagged protein in macromolecular assemblies

    PubMed Central

    Anthony, Kelsey C.; You, Changjiang; Piehler, Jacob; Pomeranz Krummel, Daniel A.

    2014-01-01

    SUMMARY There is significant demand for experimental approaches to aid protein localization in electron microscopy micrographs and ultimately in three-dimensional reconstructions of macromolecular assemblies. We report preparation and use of a reagent consisting of tris-nitrilotriacetic acid (tris-NTA) conjugated with a monofunctional gold nanoparticle (AuNPtris-NTA) for site-specific, non-covalent labeling of protein termini fused to a histidine-tag (His-tag). Multivalent binding of tris-NTA to a His-tag via complexed Ni(II) ions results in subnanomolar affinity and a defined 1:1 stoichiometry. Precise localization of AuNPtris-NTA labeled proteins by electron microscopy is further ensured by the reagent’s short conformationally restricted linker. We have employed AuNPtris-NTA to localize His-tagged proteins in an oligomeric ATPase and in the bacterial 50S ribosomal subunit. AuNPtris-NTA can specifically bind to the target proteins in these assemblies and is clearly discernible. Our new labeling reagent should find broad application in non-covalent site-specific labeling of protein termini to pinpoint their location in macromolecular assemblies. PMID:24560806

  14. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography.

    PubMed

    Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin

    2015-01-01

    Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases.

  15. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography

    PubMed Central

    Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin

    2015-01-01

    Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases. PMID:26641240

  16. Protein Delivery System Containing a Nickel-Immobilized Polymer for Multimerization of Affinity-Purified His-Tagged Proteins Enhances Cytosolic Transfer.

    PubMed

    Postupalenko, Viktoriia; Desplancq, Dominique; Orlov, Igor; Arntz, Youri; Spehner, Danièle; Mely, Yves; Klaholz, Bruno P; Schultz, Patrick; Weiss, Etienne; Zuber, Guy

    2015-09-01

    Recombinant proteins with cytosolic or nuclear activities are emerging as tools for interfering with cellular functions. Because such tools rely on vehicles for crossing the plasma membrane we developed a protein delivery system consisting in the assembly of pyridylthiourea-grafted polyethylenimine (πPEI) with affinity-purified His-tagged proteins pre-organized onto a nickel-immobilized polymeric guide. The guide was prepared by functionalization of an ornithine polymer with nitrilotriacetic acid groups and shown to bind several His-tagged proteins. Superstructures were visualized by electron and atomic force microscopy using 2 nm His-tagged gold nanoparticles as probes. The whole system efficiently carried the green fluorescent protein, single-chain antibodies or caspase 3, into the cytosol of living cells. Transduction of the protease caspase 3 induced apoptosis in two cancer cell lines, demonstrating that this new protein delivery method could be used to interfere with cellular functions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Dual-mode fluorophore-doped nickel nitrilotriacetic acid-modified silica nanoparticles combine histidine-tagged protein purification with site-specific fluorophore labeling.

    PubMed

    Kim, Sung Hoon; Jeyakumar, M; Katzenellenbogen, John A

    2007-10-31

    We present the first example of a fluorophore-doped nickel chelate surface-modified silica nanoparticle that functions in a dual mode, combining histidine-tagged protein purification with site-specific fluorophore labeling. Tetramethylrhodamine (TMR)-doped silica nanoparticles, estimated to contain 700-900 TMRs per ca. 23 nm particle, were surface modified with nitrilotriacetic acid (NTA), producing TMR-SiO2-NTA-Ni2+. Silica-embedded TMR retains very high quantum yield, is resistant to quenching by buffer components, and is modestly quenched and only to a certain depth (ca. 2 nm) by surface-attached Ni2+. When exposed to a bacterial lysate containing estrogen receptor alpha ligand binding domain (ERalpha) as a minor component, these beads showed very high specificity binding, enabling protein purification in one step. The capacity and specificity of these beads for binding a his-tagged protein were characterized by electrophoresis, radiometric counting, and MALDI-TOF MS. ERalpha, bound to TMR-SiO2-NTA-Ni++ beads in a site-specific manner, exhibited good activity for ligand binding and for ligand-induced binding to coactivators in solution FRET experiments and protein microarray fluorometric and FRET assays. This dual-mode type TMR-SiO2-NTA-Ni2+ system represents a powerful combination of one-step histidine-tagged protein purification and site-specific labeling with multiple fluorophore species.

  18. One-step affinity tag purification of full-length recombinant human AP-1 complexes from bacterial inclusion bodies using a polycistronic expression system

    PubMed Central

    Wang, Wei-Ming; Lee, A-Young; Chiang, Cheng-Ming

    2008-01-01

    The AP-1 transcription factor is a dimeric protein complex formed primarily between Jun (c-Jun, JunB, JunD) and Fos (c-Fos, FosB, Fra-1, Fra-2) family members. These distinct AP-1 complexes are expressed in many cell types and modulate target gene expression implicated in cell proliferation, differentiation, and stress responses. Although the importance of AP-1 has long been recognized, the biochemical characterization of AP-1 remains limited in part due to the difficulty in purifying full-length, reconstituted dimers with active DNA-binding and transcriptional activity. Using a combination of bacterial coexpression and epitope-tagging methods, we successfully purified all 12 heterodimers (3 Jun × 4 Fos) of full-length human AP-1 complexes as well as c-Jun/c-Jun, JunD/JunD, and c-Jun/JunD dimers from bacterial inclusion bodies using one-step nickel-NTA affinity tag purification following denaturation and renaturation of coexpressed AP-1 subunits. Coexpression of two constitutive components in a dimeric AP-1 complex helps stabilize the proteins when compared with individual protein expression in bacteria. Purified dimeric AP-1 complexes are functional in sequence-specific DNA binding, as illustrated by electrophoretic mobility shift assays and DNase I footprinting, and are also active in transcription with in vitro-reconstituted human papillomavirus (HPV) chromatin containing AP-1-binding sites in the native configuration of HPV nucleosomes. The availability of these recombinant full-length human AP-1 complexes has greatly facilitated mechanistic studies of AP-1-regulated gene transcription in many biological systems. PMID:18329890

  19. Optimized expression in Pichia pastoris eliminates common protein contaminants from subsequent His-tag purification.

    PubMed

    Chen, Yong; Li, Yang; Liu, Peng; Sun, Qun; Liu, Zhu

    2014-04-01

    A weakness of using immobilized metal affinity chromatography (IMAC) to purify recombinant proteins expressed in Pichia pastoris is the co-purification of native proteins that exhibit high affinities for Ni-IMAC. We have determined the elution profiles of P. pastoris proteins and have examined the native proteins that co-purify when eluting with 100 mM imidazole. Four major contaminants were identified: mitochondrial alcohol dehydrogenase isozyme III (mADH), nucleotide excision repair endonuclease, and the hypothetical proteins TPHA_0L01390 and TDEL_0B02190 which are homologous proteins derived from Tetrapisispora phaffii and Torulaspora delbrueckii, respectively. A new P. pastoris expression strain was engineered that eliminated the predominant contaminant, mADH, by gene disruption. The total amount of protein contaminants was reduced by 55 % without effecting cell growth. The present study demonstrates the feasibility of using a proteomic approach to facilitate bioprocess optimization.

  20. Bifunctional fusion proteins of calmodulin and protein A as affinity ligands in protein purification and in the study of protein-protein interactions.

    PubMed

    Hentz, N G; Daunert, S

    1996-11-15

    An affinity chromatography system is described that incorporates a genetically designed bifunctional affinity ligand. The utility of the system in protein purification and in the study of protein-protein interactions is demonstrated by using the interaction between protein A and the heat shock protein DnaK as a model system. The bifunctional affinity ligand was developed by genetically fusing calmodulin (CaM) to protein A (ProtA). The dual functionality of protein A-calmodulin (ProtA-CaM) stems from the molecular recognition properties of the two components of the fusion protein. In particular, CaM serves as the anchoring component by virtue of its binding properties toward phenothiazine. Thus, the ProtA-CaM can be immobilized on a solid support containing phenothiazine from the C-terminal domain of the fusion protein. Protein A is at the N-terminal domain of the fusion protein and serves as the affinity site for DnaK. While DnaK binds specifically to the protein A domain of the bifunctional ligand, it is released upon addition of ATP and under very mild conditions (pH 7.0). In addition to obtaining highly purified DnaK, this system is very rugged in terms of its performance. The proteinaceous bifunctional affinity ligand can be easily removed by addition of EGTA, and fresh ProtA-CaM can be easily reloaded onto the column. This allows for a facile regeneration of the affinity column because the phenothiazine-silica support matrix is stable for long periods of time under a variety of conditions. This study also demonstrates that calmodulin fusions can provide a new approach to study protein-protein interactions. Indeed, the ProtA-CaM fusion protein identified DnaK as a cellular component that interacts with protein A from among the thousands of proteins present in Escherichia coli.

  1. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system

    PubMed Central

    Costa, Sofia; Almeida, André; Castro, António; Domingues, Lucília

    2014-01-01

    Proteins are now widely produced in diverse microbial cell factories. The Escherichia coli is still the dominant host for recombinant protein production but, as a bacterial cell, it also has its issues: the aggregation of foreign proteins into insoluble inclusion bodies is perhaps the main limiting factor of the E. coli expression system. Conversely, E. coli benefits of cost, ease of use and scale make it essential to design new approaches directed for improved recombinant protein production in this host cell. With the aid of genetic and protein engineering novel tailored-made strategies can be designed to suit user or process requirements. Gene fusion technology has been widely used for the improvement of soluble protein production and/or purification in E. coli, and for increasing peptide’s immunogenicity as well. New fusion partners are constantly emerging and complementing the traditional solutions, as for instance, the Fh8 fusion tag that has been recently studied and ranked among the best solubility enhancer partners. In this review, we provide an overview of current strategies to improve recombinant protein production in E. coli, including the key factors for successful protein production, highlighting soluble protein production, and a comprehensive summary of the latest available and traditionally used gene fusion technologies. A special emphasis is given to the recently discovered Fh8 fusion system that can be used for soluble protein production, purification, and immunogenicity in E. coli. The number of existing fusion tags will probably increase in the next few years, and efforts should be taken to better understand how fusion tags act in E. coli. This knowledge will undoubtedly drive the development of new tailored-made tools for protein production in this bacterial system. PMID:24600443

  2. Sequence-Specific Affinity Chromatography of Bacterial Small Regulatory RNA-Binding Proteins from Bacterial Cells.

    PubMed

    Gans, Jonathan; Osborne, Jonathan; Cheng, Juliet; Djapgne, Louise; Oglesby-Sherrouse, Amanda G

    2018-01-01

    Bacterial small RNA molecules (sRNAs) are increasingly recognized as central regulators of bacterial stress responses and pathogenesis. In many cases, RNA-binding proteins are critical for the stability and function of sRNAs. Previous studies have adopted strategies to genetically tag an sRNA of interest, allowing isolation of RNA-protein complexes from cells. Here we present a sequence-specific affinity purification protocol that requires no prior genetic manipulation of bacterial cells, allowing isolation of RNA-binding proteins bound to native RNA molecules.

  3. Computational and informatics strategies for identification of specific protein interaction partners in affinity purification mass spectrometry experiments

    PubMed Central

    Nesvizhskii, Alexey I.

    2013-01-01

    Analysis of protein interaction networks and protein complexes using affinity purification and mass spectrometry (AP/MS) is among most commonly used and successful applications of proteomics technologies. One of the foremost challenges of AP/MS data is a large number of false positive protein interactions present in unfiltered datasets. Here we review computational and informatics strategies for detecting specific protein interaction partners in AP/MS experiments, with a focus on incomplete (as opposite to genome-wide) interactome mapping studies. These strategies range from standard statistical approaches, to empirical scoring schemes optimized for a particular type of data, to advanced computational frameworks. The common denominator among these methods is the use of label-free quantitative information such as spectral counts or integrated peptide intensities that can be extracted from AP/MS data. We also discuss related issues such as combining multiple biological or technical replicates, and dealing with data generated using different tagging strategies. Computational approaches for benchmarking of scoring methods are discussed, and the need for generation of reference AP/MS datasets is highlighted. Finally, we discuss the possibility of more extended modeling of experimental AP/MS data, including integration with external information such as protein interaction predictions based on functional genomics data. PMID:22611043

  4. Protein complex purification from Thermoplasma acidophilum using a phage display library.

    PubMed

    Hubert, Agnes; Mitani, Yasuo; Tamura, Tomohiro; Boicu, Marius; Nagy, István

    2014-03-01

    We developed a novel protein complex isolation method using a single-chain variable fragment (scFv) based phage display library in a two-step purification procedure. We adapted the antibody-based phage display technology which has been developed for single target proteins to a protein mixture containing about 300 proteins, mostly subunits of Thermoplasma acidophilum complexes. T. acidophilum protein specific phages were selected and corresponding scFvs were expressed in Escherichia coli. E. coli cell lysate containing the expressed His-tagged scFv specific against one antigen protein and T. acidophilum crude cell lysate containing intact target protein complexes were mixed, incubated and subjected to protein purification using affinity and size exclusion chromatography steps. This method was confirmed to isolate intact particles of thermosome and proteasome suitable for electron microscopy analysis and provides a novel protein complex isolation strategy applicable to organisms where no genetic tools are available. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Purification of swine haptoglobin by affinity chromatography.

    PubMed Central

    Eurell, T E; Hall, W F; Bane, D P

    1990-01-01

    A globin-agarose affinity chromatography technique was used to purify swine haptoglobin. This technique provides a highly specific, single-step purification method without the contamination of extraneous serum proteins reported by previous studies. Complex formation between the haptoglobin isolate and swine hemoglobin confirmed that biological activity was maintained during the purification process. Immunoelectrophoretic and Ouchterlony immunodiffusion methods revealed that the swine haptoglobin isolate cross-reacted with polyvalent antisera against human haptoglobin. Images Fig. 2. Fig. 3. PMID:2123414

  6. Purification and Refolding to Amyloid Fibrils of (His)6-tagged Recombinant Shadoo Protein Expressed as Inclusion Bodies in E. coli.

    PubMed

    Li, Qiaojing; Richard, Charles-Adrien; Moudjou, Mohammed; Vidic, Jasmina

    2015-12-19

    The Escherichia coli expression system is a powerful tool for the production of recombinant eukaryotic proteins. We use it to produce Shadoo, a protein belonging to the prion family. A chromatographic method for the purification of (His)6-tagged recombinant Shadoo expressed as inclusion bodies is described. The inclusion bodies are solubilized in 8 M urea and bound to a Ni(2+)-charged column to perform ion affinity chromatography. Bound proteins are eluted by a gradient of imidazole. Fractions containing Shadoo protein are subjected to size exclusion chromatography to obtain a highly purified protein. In the final step purified Shadoo is desalted to remove salts, urea and imidazole. Recombinant Shadoo protein is an important reagent for biophysical and biochemical studies of protein conformation disorders occurring in prion diseases. Many reports demonstrated that prion neurodegenerative diseases originate from the deposition of stable, ordered amyloid fibrils. Sample protocols describing how to fibrillate Shadoo into amyloid fibrils at acidic and neutral/basic pHs are presented. The methods on how to produce and fibrillate Shadoo can facilitate research in laboratories working on prion diseases, since it allows for production of large amounts of protein in a rapid and low cost manner.

  7. Expression and purification of ELP-intein-tagged target proteins in high cell density E. coli fermentation.

    PubMed

    Fong, Baley A; Wood, David W

    2010-10-19

    Elastin-like polypeptides (ELPs) are useful tools that can be used to non-chromatographically purify proteins. When paired with self-cleaving inteins, they can be used as economical self-cleaving purification tags. However, ELPs and ELP-tagged target proteins have been traditionally expressed using highly enriched media in shake flask cultures, which are generally not amenable to scale-up. In this work, we describe the high cell-density expression of self-cleaving ELP-tagged targets in a supplemented minimal medium at a 2.5 liter fermentation scale, with increased yields and purity compared to traditional shake flask cultures. This demonstration of ELP expression in supplemented minimal media is juxtaposed to previous expression of ELP tags in extract-based rich media. We also describe several sets of fed-batch conditions and their impact on ELP expression and growth medium cost. By using fed batch E. coli fermentation at high cell density, ELP-intein-tagged proteins can be expressed and purified at high yield with low cost. Further, the impact of media components and fermentation design can significantly impact the overall process cost, particularly at large scale. This work thus demonstrates an important advances in the scale up of self-cleaving ELP tag-mediated processes.

  8. Expression and purification of ELP-intein-tagged target proteins in high cell density E. coli fermentation

    PubMed Central

    2010-01-01

    Background Elastin-like polypeptides (ELPs) are useful tools that can be used to non-chromatographically purify proteins. When paired with self-cleaving inteins, they can be used as economical self-cleaving purification tags. However, ELPs and ELP-tagged target proteins have been traditionally expressed using highly enriched media in shake flask cultures, which are generally not amenable to scale-up. Results In this work, we describe the high cell-density expression of self-cleaving ELP-tagged targets in a supplemented minimal medium at a 2.5 liter fermentation scale, with increased yields and purity compared to traditional shake flask cultures. This demonstration of ELP expression in supplemented minimal media is juxtaposed to previous expression of ELP tags in extract-based rich media. We also describe several sets of fed-batch conditions and their impact on ELP expression and growth medium cost. Conclusions By using fed batch E. coli fermentation at high cell density, ELP-intein-tagged proteins can be expressed and purified at high yield with low cost. Further, the impact of media components and fermentation design can significantly impact the overall process cost, particularly at large scale. This work thus demonstrates an important advances in the scale up of self-cleaving ELP tag-mediated processes. PMID:20959011

  9. Retrospective analyses of the bottleneck in purification of eukaryotic proteins from Escherichia coli as affected by molecular weight, cysteine content and isoelectric point

    PubMed Central

    Jeon, Won Bae

    2015-01-01

    Experimental bioinformatics data obtained from an E. coli cell-based eukaryotic protein purification experiment were analyzed in order to identify any bottleneck as well as the factors affecting the target purification. All targets were expressed as His-tagged maltose-binding protein (MBP) fusion constructs and were initially purified by immobilized metal affinity chromatography (IMAC). The targets were subsequently separated from the His-tagged MBP through TEV protease cleavage followed by a second IMAC isolation. Of the 743 total purification trials, 342 yielded more than 3 mg of target proteins for structural studies. The major reason for failure of target purification was poor TEV proteolysis. The overall success rate for target purification decreased linearly as cysteine content or isoelectric point (pI) of the target increased. This pattern of pI versus overall success rate strongly suggests that pI should be incorporated into target scoring criteria with a threshold value. PMID:20510014

  10. Structural and functional characterization of a new recombinant histidine-tagged acyl coenzyme A binding protein (ACBP) from mouse

    PubMed Central

    Petrescu, Anca D.; Huang, Huan; Hostetler, Heather A.; Schroeder, Friedhelm; Kier, Ann B.

    2008-01-01

    Acyl-coenzyme A binding protein (ACBP) has been proposed to transport fatty acyl-CoAs intracellularly, facilitating their metabolism. In this study, a new mouse recombinant ACBP was produced by insertion of a histidine (his) tag at the C-terminus to allow efficient purification by Ni-affinity chromatography. The his-tag was inserted at the C-terminus since ACBP is a small molecular size (10 kDa) protein whose structure and activity are sensitive to amino acid substitutions in the N-terminus. The his tag had no or little effect on ACBP structure or ligand binding affinity and specificity. His-ACBP bound the naturally-occurring fluorescent cis-parinaroyl-CoA with very high affinity (Kd=2.15 nM), but exhibited no affinity for non-esterified cis-parinaric acid. To determine if the presence of the C-terminal his tag altered ACBP interactions with other proteins, direct binding to hepatocyte nuclear factor 4α (HNF-4α), a nuclear receptor regulating transcription of genes involved in lipid metabolism, was examined. His-ACBP and HNF-4α were labeled with Cy5 and Cy3, respectively, and direct interaction was determined by a novel fluorescence resonance energy transfer (FRET) binding assay. FRET analysis showed that his-ACBP directly interacted with HNF-4α (intermolecular distance of 73 Å) at high affinity (Kd=64-111 nM) similar to native ACBP. The his-tag also had no effect on ACBPs ability to interact with and stimulate microsomal enzymes utilizing or forming fatty acyl CoA. Thus, C-terminal his-tagged-ACBP maintained very similar structural and functional features of the untagged native protein and can be used in further in vitro experiments that require pure recombinant ACBP. PMID:18178100

  11. Structure-guided design of an engineered streptavidin with reusability to purify streptavidin-binding peptide tagged proteins or biotinylated proteins.

    PubMed

    Wu, Sau-Ching; Wong, Sui-Lam

    2013-01-01

    Development of a high-affinity streptavidin-binding peptide (SBP) tag allows the tagged recombinant proteins to be affinity purified using the streptavidin matrix without the need of biotinylation. The major limitation of this powerful technology is the requirement to use biotin to elute the SBP-tagged proteins from the streptavidin matrix. Tight biotin binding by streptavidin essentially allows the matrix to be used only once. To address this problem, differences in interactions of biotin and SBP with streptavidin were explored. Loop3-4 which serves as a mobile lid for the biotin binding pocket in streptavidin is in the closed state with biotin binding. In contrast, this loop is in the open state with SBP binding. Replacement of glycine-48 with a bulkier residue (threonine) in this loop selectively reduces the biotin binding affinity (Kd) from 4 × 10(-14) M to 4.45 × 10(-10) M without affecting the SBP binding affinity. Introduction of a second mutation (S27A) to the first mutein (G48T) results in the development of a novel engineered streptavidin SAVSBPM18 which could be recombinantly produced in the functional form from Bacillus subtilis via secretion. To form an intact binding pocket for tight binding of SBP, two diagonally oriented subunits in a tetrameric streptavidin are required. It is vital for SAVSBPM18 to be stably in the tetrameric state in solution. This was confirmed using an HPLC/Laser light scattering system. SAVSBPM18 retains high binding affinity to SBP but has reversible biotin binding capability. The SAVSBPM18 matrix can be applied to affinity purify SBP-tagged proteins or biotinylated molecules to homogeneity with high recovery in a reusable manner. A mild washing step is sufficient to regenerate the matrix which can be reused for multiple rounds. Other applications including development of automated protein purification systems, lab-on-a-chip micro-devices, reusable biosensors, bioreactors and microarrays, and strippable detection agents for

  12. Structure-Guided Design of an Engineered Streptavidin with Reusability to Purify Streptavidin-Binding Peptide Tagged Proteins or Biotinylated Proteins

    PubMed Central

    Wu, Sau-Ching; Wong, Sui-Lam

    2013-01-01

    Development of a high-affinity streptavidin-binding peptide (SBP) tag allows the tagged recombinant proteins to be affinity purified using the streptavidin matrix without the need of biotinylation. The major limitation of this powerful technology is the requirement to use biotin to elute the SBP-tagged proteins from the streptavidin matrix. Tight biotin binding by streptavidin essentially allows the matrix to be used only once. To address this problem, differences in interactions of biotin and SBP with streptavidin were explored. Loop3–4 which serves as a mobile lid for the biotin binding pocket in streptavidin is in the closed state with biotin binding. In contrast, this loop is in the open state with SBP binding. Replacement of glycine-48 with a bulkier residue (threonine) in this loop selectively reduces the biotin binding affinity (Kd) from 4×10−14 M to 4.45×10−10 M without affecting the SBP binding affinity. Introduction of a second mutation (S27A) to the first mutein (G48T) results in the development of a novel engineered streptavidin SAVSBPM18 which could be recombinantly produced in the functional form from Bacillus subtilis via secretion. To form an intact binding pocket for tight binding of SBP, two diagonally oriented subunits in a tetrameric streptavidin are required. It is vital for SAVSBPM18 to be stably in the tetrameric state in solution. This was confirmed using an HPLC/Laser light scattering system. SAVSBPM18 retains high binding affinity to SBP but has reversible biotin binding capability. The SAVSBPM18 matrix can be applied to affinity purify SBP-tagged proteins or biotinylated molecules to homogeneity with high recovery in a reusable manner. A mild washing step is sufficient to regenerate the matrix which can be reused for multiple rounds. Other applications including development of automated protein purification systems, lab-on-a-chip micro-devices, reusable biosensors, bioreactors and microarrays, and strippable detection agents for

  13. HaloTag Technology: A Versatile Platform for Biomedical Applications

    PubMed Central

    2015-01-01

    Exploration of protein function and interaction is critical for discovering links among genomics, proteomics, and disease state; yet, the immense complexity of proteomics found in biological systems currently limits our investigational capacity. Although affinity and autofluorescent tags are widely employed for protein analysis, these methods have been met with limited success because they lack specificity and require multiple fusion tags and genetic constructs. As an alternative approach, the innovative HaloTag protein fusion platform allows protein function and interaction to be comprehensively analyzed using a single genetic construct with multiple capabilities. This is accomplished using a simplified process, in which a variable HaloTag ligand binds rapidly to the HaloTag protein (usually linked to the protein of interest) with high affinity and specificity. In this review, we examine all current applications of the HaloTag technology platform for biomedical applications, such as the study of protein isolation and purification, protein function, protein–protein and protein–DNA interactions, biological assays, in vitro cellular imaging, and in vivo molecular imaging. In addition, novel uses of the HaloTag platform are briefly discussed along with potential future applications. PMID:25974629

  14. The substrate specificity of Metarhizium anisopliae and Bos taurus carboxypeptidases A: Insights into their use as tools for the removal of affinity tags

    PubMed Central

    Austin, Brian P.; Tözsér, József; Bagossi, Péter; Tropea, Joseph E.; Waugh, David S.

    2012-01-01

    Carboxypeptidases may serve as tools for removal for C-terminal affinity tags. In the present study, we describe the expression and purification of an A-type carboxypeptidase from the fungal pathogen Metarhizium anisopliae (MeCPA) that has been genetically engineered to facilitate the removal of polyhistidine tags from the C-termini of recombinant proteins. A complete, systematic analysis of the specificity of MeCPA in comparison with that of bovine carboxypeptidase A (BoCPA) was carried out. Our results indicate that the specificity of the two enzymes is similar but not identical. Histidine residues are removed more efficiently by MeCPA. The very inefficient digestion of peptides with C-terminal lysine or arginine residues, along with the complete inability of the enzyme to remove a C-terminal proline suggests a strategy for designing C-terminal affinity tags that can be trimmed by MeCPA (or BoCPA) to produce a digestion product with a homogeneous endpoint. PMID:21073956

  15. Application of coupled affinity-sizing chromatography for the detection of proteolyzed HSA-tagged proteins.

    PubMed

    London, Anne Serdakowski; Patel, Kunal; Quinn, Lisa; Lemmerer, Martin

    2015-04-01

    Coupled affinity liquid chromatography and size exclusion chromatography (ALC-SEC) is a technique that has been shown to successfully report product quality of proteins during cell expression and prior to the commencement of downstream processing chromatography steps. This method was applied to monitoring the degradation and subsequent partial remediation of a HSA-tagged protein which showed proteolysis, allowing for rapid cell line development to address this product quality dilemma. This paper outlines the novel application of this method for measuring and addressing protease-induced proteolysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Purification and Refolding to Amyloid Fibrils of (His)6-tagged Recombinant Shadoo Protein Expressed as Inclusion Bodies in E. coli

    PubMed Central

    Li, Qiaojing; Richard, Charles-Adrien; Moudjou, Mohammed; Vidic, Jasmina

    2015-01-01

    The Escherichia coli expression system is a powerful tool for the production of recombinant eukaryotic proteins. We use it to produce Shadoo, a protein belonging to the prion family. A chromatographic method for the purification of (His)6-tagged recombinant Shadoo expressed as inclusion bodies is described. The inclusion bodies are solubilized in 8 M urea and bound to a Ni2+-charged column to perform ion affinity chromatography. Bound proteins are eluted by a gradient of imidazole. Fractions containing Shadoo protein are subjected to size exclusion chromatography to obtain a highly purified protein. In the final step purified Shadoo is desalted to remove salts, urea and imidazole. Recombinant Shadoo protein is an important reagent for biophysical and biochemical studies of protein conformation disorders occurring in prion diseases. Many reports demonstrated that prion neurodegenerative diseases originate from the deposition of stable, ordered amyloid fibrils. Sample protocols describing how to fibrillate Shadoo into amyloid fibrils at acidic and neutral/basic pHs are presented. The methods on how to produce and fibrillate Shadoo can facilitate research in laboratories working on prion diseases, since it allows for production of large amounts of protein in a rapid and low cost manner. PMID:26709825

  17. Scaffold design of trivalent chelator heads dictates high-affinity and stable His-tagged protein labeling in vitro and in cellulo.

    PubMed

    Gatterdam, Karl; Joest, Eike F; Gatterdam, Volker; Tampé, Robert

    2018-05-29

    Small chemical/biological interaction pairs are at the forefront in tracing proteins' function and interaction at high signal-to-background ratio in cellular pathways. Pharma ventures have eager plans to develop trisNTA probes for in vitro and in vivo screening of His-tagged protein targets. However, the optimal design of scaffold, linker, and chelator head yet deserves systematic investigations to achieve highest affinity and kinetic stability for in vitro and especially cell applications. In this study, we report on a library of N-nitrilotriacetic acid (NTA) based multivalent chelator heads (MCHs) built up on linear, cyclic, and dendritic scaffolds and contrast these with regard to their binding affinity and stability for labeling of cellular His-tagged proteins. Furthermore, we assign a new approach for tracing cellular target proteins at picomolar probe concentrations in cells. Finally, we describe fundamental differences between the MCH scaffold and define a cyclic trisNTA chelator, which displays the highest affinity and kinetic stability of all reversible, low-molecular weight interaction pairs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. An expression vector tailored for large-scale, high-throughput purification of recombinant proteins

    PubMed Central

    Donnelly, Mark I.; Zhou, Min; Millard, Cynthia Sanville; Clancy, Shonda; Stols, Lucy; Eschenfeldt, William H.; Collart, Frank R.; Joachimiak, Andrzej

    2009-01-01

    Production of milligram quantities of numerous proteins for structural and functional studies requires an efficient purification pipeline. We found that the dual tag, his6-tag–maltose-binding protein (MBP), intended to facilitate purification and enhance proteins’ solubility, disrupted such a pipeline, requiring additional screening and purification steps. Not all proteins rendered soluble by fusion to MBP remained soluble after its proteolytic removal, and in those cases where the protein remained soluble, standard purification protocols failed to remove completely the stoichiometric amount of his6-tagged MBP generated by proteolysis. Both liabilities were alleviated by construction of a vector that produces fusion proteins in which MBP, the his6-tag and the target protein are separated by highly specific protease cleavage sites in the configuration MBP-site-his6-site-protein. In vivo cleavage at the first site by co-expressed protease generated untagged MBP and his6-tagged target protein. Proteins not truly rendered soluble by transient association with MBP precipitated, and untagged MBP was easily separated from the his-tagged target protein by conventional protocols. The second protease cleavage site allowed removal of the his6-tag. PMID:16497515

  19. Grafting iminodiacetic acid on silica nanoparticles for facilitated refolding of like-charged protein and its metal-chelate affinity purification.

    PubMed

    Liu, Hu; Dong, Xiaoyan; Sun, Yan

    2016-01-15

    A series of highly charged nanoscale chelators were fabricated by grafting of poly(glycidyl methacrylate-iminodiacetic acid) (pGI) chains with iminodiacetic acid (IDA) chelating group on silica nanoparticles (SNPs) via atom transfer radical polymerization (ATRP). The nanoscale chelators, denoted as SNPs-pGI, possessed a nickel ion chelating capacity as high as 2800 μmol/g, 50 times higher than the IDA-modified Sepharose FF (IDA-Sepharose) resin reported in literature and offered a high affinity binding capacity for hexahistidine-tagged enhanced green fluorescence protein (6 × His-EGFP) after nickel ion loading. More importantly, the anionic SNPs-pGI of high charge densities displayed much better performance than IDA-Sepharose in facilitating the refolding of like-charged 6 × His-EGFP from inclusion bodies (IBs). For example, for 0.2mg/mL 6 × His-EGFP IB refolding, addition of 6.2 μL/mL SNPs-pGI with the highest charge density led to a refolding yield of 90%, over 43% higher than that obtained with 460 μL/mL IDA-Sepharose. It is notable that the much higher efficiency of the nanoscale chelator was obtained with a chelator consumption corresponding to only 1.4% of IDA-Sepharose. Moreover, the highly charged SNPs-pGI could efficiently facilitate the refolding of 6 × His-EGFP at higher IB concentrations (0.4 and 0.8 mg/mL). After refolding, nickel ions addition led to the recovery of the refolded 6 × His-EGFP with high yield (80%), purity (96%) and enrichment ratio (1.8). All the results suggest that the SNPs-pGI of high charge densities were promising for cost-effective recovery of His-tagged proteins expressed as IBs with the integrative like-charge facilitated refolding and metal-chelate affinity purification strategy. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Advanced purification strategy for CueR, a cysteine containing copper(I) and DNA binding protein.

    PubMed

    Balogh, Ria K; Gyurcsik, Béla; Hunyadi-Gulyás, Éva; Christensen, Hans E M; Jancsó, Attila

    2016-07-01

    Metal ion regulation is essential for living organisms. In prokaryotes metal ion dependent transcriptional factors, the so-called metalloregulatory proteins play a fundamental role in controlling the concentration of metal ions. These proteins recognize metal ions with an outstanding selectivity. A detailed understanding of their function may be exploited in potential health, environmental and analytical applications. Members of the MerR protein family sense a broad range of mostly late transition and heavy metal ions through their cysteine thiolates. The air sensitivity of latter groups makes the expression and purification of such proteins challenging. Here we describe a method for the purification of the copper-regulatory CueR protein under optimized conditions. In order to avoid protein precipitation and/or eventual aggregation and to get rid of the co-purifying Escherichia coli elongation factor, our procedure consisted of four steps supplemented by DNA digestion. Subsequent anion exchange on Sepharose FF Q 16/10, affinity chromatography on Heparin FF 16/10, second anion exchange on Source 30 Q 16/13 and gel filtration on Superdex 75 26/60 resulted in large amounts of pure CueR protein without any affinity tag. Structure and functionality tests performed with mass spectrometry, circular dichroism spectroscopy and electrophoretic gel mobility shift assays approved the success of the purification procedure. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Tandem SUMO fusion vectors for improving soluble protein expression and purification.

    PubMed

    Guerrero, Fernando; Ciragan, Annika; Iwaï, Hideo

    2015-12-01

    Availability of highly purified proteins in quantity is crucial for detailed biochemical and structural investigations. Fusion tags are versatile tools to facilitate efficient protein purification and to improve soluble overexpression of proteins. Various purification and fusion tags have been widely used for overexpression in Escherichia coli. However, these tags might interfere with biological functions and/or structural investigations of the protein of interest. Therefore, an additional purification step to remove fusion tags by proteolytic digestion might be required. Here, we describe a set of new vectors in which yeast SUMO (SMT3) was used as the highly specific recognition sequence of ubiquitin-like protease 1, together with other commonly used solubility enhancing proteins, such as glutathione S-transferase, maltose binding protein, thioredoxin and trigger factor for optimizing soluble expression of protein of interest. This tandem SUMO (T-SUMO) fusion system was tested for soluble expression of the C-terminal domain of TonB from different organisms and for the antiviral protein scytovirin. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Ice-shell purification of ice-binding proteins.

    PubMed

    Marshall, Craig J; Basu, Koli; Davies, Peter L

    2016-06-01

    Ice-affinity purification is a simple and efficient method of purifying to homogeneity both natural and recombinant ice-binding proteins. The purification involves the incorporation of ice-binding proteins into slowly-growing ice and the exclusion of other proteins and solutes. In previous approaches, the ice was grown around a hollow brass finger through which coolant was circulated. We describe here an easily-constructed apparatus that employs ice affinity purification that not only shortens the time for purification from 1-2 days to 1-2 h, but also enhances yield and purity. In this apparatus, the surface area for the separation was increased by extracting the ice-binding proteins into an ice-shell formed inside a rotating round-bottom flask partially submerged in a sub-zero bath. In principle, any ice-binding compound can be recovered from liquid solution, and the method is readily scalable. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Comprehensive Characterization of Minichromosome Maintenance Complex (MCM) Protein Interactions Using Affinity and Proximity Purifications Coupled to Mass Spectrometry.

    PubMed

    Dubois, Marie-Line; Bastin, Charlotte; Lévesque, Dominique; Boisvert, François-Michel

    2016-09-02

    The extensive identification of protein-protein interactions under different conditions is an important challenge to understand the cellular functions of proteins. Here we use and compare different approaches including affinity purification and purification by proximity coupled to mass spectrometry to identify protein complexes. We explore the complete interactome of the minichromosome maintenance (MCM) complex by using both approaches for all of the different MCM proteins. Overall, our analysis identified unique and shared interaction partners and proteins enriched for distinct biological processes including DNA replication, DNA repair, and cell cycle regulation. Furthermore, we mapped the changes in protein interactions of the MCM complex in response to DNA damage, identifying a new role for this complex in DNA repair. In summary, we demonstrate the complementarity of these approaches for the characterization of protein interactions within the MCM complex.

  4. Large-scale purification and crystallization of the endoribonuclease XendoU: troubleshooting with His-tagged proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renzi, Fabiana; Panetta, Gianna; Vallone, Beatrice

    Recombinant His-tagged XendoU, a eukaryotic endoribonuclease, appeared to aggregate in the presence of divalent cations. Monodisperse protein which yielded crystals diffracting to 2.2 Å was obtained by addition of EDTA. XendoU is the first endoribonuclease described in higher eukaryotes as being involved in the endonucleolytic processing of intron-encoded small nucleolar RNAs. It is conserved among eukaryotes and its viral homologue is essential in SARS replication and transcription. The large-scale purification and crystallization of recombinant XendoU are reported. The tendency of the recombinant enzyme to aggregate could be reversed upon the addition of chelating agents (EDTA, imidazole): aggregation is a potentialmore » drawback when purifying and crystallizing His-tagged proteins, which are widely used, especially in high-throughput structural studies. Purified monodisperse XendoU crystallized in two different space groups: trigonal P3{sub 1}21, diffracting to low resolution, and monoclinic C2, diffracting to higher resolution.« less

  5. Profiling and quantitative evaluation of three Nickel-Coated magnetic matrices for purification of recombinant proteins: lelpful hints for the optimized nanomagnetisable matrix preparation

    PubMed Central

    2011-01-01

    Background Several materials are available in the market that work on the principle of protein magnetic fishing by their histidine (His) tags. Little information is available on their performance and it is often quoted that greatly improved purification of histidine-tagged proteins from crude extracts could be achieved. While some commercial magnetic matrices could be used successfully for purification of several His-tagged proteins, there are some which have been proved to operate just for a few extent of His-tagged proteins. Here, we address quantitative evaluation of three commercially available Nickel nanomagnetic beads for purification of two His-tagged proteins expressed in Escherichia coli and present helpful hints for optimized purification of such proteins and preparation of nanomagnetisable matrices. Results Marked differences in the performance of nanomagnetic matrices, principally on the basis of their specific binding capacity, recovery profile, the amount of imidazole needed for protein elution and the extent of target protein loss and purity were obtained. Based on the aforesaid criteria, one of these materials featured the best purification results (SiMAG/N-NTA/Nickel) for both proteins at the concentration of 4 mg/ml, while the other two (SiMAC-Nickel and SiMAG/CS-NTA/Nickel) did not work well with respect to specific binding capacity and recovery profile. Conclusions Taken together, functionality of different types of nanomagnetic matrices vary considerably. This variability may not only be dependent upon the structure and surface chemistry of the matrix which in turn determine the affinity of interaction, but, is also influenced to a lesser extent by the physical properties of the protein itself. Although the results of the present study may not be fully applied for all nanomagnetic matrices, but provide a framework which could be used to profiling and quantitative evaluation of other magnetisable matrices and also provide helpful hints for those

  6. Specific solubilization of impurities in culture media: Arg solution improves purification of pH-responsive tag CspB50 with Teriparatide.

    PubMed

    Oki, Shogo; Nonaka, Takahiro; Shiraki, Kentaro

    2018-06-01

    Protein purification using non-chromatographic methods is a simple technique that avoids costly resin. Recently, a cell surface protein B (CspB) tag has been developed for a pH-responsive tag for protein purification by solid-liquid separation. Proteins fused with the CspB tag show reversible insolubilization at acidic pH that can be used in solid-liquid separation for protein purification. However, brown-color impurities from co-precipitation hamper further analysis of the target proteins. In this study, we investigated the effect of additives on the co-precipitation of CspB-tagged Teriparatide (CspB50TEV-Teriparatide) expressed in Corynebacterium glutamicum and associated impurities. Arginine (Arg) at 1.0 M was found to be the most effective additive for removing impurities, particularly carotenoids and nucleic acids. Furthermore, all impurities detected in the fluorescence and absorbance spectra were successfully removed by the repetition of precipitation-redissolution in the Arg solution. The precipitation yield of the CspB50TEV-Teriparatide did not change with the addition of Arg and the repetition of the precipitation-redissolution process. Collectively, our findings indicate that the specific desorption of π-electron rich compounds by Arg may be useful in conjunction with the pH-responsive CspB tag for solid-liquid protein purification. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Next generation calmodulin affinity purification: Clickable calmodulin facilitates improved protein purification

    PubMed Central

    Kinzer-Ursem, Tamara L.

    2018-01-01

    As the proteomics field continues to expand, scientists are looking to integrate cross-disciplinary tools for studying protein structure, function, and interactions. Protein purification remains a key tool for many characterization studies. Calmodulin (CaM) is a calcium-binding messenger protein with over a hundred downstream binding partners, and is involved in a host of physiological processes, from learning and memory to immune and cardiac function. To facilitate biophysical studies of calmodulin, researchers have designed a site-specific labeling process for use in bioconjugation applications while maintaining high levels of protein activity. Here, we present a platform for selective conjugation of calmodulin directly from clarified cell lysates under bioorthogonal reaction conditions. Using a chemoenzymatically modified calmodulin, we employ popular click chemistry reactions for the conjugation of calmodulin to Sepharose resin, thereby streamlining a previously multi-step purification and conjugation process. We show that this “next-generation” calmodulin-Sepharose resin is not only easy to produce, but is also able to purify more calmodulin-binding proteins per volume of resin than traditional calmodulin-Sepharose resins. We expect these methods to be translatable to other proteins of interest and to other conjugation applications such as surface-based assays for the characterization of protein-protein interaction dynamics. PMID:29864125

  8. Automated Hydrophobic Interaction Chromatography Column Selection for Use in Protein Purification

    PubMed Central

    Murphy, Patrick J. M.; Stone, Orrin J.; Anderson, Michelle E.

    2011-01-01

    In contrast to other chromatographic methods for purifying proteins (e.g. gel filtration, affinity, and ion exchange), hydrophobic interaction chromatography (HIC) commonly requires experimental determination (referred to as screening or "scouting") in order to select the most suitable chromatographic medium for purifying a given protein 1. The method presented here describes an automated approach to scouting for an optimal HIC media to be used in protein purification. HIC separates proteins and other biomolecules from a crude lysate based on differences in hydrophobicity. Similar to affinity chromatography (AC) and ion exchange chromatography (IEX), HIC is capable of concentrating the protein of interest as it progresses through the chromatographic process. Proteins best suited for purification by HIC include those with hydrophobic surface regions and able to withstand exposure to salt concentrations in excess of 2 M ammonium sulfate ((NH4)2SO4). HIC is often chosen as a purification method for proteins lacking an affinity tag, and thus unsuitable for AC, and when IEX fails to provide adequate purification. Hydrophobic moieties on the protein surface temporarily bind to a nonpolar ligand coupled to an inert, immobile matrix. The interaction between protein and ligand are highly dependent on the salt concentration of the buffer flowing through the chromatography column, with high ionic concentrations strengthening the protein-ligand interaction and making the protein immobile (i.e. bound inside the column) 2. As salt concentrations decrease, the protein-ligand interaction dissipates, the protein again becomes mobile and elutes from the column. Several HIC media are commercially available in pre-packed columns, each containing one of several hydrophobic ligands (e.g. S-butyl, butyl, octyl, and phenyl) cross-linked at varying densities to agarose beads of a specific diameter 3. Automated column scouting allows for an efficient approach for determining which HIC media

  9. A Family of LIC Vectors for High-Throughput Cloning and Purification of Proteins1

    PubMed Central

    Eschenfeldt, William H.; Stols, Lucy; Millard, Cynthia Sanville; Joachimiak, Andrzej; Donnelly, Mark I.

    2009-01-01

    Summary Fifteen related ligation-independent cloning vectors were constructed for high-throughput cloning and purification of proteins. The vectors encode a TEV protease site for removal of tags that facilitate protein purification (his-tag) or improve solubility (MBP, GST). Specialized vectors allow coexpression and copurification of interacting proteins, or in vivo removal of MBP by TVMV protease to improve screening and purification. All target genes and vectors are processed by the same protocols, which we describe here. PMID:18988021

  10. Affinity-based precipitation via a bivalent peptidic hapten for the purification of monoclonal antibodies.

    PubMed

    Handlogten, Michael W; Stefanick, Jared F; Deak, Peter E; Bilgicer, Basar

    2014-09-07

    In a previous study, we demonstrated a non-chromatographic affinity-based precipitation method, using trivalent haptens, for the purification of mAbs. In this study, we significantly improved this process by using a simplified bivalent peptidic hapten (BPH) design, which enables facile and rapid purification of mAbs while overcoming the limitations of the previous trivalent design. The improved affinity-based precipitation method (ABP(BPH)) combines the simplicity of salt-induced precipitation with the selectivity of affinity chromatography for the purification of mAbs. The ABP(BPH) method involves 3 steps: (i) precipitation and separation of protein contaminants larger than immunoglobulins with ammonium sulfate; (ii) selective precipitation of the target-antibody via BPH by inducing antibody-complex formation; (iii) solubilization of the antibody pellet and removal of BPH with membrane filtration resulting in the pure antibody. The ABP(BPH) method was evaluated by purifying the pharmaceutical antibody trastuzumab from common contaminants including CHO cell conditioned media, DNA, ascites fluid, other antibodies, and denatured antibody with >85% yield and >97% purity. Importantly, the purified antibody demonstrated native binding activity to cell lines expressing the target protein, HER2. Combined, the ABP(BPH) method is a rapid and scalable process for the purification of antibodies with the potential to improve product quality while decreasing purification costs.

  11. Identification of secreted bacterial proteins by noncanonical amino acid tagging

    PubMed Central

    Mahdavi, Alborz; Szychowski, Janek; Ngo, John T.; Sweredoski, Michael J.; Graham, Robert L. J.; Hess, Sonja; Schneewind, Olaf; Mazmanian, Sarkis K.; Tirrell, David A.

    2014-01-01

    Pathogenic microbes have evolved complex secretion systems to deliver virulence factors into host cells. Identification of these factors is critical for understanding the infection process. We report a powerful and versatile approach to the selective labeling and identification of secreted pathogen proteins. Selective labeling of microbial proteins is accomplished via translational incorporation of azidonorleucine (Anl), a methionine surrogate that requires a mutant form of the methionyl-tRNA synthetase for activation. Secreted pathogen proteins containing Anl can be tagged by azide-alkyne cycloaddition and enriched by affinity purification. Application of the method to analysis of the type III secretion system of the human pathogen Yersinia enterocolitica enabled efficient identification of secreted proteins, identification of distinct secretion profiles for intracellular and extracellular bacteria, and determination of the order of substrate injection into host cells. This approach should be widely useful for the identification of virulence factors in microbial pathogens and the development of potential new targets for antimicrobial therapy. PMID:24347637

  12. Affinity chromatography: A versatile technique for antibody purification.

    PubMed

    Arora, Sushrut; Saxena, Vikas; Ayyar, B Vijayalakshmi

    2017-03-01

    Antibodies continue to be extremely utilized entities in myriad applications including basic research, imaging, targeted delivery, chromatography, diagnostics, and therapeutics. At production stage, antibodies are generally present in complex matrices and most of their intended applications necessitate purification. Antibody purification has always been a major bottleneck in downstream processing of antibodies, due to the need of high quality products and associated high costs. Over the years, extensive research has focused on finding better purification methodologies to overcome this holdup. Among a plethora of different techniques, affinity chromatography is one of the most selective, rapid and easy method for antibody purification. This review aims to provide a detailed overview on affinity chromatography and the components involved in purification. An array of support matrices along with various classes of affinity ligands detailing their underlying working principles, together with the advantages and limitations of each system in purifying different types of antibodies, accompanying recent developments and important practical methodological considerations to optimize purification procedure are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Tail proteins of phage T5: investigation of the effect of the His6-tag position, from expression to crystallisation.

    PubMed

    Noirclerc-Savoye, Marjolaine; Flayhan, Ali; Pereira, Cindy; Gallet, Benoit; Gans, Pierre; Ebel, Christine; Breyton, Cécile

    2015-05-01

    Upon binding to its bacterial host receptor, the tail tip of phage T5 perforates, by an unknown mechanism, the heavily armoured cell wall of the host. This allows the injection of phage DNA into the cytoplasm to hijack the cell machinery and enable the production of new virions. In the perspective of a structural study of the phage tail, we have systematically overproduced eight of the eleven T5 tail proteins, with or without a N- or a C-terminal His6-tag. The widely used Hi6-tag is very convenient to purify recombinant proteins using immobilised-metal affinity chromatography. The presence of a tag however is not always innocuous. We combined automated gene cloning and expression tests to rapidly identify the most promising constructs for proteins of phage T5 tail, and performed biochemical and biophysical characterisation and crystallisation screening on available proteins. Automated small-scale purification was adapted for two highly expressed proteins. We obtained structural information for three of the proteins. We showed that the presence of a His6-tag can have drastic effect on protein expression, solubility, oligomerisation propensity and crystal quality. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Identification of Tyrosine Phosphorylated Proteins by SH2 Domain Affinity Purification and Mass Spectrometry.

    PubMed

    Buhs, Sophia; Gerull, Helwe; Nollau, Peter

    2017-01-01

    Phosphotyrosine signaling plays a major role in the control of many important biological functions such as cell proliferation and apoptosis. Deciphering of phosphotyrosine-dependent signaling is therefore of great interest paving the way for the understanding of physiological and pathological processes of signal transduction. On the basis of the specific binding of SH2 domains to phosphotyrosine residues, we here present an experimental workflow for affinity purification and subsequent identification of tyrosine phosphorylated proteins by mass spectrometry. In combination with SH2 profiling, a broadly applicable platform for the characterization of phosphotyrosine profiles in cell extracts, our pull down strategy enables researchers by now to identify proteins in signaling cascades which are differentially phosphorylated and selectively recognized by distinct SH2 domains.

  15. Heparin affinity purification of extracellular vesicles

    PubMed Central

    Balaj, Leonora; Atai, Nadia A.; Chen, Weilin; Mu, Dakai; Tannous, Bakhos A.; Breakefield, Xandra O.; Skog, Johan; Maguire, Casey A.

    2015-01-01

    Extracellular vesicles (EVs) are lipid membrane vesicles released by cells. They carry active biomolecules including DNA, RNA, and protein which can be transferred to recipient cells. Isolation and purification of EVs from culture cell media and biofluids is still a major challenge. The most widely used isolation method is ultracentrifugation (UC) which requires expensive equipment and only partially purifies EVs. Previously we have shown that heparin blocks EV uptake in cells, supporting a direct EV-heparin interaction. Here we show that EVs can be purified from cell culture media and human plasma using ultrafiltration (UF) followed by heparin-affinity beads. UF/heparin-purified EVs from cell culture displayed the EV marker Alix, contained a diverse RNA profile, had lower levels of protein contamination, and were functional at binding to and uptake into cells. RNA yield was similar for EVs isolated by UC. We were able to detect mRNAs in plasma samples with comparable levels to UC samples. In conclusion, we have discovered a simple, scalable, and effective method to purify EVs taking advantage of their heparin affinity. PMID:25988257

  16. Expression and purification of short hydrophobic elastin-like polypeptides with maltose-binding protein as a solubility tag.

    PubMed

    Bataille, Laure; Dieryck, Wilfrid; Hocquellet, Agnès; Cabanne, Charlotte; Bathany, Katell; Lecommandoux, Sébastien; Garbay, Bertrand; Garanger, Elisabeth

    2015-06-01

    Elastin-like polypeptides (ELPs) are biodegradable polymers with interesting physico-chemical properties for biomedical and biotechnological applications. The recombinant expression of hydrophobic elastin-like polypeptides is often difficult because they possess low transition temperatures, and therefore form aggregates at sub-ambient temperatures. To circumvent this difficulty, we expressed in Escherichia coli three hydrophobic ELPs (VPGIG)n with variable lengths (n=20, 40, and 60) in fusion with the maltose-binding protein (MBP). Fusion proteins were soluble and yields of purified MBP-ELP ranged between 66 and 127mg/L culture. After digestion of the fusion proteins by enterokinase, the ELP moiety was purified by using inverse transition cycling. The purified fraction containing ELP40 was slightly contaminated by traces of undigested fusion protein. Purification of ELP60 was impaired because of co-purification of the MBP tag during inverse transition cycling. ELP20 was successfully purified to homogeneity, as assessed by gel electrophoresis and mass spectrometry analyses. The transition temperature of ELP20 was measured at 15.4°C in low salt buffer. In conclusion, this method can be used to produce hydrophobic ELP of low molecular mass. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Expression, isolation, and purification of soluble and insoluble biotinylated proteins for nerve tissue regeneration.

    PubMed

    McCormick, Aleesha M; Jarmusik, Natalie A; Endrizzi, Elizabeth J; Leipzig, Nic D

    2014-01-22

    Recombinant protein engineering has utilized Escherichia coli (E. coli) expression systems for nearly 4 decades, and today E. coli is still the most widely used host organism. The flexibility of the system allows for the addition of moieties such as a biotin tag (for streptavidin interactions) and larger functional proteins like green fluorescent protein or cherry red protein. Also, the integration of unnatural amino acids like metal ion chelators, uniquely reactive functional groups, spectroscopic probes, and molecules imparting post-translational modifications has enabled better manipulation of protein properties and functionalities. As a result this technique creates customizable fusion proteins that offer significant utility for various fields of research. More specifically, the biotinylatable protein sequence has been incorporated into many target proteins because of the high affinity interaction between biotin with avidin and streptavidin. This addition has aided in enhancing detection and purification of tagged proteins as well as opening the way for secondary applications such as cell sorting. Thus, biotin-labeled molecules show an increasing and widespread influence in bioindustrial and biomedical fields. For the purpose of our research we have engineered recombinant biotinylated fusion proteins containing nerve growth factor (NGF) and semaphorin3A (Sema3A) functional regions. We have reported previously how these biotinylated fusion proteins, along with other active protein sequences, can be tethered to biomaterials for tissue engineering and regenerative purposes. This protocol outlines the basics of engineering biotinylatable proteins at the milligram scale, utilizing  a T7 lac inducible vector and E. coli expression hosts, starting from transformation to scale-up and purification.

  18. Expression, Isolation, and Purification of Soluble and Insoluble Biotinylated Proteins for Nerve Tissue Regeneration

    PubMed Central

    McCormick, Aleesha M.; Jarmusik, Natalie A.; Endrizzi, Elizabeth J.; Leipzig, Nic D.

    2014-01-01

    Recombinant protein engineering has utilized Escherichia coli (E. coli) expression systems for nearly 4 decades, and today E. coli is still the most widely used host organism. The flexibility of the system allows for the addition of moieties such as a biotin tag (for streptavidin interactions) and larger functional proteins like green fluorescent protein or cherry red protein. Also, the integration of unnatural amino acids like metal ion chelators, uniquely reactive functional groups, spectroscopic probes, and molecules imparting post-translational modifications has enabled better manipulation of protein properties and functionalities. As a result this technique creates customizable fusion proteins that offer significant utility for various fields of research. More specifically, the biotinylatable protein sequence has been incorporated into many target proteins because of the high affinity interaction between biotin with avidin and streptavidin. This addition has aided in enhancing detection and purification of tagged proteins as well as opening the way for secondary applications such as cell sorting. Thus, biotin-labeled molecules show an increasing and widespread influence in bioindustrial and biomedical fields. For the purpose of our research we have engineered recombinant biotinylated fusion proteins containing nerve growth factor (NGF) and semaphorin3A (Sema3A) functional regions. We have reported previously how these biotinylated fusion proteins, along with other active protein sequences, can be tethered to biomaterials for tissue engineering and regenerative purposes. This protocol outlines the basics of engineering biotinylatable proteins at the milligram scale, utilizing  a T7 lac inducible vector and E. coli expression hosts, starting from transformation to scale-up and purification. PMID:24513608

  19. Purification of Microbially Expressed Recombinant Proteins via a Dual ELP Split Intein System.

    PubMed

    Shi, Changhua; Han, Tzu-Chiang; Wood, David W

    2017-01-01

    Fusions of elastin-like peptide (ELP) purification tags and self-cleaving inteins provide a powerful platform for purifying tagless recombinant proteins without the need for conventional packed-bed columns. A drawback to this method has been premature cleaving of the ELP tag during expression, before the purification procedure can take place. Here we demonstrate a split-intein method, where the self-cleaving intein is divided into two inactive segments during expression and purification. Spontaneous assembly of the purified intein segments then restores self-cleaving activity to deliver the tagless target protein.

  20. Functionalization of paramagnetic nanoparticles for protein immobilization and purification.

    PubMed

    Carneiro, Lara A B C; Ward, Richard J

    2018-01-01

    A paramagnetic nanocomposite coated with chitosan and N-(5-Amino-1-carboxy-pentyl) iminodiacetic acid (NTA) that is suitable for protein immobilization applications has been prepared and characterized. The nanoparticle core was synthesized by controlled aggregation of Fe 3 O 4 under alkaline conditions, and Transmission Electron Microscopy revealed a size distribution of 10-50 nm. The nanoparticle core was coated with chitosan and derivatized with glutaraldehyde and NTA, as confirmed by Fourier Transform Infrared Spectroscopy. The final nanoparticles were used as a metal affinity matrix to separate a recombinant polyhistidine-tagged β-galactosidase from Bacillus subtilis directly from E. coli cell lysates with high purity (>95%). After loading with Ni 2+ , nanoparticles demonstrated a binding capacity of 250 μg of a polyhistidine-tagged β-galactosidase per milligram of support. The immobilized enzyme retained 80% activity after 9 cycles of washing, and the immobilized recombinant protein could be eluted with high purity with imidazole. The applications for these nanomagnetic composites extend beyond protein purification, and can also be used for immobilizing enzymes, where the β-galactosidase immobilized on the nanomagnetic support was used in multiple cycles of catalytic reactions with no significant loss of catalytic activity. Copyright © 2017. Published by Elsevier Inc.

  1. Thiacarbocyanine as ligand in dye-affinity chromatography for protein purification. II. Dynamic binding capacity using lysozyme as a model.

    PubMed

    Boto, R E F; Anyanwu, U; Sousa, F; Almeida, P; Queiroz, J A

    2009-09-01

    A constant development of dye-affinity chromatography to replace more traditional techniques is verified, with the aim of increasing specificity in the purification of biomolecules. The establishment of a new dye-affinity chromatographic support imposes their complete characterization, namely with relation to the binding capacity for proteins, in order to evaluate its applicability on global purification processes. Following previous studies, the adsorption of lysozyme onto a thiacarbocyanine dye immobilized on beaded cellulose was investigated. The effect of different parameters, such as temperature, ionic strength, pH, protein concentration and flow rate, on the dynamic binding capacity of the support to retain lysozyme was also studied. Increasing the temperature and the lysozyme concentration had a positive effect on the dynamic binding capacity (DBC), whereas increasing the ionic strength and the flow rate resulted in the opposite. It was also discovered that the pH used had an important impact on the lysozyme binding onto the immobilized dye. The maximum DBC value obtained for lysozyme was 8.6 mg/mL, which was achieved at 30 degrees C and pH 9 with a protein concentration of 0.5 mg/mL and a flow rate of 0.05 mL/min. The dissociation constant (K(d)) obtained was 2.61 +/- 0.36 x 10(-5 )m, proving the affinity interaction between the thiacarbocyanine dye ligand and the lysozyme. Copyright (c) 2009 John Wiley & Sons, Ltd.

  2. Stability of the neurotensin receptor NTS1 free in detergent solution and immobilized to affinity resin.

    PubMed

    White, Jim F; Grisshammer, Reinhard

    2010-09-07

    Purification of recombinant membrane receptors is commonly achieved by use of an affinity tag followed by an additional chromatography step if required. This second step may exploit specific receptor properties such as ligand binding. However, the effects of multiple purification steps on protein yield and integrity are often poorly documented. We have previously reported a robust two-step purification procedure for the recombinant rat neurotensin receptor NTS1 to give milligram quantities of functional receptor protein. First, histidine-tagged receptors are enriched by immobilized metal affinity chromatography using Ni-NTA resin. Second, remaining contaminants in the Ni-NTA column eluate are removed by use of a subsequent neurotensin column yielding pure NTS1. Whilst the neurotensin column eluate contained functional receptor protein, we observed in the neurotensin column flow-through misfolded NTS1. To investigate the origin of the misfolded receptors, we estimated the amount of functional and misfolded NTS1 at each purification step by radio-ligand binding, densitometry of Coomassie stained SDS-gels, and protein content determination. First, we observed that correctly folded NTS1 suffers damage by exposure to detergent and various buffer compositions as seen by the loss of [(3)H]neurotensin binding over time. Second, exposure to the neurotensin affinity resin generated additional misfolded receptor protein. Our data point towards two ways by which misfolded NTS1 may be generated: Damage by exposure to buffer components and by close contact of the receptor to the neurotensin affinity resin. Because NTS1 in detergent solution is stabilized by neurotensin, we speculate that the occurrence of aggregated receptor after contact with the neurotensin resin is the consequence of perturbations in the detergent belt surrounding the NTS1 transmembrane core. Both effects reduce the yield of functional receptor protein.

  3. Using Haloarcula marismortui Bacteriorhodopsin as a Fusion Tag for Enhancing and Visible Expression of Integral Membrane Proteins in Escherichia coli

    PubMed Central

    Hsu, Min-Feng; Yu, Tsung-Fu; Chou, Chia-Cheng; Fu, Hsu-Yuan; Yang, Chii-Shen; Wang, Andrew H. J.

    2013-01-01

    Membrane proteins are key targets for pharmacological intervention because of their vital functions. Structural and functional studies of membrane proteins have been severely hampered because of the difficulties in producing sufficient quantities of properly folded and biologically active proteins. Here we generate a high-level expression system of integral membrane proteins in Escherichia coli by using a mutated bacteriorhodopsin (BR) from Haloarcula marismortui (HmBRI/D94N) as a fusion partner. A purification strategy was designed by incorporating a His-tag on the target membrane protein for affinity purification and an appropriate protease cleavage site to generate the final products. The fusion system can be used to detect the intended target membrane proteins during overexpression and purification either with the naked eye or by directly monitoring their characteristic optical absorption. In this study, we applied this approach to produce two functional integral membrane proteins, undecaprenyl pyrophosphate phosphatase and carnitine/butyrobetaine antiporter with significant yield enhancement. This technology could facilitate the development of a high-throughput strategy to screen for conditions that improve the yield of correctly folded target membrane proteins. Other robust BRs can also be incorporated in this system. PMID:23457558

  4. Conformational stability of pGEX-expressed Schistosoma japonicum glutathione S-transferase: a detoxification enzyme and fusion-protein affinity tag.

    PubMed Central

    Kaplan, W.; Hüsler, P.; Klump, H.; Erhardt, J.; Sluis-Cremer, N.; Dirr, H.

