Sample records for affymetrix human snp

  1. ITALICS: an algorithm for normalization and DNA copy number calling for Affymetrix SNP arrays.

    PubMed

    Rigaill, Guillem; Hupé, Philippe; Almeida, Anna; La Rosa, Philippe; Meyniel, Jean-Philippe; Decraene, Charles; Barillot, Emmanuel

    2008-03-15

    Affymetrix SNP arrays can be used to determine the DNA copy number measurement of 11 000-500 000 SNPs along the genome. Their high density facilitates the precise localization of genomic alterations and makes them a powerful tool for studies of cancers and copy number polymorphism. Like other microarray technologies it is influenced by non-relevant sources of variation, requiring correction. Moreover, the amplitude of variation induced by non-relevant effects is similar or greater than the biologically relevant effect (i.e. true copy number), making it difficult to estimate non-relevant effects accurately without including the biologically relevant effect. We addressed this problem by developing ITALICS, a normalization method that estimates both biological and non-relevant effects in an alternate, iterative manner, accurately eliminating irrelevant effects. We compared our normalization method with other existing and available methods, and found that ITALICS outperformed these methods for several in-house datasets and one public dataset. These results were validated biologically by quantitative PCR. The R package ITALICS (ITerative and Alternative normaLIzation and Copy number calling for affymetrix Snp arrays) has been submitted to Bioconductor.

  2. Equalizer reduces SNP bias in Affymetrix microarrays.

    PubMed

    Quigley, David

    2015-07-30

    Gene expression microarrays measure the levels of messenger ribonucleic acid (mRNA) in a sample using probe sequences that hybridize with transcribed regions. These probe sequences are designed using a reference genome for the relevant species. However, most model organisms and all humans have genomes that deviate from their reference. These variations, which include single nucleotide polymorphisms, insertions of additional nucleotides, and nucleotide deletions, can affect the microarray's performance. Genetic experiments comparing individuals bearing different population-associated single nucleotide polymorphisms that intersect microarray probes are therefore subject to systemic bias, as the reduction in binding efficiency due to a technical artifact is confounded with genetic differences between parental strains. This problem has been recognized for some time, and earlier methods of compensation have attempted to identify probes affected by genome variants using statistical models. These methods may require replicate microarray measurement of gene expression in the relevant tissue in inbred parental samples, which are not always available in model organisms and are never available in humans. By using sequence information for the genomes of organisms under investigation, potentially problematic probes can now be identified a priori. However, there is no published software tool that makes it easy to eliminate these probes from an annotation. I present equalizer, a software package that uses genome variant data to modify annotation files for the commonly used Affymetrix IVT and Gene/Exon platforms. These files can be used by any microarray normalization method for subsequent analysis. I demonstrate how use of equalizer on experiments mapping germline influence on gene expression in a genetic cross between two divergent mouse species and in human samples significantly reduces probe hybridization-induced bias, reducing false positive and false negative findings. The

  3. affy2sv: an R package to pre-process Affymetrix CytoScan HD and 750K arrays for SNP, CNV, inversion and mosaicism calling.

    PubMed

    Hernandez-Ferrer, Carles; Quintela Garcia, Ines; Danielski, Katharina; Carracedo, Ángel; Pérez-Jurado, Luis A; González, Juan R

    2015-05-20

    The well-known Genome-Wide Association Studies (GWAS) had led to many scientific discoveries using SNP data. Even so, they were not able to explain the full heritability of complex diseases. Now, other structural variants like copy number variants or DNA inversions, either germ-line or in mosaicism events, are being studies. We present the R package affy2sv to pre-process Affymetrix CytoScan HD/750k array (also for Genome-Wide SNP 5.0/6.0 and Axiom) in structural variant studies. We illustrate the capabilities of affy2sv using two different complete pipelines on real data. The first one performing a GWAS and a mosaic alterations detection study, and the other detecting CNVs and performing an inversion calling. Both examples presented in the article show up how affy2sv can be used as part of more complex pipelines aimed to analyze Affymetrix SNP arrays data in genetic association studies, where different types of structural variants are considered.

  4. Coverage and efficiency in current SNP chips

    PubMed Central

    Ha, Ngoc-Thuy; Freytag, Saskia; Bickeboeller, Heike

    2014-01-01

    To answer the question as to which commercial high-density SNP chip covers most of the human genome given a fixed budget, we compared the performance of 12 chips of different sizes released by Affymetrix and Illumina for the European, Asian, and African populations. These include Affymetrix' relatively new population-optimized arrays, whose SNP sets are each tailored toward a specific ethnicity. Our evaluation of the chips included the use of two measures, efficiency and cost–benefit ratio, which we developed as supplements to genetic coverage. Unlike coverage, these measures factor in the price of a chip or its substitute size (number of SNPs on chip), allowing comparisons to be drawn between differently priced chips. In this fashion, we identified the Affymetrix population-optimized arrays as offering the most cost-effective coverage for the Asian and African population. For the European population, we established the Illumina Human Omni 2.5-8 as the preferred choice. Interestingly, the Affymetrix chip tailored toward an Eastern Asian subpopulation performed well for all three populations investigated. However, our coverage estimates calculated for all chips proved much lower than those advertised by the producers. All our analyses were based on the 1000 Genome Project as reference population. PMID:24448550

  5. Fine-scaled human genetic structure revealed by SNP microarrays.

    PubMed

    Xing, Jinchuan; Watkins, W Scott; Witherspoon, David J; Zhang, Yuhua; Guthery, Stephen L; Thara, Rangaswamy; Mowry, Bryan J; Bulayeva, Kazima; Weiss, Robert B; Jorde, Lynn B

    2009-05-01

    We report an analysis of more than 240,000 loci genotyped using the Affymetrix SNP microarray in 554 individuals from 27 worldwide populations in Africa, Asia, and Europe. To provide a more extensive and complete sampling of human genetic variation, we have included caste and tribal samples from two states in South India, Daghestanis from eastern Europe, and the Iban from Malaysia. Consistent with observations made by Charles Darwin, our results highlight shared variation among human populations and demonstrate that much genetic variation is geographically continuous. At the same time, principal components analyses reveal discernible genetic differentiation among almost all identified populations in our sample, and in most cases, individuals can be clearly assigned to defined populations on the basis of SNP genotypes. All individuals are accurately classified into continental groups using a model-based clustering algorithm, but between closely related populations, genetic and self-classifications conflict for some individuals. The 250K data permitted high-level resolution of genetic variation among Indian caste and tribal populations and between highland and lowland Daghestani populations. In particular, upper-caste individuals from Tamil Nadu and Andhra Pradesh form one defined group, lower-caste individuals from these two states form another, and the tribal Irula samples form a third. Our results emphasize the correlation of genetic and geographic distances and highlight other elements, including social factors that have contributed to population structure.

  6. DMET-analyzer: automatic analysis of Affymetrix DMET data.

    PubMed

    Guzzi, Pietro Hiram; Agapito, Giuseppe; Di Martino, Maria Teresa; Arbitrio, Mariamena; Tassone, Pierfrancesco; Tagliaferri, Pierosandro; Cannataro, Mario

    2012-10-05

    Clinical Bioinformatics is currently growing and is based on the integration of clinical and omics data aiming at the development of personalized medicine. Thus the introduction of novel technologies able to investigate the relationship among clinical states and biological machineries may help the development of this field. For instance the Affymetrix DMET platform (drug metabolism enzymes and transporters) is able to study the relationship among the variation of the genome of patients and drug metabolism, detecting SNPs (Single Nucleotide Polymorphism) on genes related to drug metabolism. This may allow for instance to find genetic variants in patients which present different drug responses, in pharmacogenomics and clinical studies. Despite this, there is currently a lack in the development of open-source algorithms and tools for the analysis of DMET data. Existing software tools for DMET data generally allow only the preprocessing of binary data (e.g. the DMET-Console provided by Affymetrix) and simple data analysis operations, but do not allow to test the association of the presence of SNPs with the response to drugs. We developed DMET-Analyzer a tool for the automatic association analysis among the variation of the patient genomes and the clinical conditions of patients, i.e. the different response to drugs. The proposed system allows: (i) to automatize the workflow of analysis of DMET-SNP data avoiding the use of multiple tools; (ii) the automatic annotation of DMET-SNP data and the search in existing databases of SNPs (e.g. dbSNP), (iii) the association of SNP with pathway through the search in PharmaGKB, a major knowledge base for pharmacogenomic studies. DMET-Analyzer has a simple graphical user interface that allows users (doctors/biologists) to upload and analyse DMET files produced by Affymetrix DMET-Console in an interactive way. The effectiveness and easy use of DMET Analyzer is demonstrated through different case studies regarding the analysis of

  7. Construction of a versatile SNP array for pyramiding useful genes of rice.

    PubMed

    Kurokawa, Yusuke; Noda, Tomonori; Yamagata, Yoshiyuki; Angeles-Shim, Rosalyn; Sunohara, Hidehiko; Uehara, Kanako; Furuta, Tomoyuki; Nagai, Keisuke; Jena, Kshirod Kumar; Yasui, Hideshi; Yoshimura, Atsushi; Ashikari, Motoyuki; Doi, Kazuyuki

    2016-01-01

    DNA marker-assisted selection (MAS) has become an indispensable component of breeding. Single nucleotide polymorphisms (SNP) are the most frequent polymorphism in the rice genome. However, SNP markers are not readily employed in MAS because of limitations in genotyping platforms. Here the authors report a Golden Gate SNP array that targets specific genes controlling yield-related traits and biotic stress resistance in rice. As a first step, the SNP genotypes were surveyed in 31 parental varieties using the Affymetrix Rice 44K SNP microarray. The haplotype information for 16 target genes was then converted to the Golden Gate platform with 143-plex markers. Haplotypes for the 14 useful allele are unique and can discriminate among all other varieties. The genotyping consistency between the Affymetrix microarray and the Golden Gate array was 92.8%, and the accuracy of the Golden Gate array was confirmed in 3 F2 segregating populations. The concept of the haplotype-based selection by using the constructed SNP array was proofed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  8. Exploiting sequence similarity to validate the sensitivity of SNP arrays in detecting fine-scaled copy number variations.

    PubMed

    Wong, Gerard; Leckie, Christopher; Gorringe, Kylie L; Haviv, Izhak; Campbell, Ian G; Kowalczyk, Adam

    2010-04-15

    High-density single nucleotide polymorphism (SNP) genotyping arrays are efficient and cost effective platforms for the detection of copy number variation (CNV). To ensure accuracy in probe synthesis and to minimize production costs, short oligonucleotide probe sequences are used. The use of short probe sequences limits the specificity of binding targets in the human genome. The specificity of these short probeset sequences has yet to be fully analysed against a normal reference human genome. Sequence similarity can artificially elevate or suppress copy number measurements, and hence reduce the reliability of affected probe readings. For the purpose of detecting narrow CNVs reliably down to the width of a single probeset, sequence similarity is an important issue that needs to be addressed. We surveyed the Affymetrix Human Mapping SNP arrays for probeset sequence similarity against the reference human genome. Utilizing sequence similarity results, we identified a collection of fine-scaled putative CNVs between gender from autosomal probesets whose sequence matches various loci on the sex chromosomes. To detect these variations, we utilized our statistical approach, Detecting REcurrent Copy number change using rank-order Statistics (DRECS), and showed that its performance was superior and more stable than the t-test in detecting CNVs. Through the application of DRECS on the HapMap population datasets with multi-matching probesets filtered, we identified biologically relevant SNPs in aberrant regions across populations with known association to physical traits, such as height, covered by the span of a single probe. This provided empirical confirmation of the existence of naturally occurring narrow CNVs as well as the sensitivity of the Affymetrix SNP array technology in detecting them. The MATLAB implementation of DRECS is available at http://ww2.cs.mu.oz.au/ approximately gwong/DRECS/index.html.

  9. Micro-Analyzer: automatic preprocessing of Affymetrix microarray data.

    PubMed

    Guzzi, Pietro Hiram; Cannataro, Mario

    2013-08-01

    A current trend in genomics is the investigation of the cell mechanism using different technologies, in order to explain the relationship among genes, molecular processes and diseases. For instance, the combined use of gene-expression arrays and genomic arrays has been demonstrated as an effective instrument in clinical practice. Consequently, in a single experiment different kind of microarrays may be used, resulting in the production of different types of binary data (images and textual raw data). The analysis of microarray data requires an initial preprocessing phase, that makes raw data suitable for use on existing analysis platforms, such as the TIGR M4 (TM4) Suite. An additional challenge to be faced by emerging data analysis platforms is the ability to treat in a combined way those different microarray formats coupled with clinical data. In fact, resulting integrated data may include both numerical and symbolic data (e.g. gene expression and SNPs regarding molecular data), as well as temporal data (e.g. the response to a drug, time to progression and survival rate), regarding clinical data. Raw data preprocessing is a crucial step in analysis but is often performed in a manual and error prone way using different software tools. Thus novel, platform independent, and possibly open source tools enabling the semi-automatic preprocessing and annotation of different microarray data are needed. The paper presents Micro-Analyzer (Microarray Analyzer), a cross-platform tool for the automatic normalization, summarization and annotation of Affymetrix gene expression and SNP binary data. It represents the evolution of the μ-CS tool, extending the preprocessing to SNP arrays that were not allowed in μ-CS. The Micro-Analyzer is provided as a Java standalone tool and enables users to read, preprocess and analyse binary microarray data (gene expression and SNPs) by invoking TM4 platform. It avoids: (i) the manual invocation of external tools (e.g. the Affymetrix Power

  10. Analysis and visualization of chromosomal abnormalities in SNP data with SNPscan

    PubMed Central

    Ting, Jason C; Ye, Ying; Thomas, George H; Ruczinski, Ingo; Pevsner, Jonathan

    2006-01-01

    Background A variety of diseases are caused by chromosomal abnormalities such as aneuploidies (having an abnormal number of chromosomes), microdeletions, microduplications, and uniparental disomy. High density single nucleotide polymorphism (SNP) microarrays provide information on chromosomal copy number changes, as well as genotype (heterozygosity and homozygosity). SNP array studies generate multiple types of data for each SNP site, some with more than 100,000 SNPs represented on each array. The identification of different classes of anomalies within SNP data has been challenging. Results We have developed SNPscan, a web-accessible tool to analyze and visualize high density SNP data. It enables researchers (1) to visually and quantitatively assess the quality of user-generated SNP data relative to a benchmark data set derived from a control population, (2) to display SNP intensity and allelic call data in order to detect chromosomal copy number anomalies (duplications and deletions), (3) to display uniparental isodisomy based on loss of heterozygosity (LOH) across genomic regions, (4) to compare paired samples (e.g. tumor and normal), and (5) to generate a file type for viewing SNP data in the University of California, Santa Cruz (UCSC) Human Genome Browser. SNPscan accepts data exported from Affymetrix Copy Number Analysis Tool as its input. We validated SNPscan using data generated from patients with known deletions, duplications, and uniparental disomy. We also inspected previously generated SNP data from 90 apparently normal individuals from the Centre d'Étude du Polymorphisme Humain (CEPH) collection, and identified three cases of uniparental isodisomy, four females having an apparently mosaic X chromosome, two mislabelled SNP data sets, and one microdeletion on chromosome 2 with mosaicism from an apparently normal female. These previously unrecognized abnormalities were all detected using SNPscan. The microdeletion was independently confirmed by

  11. Detection of selective sweeps in cattle using genome-wide SNP data

    PubMed Central

    2013-01-01

    Background The domestication and subsequent selection by humans to create breeds and biological types of cattle undoubtedly altered the patterning of variation within their genomes. Strong selection to fix advantageous large-effect mutations underlying domesticability, breed characteristics or productivity created selective sweeps in which variation was lost in the chromosomal region flanking the selected allele. Selective sweeps have now been identified in the genomes of many animal species including humans, dogs, horses, and chickens. Here, we attempt to identify and characterise regions of the bovine genome that have been subjected to selective sweeps. Results Two datasets were used for the discovery and validation of selective sweeps via the fixation of alleles at a series of contiguous SNP loci. BovineSNP50 data were used to identify 28 putative sweep regions among 14 diverse cattle breeds. Affymetrix BOS 1 prescreening assay data for five breeds were used to identify 85 regions and validate 5 regions identified using the BovineSNP50 data. Many genes are located within these regions and the lack of sequence data for the analysed breeds precludes the nomination of selected genes or variants and limits the prediction of the selected phenotypes. However, phenotypes that we predict to have historically been under strong selection include horned-polled, coat colour, stature, ear morphology, and behaviour. Conclusions The bias towards common SNPs in the design of the BovineSNP50 assay led to the identification of recent selective sweeps associated with breed formation and common to only a small number of breeds rather than ancient events associated with domestication which could potentially be common to all European taurines. The limited SNP density, or marker resolution, of the BovineSNP50 assay significantly impacted the rate of false discovery of selective sweeps, however, we found sweeps in common between breeds which were confirmed using an ultra

  12. Tips on hybridizing, washing, and scanning affymetrix microarrays.

    PubMed

    Ares, Manuel

    2014-02-01

    Starting in the late 1990s, Affymetrix, Inc. produced a commercial system for hybridizing, washing, and scanning microarrays that was designed to be easy to operate and reproducible. The system used arrays packaged in a plastic cassette or chamber in which the prefabricated array was mounted and could be filled with fluid through resealable membrane ports either by hand or by an automated "fluidics station" specially designed to handle the arrays. A special rotating hybridization oven and a specially designed scanner were also required. Primarily because of automation and standardization the Affymetrix system was and still remains popular. Here, we provide a skeleton protocol with the potential pitfalls identified. It is designed to augment the protocols provided by Affymetrix.

  13. Transcriptomic SNP discovery for custom genotyping arrays: impacts of sequence data, SNP calling method and genotyping technology on the probability of validation success.

    PubMed

    Humble, Emily; Thorne, Michael A S; Forcada, Jaume; Hoffman, Joseph I

    2016-08-26

    Single nucleotide polymorphism (SNP) discovery is an important goal of many studies. However, the number of 'putative' SNPs discovered from a sequence resource may not provide a reliable indication of the number that will successfully validate with a given genotyping technology. For this it may be necessary to account for factors such as the method used for SNP discovery and the type of sequence data from which it originates, suitability of the SNP flanking sequences for probe design, and genomic context. To explore the relative importance of these and other factors, we used Illumina sequencing to augment an existing Roche 454 transcriptome assembly for the Antarctic fur seal (Arctocephalus gazella). We then mapped the raw Illumina reads to the new hybrid transcriptome using BWA and BOWTIE2 before calling SNPs with GATK. The resulting markers were pooled with two existing sets of SNPs called from the original 454 assembly using NEWBLER and SWAP454. Finally, we explored the extent to which SNPs discovered using these four methods overlapped and predicted the corresponding validation outcomes for both Illumina Infinium iSelect HD and Affymetrix Axiom arrays. Collating markers across all discovery methods resulted in a global list of 34,718 SNPs. However, concordance between the methods was surprisingly poor, with only 51.0 % of SNPs being discovered by more than one method and 13.5 % being called from both the 454 and Illumina datasets. Using a predictive modeling approach, we could also show that SNPs called from the Illumina data were on average more likely to successfully validate, as were SNPs called by more than one method. Above and beyond this pattern, predicted validation outcomes were also consistently better for Affymetrix Axiom arrays. Our results suggest that focusing on SNPs called by more than one method could potentially improve validation outcomes. They also highlight possible differences between alternative genotyping technologies that could be

  14. Microarray labeling extension values: laboratory signatures for Affymetrix GeneChips

    PubMed Central

    Lee, Yun-Shien; Chen, Chun-Houh; Tsai, Chi-Neu; Tsai, Chia-Lung; Chao, Angel; Wang, Tzu-Hao

    2009-01-01

    Interlaboratory comparison of microarray data, even when using the same platform, imposes several challenges to scientists. RNA quality, RNA labeling efficiency, hybridization procedures and data-mining tools can all contribute variations in each laboratory. In Affymetrix GeneChips, about 11–20 different 25-mer oligonucleotides are used to measure the level of each transcript. Here, we report that ‘labeling extension values (LEVs)’, which are correlation coefficients between probe intensities and probe positions, are highly correlated with the gene expression levels (GEVs) on eukayotic Affymetrix microarray data. By analyzing LEVs and GEVs in the publicly available 2414 cel files of 20 Affymetrix microarray types covering 13 species, we found that correlations between LEVs and GEVs only exist in eukaryotic RNAs, but not in prokaryotic ones. Surprisingly, Affymetrix results of the same specimens that were analyzed in different laboratories could be clearly differentiated only by LEVs, leading to the identification of ‘laboratory signatures’. In the examined dataset, GSE10797, filtering out high-LEV genes did not compromise the discovery of biological processes that are constructed by differentially expressed genes. In conclusion, LEVs provide a new filtering parameter for microarray analysis of gene expression and it may improve the inter- and intralaboratory comparability of Affymetrix GeneChips data. PMID:19295132

  15. Elucidation of the ‘Honeycrisp’ pedigree through haplotype analysis with a multi-family integrated SNP linkage map and a large apple (Malus×domestica) pedigree-connected SNP data set

    PubMed Central

    Howard, Nicholas P; van de Weg, Eric; Bedford, David S; Peace, Cameron P; Vanderzande, Stijn; Clark, Matthew D; Teh, Soon Li; Cai, Lichun; Luby, James J

    2017-01-01

    The apple (Malus×domestica) cultivar Honeycrisp has become important economically and as a breeding parent. An earlier study with SSR markers indicated the original recorded pedigree of ‘Honeycrisp’ was incorrect and ‘Keepsake’ was identified as one putative parent, the other being unknown. The objective of this study was to verify ‘Keepsake’ as a parent and identify and genetically describe the unknown parent and its grandparents. A multi-family based dense and high-quality integrated SNP map was created using the apple 8 K Illumina Infinium SNP array. This map was used alongside a large pedigree-connected data set from the RosBREED project to build extended SNP haplotypes and to identify pedigree relationships. ‘Keepsake’ was verified as one parent of ‘Honeycrisp’ and ‘Duchess of Oldenburg’ and ‘Golden Delicious’ were identified as grandparents through the unknown parent. Following this finding, siblings of ‘Honeycrisp’ were identified using the SNP data. Breeding records from several of these siblings suggested that the previously unreported parent is a University of Minnesota selection, MN1627. This selection is no longer available, but now is genetically described through imputed SNP haplotypes. We also present the mosaic grandparental composition of ‘Honeycrisp’ for each of its 17 chromosome pairs. This new pedigree and genetic information will be useful in future pedigree-based genetic studies to connect ‘Honeycrisp’ with other cultivars used widely in apple breeding programs. The created SNP linkage map will benefit future research using the data from the Illumina apple 8 and 20 K and Affymetrix 480 K SNP arrays. PMID:28243452

  16. The genetic component of human longevity: New insights from the analysis of pathway-based SNP-SNP interactions.

    PubMed

    Dato, Serena; Soerensen, Mette; De Rango, Francesco; Rose, Giuseppina; Christensen, Kaare; Christiansen, Lene; Passarino, Giuseppe

    2018-06-01

    In human longevity studies, single nucleotide polymorphism (SNP) analysis identified a large number of genetic variants with small effects, yet not easily replicable in different populations. New insights may come from the combined analysis of different SNPs, especially when grouped by metabolic pathway. We applied this approach to study the joint effect on longevity of SNPs belonging to three candidate pathways, the insulin/insulin-like growth factor signalling (IIS), DNA repair and pro/antioxidant. We analysed data from 1,058 tagging SNPs in 140 genes, collected in 1825 subjects (1,089 unrelated nonagenarians from the Danish 1905 Birth Cohort Study and 736 Danish controls aged 46-55 years) for evaluating synergic interactions by SNPsyn. Synergies were further tested by the multidimensional reduction (MDR) approach, both intra- and interpathways. The best combinations (FDR<0.0001) resulted those encompassing IGF1R-rs12437963 and PTPN1-rs6067484, TP53-rs2078486 and ERCC2-rs50871, TXNRD1-rs17202060 and TP53-rs2078486, the latter two supporting a central role of TP53 in mediating the concerted activation of the DNA repair and pro-antioxidant pathways in human longevity. Results were consistently replicated with both approaches, as well as a significant effect on longevity was found for the GHSR gene, which also interacts with partners belonging to both IIS and DNA repair pathways (PAPPA, PTPN1, PARK7, MRE11A). The combination GHSR-MREA11, positively associated with longevity by MDR, was further found influencing longitudinal survival in nonagenarian females (p = .026). Results here presented highlight the validity of SNP-SNP interactions analyses for investigating the genetics of human longevity, confirming previously identified markers but also pointing to novel genes as central nodes of additional networks involved in human longevity. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  17. SNP-VISTA: An interactive SNP visualization tool

    PubMed Central

    Shah, Nameeta; Teplitsky, Michael V; Minovitsky, Simon; Pennacchio, Len A; Hugenholtz, Philip; Hamann, Bernd; Dubchak, Inna L

    2005-01-01

    Background Recent advances in sequencing technologies promise to provide a better understanding of the genetics of human disease as well as the evolution of microbial populations. Single Nucleotide Polymorphisms (SNPs) are established genetic markers that aid in the identification of loci affecting quantitative traits and/or disease in a wide variety of eukaryotic species. With today's technological capabilities, it has become possible to re-sequence a large set of appropriate candidate genes in individuals with a given disease in an attempt to identify causative mutations. In addition, SNPs have been used extensively in efforts to study the evolution of microbial populations, and the recent application of random shotgun sequencing to environmental samples enables more extensive SNP analysis of co-occurring and co-evolving microbial populations. The program is available at [1]. Results We have developed and present two modifications of an interactive visualization tool, SNP-VISTA, to aid in the analyses of the following types of data: A. Large-scale re-sequence data of disease-related genes for discovery of associated and/or causative alleles (GeneSNP-VISTA). B. Massive amounts of ecogenomics data for studying homologous recombination in microbial populations (EcoSNP-VISTA). The main features and capabilities of SNP-VISTA are: 1) mapping of SNPs to gene structure; 2) classification of SNPs, based on their location in the gene, frequency of occurrence in samples and allele composition; 3) clustering, based on user-defined subsets of SNPs, highlighting haplotypes as well as recombinant sequences; 4) integration of protein evolutionary conservation visualization; and 5) display of automatically calculated recombination points that are user-editable. Conclusion The main strength of SNP-VISTA is its graphical interface and use of visual representations, which support interactive exploration and hence better understanding of large-scale SNP data by the user. PMID

  18. Accuracy of various human NAT2 SNP genotyping panels to infer rapid, intermediate and slow acetylator phenotypes

    PubMed Central

    Hein, David W; Doll, Mark A

    2012-01-01

    Aim Humans exhibit genetic polymorphism in NAT2 resulting in rapid, intermediate and slow acetylator phenotypes. Over 65 NAT2 variants possessing one or more SNPs in the 870-bp NAT2 coding region have been reported. The seven most frequent SNPs are rs1801279 (191G>A), rs1041983 (282C>T), rs1801280 (341T>C), rs1799929 (481C>T), rs1799930 (590G>A), rs1208 (803A>G) and rs1799931 (857G>A). The majority of studies investigate the NAT2 genotype assay for three SNPs: 481C>T, 590G>A and 857G>A. A tag-SNP (rs1495741) recently identified in a genome-wide association study has also been proposed as a biomarker for the NAT2 phenotype. Materials & methods Sulfamethazine N-acetyltransferase catalytic activities were measured in cryopreserved human hepatocytes from a convenience sample of individuals in the USA with an ethnic frequency similar to the 2010 US population census. These activities were segregated by the tag-SNP rs1495741 and each of the seven SNPs described above. We assessed the accuracy of the tag-SNP and various two-, three-, four- and seven-SNP genotyping panels for their ability to accurately infer NAT2 phenotype. Results The accuracy of the various NAT2 SNP genotype panels to infer NAT2 phenotype were as follows: seven-SNP: 98.4%; tag-SNP: 77.7%; two-SNP: 96.1%; three-SNP: 92.2%; and four-SNP: 98.4%. Conclusion A NAT2 four-SNP genotype panel of rs1801279 (191G>A), rs1801280 (341T>C), rs1799930 (590G>A) and rs1799931 (857G>A) infers NAT2 acetylator phenotype with high accuracy, and is recommended over the tag-, two-, three- and (for economy of scale) the seven-SNP genotyping panels, particularly in populations of non-European ancestry. PMID:22092036

  19. Qualitative assessment of gene expression in affymetrix genechip arrays

    NASA Astrophysics Data System (ADS)

    Nagarajan, Radhakrishnan; Upreti, Meenakshi

    2007-01-01

    Affymetrix Genechip microarrays are used widely to determine the simultaneous expression of genes in a given biological paradigm. Probes on the Genechip array are atomic entities which by definition are randomly distributed across the array and in turn govern the gene expression. In the present study, we make several interesting observations. We show that there is considerable correlation between the probe intensities across the array which defy the independence assumption. While the mechanism behind such correlations is unclear, we show that scaling behavior and the profiles of perfect match (PM) as well as mismatch (MM) probes are similar and immune-to-background subtraction. We believe that the observed correlations are possibly an outcome of inherent non-stationarities or patchiness in the array devoid of biological significance. This is demonstrated by inspecting their scaling behavior and profiles of the PM and MM probe intensities obtained from publicly available Genechip arrays from three eukaryotic genomes, namely: Drosophila melanogaster (fruit fly), Homo sapiens (humans) and Mus musculus (house mouse) across distinct biological paradigms and across laboratories, with and without background subtraction. The fluctuation functions were estimated using detrended fluctuation analysis (DFA) with fourth-order polynomial detrending. The results presented in this study provide new insights into correlation signatures of PM and MM probe intensities and suggests the choice of DFA as a tool for qualitative assessment of Affymetrix Genechip microarrays prior to their analysis. A more detailed investigation is necessary in order to understand the source of these correlations.

  20. VIZARD: analysis of Affymetrix Arabidopsis GeneChip data

    NASA Technical Reports Server (NTRS)

    Moseyko, Nick; Feldman, Lewis J.

    2002-01-01

    SUMMARY: The Affymetrix GeneChip Arabidopsis genome array has proved to be a very powerful tool for the analysis of gene expression in Arabidopsis thaliana, the most commonly studied plant model organism. VIZARD is a Java program created at the University of California, Berkeley, to facilitate analysis of Arabidopsis GeneChip data. It includes several integrated tools for filtering, sorting, clustering and visualization of gene expression data as well as tools for the discovery of regulatory motifs in upstream sequences. VIZARD also includes annotation and upstream sequence databases for the majority of genes represented on the Affymetrix Arabidopsis GeneChip array. AVAILABILITY: VIZARD is available free of charge for educational, research, and not-for-profit purposes, and can be downloaded at http://www.anm.f2s.com/research/vizard/ CONTACT: moseyko@uclink4.berkeley.edu.

  1. Development of a Medium Density Combined-Species SNP Array for Pacific and European Oysters (Crassostrea gigas and Ostrea edulis).

    PubMed

    Gutierrez, Alejandro P; Turner, Frances; Gharbi, Karim; Talbot, Richard; Lowe, Natalie R; Peñaloza, Carolina; McCullough, Mark; Prodöhl, Paulo A; Bean, Tim P; Houston, Ross D

    2017-07-05

    SNP arrays are enabling tools for high-resolution studies of the genetic basis of complex traits in farmed and wild animals. Oysters are of critical importance in many regions from both an ecological and economic perspective, and oyster aquaculture forms a key component of global food security. The aim of our study was to design a combined-species, medium density SNP array for Pacific oyster ( Crassostrea gigas ) and European flat oyster ( Ostrea edulis ), and to test the performance of this array on farmed and wild populations from multiple locations, with a focus on European populations. SNP discovery was carried out by whole-genome sequencing (WGS) of pooled genomic DNA samples from eight C. gigas populations, and restriction site-associated DNA sequencing (RAD-Seq) of 11 geographically diverse O. edulis populations. Nearly 12 million candidate SNPs were discovered and filtered based on several criteria, including preference for SNPs segregating in multiple populations and SNPs with monomorphic flanking regions. An Affymetrix Axiom Custom Array was created and tested on a diverse set of samples ( n = 219) showing ∼27 K high quality SNPs for C. gigas and ∼11 K high quality SNPs for O. edulis segregating in these populations. A high proportion of SNPs were segregating in each of the populations, and the array was used to detect population structure and levels of linkage disequilibrium (LD). Further testing of the array on three C. gigas nuclear families ( n = 165) revealed that the array can be used to clearly distinguish between both families based on identity-by-state (IBS) clustering parental assignment software. This medium density, combined-species array will be publicly available through Affymetrix, and will be applied for genome-wide association and evolutionary genetic studies, and for genomic selection in oyster breeding programs. Copyright © 2017 Gutierrez et al.

  2. Linear reduction methods for tag SNP selection.

    PubMed

    He, Jingwu; Zelikovsky, Alex

    2004-01-01

    It is widely hoped that constructing a complete human haplotype map will help to associate complex diseases with certain SNP's. Unfortunately, the number of SNP's is huge and it is very costly to sequence many individuals. Therefore, it is desirable to reduce the number of SNP's that should be sequenced to considerably small number of informative representatives, so called tag SNP's. In this paper, we propose a new linear algebra based method for selecting and using tag SNP's. Our method is purely combinatorial and can be combined with linkage disequilibrium (LD) and block based methods. We measure the quality of our tag SNP selection algorithm by comparing actual SNP's with SNP's linearly predicted from linearly chosen tag SNP's. We obtain an extremely good compression and prediction rates. For example, for long haplotypes (>25000 SNP's), knowing only 0.4% of all SNP's we predict the entire unknown haplotype with 2% accuracy while the prediction method is based on a 10% sample of the population.

  3. SNP ID-info: SNP ID searching and visualization platform.

    PubMed

    Yang, Cheng-Hong; Chuang, Li-Yeh; Cheng, Yu-Huei; Wen, Cheng-Hao; Chang, Phei-Lang; Chang, Hsueh-Wei

    2008-09-01

    Many association studies provide the relationship between single nucleotide polymorphisms (SNPs), diseases and cancers, without giving a SNP ID, however. Here, we developed the SNP ID-info freeware to provide the SNP IDs within inputting genetic and physical information of genomes. The program provides an "SNP-ePCR" function to generate the full-sequence using primers and template inputs. In "SNPosition," sequence from SNP-ePCR or direct input is fed to match the SNP IDs from SNP fasta-sequence. In "SNP search" and "SNP fasta" function, information of SNPs within the cytogenetic band, contig position, and keyword input are acceptable. Finally, the SNP ID neighboring environment for inputs is completely visualized in the order of contig position and marked with SNP and flanking hits. The SNP identification problems inherent in NCBI SNP BLAST are also avoided. In conclusion, the SNP ID-info provides a visualized SNP ID environment for multiple inputs and assists systematic SNP association studies. The server and user manual are available at http://bio.kuas.edu.tw/snpid-info.

  4. Genome-wide association study of acute post-surgical pain in humans

    PubMed Central

    Kim, Hyungsuk; Ramsay, Edward; Lee, Hyewon; Wahl, Sharon; Dionne, Raymond A

    2009-01-01

    Aims Testing a relatively small genomic region with a few hundred SNPs provides limited information. Genome-wide association studies (GWAS) provide an opportunity to overcome the limitation of candidate gene association studies. Here, we report the results of a GWAS for the responses to an NSAID analgesic. Materials & methods European Americans (60 females and 52 males) undergoing oral surgery were genotyped with Affymetrix 500K SNP assay. Additional SNP genotyping was performed from the gene in linkage disequilibrium with the candidate SNP revealed by the GWAS. Results GWAS revealed a candidate SNP (rs2562456) associated with analgesic onset, which is in linkage disequilibrium with a gene encoding a zinc finger protein. Additional SNP genotyping of ZNF429 confirmed the association with analgesic onset in humans (p = 1.8 × 10−10, degrees of freedom = 103, F = 28.3). We also found candidate loci for the maximum post-operative pain rating (rs17122021, p = 6.9 × 10−7) and post-operative pain onset time (rs6693882, p = 2.1 × 10−6), however, correcting for multiple comparisons did not sustain these genetic associations. Conclusion GWAS for acute clinical pain followed by additional SNP genotyping of a neighboring gene suggests that genetic variations in or near the loci encoding DNA binding proteins play a role in the individual variations in responses to analgesic drugs. PMID:19207018

  5. LincSNP 2.0: an updated database for linking disease-associated SNPs to human long non-coding RNAs and their TFBSs.

    PubMed

    Ning, Shangwei; Yue, Ming; Wang, Peng; Liu, Yue; Zhi, Hui; Zhang, Yan; Zhang, Jizhou; Gao, Yue; Guo, Maoni; Zhou, Dianshuang; Li, Xin; Li, Xia

    2017-01-04

    We describe LincSNP 2.0 (http://bioinfo.hrbmu.edu.cn/LincSNP), an updated database that is used specifically to store and annotate disease-associated single nucleotide polymorphisms (SNPs) in human long non-coding RNAs (lncRNAs) and their transcription factor binding sites (TFBSs). In LincSNP 2.0, we have updated the database with more data and several new features, including (i) expanding disease-associated SNPs in human lncRNAs; (ii) identifying disease-associated SNPs in lncRNA TFBSs; (iii) updating LD-SNPs from the 1000 Genomes Project; and (iv) collecting more experimentally supported SNP-lncRNA-disease associations. Furthermore, we developed three flexible online tools to retrieve and analyze the data. Linc-Mart is a convenient way for users to customize their own data. Linc-Browse is a tool for all data visualization. Linc-Score predicts the associations between lncRNA and disease. In addition, we provided users a newly designed, user-friendly interface to search and download all the data in LincSNP 2.0 and we also provided an interface to submit novel data into the database. LincSNP 2.0 is a continually updated database and will serve as an important resource for investigating the functions and mechanisms of lncRNAs in human diseases. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array.

    PubMed

    Unterseer, Sandra; Bauer, Eva; Haberer, Georg; Seidel, Michael; Knaak, Carsten; Ouzunova, Milena; Meitinger, Thomas; Strom, Tim M; Fries, Ruedi; Pausch, Hubert; Bertani, Christofer; Davassi, Alessandro; Mayer, Klaus Fx; Schön, Chris-Carolin

    2014-09-29

    High density genotyping data are indispensable for genomic analyses of complex traits in animal and crop species. Maize is one of the most important crop plants worldwide, however a high density SNP genotyping array for analysis of its large and highly dynamic genome was not available so far. We developed a high density maize SNP array composed of 616,201 variants (SNPs and small indels). Initially, 57 M variants were discovered by sequencing 30 representative temperate maize lines and then stringently filtered for sequence quality scores and predicted conversion performance on the array resulting in the selection of 1.2 M polymorphic variants assayed on two screening arrays. To identify high-confidence variants, 285 DNA samples from a broad genetic diversity panel of worldwide maize lines including the samples used for sequencing, important founder lines for European maize breeding, hybrids, and proprietary samples with European, US, semi-tropical, and tropical origin were used for experimental validation. We selected 616 k variants according to their performance during validation, support of genotype calls through sequencing data, and physical distribution for further analysis and for the design of the commercially available Affymetrix® Axiom® Maize Genotyping Array. This array is composed of 609,442 SNPs and 6,759 indels. Among these are 116,224 variants in coding regions and 45,655 SNPs of the Illumina® MaizeSNP50 BeadChip for study comparison. In a subset of 45,974 variants, apart from the target SNP additional off-target variants are detected, which show only a minor bias towards intermediate allele frequencies. We performed principal coordinate and admixture analyses to determine the ability of the array to detect and resolve population structure and investigated the extent of LD within a worldwide validation panel. The high density Affymetrix® Axiom® Maize Genotyping Array is optimized for European and American temperate maize and was developed based

  7. Novel Thrombotic Function of a Human SNP in STXBP5 Revealed by CRISPR/Cas9 Gene Editing in Mice.

    PubMed

    Zhu, Qiuyu Martin; Ko, Kyung Ae; Ture, Sara; Mastrangelo, Michael A; Chen, Ming-Huei; Johnson, Andrew D; O'Donnell, Christopher J; Morrell, Craig N; Miano, Joseph M; Lowenstein, Charles J

    2017-02-01

    To identify and characterize the effect of a SNP (single-nucleotide polymorphism) in the STXBP5 locus that is associated with altered thrombosis in humans. GWAS (genome-wide association studies) have identified numerous SNPs associated with human thrombotic phenotypes, but determining the functional significance of an individual candidate SNP can be challenging, particularly when in vivo modeling is required. Recent GWAS led to the discovery of STXBP5 as a regulator of platelet secretion in humans. Further clinical studies have identified genetic variants of STXBP5 that are linked to altered plasma von Willebrand factor levels and thrombosis in humans, but the functional significance of these variants in STXBP5 is not understood. We used CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated 9) techniques to produce a precise mouse model carrying a human coding SNP rs1039084 (encoding human p. N436S) in the STXBP5 locus associated with decreased thrombosis. Mice carrying the orthologous human mutation (encoding p. N437S in mouse STXBP5) have lower plasma von Willebrand factor levels, decreased thrombosis, and decreased platelet secretion compared with wild-type mice. This thrombosis phenotype recapitulates the phenotype of humans carrying the minor allele of rs1039084. Decreased plasma von Willebrand factor and platelet activation may partially explain the decreased thrombotic phenotype in mutant mice. Using precise mammalian genome editing, we have identified a human nonsynonymous SNP rs1039084 in the STXBP5 locus as a causal variant for a decreased thrombotic phenotype. CRISPR/Cas9 genetic editing facilitates the rapid and efficient generation of animals to study the function of human genetic variation in vascular diseases. © 2016 American Heart Association, Inc.

  8. New generation pharmacogenomic tools: a SNP linkage disequilibrium Map, validated SNP assay resource, and high-throughput instrumentation system for large-scale genetic studies.

    PubMed

    De La Vega, Francisco M; Dailey, David; Ziegle, Janet; Williams, Julie; Madden, Dawn; Gilbert, Dennis A

    2002-06-01

    Since public and private efforts announced the first draft of the human genome last year, researchers have reported great numbers of single nucleotide polymorphisms (SNPs). We believe that the availability of well-mapped, quality SNP markers constitutes the gateway to a revolution in genetics and personalized medicine that will lead to better diagnosis and treatment of common complex disorders. A new generation of tools and public SNP resources for pharmacogenomic and genetic studies--specifically for candidate-gene, candidate-region, and whole-genome association studies--will form part of the new scientific landscape. This will only be possible through the greater accessibility of SNP resources and superior high-throughput instrumentation-assay systems that enable affordable, highly productive large-scale genetic studies. We are contributing to this effort by developing a high-quality linkage disequilibrium SNP marker map and an accompanying set of ready-to-use, validated SNP assays across every gene in the human genome. This effort incorporates both the public sequence and SNP data sources, and Celera Genomics' human genome assembly and enormous resource ofphysically mapped SNPs (approximately 4,000,000 unique records). This article discusses our approach and methodology for designing the map, choosing quality SNPs, designing and validating these assays, and obtaining population frequency ofthe polymorphisms. We also discuss an advanced, high-performance SNP assay chemisty--a new generation of the TaqMan probe-based, 5' nuclease assay-and high-throughput instrumentation-software system for large-scale genotyping. We provide the new SNP map and validation information, validated SNP assays and reagents, and instrumentation systems as a novel resource for genetic discoveries.

  9. Mismatch and G-Stack Modulated Probe Signals on SNP Microarrays

    PubMed Central

    Binder, Hans; Fasold, Mario; Glomb, Torsten

    2009-01-01

    Background Single nucleotide polymorphism (SNP) arrays are important tools widely used for genotyping and copy number estimation. This technology utilizes the specific affinity of fragmented DNA for binding to surface-attached oligonucleotide DNA probes. We analyze the variability of the probe signals of Affymetrix GeneChip SNP arrays as a function of the probe sequence to identify relevant sequence motifs which potentially cause systematic biases of genotyping and copy number estimates. Methodology/Principal Findings The probe design of GeneChip SNP arrays enables us to disentangle different sources of intensity modulations such as the number of mismatches per duplex, matched and mismatched base pairings including nearest and next-nearest neighbors and their position along the probe sequence. The effect of probe sequence was estimated in terms of triple-motifs with central matches and mismatches which include all 256 combinations of possible base pairings. The probe/target interactions on the chip can be decomposed into nearest neighbor contributions which correlate well with free energy terms of DNA/DNA-interactions in solution. The effect of mismatches is about twice as large as that of canonical pairings. Runs of guanines (G) and the particular type of mismatched pairings formed in cross-allelic probe/target duplexes constitute sources of systematic biases of the probe signals with consequences for genotyping and copy number estimates. The poly-G effect seems to be related to the crowded arrangement of probes which facilitates complex formation of neighboring probes with at minimum three adjacent G's in their sequence. Conclusions The applied method of “triple-averaging” represents a model-free approach to estimate the mean intensity contributions of different sequence motifs which can be applied in calibration algorithms to correct signal values for sequence effects. Rules for appropriate sequence corrections are suggested. PMID:19924253

  10. Complex nature of SNP genotype effects on gene expression in primary human leucocytes.

    PubMed

    Heap, Graham A; Trynka, Gosia; Jansen, Ritsert C; Bruinenberg, Marcel; Swertz, Morris A; Dinesen, Lotte C; Hunt, Karen A; Wijmenga, Cisca; Vanheel, David A; Franke, Lude

    2009-01-07

    Genome wide association studies have been hugely successful in identifying disease risk variants, yet most variants do not lead to coding changes and how variants influence biological function is usually unknown. We correlated gene expression and genetic variation in untouched primary leucocytes (n = 110) from individuals with celiac disease - a common condition with multiple risk variants identified. We compared our observations with an EBV-transformed HapMap B cell line dataset (n = 90), and performed a meta-analysis to increase power to detect non-tissue specific effects. In celiac peripheral blood, 2,315 SNP variants influenced gene expression at 765 different transcripts (< 250 kb from SNP, at FDR = 0.05, cis expression quantitative trait loci, eQTLs). 135 of the detected SNP-probe effects (reflecting 51 unique probes) were also detected in a HapMap B cell line published dataset, all with effects in the same allelic direction. Overall gene expression differences within the two datasets predominantly explain the limited overlap in observed cis-eQTLs. Celiac associated risk variants from two regions, containing genes IL18RAP and CCR3, showed significant cis genotype-expression correlations in the peripheral blood but not in the B cell line datasets. We identified 14 genes where a SNP affected the expression of different probes within the same gene, but in opposite allelic directions. By incorporating genetic variation in co-expression analyses, functional relationships between genes can be more significantly detected. In conclusion, the complex nature of genotypic effects in human populations makes the use of a relevant tissue, large datasets, and analysis of different exons essential to enable the identification of the function for many genetic risk variants in common diseases.

  11. rSNPBase 3.0: an updated database of SNP-related regulatory elements, element-gene pairs and SNP-based gene regulatory networks

    PubMed Central

    2018-01-01

    Abstract Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element–target gene pairs (E–G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. PMID:29140525

  12. Publishing SNP genotypes of human embryonic stem cell lines: policy statement of the International Stem Cell Forum Ethics Working Party.

    PubMed

    Knoppers, Bartha M; Isasi, Rosario; Benvenisty, Nissim; Kim, Ock-Joo; Lomax, Geoffrey; Morris, Clive; Murray, Thomas H; Lee, Eng Hin; Perry, Margery; Richardson, Genevra; Sipp, Douglas; Tanner, Klaus; Wahlström, Jan; de Wert, Guido; Zeng, Fanyi

    2011-09-01

    Novel methods and associated tools permitting individual identification in publicly accessible SNP databases have become a debatable issue. There is growing concern that current technical and ethical safeguards to protect the identities of donors could be insufficient. In the context of human embryonic stem cell research, there are no studies focusing on the probability that an hESC line donor could be identified by analyzing published SNP profiles and associated genotypic and phenotypic information. We present the International Stem Cell Forum (ISCF) Ethics Working Party's Policy Statement on "Publishing SNP Genotypes of Human Embryonic Stem Cell Lines (hESC)". The Statement prospectively addresses issues surrounding the publication of genotypic data and associated annotations of hESC lines in open access databases. It proposes a balanced approach between the goals of open science and data sharing with the respect for fundamental bioethical principles (autonomy, privacy, beneficence, justice and research merit and integrity).

  13. LS-SNP/PDB: annotated non-synonymous SNPs mapped to Protein Data Bank structures.

    PubMed

    Ryan, Michael; Diekhans, Mark; Lien, Stephanie; Liu, Yun; Karchin, Rachel

    2009-06-01

    LS-SNP/PDB is a new WWW resource for genome-wide annotation of human non-synonymous (amino acid changing) SNPs. It serves high-quality protein graphics rendered with UCSF Chimera molecular visualization software. The system is kept up-to-date by an automated, high-throughput build pipeline that systematically maps human nsSNPs onto Protein Data Bank structures and annotates several biologically relevant features. LS-SNP/PDB is available at (http://ls-snp.icm.jhu.edu/ls-snp-pdb) and via links from protein data bank (PDB) biology and chemistry tabs, UCSC Genome Browser Gene Details and SNP Details pages and PharmGKB Gene Variants Downloads/Cross-References pages.

  14. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar).

    PubMed

    Houston, Ross D; Taggart, John B; Cézard, Timothé; Bekaert, Michaël; Lowe, Natalie R; Downing, Alison; Talbot, Richard; Bishop, Stephen C; Archibald, Alan L; Bron, James E; Penman, David J; Davassi, Alessandro; Brew, Fiona; Tinch, Alan E; Gharbi, Karim; Hamilton, Alastair

    2014-02-06

    Dense single nucleotide polymorphism (SNP) genotyping arrays provide extensive information on polymorphic variation across the genome of species of interest. Such information can be used in studies of the genetic architecture of quantitative traits and to improve the accuracy of selection in breeding programs. In Atlantic salmon (Salmo salar), these goals are currently hampered by the lack of a high-density SNP genotyping platform. Therefore, the aim of the study was to develop and test a dense Atlantic salmon SNP array. SNP discovery was performed using extensive deep sequencing of Reduced Representation (RR-Seq), Restriction site-Associated DNA (RAD-Seq) and mRNA (RNA-Seq) libraries derived from farmed and wild Atlantic salmon samples (n = 283) resulting in the discovery of > 400 K putative SNPs. An Affymetrix Axiom® myDesign Custom Array was created and tested on samples of animals of wild and farmed origin (n = 96) revealing a total of 132,033 polymorphic SNPs with high call rate, good cluster separation on the array and stable Mendelian inheritance in our sample. At least 38% of these SNPs are from transcribed genomic regions and therefore more likely to include functional variants. Linkage analysis utilising the lack of male recombination in salmonids allowed the mapping of 40,214 SNPs distributed across all 29 pairs of chromosomes, highlighting the extensive genome-wide coverage of the SNPs. An identity-by-state clustering analysis revealed that the array can clearly distinguish between fish of different origins, within and between farmed and wild populations. Finally, Y-chromosome-specific probes included on the array provide an accurate molecular genetic test for sex. This manuscript describes the first high-density SNP genotyping array for Atlantic salmon. This array will be publicly available and is likely to be used as a platform for high-resolution genetics research into traits of evolutionary and economic importance in salmonids and in aquaculture

  15. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar)

    PubMed Central

    2014-01-01

    Background Dense single nucleotide polymorphism (SNP) genotyping arrays provide extensive information on polymorphic variation across the genome of species of interest. Such information can be used in studies of the genetic architecture of quantitative traits and to improve the accuracy of selection in breeding programs. In Atlantic salmon (Salmo salar), these goals are currently hampered by the lack of a high-density SNP genotyping platform. Therefore, the aim of the study was to develop and test a dense Atlantic salmon SNP array. Results SNP discovery was performed using extensive deep sequencing of Reduced Representation (RR-Seq), Restriction site-Associated DNA (RAD-Seq) and mRNA (RNA-Seq) libraries derived from farmed and wild Atlantic salmon samples (n = 283) resulting in the discovery of > 400 K putative SNPs. An Affymetrix Axiom® myDesign Custom Array was created and tested on samples of animals of wild and farmed origin (n = 96) revealing a total of 132,033 polymorphic SNPs with high call rate, good cluster separation on the array and stable Mendelian inheritance in our sample. At least 38% of these SNPs are from transcribed genomic regions and therefore more likely to include functional variants. Linkage analysis utilising the lack of male recombination in salmonids allowed the mapping of 40,214 SNPs distributed across all 29 pairs of chromosomes, highlighting the extensive genome-wide coverage of the SNPs. An identity-by-state clustering analysis revealed that the array can clearly distinguish between fish of different origins, within and between farmed and wild populations. Finally, Y-chromosome-specific probes included on the array provide an accurate molecular genetic test for sex. Conclusions This manuscript describes the first high-density SNP genotyping array for Atlantic salmon. This array will be publicly available and is likely to be used as a platform for high-resolution genetics research into traits of evolutionary and economic importance in

  16. rSNPBase 3.0: an updated database of SNP-related regulatory elements, element-gene pairs and SNP-based gene regulatory networks.

    PubMed

    Guo, Liyuan; Wang, Jing

    2018-01-04

    Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element-target gene pairs (E-G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Surface invasive cleavage assay on a maskless light-directed diamond DNA microarray for genome-wide human SNP mapping.

    PubMed

    Nie, Bei; Yang, Min; Fu, Weiling; Liang, Zhiqing

    2015-07-07

    The surface invasive cleavage assay, because of its innate accuracy and ability for self-signal amplification, provides a potential route for the mapping of hundreds of thousands of human SNP sites. However, its performance on a high density DNA array has not yet been established, due to the unusual "hairpin" probe design on the microarray and the lack of chemical stability of commercially available substrates. Here we present an applicable method to implement a nanocrystalline diamond thin film as an alternative substrate for fabricating an addressable DNA array using maskless light-directed photochemistry, producing the most chemically stable and biocompatible system for genetic analysis and enzymatic reactions. The surface invasive cleavage reaction, followed by degenerated primer ligation and post-rolling circle amplification is consecutively performed on the addressable diamond DNA array, accurately mapping SNP sites from PCR-amplified human genomic target DNA. Furthermore, a specially-designed DNA array containing dual probes in the same pixel is fabricated by following a reverse light-directed DNA synthesis protocol. This essentially enables us to decipher thousands of SNP alleles in a single-pot reaction by the simple addition of enzyme, target and reaction buffers.

  18. Obesity-related known and candidate SNP markers can significantly change affinity of TATA-binding protein for human gene promoters

    PubMed Central

    2015-01-01

    Background Obesity affects quality of life and life expectancy and is associated with cardiovascular disorders, cancer, diabetes, reproductive disorders in women, prostate diseases in men, and congenital anomalies in children. The use of single nucleotide polymorphism (SNP) markers of diseases and drug responses (i.e., significant differences of personal genomes of patients from the reference human genome) can help physicians to improve treatment. Clinical research can validate SNP markers via genotyping of patients and demonstration that SNP alleles are significantly more frequent in patients than in healthy people. The search for biomedical SNP markers of interest can be accelerated by computer-based analysis of hundreds of millions of SNPs in the 1000 Genomes project because of selection of the most meaningful candidate SNP markers and elimination of neutral SNPs. Results We cross-validated the output of two computer-based methods: DNA sequence analysis using Web service SNP_TATA_Comparator and keyword search for articles on comorbidities of obesity. Near the sites binding to TATA-binding protein (TBP) in human gene promoters, we found 22 obesity-related candidate SNP markers, including rs10895068 (male breast cancer in obesity); rs35036378 (reduced risk of obesity after ovariectomy); rs201739205 (reduced risk of obesity-related cancers due to weight loss by diet/exercise in obese postmenopausal women); rs183433761 (obesity resistance during a high-fat diet); rs367732974 and rs549591993 (both: cardiovascular complications in obese patients with type 2 diabetes mellitus); rs200487063 and rs34104384 (both: obesity-caused hypertension); rs35518301, rs72661131, and rs562962093 (all: obesity); and rs397509430, rs33980857, rs34598529, rs33931746, rs33981098, rs34500389, rs63750953, rs281864525, rs35518301, and rs34166473 (all: chronic inflammation in comorbidities of obesity). Using an electrophoretic mobility shift assay under nonequilibrium conditions, we

  19. Evaluation of copy number variation detection for a SNP array platform

    PubMed Central

    2014-01-01

    Background Copy Number Variations (CNVs) are usually inferred from Single Nucleotide Polymorphism (SNP) arrays by use of some software packages based on given algorithms. However, there is no clear understanding of the performance of these software packages; it is therefore difficult to select one or several software packages for CNV detection based on the SNP array platform. We selected four publicly available software packages designed for CNV calling from an Affymetrix SNP array, including Birdsuite, dChip, Genotyping Console (GTC) and PennCNV. The publicly available dataset generated by Array-based Comparative Genomic Hybridization (CGH), with a resolution of 24 million probes per sample, was considered to be the “gold standard”. Compared with the CGH-based dataset, the success rate, average stability rate, sensitivity, consistence and reproducibility of these four software packages were assessed compared with the “gold standard”. Specially, we also compared the efficiency of detecting CNVs simultaneously by two, three and all of the software packages with that by a single software package. Results Simply from the quantity of the detected CNVs, Birdsuite detected the most while GTC detected the least. We found that Birdsuite and dChip had obvious detecting bias. And GTC seemed to be inferior because of the least amount of CNVs it detected. Thereafter we investigated the detection consistency produced by one certain software package and the rest three software suits. We found that the consistency of dChip was the lowest while GTC was the highest. Compared with the CNVs detecting result of CGH, in the matching group, GTC called the most matching CNVs, PennCNV-Affy ranked second. In the non-overlapping group, GTC called the least CNVs. With regards to the reproducibility of CNV calling, larger CNVs were usually replicated better. PennCNV-Affy shows the best consistency while Birdsuite shows the poorest. Conclusion We found that PennCNV outperformed the

  20. Genome-Wide Mapping of Copy Number Variation in Humans: Comparative Analysis of High Resolution Array Platforms

    PubMed Central

    Haraksingh, Rajini R.; Abyzov, Alexej; Gerstein, Mark; Urban, Alexander E.; Snyder, Michael

    2011-01-01

    Accurate and efficient genome-wide detection of copy number variants (CNVs) is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH), Single Nucleotide Polymorphism (SNP) genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications. PMID:22140474

  1. Framework for reanalysis of publicly available Affymetrix® GeneChip® data sets based on functional regions of interest.

    PubMed

    Saka, Ernur; Harrison, Benjamin J; West, Kirk; Petruska, Jeffrey C; Rouchka, Eric C

    2017-12-06

    Since the introduction of microarrays in 1995, researchers world-wide have used both commercial and custom-designed microarrays for understanding differential expression of transcribed genes. Public databases such as ArrayExpress and the Gene Expression Omnibus (GEO) have made millions of samples readily available. One main drawback to microarray data analysis involves the selection of probes to represent a specific transcript of interest, particularly in light of the fact that transcript-specific knowledge (notably alternative splicing) is dynamic in nature. We therefore developed a framework for reannotating and reassigning probe groups for Affymetrix® GeneChip® technology based on functional regions of interest. This framework addresses three issues of Affymetrix® GeneChip® data analyses: removing nonspecific probes, updating probe target mapping based on the latest genome knowledge and grouping probes into gene, transcript and region-based (UTR, individual exon, CDS) probe sets. Updated gene and transcript probe sets provide more specific analysis results based on current genomic and transcriptomic knowledge. The framework selects unique probes, aligns them to gene annotations and generates a custom Chip Description File (CDF). The analysis reveals only 87% of the Affymetrix® GeneChip® HG-U133 Plus 2 probes uniquely align to the current hg38 human assembly without mismatches. We also tested new mappings on the publicly available data series using rat and human data from GSE48611 and GSE72551 obtained from GEO, and illustrate that functional grouping allows for the subtle detection of regions of interest likely to have phenotypical consequences. Through reanalysis of the publicly available data series GSE48611 and GSE72551, we profiled the contribution of UTR and CDS regions to the gene expression levels globally. The comparison between region and gene based results indicated that the detected expressed genes by gene-based and region-based CDFs show high

  2. SNP-RFLPing 2: an updated and integrated PCR-RFLP tool for SNP genotyping.

    PubMed

    Chang, Hsueh-Wei; Cheng, Yu-Huei; Chuang, Li-Yeh; Yang, Cheng-Hong

    2010-04-08

    PCR-restriction fragment length polymorphism (RFLP) assay is a cost-effective method for SNP genotyping and mutation detection, but the manual mining for restriction enzyme sites is challenging and cumbersome. Three years after we constructed SNP-RFLPing, a freely accessible database and analysis tool for restriction enzyme mining of SNPs, significant improvements over the 2006 version have been made and incorporated into the latest version, SNP-RFLPing 2. The primary aim of SNP-RFLPing 2 is to provide comprehensive PCR-RFLP information with multiple functionality about SNPs, such as SNP retrieval to multiple species, different polymorphism types (bi-allelic, tri-allelic, tetra-allelic or indels), gene-centric searching, HapMap tagSNPs, gene ontology-based searching, miRNAs, and SNP500Cancer. The RFLP restriction enzymes and the corresponding PCR primers for the natural and mutagenic types of each SNP are simultaneously analyzed. All the RFLP restriction enzyme prices are also provided to aid selection. Furthermore, the previously encountered updating problems for most SNP related databases are resolved by an on-line retrieval system. The user interfaces for functional SNP analyses have been substantially improved and integrated. SNP-RFLPing 2 offers a new and user-friendly interface for RFLP genotyping that can be used in association studies and is freely available at http://bio.kuas.edu.tw/snp-rflping2.

  3. A set of 14 DIP-SNP markers to detect unbalanced DNA mixtures.

    PubMed

    Liu, Zhizhen; Liu, Jinding; Wang, Jiaqi; Chen, Deqing; Liu, Zidong; Shi, Jie; Li, Zeqin; Li, Wenyan; Zhang, Gengqian; Du, Bing

    2018-03-04

    Unbalanced DNA mixture is still a difficult problem for forensic practice. DIP-STRs are useful markers for detection of minor DNA but they are not widespread in the human genome and having long amplicons. In this study, we proposed a novel type of genetic marker, termed DIP-SNP. DIP-SNP refers to the combination of INDEL and SNP in less than 300bp length of human genome. The multiplex PCR and SNaPshot assay were established for 14 DIP-SNP markers in a Chinese Han population from Shanxi, China. This novel compound marker allows detection of the minor DNA contributor with sensitivity from 1:50 to 1:1000 in a DNA mixture of any gender with 1 ng-10 ng DNA template. Most of the DIP-SNP markers had a relatively high probability of informative alleles with an average I value of 0.33. In all, we proposed DIP-SNP as a novel kind of genetic marker for detection of minor contributor from unbalanced DNA mixture and established the detection method by associating the multiplex PCR and SNaPshot assay. DIP-SNP polymorphisms are promising markers for forensic or clinical mixture examination because they are shorter, widespread and higher sensitive. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. UPD detection using homozygosity profiling with a SNP genotyping microarray.

    PubMed

    Papenhausen, Peter; Schwartz, Stuart; Risheg, Hiba; Keitges, Elisabeth; Gadi, Inder; Burnside, Rachel D; Jaswaney, Vikram; Pappas, John; Pasion, Romela; Friedman, Kenneth; Tepperberg, James

    2011-04-01

    Single nucleotide polymorphism (SNP) based chromosome microarrays provide both a high-density whole genome analysis of copy number and genotype. In the past 21 months we have analyzed over 13,000 samples primarily referred for developmental delay using the Affymetrix SNP/CN 6.0 version array platform. In addition to copy number, we have focused on the relative distribution of allele homozygosity (HZ) throughout the genome to confirm a strong association of uniparental disomy (UPD) with regions of isoallelism found in most confirmed cases of UPD. We sought to determine whether a long contiguous stretch of HZ (LCSH) greater than a threshold value found only in a single chromosome would correlate with UPD of that chromosome. Nine confirmed UPD cases were retrospectively analyzed with the array in the study, each showing the anticipated LCSH with the smallest 13.5 Mb in length. This length is well above the average longest run of HZ in a set of control patients and was then set as the prospective threshold for reporting possible UPD correlation. Ninety-two cases qualified at that threshold, 46 of those had molecular UPD testing and 29 were positive. Including retrospective cases, 16 showed complete HZ across the chromosome, consistent with total isoUPD. The average size LCSH in the 19 cases that were not completely HZ was 46.3 Mb with a range of 13.5-127.8 Mb. Three patients showed only segmental UPD. Both the size and location of the LCSH are relevant to correlation with UPD. Further studies will continue to delineate an optimal threshold for LCSH/UPD correlation. Copyright © 2011 Wiley-Liss, Inc.

  5. TIA: algorithms for development of identity-linked SNP islands for analysis by massively parallel DNA sequencing.

    PubMed

    Farris, M Heath; Scott, Andrew R; Texter, Pamela A; Bartlett, Marta; Coleman, Patricia; Masters, David

    2018-04-11

    Single nucleotide polymorphisms (SNPs) located within the human genome have been shown to have utility as markers of identity in the differentiation of DNA from individual contributors. Massively parallel DNA sequencing (MPS) technologies and human genome SNP databases allow for the design of suites of identity-linked target regions, amenable to sequencing in a multiplexed and massively parallel manner. Therefore, tools are needed for leveraging the genotypic information found within SNP databases for the discovery of genomic targets that can be evaluated on MPS platforms. The SNP island target identification algorithm (TIA) was developed as a user-tunable system to leverage SNP information within databases. Using data within the 1000 Genomes Project SNP database, human genome regions were identified that contain globally ubiquitous identity-linked SNPs and that were responsive to targeted resequencing on MPS platforms. Algorithmic filters were used to exclude target regions that did not conform to user-tunable SNP island target characteristics. To validate the accuracy of TIA for discovering these identity-linked SNP islands within the human genome, SNP island target regions were amplified from 70 contributor genomic DNA samples using the polymerase chain reaction. Multiplexed amplicons were sequenced using the Illumina MiSeq platform, and the resulting sequences were analyzed for SNP variations. 166 putative identity-linked SNPs were targeted in the identified genomic regions. Of the 309 SNPs that provided discerning power across individual SNP profiles, 74 previously undefined SNPs were identified during evaluation of targets from individual genomes. Overall, DNA samples of 70 individuals were uniquely identified using a subset of the suite of identity-linked SNP islands. TIA offers a tunable genome search tool for the discovery of targeted genomic regions that are scalable in the population frequency and numbers of SNPs contained within the SNP island regions

  6. efficient association study design via power-optimized tag SNP selection

    PubMed Central

    HAN, BUHM; KANG, HYUN MIN; SEO, MYEONG SEONG; ZAITLEN, NOAH; ESKIN, ELEAZAR

    2008-01-01

    Discovering statistical correlation between causal genetic variation and clinical traits through association studies is an important method for identifying the genetic basis of human diseases. Since fully resequencing a cohort is prohibitively costly, genetic association studies take advantage of local correlation structure (or linkage disequilibrium) between single nucleotide polymorphisms (SNPs) by selecting a subset of SNPs to be genotyped (tag SNPs). While many current association studies are performed using commercially available high-throughput genotyping products that define a set of tag SNPs, choosing tag SNPs remains an important problem for both custom follow-up studies as well as designing the high-throughput genotyping products themselves. The most widely used tag SNP selection method optimizes over the correlation between SNPs (r2). However, tag SNPs chosen based on an r2 criterion do not necessarily maximize the statistical power of an association study. We propose a study design framework that chooses SNPs to maximize power and efficiently measures the power through empirical simulation. Empirical results based on the HapMap data show that our method gains considerable power over a widely used r2-based method, or equivalently reduces the number of tag SNPs required to attain the desired power of a study. Our power-optimized 100k whole genome tag set provides equivalent power to the Affymetrix 500k chip for the CEU population. For the design of custom follow-up studies, our method provides up to twice the power increase using the same number of tag SNPs as r2-based methods. Our method is publicly available via web server at http://design.cs.ucla.edu. PMID:18702637

  7. SNPdbe: constructing an nsSNP functional impacts database.

    PubMed

    Schaefer, Christian; Meier, Alice; Rost, Burkhard; Bromberg, Yana

    2012-02-15

    Many existing databases annotate experimentally characterized single nucleotide polymorphisms (SNPs). Each non-synonymous SNP (nsSNP) changes one amino acid in the gene product (single amino acid substitution;SAAS). This change can either affect protein function or be neutral in that respect. Most polymorphisms lack experimental annotation of their functional impact. Here, we introduce SNPdbe-SNP database of effects, with predictions of computationally annotated functional impacts of SNPs. Database entries represent nsSNPs in dbSNP and 1000 Genomes collection, as well as variants from UniProt and PMD. SAASs come from >2600 organisms; 'human' being the most prevalent. The impact of each SAAS on protein function is predicted using the SNAP and SIFT algorithms and augmented with experimentally derived function/structure information and disease associations from PMD, OMIM and UniProt. SNPdbe is consistently updated and easily augmented with new sources of information. The database is available as an MySQL dump and via a web front end that allows searches with any combination of organism names, sequences and mutation IDs. http://www.rostlab.org/services/snpdbe.

  8. snpAD: An ancient DNA genotype caller.

    PubMed

    Prüfer, Kay

    2018-06-21

    The study of ancient genomes can elucidate the evolutionary past. However, analyses are complicated by base-modifications in ancient DNA molecules that result in errors in DNA sequences. These errors are particularly common near the ends of sequences and pose a challenge for genotype calling. I describe an iterative method that estimates genotype frequencies and errors along sequences to allow for accurate genotype calling from ancient sequences. The implementation of this method, called snpAD, performs well on high-coverage ancient data, as shown by simulations and by subsampling the data of a high-coverage Neandertal genome. Although estimates for low-coverage genomes are less accurate, I am able to derive approximate estimates of heterozygosity from several low-coverage Neandertals. These estimates show that low heterozygosity, compared to modern humans, was common among Neandertals. The C ++ code of snpAD is freely available at http://bioinf.eva.mpg.de/snpAD/. Supplementary data are available at Bioinformatics online.

  9. Conclusive evidence for hexasomic inheritance in chrysanthemum based on analysis of a 183 k SNP array.

    PubMed

    van Geest, Geert; Voorrips, Roeland E; Esselink, Danny; Post, Aike; Visser, Richard Gf; Arens, Paul

    2017-08-07

    Cultivated chrysanthemum is an outcrossing hexaploid (2n = 6× = 54) with a disputed mode of inheritance. In this paper, we present a single nucleotide polymorphism (SNP) selection pipeline that was used to design an Affymetrix Axiom array with 183 k SNPs from RNA sequencing data (1). With this array, we genotyped four bi-parental populations (with sizes of 405, 53, 76 and 37 offspring plants respectively), and a cultivar panel of 63 genotypes. Further, we present a method for dosage scoring in hexaploids from signal intensities of the array based on mixture models (2) and validation of selection steps in the SNP selection pipeline (3). The resulting genotypic data is used to draw conclusions on the mode of inheritance in chrysanthemum (4), and to make an inference on allelic expression bias (5). With use of the mixture model approach, we successfully called the dosage of 73,936 out of 183,130 SNPs (40.4%) that segregated in any of the bi-parental populations. To investigate the mode of inheritance, we analysed markers that segregated in the large bi-parental population (n = 405). Analysis of segregation of duplex x nulliplex SNPs resulted in evidence for genome-wide hexasomic inheritance. This evidence was substantiated by the absence of strong linkage between markers in repulsion, which indicated absence of full disomic inheritance. We present the success rate of SNP discovery out of RNA sequencing data as affected by different selection steps, among which SNP coverage over genotypes and use of different types of sequence read mapping software. Genomic dosage highly correlated with relative allele coverage from the RNA sequencing data, indicating that most alleles are expressed according to their genomic dosage. The large population, genotyped with a very large number of markers, is a unique framework for extensive genetic analyses in hexaploid chrysanthemum. As starting point, we show conclusive evidence for genome-wide hexasomic inheritance.