    1997-01-01

    A glutathione S-transferase (Sj26GST) from Schistosoma japonicum, which functions in the parasite's Phase II detoxification pathway, is expressed by the Pharmacia pGEX-2T plasmid and is used widely as a fusion-protein affinity tag. It contains all 217 residues of Sj26GST and an additional 9-residue peptide linker with a thrombin cleavage site at its C-terminus. Size-exclusion HPLC (SEC-HPLC) and SDS-PAGE studies indicate that purification of the homodimeric protein under nonreducing conditions results in the reversible formation of significant amounts of 160-kDa and larger aggregates without a loss in catalytic activity. The basis for oxidative aggregation can be ascribed to the high degree of exposure of the four cysteine residues per subunit. The conformational stability of the dimeric protein was studied by urea- and temperature-induced unfolding techniques. Fluorescence-spectroscopy, SEC-HPLC, urea- and temperature-gradient gel electrophoresis, differential scanning microcalorimetry, and enzyme activity were employed to monitor structural and functional changes. The unfolding data indicate the absence of thermodynamically stable intermediates and that the unfolding/refolding transition is a two-state process involving folded native dimer and unfolded monomer. The stability of the protein was found to be dependent on its concentration, with a delta G degree (H2O) = 26.0 +/- 1.7 kcal/mol. The strong relationship observed between the m-value and the size of the protein indicates that the amount of protein surface area exposed to solvent upon unfolding is the major structural determinant for the dependence of the protein's free energy of unfolding on urea concentration. Thermograms obtained by differential scanning microcalorimetry also fitted a two-state unfolding transition model with values of delta Cp = 7,440 J/mol per K, delta H = 950.4 kJ/mol, and delta S = 1,484 J/mol. PMID:9041642

  5. Conformational stability of pGEX-expressed Schistosoma japonicum glutathione S-transferase: a detoxification enzyme and fusion-protein affinity tag.

    PubMed

    Kaplan, W; Hüsler, P; Klump, H; Erhardt, J; Sluis-Cremer, N; Dirr, H

    1997-02-01

    A glutathione S-transferase (Sj26GST) from Schistosoma japonicum, which functions in the parasite's Phase II detoxification pathway, is expressed by the Pharmacia pGEX-2T plasmid and is used widely as a fusion-protein affinity tag. It contains all 217 residues of Sj26GST and an additional 9-residue peptide linker with a thrombin cleavage site at its C-terminus. Size-exclusion HPLC (SEC-HPLC) and SDS-PAGE studies indicate that purification of the homodimeric protein under nonreducing conditions results in the reversible formation of significant amounts of 160-kDa and larger aggregates without a loss in catalytic activity. The basis for oxidative aggregation can be ascribed to the high degree of exposure of the four cysteine residues per subunit. The conformational stability of the dimeric protein was studied by urea- and temperature-induced unfolding techniques. Fluorescence-spectroscopy, SEC-HPLC, urea- and temperature-gradient gel electrophoresis, differential scanning microcalorimetry, and enzyme activity were employed to monitor structural and functional changes. The unfolding data indicate the absence of thermodynamically stable intermediates and that the unfolding/refolding transition is a two-state process involving folded native dimer and unfolded monomer. The stability of the protein was found to be dependent on its concentration, with a delta G degree (H2O) = 26.0 +/- 1.7 kcal/mol. The strong relationship observed between the m-value and the size of the protein indicates that the amount of protein surface area exposed to solvent upon unfolding is the major structural determinant for the dependence of the protein's free energy of unfolding on urea concentration. Thermograms obtained by differential scanning microcalorimetry also fitted a two-state unfolding transition model with values of delta Cp = 7,440 J/mol per K, delta H = 950.4 kJ/mol, and delta S = 1,484 J/mol.

  6. A theoretical and experimental approach toward the development of affinity adsorbents for GFP and GFP-fusion proteins purification.

    PubMed

    Fernandes, Cláudia S M; Pina, Ana Sofia; Dias, Ana M G C; Branco, Ricardo J F; Roque, Ana Cecília Afonso

    2014-09-30

    The green fluorescent protein (GFP) is widely employed to report on a variety of molecular phenomena, but its selective recovery is hampered by the lack of a low-cost and robust purification alternative. This work reports an integrated approach combining rational design and experimental validation toward the optimization of a small fully-synthetic ligand for GFP purification. A total of 56 affinity ligands based on a first-generation lead structure were rationally designed through molecular modeling protocols. The library of ligands was further synthesized by solid-phase combinatorial methods based on the Ugi reaction and screened against Escherichia coli extracts containing GFP. Ligands A4C2, A5C5 and A5C6 emerged as the new lead structures based on the high estimated theoretical affinity constants and the high GFP binding percentages and enrichment factors. The elution of GFP from these adsorbents was further characterized, where the best compromise between mild elution conditions, yield and purity was found for ligands A5C5 and A5C6. These were tested for purifying a model GFP-fusion protein, where ligand A5C5 yielded higher protein recovery and purity. The molecular interactions between the lead ligands and GFP were further assessed by molecular dynamics simulations, showing a wide range of potential hydrophobic and hydrogen-bond interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Impact of an N-terminal Poly Histidine Tag on Protein Thermal Stability

    USDA-ARS?s Scientific Manuscript database

    For years, the use of polyhistidine tags (His-tags) have been a staple in the isolation of recombinant proteins in immobilized metal affinity chromatography experiments. Their usage has been widely beneficial in increasing protein purity from crude cell lysates. For some recombinant proteins, a cons...

  8. Engineering protein scaffolds for protein separation, biocatalysis and nanotechnology applications

    NASA Astrophysics Data System (ADS)

    Liu, Fang

    Globally, there is growing appreciation for developing a sustainable economy that uses eco-efficient bio-processes. Biotechnology provides an increasing range of tools for industry to help reduce cost and improve environmental performance. Inspired by the naturally evolved machineries of protein scaffolds and their binding ligands, synthetic protein scaffolds were engineered based on cohesin-dockerin interactions and metal chelating peptides to tackle the challenges and make improvements in three specific areas: (1) protein purification, (2) biofuel cells, and (3) nanomaterial synthesis. The first objective was to develop efficient and cost-effective non-chromatographic purification processes to purify recombinant proteins in an effort to meet the dramatically growing market of protein drugs. In our design, the target protein was genetically fused with a dockerin domain from Clostridium thermocellum and direct purification and recovery was achieved using thermo-responsive elastin-like polypeptide (ELP) scaffold containing the cohesin domain from the same species. By exploiting the highly specific interaction between the dockerin and cohesin domain and the reversible aggregation property of ELP, highly purified and active dockerin-tagged proteins, such as endoglucanase CelA, chloramphenicol acetyl transferase (CAT) and enhanced green fluorescence protein (EGFP), were recovered directly from crude cell extracts in a single purification step with yields achieving over 90%. Incorporation of a self-cleaving intein domain enabled rapid removal of the affinity tag from the target proteins by another cycle of thermal precipitation. The purification cost can be further reduced by regenerating and recycling the ELP-cohesin capturing scaffolds. However, due to the high binding affinity between cohesin and dockerin domains, the bound dockerin-intein tag cannot be completely disassociated from ELP-cohesin scaffold after binding. Therefore, a truncated dockerin with the calcium

  9. Expression and purification of the matrix protein of Nipah virus in baculovirus insect cell system.

    PubMed

    Masoomi Dezfooli, Seyedehsara; Tan, Wen Siang; Tey, Beng Ti; Ooi, Chien Wei; Hussain, Siti Aslina

    2016-01-01

    Nipah virus (NiV) causes fatal respiratory illness and encephalitis in humans and animals. The matrix (M) protein of NiV plays an important role in the viral assembly and budding process. Thus, an access to the NiV M protein is vital to the design of viral antigens as diagnostic reagents. In this study, recombinant DNA technology was successfully adopted in the cloning and expression of NiV M protein. A recombinant expression cassette (baculovirus expression vector) was used to encode an N-terminally His-tagged NiV M protein in insect cells. A time-course study demonstrated that the highest yield of recombinant M protein (400-500 μg) was expressed from 107 infected cells 3 days after infection. A single-step purification method based on metal ion affinity chromatography was established to purify the NiV M protein, which successfully yielded a purity level of 95.67% and a purification factor of 3.39. The Western blotting and enzyme-linked immunosorbent assay (ELISA) showed that the purified recombinant M protein (48 kDa) was antigenic and reacted strongly with the serum of a NiV infected pig. © 2015 American Institute of Chemical Engineers.

  10. Evaluation of immobilized metal membrane affinity chromatography for purification of an immunoglobulin G1 monoclonal antibody.

    PubMed

    Serpa, Gisele; Augusto, Elisabeth Fátima Pires; Tamashiro, Wirla Maria Silva Cunha; Ribeiro, Mariana Borçoe; Miranda, Everson Alves; Bueno, Sônia Maria Alves

    2005-02-25

    The large scale production of monoclonal antibodies (McAbs) has gaining increased relevance with the development of the hybridoma cell culture in bioreactors creating a need for specific efficient bioseparation techniques. Conventional fixed bead affinity adsorption commonly applied for McAbs purification has the drawback of low flow rates and colmatage. We developed and evaluated a immobilized metal affinity chromatographies (IMAC) affinity membrane for the purification of anti-TNP IgG(1) mouse McAbs. We immobilized metal ions on a poly(ethylene vinyl alcohol) hollow fiber membrane (Me(2+)-IDA-PEVA) and applied it for the purification of this McAbs from cell culture supernatant after precipitation with 50% saturation of ammonium sulphate. The purity of IgG(1) in the eluate fractions was high when eluted from Zn(2+) complex. The anti-TNP antibody could be eluted under conditions causing no loss of antigen binding capacity. The purification procedure can be considered as an alternative to the biospecific adsorbent commonly applied for mouse IgG(1) purification, the protein G-Sepharose.

  11. Studies with an immobilized metal affinity chromatography cassette system involving binuclear triazacyclononane-derived ligands: automation of batch adsorption measurements with tagged recombinant proteins.

    PubMed

    Petzold, Martin; Coghlan, Campbell J; Hearn, Milton T W

    2014-07-18

    This study describes the determination of the adsorption isotherms and binding kinetics of tagged recombinant proteins using a recently developed IMAC cassette system and employing automated robotic liquid handling procedures for IMAC resin screening. These results confirm that these new IMAC resins, generated from a variety of different metal-charged binuclear 1,4,7-triaza-cyclononane (tacn) ligands, interact with recombinant proteins containing a novel N-terminal metal binding tag, NT1A, with static binding capacities similar to those obtained with conventional hexa-His tagged proteins, but with significantly increased association constants. In addition, higher kinetic binding rates were observed with these new IMAC systems, an attribute that can be positively exploited to increase process productivity. The results from this investigation demonstrate that enhancements in binding capacities and affinities were achieved with these new IMAC resins and chosen NT1A tagged protein. Further, differences in the binding performances of the bis(tacn) xylenyl-bridged ligands were consistent with the distance between the metal binding centres of the two tacn moieties, the flexibility of the ligand and the potential contribution from the aromatic ring of the xylenyl group to undergo π/π stacking interactions with the tagged proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. A set of ligation-independent in vitro translation vectors for eukaryotic protein production.

    PubMed

    Bardóczy, Viola; Géczi, Viktória; Sawasaki, Tatsuya; Endo, Yaeta; Mészáros, Tamás

    2008-03-27

    The last decade has brought the renaissance of protein studies and accelerated the development of high-throughput methods in all aspects of proteomics. Presently, most protein synthesis systems exploit the capacity of living cells to translate proteins, but their application is limited by several factors. A more flexible alternative protein production method is the cell-free in vitro protein translation. Currently available in vitro translation systems are suitable for high-throughput robotic protein production, fulfilling the requirements of proteomics studies. Wheat germ extract based in vitro translation system is likely the most promising method, since numerous eukaryotic proteins can be cost-efficiently synthesized in their native folded form. Although currently available vectors for wheat embryo in vitro translation systems ensure high productivity, they do not meet the requirements of state-of-the-art proteomics. Target genes have to be inserted using restriction endonucleases and the plasmids do not encode cleavable affinity purification tags. We designed four ligation independent cloning (LIC) vectors for wheat germ extract based in vitro protein translation. In these constructs, the RNA transcription is driven by T7 or SP6 phage polymerase and two TEV protease cleavable affinity tags can be added to aid protein purification. To evaluate our improved vectors, a plant mitogen activated protein kinase was cloned in all four constructs. Purification of this eukaryotic protein kinase demonstrated that all constructs functioned as intended: insertion of PCR fragment by LIC worked efficiently, affinity purification of translated proteins by GST-Sepharose or MagneHis particles resulted in high purity kinase, and the affinity tags could efficiently be removed under different reaction conditions. Furthermore, high in vitro kinase activity testified of proper folding of the purified protein. Four newly designed in vitro translation vectors have been constructed

  13. Construction of a chimeric thermostable pyrophosphatase to facilitate its purification and immobilization by using the choline-binding tag.

    PubMed

    Moldes, Cristina; García, José L; García, Pedro

    2004-08-01

    The thermophilic inorganic pyrophosphatase (Pyr) from Thermus thermophilus has been produced in Escherichia coli fused to the C terminus of the choline-binding tag (ChB tag) derived from the choline-binding domain (ChBD) of pneumococcal LytA autolysin. The chimeric ChBD-Pyr protein retains its thermostable activity and can be purified in a single step by DEAE-cellulose affinity chromatography. Pyr can be further released from the ChBD by thrombin, using the specific protease recognition site incorporated in the C terminus of this tag. Remarkably, the ChB tag provides a selective and very strong thermostable noncovalent immobilization of ChBD-Pyr in the DEAE-cellulose matrix. The binding of choline or choline analogues, such as DEAE, confers a high thermal stability to this tag; therefore, the immobilized chimeric enzyme can be assayed at high temperature without protein leakage, demonstrating the usefulness of the ChB tag for noncovalent immobilization of thermophilic proteins. Moreover, ChBD-Pyr can be purified and immobilized in a single step on commercial DEAE-cellulose paper. The affinity of the ChB tag for this versatile solid support can be very helpful in developing many biotechnological applications.

  14. Cloning, Expression, and Purification of Brucella suis Outer Membrane Proteins

    DTIC Science & Technology

    2005-01-01

    13-09-20061 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Cloning, expression and purification of Brucella suis outer membrane proteins 5b. GRANT NUMBER...attractive for this purpose. In this study, we cloned, expressed and purified seven predicted OMPs of Brucella suis . The recombinant proteins were...fused with 6-his and V5 epitope tags at their C termini to facilitate detection and purification. The B. suis surface genes were PCR synthesized based

  15. A Liquid Phase Affinity Capture Assay Using Magnetic Beads to Study Protein-Protein Interaction: The Poliovirus-Nanobody Example

    PubMed Central

    Schotte, Lise; Rombaut, Bart; Thys, Bert

    2012-01-01

    In this article, a simple, quantitative, liquid phase affinity capture assay is presented. Provided that one protein can be tagged and another protein labeled, this method can be implemented for the investigation of protein-protein interactions. It is based on one hand on the recognition of the tagged protein by cobalt coated magnetic beads and on the other hand on the interaction between the tagged protein and a second specific protein that is labeled. First, the labeled and tagged proteins are mixed and incubated at room temperature. The magnetic beads, that recognize the tag, are added and the bound fraction of labeled protein is separated from the unbound fraction using magnets. The amount of labeled protein that is captured can be determined in an indirect way by measuring the signal of the labeled protein remained in the unbound fraction. The described liquid phase affinity assay is extremely useful when conformational conversion sensitive proteins are assayed. The development and application of the assay is demonstrated for the interaction between poliovirus and poliovirus recognizing nanobodies1. Since poliovirus is sensitive to conformational conversion2 when attached to a solid surface (unpublished results), the use of ELISA is limited and a liquid phase based system should therefore be preferred. An example of a liquid phase based system often used in polioresearch3,4 is the micro protein A-immunoprecipitation test5. Even though this test has proven its applicability, it requires an Fc-structure, which is absent in the nanobodies6,7. However, as another opportunity, these interesting and stable single-domain antibodies8 can be easily engineered with different tags. The widely used (His)6-tag shows affinity for bivalent ions such as nickel or cobalt, which can on their turn be easily coated on magnetic beads. We therefore developed this simple quantitative affinity capture assay based on cobalt coated magnetic beads. Poliovirus was labeled with 35S to

  16. Purification of FLAG-tagged Secreted Proteins from Mammalian Cells

    PubMed Central

    Itakura, Eisuke; Chen, Changchun; de Bono, Mario

    2017-01-01

    This protocol describes a method for purifying glycosylated FLAG-tagged secreted proteins with disulfide bonds from mammalian cells. The purified products can be used for various applications, such as ligand binding assays. PMID:29075655

  17. Super magnetic nanoparticles NiFe2O4, coated with aluminum-nickel oxide sol-gel lattices to safe, sensitive and selective purification of his-tagged proteins.

    PubMed

    Mirahmadi-Zare, Seyede Zohreh; Allafchian, Alireza; Aboutalebi, Fatemeh; Shojaei, Pendar; Khazaie, Yahya; Dormiani, Kianoush; Lachinani, Liana; Nasr-Esfahani, Mohammad-Hossein

    2016-05-01

    Super magnetic nanoparticle NiFe2O4 with high magnetization, physical and chemical stability was introduced as a core particle which exhibits high thermal stability (>97%) during the harsh coating process. Instead of multi-stage process for coating, the magnetic nanoparticles was mineralized via one step coating by a cheap, safe, stable and recyclable alumina sol-gel lattice (from bohemite source) saturated by nickel ions. The TEM, SEM, VSM and XRD imaging and BET analysis confirmed the structural potential of NiFe2O4@NiAl2O4 core-shell magnetic nanoparticles for selective and sensitive purification of His-tagged protein, in one step. The functionality and validity of the nickel magnetic nanoparticles were attested by purification of three different bioactive His-tagged recombinant fusion proteins including hIGF-1, GM-CSF and bFGF. The bonding capacity of the nickel magnetics nanoparticles was studied by Bradford assay and was equal to 250 ± 84 μg Protein/mg MNP base on protein size. Since the metal ion leakage is the most toxicity source for purification by nickel magnetic nanoparticles, therefor the nickel leakage in purified final protein was determined by atomic absorption spectroscopy and biological activity of final purified protein was confirmed in comparison with reference. Also, in vitro cytotoxicity of nickel magnetic nanoparticles and trace metal ions were investigated by MTS assay analysis. The results confirmed that the synthesized nickel magnetic nanoparticles did not show metal ion toxicity and not affected on protein folding. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Affinity purification–mass spectrometry and network analysis to understand protein-protein interactions

    PubMed Central

    Morris, John H; Knudsen, Giselle M; Verschueren, Erik; Johnson, Jeffrey R; Cimermancic, Peter; Greninger, Alexander L; Pico, Alexander R

    2015-01-01

    By determining protein-protein interactions in normal, diseased and infected cells, we can improve our understanding of cellular systems and their reaction to various perturbations. In this protocol, we discuss how to use data obtained in affinity purification–mass spectrometry (AP-MS) experiments to generate meaningful interaction networks and effective figures. We begin with an overview of common epitope tagging, expression and AP practices, followed by liquid chromatography–MS (LC-MS) data collection. We then provide a detailed procedure covering a pipeline approach to (i) pre-processing the data by filtering against contaminant lists such as the Contaminant Repository for Affinity Purification (CRAPome) and normalization using the spectral index (SIN) or normalized spectral abundance factor (NSAF); (ii) scoring via methods such as MiST, SAInt and CompPASS; and (iii) testing the resulting scores. Data formats familiar to MS practitioners are then transformed to those most useful for network-based analyses. The protocol also explores methods available in Cytoscape to visualize and analyze these types of interaction data. The scoring pipeline can take anywhere from 1 d to 1 week, depending on one’s familiarity with the tools and data peculiarities. Similarly, the network analysis and visualization protocol in Cytoscape takes 2–4 h to complete with the provided sample data, but we recommend taking days or even weeks to explore one’s data and find the right questions. PMID:25275790

  19. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-07-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan.

  20. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    PubMed Central

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-01-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880

  1. Functionalized Nano-adsorbent for Affinity Separation of Proteins

    NASA Astrophysics Data System (ADS)

    Zou, Xueyan; Yang, Fengbo; Sun, Xin; Qin, Mingming; Zhao, Yanbao; Zhang, Zhijun

    2018-05-01

    Thiol-functionalized silica nanospheres (SiO2-SH NSs) with an average diameter of 460 nm were synthesized through a hydrothermal route. Subsequently, the prepared SiO2-SH NSs were modified by SnO2 quantum dots to afford SnO2/SiO2 composite NSs possessing obvious fluorescence, which could be used to trace the target protein. The SnO2/SiO2 NSs were further modified by reduced glutathione (GSH) to obtain SnO2/SiO2-GSH NSs, which can specifically separate glutathione S-transferase-tagged (GST-tagged) protein. Moreover, the peroxidase activity of glutathione peroxidase 3 (GPX3) separated from SnO2/SiO2-GSH NSs in vitro was evaluated. Results show that the prepared SnO2/SiO2-GSH NSs exhibit negligible nonspecific adsorption, high concentration of protein binding (7.4 mg/g), and good reused properties. In the meantime, the GST-tagged GPX3 separated by these NSs can retain its redox state and peroxidase activity. Therefore, the prepared SnO2/SiO2-GSH NSs might find promising application in the rapid separation and purification of GST-tagged proteins.

  2. Expression, purification, and DNA-binding activity of the Herbaspirillum seropedicae RecX protein.

    PubMed

    Galvão, Carolina W; Pedrosa, Fábio O; Souza, Emanuel M; Yates, M Geoffrey; Chubatsu, Leda S; Steffens, Maria Berenice R

    2004-06-01

    The Herbaspirillum seropedicae RecX protein participates in the SOS response: a process in which the RecA protein plays a central role. The RecX protein of the H. seropedicae, fused to a His-tag sequence (RecX His-tagged), was over-expressed in Escherichia coli and purified by metal-affinity chromatography to yield a highly purified and active protein. DNA band-shift assays showed that the RecX His-tagged protein bound to both circular and linear double-stranded DNA and also to circular single-stranded DNA. The apparent affinity of RecX for DNA decreased in the presence of Mg(2+) ions. The ability of RecX to bind DNA may be relevant to its function in the SOS response.

  3. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display.

    PubMed

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-11-14

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In 'competitive phage display' bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins.

  4. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display

    PubMed Central

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-01-01

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In ‘competitive phage display’ bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins. PMID:24225840

  5. Efficient sortase-mediated N-terminal labeling of TEV protease cleaved recombinant proteins.

    PubMed

    Sarpong, Kwabena; Bose, Ron

    2017-03-15

    A major challenge in attaching fluorophores or other handles to proteins is the availability of a site-specific labeling strategy that provides stoichiometric modification without compromising protein integrity. We developed a simple approach that combines TEV protease cleavage, sortase modification and affinity purification to N-terminally label proteins. To achieve stoichiometrically-labeled protein, we included a short affinity tag in the fluorophore-containing peptide for post-labeling purification of the modified protein. This strategy can be easily applied to any recombinant protein with a TEV site and we demonstrate this on Epidermal Growth Factor Receptor (EGFR) and Membrane Scaffold Protein (MSP) constructs. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Rational design of peptide affinity ligands for the purification of therapeutic enzymes.

    PubMed

    Trasatti, John P; Woo, James; Ladiwala, Asif; Cramer, Steven; Karande, Pankaj

    2018-04-25

    Non-mAb biologics represent a growing class of therapeutics under clinical development. Although affinity chromatography is a potentially attractive approach for purification, the development of platform technologies, such as Protein A for mAbs, has been challenging due to the inherent chemical and structural diversity of these molecules. Here, we present our studies on the rapid development of peptide affinity ligands for the purification of biologics using a prototypical enzyme therapeutic in clinical use. Employing a suite of de novo rational and combinatorial design strategies we designed and screened a library of peptides on microarray platforms for their ability to bind to the target with high affinity and selectivity in cell culture fluid. Lead peptides were evaluated on resin in batch conditions and compared with a commercially available resin to evaluate their efficacy. Two lead candidates identified from microarray studies provided high binding capacity to the target while demonstrating high selectivity against culture contaminants and product variants compared to a commercial resin system. These findings provide a proof-of-concept for developing affinity peptide-based bioseparations processes for a target biologic. Peptide affinity ligand design and screening approaches presented in this work can also be easily translated to other biologics of interest. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  7. An internal affinity-tag for purification and crystallization of the siderophore receptor FhuA, integral outer membrane protein from Escherichia coli K-12.

    PubMed

    Ferguson, A D; Breed, J; Diederichs, K; Welte, W; Coulton, J W

    1998-07-01

    FhuA (Mr 78,992, 714 amino acids), siderophore receptor for ferrichrome-iron in the outer membrane of Escherichia coli, was affinity tagged, rapidly purified, and crystallized. To obtain FhuA in quantities sufficient for crystallization, a hexahistidine tag was genetically inserted into the fhuA gene after amino acid 405, which resides in a known surface-exposed loop. Recombinant FhuA405.H6 was overexpressed in an E. coli strain that is devoid of several major porins and using metal-chelate chromatography was purified in large amounts to homogeneity. FhuA crystals were grown using the hanging drop vapor diffusion technique and were suitable for X-ray diffraction analysis. On a rotating anode X-ray source, diffraction was observed to 3.0 A resolution. The crystals belong to space group P6(1) or P6(5) with unit cell dimensions of a=b=174 A, c=88 A (alpha=beta=90 degrees, gamma=120 degrees).

  8. Systematic analyses of the ultraviolet radiation resistance-associated gene product (UVRAG) protein interactome by tandem affinity purification.

    PubMed

    Son, Ji-Hye; Hwang, Eurim C; Kim, Joungmok

    2016-03-01

    Ultraviolet radiation resistance-associated gene product (UVRAG) was originally identified as a protein involved in cellular responses to UV irradiation. Subsequent studies have demonstrated that UVRAG plays as an important role in autophagy, a lysosome-dependent catabolic program, as a part of a pro-autophagy PIK3C3/VPS34 lipid kinase complex. Several recent studies have shown that UVRAG is also involved in autophagy-independent cellular functions, such as DNA repair/stability and vesicular trafficking/fusion. Here, we examined the UVRAG protein interactome to obtain information about its functional network. To this end, we screened UVRAG-interacting proteins using a tandem affinity purification method coupled with MALDI-TOF/MS analysis. Our results demonstrate that UVRAG interacts with various proteins involved in a wide spectrum of cellular functions, including genome stability, protein translational elongation, protein localization (trafficking), vacuole organization, transmembrane transport as well as autophagy. Notably, the interactome list of high-confidence UVRAG-interacting proteins is enriched for proteins involved in the regulation of genome stability. Our systematic UVRAG interactome analysis should provide important clues for understanding a variety of UVRAG functions.

  9. Tuning the Protein Corona of Hydrogel Nanoparticles: The Synthesis of Abiotic Protein and Peptide Affinity Reagents.

    PubMed

    O'Brien, Jeffrey; Shea, Kenneth J

    2016-06-21

    Nanomaterials, when introduced into a complex, protein-rich environment, rapidly acquire a protein corona. The type and amount of proteins that constitute the corona depend significantly on the synthetic identity of the nanomaterial. For example, hydrogel nanoparticles (NPs) such as poly(N-isopropylacrylamide) (NIPAm) have little affinity for plasma proteins; in contrast, carboxylated poly(styrene) NPs acquire a dense protein corona. This range of protein adsorption suggests that the protein corona might be "tuned" by controlling the chemical composition of the NP. In this Account, we demonstrate that small libraries of synthetic polymer NPs incorporating a diverse pool of functional monomers can be screened for candidates with high affinity and selectivity to targeted biomacromolecules. Through directed synthetic evolution of NP compositions, one can tailor the protein corona to create synthetic organic hydrogel polymer NPs with high affinity and specificity to peptide toxins, enzymes, and other functional proteins, as well as to specific domains of large proteins. In addition, many NIPAm NPs undergo a change in morphology as a function of temperature. This transformation often correlates with a significant change in NP-biomacromolecule affinity, resulting in a temperature-dependent protein corona. This temperature dependence has been used to develop NP hydrogels with autonomous affinity switching for the protection of proteins from thermal stress and as a method of biomacromolecule purification through a selective thermally induced catch and release. In addition to temperature, changes in pH or buffer can also alter a NP protein corona composition, a property that has been exploited for protein purification. Finally, synthetic polymer nanoparticles with low nanomolar affinity for a peptide toxin were shown to capture and neutralize the toxin in the bloodstream of living mice. While the development of synthetic polymer alternatives to protein affinity reagents is

  10. Development of a Dehalogenase-Based Protein Fusion Tag Capable of Rapid, Selective and Covalent Attachment to Customizable Ligands

    PubMed Central

    Encell, Lance P; Friedman Ohana, Rachel; Zimmerman, Kris; Otto, Paul; Vidugiris, Gediminas; Wood, Monika G; Los, Georgyi V; McDougall, Mark G; Zimprich, Chad; Karassina, Natasha; Learish, Randall D; Hurst, Robin; Hartnett, James; Wheeler, Sarah; Stecha, Pete; English, Jami; Zhao, Kate; Mendez, Jacqui; Benink, Hélène A; Murphy, Nancy; Daniels, Danette L; Slater, Michael R; Urh, Marjeta; Darzins, Aldis; Klaubert, Dieter H; Bulleit, Robert F; Wood, Keith V

    2012-01-01

    Our fundamental understanding of proteins and their biological significance has been enhanced by genetic fusion tags, as they provide a convenient method for introducing unique properties to proteins so that they can be examinedin isolation. Commonly used tags satisfy many of the requirements for applications relating to the detection and isolation of proteins from complex samples. However, their utility at low concentration becomes compromised if the binding affinity for a detection or capture reagent is not adequate to produce a stable interaction. Here, we describe HaloTag® (HT7), a genetic fusion tag based on a modified haloalkane dehalogenase designed and engineered to overcome the limitation of affinity tags by forming a high affinity, covalent attachment to a binding ligand. HT7 and its ligand have additional desirable features. The tag is relatively small, monomeric, and structurally compatible with fusion partners, while the ligand is specific, chemically simple, and amenable to modular synthetic design. Taken together, the design features and molecular evolution of HT7 have resulted in a superior alternative to common tags for the overexpression, detection, and isolation of target proteins. PMID:23248739

  11. The intervening removable affinity tag (iRAT) production system facilitates Fv antibody fragment‐mediated crystallography

    PubMed Central

    Nomura, Yayoi; Sato, Yumi; Suno, Ryoji; Horita, Shoichiro

    2016-01-01

    Abstract Fv antibody fragments have been used as co‐crystallization partners in structural biology, particularly in membrane protein crystallography. However, there are inherent technical issues associated with the large‐scale production of soluble, functional Fv fragments through conventional methods in various expression systems. To circumvent these problems, we developed a new method, in which a single synthetic polyprotein consisting of a variable light (VL) domain, an intervening removable affinity tag (iRAT), and a variable heavy (VH) domain is expressed by a Gram‐positive bacterial secretion system. This method ensures stoichiometric expression of VL and VH from the monocistronic construct followed by proper folding and assembly of the two variable domains. The iRAT segment can be removed by a site‐specific protease during the purification process to yield tag‐free Fv fragments suitable for crystallization trials. In vitro refolding step is not required to obtain correctly folded Fv fragments. As a proof of concept, we tested the iRAT‐based production of multiple Fv fragments, including a crystallization chaperone for a mammalian membrane protein as well as FDA‐approved therapeutic antibodies. The resulting Fv fragments were functionally active and crystallized in complex with the target proteins. The iRAT system is a reliable, rapid and broadly applicable means of producing milligram quantities of Fv fragments for structural and biochemical studies. PMID:27595817

  12. Stable and rigid DTPA-like paramagnetic tags suitable for in vitro and in situ protein NMR analysis.

    PubMed

    Chen, Jia-Liang; Zhao, Yu; Gong, Yan-Jun; Pan, Bin-Bin; Wang, Xiao; Su, Xun-Cheng

    2018-02-01

    Organic synthesis of a ligand with high binding affinities for paramagnetic lanthanide ions is an effective way of generating paramagnetic effects on proteins. These paramagnetic effects manifested in high-resolution NMR spectroscopy are valuable dynamic and structural restraints of proteins and protein-ligand complexes. A paramagnetic tag generally contains a metal chelating moiety and a reactive group for protein modification. Herein we report two new DTPA-like tags, 4PS-PyDTTA and 4PS-6M-PyDTTA that can be site-specifically attached to a protein with a stable thioether bond. Both protein-tag adducts form stable lanthanide complexes, of which the binding affinities and paramagnetic tensors are tunable with respect to the 6-methyl group in pyridine. Paramagnetic relaxation enhancement (PRE) effects of Gd(III) complex on protein-tag adducts were evaluated in comparison with pseudocontact shift (PCS), and the results indicated that both 4PS-PyDTTA and 4PS-6M-PyDTTA tags are rigid and present high-quality PREs that are crucially important in elucidation of the dynamics and interactions of proteins and protein-ligand complexes. We also show that these two tags are suitable for in-situ protein NMR analysis.

  13. Purification method for recombinant proteins based on a fusion between the target protein and the C-terminus of calmodulin

    NASA Technical Reports Server (NTRS)

    Schauer-Vukasinovic, Vesna; Deo, Sapna K.; Daunert, Sylvia

    2002-01-01

    Calmodulin (CaM) was used as an affinity tail to facilitate the purification of the green fluorescent protein (GFP), which was used as a model target protein. The protein GFP was fused to the C-terminus of CaM, and a factor Xa cleavage site was introduced between the two proteins. A CaM-GFP fusion protein was expressed in E. coli and purified on a phenothiazine-derivatized silica column. CaM binds to the phenothiazine on the column in a Ca(2+)-dependent fashion and it was, therefore, used as an affinity tail for the purification of GFP. The fusion protein bound to the affinity column was then subjected to a proteolytic digestion with factor Xa. Pure GFP was eluted with a Ca(2+)-containing buffer, while CaM was eluted later with a buffer containing the Ca(2+)-chelating agent EGTA. The purity of the isolated GFP was verified by SDS-PAGE, and the fluorescence properties of the purified GFP were characterized.

  14. Generation and purification of highly-specific antibodies for detecting post-translationally modified proteins in vivo

    PubMed Central

    Arur, Swathi; Schedl, Tim

    2014-01-01

    Post-translational modifications alter protein structure, affecting activity, stability, localization and/or binding partners. Antibodies that specifically recognize post-translationally modified proteins have a number of uses including immuno-cytochemistry and immuno-precipitation of the modified protein to purify protein-protein and protein-nucleic acid complexes. However, antibodies directed at modified sites on individual proteins are often non-specific. Here we describe a protocol to purify polyclonal antibodies that specifically detect the modified protein of interest. The approach uses iterative rounds of subtraction and affinity purification, using stringent washes to remove antibodies that recognize the unmodified protein and low sequence complexity epitopes containing the modified amino acid. Dot and western blots assays are employed to assess antibody preparation specificity. The approach is designed to overcome the common occurrence that a single round of subtraction and affinity purification is not sufficient to obtain a modified protein specific antibody preparation. One full round of antibody purification and specificity testing takes 6 days of discontinuous time. PMID:24457330

  15. A novel strategy using MASCOT Distiller for analysis of cleavable isotope-coded affinity tag data to quantify protein changes in plasma.

    PubMed

    Leung, Kit-Yi; Lescuyer, Pierre; Campbell, James; Byers, Helen L; Allard, Laure; Sanchez, Jean-Charles; Ward, Malcolm A

    2005-08-01

    A novel strategy consisting of cleavable Isotope-Coded Affinity Tag (cICAT) combined with MASCOT Distiller was evaluated as a tool for the quantification of proteins in "abnormal" patient plasma, prepared by pooling samples from patients with acute stroke. Quantification of all light and heavy cICAT-labelled peptide ion pairs was obtained using MASCOT Distiller combined with a proprietary software. Peptides displaying differences were selected for identification by MS. These preliminary results show the promise of our approach to identify potential biomarkers.

  16. HaloTag technology for specific and covalent labeling of fusion proteins.

    PubMed

    Benink, Hélène A; Urh, Marjeta

    2015-01-01

    Appending proteins of interest to fluorescent protein tags such as GFP has revolutionized how proteins are studied in the cellular environment. Over the last few decades many varieties of fluorescent proteins have been generated, each bringing new capability to research. However, taking full advantage of standard fluorescent proteins with advanced and differential features requires significant effort on the part of the researcher. This approach necessitates that many genetic fusions be generated and confirmed to function properly in cells with the same protein of interest. To lessen this burden, a newer category of protein fusion tags termed "self-labeling protein tags" has been developed. This approach utilizes a single protein tag, the function of which can be altered by attaching various chemical moieties (fluorescent labels, affinity handles, etc.). In this way a single genetically encoded protein fusion can easily be given functional diversity and adaptability as supplied by synthetic chemistry. Here we present protein labeling methods using HaloTag technology; comprised of HaloTag protein and the collection of small molecules designed to bind it specifically and provide it with varied functionalities. For imaging purposes these small molecules, termed HaloTag ligands, contain distinct fluorophores. Due to covalent and rapid binding between HaloTag protein and its ligands, labeling is permanent and efficient. Many of these ligands have been optimized for permeability across cellular membranes allowing for live cell labeling and imaging analysis. Nonpermeable ligands have also been developed for specific labeling of surface proteins. Overall, HaloTag is a versatile technology that empowers the end user to label a protein of interest with the choice of different fluorophores while alleviating the need for generation of multiple genetic fusions.

  17. [Expression of Dengue virus type 2 nonstructural protein 3 and isolation of host proteins interacting with it].

    PubMed

    Weng, Daihui; Lei, Yingfeng; Dong, Yangchao; Han, Peijun; Ye, Chuantao; Yang, Jing; Wang, Yuan; Yin, Wen

    2015-12-01

    To construct the plasmid expressing the fusion protein of Dengue virus type 2 (DENV2) nonstructural protein 3 (NS3) with affinity tag, and isolate the cellular proteins interacting with NS3 protein using tandem affinity purification (TAP) assay. Primers for amplifying NS3 gene were designed according to the sequence of DENV2 genome and chemically synthesized. The NS3 fragments, after amplified by PCR with DENV2 cDNA as template, were digested and cloned into the mammalian eukaryotic expression vector pCI-SF with the tandem affinity tag (FLAG-StrepII). The recombinant pCI-NS3-SF was transiently transformed by Lipofectamine(TM) 2000 into HEK293T cells, and the expression of the fusion protein was confirmed by Western blotting. Cellular proteins that interacted with NS3 were isolated and purified by TAP assay. The eukaryotic expression vector expressing NS3 protein was successfully constructed. The host proteins interacting with NS3 protein were isolated by TAP system. TAP is an efficient method to isolate the cellular proteins interacting with DENV2 NS3.

  18. Use of a tandem affinity purification assay to detect interactions between West Nile and dengue viral proteins and proteins of the mosquito vector

    PubMed Central

    Colpitts, Tonya M.; Cox, Jonathan; Nguyen, Annie; Feitosa, Fabiana; Krishnan, Manoj N.; Fikrig, Erol

    2011-01-01

    West Nile and dengue viruses are (re)emerging mosquito-borne flaviviruses that cause significant morbidity and mortality in man. The identification of mosquito proteins that associate with flaviviruses may provide novel targets to inhibit infection of the vector or block transmission to humans. Here, a tandem affinity purification (TAP) assay was used to identify 18 mosquito proteins that interact with dengue and West Nile capsid, envelope, NS2A or NS2B proteins. We further analyzed the interaction of mosquito cadherin with dengue and West Nile virus envelope protein using co-immunoprecipitation and immunofluorescence. Blocking the function of select mosquito factors, including actin, myosin, PI3-kinase and myosin light chain kinase, reduced both dengue and West Nile virus infection in mosquito cells. We show that the TAP method may be used in insect cells to accurately identify flaviviral-host protein interactions. Our data also provides several targets for interrupting flavivirus infection in mosquito vectors. PMID:21700306

  19. Supermacroporous cryogel matrix for integrated protein isolation. Immobilized metal affinity chromatographic purification of urokinase from cell culture broth of a human kidney cell line.

    PubMed

    Kumar, Ashok; Bansal, Vibha; Andersson, Jonatan; Roychoudhury, Pradip K; Mattiasson, Bo

    2006-01-20

    A new type of supermacroporous, monolithic, cryogel affinity adsorbent was developed, allowing the specific capture of urokinase from conditioned media of human fibrosarcoma cell line HT1080. The affinity adsorbent was designed with the objective of using it as a capture column in an integrated perfusion/protein separation bioreactor setup. A comparative study between the utility of this novel cryogel based matrix and the conventional Sepharose based affinity matrix for the continuous capture of urokinase in an integrated bioreactor system was performed. Cu(II)-ion was coupled to epoxy activated polyacrylamide cryogel and Sepharose using iminodiacetic acid (IDA) as the chelating ligand. About 27-fold purification of urokinase from the conditioned culture media was achieved with Cu(II)-IDA-polyacrylamide cryogel column giving specific activity of about 814 Plough units (PU)/mg protein and enzyme yields of about 80%. High yields (95%) were obtained with Cu(II)-IDA-Sepharose column by virtue of its high binding capacity. However, the adsorbent showed lower selectivity as compared to cryogel matrix giving specific activity of 161 PU/mg protein and purification factor of 5.3. The high porosity, selectivity and reasonably good binding capacity of Cu(II)-IDA-polyacrylamide cryogel column make it a promising option for use as a protein capture column in integrated perfusion/separation processes. The urokinase peak pool from Cu(II)-IDA-polyacrylamide cryogel column could be further resolved into separate fractions for high and low molecular weight forms of urokinase by gel filtration chromatography on Sephacryl S-200. The selectivity of the cryogel based IMAC matrix for urokinase was found to be higher as compared to that of Cu(II)-IDA-Sepharose column.

  20. Affinity Purification of Tumor Necrosis Factor-α Expressed in Raji Cells by Produced scFv Antibody Coupled CNBr-Activated Sepharose

    PubMed Central

    Abdolalizadeh, Jalal; Majidi Zolbanin, Jafar; Nouri, Mohammad; Baradaran, Behzad; Movassaghpour, AliAkbar; Farajnia, Safar; Omidi, Yadollah

    2013-01-01

    Purpose: Recombinant tumor necrosis factor-alpha (TNF-α) has been utilized as an antineoplastic agent for the treatment of patients with melanoma and sarcoma. It targets tumor cell antigens by impressing tumor-associated vessels. Protein purification with affinity chromatography has been widely used in the downstream processing of pharmaceutical-grade proteins. Methods:In this study, we examined the potential of our produced anti-TNF-α scFv fragments for purification of TNF-α produced by Raji cells. The Raji cells were induced by lipopolysaccharides (LPS) to express TNF-α. Western blotting and Fluorescence-activated cell sorting (FACS) flow cytometry analyses were used to evaluate the TNF-α expression. The anti-TNF-α scFv selected from antibody phage display library was coupled to CNBr-activated sepharose 4B beads used for affinity purification of expressed TNF-α and the purity of the protein was assessed by SDS-PAGE. Results: Western blot and FACS flow cytometry analyses showed the successful expression of TNF-α with Raji cells. SDS-PAGE analysis showed the performance of scFv for purification of TNF-α protein with purity over 95%. Conclusion: These findings confirm not only the potential of the produced scFv antibody fragments but also this highly pure recombinant TNF-α protein can be applied for various in vitro and in vivo applications. PMID:24312807

  1. Single-step affinity purification of enzyme biotherapeutics: a platform methodology for accelerated process development.

    PubMed

    Brower, Kevin P; Ryakala, Venkat K; Bird, Ryan; Godawat, Rahul; Riske, Frank J; Konstantinov, Konstantin; Warikoo, Veena; Gamble, Jean

    2014-01-01

    Downstream sample purification for quality attribute analysis is a significant bottleneck in process development for non-antibody biologics. Multi-step chromatography process train purifications are typically required prior to many critical analytical tests. This prerequisite leads to limited throughput, long lead times to obtain purified product, and significant resource requirements. In this work, immunoaffinity purification technology has been leveraged to achieve single-step affinity purification of two different enzyme biotherapeutics (Fabrazyme® [agalsidase beta] and Enzyme 2) with polyclonal and monoclonal antibodies, respectively, as ligands. Target molecules were rapidly isolated from cell culture harvest in sufficient purity to enable analysis of critical quality attributes (CQAs). Most importantly, this is the first study that demonstrates the application of predictive analytics techniques to predict critical quality attributes of a commercial biologic. The data obtained using the affinity columns were used to generate appropriate models to predict quality attributes that would be obtained after traditional multi-step purification trains. These models empower process development decision-making with drug substance-equivalent product quality information without generation of actual drug substance. Optimization was performed to ensure maximum target recovery and minimal target protein degradation. The methodologies developed for Fabrazyme were successfully reapplied for Enzyme 2, indicating platform opportunities. The impact of the technology is significant, including reductions in time and personnel requirements, rapid product purification, and substantially increased throughput. Applications are discussed, including upstream and downstream process development support to achieve the principles of Quality by Design (QbD) as well as integration with bioprocesses as a process analytical technology (PAT). © 2014 American Institute of Chemical Engineers.

  2. Parallel Exploration of Interaction Space by BioID and Affinity Purification Coupled to Mass Spectrometry.

    PubMed

    Hesketh, Geoffrey G; Youn, Ji-Young; Samavarchi-Tehrani, Payman; Raught, Brian; Gingras, Anne-Claude

    2017-01-01

    Complete understanding of cellular function requires knowledge of the composition and dynamics of protein interaction networks, the importance of which spans all molecular cell biology fields. Mass spectrometry-based proteomics approaches are instrumental in this process, with affinity purification coupled to mass spectrometry (AP-MS) now widely used for defining interaction landscapes. Traditional AP-MS methods are well suited to providing information regarding the temporal aspects of soluble protein-protein interactions, but the requirement to maintain protein-protein interactions during cell lysis and AP means that both weak-affinity interactions and spatial information is lost. A more recently developed method called BioID employs the expression of bait proteins fused to a nonspecific biotin ligase, BirA*, that induces in vivo biotinylation of proximal proteins. Coupling this method to biotin affinity enrichment and mass spectrometry negates many of the solubility and interaction strength issues inherent in traditional AP-MS methods, and provides unparalleled spatial context for protein interactions. Here we describe the parallel implementation of both BioID and FLAG AP-MS allowing simultaneous exploration of both spatial and temporal aspects of protein interaction networks.

  3. Fibulin-1 purification from human plasma using affinity chromatography on Factor H-Sepharose

    PubMed Central

    DiScipio, Richard G.; Liddington, Robert C.; Schraufstatter, Ingrid U.

    2016-01-01

    A method is reported to purify Fibulin-1 from human plasma resulting in a 36% recovery. The steps involve removal of the cryoglobulin and the vitamin K dependent proteins followed by polyethylene glycol and ammonium sulfate precipitations, DEAE-Sephadex column chromatography and finally Factor H-Sepharose affinity purification. The procedure is designed to be integrated into an overall scheme for the isolation of over 30 plasma proteins from a single batch of human plasma. Results from mass spectroscopy, SDS-PAGE, and Western blotting indicate that human plasma Fibulin-1 is a single chain of the largest isotype. Functional binding assays demonstrated calcium ion dependent interaction of Fibulin-1 for fibrinogen, fibronectin, and Factor H. The procedure described is the first to our knowledge that enables a large scale purification of Fibulin-1 from human plasma. PMID:26826315

  4. Dissociation and purification of the endogenous membrane-bound Vo complex from Pichia pastoris.

    PubMed

    Li, Sumei; Hong, Tao; Wang, Kun; Lu, Yinghong; Zhou, Min

    2017-10-01

    Most proteins occur and function in complexes rather than as isolated entities in membranes. In most cases macromolecules with multiple subunits are purified from endogenous sources. In this study, an endogenous membrane-protein complex was obtained from Pichia pastoris, which can be grown at high densities to significantly improve the membrane protein yield. We successfully isolated the membrane-bound Vo complex of V-ATPase from P. pastoris using a fusion FLAG tag attached to the C-terminus of subunit a to generate the vph-tag strain, which was used for dissociation and purification. After FLAG affinity and size exclusion chromatography purification, the production quantity and purity of the membrane-bound Vo complex was 20 μg l -1 and >98%, respectively. The subunits of the endogenous membrane-bound Vo complex observed in P. pastoris were similar to those obtained from S. cerevisiae, as demonstrated by liquid chromatography-tandem mass spectrometry (LC-MS-MS). Therefore, successful dissociation and purification of the membrane-bound Vo complex at a high purity and sufficient quantity was achieved via a rapid and simple procedure that can be used to obtain the endogenous membrane-protein complexes from P. pastoris. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology.

    PubMed

    Sudhir, Putty-Reddy; Chen, Chung-Hsuan

    2016-03-22

    A protein complex consists of two or more proteins that are linked together through protein-protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples.

  6. Identification of cellular MMP substrates using quantitative proteomics: isotope-coded affinity tags (ICAT) and isobaric tags for relative and absolute quantification (iTRAQ).

    PubMed

    Butler, Georgina S; Dean, Richard A; Morrison, Charlotte J; Overall, Christopher M

    2010-01-01

    Identification of protease substrates is essential to understand the functional consequences of normal proteolytic processing and dysregulated proteolysis in disease. Quantitative proteomics and mass spectrometry can be used to identify protease substrates in the cellular context. Here we describe the use of two protein labeling techniques, Isotope-Coded Affinity Tags (ICAT and Isobaric Tags for Relative and Absolute Quantification (iTRAQ), which we have used successfully to identify novel matrix metalloproteinase (MMP) substrates in cell culture systems (1-4). ICAT and iTRAQ can label proteins and protease cleavage products of secreted proteins, protein domains shed from the cell membrane or pericellular matrix of protease-transfected cells that have accumulated in conditioned medium, or cell surface proteins in membrane preparations; isotopically distinct labels are used for control cells. Tryptic digestion and tandem mass spectrometry of the generated fragments enable sequencing of differentially labeled but otherwise identical pooled peptides. The isotopic tag, which is unique for each label, identifies the peptides originating from each sample, for instance, protease-transfected or control cells, and comparison of the peak areas enables relative quantification of the peptide in each sample. Thus proteins present in altered amounts between protease-expressing and null cells are implicated as protease substrates and can be further validated as such.

  7. Targeted expression, purification, and cleavage of fusion proteins from inclusion bodies in Escherichia coli.

    PubMed

    Hwang, Peter M; Pan, Jonathan S; Sykes, Brian D

    2014-01-21

    Today, proteins are typically overexpressed using solubility-enhancing fusion tags that allow for affinity chromatographic purification and subsequent removal by site-specific protease cleavage. In this review, we present an alternative approach to protein production using fusion partners specifically designed to accumulate in insoluble inclusion bodies. The strategy is appropriate for the mass production of short peptides, intrinsically disordered proteins, and proteins that can be efficiently refolded in vitro. There are many fusion protein systems now available for insoluble expression: TrpLE, ketosteroid isomerase, PurF, and PagP, for example. The ideal fusion partner is effective at directing a wide variety of target proteins into inclusion bodies, accumulates in large quantities in a highly pure form, and is readily solubilized and purified in commonly used denaturants. Fusion partner removal under denaturing conditions is biochemically challenging, requiring harsh conditions (e.g., cyanogen bromide in 70% formic acid) that can result in unwanted protein modifications. Recent advances in metal ion-catalyzed peptide bond cleavage allow for more mild conditions, and some methods involving nickel or palladium will likely soon appear in more biological applications. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. Automated large-scale purification of a G protein-coupled receptor for neurotensin.

    PubMed

    White, Jim F; Trinh, Loc B; Shiloach, Joseph; Grisshammer, Reinhard

    2004-04-30

    Structure determination of integral membrane proteins requires milligram amounts of purified, functional protein on a regular basis. Here, we describe a protocol for the purification of a G protein-coupled neurotensin receptor fusion protein at the 3-mg or 10-mg level using immobilized metal affinity chromatography and a neurotensin column in a fully automated mode. Fermentation at a 200-l scale of Escherichia coli expressing functional receptors provides the material needed to feed into the purification routine. Constructs with tobacco etch virus protease recognition sites at either end of the receptor allow the isolation of neurotensin receptor devoid of its fusion partners. The presented expression and purification procedures are simple and robust, and provide the basis for crystallization experiments of receptors on a routine basis.

  9. Investigation of differences in the binding affinities of two analogous ligands for untagged and tagged p38 kinase using thermodynamic integration MD simulation.

    PubMed

    Sun, Ying-Chieh; Hsu, Wen-Chi; Hsu, Chia-Jen; Chang, Chia-Ming; Cheng, Kai-Hsiang

    2015-11-01

    Thermodynamic integration (TI) molecular dynamics (MD) simulations for the binding of a pair of a reference ("ref") ligand and an analogous ("analog") ligand to either tagged (with six extra residues at the N-terminus) or untagged p38 kinase proteins were carried out in order to probe how the binding affinity is influenced by the presence or absence of the peptide tag in p38 kinase. This possible effect of protein length on the binding affinity of a ligand-which is seldom addressed in the literature-is important because, even when two labs claim to have performed experiments with the same protein, they may actually have studied variants of the same protein with different lengths because they applied different protein expression conditions/procedures. Thus, if we wanted to compare ligand binding affinities measured in the two labs, it would be necessary to account for any variation in ligand binding affinity with protein length. The pair of ligand-p38 kinase complexes examined in this work (pdb codes: 3d7z and 3lhj, respectively) were ideal for investigating this effect. The experimentally determined binding energy for the ref ligand with the untagged p38 kinase was -10.9 kcal mol(-1), while that for the analog ligand with the tagged p38 kinase was -11.9 kcal mol(-1). The present TI-MD simulation of the mutation of the ref ligand into the analog ligand while the ligand is bound to the untagged p38 kinase predicted that the binding affinity of the analog ligand is 2.0 kcal mol(-1) greater than that of the ref ligand. A similar simulation also indicated that the same was true for ligand binding to the tagged protein, but in this case the binding affinity for the analog ligand is 2.5 kcal mol(-1) larger than that for the ref ligand. These results therefore suggest that the presence of the peptide tag on p38 kinase increased the difference in the binding energies of the ligands by a small amount of 0.5 kcal mol(-1). This result supports the assumption that the

  10. Identification of Plant Ice-binding Proteins Through Assessment of Ice-recrystallization Inhibition and Isolation Using Ice-affinity Purification.

    PubMed

    Bredow, Melissa; Tomalty, Heather E; Walker, Virginia K

    2017-05-05

    Ice-binding proteins (IBPs) belong to a family of stress-induced proteins that are synthesized by certain organisms exposed to subzero temperatures. In plants, freeze damage occurs when extracellular ice crystals grow, resulting in the rupture of plasma membranes and possible cell death. Adsorption of IBPs to ice crystals restricts further growth by a process known as ice-recrystallization inhibition (IRI), thereby reducing cellular damage. IBPs also demonstrate the ability to depress the freezing point of a solution below the equilibrium melting point, a property known as thermal hysteresis (TH) activity. These protective properties have raised interest in the identification of novel IBPs due to their potential use in industrial, medical and agricultural applications. This paper describes the identification of plant IBPs through 1) the induction and extraction of IBPs in plant tissue, 2) the screening of extracts for IRI activity, and 3) the isolation and purification of IBPs. Following the induction of IBPs by low temperature exposure, extracts are tested for IRI activity using a 'splat assay', which allows the observation of ice crystal growth using a standard light microscope. This assay requires a low protein concentration and generates results that are quickly obtained and easily interpreted, providing an initial screen for ice binding activity. IBPs can then be isolated from contaminating proteins by utilizing the property of IBPs to adsorb to ice, through a technique called 'ice-affinity purification'. Using cell lysates collected from plant extracts, an ice hemisphere can be slowly grown on a brass probe. This incorporates IBPs into the crystalline structure of the polycrystalline ice. Requiring no a priori biochemical or structural knowledge of the IBP, this method allows for recovery of active protein. Ice-purified protein fractions can be used for downstream applications including the identification of peptide sequences by mass spectrometry and the

  11. Purification of proteins from baculovirus-infected insect cells.

    PubMed

    O'Shaughnessy, Luke; Doyle, Sean

    2011-01-01

    Expression of recombinant proteins in the baculovirus/insect cell expression system is employed because it enables post-translational protein modification and high yields of recombinant protein. The system is capable of facilitating the functional expression of many proteins - either secreted or intracellularly located within infected insect cells. Strategies for the isolation and extraction of soluble proteins are presented in this chapter and involve selective cell lysis, precipitation and chromatography. Protein insolubility, following recombinant expression in insect cells, can occur. However, using the methods described herein, it is possible to extract and purify insoluble protein using affinity, ion-exchange and gel filtration chromatography. Indeed, protein insolubility often aids protein purification.

  12. Self-assembly of hexahistidine-tagged tobacco etch virus capsid protein into microfilaments that induce IgG2-specific response against a soluble porcine reproductive and respiratory syndrome virus chimeric protein.

    PubMed

    Manuel-Cabrera, Carlos Alberto; Vallejo-Cardona, Alba Adriana; Padilla-Camberos, Eduardo; Hernández-Gutiérrez, Rodolfo; Herrera-Rodríguez, Sara Elisa; Gutiérrez-Ortega, Abel

    2016-11-29

    Assembly of recombinant capsid proteins into virus-like particles (VLPs) still represents an interesting challenge in virus-based nanotechnologies. The structure of VLPs has gained importance for the development and design of new adjuvants and antigen carriers. The potential of Tobacco etch virus capsid protein (TEV CP) as adjuvant has not been evaluated to date. Two constructs for TEV CP expression in Escherichia coli were generated: a wild-type version (TEV-CP) and a C-terminal hexahistidine (His)-tagged version (His-TEV-CP). Although both versions were expressed in the soluble fraction of E. coli lysates, only His-TEV-CP self-assembled into micrometric flexuous filamentous VLPs. In addition, the His-tag enabled high yields and facilitated purification of TEV VLPs. These TEV VLPs elicited broader IgG2-specific antibody response against a novel porcine reproductive and respiratory syndrome virus (PRRSV) protein when compared to the potent IgG1 response induced by the protein alone. His-TEV CP was purified by immobilized metal affinity chromatography and assembled into VLPs, some of them reaching 2-μm length. TEV VLPs administered along with PRRSV chimeric protein changed the IgG2/IgG1 ratio against the chimeric protein, suggesting that TEV CP can modulate the immune response against a soluble antigen.

  13. Over-Expression, Purification and Crystallization of Human Dihydrolipoamide Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Hong, Y. S.; Ciszak, Ewa; Patel, Mulchand

    2000-01-01

    Dehydrolipoamide dehydrogenase (E3; dihydrolipoan-tide:NAD+ oxidoreductase, EC 1.8.1.4) is a common catalytic component found in pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and branched-chain cc-keto acid dehydrogenase complex. E3 is also a component (referred to as L protein) of the glycine cleavage system in bacterial metabolism (2). Active E3 forms a homodimer with four distinctive subdomain structures (FAD binding, NAD+ binding, central and interface domains) with non-covalently but tightly bound FAD in the holoenzyme. Deduced amino acids from cloned full-length human E3 gene showed a total of 509 amino acids with a leader sequence (N-terminal 35 amino acids) that is excised (mature form) during transportation of expressed E3 into mitochondria membrane. So far, three-dimensional structure of human E3 has not been reported. Our effort to achieve the elucidation of the X-ray crystal structure of human E3 will be presented. Recombinant pPROEX-1 expression vector (from GIBCO BRL Life Technologies) having the human E3 gene without leader sequence was constructed by Polymerase Chain Reaction (PCR) and subsequent ligation, and cloned in E.coli XL1-Blue by transformation. Since pPROEX-1 vector has an internal His-tag (six histidine peptide) located at the upstream region of a multicloning site, one-step affinity purification of E3 using nickelnitriloacetic acid (Ni-NTA) agarose resin, which has a strong affinity to His-tag, was feasible. Also a seven-amino-acid spacer peptide and a recombinant tobacco etch virus protease recognition site (seven amino acids peptide) found between His-tag and first amino acid of expressed E3 facilitated the cleavage of His-tag from E3 after the affinity purification. By IPTG induction, ca. 15 mg of human E3 (mature form) was obtained from 1L LB culture with overnight incubation at 25C. Over 98% of purity of E3 from one-step Ni-NTA agarose affinity purification was confirmed by SDS-PAGE analysis. For

  14. Affinity approaches in RNAi-based therapeutics purification.

    PubMed

    Pereira, Patrícia; Queiroz, João A; Figueiras, Ana; Sousa, Fani

    2016-05-15

    The recent investigation on RNA interference (RNAi) related mechanisms and applications led to an increased awareness of the importance of RNA in biology. Nowadays, RNAi-based technology has emerged as a potentially powerful tool for silencing gene expression, being exploited to develop new therapeutics for treating a vast number of human disease conditions, as it is expected that this technology can be translated onto clinical applications in a near future. This approach makes use of a large number of small (namely short interfering RNAs, microRNAs and PIWI-interacting RNAs) and long non-coding RNAs (ncRNAs), which are likely to have a crucial role as the next generation therapeutics. The commercial and biomedical interest in these RNAi-based therapy applications have fostered the need to develop innovative procedures to easily and efficiently purify RNA, aiming to obtain the final product with high purity degree, good quality and biological activity. Recently, affinity chromatography has been applied to ncRNAs purification, in view of the high specificity. Therefore, this article intends to review the biogenesis pathways of regulatory ncRNAs and also to discuss the most significant and recent developments as well as applications of affinity chromatography in the challenging task of purifying ncRNAs. In addition, the importance of affinity chromatography in ncRNAs purification is addressed and prospects for what is forthcoming are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Rapid labeling of intracellular His-tagged proteins in living cells

    PubMed Central

    Lai, Yau-Tsz; Chang, Yuen-Yan; Hu, Ligang; Yang, Ya; Chao, Ailun; Du, Zhi-Yan; Tanner, Julian A.; Chye, Mee-Len; Qian, Chengmin; Ng, Kwan-Ming; Li, Hongyan; Sun, Hongzhe

    2015-01-01

    Small molecule-based fluorescent probes have been used for real-time visualization of live cells and tracking of various cellular events with minimal perturbation on the cells being investigated. Given the wide utility of the (histidine)6-Ni2+-nitrilotriacetate (Ni-NTA) system in protein purification, there is significant interest in fluorescent Ni2+-NTA–based probes. Unfortunately, previous Ni-NTA–based probes suffer from poor membrane permeability and cannot label intracellular proteins. Here, we report the design and synthesis of, to our knowledge, the first membrane-permeable fluorescent probe Ni-NTA-AC via conjugation of NTA with fluorophore and arylazide followed by coordination with Ni2+ ions. The probe, driven by Ni2+-NTA, binds specifically to His-tags genetically fused to proteins and subsequently forms a covalent bond upon photoactivation of the arylazide, leading to a 13-fold fluorescence enhancement. The arylazide is indispensable not only for fluorescence enhancement, but also for strengthening the binding between the probe and proteins. Significantly, the Ni-NTA-AC probe can rapidly enter different types of cells, even plant tissues, to target His-tagged proteins. Using this probe, we visualized the subcellular localization of a DNA repair protein, Xeroderma pigmentosum group A (XPA122), which is known to be mainly enriched in the nucleus. We also demonstrated that the probe can image a genetically engineered His-tagged protein in plant tissues. This study thus offers a new opportunity for in situ visualization of large libraries of His-tagged proteins in various prokaryotic and eukaryotic cells. PMID:25713372

  16. Rapid labeling of intracellular His-tagged proteins in living cells.

    PubMed

    Lai, Yau-Tsz; Chang, Yuen-Yan; Hu, Ligang; Yang, Ya; Chao, Ailun; Du, Zhi-Yan; Tanner, Julian A; Chye, Mee-Len; Qian, Chengmin; Ng, Kwan-Ming; Li, Hongyan; Sun, Hongzhe

    2015-03-10

    Small molecule-based fluorescent probes have been used for real-time visualization of live cells and tracking of various cellular events with minimal perturbation on the cells being investigated. Given the wide utility of the (histidine)6-Ni(2+)-nitrilotriacetate (Ni-NTA) system in protein purification, there is significant interest in fluorescent Ni(2+)-NTA-based probes. Unfortunately, previous Ni-NTA-based probes suffer from poor membrane permeability and cannot label intracellular proteins. Here, we report the design and synthesis of, to our knowledge, the first membrane-permeable fluorescent probe Ni-NTA-AC via conjugation of NTA with fluorophore and arylazide followed by coordination with Ni(2+) ions. The probe, driven by Ni(2+)-NTA, binds specifically to His-tags genetically fused to proteins and subsequently forms a covalent bond upon photoactivation of the arylazide, leading to a 13-fold fluorescence enhancement. The arylazide is indispensable not only for fluorescence enhancement, but also for strengthening the binding between the probe and proteins. Significantly, the Ni-NTA-AC probe can rapidly enter different types of cells, even plant tissues, to target His-tagged proteins. Using this probe, we visualized the subcellular localization of a DNA repair protein, Xeroderma pigmentosum group A (XPA122), which is known to be mainly enriched in the nucleus. We also demonstrated that the probe can image a genetically engineered His-tagged protein in plant tissues. This study thus offers a new opportunity for in situ visualization of large libraries of His-tagged proteins in various prokaryotic and eukaryotic cells.

  17. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion

    NASA Astrophysics Data System (ADS)

    Dong, Jinlan; Bruening, Merlin L.

    2015-07-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO2 nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  18. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion.

    PubMed

    Dong, Jinlan; Bruening, Merlin L

    2015-01-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO₂ nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  19. Simple purification method for a recombinantly expressed native His-tag-free aminopeptidase A from Lactobacillus delbrueckii.

    PubMed

    Stressler, Timo; Tanzer, Coralie; Ewert, Jacob; Claaßen, Wolfgang; Fischer, Lutz

    2017-03-01

    The aminopeptidase A (PepA; EC 3.4.11.7) is an intracellular exopeptidase present in lactic acid bacteria. The PepA cleaves glutamyl/aspartyl residues from the N-terminal end of peptides and can, therefore, be applied for the production of protein hydrolysates with an increased amount of these amino acids, which results in a savory taste (umami). The first PepA from a lactobacilli strain was recombinantly expressed in Escherichia coli in a recently published study and harbored a C-terminal His 6 -tag for easier purification. Due to the fact that a His-tag might influence the properties of an enzyme, a simple purification method for the non-His-tagged PepA was required. Surprisingly, the PepA precipitated at a very low ammonium sulfate concentration of 5%. Unusual for a precipitating step, the purity of PepA was over 95% and the obtained activity yield was 110%. The high purity allows biochemical characterization and kinetic investigation. As a result, the optimum pH (6.0-6.5) and temperature (60-65 °C) were comparable to the His 6 -tag harboring PepA; the K M value was at 0.79 mM slightly lower compared to 1.21 mM, respectively. Since PepA is a homo dodecamer, it has a high molecular mass of approximately 480 kDa. Therefore, a subsequent preparative size-exclusion chromatography (SEC) step seemed promising. The PepA after SEC was purified to homogeneity. In summary, the simple two-step purification method presented can be applied to purify high amounts of PepA that will allow the performance of experiments in the future to crystalize PepA for the first time. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Recombinant Human Erythropoietin with Additional Processable Protein Domains: Purification of Protein Synthesized in Escherichia coli Heterologous Expression System.

    PubMed

    Grunina, T M; Demidenko, A V; Lyaschuk, A M; Poponova, M S; Galushkina, Z M; Soboleva, L A; Cherepushkin, S A; Polyakov, N B; Grumov, D A; Solovyev, A I; Zhukhovitsky, V G; Boksha, I S; Subbotina, M E; Gromov, A V; Lunin, V G; Karyagina, A S

    2017-11-01

    Three variants of human recombinant erythropoietin (rhEPO) with additional N-terminal protein domains were obtained by synthesis in an Escherichia coli heterologous expression system. These domains included (i) maltose-binding protein (MBP), (ii) MBP with six histidine residues (6His) in N-terminal position, (iii) s-tag (15-a.a. oligopeptide derived from bovine pancreatic ribonuclease A) with N-terminal 6His. Both variants of the chimeric protein containing MBP domain were prone to aggregation under nondenaturing conditions, and further purification of EPO after the domain cleavage by enterokinase proved to be impossible. In the case of 6His-s-tag-EPO chimeric protein, the products obtained after cleavage with enterokinase were successfully separated by column chromatography, and rhEPO without additional domains was obtained. Results of MALDI-TOF mass spectrometry showed that after refolding 6His-s-tag-EPO formed a structure similar to that of one of native EPO with two disulfide bonds. Both 6His-s-tag-EPO and rhEPO without additional protein domains purified after proteolysis possessed the same biological activity in vitro in the cell culture.

  1. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology

    PubMed Central

    Sudhir, Putty-Reddy; Chen, Chung-Hsuan

    2016-01-01

    A protein complex consists of two or more proteins that are linked together through protein–protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples. PMID:27011181

  2. Proteins interacting with cloning scars: a source of false positive protein-protein interactions.

    PubMed

    Banks, Charles A S; Boanca, Gina; Lee, Zachary T; Florens, Laurence; Washburn, Michael P

    2015-02-23

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine "cloning scar" present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected.

  3. Proteins interacting with cloning scars: a source of false positive protein-protein interactions

    PubMed Central

    Banks, Charles A. S.; Boanca, Gina; Lee, Zachary T.; Florens, Laurence; Washburn, Michael P.

    2015-01-01

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine “cloning scar” present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected. PMID:25704442

  4. Fusion of a Novel Genetically Engineered Chitosan Affinity Protein and Green Fluorescent Protein for Specific Detection of Chitosan In Vitro and In Situ

    PubMed Central

    Nampally, Malathi; Moerschbacher, Bruno Maria

    2012-01-01

    Chitin is the second most abundant polysaccharide, present, e.g., in insect and arthropod exoskeletons and fungal cell walls. In some species or under specific conditions, chitin appears to be enzymatically de-N-acetylated to chitosan—e.g., when pathogenic fungi invade their host tissues. Here, the deacetylation of chitin is assumed to represent a pathogenicity mechanism protecting the fungus from the host's chitin-driven immune response. While highly specific chitin binding lectins are well known and easily available, this is not the case for chitosan-specific probes. This is partly due to the poor antigenicity of chitosan so that producing high-affinity, specific antibodies is difficult. Also, lectins with specificity to chitosan have been described but are not commercially available, and our attempts to reproduce the findings were not successful. We have, therefore, generated a fusion protein between a chitosanase inactivated by site-directed mutagenesis, the green fluorescent protein (GFP), and StrepII, as well as His6 tags for purification and detection. The recombinant chitosan affinity protein (CAP) expressed in Escherichia coli was shown to specifically bind to chitosan, but not to chitin, and the affinity increased with decreasing degree of acetylation. In vitro, CAP detection was possible either based on GFP fluorescence or using Strep-Tactin conjugates or anti-His5 antibodies. CAP fluorescence microscopy revealed binding to the chitosan exposing endophytic infection structures of the wheat stem rust fungus, but not the chitin exposing ectophytic infection structures, verifying its suitability for in situ chitosan staining. PMID:22367086

  5. Immuno-affinity Capture Followed by TMPP N-Terminus Tagging to Study Catabolism of Therapeutic Proteins.

    PubMed

    Kullolli, Majlinda; Rock, Dan A; Ma, Ji

    2017-02-03

    Characterization of in vitro and in vivo catabolism of therapeutic proteins has increasingly become an integral part of discovery and development process for novel proteins. Unambiguous and efficient identification of catabolites can not only facilitate accurate understanding of pharmacokinetic profiles of drug candidates, but also enables follow up protein engineering to generate more catabolically stable molecules with improved properties (pharmacokinetics and pharmacodynamics). Immunoaffinity capture (IC) followed by top-down intact protein analysis using either matrix-assisted laser desorption/ionization or electrospray ionization mass spectrometry analysis have been the primary methods of choice for catabolite identification. However, the sensitivity and efficiency of these methods is not always sufficient for characterization of novel proteins from complex biomatrices such as plasma or serum. In this study a novel bottom-up targeted protein workflow was optimized for analysis of proteolytic degradation of therapeutic proteins. Selective and sensitive tagging of the alpha-amine at the N-terminus of proteins of interest was performed by immunoaffinity capture of therapeutic protein and its catabolites followed by on-bead succinimidyloxycarbonylmethyl tri-(2,4,6-trimethoxyphenyl N-terminus (TMPP-NTT) tagging. The positively charged hydrophobic TMPP tag facilitates unambiguous sequence identification of all N-terminus peptides from complex tryptic digestion samples via data dependent liquid chromatgraphy-tandem mass spectroscopy. Utility of the workflow was illustrated by definitive analysis of in vitro catabolic profile of neurotensin human Fc (NTs-huFc) protein in mouse serum. The results from this study demonstrated that the IC-TMPP-NTT workflow is a simple and efficient method for catabolite formation in therapeutic proteins.

  6. Evaluation of IDA-PEVA hollow fiber membrane metal ion affinity chromatography for purification of a histidine-tagged human proinsulin.

    PubMed

    de Aquino, Luciana Cristina Lins; de Sousa, Heloisa Ribeiro Tunes; Miranda, Everson Alves; Vilela, Luciano; Bueno, Sônia Maria Alves

    2006-04-13

    Inabilities to process particulate material and to allow the use of high flow rates are limitations of conventional chromatography. Membranes have been suggested as matrix for affinity separation due to advantages such as allowing high flow rates and low-pressure drops. This work evaluated the feasibility of using an iminodiacetic acid linked poly(ethylenevinyl alcohol) membrane in the immobilized metal ion affinity chromatography (IMAC) purification of a human proinsulin(His)(6) of an industrial insulin production process. The screening of metal ions showed Ni(2+) as metal with higher selectivity and capacity among the Cu(2+), Ni(2+), Zn(2+) and Co(2+). The membrane showed to be equivalent to conventional chelating beads in terms of selectivity and had a lower capacity (3.68 mg/g versus 12.26 mg/g). The dynamic adsorption capacity for human proinsulin(His)(6) was unaffected by the mode of operation (dead-end and cross-flow filtration).

  7. Affinity purification of angiotensin type 2 receptors from N1E-115 cells: evidence for agonist-induced formation of multimeric complexes.

    PubMed

    Siemens, I R; Yee, D K; Reagan, L P; Fluharty, S J

    1994-01-01

    The murine neuroblastoma N1E-115 cell line possesses type 1 and type 2 angiotensin II (AngII) receptor subtypes. In vitro differentiation of these cells substantially increases the density of the AT2-receptor subtype, whereas the density of the AT1 receptors remains unchanged. In the present study, we report that the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) selectively solubilized AT2 receptors from N1E-115 cell membranes and that these receptors could be purified further to near homogeneity by affinity chromatography. More specifically, the presence of an agonist (AngII) during affinity purification of AT2 receptors resulted in the elution of high (110-kDa) and low (66-kDa) molecular mass proteins as determined by gel electrophoresis under nonreducing conditions. In contrast, when the nonselective antagonist Sar1,Ile8-AngII was used during purification, only the lower 66-kDa protein was observed. Affinity purification in the presence of the peptide and nonpeptide AT2-receptor antagonists CGP42112A and PD123319 also resulted in elution of the same 66-kDa protein, but unlike that in the presence of Sar1,Ile8-AngII, some of the high molecular weight site was observed as well. On the other hand, Losartan, an AT1-receptor antagonist, was completely ineffective in eluting any AngII receptors from the affinity column, further confirming their AT2 identity. After agonist elution, the 110-kDa band dissociated into two low molecular mass bands of 66 kDa and 54 kDa when sodium dodecyl sulfate-gel electrophoresis was run under reducing conditions.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Isolation of mitochondria from Saccharomyces cerevisiae using magnetic bead affinity purification

    PubMed Central

    Liao, Pin-Chao; Boldogh, Istvan R.; Siegmund, Stephanie E.

    2018-01-01

    Isolated mitochondria are widely used to study the function of the organelle. Typically, mitochondria are prepared using differential centrifugation alone or in conjunction with density gradient ultracentrifugation. However, mitochondria isolated using differential centrifugation contain membrane or organelle contaminants, and further purification of crude mitochondria by density gradient ultracentrifugation requires large amounts of starting material, and is time-consuming. Mitochondria have also been isolated by irreversible binding to antibody-coated magnetic beads. We developed a method to prepare mitochondria from budding yeast that overcomes many of the limitations of other methods. Mitochondria are tagged by insertion of 6 histidines (6xHis) into the TOM70 (Translocase of outer membrane 70) gene at its chromosomal locus, isolated using Ni-NTA (nickel (II) nitrilotriacetic acid) paramagnetic beads and released from the magnetic beads by washing with imidazole. Mitochondria prepared using this method contain fewer contaminants, and are similar in ultrastructure as well as protein import and cytochrome c oxidase complex activity compared to mitochondria isolated by differential centrifugation. Moreover, this isolation method is amenable to small samples, faster than purification by differential and density gradient centrifugation, and more cost-effective than purification using antibody-coated magnetic beads. Importantly, this method can be applied to any cell type where the genetic modification can be introduced by CRISPR or other methods. PMID:29698455

  9. A non-chromatographic protein purification strategy using Src 3 homology domains as generalized capture domains.

    PubMed

    Kim, Heejae; Chen, Wilfred

    2016-09-20

    Protein purification using inverse phase transition of elastin-like polypeptide (ELP) domains is a useful alternative to chromatography. Genetic fusions of ELP domains to various proteins have the ability to reversibly transition between soluble monomers and micron-sized aggregates and this has been used to selectively purify many ELP fusions. Affinity domains can enhance this technology by using specific protein binding domains to enable ELP mediated affinity capture (EMAC) of proteins of interest (POI) that have been fused to corresponding affinity ligands. In this paper, we highlight the use of Src homology 3 (SH3) domains and corresponding peptide ligands in EMAC that have differential binding affinities towards SH3 for efficient capture and elution of proteins. Furthermore, differences between capture and elution of a monomeric and a multimeric protein were also studied. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Use of T-2 toxin-immobilized amine-activated beads as an efficient affinity purification matrix for the isolation of specific IgY.

    PubMed

    Edupuganti, Soujanya Ratna; Edupuganti, Om Prakash; O'Kennedy, Richard; Defrancq, Eric; Boullanger, Stéphanie

    2013-04-01

    An affinity purification method that isolates T-2 toxin-specific IgY utilizing a T-2-toxin-immobilized column was developed. The T-2 toxin was covalently coupled via a carbonyldiimidazole-activated hydroxyl functional group to amine-activated sepharose beads. The affinity-purified IgY was characterized by gel electrophoresis, fast protein liquid chromatography, enzyme-linked immunosorbant assay, surface plasmon resonance and mass spectrometry. A competitive inhibition ELISA (CI-ELISA) was performed using affinity-purified IgY with a T-2 toxin detection sensitivity of 30 ng/mL, which falls within the maximum permissible limit of 100 ng/mL. The cross reactivity of IgY towards deoxynivalenol, zearalenone, fumonisin B1 and HT-2 was significantly reduced after affinity purification. A surface plasmon resonance (SPR)-based inhibition assay was also applied for quantitative determination of T-2 toxin in spiked wheat samples. The results obtained indicate the feasibility of utilizing this IgY-based assay for the detection of T-2 toxin in food samples.

  11. RNase One Gene Isolation, Expression, and Affinity Purification Models Research Experimental Progression and Culminates with Guided Inquiry-Based Experiments

    ERIC Educational Resources Information Center

    Bailey, Cheryl P.

    2009-01-01

    This new biochemistry laboratory course moves through a progression of experiments that generates a platform for guided inquiry-based experiments. RNase One gene is isolated from prokaryotic genomic DNA, expressed as a tagged protein, affinity purified, and tested for activity and substrate specificity. Student pairs present detailed explanations…

  12. Purification of L-( sup 3 H) Nicotine eliminates low affinity binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romm, E.; Marks, M.J.; Collins, A.C.

    1990-01-01

    Some studies of L-({sup 3}H) nicotine binding to rodent and human brain tissue have detected two binding sites as evidenced by nonlinear Scatchard plots. Evidence presented here indicated that the low affinity binding site is not stereospecific, is not inhibited by low concentrations of cholinergic agonists and is probably due to breakdown products of nicotine since purification of the L-({sup 3}H)nicotine eliminates the low affinity site.

  13. A dual affinity-tag strategy for the expression and purification of human linker histone H1.4 in Escherichia coli.

    PubMed

    Ryan, Daniel P; Tremethick, David J

    2016-04-01

    Linker histones are an abundant and critical component of the eukaryotic chromatin landscape. They play key roles in regulating the higher order structure of chromatin and many genetic processes. Higher eukaryotes possess a number of different linker histone subtypes and new data are consistently emerging that indicate these subtypes are functionally distinct. We were interested in studying one of the most abundant human linker histone subtypes, H1.4. We have produced recombinant full-length H1.4 in Escherichia coli. An N-terminal Glutathione-S-Transferase tag was used to promote soluble expression and was combined with a C-terminal hexahistidine tag to facilitate a simple non-denaturing two-step affinity chromatography procedure that results in highly pure full-length H1.4. The purified H1.4 was shown to be functional via in vitro chromatin assembly experiments and remains active after extended storage at -80 °C. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. On-line casein micelle disruption for downstream purification of recombinant human myelin basic protein produced in the milk of transgenic cows.

    PubMed

    Al-Ghobashy, Medhat A; Williams, Martin A K; Brophy, Brigid; Laible, Götz; Harding, David R K

    2009-06-01

    Downstream purification of a model recombinant protein (human myelin basic protein) from milk of transgenic cows is described. The recombinant protein was expressed as a His tagged fusion protein in the milk of transgenic cows and was found associated with the casein micellar phase. While difficulties in obtaining good recoveries were found when employing conventional micelle disruption procedures, direct capture using the cation exchanger SP Sepharose Big Beads was found successful in the extraction of the recombinant protein. Early breakthrough suggested a slow release of the recombinant protein from the micelles and dictated micelle disruption in order to obtain good yields. A new approach for deconstruction of the calcium core of the casein micelles, employing the interaction between the micellar calcium and the active sites of the cation exchanger resin was developed. Milk samples were loaded to the column in aliquots with a column washing step after each aliquot. This sequential loading approach successfully liberated the recombinant protein from the micelles and was found superior to the conventional sample loading approach. It increased the recovery by more than 25%, reduced fouling due to milk components and improved the column hydrodynamic properties as compared to the conventional sample loading approach. Hardware and software modifications to the chromatography system were necessary in order to keep the whole process automated. A second purification step using a Ni2+ affinity column was used to isolate the recombinant protein at purity more than 90% and a recovery percentage of 78%.

  15. A fluorogenic probe for SNAP-tagged plasma membrane proteins based on the solvatochromic molecule Nile Red.

    PubMed

    Prifti, Efthymia; Reymond, Luc; Umebayashi, Miwa; Hovius, Ruud; Riezman, Howard; Johnsson, Kai

    2014-03-21

    A fluorogenic probe for plasma membrane proteins based on the dye Nile Red and SNAP-tag is introduced. It takes advantage of Nile Red, a solvatochromic molecule highly fluorescent in an apolar environment, such as cellular membranes, but almost dark in a polar aqueous environment. The probe possesses a tuned affinity for membranes allowing its Nile Red moiety to insert into the lipid bilayer of the plasma membrane, becoming fluorescent, only after its conjugation to a SNAP-tagged plasma membrane protein. The fluorogenic character of the probe was demonstrated for different SNAP-tag fusion proteins, including the human insulin receptor. This work introduces a new approach for generating a powerful turn-on probe for "no-wash" labeling of plasma membrane proteins with numerous applications in bioimaging.

  16. Heterologous expression and purification of active L-asparaginase I of Saccharomyces cerevisiae in Escherichia coli host.

    PubMed

    Santos, João H P M; Costa, Iris M; Molino, João V D; Leite, Mariana S M; Pimenta, Marcela V; Coutinho, João A P; Pessoa, Adalberto; Ventura, Sónia P M; Lopes, André M; Monteiro, Gisele

    2017-03-01

    l-asparaginase (ASNase) is a biopharmaceutical widely used to treat child leukemia. However, it presents some side effects, and in order to provide an alternative biopharmaceutical, in this work, the genes encoding ASNase from Saccharomyces cerevisiae (Sc_ASNaseI and Sc_ASNaseII) were cloned in the prokaryotic expression system Escherichia coli. In the 93 different expression conditions tested, the Sc_ASNaseII protein was always obtained as an insoluble and inactive form. However, the Sc_ASNaseI (His) 6 -tagged recombinant protein was produced in large amounts in the soluble fraction of the protein extract. Affinity chromatography was performed on a Fast Protein Liquid Chromatography (FPLC) system using Ni 2+ -charged, HiTrap Immobilized Metal ion Affinity Chromatography (IMAC) FF in order to purify active Sc_ASNaseI recombinant protein. The results suggest that the strategy for the expression and purification of this potential new biopharmaceutical protein with lower side effects was efficient since high amounts of soluble Sc_ASNaseI with high specific activity (110.1 ± 0.3 IU mg -1 ) were obtained. In addition, the use of FPLC-IMAC proved to be an efficient tool in the purification of this enzyme, since a good recovery (40.50 ± 0.01%) was achieved with a purification factor of 17-fold. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:416-424, 2017. © 2016 American Institute of Chemical Engineers.

  17. A multipurpose fusion tag derived from an unstructured and hyperacidic region of the amyloid precursor protein

    PubMed Central

    Sangawa, Takeshi; Tabata, Sanae; Suzuki, Kei; Saheki, Yasushi; Tanaka, Keiji; Takagi, Junichi

    2013-01-01

    Expression and purification of aggregation-prone and disulfide-containing proteins in Escherichia coli remains as a major hurdle for structural and functional analyses of high-value target proteins. Here, we present a novel gene-fusion strategy that greatly simplifies purification and refolding procedure at very low cost using a unique hyperacidic module derived from the human amyloid precursor protein. Fusion with this polypeptide (dubbed FATT for Flag-Acidic-Target Tag) results in near-complete soluble expression of variety of extracellular proteins, which can be directly refolded in the crude bacterial lysate and purified in one-step by anion exchange chromatography. Application of this system enabled preparation of functionally active extracellular enzymes and antibody fragments without the need for condition optimization. PMID:23526492

  18. The application of new software tools to quantitative protein profiling via isotope-coded affinity tag (ICAT) and tandem mass spectrometry: I. Statistically annotated datasets for peptide sequences and proteins identified via the application of ICAT and tandem mass spectrometry to proteins copurifying with T cell lipid rafts.

    PubMed

    von Haller, Priska D; Yi, Eugene; Donohoe, Samuel; Vaughn, Kelly; Keller, Andrew; Nesvizhskii, Alexey I; Eng, Jimmy; Li, Xiao-jun; Goodlett, David R; Aebersold, Ruedi; Watts, Julian D

    2003-07-01

    Lipid rafts were prepared according to standard protocols from Jurkat T cells stimulated via T cell receptor/CD28 cross-linking and from control (unstimulated) cells. Co-isolating proteins from the control and stimulated cell preparations were labeled with isotopically normal (d0) and heavy (d8) versions of the same isotope-coded affinity tag (ICAT) reagent, respectively. Samples were combined, proteolyzed, and resultant peptides fractionated via cation exchange chromatography. Cysteine-containing (ICAT-labeled) peptides were recovered via the biotin tag component of the ICAT reagents by avidin-affinity chromatography. On-line micro-capillary liquid chromatography tandem mass spectrometry was performed on both avidin-affinity (ICAT-labeled) and flow-through (unlabeled) fractions. Initial peptide sequence identification was by searching recorded tandem mass spectrometry spectra against a human sequence data base using SEQUEST software. New statistical data modeling algorithms were then applied to the SEQUEST search results. These allowed for discrimination between likely "correct" and "incorrect" peptide assignments, and from these the inferred proteins that they collectively represented, by calculating estimated probabilities that each peptide assignment and subsequent protein identification was a member of the "correct" population. For convenience, the resultant lists of peptide sequences assigned and the proteins to which they corresponded were filtered at an arbitrarily set cut-off of 0.5 (i.e. 50% likely to be "correct") and above and compiled into two separate datasets. In total, these data sets contained 7667 individual peptide identifications, which represented 2669 unique peptide sequences, corresponding to 685 proteins and related protein groups.

  19. Modular microfluidics for point-of-care protein purifications.

    PubMed

    Millet, L J; Lucheon, J D; Standaert, R F; Retterer, S T; Doktycz, M J

    2015-04-21

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured to suit a variety of fluidic operations or biochemical processes. We demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.

  20. Affinity maturation of a portable Fab–RNA module for chaperone-assisted RNA crystallography

    PubMed Central

    Koirala, Deepak; Shelke, Sandip A; Dupont, Marcel; Ruiz, Stormy; DasGupta, Saurja; Bailey, Lucas J; Benner, Steven A; Piccirilli, Joseph A

    2018-01-01

    Abstract Antibody fragments such as Fabs possess properties that can enhance protein and RNA crystallization and therefore can facilitate macromolecular structure determination. In particular, Fab BL3–6 binds to an AAACA RNA pentaloop closed by a GC pair with ∼100 nM affinity. The Fab and hairpin have served as a portable module for RNA crystallization. The potential for general application make it desirable to adjust the properties of this crystallization module in a manner that facilitates its use for RNA structure determination, such as ease of purification, surface entropy or binding affinity. In this work, we used both in vitro RNA selection and phage display selection to alter the epitope and paratope sides of the binding interface, respectively, for improved binding affinity. We identified a 5′-GNGACCC-3′ consensus motif in the RNA and S97N mutation in complimentarity determining region L3 of the Fab that independently impart about an order of magnitude improvement in affinity, resulting from new hydrogen bonding interactions. Using a model RNA, these modifications facilitated crystallization under a wider range of conditions and improved diffraction. The improved features of the Fab–RNA module may facilitate its use as an affinity tag for RNA purification and imaging and as a chaperone for RNA crystallography. PMID:29309709

  1. Use of anionic denaturing detergents to purify insoluble proteins after overexpression

    PubMed Central

    2012-01-01

    Background Many proteins form insoluble protein aggregates, called “inclusion bodies”, when overexpressed in E. coli. This is the biggest obstacle in biotechnology. Ever since the reversible denaturation of proteins by chaotropic agents such as urea or guanidinium hydrochloride had been shown, these compounds were predominantly used to dissolve inclusion bodies. Other denaturants exist but have received much less attention in protein purification. While the anionic, denaturing detergent sodiumdodecylsulphate (SDS) is used extensively in analytical SDS-PAGE, it has rarely been used in preparative purification. Results Here we present a simple and versatile method to purify insoluble, hexahistidine-tagged proteins under denaturing conditions. It is based on dissolution of overexpressing bacterial cells in a buffer containing sodiumdodecylsulfate (SDS) and whole-lysate denaturation of proteins. The excess of detergent is removed by cooling and centrifugation prior to affinity purification. Host- and overexpressed proteins do not co-precipitate with SDS and the residual concentration of detergent is compatible with affinity purification on Ni/NTA resin. We show that SDS can be replaced with another ionic detergent, Sarkosyl, during purification. Key advantages over denaturing purification in urea or guanidinium are speed, ease of use, low cost of denaturant and the compatibility of buffers with automated FPLC. Conclusion Ionic, denaturing detergents are useful in breaking the solubility barrier, a major obstacle in biotechnology. The method we present yields detergent-denatured protein. Methods to refold proteins from a detergent denatured state are known and therefore we propose that the procedure presented herein will be of general application in biotechnology. PMID:23231964

  2. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production

    PubMed Central

    Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications. PMID:27093053

  3. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production.

    PubMed

    Ullah, Raheem; Shah, Majid Ali; Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications.

  4. A novel method for purification of the endogenously expressed fission yeast Set2 complex.

    PubMed

    Suzuki, Shota; Nagao, Koji; Obuse, Chikashi; Murakami, Yota; Takahata, Shinya

    2014-05-01

    Chromatin-associated proteins are heterogeneously and dynamically composed. To gain a complete understanding of DNA packaging and basic nuclear functions, it is important to generate a comprehensive inventory of these proteins. However, biochemical purification of chromatin-associated proteins is difficult and is accompanied by concerns over complex stability, protein solubility and yield. Here, we describe a new method for optimized purification of the endogenously expressed fission yeast Set2 complex, histone H3K36 methyltransferase. Using the standard centrifugation procedure for purification, approximately half of the Set2 protein separated into the insoluble chromatin pellet fraction, making it impossible to recover the large amounts of soluble Set2. To overcome this poor recovery, we developed a novel protein purification technique termed the filtration/immunoaffinity purification/mass spectrometry (FIM) method, which eliminates the need for centrifugation. Using the FIM method, in which whole cell lysates were filtered consecutively through eight different pore sizes (53-0.8μm), a high yield of soluble FLAG-tagged Set2 was obtained from fission yeast. The technique was suitable for affinity purification and produced a low background. A mass spectrometry analysis of anti-FLAG immunoprecipitated proteins revealed that Rpb1, Rpb2 and Rpb3, which have all been reported previously as components of the budding yeast Set2 complex, were isolated from fission yeast using the FIM method. In addition, other subunits of RNA polymerase II and its phosphatase were also identified. In conclusion, the FIM method is valid for the efficient purification of protein complexes that separate into the insoluble chromatin pellet fraction during centrifugation. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Purification of Torpedo californica post-synaptic membranes and fractionation of their constituent proteins.

    PubMed Central

    Elliott, J; Blanchard, S G; Wu, W; Miller, J; Strader, C D; Hartig, P; Moore, H P; Racs, J; Raftery, M A

    1980-01-01

    A rapid methof for preparation of membrane fractions highly enriched in nicotinic acetylcholine receptor from Torpedo californica electroplax is described. The major step in this purification involves sucrose-density-gradient centrifugation in a reorienting rotor. Further purification of these membranes can be achieved by selective extraction of proteins by use of alkaline pH or by treatment with solutions of lithium di-idosalicylate. The alkali-treated membranes retain functional characteristics of the untreated membranes and in addition contain essentially only the four polypeptides (mol.wts. 40000, 50000, 60000 and 65000) characteristic of the receptor purified by affinity chromatography. Dissolution of the purified membranes or of the alkali-treated purified membranes in sodium cholate solution followed by sucrose-density-gradient centrifugation in the same detergent solution yields solubilized receptor preparations comparable with the most highly purified protein obtained by affinity-chromatographic procedures. Images Fig. 1. Fig. 2. Fig. 3. Fig. 5. Fig. 7. PLATE 1 PMID:7387629

  6. Expression and Production of SH2 Domain Proteins.

    PubMed

    Liu, Bernard A; Ogiue-Ikeda, Mari; Machida, Kazuya

    2017-01-01

    The Src Homology 2 (SH2) domain lies at the heart of phosphotyrosine signaling, coordinating signaling events downstream of receptor tyrosine kinases (RTKs), adaptors, and scaffolds. Over a hundred SH2 domains are present in mammals, each having a unique specificity which determines its interactions with multiple binding partners. One of the essential tools necessary for studying and determining the role of SH2 domains in phosphotyrosine signaling is a set of soluble recombinant SH2 proteins. Here we describe methods, based on a broad experience with purification of all SH2 domains, for the production of SH2 domain proteins needed for proteomic and biochemical-based studies such as peptide arrays, mass-spectrometry, protein microarrays, reverse-phase microarrays, and high-throughput fluorescence polarization (HTP-FP). We describe stepwise protocols for expression and purification of SH2 domains using GST or poly His-tags, two widely adopted affinity tags. In addition, we address alternative approaches, challenges, and validation studies for assessing protein quality and provide general characteristics of purified human SH2 domains.

  7. Modular microfluidics for point-of-care protein purifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millet, L. J.; Lucheon, J. D.; Standaert, R. F.

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured tomore » suit a variety of fluidic operations or biochemical processes. In conclusion, we demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.« less

  8. Modular microfluidics for point-of-care protein purifications

    DOE PAGES

    Millet, L. J.; Lucheon, J. D.; Standaert, R. F.; ...

    2015-01-01

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured tomore » suit a variety of fluidic operations or biochemical processes. In conclusion, we demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.« less

  9. Bioengineering of Bacteria To Assemble Custom-Made Polyester Affinity Resins

    PubMed Central

    Hay, Iain D.; Du, Jinping; Burr, Natalie

    2014-01-01

    Proof of concept for the in vivo bacterial production of a polyester resin displaying various customizable affinity protein binding domains is provided. This was achieved by engineering various protein binding domains into a bacterial polyester-synthesizing enzyme. Affinity binding domains based on various structural folds and derived from molecular libraries were used to demonstrate the potential of this technique. Designed ankyrin repeat proteins (DARPins), engineered OB-fold domains (OBodies), and VHH domains from camelid antibodies (nanobodies) were employed. The respective resins were produced in a single bacterial fermentation step, and a simple purification protocol was developed. Purified resins were suitable for most lab-scale affinity chromatography purposes. All of the affinity domains tested produced polyester beads with specific affinity for the target protein. The binding capacity of these affinity resins ranged from 90 to 600 nmol of protein per wet gram of polyester affinity resin, enabling purification of a recombinant protein target from a complex bacterial cell lysate up to a purity level of 96% in one step. The polyester resin was efficiently produced by conventional lab-scale shake flask fermentation, resulting in bacteria accumulating up to 55% of their cellular dry weight as polyester. A further proof of concept demonstrating the practicality of this technique was obtained through the intracellular coproduction of a specific affinity resin and its target. This enables in vivo binding and purification of the coproduced “target protein.” Overall, this study provides evidence for the use of molecular engineering of polyester synthases toward the microbial production of specific bioseparation resins implementing previously selected binding domains. PMID:25344238

  10. Optimization of Soluble Expression and Purification of Recombinant Human Rhinovirus Type-14 3C Protease Using Statistically Designed Experiments: Isolation and Characterization of the Enzyme.

    PubMed

    Antoniou, Georgia; Papakyriacou, Irineos; Papaneophytou, Christos

    2017-10-01

    Human rhinovirus (HRV) 3C protease is widely used in recombinant protein production for various applications such as biochemical characterization and structural biology projects to separate recombinant fusion proteins from their affinity tags in order to prevent interference between these tags and the target proteins. Herein, we report the optimization of expression and purification conditions of glutathione S-transferase (GST)-tagged HRV 3C protease by statistically designed experiments. Soluble expression of GST-HRV 3C protease was initially optimized by response surface methodology (RSM), and a 5.5-fold increase in enzyme yield was achieved. Subsequently, we developed a new incomplete factorial (IF) design that examines four variables (bacterial strain, expression temperature, induction time, and inducer concentration) in a single experiment. The new design called Incomplete Factorial-Strain/Temperature/Time/Inducer (IF-STTI) was validated using three GST-tagged proteins. In all cases, IF-STTI resulted in only 10% lower expression yields than those obtained by RSM. Purification of GST-HRV 3C was optimized by an IF design that examines simultaneously the effect of the amount of resin, incubation time of cell lysate with resin, and glycerol and DTT concentration in buffers, and a further 15% increase in protease recovery was achieved. Purified GST-HRV 3C protease was active at both 4 and 25 °C in a variety of buffers.

  11. Expression, purification, and functional analysis of the C-terminal domain of Herbaspirillum seropedicae NifA protein.

    PubMed

    Monteiro, Rose A; Souza, Emanuel M; Geoffrey Yates, M; Steffens, M Berenice R; Pedrosa, Fábio O; Chubatsu, Leda S

    2003-02-01

    The Herbaspirillum seropedicae NifA protein is responsible for nif gene expression. The C-terminal domain of the H. seropedicae NifA protein, fused to a His-Tag sequence (His-Tag-C-terminal), was over-expressed and purified by metal-affinity chromatography to yield a highly purified and active protein. Band-shift assays showed that the NifA His-Tag-C-terminal bound specifically to the H. seropedicae nifB promoter region in vitro. In vivo analysis showed that this protein inhibited the Central + C-terminal domains of NifA protein from activating the nifH promoter of K. pneumoniae in Escherichia coli, indicating that the protein must be bound to the NifA-binding site (UAS site) at the nifH promoter region to activate transcription. Copyright 2002 Elsevier Science (USA)

  12. Mocr: A novel fusion tag for enhancing solubility that is compatible with structural biology applications

    PubMed Central

    DelProposto, James; Majmudar, Chinmay Y.; Smith, Janet L.; Brown, William Clay

    2010-01-01

    A persistent problem in heterologous protein production is insolubility of the target protein when expressed to high level in the host cell. A widely employed strategy for overcoming this problem is the use of fusion tags. The best fusion tags promote solubility, may function as purification handles and either do not interfere with downstream applications or may be removed from the passenger protein preparation. A novel fusion tag is identified that meets these criteria. This fusion tag is a monomeric mutant of the Ocr protein (0.3 gene product) of bacteriophage T7. This fusion tag displays solubilizing activity with a variety of different passenger proteins. We show that it may be used as a purification handle similar to other fusion tags. Its small size and compact structure are compatible with its use in downstream applications of the passenger protein or it may be removed and purified away from the passenger protein. The use of monomeric Ocr (Mocr) as a complement to other fusion tags such as maltose-binding protein will provide greater flexibility in protein production and processing for a wide variety of protein applications. PMID:18824232

  13. Mocr: a novel fusion tag for enhancing solubility that is compatible with structural biology applications.

    PubMed

    DelProposto, James; Majmudar, Chinmay Y; Smith, Janet L; Brown, William Clay

    2009-01-01

    A persistent problem in heterologous protein production is insolubility of the target protein when expressed to high level in the host cell. A widely employed strategy for overcoming this problem is the use of fusion tags. The best fusion tags promote solubility, may function as purification handles and either do not interfere with downstream applications or may be removed from the passenger protein preparation. A novel fusion tag is identified that meets these criteria. This fusion tag is a monomeric mutant of the Ocr protein (0.3 gene product) of bacteriophage T7. This fusion tag displays solubilizing activity with a variety of different passenger proteins. We show that it may be used as a purification handle similar to other fusion tags. Its small size and compact structure are compatible with its use in downstream applications of the passenger protein or it may be removed and purified away from the passenger protein. The use of monomeric Ocr (Mocr) as a complement to other fusion tags such as maltose-binding protein will provide greater flexibility in protein production and processing for a wide variety of protein applications.

  14. A designed repeat protein as an affinity capture reagent

    PubMed Central

    Speltz, Elizabeth B.; Brown, Rebecca S.H.; Hajare, Holly S.; Schlieker, Christian; Regan, Lynne

    2017-01-01

    Repeat proteins are an attractive target for protein engineering and design. We have focused our attention on the design and engineering of one particular class - tetratricopeptide repeat (TPR) proteins. In previous work we have shown that the structure and stability of TPR proteins can be manipulated in a rational fashion [Cortajarena 2011; Main 2003]. Building on those studies, we have designed and characterized a number of different peptide-binding TPR modules and we have also assembled these modules into supramolecular arrays [Cortajarena 2009; Cortajarena 2008; Jackrel 2009; Kajander 2007]. Here we focus on the development of one such TPR-peptide interaction for a practical application – affinity purification. We illustrate the general utility of our designed protein interaction. Furthermore, this example highlights how basic research on protein-peptide interactions can lead to the development of novel reagents with important practical applications. PMID:26517897

  15. Monolith-based immobilized metal affinity chromatography increases production efficiency for plasmid DNA purification.

    PubMed

    Shin, Min Jae; Tan, Lihan; Jeong, Min Ho; Kim, Ji-Heung; Choe, Woo-Seok

    2011-08-05

    Immobilized metal affinity monolith column as a new class of chromatographic support is shown to be superior to conventional particle-based column as plasmid DNA (pDNA) purification platform. By harnessing the affinity of endotoxin to copper ions in the solution, a majority of endotoxin (90%) was removed from the alkaline cell lysate using CuCl(2)-induced precipitation. RNA and remaining endotoxin were subsequently removed to below detection limit with minimal loss of pDNA using either monolith or particle-based column. Monolith column has the additional advantage of feed concentration and flowrate-independent dynamic binding capacity for RNA molecules, enabling purification process to be conducted at high feed RNA concentration and flowrate. The use of monolith column gives three fold increased productivity of pDNA as compared to particle-based column, providing a more rapid and economical platform for pDNA purification. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Functional efficacy of human recombinant FGF-2s tagged with (His)6 and (His-Asn)6 at the N- and C-termini in human gingival fibroblast and periodontal ligament-derived cells.

    PubMed

    Lee, Ji-Hye; Lee, Ji-Eun; Kang, Kyung-Jung; Jang, Young-Joo

    2017-07-01

    Fibroblast growth factor (FGF) is a multifunctional growth factor that induces cell proliferation, survival, migration, and differentiation in various cell types and tissues. With these biological functions, FGF-2 has been evaluated for clinical use in the regeneration of damaged tissues. The expression of hFGF-2 in Escherichia coli and a purification system using the immobilized metal affinity chromatography (IMAC) is well established to generate a continuous supply of FGF-2. Although hexa-histidine tag (H 6 ) is commonly used for IMAC purification, hexa-histidine-asparagine tag (HN 6 ) is also efficient for purification as it is easily exposed on the surface of the protein. In this study, four different tagging constructs of hFGF-2 based on tag positions and types (H 6 -FGF2, FGF2-H 6 , HN 6 -FGF2, and FGF2-HN 6 ) were designed and expressed under the inducible T7 expression system in E. coli. The experimental conditions of expression and purification of each recombinant protein were optimized. The effective dosages of the recombinant proteins were determined based on the increase of cell proliferation in human gingival fibroblast. ED50s of H 6 -FGF2, FGF2-H 6 , HN 6 -FGF2, and FGF2-HN 6 were determined (4.42 ng/ml, 3.55 ng/ml, 3.54 ng/ml, and 4.14 ng/ml, respectively) and found to be comparable to commercial FGF-2 (3.67 ng/ml). All the recombinant hFGF-2s inhibit the osteogenic induction and mineralization in human periodontal ligament-derived cells. Our data suggested that biological activities of the recombinant hFGF-2 are irrelevant to types and positions of tags, but may have an influence on the expression efficiency and solubility. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Mapping differential interactomes by affinity purification coupled with data-independent mass spectrometry acquisition.

    PubMed

    Lambert, Jean-Philippe; Ivosev, Gordana; Couzens, Amber L; Larsen, Brett; Taipale, Mikko; Lin, Zhen-Yuan; Zhong, Quan; Lindquist, Susan; Vidal, Marc; Aebersold, Ruedi; Pawson, Tony; Bonner, Ron; Tate, Stephen; Gingras, Anne-Claude

    2013-12-01

    Characterizing changes in protein-protein interactions associated with sequence variants (e.g., disease-associated mutations or splice forms) or following exposure to drugs, growth factors or hormones is critical to understanding how protein complexes are built, localized and regulated. Affinity purification (AP) coupled with mass spectrometry permits the analysis of protein interactions under near-physiological conditions, yet monitoring interaction changes requires the development of a robust and sensitive quantitative approach, especially for large-scale studies in which cost and time are major considerations. We have coupled AP to data-independent mass spectrometric acquisition (sequential window acquisition of all theoretical spectra, SWATH) and implemented an automated data extraction and statistical analysis pipeline to score modulated interactions. We used AP-SWATH to characterize changes in protein-protein interactions imparted by the HSP90 inhibitor NVP-AUY922 or melanoma-associated mutations in the human kinase CDK4. We show that AP-SWATH is a robust label-free approach to characterize such changes and propose a scalable pipeline for systems biology studies.

  18. Expression, purification, and DNA-binding activity of the solubilized NtrC protein of Herbaspirillum seropedicae.

    PubMed

    Twerdochlib, Adriana L; Chubatsu, Leda S; Souza, Emanuel M; Pedrosa, Fábio O; Steffens, M Berenice R; Yates, M Geoffrey; Rigo, Liu U

    2003-07-01

    NtrC is a bacterial enhancer-binding protein (EBP) that activates transcription by the sigma54 RNA polymerase holoenzyme. NtrC has a three domain structure typical of EBP family. In Herbaspirillum seropedicae, an endophytic diazotroph, NtrC regulates several operons involved in nitrogen assimilation, including glnAntrBC. In order to over-express and purify the NtrC protein, DNA fragments containing the complete structural gene for the whole protein, and for the N-terminal+Central and Central+C-terminal domains were cloned into expression vectors. The NtrC and NtrC(N-terminal+Central) proteins were over-expressed as His-tag fusion proteins upon IPTG addition, solubilized using N-lauryl-sarcosyl and purified by metal affinity chromatography. The over-expressed His-tag-NtrC(Central+C-terminal) fusion protein was partially soluble and was also purified by affinity chromatography. DNA band-shift assays showed that the NtrC protein and the Central+C-terminal domains bound specifically to the H. seropedicae glnA promoter region. The C-terminal domain is presumably necessary for DNA-protein interaction and DNA-binding does not require a phosphorylated protein.

  19. Mapping HA-tagged protein at the surface of living cells by atomic force microscopy.

    PubMed

    Formosa, C; Lachaize, V; Galés, C; Rols, M P; Martin-Yken, H; François, J M; Duval, R E; Dague, E

    2015-01-01

    Single-molecule force spectroscopy using atomic force microscopy (AFM) is more and more used to detect and map receptors, enzymes, adhesins, or any other molecules at the surface of living cells. To be specific, this technique requires antibodies or ligands covalently attached to the AFM tip that can specifically interact with the protein of interest. Unfortunately, specific antibodies are usually lacking (low affinity and specificity) or are expensive to produce (monoclonal antibodies). An alternative strategy is to tag the protein of interest with a peptide that can be recognized with high specificity and affinity with commercially available antibodies. In this context, we chose to work with the human influenza hemagglutinin (HA) tag (YPYDVPDYA) and labeled two proteins: covalently linked cell wall protein 12 (Ccw12) involved in cell wall remodeling in the yeast Saccharomyces cerevisiae and the β2-adrenergic receptor (β2-AR), a G protein-coupled receptor (GPCR) in higher eukaryotes. We first described the interaction between HA antibodies, immobilized on AFM tips, and HA epitopes, immobilized on epoxy glass slides. Using our system, we then investigated the distribution of Ccw12 proteins over the cell surface of the yeast S. cerevisiae. We were able to find the tagged protein on the surface of mating yeasts, at the tip of the mating projections. Finally, we could unfold multimers of β2-AR from the membrane of living transfected chinese hamster ovary cells. This result is in agreement with GPCR oligomerization in living cell membranes and opens the door to the study of the influence of GPCR ligands on the oligomerization process. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Bidirectional immobilization of affinity-tagged cytochrome c on electrode surfaces.

    PubMed

    Schröper, Florian; Baumann, Arnd; Offenhäusser, Andreas; Mayer, Dirk

    2010-08-07

    Here, we report a new strategy for the directed bivalent immobilization of cyt c on or between gold electrodes. C-terminal modification with cys- or his-tag did not affect the functional integrity of the protein. In combination with electrostatic protein binding, these tags enable a bifunctional immobilization between two electrodes or alternatively one electrode and interacting enzymes.

  1. Bovine Pancreatic Trypsin Inhibitor-Trypsin Complex as a Detection System for Recombinant Proteins

    NASA Astrophysics Data System (ADS)

    Borjigin, Jimo; Nathans, Jeremy

    1993-01-01

    Bovine pancreatic trypsin inhibitor (BPTI) binds to trypsin and anhydrotrypsin (an enzymatically inactive derivative of trypsin) with affinities of 6 x 10-14 and 1.1 x 10-13 M, respectively. We have taken advantage of the high affinity and specificity of this binding reaction to develop a protein tagging system in which biotinylated trypsin or biotinylated anhydrotrypsin is used as the reagent to detect recombinant fusion proteins into which BPTI has been inserted. Two proteins, opsin and growth hormone, were used as targets for insertional mutagenesis with BPTI. In each case, both domains of the fusion protein appear to be correctly folded. The fusion proteins can be specifically and efficiently detected by biotinylated trypsin or biotinylated anhydrotrypsin, as demonstrated by staining of transfected cells, protein blotting, affinity purification, and a mobility shift assay in SDS/polyacrylamide gels.

  2. Selective precipitation and purification of monovalent proteins using oligovalent ligands and ammonium sulfate.

    PubMed

    Mirica, Katherine A; Lockett, Matthew R; Snyder, Phillip W; Shapiro, Nathan D; Mack, Eric T; Nam, Sarah; Whitesides, George M

    2012-02-15

    This paper describes a method for the selective precipitation and purification of a monovalent protein (carbonic anhydrase is used as a demonstration) from cellular lysate using ammonium sulfate and oligovalent ligands. The oligovalent ligands induce the formation of protein-ligand aggregates, and at an appropriate concentration of dissolved ammonium sulfate, these complexes precipitate. The purification involves three steps: (i) the removal of high-molecular-weight impurities through the addition of ammonium sulfate to the crude cell lysate; (ii) the introduction of an oligovalent ligand and the selective precipitation of the target protein-ligand aggregates from solution; and (iii) the removal of the oligovalent ligand from the precipitate by dialysis to release the target protein. The increase of mass and volume of the proteins upon aggregate formation reduces their solubility, and results in the selective precipitation of these aggregates. We recovered human carbonic anhydrase, from crude cellular lysate, in 82% yield and 95% purity with a trivalent benzene sulfonamide ligand. This method provides a chromatography-free strategy of purifying monovalent proteins--for which appropriate oligovalent ligands can be synthesized--and combines the selectivity of affinity-based purification with the convenience of salt-induced precipitation.

  3. Monochromatic multicomponent fluorescence sedimentation velocity for the study of high-affinity protein interactions

    PubMed Central

    Zhao, Huaying; Fu, Yan; Glasser, Carla; Andrade Alba, Eric J; Mayer, Mark L; Patterson, George; Schuck, Peter

    2016-01-01

    The dynamic assembly of multi-protein complexes underlies fundamental processes in cell biology. A mechanistic understanding of assemblies requires accurate measurement of their stoichiometry, affinity and cooperativity, and frequently consideration of multiple co-existing complexes. Sedimentation velocity analytical ultracentrifugation equipped with fluorescence detection (FDS-SV) allows the characterization of protein complexes free in solution with high size resolution, at concentrations in the nanomolar and picomolar range. Here, we extend the capabilities of FDS-SV with a single excitation wavelength from single-component to multi-component detection using photoswitchable fluorescent proteins (psFPs). We exploit their characteristic quantum yield of photo-switching to imprint spatio-temporal modulations onto the sedimentation signal that reveal different psFP-tagged protein components in the mixture. This novel approach facilitates studies of heterogeneous multi-protein complexes at orders of magnitude lower concentrations and for higher-affinity systems than previously possible. Using this technique we studied high-affinity interactions between the amino-terminal domains of GluA2 and GluA3 AMPA receptors. DOI: http://dx.doi.org/10.7554/eLife.17812.001 PMID:27436096

  4. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    PubMed

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  5. Enhanced Purification of Recombinant Rat NADPH-P450 Reductase by Using a Hexahistidine-Tag.

    PubMed

    Park, Hyoung-Goo; Lim, Young-Ran; Han, Songhee; Jeong, Dabin; Kim, Donghak

    2017-05-28

    NADPH-P450 reductase (NPR) transfers electrons from NADPH to cytochrome P450 and heme oxygenase enzymes to support their catalytic activities. This protein is localized within the endoplasmic reticulum membrane and utilizes FMN, FAD, and NADPH as cofactors. Although NPR is essential toward enabling the biochemical and pharmacological analyses of P450 enzymes, its production as a recombinant purified protein requires a series of tedious efforts and a high cost due to the use of NADP + in the affinity chromatography process. In the present study, the rat NPR clone containing a 6× Histidine-tag (NPR-His) was constructed and heterologously expressed. The NPR-His protein was purified using Ni 2+ -affinity chromatography, and its functional features were characterized. A single band at 78 kDa was observed from SDS-PAGE and the purified protein displayed a maximum absorbance at 455 nm, indicating the presence of an oxidized flavin cofactor. Cytochrome c and nitroblue tetrazolium were reduced by purified NPR-His in an NADPH-dependent manner. The purified NPR-His successfully supported the catalytic activities of human P450 1A2 and 2A6 and fungal CYP52A21, yielding results similar to those obtained using conventional purified rat reductase. This study will facilitate the use of recombinant NPR-His protein in the various fields of P450 research.

  6. High-yield soluble expression, purification and characterization of human steroidogenic acute regulatory protein (StAR) fused to a cleavable Maltose-Binding Protein (MBP).

    PubMed

    Sluchanko, Nikolai N; Tugaeva, Kristina V; Faletrov, Yaroslav V; Levitsky, Dmitrii I

    2016-03-01

    Steroidogenic acute regulatory protein (StAR) is responsible for the rapid delivery of cholesterol to mitochondria where the lipid serves as a source for steroid hormones biosynthesis in adrenals and gonads. Despite many successful investigations, current understanding of the mechanism of StAR action is far from being completely clear. StAR was mostly obtained using denaturation/renaturation or in minor quantities in a soluble form at decreased temperatures that, presumably, limited the possibilities for its consequent detailed exploration. In our hands, existing StAR expression constructs could be bacterially expressed almost exclusively as insoluble forms, even upon decreased expression temperatures and in specific strains of Escherichia coli, and isolated protein tended to aggregate and was difficult to handle. To maximize the yield of soluble protein, optimized StAR sequence encompassing functional domain STARD1 (residues 66-285) was fused to the C-terminus of His-tagged Maltose-Binding Protein (MBP) with the possibility to cleave off the whole tag by 3C protease. The developed protocol of expression and purification comprising of a combination of subtractive immobilized metal affinity chromatography (IMAC) and size-exclusion chromatography allowed us to obtain up to 25 mg/1 L culture of completely soluble StAR protein, which was (i) homogenous according to SDS-PAGE, (ii) gave a single symmetrical peak on a gel-filtration, (iii) showed the characteristic CD spectrum and (iv) pH-dependent ability to bind a fluorescently-labeled cholesterol analogue. We conclude that our strategy provides fully soluble and native StAR protein which in future could be efficiently used for biotechnology and drug discovery aimed at modulation of steroids production. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Reversible chemoselective tagging and functionalization of methionine containing peptides.

    PubMed

    Kramer, Jessica R; Deming, Timothy J

    2013-06-07

    Reagents were developed to allow chemoselective tagging of methionine residues in peptides and polypeptides, subsequent bioorthogonal functionalization of the tags, and cleavage of the tags when desired. This methodology can be used for triggered release of therapeutic peptides, or release of tagged protein digests from affinity columns.

  8. Purification of anti-bromelain antibodies by affinity precipitation using pNIPAm-linked bromelain.

    PubMed

    Mahmood, Rubab

    2016-01-01

    Affinity precipitation has emerged as a very useful technique for the purification of proteins. Here it has been employed for the purification of anti-bromelain antibodies from rabbit serum. A system has been developed for reversibly binding and thermoprecipitating antibodies. Anti-bromelain antibodies were raised in rabbit by immunizing it with bromelain. Poly-N-isopropylacrylamide (pNIPAm)-bromelain conjugate was prepared and incubated with rabbit serum. After that the temperature was raised for thermal precipitation of the polymer. Antibodies were then eluted from the complex by incubating it with a small volume of buffer, pH 3.0. This method is very effective in concentrating the antibodies. Purity and specificity of the antibodies were checked by gel electrophoresis and enzyme-linked immunosorbent assay (ELISA), respectively. The study of the effect of pH and temperature on the binding of the antibodies to the conjugate showed that the optimum binding occurred at pH 8.0 and 25°C.The polymer enzyme conjugate was further used for another cycle.

  9. Selective Precipitation and Purification of Monovalent Proteins Using Oligovalent Ligands and Ammonium Sulfate

    PubMed Central

    Mirica, Katherine A.; Lockett, Matthew R.; Snyder, Phillip W.; Shapiro, Nathan D.; Mack, Eric T.; Nam, Sarah; Whitesides, George M.

    2012-01-01

    This paper describes a method for the selective precipitation and purification of a monovalent protein (carbonic anhydrase is used as a demonstration) from cellular lysate using ammonium sulfate and oligovalent ligands. The oligovalent ligands induce the formation of protein-ligand aggregates, and at an appropriate concentration of dissolved ammonium sulfate, these complexes precipitate. The purification involves three steps: i) the removal of high-molecular weight impurities through the addition of ammonium sulfate to the crude cell lysate; ii) the introduction of an oligovalent ligand and the selective precipitation of the target protein-ligand aggregates from solution; and iii) the removal of the oligovalent ligand from the precipitate by dialysis to release the target protein. The increase of mass and volume of the proteins upon aggregate formation reduces their solubility, and results in the selective precipitation of these aggregates. We recovered human carbonic anhydrase, from crude cellular lysate, in 82% yield and 95% purity with a trivalent benzene sulfonamide ligand. This method provides a chromatography-free strategy of purifying monovalent proteins—for which appropriate oligovalent ligands can be synthesized—and combines the selectivity of affinity-based purification with the convenience of salt-induced precipitation. PMID:22188202

  10. Quantitative interaction proteomics using mass spectrometry.

    PubMed

    Wepf, Alexander; Glatter, Timo; Schmidt, Alexander; Aebersold, Ruedi; Gstaiger, Matthias

    2009-03-01

    We present a mass spectrometry-based strategy for the absolute quantification of protein complex components isolated through affinity purification. We quantified bait proteins via isotope-labeled reference peptides corresponding to an affinity tag sequence and prey proteins by label-free correlational quantification using the precursor ion signal intensities of proteotypic peptides generated in reciprocal purifications. We used this method to quantitatively analyze interaction stoichiometries in the human protein phosphatase 2A network.

  11. Generic tags for Mn(ii) and Gd(iii) spin labels for distance measurements in proteins.

    PubMed

    Yang, Yin; Gong, Yan-Jun; Litvinov, Aleksei; Liu, Hong-Kai; Yang, Feng; Su, Xun-Cheng; Goldfarb, Daniella

    2017-10-11

    High-affinity chelating tags for Gd(iii) and Mn(ii) ions that provide valuable high-resolution distance restraints for biomolecules were used as spin labels for double electron-electron resonance (DEER) measurements. The availability of a generic tag that can bind both metal ions and provide a narrow and predictable distance distribution for both ions is attractive owing to their different EPR-related characteristics. Herein we introduced two paramagnetic tags, 4PSPyMTA and 4PSPyNPDA, which are conjugated to cysteine residues through a stable thioether bond, forming a short and, depending on the metal ion coordination mode, a rigid tether with the protein. These tags exhibit high affinity for both Mn(ii) and Gd(iii) ions. The DEER performance of the 4PSPyMTA and 4PSPyNPDA tags, in complex with Gd(iii) or Mn(ii), was evaluated for three double cysteine mutants of ubiquitin, and the Gd(iii)-Gd(iii) and Mn(ii)-Mn(ii) distance distributions they generated were compared. All three Gd(iii) complexes of the ubiquitin-PyMTA and ubiquitin-PyNPDA conjugates produced similar and expected distance distributions. In contrast, significant variations in the maxima and widths of the distance distributions were observed for the Mn(ii) analogs. Furthermore, whereas PyNPDA-Gd(iii) and PyNPDA-Mn(ii) delivered similar distance distributions, appreciable differences were observed for two mutants with PyMTA, with the Mn(ii) analog exhibiting a broader distance distribution and shorter distances. ELDOR (electron-electron double resonance)-detected NMR measurements revealed some distribution in the Mn(ii) coordination environment for the protein conjugates of both tags but not for the free tags. The broader distance distributions generated by 4PSPyMTA-Mn(ii), as compared with Gd(iii), were attributed to the distributed location of the Mn(ii) ion within the PyMTA chelate owing to its smaller size and lower coordination number that leave the pyridine nitrogen uncoordinated. Accordingly, in

  12. Nucleic acid programmable protein array a just-in-time multiplexed protein expression and purification platform.

    PubMed

    Qiu, Ji; LaBaer, Joshua

    2011-01-01

    Systematic study of proteins requires the availability of thousands of proteins in functional format. However, traditional recombinant protein expression and purification methods have many drawbacks for such study at the proteome level. We have developed an innovative in situ protein expression and capture system, namely NAPPA (nucleic acid programmable protein array), where C-terminal tagged proteins are expressed using an in vitro expression system and efficiently captured/purified by antitag antibodies coprinted at each spot. The NAPPA technology presented in this chapter enable researchers to produce and display fresh proteins just in time in a multiplexed high-throughput fashion and utilize them for various downstream biochemical researches of interest. This platform could revolutionize the field of functional proteomics with it ability to produce thousands of spatially separated proteins in high density with narrow dynamic rand of protein concentrations, reproducibly and functionally. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Purification of bacteriophage lambda repressor

    PubMed Central

    Gao, Ning; Shearwin, Keith; Mack, John; Finzi, Laura; Dunlap, David

    2013-01-01

    Bacteriophage lambda repressor controls the lysogeny/lytic growth switch after infection of E. coli by lambda phage. In order to study in detail the looping of DNA mediated by the protein, tag-free repressor and a loss-of-cooperativity mutant were expressed in E.coli and purified by (1) ammonium sulfate fractionation, (2) anion-exchange chromatography and (3) heparin affinity chromatography. This method employs more recently developed and readily available chromatography resins to produce highly pure protein in good yield. In tethered particle motion looping assays and atomic force microscopy “footprinting” assays, both the wild-type protein and a C-terminal His-tagged variant, purified using immobilized metal affinity chromatography, bound specifically to high affinity sites to mediate loop formation. In contrast the G147D loss-of-cooperativity mutant bound specifically but did not secure loops. PMID:23831434

  14. Design and applications of a clamp for Green Fluorescent Protein with picomolar affinity

    DOE PAGES

    Hansen, Simon; Stüber, Jakob C.; Ernst, Patrick; ...

    2017-11-24

    Green fluorescent protein (GFP) fusions are pervasively used to study structures and processes. Specific GFP-binders are thus of great utility for detection, immobilization or manipulation of GFP-fused molecules. We determined structures of two designed ankyrin repeat proteins (DARPins), complexed with GFP, which revealed different but overlapping epitopes. Here in this paper we show a structure-guided design strategy that, by truncation and computational reengineering, led to a stable construct where both can bind simultaneously: by linkage of the two binders, fusion constructs were obtained that “wrap around” GFP, have very high affinities of about 10–30 pM, and extremely slow off-rates. Theymore » can be natively produced in E. coli in very large amounts, and show excellent biophysical properties. Their very high stability and affinity, facile site-directed functionalization at introduced unique lysines or cysteines facilitate many applications. As examples, we present them as tight yet reversible immobilization reagents for surface plasmon resonance, as fluorescently labelled monomeric detection reagents in flow cytometry, as pull-down ligands to selectively enrich GFP fusion proteins from cell extracts, and as affinity column ligands for inexpensive large-scale protein purification. We have thus described a general design strategy to create a “clamp” from two different high-affinity repeat proteins, even if their epitopes overlap.« less

  15. Design and applications of a clamp for Green Fluorescent Protein with picomolar affinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Simon; Stüber, Jakob C.; Ernst, Patrick

    Green fluorescent protein (GFP) fusions are pervasively used to study structures and processes. Specific GFP-binders are thus of great utility for detection, immobilization or manipulation of GFP-fused molecules. We determined structures of two designed ankyrin repeat proteins (DARPins), complexed with GFP, which revealed different but overlapping epitopes. Here in this paper we show a structure-guided design strategy that, by truncation and computational reengineering, led to a stable construct where both can bind simultaneously: by linkage of the two binders, fusion constructs were obtained that “wrap around” GFP, have very high affinities of about 10–30 pM, and extremely slow off-rates. Theymore » can be natively produced in E. coli in very large amounts, and show excellent biophysical properties. Their very high stability and affinity, facile site-directed functionalization at introduced unique lysines or cysteines facilitate many applications. As examples, we present them as tight yet reversible immobilization reagents for surface plasmon resonance, as fluorescently labelled monomeric detection reagents in flow cytometry, as pull-down ligands to selectively enrich GFP fusion proteins from cell extracts, and as affinity column ligands for inexpensive large-scale protein purification. We have thus described a general design strategy to create a “clamp” from two different high-affinity repeat proteins, even if their epitopes overlap.« less

  16. Overview of Fusion Tags for Recombinant Proteins.

    PubMed

    Kosobokova, E N; Skrypnik, K A; Kosorukov, V S

    2016-03-01

    Virtually all recombinant proteins are now prepared using fusion domains also known as "tags". The use of tags helps to solve some serious problems: to simplify procedures of protein isolation, to increase expression and solubility of the desired protein, to simplify protein refolding and increase its efficiency, and to prevent proteolysis. In this review, advantages and disadvantages of such fusion tags are analyzed and data on both well-known and new tags are generalized. The authors own data are also presented.