  10. LS-SNP: large-scale annotation of coding non-synonymous SNPs based on multiple information sources.

    PubMed

    Karchin, Rachel; Diekhans, Mark; Kelly, Libusha; Thomas, Daryl J; Pieper, Ursula; Eswar, Narayanan; Haussler, David; Sali, Andrej

    2005-06-15

    The NCBI dbSNP database lists over 9 million single nucleotide polymorphisms (SNPs) in the human genome, but currently contains limited annotation information. SNPs that result in amino acid residue changes (nsSNPs) are of critical importance in variation between individuals, including disease and drug sensitivity. We have developed LS-SNP, a genomic scale software pipeline to annotate nsSNPs. LS-SNP comprehensively maps nsSNPs onto protein sequences, functional pathways and comparative protein structure models, and predicts positions where nsSNPs destabilize proteins, interfere with the formation of domain-domain interfaces, have an effect on protein-ligand binding or severely impact human health. It currently annotates 28,043 validated SNPs that produce amino acid residue substitutions in human proteins from the SwissProt/TrEMBL database. Annotations can be viewed via a web interface either in the context of a genomic region or by selecting sets of SNPs, genes, proteins or pathways. These results are useful for identifying candidate functional SNPs within a gene, haplotype or pathway and in probing molecular mechanisms responsible for functional impacts of nsSNPs. http://www.salilab.org/LS-SNP CONTACT: rachelk@salilab.org http://salilab.org/LS-SNP/supp-info.pdf.

  11. An evaluation of the genetic-matched pair study design using genome-wide SNP data from the European population.

    PubMed

    Lu, Timothy Tehua; Lao, Oscar; Nothnagel, Michael; Junge, Olaf; Freitag-Wolf, Sandra; Caliebe, Amke; Balascakova, Miroslava; Bertranpetit, Jaume; Bindoff, Laurence Albert; Comas, David; Holmlund, Gunilla; Kouvatsi, Anastasia; Macek, Milan; Mollet, Isabelle; Nielsen, Finn; Parson, Walther; Palo, Jukka; Ploski, Rafal; Sajantila, Antti; Tagliabracci, Adriano; Gether, Ulrik; Werge, Thomas; Rivadeneira, Fernando; Hofman, Albert; Uitterlinden, André Gerardus; Gieger, Christian; Wichmann, Heinz-Erich; Ruether, Andreas; Schreiber, Stefan; Becker, Christian; Nürnberg, Peter; Nelson, Matthew Roberts; Kayser, Manfred; Krawczak, Michael

    2009-07-01

    Genetic matching potentially provides a means to alleviate the effects of incomplete Mendelian randomization in population-based gene-disease association studies. We therefore evaluated the genetic-matched pair study design on the basis of genome-wide SNP data (309,790 markers; Affymetrix GeneChip Human Mapping 500K Array) from 2457 individuals, sampled at 23 different recruitment sites across Europe. Using pair-wise identity-by-state (IBS) as a matching criterion, we tried to derive a subset of markers that would allow identification of the best overall matching (BOM) partner for a given individual, based on the IBS status for the subset alone. However, our results suggest that, by following this approach, the prediction accuracy is only notably improved by the first 20 markers selected, and increases proportionally to the marker number thereafter. Furthermore, in a considerable proportion of cases (76.0%), the BOM of a given individual, based on the complete marker set, came from a different recruitment site than the individual itself. A second marker set, specifically selected for ancestry sensitivity using singular value decomposition, performed even more poorly and was no more capable of predicting the BOM than randomly chosen subsets. This leads us to conclude that, at least in Europe, the utility of the genetic-matched pair study design depends critically on the availability of comprehensive genotype information for both cases and controls.

  12. Population distribution and ancestry of the cancer protective MDM2 SNP285 (rs117039649).

    PubMed

    Knappskog, Stian; Gansmo, Liv B; Dibirova, Khadizha; Metspalu, Andres; Cybulski, Cezary; Peterlongo, Paolo; Aaltonen, Lauri; Vatten, Lars; Romundstad, Pål; Hveem, Kristian; Devilee, Peter; Evans, Gareth D; Lin, Dongxin; Van Camp, Guy; Manolopoulos, Vangelis G; Osorio, Ana; Milani, Lili; Ozcelik, Tayfun; Zalloua, Pierre; Mouzaya, Francis; Bliznetz, Elena; Balanovska, Elena; Pocheshkova, Elvira; Kučinskas, Vaidutis; Atramentova, Lubov; Nymadawa, Pagbajabyn; Titov, Konstantin; Lavryashina, Maria; Yusupov, Yuldash; Bogdanova, Natalia; Koshel, Sergey; Zamora, Jorge; Wedge, David C; Charlesworth, Deborah; Dörk, Thilo; Balanovsky, Oleg; Lønning, Per E

    2014-09-30

    The MDM2 promoter SNP285C is located on the SNP309G allele. While SNP309G enhances Sp1 transcription factor binding and MDM2 transcription, SNP285C antagonizes Sp1 binding and reduces the risk of breast-, ovary- and endometrial cancer. Assessing SNP285 and 309 genotypes across 25 different ethnic populations (>10.000 individuals), the incidence of SNP285C was 6-8% across European populations except for Finns (1.2%) and Saami (0.3%). The incidence decreased towards the Middle-East and Eastern Russia, and SNP285C was absent among Han Chinese, Mongolians and African Americans. Interhaplotype variation analyses estimated SNP285C to have originated about 14,700 years ago (95% CI: 8,300 - 33,300). Both this estimate and the geographical distribution suggest SNP285C to have arisen after the separation between Caucasians and modern day East Asians (17,000 - 40,000 years ago). We observed a strong inverse correlation (r = -0.805; p < 0.001) between the percentage of SNP309G alleles harboring SNP285C and the MAF for SNP309G itself across different populations suggesting selection and environmental adaptation with respect to MDM2 expression in recent human evolution. In conclusion, we found SNP285C to be a pan-Caucasian variant. Ethnic variation regarding distribution of SNP285C needs to be taken into account when assessing the impact of MDM2 SNPs on cancer risk.

  13. SNPMeta: SNP annotation and SNP metadata collection without a reference genome

    USDA-ARS?s Scientific Manuscript database

    The increase in availability of resequencing data is greatly accelerating SNP discovery and has facilitated the development of SNP genotyping assays. This, in turn, is increasing interest in annotation of individual SNPs. Currently, these data are only available through curation, or comparison to a ...

  14. Tag SNP selection via a genetic algorithm.

    PubMed

    Mahdevar, Ghasem; Zahiri, Javad; Sadeghi, Mehdi; Nowzari-Dalini, Abbas; Ahrabian, Hayedeh

    2010-10-01

    Single Nucleotide Polymorphisms (SNPs) provide valuable information on human evolutionary history and may lead us to identify genetic variants responsible for human complex diseases. Unfortunately, molecular haplotyping methods are costly, laborious, and time consuming; therefore, algorithms for constructing full haplotype patterns from small available data through computational methods, Tag SNP selection problem, are convenient and attractive. This problem is proved to be an NP-hard problem, so heuristic methods may be useful. In this paper we present a heuristic method based on genetic algorithm to find reasonable solution within acceptable time. The algorithm was tested on a variety of simulated and experimental data. In comparison with the exact algorithm, based on brute force approach, results show that our method can obtain optimal solutions in almost all cases and runs much faster than exact algorithm when the number of SNP sites is large. Our software is available upon request to the corresponding author.

  15. SNP2TFBS - a database of regulatory SNPs affecting predicted transcription factor binding site affinity.

    PubMed

    Kumar, Sunil; Ambrosini, Giovanna; Bucher, Philipp

    2017-01-04

    SNP2TFBS is a computational resource intended to support researchers investigating the molecular mechanisms underlying regulatory variation in the human genome. The database essentially consists of a collection of text files providing specific annotations for human single nucleotide polymorphisms (SNPs), namely whether they are predicted to abolish, create or change the affinity of one or several transcription factor (TF) binding sites. A SNP's effect on TF binding is estimated based on a position weight matrix (PWM) model for the binding specificity of the corresponding factor. These data files are regenerated at regular intervals by an automatic procedure that takes as input a reference genome, a comprehensive SNP catalogue and a collection of PWMs. SNP2TFBS is also accessible over a web interface, enabling users to view the information provided for an individual SNP, to extract SNPs based on various search criteria, to annotate uploaded sets of SNPs or to display statistics about the frequencies of binding sites affected by selected SNPs. Homepage: http://ccg.vital-it.ch/snp2tfbs/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Computational intelligence in bioinformatics: SNP/haplotype data in genetic association study for common diseases.

    PubMed

    Kelemen, Arpad; Vasilakos, Athanasios V; Liang, Yulan

    2009-09-01

    Comprehensive evaluation of common genetic variations through association of single-nucleotide polymorphism (SNP) structure with common complex disease in the genome-wide scale is currently a hot area in human genome research due to the recent development of the Human Genome Project and HapMap Project. Computational science, which includes computational intelligence (CI), has recently become the third method of scientific enquiry besides theory and experimentation. There have been fast growing interests in developing and applying CI in disease mapping using SNP and haplotype data. Some of the recent studies have demonstrated the promise and importance of CI for common complex diseases in genomic association study using SNP/haplotype data, especially for tackling challenges, such as gene-gene and gene-environment interactions, and the notorious "curse of dimensionality" problem. This review provides coverage of recent developments of CI approaches for complex diseases in genetic association study with SNP/haplotype data.

  17. Design and characterization of a 52K SNP chip for goats.

    PubMed

    Tosser-Klopp, Gwenola; Bardou, Philippe; Bouchez, Olivier; Cabau, Cédric; Crooijmans, Richard; Dong, Yang; Donnadieu-Tonon, Cécile; Eggen, André; Heuven, Henri C M; Jamli, Saadiah; Jiken, Abdullah Johari; Klopp, Christophe; Lawley, Cynthia T; McEwan, John; Martin, Patrice; Moreno, Carole R; Mulsant, Philippe; Nabihoudine, Ibouniyamine; Pailhoux, Eric; Palhière, Isabelle; Rupp, Rachel; Sarry, Julien; Sayre, Brian L; Tircazes, Aurélie; Jun Wang; Wang, Wen; Zhang, Wenguang

    2014-01-01

    The success of Genome Wide Association Studies in the discovery of sequence variation linked to complex traits in humans has increased interest in high throughput SNP genotyping assays in livestock species. Primary goals are QTL detection and genomic selection. The purpose here was design of a 50-60,000 SNP chip for goats. The success of a moderate density SNP assay depends on reliable bioinformatic SNP detection procedures, the technological success rate of the SNP design, even spacing of SNPs on the genome and selection of Minor Allele Frequencies (MAF) suitable to use in diverse breeds. Through the federation of three SNP discovery projects consolidated as the International Goat Genome Consortium, we have identified approximately twelve million high quality SNP variants in the goat genome stored in a database together with their biological and technical characteristics. These SNPs were identified within and between six breeds (meat, milk and mixed): Alpine, Boer, Creole, Katjang, Saanen and Savanna, comprising a total of 97 animals. Whole genome and Reduced Representation Library sequences were aligned on >10 kb scaffolds of the de novo goat genome assembly. The 60,000 selected SNPs, evenly spaced on the goat genome, were submitted for oligo manufacturing (Illumina, Inc) and published in dbSNP along with flanking sequences and map position on goat assemblies (i.e. scaffolds and pseudo-chromosomes), sheep genome V2 and cattle UMD3.1 assembly. Ten breeds were then used to validate the SNP content and 52,295 loci could be successfully genotyped and used to generate a final cluster file. The combined strategy of using mainly whole genome Next Generation Sequencing and mapping on a contig genome assembly, complemented with Illumina design tools proved to be efficient in producing this GoatSNP50 chip. Advances in use of molecular markers are expected to accelerate goat genomic studies in coming years.

  18. Design and Characterization of a 52K SNP Chip for Goats

    PubMed Central

    Tosser-Klopp, Gwenola; Bardou, Philippe; Bouchez, Olivier; Cabau, Cédric; Crooijmans, Richard; Dong, Yang; Donnadieu-Tonon, Cécile; Eggen, André; Heuven, Henri C. M.; Jamli, Saadiah; Jiken, Abdullah Johari; Klopp, Christophe; Lawley, Cynthia T.; McEwan, John; Martin, Patrice; Moreno, Carole R.; Mulsant, Philippe; Nabihoudine, Ibouniyamine; Pailhoux, Eric; Palhière, Isabelle; Rupp, Rachel; Sarry, Julien; Sayre, Brian L.; Tircazes, Aurélie; Jun Wang; Wang, Wen; Zhang, Wenguang

    2014-01-01

    The success of Genome Wide Association Studies in the discovery of sequence variation linked to complex traits in humans has increased interest in high throughput SNP genotyping assays in livestock species. Primary goals are QTL detection and genomic selection. The purpose here was design of a 50–60,000 SNP chip for goats. The success of a moderate density SNP assay depends on reliable bioinformatic SNP detection procedures, the technological success rate of the SNP design, even spacing of SNPs on the genome and selection of Minor Allele Frequencies (MAF) suitable to use in diverse breeds. Through the federation of three SNP discovery projects consolidated as the International Goat Genome Consortium, we have identified approximately twelve million high quality SNP variants in the goat genome stored in a database together with their biological and technical characteristics. These SNPs were identified within and between six breeds (meat, milk and mixed): Alpine, Boer, Creole, Katjang, Saanen and Savanna, comprising a total of 97 animals. Whole genome and Reduced Representation Library sequences were aligned on >10 kb scaffolds of the de novo goat genome assembly. The 60,000 selected SNPs, evenly spaced on the goat genome, were submitted for oligo manufacturing (Illumina, Inc) and published in dbSNP along with flanking sequences and map position on goat assemblies (i.e. scaffolds and pseudo-chromosomes), sheep genome V2 and cattle UMD3.1 assembly. Ten breeds were then used to validate the SNP content and 52,295 loci could be successfully genotyped and used to generate a final cluster file. The combined strategy of using mainly whole genome Next Generation Sequencing and mapping on a contig genome assembly, complemented with Illumina design tools proved to be efficient in producing this GoatSNP50 chip. Advances in use of molecular markers are expected to accelerate goat genomic studies in coming years. PMID:24465974

  19. Comparison of the Predictive Accuracy of DNA Array-Based Multigene Classifiers across cDNA Arrays and Affymetrix GeneChips

    PubMed Central

    Stec, James; Wang, Jing; Coombes, Kevin; Ayers, Mark; Hoersch, Sebastian; Gold, David L.; Ross, Jeffrey S; Hess, Kenneth R.; Tirrell, Stephen; Linette, Gerald; Hortobagyi, Gabriel N.; Symmans, W. Fraser; Pusztai, Lajos

    2005-01-01

    We examined how well differentially expressed genes and multigene outcome classifiers retain their class-discriminating values when tested on data generated by different transcriptional profiling platforms. RNA from 33 stage I-III breast cancers was hybridized to both Affymetrix GeneChip and Millennium Pharmaceuticals cDNA arrays. Only 30% of all corresponding gene expression measurements on the two platforms had Pearson correlation coefficient r ≥ 0.7 when UniGene was used to match probes. There was substantial variation in correlation between different Affymetrix probe sets matched to the same cDNA probe. When cDNA and Affymetrix probes were matched by basic local alignment tool (BLAST) sequence identity, the correlation increased substantially. We identified 182 genes in the Affymetrix and 45 in the cDNA data (including 17 common genes) that accurately separated 91% of cases in supervised hierarchical clustering in each data set. Cross-platform testing of these informative genes resulted in lower clustering accuracy of 45 and 79%, respectively. Several sets of accurate five-gene classifiers were developed on each platform using linear discriminant analysis. The best 100 classifiers showed average misclassification error rate of 2% on the original data that rose to 19.5% when tested on data from the other platform. Random five-gene classifiers showed misclassification error rate of 33%. We conclude that multigene predictors optimized for one platform lose accuracy when applied to data from another platform due to missing genes and sequence differences in probes that result in differing measurements for the same gene. PMID:16049308

  20. SNP by SNP by environment interaction network of alcoholism.

    PubMed

    Zollanvari, Amin; Alterovitz, Gil

    2017-03-14

    Alcoholism has a strong genetic component. Twin studies have demonstrated the heritability of a large proportion of phenotypic variance of alcoholism ranging from 50-80%. The search for genetic variants associated with this complex behavior has epitomized sequence-based studies for nearly a decade. The limited success of genome-wide association studies (GWAS), possibly precipitated by the polygenic nature of complex traits and behaviors, however, has demonstrated the need for novel, multivariate models capable of quantitatively capturing interactions between a host of genetic variants and their association with non-genetic factors. In this regard, capturing the network of SNP by SNP or SNP by environment interactions has recently gained much interest. Here, we assessed 3,776 individuals to construct a network capable of detecting and quantifying the interactions within and between plausible genetic and environmental factors of alcoholism. In this regard, we propose the use of first-order dependence tree of maximum weight as a potential statistical learning technique to delineate the pattern of dependencies underpinning such a complex trait. Using a predictive based analysis, we further rank the genes, demographic factors, biological pathways, and the interactions represented by our SNP [Formula: see text]SNP[Formula: see text]E network. The proposed framework is quite general and can be potentially applied to the study of other complex traits.

  1. DoGSD: the dog and wolf genome SNP database.

    PubMed

    Bai, Bing; Zhao, Wen-Ming; Tang, Bi-Xia; Wang, Yan-Qing; Wang, Lu; Zhang, Zhang; Yang, He-Chuan; Liu, Yan-Hu; Zhu, Jun-Wei; Irwin, David M; Wang, Guo-Dong; Zhang, Ya-Ping

    2015-01-01

    The rapid advancement of next-generation sequencing technology has generated a deluge of genomic data from domesticated dogs and their wild ancestor, grey wolves, which have simultaneously broadened our understanding of domestication and diseases that are shared by humans and dogs. To address the scarcity of single nucleotide polymorphism (SNP) data provided by authorized databases and to make SNP data more easily/friendly usable and available, we propose DoGSD (http://dogsd.big.ac.cn), the first canidae-specific database which focuses on whole genome SNP data from domesticated dogs and grey wolves. The DoGSD is a web-based, open-access resource comprising ∼ 19 million high-quality whole-genome SNPs. In addition to the dbSNP data set (build 139), DoGSD incorporates a comprehensive collection of SNPs from two newly sequenced samples (1 wolf and 1 dog) and collected SNPs from three latest dog/wolf genetic studies (7 wolves and 68 dogs), which were taken together for analysis with the population genetic statistics, Fst. In addition, DoGSD integrates some closely related information including SNP annotation, summary lists of SNPs located in genes, synonymous and non-synonymous SNPs, sampling location and breed information. All these features make DoGSD a useful resource for in-depth analysis in dog-/wolf-related studies. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia

    DTIC Science & Technology

    2013-01-02

    intensity data from the SNP array were normalized using the Affymetrix GeneChip Targeted Genotyping Analysis Software ( GTGS ). To assess robustness of SNP...calls, genotypes were called using three algorithms: (i) GTGS , (ii) illuminus (27), and (iii) a heuristic algorithm based on discrete cutoffs of

  3. KinSNP software for homozygosity mapping of disease genes using SNP microarrays

    PubMed Central

    2010-01-01

    Consanguineous families affected with a recessive genetic disease caused by homozygotisation of a mutation offer a unique advantage for positional cloning of rare diseases. Homozygosity mapping of patient genotypes is a powerful technique for the identification of the genomic locus harbouring the causing mutation. This strategy relies on the observation that in these patients a large region spanning the disease locus is also homozygous with high probability. The high marker density in single nucleotide polymorphism (SNP) arrays is extremely advantageous for homozygosity mapping. We present KinSNP, a user-friendly software tool for homozygosity mapping using SNP arrays. The software searches for stretches of SNPs which are homozygous to the same allele in all ascertained sick individuals. User-specified parameters control the number of allowed genotyping 'errors' within homozygous blocks. Candidate disease regions are then reported in a detailed, coloured Excel file, along with genotypes of family members and healthy controls. An interactive genome browser has been included which shows homozygous blocks, individual genotypes, genes and further annotations along the chromosomes, with zooming and scrolling capabilities. The software has been used to identify the location of a mutated gene causing insensitivity to pain in a large Bedouin family. KinSNP is freely available from http://bioinfo.bgu.ac.il/bsu/software/kinSNP. PMID:20846928

  4. The chemiluminescence based Ziplex automated workstation focus array reproduces ovarian cancer Affymetrix GeneChip expression profiles.

    PubMed

    Quinn, Michael C J; Wilson, Daniel J; Young, Fiona; Dempsey, Adam A; Arcand, Suzanna L; Birch, Ashley H; Wojnarowicz, Paulina M; Provencher, Diane; Mes-Masson, Anne-Marie; Englert, David; Tonin, Patricia N

    2009-07-06

    As gene expression signatures may serve as biomarkers, there is a need to develop technologies based on mRNA expression patterns that are adaptable for translational research. Xceed Molecular has recently developed a Ziplex technology, that can assay for gene expression of a discrete number of genes as a focused array. The present study has evaluated the reproducibility of the Ziplex system as applied to ovarian cancer research of genes shown to exhibit distinct expression profiles initially assessed by Affymetrix GeneChip analyses. The new chemiluminescence-based Ziplex gene expression array technology was evaluated for the expression of 93 genes selected based on their Affymetrix GeneChip profiles as applied to ovarian cancer research. Probe design was based on the Affymetrix target sequence that favors the 3' UTR of transcripts in order to maximize reproducibility across platforms. Gene expression analysis was performed using the Ziplex Automated Workstation. Statistical analyses were performed to evaluate reproducibility of both the magnitude of expression and differences between normal and tumor samples by correlation analyses, fold change differences and statistical significance testing. Expressions of 82 of 93 (88.2%) genes were highly correlated (p < 0.01) in a comparison of the two platforms. Overall, 75 of 93 (80.6%) genes exhibited consistent results in normal versus tumor tissue comparisons for both platforms (p < 0.001). The fold change differences were concordant for 87 of 93 (94%) genes, where there was agreement between the platforms regarding statistical significance for 71 (76%) of 87 genes. There was a strong agreement between the two platforms as shown by comparisons of log2 fold differences of gene expression between tumor versus normal samples (R = 0.93) and by Bland-Altman analysis, where greater than 90% of expression values fell within the 95% limits of agreement. Overall concordance of gene expression patterns based on correlations

  5. Significant variation between SNP-based HLA imputations in diverse populations: the last mile is the hardest.

    PubMed

    Pappas, D J; Lizee, A; Paunic, V; Beutner, K R; Motyer, A; Vukcevic, D; Leslie, S; Biesiada, J; Meller, J; Taylor, K D; Zheng, X; Zhao, L P; Gourraud, P-A; Hollenbach, J A; Mack, S J; Maiers, M

    2018-05-22

    Four single nucleotide polymorphism (SNP)-based human leukocyte antigen (HLA) imputation methods (e-HLA, HIBAG, HLA*IMP:02 and MAGPrediction) were trained using 1000 Genomes SNP and HLA genotypes and assessed for their ability to accurately impute molecular HLA-A, -B, -C and -DRB1 genotypes in the Human Genome Diversity Project cell panel. Imputation concordance was high (>89%) across all methods for both HLA-A and HLA-C, but HLA-B and HLA-DRB1 proved generally difficult to impute. Overall, <27.8% of subjects were correctly imputed for all HLA loci by any method. Concordance across all loci was not enhanced via the application of confidence thresholds; reliance on confidence scores across methods only led to noticeable improvement (+3.2%) for HLA-DRB1. As the HLA complex is highly relevant to the study of human health and disease, a standardized assessment of SNP-based HLA imputation methods is crucial for advancing genomic research. Considerable room remains for the improvement of HLA-B and especially HLA-DRB1 imputation methods, and no imputation method is as accurate as molecular genotyping. The application of large, ancestrally diverse HLA and SNP reference data sets and multiple imputation methods has the potential to make SNP-based HLA imputation methods a tractable option for determining HLA genotypes.

  6. Influence of TP53 Codon 72 Polymorphism Alone or in Combination with HDM2 SNP309 on Human Infertility and IVF Outcome.

    PubMed

    Chan, Ying; Zhu, Baosheng; Jiang, Hongguo; Zhang, Jinman; Luo, Ying; Tang, Wenru

    2016-01-01

    To evaluate the association of the TP53 codon 72 (rs 1042522) alone or in combination with HDM2 SNP309 (rs 2279744) polymorphisms with human infertility and IVF outcome, we collected 1450 infertility women undergoing their first controlled ovarian stimulation for IVF treatment and 250 fertile controls in the case-control study. Frequencies, distribution, interaction of genes, and correlation with infertility and IVF outcome of clinical pregnancy were analyzed. We found a statistically significant association between TP53 codon 72 polymorphism and IVF outcome (52.10% vs. 47.40%, OR = 0.83, 95%CI:0.71-0.96, p = 0.01). No significant difference was shown between TP53 codon 72, HDM2 SNP309 polymorphisms, human infertility, and between the combination of two genes polymorphisms and the clinical pregnancy outcome of IVF. The data support C allele as a protective factor for IVF pregnancy outcome. Further researches should be focused on the mechanism of these associations.

  7. SNPServer: a real-time SNP discovery tool.

    PubMed

    Savage, David; Batley, Jacqueline; Erwin, Tim; Logan, Erica; Love, Christopher G; Lim, Geraldine A C; Mongin, Emmanuel; Barker, Gary; Spangenberg, German C; Edwards, David

    2005-07-01

    SNPServer is a real-time flexible tool for the discovery of SNPs (single nucleotide polymorphisms) within DNA sequence data. The program uses BLAST, to identify related sequences, and CAP3, to cluster and align these sequences. The alignments are parsed to the SNP discovery software autoSNP, a program that detects SNPs and insertion/deletion polymorphisms (indels). Alternatively, lists of related sequences or pre-assembled sequences may be entered for SNP discovery. SNPServer and autoSNP use redundancy to differentiate between candidate SNPs and sequence errors. For each candidate SNP, two measures of confidence are calculated, the redundancy of the polymorphism at a SNP locus and the co-segregation of the candidate SNP with other SNPs in the alignment. SNPServer is available at http://hornbill.cspp.latrobe.edu.au/snpdiscovery.html.

  8. BEAT: Bioinformatics Exon Array Tool to store, analyze and visualize Affymetrix GeneChip Human Exon Array data from disease experiments

    PubMed Central

    2012-01-01

    Background It is known from recent studies that more than 90% of human multi-exon genes are subject to Alternative Splicing (AS), a key molecular mechanism in which multiple transcripts may be generated from a single gene. It is widely recognized that a breakdown in AS mechanisms plays an important role in cellular differentiation and pathologies. Polymerase Chain Reactions, microarrays and sequencing technologies have been applied to the study of transcript diversity arising from alternative expression. Last generation Affymetrix GeneChip Human Exon 1.0 ST Arrays offer a more detailed view of the gene expression profile providing information on the AS patterns. The exon array technology, with more than five million data points, can detect approximately one million exons, and it allows performing analyses at both gene and exon level. In this paper we describe BEAT, an integrated user-friendly bioinformatics framework to store, analyze and visualize exon arrays datasets. It combines a data warehouse approach with some rigorous statistical methods for assessing the AS of genes involved in diseases. Meta statistics are proposed as a novel approach to explore the analysis results. BEAT is available at http://beat.ba.itb.cnr.it. Results BEAT is a web tool which allows uploading and analyzing exon array datasets using standard statistical methods and an easy-to-use graphical web front-end. BEAT has been tested on a dataset with 173 samples and tuned using new datasets of exon array experiments from 28 colorectal cancer and 26 renal cell cancer samples produced at the Medical Genetics Unit of IRCCS Casa Sollievo della Sofferenza. To highlight all possible AS events, alternative names, accession Ids, Gene Ontology terms and biochemical pathways annotations are integrated with exon and gene level expression plots. The user can customize the results choosing custom thresholds for the statistical parameters and exploiting the available clinical data of the samples for a

  9. MMP9 polymorphisms and breast cancer risk: a report from the Shanghai Breast Cancer Genetics Study.

    PubMed

    Beeghly-Fadiel, Alicia; Lu, Wei; Shu, Xiao-Ou; Long, Jirong; Cai, Qiuyin; Xiang, Yongbin; Gao, Yu-Tang; Zheng, Wei

    2011-04-01

    In addition to tumor invasion and angiogenesis, matrix metalloproteinase (MMP)9 also contributes to carcinogenesis and tumor growth. Genetic variation that may influence MMP9 expression was evaluated among participants of the Shanghai Breast Cancer Genetics Study (SBCGS) for associations with breast cancer susceptibility. In stage 1, 11 MMP9 single nucleotide polymorphisms (SNPs) were genotyped by the Affymetrix Targeted Genotyping System and/or the Affymetrix Genome-Wide Human SNP Array 6.0 among 4,227 SBCGS participants. One SNP was further genotyped using the Sequenom iPLEX MassARRAY platform among an additional 6,270 SBCGS participants. Associations with breast cancer risk were evaluated by odds ratios (OR) and 95% confidence intervals (CI) from logistic regression models that included adjustment for age, education, and genotyping stage when appropriate. In Stage 1, rare allele homozygotes for a promoter SNP (rs3918241) or a non-synonymous SNP (rs2274756, R668Q) tended to occur more frequently among breast cancer cases (P value = 0.116 and 0.056, respectively). Given their high linkage disequilibrium (D' = 1.0, r (2) = 0.97), one (rs3918241) was selected for additional analysis. An association with breast cancer risk was not supported by additional Stage 2 genotyping. In combined analysis, no elevated risk of breast cancer among homozygotes was found (OR: 1.2, 95% CI: 0.8-1.8). Common genetic variation in MMP9 was not found to be significantly associated with breast cancer susceptibility among participants of the Shanghai Breast Cancer Genetics Study.

  10. Genome-Wide SNP Detection, Validation, and Development of an 8K SNP Array for Apple

    PubMed Central

    Chagné, David; Crowhurst, Ross N.; Troggio, Michela; Davey, Mark W.; Gilmore, Barbara; Lawley, Cindy; Vanderzande, Stijn; Hellens, Roger P.; Kumar, Satish; Cestaro, Alessandro; Velasco, Riccardo; Main, Dorrie; Rees, Jasper D.; Iezzoni, Amy; Mockler, Todd; Wilhelm, Larry; Van de Weg, Eric; Gardiner, Susan E.; Bassil, Nahla; Peace, Cameron

    2012-01-01

    As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica) breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of ‘Golden Delicious’, SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional), and genomic selection in apple. PMID:22363718

  11. KinSNP software for homozygosity mapping of disease genes using SNP microarrays.

    PubMed

    Amir, El-Ad David; Bartal, Ofer; Morad, Efrat; Nagar, Tal; Sheynin, Jony; Parvari, Ruti; Chalifa-Caspi, Vered

    2010-08-01

    Consanguineous families affected with a recessive genetic disease caused by homozygotisation of a mutation offer a unique advantage for positional cloning of rare diseases. Homozygosity mapping of patient genotypes is a powerful technique for the identification of the genomic locus harbouring the causing mutation. This strategy relies on the observation that in these patients a large region spanning the disease locus is also homozygous with high probability. The high marker density in single nucleotide polymorphism (SNP) arrays is extremely advantageous for homozygosity mapping. We present KinSNP, a user-friendly software tool for homozygosity mapping using SNP arrays. The software searches for stretches of SNPs which are homozygous to the same allele in all ascertained sick individuals. User-specified parameters control the number of allowed genotyping 'errors' within homozygous blocks. Candidate disease regions are then reported in a detailed, coloured Excel file, along with genotypes of family members and healthy controls. An interactive genome browser has been included which shows homozygous blocks, individual genotypes, genes and further annotations along the chromosomes, with zooming and scrolling capabilities. The software has been used to identify the location of a mutated gene causing insensitivity to pain in a large Bedouin family. KinSNP is freely available from.

  12. Developing 100K Affymetrix Axiom SNP Array for Polyploid Sugarcane

    USDA-ARS?s Scientific Manuscript database

    Sugarcane genotyping or fingerprinting has long been a daunting task due to its high polyploidy level with large number of chromosomes. Single nucleotide polymorphisms (SNPs) are very abundant DNA sequence variations in the genomes. With the advance of next generation sequencing (NGS) technologies, ...

  13. Two combinatorial optimization problems for SNP discovery using base-specific cleavage and mass spectrometry.

    PubMed

    Chen, Xin; Wu, Qiong; Sun, Ruimin; Zhang, Louxin

    2012-01-01

    The discovery of single-nucleotide polymorphisms (SNPs) has important implications in a variety of genetic studies on human diseases and biological functions. One valuable approach proposed for SNP discovery is based on base-specific cleavage and mass spectrometry. However, it is still very challenging to achieve the full potential of this SNP discovery approach. In this study, we formulate two new combinatorial optimization problems. While both problems are aimed at reconstructing the sample sequence that would attain the minimum number of SNPs, they search over different candidate sequence spaces. The first problem, denoted as SNP - MSP, limits its search to sequences whose in silico predicted mass spectra have all their signals contained in the measured mass spectra. In contrast, the second problem, denoted as SNP - MSQ, limits its search to sequences whose in silico predicted mass spectra instead contain all the signals of the measured mass spectra. We present an exact dynamic programming algorithm for solving the SNP - MSP problem and also show that the SNP - MSQ problem is NP-hard by a reduction from a restricted variation of the 3-partition problem. We believe that an efficient solution to either problem above could offer a seamless integration of information in four complementary base-specific cleavage reactions, thereby improving the capability of the underlying biotechnology for sensitive and accurate SNP discovery.

  14. ArrayInitiative - a tool that simplifies creating custom Affymetrix CDFs

    PubMed Central

    2011-01-01

    Background Probes on a microarray represent a frozen view of a genome and are quickly outdated when new sequencing studies extend our knowledge, resulting in significant measurement error when analyzing any microarray experiment. There are several bioinformatics approaches to improve probe assignments, but without in-house programming expertise, standardizing these custom array specifications as a usable file (e.g. as Affymetrix CDFs) is difficult, owing mostly to the complexity of the specification file format. However, without correctly standardized files there is a significant barrier for testing competing analysis approaches since this file is one of the required inputs for many commonly used algorithms. The need to test combinations of probe assignments and analysis algorithms led us to develop ArrayInitiative, a tool for creating and managing custom array specifications. Results ArrayInitiative is a standalone, cross-platform, rich client desktop application for creating correctly formatted, custom versions of manufacturer-provided (default) array specifications, requiring only minimal knowledge of the array specification rules and file formats. Users can import default array specifications, import probe sequences for a default array specification, design and import a custom array specification, export any array specification to multiple output formats, export the probe sequences for any array specification and browse high-level information about the microarray, such as version and number of probes. The initial release of ArrayInitiative supports the Affymetrix 3' IVT expression arrays we currently analyze, but as an open source application, we hope that others will contribute modules for other platforms. Conclusions ArrayInitiative allows researchers to create new array specifications, in a standard format, based upon their own requirements. This makes it easier to test competing design and analysis strategies that depend on probe definitions. Since the

  15. A web-based genome browser for 'SNP-aware' assay design

    USDA-ARS?s Scientific Manuscript database

    Human and animal genomes contain an abundance of single nucleotide polymorphisms (SNPs) that are useful for genetic testing. However, the relatively large number of SNPs present in diverse populations can pose serious problems when designing assays. It is important to “mask” some SNP positions so ...

  16. SNP Data Quality Control in a National Beef and Dairy Cattle System and Highly Accurate SNP Based Parentage Verification and Identification

    PubMed Central

    McClure, Matthew C.; McCarthy, John; Flynn, Paul; McClure, Jennifer C.; Dair, Emma; O'Connell, D. K.; Kearney, John F.

    2018-01-01

    A major use of genetic data is parentage verification and identification as inaccurate pedigrees negatively affect genetic gain. Since 2012 the international standard for single nucleotide polymorphism (SNP) verification in Bos taurus cattle has been the ISAG SNP panels. While these ISAG panels provide an increased level of parentage accuracy over microsatellite markers (MS), they can validate the wrong parent at ≤1% misconcordance rate levels, indicating that more SNP are needed if a more accurate pedigree is required. With rapidly increasing numbers of cattle being genotyped in Ireland that represent 61 B. taurus breeds from a wide range of farm types: beef/dairy, AI/pedigree/commercial, purebred/crossbred, and large to small herd size the Irish Cattle Breeding Federation (ICBF) analyzed different SNP densities to determine that at a minimum ≥500 SNP are needed to consistently predict only one set of parents at a ≤1% misconcordance rate. For parentage validation and prediction ICBF uses 800 SNP (ICBF800) selected based on SNP clustering quality, ISAG200 inclusion, call rate (CR), and minor allele frequency (MAF) in the Irish cattle population. Large datasets require sample and SNP quality control (QC). Most publications only deal with SNP QC via CR, MAF, parent-progeny conflicts, and Hardy-Weinberg deviation, but not sample QC. We report here parentage, SNP QC, and a genomic sample QC pipelines to deal with the unique challenges of >1 million genotypes from a national herd such as SNP genotype errors from mis-tagging of animals, lab errors, farm errors, and multiple other issues that can arise. We divide the pipeline into two parts: a Genotype QC and an Animal QC pipeline. The Genotype QC identifies samples with low call rate, missing or mixed genotype classes (no BB genotype or ABTG alleles present), and low genotype frequencies. The Animal QC handles situations where the genotype might not belong to the listed individual by identifying: >1 non

  17. Forensic SNP Genotyping with SNaPshot: Development of a Novel In-house SBE Multiplex SNP Assay.

    PubMed

    Zar, Mian Sahib; Shahid, Ahmad Ali; Shahzad, Muhammad Saqib; Shin, Kyoung-Jin; Lee, Hwan Young; Lee, Sang-Seob; Israr, Muhammad; Wiegand, Peter; Kulstein, Galina

    2018-04-10

    This study introduces a newly developed in-house SNaPshot single-base extension (SBE) multiplex assay for forensic single nucleotide polymorphism (SNP) genotyping of fresh and degraded samples. The assay was validated with fresh blood samples from four different populations. In addition, altogether 24 samples from skeletal remains were analyzed with the multiplex. Full SNP profiles could be obtained from 14 specimens, while ten remains showed partial SNP profiles. Minor allele frequencies (MAF) of bone samples and different populations were compared and used for association of skeletal remains with a certain population. The results reveal that the SNPs of the bone samples are genetically close to the Pathan population. The findings show that the new multiplex system can be utilized for SNP genotyping of degraded and forensic relevant skeletal material, enabling to provide additional investigative leads in criminal cases. © 2018 American Academy of Forensic Sciences.

  18. MAAMD: a workflow to standardize meta-analyses and comparison of affymetrix microarray data

    PubMed Central

    2014-01-01

    Background Mandatory deposit of raw microarray data files for public access, prior to study publication, provides significant opportunities to conduct new bioinformatics analyses within and across multiple datasets. Analysis of raw microarray data files (e.g. Affymetrix CEL files) can be time consuming, complex, and requires fundamental computational and bioinformatics skills. The development of analytical workflows to automate these tasks simplifies the processing of, improves the efficiency of, and serves to standardize multiple and sequential analyses. Once installed, workflows facilitate the tedious steps required to run rapid intra- and inter-dataset comparisons. Results We developed a workflow to facilitate and standardize Meta-Analysis of Affymetrix Microarray Data analysis (MAAMD) in Kepler. Two freely available stand-alone software tools, R and AltAnalyze were embedded in MAAMD. The inputs of MAAMD are user-editable csv files, which contain sample information and parameters describing the locations of input files and required tools. MAAMD was tested by analyzing 4 different GEO datasets from mice and drosophila. MAAMD automates data downloading, data organization, data quality control assesment, differential gene expression analysis, clustering analysis, pathway visualization, gene-set enrichment analysis, and cross-species orthologous-gene comparisons. MAAMD was utilized to identify gene orthologues responding to hypoxia or hyperoxia in both mice and drosophila. The entire set of analyses for 4 datasets (34 total microarrays) finished in ~ one hour. Conclusions MAAMD saves time, minimizes the required computer skills, and offers a standardized procedure for users to analyze microarray datasets and make new intra- and inter-dataset comparisons. PMID:24621103

  19. Exercise improves adiponectin concentrations irrespective of the adiponectin gene polymorphisms SNP45 and the SNP276 in obese Korean women.

    PubMed

    Lee, Kyoung-Young; Kang, Hyun-Sik; Shin, Yun-A

    2013-03-10

    The effects of exercise on adiponectin levels have been reported to be variable and may be attributable to an interaction between environmental and genetic factors. The single nucleotide polymorphisms (SNP) 45 (T>G) and SNP276 (G>T) of the adiponectin gene are associated with metabolic risk factors including adiponectin levels. We examined whether SNP45 and SNP276 would differentially influence the effect of exercise training in middle-aged women with uncomplicated obesity. We conducted a prospective study in the general community that included 90 Korean women (age 47.0±5.1 years) with uncomplicated obesity. The intervention was aerobic exercise training for 3 months. Body composition, adiponectin levels, and other metabolic risk factors were measured. Prior to exercise training, only body weight differed among the SNP276 genotypes. Exercise training improved body composition, systolic blood pressure, maximal oxygen consumption, high-density lipoprotein cholesterol, and leptin levels. In addition, exercise improved adiponectin levels irrespective of weight gain or loss. However, after adjustments for age, BMI, body fat (%), and waist circumference, no differences were found in obesity-related characteristics (e.g., adiponectin) following exercise training among the SNP45 and the 276 genotypes. Our findings suggest that aerobic exercise affects adiponectin levels regardless of weight loss and this effect would not be influenced by SNP45 and SNP276 in the adiponectin gene. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  20. snpTree--a web-server to identify and construct SNP trees from whole genome sequence data.

    PubMed

    Leekitcharoenphon, Pimlapas; Kaas, Rolf S; Thomsen, Martin Christen Frølund; Friis, Carsten; Rasmussen, Simon; Aarestrup, Frank M

    2012-01-01

    The advances and decreasing economical cost of whole genome sequencing (WGS), will soon make this technology available for routine infectious disease epidemiology. In epidemiological studies, outbreak isolates have very little diversity and require extensive genomic analysis to differentiate and classify isolates. One of the successfully and broadly used methods is analysis of single nucletide polymorphisms (SNPs). Currently, there are different tools and methods to identify SNPs including various options and cut-off values. Furthermore, all current methods require bioinformatic skills. Thus, we lack a standard and simple automatic tool to determine SNPs and construct phylogenetic tree from WGS data. Here we introduce snpTree, a server for online-automatic SNPs analysis. This tool is composed of different SNPs analysis suites, perl and python scripts. snpTree can identify SNPs and construct phylogenetic trees from WGS as well as from assembled genomes or contigs. WGS data in fastq format are aligned to reference genomes by BWA while contigs in fasta format are processed by Nucmer. SNPs are concatenated based on position on reference genome and a tree is constructed from concatenated SNPs using FastTree and a perl script. The online server was implemented by HTML, Java and python script.The server was evaluated using four published bacterial WGS data sets (V. cholerae, S. aureus CC398, S. Typhimurium and M. tuberculosis). The evaluation results for the first three cases was consistent and concordant for both raw reads and assembled genomes. In the latter case the original publication involved extensive filtering of SNPs, which could not be repeated using snpTree. The snpTree server is an easy to use option for rapid standardised and automatic SNP analysis in epidemiological studies also for users with limited bioinformatic experience. The web server is freely accessible at http://www.cbs.dtu.dk/services/snpTree-1.0/.

  1. SNPConvert: SNP Array Standardization and Integration in Livestock Species.

    PubMed

    Nicolazzi, Ezequiel Luis; Marras, Gabriele; Stella, Alessandra

    2016-06-09

    One of the main advantages of single nucleotide polymorphism (SNP) array technology is providing genotype calls for a specific number of SNP markers at a relatively low cost. Since its first application in animal genetics, the number of available SNP arrays for each species has been constantly increasing. However, conversely to that observed in whole genome sequence data analysis, SNP array data does not have a common set of file formats or coding conventions for allele calling. Therefore, the standardization and integration of SNP array data from multiple sources have become an obstacle, especially for users with basic or no programming skills. Here, we describe the difficulties related to handling SNP array data, focusing on file formats, SNP allele coding, and mapping. We also present SNPConvert suite, a multi-platform, open-source, and user-friendly set of tools to overcome these issues. This tool, which can be integrated with open-source and open-access tools already available, is a first step towards an integrated system to standardize and integrate any type of raw SNP array data. The tool is available at: https://github. com/nicolazzie/SNPConvert.git.

  2. Validation of a Cost-Efficient Multi-Purpose SNP Panel for Disease Based Research

    PubMed Central

    Hou, Liping; Phillips, Christopher; Azaro, Marco; Brzustowicz, Linda M.; Bartlett, Christopher W.

    2011-01-01

    Background Here we present convergent methodologies using theoretical calculations, empirical assessment on in-house and publicly available datasets as well as in silico simulations, that validate a panel of SNPs for a variety of necessary tasks in human genetics disease research before resources are committed to larger-scale genotyping studies on those samples. While large-scale well-funded human genetic studies routinely have up to a million SNP genotypes, samples in a human genetics laboratory that are not yet part of such studies may be productively utilized in pilot projects or as part of targeted follow-up work though such smaller scale applications require at least some genome-wide genotype data for quality control purposes such as DNA “barcoding” to detect swaps or contamination issues, determining familial relationships between samples and correcting biases due to population effects such as population stratification in pilot studies. Principal Findings Empirical performance in classification of relative types for any two given DNA samples (e.g., full siblings, parental, etc) indicated that for outbred populations the panel performs sufficiently to classify relationship in extended families and therefore also for smaller structures such as trios and for twin zygosity testing. Additionally, familial relationships do not significantly diminish the (mean match) probability of sharing SNP genotypes in pedigrees, further indicating the uniqueness of the “barcode.” Simulation using these SNPs for an African American case-control disease association study demonstrated that population stratification, even in complex admixed samples, can be adequately corrected under a range of disease models using the SNP panel. Conclusion The panel has been validated for use in a variety of human disease genetics research tasks including sample barcoding, relationship verification, population substructure detection and statistical correction. Given the ease of genotyping

  3. Intricacies in arrangement of SNP haplotypes suggest "Great Admixture" that created modern humans.

    PubMed

    Dutta, Rajib; Mainsah, Joseph; Yatskiv, Yuriy; Chakrabortty, Sharmistha; Brennan, Patrick; Khuder, Basil; Qiu, Shuhao; Fedorova, Larisa; Fedorov, Alexei

    2017-06-05

    Inferring history from genomic sequences is challenging and problematic because chromosomes are mosaics of thousands of small Identicalby-descent (IBD) fragments, each of them having their own unique story. However, the main events in recent evolution might be deciphered from comparative analysis of numerous loci. A paradox of why humans, whose effective population size is only 10 4 , have nearly three million frequent SNPs is formulated and examined. We studied 5398 loci evenly covering all human autosomes. Common haplotypes built from frequent SNPs that are present in people from various populations have been examined. We demonstrated highly non-random arrangement of alleles in common haplotypes. Abundance of mutually exclusive pairs of common haplotypes that have different alleles at every polymorphic position (so-called Yin/Yang haplotypes) was found in 56% of loci. A novel widely spread category of common haplotypes named Mosaic has been described. Mosaic consists of numerous pieces of Yin/Yang haplotypes and represents an ancestral stage of one of them. Scenarios of possible appearance of large number of frequent human SNPs and their habitual arrangement in Yin/Yang common haplotypes have been evaluated with an advanced genomic simulation algorithm. Computer modeling demonstrated that the observed arrangement of 2.9 million frequent SNPs could not originate from a sole stand-alone population. A "Great Admixture" event has been proposed that can explain peculiarities with frequent SNP distributions. This Great Admixture presumably occurred 100-300 thousand years ago between two ancestral populations that had been separated from each other about a million years ago. Our programs and algorithms can be applied to other species to perform evolutionary and comparative genomics.

  4. Estimating the similarity of alternative Affymetrix probe sets using transcriptional networks

    PubMed Central

    2013-01-01

    Background The usefulness of the data from Affymetrix microarray analysis depends largely on the reliability of the files describing the correspondence between probe sets, genes and transcripts. Particularly, when a gene is targeted by several probe sets, these files should give information about the similarity of each alternative probe set pair. Transcriptional networks integrate the multiple correlations that exist between all probe sets and supply much more information than a simple correlation coefficient calculated for two series of signals. In this study, we used the PSAWN (Probe Set Assignment With Networks) programme we developed to investigate whether similarity of alternative probe sets resulted in some specific properties. Findings PSAWNpy delivered a full textual description of each probe set and information on the number and properties of secondary targets. PSAWNml calculated the similarity of each alternative probe set pair and allowed finding relationships between similarity and localisation of probes in common transcripts or exons. Similar alternative probe sets had very low negative correlation, high positive correlation and similar neighbourhood overlap. Using these properties, we devised a test that allowed grouping similar probe sets in a given network. By considering several networks, additional information concerning the similarity reproducibility was obtained, which allowed defining the actual similarity of alternative probe set pairs. In particular, we calculated the common localisation of probes in exons and in known transcripts and we showed that similarity was correctly correlated with them. The information collected on all pairs of alternative probe sets in the most popular 3’ IVT Affymetrix chips is available in tabular form at http://bns.crbm.cnrs.fr/download.html. Conclusions These processed data can be used to obtain a finer interpretation when comparing microarray data between biological conditions. They are particularly well

  5. Discovery and mapping of single feature polymorphisms in wheat using Affymetrix arrays

    PubMed Central

    Bernardo, Amy N; Bradbury, Peter J; Ma, Hongxiang; Hu, Shengwa; Bowden, Robert L; Buckler, Edward S; Bai, Guihua

    2009-01-01

    Background Wheat (Triticum aestivum L.) is a staple food crop worldwide. The wheat genome has not yet been sequenced due to its huge genome size (~17,000 Mb) and high levels of repetitive sequences; the whole genome sequence may not be expected in the near future. Available linkage maps have low marker density due to limitation in available markers; therefore new technologies that detect genome-wide polymorphisms are still needed to discover a large number of new markers for construction of high-resolution maps. A high-resolution map is a critical tool for gene isolation, molecular breeding and genomic research. Single feature polymorphism (SFP) is a new microarray-based type of marker that is detected by hybridization of DNA or cRNA to oligonucleotide probes. This study was conducted to explore the feasibility of using the Affymetrix GeneChip to discover and map SFPs in the large hexaploid wheat genome. Results Six wheat varieties of diverse origins (Ning 7840, Clark, Jagger, Encruzilhada, Chinese Spring, and Opata 85) were analyzed for significant probe by variety interactions and 396 probe sets with SFPs were identified. A subset of 164 unigenes was sequenced and 54% showed polymorphism within probes. Microarray analysis of 71 recombinant inbred lines from the cross Ning 7840/Clark identified 955 SFPs and 877 of them were mapped together with 269 simple sequence repeat markers. The SFPs were randomly distributed within a chromosome but were unevenly distributed among different genomes. The B genome had the most SFPs, and the D genome had the least. Map positions of a selected set of SFPs were validated by mapping single nucleotide polymorphism using SNaPshot and comparing with expressed sequence tags mapping data. Conclusion The Affymetrix array is a cost-effective platform for SFP discovery and SFP mapping in wheat. The new high-density map constructed in this study will be a useful tool for genetic and genomic research in wheat. PMID:19480702

  6. Single-nucleotide polymorphisms associated with symptomatic infection and differential human gene expression in healthy seropositive persons each implicate the cytoskeleton, integrin signaling, and oncosuppression in the pathogenesis of human parvovirus B19 infection.

    PubMed

    Kerr, Jonathan R; Kaushik, Narendra; Fear, David; Baldwin, Don A; Nuwaysir, Emile F; Adcock, Ian M

    2005-07-15

    This study was undertaken to further examine the role of the host response to parvovirus B19 in the development of symptoms and consequences of viral persistence. Genomic DNA from 42 patients with symptomatic B19 infection was analyzed using the HuSNP assay (Affymetrix), and the results were compared with those from analysis of 53 healthy control individuals. Fifty-seven single-nucleotide polymorphisms were identified that were significantly associated with symptomatic infection. Total RNA from peripheral blood mononuclear cells from 57 B19-seropositive and 13 B19-seronegative donors was analyzed by hybridization to a single-color microarray representing 9522 human genes. Ninety-two genes were shown to be differentially expressed. Differential expression was confirmed in 6 of 38 genes (SKIP, MACF1, SPAG7, FLOT1, c6orf48, and RASSF5) tested using real-time quantitative polymerase chain reaction in a different group of healthy subjects. Genes identified in both studies play a functional role in the cytoskeleton, integrin signaling, and oncosuppression, themes that have been shown to be important in parvovirus infections.

  7. SNP-associations and phenotype predictions from hundreds of microbial genomes without genome alignments.

    PubMed

    Hall, Barry G

    2014-01-01

    SNP-association studies are a starting point for identifying genes that may be responsible for specific phenotypes, such as disease traits. The vast bulk of tools for SNP-association studies are directed toward SNPs in the human genome, and I am unaware of any tools designed specifically for such studies in bacterial or viral genomes. The PPFS (Predict Phenotypes From SNPs) package described here is an add-on to kSNP , a program that can identify SNPs in a data set of hundreds of microbial genomes. PPFS identifies those SNPs that are non-randomly associated with a phenotype based on the χ² probability, then uses those diagnostic SNPs for two distinct, but related, purposes: (1) to predict the phenotypes of strains whose phenotypes are unknown, and (2) to identify those diagnostic SNPs that are most likely to be causally related to the phenotype. In the example illustrated here, from a set of 68 E. coli genomes, for 67 of which the pathogenicity phenotype was known, there were 418,500 SNPs. Using the phenotypes of 36 of those strains, PPFS identified 207 diagnostic SNPs. The diagnostic SNPs predicted the phenotypes of all of the genomes with 97% accuracy. It then identified 97 SNPs whose probability of being causally related to the pathogenic phenotype was >0.999. In a second example, from a set of 116 E. coli genome sequences, using the phenotypes of 65 strains PPFS identified 101 SNPs that predicted the source host (human or non-human) with 90% accuracy.

  8. HapMap tagSNP transferability in multiple populations: general guidelines

    PubMed Central

    Xing, Jinchuan; Witherspoon, David J.; Watkins, W. Scott; Zhang, Yuhua; Tolpinrud, Whitney; Jorde, Lynn B.

    2008-01-01

    This PDF receipt will only be used as the basis for generating PubMed Central (PMC) documents. PMC documents will be made available for review after conversion (approx. 2–3 weeks time). Any corrections that need to be made will be done at that time. No materials will be released to PMC without the approval of an author. Only the PMC documents will appear on PubMed Central -- this PDF Receipt will not appear on PubMed Central. Linkage disequilibrium (LD) has received much recent attention because of its value in localizing disease-causing genes. Due to the extensive LD between neighboring loci in the human genome, it is believed that a subset of the single nucleotide polymorphisms in a region (tagSNPs) can be selected to capture most of the remaining SNP variants. In this study, we examined LD patterns and HapMap tagSNP transferability in more than 300 individuals. A South Indian and an African Mbuti Pygmy population sample were included to evaluate the performance of HapMap tagSNPs in geographically distinct and genetically isolated populations. Our results show that HapMap tagSNPs selected with r2 >= 0.8 can capture more than 85% of the SNPs in populations that are from the same continental group. Combined tagSNPs from HapMap CEU and CHB+JPT serve as the best reference for the Indian sample. The HapMap YRI are a sufficient reference for tagSNP selection in the Pygmy sample. In addition to our findings, we reviewed over 25 recent studies of tagSNP transferability and propose a general guideline for selecting tagSNPs from HapMap populations. PMID:18482828

  9. Performance of the SNPforID 52 SNP-plex assay in paternity testing.

    PubMed

    Børsting, Claus; Sanchez, Juan J; Hansen, Hanna E; Hansen, Anders J; Bruun, Hanne Q; Morling, Niels

    2008-09-01

    The performance of a multiplex assay with 52 autosomal single nucleotide polymorphisms (SNPs) developed for human identification was tested on 124 mother-child-father trios. The typical paternity indices (PIs) were 10(5)-10(6) for the trios and 10(3)-10(4) for the child-father duos. Using the SNP profiles from the randomly selected trios and 700 previously typed individuals, a total of 83,096 comparisons between mother, child and an unrelated man were performed. On average, 9-10 mismatches per comparison were detected. Four mismatches were genetic inconsistencies and 5-6 mismatches were opposite homozygosities. In only two of the 83,096 comparisons did an unrelated man match perfectly to a mother-child duo, and in both cases the PI of the true father was much higher than the PI of the unrelated man. The trios were also typed for 15 short tandem repeats (STRs) and seven variable number of tandem repeats (VNTRs). The typical PIs based on 15 STRs or seven VNTRs were 5-50 times higher than the typical PIs based on 52 SNPs. Six mutations in tandem repeats were detected among the randomly selected trios. In contrast, there was not found any mutations in the SNP loci. The results showed that the 52 SNP-plex assay is a very useful alternative to currently used methods in relationship testing. The usefulness of SNP markers with low mutation rates in paternity and immigration casework is discussed.

  10. Summarizing techniques that combine three non-parametric scores to detect disease-associated 2-way SNP-SNP interactions.

    PubMed

    Sengupta Chattopadhyay, Amrita; Hsiao, Ching-Lin; Chang, Chien Ching; Lian, Ie-Bin; Fann, Cathy S J

    2014-01-01

    Identifying susceptibility genes that influence complex diseases is extremely difficult because loci often influence the disease state through genetic interactions. Numerous approaches to detect disease-associated SNP-SNP interactions have been developed, but none consistently generates high-quality results under different disease scenarios. Using summarizing techniques to combine a number of existing methods may provide a solution to this problem. Here we used three popular non-parametric methods-Gini, absolute probability difference (APD), and entropy-to develop two novel summary scores, namely principle component score (PCS) and Z-sum score (ZSS), with which to predict disease-associated genetic interactions. We used a simulation study to compare performance of the non-parametric scores, the summary scores, the scaled-sum score (SSS; used in polymorphism interaction analysis (PIA)), and the multifactor dimensionality reduction (MDR). The non-parametric methods achieved high power, but no non-parametric method outperformed all others under a variety of epistatic scenarios. PCS and ZSS, however, outperformed MDR. PCS, ZSS and SSS displayed controlled type-I-errors (<0.05) compared to GS, APDS, ES (>0.05). A real data study using the genetic-analysis-workshop 16 (GAW 16) rheumatoid arthritis dataset identified a number of interesting SNP-SNP interactions. © 2013 Elsevier B.V. All rights reserved.

  11. Electronic and spectroscopic characterizations of SNP isomers

    NASA Astrophysics Data System (ADS)

    Trabelsi, Tarek; Al Mogren, Muneerah Mogren; Hochlaf, Majdi; Francisco, Joseph S.

    2018-02-01

    High-level ab initio electronic structure calculations were performed to characterize SNP isomers. In addition to the known linear SNP, cyc-PSN, and linear SPN isomers, we identified a fourth isomer, linear PSN, which is located ˜2.4 eV above the linear SNP isomer. The low-lying singlet and triplet electronic states of the linear SNP and SPN isomers were investigated using a multi-reference configuration interaction method and large basis set. Several bound electronic states were identified. However, their upper rovibrational levels were predicted to pre-dissociate, leading to S + PN, P + NS products, and multi-step pathways were discovered. For the ground states, a set of spectroscopic parameters were derived using standard and explicitly correlated coupled-cluster methods in conjunction with augmented correlation-consistent basis sets extrapolated to the complete basis set limit. We also considered scalar and core-valence effects. For linear isomers, the rovibrational spectra were deduced after generation of their 3D-potential energy surfaces along the stretching and bending coordinates and variational treatments of the nuclear motions.

  12. New tools and methods for direct programmatic access to the dbSNP relational database.

    PubMed

    Saccone, Scott F; Quan, Jiaxi; Mehta, Gaurang; Bolze, Raphael; Thomas, Prasanth; Deelman, Ewa; Tischfield, Jay A; Rice, John P

    2011-01-01

    Genome-wide association studies often incorporate information from public biological databases in order to provide a biological reference for interpreting the results. The dbSNP database is an extensive source of information on single nucleotide polymorphisms (SNPs) for many different organisms, including humans. We have developed free software that will download and install a local MySQL implementation of the dbSNP relational database for a specified organism. We have also designed a system for classifying dbSNP tables in terms of common tasks we wish to accomplish using the database. For each task we have designed a small set of custom tables that facilitate task-related queries and provide entity-relationship diagrams for each task composed from the relevant dbSNP tables. In order to expose these concepts and methods to a wider audience we have developed web tools for querying the database and browsing documentation on the tables and columns to clarify the relevant relational structure. All web tools and software are freely available to the public at http://cgsmd.isi.edu/dbsnpq. Resources such as these for programmatically querying biological databases are essential for viably integrating biological information into genetic association experiments on a genome-wide scale.

  13. New tools and methods for direct programmatic access to the dbSNP relational database

    PubMed Central

    Saccone, Scott F.; Quan, Jiaxi; Mehta, Gaurang; Bolze, Raphael; Thomas, Prasanth; Deelman, Ewa; Tischfield, Jay A.; Rice, John P.

    2011-01-01

    Genome-wide association studies often incorporate information from public biological databases in order to provide a biological reference for interpreting the results. The dbSNP database is an extensive source of information on single nucleotide polymorphisms (SNPs) for many different organisms, including humans. We have developed free software that will download and install a local MySQL implementation of the dbSNP relational database for a specified organism. We have also designed a system for classifying dbSNP tables in terms of common tasks we wish to accomplish using the database. For each task we have designed a small set of custom tables that facilitate task-related queries and provide entity-relationship diagrams for each task composed from the relevant dbSNP tables. In order to expose these concepts and methods to a wider audience we have developed web tools for querying the database and browsing documentation on the tables and columns to clarify the relevant relational structure. All web tools and software are freely available to the public at http://cgsmd.isi.edu/dbsnpq. Resources such as these for programmatically querying biological databases are essential for viably integrating biological information into genetic association experiments on a genome-wide scale. PMID:21037260

  14. Rice SNP-seek database update: new SNPs, indels, and queries.

    PubMed

    Mansueto, Locedie; Fuentes, Roven Rommel; Borja, Frances Nikki; Detras, Jeffery; Abriol-Santos, Juan Miguel; Chebotarov, Dmytro; Sanciangco, Millicent; Palis, Kevin; Copetti, Dario; Poliakov, Alexandre; Dubchak, Inna; Solovyev, Victor; Wing, Rod A; Hamilton, Ruaraidh Sackville; Mauleon, Ramil; McNally, Kenneth L; Alexandrov, Nickolai

    2017-01-04

    We describe updates to the Rice SNP-Seek Database since its first release. We ran a new SNP-calling pipeline followed by filtering that resulted in complete, base, filtered and core SNP datasets. Besides the Nipponbare reference genome, the pipeline was run on genome assemblies of IR 64, 93-11, DJ 123 and Kasalath. New genotype query and display features are added for reference assemblies, SNP datasets and indels. JBrowse now displays BAM, VCF and other annotation tracks, the additional genome assemblies and an embedded VISTA genome comparison viewer. Middleware is redesigned for improved performance by using a hybrid of HDF5 and RDMS for genotype storage. Query modules for genotypes, varieties and genes are improved to handle various constraints. An integrated list manager allows the user to pass query parameters for further analysis. The SNP Annotator adds traits, ontology terms, effects and interactions to markers in a list. Web-service calls were implemented to access most data. These features enable seamless querying of SNP-Seek across various biological entities, a step toward semi-automated gene-trait association discovery. URL: http://snp-seek.irri.org. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Candidate SNP Markers of Familial and Sporadic Alzheimer's Diseases Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters

    PubMed Central

    Ponomarenko, Petr; Chadaeva, Irina; Rasskazov, Dmitry A.; Sharypova, Ekaterina; Kashina, Elena V.; Drachkova, Irina; Zhechev, Dmitry; Ponomarenko, Mikhail P.; Savinkova, Ludmila K.; Kolchanov, Nikolay

    2017-01-01

    While year after year, conditions, quality, and duration of human lives have been improving due to the progress in science, technology, education, and medicine, only eight diseases have been increasing in prevalence and shortening human lives because of premature deaths according to the retrospective official review on the state of US health, 1990-2010. These diseases are kidney cancer, chronic kidney diseases, liver cancer, diabetes, drug addiction, poisoning cases, consequences of falls, and Alzheimer's disease (AD) as one of the leading pathologies. There are familial AD of hereditary nature (~4% of cases) and sporadic AD of unclear etiology (remaining ~96% of cases; i.e., non-familial AD). Therefore, sporadic AD is no longer a purely medical problem, but rather a social challenge when someone asks oneself: “What can I do in my own adulthood to reduce the risk of sporadic AD at my old age to save the years of my lifespan from the destruction caused by it?” Here, we combine two computational approaches for regulatory SNPs: Web service SNP_TATA_Comparator for sequence analysis and a PubMed-based keyword search for articles on the biochemical markers of diseases. Our purpose was to try to find answers to the question: “What can be done in adulthood to reduce the risk of sporadic AD in old age to prevent the lifespan reduction caused by it?” As a result, we found 89 candidate SNP markers of familial and sporadic AD (e.g., rs562962093 is associated with sporadic AD in the elderly as a complication of stroke in adulthood, where natural marine diets can reduce risks of both diseases in case of the minor allele of this SNP). In addition, rs768454929, and rs761695685 correlate with sporadic AD as a comorbidity of short stature, where maximizing stature in childhood and adolescence as an integral indicator of health can minimize (or even eliminate) the risk of sporadic AD in the elderly. After validation by clinical protocols, these candidate SNP markers may

  16. EzArray: A web-based highly automated Affymetrix expression array data management and analysis system

    PubMed Central

    Zhu, Yuerong; Zhu, Yuelin; Xu, Wei

    2008-01-01

    Background Though microarray experiments are very popular in life science research, managing and analyzing microarray data are still challenging tasks for many biologists. Most microarray programs require users to have sophisticated knowledge of mathematics, statistics and computer skills for usage. With accumulating microarray data deposited in public databases, easy-to-use programs to re-analyze previously published microarray data are in high demand. Results EzArray is a web-based Affymetrix expression array data management and analysis system for researchers who need to organize microarray data efficiently and get data analyzed instantly. EzArray organizes microarray data into projects that can be analyzed online with predefined or custom procedures. EzArray performs data preprocessing and detection of differentially expressed genes with statistical methods. All analysis procedures are optimized and highly automated so that even novice users with limited pre-knowledge of microarray data analysis can complete initial analysis quickly. Since all input files, analysis parameters, and executed scripts can be downloaded, EzArray provides maximum reproducibility for each analysis. In addition, EzArray integrates with Gene Expression Omnibus (GEO) and allows instantaneous re-analysis of published array data. Conclusion EzArray is a novel Affymetrix expression array data analysis and sharing system. EzArray provides easy-to-use tools for re-analyzing published microarray data and will help both novice and experienced users perform initial analysis of their microarray data from the location of data storage. We believe EzArray will be a useful system for facilities with microarray services and laboratories with multiple members involved in microarray data analysis. EzArray is freely available from . PMID:18218103

  17. When Whole-Genome Alignments Just Won't Work: kSNP v2 Software for Alignment-Free SNP Discovery and Phylogenetics of Hundreds of Microbial Genomes

    PubMed Central

    Gardner, Shea N.; Hall, Barry G.

    2013-01-01

    Effective use of rapid and inexpensive whole genome sequencing for microbes requires fast, memory efficient bioinformatics tools for sequence comparison. The kSNP v2 software finds single nucleotide polymorphisms (SNPs) in whole genome data. kSNP v2 has numerous improvements over kSNP v1 including SNP gene annotation; better scaling for draft genomes available as assembled contigs or raw, unassembled reads; a tool to identify the optimal value of k; distribution of packages of executables for Linux and Mac OS X for ease of installation and user-friendly use; and a detailed User Guide. SNP discovery is based on k-mer analysis, and requires no multiple sequence alignment or the selection of a single reference genome. Most target sets with hundreds of genomes complete in minutes to hours. SNP phylogenies are built by maximum likelihood, parsimony, and distance, based on all SNPs, only core SNPs, or SNPs present in some intermediate user-specified fraction of targets. The SNP-based trees that result are consistent with known taxonomy. kSNP v2 can handle many gigabases of sequence in a single run, and if one or more annotated genomes are included in the target set, SNPs are annotated with protein coding and other information (UTRs, etc.) from Genbank file(s). We demonstrate application of kSNP v2 on sets of viral and bacterial genomes, and discuss in detail analysis of a set of 68 finished E. coli and Shigella genomes and a set of the same genomes to which have been added 47 assemblies and four “raw read” genomes of H104:H4 strains from the recent European E. coli outbreak that resulted in both bloody diarrhea and hemolytic uremic syndrome (HUS), and caused at least 50 deaths. PMID:24349125

  18. When whole-genome alignments just won't work: kSNP v2 software for alignment-free SNP discovery and phylogenetics of hundreds of microbial genomes.

    PubMed

    Gardner, Shea N; Hall, Barry G

    2013-01-01

    Effective use of rapid and inexpensive whole genome sequencing for microbes requires fast, memory efficient bioinformatics tools for sequence comparison. The kSNP v2 software finds single nucleotide polymorphisms (SNPs) in whole genome data. kSNP v2 has numerous improvements over kSNP v1 including SNP gene annotation; better scaling for draft genomes available as assembled contigs or raw, unassembled reads; a tool to identify the optimal value of k; distribution of packages of executables for Linux and Mac OS X for ease of installation and user-friendly use; and a detailed User Guide. SNP discovery is based on k-mer analysis, and requires no multiple sequence alignment or the selection of a single reference genome. Most target sets with hundreds of genomes complete in minutes to hours. SNP phylogenies are built by maximum likelihood, parsimony, and distance, based on all SNPs, only core SNPs, or SNPs present in some intermediate user-specified fraction of targets. The SNP-based trees that result are consistent with known taxonomy. kSNP v2 can handle many gigabases of sequence in a single run, and if one or more annotated genomes are included in the target set, SNPs are annotated with protein coding and other information (UTRs, etc.) from Genbank file(s). We demonstrate application of kSNP v2 on sets of viral and bacterial genomes, and discuss in detail analysis of a set of 68 finished E. coli and Shigella genomes and a set of the same genomes to which have been added 47 assemblies and four "raw read" genomes of H104:H4 strains from the recent European E. coli outbreak that resulted in both bloody diarrhea and hemolytic uremic syndrome (HUS), and caused at least 50 deaths.

  19. Dynamic variable selection in SNP genotype autocalling from APEX microarray data.

    PubMed

    Podder, Mohua; Welch, William J; Zamar, Ruben H; Tebbutt, Scott J

    2006-11-30

    Single nucleotide polymorphisms (SNPs) are DNA sequence variations, occurring when a single nucleotide--adenine (A), thymine (T), cytosine (C) or guanine (G)--is altered. Arguably, SNPs account for more than 90% of human genetic variation. Our laboratory has developed a highly redundant SNP genotyping assay consisting of multiple probes with signals from multiple channels for a single SNP, based on arrayed primer extension (APEX). This mini-sequencing method is a powerful combination of a highly parallel microarray with distinctive Sanger-based dideoxy terminator sequencing chemistry. Using this microarray platform, our current genotype calling system (known as SNP Chart) is capable of calling single SNP genotypes by manual inspection of the APEX data, which is time-consuming and exposed to user subjectivity bias. Using a set of 32 Coriell DNA samples plus three negative PCR controls as a training data set, we have developed a fully-automated genotyping algorithm based on simple linear discriminant analysis (LDA) using dynamic variable selection. The algorithm combines separate analyses based on the multiple probe sets to give a final posterior probability for each candidate genotype. We have tested our algorithm on a completely independent data set of 270 DNA samples, with validated genotypes, from patients admitted to the intensive care unit (ICU) of St. Paul's Hospital (plus one negative PCR control sample). Our method achieves a concordance rate of 98.9% with a 99.6% call rate for a set of 96 SNPs. By adjusting the threshold value for the final posterior probability of the called genotype, the call rate reduces to 94.9% with a higher concordance rate of 99.6%. We also reversed the two independent data sets in their training and testing roles, achieving a concordance rate up to 99.8%. The strength of this APEX chemistry-based platform is its unique redundancy having multiple probes for a single SNP. Our model-based genotype calling algorithm captures the

  20. Pigment phenotype and biogeographical ancestry from ancient skeletal remains: inferences from multiplexed autosomal SNP analysis.

    PubMed

    Bouakaze, Caroline; Keyser, Christine; Crubézy, Eric; Montagnon, Daniel; Ludes, Bertrand

    2009-07-01

    In the present study, a multiplexed genotyping assay for ten single nucleotide polymorphisms (SNPs) located within six pigmentation candidate genes was developed on modern biological samples and applied to DNA retrieved from 25 archeological human remains from southern central Siberia dating from the Bronze and Iron Ages. SNP genotyping was successful for the majority of ancient samples and revealed that most probably had typical European pigment features, i.e., blue or green eye color, light hair color and skin type, and were likely of European individual ancestry. To our knowledge, this study reports for the first time the multiplexed typing of autosomal SNPs on aged and degraded DNA. By providing valuable information on pigment traits of an individual and allowing individual biogeographical ancestry estimation, autosomal SNP typing can improve ancient DNA studies and aid human identification in some forensic casework situations when used to complement conventional molecular markers.

  1. Compression and fast retrieval of SNP data

    PubMed Central

    Sambo, Francesco; Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio

    2014-01-01

    Motivation: The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. Results: We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Availability and implementation: Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html. Contact: sambofra@dei.unipd.it or cobelli@dei.unipd.it. PMID:25064564

  2. Sequential sentinel SNP Regional Association Plots (SSS-RAP): an approach for testing independence of SNP association signals using meta-analysis data.

    PubMed

    Zheng, Jie; Gaunt, Tom R; Day, Ian N M

    2013-01-01

    Genome-Wide Association Studies (GWAS) frequently incorporate meta-analysis within their framework. However, conditional analysis of individual-level data, which is an established approach for fine mapping of causal sites, is often precluded where only group-level summary data are available for analysis. Here, we present a numerical and graphical approach, "sequential sentinel SNP regional association plot" (SSS-RAP), which estimates regression coefficients (beta) with their standard errors using the meta-analysis summary results directly. Under an additive model, typical for genes with small effect, the effect for a sentinel SNP can be transformed to the predicted effect for a possibly dependent SNP through a 2×2 2-SNP haplotypes table. The approach assumes Hardy-Weinberg equilibrium for test SNPs. SSS-RAP is available as a Web-tool (http://apps.biocompute.org.uk/sssrap/sssrap.cgi). To develop and illustrate SSS-RAP we analyzed lipid and ECG traits data from the British Women's Heart and Health Study (BWHHS), evaluated a meta-analysis for ECG trait and presented several simulations. We compared results with existing approaches such as model selection methods and conditional analysis. Generally findings were consistent. SSS-RAP represents a tool for testing independence of SNP association signals using meta-analysis data, and is also a convenient approach based on biological principles for fine mapping in group level summary data. © 2012 Blackwell Publishing Ltd/University College London.

  3. Partitioned learning of deep Boltzmann machines for SNP data.

    PubMed

    Hess, Moritz; Lenz, Stefan; Blätte, Tamara J; Bullinger, Lars; Binder, Harald

    2017-10-15

    Learning the joint distributions of measurements, and in particular identification of an appropriate low-dimensional manifold, has been found to be a powerful ingredient of deep leaning approaches. Yet, such approaches have hardly been applied to single nucleotide polymorphism (SNP) data, probably due to the high number of features typically exceeding the number of studied individuals. After a brief overview of how deep Boltzmann machines (DBMs), a deep learning approach, can be adapted to SNP data in principle, we specifically present a way to alleviate the dimensionality problem by partitioned learning. We propose a sparse regression approach to coarsely screen the joint distribution of SNPs, followed by training several DBMs on SNP partitions that were identified by the screening. Aggregate features representing SNP patterns and the corresponding SNPs are extracted from the DBMs by a combination of statistical tests and sparse regression. In simulated case-control data, we show how this can uncover complex SNP patterns and augment results from univariate approaches, while maintaining type 1 error control. Time-to-event endpoints are considered in an application with acute myeloid leukemia patients, where SNP patterns are modeled after a pre-screening based on gene expression data. The proposed approach identified three SNPs that seem to jointly influence survival in a validation dataset. This indicates the added value of jointly investigating SNPs compared to standard univariate analyses and makes partitioned learning of DBMs an interesting complementary approach when analyzing SNP data. A Julia package is provided at 'http://github.com/binderh/BoltzmannMachines.jl'. binderh@imbi.uni-freiburg.de. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  4. Evaluation of the Affymetrix CytoScan® Dx Assay for Developmental Delay

    PubMed Central

    Webb, Bryn D.; Scharf, Rebecca J.; Spear, Emily A.; Edelmann, Lisa J.; Stroustrup, Annemarie

    2015-01-01

    The goal of molecular cytogenetic testing for children presenting with developmental delay is to identify or exclude genetic abnormalities that are associated with cognitive, behavioral, and/or motor symptoms. Until 2010, chromosome analysis was the standard first-line genetic screening test for evaluation of patients with developmental delay when a specific syndrome was not suspected. In 2010, The American College of Medical Genetics and several other groups recommended chromosomal microarray (CMA) as the first-line test in children with developmental delays, multiple congenital anomalies, and/or autism. This test is able to detect regions of genomic imbalances at a much finer resolution than G-banded karyotyping. Until recently, no CMA testing had been approved by the United States Food and Drug Administration (FDA). This review will focus on the use of the Affymetrix CytoScan® Dx Assay, the first CMA to receive FDA approval for the genetic evaluation of individuals with developmental delay. PMID:25350348

  5. Development and Evaluation of a 9K SNP Array for Peach by Internationally Coordinated SNP Detection and Validation in Breeding Germplasm

    PubMed Central

    Scalabrin, Simone; Gilmore, Barbara; Lawley, Cynthia T.; Gasic, Ksenija; Micheletti, Diego; Rosyara, Umesh R.; Cattonaro, Federica; Vendramin, Elisa; Main, Dorrie; Aramini, Valeria; Blas, Andrea L.; Mockler, Todd C.; Bryant, Douglas W.; Wilhelm, Larry; Troggio, Michela; Sosinski, Bryon; Aranzana, Maria José; Arús, Pere; Iezzoni, Amy; Morgante, Michele; Peace, Cameron

    2012-01-01

    Although a large number of single nucleotide polymorphism (SNP) markers covering the entire genome are needed to enable molecular breeding efforts such as genome wide association studies, fine mapping, genomic selection and marker-assisted selection in peach [Prunus persica (L.) Batsch] and related Prunus species, only a limited number of genetic markers, including simple sequence repeats (SSRs), have been available to date. To address this need, an international consortium (The International Peach SNP Consortium; IPSC) has pursued a coordinated effort to perform genome-scale SNP discovery in peach using next generation sequencing platforms to develop and characterize a high-throughput Illumina Infinium® SNP genotyping array platform. We performed whole genome re-sequencing of 56 peach breeding accessions using the Illumina and Roche/454 sequencing technologies. Polymorphism detection algorithms identified a total of 1,022,354 SNPs. Validation with the Illumina GoldenGate® assay was performed on a subset of the predicted SNPs, verifying ∼75% of genic (exonic and intronic) SNPs, whereas only about a third of intergenic SNPs were verified. Conservative filtering was applied to arrive at a set of 8,144 SNPs that were included on the IPSC peach SNP array v1, distributed over all eight peach chromosomes with an average spacing of 26.7 kb between SNPs. Use of this platform to screen a total of 709 accessions of peach in two separate evaluation panels identified a total of 6,869 (84.3%) polymorphic SNPs. The almost 7,000 SNPs verified as polymorphic through extensive empirical evaluation represent an excellent source of markers for future studies in genetic relatedness, genetic mapping, and dissecting the genetic architecture of complex agricultural traits. The IPSC peach SNP array v1 is commercially available and we expect that it will be used worldwide for genetic studies in peach and related stone fruit and nut species. PMID:22536421

  6. SNP-Based Typing: A Useful Tool to Study Bordetella pertussis Populations

    PubMed Central

    van der Heide, Han G. J.; Heuvelman, Kees J.; Kallonen, Teemu; He, Qiushui; Mertsola, Jussi; Advani, Abdolreza; Hallander, Hans O.; Janssens, Koen; Hermans, Peter W.; Mooi, Frits R.

    2011-01-01

    To monitor changes in Bordetella pertussis populations, mainly two typing methods are used; Pulsed-Field Gel Electrophoresis (PFGE) and Multiple-Locus Variable-Number Tandem Repeat Analysis (MLVA). In this study, a single nucleotide polymorphism (SNP) typing method, based on 87 SNPs, was developed and compared with PFGE and MLVA. The discriminatory indices of SNP typing, PFGE and MLVA were found to be 0.85, 0.95 and 0.83, respectively. Phylogenetic analysis, using SNP typing as Gold Standard, revealed false homoplasies in the PFGE and MLVA trees. Further, in contrast to the SNP-based tree, the PFGE- and MLVA-based trees did not reveal a positive correlation between root-to-tip distance and the isolation year of strains. Thus PFGE and MLVA do not allow an estimation of the relative age of the selected strains. In conclusion, SNP typing was found to be phylogenetically more informative than PFGE and more discriminative than MLVA. Further, in contrast to PFGE, it is readily standardized allowing interlaboratory comparisons. We applied SNP typing to study strains with a novel allele for the pertussis toxin promoter, ptxP3, which have a worldwide distribution and which have replaced the resident ptxP1 strains in the last 20 years. Previously, we showed that ptxP3 strains showed increased pertussis toxin expression and that their emergence was associated with increased notification in the Netherlands. SNP typing showed that the ptxP3 strains isolated in the Americas, Asia, Australia and Europe formed a monophyletic branch which recently diverged from ptxP1 strains. Two predominant ptxP3 SNP types were identified which spread worldwide. The widespread use of SNP typing will enhance our understanding of the evolution and global epidemiology of B. pertussis. PMID:21647370

  7. Compression and fast retrieval of SNP data.

    PubMed

    Sambo, Francesco; Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio

    2014-11-01

    The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Global Phylogeny of Mycobacterium tuberculosis Based on Single Nucleotide Polymorphism (SNP) Analysis: Insights into Tuberculosis Evolution, Phylogenetic Accuracy of Other DNA Fingerprinting Systems, and Recommendations for a Minimal Standard SNP Set†

    PubMed Central

    Filliol, Ingrid; Motiwala, Alifiya S.; Cavatore, Magali; Qi, Weihong; Hazbón, Manzour Hernando; Bobadilla del Valle, Miriam; Fyfe, Janet; García-García, Lourdes; Rastogi, Nalin; Sola, Christophe; Zozio, Thierry; Guerrero, Marta Inírida; León, Clara Inés; Crabtree, Jonathan; Angiuoli, Sam; Eisenach, Kathleen D.; Durmaz, Riza; Joloba, Moses L.; Rendón, Adrian; Sifuentes-Osornio, José; Ponce de León, Alfredo; Cave, M. Donald; Fleischmann, Robert; Whittam, Thomas S.; Alland, David

    2006-01-01

    We analyzed a global collection of Mycobacterium tuberculosis strains using 212 single nucleotide polymorphism (SNP) markers. SNP nucleotide diversity was high (average across all SNPs, 0.19), and 96% of the SNP locus pairs were in complete linkage disequilibrium. Cluster analyses identified six deeply branching, phylogenetically distinct SNP cluster groups (SCGs) and five subgroups. The SCGs were strongly associated with the geographical origin of the M. tuberculosis samples and the birthplace of the human hosts. The most ancestral cluster (SCG-1) predominated in patients from the Indian subcontinent, while SCG-1 and another ancestral cluster (SCG-2) predominated in patients from East Asia, suggesting that M. tuberculosis first arose in the Indian subcontinent and spread worldwide through East Asia. Restricted SCG diversity and the prevalence of less ancestral SCGs in indigenous populations in Uganda and Mexico suggested a more recent introduction of M. tuberculosis into these regions. The East African Indian and Beijing spoligotypes were concordant with SCG-1 and SCG-2, respectively; X and Central Asian spoligotypes were also associated with one SCG or subgroup combination. Other clades had less consistent associations with SCGs. Mycobacterial interspersed repetitive unit (MIRU) analysis provided less robust phylogenetic information, and only 6 of the 12 MIRU microsatellite loci were highly differentiated between SCGs as measured by GST. Finally, an algorithm was devised to identify two minimal sets of either 45 or 6 SNPs that could be used in future investigations to enable global collaborations for studies on evolution, strain differentiation, and biological differences of M. tuberculosis. PMID:16385065

  9. Linkage Disequilibrium And Genome-Wide Association Studies In O. sativa

    USDA-ARS?s Scientific Manuscript database

    There is increasing evidence that genome-wide association studies provide a powerful approach to find the genetic basis of complex phenotypic variation in all kinds of species. For this purpose, we developed the first generation 44K Affymetrix SNP array in rice (see Tung et al. poster). We genotyped...

  10. Single Nucleotide Polymorphism (SNP)-Strings: An Alternative Method for Assessing Genetic Associations

    PubMed Central

    Goodin, Douglas S.; Khankhanian, Pouya

    2014-01-01

    Background Genome-wide association studies (GWAS) identify disease-associations for single-nucleotide-polymorphisms (SNPs) from scattered genomic-locations. However, SNPs frequently reside on several different SNP-haplotypes, only some of which may be disease-associated. This circumstance lowers the observed odds-ratio for disease-association. Methodology/Principal Findings Here we develop a method to identify the two SNP-haplotypes, which combine to produce each person’s SNP-genotype over specified chromosomal segments. Two multiple sclerosis (MS)-associated genetic regions were modeled; DRB1 (a Class II molecule of the major histocompatibility complex) and MMEL1 (an endopeptidase that degrades both neuropeptides and β-amyloid). For each locus, we considered sets of eleven adjacent SNPs, surrounding the putative disease-associated gene and spanning ∼200 kb of DNA. The SNP-information was converted into an ordered-set of eleven-numbers (subject-vectors) based on whether a person had zero, one, or two copies of particular SNP-variant at each sequential SNP-location. SNP-strings were defined as those ordered-combinations of eleven-numbers (0 or 1), representing a haplotype, two of which combined to form the observed subject-vector. Subject-vectors were resolved using probabilistic methods. In both regions, only a small number of SNP-strings were present. We compared our method to the SHAPEIT-2 phasing-algorithm. When the SNP-information spanning 200 kb was used, SHAPEIT-2 was inaccurate. When the SHAPEIT-2 window was increased to 2,000 kb, the concordance between the two methods, in both of these eleven-SNP regions, was over 99%, suggesting that, in these regions, both methods were quite accurate. Nevertheless, correspondence was not uniformly high over the entire DNA-span but, rather, was characterized by alternating peaks and valleys of concordance. Moreover, in the valleys of poor-correspondence, SHAPEIT-2 was also inconsistent with itself, suggesting that

  11. Development and validation of the Axiom(®) Apple480K SNP genotyping array.

    PubMed

    Bianco, Luca; Cestaro, Alessandro; Linsmith, Gareth; Muranty, Hélène; Denancé, Caroline; Théron, Anthony; Poncet, Charles; Micheletti, Diego; Kerschbamer, Emanuela; Di Pierro, Erica A; Larger, Simone; Pindo, Massimo; Van de Weg, Eric; Davassi, Alessandro; Laurens, François; Velasco, Riccardo; Durel, Charles-Eric; Troggio, Michela

    2016-04-01

    Cultivated apple (Malus × domestica Borkh.) is one of the most important fruit crops in temperate regions, and has great economic and cultural value. The apple genome is highly heterozygous and has undergone a recent duplication which, combined with a rapid linkage disequilibrium decay, makes it difficult to perform genome-wide association (GWA) studies. Single nucleotide polymorphism arrays offer highly multiplexed assays at a relatively low cost per data point and can be a valid tool for the identification of the markers associated with traits of interest. Here, we describe the development and validation of a 487K SNP Affymetrix Axiom(®) genotyping array for apple and discuss its potential applications. The array has been built from the high-depth resequencing of 63 different cultivars covering most of the genetic diversity in cultivated apple. The SNPs were chosen by applying a focal points approach to enrich genic regions, but also to reach a uniform coverage of non-genic regions. A total of 1324 apple accessions, including the 92 progenies of two mapping populations, have been genotyped with the Axiom(®) Apple480K to assess the effectiveness of the array. A large majority of SNPs (359 994 or 74%) fell in the stringent class of poly high resolution polymorphisms. We also devised a filtering procedure to identify a subset of 275K very robust markers that can be safely used for germplasm surveys in apple. The Axiom(®) Apple480K has now been commercially released both for public and proprietary use and will likely be a reference tool for GWA studies in apple. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  12. Differential growth of Mycobacterium leprae strains (SNP genotypes) in armadillos.

    PubMed

    Sharma, Rahul; Singh, Pushpendra; Pena, Maria; Subramanian, Ramesh; Chouljenko, Vladmir; Kim, Joohyun; Kim, Nayong; Caskey, John; Baudena, Marie A; Adams, Linda B; Truman, Richard W

    2018-04-14

    Leprosy (Hansen's Disease) has occurred throughout human history, and persists today at a low prevalence in most populations. Caused by Mycobacterium leprae, the infection primarily involves the skin, mucosa and peripheral nerves. The susceptible host range for Mycobacterium leprae is quite narrow. Besides humans, nine banded armadillos (Dasypus novemcinctus) and red squirrels (Sciurus vulgaris) are the only other natural hosts for M. leprae, but only armadillos recapitulate the disease as seen in humans. Armadillos across the Southern United States harbor a single predominant genotypic strain (SNP Type-3I) of M. leprae, which is also implicated in the zoonotic transmission of leprosy. We investigated, whether the zoonotic strain (3I) has any notable growth advantages in armadillos over another genetically distant strain-type (SNP Type-4P) of M. leprae, and if M. leprae strains manifest any notably different pathology among armadillos. We co-infected armadillos (n = 6) with 2 × 10 9 highly viable M. leprae of both strains and assessed the relative growth and dissemination of each strain in the animals. We also analyzed 12 additional armadillos, 6 each individually infected with the same quantity of either strain. The infections were allowed to fulminate and the clinical manifestations of the disease were noted. Animals were humanely sacrificed at the terminal stage of infection and the number of bacilli per gram of liver, spleen and lymph node tissue were enumerated by Q-PCR assay. The growth of M. leprae strain 4P was significantly higher (P < 0.05) than 3I when each strain was propagated individually in armadillos. Significantly (P < 0.0001) higher growth of the 4P strain also was confirmed among animals co-infected with both 3I and 4P strain types using whole genome sequencing. Interestingly, the zoonotic strain does not exhibit any growth advantage in these non-human hosts, but the varied proliferation of the two M. leprae strains within

  13. A 48 SNP set for grapevine cultivar identification

    PubMed Central

    2011-01-01

    Background Rapid and consistent genotyping is an important requirement for cultivar identification in many crop species. Among them grapevine cultivars have been the subject of multiple studies given the large number of synonyms and homonyms generated during many centuries of vegetative multiplication and exchange. Simple sequence repeat (SSR) markers have been preferred until now because of their high level of polymorphism, their codominant nature and their high profile repeatability. However, the rapid application of partial or complete genome sequencing approaches is identifying thousands of single nucleotide polymorphisms (SNP) that can be very useful for such purposes. Although SNP markers are bi-allelic, and therefore not as polymorphic as microsatellites, the high number of loci that can be multiplexed and the possibilities of automation as well as their highly repeatable results under any analytical procedure make them the future markers of choice for any type of genetic identification. Results We analyzed over 300 SNP in the genome of grapevine using a re-sequencing strategy in a selection of 11 genotypes. Among the identified polymorphisms, we selected 48 SNP spread across all grapevine chromosomes with allele frequencies balanced enough as to provide sufficient information content for genetic identification in grapevine allowing for good genotyping success rate. Marker stability was tested in repeated analyses of a selected group of cultivars obtained worldwide to demonstrate their usefulness in genetic identification. Conclusions We have selected a set of 48 stable SNP markers with a high discrimination power and a uniform genome distribution (2-3 markers/chromosome), which is proposed as a standard set for grapevine (Vitis vinifera L.) genotyping. Any previous problems derived from microsatellite allele confusion between labs or the need to run reference cultivars to identify allele sizes disappear using this type of marker. Furthermore, because SNP

  14. Detection of virulent Escherichia coli O157 strains using multiplex PCR and single base sequencing for SNP characterization.

    PubMed

    Haugum, K; Brandal, L T; Løbersli, I; Kapperud, G; Lindstedt, B-A

    2011-06-01

    To compare 167 Norwegian human and nonhuman Escherichia coli O157:H7/NM (nonmotile) isolates with respect to an A/T single nucleotide polymorphism (SNP) in the tir gene and to detect specific SNPs that differentiate STEC O157 into distinct virulence clades (1-3 and 8). We developed a multiplex PCR followed by single base sequencing for detection of the SNPs, and examined the association among SNP genotype, virulence profile (stx and eae status), multilocus variable number of tandem repeats analysis (MLVA) profile and clinical outcome. We found an over-representation of the T allele among human strains compared to nonhuman strains, including 5/6 haemolytic-uraemic syndrome cases. Fourteen strains belonged to clade 8, followed by two clade 2 strains. No clade 1 nor 3 isolates were observed. stx1 in combination with either stx2(EDL933) or stx2c were frequently observed among human strains, whereas stx2c was dominating in nonhuman strains. MLVA indicated that only single cases or small outbreaks with E. coli O157 have been observed in Norway through the years 1993-2008. We observed that the tir-255 A/T SNP and the stx status were different between human and nonhuman O157 strains. No major outbreaks were observed, and only a few strains were differentiated into the virulence clades 2 and 8. The detection of virulence clade-specific SNPs enables the rapid designation of virulent E. coli O157 strains, especially in outbreak situations. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  15. Following the footprints of polymorphic inversions on SNP data: from detection to association tests

    PubMed Central

    Cáceres, Alejandro; González, Juan R.

    2015-01-01

    Inversion polymorphisms have important phenotypic and evolutionary consequences in humans. Two different methodologies have been used to infer inversions from SNP dense data, enabling the use of large cohorts for their study. One approach relies on the differences in linkage disequilibrium across breakpoints; the other one captures the internal haplotype groups that tag the inversion status of chromosomes. In this article, we assessed the convergence of the two methods in the detection of 20 human inversions that have been reported in the literature. The methods converged in four inversions including inv-8p23, for which we studied its association with low-BMI in American children. Using a novel haplotype tagging method with control on inversion ancestry, we computed the frequency of inv-8p23 in two American cohorts and observed inversion haplotype admixture. Accounting for haplotype ancestry, we found that the European inverted allele in children carries a recessive risk of underweight, validated in an independent Spanish cohort (combined: OR= 2.00, P = 0.001). While the footprints of inversions on SNP data are complex, we show that systematic analyses, such as convergence of different methods and controlling for ancestry, can reveal the contribution of inversions to the ancestral composition of populations and to the heritability of human disease. PMID:25672393

  16. Analysis of high-order SNP barcodes in mitochondrial D-loop for chronic dialysis susceptibility.

    PubMed

    Yang, Cheng-Hong; Lin, Yu-Da; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2016-10-01

    Positively identifying disease-associated single nucleotide polymorphism (SNP) markers in genome-wide studies entails the complex association analysis of a huge number of SNPs. Such large numbers of SNP barcode (SNP/genotype combinations) continue to pose serious computational challenges, especially for high-dimensional data. We propose a novel exploiting SNP barcode method based on differential evolution, termed IDE (improved differential evolution). IDE uses a "top combination strategy" to improve the ability of differential evolution to explore high-order SNP barcodes in high-dimensional data. We simulate disease data and use real chronic dialysis data to test four global optimization algorithms. In 48 simulated disease models, we show that IDE outperforms existing global optimization algorithms in terms of exploring ability and power to detect the specific SNP/genotype combinations with a maximum difference between cases and controls. In real data, we show that IDE can be used to evaluate the relative effects of each individual SNP on disease susceptibility. IDE generated significant SNP barcode with less computational complexity than the other algorithms, making IDE ideally suited for analysis of high-order SNP barcodes. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Candidate SNP markers of aggressiveness-related complications and comorbidities of genetic diseases are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters.

    PubMed

    Chadaeva, Irina V; Ponomarenko, Mikhail P; Rasskazov, Dmitry A; Sharypova, Ekaterina B; Kashina, Elena V; Matveeva, Marina Yu; Arshinova, Tatjana V; Ponomarenko, Petr M; Arkova, Olga V; Bondar, Natalia P; Savinkova, Ludmila K; Kolchanov, Nikolay A

    2016-12-28

    Aggressiveness in humans is a hereditary behavioral trait that mobilizes all systems of the body-first of all, the nervous and endocrine systems, and then the respiratory, vascular, muscular, and others-e.g., for the defense of oneself, children, family, shelter, territory, and other possessions as well as personal interests. The level of aggressiveness of a person determines many other characteristics of quality of life and lifespan, acting as a stress factor. Aggressive behavior depends on many parameters such as age, gender, diseases and treatment, diet, and environmental conditions. Among them, genetic factors are believed to be the main parameters that are well-studied at the factual level, but in actuality, genome-wide studies of aggressive behavior appeared relatively recently. One of the biggest projects of the modern science-1000 Genomes-involves identification of single nucleotide polymorphisms (SNPs), i.e., differences of individual genomes from the reference genome. SNPs can be associated with hereditary diseases, their complications, comorbidities, and responses to stress or a drug. Clinical comparisons between cohorts of patients and healthy volunteers (as a control) allow for identifying SNPs whose allele frequencies significantly separate them from one another as markers of the above conditions. Computer-based preliminary analysis of millions of SNPs detected by the 1000 Genomes project can accelerate clinical search for SNP markers due to preliminary whole-genome search for the most meaningful candidate SNP markers and discarding of neutral and poorly substantiated SNPs. Here, we combine two computer-based search methods for SNPs (that alter gene expression) {i} Web service SNP_TATA_Comparator (DNA sequence analysis) and {ii} PubMed-based manual search for articles on aggressiveness using heuristic keywords. Near the known binding sites for TATA-binding protein (TBP) in human gene promoters, we found aggressiveness-related candidate SNP markers

  18. Performance comparison of SNP detection tools with illumina exome sequencing data—an assessment using both family pedigree information and sample-matched SNP array data

    PubMed Central

    Yi, Ming; Zhao, Yongmei; Jia, Li; He, Mei; Kebebew, Electron; Stephens, Robert M.

    2014-01-01

    To apply exome-seq-derived variants in the clinical setting, there is an urgent need to identify the best variant caller(s) from a large collection of available options. We have used an Illumina exome-seq dataset as a benchmark, with two validation scenarios—family pedigree information and SNP array data for the same samples, permitting global high-throughput cross-validation, to evaluate the quality of SNP calls derived from several popular variant discovery tools from both the open-source and commercial communities using a set of designated quality metrics. To the best of our knowledge, this is the first large-scale performance comparison of exome-seq variant discovery tools using high-throughput validation with both Mendelian inheritance checking and SNP array data, which allows us to gain insights into the accuracy of SNP calling through such high-throughput validation in an unprecedented way, whereas the previously reported comparison studies have only assessed concordance of these tools without directly assessing the quality of the derived SNPs. More importantly, the main purpose of our study was to establish a reusable procedure that applies high-throughput validation to compare the quality of SNP discovery tools with a focus on exome-seq, which can be used to compare any forthcoming tool(s) of interest. PMID:24831545

  19. Intronic SNP in ESR1 encoding human estrogen receptor alpha is associated with brain ESR1 mRNA isoform expression and behavioral traits.

    PubMed

    Pinsonneault, Julia K; Frater, John T; Kompa, Benjamin; Mascarenhas, Roshan; Wang, Danxin; Sadee, Wolfgang

    2017-01-01

    Genetic variants of ESR1 have been implicated in multiple diseases, including behavioral disorders, but causative variants remain uncertain. We have searched for regulatory variants affecting ESR1 expression in human brain, measuring allelic ESR1 mRNA expression in human brain tissues with marker SNPs in exon4 representing ESR1-008 (or ESRα-36), and in the 3'UTR of ESR1-203, two main ESR1 isoforms in brain. In prefrontal cortex from subjects with bipolar disorder, schizophrenia, and controls (n = 35 each; Stanley Foundation brain bank), allelic ESR1 mRNA ratios deviated from unity up to tenfold at the exon4 marker SNP, with large allelic ratios observed primarily in bipolar and schizophrenic subjects. SNP scanning and targeted sequencing identified rs2144025, associated with large allelic mRNA ratios (p = 1.6E10-6). Moreover, rs2144025 was significantly associated with ESR1 mRNA levels in the Brain eQTL Almanac and in brain regions in the Genotype-Tissue Expression project. In four GWAS cohorts, rs2104425 was significantly associated with behavioral traits, including: hypomanic episodes in female bipolar disorder subjects (GAIN bipolar disorder study; p = 0.0004), comorbid psychological symptoms in both males and females with attention deficit hyperactivity disorder (GAIN ADHD, p = 0.00002), psychological diagnoses in female children (eMERGE study of childhood health, subject age ≥9, p = 0.0009), and traits in schizophrenia (e.g., grandiose delusions, GAIN schizophrenia, p = 0.0004). The first common ESR1 variant (MAF 12-33% across races) linked to regulatory functions, rs2144025 appears conditionally to affect ESR1 mRNA expression in the brain and modulate traits in behavioral disorders.

  20. Mining conifers’ mega-genome using rapid and efficient multiplexed high-throughput genotyping-by-sequencing (GBS) SNP discovery platform

    USDA-ARS?s Scientific Manuscript database

    Next-generation sequencing (NGS) technologies are revolutionizing both medical and biological research through generation of massive SNP data sets for identifying heritable genome variation underlying key traits, from rare human diseases to important agronomic phenotypes in crop species. We evaluate...

  1. Development and Applications of a Bovine 50,000 SNP Chip

    USDA-ARS?s Scientific Manuscript database

    To develop an Illumina iSelect high density single nucleotide polymorphism (SNP) assay for cattle, the collaborative iBMC (Illumina, USDA ARS Beltsville, University of Missouri, USDA ARS Clay Center) Consortium first performed a de novo SNP discovery project in which genomic reduced representation l...

  2. Expression Profiling Smackdown: Human Transcriptome Array HTA 2.0 vs. RNA-Seq

    PubMed Central

    Palermo, Meghann; Driscoll, Heather; Tighe, Scott; Dragon, Julie; Bond, Jeff; Shukla, Arti; Vangala, Mahesh; Vincent, James; Hunter, Tim

    2014-01-01

    The advent of both microarray and massively parallel sequencing have revolutionized high-throughput analysis of the human transcriptome. Due to limitations in microarray technology, detecting and quantifying coding transcript isoforms, in addition to non-coding transcripts, has been challenging. As a result, RNA-Seq has been the preferred method for characterizing the full human transcriptome, until now. A new high-resolution array from Affymetrix, GeneChip Human Transcriptome Array 2.0 (HTA 2.0), has been designed to interrogate all transcript isoforms in the human transcriptome with >6 million probes targeting coding transcripts, exon-exon splice junctions, and non-coding transcripts. Here we compare expression results from GeneChip HTA 2.0 and RNA-Seq data using identical RNA extractions from three samples each of healthy human mesothelial cells in culture, LP9-C1, and healthy mesothelial cells treated with asbestos, LP9-A1. For GeneChip HTA 2.0 sample preparation, we chose to compare two target preparation methods, NuGEN Ovation Pico WTA V2 with the Encore Biotin Module versus Affymetrix's GeneChip WT PLUS with the WT Terminal Labeling Kit, on identical RNA extractions from both untreated and treated samples. These same RNA extractions were used for the RNA-Seq library preparation. All analyses were performed in Partek Genomics Suite 6.6. Expression profiles for control and asbestos-treated mesothelial cells prepared with NuGEN versus Affymetrix target preparation methods (GeneChip HTA 2.0) are compared to each other as well as to RNA-Seq results.

  3. Whole-genome single-nucleotide polymorphism (SNP) marker discovery and association analysis with the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content in Larimichthys crocea

    PubMed Central

    Xiao, Shijun; Wang, Panpan; Dong, Linsong; Zhang, Yaguang; Han, Zhaofang; Wang, Qiurong

    2016-01-01

    Whole-genome single-nucleotide polymorphism (SNP) markers are valuable genetic resources for the association and conservation studies. Genome-wide SNP development in many teleost species are still challenging because of the genome complexity and the cost of re-sequencing. Genotyping-By-Sequencing (GBS) provided an efficient reduced representative method to squeeze cost for SNP detection; however, most of recent GBS applications were reported on plant organisms. In this work, we used an EcoRI-NlaIII based GBS protocol to teleost large yellow croaker, an important commercial fish in China and East-Asia, and reported the first whole-genome SNP development for the species. 69,845 high quality SNP markers that evenly distributed along genome were detected in at least 80% of 500 individuals. Nearly 95% randomly selected genotypes were successfully validated by Sequenom MassARRAY assay. The association studies with the muscle eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content discovered 39 significant SNP markers, contributing as high up to ∼63% genetic variance that explained by all markers. Functional genes that involved in fat digestion and absorption pathway were identified, such as APOB, CRAT and OSBPL10. Notably, PPT2 Gene, previously identified in the association study of the plasma n-3 and n-6 polyunsaturated fatty acid level in human, was re-discovered in large yellow croaker. Our study verified that EcoRI-NlaIII based GBS could produce quality SNP markers in a cost-efficient manner in teleost genome. The developed SNP markers and the EPA and DHA associated SNP loci provided invaluable resources for the population structure, conservation genetics and genomic selection of large yellow croaker and other fish organisms. PMID:28028455

  4. SNPit: a federated data integration system for the purpose of functional SNP annotation

    PubMed Central

    Shen, Terry H; Carlson, Christopher S; Tarczy-Hornoch, Peter

    2009-01-01

    Genome wide association studies can potentially identify the genetic causes behind the majority of human diseases. With the advent of more advanced genotyping techniques, there is now an explosion of data gathered on single nucleotide polymorphisms (SNPs). The need exists for an integrated system that can provide up-to-date functional annotation information on SNPs. We have developed the SNP Integration Tool (SNPit) system to address this need. Built upon a federated data integration system, SNPit provides current information on a comprehensive list of SNP data sources. Additional logical inference analysis was included through an inference engine plug in. The SNPit web servlet is available online for use. SNPit allows users to go to one source for up-to-date information on the functional annotation of SNPs. A tool that can help to integrate and analyze the potential functional significance of SNPs is important for understanding the results from genome wide association studies. PMID:19327864

  5. SNPit: a federated data integration system for the purpose of functional SNP annotation.

    PubMed

    Shen, Terry H; Carlson, Christopher S; Tarczy-Hornoch, Peter

    2009-08-01

    Genome wide association studies can potentially identify the genetic causes behind the majority of human diseases. With the advent of more advanced genotyping techniques, there is now an explosion of data gathered on single nucleotide polymorphisms (SNPs). The need exists for an integrated system that can provide up-to-date functional annotation information on SNPs. We have developed the SNP Integration Tool (SNPit) system to address this need. Built upon a federated data integration system, SNPit provides current information on a comprehensive list of SNP data sources. Additional logical inference analysis was included through an inference engine plug in. The SNPit web servlet is available online for use. SNPit allows users to go to one source for up-to-date information on the functional annotation of SNPs. A tool that can help to integrate and analyze the potential functional significance of SNPs is important for understanding the results from genome wide association studies.

  6. Improved technique that allows the performance of large-scale SNP genotyping on DNA immobilized by FTA technology.

    PubMed

    He, Hongbin; Argiro, Laurent; Dessein, Helia; Chevillard, Christophe

    2007-01-01

    FTA technology is a novel method designed to simplify the collection, shipment, archiving and purification of nucleic acids from a wide variety of biological sources. The number of punches that can normally be obtained from a single specimen card are often however, insufficient for the testing of the large numbers of loci required to identify genetic factors that control human susceptibility or resistance to multifactorial diseases. In this study, we propose an improved technique to perform large-scale SNP genotyping. We applied a whole genome amplification method to amplify DNA from buccal cell samples stabilized using FTA technology. The results show that using the improved technique it is possible to perform up to 15,000 genotypes from one buccal cell sample. Furthermore, the procedure is simple. We consider this improved technique to be a promising methods for performing large-scale SNP genotyping because the FTA technology simplifies the collection, shipment, archiving and purification of DNA, while whole genome amplification of FTA card bound DNA produces sufficient material for the determination of thousands of SNP genotypes.

  7. Accuracy of direct genomic values in Holstein bulls and cows using subsets of SNP markers

    PubMed Central

    2010-01-01

    Background At the current price, the use of high-density single nucleotide polymorphisms (SNP) genotyping assays in genomic selection of dairy cattle is limited to applications involving elite sires and dams. The objective of this study was to evaluate the use of low-density assays to predict direct genomic value (DGV) on five milk production traits, an overall conformation trait, a survival index, and two profit index traits (APR, ASI). Methods Dense SNP genotypes were available for 42,576 SNP for 2,114 Holstein bulls and 510 cows. A subset of 1,847 bulls born between 1955 and 2004 was used as a training set to fit models with various sets of pre-selected SNP. A group of 297 bulls born between 2001 and 2004 and all cows born between 1992 and 2004 were used to evaluate the accuracy of DGV prediction. Ridge regression (RR) and partial least squares regression (PLSR) were used to derive prediction equations and to rank SNP based on the absolute value of the regression coefficients. Four alternative strategies were applied to select subset of SNP, namely: subsets of the highest ranked SNP for each individual trait, or a single subset of evenly spaced SNP, where SNP were selected based on their rank for ASI, APR or minor allele frequency within intervals of approximately equal length. Results RR and PLSR performed very similarly to predict DGV, with PLSR performing better for low-density assays and RR for higher-density SNP sets. When using all SNP, DGV predictions for production traits, which have a higher heritability, were more accurate (0.52-0.64) than for survival (0.19-0.20), which has a low heritability. The gain in accuracy using subsets that included the highest ranked SNP for each trait was marginal (5-6%) over a common set of evenly spaced SNP when at least 3,000 SNP were used. Subsets containing 3,000 SNP provided more than 90% of the accuracy that could be achieved with a high-density assay for cows, and 80% of the high-density assay for young bulls

  8. Linkage disequilibrium between STRPs and SNPs across the human genome.

    PubMed

    Payseur, Bret A; Place, Michael; Weber, James L

    2008-05-01

    Patterns of linkage disequilibrium (LD) reveal the action of evolutionary processes and provide crucial information for association mapping of disease genes. Although recent studies have described the landscape of LD among single nucleotide polymorphisms (SNPs) from across the human genome, associations involving other classes of molecular variation remain poorly understood. In addition to recombination and population history, mutation rate and process are expected to shape LD. To test this idea, we measured associations between short-tandem-repeat polymorphisms (STRPs), which can mutate rapidly and recurrently, and SNPs in 721 regions across the human genome. We directly compared STRP-SNP LD with SNP-SNP LD from the same genomic regions in the human HapMap populations. The intensity of STRP-SNP LD, measured by the average of D', was reduced, consistent with the action of recurrent mutation. Nevertheless, a higher fraction of STRP-SNP pairs than SNP-SNP pairs showed significant LD, on both short (up to 50 kb) and long (cM) scales. These results reveal the substantial effects of mutational processes on LD at STRPs and provide important measures of the potential of STRPs for association mapping of disease genes.

  9. A Coordinated Approach to Peach SNP Discovery in RosBREED

    USDA-ARS?s Scientific Manuscript database

    In the USDA-funded multi-institutional and trans-disciplinary project, “RosBREED”, crop-specific SNP genome scan platforms are being developed for peach, apple, strawberry, and cherry at a resolution of at least one polymorphic SNP marker every 5 cM in any random cross, for use in Pedigree-Based Ana...

  10. AA9int: SNP Interaction Pattern Search Using Non-Hierarchical Additive Model Set.

    PubMed

    Lin, Hui-Yi; Huang, Po-Yu; Chen, Dung-Tsa; Tung, Heng-Yuan; Sellers, Thomas A; Pow-Sang, Julio; Eeles, Rosalind; Easton, Doug; Kote-Jarai, Zsofia; Amin Al Olama, Ali; Benlloch, Sara; Muir, Kenneth; Giles, Graham G; Wiklund, Fredrik; Gronberg, Henrik; Haiman, Christopher A; Schleutker, Johanna; Nordestgaard, Børge G; Travis, Ruth C; Hamdy, Freddie; Neal, David E; Pashayan, Nora; Khaw, Kay-Tee; Stanford, Janet L; Blot, William J; Thibodeau, Stephen N; Maier, Christiane; Kibel, Adam S; Cybulski, Cezary; Cannon-Albright, Lisa; Brenner, Hermann; Kaneva, Radka; Batra, Jyotsna; Teixeira, Manuel R; Pandha, Hardev; Lu, Yong-Jie; Park, Jong Y

    2018-06-07

    The use of single nucleotide polymorphism (SNP) interactions to predict complex diseases is getting more attention during the past decade, but related statistical methods are still immature. We previously proposed the SNP Interaction Pattern Identifier (SIPI) approach to evaluate 45 SNP interaction patterns/patterns. SIPI is statistically powerful but suffers from a large computation burden. For large-scale studies, it is necessary to use a powerful and computation-efficient method. The objective of this study is to develop an evidence-based mini-version of SIPI as the screening tool or solitary use and to evaluate the impact of inheritance mode and model structure on detecting SNP-SNP interactions. We tested two candidate approaches: the 'Five-Full' and 'AA9int' method. The Five-Full approach is composed of the five full interaction models considering three inheritance modes (additive, dominant and recessive). The AA9int approach is composed of nine interaction models by considering non-hierarchical model structure and the additive mode. Our simulation results show that AA9int has similar statistical power compared to SIPI and is superior to the Five-Full approach, and the impact of the non-hierarchical model structure is greater than that of the inheritance mode in detecting SNP-SNP interactions. In summary, it is recommended that AA9int is a powerful tool to be used either alone or as the screening stage of a two-stage approach (AA9int+SIPI) for detecting SNP-SNP interactions in large-scale studies. The 'AA9int' and 'parAA9int' functions (standard and parallel computing version) are added in the SIPI R package, which is freely available at https://linhuiyi.github.io/LinHY_Software/. hlin1@lsuhsc.edu. Supplementary data are available at Bioinformatics online.

  11. Intronic SNP in ESR1 encoding human estrogen receptor alpha is associated with brain ESR1 mRNA isoform expression and behavioral traits

    PubMed Central

    Kompa, Benjamin; Mascarenhas, Roshan; Wang, Danxin; Sadee, Wolfgang

    2017-01-01

    Genetic variants of ESR1 have been implicated in multiple diseases, including behavioral disorders, but causative variants remain uncertain. We have searched for regulatory variants affecting ESR1 expression in human brain, measuring allelic ESR1 mRNA expression in human brain tissues with marker SNPs in exon4 representing ESR1-008 (or ESRα-36), and in the 3’UTR of ESR1-203, two main ESR1 isoforms in brain. In prefrontal cortex from subjects with bipolar disorder, schizophrenia, and controls (n = 35 each; Stanley Foundation brain bank), allelic ESR1 mRNA ratios deviated from unity up to tenfold at the exon4 marker SNP, with large allelic ratios observed primarily in bipolar and schizophrenic subjects. SNP scanning and targeted sequencing identified rs2144025, associated with large allelic mRNA ratios (p = 1.6E10-6). Moreover, rs2144025 was significantly associated with ESR1 mRNA levels in the Brain eQTL Almanac and in brain regions in the Genotype-Tissue Expression project. In four GWAS cohorts, rs2104425 was significantly associated with behavioral traits, including: hypomanic episodes in female bipolar disorder subjects (GAIN bipolar disorder study; p = 0.0004), comorbid psychological symptoms in both males and females with attention deficit hyperactivity disorder (GAIN ADHD, p = 0.00002), psychological diagnoses in female children (eMERGE study of childhood health, subject age ≥9, p = 0.0009), and traits in schizophrenia (e.g., grandiose delusions, GAIN schizophrenia, p = 0.0004). The first common ESR1 variant (MAF 12–33% across races) linked to regulatory functions, rs2144025 appears conditionally to affect ESR1 mRNA expression in the brain and modulate traits in behavioral disorders. PMID:28617822

  12. Genome-wide meta-analysis of SNP-by9-ACEI/ARB and SNP-by-thiazide diuretic and effect on serum potassium in cohorts of European and African ancestry.

    PubMed

    Irvin, Marguerite R; Sitlani, Colleen M; Noordam, Raymond; Avery, Christie L; Bis, Joshua C; Floyd, James S; Li, Jin; Limdi, Nita A; Srinivasasainagendra, Vinodh; Stewart, James; de Mutsert, Renée; Mook-Kanamori, Dennis O; Lipovich, Leonard; Kleinbrink, Erica L; Smith, Albert; Bartz, Traci M; Whitsel, Eric A; Uitterlinden, Andre G; Wiggins, Kerri L; Wilson, James G; Zhi, Degui; Stricker, Bruno H; Rotter, Jerome I; Arnett, Donna K; Psaty, Bruce M; Lange, Leslie A

    2018-06-01

    We evaluated interactions of SNP-by-ACE-I/ARB and SNP-by-TD on serum potassium (K+) among users of antihypertensive treatments (anti-HTN). Our study included seven European-ancestry (EA) (N = 4835) and four African-ancestry (AA) cohorts (N = 2016). We performed race-stratified, fixed-effect, inverse-variance-weighted meta-analyses of 2.5 million SNP-by-drug interaction estimates; race-combined meta-analysis; and trans-ethnic fine-mapping. Among EAs, we identified 11 significant SNPs (P < 5 × 10 -8 ) for SNP-ACE-I/ARB interactions on serum K+ that were located between NR2F1-AS1 and ARRDC3-AS1 on chromosome 5 (top SNP rs6878413 P = 1.7 × 10 -8 ; ratio of serum K+ in ACE-I/ARB exposed compared to unexposed is 1.0476, 1.0280, 1.0088 for the TT, AT, and AA genotypes, respectively). Trans-ethnic fine mapping identified the same group of SNPs on chromosome 5 as genome-wide significant for the ACE-I/ARB analysis. In conclusion, SNP-by-ACE-I /ARB interaction analyses uncovered loci that, if replicated, could have future implications for the prevention of arrhythmias due to anti-HTN treatment-related hyperkalemia. Before these loci can be identified as clinically relevant, future validation studies of equal or greater size in comparison to our discovery effort are needed.

  13. Prospecting for pig single nucleotide polymorphisms in the human genome: have we struck gold?

    PubMed

    Grapes, L; Rudd, S; Fernando, R L; Megy, K; Rocha, D; Rothschild, M F

    2006-06-01

    Gene-to-gene variation in the frequency of single nucleotide polymorphisms (SNPs) has been observed in humans, mice, rats, primates and pigs, but a relationship across species in this variation has not been described. Here, the frequency of porcine coding SNPs (cSNPs) identified by in silico methods, and the frequency of murine cSNPs, were compared with the frequency of human cSNPs across homologous genes. From 150,000 porcine expressed sequence tag (EST) sequences, a total of 452 SNP-containing sequence clusters were found, totalling 1394 putative SNPs. All the clustered porcine EST annotations and SNP data have been made publicly available at http://sputnik.btk.fi/project?name=swine. Human and murine cSNPs were identified from dbSNP and were characterized as either validated or total number of cSNPs (validated plus non-validated) for comparison purposes. The correlation between in silico pig cSNP and validated human cSNP densities was found to be 0.77 (p < 0.00001) for a set of 25 homologous genes, while a correlation of 0.48 (p < 0.0005) was found for a primarily random sample of 50 homologous human and mouse genes. This is the first evidence of conserved gene-to-gene variability in cSNP frequency across species and indicates that site-directed screening of porcine genes that are homologous to cSNP-rich human genes may rapidly advance cSNP discovery in pigs.

  14. Establishment of a protocol for the gene expression analysis of laser microdissected rat kidney samples with affymetrix genechips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stemmer, Kerstin; Ellinger-Ziegelbauer, Heidrun; Lotz, Kerstin

    2006-11-15

    Laser microdissection in conjunction with microarray technology allows selective isolation and analysis of specific cell populations, e.g., preneoplastic renal lesions. To date, only limited information is available on sample preparation and preservation techniques that result in both optimal histomorphological preservation of sections and high-quality RNA for microarray analysis. Furthermore, amplification of minute amounts of RNA from microdissected renal samples allowing analysis with genechips has only scantily been addressed to date. The objective of this study was therefore to establish a reliable and reproducible protocol for laser microdissection in conjunction with microarray technology using kidney tissue from Eker rats p.o. treatedmore » for 7 days and 6 months with 10 and 1 mg Aristolochic acid/kg bw, respectively. Kidney tissues were preserved in RNAlater or snap frozen. Cryosections were cut and stained with either H and E or cresyl violet for subsequent morphological and RNA quality assessment and laser microdissection. RNA quality was comparable in snap frozen and RNAlater-preserved samples, however, the histomorphological preservation of renal sections was much better following cryopreservation. Moreover, the different staining techniques in combination with sample processing time at room temperature can have an influence on RNA quality. Different RNA amplification protocols were shown to have an impact on gene expression profiles as demonstrated with Affymetrix Rat Genome 230{sub 2}.0 arrays. Considering all the parameters analyzed in this study, a protocol for RNA isolation from laser microdissected samples with subsequent Affymetrix chip hybridization was established that was also successfully applied to preneoplastic lesions laser microdissected from Aristolochic acid-treated rats.« less

  15. High-throughput SNP genotyping for breeding applications in rice using the BeadXpress platform

    USDA-ARS?s Scientific Manuscript database

    Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...

  16. SNP diversity of Enterococcus faecalis and Enterococcus faecium in a South East Queensland waterway, Australia, and associated antibiotic resistance gene profiles

    PubMed Central

    2011-01-01

    Background Enterococcus faecalis and Enterococcus faecium are associated with faecal pollution of water, linked to swimmer-associated gastroenteritis and demonstrate a wide range of antibiotic resistance. The Coomera River is a main water source for the Pimpama-Coomera watershed and is located in South East Queensland, Australia, which is used intensively for agriculture and recreational purposes. This study investigated the diversity of E. faecalis and E. faecium using Single Nucleotide Polymorphisms (SNPs) and associated antibiotic resistance profiles. Results Total enterococcal counts (cfu/ml) for three/six sampling sites were above the United States Environmental Protection Agency (USEPA) recommended level during rainfall periods and fall into categories B and C of the Australian National Health and Medical Research Council (NHMRC) guidelines (with a 1-10% gastrointestinal illness risk). E. faecalis and E. faecium isolates were grouped into 29 and 23 SNP profiles (validated by MLST analysis) respectively. This study showed the high diversity of E. faecalis and E. faecium over a period of two years and both human-related and human-specific SNP profiles were identified. 81.8% of E. faecalis and 70.21% of E. faecium SNP profiles were associated with genotypic and phenotypic antibiotic resistance. Gentamicin resistance was higher in E. faecalis (47% resistant) and harboured the aac(6')-aph(2') gene. Ciprofloxacin resistance was more common in E. faecium (12.7% resistant) and gyrA gene mutations were detected in these isolates. Tetracycline resistance was less common in both species while tet(L) and tet(M) genes were more prevalent. Ampicillin resistance was only found in E. faecium isolates with mutations in the pbp5 gene. Vancomycin resistance was not detected in any of the isolates. We found that antibiotic resistance profiles further sub-divided the SNP profiles of both E. faecalis and E. faecium. Conclusions The distribution of E. faecalis and E. faecium

  17. Detection, breakpoint identification and detailed characterisation of a CNV at the FRA16D site using SNP assays.

    PubMed

    Winchester, L; Newbury, D F; Monaco, A P; Ragoussis, J

    2008-01-01

    Copy Number Variants (CNV) and other submicroscopic structural changes are now recognised to be widespread across the human genome. We show that SNP data generated for association study can be utilised for the identification of deletion CNVs. During analysis of data for an SNP association study for Specific Language Impairment (SLI) a deletion was identified. SLI adversely affects the language development of children in the absence of any obvious cause. Previous studies have found linkage to a region on chromosome 16. The deletion was located in a known fragile site FRA16D in intron 5-6 of the WWOX gene (also known as FOR). Changes in the FRA16D site have been previously linked to cancer and are often characterised in cell lines. A long-range PCR assay was used to confirm the existence of the deletion. We also show the breakpoint identification and large-scale characterisation of this CNV in a normal human sample set. Copyright 2009 S. Karger AG, Basel.

  18. SNP discovery and genotyping using Genotyping-by-Sequencing in Pekin ducks.

    PubMed

    Zhu, Feng; Cui, Qian-Qian; Hou, Zhuo-Cheng

    2016-11-15

    Genomic selection and genome-wide association studies need thousands to millions of SNPs. However, many non-model species do not have reference chips for detecting variation. Our goal was to develop and validate an inexpensive but effective method for detecting SNP variation. Genotyping by sequencing (GBS) can be a highly efficient strategy for genome-wide SNP detection, as an alternative to microarray chips. Here, we developed a GBS protocol for ducks and tested it to genotype 49 Pekin ducks. A total of 169,209 SNPs were identified from all animals, with a mean of 55,920 SNPs per individual. The average SNP density reached 1156 SNPs/MB. In this study, the first application of GBS to ducks, we demonstrate the power and simplicity of this method. GBS can be used for genetic studies in to provide an effective method for genome-wide SNP discovery.

  19. Optimal Design of Low-Density SNP Arrays for Genomic Prediction: Algorithm and Applications

    PubMed Central

    Wu, Xiao-Lin; Xu, Jiaqi; Feng, Guofei; Wiggans, George R.; Taylor, Jeremy F.; He, Jun; Qian, Changsong; Qiu, Jiansheng; Simpson, Barry; Walker, Jeremy; Bauck, Stewart

    2016-01-01

    Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for the optimal design of LD SNP chips. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optimal LD SNP chips that can be imputed accurately to medium-density (MD) or high-density (HD) SNP genotypes for genomic prediction. The objective function facilitates maximization of non-gap map length and system information for the SNP chip, and the latter is computed either as locus-averaged (LASE) or haplotype-averaged Shannon entropy (HASE) and adjusted for uniformity of the SNP distribution. HASE performed better than LASE with ≤1,000 SNPs, but required considerably more computing time. Nevertheless, the differences diminished when >5,000 SNPs were selected. Optimization was accomplished conditionally on the presence of SNPs that were obligated to each chromosome. The frame location of SNPs on a chip can be either uniform (evenly spaced) or non-uniform. For the latter design, a tunable empirical Beta distribution was used to guide location distribution of frame SNPs such that both ends of each chromosome were enriched with SNPs. The SNP distribution on each chromosome was finalized through the objective function that was locally and empirically maximized. This MOLO algorithm was capable of selecting a set of approximately evenly-spaced and highly-informative SNPs, which in turn led to increased imputation accuracy compared with selection solely of evenly-spaced SNPs. Imputation accuracy increased with LD chip size, and imputation error rate was extremely low for chips with ≥3,000 SNPs. Assuming that genotyping or imputation error occurs at random, imputation error rate can be viewed as the upper limit for genomic prediction error. Our results show that about 25% of imputation error rate was propagated to genomic prediction in an Angus population. The

  20. Optimal Design of Low-Density SNP Arrays for Genomic Prediction: Algorithm and Applications.

    PubMed

    Wu, Xiao-Lin; Xu, Jiaqi; Feng, Guofei; Wiggans, George R; Taylor, Jeremy F; He, Jun; Qian, Changsong; Qiu, Jiansheng; Simpson, Barry; Walker, Jeremy; Bauck, Stewart

    2016-01-01

    Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for the optimal design of LD SNP chips. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optimal LD SNP chips that can be imputed accurately to medium-density (MD) or high-density (HD) SNP genotypes for genomic prediction. The objective function facilitates maximization of non-gap map length and system information for the SNP chip, and the latter is computed either as locus-averaged (LASE) or haplotype-averaged Shannon entropy (HASE) and adjusted for uniformity of the SNP distribution. HASE performed better than LASE with ≤1,000 SNPs, but required considerably more computing time. Nevertheless, the differences diminished when >5,000 SNPs were selected. Optimization was accomplished conditionally on the presence of SNPs that were obligated to each chromosome. The frame location of SNPs on a chip can be either uniform (evenly spaced) or non-uniform. For the latter design, a tunable empirical Beta distribution was used to guide location distribution of frame SNPs such that both ends of each chromosome were enriched with SNPs. The SNP distribution on each chromosome was finalized through the objective function that was locally and empirically maximized. This MOLO algorithm was capable of selecting a set of approximately evenly-spaced and highly-informative SNPs, which in turn led to increased imputation accuracy compared with selection solely of evenly-spaced SNPs. Imputation accuracy increased with LD chip size, and imputation error rate was extremely low for chips with ≥3,000 SNPs. Assuming that genotyping or imputation error occurs at random, imputation error rate can be viewed as the upper limit for genomic prediction error. Our results show that about 25% of imputation error rate was propagated to genomic prediction in an Angus population. The

  1. Interest in genomic SNP testing for prostate cancer risk: a pilot survey.

    PubMed

    Hall, Michael J; Ruth, Karen J; Chen, David Yt; Gross, Laura M; Giri, Veda N

    2015-01-01

    Advancements in genomic testing have led to the identification of single nucleotide polymorphisms (SNPs) associated with prostate cancer. The clinical utility of SNP tests to evaluate prostate cancer risk is unclear. Studies have not examined predictors of interest in novel genomic SNP tests for prostate cancer risk in a diverse population. Consecutive participants in the Fox Chase Prostate Cancer Risk Assessment Program (PRAP) (n = 40) and unselected men from surgical urology clinics (n = 40) completed a one-time survey. Items examined interest in genomic SNP testing for prostate cancer risk, knowledge, impact of unsolicited findings, and psychosocial factors including health literacy. Knowledge of genomic SNP tests was low in both groups, but interest was higher among PRAP men (p < 0.001). The prospect of receiving unsolicited results about ancestral genomic markers increased interest in testing in both groups. Multivariable modeling identified several predictors of higher interest in a genomic SNP test including higher perceived risk (p = 0.025), indicating zero reasons for not wanting testing (vs ≥1 reason) (p = 0.013), and higher health literacy (p = 0.016). Knowledge of genomic SNP testing was low in this sample, but higher among high-risk men. High-risk status may increase interest in novel genomic tests, while low literacy may lessen interest.

  2. Forensic SNP genotyping with SNaPshot: Technical considerations for the development and optimization of multiplexed SNP assays.

    PubMed

    Fondevila, M; Børsting, C; Phillips, C; de la Puente, M; Consortium, Euroforen-NoE; Carracedo, A; Morling, N; Lareu, M V

    2017-01-01

    This review explores the key factors that influence the optimization, routine use, and profile interpretation of the SNaPshot single-base extension (SBE) system applied to forensic single-nucleotide polymorphism (SNP) genotyping. Despite being a mainly complimentary DNA genotyping technique to routine STR profiling, use of SNaPshot is an important part of the development of SNP sets for a wide range of forensic applications with these markers, from genotyping highly degraded DNA with very short amplicons to the introduction of SNPs to ascertain the ancestry and physical characteristics of an unidentified contact trace donor. However, this technology, as resourceful as it is, displays several features that depart from the usual STR genotyping far enough to demand a certain degree of expertise from the forensic analyst before tackling the complex casework on which SNaPshot application provides an advantage. In order to provide the basis for developing such expertise, we cover in this paper the most challenging aspects of the SNaPshot technology, focusing on the steps taken to design primer sets, optimize the PCR and single-base extension chemistries, and the important features of the peak patterns observed in typical forensic SNP profiles using SNaPshot. With that purpose in mind, we provide guidelines and troubleshooting for multiplex-SNaPshot-oriented primer design and the resulting capillary electrophoresis (CE) profile interpretation (covering the most commonly observed artifacts and expected departures from the ideal conditions). Copyright © 2017 Central Police University.

  3. Genome-wide SNP association-based localization of a dwarfism gene in Friesian dwarf horses.

    PubMed

    Orr, N; Back, W; Gu, J; Leegwater, P; Govindarajan, P; Conroy, J; Ducro, B; Van Arendonk, J A M; MacHugh, D E; Ennis, S; Hill, E W; Brama, P A J

    2010-12-01

    The recent completion of the horse genome and commercial availability of an equine SNP genotyping array has facilitated the mapping of disease genes. We report putative localization of the gene responsible for dwarfism, a trait in Friesian horses that is thought to have a recessive mode of inheritance, to a 2-MB region of chromosome 14 using just 10 affected animals and 10 controls. We successfully genotyped 34,429 SNPs that were tested for association with dwarfism using chi-square tests. The most significant SNP in our study, BIEC2-239376 (P(2df)=4.54 × 10(-5), P(rec)=7.74 × 10(-6)), is located close to a gene implicated in human dwarfism. Fine-mapping and resequencing analyses did not aid in further localization of the causative variant, and replication of our findings in independent sample sets will be necessary to confirm these results. © 2010 The Authors, Journal compilation © 2010 Stichting International Foundation for Animal Genetics.

  4. SNP discovery and development of genetic markers for mapping innate immune response genes in common carp (Cyprinus carpio).

    PubMed

    Kongchum, Pawapol; Palti, Yniv; Hallerman, Eric M; Hulata, Gideon; David, Lior

    2010-08-01

    Single nucleotide polymorphisms (SNPs) in immune response genes have been reported as markers for susceptibility to infectious diseases in human and livestock. A disease caused by cyprinid herpesvirus 3 (CyHV-3) is highly contagious and virulent in common carp (Cyprinus carpio). With the aim to develop molecular tools for breeding CyHV-3-resistant carp, we have amplified and sequenced 11 candidate genes for viral disease resistance including TLR2, TLR3, TLR4ba, TLR7, TLR9, TLR21, TLR22, MyD88, TRAF6, type I IFN and IL-1beta. For each gene, we initially cloned and sequenced PCR amplicons from 8 to 12 fish (2-3 fish per strain) from the SNP discovery panel. We then identified and evaluated putative SNPs for their polymorphisms in the SNP discovery panel and validated their usefulness for linkage analysis in a full-sib family using the SNaPshot method. Our sequencing results and phylogenetic analyses suggested that TLR3, TLR7 and MyD88 genes are duplicated in the common carp genome. We, therefore, developed locus-specific PCR primers and SNP genotyping assays for the duplicated loci. A total of 48 SNP markers were developed from PCR fragments of the 13 loci (7 single-locus and 3 duplicated genes). Thirty-nine markers were polymorphic with estimated minor allele frequencies of more than 0.1. The utility of the SNP markers was evaluated in one full-sib family and revealed that 20 markers from 9 loci segregated in a disomic and Mendelian pattern and would be useful for linkage analysis. Published by Elsevier Ltd.

  5. Heterogeneous computing architecture for fast detection of SNP-SNP interactions.

    PubMed

    Sluga, Davor; Curk, Tomaz; Zupan, Blaz; Lotric, Uros

    2014-06-25

    The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort. General purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems.

  6. Heterogeneous computing architecture for fast detection of SNP-SNP interactions

    PubMed Central

    2014-01-01

    Background The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. Results We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort. Conclusions General purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems. PMID:24964802

  7. SNP Discovery and Linkage Map Construction in Cultivated Tomato

    PubMed Central

    Shirasawa, Kenta; Isobe, Sachiko; Hirakawa, Hideki; Asamizu, Erika; Fukuoka, Hiroyuki; Just, Daniel; Rothan, Christophe; Sasamoto, Shigemi; Fujishiro, Tsunakazu; Kishida, Yoshie; Kohara, Mitsuyo; Tsuruoka, Hisano; Wada, Tsuyuko; Nakamura, Yasukazu; Sato, Shusei; Tabata, Satoshi

    2010-01-01

    Few intraspecific genetic linkage maps have been reported for cultivated tomato, mainly because genetic diversity within Solanum lycopersicum is much less than that between tomato species. Single nucleotide polymorphisms (SNPs), the most abundant source of genomic variation, are the most promising source of polymorphisms for the construction of linkage maps for closely related intraspecific lines. In this study, we developed SNP markers based on expressed sequence tags for the construction of intraspecific linkage maps in tomato. Out of the 5607 SNP positions detected through in silico analysis, 1536 were selected for high-throughput genotyping of two mapping populations derived from crosses between ‘Micro-Tom’ and either ‘Ailsa Craig’ or ‘M82’. A total of 1137 markers, including 793 out of the 1338 successfully genotyped SNPs, along with 344 simple sequence repeat and intronic polymorphism markers, were mapped onto two linkage maps, which covered 1467.8 and 1422.7 cM, respectively. The SNP markers developed were then screened against cultivated tomato lines in order to estimate the transferability of these SNPs to other breeding materials. The molecular markers and linkage maps represent a milestone in the genomics and genetics, and are the first step toward molecular breeding of cultivated tomato. Information on the DNA markers, linkage maps, and SNP genotypes for these tomato lines is available at http://www.kazusa.or.jp/tomato/. PMID:21044984

  8. The easy road to genome-wide medium density SNP screening in a non-model species: development and application of a 10 K SNP-chip for the house sparrow (Passer domesticus).

    PubMed

    Hagen, Ingerid J; Billing, Anna M; Rønning, Bernt; Pedersen, Sindre A; Pärn, Henrik; Slate, Jon; Jensen, Henrik

    2013-05-01

    With the advent of next generation sequencing, new avenues have opened to study genomics in wild populations of non-model species. Here, we describe a successful approach to a genome-wide medium density Single Nucleotide Polymorphism (SNP) panel in a non-model species, the house sparrow (Passer domesticus), through the development of a 10 K Illumina iSelect HD BeadChip. Genomic DNA and cDNA derived from six individuals were sequenced on a 454 GS FLX system and generated a total of 1.2 million sequences, in which SNPs were detected. As no reference genome exists for the house sparrow, we used the zebra finch (Taeniopygia guttata) reference genome to determine the most likely position of each SNP. The 10 000 SNPs on the SNP-chip were selected to be distributed evenly across 31 chromosomes, giving on average one SNP per 100 000 bp. The SNP-chip was screened across 1968 individual house sparrows from four island populations. Of the original 10 000 SNPs, 7413 were found to be variable, and 99% of these SNPs were successfully called in at least 93% of all individuals. We used the SNP-chip to demonstrate the ability of such genome-wide marker data to detect population sub-division, and compared these results to similar analyses using microsatellites. The SNP-chip will be used to map Quantitative Trait Loci (QTL) for fitness-related phenotypic traits in natural populations. © 2013 Blackwell Publishing Ltd.

  9. Pacifiplex: an ancestry-informative SNP panel centred on Australia and the Pacific region.

    PubMed

    Santos, Carla; Phillips, Christopher; Fondevila, Manuel; Daniel, Runa; van Oorschot, Roland A H; Burchard, Esteban G; Schanfield, Moses S; Souto, Luis; Uacyisrael, Jolame; Via, Marc; Carracedo, Ángel; Lareu, Maria V

    2016-01-01

    The analysis of human population variation is an area of considerable interest in the forensic, medical genetics and anthropological fields. Several forensic single nucleotide polymorphism (SNP) assays provide ancestry-informative genotypes in sensitive tests designed to work with limited DNA samples, including a 34-SNP multiplex differentiating African, European and East Asian ancestries. Although assays capable of differentiating Oceanian ancestry at a global scale have become available, this study describes markers compiled specifically for differentiation of Oceanian populations. A sensitive multiplex assay, termed Pacifiplex, was developed and optimized in a small-scale test applicable to forensic analyses. The Pacifiplex assay comprises 29 ancestry-informative marker SNPs (AIM-SNPs) selected to complement the 34-plex test, that in a combined set distinguish Africans, Europeans, East Asians and Oceanians. Nine Pacific region study populations were genotyped with both SNP assays, then compared to four reference population groups from the HGDP-CEPH human diversity panel. STRUCTURE analyses estimated population cluster membership proportions that aligned with the patterns of variation suggested for each study population's currently inferred demographic histories. Aboriginal Taiwanese and Philippine samples indicated high East Asian ancestry components, Papua New Guinean and Aboriginal Australians samples were predominantly Oceanian, while other populations displayed cluster patterns explained by the distribution of divergence amongst Melanesians, Polynesians and Micronesians. Genotype data from Pacifiplex and 34-plex tests is particularly well suited to analysis of Australian Aboriginal populations and when combined with Y and mitochondrial DNA variation will provide a powerful set of markers for ancestry inference applied to modern Australian demographic profiles. On a broader geographic scale, Pacifiplex adds highly informative data for inferring the ancestry

  10. MultiBLUP: improved SNP-based prediction for complex traits.

    PubMed

    Speed, Doug; Balding, David J

    2014-09-01

    BLUP (best linear unbiased prediction) is widely used to predict complex traits in plant and animal breeding, and increasingly in human genetics. The BLUP mathematical model, which consists of a single random effect term, was adequate when kinships were measured from pedigrees. However, when genome-wide SNPs are used to measure kinships, the BLUP model implicitly assumes that all SNPs have the same effect-size distribution, which is a severe and unnecessary limitation. We propose MultiBLUP, which extends the BLUP model to include multiple random effects, allowing greatly improved prediction when the random effects correspond to classes of SNPs with distinct effect-size variances. The SNP classes can be specified in advance, for example, based on SNP functional annotations, and we also provide an adaptive procedure for determining a suitable partition of SNPs. We apply MultiBLUP to genome-wide association data from the Wellcome Trust Case Control Consortium (seven diseases), and from much larger studies of celiac disease and inflammatory bowel disease, finding that it consistently provides better prediction than alternative methods. Moreover, MultiBLUP is computationally very efficient; for the largest data set, which includes 12,678 individuals and 1.5 M SNPs, the total analysis can be run on a single desktop PC in less than a day and can be parallelized to run even faster. Tools to perform MultiBLUP are freely available in our software LDAK. © 2014 Speed and Balding; Published by Cold Spring Harbor Laboratory Press.

  11. snpGeneSets: An R Package for Genome-Wide Study Annotation

    PubMed Central

    Mei, Hao; Li, Lianna; Jiang, Fan; Simino, Jeannette; Griswold, Michael; Mosley, Thomas; Liu, Shijian

    2016-01-01

    Genome-wide studies (GWS) of SNP associations and differential gene expressions have generated abundant results; next-generation sequencing technology has further boosted the number of variants and genes identified. Effective interpretation requires massive annotation and downstream analysis of these genome-wide results, a computationally challenging task. We developed the snpGeneSets package to simplify annotation and analysis of GWS results. Our package integrates local copies of knowledge bases for SNPs, genes, and gene sets, and implements wrapper functions in the R language to enable transparent access to low-level databases for efficient annotation of large genomic data. The package contains functions that execute three types of annotations: (1) genomic mapping annotation for SNPs and genes and functional annotation for gene sets; (2) bidirectional mapping between SNPs and genes, and genes and gene sets; and (3) calculation of gene effect measures from SNP associations and performance of gene set enrichment analyses to identify functional pathways. We applied snpGeneSets to type 2 diabetes (T2D) results from the NHGRI genome-wide association study (GWAS) catalog, a Finnish GWAS, and a genome-wide expression study (GWES). These studies demonstrate the usefulness of snpGeneSets for annotating and performing enrichment analysis of GWS results. The package is open-source, free, and can be downloaded at: https://www.umc.edu/biostats_software/. PMID:27807048

  12. SNP Discovery by Illumina-Based Transcriptome Sequencing of the Olive and the Genetic Characterization of Turkish Olive Genotypes Revealed by AFLP, SSR and SNP Markers

    PubMed Central

    Kaya, Hilal Betul; Cetin, Oznur; Kaya, Hulya; Sahin, Mustafa; Sefer, Filiz; Kahraman, Abdullah; Tanyolac, Bahattin

    2013-01-01

    Background The olive tree (Olea europaea L.) is a diploid (2n = 2x = 46) outcrossing species mainly grown in the Mediterranean area, where it is the most important oil-producing crop. Because of its economic, cultural and ecological importance, various DNA markers have been used in the olive to characterize and elucidate homonyms, synonyms and unknown accessions. However, a comprehensive characterization and a full sequence of its transcriptome are unavailable, leading to the importance of an efficient large-scale single nucleotide polymorphism (SNP) discovery in olive. The objectives of this study were (1) to discover olive SNPs using next-generation sequencing and to identify SNP primers for cultivar identification and (2) to characterize 96 olive genotypes originating from different regions of Turkey. Methodology/Principal Findings Next-generation sequencing technology was used with five distinct olive genotypes and generated cDNA, producing 126,542,413 reads using an Illumina Genome Analyzer IIx. Following quality and size trimming, the high-quality reads were assembled into 22,052 contigs with an average length of 1,321 bases and 45 singletons. The SNPs were filtered and 2,987 high-quality putative SNP primers were identified. The assembled sequences and singletons were subjected to BLAST similarity searches and annotated with a Gene Ontology identifier. To identify the 96 olive genotypes, these SNP primers were applied to the genotypes in combination with amplified fragment length polymorphism (AFLP) and simple sequence repeats (SSR) markers. Conclusions/Significance This study marks the highest number of SNP markers discovered to date from olive genotypes using transcriptome sequencing. The developed SNP markers will provide a useful source for molecular genetic studies, such as genetic diversity and characterization, high density quantitative trait locus (QTL) analysis, association mapping and map-based gene cloning in the olive. High levels of

  13. Uncovering the molecular secrets of inflammatory breast cancer biology: an integrated analysis of three distinct affymetrix gene expression datasets.