  17. Purification of full-length VP22 from cells infected with HSV-1: A two-pronged approach for the solubilization and purification of viral proteins for use in biochemical studies

    PubMed Central

    Dewberry, Ebony J.; Dunkerley, Eric; Duffy, Carol

    2012-01-01

    Summary VP22, encoded by the UL49 gene, is one of the most abundant proteins of the herpes simplex virus type 1 (HSV-1) tegument and has been shown to be important for virus replication and spread. However, the exact role(s) played by VP22 in the HSV-1 replication cycle have yet to be delineated. The lack of a procedure to purify full-length VP22 has limited molecular studies on VP22 function. A procedure was developed for the purification of soluble, full-length VP22 from cells infected with HSV-1. A recombinant virus encoding His-tagged VP22 was generated and found to express VP22 at levels comparable to the wild type virus upon infection of Vero cells. By experimenting with a wide variety of cell lysis buffer conditions, several buffers that promote the solubility of full-length VP22 were identified. Buffers that gave the highest levels of solubility were then used in immobilized metal ion affinity chromatography experiments to identify conditions that provided the greatest level of VP22 binding and recovery from cobalt and nickel affinity resins. Using this strategy soluble, full-length VP22 was purified from cells infected with HSV-1. PMID:22569534

  18. A simple and effective strategy for solving the problem of inclusion bodies in recombinant protein technology: His-tag deletions enhance soluble expression.

    PubMed

    Zhu, Shaozhou; Gong, Cuiyu; Ren, Lu; Li, Xingzhou; Song, Dawei; Zheng, Guojun

    2013-01-01

    The formation of inclusion bodies (IBs) in recombinant protein biotechnology has become one of the most frequent undesirable occurrences in both research and industrial applications. So far, the pET System is the most powerful system developed for the production of recombinant proteins when Escherichia coli is used as the microbial cell factory. Also, using fusion tags to facilitate detection and purification of the target protein is a commonly used tactic. However, there is still a large fraction of proteins that cannot be produced in E. coli in a soluble (and hence functional) form. Intensive research efforts have tried to address this issue, and numerous parameters have been modulated to avoid the formation of inclusion bodies. However, hardly anyone has noticed that adding fusion tags to the recombinant protein to facilitate purification is a key factor that affects the formation of inclusion bodies. To test this idea, the industrial biocatalysts uridine phosphorylase from Aeropyrum pernix K1 and (+)-γ-lactamase and (-)-γ-lactamase from Bradyrhizobium japonicum USDA 6 were expressed in E. coli by using the pET System and then examined. We found that using a histidine tag as a fusion partner for protein expression did affect the formation of inclusion bodies in these examples, suggesting that removing the fusion tag can promote the solubility of heterologous proteins. The production of soluble and highly active uridine phosphorylase, (+)-γ-lactamase, and (-)-γ-lactamase in our results shows that the traditional process needs to be reconsidered. Accordingly, a simple and efficient structure-based strategy for the production of valuable soluble recombinant proteins in E. coli is proposed.

  19. Identification of Small RNA-Protein Partners in Plant Symbiotic Bacteria.

    PubMed

    Robledo, Marta; Matia-González, Ana M; García-Tomsig, Natalia I; Jiménez-Zurdo, José I

    2018-01-01

    The identification of the protein partners of bacterial small noncoding RNAs (sRNAs) is essential to understand the mechanistic principles and functions of riboregulation in prokaryotic cells. Here, we describe an optimized affinity chromatography protocol that enables purification of in vivo formed sRNA-protein complexes in Sinorhizobium meliloti, a genetically tractable nitrogen-fixing plant symbiotic bacterium. The procedure requires the tagging of the desired sRNA with the MS2 aptamer, which is affinity-captured by the MS2-MBP protein conjugated to an amylose resin. As proof of principle, we show recovery of the RNA chaperone Hfq associated to the strictly Hfq-dependent AbcR2 trans-sRNA. This method can be applied for the investigation of sRNA-protein interactions on a broad range of genetically tractable α-proteobacteria.

  20. Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana.

    PubMed

    Chang, Ing-Feng; Curran, Amy; Woolsey, Rebekah; Quilici, David; Cushman, John C; Mittler, Ron; Harmon, Alice; Harper, Jeffrey F

    2009-06-01

    In eukaryotes, 14-3-3 dimers regulate hundreds of functionally diverse proteins (clients), typically in phosphorylation-dependent interactions. To uncover new clients, 14-3-3 omega (At1g78300) from Arabidopsis was engineered with a "tandem affinity purification" tag and expressed in transgenic plants. Purified complexes were analyzed by tandem MS. Results indicate that 14-3-3 omega can dimerize with at least 10 of the 12 14-3-3 isoforms expressed in Arabidopsis. The identification here of 121 putative clients provides support for in vivo 14-3-3 interactions with a diverse array of proteins, including those involved in: (i) Ion transport, such as a K(+) channel (GORK), a Cl(-) channel (CLCg), Ca(2+) channels belonging to the glutamate receptor family (1.2, 2.1, 2.9, 3.4, 3.7); (ii) hormone signaling, such as ACC synthase (isoforms ACS-6, -7 and -8 involved in ethylene synthesis) and the brassinolide receptors BRI1 and BAK1; (iii) transcription, such as 7 WRKY family transcription factors; (iv) metabolism, such as phosphoenol pyruvate carboxylase; and (v) lipid signaling, such as phospholipase D (beta and gamma). More than 80% (101) of these putative clients represent previously unidentified 14-3-3 interactors. These results raise the number of putative 14-3-3 clients identified in plants to over 300.

  1. Systems Biology of Recombinant Protein Production in Bacillus megaterium

    NASA Astrophysics Data System (ADS)

    Biedendieck, Rebekka; Bunk, Boyke; Fürch, Tobias; Franco-Lara, Ezequiel; Jahn, Martina; Jahn, Dieter

    Over the last two decades the Gram-positive bacterium Bacillus megaterium was systematically developed to a useful alternative protein production host. Multiple vector systems for high yield intra- and extracellular protein production were constructed. Strong inducible promoters were combined with DNA sequences for optimised ribosome binding sites, various leader peptides for protein export and N- as well as C-terminal affinity tags for affinity chromatographic purification of the desired protein. High cell density cultivation and recombinant protein production were successfully tested. For further system biology based control and optimisation of the production process the genomes of two B. megaterium strains were completely elucidated, DNA arrays designed, proteome, fluxome and metabolome analyses performed and all data integrated using the bioinformatics platform MEGABAC. Now, solid theoretical and experimental bases for primary modeling attempts of the production process are available.

  2. Construction of stabilized and tagged foot-and-mouth disease virus.

    PubMed

    Park, Jeong-Nam; Ko, Mi-Kyeong; Kim, Rae-Hyung; Park, Min-Eun; Lee, Seo-Yong; Yoon, Ji-Eun; Choi, Joo-Hyung; You, Su-Hwa; Park, Jung-Won; Lee, Kwang-Nyeong; Chun, Ji-Eun; Kim, Su-Mi; Tark, Dongseob; Lee, Hyang-Sim; Ko, Young-Joon; Kim, Byounghan; Lee, Myoung-Heon; Park, Jong-Hyeon

    2016-11-01

    Foot-and-mouth disease (FMD) is a highly contagious and economically devastating disease that affects cloven-hoofed animals worldwide. Construction and purification of stable antigen for vaccine are necessary but technically difficult and laborious. Here, we have tried to investigate an alternative method by inserting a hexa-histidine tag (6xHIS) in the VP1 C-terminal for easy purification and replacing two amino acids of VP1/VP2 to enhance the stability of the capsid of the FMD virus (FMDV) Asia1/MOG/05. In addition, infectious 6xHIS-tagged stable (S/T) FMDVs were maintained under acidic conditions (pH 6.0) and were readily purified from small-scale cultures using a commercial metal-affinity column. The groups vaccinated with the S/T FMDV antigen showed complete protection comparing to low survival rate in the group vaccinated with non-S/T FMDV against lethal challenge with Asia1 Shamir in mice. Therefore, the present findings indicate that the stabilized and tagged antigen offers an alternative to using the current methods for antigen purification and enhancement of stability and has potential for the development of a new FMD vaccine. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Rapid production of functionalized recombinant proteins: marrying ligation independent cloning and in vitro protein ligation.

    PubMed

    Kushnir, Susanna; Marsac, Yoann; Breitling, Reinhard; Granovsky, Igor; Brok-Volchanskaya, Vera; Goody, Roger S; Becker, Christian F W; Alexandrov, Kirill

    2006-01-01

    Functional genomics and proteomics have been very active fields since the sequencing of several genomes was completed. To assign a physiological role to the newly discovered coding genes with unknown function, new generic methods for protein production, purification, and targeted functionalization are needed. This work presents a new vector, pCYSLIC, that allows rapid generation of Escherichia coli expression constructs via ligation-independent cloning (LIC). The vector is designed to facilitate protein purification by either Ni-NTA or GSH affinity chromatography. Subsequent proteolytic removal of affinity tags liberates an N-terminal cysteine residue that is then used for covalent modification of the target protein with different biophysical probes via protein ligation. The described system has been tested on 36 mammalian Rab GTPases, and it was demonstrated that recombinant GTPases produced with pCYSLIC could be efficiently modified with fluorescein or biotin in vitro. Finally, LIC was compared with the recently developed In-Fusion cloning method, and it was demonstrated that In-Fusion provides superior flexibility in choice of expression vector. By the application of In-Fusion cloning Cys-Rab6A GTPase with an N-terminal cysteine residue was generated employing unmodified pET30a vector and TVMV protease.

  4. Tagging and purifying proteins to teach molecular biology and advanced biochemistry.

    PubMed

    Roecklein-Canfield, Jennifer A; Lopilato, Jane

    2004-11-01

    Two distinct courses, "Molecular Biology" taught by the Biology Department and "Advanced Biochemistry" taught by the Chemistry Department, complement each other and, when taught in a coordinated and integrated way, can enhance student learning and understanding of complex material. "Molecular Biology" is a comprehensive lecture-based course with a 3-h laboratory once a week, while "Advanced Biochemistry" is a completely laboratory-based course with lecture fully integrated around independent student projects. Both courses emphasize and utilize cutting-edge technology. Teaching across departmental boundaries allows students access to faculty expertise and techniques rarely used at the undergraduate level, namely the tagging of proteins and their use in protein purification. Copyright © 2004 International Union of Biochemistry and Molecular Biology, Inc.

  5. GFP Facilitates Native Purification of Recombinant Perlucin Derivatives and Delays the Precipitation of Calcium Carbonate

    PubMed Central

    Weber, Eva; Guth, Christina; Weiss, Ingrid M.

    2012-01-01

    Insolubility is one of the possible functions of proteins involved in biomineralization, which often limits their native purification. This becomes a major problem especially when recombinant expression systems are required to obtain larger amounts. For example, the mollusc shell provides a rich source of unconventional proteins, which can interfere in manifold ways with different mineral phases and interfaces. Therefore, the relevance of such proteins for biotechnological processes is still in its infancy. Here we report a simple and reproducible purification procedure for a GFP-tagged lectin involved in biomineralization, originally isolated from mother-of-pearl in abalone shells. An optimization of E. coli host cell culture conditions was the key to obtain reasonable yields and high degrees of purity by using simple one-step affinity chromatography. We identified a dual functional role for the GFP domain when it became part of a mineralizing system in vitro. First, the GFP domain improved the solubility of an otherwise insoluble protein, in this case recombinant perlucin derivatives. Second, GFP inhibited calcium carbonate precipitation in a concentration dependent manner. This was demonstrated here using a simple bulk assay over a time period of 400 seconds. At concentrations of 2 µg/ml and higher, the inhibitory effect was observed predominantly for HCO3 − as the first ionic interaction partner, but not necessarily for Ca2+ . The interference of GFP-tagged perlucin derivatives with the precipitation of calcium carbonate generated different types of GFP-fluorescent composite calcite crystals. GFP-tagging offers therefore a genetically tunable tool to gently modify mechanical and optical properties of synthetic biocomposite minerals. PMID:23056388

  6. Expanding the versatility of phage display I: efficient display of peptide-tags on protein VII of the filamentous phage.

    PubMed

    Løset, Geir Åge; Bogen, Bjarne; Sandlie, Inger

    2011-02-24

    Phage display is a platform for selection of specific binding molecules and this is a clear-cut motivation for increasing its performance. Polypeptides are normally displayed as fusions to the major coat protein VIII (pVIII), or the minor coat protein III (pIII). Display on other coat proteins such as pVII allows for display of heterologous peptide sequences on the virions in addition to those displayed on pIII and pVIII. In addition, pVII display is an alternative to pIII or pVIII display. Here we demonstrate how standard pIII or pVIII display phagemids are complemented with a helper phage which supports production of virions that are tagged with octa FLAG, HIS(6) or AviTag on pVII. The periplasmic signal sequence required for pIII and pVIII display, and which has been added to pVII in earlier studies, is omitted altogether. Tagging on pVII is an important and very useful add-on feature to standard pIII and pVII display. Any phagemid bearing a protein of interest on either pIII or pVIII can be tagged with any of the tags depending simply on choice of helper phage. We show in this paper how such tags may be utilized for immobilization and separation as well as purification and detection of monoclonal and polyclonal phage populations.

  7. Nickel nanoparticle decorated graphene for highly selective isolation of polyhistidine-tagged proteins

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Wei; Yang, Ting; Ma, Lin-Yu; Chen, Xu-Wei; Wang, Jian-Hua

    2013-12-01

    Nickel nanoparticle decorated graphene (GP-Ni) is prepared by one-pot hydrothermal reduction of graphene oxide and nickel cations by hydrazine hydrate in the presence of poly(sodium-p-styrenesulfonate) (PSS). The GP-Ni hybrid is characterized by XRD, TEM, SEM, XPS, Raman and FT-IR spectra, demonstrating the formation of poly-dispersed nickel nanoparticles with an average size of 83 nm attached on the surface of graphene sheets. The GP-Ni hybrid exhibits ferromagnetic behavior with a magnetization saturation of 31.1 emu g-1 at 10 000 Oersted (Oe). The GP-Ni also possesses favorable stability in aqueous medium and rapid magnetic response to an external magnetic field. These make it a novel magnetic adsorbent for the separation/isolation of His6-tagged recombinant proteins from a complex sample matrix (cell lysate). The targeted protein species is captured onto the surface of the GP-Ni hybrid via specific metal affinity force between polyhistidine groups and nickel nanoparticles. The SDS-PAGE assay indicates highly selective separation of His6-tagged Smt A from cell lysate. The GP-Ni hybrid displays favorable performance on the separation/isolation of His6-tagged recombinant proteins with respect to the commercial NTA-Ni2+ column.

  8. Direct observation of nucleocytoplasmic transport by microinjection of GFP-tagged proteins in living cells.

    PubMed

    Rosorius, O; Heger, P; Stelz, G; Hirschmann, N; Hauber, J; Stauber, R H

    1999-08-01

    We established a straightforward experimental system to investigate directly the requirements for nucleocytoplasmic transport in live cells. For this purpose, substrates were created containing nuclear localization signals (NLS) or nuclear export signals (NES) linked to a chimeric protein composed of the glutathione S-transferase (GST) fused to the green fluorescent protein (GFP). The combination of GST/GFP-tagging allowed us to control protein expression in bacteria and to monitor protein purification during chromatography. Following microinjection into somatic cells, nuclear export/import of the highly fluorescent substrates could be observed directly by fluorescence microscopy. This system sets the stage to quantitate, in real time, the kinetics of nuclear import/export in living cells and to evaluate qualitative differences in various NLS/NES signals and pathways.

  9. Metal-Chelate Affinity Precipitation with Thermo-Responsive Polymer for Purification of ε-Poly-L-Lysine.

    PubMed

    Li, Sipeng; Ding, Zhaoyang; Liu, Jifu; Cao, Xuejun

    2017-12-01

    ε-Poly-L-lysine (ε-PL) is a natural preservative for food processing industry. A thermo-responsive polymer, attached with Cu 2+ or Ni 2+ , was prepared for metal-chelate affinity precipitation for purification of ε-PL. The low critical solution temperatures (LCSTs) of these polymers were close to the room temperature (31.0-35.0 °C). The optimal adsorption conditions were as follows: pH 4.0, 0 mol/L NaCl, ligand density 75.00 μmol/g, and 120 min. The ligand Cu 2+ showed a stronger affinity interaction with ε-PL and the highest adsorption amount reached 251.93 mg/g polymer. The elution recovery of ε-PL could be 98.42% with 0.50 mol/L imidazole (pH = 8.0) as the eluent. The method could purify ε-PL from fermentation broth and the final product was proved as electrophoretic pure by SDS-PAGE. Moreover, these affinity polymers could be recycled after the purification of ε-PL and the recoveries were above 95.00%. Graphical Abstract Scheme for affinity precipitation of ε-PL.

  10. Evaluation of affinity and pseudo-affinity adsorption processes for penicillin acylase purification.

    PubMed

    Fonseca, L P; Cabral, J M

    1996-01-01

    Affinity ligand (6-Aminopenicillanic acid, Amoxycillin, Ampicillin, Benzylpenicillin and 4-Phenylbutylanzine) of penicillin acylase (EC 3.5.1.11) were attached to hydrophilic gels like Sepharose 4B-CNBr and Minileak 'medium'. Ampicillin and 4-Phenylbutylamine were the affinity ligands that presented the higher concentrations attached to both gels. Penicillin acylase adsorption on these affinity gels was mainly dependent on the activated group of the gel, the affinity ligand attached and the experimental conditions of enzyme adsorption. Under affinity conditions only the ligands Amoxycillin, Ampicillin and 4-Phenylbutylamine, immobilized on Minileak, adsorbed the enzyme from osmotic shock extracts at different pH values. These affinity ligand systems were characterized by low adsorption capacities of penicillin acylase activity (1.2-2.1 IU mL-1 gel) and specific activity (1.5-2.9 IU mg-1 prot). Under pseudo-affinity conditions all the ligands attached both activated to gels (Sepharose 4B-CNBr and Minileak) adsorbed the enzyme. The affinity gels were characterized by higher values of adsorption capacity (3.7 and 55.6 IU mL-1 gel) and adsorbed specific activity (2.0 and 6.1 IU mg-1 prot) than those observed under affinity conditions. The space arm of Minileak gel, shown to be fundamental to enzyme adsorption under affinity conditions, preferentially adsorbed proteins in relation to the enzyme under pseudo-affinity conditions. However, this effect was partially minimized when the gel was derivatized by the affinity ligands at concentrations higher than 6 mumol mL-1 gel. Ampicillin was the affinity ligand that presented the best results for specific adsorption of penicillin acylase under affinity and pseudo-affinity adsorption processes. The Sepharose 4B-CNBr derivatized gel also presented a good adsorption capacity of enzyme activity (26.8 IU mL-1 gel) under pseudo-affinity adsorption processes.

  11. Alternative Affinity Ligands for Immunoglobulins.

    PubMed

    Kruljec, Nika; Bratkovič, Tomaž

    2017-08-16

    The demand for recombinant therapeutic antibodies and Fc-fusion proteins is expected to increase in the years to come. Hence, extensive efforts are concentrated on improving the downstream processing. In particular, the development of better-affinity chromatography matrices, supporting robust time- and cost-effective antibody purification, is warranted. With the advances in molecular design and high-throughput screening approaches from chemical and biological combinatorial libraries, novel affinity ligands representing alternatives to bacterial immunoglobulin (Ig)-binding proteins have entered the scene. Here, we review the design, development, and properties of diverse classes of alternative antibody-binding ligands, ranging from engineered versions of Ig-binding proteins, to artificial binding proteins, peptides, aptamers, and synthetic small-molecular-weight compounds. We also provide examples of applications for the novel affinity matrices in chromatography and beyond.

  12. Avidin-Based Targeting and Purification of a Protein IX-Modified, Metabolically Biotinylated Adenoviral Vector

    PubMed Central

    Campos, Samuel K.; Parrott, M. Brandon; Barry, Michael A.

    2014-01-01

    While genetic modification of adenoviral vectors can produce vectors with modified tropism, incorporation of targeting peptides/proteins into the structural context of the virion can also result in destruction of ligand targeting or virion integrity. To combat this problem, we have developed a versatile targeting system using metabolically biotinylated adenoviral vectors bearing biotinylated fiber proteins. These vectors have been demonstrated to be useful as a platform for avidin-based ligand screening and vector targeting by conjugating biotinylated ligands to the virus using high-affinity tetrameric avidin (Kd = 10−15 M). The biotinylated vector could also be purified by biotin-reversible binding on monomeric avidin (Kd = 10−7 M). In this report, a second metabolically biotinylated adenovirus vector, Ad-IX-BAP, has been engineered by fusing a biotin acceptor peptide (BAP) to the C-terminus of the adenovirus pIX protein. This biotinylated vector displays twice as many biotins and was markedly superior for single-step affinity purification on monomeric avidin resin. However, unlike the fiber-biotinylated vector, Ad-IX-BAP failed to retarget to cells with biotinylated antibodies including anti-CD71 against the transferrin receptor. In contrast, Ad-IX-BAP was retargeted if transferrin, the cognate ligand for CD71, was used as a ligand rather than the anti-CD71. This work demonstrates the utility of metabolic biotinylation as a molecular screening tool to assess the utility of different viral capsid proteins for ligand display and the biology and compatibility of different ligands and receptors for vector targeting applications. These results also demonstrate the utility of the pIX-biotinylated vector as a platform for gentle single-step affinity purification of adenoviral vectors. PMID:15194061

  13. Rapid protein concentration, efficient fluorescence labeling and purification on a micro/nanofluidics chip.

    PubMed

    Wang, Chen; Ouyang, Jun; Ye, De-Kai; Xu, Jing-Juan; Chen, Hong-Yuan; Xia, Xing-Hua

    2012-08-07

    Fluorescence analysis has proved to be a powerful detection technique for achieving single molecule analysis. However, it usually requires the labeling of targets with bright fluorescent tags since most chemicals and biomolecules lack fluorescence. Conventional fluorescence labeling methods require a considerable quantity of biomolecule samples, long reaction times and extensive chromatographic purification procedures. Herein, a micro/nanofluidics device integrating a nanochannel in a microfluidics chip has been designed and fabricated, which achieves rapid protein concentration, fluorescence labeling, and efficient purification of product in a miniaturized and continuous manner. As a demonstration, labeling of the proteins bovine serum albumin (BSA) and IgG with fluorescein isothiocyanate (FITC) is presented. Compared to conventional methods, the present micro/nanofluidics device performs about 10(4)-10(6) times faster BSA labeling with 1.6 times higher yields due to the efficient nanoconfinement effect, improved mass, and heat transfer in the chip device. The results demonstrate that the present micro/nanofluidics device promises rapid and facile fluorescence labeling of small amount of reagents such as proteins, nucleic acids and other biomolecules with high efficiency.

  14. Purification of target proteins from intracellular inclusions mediated by intein cleavable polyhydroxyalkanoate synthase fusions.

    PubMed

    Du, Jinping; Rehm, Bernd H A

    2017-11-02

    Recombinant protein production and purification from Escherichia coli is often accompanied with expensive and complicated procedures, especially for therapeutic proteins. Here it was demonstrated that, by using an intein cleavable polyhydroxyalkanoate synthase fusion, recombinant proteins can be first produced and sequestered on a natural resin, the polyhydroxyalkanoate (PHA) inclusions, then separated from contaminating host proteins via simple PHA bead isolation steps, and finally purified by specific release into the soluble fraction induced by a pH reduction. By translationally fusing a target protein to PHA synthase using a self-cleaving intein as linker, intracellular production of PHA beads was achieved. Upon isolation of respective PHA beads the soluble pure target protein was released by a simple pH shift to 6. The utility of this approach was exemplified by producing six target proteins, including Aequorea victoria green fluorescent protein (GFP), Mycobacterium tuberculosis vaccine candidate Rv1626, the immunoglobulin G (IgG) binding ZZ domain of protein A derived from Staphylococcus aureus, human tumor necrosis factor alpha (TNFα), human granulocyte colony-stimulating factor (G-CSF), and human interferon alpha 2b (IFNα2b). Here a new method for production and purification of a tag-less protein was developed through intein cleavable polyhydroxyalkanoate synthase fusion. Pure target protein could be easily obtained without laborious downstream processing.

  15. Cloning, over-expression and purification of Pseudomonas aeruginosa murC encoding uridine diphosphate N-acetylmuramate: L-alanine ligase.

    PubMed

    El Zoeiby, A; Sanschagrin, F; Lamoureux, J; Darveau, A; Levesque, R C

    2000-02-15

    We cloned and sequenced the murC gene from Pseudomonas aeruginosa encoding a protein of 53 kDa. Multiple alignments with 20 MurC peptide sequences from different bacteria confirmed the presence of highly conserved regions having sequence identities ranging from 22-97% including conserved motifs for ATP-binding and the active site of the enzyme. Genetic complementation was done in Escherichia coli (murCts) suppressing the lethal phenotype. The murC gene was subcloned into the expression vector pET30a and overexpressed in E. coli BL21(lambdaDE3). Three PCR cloning strategies were used to obtain the three recombinant plasmids for expression of the native MurC, MurC His-tagged at N-terminal and at C-terminal, respectively. MurC His-tagged at C-terminal was chosen for large scale production and protein purification in the soluble form. The purification was done in a single chromatographic step on an affinity nickel column and obtained in mg quantities at 95% homogeneity. MurC protein was used to produce monoclonal antibodies for epitope mapping and for assay development in high throughput screenings. Detailed studies of MurC and other genes of the bacterial cell cycle will provide the reagents and strain constructs for high throughput screening and for design of novel antibacterials.

  16. Traceless affinity labeling of endogenous proteins for functional analysis in living cells.

    PubMed

    Hayashi, Takahiro; Hamachi, Itaru

    2012-09-18

    Protein labeling and imaging techniques have provided tremendous opportunities to study the structure, function, dynamics, and localization of individual proteins in the complex environment of living cells. Molecular biology-based approaches, such as GFP-fusion tags and monoclonal antibodies, have served as important tools for the visualization of individual proteins in cells. Although these techniques continue to be valuable for live cell imaging, they have a number of limitations that have only been addressed by recent progress in chemistry-based approaches. These chemical approaches benefit greatly from the smaller probe sizes that should result in fewer perturbations to proteins and to biological systems as a whole. Despite the research in this area, so far none of these labeling techniques permit labeling and imaging of selected endogenous proteins in living cells. Researchers have widely used affinity labeling, in which the protein of interest is labeled by a reactive group attached to a ligand, to identify and characterize proteins. Since the first report of affinity labeling in the early 1960s, efforts to fine-tune the chemical structures of both the reactive group and ligand have led to protein labeling with excellent target selectivity in the whole proteome of living cells. Although the chemical probes used for affinity labeling generally inactivate target proteins, this strategy holds promise as a valuable tool for the labeling and imaging of endogenous proteins in living cells and by extension in living animals. In this Account, we summarize traceless affinity labeling, a technique explored mainly in our laboratory. In our overview of the different labeling techniques, we emphasize the challenge of designing chemical probes that allow for dissociation of the affinity module (often a ligand) after the labeling reaction so that the labeled protein retains its native function. This feature distinguishes the traceless labeling approach from the traditional

  17. Preparation of His-tagged armored RNA phage particles as a control for real-time reverse transcription-PCR detection of severe acute respiratory syndrome coronavirus.

    PubMed

    Cheng, Yangjian; Niu, Jianjun; Zhang, Yongyou; Huang, Jianwei; Li, Qingge

    2006-10-01

    Armored RNA has been increasingly used as both an external and internal positive control in nucleic acid-based assays for RNA virus. In order to facilitate armored RNA purification, a His6 tag was introduced into the loop region of the MS2 coat protein, which allows the exposure of multiple His tags on the surface during armored RNA assembly. The His-tagged armored RNA particles were purified to homogeneity and verified to be free of DNA contamination in a single run of affinity chromatography. A fragment of severe acute respiratory syndrome coronavirus (SARS-CoV) genome targeted for SARS-CoV detection was chosen for an external positive control preparation. A plant-specific gene sequence was chosen for a universal noncompetitive internal positive control preparation. Both controls were purified by Co2+ affinity chromatography and were included in a real-time reverse transcription-PCR assay for SARS-CoV. The noncompetitive internal positive control can be added to clinical samples before RNA extraction and enables the identification of potential inhibitive effects without interfering with target amplification. The external control could be used for the quantification of viral loads in clinical samples.

  18. High expression and purification of the recombinant camelid anti-MUC1 single domain antibodies in Escherichia coli.

    PubMed

    Rahbarizadeh, Fatemeh; Rasaee, Mohammad Javad; Forouzandeh-Moghadam, Mehdi; Allameh, Abdol-Amir

    2005-11-01

    In contrast to the murine and human VHs, camels' single domain antibodies (sdAb) have sufficient solubility. These antigen-specific fragments are expressed well in Escherichia coli. Here, we report high expression and purification of sdAbs against MUC1 mucin. MUC1 is a high molecular weight glycoprotein with an aberrant expression profile in various malignancies. The sdAb genes were sub-cloned into a pET32a(+) vector to overexpress the protein coupled with fusion tags in E. coli BL21(DE3). The expressed single domain antibodies were purified by immobilized metal affinity chromatography and antigen affinity chromatography. Analysis by SDS-PAGE and Western blotting demonstrated the integrity of the sdAbs-tags, while ELISA results confirm that the activity of these molecules compare favorably with that of the parent recombinant antibodies. Enterokinase treated sdAb showed a band at the molecular weight around 12 kDa which demonstrated the naked protein in its natural structure with activities comparable to that of native protein. The high binding activity to MUC1 antigen purified from ascitic fluid (of patients with small-cell lung aggressive carcinoma and metastasis to peritoneum) and the very close similarity of these molecules to human VHs illustrated the potential application of these novel products as an immunodiagnostic and immunotherapeutic reagent.

  19. Expression of proteins in Escherichia coli as fusions with maltose-binding protein to rescue non-expressed targets in a high-throughput protein-expression and purification pipeline

    PubMed Central

    Hewitt, Stephen N.; Choi, Ryan; Kelley, Angela; Crowther, Gregory J.; Napuli, Alberto J.; Van Voorhis, Wesley C.

    2011-01-01

    Despite recent advances, the expression of heterologous proteins in Escherichia coli for crystallization remains a nontrivial challenge. The present study investigates the efficacy of maltose-binding protein (MBP) fusion as a general strategy for rescuing the expression of target proteins. From a group of sequence-verified clones with undetectable levels of protein expression in an E. coli T7 expression system, 95 clones representing 16 phylogenetically diverse organisms were selected for recloning into a chimeric expression vector with an N-terminal histidine-tagged MBP. PCR-amplified inserts were annealed into an identical ligation-independent cloning region in an MBP-fusion vector and were analyzed for expression and solubility by high-throughput nickel-affinity binding. This approach yielded detectable expression of 72% of the clones; soluble expression was visible in 62%. However, the solubility of most proteins was marginal to poor upon cleavage of the MBP tag. This study offers large-scale evidence that MBP can improve the soluble expression of previously non-expressing proteins from a variety of eukaryotic and prokaryotic organisms. While the behavior of the cleaved proteins was disappointing, further refinements in MBP tagging may permit the more widespread use of MBP-fusion proteins in crystallographic studies. PMID:21904041

  20. Purification of bone morphogenetic protein-2 from refolding mixtures using mixed-mode membrane chromatography.

    PubMed

    Gieseler, Gesa; Pepelanova, Iliyana; Stuckenberg, Lena; Villain, Louis; Nölle, Volker; Odenthal, Uwe; Beutel, Sascha; Rinas, Ursula; Scheper, Thomas

    2017-01-01

    In this study, we present the development of a process for the purification of recombinant human bone morphogenetic protein-2 (rhBMP-2) using mixed-mode membrane chromatography. RhBMP-2 was produced as inclusion bodies in Escherichia coli. In vitro refolding using rapid dilution was carried out according to a previously established protocol. Different membrane chromatography phases were analyzed for their ability to purify BMP-2. A membrane phase with salt-tolerant properties resulting from mixed-mode ligand chemistry was able to selectively purify BMP-2 dimer from refolding mixtures. No further purification or polishing steps were necessary and high product purity was obtained. The produced BMP-2 exhibited a biological activity of 7.4 × 10 5  U/mg, comparable to commercial preparations. Mixed-mode membrane chromatography can be a valuable tool for the direct purification of proteins from solutions with high-conductivity, for example refolding buffers. In addition, in this particular case, it allowed us to circumvent the use of heparin-affinity chromatography, thus allowing the design of an animal-component-free process.

  1. Enhanced binding by dextran-grafting to Protein A affinity chromatographic media.

    PubMed

    Zhao, Lan; Zhu, Kai; Huang, Yongdong; Li, Qiang; Li, Xiunan; Zhang, Rongyue; Su, Zhiguo; Wang, Qibao; Ma, Guanghui

    2017-04-01

    Dextran-grafted Protein A affinity chromatographic medium was prepared by grafting dextran to agarose-based matrix, followed by epoxy-activation and Protein A coupling site-directed to sulfhydryl groups of cysteine molecules. An enhancement of both the binding performance and the stability was achieved for this dextran-grafted Protein A chromatographic medium. Its dynamic binding capacity was 61 mg immunoglobulin G/mL suction-dried gel, increased by 24% compared with that of the non-grafted medium. The binding capacity of dextran-grafted medium decreased about 7% after 40 cleaning-in-place cycles, much lower than that of the non-grafted medium as decreased about 15%. Confocal laser scanning microscopy results showed that immunoglobulin G was bound to both the outside and the inside of dextran-grafted medium faster than that of non-grafted one. Atomic force microscopy showed that this dextran-grafted Protein A medium had much rougher surface with a vertical coordinate range of ±80 nm, while that of non-grafted one was ±10 nm. Grafted dextran provided a more stereo surface morphology and immunoglobulin G molecules were more easily to be bound. This high-performance dextran-grafted Protein A affinity chromatographic medium has promising applications in large-scale antibody purification. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Optimization of Ammonium Sulfate Concentration for Purification of Colorectal Cancer Vaccine Candidate Recombinant Protein GA733-FcK Isolated from Plants.

    PubMed

    Park, Se-Ra; Lim, Chae-Yeon; Kim, Deuk-Su; Ko, Kisung

    2015-01-01

    A protein purification procedure is required to obtain high-value recombinant injectable vaccine proteins produced in plants as a bioreactor. However, existing purification procedures for plant-derived recombinant proteins are often not optimized and are inefficient, with low recovery rates. In our previous study, we used 25-30% ammonium sulfate to precipitate total soluble proteins (TSPs) in purification process for recombinant proteins from plant leaf biomass which has not been optimized. Thus, the objective in this study is to optimize the conditions for plant-derived protein purification procedures. Various ammonium sulfate concentrations (15-80%) were compared to determine their effects on TSPs yield. With 50% ammonium sulfate, the yield of precipitated TSP was the highest, and that of the plant-derived colorectal cancer-specific surface glycoprotein GA733 fused to the Fc fragment of human IgG tagged with endoplasmic reticulum retention signal KDEL (GA733(P)-FcK) protein significantly increased 1.8-fold. SDS-PAGE analysis showed that the purity of GA733(P)-FcK protein band appeared to be similar to that of an equal dose of mammalian-derived GA733-Fc (GA733(M)-Fc). The binding activity of purified GA733(P)-FcK to anti-GA733 mAb was as efficient as the native GA733(M)-Fc. Thus, the purification process was effectively optimized for obtaining a high yield of plant-derived antigenic protein with good quality. In conclusion, the purification recovery rate of large quantities of recombinant protein from plant expression systems can be enhanced via optimization of ammonium sulfate concentration during downstream processes, thereby offering a promising solution for production of recombinant GA733-Fc protein in plants.

  3. Rapid purification of circular DNA by triplex-mediated affinity capture

    DOEpatents

    Ji, Huamin; Smith, Lloyd M.

    1997-01-01

    A single-step capture of a target supercoiled double-stranded DNA molecule is accomplished by forming a local triple-helix among two strands of the supercoiled circular DNA and an oligonucleotide probe. The oligonucleotide is bound to an immobilizing support which facilitates the immobilization and purification of target DNA molecules. Non-target DNA molecules and other contaminating cellular material are easily removed by washing. The triple-helical structure is destabilized by raising the pH, leaving purified target DNA in the supernatant and reusable affinity capture oligonucleotide secured to the immobilizing support.

  4. Rapid purification of circular DNA by triplex-mediated affinity capture

    DOEpatents

    Ji, H.; Smith, L.M.

    1997-01-07

    A single-step capture of a target supercoiled double-stranded DNA molecule is accomplished by forming a local triple-helix among two strands of the supercoiled circular DNA and an oligonucleotide probe. The oligonucleotide is bound to an immobilizing support which facilitates the immobilization and purification of target DNA molecules. Non-target DNA molecules and other contaminating cellular material are easily removed by washing. The triple-helical structure is destabilized by raising the pH, leaving purified target DNA in the supernatant and reusable affinity capture oligonucleotide secured to the immobilizing support. 3 figs.

  5. Affinity purification using recombinant PXR as a tool to characterize environmental ligands.

    PubMed

    Dagnino, Sonia; Bellet, Virginie; Grimaldi, Marina; Riu, Anne; Aït-Aïssa, Sélim; Cavaillès, Vincent; Fenet, Hélène; Balaguer, Patrick

    2014-02-01

    Many environmental endocrine disrupting compounds act as ligands for nuclear receptors. The human pregnane X receptor (hPXR), for instance, is activated by a variety of environmental ligands such as steroids, pharmaceutical drugs, pesticides, alkylphenols, polychlorinated biphenyls and polybromo diethylethers. Some of us have previously reported the occurrence of hPXR ligands in environmental samples but failed to identify them. The aim of this study was to test whether a PXR-affinity column, in which recombinant hPXR was immobilized on solid support, could help the purification of these chemicals. Using PXR ligands of different affinity (10 nM < EC50 < 10 μM), we demonstrated that the PXR-affinity preferentially column captured ligands with medium to high affinities (EC50 < 1 μM). Furthermore, by using the PXR-affinity column to analyze an environmental sample containing ERα, AhR, AR, and PXR activities, we show that (i) half of the PXR activity of the sample was due to compounds with medium to high affinity for PXR and (ii) PXR shared ligands with ERα, AR, and AhR. These findings demonstrate that the newly developed PXR-affinity column coupled to reporter cell lines represents a valuable tool for the characterization of the nature of PXR active compounds and should therefore guide and facilitate their further analysis. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  6. Expression and purification of myristoylated matrix protein of Mason-Pfizer monkey virus for NMR and MS measurements.

    PubMed

    Prchal, Jan; Junkova, Petra; Strmiskova, Miroslava; Lipov, Jan; Hynek, Radovan; Ruml, Tomas; Hrabal, Richard

    2011-09-01

    Matrix proteins play multiple roles both in early and late stages of the viral replication cycle. Their N-terminal myristoylation is important for interaction with the host cell membrane during virus budding. We used Escherichia coli, carrying N-myristoyltransferase gene, for the expression of the myristoylated His-tagged matrix protein of Mason-Pfizer monkey virus. An efficient, single-step purification procedure eliminating all contaminating proteins including, importantly, the non-myristoylated matrix protein was designed. The comparison of NMR spectra of matrix protein with its myristoylated form revealed substantial structural changes induced by this fatty acid modification. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Expression and purification of mouse peptide ESP4 in Escherichia coli.

    PubMed

    Hirakane, Makoto; Taniguchi, Masahiro; Yoshinaga, Sosuke; Misumi, Shogo; Terasawa, Hiroaki

    2014-04-01

    Pheromones are species-specific chemical signals that regulate a wide range of social and sexual behaviors in many animals. In mice, the male-specific peptide ESP1 (exocrine gland-secreting peptide 1) is secreted into tear fluids and enhances female sexual receptive behavior. ESP1 belongs to the ESP family, a multigene family with 38 genes in mice. ESP1 shares the highest homology with ESP4. ESP1 is expressed in the extraorbital lacrimal gland, whereas ESP4 is expressed in some exocrine glands. Thus, ESP4 is expected to have a function that has not been elucidated yet. Large amounts of the purified ESP4 protein are required for structural and biochemical studies. Here we present an expression and purification scheme for the recombinant ESP4 protein. The N-terminally histidine-tagged ESP4 fusion protein was expressed in Escherichia coli as inclusion bodies, which were solubilized and purified by nickel affinity chromatography. The histidine tag was cleaved with thrombin and removed by a second nickel affinity chromatography step. The ESP4 protein was isolated with high purity by reversed-phase chromatography. For NMR analyses, we prepared a stable isotope-labeled ESP4 protein. Three repeated freeze-drying steps after the reversed-phase chromatography were required, to remove a volatile contaminating compound and to obtain an NMR spectrum with a homogeneous line shape. AMS-modification and far-UV CD spectroscopic analyses suggested that ESP4 has an intramolecular disulfide bridge and a helical structure, respectively. The present study provides a powerful tool for structural and biochemical studies of ESP4, leading toward the elucidation of the roles of the ESP family members. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A new carbamidemethyl-linked lanthanoid chelating tag for PCS NMR spectroscopy of proteins in living HeLa cells.

    PubMed

    Hikone, Yuya; Hirai, Go; Mishima, Masaki; Inomata, Kohsuke; Ikeya, Teppei; Arai, Souichiro; Shirakawa, Masahiro; Sodeoka, Mikiko; Ito, Yutaka

    2016-10-01

    Structural analyses of proteins under macromolecular crowding inside human cultured cells by in-cell NMR spectroscopy are crucial not only for explicit understanding of their cellular functions but also for applications in medical and pharmaceutical sciences. In-cell NMR experiments using human cultured cells however suffer from low sensitivity, thus pseudocontact shifts from protein-tagged paramagnetic lanthanoid ions, analysed using sensitive heteronuclear two-dimensional correlation NMR spectra, offer huge potential advantage in obtaining structural information over conventional NOE-based approaches. We synthesised a new lanthanoid-chelating tag (M8-CAM-I), in which the eight-fold, stereospecifically methylated DOTA (M8) scaffold was retained, while a stable carbamidemethyl (CAM) group was introduced as the functional group connecting to proteins. M8-CAM-I successfully fulfilled the requirements for in-cell NMR: high-affinity to lanthanoid, low cytotoxicity and the stability under reducing condition inside cells. Large PCSs for backbone N-H resonances observed for M8-CAM-tagged human ubiquitin mutant proteins, which were introduced into HeLa cells by electroporation, demonstrated that this approach readily provides the useful information enabling the determination of protein structures, relative orientations of domains and protein complexes within human cultured cells.

  9. Interplay between binding affinity and kinetics in protein-protein interactions.

    PubMed

    Cao, Huaiqing; Huang, Yongqi; Liu, Zhirong

    2016-07-01

    To clarify the interplay between the binding affinity and kinetics of protein-protein interactions, and the possible role of intrinsically disordered proteins in such interactions, molecular simulations were carried out on 20 protein complexes. With bias potential and reweighting techniques, the free energy profiles were obtained under physiological affinities, which showed that the bound-state valley is deep with a barrier height of 12 - 33 RT. From the dependence of the affinity on interface interactions, the entropic contribution to the binding affinity is approximated to be proportional to the interface area. The extracted dissociation rates based on the Arrhenius law correlate reasonably well with the experimental values (Pearson correlation coefficient R = 0.79). For each protein complex, a linear free energy relationship between binding affinity and the dissociation rate was confirmed, but the distribution of the slopes for intrinsically disordered proteins showed no essential difference with that observed for ordered proteins. A comparison with protein folding was also performed. Proteins 2016; 84:920-933. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Affinity purification of the voltage-sensitive sodium channel from electroplax with resins selective for sialic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, W.M.; Emerick, M.C.; Agnew, W.S.

    1989-07-11

    The voltage-sensitive sodium channel present in the eel (Electrophorus electricus) has an unusually high content of sialic acid, including {alpha}-(2{yields}8)-linked polysialic acid, not found in other electroplax membrane glycopeptides. Lectins from Limax flavus (LFA) and wheat germ (WGA) proved the most effective of 11 lectin resins tried. The most selective resin was prepared from IgM antibodies against Neisseria meningitidis {alpha}-(2{yields}8)-polysialic acid which were affinity purified and coupled to Sepharose 4B. The sodium channel was found to bind to WGA, LFA, and IgM resins and was readily eluted with the appropriate soluble carbohydrates. Experiments with LFA and IgM resins demonstrated bindingmore » and unbinding rates and displacement kinetics, which suggest highly specific binding at multiple sites on the sodium channel protein. In preparative-scale purification of protein previously fractionated by anion-exchange chromatography, without stabilizing TTX, high yields were reproducibly obtained. Further, when detergent extracts were prepared from electroplax membranes fractionated by low-speed sedimentation, a single step over the IgM resin provided a 70-fold purification, yielding specific activities of 3,200 pmol of ({sup 3}H)TTX-binding sites/mg of protein and a single polypeptide of {approximately}285,000 Da on SDS-acrylamide gels. No small peptides were observed after this 5-h isolation. The authors describe a cation-dependent stabilization with millimolar levels of monovalent and micromolar levels of divalent species.« less

  11. Addition of six-His-tagged peptide to the C terminus of adeno-associated virus VP3 does not affect viral tropism or production.

    PubMed

    Zhang, Huang-Ge; Xie, Jinfu; Dmitriev, Igor; Kashentseva, Elena; Curiel, David T; Hsu, Hui-Chen; Mountz, John D

    2002-12-01

    Production of large quantities of recombinant adeno-associated virus (AAV) is difficult and not cost-effective. To overcome this problem, we have explored the feasibility of creating a recombinant AAV encoding a 6xHis tag on the VP3 capsid protein. We generated a plasmid vector containing a six-His (6xHis)-tagged AAV VP3. A second plasmid vector was generated that contained the full-length AAV capsid capable of producing VP1 and VP2, but not VP3 due to a mutation at position 2809 that encodes the start codon for VP3. These plasmids, necessary for production of AAV, were transfected into 293 cells to generate a 6xHis-tagged VP3mutant recombinant AAV. The 6xHis-tagged VP3 did not affect the formation of AAV virus, and the physical properties of the 6xHis-modified AAV were equivalent to those of wild-type particles. The 6xHis-tagged AAV did not affect the production titer of recombinant AAV and could be used to purify the recombinant AAV using an Ni-nitrilotriacetic acid column. Addition of the 6xHis tag did not alter the viral tropism compared to wild-type AAV. These observations demonstrate the feasibility of producing high-titer AAV containing a 6xHis-tagged AAV VP3 capsid protein and to utilize the 6xHis-tagged VP3 capsid to achieve high-affinity purification of this recombinant AAV.

  12. Dye-ligand affinity systems.

    PubMed

    Denizli, A; Pişkin, E

    2001-10-30

    Dye-ligands have been considered as one of the important alternatives to natural counterparts for specific affinity chromatography. Dye-ligands are able to bind most types of proteins, in some cases in a remarkably specific manner. They are commercially available, inexpensive, and can easily be immobilized, especially on matrices bearing hydroxyl groups. Although dyes are all synthetic in nature, they are still classified as affinity ligands because they interact with the active sites of many proteins mimicking the structure of the substrates, cofactors, or binding agents for those proteins. A number of textile dyes, known as reactive dyes, have been used for protein purification. Most of these reactive dyes consist of a chromophore (either azo dyes, anthraquinone, or phathalocyanine), linked to a reactive group (often a mono- or dichlorotriazine ring). The interaction between the dye ligand and proteins can be by complex combination of electrostatic, hydrophobic, hydrogen bonding. Selection of the supporting matrix is the first important consideration in dye-affinity systems. There are several methods for immobilization of dye molecules onto the support matrix, in which usually several intermediate steps are followed. Both the adsorption and elution steps should carefully be optimized/designed for a successful separation. Dye-affinity systems in the form of spherical sorbents or as affinity membranes have been used in protein separation.

  13. Obtaining Soluble Folded Proteins from Inclusion Bodies Using Sarkosyl, Triton X-100, and CHAPS: Application to LB and M9 Minimal Media.

    PubMed

    Massiah, Michael A; Wright, Katharine M; Du, Haijuan

    2016-04-01

    This unit describes a straightforward and efficient method of using sarkosyl to solubilize and recover difficult recombinant proteins, such as GST- and His6 -tagged fusion proteins, that are overexpressed in E. coli. This protocol is especially useful for rescuing recombinant proteins overexpressed in M9 minimal medium. Sarkosyl added to lysis buffers helps with both protein solubility and cell lysis. Higher percentage sarkosyl (up to 10%) can extract >95% of soluble protein from inclusion bodies. In the case of sarkosyl-solubilized GST-fusion proteins, batch-mode affinity purification requires addition of a specific ratio of Triton X-100 and CHAPS, while sarkosyl-solubilized His6 -tagged fusion proteins can be directly purified on Ni(2+) resin columns. Proteins purified by this method could be widely used in biological assays, structure analysis and mass spectrum assay. Copyright © 2016 John Wiley & Sons, Inc.

  14. TMV-Gate vectors: Gateway compatible tobacco mosaic virus based expression vectors for functional analysis of proteins

    PubMed Central

    Kagale, Sateesh; Uzuhashi, Shihomi; Wigness, Merek; Bender, Tricia; Yang, Wen; Borhan, M. Hossein; Rozwadowski, Kevin

    2012-01-01

    Plant viral expression vectors are advantageous for high-throughput functional characterization studies of genes due to their capability for rapid, high-level transient expression of proteins. We have constructed a series of tobacco mosaic virus (TMV) based vectors that are compatible with Gateway technology to enable rapid assembly of expression constructs and exploitation of ORFeome collections. In addition to the potential of producing recombinant protein at grams per kilogram FW of leaf tissue, these vectors facilitate either N- or C-terminal fusions to a broad series of epitope tag(s) and fluorescent proteins. We demonstrate the utility of these vectors in affinity purification, immunodetection and subcellular localisation studies. We also apply the vectors to characterize protein-protein interactions and demonstrate their utility in screening plant pathogen effectors. Given its broad utility in defining protein properties, this vector series will serve as a useful resource to expedite gene characterization efforts. PMID:23166857

  15. Using ProHits to store, annotate and analyze affinity purification - mass spectrometry (AP-MS) data

    PubMed Central

    Liu, Guomin; Zhang, Jianping; Choi, Hyungwon; Lambert, Jean-Philippe; Srikumar, Tharan; Larsen, Brett; Nesvizhskii, Alexey I.; Raught, Brian; Tyers, Mike; Gingras, Anne-Claude

    2012-01-01

    Affinity purification coupled with mass spectrometry (AP-MS) is a robust technique used to identify protein-protein interactions. With recent improvements in sample preparation, and dramatic advances in MS instrumentation speed and sensitivity, this technique is becoming more widely used throughout the scientific community. To meet the needs of research groups both large and small, we have developed software solutions for tracking, scoring and analyzing AP-MS data. Here, we provide details for the installation and utilization of ProHits, a Laboratory Information Management System designed specifically for AP-MS interaction proteomics. This protocol explains: (i) how to install the complete ProHits system, including modules for the management of mass spectrometry files and the analysis of interaction data, and (ii) alternative options for the use of pre-existing search results in simpler versions of ProHits, including a virtual machine implementation of our ProHits Lite software. We also describe how to use the main features of the software to analyze AP-MS data. PMID:22948730

  16. Sample displacement chromatography as a method for purification of proteins and peptides from complex mixtures

    PubMed Central

    Gajdosik, Martina Srajer; Clifton, James; Josic, Djuro

    2012-01-01

    Sample displacement chromatography (SDC) in reversed-phase and ion-exchange modes was introduced approximately twenty years ago. This method takes advantage of relative binding affinities of components in a sample mixture. During loading, there is a competition among different sample components for the sorption on the surface of the stationary phase. SDC was first used for the preparative purification of proteins. Later, it was demonstrated that this kind of chromatography can also be performed in ion-exchange, affinity and hydrophobic-interaction mode. It has also been shown that SDC can be performed on monoliths and membrane-based supports in both analytical and preparative scale. Recently, SDC in ion-exchange and hydrophobic interaction mode was also employed successfully for the removal of trace proteins from monoclonal antibody preparations and for the enrichment of low abundance proteins from human plasma. In this review, the principals of SDC are introduced, and the potential for separation of proteins and peptides in micro-analytical, analytical and preparative scale is discussed. PMID:22520159

  17. Soluble expression and one-step purification of recombinant mouse interferon-λ3 in Escherichia coli.

    PubMed

    Wang, Y Q; Zhou, M; Zeng, L M; Gao, Q Y; Yuan, X L; Li, Y; Li, M C

    2015-02-01

    Interferon (IFN)-λ3, a member of the type III IFN family, is a pleiotropic cytokine that exhibits potent antiproliferative, antiviral, and immunoregulatory activities. For further functional study of IFN-λ3, we developed an efficient procedure that includes cloning, expression, and purification to obtain relatively large quantity of mouse IFN-λ3 fusion protein. The mature IFN-λ3 protein-coding region was cloned into the prokaryotic expression vector pET-44. IFN-λ3 contains a hexahistidine tag at its C-terminus. We used Ni(2+)-nitrilotriacetic acid agarose-affinity chromatography to purify the expressed soluble protein. The purified IFN-λ3 inhibited significantly IL-13 production in stimulated RAW264.7 macrophages. Our findings show that the production of soluble IFN-λ3 proteins by the pET-44 vector in Escherichia coli is a good alternative for the production of native IFN-λ3 and could be useful for the production of other IFN proteins.

  18. Expression and purification of recombinant apolipoprotein A-I Zaragoza (L144R) and formation of reconstituted HDL particles.

    PubMed

    Fiddyment, Sarah; Barceló-Batllori, Sílvia; Pocoví, Miguel; García-Otín, Angel-Luis

    2011-11-01

    Apolipoprotein A-I Zaragoza (L144R) (apo A-I Z), has been associated with severe hypoalphalipoproteinemia and an enhanced effect of high density lipoprotein (HDL) reverse cholesterol transport. In order to perform further studies with this protein we have optimized an expression and purification method of recombinant wild-type apo A-I and apo A-I Z and produced mimetic HDL particles with each protein. An pET-45 expression system was used to produce N-terminal His-tagged apo A-I, wild-type or mutant, in Escherichia coli BL21 (DE3) which was subsequently purified by affinity chromatography in non-denaturing conditions. HDL particles were generated via a modified sodium cholate method. Expression and purification of both proteins was verified by SDS-PAGE, MALDI-TOF MS and immunochemical procedures. Yield was 30mg of purified protein (94% purity) per liter of culture. The reconstituted HDL particles checked via non-denaturing PAGE showed high homogeneity in their size when reconstituted both with wild-type apo A-I and apo A-I Z. An optimized system for the expression and purification of wild-type apo A-I and apo A-I Z with high yield and purity grade has been achieved, in addition to their use in reconstituted HDL particles, as a basis for further studies. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Expression, purification and crystallization of a lyssavirus matrix (M) protein

    PubMed Central

    Assenberg, René; Delmas, Olivier; Graham, Stephen C.; Verma, Anil; Berrow, Nick; Stuart, David I.; Owens, Raymond J.; Bourhy, Hervé; Grimes, Jonathan M.

    2008-01-01

    The matrix (M) proteins of lyssaviruses (family Rhabdoviridae) are crucial to viral morphogenesis as well as in modulating replication and transcription of the viral genome. To date, no high-resolution structural information has been obtained for full-length rhabdovirus M. Here, the cloning, expression and purification of the matrix proteins from three lyssaviruses, Lagos bat virus (LAG), Mokola virus and Thailand dog virus, are described. Crystals have been obtained for the full-length M protein from Lagos bat virus (LAG M). Successful crystallization depended on a number of factors, in particular the addition of an N-terminal SUMO fusion tag to increase protein solubility. Diffraction data have been recorded from crystals of native and selenomethionine-labelled LAG M to 2.75 and 3.0 Å resolution, respectively. Preliminary analysis indicates that these crystals belong to space group P6122 or P6522, with unit-cell parameters a = b = 56.9–57.2, c = 187.9–188.6 Å, consistent with the presence of one molecule per asymmetric unit, and structure determination is currently in progress. PMID:18391421

  20. An affinity-directed protein missile system for targeted proteolysis.

    PubMed

    Fulcher, Luke J; Macartney, Thomas; Bozatzi, Polyxeni; Hornberger, Annika; Rojas-Fernandez, Alejandro; Sapkota, Gopal P

    2016-10-01

    The von Hippel-Lindau (VHL) protein serves to recruit the hypoxia-inducible factor alpha (HIF1α) protein under normoxia to the CUL2 E3 ubiquitin ligase for its ubiquitylation and degradation through the proteasome. In this report, we modify VHL to engineer an affinity-directed protein missile (AdPROM) system to direct specific endogenous target proteins for proteolysis in mammalian cells. The proteolytic AdPROM construct harbours a cameloid anti-green fluorescence protein (aGFP) nanobody that is fused to VHL for either constitutive or tetracycline-inducible expression. For target proteins, we exploit CRISPR/Cas9 to rapidly generate human kidney HEK293 and U2OS osteosarcoma homozygous knock-in cells harbouring GFP tags at the VPS34 (vacuolar protein sorting 34) and protein associated with SMAD1 (PAWS1, aka FAM83G) loci, respectively. Using these cells, we demonstrate that the expression of the VHL-aGFP AdPROM system results in near-complete degradation of the endogenous GFP-VPS34 and PAWS1-GFP proteins through the proteasome. Additionally, we show that Tet-inducible destruction of GFP-VPS34 results in the degradation of its associated partner, UVRAG, and reduction in levels of cellular phosphatidylinositol 3-phosphate. © 2016 The Authors.

  1. An affinity-directed protein missile system for targeted proteolysis

    PubMed Central

    Fulcher, Luke J.; Macartney, Thomas; Bozatzi, Polyxeni; Hornberger, Annika; Rojas-Fernandez, Alejandro

    2016-01-01

    The von Hippel–Lindau (VHL) protein serves to recruit the hypoxia-inducible factor alpha (HIF1α) protein under normoxia to the CUL2 E3 ubiquitin ligase for its ubiquitylation and degradation through the proteasome. In this report, we modify VHL to engineer an affinity-directed protein missile (AdPROM) system to direct specific endogenous target proteins for proteolysis in mammalian cells. The proteolytic AdPROM construct harbours a cameloid anti-green fluorescence protein (aGFP) nanobody that is fused to VHL for either constitutive or tetracycline-inducible expression. For target proteins, we exploit CRISPR/Cas9 to rapidly generate human kidney HEK293 and U2OS osteosarcoma homozygous knock-in cells harbouring GFP tags at the VPS34 (vacuolar protein sorting 34) and protein associated with SMAD1 (PAWS1, aka FAM83G) loci, respectively. Using these cells, we demonstrate that the expression of the VHL-aGFP AdPROM system results in near-complete degradation of the endogenous GFP-VPS34 and PAWS1-GFP proteins through the proteasome. Additionally, we show that Tet-inducible destruction of GFP-VPS34 results in the degradation of its associated partner, UVRAG, and reduction in levels of cellular phosphatidylinositol 3-phosphate. PMID:27784791

  2. Fluorescent labeling of SNAP-tagged proteins in cells.

    PubMed

    Lukinavičius, Gražvydas; Reymond, Luc; Johnsson, Kai

    2015-01-01

    One of the most prominent self-labeling tags is SNAP-tag. It is an in vitro evolution product of the human DNA repair protein O (6)-alkylguanine-DNA alkyltransferase (hAGT) that reacts specifically with benzylguanine (BG) and benzylchloropyrimidine (CP) derivatives, leading to covalent labeling of SNAP-tag with a synthetic probe (Gronemeyer et al., Protein Eng Des Sel 19:309-316, 2006; Curr Opin Biotechnol 16:453-458, 2005; Keppler et al., Nat Biotechnol 21:86-89, 2003; Proc Natl Acad Sci U S A 101:9955-9959, 2004). SNAP-tag is well suited for the analysis and quantification of fused target protein using fluorescence microscopy techniques. It provides a simple, robust, and versatile approach to the imaging of fusion proteins under a wide range of experimental conditions.

  3. A two-step strategy to visually identify molecularly imprinted polymers for tagged proteins.

    PubMed

    Brandis, Alexander; Partouche, Eran; Yechezkel, Tamar; Salitra, Yoseph; Shkoulev, Vladimir; Scherz, Avigdor; Grynszpan, Flavio

    2017-08-01

    A practical and relatively simple method to identify molecularly imprinted polymers capable of binding proteins via the molecular tagging (epitope-like) approach has been developed. In our two-step method, we first challenge a previously obtained anti-tag molecularly imprinted polymer with a small molecule including the said tag of choice (a biotin derivative as shown here or other) connected to a linker bound to a second biotin moiety. An avidin molecule partially decorated with fluorescent labels is then allowed to bind the available biotin derivative associated with the polymer matrix. At the end of this simple process, and after washing off all the low-affinity binding molecules from the polymer matrix, only suitable molecularly imprinted polymers binding avidin through its previously acquired small molecule tag (or epitope-like probe, in a general case) will remain fluorescent. For confirmation, we tested the selective performance of the anti-biotin molecularly imprinted polymer binding it to biotinylated alkaline phosphatase. Residual chemical activity of the enzyme on the molecularly imprinted polymer solid support was observed. In all cases, the corresponding nonimprinted polymer controls were inactive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Purification, crystallization and preliminary X-ray diffraction studies on goat (Capra hircus) hemoglobin - a low oxygen affinity species.

    PubMed

    Moorthy, Ponnuraj Sathya; Neelagandan, Kamariah; Balasubramanian, Moovarkumudalvan; Ponnuswamy, Mondikalipudur Nanjappa Gounder

    2009-01-01

    Hemoglobin is a vital protein present in almost all higher species. It is a transport protein involved in carrying oxygen from lungs to tissues and carbon dioxide back to lungs by an intrinsically coordinated manner. Even though a good amount of work has been carried out in this direction there exists scarcity of structural insight on low oxygen affinity species. Attempts are being made to unravel the structural insight of this low oxygen affinity species. Goat blood plasma was collected, treated with EDTA to avoid blood clotting and purification was accomplished using DEAE-anion chromatographic column. The goat hemoglobin was crystallized using 50mM of phosphate buffer at pH 6.7 with 1M NaCl and PEG 3350 as precipitant by hanging drop vapor diffusion method. Crystals obtained are screened and suitable crystals are taken for data collection using mar345dtb as image plate detector system. Goat hemoglobin crystal diffracted up to 2.61 A resolution. Goat hemoglobin crystallizes in orthorhombic space group P212(1)2(1) as a whole biological molecule in the asymmetric unit with cell dimensions a=53.568A, b=67.365A, c=154.183A.

  5. Novel high-performance purification protocol of recombinant CNBP suitable for biochemical and biophysical characterization.