    PubMed

    Van Laere, Steven J; Ueno, Naoto T; Finetti, Pascal; Vermeulen, Peter; Lucci, Anthony; Robertson, Fredika M; Marsan, Melike; Iwamoto, Takayuki; Krishnamurthy, Savitri; Masuda, Hiroko; van Dam, Peter; Woodward, Wendy A; Viens, Patrice; Cristofanilli, Massimo; Birnbaum, Daniel; Dirix, Luc; Reuben, James M; Bertucci, François

    2013-09-01

    Inflammatory breast cancer (IBC) is a poorly characterized form of breast cancer. So far, the results of expression profiling in IBC are inconclusive due to various reasons including limited sample size. Here, we present the integration of three Affymetrix expression datasets collected through the World IBC Consortium allowing us to interrogate the molecular profile of IBC using the largest series of IBC samples ever reported. Affymetrix profiles (HGU133-series) from 137 patients with IBC and 252 patients with non-IBC (nIBC) were analyzed using unsupervised and supervised techniques. Samples were classified according to the molecular subtypes using the PAM50-algorithm. Regression models were used to delineate IBC-specific and molecular subtype-independent changes in gene expression, pathway, and transcription factor activation. Four robust IBC-sample clusters were identified, associated with the different molecular subtypes (P<0.001), all of which were identified in IBC with a similar prevalence as in nIBC, except for the luminal A subtype (19% vs. 42%; P<0.001) and the HER2-enriched subtype (22% vs. 9%; P<0.001). Supervised analysis identified and validated an IBC-specific, molecular subtype-independent 79-gene signature, which held independent prognostic value in a series of 871 nIBCs. Functional analysis revealed attenuated TGF-β signaling in IBC. We show that IBC is transcriptionally heterogeneous and that all molecular subtypes described in nIBC are detectable in IBC, albeit with a different frequency. The molecular profile of IBC, bearing molecular traits of aggressive breast tumor biology, shows attenuation of TGF-β signaling, potentially explaining the metastatic potential of IBC tumor cells in an unexpected manner. ©2013 AACR.

  14. Vitis Phylogenomics: Hybridization Intensities from a SNP Array Outperform Genotype Calls

    PubMed Central

    Miller, Allison J.; Matasci, Naim; Schwaninger, Heidi; Aradhya, Mallikarjuna K.; Prins, Bernard; Zhong, Gan-Yuan; Simon, Charles; Buckler, Edward S.; Myles, Sean

    2013-01-01

    Understanding relationships among species is a fundamental goal of evolutionary biology. Single nucleotide polymorphisms (SNPs) identified through next generation sequencing and related technologies enable phylogeny reconstruction by providing unprecedented numbers of characters for analysis. One approach to SNP-based phylogeny reconstruction is to identify SNPs in a subset of individuals, and then to compile SNPs on an array that can be used to genotype additional samples at hundreds or thousands of sites simultaneously. Although powerful and efficient, this method is subject to ascertainment bias because applying variation discovered in a representative subset to a larger sample favors identification of SNPs with high minor allele frequencies and introduces bias against rare alleles. Here, we demonstrate that the use of hybridization intensity data, rather than genotype calls, reduces the effects of ascertainment bias. Whereas traditional SNP calls assess known variants based on diversity housed in the discovery panel, hybridization intensity data survey variation in the broader sample pool, regardless of whether those variants are present in the initial SNP discovery process. We apply SNP genotype and hybridization intensity data derived from the Vitis9kSNP array developed for grape to show the effects of ascertainment bias and to reconstruct evolutionary relationships among Vitis species. We demonstrate that phylogenies constructed using hybridization intensities suffer less from the distorting effects of ascertainment bias, and are thus more accurate than phylogenies based on genotype calls. Moreover, we reconstruct the phylogeny of the genus Vitis using hybridization data, show that North American subgenus Vitis species are monophyletic, and resolve several previously poorly known relationships among North American species. This study builds on earlier work that applied the Vitis9kSNP array to evolutionary questions within Vitis vinifera and has general

  15. Interim report on updated microarray probes for the LLNL Burkholderia pseudomallei SNP array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, S; Jaing, C

    2012-03-27

    The overall goal of this project is to forensically characterize 100 unknown Burkholderia isolates in the US-Australia collaboration. We will identify genome-wide single nucleotide polymorphisms (SNPs) from B. pseudomallei and near neighbor species including B. mallei, B. thailandensis and B. oklahomensis. We will design microarray probes to detect these SNP markers and analyze 100 Burkholderia genomic DNAs extracted from environmental, clinical and near neighbor isolates from Australian collaborators on the Burkholderia SNP microarray. We will analyze the microarray genotyping results to characterize the genetic diversity of these new isolates and triage the samples for whole genome sequencing. In this interimmore » report, we described the SNP analysis and the microarray probe design for the Burkholderia SNP microarray.« less

  16. No association of IL-10 promoter SNP -592 and -1082 and SIDS.

    PubMed

    Courts, Cornelius; Madea, Burkhard

    2011-01-30

    Sudden infant death syndrome (SIDS) constitutes a considerable percentage of infant death of unknown etiology. The genetically controlled pathway of cytokine mediated response to inflammation is presumed to play a role in SIDS. The A allele of SNP -592 of the promoter region of the anti-inflammatory cytokine IL-10 has been suggested to be associated with SIDS. Herein we investigated whether we could confirm this finding by SNP genotyping a series of 123 cases of SIDS and 406 control cases. We did not find a correlation between the A allele or an A allele containing genotype of IL-10 promoter SNP -592 and SIDS which is in contrast to previous studies. Also, in concordance with previous work, no association of the A allele or A allele containing genotypes of IL-10 promoter SNP -1082 and SIDS was found. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Use of Sequenom Sample ID Plus® SNP Genotyping in Identification of FFPE Tumor Samples

    PubMed Central

    Miller, Jessica K.; Buchner, Nicholas; Timms, Lee; Tam, Shirley; Luo, Xuemei; Brown, Andrew M. K.; Pasternack, Danielle; Bristow, Robert G.; Fraser, Michael; Boutros, Paul C.; McPherson, John D.

    2014-01-01

    Short tandem repeat (STR) analysis, such as the AmpFlSTR® Identifiler® Plus kit, is a standard, PCR-based human genotyping method used in the field of forensics. Misidentification of cell line and tissue DNA can be costly if not detected early; therefore it is necessary to have quality control measures such as STR profiling in place. A major issue in large-scale research studies involving archival formalin-fixed paraffin embedded (FFPE) tissues is that varying levels of DNA degradation can result in failure to correctly identify samples using STR genotyping. PCR amplification of STRs of several hundred base pairs is not always possible when DNA is degraded. The Sample ID Plus® panel from Sequenom allows for human DNA identification and authentication using SNP genotyping. In comparison to lengthy STR amplicons, this multiplexing PCR assay requires amplification of only 76–139 base pairs, and utilizes 47 SNPs to discriminate between individual samples. In this study, we evaluated both STR and SNP genotyping methods of sample identification, with a focus on paired FFPE tumor/normal DNA samples intended for next-generation sequencing (NGS). The ability to successfully validate the identity of FFPE samples can enable cost savings by reducing rework. PMID:24551080

  18. Use of Sequenom sample ID Plus® SNP genotyping in identification of FFPE tumor samples.

    PubMed

    Miller, Jessica K; Buchner, Nicholas; Timms, Lee; Tam, Shirley; Luo, Xuemei; Brown, Andrew M K; Pasternack, Danielle; Bristow, Robert G; Fraser, Michael; Boutros, Paul C; McPherson, John D

    2014-01-01

    Short tandem repeat (STR) analysis, such as the AmpFlSTR® Identifiler® Plus kit, is a standard, PCR-based human genotyping method used in the field of forensics. Misidentification of cell line and tissue DNA can be costly if not detected early; therefore it is necessary to have quality control measures such as STR profiling in place. A major issue in large-scale research studies involving archival formalin-fixed paraffin embedded (FFPE) tissues is that varying levels of DNA degradation can result in failure to correctly identify samples using STR genotyping. PCR amplification of STRs of several hundred base pairs is not always possible when DNA is degraded. The Sample ID Plus® panel from Sequenom allows for human DNA identification and authentication using SNP genotyping. In comparison to lengthy STR amplicons, this multiplexing PCR assay requires amplification of only 76-139 base pairs, and utilizes 47 SNPs to discriminate between individual samples. In this study, we evaluated both STR and SNP genotyping methods of sample identification, with a focus on paired FFPE tumor/normal DNA samples intended for next-generation sequencing (NGS). The ability to successfully validate the identity of FFPE samples can enable cost savings by reducing rework.

  19. Explaining the disease phenotype of intergenic SNP through predicted long range regulation

    PubMed Central

    Chen, Jingqi; Tian, Weidong

    2016-01-01

    Thousands of disease-associated SNPs (daSNPs) are located in intergenic regions (IGR), making it difficult to understand their association with disease phenotypes. Recent analysis found that non-coding daSNPs were frequently located in or approximate to regulatory elements, inspiring us to try to explain the disease phenotypes of IGR daSNPs through nearby regulatory sequences. Hence, after locating the nearest distal regulatory element (DRE) to a given IGR daSNP, we applied a computational method named INTREPID to predict the target genes regulated by the DRE, and then investigated their functional relevance to the IGR daSNP's disease phenotypes. 36.8% of all IGR daSNP-disease phenotype associations investigated were possibly explainable through the predicted target genes, which were enriched with, were functionally relevant to, or consisted of the corresponding disease genes. This proportion could be further increased to 60.5% if the LD SNPs of daSNPs were also considered. Furthermore, the predicted SNP-target gene pairs were enriched with known eQTL/mQTL SNP-gene relationships. Overall, it's likely that IGR daSNPs may contribute to disease phenotypes by interfering with the regulatory function of their nearby DREs and causing abnormal expression of disease genes. PMID:27280978

  20. Gene-environment interaction in the etiology of mathematical ability using SNP sets.

    PubMed

    Docherty, Sophia J; Kovas, Yulia; Plomin, Robert

    2011-01-01

    Mathematics ability and disability is as heritable as other cognitive abilities and disabilities, however its genetic etiology has received relatively little attention. In our recent genome-wide association study of mathematical ability in 10-year-old children, 10 SNP associations were nominated from scans of pooled DNA and validated in an individually genotyped sample. In this paper, we use a 'SNP set' composite of these 10 SNPs to investigate gene-environment (GE) interaction, examining whether the association between the 10-SNP set and mathematical ability differs as a function of ten environmental measures in the home and school in a sample of 1888 children with complete data. We found two significant GE interactions for environmental measures in the home and the school both in the direction of the diathesis-stress type of GE interaction: The 10-SNP set was more strongly associated with mathematical ability in chaotic homes and when parents are negative.

  1. Gene-Environment Interaction in the Etiology of Mathematical Ability Using SNP Sets

    PubMed Central

    Kovas, Yulia; Plomin, Robert

    2010-01-01

    Mathematics ability and disability is as heritable as other cognitive abilities and disabilities, however its genetic etiology has received relatively little attention. In our recent genome-wide association study of mathematical ability in 10-year-old children, 10 SNP associations were nominated from scans of pooled DNA and validated in an individually genotyped sample. In this paper, we use a ‘SNP set’ composite of these 10 SNPs to investigate gene-environment (GE) interaction, examining whether the association between the 10-SNP set and mathematical ability differs as a function of ten environmental measures in the home and school in a sample of 1888 children with complete data. We found two significant GE interactions for environmental measures in the home and the school both in the direction of the diathesis-stress type of GE interaction: The 10-SNP set was more strongly associated with mathematical ability in chaotic homes and when parents are negative. PMID:20978832

  2. Impact of pre-imputation SNP-filtering on genotype imputation results

    PubMed Central

    2014-01-01

    Background Imputation of partially missing or unobserved genotypes is an indispensable tool for SNP data analyses. However, research and understanding of the impact of initial SNP-data quality control on imputation results is still limited. In this paper, we aim to evaluate the effect of different strategies of pre-imputation quality filtering on the performance of the widely used imputation algorithms MaCH and IMPUTE. Results We considered three scenarios: imputation of partially missing genotypes with usage of an external reference panel, without usage of an external reference panel, as well as imputation of completely un-typed SNPs using an external reference panel. We first created various datasets applying different SNP quality filters and masking certain percentages of randomly selected high-quality SNPs. We imputed these SNPs and compared the results between the different filtering scenarios by using established and newly proposed measures of imputation quality. While the established measures assess certainty of imputation results, our newly proposed measures focus on the agreement with true genotypes. These measures showed that pre-imputation SNP-filtering might be detrimental regarding imputation quality. Moreover, the strongest drivers of imputation quality were in general the burden of missingness and the number of SNPs used for imputation. We also found that using a reference panel always improves imputation quality of partially missing genotypes. MaCH performed slightly better than IMPUTE2 in most of our scenarios. Again, these results were more pronounced when using our newly defined measures of imputation quality. Conclusion Even a moderate filtering has a detrimental effect on the imputation quality. Therefore little or no SNP filtering prior to imputation appears to be the best strategy for imputing small to moderately sized datasets. Our results also showed that for these datasets, MaCH performs slightly better than IMPUTE2 in most scenarios at

  3. A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation.

    PubMed

    Howe, Glenn T; Yu, Jianbin; Knaus, Brian; Cronn, Richard; Kolpak, Scott; Dolan, Peter; Lorenz, W Walter; Dean, Jeffrey F D

    2013-02-28

    Douglas-fir (Pseudotsuga menziesii), one of the most economically and ecologically important tree species in the world, also has one of the largest tree breeding programs. Although the coastal and interior varieties of Douglas-fir (vars. menziesii and glauca) are native to North America, the coastal variety is also widely planted for timber production in Europe, New Zealand, Australia, and Chile. Our main goal was to develop a SNP resource large enough to facilitate genomic selection in Douglas-fir breeding programs. To accomplish this, we developed a 454-based reference transcriptome for coastal Douglas-fir, annotated and evaluated the quality of the reference, identified putative SNPs, and then validated a sample of those SNPs using the Illumina Infinium genotyping platform. We assembled a reference transcriptome consisting of 25,002 isogroups (unique gene models) and 102,623 singletons from 2.76 million 454 and Sanger cDNA sequences from coastal Douglas-fir. We identified 278,979 unique SNPs by mapping the 454 and Sanger sequences to the reference, and by mapping four datasets of Illumina cDNA sequences from multiple seed sources, genotypes, and tissues. The Illumina datasets represented coastal Douglas-fir (64.00 and 13.41 million reads), interior Douglas-fir (80.45 million reads), and a Yakima population similar to interior Douglas-fir (8.99 million reads). We assayed 8067 SNPs on 260 trees using an Illumina Infinium SNP genotyping array. Of these SNPs, 5847 (72.5%) were called successfully and were polymorphic. Based on our validation efficiency, our SNP database may contain as many as ~200,000 true SNPs, and as many as ~69,000 SNPs that could be genotyped at ~20,000 gene loci using an Infinium II array-more SNPs than are needed to use genomic selection in tree breeding programs. Ultimately, these genomic resources will enhance Douglas-fir breeding and allow us to better understand landscape-scale patterns of genetic variation and potential responses to

  4. A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation

    PubMed Central

    2013-01-01

    Background Douglas-fir (Pseudotsuga menziesii), one of the most economically and ecologically important tree species in the world, also has one of the largest tree breeding programs. Although the coastal and interior varieties of Douglas-fir (vars. menziesii and glauca) are native to North America, the coastal variety is also widely planted for timber production in Europe, New Zealand, Australia, and Chile. Our main goal was to develop a SNP resource large enough to facilitate genomic selection in Douglas-fir breeding programs. To accomplish this, we developed a 454-based reference transcriptome for coastal Douglas-fir, annotated and evaluated the quality of the reference, identified putative SNPs, and then validated a sample of those SNPs using the Illumina Infinium genotyping platform. Results We assembled a reference transcriptome consisting of 25,002 isogroups (unique gene models) and 102,623 singletons from 2.76 million 454 and Sanger cDNA sequences from coastal Douglas-fir. We identified 278,979 unique SNPs by mapping the 454 and Sanger sequences to the reference, and by mapping four datasets of Illumina cDNA sequences from multiple seed sources, genotypes, and tissues. The Illumina datasets represented coastal Douglas-fir (64.00 and 13.41 million reads), interior Douglas-fir (80.45 million reads), and a Yakima population similar to interior Douglas-fir (8.99 million reads). We assayed 8067 SNPs on 260 trees using an Illumina Infinium SNP genotyping array. Of these SNPs, 5847 (72.5%) were called successfully and were polymorphic. Conclusions Based on our validation efficiency, our SNP database may contain as many as ~200,000 true SNPs, and as many as ~69,000 SNPs that could be genotyped at ~20,000 gene loci using an Infinium II array—more SNPs than are needed to use genomic selection in tree breeding programs. Ultimately, these genomic resources will enhance Douglas-fir breeding and allow us to better understand landscape-scale patterns of genetic variation

  5. The clinical application of single-sperm-based SNP haplotyping for PGD of osteogenesis imperfecta.

    PubMed

    Chen, Linjun; Diao, Zhenyu; Xu, Zhipeng; Zhou, Jianjun; Yan, Guijun; Sun, Haixiang

    2018-05-15

    Osteogenesis imperfecta (OI) is a genetically heterogeneous disorder, presenting either autosomal dominant, autosomal recessive or X-linked inheritance patterns. The majority of OI cases are autosomal dominant and are caused by heterozygous mutations in either the COL1A1 or COL1A2 gene. In these dominant disorders, allele dropout (ADO) can lead to misdiagnosis in preimplantation genetic diagnosis (PGD). Polymorphic markers linked to the mutated genes have been used to establish haplotypes for identifying ADO and ensuring the accuracy of PGD. However, the haplotype of male patients cannot be determined without data from affected relatives. Here, we developed a method for single-sperm-based single-nucleotide polymorphism (SNP) haplotyping via next-generation sequencing (NGS) for the PGD of OI. After NGS, 10 informative polymorphic SNP markers located upstream and downstream of the COL1A1 gene and its pathogenic mutation site were linked to individual alleles in a single sperm from an affected male. After haplotyping, a normal blastocyst was transferred to the uterus for a subsequent frozen embryo transfer cycle. The accuracy of PGD was confirmed by amniocentesis at 19 weeks of gestation. A healthy infant weighing 4,250 g was born via vaginal delivery at the 40th week of gestation. Single-sperm-based SNP haplotyping can be applied for PGD of any monogenic disorders or de novo mutations in males in whom the haplotype of paternal mutations cannot be determined due to a lack of affected relatives. ADO: allele dropout; DI: dentinogenesis imperfect; ESHRE: European Society of Human Reproduction and Embryology; FET: frozen embryo transfer; gDNA: genomic DNA; ICSI: intracytoplasmic sperm injection; IVF: in vitro fertilization; MDA: multiple displacement amplification; NGS: next-generation sequencing; OI: osteogenesis imperfect; PBS: phosphate buffer saline; PCR: polymerase chain reaction; PGD: preimplantation genetic diagnosis; SNP: single-nucleotide polymorphism; STR

  6. Biological relevance of CNV calling methods using familial relatedness including monozygotic twins.

    PubMed

    Castellani, Christina A; Melka, Melkaye G; Wishart, Andrea E; Locke, M Elizabeth O; Awamleh, Zain; O'Reilly, Richard L; Singh, Shiva M

    2014-04-21

    Studies involving the analysis of structural variation including Copy Number Variation (CNV) have recently exploded in the literature. Furthermore, CNVs have been associated with a number of complex diseases and neurodevelopmental disorders. Common methods for CNV detection use SNP, CNV, or CGH arrays, where the signal intensities of consecutive probes are used to define the number of copies associated with a given genomic region. These practices pose a number of challenges that interfere with the ability of available methods to accurately call CNVs. It has, therefore, become necessary to develop experimental protocols to test the reliability of CNV calling methods from microarray data so that researchers can properly discriminate biologically relevant data from noise. We have developed a workflow for the integration of data from multiple CNV calling algorithms using the same array results. It uses four CNV calling programs: PennCNV (PC), Affymetrix® Genotyping Console™ (AGC), Partek® Genomics Suite™ (PGS) and Golden Helix SVS™ (GH) to analyze CEL files from the Affymetrix® Human SNP 6.0 Array™. To assess the relative suitability of each program, we used individuals of known genetic relationships. We found significant differences in CNV calls obtained by different CNV calling programs. Although the programs showed variable patterns of CNVs in the same individuals, their distribution in individuals of different degrees of genetic relatedness has allowed us to offer two suggestions. The first involves the use of multiple algorithms for the detection of the largest possible number of CNVs, and the second suggests the use of PennCNV over all other methods when the use of only one software program is desirable.

  7. Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing

    PubMed Central

    Wiszniewska, Joanna; Bi, Weimin; Shaw, Chad; Stankiewicz, Pawel; Kang, Sung-Hae L; Pursley, Amber N; Lalani, Seema; Hixson, Patricia; Gambin, Tomasz; Tsai, Chun-hui; Bock, Hans-Georg; Descartes, Maria; Probst, Frank J; Scaglia, Fernando; Beaudet, Arthur L; Lupski, James R; Eng, Christine; Wai Cheung, Sau; Bacino, Carlos; Patel, Ankita

    2014-01-01

    In clinical diagnostics, both array comparative genomic hybridization (array CGH) and single nucleotide polymorphism (SNP) genotyping have proven to be powerful genomic technologies utilized for the evaluation of developmental delay, multiple congenital anomalies, and neuropsychiatric disorders. Differences in the ability to resolve genomic changes between these arrays may constitute an implementation challenge for clinicians: which platform (SNP vs array CGH) might best detect the underlying genetic cause for the disease in the patient? While only SNP arrays enable the detection of copy number neutral regions of absence of heterozygosity (AOH), they have limited ability to detect single-exon copy number variants (CNVs) due to the distribution of SNPs across the genome. To provide comprehensive clinical testing for both CNVs and copy-neutral AOH, we enhanced our custom-designed high-resolution oligonucleotide array that has exon-targeted coverage of 1860 genes with 60 000 SNP probes, referred to as Chromosomal Microarray Analysis – Comprehensive (CMA-COMP). Of the 3240 cases evaluated by this array, clinically significant CNVs were detected in 445 cases including 21 cases with exonic events. In addition, 162 cases (5.0%) showed at least one AOH region >10 Mb. We demonstrate that even though this array has a lower density of SNP probes than other commercially available SNP arrays, it reliably detected AOH events >10 Mb as well as exonic CNVs beyond the detection limitations of SNP genotyping. Thus, combining SNP probes and exon-targeted array CGH into one platform provides clinically useful genetic screening in an efficient manner. PMID:23695279

  8. CsSNP: A Web-Based Tool for the Detecting of Comparative Segments SNPs.

    PubMed

    Wang, Yi; Wang, Shuangshuang; Zhou, Dongjie; Yang, Shuai; Xu, Yongchao; Yang, Chao; Yang, Long

    2016-07-01

    SNP (single nucleotide polymorphism) is a popular tool for the study of genetic diversity, evolution, and other areas. Therefore, it is necessary to develop a convenient, utility, robust, rapid, and open source detecting-SNP tool for all researchers. Since the detection of SNPs needs special software and series steps including alignment, detection, analysis and present, the study of SNPs is limited for nonprofessional users. CsSNP (Comparative segments SNP, http://biodb.sdau.edu.cn/cssnp/ ) is a freely available web tool based on the Blat, Blast, and Perl programs to detect comparative segments SNPs and to show the detail information of SNPs. The results are filtered and presented in the statistics figure and a Gbrowse map. This platform contains the reference genomic sequences and coding sequences of 60 plant species, and also provides new opportunities for the users to detect SNPs easily. CsSNP is provided a convenient tool for nonprofessional users to find comparative segments SNPs in their own sequences, and give the users the information and the analysis of SNPs, and display these data in a dynamic map. It provides a new method to detect SNPs and may accelerate related studies.

  9. Analysis of population structure and genetic history of cattle breeds based on high-density SNP data

    USDA-ARS?s Scientific Manuscript database

    Advances in single nucleotide polymorphism (SNP) genotyping microarrays have facilitated a new understanding of population structure and evolutionary history for several species. Most existing studies in livestock were based on low density SNP arrays. The first wave of low density SNP studies on cat...

  10. Genome-wide Target Enrichment-aided Chip Design: a 66 K SNP Chip for Cashmere Goat.

    PubMed

    Qiao, Xian; Su, Rui; Wang, Yang; Wang, Ruijun; Yang, Ting; Li, Xiaokai; Chen, Wei; He, Shiyang; Jiang, Yu; Xu, Qiwu; Wan, Wenting; Zhang, Yaolei; Zhang, Wenguang; Chen, Jiang; Liu, Bin; Liu, Xin; Fan, Yixing; Chen, Duoyuan; Jiang, Huaizhi; Fang, Dongming; Liu, Zhihong; Wang, Xiaowen; Zhang, Yanjun; Mao, Danqing; Wang, Zhiying; Di, Ran; Zhao, Qianjun; Zhong, Tao; Yang, Huanming; Wang, Jian; Wang, Wen; Dong, Yang; Chen, Xiaoli; Xu, Xun; Li, Jinquan

    2017-08-17

    Compared with the commercially available single nucleotide polymorphism (SNP) chip based on the Bead Chip technology, the solution hybrid selection (SHS)-based target enrichment SNP chip is not only design-flexible, but also cost-effective for genotype sequencing. In this study, we propose to design an animal SNP chip using the SHS-based target enrichment strategy for the first time. As an update to the international collaboration on goat research, a 66 K SNP chip for cashmere goat was created from the whole-genome sequencing data of 73 individuals. Verification of this 66 K SNP chip with the whole-genome sequencing data of 436 cashmere goats showed that the SNP call rates was between 95.3% and 99.8%. The average sequencing depth for target SNPs were 40X. The capture regions were shown to be 200 bp that flank target SNPs. This chip was further tested in a genome-wide association analysis of cashmere fineness (fiber diameter). Several top hit loci were found marginally associated with signaling pathways involved in hair growth. These results demonstrate that the 66 K SNP chip is a useful tool in the genomic analyses of cashmere goats. The successful chip design shows that the SHS-based target enrichment strategy could be applied to SNP chip design in other species.

  11. Explaining the disease phenotype of intergenic SNP through predicted long range regulation.

    PubMed

    Chen, Jingqi; Tian, Weidong

    2016-10-14

    Thousands of disease-associated SNPs (daSNPs) are located in intergenic regions (IGR), making it difficult to understand their association with disease phenotypes. Recent analysis found that non-coding daSNPs were frequently located in or approximate to regulatory elements, inspiring us to try to explain the disease phenotypes of IGR daSNPs through nearby regulatory sequences. Hence, after locating the nearest distal regulatory element (DRE) to a given IGR daSNP, we applied a computational method named INTREPID to predict the target genes regulated by the DRE, and then investigated their functional relevance to the IGR daSNP's disease phenotypes. 36.8% of all IGR daSNP-disease phenotype associations investigated were possibly explainable through the predicted target genes, which were enriched with, were functionally relevant to, or consisted of the corresponding disease genes. This proportion could be further increased to 60.5% if the LD SNPs of daSNPs were also considered. Furthermore, the predicted SNP-target gene pairs were enriched with known eQTL/mQTL SNP-gene relationships. Overall, it's likely that IGR daSNPs may contribute to disease phenotypes by interfering with the regulatory function of their nearby DREs and causing abnormal expression of disease genes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Extensive population structure in San, Khoe, and mixed ancestry populations from southern Africa revealed by 44 short 5-SNP haplotypes.

    PubMed

    Schlebusch, Carina M; Soodyall, Himlya

    2012-12-01

    The San and Khoe people currently represent remnant groups of a much larger and widely distributed population of hunter-gatherers and pastoralists who had exclusive occupation of southern Africa before the arrival of Bantu-speaking groups in the past 1,200 years and sea-borne immigrants within the last 350 years. Genetic studies [mitochondrial deoxyribonucleic acid (DNA) and Y-chromosome] conducted on San and Khoe groups revealed that they harbor some of the most divergent lineages found in living peoples throughout the world. Recently, high-density, autosomal, single-nucleotide polymorphism (SNP)-array studies confirmed the early divergence of Khoe-San population groups from all other human populations. The present study made use of 220 autosomal SNP markers (in the format of both haplotypes and genotypes) to examine the population structure of various San and Khoe groups and their relationship to other neighboring groups. Whereas analyses based on the genotypic SNP data only supported the division of the included populations into three main groups-Khoe-San, Bantu-speakers, and non-African populations-haplotype analyses revealed finer structure within Khoe-San populations. By the use of only 44 short SNP haplotypes (compiled from a total of 220 SNPs), most of the Khoe-San groups could be resolved as separate groups by applying STRUCTURE analyses. Therefore, by carefully selecting a few SNPs and combining them into haplotypes, we were able to achieve the same level of population distinction that was achieved previously in high-density SNP studies on the same population groups. Using haplotypes proved to be a very efficient and cost-effective way to study population structure. Copyright © 2013 Wayne State University Press, Detroit, Michigan 48201-1309.

  13. Quantitative analysis of low-density SNP data for parentage assignment and estimation of family contributions to pooled samples.

    PubMed

    Henshall, John M; Dierens, Leanne; Sellars, Melony J

    2014-09-02

    While much attention has focused on the development of high-density single nucleotide polymorphism (SNP) assays, the costs of developing and running low-density assays have fallen dramatically. This makes it feasible to develop and apply SNP assays for agricultural species beyond the major livestock species. Although low-cost low-density assays may not have the accuracy of the high-density assays widely used in human and livestock species, we show that when combined with statistical analysis approaches that use quantitative instead of discrete genotypes, their utility may be improved. The data used in this study are from a 63-SNP marker Sequenom® iPLEX Platinum panel for the Black Tiger shrimp, for which high-density SNP assays are not currently available. For quantitative genotypes that could be estimated, in 5% of cases the most likely genotype for an individual at a SNP had a probability of less than 0.99. Matrix formulations of maximum likelihood equations for parentage assignment were developed for the quantitative genotypes and also for discrete genotypes perturbed by an assumed error term. Assignment rates that were based on maximum likelihood with quantitative genotypes were similar to those based on maximum likelihood with perturbed genotypes but, for more than 50% of cases, the two methods resulted in individuals being assigned to different families. Treating genotypes as quantitative values allows the same analysis framework to be used for pooled samples of DNA from multiple individuals. Resulting correlations between allele frequency estimates from pooled DNA and individual samples were consistently greater than 0.90, and as high as 0.97 for some pools. Estimates of family contributions to the pools based on quantitative genotypes in pooled DNA had a correlation of 0.85 with estimates of contributions from DNA-derived pedigree. Even with low numbers of SNPs of variable quality, parentage testing and family assignment from pooled samples are

  14. HRM and SNaPshot as alternative forensic SNP genotyping methods.

    PubMed

    Mehta, Bhavik; Daniel, Runa; McNevin, Dennis

    2017-09-01

    Single nucleotide polymorphisms (SNPs) have been widely used in forensics for prediction of identity, biogeographical ancestry (BGA) and externally visible characteristics (EVCs). Single base extension (SBE) assays, most notably SNaPshot® (Thermo Fisher Scientific), are commonly used for forensic SNP genotyping as they can be employed on standard instrumentation in forensic laboratories (e.g. capillary electrophoresis). High resolution melt (HRM) analysis is an alternative method and is a simple, fast, single tube assay for low throughput SNP typing. This study compares HRM and SNaPshot®. HRM produced reproducible and concordant genotypes at 500 pg, however, difficulties were encountered when genotyping SNPs with high GC content in flanking regions and differentiating variants of symmetrical SNPs. SNaPshot® was reproducible at 100 pg and is less dependent on SNP choice. HRM has a shorter processing time in comparison to SNaPshot®, avoids post PCR contamination risk and has potential as a screening tool for many forensic applications.

  15. DNA-mounted self-assembly: new approaches for genomic analysis and SNP detection.

    PubMed

    Bichenkova, Elena V; Lang, Zhaolei; Yu, Xuan; Rogert, Candelaria; Douglas, Kenneth T

    2011-01-01

    This article presents an overview of new emerging approaches for nucleic acid detection via hybridization techniques that can potentially be applied to genomic analysis and SNP identification in clinical diagnostics. Despite the availability of a diverse variety of SNP genotyping technologies on the diagnostic market, none has truly succeeded in dominating its competitors thus far. Having been designed for specific diagnostic purposes or clinical applications, each of the existing bio-assay systems (briefly outlined here) is usually limited to a relatively narrow aspect or format of nucleic acid detection, and thus cannot entirely satisfy all the varieties of commercial requirements and clinical demands. This drives the diagnostic sector to pursue novel, cost-effective approaches to ensure rapid and reliable identification of pathogenic or hereditary human diseases. Hence, the purpose of this review is to highlight some new strategic directions in DNA detection technologies in order to inspire development of novel molecular diagnostic tools and bio-assay systems with superior reliability, reproducibility, robustness, accuracy and sensitivity at lower assay cost. One approach to improving the sensitivity of an assay to confidently discriminate between single point mutations is based on the use of target assembled, split-probe systems, which constitutes the main focus of this review. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. EvoSNP-DB: A database of genetic diversity in East Asian populations.

    PubMed

    Kim, Young Uk; Kim, Young Jin; Lee, Jong-Young; Park, Kiejung

    2013-08-01

    Genome-wide association studies (GWAS) have become popular as an approach for the identification of large numbers of phenotype-associated variants. However, differences in genetic architecture and environmental factors mean that the effect of variants can vary across populations. Understanding population genetic diversity is valuable for the investigation of possible population specific and independent effects of variants. EvoSNP-DB aims to provide information regarding genetic diversity among East Asian populations, including Chinese, Japanese, and Korean. Non-redundant SNPs (1.6 million) were genotyped in 54 Korean trios (162 samples) and were compared with 4 million SNPs from HapMap phase II populations. EvoSNP-DB provides two user interfaces for data query and visualization, and integrates scores of genetic diversity (Fst and VarLD) at the level of SNPs, genes, and chromosome regions. EvoSNP-DB is a web-based application that allows users to navigate and visualize measurements of population genetic differences in an interactive manner, and is available online at [http://biomi.cdc.go.kr/EvoSNP/].

  17. SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data.

    PubMed

    Lee, Tae-Ho; Guo, Hui; Wang, Xiyin; Kim, Changsoo; Paterson, Andrew H

    2014-02-26

    Phylogenetic trees are widely used for genetic and evolutionary studies in various organisms. Advanced sequencing technology has dramatically enriched data available for constructing phylogenetic trees based on single nucleotide polymorphisms (SNPs). However, massive SNP data makes it difficult to perform reliable analysis, and there has been no ready-to-use pipeline to generate phylogenetic trees from these data. We developed a new pipeline, SNPhylo, to construct phylogenetic trees based on large SNP datasets. The pipeline may enable users to construct a phylogenetic tree from three representative SNP data file formats. In addition, in order to increase reliability of a tree, the pipeline has steps such as removing low quality data and considering linkage disequilibrium. A maximum likelihood method for the inference of phylogeny is also adopted in generation of a tree in our pipeline. Using SNPhylo, users can easily produce a reliable phylogenetic tree from a large SNP data file. Thus, this pipeline can help a researcher focus more on interpretation of the results of analysis of voluminous data sets, rather than manipulations necessary to accomplish the analysis.

  18. SNP discovery in the bovine milk transcriptome using RNA-Seq technology.

    PubMed

    Cánovas, Angela; Rincon, Gonzalo; Islas-Trejo, Alma; Wickramasinghe, Saumya; Medrano, Juan F

    2010-12-01

    High-throughput sequencing of RNA (RNA-Seq) was developed primarily to analyze global gene expression in different tissues. However, it also is an efficient way to discover coding SNPs. The objective of this study was to perform a SNP discovery analysis in the milk transcriptome using RNA-Seq. Seven milk samples from Holstein cows were analyzed by sequencing cDNAs using the Illumina Genome Analyzer system. We detected 19,175 genes expressed in milk samples corresponding to approximately 70% of the total number of genes analyzed. The SNP detection analysis revealed 100,734 SNPs in Holstein samples, and a large number of those corresponded to differences between the Holstein breed and the Hereford bovine genome assembly Btau4.0. The number of polymorphic SNPs within Holstein cows was 33,045. The accuracy of RNA-Seq SNP discovery was tested by comparing SNPs detected in a set of 42 candidate genes expressed in milk that had been resequenced earlier using Sanger sequencing technology. Seventy of 86 SNPs were detected using both RNA-Seq and Sanger sequencing technologies. The KASPar Genotyping System was used to validate unique SNPs found by RNA-Seq but not observed by Sanger technology. Our results confirm that analyzing the transcriptome using RNA-Seq technology is an efficient and cost-effective method to identify SNPs in transcribed regions. This study creates guidelines to maximize the accuracy of SNP discovery and prevention of false-positive SNP detection, and provides more than 33,000 SNPs located in coding regions of genes expressed during lactation that can be used to develop genotyping platforms to perform marker-trait association studies in Holstein cattle.

  19. Targeting of RNA Polymerase II by a nuclear Legionella pneumophila Dot/Icm effector SnpL.

    PubMed

    Schuelein, Ralf; Spencer, Hugh; Dagley, Laura F; Li, Peng Fei; Luo, Lin; Stow, Jennifer L; Abraham, Gilu; Naderer, Thomas; Gomez-Valero, Laura; Buchrieser, Carmen; Sugimoto, Chihiro; Yamagishi, Junya; Webb, Andrew I; Pasricha, Shivani; Hartland, Elizabeth L

    2018-04-24

    The intracellular pathogen Legionella pneumophila influences numerous eukaryotic cellular processes through the Dot/Icm-dependent translocation of more than 300 effector proteins into the host cell. Although many translocated effectors localize to the Legionella replicative vacuole, other effectors can affect remote intracellular sites. Following infection, a subset of effector proteins localizes to the nucleus where they subvert host cell transcriptional responses to infection. Here we identified Lpg2519 (Lpp2587/Lpw27461), as a new nuclear-localized effector that we have termed SnpL. Upon ectopic expression or during L. pneumophila infection, SnpL showed strong nuclear localization by immunofluorescence microscopy but was excluded from nucleoli. Using immunoprecipitation and mass spectrometry, we determined the host-binding partner of SnpL as the eukaryotic transcription elongation factor, SUPT5H/Spt5. SUPT5H is an evolutionarily conserved component of the DRB sensitivity-inducing factor complex (DSIF complex) that regulates RNA polymerase II (Pol II) dependent mRNA processing and transcription elongation. Protein interaction studies showed that SnpL bound to the central KOW motif region of SUPT5H. Ectopic expression of SnpL led to massive upregulation of host gene expression and macrophage cell death. The activity of SnpL further highlights the ability of L. pneumophila to control fundamental eukaryotic processes such as transcription that, in the case of SnpL, leads to global upregulation of host gene expression. This article is protected by copyright. All rights reserved.

  20. Viability of in-house datamarting approaches for population genetics analysis of SNP genotypes

    PubMed Central

    Amigo, Jorge; Phillips, Christopher; Salas, Antonio; Carracedo, Ángel

    2009-01-01

    Background Databases containing very large amounts of SNP (Single Nucleotide Polymorphism) data are now freely available for researchers interested in medical and/or population genetics applications. While many of these SNP repositories have implemented data retrieval tools for general-purpose mining, these alone cannot cover the broad spectrum of needs of most medical and population genetics studies. Results To address this limitation, we have built in-house customized data marts from the raw data provided by the largest public databases. In particular, for population genetics analysis based on genotypes we have built a set of data processing scripts that deal with raw data coming from the major SNP variation databases (e.g. HapMap, Perlegen), stripping them into single genotypes and then grouping them into populations, then merged with additional complementary descriptive information extracted from dbSNP. This allows not only in-house standardization and normalization of the genotyping data retrieved from different repositories, but also the calculation of statistical indices from simple allele frequency estimates to more elaborate genetic differentiation tests within populations, together with the ability to combine population samples from different databases. Conclusion The present study demonstrates the viability of implementing scripts for handling extensive datasets of SNP genotypes with low computational costs, dealing with certain complex issues that arise from the divergent nature and configuration of the most popular SNP repositories. The information contained in these databases can also be enriched with additional information obtained from other complementary databases, in order to build a dedicated data mart. Updating the data structure is straightforward, as well as permitting easy implementation of new external data and the computation of supplementary statistical indices of interest. PMID:19344481

  1. Viability of in-house datamarting approaches for population genetics analysis of SNP genotypes.

    PubMed

    Amigo, Jorge; Phillips, Christopher; Salas, Antonio; Carracedo, Angel

    2009-03-19

    Databases containing very large amounts of SNP (Single Nucleotide Polymorphism) data are now freely available for researchers interested in medical and/or population genetics applications. While many of these SNP repositories have implemented data retrieval tools for general-purpose mining, these alone cannot cover the broad spectrum of needs of most medical and population genetics studies. To address this limitation, we have built in-house customized data marts from the raw data provided by the largest public databases. In particular, for population genetics analysis based on genotypes we have built a set of data processing scripts that deal with raw data coming from the major SNP variation databases (e.g. HapMap, Perlegen), stripping them into single genotypes and then grouping them into populations, then merged with additional complementary descriptive information extracted from dbSNP. This allows not only in-house standardization and normalization of the genotyping data retrieved from different repositories, but also the calculation of statistical indices from simple allele frequency estimates to more elaborate genetic differentiation tests within populations, together with the ability to combine population samples from different databases. The present study demonstrates the viability of implementing scripts for handling extensive datasets of SNP genotypes with low computational costs, dealing with certain complex issues that arise from the divergent nature and configuration of the most popular SNP repositories. The information contained in these databases can also be enriched with additional information obtained from other complementary databases, in order to build a dedicated data mart. Updating the data structure is straightforward, as well as permitting easy implementation of new external data and the computation of supplementary statistical indices of interest.

  2. A graphene-based platform for single nucleotide polymorphism (SNP) genotyping.

    PubMed

    Liu, Meng; Zhao, Huimin; Chen, Shuo; Yu, Hongtao; Zhang, Yaobin; Quan, Xie

    2011-06-15

    A facile, rapid, stable and sensitive approach for fluorescent detection of single nucleotide polymorphism (SNP) is designed based on DNA ligase reaction and π-stacking between the graphene and the nucleotide bases. In the presence of perfectly matched DNA, DNA ligase can catalyze the linkage of fluorescein amidite-labeled single-stranded DNA (ssDNA) and a phosphorylated ssDNA, and thus the formation of a stable duplex in high yield. However, the catalytic reaction cannot effectively carry out with one-base mismatched DNA target. In this case, we add graphene to the system in order to produce different quenching signals due to its different adsorption affinity for ssDNA and double-stranded DNA. Taking advantage of the unique surface property of graphene and the high discriminability of DNA ligase, the proposed protocol exhibits good performance in SNP genotyping. The results indicate that it is possible to accurately determine SNP with frequency as low as 2.6% within 40 min. Furthermore, the presented flexible strategy facilitates the development of other biosensing applications in the future. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. k-merSNP discovery: Software for alignment-and reference-free scalable SNP discovery, phylogenetics, and annotation for hundreds of microbial genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    With the flood of whole genome finished and draft microbial sequences, we need faster, more scalable bioinformatics tools for sequence comparison. An algorithm is described to find single nucleotide polymorphisms (SNPs) in whole genome data. It scales to hundreds of bacterial or viral genomes, and can be used for finished and/or draft genomes available as unassembled contigs or raw, unassembled reads. The method is fast to compute, finding SNPs and building a SNP phylogeny in minutes to hours, depending on the size and diversity of the input sequences. The SNP-based trees that result are consistent with known taxonomy and treesmore » determined in other studies. The approach we describe can handle many gigabases of sequence in a single run. The algorithm is based on k-mer analysis.« less

  4. Pedigree- and SNP-Associated Genetics and Recent Environment are the Major Contributors to Anthropometric and Cardiometabolic Trait Variation.

    PubMed

    Xia, Charley; Amador, Carmen; Huffman, Jennifer; Trochet, Holly; Campbell, Archie; Porteous, David; Hastie, Nicholas D; Hayward, Caroline; Vitart, Veronique; Navarro, Pau; Haley, Chris S

    2016-02-01

    Genome-wide association studies have successfully identified thousands of loci for a range of human complex traits and diseases. The proportion of phenotypic variance explained by significant associations is, however, limited. Given the same dense SNP panels, mixed model analyses capture a greater proportion of phenotypic variance than single SNP analyses but the total is generally still less than the genetic variance estimated from pedigree studies. Combining information from pedigree relationships and SNPs, we examined 16 complex anthropometric and cardiometabolic traits in a Scottish family-based cohort comprising up to 20,000 individuals genotyped for ~520,000 common autosomal SNPs. The inclusion of related individuals provides the opportunity to also estimate the genetic variance associated with pedigree as well as the effects of common family environment. Trait variation was partitioned into SNP-associated and pedigree-associated genetic variation, shared nuclear family environment, shared couple (partner) environment and shared full-sibling environment. Results demonstrate that trait heritabilities vary widely but, on average across traits, SNP-associated and pedigree-associated genetic effects each explain around half the genetic variance. For most traits the recently-shared environment of couples is also significant, accounting for ~11% of the phenotypic variance on average. On the other hand, the environment shared largely in the past by members of a nuclear family or by full-siblings, has a more limited impact. Our findings point to appropriate models to use in future studies as pedigree-associated genetic effects and couple environmental effects have seldom been taken into account in genotype-based analyses. Appropriate description of the trait variation could help understand causes of intra-individual variation and in the detection of contributing loci and environmental factors.

  5. Linear reduction method for predictive and informative tag SNP selection.

    PubMed

    He, Jingwu; Westbrooks, Kelly; Zelikovsky, Alexander

    2005-01-01

    Constructing a complete human haplotype map is helpful when associating complex diseases with their related SNPs. Unfortunately, the number of SNPs is very large and it is costly to sequence many individuals. Therefore, it is desirable to reduce the number of SNPs that should be sequenced to a small number of informative representatives called tag SNPs. In this paper, we propose a new linear algebra-based method for selecting and using tag SNPs. We measure the quality of our tag SNP selection algorithm by comparing actual SNPs with SNPs predicted from selected linearly independent tag SNPs. Our experiments show that for sufficiently long haplotypes, knowing only 0.4% of all SNPs the proposed linear reduction method predicts an unknown haplotype with the error rate below 2% based on 10% of the population.

  6. High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping

    PubMed Central

    2012-01-01

    Background Cucurbita pepo is a member of the Cucurbitaceae family, the second- most important horticultural family in terms of economic importance after Solanaceae. The "summer squash" types, including Zucchini and Scallop, rank among the highest-valued vegetables worldwide. There are few genomic tools available for this species. The first Cucurbita transcriptome, along with a large collection of Single Nucleotide Polymorphisms (SNP), was recently generated using massive sequencing. A set of 384 SNP was selected to generate an Illumina GoldenGate assay in order to construct the first SNP-based genetic map of Cucurbita and map quantitative trait loci (QTL). Results We herein present the construction of the first SNP-based genetic map of Cucurbita pepo using a population derived from the cross of two varieties with contrasting phenotypes, representing the main cultivar groups of the species' two subspecies: Zucchini (subsp. pepo) × Scallop (subsp. ovifera). The mapping population was genotyped with 384 SNP, a set of selected EST-SNP identified in silico after massive sequencing of the transcriptomes of both parents, using the Illumina GoldenGate platform. The global success rate of the assay was higher than 85%. In total, 304 SNP were mapped, along with 11 SSR from a previous map, giving a map density of 5.56 cM/marker. This map was used to infer syntenic relationships between C. pepo and cucumber and to successfully map QTL that control plant, flowering and fruit traits that are of benefit to squash breeding. The QTL effects were validated in backcross populations. Conclusion Our results show that massive sequencing in different genotypes is an excellent tool for SNP discovery, and that the Illumina GoldenGate platform can be successfully applied to constructing genetic maps and performing QTL analysis in Cucurbita. This is the first SNP-based genetic map in the Cucurbita genus and is an invaluable new tool for biological research, especially considering that most

  7. [Relationship between genetic polymorphisms of 3 SNP loci in 5-HTT gene and paranoid schizophrenia].

    PubMed

    Xuan, Jin-Feng; Ding, Mei; Pang, Hao; Xing, Jia-Xin; Sun, Yi-Hua; Yao, Jun; Zhao, Yi; Li, Chun-Mei; Wang, Bao-Jie

    2012-12-01

    To investigate the population genetic data of 3 SNP loci (rs25533, rs34388196 and rs1042173) of 5-hydroxytryptamine transporter (5-HTT) gene and the association with paranoid schizophrenia. Three SNP loci of 5-HTT gene were examined in 132 paranoid schizophrenia patients and 150 unrelated healthy individuals of Northern Chinese Han population by PCR-RFLP technique. The Hardy-Weinberg equilibrium test was performed using the chi-square test and the data of haplotype frequency and population genetics parameters were statistically analyzed. Among these three SNP loci, four haplotypes were obtained. There were no statistically significant differences between the patient group and the control group (P > 0.05). The DP values of the 3 SNP loci were 0.276, 0.502 and 0.502. The PIC of them were 0.151, 0.281 and 0.281. The PE of them were 0.014, 0.072 and 0.072. The three SNP loci and four haplotypes of 5-HTT gene have no association with paranoid schizophrenia, while the polymorphism still have high potential application in forensic practice.

  8. An integrated SNP mining and utilization (ISMU) pipeline for next generation sequencing data.

    PubMed

    Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A V S K; Varshney, Rajeev K

    2014-01-01

    Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone

  9. RAD tag sequencing as a source of SNP markers in Cynara cardunculus L

    PubMed Central

    2012-01-01

    Background The globe artichoke (Cynara cardunculus L. var. scolymus) genome is relatively poorly explored, especially compared to those of the other major Asteraceae crops sunflower and lettuce. No SNP markers are in the public domain. We have combined the recently developed restriction-site associated DNA (RAD) approach with the Illumina DNA sequencing platform to effect the rapid and mass discovery of SNP markers for C. cardunculus. Results RAD tags were sequenced from the genomic DNA of three C. cardunculus mapping population parents, generating 9.7 million reads, corresponding to ~1 Gbp of sequence. An assembly based on paired ends produced ~6.0 Mbp of genomic sequence, separated into ~19,000 contigs (mean length 312 bp), of which ~21% were fragments of putative coding sequence. The shared sequences allowed for the discovery of ~34,000 SNPs and nearly 800 indels, equivalent to a SNP frequency of 5.6 per 1,000 nt, and an indel frequency of 0.2 per 1,000 nt. A sample of heterozygous SNP loci was mapped by CAPS assays and this exercise provided validation of our mining criteria. The repetitive fraction of the genome had a high representation of retrotransposon sequence, followed by simple repeats, AT-low complexity regions and mobile DNA elements. The genomic k-mers distribution and CpG rate of C. cardunculus, compared with data derived from three whole genome-sequenced dicots species, provided a further evidence of the random representation of the C. cardunculus genome generated by RAD sampling. Conclusion The RAD tag sequencing approach is a cost-effective and rapid method to develop SNP markers in a highly heterozygous species. Our approach permitted to generate a large and robust SNP datasets by the adoption of optimized filtering criteria. PMID:22214349

  10. An Integrated SNP Mining and Utilization (ISMU) Pipeline for Next Generation Sequencing Data

    PubMed Central

    Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M.; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A. V. S. K.; Varshney, Rajeev K.

    2014-01-01

    Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone

  11. The effect of input DNA copy number on genotype call and characterising SNP markers in the humpback whale genome using a nanofluidic array.

    PubMed

    Bhat, Somanath; Polanowski, Andrea M; Double, Mike C; Jarman, Simon N; Emslie, Kerry R

    2012-01-01

    Recent advances in nanofluidic technologies have enabled the use of Integrated Fluidic Circuits (IFCs) for high-throughput Single Nucleotide Polymorphism (SNP) genotyping (GT). In this study, we implemented and validated a relatively low cost nanofluidic system for SNP-GT with and without Specific Target Amplification (STA). As proof of principle, we first validated the effect of input DNA copy number on genotype call rate using well characterised, digital PCR (dPCR) quantified human genomic DNA samples and then implemented the validated method to genotype 45 SNPs in the humpback whale, Megaptera novaeangliae, nuclear genome. When STA was not incorporated, for a homozygous human DNA sample, reaction chambers containing, on average 9 to 97 copies, showed 100% call rate and accuracy. Below 9 copies, the call rate decreased, and at one copy it was 40%. For a heterozygous human DNA sample, the call rate decreased from 100% to 21% when predicted copies per reaction chamber decreased from 38 copies to one copy. The tightness of genotype clusters on a scatter plot also decreased. In contrast, when the same samples were subjected to STA prior to genotyping a call rate and a call accuracy of 100% were achieved. Our results demonstrate that low input DNA copy number affects the quality of data generated, in particular for a heterozygous sample. Similar to human genomic DNA, a call rate and a call accuracy of 100% was achieved with whale genomic DNA samples following multiplex STA using either 15 or 45 SNP-GT assays. These calls were 100% concordant with their true genotypes determined by an independent method, suggesting that the nanofluidic system is a reliable platform for executing call rates with high accuracy and concordance in genomic sequences derived from biological tissue.

  12. RExPrimer: an integrated primer designing tool increases PCR effectiveness by avoiding 3' SNP-in-primer and mis-priming from structural variation

    PubMed Central

    2009-01-01

    Background Polymerase chain reaction (PCR) is very useful in many areas of molecular biology research. It is commonly observed that PCR success is critically dependent on design of an effective primer pair. Current tools for primer design do not adequately address the problem of PCR failure due to mis-priming on target-related sequences and structural variations in the genome. Methods We have developed an integrated graphical web-based application for primer design, called RExPrimer, which was written in Python language. The software uses Primer3 as the primer designing core algorithm. Locally stored sequence information and genomic variant information were hosted on MySQLv5.0 and were incorporated into RExPrimer. Results RExPrimer provides many functionalities for improved PCR primer design. Several databases, namely annotated human SNP databases, insertion/deletion (indel) polymorphisms database, pseudogene database, and structural genomic variation databases were integrated into RExPrimer, enabling an effective without-leaving-the-website validation of the resulting primers. By incorporating these databases, the primers reported by RExPrimer avoid mis-priming to related sequences (e.g. pseudogene, segmental duplication) as well as possible PCR failure because of structural polymorphisms (SNP, indel, and copy number variation (CNV)). To prevent mismatching caused by unexpected SNPs in the designed primers, in particular the 3' end (SNP-in-Primer), several SNP databases covering the broad range of population-specific SNP information are utilized to report SNPs present in the primer sequences. Population-specific SNP information also helps customize primer design for a specific population. Furthermore, RExPrimer offers a graphical user-friendly interface through the use of scalable vector graphic image that intuitively presents resulting primers along with the corresponding gene structure. In this study, we demonstrated the program effectiveness in successfully

  13. Application of LogitBoost Classifier for Traceability Using SNP Chip Data

    PubMed Central

    Kang, Hyunsung; Cho, Seoae; Kim, Heebal; Seo, Kang-Seok

    2015-01-01

    Consumer attention to food safety has increased rapidly due to animal-related diseases; therefore, it is important to identify their places of origin (POO) for safety purposes. However, only a few studies have addressed this issue and focused on machine learning-based approaches. In the present study, classification analyses were performed using a customized SNP chip for POO prediction. To accomplish this, 4,122 pigs originating from 104 farms were genotyped using the SNP chip. Several factors were considered to establish the best prediction model based on these data. We also assessed the applicability of the suggested model using a kinship coefficient-filtering approach. Our results showed that the LogitBoost-based prediction model outperformed other classifiers in terms of classification performance under most conditions. Specifically, a greater level of accuracy was observed when a higher kinship-based cutoff was employed. These results demonstrated the applicability of a machine learning-based approach using SNP chip data for practical traceability. PMID:26436917

  14. Application of LogitBoost Classifier for Traceability Using SNP Chip Data.

    PubMed

    Kim, Kwondo; Seo, Minseok; Kang, Hyunsung; Cho, Seoae; Kim, Heebal; Seo, Kang-Seok

    2015-01-01

    Consumer attention to food safety has increased rapidly due to animal-related diseases; therefore, it is important to identify their places of origin (POO) for safety purposes. However, only a few studies have addressed this issue and focused on machine learning-based approaches. In the present study, classification analyses were performed using a customized SNP chip for POO prediction. To accomplish this, 4,122 pigs originating from 104 farms were genotyped using the SNP chip. Several factors were considered to establish the best prediction model based on these data. We also assessed the applicability of the suggested model using a kinship coefficient-filtering approach. Our results showed that the LogitBoost-based prediction model outperformed other classifiers in terms of classification performance under most conditions. Specifically, a greater level of accuracy was observed when a higher kinship-based cutoff was employed. These results demonstrated the applicability of a machine learning-based approach using SNP chip data for practical traceability.

  15. Developing a new nonbinary SNP fluorescent multiplex detection system for forensic application in China.

    PubMed

    Liu, Yanfang; Liao, Huidan; Liu, Ying; Guo, Juanjuan; Sun, Yi; Fu, Xiaoliang; Xiao, Ding; Cai, Jifeng; Lan, Lingmei; Xie, Pingli; Zha, Lagabaiyila

    2017-04-01

    Nonbinary single-nucleotide polymorphisms (SNPs) are potential forensic genetic markers because their discrimination power is greater than that of normal binary SNPs, and that they can detect highly degraded samples. We previously developed a nonbinary SNP multiplex typing assay. In this study, we selected additional 20 nonbinary SNPs from the NCBI SNP database and verified them through pyrosequencing. These 20 nonbinary SNPs were analyzed using the fluorescent-labeled SNaPshot multiplex SNP typing method. The allele frequencies and genetic parameters of these 20 nonbinary SNPs were determined among 314 unrelated individuals from Han populations from China. The total power of discrimination was 0.9999999999994, and the cumulative probability of exclusion was 0.9986. Moreover, the result of the combination of this 20 nonbinary SNP assay with the 20 nonbinary SNP assay we previously developed demonstrated that the cumulative probability of exclusion of the 40 nonbinary SNPs was 0.999991 and that no significant linkage disequilibrium was observed in all 40 nonbinary SNPs. Thus, we concluded that this new system consisting of new 20 nonbinary SNPs could provide highly informative polymorphic data which would be further used in forensic application and would serve as a potentially valuable supplement to forensic DNA analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Prediction of Disease Causing Non-Synonymous SNPs by the Artificial Neural Network Predictor NetDiseaseSNP

    PubMed Central

    Johansen, Morten Bo; Izarzugaza, Jose M. G.; Brunak, Søren; Petersen, Thomas Nordahl; Gupta, Ramneek

    2013-01-01

    We have developed a sequence conservation-based artificial neural network predictor called NetDiseaseSNP which classifies nsSNPs as disease-causing or neutral. Our method uses the excellent alignment generation algorithm of SIFT to identify related sequences and a combination of 31 features assessing sequence conservation and the predicted surface accessibility to produce a single score which can be used to rank nsSNPs based on their potential to cause disease. NetDiseaseSNP classifies successfully disease-causing and neutral mutations. In addition, we show that NetDiseaseSNP discriminates cancer driver and passenger mutations satisfactorily. Our method outperforms other state-of-the-art methods on several disease/neutral datasets as well as on cancer driver/passenger mutation datasets and can thus be used to pinpoint and prioritize plausible disease candidates among nsSNPs for further investigation. NetDiseaseSNP is publicly available as an online tool as well as a web service: http://www.cbs.dtu.dk/services/NetDiseaseSNP PMID:23935863

  17. Population genetic structure of the people of Qatar.

    PubMed

    Hunter-Zinck, Haley; Musharoff, Shaila; Salit, Jacqueline; Al-Ali, Khalid A; Chouchane, Lotfi; Gohar, Abeer; Matthews, Rebecca; Butler, Marcus W; Fuller, Jennifer; Hackett, Neil R; Crystal, Ronald G; Clark, Andrew G

    2010-07-09

    People of the Qatar peninsula represent a relatively recent founding by a small number of families from three tribes of the Arabian Peninsula, Persia, and Oman, with indications of African admixture. To assess the roles of both this founding effect and the customary first-cousin marriages among the ancestral Islamic populations in Qatar's population genetic structure, we obtained and genotyped with Affymetrix 500k SNP arrays DNA samples from 168 self-reported Qatari nationals sampled from Doha, Qatar. Principal components analysis was performed along with samples from the Human Genetic Diversity Project data set, revealing three clear clusters of genotypes whose proximity to other human population samples is consistent with Arabian origin, a more eastern or Persian origin, and individuals with African admixture. The extent of linkage disequilibrium (LD) is greater than that of African populations, and runs of homozygosity in some individuals reflect substantial consanguinity. However, the variance in runs of homozygosity is exceptionally high, and the degree of identity-by-descent sharing generally appears to be lower than expected for a population in which nearly half of marriages are between first cousins. Despite the fact that the SNPs of the Affymetrix 500k chip were ascertained with a bias toward SNPs common in Europeans, the data strongly support the notion that the Qatari population could provide a valuable resource for the mapping of genes associated with complex disorders and that tests of pairwise interactions are particularly empowered by populations with elevated LD like the Qatari. Copyright 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. The Generalized Higher Criticism for Testing SNP-Set Effects in Genetic Association Studies

    PubMed Central

    Barnett, Ian; Mukherjee, Rajarshi; Lin, Xihong

    2017-01-01

    It is of substantial interest to study the effects of genes, genetic pathways, and networks on the risk of complex diseases. These genetic constructs each contain multiple SNPs, which are often correlated and function jointly, and might be large in number. However, only a sparse subset of SNPs in a genetic construct is generally associated with the disease of interest. In this article, we propose the generalized higher criticism (GHC) to test for the association between an SNP set and a disease outcome. The higher criticism is a test traditionally used in high-dimensional signal detection settings when marginal test statistics are independent and the number of parameters is very large. However, these assumptions do not always hold in genetic association studies, due to linkage disequilibrium among SNPs and the finite number of SNPs in an SNP set in each genetic construct. The proposed GHC overcomes the limitations of the higher criticism by allowing for arbitrary correlation structures among the SNPs in an SNP-set, while performing accurate analytic p-value calculations for any finite number of SNPs in the SNP-set. We obtain the detection boundary of the GHC test. We compared empirically using simulations the power of the GHC method with existing SNP-set tests over a range of genetic regions with varied correlation structures and signal sparsity. We apply the proposed methods to analyze the CGEM breast cancer genome-wide association study. Supplementary materials for this article are available online. PMID:28736464

  19. Genome-wide SNP identification and QTL mapping for black rot resistance in cabbage.

    PubMed

    Lee, Jonghoon; Izzah, Nur Kholilatul; Jayakodi, Murukarthick; Perumal, Sampath; Joh, Ho Jun; Lee, Hyeon Ju; Lee, Sang-Choon; Park, Jee Young; Yang, Ki-Woung; Nou, Il-Sup; Seo, Joodeok; Yoo, Jaeheung; Suh, Youngdeok; Ahn, Kyounggu; Lee, Ji Hyun; Choi, Gyung Ja; Yu, Yeisoo; Kim, Heebal; Yang, Tae-Jin

    2015-02-03

    Black rot is a destructive bacterial disease causing large yield and quality losses in Brassica oleracea. To detect quantitative trait loci (QTL) for black rot resistance, we performed whole-genome resequencing of two cabbage parental lines and genome-wide SNP identification using the recently published B. oleracea genome sequences as reference. Approximately 11.5 Gb of sequencing data was produced from each parental line. Reference genome-guided mapping and SNP calling revealed 674,521 SNPs between the two cabbage lines, with an average of one SNP per 662.5 bp. Among 167 dCAPS markers derived from candidate SNPs, 117 (70.1%) were validated as bona fide SNPs showing polymorphism between the parental lines. We then improved the resolution of a previous genetic map by adding 103 markers including 87 SNP-based dCAPS markers. The new map composed of 368 markers and covers 1467.3 cM with an average interval of 3.88 cM between adjacent markers. We evaluated black rot resistance in the mapping population in three independent inoculation tests using F2:3 progenies and identified one major QTL and three minor QTLs. We report successful utilization of whole-genome resequencing for large-scale SNP identification and development of molecular markers for genetic map construction. In addition, we identified novel QTLs for black rot resistance. The high-density genetic map will promote QTL analysis for other important agricultural traits and marker-assisted breeding of B. oleracea.

  20. mrsFAST-Ultra: a compact, SNP-aware mapper for high performance sequencing applications.

    PubMed

    Hach, Faraz; Sarrafi, Iman; Hormozdiari, Farhad; Alkan, Can; Eichler, Evan E; Sahinalp, S Cenk

    2014-07-01

    High throughput sequencing (HTS) platforms generate unprecedented amounts of data that introduce challenges for processing and downstream analysis. While tools that report the 'best' mapping location of each read provide a fast way to process HTS data, they are not suitable for many types of downstream analysis such as structural variation detection, where it is important to report multiple mapping loci for each read. For this purpose we introduce mrsFAST-Ultra, a fast, cache oblivious, SNP-aware aligner that can handle the multi-mapping of HTS reads very efficiently. mrsFAST-Ultra improves mrsFAST, our first cache oblivious read aligner capable of handling multi-mapping reads, through new and compact index structures that reduce not only the overall memory usage but also the number of CPU operations per alignment. In fact the size of the index generated by mrsFAST-Ultra is 10 times smaller than that of mrsFAST. As importantly, mrsFAST-Ultra introduces new features such as being able to (i) obtain the best mapping loci for each read, and (ii) return all reads that have at most n mapping loci (within an error threshold), together with these loci, for any user specified n. Furthermore, mrsFAST-Ultra is SNP-aware, i.e. it can map reads to reference genome while discounting the mismatches that occur at common SNP locations provided by db-SNP; this significantly increases the number of reads that can be mapped to the reference genome. Notice that all of the above features are implemented within the index structure and are not simple post-processing steps and thus are performed highly efficiently. Finally, mrsFAST-Ultra utilizes multiple available cores and processors and can be tuned for various memory settings. Our results show that mrsFAST-Ultra is roughly five times faster than its predecessor mrsFAST. In comparison to newly enhanced popular tools such as Bowtie2, it is more sensitive (it can report 10 times or more mappings per read) and much faster (six times or

  1. SNP discovery by high-throughput sequencing in soybean

    PubMed Central

    2010-01-01

    Background With the advance of new massively parallel genotyping technologies, quantitative trait loci (QTL) fine mapping and map-based cloning become more achievable in identifying genes for important and complex traits. Development of high-density genetic markers in the QTL regions of specific mapping populations is essential for fine-mapping and map-based cloning of economically important genes. Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic variation existing between any diverse genotypes that are usually used for QTL mapping studies. The massively parallel sequencing technologies (Roche GS/454, Illumina GA/Solexa, and ABI/SOLiD), have been widely applied to identify genome-wide sequence variations. However, it is still remains unclear whether sequence data at a low sequencing depth are enough to detect the variations existing in any QTL regions of interest in a crop genome, and how to prepare sequencing samples for a complex genome such as soybean. Therefore, with the aims of identifying SNP markers in a cost effective way for fine-mapping several QTL regions, and testing the validation rate of the putative SNPs predicted with Solexa short sequence reads at a low sequencing depth, we evaluated a pooled DNA fragment reduced representation library and SNP detection methods applied to short read sequences generated by Solexa high-throughput sequencing technology. Results A total of 39,022 putative SNPs were identified by the Illumina/Solexa sequencing system using a reduced representation DNA library of two parental lines of a mapping population. The validation rates of these putative SNPs predicted with low and high stringency were 72% and 85%, respectively. One hundred sixty four SNP markers resulted from the validation of putative SNPs and have been selectively chosen to target a known QTL, thereby increasing the marker density of the targeted region to one marker per 42 K bp. Conclusions We have demonstrated how to quickly

  2. A model of binding on DNA microarrays: understanding the combined effect of probe synthesis failure, cross-hybridization, DNA fragmentation and other experimental details of affymetrix arrays

    PubMed Central

    2012-01-01

    Background DNA microarrays are used both for research and for diagnostics. In research, Affymetrix arrays are commonly used for genome wide association studies, resequencing, and for gene expression analysis. These arrays provide large amounts of data. This data is analyzed using statistical methods that quite often discard a large portion of the information. Most of the information that is lost comes from probes that systematically fail across chips and from batch effects. The aim of this study was to develop a comprehensive model for hybridization that predicts probe intensities for Affymetrix arrays and that could provide a basis for improved microarray analysis and probe development. The first part of the model calculates probe binding affinities to all the possible targets in the hybridization solution using the Langmuir isotherm. In the second part of the model we integrate details that are specific to each experiment and contribute to the differences between hybridization in solution and on the microarray. These details include fragmentation, wash stringency, temperature, salt concentration, and scanner settings. Furthermore, the model fits probe synthesis efficiency and target concentration parameters directly to the data. All the parameters used in the model have a well-established physical origin. Results For the 302 chips that were analyzed the mean correlation between expected and observed probe intensities was 0.701 with a range of 0.88 to 0.55. All available chips were included in the analysis regardless of the data quality. Our results show that batch effects arise from differences in probe synthesis, scanner settings, wash strength, and target fragmentation. We also show that probe synthesis efficiencies for different nucleotides are not uniform. Conclusions To date this is the most complete model for binding on microarrays. This is the first model that includes both probe synthesis efficiency and hybridization kinetics/cross-hybridization. These

  3. Diverse Genome-wide Association Studies Associate the IL12/IL23 Pathway with Crohn Disease

    PubMed Central

    Wang, Kai; Zhang, Haitao; Kugathasan, Subra; Annese, Vito; Bradfield, Jonathan P.; Russell, Richard K.; Sleiman, Patrick M.A.; Imielinski, Marcin; Glessner, Joseph; Hou, Cuiping; Wilson, David C.; Walters, Thomas; Kim, Cecilia; Frackelton, Edward C.; Lionetti, Paolo; Barabino, Arrigo; Van Limbergen, Johan; Guthery, Stephen; Denson, Lee; Piccoli, David; Li, Mingyao; Dubinsky, Marla; Silverberg, Mark; Griffiths, Anne; Grant, Struan F.A.; Satsangi, Jack; Baldassano, Robert; Hakonarson, Hakon

    2009-01-01

    Previous genome-wide association (GWA) studies typically focus on single-locus analysis, which may not have the power to detect the majority of genuinely associated loci. Here, we applied pathway analysis using Affymetrix SNP genotype data from the Wellcome Trust Case Control Consortium (WTCCC) and uncovered significant association between Crohn Disease (CD) and the IL12/IL23 pathway, harboring 20 genes (p = 8 × 10−5). Interestingly, the pathway contains multiple genes (IL12B and JAK2) or homologs of genes (STAT3 and CCR6) that were recently identified as genuine susceptibility genes only through meta-analysis of several GWA studies. In addition, the pathway contains other susceptibility genes for CD, including IL18R1, JUN, IL12RB1, and TYK2, which do not reach genome-wide significance by single-marker association tests. The observed pathway-specific association signal was subsequently replicated in three additional GWA studies of European and African American ancestry generated on the Illumina HumanHap550 platform. Our study suggests that examination beyond individual SNP hits, by focusing on genetic networks and pathways, is important to unleashing the true power of GWA studies. PMID:19249008

  4. Comparative Analysis of CNV Calling Algorithms: Literature Survey and a Case Study Using Bovine High-Density SNP Data.

    PubMed

    Xu, Lingyang; Hou, Yali; Bickhart, Derek M; Song, Jiuzhou; Liu, George E

    2013-06-25

    Copy number variations (CNVs) are gains and losses of genomic sequence between two individuals of a species when compared to a reference genome. The data from single nucleotide polymorphism (SNP) microarrays are now routinely used for genotyping, but they also can be utilized for copy number detection. Substantial progress has been made in array design and CNV calling algorithms and at least 10 comparison studies in humans have been published to assess them. In this review, we first survey the literature on existing microarray platforms and CNV calling algorithms. We then examine a number of CNV calling tools to evaluate their impacts using bovine high-density SNP data. Large incongruities in the results from different CNV calling tools highlight the need for standardizing array data collection, quality assessment and experimental validation. Only after careful experimental design and rigorous data filtering can the impacts of CNVs on both normal phenotypic variability and disease susceptibility be fully revealed.

  5. A Whole Methylome CpG-SNP Association Study of Psychosis in Blood and Brain Tissue.

    PubMed

    van den Oord, Edwin J C G; Clark, Shaunna L; Xie, Lin Ying; Shabalin, Andrey A; Dozmorov, Mikhail G; Kumar, Gaurav; Vladimirov, Vladimir I; Magnusson, Patrik K E; Aberg, Karolina A

    2016-07-01

    Mutated CpG sites (CpG-SNPs) are potential hotspots for human diseases because in addition to the sequence variation they may show individual differences in DNA methylation. We performed methylome-wide association studies (MWAS) to test whether methylation differences at those sites were associated with schizophrenia. We assayed all common CpG-SNPs with methyl-CpG binding domain protein-enriched genome sequencing (MBD-seq) using DNA extracted from 1408 blood samples and 66 postmortem brain samples (BA10) of schizophrenia cases and controls. Seven CpG-SNPs passed our FDR threshold of 0.1 in the blood MWAS. Of the CpG-SNPs methylated in brain, 94% were also methylated in blood. This significantly exceeded the 46.2% overlap expected by chance (P-value < 1.0×10(-8)) and justified replicating findings from blood in brain tissue. CpG-SNP rs3796293 in IL1RAP replicated (P-value = .003) with the same direction of effects. This site was further validated through targeted bisulfite pyrosequencing in 736 independent case-control blood samples (P-value < 9.5×10(-4)). Our top result in the brain MWAS (P-value = 8.8×10(-7)) was CpG-SNP rs16872141 located in the potential promoter of ENC1. Overall, our results suggested that CpG-SNP methylation may reflect effects of environmental insults and can provide biomarkers in blood that could potentially improve disease management. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Standardization of PCR-RFLP analysis of nsSNP rs1468384 of NPC1L1 gene

    PubMed Central

    Balgir, Praveen P.; Khanna, Divya; Kaur, Gurlovleen

    2008-01-01

    Niemann-Pick C1-like 1 (NPC1L1) protein, a newly identified sterol influx transporter, located at the apical membrane of the enterocyte, which may actively facilitate the uptake of cholesterol by promoting the passage of sterols across the brush border membrane of the enterocyte. It effects intestinal cholesterol absorption and intracellular transport and as such is an integral part of complex process of cholesterol homeostasis. The study of population data for the distribution of these single nucleotide polymorphisms (SNP) of NPC1L1 has lead to the identification of six non-synonymous single nucleotide polymorphisms (nsSNP). The in vitro analysis using the software MuPro and StructureSNP shows that nsSNP M510I (rs1468384), which involves A→G base pair change leads to decrease in the stability of the protein. A reproducible and a cost-effective PCR-RFLP based assay was developed to screen for the SNP among population data. This SNP has been studied in Caucasian, Asian, and African American populations. Till date, no data is available on Indian population. The distribution of M510I NPC1L1 genotype was estimated in the North Western Indian Population as a test case. The allele distribution in Indian Population differs significantly from that of other populations. The methodology thus proved to be robust enough to bring out these differences. PMID:20300301

  7. IL-10 -1082 SNP and IL-10 in primary CNS and vitreoretinal lymphomas.

    PubMed

    Ramkumar, Hema L; Shen, De Fen; Tuo, Jingsheng; Braziel, Rita M; Coupland, Sarah E; Smith, Justine R; Chan, Chi-Chao

    2012-10-01

    Most primary central nervous system lymphomas (PCNSLs) and primary vitreoretinal lymphomas (PVRLs) are B-cell lymphomas that produce high levels of interleukin (IL)-10, which is linked to rapid disease progression. The IL-10 (-1082) G → A polymorphism (IL-10 SNP) is associated with improved survival in certain non-CNS lymphoma patients. PDCD4 is a tumor suppressor gene and upstream regulator of IL-10. This study examined the correlation between the IL-10 SNP, PDCD4 mRNA expression, and IL-10 expression (at transcript and protein levels) in these lymphoma cells. Single-nucleotide polymorphism (SNP)-typing at IL-10 (-1082) was performed after microdissecting cytospun PVRL cells from 26 specimens. Vitreal IL-10 and IL-6 levels were measured by ELISA. PCNSL cells from 52 paraffin-embedded sections were microdissected and SNP typed on genomic DNA. RT-PCR was performed to analyze expression of IL-10 and PDCD4 mRNA. IL-10 (-1082) SNP typing was performed on blood samples of 96 healthy controls. We measured IL-10 (-1082) SNP expression in 26 PVRLs and 52 PCNSLs and examined its relationship with IL-10 protein and gene expression, respectively. More PVRL patients expressed one copy of the IL-10 ( -1082 )  G → A SNP with the GA genotype compared to controls. The frequencies of the three genotypes (AA, AG, GG) significantly differed in PVRL versus controls and in PCNSL versus controls. In PVRLs, the vitreal IL-10/IL-6 ratio was higher in IL-10 (-1082) AG and IL-10 (-1082) AA patients, compared to IL-10 (-1082) GG patients. IL-10 mRNA expression was higher in IL-10 (-1082) AG and IL-10 (-1082) AA PCNSLs, compared to IL-10 (-1082) GG PCNSLs. No correlation was found between IL-10 and PDCD4 expression levels in 37 PCNSL samples. PVRL and PCNSL patients had similar IL-10 (-1082) A allele frequencies, but genotype distributions differed from healthy controls. The findings suggest that the IL-10 (-1082) A allele is a risk factor for higher IL-10 levels in PVRLs and

  8. IL-10 -1082 SNP and IL-10 in primary CNS and vitreoretinal lymphomas

    PubMed Central

    Ramkumar, Hema L.; Shen, De Fen; Tuo, Jingsheng; Braziel, Rita M.; Coupland, Sarah E.; Smith, Justine R.

    2012-01-01

    Objectives Most primary central nervous system lymphomas (PCNSLs) and primary vitreoretinal lymphomas (PVRLs) are B-cell lymphomas that produce high levels of interleukin (IL)-10, which is linked to rapid disease progression. The IL-10-1082G→A polymorphism (IL-10 SNP) is associated with improved survival in certain non-CNS lymphoma patients. PDCD4 is a tumor suppressor gene and upstream regulator of IL-10. This study examined the correlation between the IL-10 SNP, PDCD4 mRNA expression, and IL-10 expression (at transcript and protein levels) in these lymphoma cells. Materials and methods Single-nucleotide polymorphism (SNP)-typing at IL-10-1082 was performed after micro-dissecting cytospun PVRL cells from 26 specimens. Vitreal IL-10 and IL-6 levels were measured by ELISA. PCNSL cells from 52 paraffin-embedded sections were microdissected and SNP typed on genomic DNA. RT-PCR was performed to analyze expression of IL-10 and PDCD4 mRNA. IL-10-1082 SNP typing was performed on blood samples of 96 healthy controls. We measured IL-10-1082 SNP expression in 26 PVRLs and 52 PCNSLs and examined its relationship with IL-10 protein and gene expression, respectively. Results More PVRL patients expressed one copy of the IL-10-1082G→A SNP with the GA genotype compared to controls. The frequencies of the three genotypes (AA, AG, GG) significantly differed in PVRL versus controls and in PCNSL versus controls. In PVRLs, the vitreal IL-10/IL-6 ratio was higher in IL-10-1082 AG and IL-10-1082 AA patients, compared to IL-10-1082 GG patients. IL-10 mRNA expression was higher in IL-10-1082 AG and IL-10-1082 AA PCNSLs, compared to IL-10-1082 GG PCNSLs. No correlation was found between IL-10 and PDCD4 expression levels in 37 PCNSL samples. Conclusions PVRL and PCNSL patients had similar IL-10-1082 A allele frequencies, but genotype distributions differed from healthy controls. The findings suggest that the IL-10-1082 A allele is a risk factor for higher IL-10 levels in PVRLs and PCNSLs

  9. Consistency between cross-sectional and longitudinal SNP: blood lipid associations.

    PubMed

    Costanza, Michael C; Beer-Borst, Sigrid; James, Richard W; Gaspoz, Jean-Michel; Morabia, Alfredo

    2012-02-01

    Various studies have linked different genetic single nucleotide polymorphisms (SNPs) to different blood lipids (BL), but whether these "connections" were identified using cross-sectional or longitudinal (i.e., changes over time) designs has received little attention. Cross-sectional and longitudinal assessments of BL [total, high-, low-density lipoprotein cholesterol (TC, HDL, LDL), triglycerides (TG)] and non-genetic factors (body mass index, smoking, alcohol intake) were measured for 2,002 Geneva, Switzerland, adults during 1999-2008 (two measurements, median 6 years apart), and 20 SNPs in 13 BL metabolism-related genes. Fixed and mixed effects repeated measures linear regression models, respectively, were employed to identify cross-sectional and longitudinal SNP:BL associations among the 1,516 (76%) study participants who reported not being treated for hypercholesterolemia at either measurement time. One-third more (12 vs. 9) longitudinal than cross-sectional associations were found [Bonferroni-adjusted two-tailed p < 0.00125 (=0.05/2)/20) for each of the four ensembles of 20 SNP:individual BL associations tested under the two study designs]. There was moderate consistency between the cross-sectional and longitudinal findings, with eight SNP:BL associations consistently identified across both study designs: [APOE.2 and APOE.4 (rs7412 and rs429358)]:TC; HL/LIPC (rs2070895):HDL; [APOB (rs1367117), APOE.2 and APOE.4 (rs7412 and rs429358)]:LDL; [APOA5 (rs2072560) and APOC III (rs5128)]:TG. The results suggest that cross-sectional studies, which include most genome-wide association studies (GWAS), can assess the large majority of SNP:BL associations. In the present analysis, which was much less powered than a GWAS, the cross-sectional study was around 2/3 (67%) as efficient as the longitudinal study.

  10. SNP in starch biosynthesis genes associated with nutritional and functional properties of rice

    PubMed Central

    Kharabian-Masouleh, Ardashir; Waters, Daniel L. E.; Reinke, Russell F.; Ward, Rachelle; Henry, Robert J.

    2012-01-01

    Starch is a major component of human diets. The relative contribution of variation in the genes of starch biosynthesis to the nutritional and functional properties of the rice was evaluated in a rice breeding population. Sequencing 18 genes involved in starch synthesis in a population of 233 rice breeding lines discovered 66 functional SNPs in exonic regions. Five genes, AGPS2b, Isoamylase1, SPHOL, SSIIb and SSIVb showed no polymorphism. Association analysis found 31 of the SNP were associated with differences in pasting and cooking quality properties of the rice lines. Two genes appear to be the major loci controlling traits under human selection in rice, GBSSI (waxy gene) and SSIIa. GBSSI influenced amylose content and retrogradation. Other genes contributing to retrogradation were GPT1, SSI, BEI and SSIIIa. SSIIa explained much of the variation in cooking characteristics. Other genes had relatively small effects. PMID:22870386

  11. SNP-based association analysis for seedling traits in durum wheat (Triticum turgidum L. durum (Desf.)).

    PubMed

    Sabiel, Salih A I; Huang, Sisi; Hu, Xin; Ren, Xifeng; Fu, Chunjie; Peng, Junhua; Sun, Dongfa

    2017-03-01

    In the present study, 150 accessions of worldwide originated durum wheat germplasm ( Triticum turgidum spp. durum ) were observed for major seedling traits and their growth. The accessions were evaluated for major seedling traits under controlled conditions of hydroponics at the 13 th , 20 th , 27 th and 34 th day-after germination. Biomass traits were measured at the 34 th day-after germination. Correlation analysis was conducted among the seedling traits and three field traits at maturity, plant height, grain weight and 1000-grain weight observed in four consecutive years. Associations of the measured seedling traits and SNP markers were analyzed based on the mixed linear model (MLM). The results indicated that highly significant genetic variation and robust heritability were found for the seedling and field mature traits. In total, 259 significant associations were detected for all the traits and four growth stages. The phenotypic variation explained (R2) by a single SNP marker is higher than 10% for most (84%) of the significant SNP markers. Forty-six SNP markers associated with multiple traits, indicating non-neglectable pleiotropy in seedling stage. The associated SNP markers could be helpful for genetic analysis of seedling traits, and marker-assisted breeding of new wheat varieties with strong seedling vigor.

  12. Identifying the impact of G-quadruplexes on Affymetrix 3' arrays using cloud computing.

    PubMed

    Memon, Farhat N; Owen, Anne M; Sanchez-Graillet, Olivia; Upton, Graham J G; Harrison, Andrew P

    2010-01-15

    A tetramer quadruplex structure is formed by four parallel strands of DNA/ RNA containing runs of guanine. These quadruplexes are able to form because guanine can Hoogsteen hydrogen bond to other guanines, and a tetrad of guanines can form a stable arrangement. Recently we have discovered that probes on Affymetrix GeneChips that contain runs of guanine do not measure gene expression reliably. We associate this finding with the likelihood that quadruplexes are forming on the surface of GeneChips. In order to cope with the rapidly expanding size of GeneChip array datasets in the public domain, we are exploring the use of cloud computing to replicate our experiments on 3' arrays to look at the effect of the location of G-spots (runs of guanines). Cloud computing is a recently introduced high-performance solution that takes advantage of the computational infrastructure of large organisations such as Amazon and Google. We expect that cloud computing will become widely adopted because it enables bioinformaticians to avoid capital expenditure on expensive computing resources and to only pay a cloud computing provider for what is used. Moreover, as well as financial efficiency, cloud computing is an ecologically-friendly technology, it enables efficient data-sharing and we expect it to be faster for development purposes. Here we propose the advantageous use of cloud computing to perform a large data-mining analysis of public domain 3' arrays.

  13. GACT: a Genome build and Allele definition Conversion Tool for SNP imputation and meta-analysis in genetic association studies.

    PubMed

    Sulovari, Arvis; Li, Dawei

    2014-07-19

    Genome-wide association studies (GWAS) have successfully identified genes associated with complex human diseases. Although much of the heritability remains unexplained, combining single nucleotide polymorphism (SNP) genotypes from multiple studies for meta-analysis will increase the statistical power to identify new disease-associated variants. Meta-analysis requires same allele definition (nomenclature) and genome build among individual studies. Similarly, imputation, commonly-used prior to meta-analysis, requires the same consistency. However, the genotypes from various GWAS are generated using different genotyping platforms, arrays or SNP-calling approaches, resulting in use of different genome builds and allele definitions. Incorrect assumptions of identical allele definition among combined GWAS lead to a large portion of discarded genotypes or incorrect association findings. There is no published tool that predicts and converts among all major allele definitions. In this study, we have developed a tool, GACT, which stands for Genome build and Allele definition Conversion Tool, that predicts and inter-converts between any of the common SNP allele definitions and between the major genome builds. In addition, we assessed several factors that may affect imputation quality, and our results indicated that inclusion of singletons in the reference had detrimental effects while ambiguous SNPs had no measurable effect. Unexpectedly, exclusion of genotypes with missing rate > 0.001 (40% of study SNPs) showed no significant decrease of imputation quality (even significantly higher when compared to the imputation with singletons in the reference), especially for rare SNPs. GACT is a new, powerful, and user-friendly tool with both command-line and interactive online versions that can accurately predict, and convert between any of the common allele definitions and between genome builds for genome-wide meta-analysis and imputation of genotypes from SNP-arrays or deep

  14. Incorporation of Personal Single Nucleotide Polymorphism (SNP) Data into a National Level Electronic Health Record for Disease Risk Assessment, Part 2: The Incorporation of SNP into the National Health Information System of Turkey

    PubMed Central

    Beyan, Timur

    2014-01-01

    Background A personalized medicine approach provides opportunities for predictive and preventive medicine. Using genomic, clinical, environmental, and behavioral data, the tracking and management of individual wellness is possible. A prolific way to carry this personalized approach into routine practices can be accomplished by integrating clinical interpretations of genomic variations into electronic medical record (EMR)s/electronic health record (EHR)s systems. Today, various central EHR infrastructures have been constituted in many countries of the world, including Turkey. Objective As an initial attempt to develop a sophisticated infrastructure, we have concentrated on incorporating the personal single nucleotide polymorphism (SNP) data into the National Health Information System of Turkey (NHIS-T) for disease risk assessment, and evaluated the performance of various predictive models for prostate cancer cases. We present our work as a miniseries containing three parts: (1) an overview of requirements, (2) the incorporation of SNP into the NHIS-T, and (3) an evaluation of SNP data incorporated into the NHIS-T for prostate cancer. Methods For the second article of this miniseries, we have analyzed the existing NHIS-T and proposed the possible extensional architectures. In light of the literature survey and characteristics of NHIS-T, we have proposed and argued opportunities and obstacles for a SNP incorporated NHIS-T. A prototype with complementary capabilities (knowledge base and end-user applications) for these architectures has been designed and developed. Results In the proposed architectures, the clinically relevant personal SNP (CR-SNP) and clinicogenomic associations are shared between central repositories and end-users via the NHIS-T infrastructure. To produce these files, we need to develop a national level clinicogenomic knowledge base. Regarding clinicogenomic decision support, we planned to complete interpretation of these associations on the end

  15. Incorporation of personal single nucleotide polymorphism (SNP) data into a national level electronic health record for disease risk assessment, part 2: the incorporation of SNP into the national health information system of Turkey.

    PubMed

    Beyan, Timur; Aydın Son, Yeşim

    2014-08-11

    A personalized medicine approach provides opportunities for predictive and preventive medicine. Using genomic, clinical, environmental, and behavioral data, the tracking and management of individual wellness is possible. A prolific way to carry this personalized approach into routine practices can be accomplished by integrating clinical interpretations of genomic variations into electronic medical record (EMR)s/electronic health record (EHR)s systems. Today, various central EHR infrastructures have been constituted in many countries of the world, including Turkey. As an initial attempt to develop a sophisticated infrastructure, we have concentrated on incorporating the personal single nucleotide polymorphism (SNP) data into the National Health Information System of Turkey (NHIS-T) for disease risk assessment, and evaluated the performance of various predictive models for prostate cancer cases. We present our work as a miniseries containing three parts: (1) an overview of requirements, (2) the incorporation of SNP into the NHIS-T, and (3) an evaluation of SNP data incorporated into the NHIS-T for prostate cancer. For the second article of this miniseries, we have analyzed the existing NHIS-T and proposed the possible extensional architectures. In light of the literature survey and characteristics of NHIS-T, we have proposed and argued opportunities and obstacles for a SNP incorporated NHIS-T. A prototype with complementary capabilities (knowledge base and end-user applications) for these architectures has been designed and developed. In the proposed architectures, the clinically relevant personal SNP (CR-SNP) and clinicogenomic associations are shared between central repositories and end-users via the NHIS-T infrastructure. To produce these files, we need to develop a national level clinicogenomic knowledge base. Regarding clinicogenomic decision support, we planned to complete interpretation of these associations on the end-user applications. This approach gives us

  16. New Insights into the Geographic Distribution of Mycobacterium leprae SNP Genotypes Determined for Isolates from Leprosy Cases Diagnosed in Metropolitan France and French Territories.

    PubMed

    Reibel, Florence; Chauffour, Aurélie; Brossier, Florence; Jarlier, Vincent; Cambau, Emmanuelle; Aubry, Alexandra

    2015-01-01

    Between 20 and 30 bacteriologically confirmed cases of leprosy are diagnosed each year at the French National Reference Center for mycobacteria. Patients are mainly immigrants from various endemic countries or living in French overseas territories. We aimed at expanding data regarding the geographical distribution of the SNP genotypes of the M. leprae isolates from these patients. Skin biopsies were obtained from 71 leprosy patients diagnosed between January 2009 and December 2013. Data regarding age, sex and place of birth and residence were also collected. Diagnosis of leprosy was confirmed by microscopic detection of acid-fast bacilli and/or amplification by PCR of the M. leprae-specific RLEP region. Single nucleotide polymorphisms (SNP), present in the M. leprae genome at positions 14 676, 1 642 875 and 2 935 685, were determined with an efficiency of 94% (67/71). Almost all patients were from countries other than France where leprosy is still prevalent (n = 31) or from French overseas territories (n = 36) where leprosy is not totally eradicated, while only a minority (n = 4) was born in metropolitan France but have lived in other countries. SNP type 1 was predominant (n = 33), followed by type 3 (n = 17), type 4 (n = 11) and type 2 (n = 6). SNP types were concordant with those previously reported as prevalent in the patients' countries of birth. SNP types found in patients born in countries other than France (Comoros, Haiti, Benin, Congo, Sri Lanka) and French overseas territories (French Polynesia, Mayotte and La Réunion) not covered by previous work correlated well with geographical location and history of human settlements. The phylogenic analysis of M. leprae strains isolated in France strongly suggests that French leprosy cases are caused by SNP types that are (a) concordant with the geographic origin or residence of the patients (non-French countries, French overseas territories, metropolitan France) or (b) more likely random in regions where diverse

  17. New Insights into the Geographic Distribution of Mycobacterium leprae SNP Genotypes Determined for Isolates from Leprosy Cases Diagnosed in Metropolitan France and French Territories

    PubMed Central

    Reibel, Florence; Chauffour, Aurélie; Brossier, Florence; Jarlier, Vincent; Cambau, Emmanuelle; Aubry, Alexandra

    2015-01-01

    Background Between 20 and 30 bacteriologically confirmed cases of leprosy are diagnosed each year at the French National Reference Center for mycobacteria. Patients are mainly immigrants from various endemic countries or living in French overseas territories. We aimed at expanding data regarding the geographical distribution of the SNP genotypes of the M. leprae isolates from these patients. Methodology/Principal findings Skin biopsies were obtained from 71 leprosy patients diagnosed between January 2009 and December 2013. Data regarding age, sex and place of birth and residence were also collected. Diagnosis of leprosy was confirmed by microscopic detection of acid-fast bacilli and/or amplification by PCR of the M. leprae-specific RLEP region. Single nucleotide polymorphisms (SNP), present in the M. leprae genome at positions 14 676, 1 642 875 and 2 935 685, were determined with an efficiency of 94% (67/71). Almost all patients were from countries other than France where leprosy is still prevalent (n = 31) or from French overseas territories (n = 36) where leprosy is not totally eradicated, while only a minority (n = 4) was born in metropolitan France but have lived in other countries. SNP type 1 was predominant (n = 33), followed by type 3 (n = 17), type 4 (n = 11) and type 2 (n = 6). SNP types were concordant with those previously reported as prevalent in the patients’ countries of birth. SNP types found in patients born in countries other than France (Comoros, Haiti, Benin, Congo, Sri Lanka) and French overseas territories (French Polynesia, Mayotte and La Réunion) not covered by previous work correlated well with geographical location and history of human settlements. Conclusions/Significance The phylogenic analysis of M. leprae strains isolated in France strongly suggests that French leprosy cases are caused by SNP types that are (a) concordant with the geographic origin or residence of the patients (non-French countries, French overseas territories

  18. Analysis of SNP rs16754 of WT1 gene in a series of de novo acute myeloid leukemia patients.

    PubMed

    Luna, Irene; Such, Esperanza; Cervera, Jose; Barragán, Eva; Jiménez-Velasco, Antonio; Dolz, Sandra; Ibáñez, Mariam; Gómez-Seguí, Inés; López-Pavía, María; Llop, Marta; Fuster, Óscar; Oltra, Silvestre; Moscardó, Federico; Martínez-Cuadrón, David; Senent, M Leonor; Gascón, Adriana; Montesinos, Pau; Martín, Guillermo; Bolufer, Pascual; Sanz, Miguel A

    2012-12-01

    The single nucleotide polymorphism (SNP) rs16754 of the WT1 gene has been previously described as a possible prognostic marker in normal karyotype acute myeloid leukemia (AML) patients. Nevertheless, the findings in this field are not always reproducible in different series. One hundred and seventy-five adult de novo AML patients were screened with two different methods for the detection of SNP rs16754: high-resolution melting (HRM) and FRET hybridization probes. Direct sequencing was used to validate both techniques. The SNP was detected in 52 out of 175 patients (30 %), both by HRM and hybridization probes. Direct sequencing confirmed that every positive sample in the screening methods had a variation in the DNA sequence. Patients with the wild-type genotype (WT1(AA)) for the SNP rs16754 were significantly younger than those with the heterozygous WT1(AG) genotype. No other difference was observed for baseline characteristic or outcome between patients with or without the SNP. Both techniques are equally reliable and reproducible as screening methods for the detection of the SNP rs16754, allowing for the selection of those samples that will need to be sequenced. We were unable to confirm the suggested favorable outcome of SNP rs16754 in de novo AML.

  19. Fine-mapping, novel loci identification, and SNP association transferability in a genome-wide association study of QRS duration in African Americans

    PubMed Central

    Evans, Daniel S.; Avery, Christy L.; Nalls, Mike A.; Li, Guo; Barnard, John; Smith, Erin N.; Tanaka, Toshiko; Butler, Anne M.; Buxbaum, Sarah G.; Alonso, Alvaro; Arking, Dan E.; Berenson, Gerald S.; Bis, Joshua C.; Buyske, Steven; Carty, Cara L.; Chen, Wei; Chung, Mina K.; Cummings, Steven R.; Deo, Rajat; Eaton, Charles B.; Fox, Ervin R.; Heckbert, Susan R.; Heiss, Gerardo; Hindorff, Lucia A.; Hsueh, Wen-Chi; Isaacs, Aaron; Jamshidi, Yalda; Kerr, Kathleen F.; Liu, Felix; Liu, Yongmei; Lohman, Kurt K.; Magnani, Jared W.; Maher, Joseph F.; Mehra, Reena; Meng, Yan A.; Musani, Solomon K.; Newton-Cheh, Christopher; North, Kari E.; Psaty, Bruce M.; Redline, Susan; Rotter, Jerome I.; Schnabel, Renate B.; Schork, Nicholas J.; Shohet, Ralph V.; Singleton, Andrew B.; Smith, Jonathan D.; Soliman, Elsayed Z.; Srinivasan, Sathanur R.; Taylor, Herman A.; Van Wagoner, David R.; Wilson, James G.; Young, Taylor; Zhang, Zhu-Ming; Zonderman, Alan B.; Evans, Michele K.; Ferrucci, Luigi; Murray, Sarah S.; Tranah, Gregory J.; Whitsel, Eric A.; Reiner, Alex P.; Sotoodehnia, Nona

    2016-01-01

    The electrocardiographic QRS duration, a measure of ventricular depolarization and conduction, is associated with cardiovascular mortality. While single nucleotide polymorphisms (SNPs) associated with QRS duration have been identified at 22 loci in populations of European descent, the genetic architecture of QRS duration in non-European populations is largely unknown. We therefore performed a genome-wide association study (GWAS) meta-analysis of QRS duration in 13,031 African Americans from ten cohorts and a transethnic GWAS meta-analysis with additional results from populations of European descent. In the African American GWAS, a single genome-wide significant SNP association was identified (rs3922844, P = 4 × 10−14) in intron 16 of SCN5A, a voltage-gated cardiac sodium channel gene. The QRS-prolonging rs3922844 C allele was also associated with decreased SCN5A RNA expression in human atrial tissue (P = 1.1 × 10−4). High density genotyping revealed that the SCN5A association region in African Americans was confined to intron 16. Transethnic GWAS meta-analysis identified novel SNP associations on chromosome 18 in MYL12A (rs1662342, P = 4.9 × 10−8) and chromosome 1 near CD1E and SPTA1 (rs7547997, P = 7.9 × 10−9). The 22 QRS loci previously identified in populations of European descent were enriched for significant SNP associations with QRS duration in African Americans (P = 9.9 × 10−7), and index SNP associations in or near SCN5A, SCN10A, CDKN1A, NFIA, HAND1, TBX5 and SETBP1 replicated in African Americans. In summary, rs3922844 was associated with QRS duration and SCN5A expression, two novel QRS loci were identified using transethnic meta-analysis, and a significant proportion of QRS–SNP associations discovered in populations of European descent were transferable to African Americans when adequate power was achieved. PMID:27577874

  20. Target capture enrichment of nuclear SNP markers for massively parallel sequencing of degraded and mixed samples.

    PubMed

    Bose, Nikhil; Carlberg, Katie; Sensabaugh, George; Erlich, Henry; Calloway, Cassandra

    2018-05-01

    DNA from biological forensic samples can be highly fragmented and present in limited quantity. When DNA is highly fragmented, conventional PCR based Short Tandem Repeat (STR) analysis may fail as primer binding sites may not be present on a single template molecule. Single Nucleotide Polymorphisms (SNPs) can serve as an alternative type of genetic marker for analysis of degraded samples because the targeted variation is a single base. However, conventional PCR based SNP analysis methods still require intact primer binding sites for target amplification. Recently, probe capture methods for targeted enrichment have shown success in recovering degraded DNA as well as DNA from ancient bone samples using next-generation sequencing (NGS) technologies. The goal of this study was to design and test a probe capture assay targeting forensically relevant nuclear SNP markers for clonal and massively parallel sequencing (MPS) of degraded and limited DNA samples as well as mixtures. A set of 411 polymorphic markers totaling 451 nuclear SNPs (375 SNPs and 36 microhaplotype markers) was selected for the custom probe capture panel. The SNP markers were selected for a broad range of forensic applications including human individual identification, kinship, and lineage analysis as well as for mixture analysis. Performance of the custom SNP probe capture NGS assay was characterized by analyzing read depth and heterozygote allele balance across 15 samples at 25 ng input DNA. Performance thresholds were established based on read depth ≥500X and heterozygote allele balance within ±10% deviation from 50:50, which was observed for 426 out of 451 SNPs. These 426 SNPs were analyzed in size selected samples (at ≤75 bp, ≤100 bp, ≤150 bp, ≤200 bp, and ≤250 bp) as well as mock degraded samples fragmented to an average of 150 bp. Samples selected for ≤75 bp exhibited 99-100% reportable SNPs across varied DNA amounts and as low as 0.5 ng. Mock degraded samples at 1

  1. Do you really know where this SNP goes?

    USDA-ARS?s Scientific Manuscript database

    The release of build 10.2 of the swine genome was a marked improvement over previous builds and has proven extremely useful. However, as most know, there are regions of the genome that this particular build does not accurately represent. For instance, nearly 25% of the 62,162 SNP on the Illumina Por...

  2. Identification of a genetic variant associated with abdominal aortic aneurysms on chromosome 3p12.3 by genome wide association.

    PubMed

    Elmore, James R; Obmann, Melissa A; Kuivaniemi, Helena; Tromp, Gerard; Gerhard, Glenn S; Franklin, David P; Boddy, Amy M; Carey, David J

    2009-06-01

    The goal of this project was to identify genetic variants associated with abdominal aortic aneurysms (AAAs). A genome wide association study was carried out using pooled DNA samples from 123 AAA cases and 112 controls matched for age, gender, and smoking history using Affymetrix 500K single nucleotide polymorphism (SNP) arrays (Affymetrix, Inc, Santa Clara, Calif). The difference in mean allele frequency between cases and controls was calculated for each SNP and used to identify candidate genomic regions. Association of candidate SNPs with AAA was confirmed by individual TaqMan genotype assays in a total of 2096 cases and controls that included an independent replication sample set. A genome wide association study of AAA cases and controls identified a candidate AAA-associated haplotype on chromosome 3p12.3. By individual genotype analysis, four SNPs in this region were significantly associated with AAA in cases and controls from the original study population. One SNP in this region (rs7635818) was genotyped in a total of 502 cases and 736 controls from the original study population (P = .017) and 448 cases and 410 controls from an independent replication sample (P = .013; combined P value = .0028; combined odds ratio [OR] = 1.33). An even stronger association with AAA was observed in a subset of smokers (391 cases, 241 controls, P = .00041, OR = 1.80), which represent the highest risk group for AAA. The AAA-associated haplotype is located approximately 200 kbp upstream of the CNTN3 gene transcription start site. This study identifies a region on chromosome 3 that is significantly associated with AAA in 2 distinct study populations.

  3. AncestrySNPminer: A bioinformatics tool to retrieve and develop ancestry informative SNP panels

    PubMed Central

    Amirisetty, Sushil; Khurana Hershey, Gurjit K.; Baye, Tesfaye M.

    2012-01-01

    A wealth of genomic information is available in public and private databases. However, this information is underutilized for uncovering population specific and functionally relevant markers underlying complex human traits. Given the huge amount of SNP data available from the annotation of human genetic variation, data mining is a faster and cost effective approach for investigating the number of SNPs that are informative for ancestry. In this study, we present AncestrySNPminer, the first web-based bioinformatics tool specifically designed to retrieve Ancestry Informative Markers (AIMs) from genomic data sets and link these informative markers to genes and ontological annotation classes. The tool includes an automated and simple “scripting at the click of a button” functionality that enables researchers to perform various population genomics statistical analyses methods with user friendly querying and filtering of data sets across various populations through a single web interface. AncestrySNPminer can be freely accessed at https://research.cchmc.org/mershalab/AncestrySNPminer/login.php. PMID:22584067

  4. Distinct contributions of replication and transcription to mutation rate variation of human genomes.

    PubMed

    Cui, Peng; Ding, Feng; Lin, Qiang; Zhang, Lingfang; Li, Ang; Zhang, Zhang; Hu, Songnian; Yu, Jun

    2012-02-01

    Here, we evaluate the contribution of two major biological processes--DNA replication and transcription--to mutation rate variation in human genomes. Based on analysis of the public human tissue transcriptomics data, high-resolution replicating map of Hela cells and dbSNP data, we present significant correlations between expression breadth, replication time in local regions and SNP density. SNP density of tissue-specific (TS) genes is significantly higher than that of housekeeping (HK) genes. TS genes tend to locate in late-replicating genomic regions and genes in such regions have a higher SNP density compared to those in early-replication regions. In addition, SNP density is found to be positively correlated with expression level among HK genes. We conclude that the process of DNA replication generates stronger mutational pressure than transcription-associated biological processes do, resulting in an increase of mutation rate in TS genes while having weaker effects on HK genes. In contrast, transcription-associated processes are mainly responsible for the accumulation of mutations in highly-expressed HK genes. Copyright © 2012 Beijing Genomics Institute. Published by Elsevier Ltd. All rights reserved.

  5. Fine Mapping of a Clubroot Resistance Gene in Chinese Cabbage Using SNP Markers Identified from Bulked Segregant RNA Sequencing

    PubMed Central

    Huang, Zhen; Peng, Gary; Liu, Xunjia; Deora, Abhinandan; Falk, Kevin C.; Gossen, Bruce D.; McDonald, Mary R.; Yu, Fengqun

    2017-01-01

    Clubroot, caused by Plasmodiophora brassicae, is an important disease of canola (Brassica napus) in western Canada and worldwide. In this study, a clubroot resistance gene (Rcr2) was identified and fine mapped in Chinese cabbage cv. “Jazz” using single-nucleotide polymorphisms (SNP) markers identified from bulked segregant RNA sequencing (BSR-Seq) and molecular markers were developed for use in marker assisted selection. In total, 203.9 million raw reads were generated from one pooled resistant (R) and one pooled susceptible (S) sample, and >173,000 polymorphic SNP sites were identified between the R and S samples. One significant peak was observed between 22 and 26 Mb of chromosome A03, which had been predicted by BSR-Seq to contain the causal gene Rcr2. There were 490 polymorphic SNP sites identified in the region. A segregating population consisting of 675 plants was analyzed with 15 SNP sites in the region using the Kompetitive Allele Specific PCR method, and Rcr2 was fine mapped between two SNP markers, SNP_A03_32 and SNP_A03_67 with 0.1 and 0.3 cM from Rcr2, respectively. Five SNP markers co-segregated with Rcr2 in this region. Variants were identified in 14 of 36 genes annotated in the Rcr2 target region. The numbers of poly variants differed among the genes. Four genes encode TIR-NBS-LRR proteins and two of them Bra019410 and Bra019413, had high numbers of polymorphic variants and so are the most likely candidates of Rcr2. PMID:28894454

  6. GEE-based SNP set association test for continuous and discrete traits in family-based association studies.

    PubMed

    Wang, Xuefeng; Lee, Seunggeun; Zhu, Xiaofeng; Redline, Susan; Lin, Xihong

    2013-12-01

    Family-based genetic association studies of related individuals provide opportunities to detect genetic variants that complement studies of unrelated individuals. Most statistical methods for family association studies for common variants are single marker based, which test one SNP a time. In this paper, we consider testing the effect of an SNP set, e.g., SNPs in a gene, in family studies, for both continuous and discrete traits. Specifically, we propose a generalized estimating equations (GEEs) based kernel association test, a variance component based testing method, to test for the association between a phenotype and multiple variants in an SNP set jointly using family samples. The proposed approach allows for both continuous and discrete traits, where the correlation among family members is taken into account through the use of an empirical covariance estimator. We derive the theoretical distribution of the proposed statistic under the null and develop analytical methods to calculate the P-values. We also propose an efficient resampling method for correcting for small sample size bias in family studies. The proposed method allows for easily incorporating covariates and SNP-SNP interactions. Simulation studies show that the proposed method properly controls for type I error rates under both random and ascertained sampling schemes in family studies. We demonstrate through simulation studies that our approach has superior performance for association mapping compared to the single marker based minimum P-value GEE test for an SNP-set effect over a range of scenarios. We illustrate the application of the proposed method using data from the Cleveland Family GWAS Study. © 2013 WILEY PERIODICALS, INC.

  7. Association between CYP19 gene SNP rs2414096 polymorphism and polycystic ovary syndrome in Chinese women.

    PubMed

    Jin, Jia-Li; Sun, Jing; Ge, Hui-Juan; Cao, Yun-Xia; Wu, Xiao-Ke; Liang, Feng-Jing; Sun, Hai-Xiang; Ke, Lu; Yi, Long; Wu, Zhi-Wei; Wang, Yong

    2009-12-16

    Several studies have reported the association of the SNP rs2414096 in the CYP19 gene with hyperandrogenism, which is one of the clinical manifestations of polycystic ovary syndrome (PCOS). These studies suggest that SNP rs2414096 may be involved in the etiopathogenisis of PCOS. To investigate whetherthe CYP19 gene SNP rs2414096 polymorphism is associated with the susceptibility to PCOS, we designed a case-controlled association study including 684 individuals. A case-controlled association study including 684 individuals (386 PCOS patients and 298 controls) was performed to assess the association of SNP rs2414096 with PCOS. Genotyping of SNP rs2414096 was conducted by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method that was performed on genomic DNA isolated from blood leucocytes. Results were analyzed in respect to clinical test results. The genotypic distributions of rs2414096 (GG, AG, AA) in the CYP19 gene (GG, AG, AA) in women with PCOS (0.363, 0.474, 0.163, respectively) were significantly different from that in controls (0.242, 0.500, 0.258, respectively) (P = 0.001). E2/T was different between the AA and GG genotypes. Age at menarche (AAM) and FSH were also significantly different among the GG, AG, and AA genotypes in women with PCOS (P = 0.0391 and 0.0118, respectively). No differences were observed in body mass index (BMI) and other serum hormone concentrations among the three genotypes, either in the PCOS patients or controls. Our data suggest that SNP rs2414096 in the CYP19 gene is associated with susceptibility to PCOS.

  8. Comparison of SSR and SNP Markers in Estimation of Genetic Diversity and Population Structure of Indian Rice Varieties

    PubMed Central

    Singh, Amit Kumar; Kumar, Sundeep; Srinivasan, Kalyani; Tyagi, R. K.; Singh, N. K.; Singh, Rakesh

    2013-01-01

    Simple sequence repeat (SSR) and Single Nucleotide Polymorphic (SNP), the two most robust markers for identifying rice varieties were compared for assessment of genetic diversity and population structure. Total 375 varieties of rice from various regions of India archived at the Indian National GeneBank, NBPGR, New Delhi, were analyzed using thirty six genetic markers, each of hypervariable SSR (HvSSR) and SNP which were distributed across 12 rice chromosomes. A total of 80 alleles were amplified with the SSR markers with an average of 2.22 alleles per locus whereas, 72 alleles were amplified with SNP markers. Polymorphic information content (PIC) values for HvSSR ranged from 0.04 to 0.5 with an average of 0.25. In the case of SNP markers, PIC values ranged from 0.03 to 0.37 with an average of 0.23. Genetic relatedness among the varieties was studied; utilizing an unrooted tree all the genotypes were grouped into three major clusters with both SSR and SNP markers. Analysis of molecular variance (AMOVA) indicated that maximum diversity was partitioned between and within individual level but not between populations. Principal coordinate analysis (PCoA) with SSR markers showed that genotypes were uniformly distributed across the two axes with 13.33% of cumulative variation whereas, in case of SNP markers varieties were grouped into three broad groups across two axes with 45.20% of cumulative variation. Population structure were tested using K values from 1 to 20, but there was no clear population structure, therefore Ln(PD) derived Δk was plotted against the K to determine the number of populations. In case of SSR maximum Δk was at K=5 whereas, in case of SNP maximum Δk was found at K=15, suggesting that resolution of population was higher with SNP markers, but SSR were more efficient for diversity analysis. PMID:24367635

  9. Mycobacterium leprae in Colombia described by SNP7614 in gyrA, two minisatellites and geography.

    PubMed

    Cardona-Castro, Nora; Beltrán-Alzate, Juan Camilo; Romero-Montoya, Irma Marcela; Li, Wei; Brennan, Patrick J; Vissa, Varalakshmi

    2013-03-01

    New cases of leprosy are still being detected in Colombia after the country declared achievement of the WHO defined 'elimination' status. To study the ecology of leprosy in endemic regions, a combination of geographic and molecular tools were applied for a group of 201 multibacillary patients including six multi-case families from eleven departments. The location (latitude and longitude) of patient residences were mapped. Slit skin smears and/or skin biopsies were collected and DNA was extracted. Standard agarose gel electrophoresis following a multiplex PCR-was developed for rapid and inexpensive strain typing of Mycobacterium leprae based on copy numbers of two VNTR minisatellite loci 27-5 and 12-5. A SNP (C/T) in gyrA (SNP7614) was mapped by introducing a novel PCR-RFLP into an ongoing drug resistance surveillance effort. Multiple genotypes were detected combining the three molecular markers. The two frequent genotypes in Colombia were SNP7614(C)/27-5(5)/12-5(4) [C54] predominantly distributed in the Atlantic departments and SNP7614 (T)/27-5(4)/12-5(5) [T45] associated with the Andean departments. A novel genotype SNP7614 (C)/27-5(6)/12-5(4) [C64] was detected in cities along the Magdalena river which separates the Andean from Atlantic departments; a subset was further characterized showing association with a rare allele of minisatellite 23-3 and the SNP type 1 of M. leprae. The genotypes within intra-family cases were conserved. Overall, this is the first large scale study that utilized simple and rapid assay formats for identification of major strain types and their distribution in Colombia. It provides the framework for further strain type discrimination and geographic information systems as tools for tracing transmission of leprosy. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Diversity analysis of cotton (Gossypium hirsutum L.) germplasm using the CottonSNP63K Array.

    PubMed

    Hinze, Lori L; Hulse-Kemp, Amanda M; Wilson, Iain W; Zhu, Qian-Hao; Llewellyn, Danny J; Taylor, Jen M; Spriggs, Andrew; Fang, David D; Ulloa, Mauricio; Burke, John J; Giband, Marc; Lacape, Jean-Marc; Van Deynze, Allen; Udall, Joshua A; Scheffler, Jodi A; Hague, Steve; Wendel, Jonathan F; Pepper, Alan E; Frelichowski, James; Lawley, Cindy T; Jones, Don C; Percy, Richard G; Stelly, David M

    2017-02-03

    Cotton germplasm resources contain beneficial alleles that can be exploited to develop germplasm adapted to emerging environmental and climate conditions. Accessions and lines have traditionally been characterized based on phenotypes, but phenotypic profiles are limited by the cost, time, and space required to make visual observations and measurements. With advances in molecular genetic methods, genotypic profiles are increasingly able to identify differences among accessions due to the larger number of genetic markers that can be measured. A combination of both methods would greatly enhance our ability to characterize germplasm resources. Recent efforts have culminated in the identification of sufficient SNP markers to establish high-throughput genotyping systems, such as the CottonSNP63K array, which enables a researcher to efficiently analyze large numbers of SNP markers and obtain highly repeatable results. In the current investigation, we have utilized the SNP array for analyzing genetic diversity primarily among cotton cultivars, making comparisons to SSR-based phylogenetic analyses, and identifying loci associated with seed nutritional traits. The SNP markers distinctly separated G. hirsutum from other Gossypium species and distinguished the wild from cultivated types of G. hirsutum. The markers also efficiently discerned differences among cultivars, which was the primary goal when designing the CottonSNP63K array. Population structure within the genus compared favorably with previous results obtained using SSR markers, and an association study identified loci linked to factors that affect cottonseed protein content. Our results provide a large genome-wide variation data set for primarily cultivated cotton. Thousands of SNPs in representative cotton genotypes provide an opportunity to finely discriminate among cultivated cotton from around the world. The SNPs will be relevant as dense markers of genome variation for association mapping approaches aimed at

  11. Mycobacterium leprae in Colombia described by SNP7614 in gyrA, two minisatellites and geography

    PubMed Central

    Cardona-Castro, Nora; Beltrán-Alzate, Juan Camilo; Romero-Montoya, Irma Marcela; Li, Wei; Brennan, Patrick J; Vissa, Varalakshmi

    2013-01-01

    New cases of leprosy are still being detected in Colombia after the country declared achievement of the WHO defined ‘elimination’ status. To study the ecology of leprosy in endemic regions, a combination of geographic and molecular tools were applied for a group of 201 multibacillary patients including six multi-case families from eleven departments. The location (latitude and longitude) of patient residences were mapped. Slit skin smears and/or skin biopsies were collected and DNA was extracted. Standard agarose gel electrophoresis following a multiplex PCR-was developed for rapid and inexpensive strain typing of M. leprae based on copy numbers of two VNTR minisatellite loci 27-5 and 12-5. A SNP (C/T) in gyrA (SNP7614) was mapped by introducing a novel PCR-RFLP into an ongoing drug resistance surveillance effort. Multiple genotypes were detected combining the three molecular markers. The two frequent genotypes in Colombia were SNP7614(C)/27-5(5)/12-5(4) [C54] predominantly distributed in the Atlantic departments and SNP7614 (T)/27-5(4)/12-5(5) [T45] associated with the Andean departments. A novel genotype SNP7614 (C)/27-5(6)/12-5(4) [C64] was detected in cities along the Magdalena river which separates the Andean from Atlantic departments; a subset was further characterized showing association with a rare allele of minisatellite 23-3 and the SNP type 1 of M. leprae. The genotypes within intra-family cases were conserved. Overall, this is the first large scale study that utilized simple and rapid assay formats for identification of major strain types and their distribution in Colombia. It provides the framework for further strain type discrimination and geographic information systems as tools for tracing transmission of leprosy. PMID:23291420

  12. R classes and methods for SNP array data.

    PubMed

    Scharpf, Robert B; Ruczinski, Ingo

    2010-01-01

    The Bioconductor project is an "open source and open development software project for the analysis and comprehension of genomic data" (1), primarily based on the R programming language. Infrastructure packages, such as Biobase, are maintained by Bioconductor core developers and serve several key roles to the broader community of Bioconductor software developers and users. In particular, Biobase introduces an S4 class, the eSet, for high-dimensional assay data. Encapsulating the assay data as well as meta-data on the samples, features, and experiment in the eSet class definition ensures propagation of the relevant sample and feature meta-data throughout an analysis. Extending the eSet class promotes code reuse through inheritance as well as interoperability with other R packages and is less error-prone. Recently proposed class definitions for high-throughput SNP arrays extend the eSet class. This chapter highlights the advantages of adopting and extending Biobase class definitions through a working example of one implementation of classes for the analysis of high-throughput SNP arrays.

  13. Simple SNP-based minimal marker genotyping for Humulus lupulus L. identification and variety validation.

    PubMed

    Henning, John A; Coggins, Jamie; Peterson, Matthew

    2015-10-06

    Hop is an economically important crop for the Pacific Northwest USA as well as other regions of the world. It is a perennial crop with rhizomatous or clonal propagation system for varietal distribution. A big concern for growers as well as brewers is variety purity and questions are regularly posed to public agencies concerning the availability of genotype testing. Current means for genotyping are based upon 25 microsatellites that provides relatively accurate genotyping but cannot always differentiate sister-lines. In addition, numerous PCR runs (25) are required to complete this process and only a few laboratories exist that perform this service. A genotyping protocol based upon SNPs would enable rapid accurate genotyping that can be assayed at any laboratory facility set up for SNP-based genotyping. The results of this study arose from a larger project designed for whole genome association studies upon the USDA-ARS hop germplasm collection consisting of approximately 116 distinct hop varieties and germplasm (female lines) from around the world. The original dataset that arose from partial sequencing of 121 genotypes resulted in the identification of 374,829 SNPs using TASSEL-UNEAK pipeline. After filtering out genotypes with more than 50% missing data (5 genotypes) and SNP markers with more than 20% missing data, 32,206 highly filtered SNP markers across 116 genotypes were identified and considered for this study. Minor allele frequency (MAF) was calculated for each SNP and ranked according to the most informative to least informative. Only those markers without missing data across genotypes as well as 60% or less heterozygous gamete calls were considered for further analysis. Genetic distances among individuals in the study were calculated using the marker with the highest MAF value, then by using a combination of the two markers with highest MAF values and so on. This process was reiterated until a set of markers was identified that allowed for all genotypes

  14. Typing SNP based on the near-infrared spectroscopy and artificial neural network

    NASA Astrophysics Data System (ADS)

    Ren, Li; Wang, Wei-Peng; Gao, Yu-Zhen; Yu, Xiao-Wei; Xie, Hong-Ping

    2009-07-01

    Based on the near-infrared spectra (NIRS) of the measured samples as the discriminant variables of their genotypes, the genotype discriminant model of SNP has been established by using back-propagation artificial neural network (BP-ANN). Taking a SNP (857G > A) of N-acetyltransferase 2 (NAT2) as an example, DNA fragments containing the SNP site were amplified by the PCR method based on a pair of primers to obtain the three-genotype (GG, AA, and GA) modeling samples. The NIRS-s of the amplified samples were directly measured in transmission by using quartz cell. Based on the sample spectra measured, the two BP-ANN-s were combined to obtain the stronger ability of the three-genotype classification. One of them was established to compress the measured NIRS variables by using the resilient back-propagation algorithm, and another network established by Levenberg-Marquardt algorithm according to the compressed NIRS-s was used as the discriminant model of the three-genotype classification. For the established model, the root mean square error for the training and the prediction sample sets were 0.0135 and 0.0132, respectively. Certainly, this model could rightly predict the three genotypes (i.e. the accuracy of prediction samples was up to100%) and had a good robust for the prediction of unknown samples. Since the three genotypes of SNP could be directly determined by using the NIRS-s without any preprocessing for the analyzed samples after PCR, this method is simple, rapid and low-cost.

  15. Heterospecific SNP diversity in humans and rhesus macaque (Macaca mulatta)

    PubMed Central

    Ng, Jillian; Trask, Jessica Satkoski; Smith, David Glenn; Kanthaswamy, Sree

    2018-01-01

    Background Conservation of single nucleotide polymorphisms (SNPs) between human and other primates (i.e., heterospecific SNPs) in candidate genes can be used to assess the utility of those organisms as models for human biomedical research. Methods 59,691 heterospecific SNPs in 22 rhesus macaques and 20 humans were analyzed for human trait associations and 4,207 heterospecific SNPs biallelic in both taxa were compared for genetic variation. Results Variation comparisons at the 4,207 SNPs showed that humans were more genetically diverse than rhesus macaques with observed and expected heterozygosities of 0.337 and 0.323 versus 0.119 and 0.102, and minor allele frequencies of 0.239 and 0.063, respectively. 431 of the 59,691 heterospecific SNPs are reportedly associated with human-specific traits. Conclusion While comparisons between human and rhesus macaque genomes are plausible, functional studies of heterospecific SNPs are necessary to determine whether rhesus macaque alleles are associated with the same phenotypes as their corresponding human alleles. PMID:25963897

  16. Lack of association of the TP53 Arg72Pro SNP and the MDM2 SNP309 with systemic lupus erythematosus in Caucasian, African American, and Asian children and adults.

    PubMed

    Onel, K B; Huo, D; Hastings, D; Fryer-Biggs, J; Crow, M K; Onel, K

    2009-01-01

    The p53 tumour suppressor is the central regulator of apoptosis. Previously, the functional TP53 Arg72Pro polymorphism was found to be associated with systemic lupus erythematosus (SLE) in Koreans but not Spaniards. MDM2 is the major negative regulator of p53. An intronic polymorphism in MDM2, the SNP309, attenuates p53 activity and is associated with accelerated tumour development in premenopausal women. Polymorphic variation in MDM2 has never been studied in SLE. The aim of this study is to further assess the contribution of p53-pathway genetic variation to SLE by testing the association of the TP53 Arg72Pro polymorphism and the MDM2 SNP309 with SLE in a well-characterised and ethnically diverse cohort of patients with both childhood- and adult-onset SLE (n = 314). No association was found between the TP53 Arg72Pro polymorphism and SLE in patients of European descent, Asian descent or in African Americans, nor was an association found between the MDM2 SNP309 and SLE in patients of European descent or in African Americans. In addition, there was no correlation between either variant and early-onset disease or nephritis, an index of severe disease. It is concluded that neither the TP53 Arg72Pro polymorphism nor the MDM2 SNP309 contributes significantly to either susceptibility or disease severity in SLE.

  17. Lack of Association of the TP53 Arg72Pro SNP and the MDM2 SNP309 with systemic lupus erythematosus in Caucasian, African American, and Asian children and adults

    PubMed Central

    Onel, KB; Huo, D; Hastings, D; Fryer-Biggs, J; Crow, MK; Onel, K

    2009-01-01

    The p53 tumour suppressor is the central regulator of apoptosis. Previously, the functional TP53 Arg72Pro polymorphism was found to be associated with systemic lupus erythematosus (SLE) in Koreans but not Spaniards. MDM2 is the major negative regulator of p53. An intronic polymorphism in MDM2, the SNP309, attenuates p53 activity and is associated with accelerated tumour development in premenopausal women. Polymorphic variation in MDM2 has never been studied in SLE. The aim of this study is to further assess the contribution of p53-pathway genetic variation to SLE by testing the association of the TP53 Arg72Pro polymorphism and the MDM2 SNP309 with SLE in a well-characterised and ethnically diverse cohort of patients with both childhood- and adult-onset SLE (n = 314). No association was found between the TP53 Arg72Pro polymorphism and SLE in patients of European descent, Asian descent or in African Americans, nor was an association found between the MDM2 SNP309 and SLE in patients of European descent or in African Americans. In addition, there was no correlation between either variant and early-onset disease or nephritis, an index of severe disease. It is concluded that neither the TP53 Arg72Pro polymorphism nor the MDM2 SNP309 contributes significantly to either susceptibility or disease severity in SLE. PMID:19074170

  18. The history of human populations in the Japanese Archipelago inferred from genome-wide SNP data with a special reference to the Ainu and the Ryukyuan populations.

    PubMed

    Jinam, Timothy; Nishida, Nao; Hirai, Momoki; Kawamura, Shoji; Oota, Hiroki; Umetsu, Kazuo; Kimura, Ryosuke; Ohashi, Jun; Tajima, Atsushi; Yamamoto, Toshimichi; Tanabe, Hideyuki; Mano, Shuhei; Suto, Yumiko; Kaname, Tadashi; Naritomi, Kenji; Yanagi, Kumiko; Niikawa, Norio; Omoto, Keiichi; Tokunaga, Katsushi; Saitou, Naruya

    2012-12-01

    The Japanese Archipelago stretches over 4000 km from north to south, and is the homeland of the three human populations; the Ainu, the Mainland Japanese and the Ryukyuan. The archeological evidence of human residence on this Archipelago goes back to >30 000 years, and various migration routes and root populations have been proposed. Here, we determined close to one million single-nucleotide polymorphisms (SNPs) for the Ainu and the Ryukyuan, and compared these with existing data sets. This is the first report of these genome-wide SNP data. Major findings are: (1) Recent admixture with the Mainland Japanese was observed for more than one third of the Ainu individuals from principal component analysis and frappe analyses; (2) The Ainu population seems to have experienced admixture with another population, and a combination of two types of admixtures is the unique characteristics of this population; (3) The Ainu and the Ryukyuan are tightly clustered with 100% bootstrap probability followed by the Mainland Japanese in the phylogenetic trees of East Eurasian populations. These results clearly support the dual structure model on the Japanese Archipelago populations, though the origins of the Jomon and the Yayoi people still remain to be solved.

  19. Meta-analysis diagnostic accuracy of SNP-based pathogenicity detection tools: a case of UTG1A1 gene mutations.

    PubMed

    Galehdari, Hamid; Saki, Najmaldin; Mohammadi-Asl, Javad; Rahim, Fakher

    2013-01-01

    Crigler-Najjar syndrome (CNS) type I and type II are usually inherited as autosomal recessive conditions that result from mutations in the UGT1A1 gene. The main objective of the present review is to summarize results of all available evidence on the accuracy of SNP-based pathogenicity detection tools compared to published clinical result for the prediction of in nsSNPs that leads to disease using prediction performance method. A comprehensive search was performed to find all mutations related to CNS. Database searches included dbSNP, SNPdbe, HGMD, Swissvar, ensemble, and OMIM. All the mutation related to CNS was extracted. The pathogenicity prediction was done using SNP-based pathogenicity detection tools include SIFT, PHD-SNP, PolyPhen2, fathmm, Provean, and Mutpred. Overall, 59 different SNPs related to missense mutations in the UGT1A1 gene, were reviewed. Comparing the diagnostic OR, PolyPhen2 and Mutpred have the highest detection 4.983 (95% CI: 1.24 - 20.02) in both, following by SIFT (diagnostic OR: 3.25, 95% CI: 1.07 - 9.83). The highest MCC of SNP-based pathogenicity detection tools, was belong to SIFT (34.19%) followed by Provean, PolyPhen2, and Mutpred (29.99%, 29.89%, and 29.89%, respectively). Hence the highest SNP-based pathogenicity detection tools ACC, was fit to SIFT (62.71%) followed by PolyPhen2, and Mutpred (61.02%, in both). Our results suggest that some of the well-established SNP-based pathogenicity detection tools can appropriately reflect the role of a disease-associated SNP in both local and global structures.

  20. Efficient SNP Discovery by Combining Microarray and Lab-on-a-Chip Data for Animal Breeding and Selection

    PubMed Central

    Huang, Chao-Wei; Lin, Yu-Tsung; Ding, Shih-Torng; Lo, Ling-Ling; Wang, Pei-Hwa; Lin, En-Chung; Liu, Fang-Wei; Lu, Yen-Wen

    2015-01-01

    The genetic markers associated with economic traits have been widely explored for animal breeding. Among these markers, single-nucleotide polymorphism (SNPs) are gradually becoming a prevalent and effective evaluation tool. Since SNPs only focus on the genetic sequences of interest, it thereby reduces the evaluation time and cost. Compared to traditional approaches, SNP genotyping techniques incorporate informative genetic background, improve the breeding prediction accuracy and acquiesce breeding quality on the farm. This article therefore reviews the typical procedures of animal breeding using SNPs and the current status of related techniques. The associated SNP information and genotyping techniques, including microarray and Lab-on-a-Chip based platforms, along with their potential are highlighted. Examples in pig and poultry with different SNP loci linked to high economic trait values are given. The recommendations for utilizing SNP genotyping in nimal breeding are summarized. PMID:27600241

  1. Analysis of genetic diversity using SNP markers in oat

    USDA-ARS?s Scientific Manuscript database

    A large-scale single nucleotide polymorphism (SNP) discovery was carried out in cultivated oat using Roche 454 sequencing methods. DNA sequences were generated from cDNAs originating from a panel of 20 diverse oat cultivars, and from Diversity Array Technology (DArT) genomic complexity reductions fr...

  2. Development and Validation of a High-Density SNP Genotyping Array for African Oil Palm.

    PubMed

    Kwong, Qi Bin; Teh, Chee Keng; Ong, Ai Ling; Heng, Huey Ying; Lee, Heng Leng; Mohamed, Mohaimi; Low, Joel Zi-Bin; Apparow, Sukganah; Chew, Fook Tim; Mayes, Sean; Kulaveerasingam, Harikrishna; Tammi, Martti; Appleton, David Ross

    2016-08-01

    High-density single nucleotide polymorphism (SNP) genotyping arrays are powerful tools that can measure the level of genetic polymorphism within a population. To develop a whole-genome SNP array for oil palms, SNP discovery was performed using deep resequencing of eight libraries derived from 132 Elaeis guineensis and Elaeis oleifera palms belonging to 59 origins, resulting in the discovery of >3 million putative SNPs. After SNP filtering, the Illumina OP200K custom array was built with 170 860 successful probes. Phenetic clustering analysis revealed that the array could distinguish between palms of different origins in a way consistent with pedigree records. Genome-wide linkage disequilibrium declined more slowly for the commercial populations (ranging from 120 kb at r(2) = 0.43 to 146 kb at r(2) = 0.50) when compared with the semi-wild populations (19.5 kb at r(2) = 0.22). Genetic fixation mapping comparing the semi-wild and commercial population identified 321 selective sweeps. A genome-wide association study (GWAS) detected a significant peak on chromosome 2 associated with the polygenic component of the shell thickness trait (based on the trait shell-to-fruit; S/F %) in tenera palms. Testing of a genomic selection model on the same trait resulted in good prediction accuracy (r = 0.65) with 42% of the S/F % variation explained. The first high-density SNP genotyping array for oil palm has been developed and shown to be robust for use in genetic studies and with potential for developing early trait prediction to shorten the oil palm breeding cycle. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  3. Familiality and SNP heritability of age at onset and episodicity in major depressive disorder.

    PubMed

    Ferentinos, P; Koukounari, A; Power, R; Rivera, M; Uher, R; Craddock, N; Owen, M J; Korszun, A; Jones, L; Jones, I; Gill, M; Rice, J P; Ising, M; Maier, W; Mors, O; Rietschel, M; Preisig, M; Binder, E B; Aitchison, K J; Mendlewicz, J; Souery, D; Hauser, J; Henigsberg, N; Breen, G; Craig, I W; Farmer, A E; Müller-Myhsok, B; McGuffin, P; Lewis, C M

    2015-07-01

    Strategies to dissect phenotypic and genetic heterogeneity of major depressive disorder (MDD) have mainly relied on subphenotypes, such as age at onset (AAO) and recurrence/episodicity. Yet, evidence on whether these subphenotypes are familial or heritable is scarce. The aims of this study are to investigate the familiality of AAO and episode frequency in MDD and to assess the proportion of their variance explained by common single nucleotide polymorphisms (SNP heritability). For investigating familiality, we used 691 families with 2-5 full siblings with recurrent MDD from the DeNt study. We fitted (square root) AAO and episode count in a linear and a negative binomial mixed model, respectively, with family as random effect and adjusting for sex, age and center. The strength of familiality was assessed with intraclass correlation coefficients (ICC). For estimating SNP heritabilities, we used 3468 unrelated MDD cases from the RADIANT and GSK Munich studies. After similarly adjusting for covariates, derived residuals were used with the GREML method in GCTA (genome-wide complex trait analysis) software. Significant familial clustering was found for both AAO (ICC = 0.28) and episodicity (ICC = 0.07). We calculated from respective ICC estimates the maximal additive heritability of AAO (0.56) and episodicity (0.15). SNP heritability of AAO was 0.17 (p = 0.04); analysis was underpowered for calculating SNP heritability of episodicity. AAO and episodicity aggregate in families to a moderate and small degree, respectively. AAO is under stronger additive genetic control than episodicity. Larger samples are needed to calculate the SNP heritability of episodicity. The described statistical framework could be useful in future analyses.

  4. High-throughput SNP genotyping in the highly heterozygous genome of Eucalyptus: assay success, polymorphism and transferability across species

    PubMed Central

    2011-01-01

    Background High-throughput SNP genotyping has become an essential requirement for molecular breeding and population genomics studies in plant species. Large scale SNP developments have been reported for several mainstream crops. A growing interest now exists to expand the speed and resolution of genetic analysis to outbred species with highly heterozygous genomes. When nucleotide diversity is high, a refined diagnosis of the target SNP sequence context is needed to convert queried SNPs into high-quality genotypes using the Golden Gate Genotyping Technology (GGGT). This issue becomes exacerbated when attempting to transfer SNPs across species, a scarcely explored topic in plants, and likely to become significant for population genomics and inter specific breeding applications in less domesticated and less funded plant genera. Results We have successfully developed the first set of 768 SNPs assayed by the GGGT for the highly heterozygous genome of Eucalyptus from a mixed Sanger/454 database with 1,164,695 ESTs and the preliminary 4.5X draft genome sequence for E. grandis. A systematic assessment of in silico SNP filtering requirements showed that stringent constraints on the SNP surrounding sequences have a significant impact on SNP genotyping performance and polymorphism. SNP assay success was high for the 288 SNPs selected with more rigorous in silico constraints; 93% of them provided high quality genotype calls and 71% of them were polymorphic in a diverse panel of 96 individuals of five different species. SNP reliability was high across nine Eucalyptus species belonging to three sections within subgenus Symphomyrtus and still satisfactory across species of two additional subgenera, although polymorphism declined as phylogenetic distance increased. Conclusions This study indicates that the GGGT performs well both within and across species of Eucalyptus notwithstanding its nucleotide diversity ≥2%. The development of a much larger array of informative SNPs across

  5. Multiplexed SNP genotyping using the Qbead™ system: a quantum dot-encoded microsphere-based assay

    PubMed Central

    Xu, Hongxia; Sha, Michael Y.; Wong, Edith Y.; Uphoff, Janet; Xu, Yanzhang; Treadway, Joseph A.; Truong, Anh; O’Brien, Eamonn; Asquith, Steven; Stubbins, Michael; Spurr, Nigel K.; Lai, Eric H.; Mahoney, Walt

    2003-01-01

    We have developed a new method using the Qbead™ system for high-throughput genotyping of single nucleotide polymorphisms (SNPs). The Qbead system employs fluorescent Qdot™ semiconductor nanocrystals, also known as quantum dots, to encode microspheres that subsequently can be used as a platform for multiplexed assays. By combining mixtures of quantum dots with distinct emission wavelengths and intensities, unique spectral ‘barcodes’ are created that enable the high levels of multiplexing required for complex genetic analyses. Here, we applied the Qbead system to SNP genotyping by encoding microspheres conjugated to allele-specific oligonucleotides. After hybridization of oligonucleotides to amplicons produced by multiplexed PCR of genomic DNA, individual microspheres are analyzed by flow cytometry and each SNP is distinguished by its unique spectral barcode. Using 10 model SNPs, we validated the Qbead system as an accurate and reliable technique for multiplexed SNP genotyping. By modifying the types of probes conjugated to microspheres, the Qbead system can easily be adapted to other assay chemistries for SNP genotyping as well as to other applications such as analysis of gene expression and protein–protein interactions. With its capability for high-throughput automation, the Qbead system has the potential to be a robust and cost-effective platform for a number of applications. PMID:12682378

  6. Population Genetic Structure of the People of Qatar

    PubMed Central

    Hunter-Zinck, Haley; Musharoff, Shaila; Salit, Jacqueline; Al-Ali, Khalid A.; Chouchane, Lotfi; Gohar, Abeer; Matthews, Rebecca; Butler, Marcus W.; Fuller, Jennifer; Hackett, Neil R.; Crystal, Ronald G.; Clark, Andrew G.

    2010-01-01

    People of the Qatar peninsula represent a relatively recent founding by a small number of families from three tribes of the Arabian Peninsula, Persia, and Oman, with indications of African admixture. To assess the roles of both this founding effect and the customary first-cousin marriages among the ancestral Islamic populations in Qatar's population genetic structure, we obtained and genotyped with Affymetrix 500k SNP arrays DNA samples from 168 self-reported Qatari nationals sampled from Doha, Qatar. Principal components analysis was performed along with samples from the Human Genetic Diversity Project data set, revealing three clear clusters of genotypes whose proximity to other human population samples is consistent with Arabian origin, a more eastern or Persian origin, and individuals with African admixture. The extent of linkage disequilibrium (LD) is greater than that of African populations, and runs of homozygosity in some individuals reflect substantial consanguinity. However, the variance in runs of homozygosity is exceptionally high, and the degree of identity-by-descent sharing generally appears to be lower than expected for a population in which nearly half of marriages are between first cousins. Despite the fact that the SNPs of the Affymetrix 500k chip were ascertained with a bias toward SNPs common in Europeans, the data strongly support the notion that the Qatari population could provide a valuable resource for the mapping of genes associated with complex disorders and that tests of pairwise interactions are particularly empowered by populations with elevated LD like the Qatari. PMID:20579625

  7. A combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypes

    PubMed Central

    2011-01-01

    Background Knowing the phase of marker genotype data can be useful in genome-wide association studies, because it makes it possible to use analysis frameworks that account for identity by descent or parent of origin of alleles and it can lead to a large increase in data quantities via genotype or sequence imputation. Long-range phasing and haplotype library imputation constitute a fast and accurate method to impute phase for SNP data. Methods A long-range phasing and haplotype library imputation algorithm was developed. It combines information from surrogate parents and long haplotypes to resolve phase in a manner that is not dependent on the family structure of a dataset or on the presence of pedigree information. Results The algorithm performed well in both simulated and real livestock and human datasets in terms of both phasing accuracy and computation efficiency. The percentage of alleles that could be phased in both simulated and real datasets of varying size generally exceeded 98% while the percentage of alleles incorrectly phased in simulated data was generally less than 0.5%. The accuracy of phasing was affected by dataset size, with lower accuracy for dataset sizes less than 1000, but was not affected by effective population size, family data structure, presence or absence of pedigree information, and SNP density. The method was computationally fast. In comparison to a commonly used statistical method (fastPHASE), the current method made about 8% less phasing mistakes and ran about 26 times faster for a small dataset. For larger datasets, the differences in computational time are expected to be even greater. A computer program implementing these methods has been made available. Conclusions The algorithm and software developed in this study make feasible the routine phasing of high-density SNP chips in large datasets. PMID:21388557

  8. Evaluation of Bovine High-Density SNP Genotyping Array in Indigenous Dairy Cattle Breeds.

    PubMed

    Dash, S; Singh, A; Bhatia, A K; Jayakumar, S; Sharma, A; Singh, S; Ganguly, I; Dixit, S P

    2018-04-03

    In total 52 samples of Sahiwal ( 19 ), Tharparkar ( 17 ), and Gir ( 16 ) were genotyped by using BovineHD SNP chip to analyze minor allele frequency (MAF), genetic diversity, and linkage disequilibrium among these cattle. The common SNPs of BovineHD and 54K SNP Chips were also extracted and evaluated for their performance. Only 40%-50% SNPs of these arrays was found informative for genetic analysis in these cattle breeds. The overall mean of MAF for SNPs of BovineHD SNPChip was 0.248 ± 0.006, 0.241 ± 0.007, and 0.242 ± 0.009 in Sahiwal, Tharparkar and Gir, respectively, while that for 54K SNPs was on lower side. The average Reynold's genetic distance between breeds ranged from 0.042 to 0.055 based on BovineHD Beadchip, and from 0.052 to 0.084 based on 54K SNP Chip. The estimates of genetic diversity based on HD and 54K chips were almost same and, hence, low density chip seems to be good enough to decipher genetic diversity of these cattle breeds. The linkage disequilibrium started decaying (r 2  < 0.2) at 140 kb inter-marker distance and, hence, a 20K low density customized SNP array from HD chip could be designed for genomic selection in these cattle else the 54K Bead Chip as such will be useful.

  9. Acute and repeated exposure with the nitric oxide (NO) donor sodium nitroprusside (SNP) differentially modulate responses in a rat model of anxiety.