    PubMed

    Challier, Emilse; Lisa, María-Natalia; Nerli, Bibiana B; Calcaterra, Nora B; Armas, Pablo

    2014-01-01

    Cellular nucleic acid binding protein (CNBP) is a highly conserved multi-zinc knuckle protein that enhances c-MYC expression, is related to certain human muscular diseases and is required for proper rostral head development. CNBP binds to single-stranded DNA (ssDNA) and RNA and acts as nucleic acid chaperone. Despite the advances made concerning CNBP biological roles, a full knowledge about the structure-function relationship has not yet been achieved, likely due to difficulty in obtaining pure and tag-free CNBP. Here, we report a fast, simple, reproducible, and high-performance expression and purification protocol that provides recombinant tag-free CNBP from Escherichia coli cultures. We determined that tag-free CNBP binds its molecular targets with higher affinity than tagged-CNBP. Furthermore, fluorescence spectroscopy revealed the presence of a unique and conserved tryptophan, which is exposed to the solvent and involved, directly or indirectly, in nucleic acid binding. Size-exclusion HPLC revealed that CNBP forms homodimers independently of nucleic acid binding and coexist with monomers as non-interconvertible forms or in slow equilibrium. Circular dichroism spectroscopy showed that CNBP has a secondary structure dominated by random-coil and β-sheet coincident with the sequence-predicted repetitive zinc knuckles motifs, which folding is required for CNBP structural stability and biochemical activity. CNBP structural stability increased in the presence of single-stranded nucleic acid targets similar to other unstructured nucleic acid chaperones. Altogether, data suggest that CNBP is a flexible protein with interspersed structured zinc knuckles, and acquires a more rigid structure upon nucleic acid binding. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Purification of native M. vogae and H. contortus tubulin by TOG affinity chromatography.

    PubMed

    Munguía, Beatriz; Teixeira, Ramiro; Veroli, Victoria; Melian, Elisa; Saldaña, Jenny; Minteguiaga, Mahia; Señorale, Mario; Marín, Mónica; Domínguez, Laura

    2017-11-01

    Microtubules are non-covalent cylindrical polymers formed by alpha- and beta-tubulin heterodimer units, crucial for cell division, intracellular transport, motility and differentiation. This makes them very attractive pharmacological targets exploited to develop different drugs such as anthelmintics, antifungals, and antineoplastics. In this work, in order to establish an in vitro target-based screen to integrate to the search for new anthelmintics, we explored the extraction of native assembly-competent tubulin from two helminth parasites: Mesocestoides vogae tetrathyridia (syn. corti, Cestoda: Cyclophyllidea), a useful cestode biological model, and Haemonchus contortus, a sheep gastrointestinal nematode of interest in livestock production. For this purpose, a novel tubulin affinity chromatography procedure was employed, based on the binding capacity of TOG (Tumor Overexpressed Gene) domain from MAPs (microtubule-associated proteins). The TOG domain of the protein Stu2 from Saccharomyces cerevisiae fused to GST (glutathione S- transferase) were produced in E. coli, and the immobilized recombinant proteins allowed for native tubulin extraction from parasites. The binding capacity of TOG1 affinity column (3.6%) was estimated using commercial porcine brain tubulin. A total amount of up to 126 μg of M. vogae tubulin was purified, whereas H. contortus tubulin co-eluted with glutamate dehydrogenase enzyme. The identity of tubulins was confirmed by western blotting and mass spectrometry. The abundance of tubulin estimated in M. vogae was 10% soluble extract, which probably could explain differences observed between tubulin purification results of both helminth parasites. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Expression and purification of recombinant nattokinase in Spodoptera frugiperda cells.

    PubMed

    Li, Xiaoxiang; Wang, Xiaoli; Xiong, Shaoling; Zhang, Jing; Cai, Litao; Yang, Yanyan

    2007-10-01

    A recombinant baculovirus, rv-egfp-NK, containing a reporter gene encoding the enhanced green fluorescent protein (EGFP), was used to express nattokinase (NK), a fibrinolytic enzyme, in Spodoptera frugiperda (SF-9) cells. The recombinant protein also included a histidine tag for purification using Ni(2+) resins. The recombinant NK, approximately 30 kDa, retained fibrinolytic activity (60 U/ml). The integration of the EGFP expression cassette in the Bac-to-Bac system is thus an effective method for the expression and purification of recombinant NK protein in Spodoptera frugiperda insect cells.

  8. Fc-Binding Ligands of Immunoglobulin G: An Overview of High Affinity Proteins and Peptides

    PubMed Central

    Choe, Weonu; Durgannavar, Trishaladevi A.; Chung, Sang J.

    2016-01-01

    The rapidly increasing application of antibodies has inspired the development of several novel methods to isolate and target antibodies using smart biomaterials that mimic the binding of Fc-receptors to antibodies. The Fc-binding domain of antibodies is the primary binding site for e.g., effector proteins and secondary antibodies, whereas antigens bind to the Fab region. Protein A, G, and L, surface proteins expressed by pathogenic bacteria, are well known to bind immunoglobulin and have been widely exploited in antibody purification strategies. Several difficulties are encountered when bacterial proteins are used in antibody research and application. One of the major obstacles hampering the use of bacterial proteins is sample contamination with trace amounts of these proteins, which can invoke an immune response in the host. Many research groups actively develop synthetic ligands that are able to selectively and strongly bind to antibodies. Among the reported ligands, peptides that bind to the Fc-domain of antibodies are attractive tools in antibody research. Besides their use as high affinity ligands in antibody purification chromatography, Fc-binding peptides are applied e.g., to localize antibodies on nanomaterials and to increase the half-life of proteins in serum. In this review, recent developments of Fc-binding peptides are presented and their binding characteristics and diverse applications are discussed. PMID:28774114

  9. Controlling Protein Surface Orientation by Strategic Placement of Oligo-Histidine Tags

    PubMed Central

    2017-01-01

    We report oriented immobilization of proteins using the standard hexahistidine (His6)-Ni2+:NTA (nitrilotriacetic acid) methodology, which we systematically tuned to give control of surface coverage. Fluorescence microscopy and surface plasmon resonance measurements of self-assembled monolayers (SAMs) of red fluorescent proteins (TagRFP) showed that binding strength increased by 1 order of magnitude for each additional His6-tag on the TagRFP proteins. All TagRFP variants with His6-tags located on only one side of the barrel-shaped protein yielded a 1.5 times higher surface coverage compared to variants with His6-tags on opposite sides of the so-called β-barrel. Time-resolved fluorescence anisotropy measurements supported by polarized infrared spectroscopy verified that the orientation (and thus coverage and functionality) of proteins on surfaces can be controlled by strategic placement of a His6-tag on the protein. Molecular dynamics simulations show how the differently tagged proteins reside at the surface in “end-on” and “side-on” orientations with each His6-tag contributing to binding. Also, not every dihistidine subunit in a given His6-tag forms a full coordination bond with the Ni2+:NTA SAMs, which varied with the position of the His6-tag on the protein. At equal valency but different tag positions on the protein, differences in binding were caused by probing for Ni2+:NTA moieties and by additional electrostatic interactions between different fractions of the β-barrel structure and charged NTA moieties. Potential of mean force calculations indicate there is no specific single-protein interaction mode that provides a clear preferential surface orientation, suggesting that the experimentally measured preference for the end-on orientation is a supra-protein, not a single-protein, effect. PMID:28850777

  10. High-yield expression of recombinant soybean agglutinin in plants using transient and stable systems.

    PubMed

    Tremblay, Reynald; Feng, Mary; Menassa, Rima; Huner, Norman P A; Jevnikar, Anthony M; Ma, Shengwu

    2011-04-01

    Soybean agglutinin (SBA) is a specific N-acetylgalactosamine-binding plant lectin that can agglutinate a wide variety of cells. SBA has great potential for medical and biotechnology-focused applications, including screening and treatment of breast cancer, isolation of fetal cells from maternal blood for genetic screening, the possibility as a carrier system for oral drug delivery, and utilization as an affinity tag for high-quality purification of tagged proteins. The success of these applications, to a large degree, critically depends on the development of a highly efficient expression system for a source of recombinant SBA (rSBA). Here, we demonstrate the utility of transient and stable expression systems in Nicotiana benthamiana and potato, respectively, for the production of rSBA, with the transgenic protein accumulated to 4% of total soluble protein (TSP) in Nicotiana benthamiana leaves and 0.3% of TSP in potato tubers. Furthermore, we show that both plant-derived rSBAs retain their ability to induce the agglutination of red blood cells, are similarly glycosylated when compared with native SBA, retained their binding specificity for N-acetylgalactosamine, and were highly resistant to degradation in simulated gastric and intestinal fluids. Affinity column purification using N-acetylgalactosamine as a specific ligand resulted in high recovery and purity of rSBA. This work is the first step toward use of rSBA for various new applications, including the development of rSBA as a novel affinity tag for simplified purification of tagged proteins and as a new carrier molecule for delivery of oral drugs.

  11. DESIGN, SYNTHESIS, AND APPLICATION OF THE TRIMETHOPRIM-BASED CHEMICAL TAG FOR LIVE CELL IMAGING

    PubMed Central

    Jing, Chaoran; Cornish, Virginia W.

    2013-01-01

    Over the past decade chemical tags have been developed to complement the use of fluorescent proteins in live cell imaging. Chemical tags retain the specificity of protein labeling achieved with fluorescent proteins through genetic encoding, but provide smaller, more robust tags and modular use of organic fluorophores with high photon-output and tailored functionalities. The trimethoprim-based chemical tag (TMP-tag) was initially developed based on the high affinity interaction between E.coli dihydrofolatereductase and the antibiotic trimethoprim and subsequently rendered covalent and fluorogenic via proximity-induced protein labeling reactions. To date, the TMP-tag is one of the few chemical tags that enable intracellular protein labeling and high-resolution live cell imaging. Here we describe the general design, chemical synthesis, and application of TMP-tag for live cell imaging. Alternative protocols for synthesizing and using the covalent and the fluorogenic TMP-tags are also included. PMID:23839994

  12. How Structure Defines Affinity in Protein-Protein Interactions

    PubMed Central

    Erijman, Ariel; Rosenthal, Eran; Shifman, Julia M.

    2014-01-01

    Protein-protein interactions (PPI) in nature are conveyed by a multitude of binding modes involving various surfaces, secondary structure elements and intermolecular interactions. This diversity results in PPI binding affinities that span more than nine orders of magnitude. Several early studies attempted to correlate PPI binding affinities to various structure-derived features with limited success. The growing number of high-resolution structures, the appearance of more precise methods for measuring binding affinities and the development of new computational algorithms enable more thorough investigations in this direction. Here, we use a large dataset of PPI structures with the documented binding affinities to calculate a number of structure-based features that could potentially define binding energetics. We explore how well each calculated biophysical feature alone correlates with binding affinity and determine the features that could be used to distinguish between high-, medium- and low- affinity PPIs. Furthermore, we test how various combinations of features could be applied to predict binding affinity and observe a slow improvement in correlation as more features are incorporated into the equation. In addition, we observe a considerable improvement in predictions if we exclude from our analysis low-resolution and NMR structures, revealing the importance of capturing exact intermolecular interactions in our calculations. Our analysis should facilitate prediction of new interactions on the genome scale, better characterization of signaling networks and design of novel binding partners for various target proteins. PMID:25329579

  13. High production of llama variable heavy-chain antibody fragment (VHH) fused to various reader proteins by Aspergillus oryzae.

    PubMed

    Hisada, Hiromoto; Tsutsumi, Hiroko; Ishida, Hiroki; Hata, Yoji

    2013-01-01

    Llama variable heavy-chain antibody fragment (VHH) fused to four different reader proteins was produced and secreted in culture medium by Aspergillus oryzae. These fusion proteins consisted of N-terminal reader proteins, VHH, and a C-terminal his-tag sequence which facilitated purification using one-step his-tag affinity chromatography. SDS-PAGE analysis of the deglycosylated purified fusion proteins confirmed that the molecular weight of each corresponded to the expected sum of VHH and the respective reader proteins. The apparent high molecular weight reader protein glucoamylase (GlaB) was found to be suitable for efficient VHH production. The GlaB-VHH-His protein bound its antigen, human chorionic gonadotropin, and was detectable by a new ELISA-based method using a coupled assay with glucoamylase, glucose oxidase, peroxidase, maltose, and 3,3',5,5'-tetramethylbenzidine as substrates. Addition of potassium phosphate to the culture medium induced secretion of 0.61 mg GlaB-VHH-His protein/ml culture medium in 5 days.

  14. RAC-tagging: Recombineering And Cas9-assisted targeting for protein tagging and conditional analyses

    PubMed Central

    Baker, Oliver; Gupta, Ashish; Obst, Mandy; Zhang, Youming; Anastassiadis, Konstantinos; Fu, Jun; Stewart, A. Francis

    2016-01-01

    A fluent method for gene targeting to establish protein tagged and ligand inducible conditional loss-of-function alleles is described. We couple new recombineering applications for one-step cloning of gRNA oligonucleotides and rapid generation of short-arm (~1 kb) targeting constructs with the power of Cas9-assisted targeting to establish protein tagged alleles in embryonic stem cells at high efficiency. RAC (Recombineering And Cas9)-tagging with Venus, BirM, APEX2 and the auxin degron is facilitated by a recombineering-ready plasmid series that permits the reuse of gene-specific reagents to insert different tags. Here we focus on protein tagging with the auxin degron because it is a ligand-regulated loss-of-function strategy that is rapid and reversible. Furthermore it includes the additional challenge of biallelic targeting. Despite high frequencies of monoallelic RAC-targeting, we found that simultaneous biallelic targeting benefits from long-arm (>4 kb) targeting constructs. Consequently an updated recombineering pipeline for fluent generation of long arm targeting constructs is also presented. PMID:27216209

  15. Crosstalk between Diverse Synthetic Protein Degradation Tags in Escherichia coli.

    PubMed

    Butzin, Nicholas C; Mather, William H

    2018-01-19

    Recently, a synthetic circuit in E. coli demonstrated that two proteins engineered with LAA tags targeted to the native protease ClpXP are susceptible to crosstalk due to competition for degradation between proteins. To understand proteolytic crosstalk beyond the single protease regime, we investigated in E. coli a set of synthetic circuits designed to probe the dynamics of existing and novel degradation tags fused to fluorescent proteins. These circuits were tested using both microplate reader and single-cell assays. We first quantified the degradation rates of each tag in isolation. We then tested if there was crosstalk between two distinguishable fluorescent proteins engineered with identical or different degradation tags. We demonstrated that proteolytic crosstalk was indeed not limited to the LAA degradation tag, but was also apparent between other diverse tags, supporting the complexity of the E. coli protein degradation system.

  16. Comparison of magnetic carboxymethyl chitosan nanoparticles and cation exchange resin for the efficient purification of lysine-tagged small ubiquitin-like modifier protease.

    PubMed

    Li, Junhua; Zhang, Yang; Shen, Fei; Yang, Yanjun

    2012-10-15

    A fusion tag that can be purified by the cheap ion-exchanger based on the ionic binding force may provide a cost-effective scheme over other affinity fusion tags. Small ubiquitin-like modifier (SUMO) protease derived from Saccharomyces cerevisiae was fused with a poly lysine tag containing 10 lysine residues at its C-terminus and then expressed in Escherichia coli. The ionic binding force provided by the ploy lysine tag allowed the selective recovery of the small ubiquitin-like modifier protease from recombinant E. coli cell extracts. A preliminary comparative study of the adsorption and elution of poly lysine tagged SUMO protease on Amberlite Cobalamion and magnetite carboxymethyl chitosan nanoparticles was performed. Amberlite Cobalamion and magnetite nanoparticles had the similar elution profile due to the common functional groups - carboxyl groups. The maximum dynamic adsorption capacity of Amberlite Cobalamion and magnetite nanoparticles reached 36.8 and 211.4 mg/g, respectively. The lysine-tagged protease can be simply purified by magnetite nanoparticles from cell extracts with higher purity than that by Amberlite Cobalamion. The superparamagnetic nanoparticles possess the advantages of highly specific, fast and excellent binding of a larger amount of lysine tagged SUMO modifier protease, and it is also easier to separate from the crude biological process liquors compared with the conventional separation techniques of polycationic amino acids fusion proteins. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Studying Protein-Protein Interactions by Biotin AP-Tagged Pulldown and LTQ-Orbitrap Mass Spectrometry.

    PubMed

    Xie, Zhongqiu; Jia, Yuemeng; Li, Hui

    2017-01-01

    The study of protein-protein interactions represents a key aspect of biological research. Identifying unknown protein binding partners using mass spectrometry (MS)-based proteomics has evolved into an indispensable strategy in drug discovery. The classic approach of immunoprecipitation with specific antibodies against the proteins of interest has limitations, such as the need for immunoprecipitation-qualified antibody. The biotin AP-tag pull-down system has the advantage of high specificity, ease of use, and no requirement for antibody. It is based on the high specificity, high affinity interaction between biotin and streptavidin. After pulldown, in-gel tryptic digestion and tandem mass spectrometry (MS/MS) analysis of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) protein bands can be performed. In this work, we provide protocols that can be used for the identification of proteins that interact with FOXM1, a protein that has recently emerged as a potential biomarker and drug target in oncotherapy, as an example. We focus on the pull-down procedure and assess the efficacy of the pulldown with known FOXM1 interactors such as β-catenin. We use a high performance LTQ Orbitrap MSn system that combines rapid LTQ ion trap data acquisition with high mass accuracy Orbitrap analysis to identify the interacting proteins.

  18. Specific Internalisation of Gold Nanoparticles into Engineered Porous Protein Cages via Affinity Binding

    PubMed Central

    Peng, Tao; Free, Paul; Fernig, David G.; Lim, Sierin; Tomczak, Nikodem

    2016-01-01

    Porous protein cages are supramolecular protein self-assemblies presenting pores that allow the access of surrounding molecules and ions into their core in order to store and transport them in biological environments. Protein cages’ pores are attractive channels for the internalisation of inorganic nanoparticles and an alternative for the preparation of hybrid bioinspired nanoparticles. However, strategies based on nanoparticle transport through the pores are largely unexplored, due to the difficulty of tailoring nanoparticles that have diameters commensurate with the pores size and simultaneously displaying specific affinity to the cages’ core and low non-specific binding to the cages’ outer surface. We evaluated the specific internalisation of single small gold nanoparticles, 3.9 nm in diameter, into porous protein cages via affinity binding. The E2 protein cage derived from the Geobacillus stearothermophilus presents 12 pores, 6 nm in diameter, and an empty core of 13 nm in diameter. We engineered the E2 protein by site-directed mutagenesis with oligohistidine sequences exposing them into the cage’s core. Dynamic light scattering and electron microscopy analysis show that the structures of E2 protein cages mutated with bis- or penta-histidine sequences are well conserved. The surface of the gold nanoparticles was passivated with a self-assembled monolayer made of a mixture of short peptidols and thiolated alkane ethylene glycol ligands. Such monolayers are found to provide thin coatings preventing non-specific binding to proteins. Further functionalisation of the peptide coated gold nanoparticles with Ni2+ nitrilotriacetic moieties enabled the specific binding to oligohistidine tagged cages. The internalisation via affinity binding was evaluated by electron microscopy analysis. From the various mutations tested, only the penta-histidine mutated E2 protein cage showed repeatable and stable internalisation. The present work overcomes the limitations of

  19. Design, synthesis, and application of the trimethoprim-based chemical tag for live-cell imaging.

    PubMed

    Jing, Chaoran; Cornish, Virginia W

    2013-01-01

    Over the past decade, chemical tags have been developed to complement the use of fluorescent proteins in live-cell imaging. Chemical tags retain the specificity of protein labeling achieved with fluorescent proteins through genetic encoding, but provide smaller, more robust tags and modular use of organic fluorophores with high photon output and tailored functionalities. The trimethoprim-based chemical tag (TMP-tag) was initially developed based on the high affinity interaction between E. coli dihydrofolate reductase and the antibiotic trimethoprim and was subsequently rendered covalent and fluorogenic via proximity-induced protein labeling reactions. To date, the TMP-tag is one of the few chemical tags that enable intracellular protein labeling and high-resolution live-cell imaging. Here we describe the general design, chemical synthesis, and application of TMP-tag for live-cell imaging. Alternate protocols for synthesizing and using the covalent and the fluorogenic TMP-tags are also included. © 2013 by John Wiley & Sons, Inc.

  20. Preparation of Protein Samples for NMR Structure, Function, and Small Molecule Screening Studies

    PubMed Central

    Acton, Thomas B.; Xiao, Rong; Anderson, Stephen; Aramini, James; Buchwald, William A.; Ciccosanti, Colleen; Conover, Ken; Everett, John; Hamilton, Keith; Huang, Yuanpeng Janet; Janjua, Haleema; Kornhaber, Gregory; Lau, Jessica; Lee, Dong Yup; Liu, Gaohua; Maglaqui, Melissa; Ma, Lichung; Mao, Lei; Patel, Dayaban; Rossi, Paolo; Sahdev, Seema; Shastry, Ritu; Swapna, G.V.T.; Tang, Yeufeng; Tong, Saichiu; Wang, Dongyan; Wang, Huang; Zhao, Li; Montelione, Gaetano T.

    2014-01-01

    In this chapter, we concentrate on the production of high quality protein samples for NMR studies. In particular, we provide an in-depth description of recent advances in the production of NMR samples and their synergistic use with recent advancements in NMR hardware. We describe the protein production platform of the Northeast Structural Genomics Consortium, and outline our high-throughput strategies for producing high quality protein samples for nuclear magnetic resonance (NMR) studies. Our strategy is based on the cloning, expression and purification of 6X-His-tagged proteins using T7-based Escherichia coli systems and isotope enrichment in minimal media. We describe 96-well ligation-independent cloning and analytical expression systems, parallel preparative scale fermentation, and high-throughput purification protocols. The 6X-His affinity tag allows for a similar two-step purification procedure implemented in a parallel high-throughput fashion that routinely results in purity levels sufficient for NMR studies (> 97% homogeneity). Using this platform, the protein open reading frames of over 17,500 different targeted proteins (or domains) have been cloned as over 28,000 constructs. Nearly 5,000 of these proteins have been purified to homogeneity in tens of milligram quantities (see Summary Statistics, http://nesg.org/statistics.html), resulting in more than 950 new protein structures, including more than 400 NMR structures, deposited in the Protein Data Bank. The Northeast Structural Genomics Consortium pipeline has been effective in producing protein samples of both prokaryotic and eukaryotic origin. Although this paper describes our entire pipeline for producing isotope-enriched protein samples, it focuses on the major updates introduced during the last 5 years (Phase 2 of the National Institute of General Medical Sciences Protein Structure Initiative). Our advanced automated and/or parallel cloning, expression, purification, and biophysical screening

  1. Trifunctional cross-linker for mapping protein-protein interaction networks and comparing protein conformational states

    PubMed Central

    Tan, Dan; Li, Qiang; Zhang, Mei-Jun; Liu, Chao; Ma, Chengying; Zhang, Pan; Ding, Yue-He; Fan, Sheng-Bo; Tao, Li; Yang, Bing; Li, Xiangke; Ma, Shoucai; Liu, Junjie; Feng, Boya; Liu, Xiaohui; Wang, Hong-Wei; He, Si-Min; Gao, Ning; Ye, Keqiong; Dong, Meng-Qiu; Lei, Xiaoguang

    2016-01-01

    To improve chemical cross-linking of proteins coupled with mass spectrometry (CXMS), we developed a lysine-targeted enrichable cross-linker containing a biotin tag for affinity purification, a chemical cleavage site to separate cross-linked peptides away from biotin after enrichment, and a spacer arm that can be labeled with stable isotopes for quantitation. By locating the flexible proteins on the surface of 70S ribosome, we show that this trifunctional cross-linker is effective at attaining structural information not easily attainable by crystallography and electron microscopy. From a crude Rrp46 immunoprecipitate, it helped identify two direct binding partners of Rrp46 and 15 protein-protein interactions (PPIs) among the co-immunoprecipitated exosome subunits. Applying it to E. coli and C. elegans lysates, we identified 3130 and 893 inter-linked lysine pairs, representing 677 and 121 PPIs. Using a quantitative CXMS workflow we demonstrate that it can reveal changes in the reactivity of lysine residues due to protein-nucleic acid interaction. DOI: http://dx.doi.org/10.7554/eLife.12509.001 PMID:26952210

  2. Analysis of In Vivo Chromatin and Protein Interactions of Arabidopsis Transcript Elongation Factors.

    PubMed

    Pfab, Alexander; Antosz, Wojciech; Holzinger, Philipp; Bruckmann, Astrid; Griesenbeck, Joachim; Grasser, Klaus D

    2017-01-01

    A central step to elucidate the function of proteins commonly comprises the analysis of their molecular interactions in vivo. For nuclear regulatory proteins this involves determining protein-protein interactions as well as mapping of chromatin binding sites. Here, we present two protocols to identify protein-protein and chromatin interactions of transcript elongation factors (TEFs) in Arabidopsis. The first protocol (Subheading 3.1) describes protein affinity-purification coupled to mass spectrometry (AP-MS) that utilizes suspension cultured cells as experimental system. This approach provides an unbiased view of proteins interacting with epitope-tagged TEFs. The second protocol (Subheading 3.2) depicts details about a chromatin immunoprecipitation (ChIP) procedure to characterize genomic binding sites of TEFs. These methods should be valuable tools for the analysis of a broad variety of nuclear proteins.

  3. Biological properties of purified recombinant HCV particles with an epitope-tagged envelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Hitoshi; Akazawa, Daisuke; Toray Industries, Inc., Kanagawa

    2010-05-14

    To establish a simple system for purification of recombinant infectious hepatitis C virus (HCV) particles, we designed a chimeric J6/JFH-1 virus with a FLAG (FL)-epitope-tagged sequence at the N-terminal region of the E2 hypervariable region-1 (HVR1) gene (J6/JFH-1/1FL). We found that introduction of an adaptive mutation at the potential N-glycosylation site (E2N151K) leads to efficient production of the chimeric virus. This finding suggests the involvement of glycosylation at Asn within the envelope protein(s) in HCV morphogenesis. To further analyze the biological properties of the purified recombinant HCV particles, we developed a strategy for large-scale production and purification of recombinant J6/JFH-1/1FL/E2N151K.more » Infectious particles were purified from the culture medium of J6/JFH-1/1FL/E2N151K-infected Huh-7 cells using anti-FLAG affinity chromatography in combination with ultrafiltration. Electron microscopy of the purified particles using negative staining showed spherical particle structures with a diameter of 40-60 nm and spike-like projections. Purified HCV particle-immunization induced both an anti-E2 and an anti-FLAG antibody response in immunized mice. This strategy may contribute to future detailed analysis of HCV particle structure and to HCV vaccine development.« less

  4. Affinity monolith-integrated poly(methyl methacrylate) microchips for on-line protein extraction and capillary electrophoresis.

    PubMed

    Sun, Xiuhua; Yang, Weichun; Pan, Tao; Woolley, Adam T

    2008-07-01

    Immunoaffinity monolith pretreatment columns have been coupled with capillary electrophoresis separation in poly(methyl methacrylate) (PMMA) microchips. Microdevices were designed with eight reservoirs to enable the electrically controlled transport of selected analytes and solutions to carry out integrated immunoaffinity extraction and electrophoretic separation. The PMMA microdevices were fabricated reproducibly and with high fidelity by solvent imprinting and thermal bonding methods. Monoliths with epoxy groups for antibody immobilization were prepared by direct in situ photopolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in a porogenic solvent consisting of 70% 1-dodecanol and 30% cyclohexanol. Antifluorescein isothiocyanate was utilized as a model affinity group in the monoliths, and the immobilization process was optimized. A mean elution efficiency of 92% was achieved for the monolith-based extraction of fluorescein isothiocyanate (FITC)-tagged human serum albumin. FITC-tagged proteins were purified from a contaminant protein and then separated electrophoretically using these devices. The developed immunoaffinity column/capillary electrophoresis microdevices show great promise for combining sample pretreatment and separation in biomolecular analysis.

  5. Affinity Monolith-Integrated Poly(methyl Methacrylate) Microchips for On-Line Protein Extraction and Capillary Electrophoresis

    PubMed Central

    Sun, Xiuhua; Yang, Weichun; Pan, Tao; Woolley, Adam T.

    2008-01-01

    Immunoaffinity monolith pretreatment columns have been coupled with capillary electrophoresis separation in poly(methyl methacrylate) (PMMA) microchips. Microdevices were designed with 8 reservoirs to enable the electrically controlled transport of selected analytes and solutions to carry out integrated immunoaffinity extraction and electrophoretic separation. The PMMA microdevices were fabricated reproducibly and with high fidelity by solvent imprinting and thermal bonding methods. Monoliths with epoxy groups for antibody immobilization were prepared by direct in-situ photopolymerization of glycidyl methacrylate and ethylene dimethacrylate in a porogenic solvent consisting of 70% dodecanol and 30% hexanol. Anti-fluorescein isothiocyanate (FITC) was utilized as a model affinity group in the monoliths, and the immobilization process was optimized. A mean elution efficiency of 92% was achieved for the monolith-based extraction of FITC-tagged human serum albumin. FITC-tagged proteins were purified from a contaminant protein and then separated electrophoretically using these devices. The developed immunoaffinity column/capillary electrophoresis microdevices show great promise for combining sample pretreatment and separation in biomolecular analysis. PMID:18479142

  6. Novel 1:1 labeling and purification process for C-terminal thioester and single cysteine recombinant proteins using generic peptidic toolbox reagents.

    PubMed

    Portal, Christophe F; Seifert, Jan-Marcus; Buehler, Christof; Meisner-Kober, Nicole-Claudia; Auer, Manfred

    2014-07-16

    We developed a versatile set of chemical labeling reagents which allow dye ligation to the C-terminus of a protein or a single internal cysteine and target purification in a simple two-step process. This simple process results in a fully 1:1 labeled conjugate suitable for all quantitative fluorescence spectroscopy and imaging experiments. We refer to a "generic labeling toolbox" because of the flexibility to choose one of many available dyes, spacers of different lengths and compositions which increase the target solubility, a variety of affinity purification tags, and different cleavage chemistries to release the 1:1 labeled proteins. Studying protein function in vitro or in the context of live cells and organisms is of vital importance in biological research. Although label free detection technologies gain increasing interest in molecular recognition science, fluorescence spectroscopy is still the most often used detection technique for assays and screens both in academic as well as in industrial groups. For generations, fluorescence spectroscopists have labeled their proteins of interest with small fluorescent dyes by random chemical linking on the proteins' exposed lysines and cysteines. Chemical reactions with a certain excess of activated esters or maleimides of longer wavelength dyes hardly ever result in quantitative labeling of the target protein. Most of the time, more than one exposed amino acid side chain reacts. This results in a mixture of dye-protein complexes of different labeling stoichiometries and labeling sites. Only mass spectrometry allows resolving the precise chemical composition of the conjugates. In "classical" ensemble averaging fluorescent experiments, these labeled proteins are still useful, and quantification of, e.g., ligand binding experiments, is achieved via knowledge of the overall protein concentration and a fluorescent signal change which is proportional to the amount of complex formed. With the development of fluorescence

  7. Camelid VHH affinity ligands enable separation of closely related biopharmaceuticals

    PubMed Central

    Pabst, Timothy M.; Wendeler, Michaela; Wang, Xiangyang; Bezemer, Sandra; Hermans, Pim

    2016-01-01

    Abstract Interest in new and diverse classes of molecules such as recombinant toxins, enzymes, and blood factors continues to grow for use a biotherapeutics. Compared to monoclonal antibodies, these novel drugs typically lack a commercially available affinity chromatography option, which leads to greater process complexity, longer development timelines, and poor platformability. To date, for both monoclonal antibodies and novel molecules, affinity chromatography has been mostly reserved for separation of process‐related impurities such as host cell proteins and DNA. Reports of affinity purification of closely related product variants and modified forms are much rarer. In this work we describe custom affinity chromatography development using camelid VHH antibody fragments as "tunable" immunoaffinity ligands for separation of product‐related impurities. One example demonstrates high selectivity for a recombinant immunotoxin where no binding was observed for an undesired deamidated species. Also discussed is affinity purification of a coagulation factor through specific recognition of the gamma‐carboxylglutamic acid domain. PMID:27677057

  8. Production of capsular polysaccharide of Streptococcus pneumoniae type 14 and its purification by affinity chromatography.

    PubMed

    Suárez, N; Fraguas, L F; Texeira, E; Massaldi, H; Batista-Viera, F; Ferreira, F

    2001-02-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents.

  9. Engineering Protein Hydrogels Using SpyCatcher-SpyTag Chemistry.

    PubMed

    Gao, Xiaoye; Fang, Jie; Xue, Bin; Fu, Linglan; Li, Hongbin

    2016-09-12

    Constructing hydrogels from engineered proteins has attracted significant attention within the material sciences, owing to their myriad potential applications in biomedical engineering. Developing efficient methods to cross-link tailored protein building blocks into hydrogels with desirable mechanical, physical, and functional properties is of paramount importance. By making use of the recently developed SpyCatcher-SpyTag chemistry, we successfully engineered protein hydrogels on the basis of engineered tandem modular elastomeric proteins. Our resultant protein hydrogels are soft but stable, and show excellent biocompatibility. As the first step, we tested the use of these hydrogels as a drug carrier, as well as in encapsulating human lung fibroblast cells. Our results demonstrate the robustness of the SpyCatcher-SpyTag chemistry, even when the SpyTag (or SpyCatcher) is flanked by folded globular domains. These results demonstrate that SpyCatcher-SpyTag chemistry can be used to engineer protein hydrogels from tandem modular elastomeric proteins that can find applications in tissue engineering, in fundamental mechano-biological studies, and as a controlled drug release vehicle.

  10. A green fluorescent protein-based assay for high-throughput ligand-binding studies of a mycobacterial biotin protein ligase.

    PubMed

    Bond, Thomas E H; Sorenson, Alanna E; Schaeffer, Patrick M

    2017-12-01

    Biotin protein ligase (BirA) has been identified as an emerging drug target in Mycobacterium tuberculosis due to its essential metabolic role. Indeed, it is the only enzyme capable of covalently attaching biotin onto the biotin carboxyl carrier protein subunit of the acetyl-CoA carboxylase. Despite recent interest in this protein, there is still a gap in cost-effective high-throughput screening assays for rapid identification of mycobacterial BirA-targeting inhibitors. We present for the first time the cloning, expression, purification of mycobacterial GFP-tagged BirA and its application for the development of a high-throughput assay building on the principle of differential scanning fluorimetry of GFP-tagged proteins. The data obtained in this study reveal how biotin and ATP significantly increase the thermal stability (ΔT m =+16.5°C) of M. tuberculosis BirA and lead to formation of a high affinity holoenzyme complex (K obs =7.7nM). The new findings and mycobacterial BirA high-throughput assay presented in this work could provide an efficient platform for future anti-tubercular drug discovery campaigns. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Optimal use of tandem biotin and V5 tags in ChIP assays

    PubMed Central

    Kolodziej, Katarzyna E; Pourfarzad, Farzin; de Boer, Ernie; Krpic, Sanja; Grosveld, Frank; Strouboulis, John

    2009-01-01

    Background Chromatin immunoprecipitation (ChIP) assays coupled to genome arrays (Chip-on-chip) or massive parallel sequencing (ChIP-seq) lead to the genome wide identification of binding sites of chromatin associated proteins. However, the highly variable quality of antibodies and the availability of epitopes in crosslinked chromatin can compromise genomic ChIP outcomes. Epitope tags have often been used as more reliable alternatives. In addition, we have employed protein in vivo biotinylation tagging as a very high affinity alternative to antibodies. In this paper we describe the optimization of biotinylation tagging for ChIP and its coupling to a known epitope tag in providing a reliable and efficient alternative to antibodies. Results Using the biotin tagged erythroid transcription factor GATA-1 as example, we describe several optimization steps for the application of the high affinity biotin streptavidin system in ChIP. We find that the omission of SDS during sonication, the use of fish skin gelatin as blocking agent and choice of streptavidin beads can lead to significantly improved ChIP enrichments and lower background compared to antibodies. We also show that the V5 epitope tag performs equally well under the conditions worked out for streptavidin ChIP and that it may suffer less from the effects of formaldehyde crosslinking. Conclusion The combined use of the very high affinity biotin tag with the less sensitive to crosslinking V5 tag provides for a flexible ChIP platform with potential implications in ChIP sequencing outcomes. PMID:19196479

  12. Advances in identification and validation of protein targets of natural products without chemical modification.

    PubMed

    Chang, J; Kim, Y; Kwon, H J

    2016-05-04

    Covering: up to February 2016Identification of the target proteins of natural products is pivotal to understanding the mechanisms of action to develop natural products for use as molecular probes and potential therapeutic drugs. Affinity chromatography of immobilized natural products has been conventionally used to identify target proteins, and has yielded good results. However, this method has limitations, in that labeling or tagging for immobilization and affinity purification often result in reduced or altered activity of the natural product. New strategies have recently been developed and applied to identify the target proteins of natural products and synthetic small molecules without chemical modification of the natural product. These direct and indirect methods for target identification of label-free natural products include drug affinity responsive target stability (DARTS), stability of proteins from rates of oxidation (SPROX), cellular thermal shift assay (CETSA), thermal proteome profiling (TPP), and bioinformatics-based analysis of connectivity. This review focuses on and reports case studies of the latest advances in target protein identification methods for label-free natural products. The integration of newly developed technologies will provide new insights and highlight the value of natural products for use as biological probes and new drug candidates.

  13. Expression, purification and functional characterization of human equilibrative nucleoside transporter subtype-1 (hENT1) protein from Sf9 insect cells.

    PubMed

    Rehan, Shahid; Jaakola, Veli-Pekka

    2015-10-01

    Human equilibrative nucleoside transporter-1 (hENT1) is the major plasma membrane transporter involved in transportation of natural nucleosides as well as nucleoside analog drugs, used in anti-cancer and anti-viral therapies. Despite extensive biochemical and pharmacological studies, little is known about the structure-function relationship of this protein. The major obstacles to purification include a low endogenous expression level, the lack of an efficient expression and purification protocol, and the hydrophobic nature of the protein. Here, we report protein expression, purification and functional characterization of hENT1 from Sf9 insect cells. hENT1 expressed by Sf9 cells is functionally active as demonstrated by saturation binding with a Kd of 1.2±0.2nM and Bmax of 110±5pmol/mg for [(3)H]nitrobenzylmercaptopurine ribonucleoside ([(3)H]NBMPR). We also demonstrate purification of hENT1 using FLAG antibody affinity resin in lauryl maltose neopentyl glycol detergent with a Kd of 4.3±0.7nM. The yield of hENT1 from Sf9 cells was ∼0.5mg active transporter per liter of culture. The purified protein is functionally active, stable, homogenous and appropriate for further biophysical and structural studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Identification of Genes Enriched in GnRH Neurons by Translating Ribosome Affinity Purification and RNAseq in Mice.

    PubMed

    Burger, Laura L; Vanacker, Charlotte; Phumsatitpong, Chayarndorn; Wagenmaker, Elizabeth R; Wang, Luhong; Olson, David P; Moenter, Suzanne M

    2018-04-01

    Gonadotropin-releasing hormone (GnRH) neurons are a nexus of fertility regulation. We used translating ribosome affinity purification coupled with RNA sequencing to examine messenger RNAs of GnRH neurons in adult intact and gonadectomized (GDX) male and female mice. GnRH neuron ribosomes were tagged with green fluorescent protein (GFP) and GFP-labeled polysomes isolated by immunoprecipitation, producing one RNA fraction enhanced for GnRH neuron transcripts and one RNA fraction depleted. Complementary DNA libraries were created from each fraction and 50-base, paired-end sequencing done and differential expression (enhanced fraction/depleted fraction) determined with a threshold of >1.5- or <0.66-fold (false discovery rate P ≤ 0.05). A core of ∼840 genes was differentially expressed in GnRH neurons in all treatments, including enrichment for Gnrh1 (∼40-fold), and genes critical for GnRH neuron and/or gonadotrope development. In contrast, non-neuronal transcripts were not enriched or were de-enriched. Several epithelial markers were also enriched, consistent with the olfactory epithelial origins of GnRH neurons. Interestingly, many synaptic transmission pathways were de-enriched, in accordance with relatively low innervation of GnRH neurons. The most striking difference between intact and GDX mice of both sexes was a marked downregulation of genes associated with oxidative phosphorylation and upregulation of glucose transporters in GnRH neurons from GDX mice. This may suggest that GnRH neurons switch to an alternate fuel to increase adenosine triphosphate production in the absence of negative feedback when GnRH release is elevated. Knowledge of the GnRH neuron translatome and its regulation can guide functional studies and can be extended to disease states, such as polycystic ovary syndrome.

  15. Production of Capsular Polysaccharide of Streptococcus pneumoniae Type 14 and Its Purification by Affinity Chromatography

    PubMed Central

    Suárez, Norma; Fraguas, Laura Franco; Texeira, Esther; Massaldi, Hugo; Batista-Viera, Francisco; Ferreira, Fernando

    2001-01-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents. PMID:11157270

  16. Probing SH2-domains using Inhibitor Affinity Purification (IAP).

    PubMed

    Höfener, Michael; Heinzlmeir, Stephanie; Kuster, Bernhard; Sewald, Norbert

    2014-01-01

    Many human diseases are correlated with the dysregulation of signal transduction processes. One of the most important protein interaction domains in the context of signal transduction is the Src homology 2 (SH2) domain that binds phosphotyrosine residues. Hence, appropriate methods for the investigation of SH2 proteins are indispensable in diagnostics and medicinal chemistry. Therefore, an affinity resin for the enrichment of all SH2 proteins in one experiment would be desirable. However, current methods are unable to address all SH2 proteins simultaneously with a single compound or a small array of compounds. In order to overcome these limitations for the investigation of this particular protein family in future experiments, a dipeptide-derived probe has been designed, synthesized and evaluated. This probe successfully enriched 22 SH2 proteins from mixed cell lysates which contained 50 SH2 proteins. Further characterization of the SH2 binding properties of the probe using depletion and competition experiments indicated its ability to enrich complexes consisting of SH2 domain bearing regulatory PI3K subunits and catalytic phosphoinositide 3-kinase (PI3K) subunits that have no SH2 domain. The results make this probe a promising starting point for the development of a mixed affinity resin with complete SH2 protein coverage. Moreover, the additional findings render it a valuable tool for the evaluation of PI3K complex interrupting inhibitors.

  17. Protein body-inducing fusions for high-level production and purification of recombinant proteins in plants.

    PubMed

    Conley, Andrew J; Joensuu, Jussi J; Richman, Alex; Menassa, Rima

    2011-05-01

    For the past two decades, therapeutic and industrially important proteins have been expressed in plants with varying levels of success. The two major challenges hindering the economical production of plant-made recombinant proteins include inadequate accumulation levels and the lack of efficient purification methods. To address these limitations, several fusion protein strategies have been recently developed to significantly enhance the production yield of plant-made recombinant proteins, while simultaneously assisting in their subsequent purification. Elastin-like polypeptides are thermally responsive biopolymers composed of a repeating pentapeptide 'VPGXG' sequence that are valuable for the purification of recombinant proteins. Hydrophobins are small fungal proteins capable of altering the hydrophobicity of their respective fusion partner, thus enabling efficient purification by surfactant-based aqueous two-phase systems. Zera, a domain of the maize seed storage protein γ-zein, can induce the formation of protein storage bodies, thus facilitating the recovery of fused proteins using density-based separation methods. These three novel protein fusion systems have also been shown to enhance the accumulation of a range of different recombinant proteins, while concurrently inducing the formation of protein bodies. The packing of these fusion proteins into protein bodies may exclude the recombinant protein from normal physiological turnover. Furthermore, these systems allow for quick, simple and inexpensive nonchromatographic purification of the recombinant protein, which can be scaled up to industrial levels of protein production. This review will focus on the similarities and differences of these artificial storage organelles, their biogenesis and their implication for the production of recombinant proteins in plants and their subsequent purification. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied

  18. Polyether sulfone/hydroxyapatite mixed matrix membranes for protein purification

    NASA Astrophysics Data System (ADS)

    Sun, Junfen; Wu, Lishun

    2014-07-01

    This work proposes a novel approach for protein purification from solution using mixed matrix membranes (MMMs) comprising of hydroxyapatite (HAP) inside polyether sulfone (PES) matrix. The influence of HAP particle loading on membrane morphology is studied. The MMMs are further characterized concerning permeability and adsorption capacity. The MMMs show purification of protein via both diffusion as well as adsorption, and show the potential of using MMMs for improvements in protein purification techniques. The bovine serum albumin (BSA) was used as a model protein. The properties and structures of MMMs prepared by immersion phase separation process were characterized by pure water flux, BSA adsorption and scanning electron microscopy (SEM).

  19. Preparation of protein samples for mass spectrometry and N-terminal sequencing.

    PubMed

    Glenn, Gary

    2014-01-01

    The preparation of protein samples for mass spectrometry and N-terminal sequencing is a key step in successfully identifying proteins. Mass spectrometry is a very sensitive technique, and as such, samples must be prepared carefully since they can be subject to contamination of the sample (e.g., due to incomplete subcellular fractionation or purification of a multiprotein complex), overwhelming of the sample by highly abundant proteins, and contamination from skin or hair (keratin can be a very common hit). One goal of sample preparation for mass spec is to reduce the complexity of the sample - in the example presented here, mitochondria are purified, solubilized, and fractionated by sucrose density gradient sedimentation prior to preparative 1D SDS-PAGE. It is important to verify the purity and integrity of the sample so that you can have confidence in the hits obtained. More protein is needed for N-terminal sequencing and ideally it should be purified to a single band when run on an SDS-polyacrylamide gel. The example presented here involves stably expressing a tagged protein in HEK293 cells and then isolating the protein by affinity purification and SDS-PAGE. © 2014 Elsevier Inc. All rights reserved.

  20. An organelle-specific protein landscape identifies novel diseases and molecular mechanisms

    PubMed Central

    Boldt, Karsten; van Reeuwijk, Jeroen; Lu, Qianhao; Koutroumpas, Konstantinos; Nguyen, Thanh-Minh T.; Texier, Yves; van Beersum, Sylvia E. C.; Horn, Nicola; Willer, Jason R.; Mans, Dorus A.; Dougherty, Gerard; Lamers, Ideke J. C.; Coene, Karlien L. M.; Arts, Heleen H.; Betts, Matthew J.; Beyer, Tina; Bolat, Emine; Gloeckner, Christian Johannes; Haidari, Khatera; Hetterschijt, Lisette; Iaconis, Daniela; Jenkins, Dagan; Klose, Franziska; Knapp, Barbara; Latour, Brooke; Letteboer, Stef J. F.; Marcelis, Carlo L.; Mitic, Dragana; Morleo, Manuela; Oud, Machteld M.; Riemersma, Moniek; Rix, Susan; Terhal, Paulien A.; Toedt, Grischa; van Dam, Teunis J. P.; de Vrieze, Erik; Wissinger, Yasmin; Wu, Ka Man; Apic, Gordana; Beales, Philip L.; Blacque, Oliver E.; Gibson, Toby J.; Huynen, Martijn A.; Katsanis, Nicholas; Kremer, Hannie; Omran, Heymut; van Wijk, Erwin; Wolfrum, Uwe; Kepes, François; Davis, Erica E.; Franco, Brunella; Giles, Rachel H.; Ueffing, Marius; Russell, Robert B.; Roepman, Ronald; Al-Turki, Saeed; Anderson, Carl; Antony, Dinu; Barroso, Inês; Bentham, Jamie; Bhattacharya, Shoumo; Carss, Keren; Chatterjee, Krishna; Cirak, Sebahattin; Cosgrove, Catherine; Danecek, Petr; Durbin, Richard; Fitzpatrick, David; Floyd, Jamie; Reghan Foley, A.; Franklin, Chris; Futema, Marta; Humphries, Steve E.; Hurles, Matt; Joyce, Chris; McCarthy, Shane; Mitchison, Hannah M.; Muddyman, Dawn; Muntoni, Francesco; O'Rahilly, Stephen; Onoufriadis, Alexandros; Payne, Felicity; Plagnol, Vincent; Raymond, Lucy; Savage, David B.; Scambler, Peter; Schmidts, Miriam; Schoenmakers, Nadia; Semple, Robert; Serra, Eva; Stalker, Jim; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Walter, Klaudia; Whittall, Ros; Williamson, Kathy

    2016-01-01

    Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine. PMID:27173435

  1. The development of a purification procedure for saxitoxin-induced protein.

    PubMed

    Smith, D S; Kitts, D D; Fenske, B; Owen, T G; Shyng, S

    1995-02-01

    A simple economical procedure for purifying saxitoxin-induced protein (SIP) from crude extracts of the small shore crab, Hemigrapsus oregenesis, was developed. (NH4)2SO4 precipitation, chymotrypsin digestion, heat treatment, gel filtration and ion-exchange-chromatography procedures were evaluated in purifying SIP. An enzyme immunoassay was used to determine the SIP yield and relative purity at each step of three procedures, thus permitting an assessment of the conditions required for maximum recovery. Response surface analysis was used in an attempt to determine the optimum temperature and exposure time for the heat treatment. A 20 min incubation at 65 degrees C was confirmed by electrophoretic analysis to be the best combination of time and temperature for achieving both an acceptable yield and purity of SIP. SIP in desalted concentrate was shown to be resistant to chymotrypsin proteolysis; however, this enzyme had deleterious effects on SIP purification at later stages of the procedure. The omission of the chymotrypsin digestion, and the inclusion of gel-filtration chromatography in the final clean-up step, resulted in the purification of SIP comparable with that achieved with affinity chromatography.

  2. Biotinylated probes of artemisinin with labeling affinity toward Trypanosoma brucei brucei target proteins.

    PubMed

    Konziase, Benetode

    2015-08-01

    We studied the target proteins of artemisinin in Trypanosoma brucei brucei using the affinity-labeling method. We designed and synthesized four biotinylated probes of artemisinin for use as molecular tools. Their in vitro trypanocidal activities (data not shown) proved that they mimicked the biological action of artemisinin. We assessed the chemical stability for all of the probes in the parasite culture medium and lysate using reversed-phase high-performance liquid chromatography (HPLC). After 3-h incubations, the probes remained undecomposed in a range of 40 to 65% in the parasite culture medium, whereas approximately 80% of the probes remained stable in the parasite lysate. Using liquid chromatography mass spectrometry (LC-MS), we demonstrated that, with respect to all of the probes, uptakes into the parasite ranging from 81 to 96% occurred after 30-min incubations. In a competitive binding assay between artemisinin and the four biotinylated probes, we searched for the trypanosomal target protein of artemisinin. Consequently, we observed that only the diazirine-free probe 5 could provide the desired result with high affinity-labeling efficiency. Using the horseradish peroxidase-tagged streptavidin-biotin method, we showed that artemisinin could specifically bind to candidate target proteins of approximately 60, 40, and 39 kDa. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Affinity analysis and application of dipeptides derived from l-tyrosine in plasmid purification.

    PubMed

    Ferreira, Soraia; Carvalho, Josué; Valente, Joana F A; Corvo, Marta C; Cabrita, Eurico J; Sousa, Fani; Queiroz, João A; Cruz, Carla

    2015-12-01

    The developments in the use of plasmid DNA (pDNA) in gene therapy and vaccines have motivated the search and improvement of optimized purification processes. In this context, dipeptides l-tyrosine-l-tyrosine and l-tyrosine-l-arginine are synthetized to explore their application as affinity ligands for supercoiled (sc) plasmid DNA (pDNA) purification. The synthesis is based on the protection of N-Boc-l-tyrosine, followed by condensation with l-tyrosine or l-arginine methyl esters in the presence of dicyclohexylcarbodiimide (DCC), which after hydrolysis and acidification give the afforded dipeptides. The supports are then obtained by coupling l-tyrosine, l-tyrosine-l-tyrosine and l-tyrosine-l-arginine to epoxy-activated Sepharose and are characterized by high resolution magic angle spinning (HR-MAS) NMR and Fourier transform infrared spectroscopy (FTIR). Surface plasmon resonance (SPR) biosensor is used to establish the promising ligand to be used in the chromatographic experiments and ascertain experimental conditions. Sc isoform showed the highest affinity to the dipeptides, followed by linear (ln) pDNA, being the open circular (oc) the one that promoted the lowest affinity to l-tyrosine-l-arginine. Saturation transfer difference (STD)-NMR experiments show that the interaction is mainly hydrophobic with the majority of the 5'-mononucleotides, except for 5'-GMP with l-tyrosine-l-arginine Sepharose that is mainly electrostatic. The support l-tyrosine Sepharose used in chromatographic experiments promotes the separation of native pVAX1-LacZ and pcDNA3-FLAG-p53 samples (oc+sc) by decreasing the salt concentration. The results suggest that it is possible to purify different plasmids with the l-tyrosine Sepharose, with slight adjustments in the gradient conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Increased adsorption of histidine-tagged proteins onto tissue culture polystyrene.

    PubMed

    Holmberg, Maria; Hansen, Thomas Steen; Lind, Johan Ulrik; Hjortø, Gertrud Malene

    2012-04-01

    In this study we compare histidine-tagged and native proteins with regards to adsorption properties. We observe significantly increased adsorption of proteins with an incorporated polyhistidine amino acid motif (HIS-tag) onto tissue culture polystyrene (TCPS) compared to similar proteins without a HIS-tag. The effect is not observed on polystyrene (PS). Adsorption experiments have been performed at physiological pH (7.4) and the effect was only observed for the investigated proteins that have pI values below or around 7.4. Competitive adsorption experiments with imidazole and ethylenediaminetetraacetic acid (EDTA), as well as adsorption performed at different pH and ionic strength indicates that the high adsorption is caused by electrostatic interaction between negatively charged carboxylate groups on the TCPS surface and positively charged histidine residues in the proteins. Pre-adsorption of bovine serum albumin (BSA) does not decrease the adsorption of HIS-tagged proteins onto TCPS. Our findings identify a potential problem in using HIS-tagged signalling molecule in assays with cells cultured on TCPS, since the concentration of the molecule in solution might be affected and this could critically influence the assay outcome. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Mapping protein-protein interactions with phage-displayed combinatorial peptide libraries.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kay, B. K.; Castagnoli, L.; Biosciences Division

    This unit describes the process and analysis of affinity selecting bacteriophage M13 from libraries displaying combinatorial peptides fused to either a minor or major capsid protein. Direct affinity selection uses target protein bound to a microtiter plate followed by purification of selected phage by ELISA. Alternatively, there is a bead-based affinity selection method. These methods allow one to readily isolate peptide ligands that bind to a protein target of interest and use the consensus sequence to search proteomic databases for putative interacting proteins.

  6. An in vivo imaging-based assay for detecting protein interactions over a wide range of binding affinities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowlkes, Jason Davidson; Owens, Elizabeth T; Standaert, Robert F

    2009-01-01

    Identifying and characterizing protein interactions are fundamental steps towards understanding and modeling biological networks. Methods that detect protein interactions in intact cells rather than buffered solutions are likely more relevant to natural systems since molecular crowding events in the cytosol can influence the diffusion and reactivity of individual proteins. One in vivo, imaging-based method relies on the co-localization of two proteins of interest fused to DivIVA, a cell division protein from Bacillus subtilis, and green fluorescent protein (GFP). We have modified this imaging-based assay to facilitate rapid cloning by constructing new vectors encoding N- and C-terminal DivIVA or GFP molecularmore » tag fusions based on site-specific recombination technology. The sensitivity of the assay was defined using a well-characterized protein interaction system involving the eukaryotic nuclear import receptor subunit, Importin (Imp ) and variant nuclear localization signals (NLS) representing a range of binding affinities. These data demonstrate that the modified co-localization assay is sensitive enough to detect protein interactions with Kd values that span over four orders of magnitude (1nM to 15 M). Lastly, this assay was used to confirm numerous protein interactions identified from mass spectrometry-based analyses of affinity isolates as part of an interactome mapping project in Rhodopseudomonas palustris« less

  7. Purification and biological characterization of soluble, recombinant mouse IFNβ expressed in insect cells.

    PubMed

    Stifter, Sebastian A; Gould, Jodee A; Mangan, Niamh E; Reid, Hugh H; Rossjohn, Jamie; Hertzog, Paul J; de Weerd, Nicole A

    2014-02-01

    Interferon β (IFNβ) is a member of the type I interferon family of cytokines widely recognised for their anti-viral, anti-proliferative and immunomodulatory properties. Recombinant, biologically active forms of this cytokine are used clinically for the treatment of multiple sclerosis and in laboratories to study the role of this cytokine in health and disease. Established methods for expression of IFNβ utilise either bacterial systems from which the insoluble recombinant proteins must be refolded, or mammalian expression systems in which large volumes of cell culture are required for recovery of acceptable yields. Utilising the baculovirus expression system and Trichoplusia ni (Cabbage Looper) BTI-TN-5B1-4 cell line, we report a reproducible method for production and purification of milligram/litre quantities of biologically active murine IFNβ. Due to the design of our construct and the eukaryotic nature of insect cells, the resulting soluble protein is secreted allowing purification of the Histidine-tagged natively-folded protein from the culture supernatant. The IFNβ purification method described is a two-step process employing immobilised metal-ion affinity chromatography (IMAC) and reverse-phase high performance liquid chromatography (RP-HPLC) that results in production of significantly more purified IFNβ than any other reported eukaryotic-based expression system. Recombinant murine IFNβ produced by this method was natively folded and demonstrated hallmark type I interferon biological effects including antiviral and anti-proliferative activities, and induced genes characteristic of IFNβ activity in vivo. Recombinant IFNβ also had specific activity levels exceeding that of the commercially available equivalent. Together, our findings provide a method for production of highly pure, biologically active murine IFNβ. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Fluorescent Labeling of COS-7 Expressing SNAP-tag Fusion Proteins for Live Cell Imaging

    PubMed Central

    Provost, Christopher R.; Sun, Luo

    2010-01-01

    SNAP-tag and CLIP-tag protein labeling systems enable the specific, covalent attachment of molecules, including fluorescent dyes, to a protein of interest in live cells. These systems offer a broad selection of fluorescent substrates optimized for a range of imaging instrumentation. Once cloned and expressed, the tagged protein can be used with a variety of substrates for numerous downstream applications without having to clone again. There are two steps to using this system: cloning and expression of the protein of interest as a SNAP-tag fusion, and labeling of the fusion with the SNAP-tag substrate of choice. The SNAP-tag is a small protein based on human O6-alkylguanine-DNA-alkyltransferase (hAGT), a DNA repair protein. SNAP-tag labels are dyes conjugated to guanine or chloropyrimidine leaving groups via a benzyl linker. In the labeling reaction, the substituted benzyl group of the substrate is covalently attached to the SNAP-tag. CLIP-tag is a modified version of SNAP-tag, engineered to react with benzylcytosine rather than benzylguanine derivatives. When used in conjunction with SNAP-tag, CLIP-tag enables the orthogonal and complementary labeling of two proteins simultaneously in the same cells. PMID:20485262

  9. Novel cross-linked alcohol-insoluble solid (CL-AIS) affinity gel from pea pod for pectinesterase purification.

    PubMed

    Wu, Ming-Chang; Lin, Guan-Hui; Wang, Yuh-Tai; Jiang, Chii-Ming; Chang, Hung-Min

    2005-10-05

    Alcohol-insoluble solids (AIS) from pea pod were cross-linked (CL-AIS) and used as an affinity gel matrix to isolate pectin esterases (PEs) from tendril shoots of chayote (TSC) and jelly fig achenes (JFA), and the results were compared with those isolated by ion-exchange chromatography with a commercial resin. CL-AIS gel matrix in a column displayed poor absorption and purification fold of PE; however, highly methoxylated CL-AIS (HM-CL-AIS), by exposing CL-AIS to methanolic sulfuric acid to increase the degree of esterification (DE) to 92%, facilitated the enzyme purification. The purified TSC PE and JFA PE by the HM-CL-AIS column were proofed as a single band on an SDS-PAGE gel, showing that the HM-CL-AIS column was a good matrix for purification of PE, either with alkaline isoelectric point (pI) (TSC PE) or with acidic pI (JFA PE).

  10. Artificial Affinity Proteins as Ligands of Immunoglobulins

    PubMed Central

    Mouratou, Barbara; Béhar, Ghislaine; Pecorari, Frédéric

    2015-01-01

    A number of natural proteins are known to have affinity and specificity for immunoglobulins. Some of them are widely used as reagents for detection or capture applications, such as Protein G and Protein A. However, these natural proteins have a defined spectrum of recognition that may not fit specific needs. With the development of combinatorial protein engineering and selection techniques, it has become possible to design artificial affinity proteins with the desired properties. These proteins, termed alternative scaffold proteins, are most often chosen for their stability, ease of engineering and cost-efficient recombinant production in bacteria. In this review, we focus on alternative scaffold proteins for which immunoglobulin binders have been identified and characterized. PMID:25647098

  11. Fluorogen-Activating-Proteins as Universal Affinity Biosensors for Immunodetection

    PubMed Central

    Gallo, Eugenio; Vasilev, Kalin V.; Jarvik, Jonathan

    2014-01-01

    Fluorogen-activating-proteins (FAPs) are a novel platform of fluorescence biosensors utilized for protein discovery. The technology currently demands molecular manipulation methods that limit its application and adaptability. Here, we highlight an alternative approach based on universal affinity reagents for protein detection. The affinity reagents were engineered as bi-partite fusion proteins, where the specificity moiety is derived from IgG-binding proteinsProtein-A or Protein-G – and the signaling element is a FAP. In this manner, primary antibodies provide the antigenic selectivity against a desired protein in biological samples, while FAP affinity reagents target the constant region (Fc) of antibodies and provide the biosensor component of detection. Fluorescence results using various techniques indicate minimal background and high target specificity for exogenous and endogenous proteins in mammalian cells. Additionally, FAP-based affinity reagents provide enhanced properties of detection previously absent using conventional affinity systems. Distinct features explored in this report include: (1) unfixed signal wavelengths (excitation and emission) determined by the particular fluorogen chosen, (2) real-time user controlled fluorescence on-set and off-set, (3) signal wavelength substitution while performing live analysis, and (4) enhanced resistance to photobleaching. PMID:24122476

  12. Polycomb purification by in vivo biotinylation tagging reveals cohesin and Trithorax group proteins as interaction partners

    PubMed Central

    Strübbe, Gero; Popp, Christian; Schmidt, Alexander; Pauli, Andrea; Ringrose, Leonie; Beisel, Christian; Paro, Renato

    2011-01-01

    The maintenance of specific gene expression patterns during cellular proliferation is crucial for the identity of every cell type and the development of tissues in multicellular organisms. Such a cellular memory function is conveyed by the complex interplay of the Polycomb and Trithorax groups of proteins (PcG/TrxG). These proteins exert their function at the level of chromatin by establishing and maintaining repressed (PcG) and active (TrxG) chromatin domains. Past studies indicated that a core PcG protein complex is potentially associated with cell type or even cell stage-specific sets of accessory proteins. In order to better understand the dynamic aspects underlying PcG composition and function we have established an inducible version of the biotinylation tagging approach to purify Polycomb and associated factors from Drosophila embryos. This system enabled fast and efficient isolation of Polycomb containing complexes under near physiological conditions, thereby preserving substoichiometric interactions. Novel interacting proteins were identified by highly sensitive mass spectrometric analysis. We found many TrxG related proteins, suggesting a previously unrecognized extent of molecular interaction of the two counteracting chromatin regulatory protein groups. Furthermore, our analysis revealed an association of PcG protein complexes with the cohesin complex and showed that Polycomb-dependent silencing of a transgenic reporter depends on cohesin function. PMID:21415365

  13. Automated Purification of Recombinant Proteins: Combining High-throughput with High Yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chiann Tso; Moore, Priscilla A.; Auberry, Deanna L.