    PubMed

    Orfanidou, Martha A; Lafioniatis, Anastasios; Trevlopoulou, Aikaterini; Touzlatzi, Ntilara; Pitsikas, Nikolaos

    2017-09-30

    The nitric oxide (NO) donor sodium nitroprusside (SNP) actually is under investigation for the treatment of schizophrenia. That anxiety disorders are noted to occur commonly in schizophrenia patients is known. Contradictory results were reported however, concerning the effects of SNP in animal models of anxiety disorders. The present study investigated the effects of acute and repeated administration of SNP on anxiety-like behaviour in rats assessed in the light/dark test. The effects of SNP on motility in a locomotor activity chamber were also investigated in rats. Acute administration of 1 mg/kg SNP 30 but not 60 min before testing induced anxiolytic-like behaviour which cannot be attributed to changes in locomotor activity. Conversely, a single injection of 3 mg/kg SNP at 30 min before testing depressed rats' general activity, while at 60 min this dose did not influence performance of animals either in the light/dark or in the motor activity test. Repeated application of SNP (1 and 3 mg/kg, for 5 consecutive days) did not alter rodents' performance in the above described behavioural paradigms. The present results suggest that the effects exerted by SNP in the light/dark test in rats are dose, time and treatment schedule-dependent. The current findings propose also a narrow therapeutic window for SNP in this animal model of anxiety. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Fine-mapping additive and dominant SNP effects using group-LASSO and Fractional Resample Model Averaging

    PubMed Central

    Sabourin, Jeremy; Nobel, Andrew B.; Valdar, William

    2014-01-01

    Genomewide association studies sometimes identify loci at which both the number and identities of the underlying causal variants are ambiguous. In such cases, statistical methods that model effects of multiple SNPs simultaneously can help disentangle the observed patterns of association and provide information about how those SNPs could be prioritized for follow-up studies. Current multi-SNP methods, however, tend to assume that SNP effects are well captured by additive genetics; yet when genetic dominance is present, this assumption translates to reduced power and faulty prioritizations. We describe a statistical procedure for prioritizing SNPs at GWAS loci that efficiently models both additive and dominance effects. Our method, LLARRMA-dawg, combines a group LASSO procedure for sparse modeling of multiple SNP effects with a resampling procedure based on fractional observation weights; it estimates for each SNP the robustness of association with the phenotype both to sampling variation and to competing explanations from other SNPs. In producing a SNP prioritization that best identifies underlying true signals, we show that: our method easily outperforms a single marker analysis; when additive-only signals are present, our joint model for additive and dominance is equivalent to or only slightly less powerful than modeling additive-only effects; and, when dominance signals are present, even in combination with substantial additive effects, our joint model is unequivocally more powerful than a model assuming additivity. We also describe how performance can be improved through calibrated randomized penalization, and discuss how dominance in ungenotyped SNPs can be incorporated through either heterozygote dosage or multiple imputation. PMID:25417853

  11. SNP Discovery in the Transcriptome of White Pacific Shrimp Litopenaeus vannamei by Next Generation Sequencing

    PubMed Central

    Yu, Yang; Wei, Jiankai; Zhang, Xiaojun; Liu, Jingwen; Liu, Chengzhang; Li, Fuhua; Xiang, Jianhai

    2014-01-01

    The application of next generation sequencing technology has greatly facilitated high throughput single nucleotide polymorphism (SNP) discovery and genotyping in genetic research. In the present study, SNPs were discovered based on two transcriptomes of Litopenaeus vannamei (L. vannamei) generated from Illumina sequencing platform HiSeq 2000. One transcriptome of L. vannamei was obtained through sequencing on the RNA from larvae at mysis stage and its reference sequence was de novo assembled. The data from another transcriptome were downloaded from NCBI and the reads of the two transcriptomes were mapped separately to the assembled reference by BWA. SNP calling was performed using SAMtools. A total of 58,717 and 36,277 SNPs with high quality were predicted from the two transcriptomes, respectively. SNP calling was also performed using the reads of two transcriptomes together, and a total of 96,040 SNPs with high quality were predicted. Among these 96,040 SNPs, 5,242 and 29,129 were predicted as non-synonymous and synonymous SNPs respectively. Characterization analysis of the predicted SNPs in L. vannamei showed that the estimated SNP frequency was 0.21% (one SNP per 476 bp) and the estimated ratio for transition to transversion was 2.0. Fifty SNPs were randomly selected for validation by Sanger sequencing after PCR amplification and 76% of SNPs were confirmed, which indicated that the SNPs predicted in this study were reliable. These SNPs will be very useful for genetic study in L. vannamei, especially for the high density linkage map construction and genome-wide association studies. PMID:24498047

  12. No association between SNP rs498055 on chromosome 10 and late-onset Alzheimer disease in multiple datasets.

    PubMed

    Liang, Xueying; Schnetz-Boutaud, Nathalie; Bartlett, Jackie; Allen, Melissa J; Gwirtsman, Harry; Schmechel, Don E; Carney, Regina M; Gilbert, John R; Pericak-Vance, Margaret A; Haines, Jonathan L

    2008-01-01

    SNP rs498055 in the predicted gene LOC439999 on chromosome 10 was recently identified as being strongly associated with late-onset Alzheimer disease (LOAD). This SNP falls within a chromosomal region that has engendered continued interest generated from both preliminary genetic linkage and candidate gene studies. To independently evaluate this interesting candidate SNP we examined four independent datasets, three family-based and one case-control. All the cases were late-onset AD Caucasian patients with minimum age at onset >or= 60 years. None of the three family samples or the combined family-based dataset showed association in either allelic or genotypic family-based association tests at p < 0.05. Both original and OSA two-point LOD scores were calculated. However, there was no evidence indicating linkage no matter what covariates were applied (the highest LOD score was 0.82). The case-control dataset did not demonstrate any association between this SNP and AD (all p-values > 0.52). Our results do not confirm the previous association, but are consistent with a more recent negative association result that used family-based association tests to examine the effect of this SNP in two family datasets. Thus we conclude that rs498055 is not associated with an increased risk of LOAD.

  13. Elucidation of reaction mechanisms of Ni2SnP in Li-ion and Na-ion systems

    NASA Astrophysics Data System (ADS)

    Marino, C.; Dupré, N.; Villevieille, C.

    2017-10-01

    Electrochemical performance of Ni2SnP was assessed in Li-ion and Na-ion battery systems. When cycled versus Li, Ni2SnP exhibited a reversible specific charge of 700 mAh.g-1 (theoretical specific charge: 742 mAh.g-1). In the Na system, the specific observed charge was ca. 200 mAh.g-1 (theoretical specific charge: 676 mAh.g-1). X-ray diffraction, Ni K-edge X-ray absorption spectroscopy, and 31P and 7Li/23Na nuclear magnetic resonance spectroscopy were used to elucidate the electrochemical mechanisms in both systems. Versus Li, Ni2SnP undergoes a conversion reaction resulting in the extrusion of Ni and the alloying of Li-Sn and Li-P. On delithiation, the material partially recombines into a Sn- and Ni-deficient form. In the Na system, Ni2SnP reacts through the conversion of P into Na3P. These results indicate that the recombination of the pristine material (even partially) increases cycling stability.

  14. A genome-wide association study for equine recurrent airway obstruction in European Warmblood horses reveals a suggestive new quantitative trait locus on chromosome 13.

    PubMed

    Schnider, D; Rieder, S; Leeb, T; Gerber, V; Neuditschko, M

    2017-12-01

    Recurrent airway obstruction (RAO), also known as heaves, is an asthma-like respiratory disease. Its development is strongly influenced by environmental risk factors such as sensitization and exposure to moldy hay, straw bedding and stabling indoors. A hereditary component has been documented in previous studies; however, so far no causative genetic variant that influences the risk of developing RAO has been identified. In this study, we revised an existing dataset and selected 384 horses for genotyping on the Affymetrix high-density equine SNP array. We performed an allelic case-control genome-wide association study, which revealed a suggestively significant association on equine chromosome 13 at 32 843 309 bp. This SNP is located in the protein-coding gene TXNDC11, which is possibly involved in the folding process of the multiprotein complexes DUOX1 and DUOX2. In humans, these proteins are known to take part in regulating the production of H 2 O 2 in the respiratory tract epithelium as well as in MUC5AC mucin expression. Therefore, TXNDC11 may be considered a functional candidate gene, and further research is needed to explore its potential role in RAO-affected horses. © 2017 Stichting International Foundation for Animal Genetics.

  15. Fine-mapping, novel loci identification, and SNP association transferability in a genome-wide association study of QRS duration in African Americans.

    PubMed

    Evans, Daniel S; Avery, Christy L; Nalls, Mike A; Li, Guo; Barnard, John; Smith, Erin N; Tanaka, Toshiko; Butler, Anne M; Buxbaum, Sarah G; Alonso, Alvaro; Arking, Dan E; Berenson, Gerald S; Bis, Joshua C; Buyske, Steven; Carty, Cara L; Chen, Wei; Chung, Mina K; Cummings, Steven R; Deo, Rajat; Eaton, Charles B; Fox, Ervin R; Heckbert, Susan R; Heiss, Gerardo; Hindorff, Lucia A; Hsueh, Wen-Chi; Isaacs, Aaron; Jamshidi, Yalda; Kerr, Kathleen F; Liu, Felix; Liu, Yongmei; Lohman, Kurt K; Magnani, Jared W; Maher, Joseph F; Mehra, Reena; Meng, Yan A; Musani, Solomon K; Newton-Cheh, Christopher; North, Kari E; Psaty, Bruce M; Redline, Susan; Rotter, Jerome I; Schnabel, Renate B; Schork, Nicholas J; Shohet, Ralph V; Singleton, Andrew B; Smith, Jonathan D; Soliman, Elsayed Z; Srinivasan, Sathanur R; Taylor, Herman A; Van Wagoner, David R; Wilson, James G; Young, Taylor; Zhang, Zhu-Ming; Zonderman, Alan B; Evans, Michele K; Ferrucci, Luigi; Murray, Sarah S; Tranah, Gregory J; Whitsel, Eric A; Reiner, Alex P; Sotoodehnia, Nona

    2016-10-01

    The electrocardiographic QRS duration, a measure of ventricular depolarization and conduction, is associated with cardiovascular mortality. While single nucleotide polymorphisms (SNPs) associated with QRS duration have been identified at 22 loci in populations of European descent, the genetic architecture of QRS duration in non-European populations is largely unknown. We therefore performed a genome-wide association study (GWAS) meta-analysis of QRS duration in 13,031 African Americans from ten cohorts and a transethnic GWAS meta-analysis with additional results from populations of European descent. In the African American GWAS, a single genome-wide significant SNP association was identified (rs3922844, P = 4 × 10 -14 ) in intron 16 of SCN5A, a voltage-gated cardiac sodium channel gene. The QRS-prolonging rs3922844 C allele was also associated with decreased SCN5A RNA expression in human atrial tissue (P = 1.1 × 10 -4 ). High density genotyping revealed that the SCN5A association region in African Americans was confined to intron 16. Transethnic GWAS meta-analysis identified novel SNP associations on chromosome 18 in MYL12A (rs1662342, P = 4.9 × 10 -8 ) and chromosome 1 near CD1E and SPTA1 (rs7547997, P = 7.9 × 10 -9 ). The 22 QRS loci previously identified in populations of European descent were enriched for significant SNP associations with QRS duration in African Americans (P = 9.9 × 10 -7 ), and index SNP associations in or near SCN5A, SCN10A, CDKN1A, NFIA, HAND1, TBX5 and SETBP1 replicated in African Americans. In summary, rs3922844 was associated with QRS duration and SCN5A expression, two novel QRS loci were identified using transethnic meta-analysis, and a significant proportion of QRS-SNP associations discovered in populations of European descent were transferable to African Americans when adequate power was achieved. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions

  16. Parameter estimation for the exponential-normal convolution model for background correction of affymetrix GeneChip data.

    PubMed

    McGee, Monnie; Chen, Zhongxue

    2006-01-01

    There are many methods of correcting microarray data for non-biological sources of error. Authors routinely supply software or code so that interested analysts can implement their methods. Even with a thorough reading of associated references, it is not always clear how requisite parts of the method are calculated in the software packages. However, it is important to have an understanding of such details, as this understanding is necessary for proper use of the output, or for implementing extensions to the model. In this paper, the calculation of parameter estimates used in Robust Multichip Average (RMA), a popular preprocessing algorithm for Affymetrix GeneChip brand microarrays, is elucidated. The background correction method for RMA assumes that the perfect match (PM) intensities observed result from a convolution of the true signal, assumed to be exponentially distributed, and a background noise component, assumed to have a normal distribution. A conditional expectation is calculated to estimate signal. Estimates of the mean and variance of the normal distribution and the rate parameter of the exponential distribution are needed to calculate this expectation. Simulation studies show that the current estimates are flawed; therefore, new ones are suggested. We examine the performance of preprocessing under the exponential-normal convolution model using several different methods to estimate the parameters.

  17. Japanese Alzheimer's Disease and Other Complex Disorders Diagnosis Based on Mitochondrial SNP Haplogroups

    PubMed Central

    Takasaki, Shigeru

    2012-01-01

    This paper first explains how the relations between Japanese Alzheimer's disease (AD) patients and their mitochondrial SNP frequencies at individual mtDNA positions examined using the radial basis function (RBF) network and a method based on RBF network predictions and that Japanese AD patients are associated with the haplogroups G2a and N9b1. It then describes a method for the initial diagnosis of Alzheimer's disease that is based on the mtSNP haplogroups of the AD patients. The method examines the relations between someone's mtDNA mutations and the mtSNPs of AD patients. As the mtSNP haplogroups thus obtained indicate which nucleotides of mtDNA loci are changed in the Alzheimer's patients, a person's probability of becoming an AD patient can be predicted by comparing those mtDNA mutations with that person's mtDNA mutations. The proposed method can also be used to diagnose diseases such as Parkinson's disease and type 2 diabetes and to identify people likely to become centenarians. PMID:22848858

  18. The pitfalls of platform comparison: DNA copy number array technologies assessed

    PubMed Central

    2009-01-01

    Background The accurate and high resolution mapping of DNA copy number aberrations has become an important tool by which to gain insight into the mechanisms of tumourigenesis. There are various commercially available platforms for such studies, but there remains no general consensus as to the optimal platform. There have been several previous platform comparison studies, but they have either described older technologies, used less-complex samples, or have not addressed the issue of the inherent biases in such comparisons. Here we describe a systematic comparison of data from four leading microarray technologies (the Affymetrix Genome-wide SNP 5.0 array, Agilent High-Density CGH Human 244A array, Illumina HumanCNV370-Duo DNA Analysis BeadChip, and the Nimblegen 385 K oligonucleotide array). We compare samples derived from primary breast tumours and their corresponding matched normals, well-established cancer cell lines, and HapMap individuals. By careful consideration and avoidance of potential sources of bias, we aim to provide a fair assessment of platform performance. Results By performing a theoretical assessment of the reproducibility, noise, and sensitivity of each platform, notable differences were revealed. Nimblegen exhibited between-replicate array variances an order of magnitude greater than the other three platforms, with Agilent slightly outperforming the others, and a comparison of self-self hybridizations revealed similar patterns. An assessment of the single probe power revealed that Agilent exhibits the highest sensitivity. Additionally, we performed an in-depth visual assessment of the ability of each platform to detect aberrations of varying sizes. As expected, all platforms were able to identify large aberrations in a robust manner. However, some focal amplifications and deletions were only detected in a subset of the platforms. Conclusion Although there are substantial differences in the design, density, and number of replicate probes, the

  19. Identification and SNP association analysis of a novel gene in chicken.

    PubMed

    Mei, Xingxing; Kang, Xiangtao; Liu, Xiaojun; Jia, Lijuan; Li, Hong; Li, Zhuanjian; Jiang, Ruirui

    2016-02-01

    A novel gene that was predicted to encode a long noncoding RNA (lncRNA) transcript was identified in a previous study that aimed to detect candidate genes related to growth rate differences between Chinese local breed Gushi chickens and Anka broilers. To characterise the biological function of the lncRNA, we cloned and sequenced the complete open reading frame of the gene. We performed quantitative real-time polymerase chain reaction (qPCR) to analyse the expression patterns of the lncRNA in different tissues of chicken at different development stages. The qPCR data showed that the novel lncRNA gene was expressed extensively, with the highest abundance in spleen and lung and the lowest abundance in pectoralis and leg muscle. Additionally, we identified a single nucleotide polymorphism (SNP) at the 5'-end of the gene and studied the association between the SNP and chicken growth traits using data from an F2 resource population of Gushi chickens and Anka broilers. The association analysis showed that the SNP was significantly (P < 0.05) associated with leg muscle weight, chest breadth, sternal length and body weight in chickens at 1 day, 4 weeks and 6 weeks of age. We concluded that the novel lncRNA gene, which we designated pouBW1, may play an important role in regulating chicken growth. © 2015 Stichting International Foundation for Animal Genetics.

  20. Relative impact of key sources of systematic noise in Affymetrix and Illumina gene-expression microarray experiments.

    PubMed

    Kitchen, Robert R; Sabine, Vicky S; Simen, Arthur A; Dixon, J Michael; Bartlett, John M S; Sims, Andrew H

    2011-12-01

    Systematic processing noise, which includes batch effects, is very common in microarray experiments but is often ignored despite its potential to confound or compromise experimental results. Compromised results are most likely when re-analysing or integrating datasets from public repositories due to the different conditions under which each dataset is generated. To better understand the relative noise-contributions of various factors in experimental-design, we assessed several Illumina and Affymetrix datasets for technical variation between replicate hybridisations of Universal Human Reference (UHRR) and individual or pooled breast-tumour RNA. A varying degree of systematic noise was observed in each of the datasets, however in all cases the relative amount of variation between standard control RNA replicates was found to be greatest at earlier points in the sample-preparation workflow. For example, 40.6% of the total variation in reported expressions were attributed to replicate extractions, compared to 13.9% due to amplification/labelling and 10.8% between replicate hybridisations. Deliberate probe-wise batch-correction methods were effective in reducing the magnitude of this variation, although the level of improvement was dependent on the sources of noise included in the model. Systematic noise introduced at the chip, run, and experiment levels of a combined Illumina dataset were found to be highly dependent upon the experimental design. Both UHRR and pools of RNA, which were derived from the samples of interest, modelled technical variation well although the pools were significantly better correlated (4% average improvement) and better emulated the effects of systematic noise, over all probes, than the UHRRs. The effect of this noise was not uniform over all probes, with low GC-content probes found to be more vulnerable to batch variation than probes with a higher GC-content. The magnitude of systematic processing noise in a microarray experiment is variable

  1. Relative impact of key sources of systematic noise in Affymetrix and Illumina gene-expression microarray experiments

    PubMed Central

    2011-01-01

    Background Systematic processing noise, which includes batch effects, is very common in microarray experiments but is often ignored despite its potential to confound or compromise experimental results. Compromised results are most likely when re-analysing or integrating datasets from public repositories due to the different conditions under which each dataset is generated. To better understand the relative noise-contributions of various factors in experimental-design, we assessed several Illumina and Affymetrix datasets for technical variation between replicate hybridisations of Universal Human Reference (UHRR) and individual or pooled breast-tumour RNA. Results A varying degree of systematic noise was observed in each of the datasets, however in all cases the relative amount of variation between standard control RNA replicates was found to be greatest at earlier points in the sample-preparation workflow. For example, 40.6% of the total variation in reported expressions were attributed to replicate extractions, compared to 13.9% due to amplification/labelling and 10.8% between replicate hybridisations. Deliberate probe-wise batch-correction methods were effective in reducing the magnitude of this variation, although the level of improvement was dependent on the sources of noise included in the model. Systematic noise introduced at the chip, run, and experiment levels of a combined Illumina dataset were found to be highly dependant upon the experimental design. Both UHRR and pools of RNA, which were derived from the samples of interest, modelled technical variation well although the pools were significantly better correlated (4% average improvement) and better emulated the effects of systematic noise, over all probes, than the UHRRs. The effect of this noise was not uniform over all probes, with low GC-content probes found to be more vulnerable to batch variation than probes with a higher GC-content. Conclusions The magnitude of systematic processing noise in a

  2. Identification of Genes Promoting Skin Youthfulness by Genome-Wide Association Study

    PubMed Central

    Chang, Anne L.S.; Atzmon, Gil; Bergman, Aviv; Brugmann, Samantha; Atwood, Scott X; Chang, Howard Y; Barzilai, Nir

    2014-01-01

    To identify genes that promote facial skin youthfulness (SY), a genome-wide association study on an Ashkenazi Jewish discovery group (n=428) was performed using Affymetrix 6.0 Single-Nucleotide Polymorphism (SNP) Array. After SNP quality controls, 901,470 SNPs remained for analysis. The eigenstrat method showed no stratification. Cases and controls were identified by global facial skin aging severity including intrinsic and extrinsic parameters. Linear regression adjusted for age and gender, with no significant differences in smoking history, body mass index, menopausal status, or personal or family history of centenarians. Six SNPs met the Bonferroni threshold with Pallele<10−8; two of these six had Pgenotype<10−8. Quantitative trait loci mapping confirmed linkage disequilibrium. The six SNPs were interrogated by MassARRAY in a replication group (n=436) with confirmation of rs6975107, an intronic region of KCND2 (potassium voltage-gated channel, Shal-related family member 2) (Pgenotype=0.023). A second replication group (n=371) confirmed rs318125, downstream of DIAPH2 (diaphanous homolog 2 (Drosophila)) (Pallele=0.010, Pgenotype=0.002) and rs7616661, downstream of EDEM1 (ER degradation enhancer, mannosidase α-like 1) (Pgenotype=0.042). DIAPH2 has been associated with premature ovarian insufficiency, an aging phenotype in humans. EDEM1 associates with lifespan in animal models, although not humans. KCND2 is expressed in human skin, but has not been associated with aging. These genes represent new candidate genes to study the molecular basis of healthy skin aging. PMID:24037343

  3. Development of a rapid SNP-typing assay to differentiate Bifidobacterium animalis ssp. lactis strains used in probiotic-supplemented dairy products.

    PubMed

    Lomonaco, Sara; Furumoto, Emily J; Loquasto, Joseph R; Morra, Patrizia; Grassi, Ausilia; Roberts, Robert F

    2015-02-01

    Identification at the genus, species, and strain levels is desirable when a probiotic microorganism is added to foods. Strains of Bifidobacterium animalis ssp. lactis (BAL) are commonly used worldwide in dairy products supplemented with probiotic strains. However, strain discrimination is difficult because of the high degree of genome identity (99.975%) between different genomes of this subspecies. Typing of monomorphic species can be carried out efficiently by targeting informative single nucleotide polymorphisms (SNP). Findings from a previous study analyzing both reference and commercial strains of BAL identified SNP that could be used to discriminate common strains into 8 groups. This paper describes development of a minisequencing assay based on the primer extension reaction (PER) targeting multiple SNP that can allow strain differentiation of BAL. Based on previous data, 6 informative SNP were selected for further testing, and a multiplex preliminary PCR was optimized to amplify the DNA regions containing the selected SNP. Extension primers (EP) annealing immediately adjacent to the selected SNP were developed and tested in simplex and multiplex PER to evaluate their performance. Twenty-five strains belonging to 9 distinct genomic clusters of B. animalis ssp. lactis were selected and analyzed using the developed minisequencing assay, simultaneously targeting the 6 selected SNP. Fragment analysis was subsequently carried out in duplicate and demonstrated that the assay yielded 8 specific profiles separating the most commonly used commercial strains. This novel multiplex PER approach provides a simple, rapid, flexible SNP-based subtyping method for proper characterization and identification of commercial probiotic strains of BAL from fermented dairy products. To assess the usefulness of this method, DNA was extracted from yogurt manufactured with and without the addition of B. animalis ssp. lactis BB-12. Extracted DNA was then subjected to the minisequencing

  4. SNP discovery in candidate adaptive genes using exon capture in a free-ranging alpine ungulate

    USGS Publications Warehouse

    Roffler, Gretchen H.; Amish, Stephen J.; Smith, Seth; Cosart, Ted F.; Kardos, Marty; Schwartz, Michael K.; Luikart, Gordon

    2016-01-01

    Identification of genes underlying genomic signatures of natural selection is key to understanding adaptation to local conditions. We used targeted resequencing to identify SNP markers in 5321 candidate adaptive genes associated with known immunological, metabolic and growth functions in ovids and other ungulates. We selectively targeted 8161 exons in protein-coding and nearby 5′ and 3′ untranslated regions of chosen candidate genes. Targeted sequences were taken from bighorn sheep (Ovis canadensis) exon capture data and directly from the domestic sheep genome (Ovis aries v. 3; oviAri3). The bighorn sheep sequences used in the Dall's sheep (Ovis dalli dalli) exon capture aligned to 2350 genes on the oviAri3 genome with an average of 2 exons each. We developed a microfluidic qPCR-based SNP chip to genotype 476 Dall's sheep from locations across their range and test for patterns of selection. Using multiple corroborating approaches (lositan and bayescan), we detected 28 SNP loci potentially under selection. We additionally identified candidate loci significantly associated with latitude, longitude, precipitation and temperature, suggesting local environmental adaptation. The three methods demonstrated consistent support for natural selection on nine genes with immune and disease-regulating functions (e.g. Ovar-DRA, APC, BATF2, MAGEB18), cell regulation signalling pathways (e.g. KRIT1, PI3K, ORRC3), and respiratory health (CYSLTR1). Characterizing adaptive allele distributions from novel genetic techniques will facilitate investigation of the influence of environmental variation on local adaptation of a northern alpine ungulate throughout its range. This research demonstrated the utility of exon capture for gene-targeted SNP discovery and subsequent SNP chip genotyping using low-quality samples in a nonmodel species.

  5. A novel approach to analyzing fMRI and SNP data via parallel independent component analysis

    NASA Astrophysics Data System (ADS)

    Liu, Jingyu; Pearlson, Godfrey; Calhoun, Vince; Windemuth, Andreas

    2007-03-01

    There is current interest in understanding genetic influences on brain function in both the healthy and the disordered brain. Parallel independent component analysis, a new method for analyzing multimodal data, is proposed in this paper and applied to functional magnetic resonance imaging (fMRI) and a single nucleotide polymorphism (SNP) array. The method aims to identify the independent components of each modality and the relationship between the two modalities. We analyzed 92 participants, including 29 schizophrenia (SZ) patients, 13 unaffected SZ relatives, and 50 healthy controls. We found a correlation of 0.79 between one fMRI component and one SNP component. The fMRI component consists of activations in cingulate gyrus, multiple frontal gyri, and superior temporal gyrus. The related SNP component is contributed to significantly by 9 SNPs located in sets of genes, including those coding for apolipoprotein A-I, and C-III, malate dehydrogenase 1 and the gamma-aminobutyric acid alpha-2 receptor. A significant difference in the presences of this SNP component is found between the SZ group (SZ patients and their relatives) and the control group. In summary, we constructed a framework to identify the interactions between brain functional and genetic information; our findings provide new insight into understanding genetic influences on brain function in a common mental disorder.

  6. What determines human body odour?

    PubMed

    Hamada, Kaoru; Haruyama, Sanehito; Yamaguchi, Takashi; Yamamoto, Kayo; Hiromasa, Kana; Yoshioka, Manabu; Nishio, Daisuke; Nakamura, Motonobu

    2014-05-01

    Human body odour and earwax type are genetically dependent on a single-nucleotide polymorphism (SNP) located in the ABCC11 gene. So far, it still remains to be clear how SNP in the ABCC11 gene is associated with human malodour. In a recent issue of Experimental Dermatology, Baumann et al. propose one of the underlying molecular pathways. Although one of the amino acid conjugated of the odorants, Cys-Gly-3-methyl-3-sulfanylhexanol (3M3SH), was not taken up by the transporter ABCC11, glutathione conjugate of 3MSH (SG-3MSH) was transported by ABCC11. Moreover, SG-3MSH was processed to 3M3SH by γ-glutamyl-transferase 1 (GGT1), which was abundantly expressed in apocrine sweat glands. These findings may pave a way for the pharmacogenetics of human body odour and the development of innovative deodorant products. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. A SCN10A SNP biases human pain sensitivity

    PubMed Central

    Duan, Guangyou; Han, Chongyang; Wang, Qingli; Guo, Shanna; Zhang, Yuhao; Ying, Ying; Huang, Penghao; Zhang, Li; Macala, Lawrence; Shah, Palak; Zhang, Mi; Li, Ningbo; Dib-Hajj, Sulayman D; Zhang, Xianwei

    2016-01-01

    Background: Nav1.8 sodium channels, encoded by SCN10A, are preferentially expressed in nociceptive neurons and play an important role in human pain. Although rare gain-of-function variants in SCN10A have been identified in individuals with painful peripheral neuropathies, whether more common variants in SCN10A can have an effect at the channel level and at the dorsal root ganglion, neuronal level leading to a pain disorder or an altered normal pain threshold has not been determined. Results: Candidate single nucleotide polymorphism association approach together with experimental pain testing in human subjects was used to explore possible common SCN10A missense variants that might affect human pain sensitivity. We demonstrated an association between rs6795970 (G > A; p.Ala1073Val) and higher thresholds for mechanical pain in a discovery cohort (496 subjects) and confirmed it in a larger replication cohort (1005 female subjects). Functional assessments showed that although the minor allele shifts channel activation by −4.3 mV, a proexcitatory attribute, it accelerates inactivation, an antiexcitatory attribute, with the net effect being reduced repetitive firing of dorsal root ganglion neurons, consistent with lower mechanical pain sensitivity. Conclusions: At the association and mechanistic levels, the SCN10A single nucleotide polymorphism rs6795970 biases human pain sensitivity. PMID:27590072

  8. Comparison of Constitutional and Replication Stress-Induced Genome Structural Variation by SNP Array and Mate-Pair Sequencing

    PubMed Central

    Arlt, Martin F.; Ozdemir, Alev Cagla; Birkeland, Shanda R.; Lyons, Robert H.; Glover, Thomas W.; Wilson, Thomas E.

    2011-01-01

    Copy-number variants (CNVs) are a major source of genetic variation in human health and disease. Previous studies have implicated replication stress as a causative factor in CNV formation. However, existing data are technically limited in the quality of comparisons that can be made between human CNVs and experimentally induced variants. Here, we used two high-resolution strategies—single nucleotide polymorphism (SNP) arrays and mate-pair sequencing—to compare CNVs that occur constitutionally to those that arise following aphidicolin-induced DNA replication stress in the same human cells. Although the optimized methods provided complementary information, sequencing was more sensitive to small variants and provided superior structural descriptions. The majority of constitutional and all aphidicolin-induced CNVs appear to be formed via homology-independent mechanisms, while aphidicolin-induced CNVs were of a larger median size than constitutional events even when mate-pair data were considered. Aphidicolin thus appears to stimulate formation of CNVs that closely resemble human pathogenic CNVs and the subset of larger nonhomologous constitutional CNVs. PMID:21212237

  9. MAFsnp: A Multi-Sample Accurate and Flexible SNP Caller Using Next-Generation Sequencing Data

    PubMed Central

    Hu, Jiyuan; Li, Tengfei; Xiu, Zidi; Zhang, Hong

    2015-01-01

    Most existing statistical methods developed for calling single nucleotide polymorphisms (SNPs) using next-generation sequencing (NGS) data are based on Bayesian frameworks, and there does not exist any SNP caller that produces p-values for calling SNPs in a frequentist framework. To fill in this gap, we develop a new method MAFsnp, a Multiple-sample based Accurate and Flexible algorithm for calling SNPs with NGS data. MAFsnp is based on an estimated likelihood ratio test (eLRT) statistic. In practical situation, the involved parameter is very close to the boundary of the parametric space, so the standard large sample property is not suitable to evaluate the finite-sample distribution of the eLRT statistic. Observing that the distribution of the test statistic is a mixture of zero and a continuous part, we propose to model the test statistic with a novel two-parameter mixture distribution. Once the parameters in the mixture distribution are estimated, p-values can be easily calculated for detecting SNPs, and the multiple-testing corrected p-values can be used to control false discovery rate (FDR) at any pre-specified level. With simulated data, MAFsnp is shown to have much better control of FDR than the existing SNP callers. Through the application to two real datasets, MAFsnp is also shown to outperform the existing SNP callers in terms of calling accuracy. An R package “MAFsnp” implementing the new SNP caller is freely available at http://homepage.fudan.edu.cn/zhangh/softwares/. PMID:26309201

  10. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments.

    PubMed

    Feltus, F Alex; Wan, Jun; Schulze, Stefan R; Estill, James C; Jiang, Ning; Paterson, Andrew H

    2004-09-01

    Dense coverage of the rice genome with polymorphic DNA markers is an invaluable tool for DNA marker-assisted breeding, positional cloning, and a wide range of evolutionary studies. We have aligned drafts of two rice subspecies, indica and japonica, and analyzed levels and patterns of genetic diversity. After filtering multiple copy and low quality sequence, 408,898 candidate DNA polymorphisms (SNPs/INDELs) were discerned between the two subspecies. These filters have the consequence that our data set includes only a subset of the available SNPs (in particular excluding large numbers of SNPs that may occur between repetitive DNA alleles) but increase the likelihood that this subset is useful: Direct sequencing suggests that 79.8% +/- 7.5% of the in silico SNPs are real. The SNP sample in our database is not randomly distributed across the genome. In fact, 566 rice genomic regions had unusually high (328 contigs/48.6 Mb/13.6% of genome) or low (237 contigs/64.7 Mb/18.1% of genome) polymorphism rates. Many SNP-poor regions were substantially longer than most SNP-rich regions, covering up to 4 Mb, and possibly reflecting introgression between the respective gene pools that may have occurred hundreds of years ago. Although 46.2% +/- 8.3% of the SNPs differentiate other pairs of japonica and indica genotypes, SNP rates in rice were not predictive of evolutionary rates for corresponding genes in another grass species, sorghum. The data set is freely available at http://www.plantgenome.uga.edu/snp.

  11. An SNP Resource for Rice Genetics and Breeding Based on Subspecies Indica and Japonica Genome Alignments

    PubMed Central

    Feltus, F. Alex; Wan, Jun; Schulze, Stefan R.; Estill, James C.; Jiang, Ning; Paterson, Andrew H.

    2004-01-01

    Dense coverage of the rice genome with polymorphic DNA markers is an invaluable tool for DNA marker-assisted breeding, positional cloning, and a wide range of evolutionary studies. We have aligned drafts of two rice subspecies, indica and japonica, and analyzed levels and patterns of genetic diversity. After filtering multiple copy and low quality sequence, 408,898 candidate DNA polymorphisms (SNPs/INDELs) were discerned between the two subspecies. These filters have the consequence that our data set includes only a subset of the available SNPs (in particular excluding large numbers of SNPs that may occur between repetitive DNA alleles) but increase the likelihood that this subset is useful: Direct sequencing suggests that 79.8% ± 7.5% of the in silico SNPs are real. The SNP sample in our database is not randomly distributed across the genome. In fact, 566 rice genomic regions had unusually high (328 contigs/48.6 Mb/13.6% of genome) or low (237 contigs/64.7 Mb/18.1% of genome) polymorphism rates. Many SNP-poor regions were substantially longer than most SNP-rich regions, covering up to 4 Mb, and possibly reflecting introgression between the respective gene pools that may have occurred hundreds of years ago. Although 46.2% ± 8.3% of the SNPs differentiate other pairs of japonica and indica genotypes, SNP rates in rice were not predictive of evolutionary rates for corresponding genes in another grass species, sorghum. The data set is freely available at http://www.plantgenome.uga.edu/snp. PMID:15342564

  12. Using Drosophila melanogaster as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift

    PubMed Central

    Cingolani, Pablo; Patel, Viral M.; Coon, Melissa; Nguyen, Tung; Land, Susan J.; Ruden, Douglas M.; Lu, Xiangyi

    2012-01-01

    This paper describes a new program SnpSift for filtering differential DNA sequence variants between two or more experimental genomes after genotoxic chemical exposure. Here, we illustrate how SnpSift can be used to identify candidate phenotype-relevant variants including single nucleotide polymorphisms, multiple nucleotide polymorphisms, insertions, and deletions (InDels) in mutant strains isolated from genome-wide chemical mutagenesis of Drosophila melanogaster. First, the genomes of two independently isolated mutant fly strains that are allelic for a novel recessive male-sterile locus generated by genotoxic chemical exposure were sequenced using the Illumina next-generation DNA sequencer to obtain 20- to 29-fold coverage of the euchromatic sequences. The sequencing reads were processed and variants were called using standard bioinformatic tools. Next, SnpEff was used to annotate all sequence variants and their potential mutational effects on associated genes. Then, SnpSift was used to filter and select differential variants that potentially disrupt a common gene in the two allelic mutant strains. The potential causative DNA lesions were partially validated by capillary sequencing of polymerase chain reaction-amplified DNA in the genetic interval as defined by meiotic mapping and deletions that remove defined regions of the chromosome. Of the five candidate genes located in the genetic interval, the Pka-like gene CG12069 was found to carry a separate pre-mature stop codon mutation in each of the two allelic mutants whereas the other four candidate genes within the interval have wild-type sequences. The Pka-like gene is therefore a strong candidate gene for the male-sterile locus. These results demonstrate that combining SnpEff and SnpSift can expedite the identification of candidate phenotype-causative mutations in chemically mutagenized Drosophila strains. This technique can also be used to characterize the variety of mutations generated by genotoxic chemicals

  13. Genome-Wide Association Study of a Varroa-Specific Defense Behavior in Honeybees (Apis mellifera)

    PubMed Central

    Spötter, Andreas; Gupta, Pooja; Mayer, Manfred; Reinsch, Norbert

    2016-01-01

    Honey bees are exposed to many damaging pathogens and parasites. The most devastating is Varroa destructor, which mainly affects the brood. A promising approach for preventing its spread is to breed Varroa-resistant honey bees. One trait that has been shown to provide significant resistance against the Varroa mite is hygienic behavior, which is a behavioral response of honeybee workers to brood diseases in general. Here, we report the use of an Affymetrix 44K SNP array to analyze SNPs associated with detection and uncapping of Varroa-parasitized brood by individual worker bees (Apis mellifera). For this study, 22 000 individually labeled bees were video-monitored and a sample of 122 cases and 122 controls was collected and analyzed to determine the dependence/independence of SNP genotypes from hygienic and nonhygienic behavior on a genome-wide scale. After false-discovery rate correction of the P values, 6 SNP markers had highly significant associations with the trait investigated (α < 0.01). Inspection of the genomic regions around these SNPs led to the discovery of putative candidate genes. PMID:26774061

  14. Identification of SNP Haplotypes and Prospects of Association Mapping in Watermelon

    USDA-ARS?s Scientific Manuscript database

    Watermelon is the fifth most economically important vegetable crop cultivated world-wide. Implementing Single Nucleotide Polymorphism (SNP) marker technology in watermelon breeding and germplasm evaluation programs holds a key to improve horticulturally important traits. Next-generation sequencing...

  15. Copy number variations and genetic admixtures in three Xinjiang ethnic minority groups

    PubMed Central

    Lou, Haiyi; Li, Shilin; Jin, Wenfei; Fu, Ruiqing; Lu, Dongsheng; Pan, Xinwei; Zhou, Huaigu; Ping, Yuan; Jin, Li; Xu, Shuhua

    2015-01-01

    Xinjiang is geographically located in central Asia, and it has played an important historical role in connecting eastern Eurasian (EEA) and western Eurasian (WEA) people. However, human population genomic studies in this region have been largely underrepresented, especially with respect to studies of copy number variations (CNVs). Here we constructed the first CNV map of the three major ethnic minority groups, the Uyghur, Kazakh and Kirgiz, using Affymetrix Genome-Wide Human SNP Array 6.0. We systematically compared the properties of CNVs we identified in the three groups with the data from representatives of EEA and WEA. The analyses indicated a typical genetic admixture pattern in all three groups with ancestries from both EEA and WEA. We also identified several CNV regions showing significant deviation of allele frequency from the expected genome-wide distribution, which might be associated with population-specific phenotypes. Our study provides the first genome-wide perspective on the CNVs of three major Xinjiang ethnic minority groups and has implications for both evolutionary and medical studies. PMID:25026903

  16. Copy number variations and genetic admixtures in three Xinjiang ethnic minority groups.

    PubMed

    Lou, Haiyi; Li, Shilin; Jin, Wenfei; Fu, Ruiqing; Lu, Dongsheng; Pan, Xinwei; Zhou, Huaigu; Ping, Yuan; Jin, Li; Xu, Shuhua

    2015-04-01

    Xinjiang is geographically located in central Asia, and it has played an important historical role in connecting eastern Eurasian (EEA) and western Eurasian (WEA) people. However, human population genomic studies in this region have been largely underrepresented, especially with respect to studies of copy number variations (CNVs). Here we constructed the first CNV map of the three major ethnic minority groups, the Uyghur, Kazakh and Kirgiz, using Affymetrix Genome-Wide Human SNP Array 6.0. We systematically compared the properties of CNVs we identified in the three groups with the data from representatives of EEA and WEA. The analyses indicated a typical genetic admixture pattern in all three groups with ancestries from both EEA and WEA. We also identified several CNV regions showing significant deviation of allele frequency from the expected genome-wide distribution, which might be associated with population-specific phenotypes. Our study provides the first genome-wide perspective on the CNVs of three major Xinjiang ethnic minority groups and has implications for both evolutionary and medical studies.

  17. Functional SNP associated with birth weight in independent populations identified with a permutation step added to GBLUP-GWAS

    USDA-ARS?s Scientific Manuscript database

    This study was conducted as an initial assessment of a newly available genotyping assay containing about 34,000 common SNP included on previous SNP chips, and 199,000 sequence variants predicted to affect gene function. Objectives were to identify functional variants associated with birth weight in...

  18. Imputation of microsatellite alleles from dense SNP genotypes for parentage verification across multiple Bos taurus and Bos indicus breeds

    PubMed Central

    McClure, Matthew C.; Sonstegard, Tad S.; Wiggans, George R.; Van Eenennaam, Alison L.; Weber, Kristina L.; Penedo, Cecilia T.; Berry, Donagh P.; Flynn, John; Garcia, Jose F.; Carmo, Adriana S.; Regitano, Luciana C. A.; Albuquerque, Milla; Silva, Marcos V. G. B.; Machado, Marco A.; Coffey, Mike; Moore, Kirsty; Boscher, Marie-Yvonne; Genestout, Lucie; Mazza, Raffaele; Taylor, Jeremy F.; Schnabel, Robert D.; Simpson, Barry; Marques, Elisa; McEwan, John C.; Cromie, Andrew; Coutinho, Luiz L.; Kuehn, Larry A.; Keele, John W.; Piper, Emily K.; Cook, Jim; Williams, Robert; Van Tassell, Curtis P.

    2013-01-01

    To assist cattle producers transition from microsatellite (MS) to single nucleotide polymorphism (SNP) genotyping for parental verification we previously devised an effective and inexpensive method to impute MS alleles from SNP haplotypes. While the reported method was verified with only a limited data set (N = 479) from Brown Swiss, Guernsey, Holstein, and Jersey cattle, some of the MS-SNP haplotype associations were concordant across these phylogenetically diverse breeds. This implied that some haplotypes predate modern breed formation and remain in strong linkage disequilibrium. To expand the utility of MS allele imputation across breeds, MS and SNP data from more than 8000 animals representing 39 breeds (Bos taurus and B. indicus) were used to predict 9410 SNP haplotypes, incorporating an average of 73 SNPs per haplotype, for which alleles from 12 MS markers could be accurately be imputed. Approximately 25% of the MS-SNP haplotypes were present in multiple breeds (N = 2 to 36 breeds). These shared haplotypes allowed for MS imputation in breeds that were not represented in the reference population with only a small increase in Mendelian inheritance inconsistancies. Our reported reference haplotypes can be used for any cattle breed and the reported methods can be applied to any species to aid the transition from MS to SNP genetic markers. While ~91% of the animals with imputed alleles for 12 MS markers had ≤1 Mendelian inheritance conflicts with their parents' reported MS genotypes, this figure was 96% for our reference animals, indicating potential errors in the reported MS genotypes. The workflow we suggest autocorrects for genotyping errors and rare haplotypes, by MS genotyping animals whose imputed MS alleles fail parentage verification, and then incorporating those animals into the reference dataset. PMID:24065982

  19. A bioinformatic pipeline for identifying informative SNP panels for parentage assignment from RADseq data.

    PubMed

    Andrews, Kimberly R; Adams, Jennifer R; Cassirer, E Frances; Plowright, Raina K; Gardner, Colby; Dwire, Maggie; Hohenlohe, Paul A; Waits, Lisette P

    2018-06-05

    The development of high-throughput sequencing technologies is dramatically increasing the use of single nucleotide polymorphisms (SNPs) across the field of genetics, but most parentage studies of wild populations still rely on microsatellites. We developed a bioinformatic pipeline for identifying SNP panels that are informative for parentage analysis from restriction site-associated DNA sequencing (RADseq) data. This pipeline includes options for analysis with or without a reference genome, and provides methods to maximize genotyping accuracy and select sets of unlinked loci that have high statistical power. We test this pipeline on small populations of Mexican gray wolf and bighorn sheep, for which parentage analyses are expected to be challenging due to low genetic diversity and the presence of many closely related individuals. We compare the results of parentage analysis across SNP panels generated with or without the use of a reference genome, and between SNPs and microsatellites. For Mexican gray wolf, we conducted parentage analyses for 30 pups from a single cohort where samples were available from 64% of possible mothers and 53% of possible fathers, and the accuracy of parentage assignments could be estimated because true identities of parents were known a priori based on field data. For bighorn sheep, we conducted maternity analyses for 39 lambs from five cohorts where 77% of possible mothers were sampled, but true identities of parents were unknown. Analyses with and without a reference genome produced SNP panels with >95% parentage assignment accuracy for Mexican gray wolf, outperforming microsatellites at 78% accuracy. Maternity assignments were completely consistent across all SNP panels for the bighorn sheep, and were 74.4% consistent with assignments from microsatellites. Accuracy and consistency of parentage analysis were not reduced when using as few as 284 SNPs for Mexican gray wolf and 142 SNPs for bighorn sheep, indicating our pipeline can be

  20. Identification of SNP and SSR Markers in Finger Millet Using Next Generation Sequencing Technologies

    PubMed Central

    Gimode, Davis; Odeny, Damaris A.; de Villiers, Etienne P.; Wanyonyi, Solomon; Dida, Mathews M.; Mneney, Emmarold E.; Muchugi, Alice; Machuka, Jesse; de Villiers, Santie M.

    2016-01-01

    Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS) technologies to develop both Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNP) markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC) was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included in the regional

  1. Identification of SNP and SSR Markers in Finger Millet Using Next Generation Sequencing Technologies.

    PubMed

    Gimode, Davis; Odeny, Damaris A; de Villiers, Etienne P; Wanyonyi, Solomon; Dida, Mathews M; Mneney, Emmarold E; Muchugi, Alice; Machuka, Jesse; de Villiers, Santie M

    2016-01-01

    Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS) technologies to develop both Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNP) markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC) was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included in the regional

  2. SNP-based genotyping in lentil: linking sequence information with phenotypes

    USDA-ARS?s Scientific Manuscript database

    Lentil (Lens culinaris) has been late to enter the world of high throughput molecular analysis due to a general lack of genomic resources. Using a 454 sequencing-based approach, SNPs have been identified in genes across the lentil genome. Several hundred have been turned into single SNP KASP assay...

  3. Discovery of 100K SNP array and its utilization in sugarcane

    USDA-ARS?s Scientific Manuscript database

    Next generation sequencing (NGS) enable us to identify thousands of single nucleotide polymorphisms (SNPs) marker for genotyping and fingerprinting. However, the process requires very precise bioinformatics analysis and filtering process. High throughput SNP array with predefined genomic location co...

  4. Combinations of SNP genotypes from the Wellcome Trust Case Control Study of bipolar patients.

    PubMed

    Mellerup, Erling; Jørgensen, Martin Balslev; Dam, Henrik; Møller, Gert Lykke

    2018-04-01

    Combinations of genetic variants are the basis for polygenic disorders. We examined combinations of SNP genotypes taken from the 446 729 SNPs in The Wellcome Trust Case Control Study of bipolar patients. Parallel computing by graphics processing units, cloud computing, and data mining tools were used to scan The Wellcome Trust data set for combinations. Two clusters of combinations were significantly associated with bipolar disorder. One cluster contained 68 combinations, each of which included five SNP genotypes. Of the 1998 patients, 305 had combinations from this cluster in their genome, but none of the 1500 controls had any of these combinations in their genome. The other cluster contained six combinations, each of which included five SNP genotypes. Of the 1998 patients, 515 had combinations from the cluster in their genome, but none of the 1500 controls had any of these combinations in their genome. Clusters of combinations of genetic variants can be considered general risk factors for polygenic disorders, whereas accumulation of combinations from the clusters in the genome of a patient can be considered a personal risk factor.

  5. Ghrelin, Sleep Reduction and Evening Preference: Relationships to CLOCK 3111 T/C SNP and Weight Loss

    PubMed Central

    Garaulet, Marta; Sánchez-Moreno, Carmen; Smith, Caren E.; Lee, Yu-Chi; Nicolás, Francisco; Ordovás, Jose M.

    2011-01-01

    Background Circadian Locomotor Output Cycles Kaput (CLOCK), an essential element of the positive regulatory arm in the human biological clock, is involved in metabolic regulation. The aim was to investigate the behavioral (sleep duration, eating patterns and chronobiological characteristics) and hormonal (plasma ghrelin and leptin concentrations) factors which could explain the previously reported association between the CLOCK 3111T/C SNP and weight loss. Methodology/Principal Findings We recruited 1495 overweight/obese subjects (BMI: 25–40 kg/m2) of 20–65 y. who attended outpatient obesity clinics in Murcia, in southeastern Spain. We detected an association between the CLOCK 3111T/C SNP and weight loss, which was particularly evident after 12–14 weeks of treatment (P = 0.038). Specifically, carriers of the minor C allele were more resistant to weight loss than TT individuals (Mean±SEM) (8.71±0.59 kg vs 10.4±0.57 kg) C and TT respectively. In addition, our data show that minor C allele carriers had: 1. shorter sleep duration Mean ± SEM (7.0±0.05 vs 7.3±0.05) C and TT respectively (P = 0.039), 2. higher plasma ghrelin concentrations Mean ± SEM (pg/ml) (1108±49 vs 976±47)(P = 0.034); 3. delayed breakfast time; 4. evening preference and 5. less compliance with a Mediterranean Diet pattern, as compared with TT homozygotes. Conclusions/Significance Sleep reduction, changes in ghrelin values, alterations of eating behaviors and evening preference that characterized CLOCK 3111C carriers could be affecting weight loss. Our results support the hypothesis that the influence of the CLOCK gene may extend to a broad range of variables linked with human behaviors. PMID:21386998

  6. Ghrelin, sleep reduction and evening preference: relationships to CLOCK 3111 T/C SNP and weight loss.

    PubMed

    Garaulet, Marta; Sánchez-Moreno, Carmen; Smith, Caren E; Lee, Yu-Chi; Nicolás, Francisco; Ordovás, Jose M

    2011-02-28

    Circadian Locomotor Output Cycles Kaput (CLOCK), an essential element of the positive regulatory arm in the human biological clock, is involved in metabolic regulation. The aim was to investigate the behavioral (sleep duration, eating patterns and chronobiological characteristics) and hormonal (plasma ghrelin and leptin concentrations) factors which could explain the previously reported association between the CLOCK 3111T/C SNP and weight loss. We recruited 1495 overweight/obese subjects (BMI: 25-40 kg/m(2)) of 20-65 y. who attended outpatient obesity clinics in Murcia, in southeastern Spain. We detected an association between the CLOCK 3111T/C SNP and weight loss, which was particularly evident after 12-14 weeks of treatment (P = 0.038). Specifically, carriers of the minor C allele were more resistant to weight loss than TT individuals (Mean±SEM) (8.71±0.59 kg vs 10.4±0.57 kg) C and TT respectively. In addition, our data show that minor C allele carriers had: 1. shorter sleep duration Mean ± SEM (7.0±0.05 vs 7.3±0.05) C and TT respectively (P = 0.039), 2. higher plasma ghrelin concentrations Mean ± SEM (pg/ml) (1108±49 vs 976±47)(P = 0.034); 3. delayed breakfast time; 4. evening preference and 5. less compliance with a Mediterranean Diet pattern, as compared with TT homozygotes. Sleep reduction, changes in ghrelin values, alterations of eating behaviors and evening preference that characterized CLOCK 3111C carriers could be affecting weight loss. Our results support the hypothesis that the influence of the CLOCK gene may extend to a broad range of variables linked with human behaviors.

  7. SEAN: SNP prediction and display program utilizing EST sequence clusters.

    PubMed

    Huntley, Derek; Baldo, Angela; Johri, Saurabh; Sergot, Marek

    2006-02-15

    SEAN is an application that predicts single nucleotide polymorphisms (SNPs) using multiple sequence alignments produced from expressed sequence tag (EST) clusters. The algorithm uses rules of sequence identity and SNP abundance to determine the quality of the prediction. A Java viewer is provided to display the EST alignments and predicted SNPs.

  8. Novel quantitative real-time LCR for the sensitive detection of SNP frequencies in pooled DNA: method development, evaluation and application.

    PubMed

    Psifidi, Androniki; Dovas, Chrysostomos; Banos, Georgios

    2011-01-19

    Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of SNP in DNA pooled samples. The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility to a transmissible spongiform encephalopathy in sheep. The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP frequencies were 0.085% and 0.35%, respectively. The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically modified organisms in food.

  9. Single Nucleotide Polymorphism (SNP)-Based Loss of Heterozygosity (LOH) Testing by Real Time PCR in Patients Suspect of Myeloproliferative Disease

    PubMed Central

    Huijsmans, Cornelis J. J.; Poodt, Jeroen; Damen, Jan; van der Linden, Johannes C.; Savelkoul, Paul H. M.; Pruijt, Johannes F. M.; Hilbink, Mirrian; Hermans, Mirjam H. A.

    2012-01-01

    During tumor development, loss of heterozygosity (LOH) often occurs. When LOH is preceded by an oncogene activating mutation, the mutant allele may be further potentiated if the wild-type allele is lost or inactivated. In myeloproliferative neoplasms (MPN) somatic acquisition of JAK2V617F may be followed by LOH resulting in loss of the wild type allele. The occurrence of LOH in MPN and other proliferative diseases may lead to a further potentiating the mutant allele and thereby increasing morbidity. A real time PCR based SNP profiling assay was developed and validated for LOH detection of the JAK2 region (JAK2LOH). Blood of a cohort of 12 JAK2V617F-positive patients (n = 6 25–50% and n = 6>50% JAK2V617F) and a cohort of 81 patients suspected of MPN was stored with EDTA and subsequently used for validation. To generate germ-line profiles, non-neoplastic formalin-fixed paraffin-embedded tissue from each patient was analyzed. Results of the SNP assay were compared to those of an established Short Tandem Repeat (STR) assay. Both assays revealed JAK2LOH in 1/6 patients with 25–50% JAK2V617F. In patients with >50% JAK2V617F, JAK2LOH was detected in 6/6 by the SNP assay and 5/6 patients by the STR assay. Of the 81 patients suspected of MPN, 18 patients carried JAK2V617F. Both the SNP and STR assay demonstrated the occurrence of JAK2LOH in 5 of them. In the 63 JAK2V617F-negative patients, no JAK2LOH was observed by SNP and STR analyses. The presented SNP assay reliably detects JAK2LOH and is a fast and easy to perform alternative for STR analyses. We therefore anticipate the SNP approach as a proof of principle for the development of LOH SNP-assays for other clinically relevant LOH loci. PMID:22768290

  10. Influence of adiponectin gene polymorphism SNP276 (G/T) on adiponectin in response to exercise training.

    PubMed

    Huang, Hu; Tada Iida, Kaoruko; Murakami, Haruka; Saito, Yoko; Otsuki, Takeshi; Iemitsu, Motoyuki; Maeda, Seiji; Sone, Hirohito; Kuno, Shinya; Ajisaka, Ryuichi

    2007-12-01

    Adiponectin is an adipocytokine that is involved in insulin sensitivity. The adiponectin gene contains a single nucleotide polymorphism (SNP) at position 276 (G/T). The GG genotype of SNP276 (G/T) is associated with lower plasma adiponectin levels and a higher insulin resistance index. Therefore, we examined the influence of SNP276 (G/T) on the plasma level of adiponectin in response to exercise training. Thirty healthy Japanese (M12/F18; 56 to 79 years old) performed both resistance and endurance training, 5 times a week for 6 months. The work rate per kg of weight at double-product break-point (DPBP) was measured. Blood samples were obtained before and after the experiment. Plasma concentrations of adiponectin, HbA1c, insulin, glucose, total, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) cholesterol, and triglyceride were measured. Genotypes of SNP276 were specified. Student's t-test for paired values and unpaired values was used. After the 6-month training period, the work rate per kg of weight at DPBP and the plasma HDL-cholesterol level were significantly improved (P<0.05), while no change was observed in the total plasma adiponectin level. However, the plasma adiponectin level in those with the GT + TT genotype had significantly increased (P<0.05). Additionally, the degree of the decrease in the HOMA-R level was significantly greater in the subjects with the GT + TT genotype than those with the GG genotype (p<0.05). Our results suggest that subjects with the genotype GT + TT at SNP276 (G/T) have a greater adiponectin-related response to exercise training than those with the GG genotype.

  11. Rs219780 SNP of Claudin 14 Gene is not Related to Clinical Expression in Primary Hyperparathyroidism.

    PubMed

    Piedra, María; Berja, Ana; García-Unzueta, María Teresa; Ramos, Laura; Valero, Carmen; Amado, José Antonio

    2015-01-01

    The CLDN14 gene encodes a protein involved in the regulation of paracellular permeability or ion transport at epithelial tight junctions as in the nephron. The C allele of the rs219780 SNP (single nucleotide polymorphism) of CLDN14 has been associated with renal lithiasis, high levels of parathormone (PTH), and with low bone mineral density (BMD) in healthy women. Our aim is to study the relationship between rs219780 SNP of CLDN14 and renal lithiasis, fractures, and BMD in patients with primary hyperparathyroidism (PHPT). We enrolled 298 Caucasian patients with PHPT and 328 healthy volunteers in a cross-sectional study. We analysed anthropometric data, history of fractures or kidney stones, biochemical parameters including markers for bone remodelling, abdominal ultrasound, and BMD and genotyping for the rs219780 SNP of CLDN14. We did not find any difference in the frequency of fractures or renal lithiasis between the genotype groups in PHPT patients. Moreover, we did not find any relationship between the T or C alleles and BMD or biochemical parameters. rs219780 SNP of CLDN14 does not appear to be a risk factor for the development of PHPT nor does it seem to influence the clinical expression of PHPT.

  12. Report on the development of putative functional SSR and SNP markers in passion fruits.

    PubMed

    da Costa, Zirlane Portugal; Munhoz, Carla de Freitas; Vieira, Maria Lucia Carneiro

    2017-09-06

    Passionflowers Passiflora edulis and Passiflora alata are diploid, outcrossing and understudied fruit bearing species. In Brazil, passion fruit cultivation began relatively recently and has earned the country an outstanding position as the world's top producer of passion fruit. The fruit's main economic value lies in the production of juice, an essential exotic ingredient in juice blends. Currently, crop improvement strategies, including those for underexploited tropical species, tend to incorporate molecular genetic approaches. In this study, we examined a set of P. edulis transcripts expressed in response to infection by Xanthomonas axonopodis, (the passion fruit's main bacterial pathogen that attacks the vines), aiming at the development of putative functional markers, i.e. SSRs (simple sequence repeats) and SNPs (single nucleotide polymorphisms). A total of 210 microsatellites were found in 998 sequences, and trinucleotide repeats were found to be the most frequent (31.4%). Of the sequences selected for designing primers, 80.9% could be used to develop SSR markers, and 60.6% SNP markers for P. alata. SNPs were all biallelic and found within 15 gene fragments of P. alata. Overall, gene fragments generated 10,003 bp. SNP frequency was estimated as one SNP every 294 bp. Polymorphism rates revealed by SSR and SNP loci were 29.4 and 53.6%, respectively. Passiflora edulis transcripts were useful for the development of putative functional markers for P. alata, suggesting a certain level of sequence conservation between these cultivated species. The markers developed herein could be used for genetic mapping purposes and also in diversity studies.

  13. SNP-markers in Allium species to facilitate introgression breeding in onion.

    PubMed

    Scholten, Olga E; van Kaauwen, Martijn P W; Shahin, Arwa; Hendrickx, Patrick M; Keizer, L C Paul; Burger, Karin; van Heusden, Adriaan W; van der Linden, C Gerard; Vosman, Ben

    2016-08-31

    Within onion, Allium cepa L., the availability of disease resistance is limited. The identification of sources of resistance in related species, such as Allium roylei and Allium fistulosum, was a first step towards the improvement of onion cultivars by breeding. SNP markers linked to resistance and polymorphic between these related species and onion cultivars are a valuable tool to efficiently introgress disease resistance genes. In this paper we describe the identification and validation of SNP markers valuable for onion breeding. Transcriptome sequencing resulted in 192 million RNA seq reads from the interspecific F1 hybrid between A. roylei and A. fistulosum (RF) and nine onion cultivars. After assembly, reliable SNPs were discovered in about 36 % of the contigs. For genotyping of the interspecific three-way cross population, derived from a cross between an onion cultivar and the RF (CCxRF), 1100 SNPs that are polymorphic in RF and monomorphic in the onion cultivars (RF SNPs) were selected for the development of KASP assays. A molecular linkage map based on 667 RF-SNP markers was constructed for CCxRF. In addition, KASP assays were developed for 1600 onion-SNPs (SNPs polymorphic among onion cultivars). A second linkage map was constructed for an F2 of onion x A. roylei (F2(CxR)) that consisted of 182 onion-SNPs and 119 RF-SNPs, and 76 previously mapped markers. Markers co-segregating in both the F2(CxR) and the CCxRF population were used to assign the linkage groups of RF to onion chromosomes. To validate usefulness of these SNP markers, QTL mapping was applied in the CCxRF population that segregates for resistance to Botrytis squamosa and resulted in a QTL for resistance on chromosome 6 of A. roylei. Our research has more than doubled the publicly available marker sequences of expressed onion genes and two onion-related species. It resulted in a detailed genetic map for the interspecific CCxRF population. This is the first paper that reports the detection of

  14. Prevalence of Human Papilloma Virus in Sinonasal Papilloma in Southern Iranian Population.

    PubMed

    Valibeigi, Behnaz; Ashraf, Mohamad Javad; Kerdegari, Narges; Safai, Akbar; Abedi, Elham; Khademi, Bijan; Azarpira, Negar

    2017-06-01

    Sinonasal papilloma (SNP) is a rare benign lesion characterized by high recurrence rate and malignant transformation. This study aimed to investigate the prevalence of human papilloma virus (HPV) infection in these lesions in South of Iran. In this cross sectional retrospective study, a total of 41 patients, 38 SNP and 3 SNP/Squamous cell carcinoma cases, from 2007 to 2014 were studied. Human papilloma virus (HPV) DNA detection was performed by nested PCR method and positive cases were analyzed for high risk HPV-16 and HPV-18. HPV was detected in 31.7%; HPV- 16 in 4.9% and HPV 18 was not detected at all. Dysplastic epithelium was detected in 53% that was not associated with HPV. Three cases were accompanied with malignant transformation that HPV genome was detected in only one case and none of them were positive for HPV16 /18 genomic DNA. Current research suggests that HPV may be involved in the development of SNP. But the high risk HPV is not important in malignant transformation. More studies are needed to elucidate the possible etiologic mechanism between HPV, inverted papilloma, and squamous cell carcinoma.

  15. BlueSNP: R package for highly scalable genome-wide association studies using Hadoop clusters.

    PubMed

    Huang, Hailiang; Tata, Sandeep; Prill, Robert J

    2013-01-01

    Computational workloads for genome-wide association studies (GWAS) are growing in scale and complexity outpacing the capabilities of single-threaded software designed for personal computers. The BlueSNP R package implements GWAS statistical tests in the R programming language and executes the calculations across computer clusters configured with Apache Hadoop, a de facto standard framework for distributed data processing using the MapReduce formalism. BlueSNP makes computationally intensive analyses, such as estimating empirical p-values via data permutation, and searching for expression quantitative trait loci over thousands of genes, feasible for large genotype-phenotype datasets. http://github.com/ibm-bioinformatics/bluesnp

  16. Improving mapping and SNP-calling performance in multiplexed targeted next-generation sequencing

    PubMed Central

    2012-01-01

    Background Compared to classical genotyping, targeted next-generation sequencing (tNGS) can be custom-designed to interrogate entire genomic regions of interest, in order to detect novel as well as known variants. To bring down the per-sample cost, one approach is to pool barcoded NGS libraries before sample enrichment. Still, we lack a complete understanding of how this multiplexed tNGS approach and the varying performance of the ever-evolving analytical tools can affect the quality of variant discovery. Therefore, we evaluated the impact of different software tools and analytical approaches on the discovery of single nucleotide polymorphisms (SNPs) in multiplexed tNGS data. To generate our own test model, we combined a sequence capture method with NGS in three experimental stages of increasing complexity (E. coli genes, multiplexed E. coli, and multiplexed HapMap BRCA1/2 regions). Results We successfully enriched barcoded NGS libraries instead of genomic DNA, achieving reproducible coverage profiles (Pearson correlation coefficients of up to 0.99) across multiplexed samples, with <10% strand bias. However, the SNP calling quality was substantially affected by the choice of tools and mapping strategy. With the aim of reducing computational requirements, we compared conventional whole-genome mapping and SNP-calling with a new faster approach: target-region mapping with subsequent ‘read-backmapping’ to the whole genome to reduce the false detection rate. Consequently, we developed a combined mapping pipeline, which includes standard tools (BWA, SAMtools, etc.), and tested it on public HiSeq2000 exome data from the 1000 Genomes Project. Our pipeline saved 12 hours of run time per Hiseq2000 exome sample and detected ~5% more SNPs than the conventional whole genome approach. This suggests that more potential novel SNPs may be discovered using both approaches than with just the conventional approach. Conclusions We recommend applying our general

  17. A multi-SNP association test for complex diseases incorporating an optimal P-value threshold algorithm in nuclear families.

    PubMed

    Wang, Yi-Ting; Sung, Pei-Yuan; Lin, Peng-Lin; Yu, Ya-Wen; Chung, Ren-Hua

    2015-05-15

    Genome-wide association studies (GWAS) have become a common approach to identifying single nucleotide polymorphisms (SNPs) associated with complex diseases. As complex diseases are caused by the joint effects of multiple genes, while the effect of individual gene or SNP is modest, a method considering the joint effects of multiple SNPs can be more powerful than testing individual SNPs. The multi-SNP analysis aims to test association based on a SNP set, usually defined based on biological knowledge such as gene or pathway, which may contain only a portion of SNPs with effects on the disease. Therefore, a challenge for the multi-SNP analysis is how to effectively select a subset of SNPs with promising association signals from the SNP set. We developed the Optimal P-value Threshold Pedigree Disequilibrium Test (OPTPDT). The OPTPDT uses general nuclear families. A variable p-value threshold algorithm is used to determine an optimal p-value threshold for selecting a subset of SNPs. A permutation procedure is used to assess the significance of the test. We used simulations to verify that the OPTPDT has correct type I error rates. Our power studies showed that the OPTPDT can be more powerful than the set-based test in PLINK, the multi-SNP FBAT test, and the p-value based test GATES. We applied the OPTPDT to a family-based autism GWAS dataset for gene-based association analysis and identified MACROD2-AS1 with genome-wide significance (p-value=2.5×10(-6)). Our simulation results suggested that the OPTPDT is a valid and powerful test. The OPTPDT will be helpful for gene-based or pathway association analysis. The method is ideal for the secondary analysis of existing GWAS datasets, which may identify a set of SNPs with joint effects on the disease.

  18. Novel Quantitative Real-Time LCR for the Sensitive Detection of SNP Frequencies in Pooled DNA: Method Development, Evaluation and Application

    PubMed Central

    Psifidi, Androniki; Dovas, Chrysostomos; Banos, Georgios

    2011-01-01

    Background Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of SNP in DNA pooled samples. Methods The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility to a transmissible spongiform encephalopathy in sheep. Conclusions The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP frequencies were 0.085% and 0.35%, respectively. Significance The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically modified organisms in food. PMID:21283808

  19. An innovative SNP genotyping method adapting to multiple platforms and throughputs

    USDA-ARS?s Scientific Manuscript database

    Single nucleotide polymorphisms (SNPs) are highly abundant, distributed throughout the genome in various species, and therefore they are widely used as genetic markers. However, the usefulness of this genetic tool relies heavily on the availability of user-friendly SNP genotyping methods. We have d...

  20. High-throughput RAD-SNP genotyping for characterization of sugar beet genotypes

    USDA-ARS?s Scientific Manuscript database

    High-throughput SNP genotyping provides a rapid way of developing resourceful set of markers for delineating the genetic architecture and for effective species discrimination. In the presented research, we demonstrate a set of 192 SNPs for effective genotyping in sugar beet using high-throughput mar...

  1. Coding SNP in tenascin-C Fn-III-D domain associates with adult asthma.

    PubMed

    Matsuda, Akira; Hirota, Tomomitsu; Akahoshi, Mitsuteru; Shimizu, Makiko; Tamari, Mayumi; Miyatake, Akihiko; Takahashi, Atsushi; Nakashima, Kazuko; Takahashi, Naomi; Obara, Kazuhiko; Yuyama, Noriko; Doi, Satoru; Kamogawa, Yumiko; Enomoto, Tadao; Ohshima, Koichi; Tsunoda, Tatsuhiko; Miyatake, Shoichiro; Fujita, Kimie; Kusakabe, Moriaki; Izuhara, Kenji; Nakamura, Yusuke; Hopkin, Julian; Shirakawa, Taro

    2005-10-01

    The extracellular matrix glycoprotein tenascin-C (TNC) has been accepted as a valuable histopathological subepithelial marker for evaluating the severity of asthmatic disease and the therapeutic response to drugs. We found an association between an adult asthma and an SNP encoding TNC fibronectin type III-D (Fn-III-D) domain in a case-control study between a Japanese population including 446 adult asthmatic patients and 658 normal healthy controls. The SNP (44513A/T in exon 17) strongly associates with adult bronchial asthma (chi2 test, P=0.00019, Odds ratio=1.76, 95% confidence interval=1.31-2.36). This coding SNP induces an amino acid substitution (Leu1677Ile) within the Fn-III-D domain of the alternative splicing region. Computer-assisted protein structure modeling suggests that the substituted amino acid locates at the outer edge of the beta-sheet in Fn-III-D domain and causes instability of this beta-sheet. As the TNC fibronectin-III domain has molecular elasticity, the structural change may affect the integrity and stiffness of asthmatic airways. In addition, TNC expression in lung fibroblasts increases with Th2 immune cytokine stimulation. Thus, Leu1677Ile may be valuable marker for evaluating the risk for developing asthma and plays a role in its pathogenesis.

  2. Comparing CNV detection methods for SNP arrays.

    PubMed

    Winchester, Laura; Yau, Christopher; Ragoussis, Jiannis

    2009-09-01

    Data from whole genome association studies can now be used for dual purposes, genotyping and copy number detection. In this review we discuss some of the methods for using SNP data to detect copy number events. We examine a number of algorithms designed to detect copy number changes through the use of signal-intensity data and consider methods to evaluate the changes found. We describe the use of several statistical models in copy number detection in germline samples. We also present a comparison of data using these methods to assess accuracy of prediction and detection of changes in copy number.

  3. Comprehensive performance comparison of high-resolution array platforms for genome-wide Copy Number Variation (CNV) analysis in humans.

    PubMed

    Haraksingh, Rajini R; Abyzov, Alexej; Urban, Alexander Eckehart

    2017-04-24

    High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4-489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0-86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will

  4. Comprehensive high-resolution genomic profiling and cytogenetics of human chondrocyte cultures by GTG-banding, locus-specific FISH, SKY and SNP array.