    2006-05-01

    Protein crystallography, mapping protein interactions and other approaches of current functional genomics require not only purifying large numbers of proteins but also obtaining sufficient yield and homogeneity for downstream high-throughput applications. There is a need for the development of robust automated high-throughput protein expression and purification processes to meet these requirements. We developed and compared two alternative workflows for automated purification of recombinant proteins based on expression of bacterial genes in Escherichia coli: First - a filtration separation protocol based on expression of 800 ml E. coli cultures followed by filtration purification using Ni2+-NTATM Agarose (Qiagen). Second - a smallermore » scale magnetic separation method based on expression in 25 ml cultures of E.coli followed by 96-well purification on MagneHisTM Ni2+ Agarose (Promega). Both workflows provided comparable average yields of proteins about 8 ug of purified protein per unit of OD at 600 nm of bacterial culture. We discuss advantages and limitations of the automated workflows that can provide proteins more than 90 % pure in the range of 100 ug – 45 mg per purification run as well as strategies for optimization of these protocols.« less

  14. Specific and Reversible Immobilization of Proteins Tagged to the Affinity Polypeptide C-LytA on Functionalized Graphite Electrodes

    PubMed Central

    Bello-Gil, Daniel; Maestro, Beatriz; Fonseca, Jennifer; Feliu, Juan M.; Climent, Víctor; Sanz, Jesús M.

    2014-01-01

    We have developed a general method for the specific and reversible immobilization of proteins fused to the choline-binding module C-LytA on functionalized graphite electrodes. Graphite electrode surfaces were modified by diazonium chemistry to introduce carboxylic groups that were subsequently used to anchor mixed self-assembled monolayers consisting of N,N-diethylethylenediamine groups, acting as choline analogs, and ethanolamine groups as spacers. The ability of the prepared electrodes to specifically bind C-LytA-tagged recombinant proteins was tested with a C-LytA-β-galactosidase fusion protein. The binding, activity and stability of the immobilized protein was evaluated by electrochemically monitoring the formation of an electroactive product in the enzymatic hydrolysis of the synthetic substrate 4-aminophenyl β-D-galactopyranoside. The hybrid protein was immobilized in an specific and reversible way, while retaining the catalytic activity. Moreover, these functionalized electrodes were shown to be highly stable and reusable. The method developed here can be envisaged as a general, immobilization procedure on the protein biosensor field. PMID:24498237

  15. Specific and reversible immobilization of proteins tagged to the affinity polypeptide C-LytA on functionalized graphite electrodes.

    PubMed

    Bello-Gil, Daniel; Maestro, Beatriz; Fonseca, Jennifer; Feliu, Juan M; Climent, Víctor; Sanz, Jesús M

    2014-01-01

    We have developed a general method for the specific and reversible immobilization of proteins fused to the choline-binding module C-LytA on functionalized graphite electrodes. Graphite electrode surfaces were modified by diazonium chemistry to introduce carboxylic groups that were subsequently used to anchor mixed self-assembled monolayers consisting of N,N-diethylethylenediamine groups, acting as choline analogs, and ethanolamine groups as spacers. The ability of the prepared electrodes to specifically bind C-LytA-tagged recombinant proteins was tested with a C-LytA-β-galactosidase fusion protein. The binding, activity and stability of the immobilized protein was evaluated by electrochemically monitoring the formation of an electroactive product in the enzymatic hydrolysis of the synthetic substrate 4-aminophenyl β-D-galactopyranoside. The hybrid protein was immobilized in an specific and reversible way, while retaining the catalytic activity. Moreover, these functionalized electrodes were shown to be highly stable and reusable. The method developed here can be envisaged as a general, immobilization procedure on the protein biosensor field.

  16. Lipid vesicle-mediated affinity chromatography using magnetic activated cell sorting (LIMACS): a novel method to analyze protein-lipid interaction.

    PubMed

    Bieberich, Erhard

    2011-04-26

    The analysis of lipid protein interaction is difficult because lipids are embedded in cell membranes and therefore, inaccessible to most purification procedures. As an alternative, lipids can be coated on flat surfaces as used for lipid ELISA and Plasmon resonance spectroscopy. However, surface coating lipids do not form microdomain structures, which may be important for the lipid binding properties. Further, these methods do not allow for the purification of larger amounts of proteins binding to their target lipids. To overcome these limitations of testing lipid protein interaction and to purify lipid binding proteins we developed a novel method termed lipid vesicle-mediated affinity chromatography using magnetic-activated cell sorting (LIMACS). In this method, lipid vesicles are prepared with the target lipid and phosphatidylserine as the anchor lipid for Annexin V MACS. Phosphatidylserine is a ubiquitous cell membrane phospholipid that shows high affinity to the protein Annexin V. Using magnetic beads conjugated to Annexin V the phosphatidylserine-containing lipid vesicles will bind to the magnetic beads. When the lipid vesicles are incubated with a cell lysate the protein binding to the target lipid will also be bound to the beads and can be co-purified using MACS. This method can also be used to test if recombinant proteins reconstitute a protein complex binding to the target lipid. We have used this method to show the interaction of atypical PKC (aPKC) with the sphingolipid ceramide and to co-purify prostate apoptosis response 4 (PAR-4), a protein binding to ceramide-associated aPKC. We have also used this method for the reconstitution of a ceramide-associated complex of recombinant aPKC with the cell polarity-related proteins Par6 and Cdc42. Since lipid vesicles can be prepared with a variety of sphingo- or phospholipids, LIMACS offers a versatile test for lipid-protein interaction in a lipid environment that resembles closely that of the cell membrane

  17. Expression and purification of isotopically labeled peptide inhibitors and substrates of cAMP-dependant protein kinase A for NMR analysis.

    PubMed

    Masterson, Larry R; Bortone, Nadia; Yu, Tao; Ha, Kim N; Gaffarogullari, Ece C; Nguyen, Oanh; Veglia, Gianluigi

    2009-04-01

    Extensive X-ray crystallographic studies carried out on the catalytic-subunit of protein kinase A (PKA-C) enabled the atomic characterization of inhibitor and/or substrate peptide analogues trapped at its active site. Yet, the structural and dynamic transitions of these peptides from the free to the bound state are missing. These conformational transitions are central to understanding molecular recognition and the enzymatic cycle. NMR spectroscopy allows one to study these phenomena under functionally relevant conditions. However, the amounts of isotopically labeled peptides required for this technique present prohibitive costs for solid-phase peptide synthesis. To enable NMR studies, we have optimized both expression and purification of isotopically enriched substrate/inhibitor peptides using a recombinant fusion protein system. Three of these peptides correspond to the cytoplasmic regions of the wild-type and lethal mutants of the membrane protein phospholamban, while the fourth peptide correspond to the binding epitope of the heat-stable protein kinase inhibitor (PKI(5-24)). The target peptides were fused to the maltose binding protein (MBP), which is further purified using a His(6) tag approach. This convenient protocol allows for the purification of milligram amounts of peptides necessary for NMR analysis.

  18. Affinity purification mass spectrometry analysis of PD-1 uncovers SAP as a new checkpoint inhibitor.

    PubMed

    Peled, Michael; Tocheva, Anna S; Sandigursky, Sabina; Nayak, Shruti; Philips, Elliot A; Nichols, Kim E; Strazza, Marianne; Azoulay-Alfaguter, Inbar; Askenazi, Manor; Neel, Benjamin G; Pelzek, Adam J; Ueberheide, Beatrix; Mor, Adam

    2018-01-16

    Programmed cell death-1 (PD-1) is an essential inhibitory receptor in T cells. Antibodies targeting PD-1 elicit durable clinical responses in patients with multiple tumor indications. Nevertheless, a significant proportion of patients do not respond to anti-PD-1 treatment, and a better understanding of the signaling pathways downstream of PD-1 could provide biomarkers for those whose tumors respond and new therapeutic approaches for those whose tumors do not. We used affinity purification mass spectrometry to uncover multiple proteins associated with PD-1. Among these proteins, signaling lymphocytic activation molecule-associated protein (SAP) was functionally and mechanistically analyzed for its contribution to PD-1 inhibitory responses. Silencing of SAP augmented and overexpression blocked PD-1 function. T cells from patients with X-linked lymphoproliferative disease (XLP), who lack functional SAP, were hyperresponsive to PD-1 signaling, confirming its inhibitory role downstream of PD-1. Strikingly, signaling downstream of PD-1 in purified T cell subsets did not correlate with PD-1 surface expression but was inversely correlated with intracellular SAP levels. Mechanistically, SAP opposed PD-1 function by acting as a molecular shield of key tyrosine residues that are targets for the tyrosine phosphatase SHP2, which mediates PD-1 inhibitory properties. Our results identify SAP as an inhibitor of PD-1 function and SHP2 as a potential therapeutic target in patients with XLP.

  19. Identification and characterization of polydimethylsiloxane-binding peptides (PDMS-tag) for oriented immobilization of functional protein on a PDMS surface.

    PubMed

    Kumada, Yoichi; Otsuki, Ryoko; Sakoda, Yumiko; Akai, Ryota; Matoba, Kazutaka; Katayama, Junko; Kishimoto, Michimasa; Horiuchi, Jun-Ichi

    2016-10-20

    In this study we focused on identifying and characterizing polydimethylsiloxane-binding peptides (PDMS-tags) that show a strong binding affinity towards a PDMS surface. Three kinds of E. coli host proteins (ELN, OMC and TPA) that were preferentially adsorbed onto a PDMS surface were identified from the E. coli cell lysate via 2-D electrophoresis and MALDI TOF MS. Digestion of these PDMS-binding proteins by 3 types of proteases (trypsin, chymotrypsin and V8 protease) resulted in the production of a wide variety of peptide fragments with different amino acid biases. Nine types of peptide fragments showing binding affinities to a PDMS surface were identified, and they were genetically fused at the C-terminal region of glutathione S-transferase (GST). The adsorption kinetics of peptide-fused GSTs to a PDMS surface were evaluated using a quartz crystal microbalance (QCM) sensor equipped with a sensor chip coated with a PDMS thin film. Consequently, all GSTs fused with the peptides adsorbed at a level higher than that of wild-type GST. In particular, the adsorption levels of GSTs fused with ELN-V81, TPA-V81, and OMC-V81 peptides were 8- to 10-fold higher than that of the wild-type GST. These results indicated that the selected peptides possessed a strong binding affinity towards a PDMS surface even in cases where they were introduced to the C-terminal region of a model protein. The remaining activities of GSTs with PDMS-binding peptides were also greater than that of the wild-type GST. Almost a third (30%) of enzymatic activity was maintained by genetic fusion of the peptide ELN-V81, compared with only 1.5% of wild-type GST in the adsorption state. Thus, the PDMS-binding peptides (PDMS-tags) identified in this study will be considerably useful for the site-specific immobilization of functional proteins to a PDMS surface, which will be a powerful tool in the fabrication of protein-based micro-reactors and biosearation chips. Copyright © 2016 Elsevier B.V. All rights

  20. Detection of His-tagged Long-R³-IGF-I in a black market product.

    PubMed

    Kohler, Maxie; Thomas, Andreas; Walpurgis, Katja; Terlouw, Koen; Schänzer, Wilhelm; Thevis, Mario

    2010-10-01

    Performance-enhancing substances are illicitly used in elite or amateur sports and may be obtained from the black market due to a cheaper and easier availability. Although various studies have shown that black market products frequently do not contain the declared substances, enormous amounts of illegally produced and/or imported drugs are confiscated from athletes or at customs with alarming results concerning the outcome of the analyses of the ingredients. This case report describes the identification of His-tagged Long-R³-IGF-I, which is usually produced for biochemical studies, in an injection vial. The ingredients were isolated by immunoaffinity purification and identified by nano-UPLC, high-resolution/high accuracy mass spectrometry of the intact and trypsinated substance and by an enzyme-linked immunosorbent assay. (Tandem) mass spectra characterized the protein as Long-R³-IGF-I with a His₆-tag attached to the C-terminus by the linker amino acids Leu-Glu. His-tags are commonly added to proteins during synthesis to allow a convenient and complete purification of the final product and His-tags are subsequently removed by specific enzymes when being attached to the N-terminus. The effects of His-tagged Long-R³-IGF-I in humans have not been elucidated or described and the product may rather be a by-product from biochemical studies than synthesized for injection purposes. Copyright © 2010 Growth Hormone Research Society. Published by Elsevier Ltd. All rights reserved.

  1. The protein-protein interface evolution acts in a similar way to antibody affinity maturation.

    PubMed

    Li, Bohua; Zhao, Lei; Wang, Chong; Guo, Huaizu; Wu, Lan; Zhang, Xunming; Qian, Weizhu; Wang, Hao; Guo, Yajun

    2010-02-05

    Understanding the evolutionary mechanism that acts at the interfaces of protein-protein complexes is a fundamental issue with high interest for delineating the macromolecular complexes and networks responsible for regulation and complexity in biological systems. To investigate whether the evolution of protein-protein interface acts in a similar way as antibody affinity maturation, we incorporated evolutionary information derived from antibody affinity maturation with common simulation techniques to evaluate prediction success rates of the computational method in affinity improvement in four different systems: antibody-receptor, antibody-peptide, receptor-membrane ligand, and receptor-soluble ligand. It was interesting to find that the same evolutionary information could improve the prediction success rates in all the four protein-protein complexes with an exceptional high accuracy (>57%). One of the most striking findings in our present study is that not only in the antibody-combining site but in other protein-protein interfaces almost all of the affinity-enhancing mutations are located at the germline hotspot sequences (RGYW or WA), indicating that DNA hot spot mechanisms may be widely used in the evolution of protein-protein interfaces. Our data suggest that the evolution of distinct protein-protein interfaces may use the same basic strategy under selection pressure to maintain interactions. Additionally, our data indicate that classical simulation techniques incorporating the evolutionary information derived from in vivo antibody affinity maturation can be utilized as a powerful tool to improve the binding affinity of protein-protein complex with a high accuracy.

  2. Identification of Novel Surface-Exposed Proteins of Rickettsia rickettsii by Affinity Purification and Proteomics

    PubMed Central

    Gong, Wenping; Xiong, Xiaolu; Qi, Yong; Jiao, Jun; Duan, Changsong; Wen, Bohai

    2014-01-01

    Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, is the most pathogenic member among Rickettsia spp. Surface-exposed proteins (SEPs) of R. rickettsii may play important roles in its pathogenesis or immunity. In this study, R. rickettsii organisms were surface-labeled with sulfo-NHS-SS-biotin and the labeled proteins were affinity-purified with streptavidin. The isolated proteins were separated by two-dimensional electrophoresis, and 10 proteins were identified among 23 protein spots by electrospray ionization tandem mass spectrometry. Five (OmpA, OmpB, GroEL, GroES, and a DNA-binding protein) of the 10 proteins were previously characterized as surface proteins of R. rickettsii. Another 5 proteins (Adr1, Adr2, OmpW, Porin_4, and TolC) were first recognized as SEPs of R. rickettsii herein. The genes encoding the 5 novel SEPs were expressed in Escherichia coli cells, resulting in 5 recombinant SEPs (rSEPs), which were used to immunize mice. After challenge with viable R. rickettsii cells, the rickettsial load in the spleen, liver, or lung of mice immunized with rAdr2 and in the lungs of mice immunized with other rSEPs excluding rTolC was significantly lower than in mice that were mock-immunized with PBS. The in vitro neutralization test revealed that sera from mice immunized with rAdr1, rAdr2, or rOmpW reduced R. rickettsii adherence to and invasion of vascular endothelial cells. The immuno-electron microscopic assay clearly showed that the novel SEPs were located in the outer and/or inner membrane of R. rickettsii. Altogether, the 5 novel SEPs identified herein might be involved in the interaction of R. rickettsii with vascular endothelial cells, and all of them except TolC were protective antigens. PMID:24950252

  3. Aspartic acid incorporated monolithic columns for affinity glycoprotein purification.

    PubMed

    Armutcu, Canan; Bereli, Nilay; Bayram, Engin; Uzun, Lokman; Say, Rıdvan; Denizli, Adil

    2014-02-01

    Novel aspartic acid incorporated monolithic columns were prepared to efficiently affinity purify immunoglobulin G (IgG) from human plasma. The monolithic columns were synthesised in a stainless steel HPLC column (20 cm × 5 mm id) by in situ bulk polymerisation of N-methacryloyl-L-aspartic acid (MAAsp), a polymerisable derivative of L-aspartic acid, and 2-hydroxyethyl methacrylate (HEMA). Monolithic columns [poly(2-hydroxyethyl methacrylate-N-methacryloyl-L-aspartic acid) (PHEMAsp)] were characterised by swelling studies, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The monolithic columns were used for IgG adsorption/desorption from aqueous solutions and human plasma. The IgG adsorption depended on the buffer type, and the maximum IgG adsorption from aqueous solution in phosphate buffer was 0.085 mg/g at pH 6.0. The monolithic columns allowed for one-step IgG purification with a negligible capacity decrease after ten adsorption-desorption cycles. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Cloning, optimization of induction conditions and purification of Mycobacterium tuberculosis Rv1733c protein expressed in Escherichia coli

    PubMed Central

    Ashayeri-Panah, Mitra; Eftekhar, Fereshteh; Kazemi, Bahram; Joseph, Joan

    2017-01-01

    Background and Objectives: Rv1733c is a latency antigen from Mycobacterium tuberculosis, a probable integral-membrane protein with promiscuous T-cell and B-cell epitopes, making it a potential vaccine candidate against tuberculosis. This study aimed to clone and optimize the expression of recombinant Rv1733c in Escherichia coli for purification. Materials and Methods: Chemically synthesized rv1733c coding sequence was cloned in pET-23a(+) followed by transforming E. coli BL21 (DE3) cells. To evaluate the induction conditions for optimized expression, factorial design of experiments was employed using four different media as well as four levels of isopropyl-b-D-thiogalactopyranosid [IPTG] concentration and duration of induction. The recombinant protein was then purified using a His-tag purification kit and detected through western blotting. Results: Recombinant Rv1733c (> 24 kDa) was expressed and accumulated in the cytoplasm of the E. coli cells. Medium composition showed the most significant effect on the yield of the recombinant protein (P = 0.000). The highest yield of recombinant Rv1733c occurred in the presence of 0.4 mM of IPTG in Terrific Broth medium (containing 1.2% tryptone, 2.4% yeast extract, 72 mM K 2 HPO 4 , 17 mM KH 2 PO 4 and 0.4% glycerol) after 10 h at 37°C. Under these conditions, the expression level was around 0.5 g/L of culture medium. Purified Rv1733c was detected by an anti-polyhistidine antibody and a tuberculosis patient’s serum. Systematic optimization of induction conditions gave us high yield of recombinant polyhistidine-tagged Rv1733c in E. coli which was successfuly purified. Conclusion: We believe that the purified Rv1733c recombinant protein from M. tuberculosis might be a good candidate for vaccine production against tuberculosis. PMID:29213997

  5. Analysis of Ethylene Receptor Interactions by Co-immunoprecipitation Assays.

    PubMed

    Gao, Zhiyong; Schaller, G Eric

    2017-01-01

    Ethylene receptors are predominantly localized to the endoplasmic reticulum (ER) membrane, and coordinate ethylene signal output through protein-protein interactions with each other and additional signaling components. Here, we describe a co-immunoprecipitation (Co-IP) assay based on the use of the Tandem Affinity Purification (TAP) tag to examine the interactions of ethylene receptors in plant extracts. Human IgG-agarose beads are used to pull down TAP-tagged versions of the protein of interest from detergent extracts of Arabidopsis membranes, and the precipitate then is analyzed immunologically for co-purification of the ethylene receptors. This method has been successfully used to examine interactions of the receptors with each other as well as with the Raf-like kinase CTR1.

  6. Evaluation of rice tetraticopeptide domain-containing thioredoxin as a novel solubility-enhancing fusion tag in Escherichia coli.

    PubMed

    Xiao, Wenjun; Jiang, Li; Wang, Weiyu; Wang, Ruyue; Fan, Jun

    2018-02-01

    Fusion of solubility-enhancing tag is frequently used for improving soluble production of target protein in Escherichia coli. The Arabidopsis tetraticopeptide domain-containing thioredoxin (TDX) has been documented to exhibit functions of disulfide reductase, foldase chaperone, and holdase chaperone. Here, we identified that fusion of rice TDX with the smaller size increased soluble expression levels of three fluorescent proteins with different fluorophores in the E. coli strain BL21(DE3) or the Rosetta (DE3) strain with coexpression of six rare tRNAs, but decreased conformational quality of certain fluorescent proteins, as comparison with the His6-tagged ones. Among five maize proteins, the rice TDX fusion carrier displayed higher solubility-enhancing activity than the yeast SUMO3 tag toward three proteins in both E. coli strains. Five fusion constructs were cleaved with the co-expressed TEV protease variant, but the released target proteins were partly insolubly aggregated in vivo. Attachment of the His6-tag to the TDX tagged proteins had little impact on protein solubility. After Ni-NTA purification, five His6-TDX tagged proteins displayed different apparent purities. Taken together, our work presents that rice TDX tag is a novel solubility enhancer. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins.

    PubMed

    Subach, Oksana M; Malashkevich, Vladimir N; Zencheck, Wendy D; Morozova, Kateryna S; Piatkevich, Kiryl D; Almo, Steven C; Verkhusha, Vladislav V

    2010-04-23

    We determined the 2.2 A crystal structures of the red fluorescent protein TagRFP and its derivative, the blue fluorescent protein mTagBFP. The crystallographic analysis is consistent with a model in which TagRFP has the trans coplanar anionic chromophore with the conjugated pi-electron system, similar to that of DsRed-like chromophores. Refined conformation of mTagBFP suggests the presence of an N-acylimine functionality in its chromophore and single C(alpha)-C(beta) bond in the Tyr64 side chain. Mass spectrum of mTagBFP chromophore-bearing peptide indicates a loss of 20 Da upon maturation, whereas tandem mass spectrometry reveals that the C(alpha)-N bond in Leu63 is oxidized. These data indicate that mTagBFP has a new type of the chromophore, N-[(5-hydroxy-1H-imidazole-2-yl)methylidene]acetamide. We propose a chemical mechanism in which the DsRed-like chromophore is formed via the mTagBFP-like blue intermediate. (c) 2010 Elsevier Ltd. All rights reserved.

  8. Affinity precipitation of human serum albumin using a thermo-response polymer with an L-thyroxin ligand.

    PubMed

    Ding, Zhaoyang; Cao, Xuejun

    2013-12-17

    Affinity precipitation has been reported as a potential technology for the purification of proteins at the early stage of downstream processing. The technology could be achieved using reversible soluble-insoluble polymers coupled with an affinity ligand to purify proteins from large volumes of dilute solution material such as fermentation broths or plasma. In this study, a thermo-response polymer was synthesized using N-methylol acrylamide, N-isopropyl acrylamide and butyl acrylate as monomers. The molecular weight of the polymer measured by the viscosity method was 3.06 × 104 Da and the lower critical solution temperature (LCST) was 28.0°C.The recovery of the polymer above the LCST was over 95.0%. Human serum albumin (HSA) is the most abundant protein in the human serum system, and it has important functions in the human body. High purity HSA is required in pharmaceuticals. Safe and efficient purification is a crucial process during HSA production. A thermo-response polymer was synthesized and L-thyroxin immobilized on the polymer as an affinity ligand to enable affinity precipitation of HSA. The LCST of the affinity polymer was 31.0°C and the recovery was 99.6% of its original amount after recycling three times. The optimal adsorption condition was 0.02 M Tris-HCl buffer (pH 7.0) and the HSA adsorption capacity was 14.9 mg/g polymer during affinity precipitation. Circular dichroism spectra and a ForteBio Octet system were used to analyze the interactions between the affinity polymer and HSA during adsorption and desorption. The recovery of total HSA by elution with 1.0 mol/L NaSCN was 93.6%. When the affinity polymer was applied to purification of HSA from human serum, HSA could be purified to single-band purity according to SDS-PAGE. A thermo-response polymer was synthesized and L-thyroxin was attached to the polymer. Affinity precipitation was used to purify HSA from human serum.

  9. Affinity precipitation of human serum albumin using a thermo-response polymer with an L-thyroxin ligand

    PubMed Central

    2013-01-01

    Background Affinity precipitation has been reported as a potential technology for the purification of proteins at the early stage of downstream processing. The technology could be achieved using reversible soluble-insoluble polymers coupled with an affinity ligand to purify proteins from large volumes of dilute solution material such as fermentation broths or plasma. In this study, a thermo-response polymer was synthesized using N-methylol acrylamide, N-isopropyl acrylamide and butyl acrylate as monomers. The molecular weight of the polymer measured by the viscosity method was 3.06 × 104 Da and the lower critical solution temperature (LCST) was 28.0°C.The recovery of the polymer above the LCST was over 95.0%. Human serum albumin (HSA) is the most abundant protein in the human serum system, and it has important functions in the human body. High purity HSA is required in pharmaceuticals. Safe and efficient purification is a crucial process during HSA production. Results A thermo-response polymer was synthesized and L-thyroxin immobilized on the polymer as an affinity ligand to enable affinity precipitation of HSA. The LCST of the affinity polymer was 31.0°C and the recovery was 99.6% of its original amount after recycling three times. The optimal adsorption condition was 0.02 M Tris–HCl buffer (pH 7.0) and the HSA adsorption capacity was 14.9 mg/g polymer during affinity precipitation. Circular dichroism spectra and a ForteBio Octet system were used to analyze the interactions between the affinity polymer and HSA during adsorption and desorption. The recovery of total HSA by elution with 1.0 mol/L NaSCN was 93.6%. When the affinity polymer was applied to purification of HSA from human serum, HSA could be purified to single-band purity according to SDS-PAGE. Conclusion A thermo-response polymer was synthesized and L-thyroxin was attached to the polymer. Affinity precipitation was used to purify HSA from human serum. PMID:24341315

  10. Renaissance of protein crystallization and precipitation in biopharmaceuticals purification.

    PubMed

    Dos Santos, Raquel; Carvalho, Ana Luísa; Roque, A Cecília A

    The current chromatographic approaches used in protein purification are not keeping pace with the increasing biopharmaceutical market demand. With the upstream improvements, the bottleneck shifted towards the downstream process. New approaches rely in Anything But Chromatography methodologies and revisiting former techniques with a bioprocess perspective. Protein crystallization and precipitation methods are already implemented in the downstream process of diverse therapeutic biological macromolecules, overcoming the current chromatographic bottlenecks. Promising work is being developed in order to implement crystallization and precipitation in the purification pipeline of high value therapeutic molecules. This review focuses in the role of these two methodologies in current industrial purification processes, and highlights their potential implementation in the purification pipeline of high value therapeutic molecules, overcoming chromatographic holdups. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Engineering of Bispecific Affinity Proteins with High Affinity for ERBB2 and Adaptable Binding to Albumin

    PubMed Central

    Nilvebrant, Johan; Åstrand, Mikael; Georgieva-Kotseva, Maria; Björnmalm, Mattias; Löfblom, John; Hober, Sophia

    2014-01-01

    The epidermal growth factor receptor 2, ERBB2, is a well-validated target for cancer diagnostics and therapy. Recent studies suggest that the over-expression of this receptor in various cancers might also be exploited for antibody-based payload delivery, e.g. antibody drug conjugates. In such strategies, the full-length antibody format is probably not required for therapeutic effect and smaller tumor-specific affinity proteins might be an alternative. However, small proteins and peptides generally suffer from fast excretion through the kidneys, and thereby require frequent administration in order to maintain a therapeutic concentration. In an attempt aimed at combining ERBB2-targeting with antibody-like pharmacokinetic properties in a small protein format, we have engineered bispecific ERBB2-binding proteins that are based on a small albumin-binding domain. Phage display selection against ERBB2 was used for identification of a lead candidate, followed by affinity maturation using second-generation libraries. Cell surface display and flow-cytometric sorting allowed stringent selection of top candidates from pools pre-enriched by phage display. Several affinity-matured molecules were shown to bind human ERBB2 with sub-nanomolar affinity while retaining the interaction with human serum albumin. Moreover, parallel selections against ERBB2 in the presence of human serum albumin identified several amino acid substitutions that dramatically modulate the albumin affinity, which could provide a convenient means to control the pharmacokinetics. The new affinity proteins competed for ERBB2-binding with the monoclonal antibody trastuzumab and recognized the native receptor on a human cancer cell line. Hence, high affinity tumor targeting and tunable albumin binding were combined in one small adaptable protein. PMID:25089830

  12. Barley as a green factory for the production of functional Flt3 ligand.

    PubMed

    Erlendsson, Lýdur S; Muench, Marcus O; Hellman, Ulf; Hrafnkelsdóttir, Soffía M; Jonsson, Anders; Balmer, Yves; Mäntylä, Einar; Orvar, Björn L

    2010-02-01

    Biologically active recombinant human Flt3 ligand was expressed and isolated from transgenic barley seeds. Its expression is controlled by a tissue specific promoter that confines accumulation of the recombinant protein to the endosperm tissue of the seed. The recombinant Flt3 ligand variant expressed in the seeds contains an HQ-tag for affinity purification on immobilized metal ion affinity chromatography (IMAC) resin. The tagged protein was purified from seed extracts to near homogeneity using sequential chromatography on IMAC affinity resin and cation exchange resin. We also show that the recombinant Flt3 ligand protein undergoes posttranslational modifications: it is a glycoprotein containing alpha-1,3-fucose and alpha-1,2-xylose. The HQ-tagged Flt3 ligand variant exhibits comparable biological activity to commercial Flt3 ligand. This is the first report showing expression and accumulation of recombinant human growth factor in barley seeds with a yield of active protein similar to a bacterial expression system. The present results demonstrate that plant molecular farming is a viable approach for the bioproduction of human-derived growth factors.

  13. A simple tagging system for protein encapsulation.

    PubMed

    Seebeck, Florian P; Woycechowsky, Kenneth J; Zhuang, Wei; Rabe, Jürgen P; Hilvert, Donald

    2006-04-12

    Molecular containers that encapsulate specific cargo can be useful for many natural and non-natural processes. We report a simple system, based on charge complementarity, for the encapsulation of appropriately tagged proteins within an engineered, proteinaceous capsid. Four negative charges per monomer were added to the lumazine synthase from Aquifex aeolicus (AaLS). The capsids formed by the engineered AaLS associate with green fluorescent protein bearing a positively charged deca-arginine tag upon coproduction in Escherichia coli. Analytical ultracentrifugation and scanning force microscopy studies indicated that the engineered AaLS retains the ability to form capsids, but that their average size was substantially increased. The success of this strategy demonstrates that both the container and guest components of protein-based encapsulation systems can be convergently designed in a straightforward manner, which may help to extend their versatility.

  14. Affinity purification of seminalplasmin and characterization of its interaction with calmodulin.

    PubMed Central

    Comte, M; Malnoë, A; Cox, J A

    1986-01-01

    Bull seminalplasmin antagonizes with high potency and selectivity the activating effect of calmodulin on target enzymes [Gietzen & Galla (1985) Biochem. J. 230, 277-280]. In the present paper we establish that seminalplasmin forms a 1:1, Ca2+-dependent and urea-resistant complex with calmodulin. The dissociation constant equals 1.6 nM. In the absence of Ca2+ a low-affinity complex is formed that is disrupted by 4 M-urea. On the basis of these properties, a fast affinity purification of seminalplasmin was developed. The high specificity of seminalplasmin as a calmodulin antagonist was demonstrated for the multipathway-regulated adenylate cyclase of bovine cerebellum. Far-u.v. c.d. properties are consistent with a random form of seminalplasmin in aqueous solution; 23% alpha-helix is induced on interaction with calmodulin. The fluorescence properties of the single tryptophan residue of seminalplasmin are markedly changed on formation of the complex. These studies allowed us to locate tentatively the peptide segment that interacts with calmodulin, and to ascertain the structural homology between seminalplasmin and other calmodulin-binding peptides. Additional material, showing the inhibition of calmodulin-mediated activation of bovine brain phosphodiesterase by melittin and seminalplasmin and also the near-u.v. spectrum of affinity-purified seminalplasmin, has been deposited as supplement SUP 50135 (4 pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained on the terms indicated in Biochem. J. (1986) 233, 5. Images Fig. 2. PMID:3814096

  15. ProteinTracker: an application for managing protein production and purification

    PubMed Central

    2012-01-01

    Background Laboratories that produce protein reagents for research and development face the challenge of deciding whether to track batch-related data using simple file based storage mechanisms (e.g. spreadsheets and notebooks), or commit the time and effort to install, configure and maintain a more complex laboratory information management system (LIMS). Managing reagent data stored in files is challenging because files are often copied, moved, and reformatted. Furthermore, there is no simple way to query the data if/when questions arise. Commercial LIMS often include additional modules that may be paid for but not actually used, and often require software expertise to truly customize them for a given environment. Findings This web-application allows small to medium-sized protein production groups to track data related to plasmid DNA, conditioned media samples (supes), cell lines used for expression, and purified protein information, including method of purification and quality control results. In addition, a request system was added that includes a means of prioritizing requests to help manage the high demand of protein production resources at most organizations. ProteinTracker makes extensive use of existing open-source libraries and is designed to track essential data related to the production and purification of proteins. Conclusions ProteinTracker is an open-source web-based application that provides organizations with the ability to track key data involved in the production and purification of proteins and may be modified to meet the specific needs of an organization. The source code and database setup script can be downloaded from http://sourceforge.net/projects/proteintracker. This site also contains installation instructions and a user guide. A demonstration version of the application can be viewed at http://www.proteintracker.org. PMID:22574679

  16. Optimizing purification process of MIM-I-BAR domain by introducing atomic force microscope and dynamics simulations.

    PubMed

    Zhang, Yue; Lou, Zhichao; Lin, Xubo; Wang, Qiwei; Cao, Meng; Gu, Ning

    2017-09-01

    MIM (missing in metastasis) is a member of I-BAR (inverse BAR) domain protein family, which functions as a putative metastasis suppressor. However, methods of gaining high purity MIM-I-BAR protein are barely reported. Here, by optimizing the purification process including changing the conditions of cell lysate and protein elution, we successfully purified MIM protein. The purity of the obtained protein was up to ∼90%. High-resolution atomic force microscope (AFM) provides more visual images, ensuring that we can observe the microenvironment around the target protein, as well as the conformations of the purification products following each purification process. MIM protein with two different sizes were observed on mica surface with AFM. Combining with molecular dynamics simulations, these molecules were revealed as MIM monomer and dimer. Furthermore, our study attaches importance to the usage of imidazole with suitable concentrations during the affinity chromatography process, as well as the removal of excessive imidazole after the affinity chromatography process. All these results indicate that the method described here was successful in purifying MIM protein and maintaining their natural properties, and is supposed to be used to purify other proteins with low solubility. Copyright © 2017. Published by Elsevier B.V.

  17. Mapping transcription factor interactome networks using HaloTag protein arrays.

    PubMed

    Yazaki, Junshi; Galli, Mary; Kim, Alice Y; Nito, Kazumasa; Aleman, Fernando; Chang, Katherine N; Carvunis, Anne-Ruxandra; Quan, Rosa; Nguyen, Hien; Song, Liang; Alvarez, José M; Huang, Shao-Shan Carol; Chen, Huaming; Ramachandran, Niroshan; Altmann, Stefan; Gutiérrez, Rodrigo A; Hill, David E; Schroeder, Julian I; Chory, Joanne; LaBaer, Joshua; Vidal, Marc; Braun, Pascal; Ecker, Joseph R

    2016-07-19

    Protein microarrays enable investigation of diverse biochemical properties for thousands of proteins in a single experiment, an unparalleled capacity. Using a high-density system called HaloTag nucleic acid programmable protein array (HaloTag-NAPPA), we created high-density protein arrays comprising 12,000 Arabidopsis ORFs. We used these arrays to query protein-protein interactions for a set of 38 transcription factors and transcriptional regulators (TFs) that function in diverse plant hormone regulatory pathways. The resulting transcription factor interactome network, TF-NAPPA, contains thousands of novel interactions. Validation in a benchmarked in vitro pull-down assay revealed that a random subset of TF-NAPPA validated at the same rate of 64% as a positive reference set of literature-curated interactions. Moreover, using a bimolecular fluorescence complementation (BiFC) assay, we confirmed in planta several interactions of biological interest and determined the interaction localizations for seven pairs. The application of HaloTag-NAPPA technology to plant hormone signaling pathways allowed the identification of many novel transcription factor-protein interactions and led to the development of a proteome-wide plant hormone TF interactome network.

  18. Purification of an eight subunit RNA polymerase I complex in Trypanosoma brucei.

    PubMed

    Nguyen, Tu N; Schimanski, Bernd; Zahn, André; Klumpp, Birgit; Günzl, Arthur

    2006-09-01

    Trypanosoma brucei harbors a unique multifunctional RNA polymerase (pol) I which transcribes, in addition to ribosomal RNA genes, the gene units encoding the major cell surface antigens variant surface glycoprotein and procyclin. In consequence, this RNA pol I is recruited to three structurally different types of promoters and sequestered to two distinct nuclear locations, namely the nucleolus and the expression site body. This versatility may require parasite-specific protein-protein interactions, subunits or subunit domains. Thus far, data mining of trypanosomatid genomes have revealed 13 potential RNA pol I subunits which include two paralogous sets of RPB5, RPB6, and RPB10. Here, we analyzed a cDNA library prepared from procyclic insect form T. brucei and found that all 13 candidate subunits are co-expressed. Moreover, we PTP-tagged the largest subunit TbRPA1, tandem affinity-purified the enzyme complex to homogeneity, and determined its subunit composition. In addition to the already known subunits RPA1, RPA2, RPC40, 1RPB5, and RPA12, the complex contained RPC19, RPB8, and 1RPB10. Finally, to evaluate the absence of RPB6 in our purifications, we used a combination of epitope-tagging and reciprocal coimmunoprecipitation to demonstrate that 1RPB6 but not 2RPB6 binds to RNA pol I albeit in an unstable manner. Collectively, our data strongly suggest that T. brucei RNA pol I binds a distinct set of the RPB5, RPB6, and RPB10 paralogs.

  19. Endo-β-Glucosidase Tag Allows Dual Detection of Fusion Proteins by Fluorescent Mechanism-Based Probes and Activity Measurement.

    PubMed

    Kallemeijn, Wouter W; Scheij, Saskia; Voorn-Brouwer, Tineke M; Witte, Martin D; Verhoek, Marri; Overkleeft, Hermen S; Boot, Rolf G; Aerts, Johannes M F G

    2016-09-15

    β-Glucoside-configured cyclophellitols are activity-based probes (ABPs) that allow sensitive detection of β-glucosidases. Their applicability to detect proteins fused with β-glucosidase was investigated in the cellular context. The tag was Rhodococcus sp. M-777 endoglycoceramidase II (EGCaseII), based on its lack of glycans and ability to hydrolyze fluorogenic 4-methylumbelliferyl β-d-lactoside (an activity absent in mammalian cells). Specific dual detection of fusion proteins was possible in vitro and in situ by using fluorescent ABPs and a fluorogenic substrate. Pre-blocking with conduritol β-epoxide (a poor inhibitor of EGCaseII) eliminated ABP labeling of endogenous β-glucosidases. ABPs equipped with biotin allowed convenient purification of the fusion proteins. Diversification of ABPs (distinct fluorophores, fluorogenic high-resolution detection moieties) should assist further research in living cells and organisms. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. An effective system for detecting protein-protein interaction based on in vivo cleavage by PPV NIa protease.

    PubMed

    Zheng, Nuoyan; Huang, Xiahe; Yin, Bojiao; Wang, Dan; Xie, Qi

    2012-12-01

    Detection of protein-protein interaction can provide valuable information for investigating the biological function of proteins. The current methods that applied in protein-protein interaction, such as co-immunoprecipitation and pull down etc., often cause plenty of working time due to the burdensome cloning and purification procedures. Here we established a system that characterization of protein-protein interaction was accomplished by co-expression and simply purification of target proteins from one expression cassette within E. coli system. We modified pET vector into co-expression vector pInvivo which encoded PPV NIa protease, two cleavage site F and two multiple cloning sites that flanking cleavage sites. The target proteins (for example: protein A and protein B) were inserted at multiple cloning sites and translated into polyprotein in the order of MBP tag-protein A-site F-PPV NIa protease-site F-protein B-His(6) tag. PPV NIa protease carried out intracellular cleavage along expression, then led to the separation of polyprotein components, therefore, the interaction between protein A-protein B can be detected through one-step purification and analysis. Negative control for protein B was brought into this system for monitoring interaction specificity. We successfully employed this system to prove two cases of reported protien-protein interaction: RHA2a/ANAC and FTA/FTB. In conclusion, a convenient and efficient system has been successfully developed for detecting protein-protein interaction.

  1. Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins.

    PubMed

    Forato, Florian; Liu, Hao; Benoit, Roland; Fayon, Franck; Charlier, Cathy; Fateh, Amina; Defontaine, Alain; Tellier, Charles; Talham, Daniel R; Queffélec, Clémence; Bujoli, Bruno

    2016-06-07

    Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr(4+), afforded better immobilization of the peptides and proteins and efficient capture of their targets.

  2. Identification of Protein-Protein Interactions with Glutathione-S-Transferase (GST) Fusion Proteins.

    PubMed

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-08-01

    INTRODUCTIONGlutathione-S-transferase (GST) fusion proteins have had a wide range of applications since their introduction as tools for synthesis of recombinant proteins in bacteria. GST was originally selected as a fusion moiety because of several desirable properties. First and foremost, when expressed in bacteria alone, or as a fusion, GST is not sequestered in inclusion bodies (in contrast to previous fusion protein systems). Second, GST can be affinity-purified without denaturation because it binds to immobilized glutathione, which provides the basis for simple purification. Consequently, GST fusion proteins are routinely used for antibody generation and purification, protein-protein interaction studies, and biochemical analysis. This article describes the use of GST fusion proteins as probes for the identification of protein-protein interactions.

  3. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes.

    PubMed

    Srinivasulu, Yerukala Sathipati; Wang, Jyun-Rong; Hsu, Kai-Ti; Tsai, Ming-Ju; Charoenkwan, Phasit; Huang, Wen-Lin; Huang, Hui-Ling; Ho, Shinn-Ying

    2015-01-01

    Protein-protein interactions (PPIs) are involved in various biological processes, and underlying mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning approaches have been developed for predicting the binding affinity of protein-protein complexes based on structure and functional information. This work aims to predict the binding affinity of heterodimeric protein complexes from sequences only. This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of 580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better than existing machine learning algorithms. The 14 features and support vector regression were further used to estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative physicochemical properties according to their contribution to prediction performance. Results reveal that the following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent partition energy based on buried molar fractions, relations between chemical structure and biological activity in principal component analysis IV, and normalized frequency of beta turn. The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein complexes. The characterization

  4. Calculation of protein-ligand binding affinities.

    PubMed

    Gilson, Michael K; Zhou, Huan-Xiang

    2007-01-01

    Accurate methods of computing the affinity of a small molecule with a protein are needed to speed the discovery of new medications and biological probes. This paper reviews physics-based models of binding, beginning with a summary of the changes in potential energy, solvation energy, and configurational entropy that influence affinity, and a theoretical overview to frame the discussion of specific computational approaches. Important advances are reported in modeling protein-ligand energetics, such as the incorporation of electronic polarization and the use of quantum mechanical methods. Recent calculations suggest that changes in configurational entropy strongly oppose binding and must be included if accurate affinities are to be obtained. The linear interaction energy (LIE) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods are analyzed, as are free energy pathway methods, which show promise and may be ready for more extensive testing. Ultimately, major improvements in modeling accuracy will likely require advances on multiple fronts, as well as continued validation against experiment.

  5. Biotechnology Protein Expression and Purification Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The purpose of the Project Scientist Core Facility is to provide purified proteins, both recombinant and natural, to the Biotechnology Science Team Project Scientists and the NRA-Structural Biology Test Investigators. Having a core facility for this purpose obviates the need for each scientist to develop the necessary expertise and equipment for molecular biology, protein expression, and protein purification. Because of this, they are able to focus their energies as well as their funding on the crystallization and structure determination of their target proteins.

  6. Production of recombinant protein G through high-density fermentation of engineered bacteria as well as purification.

    PubMed

    Zhang, Hu-Cheng; Yang, Jun; Yang, Guo-Wei; Wang, Xiao-Jie; Fan, Hai-Tao

    2015-08-01

    Recombinant Streptococcus Protein G (PG) is a cell wall protein, which, when combined with mammal immunoglobulin, is used in separating antibody technology. High-density fermentation technologies using an engineered recombinant PG-producing bacteria as well as PG separation and purification technologies have a direct impact on the availability and application of PG. Through primary and secondary seed cultivation, a recombinant E. coli strain was subjected to high-density fermentation with controlled feed supplement concentration under stimulation with isopropyl β-D-1-thiogalactopyranoside. The present study investigated the effect of factors including inoculum size, oxygen levels, pH and the cultivating method on the fermentation process, as well as the effect of the separation and purification technologies, including ultrasonication, nickel column affinity chromatography, Sephadex G-25 gel filtration chromatography and diethylaminoethanol-sepharose fast flow ion exchange chromatography on the yield and purity of PG. The efficiency of extraction was detected using SDS-PAGE. High-density fermentation yielded 80-150 g/l of bacteria and 1 g PG was obtained from one liter broth. The present study delivered a highly efficient novel method via which PG can be obtained at a high concentration and a purity >95%.

  7. Extended Stokes shift in fluorescent proteins: chromophore-protein interactions in a near-infrared TagRFP675 variant.

    PubMed

    Piatkevich, Kiryl D; Malashkevich, Vladimir N; Morozova, Kateryna S; Nemkovich, Nicolai A; Almo, Steven C; Verkhusha, Vladislav V

    2013-01-01

    Most GFP-like fluorescent proteins exhibit small Stokes shifts (10-45 nm) due to rigidity of the chromophore environment that excludes non-fluorescent relaxation to a ground state. An unusual near-infrared derivative of the red fluorescent protein mKate, named TagRFP675, exhibits the Stokes shift, which is 30 nm extended comparing to that of the parental protein. In physiological conditions, TagRFP675 absorbs at 598 nm and emits at 675 nm that makes it the most red-shifted protein of the GFP-like protein family. In addition, its emission maximum strongly depends on the excitation wavelength. Structures of TagRFP675 revealed the common DsRed-like chromophore, which, however, interacts with the protein matrix via an extensive network of hydrogen bonds capable of large flexibility. Based on the spectroscopic, biochemical, and structural analysis we suggest that the rearrangement of the hydrogen bond interactions between the chromophore and the protein matrix is responsible for the TagRFP675 spectral properties.

  8. Purification of a Multidrug Resistance Transporter for Crystallization Studies

    PubMed Central

    Alegre, Kamela O.; Law, Christopher J.

    2015-01-01

    Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS). Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM) was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters. PMID:27025617

  9. Solid-phase extraction and purification of membrane proteins using a UV-modified PMMA microfluidic bioaffinity μSPE device.

    PubMed

    Battle, Katrina N; Jackson, Joshua M; Witek, Małgorzata A; Hupert, Mateusz L; Hunsucker, Sally A; Armistead, Paul M; Soper, Steven A

    2014-03-21

    We present a novel microfluidic solid-phase extraction (μSPE) device for the affinity enrichment of biotinylated membrane proteins from whole cell lysates. The device offers features that address challenges currently associated with the extraction and purification of membrane proteins from whole cell lysates, including the ability to release the enriched membrane protein fraction from the extraction surface so that they are available for downstream processing. The extraction bed was fabricated in PMMA using hot embossing and was comprised of 3600 micropillars. Activation of the PMMA micropillars by UV/O3 treatment permitted generation of surface-confined carboxylic acid groups and the covalent attachment of NeutrAvidin onto the μSPE device surfaces, which was used to affinity select biotinylated MCF-7 membrane proteins directly from whole cell lysates. The inclusion of a disulfide linker within the biotin moiety permitted release of the isolated membrane proteins via DTT incubation. Very low levels (∼20 fmol) of membrane proteins could be isolated and recovered with ∼89% efficiency with a bed capacity of 1.7 pmol. Western blotting indicated no traces of cytosolic proteins in the membrane protein fraction as compared to significant contamination using a commercial detergent-based method. We highlight future avenues for enhanced extraction efficiency and increased dynamic range of the μSPE device using computational simulations of different micropillar geometries to guide future device designs.

  10. Expression of fluorescently tagged connexins: a novel approach to rescue function of oligomeric DsRed-tagged proteins.

    PubMed

    Lauf, U; Lopez, P; Falk, M M

    2001-06-01

    A novel, brilliantly red fluorescent protein, DsRed has become available recently opening up a wide variety of experimental opportunities for double labeling and fluorescence resonance electron transfer experiments in combination with green fluorescent protein (GFP). Unlike in the case of GFP, proteins tagged with DsRed were often found to aggregate within the cell. Here we report a simple method that allows rescuing the function of an oligomeric protein tagged with DsRed. We demonstrate the feasibility of this approach on the subunit proteins of an oligomeric membrane channel, gap junction connexins. Additionally, DsRed fluorescence was easily detected 12-16 h post transfection, much earlier than previously reported, and could readily be differentiated from co-expressed GFP. Thus, this approach can eliminate the major drawbacks of this highly attractive autofluorescent protein.

  11. Update of the ATTRACT force field for the prediction of protein-protein binding affinity.

    PubMed

    Chéron, Jean-Baptiste; Zacharias, Martin; Antonczak, Serge; Fiorucci, Sébastien

    2017-06-05

    Determining the protein-protein interactions is still a major challenge for molecular biology. Docking protocols has come of age in predicting the structure of macromolecular complexes. However, they still lack accuracy to estimate the binding affinities, the thermodynamic quantity that drives the formation of a complex. Here, an updated version of the protein-protein ATTRACT force field aiming at predicting experimental binding affinities is reported. It has been designed on a dataset of 218 protein-protein complexes. The correlation between the experimental and predicted affinities reaches 0.6, outperforming most of the available protocols. Focusing on a subset of rigid and flexible complexes, the performance raises to 0.76 and 0.69, respectively. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Efficient fabrication of high-capacity immobilized metal ion affinity chromatographic media: The role of the dextran-grafting process and its manipulation.

    PubMed

    Zhao, Lan; Zhang, Jingfei; Huang, Yongdong; Li, Qiang; Zhang, Rongyue; Zhu, Kai; Suo, Jia; Su, Zhiguo; Zhang, Zhigang; Ma, Guanghui

    2016-03-01

    Novel high-capacity Ni(2+) immobilized metal ion affinity chromatographic media were prepared through the dextran-grafting process. Dextran was grafted to an allyl-activated agarose-based matrix followed by functionalization for the immobilized metal ion affinity chromatographic media. With elaborate regulation of the allylation degree, dextran was completely or partly grafted to agarose microspheres, namely, completely dextran-grafted agarose microspheres and partly dextran-grafted ones, respectively. Confocal laser scanning microscope results demonstrated that a good adjustment of dextran-grafting degree was achieved, and dextran was distributed uniformly in whole completely dextran-grafted microspheres, while just distributed around the outside of the partly dextran-grafted ones. Flow hydrodynamic properties were improved greatly after the dextran-grafting process, and the flow velocity increased by about 30% compared with that of a commercial chromatographic medium (Ni Sepharose FF). A significant improvement of protein binding performance was also achieved by the dextran-grafting process, and partly dextran-grafted Ni(2+) chelating medium had a maximum binding capacity for His-tagged lactate dehydrogenase about 2.5 times higher than that of Ni Sepharose FF. The results indicated that this novel chromatographic medium is promising for applications in high-efficiency and large-scale protein purification. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A scalable strategy for high-throughput GFP tagging of endogenous human proteins.

    PubMed

    Leonetti, Manuel D; Sekine, Sayaka; Kamiyama, Daichi; Weissman, Jonathan S; Huang, Bo

    2016-06-21

    A central challenge of the postgenomic era is to comprehensively characterize the cellular role of the ∼20,000 proteins encoded in the human genome. To systematically study protein function in a native cellular background, libraries of human cell lines expressing proteins tagged with a functional sequence at their endogenous loci would be very valuable. Here, using electroporation of Cas9 nuclease/single-guide RNA ribonucleoproteins and taking advantage of a split-GFP system, we describe a scalable method for the robust, scarless, and specific tagging of endogenous human genes with GFP. Our approach requires no molecular cloning and allows a large number of cell lines to be processed in parallel. We demonstrate the scalability of our method by targeting 48 human genes and show that the resulting GFP fluorescence correlates with protein expression levels. We next present how our protocols can be easily adapted for the tagging of a given target with GFP repeats, critically enabling the study of low-abundance proteins. Finally, we show that our GFP tagging approach allows the biochemical isolation of native protein complexes for proteomic studies. Taken together, our results pave the way for the large-scale generation of endogenously tagged human cell lines for the proteome-wide analysis of protein localization and interaction networks in a native cellular context.

  14. Purification of human alpha uterine protein.

    PubMed

    Sutcliffe, R G; Bolton, A E; Sharp, F; Nicholson, L V; MacKinnon, R

    1980-03-01

    Human alpha uterine protein (AUP) has been prepared from extracts of decudua by antibody affinity chromatography, DEAE Sepharose chromatography and by filtration through Sephadex G-150. This procedure yielded a protein fraction containing AUP, which was labelled with 125I by chloramine T. When analysed by SDS gel electrophoresis this radioiodinated protein fraction was found to contain predominantly a single species of protein which was precipitated by antibodies against AUP in antibody-antigen crossed electrophoresis. Rabbit anti-AUP precipitated 55-65% of the tracer in a double-antibody system. Sephadex G150 gel filtration of AUP obtained before and after affinity chromatography provided a molecular weight estimate of 50000. Since SDS gel electrophoresis revealed a polypeptide molecular weight of 23000-25000, it is suggested that AUP is a dimer.

  15. Purification-Free, Target-Selective Immobilization of a Protein from Cell Lysates.

    PubMed

    Cha, Jaehyun; Kwon, Inchan

    2018-02-27

    Protein immobilization has been widely used for laboratory experiments and industrial processes. Preparation of a recombinant protein for immobilization usually requires laborious and expensive purification steps. Here, a novel purification-free, target-selective immobilization technique of a protein from cell lysates is reported. Purification steps are skipped by immobilizing a target protein containing a clickable non-natural amino acid (p-azidophenylalanine) in cell lysates onto alkyne-functionalized solid supports via bioorthogonal azide-alkyne cycloaddition. In order to achieve a target protein-selective immobilization, p-azidophenylalanine was introduced into an exogenous target protein, but not into endogenous non-target proteins using host cells with amber codon-free genomic DNAs. Immobilization of superfolder fluorescent protein (sfGFP) from cell lysates is as efficient as that of the purified sfGFP. Using two fluorescent proteins (sfGFP and mCherry), the authors also demonstrated that the target proteins are immobilized with a minimal immobilization of non-target proteins (target-selective immobilization). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Production of tag-free recombinant fusion protein encompassing promiscuous T cell epitope of tetanus toxoid and dog zona pellucida glycoprotein-3 for contraceptive vaccine development.

    PubMed

    Gupta, Neha; Shrestha, Abhinav; Panda, Amulya Kumar; Gupta, Satish Kumar

    2013-07-01

    Affinity tags can interfere in various physicochemical properties and immunogenicity of the recombinant proteins. In the present study, tag-free recombinant fusion protein encompassing promiscuous T cell epitope of tetanus toxoid [TT; amino acid (aa) residues 830-844] followed by dilysine linker and dog zona pellucida glycoprotein-3 (ZP3; aa residues 23-348) (TT-KK-ZP3) was expressed in Escherichia coli. The recombinant protein, expressed as inclusion bodies (IBs), was purified by isolation of IBs, processed to remove host cell proteins, followed by solubilization and refolding. A specific 39 kDa protein including ZP3 was identified by SDS-PAGE. CD spectra showed the presence of α-helices and β-sheets, and fluorescent spectroscopy revealed emission maxima of 265 A.U. at 339 nm for refolded protein and showed red shift in the presence of 6 M guanidine hydrochloride. Immunization of inbred FvB/J female mice with purified recombinant TT-KK-ZP3 (25 μg/animal) led to generation of high antibody titers against the recombinant protein. The antibodies reacted specifically with ZP matrix surrounding mouse oocytes. Immunized mice showed significant reduction in fertility as compared to the control group. The studies described herein provide a simple method to produce and purify tag-free recombinant protein for the development of a contraceptive vaccine.

  17. Proteomic validation of protease drug targets: pharmacoproteomics of matrix metalloproteinase inhibitor drugs using isotope-coded affinity tag labelling and tandem mass spectrometry.

    PubMed

    Butler, G S; Overall, C M

    2007-01-01

    We illustrate the use of quantitative proteomics, namely isotope-coded affinity tag labelling and tandem mass spectrometry, to assess the targets and effects of the blockade of matrix metalloproteinases by an inhibitor drug in a breast cancer cell culture system. Treatment of MT1-MMP-transfected MDA-MB-231 cells with AG3340 (Prinomastat) directly affected the processing a multitude of matrix metalloproteinase substrates, and indirectly altered the expression of an array of other proteins with diverse functions. Therefore, broad spectrum blockade of MMPs has wide-ranging biological consequences. In this human breast cancer cell line, secreted substrates accumulated uncleaved in the conditioned medium and plasma membrane protein substrates were retained on the cell surface, due to reduced processing and shedding of these proteins (cell surface receptors, growth factors and bioactive molecules) to the medium in the presence of the matrix metalloproteinase inhibitor. Hence, proteomic investigation of drug-perturbed cellular proteomes can identify new protease substrates and at the same time provides valuable information for target validation, drug efficacy and potential side effects prior to commitment to clinical trials.

  18. Recovery and purification process development for monoclonal antibody production

    PubMed Central

    Ma, Junfen; Winter, Charles; Bayer, Robert

    2010-01-01

    Hundreds of therapeutic monoclonal antibodies (mAbs) are currently in development, and many companies have multiple antibodies in their pipelines. Current methodology used in recovery processes for these molecules are reviewed here. Basic unit operations such as harvest, Protein A affinity chromatography and additional polishing steps are surveyed. Alternative processes such as flocculation, precipitation and membrane chromatography are discussed. We also cover platform approaches to purification methods development, use of high throughput screening methods, and offer a view on future developments in purification methodology as applied to mAbs. PMID:20647768

  19. Membrane protein extraction and purification using styrene-maleic acid (SMA) copolymer: effect of variations in polymer structure.

    PubMed

    Morrison, Kerrie A; Akram, Aneel; Mathews, Ashlyn; Khan, Zoeya A; Patel, Jaimin H; Zhou, Chumin; Hardy, David J; Moore-Kelly, Charles; Patel, Roshani; Odiba, Victor; Knowles, Tim J; Javed, Masood-Ul-Hassan; Chmel, Nikola P; Dafforn, Timothy R; Rothnie, Alice J

    2016-12-01

    The use of styrene-maleic acid (SMA) copolymers to extract and purify transmembrane proteins, while retaining their native bilayer environment, overcomes many of the disadvantages associated with conventional detergent-based procedures. This approach has huge potential for the future of membrane protein structural and functional studies. In this investigation, we have systematically tested a range of commercially available SMA polymers, varying in both the ratio of styrene and maleic acid and in total size, for the ability to extract, purify and stabilise transmembrane proteins. Three different membrane proteins (BmrA, LeuT and ZipA), which vary in size and shape, were used. Our results show that several polymers, can be used to extract membrane proteins, comparably to conventional detergents. A styrene:maleic acid ratio of either 2:1 or 3:1, combined with a relatively small average molecular mass (7.5-10 kDa), is optimal for membrane extraction, and this appears to be independent of the protein size, shape or expression system. A subset of polymers were taken forward for purification, functional and stability tests. Following a one-step affinity purification, SMA 2000 was found to be the best choice for yield, purity and function. However, the other polymers offer subtle differences in size and sensitivity to divalent cations that may be useful for a variety of downstream applications. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  20. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes

    PubMed Central

    2015-01-01

    Background Protein-protein interactions (PPIs) are involved in various biological processes, and underlying mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning approaches have been developed for predicting the binding affinity of protein-protein complexes based on structure and functional information. This work aims to predict the binding affinity of heterodimeric protein complexes from sequences only. Results This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of 580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better than existing machine learning algorithms. The 14 features and support vector regression were further used to estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative physicochemical properties according to their contribution to prediction performance. Results reveal that the following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent partition energy based on buried molar fractions, relations between chemical structure and biological activity in principal component analysis IV, and normalized frequency of beta turn. Conclusions The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein

  1. Protein purification and crystallization artifacts: The tale usually not told.

    PubMed

    Niedzialkowska, Ewa; Gasiorowska, Olga; Handing, Katarzyna B; Majorek, Karolina A; Porebski, Przemyslaw J; Shabalin, Ivan G; Zasadzinska, Ewelina; Cymborowski, Marcin; Minor, Wladek

    2016-03-01

    The misidentification of a protein sample, or contamination of a sample with the wrong protein, may be a potential reason for the non-reproducibility of experiments. This problem may occur in the process of heterologous overexpression and purification of recombinant proteins, as well as purification of proteins from natural sources. If the contaminated or misidentified sample is used for crystallization, in many cases the problem may not be detected until structures are determined. In the case of functional studies, the problem may not be detected for years. Here several procedures that can be successfully used for the identification of crystallized protein contaminants, including: (i) a lattice parameter search against known structures, (ii) sequence or fold identification from partially built models, and (iii) molecular replacement with common contaminants as search templates have been presented. A list of common contaminant structures to be used as alternative search models was provided. These methods were used to identify four cases of purification and crystallization artifacts. This report provides troubleshooting pointers for researchers facing difficulties in phasing or model building. © 2016 The Protein Society.

  2. Affinity proteomics to study endogenous protein complexes: Pointers, pitfalls, preferences and perspectives

    PubMed Central

    LaCava, John; Molloy, Kelly R.; Taylor, Martin S.; Domanski, Michal; Chait, Brian T.; Rout, Michael P.

    2015-01-01

    Dissecting and studying cellular systems requires the ability to specifically isolate distinct proteins along with the co-assembled constituents of their associated complexes. Affinity capture techniques leverage high affinity, high specificity reagents to target and capture proteins of interest along with specifically associated proteins from cell extracts. Affinity capture coupled to mass spectrometry (MS)-based proteomic analyses has enabled the isolation and characterization of a wide range of endogenous protein complexes. Here, we outline effective procedures for the affinity capture of protein complexes, highlighting best practices and common pitfalls. PMID:25757543

  3. Immobilization of proteins onto microbeads using a DNA binding tag for enzymatic assays.

    PubMed

    Kojima, Takaaki; Mizoguchi, Takuro; Ota, Eri; Hata, Jumpei; Homma, Keisuke; Zhu, Bo; Hitomi, Kiyotaka; Nakano, Hideo

    2016-02-01

    A novel DNA-binding protein tag, scCro-tag, which is a single-chain derivative of the bacteriophage lambda Cro repressor, has been developed to immobilize proteins of interest (POI) on a solid support through binding OR consensus DNA (ORC) that is tightly bound by the scCro protein. The scCro-tag successfully bound a transglutaminase 2 (TGase 2) substrate and manganese peroxidase (MnP) to microbeads via scaffolding DNA. The resulting protein-coated microbeads can be utilized for functional analysis of the enzymatic activity using flow cytometry. The quantity of bead-bound proteins can be enhanced by increasing the number of ORCs. In addition, proteins with the scCro-tag that were synthesized using a cell-free protein synthesis system were also immobilized onto the beads, thus indicating that this bead-based system would be applicable to high-throughput analysis of various enzymatic activities. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Effects of L-arginine on solubilization and purification of plant membrane proteins.

    PubMed

    Arakawa, Junji; Uegaki, Masamichi; Ishimizu, Takeshi

    2011-11-01

    Biochemical analysis of membrane proteins is problematic at the level of solubilization and/or purification because of their hydrophobic nature. Here, we developed methods for efficient solubilization and purification of membrane proteins using L-arginine. The addition of 100 mM of basic amino acids (L-arginine, L-lysine, and L-ornithine) to a detergent-containing solubilization buffer enhanced solubilization (by 2.6-4.3 fold) of a model membrane protein-polygalacturonic acid synthase. Of all the amino acids, arginine was the most effective additive for solubilization of this membrane protein. Arginine addition also resulted in the best solubilization of other plant membrane proteins. Next, we examined the effects of arginine on purification of a model membrane protein. In anion-exchange chromatography, the addition of arginine to the loading and elution buffers resulted in a greater recovery of a membrane protein. In ultrafiltration, the addition of arginine to a protein solution significantly improved the recovery of a membrane protein. These results were thought to be due to the properties of arginine that prevent aggregation of hydrophobic proteins. Taken together, the results of our study showed that arginine is useful for solubilization and purification of aggregate-prone membrane proteins. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Affinity purification of the Arabidopsis 26 S proteasome reveals a diverse array of plant proteolytic complexes.