    PubMed

    Wallenborn, M; Petters, O; Rudolf, D; Hantmann, H; Richter, M; Ahnert, P; Rohani, L; Smink, J J; Bulwin, G C; Krupp, W; Schulz, R M; Holland, H

    2018-04-23

    In the development of cell-based medicinal products, it is crucial to guarantee that the application of such an advanced therapy medicinal product (ATMP) is safe for the patients. The consensus of the European regulatory authorities is: "In conclusion, on the basis of the state of art, conventional karyotyping can be considered a valuable and useful technique to analyse chromosomal stability during preclinical studies". 408 chondrocyte samples (84 monolayers and 324 spheroids) from six patients were analysed using trypsin-Giemsa staining, spectral karyotyping and fluorescence in situ hybridisation, to evaluate the genetic stability of chondrocyte samples from non-clinical studies. Single nucleotide polymorphism (SNP) array analysis was performed on chondrocyte spheroids from five of the six donors. Applying this combination of techniques, the genetic analyses performed revealed no significant genetic instability until passage 3 in monolayer cells and interphase cells from spheroid cultures at different time points. Clonal occurrence of polyploid metaphases and endoreduplications were identified associated with prolonged cultivation time. Also, gonosomal losses were observed in chondrocyte spheroids, with increasing passage and duration of the differentiation phase. Interestingly, in one of the donors, chromosomal aberrations that are also described in extraskeletal myxoid chondrosarcoma were identified. The SNP array analysis exhibited chromosomal aberrations in two donors and copy neutral losses of heterozygosity regions in four donors. This study showed the necessity of combined genetic analyses at defined cultivation time points in quality studies within the field of cell therapy.

  5. Design of the Illumina Porcine 50K+ SNP Iselect(TM) Beadchip and Characterization of the Porcine HapMap Population

    USDA-ARS?s Scientific Manuscript database

    Using next generation sequencing technology the International Swine SNP Consortium has identified 500,000 SNPs and used these to design an Illumina Infinium iSelect™ SNP BeadChip with a selection of 60,218 SNPs. The selected SNPs include previously validated SNPs and SNPs identified de novo using se...

  6. A custom correlation coefficient (CCC) approach for fast identification of multi-SNP association patterns in genome-wide SNPs data.

    PubMed

    Climer, Sharlee; Yang, Wei; de las Fuentes, Lisa; Dávila-Román, Victor G; Gu, C Charles

    2014-11-01

    Complex diseases are often associated with sets of multiple interacting genetic factors and possibly with unique sets of the genetic factors in different groups of individuals (genetic heterogeneity). We introduce a novel concept of custom correlation coefficient (CCC) between single nucleotide polymorphisms (SNPs) that address genetic heterogeneity by measuring subset correlations autonomously. It is used to develop a 3-step process to identify candidate multi-SNP patterns: (1) pairwise (SNP-SNP) correlations are computed using CCC; (2) clusters of so-correlated SNPs identified; and (3) frequencies of these clusters in disease cases and controls compared to identify disease-associated multi-SNP patterns. This method identified 42 candidate multi-SNP associations with hypertensive heart disease (HHD), among which one cluster of 22 SNPs (six genes) included 13 in SLC8A1 (aka NCX1, an essential component of cardiac excitation-contraction coupling) and another of 32 SNPs had 29 from a different segment of SLC8A1. While allele frequencies show little difference between cases and controls, the cluster of 22 associated alleles were found in 20% of controls but no cases and the other in 3% of controls but 20% of cases. These suggest that both protective and risk effects on HHD could be exerted by combinations of variants in different regions of SLC8A1, modified by variants from other genes. The results demonstrate that this new correlation metric identifies disease-associated multi-SNP patterns overlooked by commonly used correlation measures. Furthermore, computation time using CCC is a small fraction of that required by other methods, thereby enabling the analyses of large GWAS datasets. © 2014 WILEY PERIODICALS, INC.

  7. A custom correlation coefficient (CCC) approach for fast identification of multi-SNP association patterns in genome-wide SNPs data

    PubMed Central

    Climer, Sharlee; Yang, Wei; de las Fuentes, Lisa; Dávila-Román, Victor G.; Gu, C. Charles

    2014-01-01

    Complex diseases are often associated with sets of multiple interacting genetic factors and possibly with unique sets of the genetic factors in different groups of individuals (genetic heterogeneity). We introduce a novel concept of Custom Correlation Coefficient (CCC) between single nucleotide polymorphisms (SNPs) that address genetic heterogeneity by measuring subset correlations autonomously. It is used to develop a 3-step process to identify candidate multi-SNP patterns: (1) pairwise (SNP-SNP) correlations are computed using CCC; (2) clusters of so-correlated SNPs identified; and (3) frequencies of these clusters in disease cases and controls compared to identify disease-associated multi-SNP patterns. This method identified 42 candidate multi-SNP associations with hypertensive heart disease (HHD), among which one cluster of 22 SNPs (6 genes) included 13 in SLC8A1 (aka NCX1, an essential component of cardiac excitation-contraction coupling) and another of 32 SNPs had 29 from a different segment of SLC8A1. While allele frequencies show little difference between cases and controls, the cluster of 22 associated alleles were found in 20% of controls but no cases and the other in 3% of controls but 20% of cases. These suggest that both protective and risk effects on HHD could be exerted by combinations of variants in different regions of SLC8A1, modified by variants from other genes. The results demonstrate that this new correlation metric identifies disease-associated multi-SNP patterns overlooked by commonly used correlation measures. Furthermore, computation time using CCC is a small fraction of that required by other methods, thereby enabling the analyses of large GWAS datasets. PMID:25168954

  8. miRNA-Mediated Relationships between Cis-SNP Genotypes and Transcript Intensities in Lymphocyte Cell Lines

    PubMed Central

    Zhang, Wensheng; Edwards, Andrea; Zhu, Dongxiao; Flemington, Erik K.; Deininger, Prescott; Zhang, Kun

    2012-01-01

    In metazoans, miRNAs regulate gene expression primarily through binding to target sites in the 3′ UTRs (untranslated regions) of messenger RNAs (mRNAs). Cis-acting variants within, or close to, a gene are crucial in explaining the variability of gene expression measures. Single nucleotide polymorphisms (SNPs) in the 3′ UTRs of genes can affect the base-pairing between miRNAs and mRNAs, and hence disrupt existing target sites (in the reference sequence) or create novel target sites, suggesting a possible mechanism for cis regulation of gene expression. Moreover, because the alleles of different SNPs within a DNA sequence of limited length tend to be in strong linkage disequilibrium (LD), we hypothesize the variants of miRNA target sites caused by SNPs potentially function as bridges linking the documented cis-SNP markers to the expression of the associated genes. A large-scale analysis was herein performed to test this hypothesis. By systematically integrating multiple latest information sources, we found 21 significant gene-level SNP-involved miRNA-mediated post-transcriptional regulation modules (SNP-MPRMs) in the form of SNP-miRNA-mRNA triplets in lymphocyte cell lines for the CEU and YRI populations. Among the cognate genes, six including ALG8, DGKE, GNA12, KLF11, LRPAP1, and MMAB are related to multiple genetic diseases such as depressive disorder and Type-II diabetes. Furthermore, we found that ∼35% of the documented transcript intensity-related cis-SNPs (∼950) in a recent publication are identical to, or in significant linkage disequilibrium (LD) (p<0.01) with, one or multiple SNPs located in miRNA target sites. Based on these associations (or identities), 69 significant exon-level SNP-MPRMs and 12 disease genes were further determined for two populations. These results provide concrete in silico evidence for the proposed hypothesis. The discovered modules warrant additional follow-up in independent laboratory studies. PMID:22348086

  9. Design of a High Density SNP Genotyping Assay in the Pig Using SNPs Identified and Characterized by Next Generation Sequencing Technology

    PubMed Central

    Ramos, Antonio M.; Crooijmans, Richard P. M. A.; Affara, Nabeel A.; Amaral, Andreia J.; Archibald, Alan L.; Beever, Jonathan E.; Bendixen, Christian; Churcher, Carol; Clark, Richard; Dehais, Patrick; Hansen, Mark S.; Hedegaard, Jakob; Hu, Zhi-Liang; Kerstens, Hindrik H.; Law, Andy S.; Megens, Hendrik-Jan; Milan, Denis; Nonneman, Danny J.; Rohrer, Gary A.; Rothschild, Max F.; Smith, Tim P. L.; Schnabel, Robert D.; Van Tassell, Curt P.; Taylor, Jeremy F.; Wiedmann, Ralph T.; Schook, Lawrence B.; Groenen, Martien A. M.

    2009-01-01

    Background The dissection of complex traits of economic importance to the pig industry requires the availability of a significant number of genetic markers, such as single nucleotide polymorphisms (SNPs). This study was conducted to discover several hundreds of thousands of porcine SNPs using next generation sequencing technologies and use these SNPs, as well as others from different public sources, to design a high-density SNP genotyping assay. Methodology/Principal Findings A total of 19 reduced representation libraries derived from four swine breeds (Duroc, Landrace, Large White, Pietrain) and a Wild Boar population and three restriction enzymes (AluI, HaeIII and MspI) were sequenced using Illumina's Genome Analyzer (GA). The SNP discovery effort resulted in the de novo identification of over 372K SNPs. More than 549K SNPs were used to design the Illumina Porcine 60K+SNP iSelect Beadchip, now commercially available as the PorcineSNP60. A total of 64,232 SNPs were included on the Beadchip. Results from genotyping the 158 individuals used for sequencing showed a high overall SNP call rate (97.5%). Of the 62,621 loci that could be reliably scored, 58,994 were polymorphic yielding a SNP conversion success rate of 94%. The average minor allele frequency (MAF) for all scorable SNPs was 0.274. Conclusions/Significance Overall, the results of this study indicate the utility of using next generation sequencing technologies to identify large numbers of reliable SNPs. In addition, the validation of the PorcineSNP60 Beadchip demonstrated that the assay is an excellent tool that will likely be used in a variety of future studies in pigs. PMID:19654876

  10. Changes in variance explained by top SNP windows over generations for three traits in broiler chicken.

    PubMed

    Fragomeni, Breno de Oliveira; Misztal, Ignacy; Lourenco, Daniela Lino; Aguilar, Ignacio; Okimoto, Ronald; Muir, William M

    2014-01-01

    The purpose of this study was to determine if the set of genomic regions inferred as accounting for the majority of genetic variation in quantitative traits remain stable over multiple generations of selection. The data set contained phenotypes for five generations of broiler chicken for body weight, breast meat, and leg score. The population consisted of 294,632 animals over five generations and also included genotypes of 41,036 single nucleotide polymorphism (SNP) for 4,866 animals, after quality control. The SNP effects were calculated by a GWAS type analysis using single step genomic BLUP approach for generations 1-3, 2-4, 3-5, and 1-5. Variances were calculated for windows of 20 SNP. The top ten windows for each trait that explained the largest fraction of the genetic variance across generations were examined. Across generations, the top 10 windows explained more than 0.5% but less than 1% of the total variance. Also, the pattern of the windows was not consistent across generations. The windows that explained the greatest variance changed greatly among the combinations of generations, with a few exceptions. In many cases, a window identified as top for one combination, explained less than 0.1% for the other combinations. We conclude that identification of top SNP windows for a population may have little predictive power for genetic selection in the following generations for the traits here evaluated.

  11. Haploinsufficiency of CELF4 at 18q12.2 is associated with developmental and behavioral disorders, seizures, eye manifestations, and obesity

    PubMed Central

    Halgren, Christina; Bache, Iben; Bak, Mads; Myatt, Mikkel Wanting; Anderson, Claire Marie; Brøndum-Nielsen, Karen; Tommerup, Niels

    2012-01-01

    Only 20 patients with deletions of 18q12.2 have been reported in the literature and the associated phenotype includes borderline intellectual disability, behavioral problems, seizures, obesity, and eye manifestations. Here, we report a male patient with a de novo translocation involving chromosomes 12 and 18, with borderline IQ, developmental and behavioral disorders, myopia, obesity, and febrile seizures in childhood. We characterized the rearrangement with Affymetrix SNP 6.0 Array analysis and next-generation mate pair sequencing and found truncation of CELF4 at 18q12.2. This second report of a patient with a neurodevelopmental phenotype and a translocation involving CELF4 supports that CELF4 is responsible for the phenotype associated with deletion of 18q12.2. Our study illustrates the utility of high-resolution genome-wide techniques in identifying neurodevelopmental and neurobehavioral genes, and it adds to the growing evidence, including a transgenic mouse model, that CELF4 is important for human brain development. PMID:22617346

  12. A case of 3q29 microdeletion syndrome involving oral cleft inherited from a non-affected mosaic parent: molecular analysis and ethical implications

    PubMed Central

    Petrin, Aline L.; Daack-Hirsch, Sandra; L’Heureux, Jamie; Murray, Jeffrey C

    2010-01-01

    Objective The objective of this study was to use array-CGH to detect causal microdeletions in samples of subjects with cleft lip and palate. Subjects We analyzed DNA samples from a male patient and parents that was seen during surgical screening for an Operation Smile medical mission in the Philippines. Method We used Affymetrix Genome Wide Human SNP Array 6.0 followed by sequencing and quantitative PCR using SYBR Green I dye. Results We report the second case of 3q29 microdeletion syndrome including cleft lip with or without cleft palate and the first case of this microdeletion syndrome inherited from a phenotypically normal mosaic parent. Conclusions Our findings confirm the utility of aCGH to detect causal microdeletions; indicate that parental somatic mosaicism should be considered in healthy parents for genetic counseling of the families and discuss important ethical implications of sharing health impact results from research studies with the participant families. PMID:20500065

  13. Application of Nexus copy number software for CNV detection and analysis.

    PubMed

    Darvishi, Katayoon

    2010-04-01

    Among human structural genomic variation, copy number variants (CNVs) are the most frequently known component, comprised of gains/losses of DNA segments that are generally 1 kb in length or longer. Array-based comparative genomic hybridization (aCGH) has emerged as a powerful tool for detecting genomic copy number variants (CNVs). With the rapid increase in the density of array technology and with the adaptation of new high-throughput technology, a reliable and computationally scalable method for accurate mapping of recurring DNA copy number aberrations has become a main focus in research. Here we introduce Nexus Copy Number software, a platform-independent tool, to analyze the output files of all types of commercial and custom-made comparative genomic hybridization (CGH) and single-nucleotide polymorphism (SNP) arrays, such as those manufactured by Affymetrix, Agilent Technologies, Illumina, and Roche NimbleGen. It also supports data generated by various array image-analysis software tools such as GenePix, ImaGene, and BlueFuse. (c) 2010 by John Wiley & Sons, Inc.

  14. Single nucleotide polymorphism (SNP) variation of wolves (Canis lupus) in Southeast Alaska and comparison with wolves, dogs, and coyotes in North America.

    PubMed

    Cronin, Matthew A; Cánovas, Angela; Bannasch, Danika L; Oberbauer, Anita M; Medrano, Juan F

    2015-01-01

    There is considerable interest in the genetics of wolves (Canis lupus) because of their close relationship to domestic dogs (C. familiaris) and the need for informed conservation and management. This includes wolf populations in Southeast Alaska for which we determined genotypes of 305 wolves at 173662 single nucleotide polymorphism (SNP) loci. After removal of invariant and linked SNP, 123801 SNP were used to quantify genetic differentiation of wolves in Southeast Alaska and wolves, coyotes (C. latrans), and dogs from other areas in North America. There is differentiation of SNP allele frequencies between the species (wolves, coyotes, and dogs), although differentiation is relatively low between some wolf and coyote populations. There are varying levels of differentiation among populations of wolves, including low differentiation of wolves in interior Alaska, British Columbia, and the northern US Rocky Mountains. There is considerable differentiation of SNP allele frequencies of wolves in Southeast Alaska from wolves in other areas. However, wolves in Southeast Alaska are not a genetically homogeneous group and there are comparable levels of genetic differentiation among areas within Southeast Alaska and between Southeast Alaska and other geographic areas. SNP variation and other genetic data are discussed regarding taxonomy and management. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Genome-wide SNP data unveils the globalization of domesticated pigs.

    PubMed

    Yang, Bin; Cui, Leilei; Perez-Enciso, Miguel; Traspov, Aleksei; Crooijmans, Richard P M A; Zinovieva, Natalia; Schook, Lawrence B; Archibald, Alan; Gatphayak, Kesinee; Knorr, Christophe; Triantafyllidis, Alex; Alexandri, Panoraia; Semiadi, Gono; Hanotte, Olivier; Dias, Deodália; Dovč, Peter; Uimari, Pekka; Iacolina, Laura; Scandura, Massimo; Groenen, Martien A M; Huang, Lusheng; Megens, Hendrik-Jan

    2017-09-21

    Pigs were domesticated independently in Eastern and Western Eurasia early during the agricultural revolution, and have since been transported and traded across the globe. Here, we present a worldwide survey on 60K genome-wide single nucleotide polymorphism (SNP) data for 2093 pigs, including 1839 domestic pigs representing 122 local and commercial breeds, 215 wild boars, and 39 out-group suids, from Asia, Europe, America, Oceania and Africa. The aim of this study was to infer global patterns in pig domestication and diversity related to demography, migration, and selection. A deep phylogeographic division reflects the dichotomy between early domestication centers. In the core Eastern and Western domestication regions, Chinese pigs show differentiation between breeds due to geographic isolation, whereas this is less pronounced in European pigs. The inferred European origin of pigs in the Americas, Africa, and Australia reflects European expansion during the sixteenth to nineteenth centuries. Human-mediated introgression, which is due, in particular, to importing Chinese pigs into the UK during the eighteenth and nineteenth centuries, played an important role in the formation of modern pig breeds. Inbreeding levels vary markedly between populations, from almost no runs of homozygosity (ROH) in a number of Asian wild boar populations, to up to 20% of the genome covered by ROH in a number of Southern European breeds. Commercial populations show moderate ROH statistics. For domesticated pigs and wild boars in Asia and Europe, we identified highly differentiated loci that include candidate genes related to muscle and body development, central nervous system, reproduction, and energy balance, which are putatively under artificial selection. Key events related to domestication, dispersal, and mixing of pigs from different regions are reflected in the 60K SNP data, including the globalization that has recently become full circle since Chinese pig breeders in the past

  16. The iSelect 9 K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat.

    PubMed

    Hao, Chenyang; Wang, Yuquan; Chao, Shiaoman; Li, Tian; Liu, Hongxia; Wang, Lanfen; Zhang, Xueyong

    2017-01-30

    A Chinese wheat mini core collection was genotyped using the wheat 9 K iSelect SNP array. Total 2420 and 2396 polymorphic SNPs were detected on the A and the B genome chromosomes, which formed 878 haplotype blocks. There were more blocks in the B genome, but the average block size was significantly (P < 0.05) smaller than those in the A genome. Intense selection (domestication and breeding) had a stronger effect on the A than on the B genome chromosomes. Based on the genetic pedigrees, many blocks can be traced back to a well-known Strampelli cross, which was made one century ago. Furthermore, polyploidization of wheat (both tetraploidization and hexaploidization) induced revolutionary changes in both the A and the B genomes, with a greater increase of gene diversity compared to their diploid ancestors. Modern breeding has dramatically increased diversity in the gene coding regions, though obvious blocks were formed on most of the chromosomes in both tetraploid and hexaploid wheats. Tag-SNP markers identified in this study can be used for marker assisted selection using haplotype blocks as a wheat breeding strategy. This strategy can also be employed to facilitate genome selection in other self-pollinating crop species.

  17. SNP_tools: A compact tool package for analysis and conversion of genotype data for MS-Excel

    PubMed Central

    Chen, Bowang; Wilkening, Stefan; Drechsel, Marion; Hemminki, Kari

    2009-01-01

    Background Single nucleotide polymorphism (SNP) genotyping is a major activity in biomedical research. Scientists prefer to have a facile access to the results which may require conversions between data formats. First hand SNP data is often entered in or saved in the MS-Excel format, but this software lacks genetic and epidemiological related functions. A general tool to do basic genetic and epidemiological analysis and data conversion for MS-Excel is needed. Findings The SNP_tools package is prepared as an add-in for MS-Excel. The code is written in Visual Basic for Application, embedded in the Microsoft Office package. This add-in is an easy to use tool for users with basic computer knowledge (and requirements for basic statistical analysis). Conclusion Our implementation for Microsoft Excel 2000-2007 in Microsoft Windows 2000, XP, Vista and Windows 7 beta can handle files in different formats and converts them into other formats. It is a free software. PMID:19852806

  18. SNP_tools: A compact tool package for analysis and conversion of genotype data for MS-Excel.

    PubMed

    Chen, Bowang; Wilkening, Stefan; Drechsel, Marion; Hemminki, Kari

    2009-10-23

    Single nucleotide polymorphism (SNP) genotyping is a major activity in biomedical research. Scientists prefer to have a facile access to the results which may require conversions between data formats. First hand SNP data is often entered in or saved in the MS-Excel format, but this software lacks genetic and epidemiological related functions. A general tool to do basic genetic and epidemiological analysis and data conversion for MS-Excel is needed. The SNP_tools package is prepared as an add-in for MS-Excel. The code is written in Visual Basic for Application, embedded in the Microsoft Office package. This add-in is an easy to use tool for users with basic computer knowledge (and requirements for basic statistical analysis). Our implementation for Microsoft Excel 2000-2007 in Microsoft Windows 2000, XP, Vista and Windows 7 beta can handle files in different formats and converts them into other formats. It is a free software.

  19. Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of longan (Dimocarpus longan) germplasm

    PubMed Central

    Wang, Boyi; Tan, Hua-Wei; Fang, Wanping; Meinhardt, Lyndel W; Mischke, Sue; Matsumoto, Tracie; Zhang, Dapeng

    2015-01-01

    Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in 50 longan germplasm accessions, including cultivated varieties and wild germplasm; and designated 25 SNP markers that unambiguously identified all tested longan varieties with high statistical rigor (P<0.0001). Multiple trees from the same clone were verified and off-type trees were identified. Diversity analysis revealed genetic relationships among analyzed accessions. Cultivated varieties differed significantly from wild populations (Fst=0.300; P<0.001), demonstrating untapped genetic diversity for germplasm conservation and utilization. Within cultivated varieties, apparent differences between varieties from China and those from Thailand and Hawaii indicated geographic patterns of genetic differentiation. These SNP markers provide a powerful tool to manage longan genetic resources and breeding, with accurate and efficient genotype identification. PMID:26504559

  20. [Comparative analysis of STR and SNP polymorphism in the populations of sockeye salmon (Oncorhynchus nerka) from Eastern and Western Kamchatka].

    PubMed

    Khrustaleva, A M; Volkov, A A; Stoklitskaia, D S; Miuge, N S; Zelenina, D A

    2010-11-01

    Sockeye salmon samples from five largest lacustrine-riverine systems of Kamchatka Peninsula were tested for polymorphism at six microsatellite (STR) and five single nucleotide polymorphism (SNP) loci. Statistically significant genetic differentiation among local populations from this part of the species range examined was demonstrated. The data presented point to pronounced genetic divergence of the populations from two geographical regions, Eastern and Western Kamchatka. For sockeye salmon, the individual identification test accuracy was higher for microsatellites compared to similar number of SNP markers. Pooling of the STR and SNP allele frequency data sets provided the highest accuracy of the individual fish population assignment.

  1. Association of SNP3 polymorphism in the apolipoprotein A-V gene with plasma triglyceride level in Tunisian type 2 diabetes

    PubMed Central

    Chaaba, Raja; Attia, Nebil; Hammami, Sonia; Smaoui, Maha; Mahjoub, Sylvia; Hammami, Mohamed; Masmoudi, Ahmed Slaheddine

    2005-01-01

    Background Apolipoprotein A-V (Apo A-V) gene has recently been identified as a new apolipoprotein involved in triglyceride metabolism. A single nucleotide polymorphism (SNP3) located in the gene promoter (-1131) was associated with triglyceride variation in healthy subjects. In type 2 diabetes the triglyceride level increased compared to healthy subjects. Hypertriglyceridemia is a risk factor for coronary artery disease. We aimed to examine the interaction between SNP3 and lipid profile and coronary artery disease (CAD) in Tunisian type 2 diabetic patients. Results The genotype frequencies of T/T, T/C and C/C were 0.74, 0.23 and 0.03 respectively in non diabetic subjects, 0.71, 0.25 and 0.04 respectively in type 2 diabetic patients. Triglyceride level was higher in heterozygous genotype (-1131 T/C) of apo A-V (p = 0.024). Heterozygous genotype is more frequent in high triglyceride group (40.9%) than in low triglyceride group (18.8%) ; p = 0.011. Despite the relation between CAD and hypertriglyceridemia the SNP 3 was not associated with CAD. Conclusion In type 2 diabetic patients SNP3 is associated with triglyceride level, however there was no association between SNP3 and coronary artery disease. PMID:15636639

  2. Analysis of the genetic structure of the Malay population: Ancestry-informative marker SNPs in the Malay of Peninsular Malaysia.

    PubMed

    Yahya, Padillah; Sulong, Sarina; Harun, Azian; Wan Isa, Hatin; Ab Rajab, Nur-Shafawati; Wangkumhang, Pongsakorn; Wilantho, Alisa; Ngamphiw, Chumpol; Tongsima, Sissades; Zilfalil, Bin Alwi

    2017-09-01

    Malay, the main ethnic group in Peninsular Malaysia, is represented by various sub-ethnic groups such as Melayu Banjar, Melayu Bugis, Melayu Champa, Melayu Java, Melayu Kedah Melayu Kelantan, Melayu Minang and Melayu Patani. Using data retrieved from the MyHVP (Malaysian Human Variome Project) database, a total of 135 individuals from these sub-ethnic groups were profiled using the Affymetrix GeneChip Mapping Xba 50-K single nucleotide polymorphism (SNP) array to identify SNPs that were ancestry-informative markers (AIMs) for Malays of Peninsular Malaysia. Prior to selecting the AIMs, the genetic structure of Malays was explored with reference to 11 other populations obtained from the Pan-Asian SNP Consortium database using principal component analysis (PCA) and ADMIXTURE. Iterative pruning principal component analysis (ipPCA) was further used to identify sub-groups of Malays. Subsequently, we constructed an AIMs panel for Malays using the informativeness for assignment (I n ) of genetic markers, and the K-nearest neighbor classifier (KNN) was used to teach the classification models. A model of 250 SNPs ranked by I n , correctly classified Malay individuals with an accuracy of up to 90%. The identified panel of SNPs could be utilized as a panel of AIMs to ascertain the specific ancestry of Malays, which may be useful in disease association studies, biomedical research or forensic investigation purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Statistical Genomic Approach Identifies Association between FSHR Polymorphisms and Polycystic Ovary Morphology in Women with Polycystic Ovary Syndrome

    PubMed Central

    Du, Tao; Duan, Yu; Li, Kaiwen; Zhao, Xiaomiao; Ni, Renmin; Li, Yu; Yang, Dongzi

    2015-01-01

    Background. Single-nucleotide polymorphisms (SNPs) in the follicle stimulating hormone receptor (FSHR) gene are associated with PCOS. However, their relationship to the polycystic ovary (PCO) morphology remains unknown. This study aimed to investigate whether PCOS related SNPs in the FSHR gene are associated with PCO in women with PCOS. Methods. Patients were grouped into PCO (n = 384) and non-PCO (n = 63) groups. Genomic genotypes were profiled using Affymetrix human genome SNP chip 6. Two polymorphisms (rs2268361 and rs2349415) of FSHR were analyzed using a statistical approach. Results. Significant differences were found in the allele distributions of the GG genotype of rs2268361 between the PCO and non-PCO groups (27.6% GG, 53.4% GA, and 19.0% AA versus 33.3% GG, 36.5% GA, and 30.2% AA), while no significant differences were found in the allele distributions of the GG genotype of rs2349415. When rs2268361 was considered, there were statistically significant differences of serum follicle stimulating hormone, estradiol, and sex hormone binding globulin between genotypes in the PCO group. In case of the rs2349415 SNP, only serum sex hormone binding globulin was statistically different between genotypes in the PCO group. Conclusions. Functional variants in FSHR gene may contribute to PCO susceptibility in women with PCOS. PMID:26273622

  4. Linkage disequilibrium among commonly genotyped SNP and variants detected from bull sequence

    USDA-ARS?s Scientific Manuscript database

    Genomic prediction utilizing causal variants could increase selection accuracy above that achieved with SNP genotyped by commercial assays. A number of variants detected from sequencing influential sires are likely to be causal, but noticable improvements in prediction accuracy using imputed sequen...

  5. SNP Discovery for mapping alien introgressions in wheat

    PubMed Central

    2014-01-01

    Background Monitoring alien introgressions in crop plants is difficult due to the lack of genetic and molecular mapping information on the wild crop relatives. The tertiary gene pool of wheat is a very important source of genetic variability for wheat improvement against biotic and abiotic stresses. By exploring the 5Mg short arm (5MgS) of Aegilops geniculata, we can apply chromosome genomics for the discovery of SNP markers and their use for monitoring alien introgressions in wheat (Triticum aestivum L). Results The short arm of chromosome 5Mg of Ae. geniculata Roth (syn. Ae. ovata L.; 2n = 4x = 28, UgUgMgMg) was flow-sorted from a wheat line in which it is maintained as a telocentric chromosome. DNA of the sorted arm was amplified and sequenced using an Illumina Hiseq 2000 with ~45x coverage. The sequence data was used for SNP discovery against wheat homoeologous group-5 assemblies. A total of 2,178 unique, 5MgS-specific SNPs were discovered. Randomly selected samples of 59 5MgS-specific SNPs were tested (44 by KASPar assay and 15 by Sanger sequencing) and 84% were validated. Of the selected SNPs, 97% mapped to a chromosome 5Mg addition to wheat (the source of t5MgS), and 94% to 5Mg introgressed from a different accession of Ae. geniculata substituting for chromosome 5D of wheat. The validated SNPs also identified chromosome segments of 5MgS origin in a set of T5D-5Mg translocation lines; eight SNPs (25%) mapped to TA5601 [T5DL · 5DS-5MgS(0.75)] and three (8%) to TA5602 [T5DL · 5DS-5MgS (0.95)]. SNPs (gsnp_5ms83 and gsnp_5ms94), tagging chromosome T5DL · 5DS-5MgS(0.95) with the smallest introgression carrying resistance to leaf rust (Lr57) and stripe rust (Yr40), were validated in two released germplasm lines with Lr57 and Yr40 genes. Conclusion This approach should be widely applicable for the identification of species/genome-specific SNPs. The development of a large number of SNP markers will facilitate the precise introgression and

  6. TNF-alpha SNP haplotype frequencies in equidae.

    PubMed

    Brown, J J; Ollier, W E R; Thomson, W; Matthews, J B; Carter, S D; Binns, M; Pinchbeck, G; Clegg, P D

    2006-05-01

    Tumour necrosis factor alpha (TNF-alpha) is a pro-inflammatory cytokine that plays a crucial role in the regulation of inflammatory and immune responses. In all vertebrate species the genes encoding TNF-alpha are located within the major histocompatability complex. In the horse TNF-alpha has been ascribed a role in a variety of important disease processes. Previously two single nucleotide polymorphisms (SNPs) have been reported within the 5' un-translated region of the equine TNF-alpha gene. We have examined the equine TNF-alpha promoter region further for additional SNPs by analysing DNA from 131 horses (Equus caballus), 19 donkeys (E. asinus), 2 Grant's zebras (E. burchellii boehmi) and one onager (E. hemionus). Two further SNPs were identified at nucleotide positions 24 (T/G) and 452 (T/C) relative to the first nucleotide of the 522 bp polymerase chain reaction product. A sequence variant at position 51 was observed between equidae. SNaPSHOT genotyping assays for these and the two previously reported SNPs were performed on 457 horses comprising seven different breeds and 23 donkeys to determine the gene frequencies. SNP frequencies varied considerably between different horse breeds and also between the equine species. In total, nine different TNF-alpha promoter SNP haplotypes and their frequencies were established amongst the various equidae examined, with some haplotypes being found only in horses and others only in donkeys or zebras. The haplotype frequencies observed varied greatly between different horse breeds. Such haplotypes may relate to levels of TNF-alpha production and disease susceptibility and further investigation is required to identify associations between particular haplotypes and altered risk of disease.

  7. An abbreviated SNP panel for ancestry assignment of honeybees (Apis mellifera)

    USDA-ARS?s Scientific Manuscript database

    This paper examines whether an abbreviated panel of 37 single nucleotide polymorphisms (SNPs) has the same power as a larger and more expensive panel of 95 SNPs to assign ancestry of honeybees (Apis mellifera) to three ancestral lineages. We selected 37 SNPs from the original 95 SNP panel using alle...

  8. High-throughput SNP-genotyping analysis of the relationships among Ponto-Caspian sturgeon species

    PubMed Central

    Rastorguev, Sergey M; Nedoluzhko, Artem V; Mazur, Alexander M; Gruzdeva, Natalia M; Volkov, Alexander A; Barmintseva, Anna E; Mugue, Nikolai S; Prokhortchouk, Egor B

    2013-01-01

    Abstract Legally certified sturgeon fisheries require population protection and conservation methods, including DNA tests to identify the source of valuable sturgeon roe. However, the available genetic data are insufficient to distinguish between different sturgeon populations, and are even unable to distinguish between some species. We performed high-throughput single-nucleotide polymorphism (SNP)-genotyping analysis on different populations of Russian (Acipenser gueldenstaedtii), Persian (A. persicus), and Siberian (A. baerii) sturgeon species from the Caspian Sea region (Volga and Ural Rivers), the Azov Sea, and two Siberian rivers. We found that Russian sturgeons from the Volga and Ural Rivers were essentially indistinguishable, but they differed from Russian sturgeons in the Azov Sea, and from Persian and Siberian sturgeons. We identified eight SNPs that were sufficient to distinguish these sturgeon populations with 80% confidence, and allowed the development of markers to distinguish sturgeon species. Finally, on the basis of our SNP data, we propose that the A. baerii-like mitochondrial DNA found in some Russian sturgeons from the Caspian Sea arose via an introgression event during the Pleistocene glaciation. In the present study, the high-throughput genotyping analysis of several sturgeon populations was performed. SNP markers for species identification were defined. The possible explanation of the baerii-like mitotype presence in some Russian sturgeons in the Caspian Sea was suggested. PMID:24567827

  9. Novel approach for deriving genome wide SNP analysis data from archived blood spots

    PubMed Central

    2012-01-01

    Background The ability to transport and store DNA at room temperature in low volumes has the advantage of optimising cost, time and storage space. Blood spots on adapted filter papers are popular for this, with FTA (Flinders Technology Associates) Whatman™TM technology being one of the most recent. Plant material, plasmids, viral particles, bacteria and animal blood have been stored and transported successfully using this technology, however the method of porcine DNA extraction from FTA Whatman™TM cards is a relatively new approach, allowing nucleic acids to be ready for downstream applications such as PCR, whole genome amplification, sequencing and subsequent application to single nucleotide polymorphism microarrays has hitherto been under-explored. Findings DNA was extracted from FTA Whatman™TM cards (following adaptations of the manufacturer’s instructions), whole genome amplified and subsequently analysed to validate the integrity of the DNA for downstream SNP analysis. DNA was successfully extracted from 288/288 samples and amplified by WGA. Allele dropout post WGA, was observed in less than 2% of samples and there was no clear evidence of amplification bias nor contamination. Acceptable call rates on porcine SNP chips were also achieved using DNA extracted and amplified in this way. Conclusions DNA extracted from FTA Whatman cards is of a high enough quality and quantity following whole genomic amplification to perform meaningful SNP chip studies. PMID:22974252

  10. Prevalence of Human Papilloma Virus in Sinonasal Papilloma in Southern Iranian Population

    PubMed Central

    Valibeigi, Behnaz; Ashraf, Mohamad Javad; Kerdegari, Narges; Safai, Akbar; Abedi, Elham; Khademi, Bijan; Azarpira, Negar

    2017-01-01

    Statement of the Problem: Sinonasal papilloma (SNP) is a rare benign lesion characterized by high recurrence rate and malignant transformation. Purpose: This study aimed to investigate the prevalence of human papilloma virus (HPV) infection in these lesions in South of Iran. Materials and Method: In this cross sectional retrospective study, a total of 41 patients, 38 SNP and 3 SNP/Squamous cell carcinoma cases, from 2007 to 2014 were studied. Human papilloma virus (HPV) DNA detection was performed by nested PCR method and positive cases were analyzed for high risk HPV-16 and HPV-18. Results: HPV was detected in 31.7%; HPV- 16 in 4.9% and HPV 18 was not detected at all. Dysplastic epithelium was detected in 53% that was not associated with HPV. Three cases were accompanied with malignant transformation that HPV genome was detected in only one case and none of them were positive for HPV16 /18 genomic DNA. Conclusion: Current research suggests that HPV may be involved in the development of SNP. But the high risk HPV is not important in malignant transformation. More studies are needed to elucidate the possible etiologic mechanism between HPV, inverted papilloma, and squamous cell carcinoma. PMID:28620639

  11. Extent of genome-wide linkage disequilibrium in Australian Holstein-Friesian cattle based on a high-density SNP panel.

    PubMed

    Khatkar, Mehar S; Nicholas, Frank W; Collins, Andrew R; Zenger, Kyall R; Cavanagh, Julie A L; Barris, Wes; Schnabel, Robert D; Taylor, Jeremy F; Raadsma, Herman W

    2008-04-24

    The extent of linkage disequilibrium (LD) within a population determines the number of markers that will be required for successful association mapping and marker-assisted selection. Most studies on LD in cattle reported to date are based on microsatellite markers or small numbers of single nucleotide polymorphisms (SNPs) covering one or only a few chromosomes. This is the first comprehensive study on the extent of LD in cattle by analyzing data on 1,546 Holstein-Friesian bulls genotyped for 15,036 SNP markers covering all regions of all autosomes. Furthermore, most studies in cattle have used relatively small sample sizes and, consequently, may have had biased estimates of measures commonly used to describe LD. We examine minimum sample sizes required to estimate LD without bias and loss in accuracy. Finally, relatively little information is available on comparative LD structures including other mammalian species such as human and mouse, and we compare LD structure in cattle with public-domain data from both human and mouse. We computed three LD estimates, D', Dvol and r2, for 1,566,890 syntenic SNP pairs and a sample of 365,400 non-syntenic pairs. Mean D' is 0.189 among syntenic SNPs, and 0.105 among non-syntenic SNPs; mean r2 is 0.024 among syntenic SNPs and 0.0032 among non-syntenic SNPs. All three measures of LD for syntenic pairs decline with distance; the decline is much steeper for r2 than for D' and Dvol. The value of D' and Dvol are quite similar. Significant LD in cattle extends to 40 kb (when estimated as r2) and 8.2 Mb (when estimated as D'). The mean values for LD at large physical distances are close to those for non-syntenic SNPs. Minor allelic frequency threshold affects the distribution and extent of LD. For unbiased and accurate estimates of LD across marker intervals spanning < 1 kb to > 50 Mb, minimum sample sizes of 400 (for D') and 75 (for r2) are required. The bias due to small samples sizes increases with inter-marker interval. LD in cattle

  12. Use of partial least squares regression to impute SNP genotypes in Italian cattle breeds.

    PubMed

    Dimauro, Corrado; Cellesi, Massimo; Gaspa, Giustino; Ajmone-Marsan, Paolo; Steri, Roberto; Marras, Gabriele; Macciotta, Nicolò P P

    2013-06-05

    The objective of the present study was to test the ability of the partial least squares regression technique to impute genotypes from low density single nucleotide polymorphisms (SNP) panels i.e. 3K or 7K to a high density panel with 50K SNP. No pedigree information was used. Data consisted of 2093 Holstein, 749 Brown Swiss and 479 Simmental bulls genotyped with the Illumina 50K Beadchip. First, a single-breed approach was applied by using only data from Holstein animals. Then, to enlarge the training population, data from the three breeds were combined and a multi-breed analysis was performed. Accuracies of genotypes imputed using the partial least squares regression method were compared with those obtained by using the Beagle software. The impact of genotype imputation on breeding value prediction was evaluated for milk yield, fat content and protein content. In the single-breed approach, the accuracy of imputation using partial least squares regression was around 90 and 94% for the 3K and 7K platforms, respectively; corresponding accuracies obtained with Beagle were around 85% and 90%. Moreover, computing time required by the partial least squares regression method was on average around 10 times lower than computing time required by Beagle. Using the partial least squares regression method in the multi-breed resulted in lower imputation accuracies than using single-breed data. The impact of the SNP-genotype imputation on the accuracy of direct genomic breeding values was small. The correlation between estimates of genetic merit obtained by using imputed versus actual genotypes was around 0.96 for the 7K chip. Results of the present work suggested that the partial least squares regression imputation method could be useful to impute SNP genotypes when pedigree information is not available.

  13. Accurate genomic predictions for BCWD resistance in rainbow trout are achieved using low-density SNP panels: Evidence that long-range LD is a major contributing factor.

    PubMed

    Vallejo, Roger L; Silva, Rafael M O; Evenhuis, Jason P; Gao, Guangtu; Liu, Sixin; Parsons, James E; Martin, Kyle E; Wiens, Gregory D; Lourenco, Daniela A L; Leeds, Timothy D; Palti, Yniv

    2018-06-05

    Previously accurate genomic predictions for Bacterial cold water disease (BCWD) resistance in rainbow trout were obtained using a medium-density single nucleotide polymorphism (SNP) array. Here, the impact of lower-density SNP panels on the accuracy of genomic predictions was investigated in a commercial rainbow trout breeding population. Using progeny performance data, the accuracy of genomic breeding values (GEBV) using 35K, 10K, 3K, 1K, 500, 300 and 200 SNP panels as well as a panel with 70 quantitative trait loci (QTL)-flanking SNP was compared. The GEBVs were estimated using the Bayesian method BayesB, single-step GBLUP (ssGBLUP) and weighted ssGBLUP (wssGBLUP). The accuracy of GEBVs remained high despite the sharp reductions in SNP density, and even with 500 SNP accuracy was higher than the pedigree-based prediction (0.50-0.56 versus 0.36). Furthermore, the prediction accuracy with the 70 QTL-flanking SNP (0.65-0.72) was similar to the panel with 35K SNP (0.65-0.71). Genomewide linkage disequilibrium (LD) analysis revealed strong LD (r 2  ≥ 0.25) spanning on average over 1 Mb across the rainbow trout genome. This long-range LD likely contributed to the accurate genomic predictions with the low-density SNP panels. Population structure analysis supported the hypothesis that long-range LD in this population may be caused by admixture. Results suggest that lower-cost, low-density SNP panels can be used for implementing genomic selection for BCWD resistance in rainbow trout breeding programs. © 2018 The Authors. This article is a U.S. Government work and is in the public domain in the USA. Journal of Animal Breeding and Genetics published by Blackwell Verlag GmbH.

  14. A High-Density Consensus Map of Common Wheat Integrating Four Mapping Populations Scanned by the 90K SNP Array

    PubMed Central

    Wen, Weie; He, Zhonghu; Gao, Fengmei; Liu, Jindong; Jin, Hui; Zhai, Shengnan; Qu, Yanying; Xia, Xianchun

    2017-01-01

    A high-density consensus map is a powerful tool for gene mapping, cloning and molecular marker-assisted selection in wheat breeding. The objective of this study was to construct a high-density, single nucleotide polymorphism (SNP)-based consensus map of common wheat (Triticum aestivum L.) by integrating genetic maps from four recombinant inbred line populations. The populations were each genotyped using the wheat 90K Infinium iSelect SNP assay. A total of 29,692 SNP markers were mapped on 21 linkage groups corresponding to 21 hexaploid wheat chromosomes, covering 2,906.86 cM, with an overall marker density of 10.21 markers/cM. Compared with the previous maps based on the wheat 90K SNP chip detected 22,736 (76.6%) of the SNPs with consistent chromosomal locations, whereas 1,974 (6.7%) showed different chromosomal locations, and 4,982 (16.8%) were newly mapped. Alignment of the present consensus map and the wheat expressed sequence tags (ESTs) Chromosome Bin Map enabled assignment of 1,221 SNP markers to specific chromosome bins and 819 ESTs were integrated into the consensus map. The marker orders of the consensus map were validated based on physical positions on the wheat genome with Spearman rank correlation coefficients ranging from 0.69 (4D) to 0.97 (1A, 4B, 5B, and 6A), and were also confirmed by comparison with genetic position on the previously 40K SNP consensus map with Spearman rank correlation coefficients ranging from 0.84 (6D) to 0.99 (6A). Chromosomal rearrangements reported previously were confirmed in the present consensus map and new putative rearrangements were identified. In addition, an integrated consensus map was developed through the combination of five published maps with ours, containing 52,607 molecular markers. The consensus map described here provided a high-density SNP marker map and a reliable order of SNPs, representing a step forward in mapping and validation of chromosomal locations of SNPs on the wheat 90K array. Moreover, it can be

  15. SNP-SNP Interaction between TLR4 and MyD88 in Susceptibility to Coronary Artery Disease in the Chinese Han Population.

    PubMed

    Sun, Dandan; Sun, Liping; Xu, Qian; Gong, Yuehua; Wang, Honghu; Yang, Jun; Yuan, Yuan

    2016-03-04

    The toll-like receptor 4 (TLR4)-myeloid differentiation factor 88 (MyD88)-dependent signaling pathway plays a role in the initiation and progression of coronary artery disease (CAD). We investigated SNP-SNP interactions between the TLR4 and MyD88 genes in CAD susceptibility and assessed whether the effects of such interactions were modified by confounding risk factors (hyperglycemia, hyperlipidemia and Helicobacter pylori (H. pylori) infection). Participants with CAD (n = 424) and controls (n = 424) without CAD were enrolled. Polymerase chain restriction-restriction fragment length polymorphism was performed on genomic DNA to detect polymorphisms in TLR4 (rs10116253, rs10983755, and rs11536889) and MyD88 (rs7744). H. pylori infections were evaluated by enzyme-linked immunosorbent assays, and the cardiovascular risk factors for each subject were evaluated clinically. The significant interaction between TLR4 rs11536889 and MyD88 rs7744 was associated with an increased CAD risk (p value for interaction = 0.024). In conditions of hyperglycemia, the interaction effect was strengthened between TLR4 rs11536889 and MyD88 rs7744 (p value for interaction = 0.004). In hyperlipidemic participants, the interaction strength was also enhanced for TLR4 rs11536889 and MyD88 rs7744 (p value for interaction = 0.006). Thus, the novel interaction between TLR4 rs11536889 and MyD88 rs7744 was related with an increased risk of CAD, that could be strengthened by the presence of hyperglycemia or hyperlipidemia.

  16. Improving accuracy of genomic prediction in Brangus cattle by adding animals with imputed low-density SNP genotypes.

    PubMed

    Lopes, F B; Wu, X-L; Li, H; Xu, J; Perkins, T; Genho, J; Ferretti, R; Tait, R G; Bauck, S; Rosa, G J M

    2018-02-01

    Reliable genomic prediction of breeding values for quantitative traits requires the availability of sufficient number of animals with genotypes and phenotypes in the training set. As of 31 October 2016, there were 3,797 Brangus animals with genotypes and phenotypes. These Brangus animals were genotyped using different commercial SNP chips. Of them, the largest group consisted of 1,535 animals genotyped by the GGP-LDV4 SNP chip. The remaining 2,262 genotypes were imputed to the SNP content of the GGP-LDV4 chip, so that the number of animals available for training the genomic prediction models was more than doubled. The present study showed that the pooling of animals with both original or imputed 40K SNP genotypes substantially increased genomic prediction accuracies on the ten traits. By supplementing imputed genotypes, the relative gains in genomic prediction accuracies on estimated breeding values (EBV) were from 12.60% to 31.27%, and the relative gain in genomic prediction accuracies on de-regressed EBV was slightly small (i.e. 0.87%-18.75%). The present study also compared the performance of five genomic prediction models and two cross-validation methods. The five genomic models predicted EBV and de-regressed EBV of the ten traits similarly well. Of the two cross-validation methods, leave-one-out cross-validation maximized the number of animals at the stage of training for genomic prediction. Genomic prediction accuracy (GPA) on the ten quantitative traits was validated in 1,106 newly genotyped Brangus animals based on the SNP effects estimated in the previous set of 3,797 Brangus animals, and they were slightly lower than GPA in the original data. The present study was the first to leverage currently available genotype and phenotype resources in order to harness genomic prediction in Brangus beef cattle. © 2018 Blackwell Verlag GmbH.

  17. Genome-Wide SNP Analysis Reveals Distinct Origins of Trypanosoma evansi and Trypanosoma equiperdum

    PubMed Central

    Cuypers, Bart; Van den Broeck, Frederik; Van Reet, Nick; Meehan, Conor J.; Cauchard, Julien; Wilkes, Jonathan M.; Claes, Filip; Goddeeris, Bruno; Birhanu, Hadush; Dujardin, Jean-Claude; Laukens, Kris; Büscher, Philippe

    2017-01-01

    Abstract Trypanosomes cause a variety of diseases in man and domestic animals in Africa, Latin America, and Asia. In the Trypanozoon subgenus, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense cause human African trypanosomiasis, whereas Trypanosoma brucei brucei, Trypanosoma evansi, and Trypanosoma equiperdum are responsible for nagana, surra, and dourine in domestic animals, respectively. The genetic relationships between T. evansi and T. equiperdum and other Trypanozoon species remain unclear because the majority of phylogenetic analyses has been based on only a few genes. In this study, we have conducted a phylogenetic analysis based on genome-wide SNP analysis comprising 56 genomes from the Trypanozoon subgenus. Our data reveal that T. equiperdum has emerged at least once in Eastern Africa and T. evansi at two independent occasions in Western Africa. The genomes within the T. equiperdum and T. evansi monophyletic clusters show extremely little variation, probably due to the clonal spread linked to the independence from tsetse flies for their transmission. PMID:28541535

  18. Calmodulin-like protein 3 is an estrogen receptor alpha coregulator for gene expression and drug response in a SNP, estrogen, and SERM-dependent fashion.

    PubMed

    Qin, Sisi; Ingle, James N; Liu, Mohan; Yu, Jia; Wickerham, D Lawrence; Kubo, Michiaki; Weinshilboum, Richard M; Wang, Liewei

    2017-08-18

    We previously performed a case-control genome-wide association study in women treated with selective estrogen receptor modulators (SERMs) for breast cancer prevention and identified single nucleotide polymorphisms (SNPs) in ZNF423 as potential biomarkers for response to SERM therapy. The ZNF423rs9940645 SNP, which is approximately 200 bp away from the estrogen response elements, resulted in the SNP, estrogen, and SERM-dependent regulation of ZNF423 expression and, "downstream", that of BRCA1. Electrophoretic mobility shift assay-mass spectrometry was performed to identify proteins binding to the ZNF423 SNP and coordinating with estrogen receptor alpha (ERα). Clustered, regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing was applied to generate ZR75-1 breast cancer cells with different ZNF423 SNP genotypes. Both cultured cells and mouse xenograft models with different ZNF423 SNP genotypes were used to study the cellular responses to SERMs and poly(ADP-ribose) polymerase (PARP) inhibitors. We identified calmodulin-like protein 3 (CALML3) as a key sensor of this SNP and a coregulator of ERα, which contributes to differential gene transcription regulation in an estrogen and SERM-dependent fashion. Furthermore, using CRISPR/Cas9-engineered ZR75-1 breast cancer cells with different ZNF423 SNP genotypes, striking differences in cellular responses to SERMs and PARP inhibitors, alone or in combination, were observed not only in cells but also in a mouse xenograft model. Our results have demonstrated the mechanism by which the ZNF423 rs9940645 SNP might regulate gene expression and drug response as well as its potential role in achieving more highly individualized breast cancer therapy.

  19. Comparison of three PCR-based assays for SNP genotyping in sugar beet

    USDA-ARS?s Scientific Manuscript database

    Background: PCR allelic discrimination technologies have broad applications in the detection of single nucleotide polymorphisms (SNPs) in genetics and genomics. The use of fluorescence-tagged probes is the leading method for targeted SNP detection, but assay costs and error rates could be improved t...

  20. Next-generation transcriptome sequencing, SNP discovery and validation in four market classes of peanut, Arachis hypogaea L.

    PubMed

    Chopra, Ratan; Burow, Gloria; Farmer, Andrew; Mudge, Joann; Simpson, Charles E; Wilkins, Thea A; Baring, Michael R; Puppala, Naveen; Chamberlin, Kelly D; Burow, Mark D

    2015-06-01

    Single-nucleotide polymorphisms, which can be identified in the thousands or millions from comparisons of transcriptome or genome sequences, are ideally suited for making high-resolution genetic maps, investigating population evolutionary history, and discovering marker-trait linkages. Despite significant results from their use in human genetics, progress in identification and use in plants, and particularly polyploid plants, has lagged. As part of a long-term project to identify and use SNPs suitable for these purposes in cultivated peanut, which is tetraploid, we generated transcriptome sequences of four peanut cultivars, namely OLin, New Mexico Valencia C, Tamrun OL07 and Jupiter, which represent the four major market classes of peanut grown in the world, and which are important economically to the US southwest peanut growing region. CopyDNA libraries of each genotype were used to generate 2 × 54 paired-end reads using an Illumina GAIIx sequencer. Raw reads were mapped to a custom reference consisting of Tifrunner 454 sequences plus peanut ESTs in GenBank, compromising 43,108 contigs; 263,840 SNP and indel variants were identified among four genotypes compared to the reference. A subset of 6 variants was assayed across 24 genotypes representing four market types using KASP chemistry to assess the criteria for SNP selection. Results demonstrated that transcriptome sequencing can identify SNPs usable as selectable DNA-based markers in complex polyploid species such as peanut. Criteria for effective use of SNPs as markers are discussed in this context.

  1. High-Resolution SNP/CGH Microarrays Reveal the Accumulation of Loss of Heterozygosity in Commonly Used Candida albicans Strains

    PubMed Central

    Abbey, Darren; Hickman, Meleah; Gresham, David; Berman, Judith

    2011-01-01

    Phenotypic diversity can arise rapidly through loss of heterozygosity (LOH) or by the acquisition of copy number variations (CNV) spanning whole chromosomes or shorter contiguous chromosome segments. In Candida albicans, a heterozygous diploid yeast pathogen with no known meiotic cycle, homozygosis and aneuploidy alter clinical characteristics, including drug resistance. Here, we developed a high-resolution microarray that simultaneously detects ∼39,000 single nucleotide polymorphism (SNP) alleles and ∼20,000 copy number variation loci across the C. albicans genome. An important feature of the array analysis is a computational pipeline that determines SNP allele ratios based upon chromosome copy number. Using the array and analysis tools, we constructed a haplotype map (hapmap) of strain SC5314 to assign SNP alleles to specific homologs, and we used it to follow the acquisition of loss of heterozygosity (LOH) and copy number changes in a series of derived laboratory strains. This high-resolution SNP/CGH microarray and the associated hapmap facilitated the phasing of alleles in lab strains and revealed detrimental genome changes that arose frequently during molecular manipulations of laboratory strains. Furthermore, it provided a useful tool for rapid, high-resolution, and cost-effective characterization of changes in allele diversity as well as changes in chromosome copy number in new C. albicans isolates. PMID:22384363

  2. Lower risk taking and exploratory behavior in alcohol-preferring sP rats than in alcohol non-preferring sNP rats in the multivariate concentric square field (MCSF) test.

    PubMed

    Roman, Erika; Colombo, Giancarlo

    2009-12-14

    The present investigation continues previous behavioral profiling studies of selectively bred alcohol-drinking and alcohol non-drinking rats. In this study, alcohol-naïve adult Sardinian alcohol-preferring (sP) and non-preferring (sNP) rats were tested in the multivariate concentric square field (MCSF) test. The MCSF test has an ethoexperimental approach and measures general activity, exploration, risk assessment, risk taking, and shelter seeking in laboratory rodents. The multivariate design enables behavioral profiling in one and the same test situation. Age-matched male Wistar rats were included as a control group. Five weeks after the first MCSF trial, a repeated testing was done to explore differences in acquired experience. The results revealed distinct differences in exploratory strategies and behavioral profiles between sP and sNP rats. The sP rats were characterized by lower activity, lower exploratory drive, higher risk assessment, and lower risk taking behavior than in sNP rats. In the repeated trial, risk-taking behavior was almost abolished in sP rats. When comparing the performance of sP and sNP rats with that of Wistar rats, the principal component analysis revealed that the sP rats were the most divergent group. The vigilant behavior observed in sP rats with low exploratory drive and low risk-taking behavior is interpreted here as high innate anxiety-related behaviors and may be related to their propensity for high voluntary alcohol intake and preference. We suggest that the different lines of alcohol-preferring rats with different behavioral characteristics constitute valuable animal models that mimic the heterogeneity in human alcohol dependence.

  3. A mass spectrometry-based multiplex SNP genotyping by utilizing allele-specific ligation and strand displacement amplification.

    PubMed

    Park, Jung Hun; Jang, Hyowon; Jung, Yun Kyung; Jung, Ye Lim; Shin, Inkyung; Cho, Dae-Yeon; Park, Hyun Gyu

    2017-05-15

    We herein describe a new mass spectrometry-based method for multiplex SNP genotyping by utilizing allele-specific ligation and strand displacement amplification (SDA) reaction. In this method, allele-specific ligation is first performed to discriminate base sequence variations at the SNP site within the PCR-amplified target DNA. The primary ligation probe is extended by a universal primer annealing site while the secondary ligation probe has base sequences as an overhang with a nicking enzyme recognition site and complementary mass marker sequence. The ligation probe pairs are ligated by DNA ligase only at specific allele in the target DNA and the resulting ligated product serves as a template to promote the SDA reaction using a universal primer. This process isothermally amplifies short DNA fragments, called mass markers, to be analyzed by mass spectrometry. By varying the sizes of the mass markers, we successfully demonstrated the multiplex SNP genotyping capability of this method by reliably identifying several BRCA mutations in a multiplex manner with mass spectrometry. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao

    PubMed Central

    Livingstone, Donald; Royaert, Stefan; Stack, Conrad; Mockaitis, Keithanne; May, Greg; Farmer, Andrew; Saski, Christopher; Schnell, Ray; Kuhn, David; Motamayor, Juan Carlos

    2015-01-01

    Theobroma cacao, the key ingredient in chocolate production, is one of the world's most important tree fruit crops, with ∼4,000,000 metric tons produced across 50 countries. To move towards gene discovery and marker-assisted breeding in cacao, a single-nucleotide polymorphism (SNP) identification project was undertaken using RNAseq data from 16 diverse cacao cultivars. RNA sequences were aligned to the assembled transcriptome of the cultivar Matina 1-6, and 330,000 SNPs within coding regions were identified. From these SNPs, a subset of 6,000 high-quality SNPs were selected for inclusion on an Illumina Infinium SNP array: the Cacao6kSNP array. Using Cacao6KSNP array data from over 1,000 cacao samples, we demonstrate that our custom array produces a saturated genetic map and can be used to distinguish among even closely related genotypes. Our study enhances and expands the genetic resources available to the cacao research community, and provides the genome-scale set of tools that are critical for advancing breeding with molecular markers in an agricultural species with high genetic diversity. PMID:26070980

  5. Pitfalls in genetic testing: a case of a SNP in primer-annealing region leading to allele dropout in BRCA1.

    PubMed

    Silva, Felipe Carneiro; Torrezan, Giovana Tardin; Brianese, Rafael Canfield; Stabellini, Raquel; Carraro, Dirce Maria

    2017-07-01

    Hereditary breast and ovarian cancer is characterized by mutations in BRCA1 or BRCA2 genes and PCR-based screening techniques, such as capillary sequencing and next-generation sequencing (NGS), are considered gold standard methods for detection of pathogenic mutations in these genes. Single-nucleotide polymorphisms (SNPs) constitute a vast source of variation in the human genome and represent a risk for misdiagnosis in genetic testing, since the presence of a SNP in primer-annealing sites may cause false negative results due to allele dropout. However, few reports are available and the frequency of this phenomenon in diagnostic assays remains unknown. In this article, we investigated the causes of a false negative capillary sequencing result in BRCA1 involving a mother-daughter dyad. Using several molecular strategies, including different DNA polymerases, primer redesign, allele-specific PCR and NGS, we established that the initial misdiagnosis was caused by a SNP located in the primer-annealing region, leading to allele dropout of the mutated allele. Assuming that this problem can also occur in any PCR-based method that are widely used in diagnostic settings, the clinical report presented here draws attention for one of the limitations of genetic testing in general, for which medical and laboratory communities need to be aware.

  6. RAD sequencing yields a high success rate for westslope cutthroat and rainbow trout species-diagnostic SNP assays

    USGS Publications Warehouse

    Stephen J. Amish,; Paul A. Hohenlohe,; Sally Painter,; Robb F. Leary,; Muhlfeld, Clint C.; Fred W. Allendorf,; Luikart, Gordon

    2012-01-01

    Hybridization with introduced rainbow trout threatens most native westslope cutthroat trout populations. Understanding the genetic effects of hybridization and introgression requires a large set of high-throughput, diagnostic genetic markers to inform conservation and management. Recently, we identified several thousand candidate single-nucleotide polymorphism (SNP) markers based on RAD sequencing of 11 westslope cutthroat trout and 13 rainbow trout individuals. Here, we used flanking sequence for 56 of these candidate SNP markers to design high-throughput genotyping assays. We validated the assays on a total of 92 individuals from 22 populations and seven hatchery strains. Forty-six assays (82%) amplified consistently and allowed easy identification of westslope cutthroat and rainbow trout alleles as well as heterozygote controls. The 46 SNPs will provide high power for early detection of population admixture and improved identification of hybrid and nonhybridized individuals. This technique shows promise as a very low-cost, reliable and relatively rapid method for developing and testing SNP markers for nonmodel organisms with limited genomic resources.

  7. PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations

    PubMed Central

    Bendl, Jaroslav; Stourac, Jan; Salanda, Ondrej; Pavelka, Antonin; Wieben, Eric D.; Zendulka, Jaroslav; Brezovsky, Jan; Damborsky, Jiri

    2014-01-01

    Single nucleotide variants represent a prevalent form of genetic variation. Mutations in the coding regions are frequently associated with the development of various genetic diseases. Computational tools for the prediction of the effects of mutations on protein function are very important for analysis of single nucleotide variants and their prioritization for experimental characterization. Many computational tools are already widely employed for this purpose. Unfortunately, their comparison and further improvement is hindered by large overlaps between the training datasets and benchmark datasets, which lead to biased and overly optimistic reported performances. In this study, we have constructed three independent datasets by removing all duplicities, inconsistencies and mutations previously used in the training of evaluated tools. The benchmark dataset containing over 43,000 mutations was employed for the unbiased evaluation of eight established prediction tools: MAPP, nsSNPAnalyzer, PANTHER, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT and SNAP. The six best performing tools were combined into a consensus classifier PredictSNP, resulting into significantly improved prediction performance, and at the same time returned results for all mutations, confirming that consensus prediction represents an accurate and robust alternative to the predictions delivered by individual tools. A user-friendly web interface enables easy access to all eight prediction tools, the consensus classifier PredictSNP and annotations from the Protein Mutant Database and the UniProt database. The web server and the datasets are freely available to the academic community at http://loschmidt.chemi.muni.cz/predictsnp. PMID:24453961

  8. Solar Radiation-Associated Adaptive SNP Genetic Differentiation in Wild Emmer Wheat, Triticum dicoccoides.

    PubMed

    Ren, Jing; Chen, Liang; Jin, Xiaoli; Zhang, Miaomiao; You, Frank M; Wang, Jirui; Frenkel, Vladimir; Yin, Xuegui; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2017-01-01

    Whole-genome scans with large number of genetic markers provide the opportunity to investigate local adaptation in natural populations and identify candidate genes under positive selection. In the present study, adaptation genetic differentiation associated with solar radiation was investigated using 695 polymorphic SNP markers in wild emmer wheat originated in a micro-site at Yehudiyya, Israel. The test involved two solar radiation niches: (1) sun, in-between trees; and (2) shade, under tree canopy, separated apart by a distance of 2-4 m. Analysis of molecular variance showed a small (0.53%) but significant portion of overall variation between the sun and shade micro-niches, indicating a non-ignorable genetic differentiation between sun and shade habitats. Fifty SNP markers showed a medium (0.05 ≤ F ST ≤ 0.15) or high genetic differentiation ( F ST > 0.15). A total of 21 outlier loci under positive selection were identified by using four different F ST -outlier testing algorithms. The markers and genome locations under positive selection are consistent with the known patterns of selection. These results suggested that genetic differentiation between sun and shade habitats is substantial, radiation-associated, and therefore ecologically determined. Hence, the results of this study reflected effects of natural selection through solar radiation on EST-related SNP genetic diversity, resulting presumably in different adaptive complexes at a micro-scale divergence. The present work highlights the evolutionary theory and application significance of solar radiation-driven natural selection in wheat improvement.

  9. Automated SNP detection from a large collection of white spruce expressed sequences: contributing factors and approaches for the categorization of SNPs

    PubMed Central

    Pavy, Nathalie; Parsons, Lee S; Paule, Charles; MacKay, John; Bousquet, Jean

    2006-01-01

    Background High-throughput genotyping technologies represent a highly efficient way to accelerate genetic mapping and enable association studies. As a first step toward this goal, we aimed to develop a resource of candidate Single Nucleotide Polymorphisms (SNP) in white spruce (Picea glauca [Moench] Voss), a softwood tree of major economic importance. Results A white spruce SNP resource encompassing 12,264 SNPs was constructed from a set of 6,459 contigs derived from Expressed Sequence Tags (EST) and by using the bayesian-based statistical software PolyBayes. Several parameters influencing the SNP prediction were analysed including the a priori expected polymorphism, the probability score (PSNP), and the contig depth and length. SNP detection in 3' and 5' reads from the same clones revealed a level of inconsistency between overlapping sequences as low as 1%. A subset of 245 predicted SNPs were verified through the independent resequencing of genomic DNA of a genotype also used to prepare cDNA libraries. The validation rate reached a maximum of 85% for SNPs predicted with either PSNP ≥ 0.95 or ≥ 0.99. A total of 9,310 SNPs were detected by using PSNP ≥ 0.95 as a criterion. The SNPs were distributed among 3,590 contigs encompassing an array of broad functional categories, with an overall frequency of 1 SNP per 700 nucleotide sites. Experimental and statistical approaches were used to evaluate the proportion of paralogous SNPs, with estimates in the range of 8 to 12%. The 3,789 coding SNPs identified through coding region annotation and ORF prediction, were distributed into 39% nonsynonymous and 61% synonymous substitutions. Overall, there were 0.9 SNP per 1,000 nonsynonymous sites and 5.2 SNPs per 1,000 synonymous sites, for a genome-wide nonsynonymous to synonymous substitution rate ratio (Ka/Ks) of 0.17. Conclusion We integrated the SNP data in the ForestTreeDB database along with functional annotations to provide a tool facilitating the choice of candidate

  10. Whole genome sequencing of Mycobacterium bovis to obtain molecular fingerprints in human and cattle isolates from Baja California, Mexico.

    PubMed

    Sandoval-Azuara, Sarai Estrella; Muñiz-Salazar, Raquel; Perea-Jacobo, Ricardo; Robbe-Austerman, Suelee; Perera-Ortiz, Alejandro; López-Valencia, Gilberto; Bravo, Doris M; Sanchez-Flores, Alejandro; Miranda-Guzmán, Daniela; Flores-López, Carlos Alberto; Zenteno-Cuevas, Roberto; Laniado-Laborín, Rafael; de la Cruz, Fabiola Lafarga; Stuber, Tod P

    2017-10-01

    To determine genetic diversity by comparing the whole genome sequences of cattle and human Mycobacterium bovis isolates from Baja California. A whole genome sequencing strategy was used to obtain the molecular fingerprints of 172 isolates of M. bovis obtained from Baja California, Mexico; 155 isolates were from cattle and 17 isolates were from humans. Spoligotypes were characterized in silico and single nucleotide polymorphism (SNP) differences between the isolates were evaluated. A total of 12 M. bovis spoligotype patterns were identified in cattle and humans. Two predominant spoligotypes patterns were seen in both cattle and humans: SB0145 and SB1040. The SB0145 spoligotype represented 59% of cattle isolates (n=91) and 65% of human isolates (n=11), while the SB1040 spoligotype represented 30% of cattle isolates (n=47) and 30% of human isolates (n=5). When evaluating SNP differences, the human isolates were intimately intertwined with the cattle isolates. All isolates from humans had spoligotype patterns that matched those observed in the cattle isolates, and all human isolates shared common ancestors with cattle in Baja California based on SNP analysis. This suggests that most human tuberculosis caused by M. bovis in Baja California is derived from M. bovis circulating in Baja California cattle. These results reinforce the importance of bovine tuberculosis surveillance and control in this region. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Fast-SNP: a fast matrix pre-processing algorithm for efficient loopless flux optimization of metabolic models

    PubMed Central

    Saa, Pedro A.; Nielsen, Lars K.

    2016-01-01

    Motivation: Computation of steady-state flux solutions in large metabolic models is routinely performed using flux balance analysis based on a simple LP (Linear Programming) formulation. A minimal requirement for thermodynamic feasibility of the flux solution is the absence of internal loops, which are enforced using ‘loopless constraints’. The resulting loopless flux problem is a substantially harder MILP (Mixed Integer Linear Programming) problem, which is computationally expensive for large metabolic models. Results: We developed a pre-processing algorithm that significantly reduces the size of the original loopless problem into an easier and equivalent MILP problem. The pre-processing step employs a fast matrix sparsification algorithm—Fast- sparse null-space pursuit (SNP)—inspired by recent results on SNP. By finding a reduced feasible ‘loop-law’ matrix subject to known directionalities, Fast-SNP considerably improves the computational efficiency in several metabolic models running different loopless optimization problems. Furthermore, analysis of the topology encoded in the reduced loop matrix enabled identification of key directional constraints for the potential permanent elimination of infeasible loops in the underlying model. Overall, Fast-SNP is an effective and simple algorithm for efficient formulation of loop-law constraints, making loopless flux optimization feasible and numerically tractable at large scale. Availability and Implementation: Source code for MATLAB including examples is freely available for download at http://www.aibn.uq.edu.au/cssb-resources under Software. Optimization uses Gurobi, CPLEX or GLPK (the latter is included with the algorithm). Contact: lars.nielsen@uq.edu.au Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27559155

  12. Assay for identification of heterozygous single-nucleotide polymorphism (Ala67Thr) in human poliovirus receptor gene.

    PubMed

    Nandi, Shyam Sundar; Sharma, Deepa Kailash; Deshpande, Jagadish M

    2016-07-01

    It is important to understand the role of cell surface receptors in susceptibility to infectious diseases. CD155 a member of the immunoglobulin super family, serves as the poliovirus receptor (PVR). Heterozygous (Ala67Thr) polymorphism in CD155 has been suggested as a risk factor for paralytic outcome of poliovirus infection. The present study pertains to the development of a screening test to detect the single nucleotide (SNP) polymorphism in the CD155 gene. New primers were designed for PCR, sequencing and SNP analysis of Exon2 of CD155 gene. DNAs extracted from either whole blood (n=75) or cells from oral cavity (n=75) were used for standardization and validation of the SNP assay. DNA sequencing was used as the gold standard method. A new SNP assay for detection of heterozygous Ala67Thr genotype was developed and validated by testing 150 DNA samples. Heterozygous CD155 was detected in 27.33 per cent (41/150) of DNA samples tested by both SNP detection assay and sequencing. The SNP detection assay was successfully developed for identification of Ala67Thr polymorphism in human PVR/CD155 gene. The SNP assay will be useful for large scale screening of DNA samples.

  13. Incorporation of Personal Single Nucleotide Polymorphism (SNP) Data into a National Level Electronic Health Record for Disease Risk Assessment, Part 3: An Evaluation of SNP Incorporated National Health Information System of Turkey for Prostate Cancer

    PubMed Central

    Beyan, Timur

    2014-01-01

    Background A personalized medicine approach provides opportunities for predictive and preventive medicine. Using genomic, clinical, environmental, and behavioral data, the tracking and management of individual wellness is possible. A prolific way to carry this personalized approach into routine practices can be accomplished by integrating clinical interpretations of genomic variations into electronic medical records (EMRs)/electronic health records (EHRs). Today, various central EHR infrastructures have been constituted in many countries of the world, including Turkey. Objective As an initial attempt to develop a sophisticated infrastructure, we have concentrated on incorporating the personal single nucleotide polymorphism (SNP) data into the National Health Information System of Turkey (NHIS-T) for disease risk assessment, and evaluated the performance of various predictive models for prostate cancer cases. We present our work as a three part miniseries: (1) an overview of requirements, (2) the incorporation of SNP data into the NHIS-T, and (3) an evaluation of SNP data incorporated into the NHIS-T for prostate cancer. Methods In the third article of this miniseries, we have evaluated the proposed complementary capabilities (ie, knowledge base and end-user application) with real data. Before the evaluation phase, clinicogenomic associations about increased prostate cancer risk were extracted from knowledge sources, and published predictive genomic models assessing individual prostate cancer risk were collected. To evaluate complementary capabilities, we also gathered personal SNP data of four prostate cancer cases and fifteen controls. Using these data files, we compared various independent and model-based, prostate cancer risk assessment approaches. Results Through the extraction and selection processes of SNP-prostate cancer risk associations, we collected 209 independent associations for increased risk of prostate cancer from the studied knowledge sources. Also

  14. A cautionary tale: the non-causal association between type 2 diabetes risk SNP, rs7756992, and levels of non-coding RNA, CDKAL1-v1.