    PubMed

    Book, Adam J; Gladman, Nicholas P; Lee, Sang-Sook; Scalf, Mark; Smith, Lloyd M; Vierstra, Richard D

    2010-08-13

    Selective proteolysis in plants is largely mediated by the ubiquitin (Ub)/proteasome system in which substrates, marked by the covalent attachment of Ub, are degraded by the 26 S proteasome. The 26 S proteasome is composed of two subparticles, the 20 S core protease (CP) that compartmentalizes the protease active sites and the 19 S regulatory particle that recognizes and translocates appropriate substrates into the CP lumen for breakdown. Here, we describe an affinity method to rapidly purify epitope-tagged 26 S proteasomes intact from Arabidopsis thaliana. In-depth mass spectrometric analyses of preparations generated from young seedlings confirmed that the 2.5-MDa CP-regulatory particle complex is actually a heterogeneous set of particles assembled with paralogous pairs for most subunits. A number of these subunits are modified post-translationally by proteolytic processing, acetylation, and/or ubiquitylation. Several proteasome-associated proteins were also identified that likely assist in complex assembly and regulation. In addition, we detected a particle consisting of the CP capped by the single subunit PA200 activator that may be involved in Ub-independent protein breakdown. Taken together, it appears that a diverse and highly dynamic population of proteasomes is assembled in plants, which may expand the target specificity and functions of intracellular proteolysis.

  6. Affinity Purification of the Arabidopsis 26 S Proteasome Reveals a Diverse Array of Plant Proteolytic Complexes*

    PubMed Central

    Book, Adam J.; Gladman, Nicholas P.; Lee, Sang-Sook; Scalf, Mark; Smith, Lloyd M.; Vierstra, Richard D.

    2010-01-01

    Selective proteolysis in plants is largely mediated by the ubiquitin (Ub)/proteasome system in which substrates, marked by the covalent attachment of Ub, are degraded by the 26 S proteasome. The 26 S proteasome is composed of two subparticles, the 20 S core protease (CP) that compartmentalizes the protease active sites and the 19 S regulatory particle that recognizes and translocates appropriate substrates into the CP lumen for breakdown. Here, we describe an affinity method to rapidly purify epitope-tagged 26 S proteasomes intact from Arabidopsis thaliana. In-depth mass spectrometric analyses of preparations generated from young seedlings confirmed that the 2.5-MDa CP-regulatory particle complex is actually a heterogeneous set of particles assembled with paralogous pairs for most subunits. A number of these subunits are modified post-translationally by proteolytic processing, acetylation, and/or ubiquitylation. Several proteasome-associated proteins were also identified that likely assist in complex assembly and regulation. In addition, we detected a particle consisting of the CP capped by the single subunit PA200 activator that may be involved in Ub-independent protein breakdown. Taken together, it appears that a diverse and highly dynamic population of proteasomes is assembled in plants, which may expand the target specificity and functions of intracellular proteolysis. PMID:20516081

  7. Purification of HBsAg produced by the human hepatoma cell line PLC/PRE/5 by affinity chromatography using monoclonal antibodies and application for ELISA diagnostic.

    PubMed

    Merten, O W; Reiter, S; Scheirer, W; Katinger, H

    1983-01-01

    The human cell line PLC/PRF/5 (5) was used for the production of hepatitis B surface antigen subtype ad (HBsAg ad) and purified by affinity chromatography (AC) with monoclonal antibodies (mAb). mAb to HBsAg from mouse ascites have been purified by Protein A - AC prior coupling to AH-Sepharose 4B (Pharmacia). The combined procedure of ammonium-sulphate-precipitation of HBsAg from culture supernatants and immunosorbent-AC leads to approx. 700-fold purification. ELISA results using the mAb and the HBsAg for diagnostics of human serum, positive for anti-HBsAg-antibodies correlate with the RIA (AUSAB, Abbott).

  8. High-yield expression in Escherichia coli, purification and application of budding yeast K2 killer protein.

    PubMed

    Podoliankaitė, Monika; Lukša, Juliana; Vyšniauskis, Gintautas; Sereikaitė, Jolanta; Melvydas, Vytautas; Serva, Saulius; Servienė, Elena

    2014-07-01

    Saccharomyces cerevisiae K2 toxin is a highly active extracellular protein, important as a biocontrol agent for biotechnological applications in the wine industry. This protein is produced at negligible levels in yeast, making difficult to isolate it in amounts sufficient for investigation and generation of analysis tools. In this work, we demonstrate the use of a bacterial system for expression of the recombinant K2 protein, suitable for generation of antibodies specific for toxin of the yeast origin. Synthesis of the full-length S. cerevisiae K2 preprotoxin in Escherichia coli was found to be toxic to the host cell, resulting in diminished growth. Such effect was abolished by the introduction of the C-terminal truncation into K2 protein, directing it into non-toxic inclusion body fraction. The obtained protein is of limited solubility thus, facilitating the purification by simple and efficient chromatography-free procedure. The protein aggregates were successfully refolded into a soluble form yielding sufficient amounts of a tag-less truncated K2 protein suitable for polyclonal antibody production. Antibodies were raised in rabbit and found to be specific for detection of both antigen and native S. cerevisiae K2 toxin.

  9. Insight into the coordination and the binding sites of Cu(2+) by the histidyl-6-tag using experimental and computational tools.

    PubMed

    Watly, Joanna; Simonovsky, Eyal; Wieczorek, Robert; Barbosa, Nuno; Miller, Yifat; Kozlowski, Henryk

    2014-07-07

    His-tags are specific sequences containing six to nine subsequent histydyl residues, and they are used for purification of recombinant proteins by use of IMAC chromatography. Such polyhistydyl tags, often used in molecular biology, can be also found in nature. Proteins containing histidine-rich domains play a critical role in many life functions in both prokaryote and eukaryote organisms. Binding mode and the thermodynamic properties of the system depend on the specific metal ion and the histidine sequence. Despite the wide application of the His-tag for purification of proteins, little is known about the properties of metal-binding to such tag domains. This inspired us to undertake detailed studies on the coordination of Cu(2+) ion to hexa-His-tag. Experiments were performed using the potentiometric, UV-visible, CD, and EPR techniques. In addition, molecular dynamics (MD) simulations and density functional theory (DFT) calculations were applied. The experimental studies have shown that the Cu(2+) ion binds most likely to two imidazoles and one, two, or three amide nitrogens, depending on the pH. The structures and stabilities of the complexes for the Cu(2+)-Ac-(His)6-NH2 system using experimental and computational tools were established. Polymorphic binding states are suggested, with a possibility of the formation of α-helix structure induced by metal ion coordination. Metal ion is bound to various pairs of imidazole moieties derived from the tag with different efficiencies. The coordination sphere around the metal ion is completed by molecules of water. Finally, the Cu(2+) binding by Ac-(His)6-NH2 is much more efficient compared to other multihistidine protein domains.

  10. Chromophore-assisted laser inactivation of alpha- and gamma-tubulin SNAP-tag fusion proteins inside living cells.

    PubMed

    Keppler, Antje; Ellenberg, Jan

    2009-02-20

    Chromophore-assisted laser inactivation (CALI) can help to unravel localized activities of target proteins at defined times and locations within living cells. Covalent SNAP-tag labeling of fusion proteins with fluorophores such as fluorescein is a fast and highly specific tool to attach the photosensitizer to its target protein in vivo for selective inactivation of the fusion protein. Here, we demonstrate the effectiveness and specificity of SNAP-tag-based CALI by acute inactivation of alpha-tubulin and gamma-tubulin SNAP-tag fusions during live imaging assays of cell division. Singlet oxygen is confirmed as the reactive oxygen species that leads to loss of fusion protein function. The major advantage of SNAP-tag CALI is the ease, reliability, and high flexibility in labeling: the genetically encoded protein tag can be covalently labeled with various dyes matching the experimental requirements. This makes SNAP-tag CALI a very useful tool for rapid inactivation of tagged proteins in living cells.

  11. Facile and high-efficient immobilization of histidine-tagged multimeric protein G on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Jiho; Chang, Jeong Ho

    2014-12-01

    This work reports the high-efficient and one-step immobilization of multimeric protein G on magnetic nanoparticles. The histidine-tagged (His-tag) recombinant multimeric protein G was overexpressed in Escherichia coli BL21 by the repeated linking of protein G monomers with a flexible linker. High-efficient immobilization on magnetic nanoparticles was demonstrated by two different preparation methods through the amino-silane and chloro-silane functionalization on silica-coated magnetic nanoparticles. Three kinds of multimeric protein G such as His-tag monomer, dimer, and trimer were tested for immobilization efficiency. For these tests, bicinchoninic acid (BCA) assay was employed to determine the amount of immobilized His-tag multimeric protein G. The result showed that the immobilization efficiency of the His-tag multimeric protein G of the monomer, dimer, and trimer was increased with the use of chloro-silane-functionalized magnetic nanoparticles in the range of 98% to 99%, rather than the use of amino-silane-functionalized magnetic nanoparticles in the range of 55% to 77%, respectively.

  12. A survey of detergents for the purification of stable, active human cystic fibrosis transmembrane conductance regulator (CFTR).

    PubMed

    Hildebrandt, Ellen; Zhang, Qinghai; Cant, Natasha; Ding, Haitao; Dai, Qun; Peng, Lingling; Fu, Yu; DeLucas, Lawrence J; Ford, Robert; Kappes, John C; Urbatsch, Ina L

    2014-11-01

    Structural knowledge of the cystic fibrosis transmembrane conductance regulator (CFTR) requires developing methods to purify and stabilize this aggregation-prone membrane protein above 1mg/ml. Starting with green fluorescent protein- and epitope-tagged human CFTR produced in mammalian cells known to properly fold and process CFTR, we devised a rapid tandem affinity purification scheme to minimize CFTR exposure to detergent in order to preserve its ATPase function. We compared a panel of detergents, including widely used detergents (maltosides, neopentyl glycols (MNG), C12E8, lysolipids, Chaps) and innovative detergents (branched alkylmaltosides, facial amphiphiles) for CFTR purification, function, monodispersity and stability. ATPase activity after reconstitution into proteoliposomes was 2-3 times higher when CFTR was purified using facial amphiphiles. ATPase activity was also demonstrated in purified CFTR samples without detergent removal using a novel lipid supplementation assay. By electron microscopy, negatively stained CFTR samples were monodisperse at low concentration, and size exclusion chromatography showed a predominance of monomer even after CFTR concentration above 1mg/ml. Rates of CFTR aggregation quantified in an electrophoretic mobility shift assay showed that detergents which best preserved reconstituted ATPase activity also supported the greatest stability, with CFTR monomer half-lives of 6-9days in MNG or Chaps, and 12-17days in facial amphiphile. Cryoelectron microscopy of concentrated CFTR in MNG or facial amphiphile confirmed mostly monomeric protein, producing low resolution reconstructions in conformity with similar proteins. These protocols can be used to generate samples of pure, functional, stable CFTR at concentrations amenable to biophysical characterization. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A Survey of Detergents for the Purification of Stable, Active Human Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)

    PubMed Central

    Hildebrandt, Ellen; Zhang, Qinghai; Cant, Natasha; Ding, Haitao; Dai, Qun; Peng, Lingling; Fu, Yu; DeLucas, Lawrence J.; Ford, Robert; Kappes, John C.; Urbatsch, Ina L.

    2014-01-01

    Structural knowledge of the cystic fibrosis transmembrane conductance regulator (CFTR) requires developing methods to purify and stabilize this aggregation-prone membrane protein above 1 mg/ml. Starting with green fluorescent protein- and epitope-tagged human CFTR produced in mammalian cells known to properly fold and process CFTR, we devised a rapid tandem affinity purification scheme to minimize CFTR exposure to detergent in order to preserve its ATPase function. We compared a panel of detergents, including widely used detergents (maltosides, neopentyl gycols (MNG), C12E8, lysolipids, Chaps) and innovative detergents (branched alkylmaltosides, facial amphiphiles) for CFTR purification, function, monodispersity and stability. ATPase activity after reconstitution into proteoliposomes was 2–3 times higher when CFTR was purified using facial amphiphiles. ATPase activity was also demonstrated in purified CFTR samples without detergent removal using a novel lipid supplementation assay. By electron microscopy, negatively stained CFTR samples were monodisperse at low concentration, and size exclusion chromatography showed a predominance of monomer even after CFTR concentration above 1 mg/ml. Rates of CFTR aggregation quantified in an electrophoretic mobility shift assay showed that detergents which best preserved reconstituted ATPase activity also supported the greatest stability, with CFTR monomer half-lives of 6–9 days in MNG or Chaps, and 12–17 days in facial amphiphile. Cryoelectron microscopy of concentrated CFTR in MNG or facial amphiphile confirmed mostly monomeric protein, producing low resolution reconstructions in conformity with similar proteins. These protocols can be used to generate samples of pure, functional, stable CFTR at concentrations amenable to biophysical characterization. PMID:25065669

  14. The High-Throughput Protein Sample Production Platform of the Northeast Structural Genomics Consortium

    PubMed Central

    Xiao, Rong; Anderson, Stephen; Aramini, James; Belote, Rachel; Buchwald, William A.; Ciccosanti, Colleen; Conover, Ken; Everett, John K.; Hamilton, Keith; Huang, Yuanpeng Janet; Janjua, Haleema; Jiang, Mei; Kornhaber, Gregory J.; Lee, Dong Yup; Locke, Jessica Y.; Ma, Li-Chung; Maglaqui, Melissa; Mao, Lei; Mitra, Saheli; Patel, Dayaban; Rossi, Paolo; Sahdev, Seema; Sharma, Seema; Shastry, Ritu; Swapna, G.V.T.; Tong, Saichu N.; Wang, Dongyan; Wang, Huang; Zhao, Li; Montelione, Gaetano T.; Acton, Thomas B.

    2014-01-01

    We describe the core Protein Production Platform of the Northeast Structural Genomics Consortium (NESG) and outline the strategies used for producing high-quality protein samples. The platform is centered on the cloning, expression and purification of 6X-His-tagged proteins using T7-based Escherichia coli systems. The 6X-His tag allows for similar purification procedures for most targets and implementation of high-throughput (HTP) parallel methods. In most cases, the 6X-His-tagged proteins are sufficiently purified (> 97% homogeneity) using a HTP two-step purification protocol for most structural studies. Using this platform, the open reading frames of over 16,000 different targeted proteins (or domains) have been cloned as > 26,000 constructs. Over the past nine years, more than 16,000 of these expressed protein, and more than 4,400 proteins (or domains) have been purified to homogeneity in tens of milligram quantities (see Summary Statistics, http://nesg.org/statistics.html). Using these samples, the NESG has deposited more than 900 new protein structures to the Protein Data Bank (PDB). The methods described here are effective in producing eukaryotic and prokaryotic protein samples in E. coli. This paper summarizes some of the updates made to the protein production pipeline in the last five years, corresponding to phase 2 of the NIGMS Protein Structure Initiative (PSI-2) project. The NESG Protein Production Platform is suitable for implementation in a large individual laboratory or by a small group of collaborating investigators. These advanced automated and/or parallel cloning, expression, purification, and biophysical screening technologies are of broad value to the structural biology, functional proteomics, and structural genomics communities. PMID:20688167

  15. Immobilizing affinity proteins to nitrocellulose: a toolbox for paper-based assay developers.

    PubMed

    Holstein, Carly A; Chevalier, Aaron; Bennett, Steven; Anderson, Caitlin E; Keniston, Karen; Olsen, Cathryn; Li, Bing; Bales, Brian; Moore, David R; Fu, Elain; Baker, David; Yager, Paul

    2016-02-01

    To enable enhanced paper-based diagnostics with improved detection capabilities, new methods are needed to immobilize affinity reagents to porous substrates, especially for capture molecules other than IgG. To this end, we have developed and characterized three novel methods for immobilizing protein-based affinity reagents to nitrocellulose membranes. We have demonstrated these methods using recombinant affinity proteins for the influenza surface protein hemagglutinin, leveraging the customizability of these recombinant "flu binders" for the design of features for immobilization. The three approaches shown are: (1) covalent attachment of thiolated affinity protein to an epoxide-functionalized nitrocellulose membrane, (2) attachment of biotinylated affinity protein through a nitrocellulose-binding streptavidin anchor protein, and (3) fusion of affinity protein to a novel nitrocellulose-binding anchor protein for direct coupling and immobilization. We also characterized the use of direct adsorption for the flu binders, as a point of comparison and motivation for these novel methods. Finally, we demonstrated that these novel methods can provide improved performance to an influenza hemagglutinin assay, compared to a traditional antibody-based capture system. Taken together, this work advances the toolkit available for the development of next-generation paper-based diagnostics.

  16. deGradFP: A System to Knockdown GFP-Tagged Proteins.

    PubMed

    Caussinus, Emmanuel; Affolter, Markus

    2016-01-01

    Protein depletion by genetic means, in a very general sense including the use of RNA interference [1, 2] or CRISPR/Cas9-based methods, represents a central paradigm of modern biology to study protein functions in vivo. However, acting upstream the proteic level is a limiting factor if the turnover of the target protein is slow or the existing pool of the target protein is important (for instance, in insect embryos, as a consequence of a strong maternal contribution). In order to circumvent these problems, we developed deGradFP [3, 4]. deGradFP harnesses the ubiquitin-proteasome pathway to achieve direct depletion of GFP-tagged proteins. deGradFP is in essence a universal method because it relies on an evolutionarily conserved machinery for protein catabolism in eukaryotic cells; see refs. 5, 6 for review. deGradFP is particularly convenient in Drosophila melanogaster where it is implemented by a genetically encoded effector expressed under the control of the Gal4 system. deGradFP is a ready-to-use solution to perform knockdowns at the protein level if a fly line carrying a functional GFP-tagged version of the gene of interest is available. Many such lines have already been generated by the Drosophila community through different technologies allowing to make genomic rescue constructs or direct GFP knockins: protein-trap stock collections [7, 8] ( http://cooley.medicine.yale.edu/flytrap/ , http://www.flyprot.org/ ), P[acman] system [9], MiMIC lines [10, 11], and CRISPR/Cas9-driven homologous recombination.Two essential controls of a protein knockdown experiment are easily achieved using deGradFP. First, the removal of the target protein can be assessed by monitoring the disappearance of the GFP tag by fluorescence microscopy in parallel to the documentation of the phenotype of the protein knockdown (see Note 1 ). Second, the potential nonspecific effects of deGradFP can be assessed in control fly lacking a GFP-tagged target protein. So far, no nonspecific effects of

  17. Antigenic validation of recombinant hemagglutinin-neuraminidase protein of Newcastle disease virus expressed in Saccharomyces cerevisiae.

    PubMed

    Khulape, S A; Maity, H K; Pathak, D C; Mohan, C Madhan; Dey, S

    2015-09-01

    The outer membrane glycoprotein, hemagglutinin-neuraminidase (HN) of Newcastle disease virus (NDV) is important for virus infection and subsequent immune response by host, and offers target for development of recombinant antigen-based immunoassays and subunit vaccines. In this study, the expression of HN protein of NDV is attempted in yeast expression system. Yeast offers eukaryotic environment for protein processing and posttranslational modifications like glycosylation, in addition to higher growth rate and easy genetic manipulation. Saccharomyces cerevisiae was found to be better expression system for HN protein than Pichia pastoris as determined by codon usage analysis. The complete coding  sequence of HN gene was amplified with the histidine tag, cloned in pESC-URA under GAL10 promotor and transformed in Saccharomyces cerevisiae. The recombinant HN (rHN) protein was characterized by western blot, showing glycosylation heterogeneity as observed with other eukaryotic expression systems. The recombinant protein was purified by affinity column purification. The protein could be further used as subunit vaccine.

  18. Single-column purification of the tag-free, recombinant form of the neuronal calcium sensor protein, hippocalcin expressed in Escherichia coli.

    PubMed

    Krishnan, Anuradha; Viviano, Jeffrey; Morozov, Yaroslav; Venkataraman, Venkat

    2016-07-01

    Hippocalcin is a 193 aa protein that is a member of the neuronal calcium sensor protein family, whose functions are regulated by calcium. Mice that lack the function of this protein are compromised in the long term potentiation aspect of memory generation. Recently, mutations in the gene have been linked with dystonia in human. The protein has no intrinsic enzyme activity but is known to bind to variety of target proteins. Very little information is available on how the protein executes its critical role in signaling pathways, except that it is regulated by binding of calcium. Further delineation of its function requires large amounts of pure protein. In this report, we present a single-step purification procedure that yields high quantities of the bacterially expressed, recombinant protein. The procedure may be adapted to purify the protein from inclusion bodies or cytosol in its myristoylated or non-myristoylated forms. MALDI-MS (in source decay) analyses demonstrates that the myristoylation occurs at the glycine residue. The protein is also biologically active as measured through tryptophan fluorescence, mobility shift and guanylate cyclase activity assays. Thus, further analyses of hippocalcin, both structural and functional, need no longer be limited by protein availability. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Inclusion bodies and purification of proteins in biologically active forms.

    PubMed

    Mukhopadhyay, A

    1997-01-01

    Even though recombinant DNA technology has made possible the production of valuable therapeutic proteins, its accumulation in the host cell as inclusion body poses serious problems in the recovery of functionally active proteins. In the last twenty years, alternative techniques have been evolved to purify biologically active proteins from inclusion bodies. Most of these remain only as inventions and very few are commercially exploited. This review summarizes the developments in isolation, refolding and purification of proteins from inclusion bodies that could be used for vaccine and non-vaccine applications. The second section involves a discussion on inclusion bodies, how they are formed, and their physicochemical properties. In vivo protein folding in Escherichia coli and kinetics of in vitro protein folding are the subjects of the third and fourth sections respectively. The next section covers the recovery of bioactive protein from inclusion bodies: it includes isolation of inclusion body from host cell debris, purification in denatured state alternate refolding techniques, and final purification of active molecules. Since purity and safety are two important issues in therapeutic grade proteins, the following three sections are devoted to immunological and biological characterization of biomolecules, nature, and type of impurities normally encountered, and their detection. Lastly, two case studies are discussed to demonstrate the sequence of process steps involved.

  20. One-step purification of a functional, constitutively activated form of visual arrestin.

    PubMed

    Huang, Li; Mao, Xiang; Abdulaev, Najmoutin G; Ngo, Tony; Liu, Wei; Ridge, Kevin D

    2012-03-01

    Desensitization of agonist-activated G protein-coupled receptors (GPCRs) requires phosphorylation followed by the binding of arrestin, a ~48 kDa soluble protein. While crystal structures for the inactive, 'basal' state of various arrestins are available, the conformation of 'activated' arrestin adopted upon interaction with activated GPCRs remains unknown. As a first step towards applying high-resolution structural methods to study arrestin conformation and dynamics, we have utilized the subtilisin prodomain/Profinity eXact™ fusion-tag system for the high-level bacterial expression and one-step purification of wild-type visual arrestin (arrestin 1) as well as a mutant form (R175E) of the protein that binds to non-phosphorylated, light-activated rhodopsin (Rho∗). The results show that both prodomain/Profinity eXact™ fusion-tagged wild-type and R175E arrestins can be expressed to levels approaching 2-3 mg/l in Luria-Bertani media, and that the processed, tag-free mature forms can be purified to near homogeneity using a Bio-Scale™ Mini Profinity eXact™ cartridge on the Profinia™ purification system. Functional analysis of R175E arrestin generated using this approach shows that it binds to non-phosphorylated rhodopsin in a light-dependent manner. These findings should facilitate the structure determination of this 'constitutively activated' state of arrestin 1 as well as the monitoring of conformational changes upon interaction with Rho∗. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. A putative siderophore-interacting protein from the marine bacterium Shewanella frigidimarina NCIMB 400: cloning, expression, purification, crystallization and X-ray diffraction analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trindade, Inês B.; Fonseca, Bruno M.; Matias, Pedro M.

    The gene encoding a putative siderophore-interacting protein from the marine bacterium S. frigidimarina was successfully cloned, followed by expression and purification of the gene product. Optimized crystals diffracted to 1.35 Å resolution and preliminary crystallographic analysis is promising with respect to structure determination and increased insight into the poorly understood molecular mechanisms underlying iron acquisition. Siderophore-binding proteins (SIPs) perform a key role in iron acquisition in multiple organisms. In the genome of the marine bacterium Shewanella frigidimarina NCIMB 400, the gene tagged as SFRI-RS12295 encodes a protein from this family. Here, the cloning, expression, purification and crystallization of this proteinmore » are reported, together with its preliminary X-ray crystallographic analysis to 1.35 Å resolution. The SIP crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 48.04, b = 78.31, c = 67.71 Å, α = 90, β = 99.94, γ = 90°, and are predicted to contain two molecules per asymmetric unit. Structure determination by molecular replacement and the use of previously determined ∼2 Å resolution SIP structures with ∼30% sequence identity as templates are ongoing.« less

  2. Affinity Crystallography: A New Approach to Extracting High-Affinity Enzyme Inhibitors from Natural Extracts.

    PubMed

    Aguda, Adeleke H; Lavallee, Vincent; Cheng, Ping; Bott, Tina M; Meimetis, Labros G; Law, Simon; Nguyen, Nham T; Williams, David E; Kaleta, Jadwiga; Villanueva, Ivan; Davies, Julian; Andersen, Raymond J; Brayer, Gary D; Brömme, Dieter

    2016-08-26

    Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach.

  3. TRAIL-CM4 fusion protein shows in vitro antibacterial activity and a stronger antitumor activity than solo TRAIL protein.

    PubMed

    Sang, Ming; Zhang, Jiaxin; Li, Bin; Chen, Yuqing

    2016-06-01

    A TRAIL-CM4 fusion protein in soluble form with tumor selective apoptosis and antibacterial functions was expressed in the Escherichia coli expression system and isolated through dialysis refolding and histidine-tag Nickel-affinity purification. Fresh Jurkat cells were treated with the TRAIL-CM4 fusion protein. Trypan blue staining and MTT analyses showed that, similar to a TRAIL positive control, Jurkat cell proliferation was significantly inhibited. Flow cytometry analyses using Annexin V-fluorescein revealed that Jurkat cells treated with the TRAIL-CM4 fusion protein exhibited increased apoptosis. Laser confocal microscopy showed that APB-CM4 and the fusion protein TRAIL-CM4 can bind to Jurkat cell membranes and initiate their destruction. ABP-CM4 enhances the antitumor activity of TRAIL by targeting and damaging the tumor cell membrane. In antibacterial experiments, agar well diffusion and bacterial growth inhibition curve assays revealed concentration-dependent TRAIL-CM4 antibacterial activity against Escherichia coli K12D31. The expressed TRAIL-CM4 fusion protein exhibited enhanced antitumor and antibacterial activities. Fusion protein expression allowed the two different proteins to function in combination. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Enhancing purification efficiency of affinity functionalized composite agarose micro beads using Fe3O4 nanoparticles.

    PubMed

    Amiri, S; Mehrnia, M R; Roudsari, F Pourasgharian

    2017-01-15

    In this work, a series of magnetic and nonmagnetic agarose matrices were fabricated for protein purification. Certain amounts of Fe 3 O 4 nanoparticles were encapsulated in agarose beads to form composite magnetic matrices with enhanced purification efficiency. Structure and morphology of prepared matrices were studied by optical and scanning electron microscopes, FT-IR, and BET-BJH analysis. The prepared matrices had regular spherical shape, followed by a uniform size distribution. By nanoparticles addition, the number of mesopores decreased while population of pores with radius ≤10nm increased; thus, higher specific area achieved. According to VSM results, magnetization degree was one of the characteristics affected by agarose content of the beads. A dye ligand, Cibacron Blue F3GA (CB), was covalently bound to beads to adsorb Bovine serum albumin. CB concentration was determined by elemental analysis. It was shown that magnetic beads hold higher CB concentrations than nonmagnetic ones due to higher specific area. As a result, magnetic 8%-agarose beads had the highest affinity adsorption capacity in static experiments. Moreover, breakthrough curves were monitored to calculate dynamic binding capacity. And, it was shown that magnetic 4%-agarose had the highest adsorbing amount (6.00mg/mL). It was implied that pore diffusion in magnetic 4%-agarose may be the reason for higher dynamic capacity. Plus, column efficiency was evaluated. It was revealed that all magnetic beads had lower HETP (0.11, 0.12 and 0.11cm for magnetic 4, 6, and 8%-agarose beads) than nonmagnetic ones (P-value<0.05). Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Phosphate-binding protein from Polaromonas JS666: purification, characterization, crystallization and sulfur SAD phasing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegos, Vanessa R.; Hey, Louis; LaMirande, Jacob

    Phosphate-binding proteins (PBPs) are key proteins that belong to the bacterial ABC-type phosphate transporters. PBPs are periplasmic (or membrane-anchored) proteins that capture phosphate anions from the environment and release them to the transmembrane transporter. Recent work has suggested that PBPs have evolved for high affinity as well as high selectivity. In particular, a short, unique hydrogen bond between the phosphate anion and an aspartate residue has been shown to be critical for selectivity, yet is not strictly conserved in PBPs. Here, the PBP fromPolaromonasJS666 is focused on. Interestingly, this PBP is predicted to harbor different phosphate-binding residues to currently knownmore » PBPs. Here, it is shown that the PBP fromPolaromonasJS666 is capable of binding phosphate, with a maximal binding activity at pH 8. Its structure is expected to reveal its binding-cleft configuration as well as its phosphate-binding mode. Here, the expression, purification, characterization, crystallization and X-ray diffraction data collection to 1.35 Å resolution of the PBP fromPolaromonasJS666 are reported.« less

  6. Analysis of Structural Features Contributing to Weak Affinities of Ubiquitin/Protein Interactions.

    PubMed

    Cohen, Ariel; Rosenthal, Eran; Shifman, Julia M

    2017-11-10

    Ubiquitin is a small protein that enables one of the most common post-translational modifications, where the whole ubiquitin molecule is attached to various target proteins, forming mono- or polyubiquitin conjugations. As a prototypical multispecific protein, ubiquitin interacts non-covalently with a variety of proteins in the cell, including ubiquitin-modifying enzymes and ubiquitin receptors that recognize signals from ubiquitin-conjugated substrates. To enable recognition of multiple targets and to support fast dissociation from the ubiquitin modifying enzymes, ubiquitin/protein interactions are characterized with low affinities, frequently in the higher μM and lower mM range. To determine how structure encodes low binding affinity of ubiquitin/protein complexes, we analyzed structures of more than a hundred such complexes compiled in the Ubiquitin Structural Relational Database. We calculated various structure-based features of ubiquitin/protein binding interfaces and compared them to the same features of general protein-protein interactions (PPIs) with various functions and generally higher affinities. Our analysis shows that ubiquitin/protein binding interfaces on average do not differ in size and shape complementarity from interfaces of higher-affinity PPIs. However, they contain fewer favorable hydrogen bonds and more unfavorable hydrophobic/charge interactions. We further analyzed how binding interfaces change upon affinity maturation of ubiquitin toward its target proteins. We demonstrate that while different features are improved in different experiments, the majority of the evolved complexes exhibit better shape complementarity and hydrogen bond pattern compared to wild-type complexes. Our analysis helps to understand how low-affinity PPIs have evolved and how they could be converted into high-affinity PPIs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Purification of aflatoxin B1 antibody for the development of aflatoxin biosensor

    NASA Astrophysics Data System (ADS)

    Prihantoro, E. A. B.; Saepudin, E.; Ivandini, T. A.

    2017-07-01

    Aflatoxin B1 (AFB1) is produced from agricultural products especially peanuts overgrown with aspergillus flavus during the post-harvest process. Aflatoxin is classified as a highly toxic and carcinogenic substance to humans by the International Agency for Research on Cancer (IARC), WHO. This research was conducted to develop the AFB1 biosensor using antibody that specifically binds to aflatoxin B1. This antibody was produced by injecting an AFB1 hapten-protein (immunogen) to a rabbit. Antibody was obtained from rabbit's blood serum and purified using Protein A affinity chromatography and precipitation at the isoelectric point. The result showed that purification using protein A contains antibody of 4.0 mg/mL, whereas purification using precipitation at isoelectric pH contains antibody of 0.3 mg/mL. The pure antibody was tested for its specificity against AFB1, tetrahydrofuran (THF), dimethyl formamide (DMF), bovine serum albumin (BSA), and ethanol. The result revealed that THF, BSA, and ethanol were bound to antibody, while DMF showed no interaction. It was concluded that the polyclonal antibody which have been successfully purified from rabbit's blood serum using protein A affinity chromatography and precipitation methods showed an unspecific identification.

  8. Automated high-throughput protein purification using an ÄKTApurifier and a CETAC autosampler.

    PubMed

    Yoo, Daniel; Provchy, Justin; Park, Cynthia; Schulz, Craig; Walker, Kenneth

    2014-05-30

    As the pace of drug discovery accelerates there is an increased focus on screening larger numbers of protein therapeutic candidates to identify those that are functionally superior and to assess manufacturability earlier in the process. Although there have been advances toward high throughput (HT) cloning and expression, protein purification is still an area where improvements can be made to conventional techniques. Current methodologies for purification often involve a tradeoff between HT automation or capacity and quality. We present an ÄKTA combined with an autosampler, the ÄKTA-AS, which has the capability of purifying up to 240 samples in two chromatographic dimensions without the need for user intervention. The ÄKTA-AS has been shown to be reliable with sample volumes between 0.5 mL and 100 mL, and the innovative use of a uniquely configured loading valve ensures reliability by efficiently removing air from the system as well as preventing sample cross contamination. Incorporation of a sample pump flush minimizes sample loss and enables recoveries ranging from the low tens of micrograms to milligram quantities of protein. In addition, when used in an affinity capture-buffer exchange format the final samples are formulated in a buffer compatible with most assays without requirement of additional downstream processing. The system is designed to capture samples in 96-well microplate format allowing for seamless integration of downstream HT analytic processes such as microfluidic or HPLC analysis. Most notably, there is minimal operator intervention to operate this system, thereby increasing efficiency, sample consistency and reducing the risk of human error. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Purification and protein composition of endogenous rat viruses.

    PubMed

    Hlubinová, K; Prachar, J; Vrbenská, A; Matoska, J; Simkovic, D

    1984-01-01

    Endogenous retroviruses are not in the majority of cases the cause of any neoplasia, except for the laboratory conditions. As far as they might serve for the evolution of pathogenic retroviruses more attention should have been paid to them. In this paper we introduce some approaches to the purification of rat endogenous retroviruses to such a degree of purity that enabled satisfactory SDS-PAGE analysis of its structural proteins. Purities of samples obtained by usual purification methods, long-term isopycnic centrifugation at a high gravity force and velocity centrifugation are compared. Protein profile of rat endogenous virus in SDS-PAGE is compared with the ones of other retroviruses. For the first time the evidence was obtained for the striking similarity between electrophoretic protein profile of rat endogenous virus WERC and feline leukemia virus. The major structural proteins of rat endogenous retrovirus and feline leukemia virus cannot be distinguished even when resolution long gradient PAGE had been employed. The accordance of electrophoretic mobilities of major structural proteins in SDS-PAGE can indicate the relatedness of retroviruses.

  10. Expression and Purification of Recombinant Human Basic Fibroblast Growth Factor Fusion Proteins and Their Uses in Human Stem Cell Culture.

    PubMed

    Imsoonthornruksa, Sumeth; Pruksananonda, Kamthorn; Parnpai, Rangsun; Rungsiwiwut, Ruttachuk; Ketudat-Cairns, Mariena

    2015-01-01

    To reduce the cost of cytokines and growth factors in stem cell research, a simple method for the production of soluble and biological active human basic fibroblast growth factor (hbFGF) fusion protein in Escherichia coli was established. Under optimal conditions, approximately 60-80 mg of >95% pure hbFGF fusion proteins (Trx-6xHis-hbFGF and 6xHis-hbFGF) were obtained from 1 liter of culture broth. The purified hbFGF proteins, both with and without the fusion tags, were biologically active, which was confirmed by their ability to stimulate proliferation of NIH3T3 cells. The fusion proteins also have the ability to support several culture passages of undifferentiated human embryonic stem cells and induce pluripotent stem cells. This paper describes a low-cost and uncomplicated method for the production and purification of biologically active hbFGF fusion proteins. © 2015 S. Karger AG, Basel.

  11. Affinity partitioning of human antibodies in aqueous two-phase systems.

    PubMed

    Rosa, P A J; Azevedo, A M; Ferreira, I F; de Vries, J; Korporaal, R; Verhoef, H J; Visser, T J; Aires-Barros, M R

    2007-08-24

    The partitioning of human immunoglobulin (IgG) in a polymer-polymer and polymer-salt aqueous two-phase system (ATPS) in the presence of several functionalised polyethylene glycols (PEGs) was studied. As a first approach, the partition studies were performed with pure IgG using systems in which the target protein remained in the bottom phase when the non-functionalised systems were tested. The effect of increasing functionalised PEG concentration and the type of ligand were studied. Afterwards, selectivity studies were performed with the most successful ligands first by using systems containing pure proteins and an artificial mixture of proteins and, subsequently, with systems containing a Chinese hamster ovary (CHO) cells supernatant. The PEG/phosphate ATPS was not suitable for the affinity partitioning of IgG. In the PEG/dextran ATPS, the diglutaric acid functionalised PEGs (PEG-COOH) displayed great affinity to IgG, and all IgG could be recovered in the top phase when 20% (w/w) of PEG 150-COOH and 40% (w/w) PEG 3350-COOH were used. The selectivity of these functionalised PEGs was evaluated using an artificial mixture of proteins, and PEG 3350-COOH did not show affinity to IgG in the presence of typical serum proteins such as human serum albumin and myoglobin, while in systems with PEG 150-COOH, IgG could be recovered with a yield of 91%. The best purification of IgG from the CHO cells supernatant was then achieved in a PEG/dextran ATPS in the presence of PEG 150-COOH with a recovery yield of 93%, a purification factor of 1.9 and a selectivity to IgG of 11. When this functionalised PEG was added to the ATPS, a 60-fold increase in selectivity was observed when compared to the non-functionalised systems.

  12. Soluble Prokaryotic Expression and Purification of Bioactive Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand.

    PubMed

    Do, Bich Hang; Nguyen, Minh Tan; Song, Jung-A; Park, Sangsu; Yoo, Jiwon; Jang, Jaepyeong; Lee, Sunju; So, Seoungjun; Yoon, Yejin; Kim, Inki; Lee, Kyungjin; Jang, Yeon Jin; Choe, Han

    2017-12-28

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered as an antitumor agent owing to its ability to induce apoptosis of cancer cells without imparting toxicity toward most normal cells. TRAIL is produced in poor yield because of its insoluble expression in the cytoplasm of E. coli . In this study, we achieved soluble expression of TRAIL by fusing maltose-binding protein (MBP), b'a' domain of protein disulfide isomerase (PDIb'a'), or protein disulfide isomerase at the N-terminus of TRAIL. The TRAIL was purified using subsequent immobilized metal affinity chromatography and amylose-binding chromatography, with the tag removal using tobacco etch virus protease. Approximately 4.5 mg of pure TRAIL was produced from 125 ml flask culture with a purification yield of 71.6%. The endotoxin level of the final product was 0.4 EU/μg, as measured by the Limulus amebocyte lysate endotoxin assay. The purified TRAIL was validated and shown to cause apoptosis of HeLa cells with an EC₅₀ and Hill coefficient of 0.6 ± 0.03 nM and 2.41 ± 0.15, respectively. The high level of apoptosis in HeLa cells following administration of purified TRAIL indicates the significance and novelty of this method for producing high-grade and high-yield TRAIL.

  13. An Adaptable Investigative Graduate Laboratory Course for Teaching Protein Purification

    ERIC Educational Resources Information Center

    Carroll, Christopher W.; Keller, Lani C.

    2014-01-01

    This adaptable graduate laboratory course on protein purification offers students the opportunity to explore a wide range of techniques while allowing the instructor the freedom to incorporate their own personal research interests. The course design involves two sequential purification schemes performed in a single semester. The first part…

  14. Purification of Proteins Fused to Maltose-Binding Protein.

    PubMed

    Lebendiker, Mario; Danieli, Tsafi

    2017-01-01

    Maltose-Binding Protein (MBP) is one of the most popular fusion partners being used for producing recombinant proteins in bacterial cells. MBP allows the use of a simple capture affinity step on Amylose-Agarose or Dextrin-Sepharose columns, resulting in a protein that is often 70-90 % pure in a single step. In addition to protein isolation applications, MBP provides a high degree of translation, and facilitates the proper folding and solubility of the target protein. This paper describes efficient procedures for isolating highly purified MBP target proteins. Special attention is given to considerations for downstream applications such as structural determination studies, protein activity assays, and assessing the chemical characteristics of the target protein.

  15. A safe, effective, and facility compatible cleaning in place procedure for affinity resin in large-scale monoclonal antibody purification.

    PubMed

    Wang, Lu; Dembecki, Jill; Jaffe, Neil E; O'Mara, Brian W; Cai, Hui; Sparks, Colleen N; Zhang, Jian; Laino, Sarah G; Russell, Reb J; Wang, Michelle

    2013-09-20

    Cleaning-in-place (CIP) for column chromatography plays an important role in therapeutic protein production. A robust and efficient CIP procedure ensures product quality, improves column life time and reduces the cost of the purification processes, particularly for those using expensive affinity resins, such as MabSelect protein A resin. Cleaning efficiency, resin compatibility, and facility compatibility are the three major aspects to consider in CIP process design. Cleaning MabSelect resin with 50mM sodium hydroxide (NaOH) along with 1M sodium chloride is one of the most popular cleaning procedures used in biopharmaceutical industries. However, high concentration sodium chloride is a leading cause of corrosion in the stainless steel containers used in large scale manufacture. Corroded containers may potentially introduce metal contaminants into purified drug products. Therefore, it is challenging to apply this cleaning procedure into commercial manufacturing due to facility compatibility and drug safety concerns. This paper reports a safe, effective and environmental and facility-friendly cleaning procedure that is suitable for large scale affinity chromatography. An alternative salt (sodium sulfate) is used to prevent the stainless steel corrosion caused by sodium chloride. Sodium hydroxide and salt concentrations were optimized using a high throughput screening approach to achieve the best combination of facility compatibility, cleaning efficiency and resin stability. Additionally, benzyl alcohol is applied to achieve more effective microbial control. Based on the findings, the recommended optimum cleaning strategy is cleaning MabSelect resin with 25 mM NaOH, 0.25 M Na2SO4 and 1% benzyl alcohol solution every cycle, followed by a more stringent cleaning using 50 mM NaOH with 0.25 M Na2SO4 and 1% benzyl alcohol at the end of each manufacturing campaign. A resin life cycle study using the MabSelect affinity resin demonstrates that the new cleaning strategy

  16. Purification and partial characterization of a cadmium-binding protein from the liver of rainbow trout (Onchorynchus mykiss).

    PubMed Central

    Mullins, J E; Fredrickson, R A; Fuentealba, I C; Markham, R J

    1999-01-01

    This study describes the isolation and partial characterization of a low molecular weight (approximately 14 kDa), cadmium-binding protein from rainbow trout (Onchorynchus mykiss) liver. Rainbow trout were injected intraperitoneally with 3.5 mg/kg cadmium chloride (total body dose) twice weekly for 3 wk. Livers were removed and a cadmium-binding protein was isolated. Monoclonal antibodies produced against this protein were used in the affinity purification process. Amino acid analysis showed the protein contained 3.8 mol% cysteine, 3.5 mol% phenylalanine, 2.2 mol% tyrosine and 1.9 mol% histidine. The low cysteine content suggests that it was distinct from metallothionein. The monoclonal antibodies were also used to identify the protein in liver homogenates from both cadmium-exposed and control fish and in the testes of cadmium-exposed mice lacking the gene for both metallothionein-1 and metallothionein-II. The compound identified in this study represents a non-metallothionein cadmium-binding protein that appears to be highly conserved. Images Figure 1. Figure 2. Figure 3. Figure 4. PMID:10534000

  17. Intensified process for the purification of an enzyme from inclusion bodies using integrated expanded bed adsorption and refolding.

    PubMed

    Hutchinson, Matthew H; Chase, Howard A

    2006-01-01

    This work describes the integration of expanded bed adsorption (EBA) and adsorptive protein refolding operations in an intensified process used to recover purified and biologically active proteins from inclusion bodies expressed in E. coli. Delta(5)-3-Ketosteroid isomerase with a C-terminal hexahistidine tag was expressed as inclusion bodies in the cytoplasm of E. coli. Chemical extraction was used to disrupt the host cells and simultaneously solubilize the inclusion bodies, after which EBA utilizing immobilized metal affinity interactions was used to purify the polyhistidine-tagged protein. Adsorptive refolding was then initiated in the column by changing the denaturant concentration in the feed stream from 8 to 0 M urea. Three strategies were tested for performing the refolding step in the EBA column: (i) the denaturant was removed using a step change in feed-buffer composition, (ii) the denaturant was gradually removed using a gradient change in feed-buffer composition, and (iii) the liquid flow direction through the column was reversed and adsorptive refolding performed in the packed bed. Buoyancy-induced mixing disrupted the operation of the expanded bed when adsorptive refolding was performed using either a step change or a rapid gradient change in feed-buffer composition. A shallow gradient reduction in denaturant concentration of the feed stream over 30 min maintained the stability of the expanded bed during adsorptive refolding. In a separate experiment, buoyancy-induced mixing was completely avoided by performing refolding in a settled bed, which achieved comparable yields to refolding in an expanded bed but required a slightly more complex process. A total of 10% of the available KSI-(His(6)) was recovered as biologically active and purified protein using the described purification and refolding process, and the yield was further increased to 19% by performing a second iteration of the on-column refolding operation. This process should be applicable for

  18. Identification on Membrane and Characterization of Phosphoproteins Using an Alkoxide-Bridged Dinuclear Metal Complex as a Phosphate-Binding Tag Molecule

    PubMed Central

    Nakanishi, Tsuyoshi; Ando, Eiji; Furuta, Masaru; Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru; Tsunasawa, Susumu; Nishimura, Osamu

    2007-01-01

    We have developed a method for on-membrane direct identification of phosphoproteins, which are detected by a phosphate-binding tag (Phos-tag) that has an affinity to phosphate groups with a chelated Zn2+ ion. This rapid profiling approach for phosphoproteins combines chemical inkjet technology for microdispensing of reagents onto a tiny region of target proteins with mass spectrometry for on-membrane digested peptides. Using this method, we analyzed human epidermoid carcinoma cell lysates of A-431 cells stimulated with epidermal growth factor, and identified six proteins with intense signals upon affinity staining with the phosphate-binding tag. It was already known that these proteins are phosphorylated, and our new approach proved to be effective at rapid profiling of phosphoproteins. Furthermore, we tried to determine their phosphorylation sites by MS/MS analysis after in-gel digestion of the corresponding spots on the 2DE gel to the rapid on-membrane identifications. As one example of use of information gained from the rapid-profiling approach, we successfully characterized a phosphorylation site at Ser-113 on prostaglandin E synthase 3. PMID:18166671

  19. Purification and antibacterial activity of recombinant warnericin RK expressed in Escherichia coli.

    PubMed

    Verdon, Julien; Girardin, Nicolas; Marchand, Adrienne; Héchard, Yann; Berjeaud, Jean-Marc

    2013-06-01

    Warnericin RK is a small cationic peptide produced by Staphylococcus warneri RK. This peptide has an antimicrobial spectrum of activity almost restricted to the Legionella genus. It is a membrane-active peptide with a proposed detergent-like mechanism of action at high concentration. Moreover, the fatty acids content of Legionella was shown to modulate the peptide activity. In order to decipher the mode of action in details using solid-state NMR spectroscopy, large amount of an isotopic labeled peptide is required. Since it is less expensive to obtain such a peptide biologically, we report here methods to express warnericin RK in Escherichia coli with or without a fusion partner and to purify resulting recombinant peptides. The cDNA fragment encoding warnericin RK was synthesized and ligated into three expression vectors. Two fusion peptides, carrying polyhistidine tag in N- or C-terminal and a native peptide, without tag, were expressed in E. coli cells. Fusion peptides were purified, with a yield of 3 mg/l, by affinity chromatography and reverse-phase HPLC. The recombinant native peptide was purified using a two-step purification method consisting of a hydrophobic chromatography followed by a reverse-phase HPLC step with a yield of 1.4 mg/l. However, the anti-Legionella activity was lower for both tagged peptide probably because of structural modifications. So, the native recombinant peptide was preferentially chosen for (15)N-labeling experiments. Our results suggest that the developed production and purification procedures will be useful in obtaining a large quantity of recombinant isotope-labeled warnericin RK for further studies.

  20. One-step purification of assembly-competent tubulin from diverse eukaryotic sources

    PubMed Central

    Widlund, Per O.; Podolski, Marija; Reber, Simone; Alper, Joshua; Storch, Marko; Hyman, Anthony A.; Howard, Jonathon; Drechsel, David N.

    2012-01-01

    We have developed a protocol that allows rapid and efficient purification of native, active tubulin from a variety of species and tissue sources by affinity chromatography. The affinity matrix comprises a bacterially expressed, recombinant protein, the TOG1/2 domains from Saccharomyces cerevisiae Stu2, covalently coupled to a Sepharose support. The resin has a high capacity to specifically bind tubulin from clarified crude cell extracts, and, after washing, highly purified tubulin can be eluted under mild conditions. The eluted tubulin is fully functional and can be efficiently assembled into microtubules. The method eliminates the need to use heterologous systems for the study of microtubule-associated proteins and motor proteins, which has been a major issue in microtubule-related research. PMID:22993214

  1. Expression, purification and refolding of active durum wheat (Triticum durum Desf.) secretory phospholipase A2 from inclusion bodies of Escherichia coli.

    PubMed

    Verlotta, Angelo; Trono, Daniela

    2014-09-01

    Recently, a durum wheat (Triticum durum Desf.) secretory phospholipase A2 (TdsPLA2III) was identified in leaves as potentially involved in plant responses to conditions of limiting water supply. Therefore, to allow future functional studies on TdsPLA2III and shed further light on the involvement of sPLA2 isoforms in specific plant functions, here we report a protocol for the overexpression of TdsPLA2III in Escherichia coli in the form of inclusion bodies, and for its purification and refolding. The use of the Gateway system (Invitrogen) allows the expression of a large quantity of the mature form (without the signal peptide) of TdsPLA2III with an N-terminal 6×His-tag, for purification using Ni-affinity chromatography. The purified recombinant 6×His-TdsPLA2III fusion protein is then refolded using a step-wise dialysis approach. About 40mg purified and active protein was obtained from 1L of cell culture. This recombinant 6×His-TdsPLA2III protein shows PLA2 activity, as it can hydrolyze linoleate from the sn-2 position of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine. Moreover, it has some features that are typical of other known plant sPLA2s: Ca(2+)-dependence, inhibition by the disulfide bond reducing agent dithiothreitol, and resistance to high temperature. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Purification of a thermostable alkaline laccase from papaya (Carica papaya) using affinity chromatography.

    PubMed

    Jaiswal, Nivedita; Pandey, Veda P; Dwivedi, Upendra N

    2015-01-01

    A laccase from papaya leaves was purified to homogeneity by a two step procedure namely, heat treatment (at 70 °C) and Con-A affinity chromatography. The procedure resulted in 1386.7-fold purification of laccase with a specific activity of 41.3 units mg(-1) and an overall yield of 61.5%. The native purified laccase was found to be a hexameric protein of ∼ 260 kDa. The purified enzyme exhibited acidic and alkaline pH optima of 6.0 and 8.0 with the non-phenolic substrate (ABTS) and phenolic substrate (catechol), respectively. The purified laccase was found to be thermostable up to 70 °C such that it retained ∼ 80% activity upon 30 min incubation at 70 °C. The Arrhenius energy of activation for purified laccase was found to be 7.7 kJ mol(-1). The enzyme oxidized various phenolic and non-phenolic substrates having catalytic efficiency (K(cat)/K(m)) in the order of 7.25>0.67>0.27 mM(-1) min(-1) for ABTS, catechol and hydroquinone, respectively. The purified laccase was found to be activated by Mn(2+), Cd(2+), Ca(2+), Na(+), Fe(2+), Co(2+) and Cu(2+) while weakly inhibited by Hg(2+). The properties such as thermostability, alkaline pH optima and metal tolerance exhibited by the papaya laccase make it a promising candidate enzyme for industrial exploitation. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Stable isotope, site-specific mass tagging for protein identification

    DOEpatents

    Chen, Xian

    2006-10-24

    Proteolytic peptide mass mapping as measured by mass spectrometry provides an important method for the identification of proteins, which are usually identified by matching the measured and calculated m/z values of the proteolytic peptides. A unique identification is, however, heavily dependent upon the mass accuracy and sequence coverage of the fragment ions generated by peptide ionization. The present invention describes a method for increasing the specificity, accuracy and efficiency of the assignments of particular proteolytic peptides and consequent protein identification, by the incorporation of selected amino acid residue(s) enriched with stable isotope(s) into the protein sequence without the need for ultrahigh instrumental accuracy. Selected amino acid(s) are labeled with .sup.13C/.sup.15N/.sup.2H and incorporated into proteins in a sequence-specific manner during cell culturing. Each of these labeled amino acids carries a defined mass change encoded in its monoisotopic distribution pattern. Through their characteristic patterns, the peptides with mass tag(s) can then be readily distinguished from other peptides in mass spectra. The present method of identifying unique proteins can also be extended to protein complexes and will significantly increase data search specificity, efficiency and accuracy for protein identifications.

  4. Expression, purification, and kinetic characterization of full-length human fibroblast activation protein.

    PubMed

    Sun, Shaoxian; Albright, Charles F; Fish, Barbara H; George, Henry J; Selling, Bernard H; Hollis, Gregory F; Wynn, Richard

    2002-03-01

    Human fibroblast activation protein (FAP), an integral membrane serine protease, was produced in insect cells as a hexa-His-tagged protein using a recombinant baculovirus expression system. Two isoforms of FAP, glycosylated and nonglycosylated, were identified by Western blotting using an anti-His-tag antibody and separated by lectin chromatography. The glycosylated FAP was purified to near homogeneity using immobilized metal affinity chromatography and was shown to have both postprolyl dipeptidyl peptidase and postgelatinase activities. In contrast, the nonglycosylated isoform demonstrated no detectable gelatinase activity by either zymography or a fluorescence-based gelatinase activity assay. The kinetic parameters of the dipeptidyl peptidase activity for glycosylated FAP were determined using dipeptide Ala-Pro-7-amino-trifluoromethyl-coumarin as the substrate. The k(cat) is 2.0 s(-1) and k(cat)/K(m) is 1.0 x 10(4) M(-1) s(-1) at pH 8.5. The pH dependence of k(cat) reveals two ionization groups with pK(a1) of 7.0 and pK(a2) of 11.0. The pH profile of k(cat)/K(m) yields similar results with pK(a1) 6.2 and pK(a2) 11.0. The neutral pK(a1) is associated with His at the active site. The basic pK(a2) might be contributed from an ionization group that is not involved directly in catalysis, instead associated with the stability of the active site structure. Copyright 2002 Elsevier Science (USA).

  5. Metal chelate affinity precipitation of RNA and purification of plasmid DNA

    NASA Technical Reports Server (NTRS)

    Balan, Sindhu; Murphy, Jason; Galaev, Igor; Kumar, Ashok; Fox, George E.; Mattiasson, Bo; Willson, Richard C.

    2003-01-01

    The affinity of metal chelates for amino acids, such as histidine, is widely used in purifying proteins, most notably through six-histidine 'tails'. We have found that metal affinity interactions can also be applied to separation of single-stranded nucleic acids through interactions involving exposed purines. Here we describe a metal affinity precipitation method to resolve RNA from linear and plasmid DNA. A copper-charged copolymer of N-isopropyl acrylamide (NIPAM) and vinyl imidazole (VI) is used to purify plasmid from an alkaline lysate of E. coli. The NIPAM units confer reversible solubility on the copolymer while the imidazole chelates metal ions in a manner accessible to interaction with soluble ligands. RNA was separated from the plasmid by precipitation along with the polymer in the presence of 800 mM NaCl. Bound RNA could be recovered by elution with imidazole and separated from copolymer by a second precipitation step. RNA binding showed a strong dependence on temperature and on the type of buffer used.

  6. Optimized Expression and Purification for High-Activity Preparations of Algal [FeFe]-Hydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yacoby, I.; Tegler, L. T.; Pochekailov, S.

    2012-04-01

    Recombinant expression and purification of metallo-enzymes, including hydrogenases, at high-yields is challenging due to complex, and enzyme specific, post-translational maturation processes. Low fidelities of maturation result in preparations containing a significant fraction of inactive, apo-protein that are not suitable for biophysical or crystallographic studies. We describe the construction, overexpression and high-yield purification of a fusion protein consisting of the algal [2Fe2S]-ferredoxin PetF (Fd) and [FeFe]-hydrogenase HydA1. The maturation of Fd-HydA1 was optimized through improvements in culture conditions and media components used for expression. We also demonstrated that fusion of Fd to the N-terminus of HydA1, in comparison to the C-terminus,more » led to increased expression levels that were 4-fold higher. Together, these improvements led to enhanced HydA1 activity and improved yield after purification. The strong binding-affinity of Fd for DEAE allowed for two-step purification by ion exchange and StrepTactin affinity chromatography. In addition, the incorporation of a TEV protease site in the Fd-HydA1 linker allowed for the proteolytic removal of Fd after DEAE step, and purification of HydA1 alone by StrepTactin. In combination, this process resulted in HydA1 purification yields of 5 mg L{sup -1} of culture from E. coli with specific activities of 1000 U (U = 1 {micro}mol hydrogen evolved mg{sup -1} min{sup -1}). The [FeFe]-hydrogenases are highly efficient enzymes and their catalytic sites provide model structures for synthetic efforts to develop robust hydrogen activation catalysts. In order to characterize their structure-function properties in greater detail, and to use hydrogenases for biotechnological applications, reliable methods for rapid, high-yield expression and purification are required.« less

  7. Refolding and simultaneous purification of recombinant human proinsulin from inclusion bodies on protein-folding liquid-chromatography columns.

    PubMed

    Yuan, Jie; Zhou, Huifang; Yang, Yicong; Li, Weimin; Wan, Yi; Wang, Lili

    2015-05-01

    Protein-folding liquid chromatography (PFLC) is an effective and scalable method for protein renaturation with simultaneous purification. However, it has been a challenge to fully refold inclusion bodies in a PFLC column. In this work, refolding with simultaneous purification of recombinant human proinsulin (rhPI) from inclusion bodies from Escherichia coli were investigated using the surface of stationary phases in immobilized metal ion affinity chromatography (IMAC) and high-performance size-exclusion chromatography (HPSEC). The results indicated that both the ligand structure on the surface of the stationary phase and the composition of the mobile phase (elution buffer) influenced refolding of rhPI. Under optimized chromatographic conditions, the mass recoveries of IMAC column and HPSEC column were 77.8 and 56.8% with purifies of 97.6 and 93.7%, respectively. These results also indicated that the IMAC column fails to refold rhPI, and the HPSEC column enables efficient refolding of rhPI with a low-urea gradient-elution method. The refolded rhPI was characterized by circular dichroism spectroscopy. The molecular weight of the converted human insulin was further confirmed with SDS-18% PAGE, Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) and the biological activity assay by HP-RPLC. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Preparation of GST Fusion Proteins.

    PubMed

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-04-01

    INTRODUCTIONThis protocol describes the preparation of glutathione-S-transferase (GST) fusion proteins, which have had a wide range of applications since their introduction as tools for synthesis of recombinant proteins in bacteria. GST was originally selected as a fusion moiety because of several desirable properties. First and foremost, when expressed in bacteria alone, or as a fusion, GST is not sequestered in inclusion bodies (in contrast to previous fusion protein systems). Second, GST can be affinity-purified without denaturation because it binds to immobilized glutathione, which provides the basis for simple purification. Consequently, GST fusion proteins are routinely used for antibody generation and purification, protein-protein interaction studies, and biochemical analysis.

  9. A novel method for simultaneous purification and immobilization of a xylanase-lichenase chimera via SpyTag/SpyCatcher spontaneous reaction.

    PubMed

    Lin, Yuanqing; Jin, Wenhui; Wang, Jindan; Cai, Zhengwen; Wu, Shuyu; Zhang, Guangya

    2018-08-01

    We generated a bifunctional enzyme chimera containing the xylanase and lichenase coupled with SpyTag between them. Meanwhile, we generated another chimera containing SpyCatcher and elastin-like polypeptides (ELPs). As ELPs could bond to the xylanase-lichenase chimera through SpyTag/SpyCatcher spontaneous reaction in mild condition, which would lead to the formation of a 3-arm star multifunctional chimera. We purified the xylanase-lichenase by the non-chromatographic purification tag of ELPs. Interestingly, 57.5% of the xylanase and 47.2% of the lichenase in chimera self-assembled into insoluble active particles during the process of purification, which could serve as immobilized bifunctional enzymes. Notably, the immobilized chimera xylanase-lichenase showed a remarkable stability even after 10 reaction cycles, which retained around 56% (lichenase) and 44% (xylanase) of their initial activities, respectively. Moreover, the enhanced thermostability of the immobilized enzymes was also achieved. After incubating at 60 °C for 60 min, the residual activity of the immobilized lichenase was 35%, while the free one was only 24%. Unexpectedly, the free xylanase almost lost its activity when incubated at 55 °C for 60 min, whereas the immobilized xylanase retained 10% of its activity. However, the catalytic efficiency (k cat /K m ) of the free xylanase was 1.7-fold higher than the immobilized one, while the free lichenase was 1.1-fold higher than the immobilized one. This is among the first known reports that two enzymes are purified and immobilized in one-step. This novel strategy is easy to scale up and may meet the demands of biofuel industry. It would have great potentials in other biotechnological fields, such as the multifunctional biomaterials systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Smart Hydrogel Particles: Biomarker Harvesting: One-step affinity purification, size exclusion, and protection against degradation

    PubMed Central

    Luchini, Alessandra; Geho, David H.; Bishop, Barney; Tran, Duy; Xia, Cassandra; Dufour, Robert; Jones, Clint; Espina, Virginia; Patanarut, Alexis; Zhu, Weidong; Ross, Mark; Tessitore, Alessandra; Petricoin, Emanuel; Liotta, Lance A.

    2010-01-01

    Disease-associated blood biomarkers exist in exceedingly low concentrations within complex mixtures of high-abundance proteins such as albumin. We have introduced an affinity bait molecule into N-isopropylacrylamide to produce a particle that will perform three independent functions within minutes, in one step, in solution: a) molecular size sieving b) affinity capture of all solution phase target molecules, and c) complete protection of harvested proteins from enzymatic degradation. The captured analytes can be readily electroeluted for analysis. PMID:18076201

  11. Crystallization and preliminary X-ray diffraction analysis of a high-affinity phosphate-binding protein endowed with phosphatase activity from Pseudomonas aeruginosa PAO1

    PubMed Central

    Djeghader, Ahmed; Gotthard, Guillaume; Suh, Andrew; Gonzalez, Daniel; Scott, Ken; Chabriere, Eric; Elias, Mikael

    2013-01-01

    In prokaryotes, phosphate starvation induces the expression of numerous phosphate-responsive genes, such as the pst operon including the high-affinity phosphate-binding protein (PBP or pstS) and alkaline phosphatases such as PhoA. This response increases the cellular inorganic phosphate import efficiency. Notably, some Pseudomonas species secrete, via a type-2 secretion system, a phosphate-binding protein dubbed LapA endowed with phosphatase activity. Here, the expression, purification, crystallization and X-ray data collection at 0.87 Å resolution of LapA are described. Combined with biochemical and enzymatic characterization, the structure of this intriguing phosphate-binding protein will help to elucidate the molecular origin of its phosphatase activity and to decipher its putative role in phosphate uptake. PMID:24100568

  12. Affinity chromatographic purification of tetrodotoxin by use of tetrodotoxin-binding high molecular weight substances in the body fluid of shore crab (Hemigrapsus sanguineus) as ligands.

    PubMed

    Shiomi, K; Yamaguchi, S; Shimakura, K; Nagashima, Y; Yamamori, K; Matsui, T

    1993-12-01

    A purification method for tetrodotoxin (TTX), based on affinity chromatography using the TTX-binding high mol. wt substances in the body fluid of shore crab (Hemigrapsus sanguineus) as ligands, was developed. This method was particularly useful for analysis of TTX in biological samples with low concentrations of TTX. The affinity gel prepared was highly specific for TTX, having no ability to bind 4-epi-TTX and anhydro-TTX as well as saxitoxin.

  13. Proximity-Induced Covalent Labeling of Proteins with a Reactive Fluorophore-Binding Peptide Tag.

    PubMed

    Sunbul, Murat; Nacheva, Lora; Jäschke, Andres

    2015-08-19

    Labeling of proteins with fluorescent dyes in live cells enables the investigation of their roles in biological systems by fluorescence microscopy. Because the labeling procedure should not disturb the native function of the protein of interest, it is of high importance to find the optimum labeling method for the problem to be studied. Here, we developed a rapid one-step method to covalently and site-specifically label proteins with a TexasRed fluorophore in vitro and in live bacteria. To this end, a genetically encodable TexasRed fluorophore-binding peptide (TR512) was converted into a reactive tag (ReacTR) by adjoining a cysteine residue which rapidly reacts with N-α-chloroacetamide-conjugated TexasRed fluorophore owing to the proximity effect; ReacTR tag first binds to the TexasRed fluorophore and this interaction brings the nucleophilic cysteine and the electrophilic N-α-chloroacetamide groups in close proximity. Our method has several advantages over existing methods: (i) it utilizes a peptide tag much smaller than fluorescent proteins, the SNAP, CLIP, or HaLo tags; (ii) it allows for labeling of proteins with a small, photostable, red-emitting TexasRed fluorophore; (iii) the probe used is very easy to synthesize; (iv) no enzyme is required to transfer the fluorophore to the peptide tag; and (v) labeling yields a stable covalent product in a very fast reaction.

  14. Expression and characterization of human CB1 cannabinoid receptor in methylotrophic yeast Pichia pastoris.

    PubMed

    Kim, Tae-Kang; Zhang, Rundong; Feng, Wenke; Cai, Jian; Pierce, William; Song, Zhao-Hui

    2005-03-01

    For the purpose of purification and structural characterization, the CB1 cannabinoid receptors are expressed in methylotrophic yeast Pichia pastoris. The expression plasmid was constructed in which the CB1 gene is under the control of the highly inducible promoter of P. pastoris alcohol oxidase I gene. To facilitate easy detection and purification, a FLAG tag was introduced at the N-terminal, a c-myc epitope and a hexahistidine tag were introduced at the C-terminal of the CB1. In membrane preparations of CB1 gene transformed yeast cells, Western blot analysis detected the expression of CB1 proteins. Radioligand binding assays demonstrated that the tagged CB1 receptors expressed in P. pastoris have a pharmacological profile similar to that of the untagged CB1 receptors expressed in mammalian systems. Furthermore, the tagged CB1 receptors were purified by anti-FLAG M2 affinity chromatography and the identity of the purified CB1 receptor proteins was confirmed by Western blot analysis. MALDI/TOF mass spectrometry analysis of the peptides extracted from tryptic digestions of purified CB1 preparations detected 17 peptide fragments derived from the CB1, thus further confirming the identity of the purified receptor. In conclusion, these data demonstrated for the first time that epitope tagged, functional CB1 cannabinoid receptors can be expressed in P. pastoris for purification and mass spectrometry characterization.

  15. Optimization of the purification methods for recovery of recombinant growth hormone from Paralichthys olivaceus

    NASA Astrophysics Data System (ADS)

    Zang, Xiaonan; Zhang, Xuecheng; Mu, Xiaosheng; Liu, Bin

    2013-03-01

    This study aimed to optimize the purification of recombinant growth hormone from Paralichthys olivaceus. Recombinant flounder growth hormone (r-fGH) was expressed by Escherichia coli in form of inclusion body or as soluble protein under different inducing conditions. The inclusion body was renatured using two recovery methods, i.e., dilution and dialysis. Thereafter, the refolded protein was purified by Glutathione Sepharase 4B affinity chromatography and r-fGH was obtained by cleavage of thrombin. For soluble products, r-fGH was directly purified from the lysates by Glutathione Sepharase 4B affinity chromatography. ELISA-receptor assay demonstrated that despite its low receptor binding activity, the r-fGH purified from refolded inclusion body had a higher yield (2.605 mg L-1) than that from soluble protein (1.964 mg L-1). Of the tested recovery methods, addition of renaturing buffer (pH 8.5) into denatured inclusion body yielded the best recovery rate (17.9%). This work provided an optimized purification method for high recovery of r-fGH, thus contributing to the application of r-fGH to aquaculture.

  16. DETECTION AND PURIFICATION OF TYROSINE-SULFATED PROTEINS USING A NOVEL ANTI-SULFOTYROSINE MONOCLONAL ANTIBODY*

    PubMed Central

    Hoffhines, Adam J.; Damoc, Eugen; Bridges, Kristie G.; Leary, Julie A.; Moore, Kevin L.

    2006-01-01

    Protein-tyrosine O-sulfation is a post-translational modification mediated by one of two Golgi tyrosylprotein sulfotransferases (TPST-1 & TPST-2) that catalyze the transfer of sulfate to tyrosine residues in secreted and transmembrane proteins. Tyrosine sulfation plays a role in protein-protein interactions in several well-defined systems. Although dozens of tyrosine-sulfated proteins are known, many more are likely to exist and await description. Advancing our understanding of the importance of tyrosine sulfation in biological systems requires the development of new tools for the detection and study of tyrosine-sulfated proteins. We have developed a novel anti-sulfotyrosine monoclonal antibody, called PSG2, that binds with high affinity and exquisite specificity to sulfotyrosine residues in peptides and proteins independent of sequence context. We show that it can detect tyrosinesulfated proteins in complex biological samples and can be used as a probe to assess the role of tyrosine sulfation in protein function. We also demonstrate the utility of PSG2 in the purification of tyrosine-sulfated proteins from crude tissue samples. Finally, Western blot analysis using PSG2 indicates that certain sperm/epididymal proteins are undersulfated in Tpst2−/− mice. This indicates that TPST-1 and TPST-2 have distinct macromolecular substrate specificities and provides clues as to the molecular mechanism of the infertility of Tpst2−/− males. PSG2 should be widely applicable for identification of tyrosine-sulfated proteins in other systems and organisms. PMID:17046811

  17. Use of oil bodies and oleosins in recombinant protein production and other biotechnological applications.

    PubMed

    Bhatla, S C; Kaushik, V; Yadav, M K

    2010-01-01

    Oil bodies obtained from oilseeds have been exploited for a variety of applications in biotechnology in the recent past. These applications are based on their non-coalescing nature, ease of extraction and presence of unique membrane proteins-oleosins. In suspension, oil bodies exist as separate entities and, hence, they can serve as emulsifying agent for a wide variety of products, ranging from vaccines, food, cosmetics and personal care products. Oil bodies have found significant uses in the production and purification of recombinant proteins with specific applications. The desired protein can be targeted to oil bodies in oilseeds by affinity tag or by fusing it directly to the N or C terminal of oleosins. Upon targeting, the hydrophobic domain of oleosin embeds into the TAG matrix of oil body, whereas the protein fused with N and/or C termini is exposed on the oil body surface, where it acquires correct confirmation spontaneously. Oil bodies with the attached foreign protein can be separated easily from other cellular components. They can be used directly or the protein can be cleaved from the fusion. The desired protein can be a pharmaceutically important polypeptide (e.g. hirudin, insulin and epidermal growth factor), a neutraceutical polypeptide (somatotropin), a commercially important enzyme (e.g. xylanase), a protein important for improvement of crops (e.g. chitinase) or a multimeric protein. These applications can further be widened as oil bodies can also be made artificially and oleosin gene can be expressed in bacterial systems. Thus, a protein fused to oleosin can be expressed in Escherichia coli and after cell lysis it can be incorporated into artificial oil bodies, thereby facilitating the extraction and purification of the desired protein. Artificial oil bodies can also be used for encapsulation of probiotics. The manipulation of oleosin gene for the expression of polyoleosins has further expanded the arena of the applications of oil bodies in

  18. Different non-synonymous polymorphisms modulate the interaction of the WRN protein to its protein partners and its enzymatic activities

    PubMed Central

    Gagné, Jean-Philippe; Lachapelle, Sophie; Garand, Chantal; Tsofack, Serges P.; Coulombe, Yan; Caron, Marie-Christine; Poirier, Guy G.; Masson, Jean-Yves; Lebel, Michel

    2016-01-01

    Werner syndrome (WS) is characterized by the premature onset of several age-associated pathologies including cancer. The protein defective in WS patients (WRN) is a helicase/exonuclease involved in DNA replication and repair. Here, we present the results of a large-scale proteome analysis that has been undertaken to determine protein partners of different polymorphic WRN proteins found with relatively high prevalence in the human population. We expressed different fluorescently tagged-WRN (eYFP-WRN) variants in human 293 embryonic kidney cells (HEK293) and used a combination of affinity-purification and mass spectrometry to identify different compositions of WRN-associated protein complexes. We found that a WRN variant containing a phenylalanine residue at position 1074 and an arginine at position 1367 (eYFP-WRN(F-R)) possesses more affinity for DNA-PKc, KU86, KU70, and PARP1 than a variant containing a leucine at position 1074 and a cysteine at position 1367 (eYFP-WRN(L-C)). Such results were confirmed in a WRN-deficient background using WS fibroblasts. Interestingly, the exonuclase activity of WRN recovered from immunoprecipitated eYFP-WRN(L-C) variant was lower than the eYFP-WRN(F-R) in WS cells. Finally, HEK293 cells and WS fibroblasts overexpressing the eYFP-WRN(F-R) variant were more resistant to the benzene metabolite hydroquinone than cells expressing the eYFP-WRN(L-C) variant. These results indicate that the protein-protein interaction landscape of WRN is subject to modulation by polymorphic amino acids, a characteristic associated with distinctive cell survival outcome. PMID:27863399

  19. A dual tag system for facilitated detection of surface expressed proteins in Escherichia coli

    PubMed Central

    2012-01-01

    Background The discovery of the autotransporter family has provided a mechanism for surface expression of proteins in laboratory strains of Escherichia coli. We have previously reported the use of the AIDA-I autotransport system to express the Salmonella enterica serovar Enteritidis proteins SefA and H:gm. The SefA protein was successfully exposed to the medium, but the orientation of H:gm in the outer membrane could not be determined due to proteolytic cleavage of the N-terminal detection-tag. The goal of the present work was therefore to construct a vector containing elements that facilitates analysis of surface expression, especially for proteins that are sensitive to proteolysis or otherwise difficult to express. Results The surface expression system pAIDA1 was created with two detection tags flanking the passenger protein. Successful expression of SefA and H:gm on the surface of E. coli was confirmed with fluorescently labeled antibodies specific for the N-terminal His6-tag and the C-terminal Myc-tag. While both tags were detected during SefA expression, only the Myc-tag could be detected for H:gm. The negative signal indicates a proteolytic cleavage of this protein that removes the His6-tag facing the medium. Conclusions Expression levels from pAIDA1 were comparable to or higher than those achieved with the formerly used vector. The presence of the Myc- but not of the His6-tag on the cell surface during H:gm expression allowed us to confirm the hypothesis that this fusion protein was present on the surface and oriented towards the cell exterior. Western blot analysis revealed degradation products of the same molecular weight for SefA and H:gm. The size of these fragments suggests that both fusion proteins have been cleaved at a specific site close to the C-terminal end of the passenger. This proteolysis was concluded to take place either in the outer membrane or in the periplasm. Since H:gm was cleaved to a much greater extent then the three times smaller Sef

  20. Affinity resins as new tools for identifying target proteins of ascorbic acid.

    PubMed

    Iwaoka, Yuji; Nishino, Kohei; Ishikawa, Takahiro; Ito, Hideyuki; Sawa, Yoshihiro; Tai, Akihiro

    2018-02-12

    l-Ascorbic acid (AA) has diverse physiological functions, but little is known about the functional mechanisms of AA. In this study, we synthesized two types of affinity resin on which AA is immobilized in a stable form to identify new AA-targeted proteins, which can provide important clues for elucidating unknown functional mechanisms of AA. To our knowledge, an affinity resin on which AA as a ligand is immobilized has not been prepared, because AA is very unstable and rapidly degraded in an aqueous solution. By using the affinity resins, cytochrome c (cyt c) was identified as an AA-targeted protein, and we showed that oxidized cyt c exhibits specific affinity for AA. These results suggest that two kinds of AA-affinity resin can be powerful tools to identify new target proteins of AA.

  1. Multiplexed Affinity-Based Separation of Proteins and Cells Using Inertial Microfluidics.

    PubMed

    Sarkar, Aniruddh; Hou, Han Wei; Mahan, Alison E; Han, Jongyoon; Alter, Galit

    2016-03-30

    Isolation of low abundance proteins or rare cells from complex mixtures, such as blood, is required for many diagnostic, therapeutic and research applications. Current affinity-based protein or cell separation methods use binary 'bind-elute' separations and are inefficient when applied to the isolation of multiple low-abundance proteins or cell types. We present a method for rapid and multiplexed, yet inexpensive, affinity-based isolation of both proteins and cells, using a size-coded mixture of multiple affinity-capture microbeads and an inertial microfluidic particle sorter device. In a single binding step, different targets-cells or proteins-bind to beads of different sizes, which are then sorted by flowing them through a spiral microfluidic channel. This technique performs continuous-flow, high throughput affinity-separation of milligram-scale protein samples or millions of cells in minutes after binding. We demonstrate the simultaneous isolation of multiple antibodies from serum and multiple cell types from peripheral blood mononuclear cells or whole blood. We use the technique to isolate low abundance antibodies specific to different HIV antigens and rare HIV-specific cells from blood obtained from HIV+ patients.

  2. Evaluation of protein-ligand affinity prediction using steered molecular dynamics simulations.

    PubMed

    Okimoto, Noriaki; Suenaga, Atsushi; Taiji, Makoto

    2017-11-01

    In computational drug design, ranking a series of compound analogs in a manner that is consistent with experimental affinities remains a challenge. In this study, we evaluated the prediction of protein-ligand binding affinities using steered molecular dynamics simulations. First, we investigated the appropriate conditions for accurate predictions in these simulations. A conic harmonic restraint was applied to the system for efficient sampling of work values on the ligand unbinding pathway. We found that pulling velocity significantly influenced affinity predictions, but that the number of collectable trajectories was less influential. We identified the appropriate pulling velocity and collectable trajectories for binding affinity predictions as 1.25 Å/ns and 100, respectively, and these parameters were used to evaluate three target proteins (FK506 binding protein, trypsin, and cyclin-dependent kinase 2). For these proteins using our parameters, the accuracy of affinity prediction was higher and more stable when Jarzynski's equality was employed compared with the second-order cumulant expansion equation of Jarzynski's equality. Our results showed that steered molecular dynamics simulations are effective for predicting the rank order of ligands; thus, they are a potential tool for compound selection in hit-to-lead and lead optimization processes.

  3. Purification of human erythropoietin by affinity chromatography using cyclic peptide ligands.

    PubMed

    Kish, William S; Roach, Matthew K; Sachi, Hiroyuki; Naik, Amith D; Menegatti, Stefano; Carbonell, Ruben G

    2018-05-15

    Prior work described the identification and characterization of erythropoietin-binding cyclic peptides SLFFLH, VVFFVH, FSLLHH and FSLLSH (all of the form cyclo[(N α -Ac)Dap(A)-X 1 -X 6 -AE], wherein X 1 -X 6 is the listed sequences). In this work, the peptide ligands were synthesized on Toyopearl chromatographic resins and utilized for purifying recombinant human erythropoietin (rHuEPO) from complex sources. Elution buffer pH and composition were optimized to maximize the recovery of standard rHuEPO from the peptide resins. The peptide-based adsorbents were employed for separating rHuEPO from a mixture of albumin, myoglobin, and IgG to examine their selectivity. When using FSLLHH, the inclusion of low amounts of surfactants in the wash and elution buffers facilitated the recovery of rHuEPO with high yield and purity. Specifically, FSLLSH and VVFFVH afforded the most efficient separation of rHuEPO, with yield and purity of 85% and 95-97%, respectively. The affinity resins were also utilized to purify rHuEPO from spiked CHO cell culture fluid. In particular, FSLLSH provided the most successful separation from CHO, with yield and purity above 90%, and 1.0 log 10 reduction of host cell proteins. The influence of conductivity and pH in the CHO-rHuEPO load was investigated. Finally, FSLLSH-based resins were used to purify rHuEPO spiked into a Pichia pastoris cell culture fluid, resulting in product yield and purity of 96% and 84%, respectively, and 1.3 log 10 reduction of host DNA. These results compare well with values obtained using wheat germ agglutinin agarose and clearly indicate the potential of the cyclic peptide resins as a viable tool for rHuEPO purification. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Feature selection and classification of protein-protein complexes based on their binding affinities using machine learning approaches.

    PubMed

    Yugandhar, K; Gromiha, M Michael

    2014-09-01

    Protein-protein interactions are intrinsic to virtually every cellular process. Predicting the binding affinity of protein-protein complexes is one of the challenging problems in computational and molecular biology. In this work, we related sequence features of protein-protein complexes with their binding affinities using machine learning approaches. We set up a database of 185 protein-protein complexes for which the interacting pairs are heterodimers and their experimental binding affinities are available. On the other hand, we have developed a set of 610 features from the sequences of protein complexes and utilized Ranker search method, which is the combination of Attribute evaluator and Ranker method for selecting specific features. We have analyzed several machine learning algorithms to discriminate protein-protein complexes into high and low affinity groups based on their Kd values. Our results showed a 10-fold cross-validation accuracy of 76.1% with the combination of nine features using support vector machines. Further, we observed accuracy of 83.3% on an independent test set of 30 complexes. We suggest that our method would serve as an effective tool for identifying the interacting partners in protein-protein interaction networks and human-pathogen interactions based on the strength of interactions. © 2014 Wiley Periodicals, Inc.

  5. Cloning, expression, and purification of recombinant protein MPT-64 from a virulent strain of Mycobacterium bovis in a prokaryotic system.

    PubMed

    Tashakkori, Maryam Mohammadi; Tebianian, Majid; Tabatabaei, Mohammad; Mosavari, Nader

    2016-12-01

    Tuberculosis (TB) is a zoonotic infectious disease common to humans and animals that is caused by the rod-shaped acid-fast bacterium Mycobacterium bovis. Rapid and sensitive detection of TB is promoted by specific antigens. Virulent strains of the TB complex from M. bovis contain 16 regions of difference (RD) in their genome that encode important proteins, including major protein of Mycobacterium Tuberculosis 64 (MBT-64, which is a primary immune-stimulating antigen encoded by RD-2. In this study, we cloned, expressed, and purified MPT-64 as a potent M. bovis antigen in a prokaryotic system for use in future diagnostic studies. The antigenic region of the Mpt64 gene was investigated by bioinformatics methods, cloned into the PQE-30 plasmid, and expressed in Escherichia coli M15 cells, followed by isopropyl β-d-1-thiogalactopyranoside induction. The expressed protein was analyzed sodium dodecyl sulfate polyacrylamide gel electrophoresis and purified using a nickel-affinity column. Biological activity was confirmed by western blot using specific antibodies. Our data verified the successful cloning of the Mpt64 gene (687-bp segment) via the expression vector and purification of recombinant MPT-64 as a 24-kDa protein. These results indicated successful expression and purification of recombinant MPT-64 protein in a prokaryotic system. This protein can be used for serological diagnosis, improved detection of pathogenicity and non-pathogenicity between infected cattle, and for verification of suspected cases of bovine TB. Copyright © 2016.

  6. An efficient tag derived from the common epitope of tospoviral NSs proteins for monitoring recombinant proteins expressed in both bacterial and plant systems.

    PubMed

    Cheng, Hao-Wen; Chen, Kuan-Chun; Raja, Joseph A J; Li, Jian-Xian; Yeh, Shyi-Dong

    2013-04-15

    NSscon (23 aa), a common epitope in the gene silencing suppressor NSs proteins of the members of the Watermelon silver mottle virus (WSMoV) serogroup, was previously identified. In this investigation, we expressed different green fluorescent protein (GFP)-fused deletions of NSscon in bacteria and reacted with NSscon monoclonal antibody (MAb). Our results indicated that the core 9 amino acids, "(109)KFTMHNQIF(117)", denoted as "nss", retain the reactivity of NSscon. In bacterial pET system, four different recombinant proteins labeled with nss, either at N- or C-extremes, were readily detectable without position effects, with sensitivity superior to that for the polyhistidine-tag. When the nss-tagged Zucchini yellow mosaic virus (ZYMV) helper component-protease (HC-Pro) and WSMoV nucleocapsid protein were transiently expressed by agroinfiltration in tobacco, they were readily detectable and the tag's possible efficacy for gene silencing suppression was not noticed. Co-immunoprecipitation of nss-tagged and non-tagged proteins expressed from bacteria confirmed the interaction of potyviral HC-Pro and coat protein. Thus, we conclude that this novel nss sequence is highly valuable for tagging recombinant proteins in both bacterial and plant expression systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Guidelines to reach high-quality purified recombinant proteins.

    PubMed

    Oliveira, Carla; Domingues, Lucília

    2018-01-01

    The final goal in recombinant protein production is to obtain high-quality pure protein samples. Indeed, the successful downstream application of a recombinant protein depends on its quality. Besides production, which is conditioned by the host, the quality of a recombinant protein product relies mainly on the purification procedure. Thus, the purification strategy must be carefully designed from the molecular level. On the other hand, the quality control of a protein sample must be performed to ensure its purity, homogeneity and structural conformity, in order to validate the recombinant production and purification process. Therefore, this review aims at providing succinct information on the rational purification design of recombinant proteins produced in Escherichia coli, specifically the tagging purification, as well as on accessible tools for evaluating and optimizing protein quality. The classical techniques for structural protein characterization-denaturing protein gel electrophoresis (SDS-PAGE), size exclusion chromatography (SEC), dynamic light scattering (DLS) and circular dichroism (CD)-are revisited with focus on the protein and their main advantages and disadvantages. Furthermore, methods for determining protein concentration and protein storage are also presented. The guidelines compiled herein will aid preparing pure, soluble and homogeneous functional recombinant proteins from the very beginning of the molecular cloning design.

  8. Using an FPLC to Promote Active Learning of the Principles of Protein Structure and Purification

    ERIC Educational Resources Information Center

    Robinson, Rebekah L.; Neely, Amy E.; Mojadedi, Wais; Threatt, Katie N.; Davis, Nicole Y.; Weiland, Mitch H.

    2017-01-01

    The concepts of protein purification are often taught in undergraduate biology and biochemistry lectures and reinforced during laboratory exercises; however, very few reported activities allow students to directly gain experience using modern protein purification instruments, such as Fast Protein Liquid Chromatography (FPLC). This laboratory…

  9. The Center for Optimized Structural Studies (COSS) platform for automation in cloning, expression, and purification of single proteins and protein-protein complexes.

    PubMed

    Mlynek, Georg; Lehner, Anita; Neuhold, Jana; Leeb, Sarah; Kostan, Julius; Charnagalov, Alexej; Stolt-Bergner, Peggy; Djinović-Carugo, Kristina; Pinotsis, Nikos

    2014-06-01

    Expression in Escherichia coli represents the simplest and most cost effective means for the production of recombinant proteins. This is a routine task in structural biology and biochemistry where milligrams of the target protein are required in high purity and monodispersity. To achieve these criteria, the user often needs to screen several constructs in different expression and purification conditions in parallel. We describe a pipeline, implemented in the Center for Optimized Structural Studies, that enables the systematic screening of expression and purification conditions for recombinant proteins and relies on a series of logical decisions. We first use bioinformatics tools to design a series of protein fragments, which we clone in parallel, and subsequently screen in small scale for optimal expression and purification conditions. Based on a scoring system that assesses soluble expression, we then select the top ranking targets for large-scale purification. In the establishment of our pipeline, emphasis was put on streamlining the processes such that it can be easily but not necessarily automatized. In a typical run of about 2 weeks, we are able to prepare and perform small-scale expression screens for 20-100 different constructs followed by large-scale purification of at least 4-6 proteins. The major advantage of our approach is its flexibility, which allows for easy adoption, either partially or entirely, by any average hypothesis driven laboratory in a manual or robot-assisted manner.

  10. A putative siderophore-interacting protein from the marine bacterium Shewanella frigidimarina NCIMB 400: cloning, expression, purification, crystallization and X-ray diffraction analysis

    PubMed Central

    Trindade, Inês B.; Fonseca, Bruno M.; Matias, Pedro M.; Louro, Ricardo O.; Moe, Elin

    2016-01-01

    Siderophore-binding proteins (SIPs) perform a key role in iron acquisition in multiple organisms. In the genome of the marine bacterium Shewanella frigidimarina NCIMB 400, the gene tagged as SFRI_RS12295 encodes a protein from this family. Here, the cloning, expression, purification and crystallization of this protein are reported, together with its preliminary X-ray crystallographic analysis to 1.35 Å resolution. The SIP crystals belonged to the monoclinic space group P21, with unit-cell parameters a = 48.04, b = 78.31, c = 67.71 Å, α = 90, β = 99.94, γ = 90°, and are predicted to contain two molecules per asymmetric unit. Structure determination by molecular replacement and the use of previously determined ∼2 Å resolution SIP structures with ∼30% sequence identity as templates are ongoing. PMID:27599855

  11. Identification of novel proteins associated with yeast snR30 small nucleolar RNA

    PubMed Central

    Lemay, Vincent; Hossain, Ahmed; Osheim, Yvonne N.; Beyer, Ann L.; Dragon, François

    2011-01-01

    H/ACA small nucleolar RNPs (snoRNPs) that guide pseudouridylation reactions are comprised of one small nucleolar RNA (snoRNA) and four common proteins (Cbf5, Gar1, Nhp2 and Nop10). Unlike other H/ACA snoRNPs, snR30 is essential for the early processing reactions that lead to the production of 18S ribosomal RNA in the yeast Saccharomyces cerevisiae. To determine whether snR30 RNP contains specific proteins that contribute to its unique functional properties, we devised an affinity purification strategy using TAP-tagged Gar1 and an RNA aptamer inserted in snR30 snoRNA to selectively purify the RNP. Northern blotting and pCp labeling experiments showed that S1-tagged snR30 snoRNA can be selectively purified with streptavidin beads. Protein analysis revealed that aptamer-tagged snR30 RNA was associated with the four H/ACA proteins and a number of additional proteins: Nop6, ribosomal proteins S9 and S18 and histones H2B and H4. Using antibodies raised against Nop6 we show that endogenous Nop6 localizes to the nucleolus and that it cosediments with snR30 snoRNA in sucrose density gradients. We demonstrate through primer extension experiments that snR30 snoRNA is required for cleavages at site A0, A1 and A2, and that the absence of Nop6 decreases the efficiency of cleavage at site A2. Finally, electron microscopy analyses of chromatin spreads from cells depleted of snR30 snoRNA show that it is required for SSU processome assembly. PMID:21893585

  12. Generation of Nanobodies against SlyD and development of tools to eliminate this bacterial contaminant from recombinant proteins.

    PubMed

    Hu, Yaozhong; Romão, Ema; Vertommen, Didier; Vincke, Cécile; Morales-Yánez, Francisco; Gutiérrez, Carlos; Liu, Changxiao; Muyldermans, Serge

    2017-09-01

    The gene for a protein domain, derived from a tumor marker, fused to His tag codons and under control of a T7 promotor was expressed in E. coli strain BL21 (DE3). The recombinant protein was purified from cell lysates through immobilized metal affinity chromatography and size-exclusion chromatography. A contaminating bacterial protein was consistently co-purified, even using stringent washing solutions containing 50 or 100 mM imidazole. Immunization of a dromedary with this contaminated protein preparation, and the subsequent generation and panning of the immune Nanobody library yielded several Nanobodies of which 2/3 were directed against the bacterial contaminant, reflecting the immunodominance of this protein to steer the dromedary immune response. Affinity adsorption of this contaminant using one of our specific Nanobodies followed by mass spectrometry identified the bacterial contaminant as FKBP-type peptidyl-prolyl cis-trans isomerase (SlyD) from E. coli. This SlyD protein contains in its C-terminal region 14 histidines in a stretch of 31 amino acids, which explains its co-purification on Ni-NTA resin. This protein is most likely present to varying extents in all recombinant protein preparations after immobilized metal affinity chromatography. Using our SlyD-specific Nb 5 we generated an immune-complex that could be removed either by immunocapturing or by size exclusion chromatography. Both methods allow us to prepare a recombinant protein sample where the SlyD contaminant was quantitatively eliminated. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. [Purification of arsenic-binding proteins in hamster plasma after oral administration of arsenite].

    PubMed

    Wang, Wenwen; Zhang, Min; Li, Chunhui; Qin, Yingjie; Hua, Naranmandura

    2013-01-01

    To purify the arsenic-binding proteins (As-BP) in hamster plasma after a single oral administration of arsenite (iAs(III)). Arsenite was given to hamsters in a single dose. Three types of HPLC columns, size exclusion, gel filtration and anion exchange columns, combined with an inductively coupled argon plasma mass spectrometer (ICP MS) were used to purify the As-BP in hamster plasma. SDS-PAGE was used to confirm the arsenic-binding proteins at each purification step. The three-step purification process successfully separated As-BP from other proteins (ie, arsenic unbound proteins) in hamster plasma. The molecular mass of purified As-BP in plasma was approximately 40-50 kD on SDS-PAGE. The three-step purification method is a simple and fast approach to purify the As-BP in plasma samples.

  14. Affinity purification of human factor H on polypeptides derived from streptococcal m protein: enrichment of the Y402 variant.

    PubMed

    Nilsson, O Rickard; Lannergård, Jonas; Morgan, B Paul; Lindahl, Gunnar; Gustafsson, Mattias C U

    2013-01-01

    Recent studies indicate that defective activity of complement factor H (FH) is associated with several human diseases, suggesting that pure FH may be used for therapy. Here, we describe a simple method to isolate human FH, based on the specific interaction between FH and the hypervariable region (HVR) of certain Streptococcus pyogenes M proteins. Special interest was focused on the FH polymorphism Y402H, which is associated with the common eye disease age-related macular degeneration (AMD) and has also been implicated in the binding to M protein. Using a fusion protein containing two copies of the M5-HVR, we found that the Y402 and H402 variants of FH could be efficiently purified by single-step affinity chromatography from human serum containing the corresponding protein. Different M proteins vary in their binding properties, and the M6 and M5 proteins, but not the M18 protein, showed selective binding of the FH Y402 variant. Accordingly, chromatography on a fusion protein derived from the M6-HVR allowed enrichment of the Y402 protein from serum containing both variants. Thus, the exquisite binding specificity of a bacterial protein can be exploited to develop a simple and robust procedure to purify FH and to enrich for the FH variant that protects against AMD.

  15. Extreme disorder in an ultrahigh-affinity protein complex

    NASA Astrophysics Data System (ADS)

    Borgia, Alessandro; Borgia, Madeleine B.; Bugge, Katrine; Kissling, Vera M.; Heidarsson, Pétur O.; Fernandes, Catarina B.; Sottini, Andrea; Soranno, Andrea; Buholzer, Karin J.; Nettels, Daniel; Kragelund, Birthe B.; Best, Robert B.; Schuler, Benjamin

    2018-03-01

    Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring defined binding sites or interactions between specific individual residues. Proteome-wide sequence analysis suggests that this interaction mechanism may be abundant in eukaryotes.

  16. Exploring Thermoresponsive Affinity Agents to Enhance Microdialysis Sampling Efficiency of Proteins

    NASA Astrophysics Data System (ADS)

    Vasicek, Thaddeus

    Affinity agents increase microdialysis protein relative recovery, yet they have not seen widespread use within the microdialysis community due to their additional instrumentation requirements and prohibitive cost. This dissertation describes new affinity agents for microdialysis that require no additional instrumentation to use, have nearly 100% particle recovery, are 7 times more cost efficient than alternatives, and have low specificity enabling their use for a wide variety of proteins. Initially gold nanoparticles were chosen as an affinity ligand support due to their high surface area/volume ratio and colloidal stability. Poly (N-isopropylacrylamide) was immobilized to the gold nanoparticles, which served to sterically stabilize the particles and to act as a generic, reversible protein capture agent. A method was developed to reproducibly vary and quantify poly (N-isopropylacrylamide) graft density from 0.09 to 0.40 ligands/nm2 on gold nanoparticles. During characterization of the polymer coated gold nanoparticles, irreversible particle agglomeration was observed at low polymer graft density in ionic solutions, which prevented further development as a protein capture agent. Poly (N-isopropylacrylamide) nanogels, which have low nonspecific adsorption, low interparticle attractive forces owing to the low curvature of the particle, and a low Hamaker constant, were synthesized to overcome the agglomeration problem. A generic protein affinity ligand cibacron blue, was immobilized to the nanogels, which enabled rapid determination of particle recovery. The perfusion of the nanogels through a microdialysis probe was optimized yielding 100% particle recovery using a combination of a syringe and peristaltic pump. The microdialysis collection efficiency of CCL2, a physiologically relevant cytokine, was increased 3-fold with addition of the nanogel to the microdialysis perfusion fluid. The reduction in instrumentation requirements, low cost, and low specificity obtained

  17. Affimer proteins are versatile and renewable affinity reagents

    PubMed Central

    Tiede, Christian; Bedford, Robert; Heseltine, Sophie J; Smith, Gina; Wijetunga, Imeshi; Ross, Rebecca; AlQallaf, Danah; Roberts, Ashley PE; Balls, Alexander; Curd, Alistair; Hughes, Ruth E; Martin, Heather; Needham, Sarah R; Zanetti-Domingues, Laura C; Sadigh, Yashar; Peacock, Thomas P; Tang, Anna A; Gibson, Naomi; Kyle, Hannah; Platt, Geoffrey W; Ingram, Nicola; Taylor, Thomas; Coletta, Louise P; Manfield, Iain; Knowles, Margaret; Bell, Sandra; Esteves, Filomena; Maqbool, Azhar; Prasad, Raj K; Drinkhill, Mark; Bon, Robin S; Patel, Vikesh; Goodchild, Sarah A; Martin-Fernandez, Marisa; Owens, Ray J; Nettleship, Joanne E; Webb, Michael E; Harrison, Michael; Lippiat, Jonathan D; Ponnambalam, Sreenivasan; Peckham, Michelle; Smith, Alastair; Ferrigno, Paul Ko; Johnson, Matt; McPherson, Michael J; Tomlinson, Darren Charles

    2017-01-01

    Molecular recognition reagents are key tools for understanding biological processes and are used universally by scientists to study protein expression, localisation and interactions. Antibodies remain the most widely used of such reagents and many show excellent performance, although some are poorly characterised or have stability or batch variability issues, supporting the use of alternative binding proteins as complementary reagents for many applications. Here we report on the use of Affimer proteins as research reagents. We selected 12 diverse molecular targets for Affimer selection to exemplify their use in common molecular and cellular applications including the (a) selection against various target molecules; (b) modulation of protein function in vitro and in vivo; (c) labelling of tumour antigens in mouse models; and (d) use in affinity fluorescence and super-resolution microscopy. This work shows that Affimer proteins, as is the case for other alternative binding scaffolds, represent complementary affinity reagents to antibodies for various molecular and cell biology applications. DOI: http://dx.doi.org/10.7554/eLife.24903.001 PMID:28654419

  18. Application of an E. coli signal sequence as a versatile inclusion body tag.

    PubMed

    Jong, Wouter S P; Vikström, David; Houben, Diane; van den Berg van Saparoea, H Bart; de Gier, Jan-Willem; Luirink, Joen

    2017-03-21

    Heterologous protein production in Escherichia coli often suffers from bottlenecks such as proteolytic degradation, complex purification procedures and toxicity towards the expression host. Production of proteins in an insoluble form in inclusion bodies (IBs) can alleviate these problems. Unfortunately, the propensity of heterologous proteins to form IBs is variable and difficult to predict. Hence, fusing the target protein to an aggregation prone polypeptide or IB-tag is a useful strategy to produce difficult-to-express proteins in an insoluble form. When screening for signal sequences that mediate optimal targeting of heterologous proteins to the periplasmic space of E. coli, we observed that fusion to the 39 amino acid signal sequence of E. coli TorA (ssTorA) did not promote targeting but rather directed high-level expression of the human proteins hEGF, Pla2 and IL-3 in IBs. Further analysis revealed that ssTorA even mediated IB formation of the highly soluble endogenous E. coli proteins TrxA and MBP. The ssTorA also induced aggregation when fused to the C-terminus of target proteins and appeared functional as IB-tag in E. coli K-12 as well as B strains. An additive effect on IB-formation was observed upon fusion of multiple ssTorA sequences in tandem, provoking almost complete aggregation of TrxA and MBP. The ssTorA-moiety was successfully used to produce the intrinsically unstable hEGF and the toxic fusion partner SymE, demonstrating its applicability as an IB-tag for difficult-to-express and toxic proteins. We present proof-of-concept for the use of ssTorA as a small, versatile tag for robust E. coli-based expression of heterologous proteins in IBs.

  19. Human recombinant soluble guanylyl cyclase: expression, purification, and regulation

    NASA Technical Reports Server (NTRS)

    Lee, Y. C.; Martin, E.; Murad, F.

    2000-01-01

    The alpha1- and beta1-subunits of human soluble guanylate cyclase (sGC) were coexpressed in the Sf9 cells/baculovirus system. In addition to the native enzyme, constructs with hexahistidine tag at the amino and carboxyl termini of each subunit were coexpressed. This permitted the rapid and efficient purification of active recombinant enzyme on a nickel-affinity column. The enzyme has one heme per heterodimer and was readily activated with the NO donor sodium nitroprusside or 3-(5'-hydroxymethyl-2'furyl)-1-benzyl-indazole (YC-1). Sodium nitroprusside and YC-1 treatment potentiated each other in combination and demonstrated a remarkable 2,200-fold stimulation of the human recombinant sGC. The effects were inhibited with 1H-(1,2, 4)oxadiazole(4,3-a)quinoxalin-1one (ODQ). The kinetics of the recombinant enzyme with respect to GTP was examined. The products of the reaction, cGMP and pyrophosphate, inhibited the enzyme. The extent of inhibition by cGMP depended on the activation state of the enzyme, whereas inhibition by pyrophosphate was not affected by the enzyme state. Both reaction products displayed independent binding and cooperativity with respect to enzyme inhibition. The expression of large quantities of active enzyme will facilitate structural characterization of the protein.

  20. Imaging HIV-1 Tat Trafficking and Interactions by Engineered Green-Fluorescent-Protein Tagging

    NASA Astrophysics Data System (ADS)

    Beltram, Fabio

    2002-03-01

    The direct monitoring of protein function in live cells under physiologically relevant conditions is one of the most powerful and innovative methodologies for proteomics. Efficient florescent probes fully compatible with human-cell expression are the fundamental tools for these studies and their optimization opens the way to resolution at the single-protein level. Biological events involving protein pairs are also directly accessible thanks to tuning of protein-tag spectral properties and production of complementary pairs. Such pairs are characterized by overlapping absorption (for the acceptor tag) and emission (for the donor tag) spectra. By tagging the proteins of interest with acceptor and donor molecules, protein interaction can be directly visualized by FRET, fluorescent resonant energy transfer. In this talk we shall present the design by molecular dynamics calculations and the application of optimized green fluorescent proteins to the study of the human immunodeficiency virus HIV-1 proteomics. In particular trafficking and cellular interactions of HIV-1 transactivator protein Tat in live human cells will be presented. Tat localization and complex internalization pathways of exogenous molecules will be presented thanks to the peculiar optical properties of mutated GFPs. Cellular protein partners and subcellular interaction sites will be identified and directly visualized. The relevance of such results and of advanced spectroscopic and imaging techniques for a new level of understanding of biological processes and its significance for advancement in molecular biology will be underlined. A. Marcello et al., J. Biol. Chem. 276, 39220 (2001). R. Cinelli et al., Appl. Phys. Lett. 79, 3353 (2001).

  1. Affinity chromatography matrices for depletion and purification of casein glycomacropeptide from bovine whey.

    PubMed

    Baieli, María F; Urtasun, Nicolás; Martinez, María J; Hirsch, Daniela B; Pilosof, Ana M R; Miranda, María V; Cascone, Osvaldo; Wolman, Federico J

    2017-01-01

    Casein glycomacropeptide (CMP) is a 64- amino acid peptide found in cheese whey, which is released after κ-casein specific cleavage by chymosin. CMP lacks aromatic amino acids, a characteristic that makes it usable as a nutritional supplement for people with phenylketonuria. CMP consists of two nonglycosylated isoforms (aCMP A and aCMP B) and its different glycosylated forms (gCMP A and gCMP B). The most predominant carbohydrate of gCMP is N-acetylneuraminic acid (sialic acid). Here, we developed a CMP purification process based on the affinity of sialic acid for wheat germ agglutinin (WGA). After formation of chitosan beads and adsorption of WGA, the agglutinin was covalently attached with glutaraldehyde. Two matrices with different WGA density were assayed for CMP adsorption. Maximum adsorption capacities were calculated according to the Langmuir model from adsorption isotherms developed at pH 7.0, being 137.0 mg/g for the matrix with the best performance. In CMP reduction from whey, maximum removal percentage was 79% (specifically 33.7% of gCMP A and B, 75.8% of aCMP A, and 93.9% of aCMP B). The CMP was recovered as an aggregate with an overall yield of 64%. Therefore, the matrices developed are promising for CMP purification from cheese whey. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:171-180, 2017. © 2016 American Institute of Chemical Engineers.

  2. Using Green and Red Fluorescent Proteins to Teach Protein Expression, Purification, and Crystallization

    ERIC Educational Resources Information Center

    Wu, Yifeng; Zhou, Yangbin; Song, Jiaping; Hu, Xiaojian; Ding, Yu; Zhang, Zhihong

    2008-01-01

    We have designed a laboratory curriculum using the green and red fluorescent proteins (GFP and RFP) to visualize the cloning, expression, chromatography purification, crystallization, and protease-cleavage experiments of protein science. The EGFP and DsRed monomer (mDsRed)-coding sequences were amplified by PCR and cloned into pMAL (MBP-EGFP) or…

  3. Clustered, Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9-coupled Affinity Purification/Mass Spectrometry Analysis Revealed a Novel Role of Neurofibromin in mTOR Signaling.

    PubMed

    Li, Xu; Gao, Min; Choi, Jong Min; Kim, Beom-Jun; Zhou, Mao-Tian; Chen, Zhen; Jain, Antrix N; Jung, Sung Yun; Yuan, Jingsong; Wang, Wenqi; Wang, Yi; Chen, Junjie

    2017-04-01

    Neurofibromin (NF1) is a well known tumor suppressor that is commonly mutated in cancer patients. It physically interacts with RAS and negatively regulates RAS GTPase activity. Despite the importance of NF1 in cancer, a high quality endogenous NF1 interactome has yet to be established. In this study, we combined c lustered, r egularly i nterspaced s hort p alindromic r epeats (CRISPR)/Cas9-mediated gene knock-out technology with affinity purification using antibodies against endogenous proteins, followed by mass spectrometry analysis, to sensitively and accurately detect NF1 protein-protein interactions in unaltered in vivo settings. Using this system, we analyzed endogenous NF1-associated protein complexes and identified 49 high-confidence candidate interaction proteins, including RAS and other functionally relevant proteins. Through functional validation, we found that NF1 negatively regulates mechanistic target of rapamycin signaling (mTOR) in a LAMTOR1-dependent manner. In addition, the cell growth and survival of NF1-deficient cells have become dependent on hyperactivation of the mTOR pathway, and the tumorigenic properties of these cells have become dependent on LAMTOR1. Taken together, our findings may provide novel insights into therapeutic approaches targeting NF1-deficient tumors. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Interactomic approach for evaluating nucleophosmin-binding proteins as biomarkers for Ewing's sarcoma.

    PubMed

    Haga, Ayako; Ogawara, Yoko; Kubota, Daisuke; Kitabayashi, Issay; Murakami, Yasufumi; Kondo, Tadashi

    2013-06-01

    Nucleophosmin (NPM) is a novel prognostic biomarker for Ewing's sarcoma. To evaluate the prognostic utility of NPM, we conducted an interactomic approach to characterize the NPM protein complex in Ewing's sarcoma cells. A gene suppression assay revealed that NPM promoted cell proliferation and the invasive properties of Ewing's sarcoma cells. FLAG-tag-based affinity purification coupled with liquid chromatography-tandem mass spectrometry identified 106 proteins in the NPM protein complex. The functional classification suggested that the NPM complex participates in critical biological events, including ribosome biogenesis, regulation of transcription and translation, and protein folding, that are mediated by these proteins. In addition to JAK1, a candidate prognostic biomarker for Ewing's sarcoma, the NPM complex, includes 11 proteins known as prognostic biomarkers for other malignancies. Meta-analysis of gene expression profiles of 32 patients with Ewing's sarcoma revealed that 6 of 106 were significantly and independently associated with survival period. These observations suggest a functional role as well as prognostic value of these NPM complex proteins in Ewing's sarcoma. Further, our study suggests the potential applications of interactomics in conjunction with meta-analysis for biomarker discovery. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Expression and immunoaffinity purification of recombinant soluble human GPR56 protein for the analysis of GPR56 receptor shedding by ELISA.

    PubMed

    Yang, Tai-Yun; Chiang, Nien-Yi; Tseng, Wen-Yi; Pan, Hsiao-Lin; Peng, Yen-Ming; Shen, Jiann-Jong; Wu, Kuo-An; Kuo, Ming-Ling; Chang, Gin-Wen; Lin, Hsi-Hsien

    2015-05-01

    GPR56 is a multi-functional adhesion-class G protein-coupled receptor involved in biological systems as diverse as brain development, male gonad development, myoblast fusion, hematopoietic stem cell maintenance, tumor growth and metastasis, and immune-regulation. Ectodomain shedding of human GPR56 receptor has been demonstrated previously, however the quantitative detection of GPR56 receptor shedding has not been investigated fully due to the lack of appropriate assays. Herein, an efficient system of expression and immune-affinity purification of the recombinant soluble extracellular domain of human GPR56 (sGPR56) protein from a stably transduced human melanoma cell line was established. The identity and functionality of the recombinant human sGPR56 protein were verified by Western blotting and mass spectrometry, and ligand-binding assays, respectively. Combined with the use of two recently generated anti-GPR56 monoclonal antibodies, a sensitive sandwich ELISA assay was successfully developed for the quantitative detection of human sGPR56 molecule. We found that GPR56 receptor shedding occurred constitutively and was further increased in activated human melanoma cells expressing endogenous GPR56. In conclusion, we report herein an efficient system for the production and purification of human sGPR56 protein for the establishment of a quantitative ELISA analysis of GPR56 receptor shedding. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Purification and Functional Characterization of a Protein: Bombyx mori Human Growth Hormone Like Protein in Silkworm Pupa

    PubMed Central

    Lv, Zhengbing; Nie, Zuoming; Chen, Jian; Chen, Hao; Yu, Wei; Gai, Qijing; Zhang, Yaozhou

    2014-01-01

    Human growth hormone (hGH) is a peptide hormone secreted by eosinophils of the human anterior pituitary, and a regulatory factor for a variety of metabolic pathways. A 30-kD protein from the pupa stage of silkworm was detected by Western blotting and confirmed by immunoprecipitation based on its ability to bind to anti-hGH antibody. This protein, named BmhGH-like protein, was purified from fresh silkworm pupas through low-temperature homogenization, filtration, and centrifugation to remove large impurity particles. The supernatants were precipitated, resuspended, and passed through a molecular sieve. Further purification by affinity chromatography and two-dimensional electrophoresis resulted in pure protein for analysis by MS MALDI-TOF-MS analysis. An alignment with predicted proteins indicated that BmhGH-like protein consisted of two lipoproteins, which we named hGH-L1 and hGH-L2. These proteins belong to the β-trefoil superfamily, with β domains similar to the spatial structure of hGH. Assays with K562 cells demonstrated that these proteins could promote cell division in vitro. To further validate the growth-promoting effects, hGH-L2 was cloned from pupa cDNA to create recombinant silkworm baculovirus vBmNPV-hGH-L2, which was used to infect silkworm BmN cells at low titer. Flow cytometric analysis demonstrated that the protein shortened the G0/G1 phase of the cells, and enabled the cells to rapidly traverse the G1/S phase transition point to enter S phase and promote cell division. Discovery of hGH-like protein in silkworm will once again arouse people’s interest in the potential medicinal value of silkworm and establish the basis for the development of new hormone drugs. PMID:25469649

  7. Purification and functional characterization of a protein: Bombyx mori human growth hormone like protein in silkworm pupa.

    PubMed

    Chen, Jianqing; Shu, Tejun; Lv, Zhengbing; Nie, Zuoming; Chen, Jian; Chen, Hao; Yu, Wei; Gai, Qijing; Zhang, Yaozhou

    2014-01-01

    Human growth hormone (hGH) is a peptide hormone secreted by eosinophils of the human anterior pituitary, and a regulatory factor for a variety of metabolic pathways. A 30-kD protein from the pupa stage of silkworm was detected by Western blotting and confirmed by immunoprecipitation based on its ability to bind to anti-hGH antibody. This protein, named BmhGH-like protein, was purified from fresh silkworm pupas through low-temperature homogenization, filtration, and centrifugation to remove large impurity particles. The supernatants were precipitated, resuspended, and passed through a molecular sieve. Further purification by affinity chromatography and two-dimensional electrophoresis resulted in pure protein for analysis by MS MALDI-TOF-MS analysis. An alignment with predicted proteins indicated that BmhGH-like protein consisted of two lipoproteins, which we named hGH-L1 and hGH-L2. These proteins belong to the β-trefoil superfamily, with β domains similar to the spatial structure of hGH. Assays with K562 cells demonstrated that these proteins could promote cell division in vitro. To further validate the growth-promoting effects, hGH-L2 was cloned from pupa cDNA to create recombinant silkworm baculovirus vBmNPV-hGH-L2, which was used to infect silkworm BmN cells at low titer. Flow cytometric analysis demonstrated that the protein shortened the G0/G1 phase of the cells, and enabled the cells to rapidly traverse the G1/S phase transition point to enter S phase and promote cell division. Discovery of hGH-like protein in silkworm will once again arouse people's interest in the potential medicinal value of silkworm and establish the basis for the development of new hormone drugs.

  8. Targeting protein-protein interactions with trimeric ligands: high affinity inhibitors of the MAGUK protein family.

    PubMed

    Nissen, Klaus B; Haugaard-Kedström, Linda M; Wilbek, Theis S; Nielsen, Line S; Åberg, Emma; Kristensen, Anders S; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins.

  9. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo

    PubMed Central

    Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M.; Specht, Christian G.; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud

    2016-01-01

    This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling. PMID:26711992

  10. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo.

    PubMed

    Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M; Specht, Christian G; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud

    2016-01-19

    This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling.

  11. Use of the Nanofitin Alternative Scaffold as a GFP-Ready Fusion Tag

    PubMed Central

    Huet, Simon; Gorre, Harmony; Perrocheau, Anaëlle; Picot, Justine; Cinier, Mathieu

    2015-01-01

    With the continuous diversification of recombinant DNA technologies, the possibilities for new tailor-made protein engineering have extended on an on-going basis. Among these strategies, the use of the green fluorescent protein (GFP) as a fusion domain has been widely adopted for cellular imaging and protein localization. Following the lead of the direct head-to-tail fusion of GFP, we proposed to provide additional features to recombinant proteins by genetic fusion of artificially derived binders. Thus, we reported a GFP-ready fusion tag consisting of a small and robust fusion-friendly anti-GFP Nanofitin binding domain as a proof-of-concept. While limiting steric effects on the carrier, the GFP-ready tag allows the capture of GFP or its blue (BFP), cyan (CFP) and yellow (YFP) alternatives. Here, we described the generation of the GFP-ready tag from the selection of a Nanofitin variant binding to the GFP and its spectral variants with a nanomolar affinity, while displaying a remarkable folding stability, as demonstrated by its full resistance upon thermal sterilization process or the full chemical synthesis of Nanofitins. To illustrate the potential of the Nanofitin-based tag as a fusion partner, we compared the expression level in Escherichia coli and activity profile of recombinant human tumor necrosis factor alpha (TNFα) constructs, fused to a SUMO or GFP-ready tag. Very similar expression levels were found with the two fusion technologies. Both domains of the GFP-ready tagged TNFα were proved fully active in ELISA and interferometry binding assays, allowing the simultaneous capture by an anti-TNFα antibody and binding to the GFP, and its spectral mutants. The GFP-ready tag was also shown inert in a L929 cell based assay, demonstrating the potent TNFα mediated apoptosis induction by the GFP-ready tagged TNFα. Eventually, we proposed the GFP-ready tag as a versatile capture and labeling system in addition to expected applications of anti-GFP Nanofitins (as

  12. Use of the Nanofitin Alternative Scaffold as a GFP-Ready Fusion Tag.

    PubMed

    Huet, Simon; Gorre, Harmony; Perrocheau, Anaëlle; Picot, Justine; Cinier, Mathieu

    2015-01-01

    With the continuous diversification of recombinant DNA technologies, the possibilities for new tailor-made protein engineering have extended on an on-going basis. Among these strategies, the use of the green fluorescent protein (GFP) as a fusion domain has been widely adopted for cellular imaging and protein localization. Following the lead of the direct head-to-tail fusion of GFP, we proposed to provide additional features to recombinant proteins by genetic fusion of artificially derived binders. Thus, we reported a GFP-ready fusion tag consisting of a small and robust fusion-friendly anti-GFP Nanofitin binding domain as a proof-of-concept. While limiting steric effects on the carrier, the GFP-ready tag allows the capture of GFP or its blue (BFP), cyan (CFP) and yellow (YFP) alternatives. Here, we described the generation of the GFP-ready tag from the selection of a Nanofitin variant binding to the GFP and its spectral variants with a nanomolar affinity, while displaying a remarkable folding stability, as demonstrated by its full resistance upon thermal sterilization process or the full chemical synthesis of Nanofitins. To illustrate the potential of the Nanofitin-based tag as a fusion partner, we compared the expression level in Escherichia coli and activity profile of recombinant human tumor necrosis factor alpha (TNFα) constructs, fused to a SUMO or GFP-ready tag. Very similar expression levels were found with the two fusion technologies. Both domains of the GFP-ready tagged TNFα were proved fully active in ELISA and interferometry binding assays, allowing the simultaneous capture by an anti-TNFα antibody and binding to the GFP, and its spectral mutants. The GFP-ready tag was also shown inert in a L929 cell based assay, demonstrating the potent TNFα mediated apoptosis induction by the GFP-ready tagged TNFα. Eventually, we proposed the GFP-ready tag as a versatile capture and labeling system in addition to expected applications of anti-GFP Nanofitins (as

  13. Proof of concept of a "greener" protein purification/enrichment method based on carboxylate-terminated carbosilane dendrimer-protein interactions.

    PubMed

    González-García, Estefanía; Maly, Marek; de la Mata, Francisco Javier; Gómez, Rafael; Marina, María Luisa; García, María Concepción

    2016-11-01

    Protein sample preparation is a critical and an unsustainable step since it involves the use of tedious methods that usually require high amount of solvents. The development of new materials offers additional opportunities in protein sample preparation. This work explores, for the first time, the potential application of carboxylate-terminated carbosilane dendrimers to the purification/enrichment of proteins. Studies on dendrimer binding to proteins, based on protein fluorescence intensity and emission wavelengths measurements, demonstrated the interaction between carboxylate-terminated carbosilane dendrimers and proteins at all tested pH levels. Interactions were greatly affected by the protein itself, pH, and dendrimer concentration and generation. Especially interesting was the interaction at acidic pH since it resulted in a significant protein precipitation. Dendrimer-protein interactions were modeled observing stable complexes for all proteins. Carboxylate-terminated carbosilane dendrimers at acidic pH were successfully used in the purification/enrichment of proteins extracted from a complex sample. Graphical Abstract Images showing the growing turbidity of solutions containing a mixture of proteins (lysozyme, myoglobin, and BSA) at different protein:dendrimer ratios (1:0, 1:1, 1:8, and 1:20) at acidic pH and SDS-PAGE profiles of the corresponsing supernatants. Comparison of SDS-PAGE profiles for the pellets obtained during the purification of proteins present in a complex sample using a conventional "no-clean" method based on acetone precipitation and the proposed "greener" method using carboxylate-terminated carbosilane dendrimer at a 1:20 protein:dendrimer ratio.

  14. Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.

    PubMed

    Basu, Koli; Garnham, Christopher P; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-15

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms.

  15. Determining the Ice-binding Planes of Antifreeze Proteins by Fluorescence-based Ice Plane Affinity

    PubMed Central

    Basu, Koli; Garnham, Christopher P.; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-01

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms. PMID:24457629

  16. Preparative Purification of Recombinant Proteins: Current Status and Future Trends

    PubMed Central

    Saraswat, Mayank; Ravidá, Alessandra; Holthofer, Harry

    2013-01-01

    Advances in fermentation technologies have resulted in the production of increased yields of proteins of economic, biopharmaceutical, and medicinal importance. Consequently, there is an absolute requirement for the development of rapid, cost-effective methodologies which facilitate the purification of such products in the absence of contaminants, such as superfluous proteins and endotoxins. Here, we provide a comprehensive overview of a selection of key purification methodologies currently being applied in both academic and industrial settings and discuss how innovative and effective protocols such as aqueous two-phase partitioning, membrane chromatography, and high-performance tangential flow filtration may be applied independently of or in conjunction with more traditional protocols for downstream processing applications. PMID:24455685

  17. Recombinant spider silk genetically functionalized with affinity domains.

    PubMed

    Jansson, Ronnie; Thatikonda, Naresh; Lindberg, Diana; Rising, Anna; Johansson, Jan; Nygren, Per-Åke; Hedhammar, My

    2014-05-12

    Functionalization of biocompatible materials for presentation of active protein domains is an area of growing interest. Herein, we describe a strategy for functionalization of recombinant spider silk via gene fusion to affinity domains of broad biotechnological use. Four affinity domains of different origin and structure; the IgG-binding domains Z and C2, the albumin-binding domain ABD, and the biotin-binding domain M4, were all successfully produced as soluble silk fusion proteins under nondenaturing purification conditions. Silk films and fibers produced from the fusion proteins were demonstrated to be chemically and thermally stable. Still, the bioactive domains are concluded to be folded and accessible, since their respective targets could be selectively captured from complex samples, including rabbit serum and human plasma. Interestingly, materials produced from mixtures of two different silk fusion proteins displayed combined binding properties, suggesting that tailor-made materials with desired stoichiometry and surface distributions of several binding domains can be produced. Further, use of the IgG binding ability as a general mean for presentation of desired biomolecules could be demonstrated for a human vascular endothelial growth factor (hVEGF) model system, via a first capture of anti-VEGF IgG to silk containing the Z-domain, followed by incubation with hVEGF. Taken together, this study demonstrates the potential of recombinant silk, genetically functionalized with affinity domains, for construction of biomaterials capable of presentation of almost any desired biomolecule.

  18. Genetically encoded fluorescent tags

    PubMed Central

    Thorn, Kurt

    2017-01-01

    Genetically encoded fluorescent tags are protein sequences that can be fused to a protein of interest to render it fluorescent. These tags have revolutionized cell biology by allowing nearly any protein to be imaged by light microscopy at submicrometer spatial resolution and subsecond time resolution in a live cell or organism. They can also be used to measure protein abundance in thousands to millions of cells using flow cytometry. Here I provide an introduction to the different genetic tags available, including both intrinsically fluorescent proteins and proteins that derive their fluorescence from binding of either endogenous or exogenous fluorophores. I discuss their optical and biological properties and guidelines for choosing appropriate tags for an experiment. Tools for tagging nucleic acid sequences and reporter molecules that detect the presence of different biomolecules are also briefly discussed. PMID:28360214

  19. Remarkable alkaline stability of an engineered protein A as immunoglobulin affinity ligand: C domain having only one amino acid substitution

    PubMed Central

    Minakuchi, Kazunobu; Murata, Dai; Okubo, Yuji; Nakano, Yoshiyuki; Yoshida, Shinichi

    2013-01-01

    Protein A affinity chromatography is the standard purification process for the capture of therapeutic antibodies. The individual IgG-binding domains of protein A (E, D, A, B, C) have highly homologous amino acid sequences. From a previous report, it has been assumed that the C domain has superior resistance to alkaline conditions compared to the other domains. We investigated several properties of the C domain as an IgG-Fc capture ligand. Based on cleavage site analysis of a recombinant protein A using a protein sequencer, the C domain was found to be the only domain to have neither of the potential alkaline cleavage sites. Circular dichroism (CD) analysis also indicated that the C domain has good physicochemical stability. Additionally, we evaluated the amino acid substitutions at the Gly-29 position of the C domain, as the Z domain (an artificial B domain) acquired alkaline resistance through a G29A mutation. The G29A mutation proved to increase the alkaline resistance of the C domain, based on BIACORE analysis, although the improvement was significantly smaller than that observed for the B domain. Interestingly, a number of other amino acid mutations at the same position increased alkaline resistance more than did the G29A mutation. This result supports the notion that even a single mutation on the originally alkali-stable C domain would improve its alkaline stability. An engineered protein A based on this C domain is expected to show remarkable performance as an affinity ligand for immunoglobulin. PMID:23868198

  20. Alkylation damage repair protein O6-alkylguanine-DNA alkyltransferase from the hyperthermophiles Aquifex aeolicus and Archaeoglobus fulgidus.

    PubMed Central

    Kanugula, Sreenivas; Pegg, Anthony E

    2003-01-01

    AGT (O6-alkylguanine DNA alkyltransferase) is an important DNA-repair protein that protects cells from killing and mutagenesis by alkylating agents. The AGT genes from two extremely thermophilic organisms, the bacterium Aquifex aeolicus and the archaeon Archaeoglobus fulgidus were PCR-derived and cloned into an expression vector. The nucleotide sequence of the Aq. aeolicus AGT encodes a 201-amino-acid protein with a molecular mass of 23000 Da and Ar. fulgidus AGT codes for a 147-amino-acid protein with a molecular mass of 16718 Da. The Aq. aeolicus and Ar. fulgidus AGTs were expressed at high levels in Escherichia coli fused to an N-terminal polyhistidine tag that allowed single-step isolation and purification by metal-affinity chromatography. Both AGTs formed inclusion bodies and were not soluble under native purification conditions. Therefore AGT isolation was performed under protein-denaturation conditions in the presence of 8.0 M urea. Soluble AGT was obtained by refolding the AGT in the presence of calf thymus DNA. Both AGTs were active in repairing O6-methylguanine and, at a lower rate, O4-methylthymine in DNA. They exhibited thermostability and optimum activity at high temperature. The thermostable AGTs, particularly that from Aq. aeolicus, were readily inactivated by the low-molecular-mass inhibitor O6-benzylguanine, which is currently in clinical trials to enhance cancer chemotherapy. PMID:12892560