    PubMed

    Locke, Jonathan M; Wei, Fan-Yan; Tomizawa, Kazuhito; Weedon, Michael N; Harries, Lorna W

    2015-04-01

    Intronic single nucleotide polymorphisms (SNPs) in the CDKAL1 gene are associated with risk of developing type 2 diabetes. A strong correlation between risk alleles and lower levels of the non-coding RNA, CDKAL1-v1, has recently been reported in whole blood extracted from Japanese individuals. We sought to replicate this association in two independent cohorts: one using whole blood from white UK-resident individuals, and one using a collection of human pancreatic islets, a more relevant tissue type to study with respect to the aetiology of diabetes. Levels of CDKAL1-v1 were measured by real-time PCR using RNA extracted from human whole blood (n = 70) and human pancreatic islets (n = 48). Expression with respect to genotype was then determined. In a simple linear regression model, expression of CDKAL1-v1 was associated with the lead type 2 diabetes-associated SNP, rs7756992, in whole blood and islets. However, these associations were abolished or substantially reduced in multiple regression models taking into account rs9366357 genotype: a moderately linked SNP explaining a much larger amount of the variation in CDKAL1-v1 levels, but not strongly associated with risk of type 2 diabetes. Contrary to previous findings, we provide evidence against a role for dysregulated expression of CDKAL1-v1 in mediating the association between intronic SNPs in CDKAL1 and susceptibility to type 2 diabetes. The results of this study illustrate how caution should be exercised when inferring causality from an association between disease-risk genotype and non-coding RNA expression.

  15. Genetic Risk Score for Essential Hypertension and Risk of Preeclampsia.

    PubMed

    Smith, Caitlin J; Saftlas, Audrey F; Spracklen, Cassandra N; Triche, Elizabeth W; Bjonnes, Andrew; Keating, Brendan; Saxena, Richa; Breheny, Patrick J; Dewan, Andrew T; Robinson, Jennifer G; Hoh, Josephine; Ryckman, Kelli K

    2016-01-01

    Preeclampsia is a hypertensive complication of pregnancy characterized by novel onset of hypertension after 20 weeks gestation, accompanied by proteinuria. Epidemiological evidence suggests that genetic susceptibility exists for preeclampsia; however, whether preeclampsia is the result of underlying genetic risk for essential hypertension has yet to be investigated. Based on the hypertensive state that is characteristic of preeclampsia, we aimed to determine if established genetic risk scores (GRSs) for hypertension and blood pressure are associated with preeclampsia. Subjects consisted of 162 preeclamptic cases and 108 normotensive pregnant controls, all of Iowa residence. Subjects' DNA was extracted from buccal swab samples and genotyped on the Affymetrix Genome-wide Human SNP Array 6.0 (Affymetrix, Santa Clara, CA). Missing genotypes were imputed using MaCH and Minimac software. GRSs were calculated for hypertension, systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) using established genetic risk loci for each outcome. Regression analyses were performed to determine the association between GRS and risk of preeclampsia. These analyses were replicated in an independent US population of 516 cases and 1,097 controls of European ancestry. GRSs for hypertension, SBP, DBP, and MAP were not significantly associated with risk for preeclampsia (P > 0.189). The results of the replication analysis also yielded nonsignificant associations. GRSs for hypertension and blood pressure are not associated with preeclampsia, suggesting that an underlying predisposition to essential hypertension is not on the causal pathway of preeclampsia. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Predicting the disease of Alzheimer with SNP biomarkers and clinical data using data mining classification approach: decision tree.

    PubMed

    Erdoğan, Onur; Aydin Son, Yeşim

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) are the most common genomic variations where only a single nucleotide differs between individuals. Individual SNPs and SNP profiles associated with diseases can be utilized as biological markers. But there is a need to determine the SNP subsets and patients' clinical data which is informative for the diagnosis. Data mining approaches have the highest potential for extracting the knowledge from genomic datasets and selecting the representative SNPs as well as most effective and informative clinical features for the clinical diagnosis of the diseases. In this study, we have applied one of the widely used data mining classification methodology: "decision tree" for associating the SNP biomarkers and significant clinical data with the Alzheimer's disease (AD), which is the most common form of "dementia". Different tree construction parameters have been compared for the optimization, and the most accurate tree for predicting the AD is presented.

  17. Measuring diversity in Gossypium hirsutum using the CottonSNP63K Array

    USDA-ARS?s Scientific Manuscript database

    A CottonSNP63K array and accompanying cluster file has been developed and includes 45,104 intra-specific SNPs and 17,954 inter-specific SNPs for automated genotyping of cotton (Gossypium spp.) samples. Development of the cluster file included genotyping of 1,156 samples, a subset of which were iden...

  18. Optimal design of low-density SNP arrays for genomic prediction: algorithm and applications

    USDA-ARS?s Scientific Manuscript database

    Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for their optimal design. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optim...

  19. A whole genome SNP genotyping by DNA microarray and candidate gene association study for kidney stone disease

    PubMed Central

    2014-01-01

    Background Kidney stone disease (KSD) is a complex disorder with unknown etiology in majority of the patients. Genetic and environmental factors may cause the disease. In the present study, we used DNA microarray to genotype single nucleotide polymorphisms (SNP) and performed candidate gene association analysis to determine genetic variations associated with the disease. Methods A whole genome SNP genotyping by DNA microarray was initially conducted in 101 patients and 105 control subjects. A set of 104 candidate genes reported to be involved in KSD, gathered from public databases and candidate gene association study databases, were evaluated for their variations associated with KSD. Results Altogether 82 SNPs distributed within 22 candidate gene regions showed significant differences in SNP allele frequencies between the patient and control groups (P < 0.05). Of these, 4 genes including BGLAP, AHSG, CD44, and HAO1, encoding osteocalcin, fetuin-A, CD44-molecule and glycolate oxidase 1, respectively, were further assessed for their associations with the disease because they carried high proportion of SNPs with statistical differences of allele frequencies between the patient and control groups within the gene. The total of 26 SNPs showed significant differences of allele frequencies between the patient and control groups and haplotypes associated with disease risk were identified. The SNP rs759330 located 144 bp downstream of BGLAP where it is a predicted microRNA binding site at 3′UTR of PAQR6 – a gene encoding progestin and adipoQ receptor family member VI, was genotyped in 216 patients and 216 control subjects and found to have significant differences in its genotype and allele frequencies (P = 0.0007, OR 2.02 and P = 0.0001, OR 2.02, respectively). Conclusions Our results suggest that these candidate genes are associated with KSD and PAQR6 comes into our view as the most potent candidate since associated SNP rs759330 is located in the mi

  20. SNP genotypes of Mycobacterium leprae isolates in Thailand and their combination with rpoT and TTC genotyping for analysis of leprosy distribution and transmission.

    PubMed

    Phetsuksiri, Benjawan; Srisungngam, Sopa; Rudeeaneksin, Janisara; Bunchoo, Supranee; Lukebua, Atchariya; Wongtrungkapun, Ruch; Paitoon, Soontara; Sakamuri, Rama Murthy; Brennan, Patrick J; Vissa, Varalakshmi

    2012-01-01

    Based on the discovery of three single nucleotide polymorphisms (SNPs) in Mycobacterium leprae, it has been previously reported that there are four major SNP types associated with different geographic regions around the world. Another typing system for global differentiation of M. leprae is the analysis of the variable number of short tandem repeats within the rpoT gene. To expand the analysis of geographic distribution of M. leprae, classified by SNP and rpoT gene polymorphisms, we studied 85 clinical isolates from Thai patients and compared the findings with those reported from Asian isolates. SNP genotyping by PCR amplification and sequencing revealed that all strains like those in Myanmar were SNP type 1 and 3, with the former being predominant, while in Japan, Korea, and Indonesia, the SNP type 3 was found to be more frequent. The pattern of M. leprae distribution in Thailand and Myanmar is quite similar, except that SNP type 2 was not found in Thailand. In addition, the 3-copy hexamer genotype in the rpoT gene is shared among the isolates from these two neighboring countries. On the basis of these two markers, we postulate that M. leprae in leprosy patients from Myanmar and Thailand has a common historical origin. Further differentiation among Thai isolates was possible by assessing copy numbers of the TTC sequence, a more polymorphic microsatellite locus.

  1. High-density SNP assay development for genetic analysis in maritime pine (Pinus pinaster).

    PubMed

    Plomion, C; Bartholomé, J; Lesur, I; Boury, C; Rodríguez-Quilón, I; Lagraulet, H; Ehrenmann, F; Bouffier, L; Gion, J M; Grivet, D; de Miguel, M; de María, N; Cervera, M T; Bagnoli, F; Isik, F; Vendramin, G G; González-Martínez, S C

    2016-03-01

    Maritime pine provides essential ecosystem services in the south-western Mediterranean basin, where it covers around 4 million ha. Its scattered distribution over a range of environmental conditions makes it an ideal forest tree species for studies of local adaptation and evolutionary responses to climatic change. Highly multiplexed single nucleotide polymorphism (SNP) genotyping arrays are increasingly used to study genetic variation in living organisms and for practical applications in plant and animal breeding and genetic resource conservation. We developed a 9k Illumina Infinium SNP array and genotyped maritime pine trees from (i) a three-generation inbred (F2) pedigree, (ii) the French breeding population and (iii) natural populations from Portugal and the French Atlantic coast. A large proportion of the exploitable SNPs (2052/8410, i.e. 24.4%) segregated in the mapping population and could be mapped, providing the densest ever gene-based linkage map for this species. Based on 5016 SNPs, natural and breeding populations from the French gene pool exhibited similar level of genetic diversity. Population genetics and structure analyses based on 3981 SNP markers common to the Portuguese and French gene pools revealed high levels of differentiation, leading to the identification of a set of highly differentiated SNPs that could be used for seed provenance certification. Finally, we discuss how the validated SNPs could facilitate the identification of ecologically and economically relevant genes in this species, improving our understanding of the demography and selective forces shaping its natural genetic diversity, and providing support for new breeding strategies. © 2015 John Wiley & Sons Ltd.

  2. A high-density intraspecific SNP linkage map of pigeonpea (Cajanas cajan L. Millsp.)

    PubMed Central

    Mandal, Paritra; Bhutani, Shefali; Dutta, Sutapa; Kumawat, Giriraj; Singh, Bikram Pratap; Chaudhary, A. K.; Yadav, Rekha; Gaikwad, K.; Sevanthi, Amitha Mithra; Datta, Subhojit; Raje, Ranjeet S.; Sharma, Tilak R.; Singh, Nagendra Kumar

    2017-01-01

    Pigeonpea (Cajanus cajan (L.) Millsp.) is a major food legume cultivated in semi-arid tropical regions including the Indian subcontinent, Africa, and Southeast Asia. It is an important source of protein, minerals, and vitamins for nearly 20% of the world population. Due to high carbon sequestration and drought tolerance, pigeonpea is an important crop for the development of climate resilient agriculture and nutritional security. However, pigeonpea productivity has remained low for decades because of limited genetic and genomic resources, and sparse utilization of landraces and wild pigeonpea germplasm. Here, we present a dense intraspecific linkage map of pigeonpea comprising 932 markers that span a total adjusted map length of 1,411.83 cM. The consensus map is based on three different linkage maps that incorporate a large number of single nucleotide polymorphism (SNP) markers derived from next generation sequencing data, using Illumina GoldenGate bead arrays, and genotyping with restriction site associated DNA (RAD) sequencing. The genotyping-by-sequencing enhanced the marker density but was met with limited success due to lack of common markers across the genotypes of mapping population. The integrated map has 547 bead-array SNP, 319 RAD-SNP, and 65 simple sequence repeat (SSR) marker loci. We also show here correspondence between our linkage map and published genome pseudomolecules of pigeonpea. The availability of a high-density linkage map will help improve the anchoring of the pigeonpea genome to its chromosomes and the mapping of genes and quantitative trait loci associated with useful agronomic traits. PMID:28654689

  3. Rapid Detection of Rare Deleterious Variants by Next Generation Sequencing with Optional Microarray SNP Genotype Data

    PubMed Central

    Watson, Christopher M.; Crinnion, Laura A.; Gurgel‐Gianetti, Juliana; Harrison, Sally M.; Daly, Catherine; Antanavicuite, Agne; Lascelles, Carolina; Markham, Alexander F.; Pena, Sergio D. J.; Bonthron, David T.

    2015-01-01

    ABSTRACT Autozygosity mapping is a powerful technique for the identification of rare, autosomal recessive, disease‐causing genes. The ease with which this category of disease gene can be identified has greatly increased through the availability of genome‐wide SNP genotyping microarrays and subsequently of exome sequencing. Although these methods have simplified the generation of experimental data, its analysis, particularly when disparate data types must be integrated, remains time consuming. Moreover, the huge volume of sequence variant data generated from next generation sequencing experiments opens up the possibility of using these data instead of microarray genotype data to identify disease loci. To allow these two types of data to be used in an integrated fashion, we have developed AgileVCFMapper, a program that performs both the mapping of disease loci by SNP genotyping and the analysis of potentially deleterious variants using exome sequence variant data, in a single step. This method does not require microarray SNP genotype data, although analysis with a combination of microarray and exome genotype data enables more precise delineation of disease loci, due to superior marker density and distribution. PMID:26037133

  4. Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao.

    PubMed

    Livingstone, Donald; Royaert, Stefan; Stack, Conrad; Mockaitis, Keithanne; May, Greg; Farmer, Andrew; Saski, Christopher; Schnell, Ray; Kuhn, David; Motamayor, Juan Carlos

    2015-08-01

    Theobroma cacao, the key ingredient in chocolate production, is one of the world's most important tree fruit crops, with ∼4,000,000 metric tons produced across 50 countries. To move towards gene discovery and marker-assisted breeding in cacao, a single-nucleotide polymorphism (SNP) identification project was undertaken using RNAseq data from 16 diverse cacao cultivars. RNA sequences were aligned to the assembled transcriptome of the cultivar Matina 1-6, and 330,000 SNPs within coding regions were identified. From these SNPs, a subset of 6,000 high-quality SNPs were selected for inclusion on an Illumina Infinium SNP array: the Cacao6kSNP array. Using Cacao6KSNP array data from over 1,000 cacao samples, we demonstrate that our custom array produces a saturated genetic map and can be used to distinguish among even closely related genotypes. Our study enhances and expands the genetic resources available to the cacao research community, and provides the genome-scale set of tools that are critical for advancing breeding with molecular markers in an agricultural species with high genetic diversity. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  5. A phased SNP-based classification of sickle cell anemia HBB haplotypes.

    PubMed

    Shaikho, Elmutaz M; Farrell, John J; Alsultan, Abdulrahman; Qutub, Hatem; Al-Ali, Amein K; Figueiredo, Maria Stella; Chui, David H K; Farrer, Lindsay A; Murphy, George J; Mostoslavsky, Gustavo; Sebastiani, Paola; Steinberg, Martin H

    2017-08-11

    Sickle cell anemia causes severe complications and premature death. Five common β-globin gene cluster haplotypes are each associated with characteristic fetal hemoglobin (HbF) levels. As HbF is the major modulator of disease severity, classifying patients according to haplotype is useful. The first method of haplotype classification used restriction fragment length polymorphisms (RFLPs) to detect single nucleotide polymorphisms (SNPs) in the β-globin gene cluster. This is labor intensive, and error prone. We used genome-wide SNP data imputed to the 1000 Genomes reference panel to obtain phased data distinguishing parental alleles. We successfully haplotyped 813 sickle cell anemia patients previously classified by RFLPs with a concordance >98%. Four SNPs (rs3834466, rs28440105, rs10128556, and rs968857) marking four different restriction enzyme sites unequivocally defined most haplotypes. We were able to assign a haplotype to 86% of samples that were either partially or misclassified using RFLPs. Phased data using only four SNPs allowed unequivocal assignment of a haplotype that was not always possible using a larger number of RFLPs. Given the availability of genome-wide SNP data, our method is rapid and does not require high computational resources.

  6. Inferring sex-specific demographic history from SNP data

    PubMed Central

    Gautier, Mathieu

    2018-01-01

    The relative female and male contributions to demography are of great importance to better understand the history and dynamics of populations. While earlier studies relied on uniparental markers to investigate sex-specific questions, the increasing amount of sequence data now enables us to take advantage of tens to hundreds of thousands of independent loci from autosomes and the X chromosome. Here, we develop a novel method to estimate effective sex ratios or ESR (defined as the female proportion of the effective population) from allele count data for each branch of a rooted tree topology that summarizes the history of the populations of interest. Our method relies on Kimura’s time-dependent diffusion approximation for genetic drift, and is based on a hierarchical Bayesian model to integrate over the allele frequencies along the branches. We show via simulations that parameters are inferred robustly, even under scenarios that violate some of the model assumptions. Analyzing bovine SNP data, we infer a strongly female-biased ESR in both dairy and beef cattle, as expected from the underlying breeding scheme. Conversely, we observe a strongly male-biased ESR in early domestication times, consistent with an easier taming and management of cows, and/or introgression from wild auroch males, that would both cause a relative increase in male effective population size. In humans, analyzing a subsample of non-African populations, we find a male-biased ESR in Oceanians that may reflect complex marriage patterns in Aboriginal Australians. Because our approach relies on allele count data, it may be applied on a wide range of species. PMID:29385127

  7. A novel SNP in 3' UTR of INS gene: A case report of neonatal diabetes mellitus.

    PubMed

    Bogari, Neda M; Rayes, Husni H; Mostafa, Fakri; Abdel-Latif, Azza M; Ramadan, Abeer; Al-Allaf, Faisal A; Taher, Mohiuddin M; Fawzy, Ahmed

    2015-09-01

    Neonatal diabetes mellitus (NDM) is a rare condition with a prevalence of 1 in 300,000 live births. We have found 3 known SNPs in 5'UTR and a novel SNP in 3' UTR in the INS gene. These SNPs were present in 9-month-old girl from Saudi Arabia and also present in the father and mother. The novel SNP we found is not present in 1000 Genome project or other databases. Further, the newly identified 3' UTR mutation in the INS gene may abolish the polyadenylation signal and result in severe RNA instability. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers.

    PubMed

    Van Inghelandt, Delphine; Melchinger, Albrecht E; Lebreton, Claude; Stich, Benjamin

    2010-05-01

    Information about the genetic diversity and population structure in elite breeding material is of fundamental importance for the improvement of crops. The objectives of our study were to (a) examine the population structure and the genetic diversity in elite maize germplasm based on simple sequence repeat (SSR) markers, (b) compare these results with those obtained from single nucleotide polymorphism (SNP) markers, and (c) compare the coancestry coefficient calculated from pedigree records with genetic distance estimates calculated from SSR and SNP markers. Our study was based on 1,537 elite maize inbred lines genotyped with 359 SSR and 8,244 SNP markers. The average number of alleles per locus, of group specific alleles, and the gene diversity (D) were higher for SSRs than for SNPs. Modified Roger's distance (MRD) estimates and membership probabilities of the STRUCTURE matrices were higher for SSR than for SNP markers but the germplasm organization in four heterotic pools was consistent with STRUCTURE results based on SSRs and SNPs. MRD estimates calculated for the two marker systems were highly correlated (0.87). Our results suggested that the same conclusions regarding the structure and the diversity of heterotic pools could be drawn from both markers types. Furthermore, although our results suggested that the ratio of the number of SSRs and SNPs required to obtain MRD or D estimates with similar precision is not constant across the various precision levels, we propose that between 7 and 11 times more SNPs than SSRs should be used for analyzing population structure and genetic diversity.

  9. The recombination landscape around forensic STRs: Accurate measurement of genetic distances between syntenic STR pairs using HapMap high density SNP data.

    PubMed

    Phillips, C; Ballard, D; Gill, P; Court, D Syndercombe; Carracedo, A; Lareu, M V

    2012-05-01

    Family studies can be used to measure the genetic distance between same-chromosome (syntenic) STRs in order to detect physical linkage or linkage disequilibrium. However, family studies are expensive and time consuming, in many cases uninformative, and lack a reliable means to infer the phase of the diplotypes obtained. HapMap provides a more comprehensive and fine-scale estimation of recombination rates using high density multi-point SNP data (average inter-SNP distance: 900 nucleotides). Data at this fine scale detects sub-kilobase genetic distances across the whole recombining human genome. We have used the most recent HapMap SNP data release 22 to measure and compare genetic distances, and by inference fine-scale recombination rates, between 29 syntenic STR pairs identified from 39 validated STRs currently available for forensic use. The 39 STRs comprise 23 core loci: SE33, Penta D & E, 13 CODIS and 7 non-CODIS European Standard Set STRs, plus supplementary STRs in the recently released Promega CS-7™ and Qiagen Investigator HDplex™ kits. Also included were D9S1120, a marker we developed for forensic use unique to chromosome 9, and the novel D6S1043 component STR of SinoFiler™ (Applied Biosystems). The data collated provides reliable estimates of recombination rates between each STR pair, that can then be placed into haplotype frequency calculators for short pedigrees with multiple meiotic inputs and which just requires the addition of allele frequencies. This allows all current STR sets or their combinations to be used in supplemented paternity analyses without the need for further adjustment for physical linkage. The detailed analysis of recombination rates made for autosomal forensic STRs was extended to the more than 50 X chromosome STRs established or in development for complex kinship analyses. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. THE REAL McCOIL: A method for the concurrent estimation of the complexity of infection and SNP allele frequency for malaria parasites

    PubMed Central

    Chang, Hsiao-Han; Worby, Colin J.; Yeka, Adoke; Nankabirwa, Joaniter; Kamya, Moses R.; Staedke, Sarah G.; Hubbart, Christina; Amato, Roberto; Kwiatkowski, Dominic P.

    2017-01-01

    As many malaria-endemic countries move towards elimination of Plasmodium falciparum, the most virulent human malaria parasite, effective tools for monitoring malaria epidemiology are urgent priorities. P. falciparum population genetic approaches offer promising tools for understanding transmission and spread of the disease, but a high prevalence of multi-clone or polygenomic infections can render estimation of even the most basic parameters, such as allele frequencies, challenging. A previous method, COIL, was developed to estimate complexity of infection (COI) from single nucleotide polymorphism (SNP) data, but relies on monogenomic infections to estimate allele frequencies or requires external allele frequency data which may not available. Estimates limited to monogenomic infections may not be representative, however, and when the average COI is high, they can be difficult or impossible to obtain. Therefore, we developed THE REAL McCOIL, Turning HEterozygous SNP data into Robust Estimates of ALelle frequency, via Markov chain Monte Carlo, and Complexity Of Infection using Likelihood, to incorporate polygenomic samples and simultaneously estimate allele frequency and COI. This approach was tested via simulations then applied to SNP data from cross-sectional surveys performed in three Ugandan sites with varying malaria transmission. We show that THE REAL McCOIL consistently outperforms COIL on simulated data, particularly when most infections are polygenomic. Using field data we show that, unlike with COIL, we can distinguish epidemiologically relevant differences in COI between and within these sites. Surprisingly, for example, we estimated high average COI in a peri-urban subregion with lower transmission intensity, suggesting that many of these cases were imported from surrounding regions with higher transmission intensity. THE REAL McCOIL therefore provides a robust tool for understanding the molecular epidemiology of malaria across transmission settings. PMID

  11. Parallel and serial computing tools for testing single-locus and epistatic SNP effects of quantitative traits in genome-wide association studies

    PubMed Central

    Ma, Li; Runesha, H Birali; Dvorkin, Daniel; Garbe, John R; Da, Yang

    2008-01-01

    Background Genome-wide association studies (GWAS) using single nucleotide polymorphism (SNP) markers provide opportunities to detect epistatic SNPs associated with quantitative traits and to detect the exact mode of an epistasis effect. Computational difficulty is the main bottleneck for epistasis testing in large scale GWAS. Results The EPISNPmpi and EPISNP computer programs were developed for testing single-locus and epistatic SNP effects on quantitative traits in GWAS, including tests of three single-locus effects for each SNP (SNP genotypic effect, additive and dominance effects) and five epistasis effects for each pair of SNPs (two-locus interaction, additive × additive, additive × dominance, dominance × additive, and dominance × dominance) based on the extended Kempthorne model. EPISNPmpi is the parallel computing program for epistasis testing in large scale GWAS and achieved excellent scalability for large scale analysis and portability for various parallel computing platforms. EPISNP is the serial computing program based on the EPISNPmpi code for epistasis testing in small scale GWAS using commonly available operating systems and computer hardware. Three serial computing utility programs were developed for graphical viewing of test results and epistasis networks, and for estimating CPU time and disk space requirements. Conclusion The EPISNPmpi parallel computing program provides an effective computing tool for epistasis testing in large scale GWAS, and the epiSNP serial computing programs are convenient tools for epistasis analysis in small scale GWAS using commonly available computer hardware. PMID:18644146

  12. Identification of QTL and Qualitative Trait Loci for Agronomic Traits Using SNP Markers in the Adzuki Bean.

    PubMed

    Li, Yuan; Yang, Kai; Yang, Wei; Chu, Liwei; Chen, Chunhai; Zhao, Bo; Li, Yisong; Jian, Jianbo; Yin, Zhichao; Wang, Tianqi; Wan, Ping

    2017-01-01

    The adzuki bean ( Vigna angularis ) is an important grain legume. Fine mapping of quantitative trait loci (QTL) and qualitative trait genes plays an important role in gene cloning, molecular-marker-assisted selection (MAS), and trait improvement. However, the genetic control of agronomic traits in the adzuki bean remains poorly understood. Single-nucleotide polymorphisms (SNPs) are invaluable in the construction of high-density genetic maps. We mapped 26 agronomic QTLs and five qualitative trait genes related to pigmentation using 1,571 polymorphic SNP markers from the adzuki bean genome via restriction-site-associated DNA sequencing of 150 members of an F 2 population derived from a cross between cultivated and wild adzuki beans. We mapped 11 QTLs for flowering time and pod maturity on chromosomes 4, 7, and 10. Six 100-seed weight (SD100WT) QTLs were detected. Two major flowering time QTLs were located on chromosome 4, firstly VaFld4.1 (PEVs 71.3%), co-segregating with SNP marker s690-144110, and VaFld4.2 (PEVs 67.6%) at a 0.974 cM genetic distance from the SNP marker s165-116310. Three QTLs for seed number per pod ( Snp3.1, Snp3.2 , and Snp4.1 ) were mapped on chromosomes 3 and 4. One QTL VaSdt4.1 of seed thickness (SDT) and three QTLs for branch number on the main stem were detected on chromosome 4. QTLs for maximum leaf width (LFMW) and stem internode length were mapped to chromosomes 2 and 9, respectively. Trait genes controlling the color of the seed coat, pod, stem and flower were mapped to chromosomes 3 and 1. Three candidate genes, VaAGL, VaPhyE , and VaAP2 , were identified for flowering time and pod maturity. VaAGL encodes an agamous-like MADS-box protein of 379 amino acids. VaPhyE encodes a phytochrome E protein of 1,121 amino acids. Four phytochrome genes ( VaPhyA1, VaPhyA2, VaPhyB , and VaPhyE ) were identified in the adzuki bean genome. We found candidate genes VaAP2/ERF.81 and VaAP2/ERF.82 of SD100WT, VaAP2-s4 of SDT, and VaAP2/ERF.86 of LFMW. A

  13. A SNP uncoupling Mina expression from the TGFβ signaling pathway.

    PubMed

    Lian, Shang L; Mihi, Belgacem; Koyanagi, Madoka; Nakayama, Toshinori; Bix, Mark

    2018-03-01

    Mina is a JmjC family 2-oxoglutarate oxygenase with pleiotropic roles in cell proliferation, cancer, T cell differentiation, pulmonary inflammation, and intestinal parasite expulsion. Although Mina expression varies according to cell-type, developmental stage and activation state, its transcriptional regulation is poorly understood. Across inbred mouse strains, Mina protein level exhibits a bimodal distribution, correlating with inheritance of a biallelic haplotype block comprising 21 promoter/intron 1-region SNPs. We previously showed that heritable differences in Mina protein level are transcriptionally regulated. Accordingly, we decided to test the hypothesis that at least one of the promoter/intron 1-region SNPs perturbs a Mina cis-regulatory element (CRE). Here, we have comprehensively scanned for CREs across a Mina locus-spanning 26-kilobase genomic interval. We discovered 8 potential CREs and functionally validated 4 of these, the strongest of which (E2), residing in intron 1, contained a SNP whose BALB/c-but not C57Bl/6 allele-abolished both Smad3 binding and transforming growth factor beta (TGFβ) responsiveness. Our results demonstrate the TGFβ signaling pathway plays a critical role in regulating Mina expression and SNP rs4191790 controls heritable variation in Mina expression level, raising important questions regarding the evolution of an allele that uncouples Mina expression from the TGFβ signaling pathway. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  14. A SNP uncoupling Mina expression from the TGFβ signaling pathway

    PubMed Central

    Lian, Shang L.; Mihi, Belgacem; Koyanagi, Madoka; Nakayama, Toshinori

    2017-01-01

    Abstract Introduction Mina is a JmjC family 2‐oxoglutarate oxygenase with pleiotropic roles in cell proliferation, cancer, T cell differentiation, pulmonary inflammation, and intestinal parasite expulsion. Although Mina expression varies according to cell‐type, developmental stage and activation state, its transcriptional regulation is poorly understood. Across inbred mouse strains, Mina protein level exhibits a bimodal distribution, correlating with inheritance of a biallelic haplotype block comprising 21 promoter/intron 1‐region SNPs. We previously showed that heritable differences in Mina protein level are transcriptionally regulated. Methods Accordingly, we decided to test the hypothesis that at least one of the promoter/intron 1‐region SNPs perturbs a Mina cis‐regulatory element (CRE). Here, we have comprehensively scanned for CREs across a Mina locus‐spanning 26‐kilobase genomic interval. Results We discovered 8 potential CREs and functionally validated 4 of these, the strongest of which (E2), residing in intron 1, contained a SNP whose BALB/c—but not C57Bl/6 allele—abolished both Smad3 binding and transforming growth factor beta (TGFβ) responsiveness. Conclusions Our results demonstrate the TGFβ signaling pathway plays a critical role in regulating Mina expression and SNP rs4191790 controls heritable variation in Mina expression level, raising important questions regarding the evolution of an allele that uncouples Mina expression from the TGFβ signaling pathway. PMID:28967702

  15. SNP-array lesions in core binding factor acute myeloid leukemia

    PubMed Central

    Duployez, Nicolas; Boudry-Labis, Elise; Roumier, Christophe; Boissel, Nicolas; Petit, Arnaud; Geffroy, Sandrine; Helevaut, Nathalie; Celli-Lebras, Karine; Terré, Christine; Fenneteau, Odile; Cuccuini, Wendy; Luquet, Isabelle; Lapillonne, Hélène; Lacombe, Catherine; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric; Preudhomme, Claude

    2018-01-01

    Acute myeloid leukemia (AML) with t(8;21) and inv(16), together referred as core binding factor (CBF)-AML, are recognized as unique entities. Both rearrangements share a common pathophysiology, the disruption of the CBF, and a relatively good prognosis. Experiments have demonstrated that CBF rearrangements were insufficient to induce leukemia, implying the existence of cooperating events. To explore these aberrations, we performed single nucleotide polymorphism (SNP)-array in a well-annotated cohort of 198 patients with CBF-AML. Excluding breakpoint-associated lesions, the most frequent events included loss of a sex chromosome (53%), deletions at 9q21 (12%) and 7q36 (9%) in patients with t(8;21) compared with trisomy 22 (13%), trisomy 8 (10%) and 7q36 deletions (12%) in patients with inv(16). SNP-array revealed novel recurrent genetic alterations likely to be involved in CBF-AML leukemogenesis. ZBTB7A mutations (20% of t(8;21)-AML) were shown to be a target of copy-neutral losses of heterozygosity (CN-LOH) at chromosome 19p. FOXP1 focal deletions were identified in 5% of inv(16)-AML while sequence analysis revealed that 2% carried FOXP1 truncating mutations. Finally, CCDC26 disruption was found in both subtypes (4.5% of the whole cohort) and possibly highlighted a new lesion associated with aberrant tyrosine kinase signaling in this particular subtype of leukemia. PMID:29464086

  16. SNP-array lesions in core binding factor acute myeloid leukemia.

    PubMed

    Duployez, Nicolas; Boudry-Labis, Elise; Roumier, Christophe; Boissel, Nicolas; Petit, Arnaud; Geffroy, Sandrine; Helevaut, Nathalie; Celli-Lebras, Karine; Terré, Christine; Fenneteau, Odile; Cuccuini, Wendy; Luquet, Isabelle; Lapillonne, Hélène; Lacombe, Catherine; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric; Preudhomme, Claude

    2018-01-19

    Acute myeloid leukemia (AML) with t(8;21) and inv(16), together referred as core binding factor (CBF)-AML, are recognized as unique entities. Both rearrangements share a common pathophysiology, the disruption of the CBF, and a relatively good prognosis. Experiments have demonstrated that CBF rearrangements were insufficient to induce leukemia, implying the existence of cooperating events. To explore these aberrations, we performed single nucleotide polymorphism (SNP)-array in a well-annotated cohort of 198 patients with CBF-AML. Excluding breakpoint-associated lesions, the most frequent events included loss of a sex chromosome (53%), deletions at 9q21 (12%) and 7q36 (9%) in patients with t(8;21) compared with trisomy 22 (13%), trisomy 8 (10%) and 7q36 deletions (12%) in patients with inv(16). SNP-array revealed novel recurrent genetic alterations likely to be involved in CBF-AML leukemogenesis. ZBTB7A mutations (20% of t(8;21)-AML) were shown to be a target of copy-neutral losses of heterozygosity (CN-LOH) at chromosome 19p. FOXP1 focal deletions were identified in 5% of inv(16)-AML while sequence analysis revealed that 2% carried FOXP1 truncating mutations. Finally, CCDC26 disruption was found in both subtypes (4.5% of the whole cohort) and possibly highlighted a new lesion associated with aberrant tyrosine kinase signaling in this particular subtype of leukemia.

  17. LSCC SNP variant regulates SOX2 modulation of VDAC3.

    PubMed

    Chyr, Jacqueline; Guo, Dongmin; Zhou, Xiaobo

    2018-04-27

    Lung squamous cell carcinoma (LSCC) is a genomically complex malignancy with no effective treatments. Recent studies have found a large number of DNA alterations such as SOX2 amplification in LSCC patients. As a stem cell transcription factor, SOX2 is important for the maintenance of pluripotent cells and may play a role in cancer. To study the downstream mechanisms of SOX2, we employed expression quantitative trait loci (eQTLs) technology to investigate how the presence of SOX2 affects the expression of target genes. We discovered unique eQTLs, such as rs798827-VDAC3 (FDR p -value = 0.0034), that are only found in SOX2-active patients but not in SOX2-inactive patients. SNP rs798827 is within strong linkage disequilibrium ( r 2 = 1) to rs58163073, where rs58163073 [T] allele increases the binding affinity of SOX2 and allele [TA] decreases it. In our analysis, SOX2 silencing downregulates VDAC3 in two LSCC cell lines. Chromatin conformation capturing data indicates that this SNP is located within the same Topologically Associating Domain (TAD) of VDAC3, further suggesting SOX2's role in the regulation of VDAC3 through the binding of rs58163073. By first subgrouping patients based on SOX2 activity, we made more relevant eQTL discoveries and our analysis can be applied to other diseases.

  18. A comprehensive SNP and indel imputability database.

    PubMed

    Duan, Qing; Liu, Eric Yi; Croteau-Chonka, Damien C; Mohlke, Karen L; Li, Yun

    2013-02-15

    Genotype imputation has become an indispensible step in genome-wide association studies (GWAS). Imputation accuracy, directly influencing downstream analysis, has shown to be improved using re-sequencing-based reference panels; however, this comes at the cost of high computational burden due to the huge number of potentially imputable markers (tens of millions) discovered through sequencing a large number of individuals. Therefore, there is an increasing need for access to imputation quality information without actually conducting imputation. To facilitate this process, we have established a publicly available SNP and indel imputability database, aiming to provide direct access to imputation accuracy information for markers identified by the 1000 Genomes Project across four major populations and covering multiple GWAS genotyping platforms. SNP and indel imputability information can be retrieved through a user-friendly interface by providing the ID(s) of the desired variant(s) or by specifying the desired genomic region. The query results can be refined by selecting relevant GWAS genotyping platform(s). This is the first database providing variant imputability information specific to each continental group and to each genotyping platform. In Filipino individuals from the Cebu Longitudinal Health and Nutrition Survey, our database can achieve an area under the receiver-operating characteristic curve of 0.97, 0.91, 0.88 and 0.79 for markers with minor allele frequency >5%, 3-5%, 1-3% and 0.5-1%, respectively. Specifically, by filtering out 48.6% of markers (corresponding to a reduction of up to 48.6% in computational costs for actual imputation) based on the imputability information in our database, we can remove 77%, 58%, 51% and 42% of the poorly imputed markers at the cost of only 0.3%, 0.8%, 1.5% and 4.6% of the well-imputed markers with minor allele frequency >5%, 3-5%, 1-3% and 0.5-1%, respectively. http://www.unc.edu/∼yunmli/imputability.html

  19. Genome scan study of prostate cancer in Arabs: identification of three genomic regions with multiple prostate cancer susceptibility loci in Tunisians.

    PubMed

    Shan, Jingxuan; Al-Rumaihi, Khalid; Rabah, Danny; Al-Bozom, Issam; Kizhakayil, Dhanya; Farhat, Karim; Al-Said, Sami; Kfoury, Hala; Dsouza, Shoba P; Rowe, Jillian; Khalak, Hanif G; Jafri, Shahzad; Aigha, Idil I; Chouchane, Lotfi

    2013-05-13

    Large databases focused on genetic susceptibility to prostate cancer have been accumulated from population studies of different ancestries, including Europeans and African-Americans. Arab populations, however, have been only rarely studied. Using Affymetrix Genome-Wide Human SNP Array 6, we conducted a genome-wide association study (GWAS) in which 534,781 single nucleotide polymorphisms (SNPs) were genotyped in 221 Tunisians (90 prostate cancer patients and 131 age-matched healthy controls). TaqMan SNP Genotyping Assays on 11 prostate cancer associated SNPs were performed in a distinct cohort of 337 individuals from Arab ancestry living in Qatar and Saudi Arabia (155 prostate cancer patients and 182 age-matched controls). In-silico expression quantitative trait locus (eQTL) analysis along with mRNA quantification of nearby genes was performed to identify loci potentially cis-regulated by the identified SNPs. Three chromosomal regions, encompassing 14 SNPs, are significantly associated with prostate cancer risk in the Tunisian population (P = 1 × 10-4 to P = 1 × 10-5). In addition to SNPs located on chromosome 17q21, previously found associated with prostate cancer in Western populations, two novel chromosomal regions are revealed on chromosome 9p24 and 22q13. eQTL analysis and mRNA quantification indicate that the prostate cancer associated SNPs of chromosome 17 could enhance the expression of STAT5B gene. Our findings, identifying novel GWAS prostate cancer susceptibility loci, indicate that prostate cancer genetic risk factors could be ethnic specific.

  20. Inter-laboratory evaluation of the EUROFORGEN Global ancestry-informative SNP panel by massively parallel sequencing using the Ion PGM™.

    PubMed

    Eduardoff, M; Gross, T E; Santos, C; de la Puente, M; Ballard, D; Strobl, C; Børsting, C; Morling, N; Fusco, L; Hussing, C; Egyed, B; Souto, L; Uacyisrael, J; Syndercombe Court, D; Carracedo, Á; Lareu, M V; Schneider, P M; Parson, W; Phillips, C; Parson, W; Phillips, C

    2016-07-01

    The EUROFORGEN Global ancestry-informative SNP (AIM-SNPs) panel is a forensic multiplex of 128 markers designed to differentiate an individual's ancestry from amongst the five continental population groups of Africa, Europe, East Asia, Native America, and Oceania. A custom multiplex of AmpliSeq™ PCR primers was designed for the Global AIM-SNPs to perform massively parallel sequencing using the Ion PGM™ system. This study assessed individual SNP genotyping precision using the Ion PGM™, the forensic sensitivity of the multiplex using dilution series, degraded DNA plus simple mixtures, and the ancestry differentiation power of the final panel design, which required substitution of three original ancestry-informative SNPs with alternatives. Fourteen populations that had not been previously analyzed were genotyped using the custom multiplex and these studies allowed assessment of genotyping performance by comparison of data across five laboratories. Results indicate a low level of genotyping error can still occur from sequence misalignment caused by homopolymeric tracts close to the target SNP, despite careful scrutiny of candidate SNPs at the design stage. Such sequence misalignment required the exclusion of component SNP rs2080161 from the Global AIM-SNPs panel. However, the overall genotyping precision and sensitivity of this custom multiplex indicates the Ion PGM™ assay for the Global AIM-SNPs is highly suitable for forensic ancestry analysis with massively parallel sequencing. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. selectSNP – An R package for selecting SNPs optimal for genetic evaluation

    USDA-ARS?s Scientific Manuscript database

    There has been a huge increase in the number of SNPs in the public repositories. This has made it a challenge to design low and medium density SNP panels, which requires careful selection of available SNPs considering many criteria, such as map position, allelic frequency, possible biological functi...

  2. Nitric Oxide-Induced Apoptosis of Human Dental Pulp Cells Is Mediated by the Mitochondria-Dependent Pathway

    PubMed Central

    Park, Min Young; Jeong, Yeon Jin; Kang, Gi Chang; Kim, Mi-Hwa; Kim, Sun Hun; Chung, Hyun-Ju

    2014-01-01

    Nitric oxide (NO) is recognized as a mediator and regulator of inflammatory responses. NO is produced by nitric oxide synthase (NOS), and NOS is abundantly expressed in the human dental pulp cells (HDPCs). NO produced by NOS can be cytotoxic at higher concentrations to HDPCs. However, the mechanism by which this cytotoxic pathway is activated in cells exposed to NO is not known. The purpose of this study was to elucidate the NO-induced cytotoxic mechanism in HDPCs. Sodium nitroprusside (SNP), a NO donor, reduced the viability of HDPCs in a dose- and time-dependent manner. We investigated the in vitro effects of nitric oxide on apoptosis of cultured HDPCs. Cells showed typical apoptotic morphology after exposure to SNP. Besides, the number of Annexin V positive cells was increased among the SNP-treated HDPCs. SNP enhanced the production of reactive oxygen species (ROS), and N-acetylcysteine (NAC) ameliorated the decrement of cell viability induced by SNP. However, a soluble guanylate cyclase inhibitor (ODQ) did not inhibited the decrement of cell viability induced by SNP. SNP increased cytochrome c release from the mitochondria to the cytosol and the ratio of Bax/Bcl-2 expression levels. Moreover, SNP-treated HDPCs elevated activities of caspase-3 and caspase-9. While pretreatment with inhibitors of caspase (z-VAD-fmk, z-DEVD-fmk) reversed the NO-induced apoptosis of HDPCs. From these results, it can be suggested that NO induces apoptosis of HDPCs through the mitochondria-dependent pathway mediated by ROS and Bcl-2 family, but not by the cyclic GMP pathway. PMID:24634593

  3. SNP discovery through de novo deep sequencing using the next generation of DNA sequencers

    USDA-ARS?s Scientific Manuscript database

    The production of high volumes of DNA sequence data using new technologies has permitted more efficient identification of single nucleotide polymorphisms in vertebrate genomes. This chapter presented practical methodology for production and analysis of DNA sequence data for SNP discovery....

  4. Microsatellite Imputation for parental verification from SNP across multiple Bos taurus and indicus breeds

    USDA-ARS?s Scientific Manuscript database

    Microsatellite markers (MS) have traditionally been used for parental verification and are still the international standard in spite of their higher cost, error rate, and turnaround time compared with Single Nucleotide Polymorphisms (SNP)-based assays. Despite domestic and international demands fro...

  5. SNP-VISTA: An Interactive SNPs Visualization Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Nameeta; Teplitsky, Michael V.; Pennacchio, Len A.

    2005-07-05

    Recent advances in sequencing technologies promise better diagnostics for many diseases as well as better understanding of evolution of microbial populations. Single Nucleotide Polymorphisms(SNPs) are established genetic markers that aid in the identification of loci affecting quantitative traits and/or disease in a wide variety of eukaryotic species. With today's technological capabilities, it is possible to re-sequence a large set of appropriate candidate genes in individuals with a given disease and then screen for causative mutations.In addition, SNPs have been used extensively in efforts to study the evolution of microbial populations, and the recent application of random shotgun sequencing to environmentalmore » samples makes possible more extensive SNP analysis of co-occurring and co-evolving microbial populations. The program is available at http://genome.lbl.gov/vista/snpvista.« less

  6. Family-Based Benchmarking of Copy Number Variation Detection Software.

    PubMed

    Nutsua, Marcel Elie; Fischer, Annegret; Nebel, Almut; Hofmann, Sylvia; Schreiber, Stefan; Krawczak, Michael; Nothnagel, Michael

    2015-01-01

    The analysis of structural variants, in particular of copy-number variations (CNVs), has proven valuable in unraveling the genetic basis of human diseases. Hence, a large number of algorithms have been developed for the detection of CNVs in SNP array signal intensity data. Using the European and African HapMap trio data, we undertook a comparative evaluation of six commonly used CNV detection software tools, namely Affymetrix Power Tools (APT), QuantiSNP, PennCNV, GLAD, R-gada and VEGA, and assessed their level of pair-wise prediction concordance. The tool-specific CNV prediction accuracy was assessed in silico by way of intra-familial validation. Software tools differed greatly in terms of the number and length of the CNVs predicted as well as the number of markers included in a CNV. All software tools predicted substantially more deletions than duplications. Intra-familial validation revealed consistently low levels of prediction accuracy as measured by the proportion of validated CNVs (34-60%). Moreover, up to 20% of apparent family-based validations were found to be due to chance alone. Software using Hidden Markov models (HMM) showed a trend to predict fewer CNVs than segmentation-based algorithms albeit with greater validity. PennCNV yielded the highest prediction accuracy (60.9%). Finally, the pairwise concordance of CNV prediction was found to vary widely with the software tools involved. We recommend HMM-based software, in particular PennCNV, rather than segmentation-based algorithms when validity is the primary concern of CNV detection. QuantiSNP may be used as an additional tool to detect sets of CNVs not detectable by the other tools. Our study also reemphasizes the need for laboratory-based validation, such as qPCR, of CNVs predicted in silico.

  7. The g.763G>C SNP of the bovine FASN gene affects its promoter activity via Sp-mediated regulation: implications for the bovine lactating mammary gland.

    PubMed

    Ordovás, Laura; Roy, Rosa; Pampín, Sandra; Zaragoza, Pilar; Osta, Rosario; Rodríguez-Rey, Jose Carlos; Rodellar, Clementina

    2008-07-15

    Fatty acid synthase (FASN) is an enzyme that catalyzes de novo synthesis of fatty acids in cells. The bovine FASN gene maps to BTA 19, where several quantitative trait loci for fat-related traits have been described. Our group recently reported the identification of a single nucleotide polymorphism (SNP), g.763G>C, in the bovine FASN 5' flanking region that was significantly associated with milk fat content in dairy cattle. The g.763G>C SNP was part of a GC-rich region that may constitute a cis element for members of the Sp transcription factor family. Thus the SNP could alter the transcription factor binding ability of the FASN promoter and consequently affect the promoter activity of the gene. However, the functional consequences of the SNP on FASN gene expression are unknown. The present study was therefore directed at elucidating the underlying molecular mechanism that could explain the association of the SNP with milk fat content. Three cellular lines (3T3L1, HepG2, and MCF-7) were used to test the promoter and the transcription factor binding activities by luciferase reporter assays and electrophoretic mobility shift assays, respectively. Band shift assays were also carried out with nuclear extracts from lactating mammary gland (LMG) to further investigate the role of the SNP in this tissue. Our results demonstrate that the SNP alters the bovine FASN promoter activity in vitro and the Sp1/Sp3 binding ability of the sequence. In bovine LMG, the specific binding of Sp3 may account for the association with milk fat content.

  8. Proper joint analysis of summary association statistics requires the adjustment of heterogeneity in SNP coverage pattern.

    PubMed

    Zhang, Han; Wheeler, William; Song, Lei; Yu, Kai

    2017-07-07

    As meta-analysis results published by consortia of genome-wide association studies (GWASs) become increasingly available, many association summary statistics-based multi-locus tests have been developed to jointly evaluate multiple single-nucleotide polymorphisms (SNPs) to reveal novel genetic architectures of various complex traits. The validity of these approaches relies on the accurate estimate of z-score correlations at considered SNPs, which in turn requires knowledge on the set of SNPs assessed by each study participating in the meta-analysis. However, this exact SNP coverage information is usually unavailable from the meta-analysis results published by GWAS consortia. In the absence of the coverage information, researchers typically estimate the z-score correlations by making oversimplified coverage assumptions. We show through real studies that such a practice can generate highly inflated type I errors, and we demonstrate the proper way to incorporate correct coverage information into multi-locus analyses. We advocate that consortia should make SNP coverage information available when posting their meta-analysis results, and that investigators who develop analytic tools for joint analyses based on summary data should pay attention to the variation in SNP coverage and adjust for it appropriately. Published by Oxford University Press 2017. This work is written by US Government employees and is in the public domain in the US.

  9. Development and preliminary evaluation of a 90 K Axiom® SNP array for the allo-octoploid cultivated strawberry Fragaria × ananassa.

    PubMed

    Bassil, Nahla V; Davis, Thomas M; Zhang, Hailong; Ficklin, Stephen; Mittmann, Mike; Webster, Teresa; Mahoney, Lise; Wood, David; Alperin, Elisabeth S; Rosyara, Umesh R; Koehorst-Vanc Putten, Herma; Monfort, Amparo; Sargent, Daniel J; Amaya, Iraida; Denoyes, Beatrice; Bianco, Luca; van Dijk, Thijs; Pirani, Ali; Iezzoni, Amy; Main, Dorrie; Peace, Cameron; Yang, Yilong; Whitaker, Vance; Verma, Sujeet; Bellon, Laurent; Brew, Fiona; Herrera, Raul; van de Weg, Eric

    2015-03-07

    A high-throughput genotyping platform is needed to enable marker-assisted breeding in the allo-octoploid cultivated strawberry Fragaria × ananassa. Short-read sequences from one diploid and 19 octoploid accessions were aligned to the diploid Fragaria vesca 'Hawaii 4' reference genome to identify single nucleotide polymorphisms (SNPs) and indels for incorporation into a 90 K Affymetrix® Axiom® array. We report the development and preliminary evaluation of this array. About 36 million sequence variants were identified in a 19 member, octoploid germplasm panel. Strategies and filtering pipelines were developed to identify and incorporate markers of several types: di-allelic SNPs (66.6%), multi-allelic SNPs (1.8%), indels (10.1%), and ploidy-reducing "haploSNPs" (11.7%). The remaining SNPs included those discovered in the diploid progenitor F. iinumae (3.9%), and speculative "codon-based" SNPs (5.9%). In genotyping 306 octoploid accessions, SNPs were assigned to six classes with Affymetrix's "SNPolisher" R package. The highest quality classes, PolyHigh Resolution (PHR), No Minor Homozygote (NMH), and Off-Target Variant (OTV) comprised 25%, 38%, and 1% of array markers, respectively. These markers were suitable for genetic studies as demonstrated in the full-sib family 'Holiday' × 'Korona' with the generation of a genetic linkage map consisting of 6,594 PHR SNPs evenly distributed across 28 chromosomes with an average density of approximately one marker per 0.5 cM, thus exceeding our goal of one marker per cM. The Affymetrix IStraw90 Axiom array is the first high-throughput genotyping platform for cultivated strawberry and is commercially available to the worldwide scientific community. The array's high success rate is likely driven by the presence of naturally occurring variation in ploidy level within the nominally octoploid genome, and by effectiveness of the employed array design and ploidy-reducing strategies. This array enables genetic analyses

  10. Clonal diversity analysis using SNP microarray: a new prognostic tool for chronic lymphocytic leukemia.

    PubMed

    Zhang, Linsheng; Znoyko, Iya; Costa, Luciano J; Conlin, Laura K; Daber, Robert D; Self, Sally E; Wolff, Daynna J

    2011-12-01

    Chronic lymphocytic leukemia (CLL) is a clinically heterogeneous disease. The methods currently used for monitoring CLL and determining conditions for treatment are limited in their ability to predict disease progression, patient survival, and response to therapy. Although clonal diversity and the acquisition of new chromosomal abnormalities during the disease course (clonal evolution) have been associated with disease progression, their prognostic potential has been underappreciated because cytogenetic and fluorescence in situ hybridization (FISH) studies have a restricted ability to detect genomic abnormalities and clonal evolution. We hypothesized that whole genome analysis using high resolution single nucleotide polymorphism (SNP) microarrays would be useful to detect diversity and infer clonal evolution to offer prognostic information. In this study, we used the Infinium Omni1 BeadChip (Illumina, San Diego, CA) array for the analysis of genetic variation and percent mosaicism in 25 non-selected CLL patients to explore the prognostic value of the assessment of clonal diversity in patients with CLL. We calculated the percentage of mosaicism for each abnormality by applying a mathematical algorithm to the genotype frequency data and by manual determination using the Simulated DNA Copy Number (SiDCoN) tool, which was developed from a computer model of mosaicism. At least one genetic abnormality was identified in each case, and the SNP data was 98% concordant with FISH results. Clonal diversity, defined as the presence of two or more genetic abnormalities with differing percentages of mosaicism, was observed in 12 patients (48%), and the diversity correlated with the disease stage. Clonal diversity was present in most cases of advanced disease (Rai stages III and IV) or those with previous treatment, whereas 9 of 13 patients without detected clonal diversity were asymptomatic or clinically stable. In conclusion, SNP microarray studies with simultaneous evaluation

  11. Mapping autism risk loci using genetic linkage and chromosomal rearrangements

    PubMed Central

    Szatmari, Peter; Paterson, Andrew; Zwaigenbaum, Lonnie; Roberts, Wendy; Brian, Jessica; Liu, Xiao-Qing; Vincent, John; Skaug, Jennifer; Thompson, Ann; Senman, Lili; Feuk, Lars; Qian, Cheng; Bryson, Susan; Jones, Marshall; Marshall, Christian; Scherer, Stephen; Vieland, Veronica; Bartlett, Christopher; Mangin, La Vonne; Goedken, Rhinda; Segre, Alberto; Pericak-Vance, Margaret; Cuccaro, Michael; Gilbert, John; Wright, Harry; Abramson, Ruth; Betancur, Catalina; Bourgeron, Thomas; Gillberg, Christopher; Leboyer, Marion; Buxbaum, Joseph; Davis, Kenneth; Hollander, Eric; Silverman, Jeremy; Hallmayer, Joachim; Lotspeich, Linda; Sutcliffe, James; Haines, Jonathan; Folstein, Susan; Piven, Joseph; Wassink, Thomas; Sheffield, Val; Geschwind, Daniel; Bucan, Maja; Brown, Ted; Cantor, Rita; Constantino, John; Gilliam, Conrad; Herbert, Martha; Lajonchere, Clara; Ledbetter, David; Lese-Martin, Christa; Miller, Janet; Nelson, Stan; Samango-Sprouse, Carol; Spence, Sarah; State, Matthew; Tanzi, Rudolph; Coon, Hilary; Dawson, Geraldine; Devlin, Bernie; Estes, Annette; Flodman, Pamela; Klei, Lambertus; Mcmahon, William; Minshew, Nancy; Munson, Jeff; Korvatska, Elena; Rodier, Patricia; Schellenberg, Gerard; Smith, Moyra; Spence, Anne; Stodgell, Chris; Tepper, Ping Guo; Wijsman, Ellen; Yu, Chang-En; Rogé, Bernadette; Mantoulan, Carine; Wittemeyer, Kerstin; Poustka, Annemarie; Felder, Bärbel; Klauck, Sabine; Schuster, Claudia; Poustka, Fritz; Bölte, Sven; Feineis-Matthews, Sabine; Herbrecht, Evelyn; Schmötzer, Gabi; Tsiantis, John; Papanikolaou, Katerina; Maestrini, Elena; Bacchelli, Elena; Blasi, Francesca; Carone, Simona; Toma, Claudio; Van Engeland, Herman; De Jonge, Maretha; Kemner, Chantal; Koop, Frederieke; Langemeijer, Marjolein; Hijmans, Channa; Staal, Wouter; Baird, Gillian; Bolton, Patrick; Rutter, Michael; Weisblatt, Emma; Green, Jonathan; Aldred, Catherine; Wilkinson, Julie-Anne; Pickles, Andrew; Le Couteur, Ann; Berney, Tom; Mcconachie, Helen; Bailey, Anthony; Francis, Kostas; Honeyman, Gemma; Hutchinson, Aislinn; Parr, Jeremy; Wallace, Simon; Monaco, Anthony; Barnby, Gabrielle; Kobayashi, Kazuhiro; Lamb, Janine; Sousa, Ines; Sykes, Nuala; Cook, Edwin; Guter, Stephen; Leventhal, Bennett; Salt, Jeff; Lord, Catherine; Corsello, Christina; Hus, Vanessa; Weeks, Daniel; Volkmar, Fred; Tauber, Maïté; Fombonne, Eric; Shih, Andy; Meyer, Kacie

    2007-01-01

    Autism spectrum disorders (ASD) are common, heritable neurodevelopmental conditions. The genetic architecture of ASD is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASD by using Affymetrix 10K single nucleotide polymorphism (SNP) arrays and 1168 families with ≥ 2 affected individuals to perform the largest linkage scan to date, while also analyzing copy number variation (CNV) in these families. Linkage and CNV analyses implicate chromosome 11p12-p13 and neurexins, respectively, amongst other candidate loci. Neurexins team with previously-implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for ASD. PMID:17322880

  12. Slider--maximum use of probability information for alignment of short sequence reads and SNP detection.

    PubMed

    Malhis, Nawar; Butterfield, Yaron S N; Ester, Martin; Jones, Steven J M

    2009-01-01

    A plethora of alignment tools have been created that are designed to best fit different types of alignment conditions. While some of these are made for aligning Illumina Sequence Analyzer reads, none of these are fully utilizing its probability (prb) output. In this article, we will introduce a new alignment approach (Slider) that reduces the alignment problem space by utilizing each read base's probabilities given in the prb files. Compared with other aligners, Slider has higher alignment accuracy and efficiency. In addition, given that Slider matches bases with probabilities other than the most probable, it significantly reduces the percentage of base mismatches. The result is that its SNP predictions are more accurate than other SNP prediction approaches used today that start from the most probable sequence, including those using base quality.

  13. Genome-wide association studies for multiple diseases of the German Shepherd Dog

    PubMed Central

    Tsai, Kate L.; Noorai, Rooksana E.; Starr-Moss, Alison N.; Quignon, Pascale; Rinz, Caitlin J.; Ostrander, Elaine A.; Steiner, Jörg M.; Murphy, Keith E.

    2012-01-01

    The German Shepherd Dog (GSD) is a popular working and companion breed for which over 50 hereditary diseases have been documented. Herein, SNP profiles for 197 GSDs were generated using the Affymetrix v2 canine SNP array for a genome-wide association study to identify loci associated with four diseases: pituitary dwarfism, degenerative myelopathy (DM), congenital megaesophagus (ME), and pancreatic acinar atrophy (PAA). A locus on Chr 9 is strongly associated with pituitary dwarfism and is proximal to a plausible candidate gene, LHX3. Results for DM confirm a major locus encompassing SOD1, in which an associated point mutation was previously identified, but do not suggest modifier loci. Several SNPs on Chr 12 are associated with ME and a 4.7 Mb haplotype block is present in affected dogs. Analysis of additional ME cases for a SNP within the haplotype provides further support for this association. Results for PAA indicate more complex genetic underpinnings. Several regions on multiple chromosomes reach genome-wide significance. However, no major locus is apparent and only two associated haplotype blocks, on Chrs 7 and 12 are observed. These data suggest that PAA may be governed by multiple loci with small effects, or it may be a heterogeneous disorder. PMID:22105877

  14. Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array.

    PubMed

    Antanaviciute, Laima; Fernández-Fernández, Felicidad; Jansen, Johannes; Banchi, Elisa; Evans, Katherine M; Viola, Roberto; Velasco, Riccardo; Dunwell, Jim M; Troggio, Michela; Sargent, Daniel J

    2012-05-25

    A whole-genome genotyping array has previously been developed for Malus using SNP data from 28 Malus genotypes. This array offers the prospect of high throughput genotyping and linkage map development for any given Malus progeny. To test the applicability of the array for mapping in diverse Malus genotypes, we applied the array to the construction of a SNP-based linkage map of an apple rootstock progeny. Of the 7,867 Malus SNP markers on the array, 1,823 (23.2%) were heterozygous in one of the two parents of the progeny, 1,007 (12.8%) were heterozygous in both parental genotypes, whilst just 2.8% of the 921 Pyrus SNPs were heterozygous. A linkage map spanning 1,282.2 cM was produced comprising 2,272 SNP markers, 306 SSR markers and the S-locus. The length of the M432 linkage map was increased by 52.7 cM with the addition of the SNP markers, whilst marker density increased from 3.8 cM/marker to 0.5 cM/marker. Just three regions in excess of 10 cM remain where no markers were mapped. We compared the positions of the mapped SNP markers on the M432 map with their predicted positions on the 'Golden Delicious' genome sequence. A total of 311 markers (13.7% of all mapped markers) mapped to positions that conflicted with their predicted positions on the 'Golden Delicious' pseudo-chromosomes, indicating the presence of paralogous genomic regions or mis-assignments of genome sequence contigs during the assembly and anchoring of the genome sequence. We incorporated data for the 2,272 SNP markers onto the map of the M432 progeny and have presented the most complete and saturated map of the full 17 linkage groups of M. pumila to date. The data were generated rapidly in a high-throughput semi-automated pipeline, permitting significant savings in time and cost over linkage map construction using microsatellites. The application of the array will permit linkage maps to be developed for QTL analyses in a cost-effective manner, and the identification of SNPs that have been

  15. Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array

    PubMed Central

    2012-01-01

    Background A whole-genome genotyping array has previously been developed for Malus using SNP data from 28 Malus genotypes. This array offers the prospect of high throughput genotyping and linkage map development for any given Malus progeny. To test the applicability of the array for mapping in diverse Malus genotypes, we applied the array to the construction of a SNP-based linkage map of an apple rootstock progeny. Results Of the 7,867 Malus SNP markers on the array, 1,823 (23.2%) were heterozygous in one of the two parents of the progeny, 1,007 (12.8%) were heterozygous in both parental genotypes, whilst just 2.8% of the 921 Pyrus SNPs were heterozygous. A linkage map spanning 1,282.2 cM was produced comprising 2,272 SNP markers, 306 SSR markers and the S-locus. The length of the M432 linkage map was increased by 52.7 cM with the addition of the SNP markers, whilst marker density increased from 3.8 cM/marker to 0.5 cM/marker. Just three regions in excess of 10 cM remain where no markers were mapped. We compared the positions of the mapped SNP markers on the M432 map with their predicted positions on the ‘Golden Delicious’ genome sequence. A total of 311 markers (13.7% of all mapped markers) mapped to positions that conflicted with their predicted positions on the ‘Golden Delicious’ pseudo-chromosomes, indicating the presence of paralogous genomic regions or mis-assignments of genome sequence contigs during the assembly and anchoring of the genome sequence. Conclusions We incorporated data for the 2,272 SNP markers onto the map of the M432 progeny and have presented the most complete and saturated map of the full 17 linkage groups of M. pumila to date. The data were generated rapidly in a high-throughput semi-automated pipeline, permitting significant savings in time and cost over linkage map construction using microsatellites. The application of the array will permit linkage maps to be developed for QTL analyses in a cost-effective manner, and

  16. A novel homozygous variant in the SMOC1 gene underlying Waardenburg anophthalmia syndrome.

    PubMed

    Ullah, Asmat; Umair, Muhammad; Ahmad, Farooq; Muhammad, Dost; Basit, Sulman; Ahmad, Wasim

    2017-01-01

    Waardenburg anophthalmia syndrome (WAS), also known as ophthalmo-acromelic syndrome or anophthalmia-syndactyly, is a rare congenital disorder that segregates in an autosomal recessive pattern. Clinical features of the syndrome include malformation of the eyes and the skeleton. Mostly, WAS is caused by mutations in the SMOC-1 gene. The present report describes a large consanguineous family of Pakistani origin segregating Waardenburg anophthalmia syndrome in an autosomal recessive pattern. Genotyping followed by Sanger sequencing was performed to search for a candidate gene. SNP genotyping using AffymetrixGeneChip Human Mapping 250K Nsp array established a single homozygous region among affected members on chromosome 14q23.1-q24.3 harboring the SMOC1 gene. Sequencing of the gene revealed a novel homozygous missense mutation (c.812G>A; p.Cys271Tyr) in the family. This is the first report of Waardenburg anophthalmia syndrome caused by a SMOC1 variant in a Pakistani population. The mutation identified in the present investigation extends the body of evidence implicating the gene SMOC-1 in causing WAS.

  17. Atopic dermatitis in West Highland white terriers is associated with a 1.3-Mb region on CFA 17.

    PubMed

    Roque, Joana B; O'Leary, Caroline A; Duffy, David L; Kyaw-Tanner, Myat; Gharahkhani, Puya; Vogelnest, Linda; Mason, Kenneth; Shipstone, Michael; Latter, Melanie

    2012-03-01

    Canine atopic dermatitis (AD) is an allergic inflammatory skin disease that shares similarities with AD in humans. Canine AD is likely to be an inherited disease in dogs and is common in West Highland white terriers (WHWTs). We performed a genome-wide association study using the Affymetrix Canine SNP V2 array consisting of over 42,800 single nucleotide polymorphisms, on 35 atopic and 25 non-atopic WHWTs. A gene-dropping simulation method, using SIB-PAIR, identified a projected 1.3 Mb area of association (genome-wide P = 6 × 10(-5) to P = 7 × 10(-4)) on CFA 17. Nineteen genes on CFA 17, including 1 potential candidate gene (PTPN22), were located less than 0.5 Mb from the interval of association identified on the genome-wide association analysis. Four haplotypes within this locus were differently distributed between cases and controls in this population of dogs. These findings suggest that a major locus for canine AD in WHWTs may be located on, or in close proximity to an area on CFA 17.

  18. [Association Between SNP rs6007897 of CELSR1 and Acute Ischemic Stroke in Western China Han Population: a Case-control Study].

    PubMed

    Qin, Feng-qin; Yu, Li-hua; Hu, Wen-ting; Guo, Jian; Chen, Ning; Guo, Jiang; Fang, Jing-huan; He, Li

    2015-07-01

    To investigate the relationship between single nucleotide polymorphism (SNP) rs6007897 of CELSR1 and acute ischemic stroke in Western China Han population. All subjects (759 acute ischemic stroke patients and 786 controls) were genotyped using ligation detection reaction (LDR). We analyzed the differences between SNP rs6007897 genotypes and allele frequencies between two groups. Two genotypes (AA, AG) of rs6007897 were found in both stroke and control group. There was no statistically significance between two groups about genotype and allele frequency. After adjusting for risk factors, we found there was no significant association between rs6007897 and ischemic stroke CP = 0.797, odds ratio (OR) = 0.886, 95% confidence interval (CI) = 0.352-2.227). SNP rs6007897 of CELSR1 was not significantly associated with ischemic stroke in Western China Han population.

  19. Casein SNP in Norwegian goats: additive and dominance effects on milk composition and quality

    PubMed Central

    2011-01-01

    Background The four casein proteins in goat milk are encoded by four closely linked casein loci (CSN1S1, CSN2, CSN1S2 and CSN3) within 250 kb on caprine chromosome 6. A deletion in exon 12 of CSN1S1, so far reported only in Norwegian goats, has been found at high frequency (0.73). Such a high frequency is difficult to explain because the national breeding goal selects against the variant's effect. Methods In this study, 575 goats were genotyped for 38 Single Nucleotide Polymorphisms (SNP) located within the four casein genes. Milk production records of these goats were obtained from the Norwegian Dairy Goat Control. Test-day mixed models with additive and dominance fixed effects of single SNP were fitted in a model including polygenic effects. Results Significant additive effects of single SNP within CSN1S1 and CSN3 were found for fat % and protein %, milk yield and milk taste. The allele with the deletion showed additive and dominance effects on protein % and fat %, and overdominance effects on milk quantity (kg) and lactose %. At its current frequency, the observed dominance (overdominance) effects of the deletion allele reduced its substitution effect (and additive genetic variance available for selection) in the population substantially. Conclusions The selection pressure of conventional breeding on the allele with the deletion is limited due to the observed dominance (overdominance) effects. Inclusion of molecular information in the national breeding scheme will reduce the frequency of this deletion in the population. PMID:21864407

  20. Temperature gradient affects differentiation of gene expression and SNP allele frequencies in the dominant Lake Baikal zooplankton species.

    PubMed

    Bowman, Larry L; Kondrateva, Elizaveta S; Timofeyev, Maxim A; Yampolsky, Lev Y

    2018-06-01

    Local adaptation and phenotypic plasticity are main mechanisms of organisms' resilience in changing environments. Both are affected by gene flow and are expected to be weak in zooplankton populations inhabiting large continuous water bodies and strongly affected by currents. Lake Baikal, the deepest and one of the coldest lakes on Earth, experienced epilimnion temperature increase during the last 100 years, exposing Baikal's zooplankton to novel selective pressures. We obtained a partial transcriptome of Epischura baikalensis (Copepoda: Calanoida), the dominant component of Baikal's zooplankton, and estimated SNP allele frequencies and transcript abundances in samples from regions of Baikal that differ in multiyear average surface temperatures. The strongest signal in both SNP and transcript abundance differentiation is the SW-NE gradient along the 600+ km long axis of the lake, suggesting isolation by distance. SNP differentiation is stronger for nonsynonymous than synonymous SNPs and is paralleled by differential survival during a laboratory exposure to increased temperature, indicating directional selection operating on the temperature gradient. Transcript abundance, generally collinear with the SNP differentiation, shows samples from the warmest, less deep location clustering together with the southernmost samples. Differential expression is more frequent among transcripts orthologous to candidate thermal response genes previously identified in model arthropods, including genes encoding cytoskeleton proteins, heat-shock proteins, proteases, enzymes of central energy metabolism, lipid and antioxidant pathways. We conclude that the pivotal endemic zooplankton species in Lake Baikal exists under temperature-mediated selection and possesses both genetic variation and plasticity to respond to novel temperature-related environmental pressures. © 2018 John Wiley & Sons Ltd.

  1. Comparison between genotyping by sequencing and SNP-chip genotyping in QTL mapping in wheat

    USDA-ARS?s Scientific Manuscript database

    Array- or chip-based single nucleotide polymorphism (SNP) markers are widely used in genomic studies because of their abundance in a genome and cost less per data point compared to older marker technologies. Genotyping by sequencing (GBS), a relatively newer approach of genotyping, suggests equal or...

  2. The use of SNP data for the monitoring of genetic diversity in cattle breeds

    USDA-ARS?s Scientific Manuscript database

    LD between SNPs contains information about effective population size. In this study, we investigate the use of genome-wide SNP data for marker based estimation of effective population size for two taurine cattle breeds of Africa and two local cattle breeds of Switzerland. Estimated recombination rat...

  3. Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers

    PubMed Central

    Van Inghelandt, Delphine; Melchinger, Albrecht E.; Lebreton, Claude

    2010-01-01

    Information about the genetic diversity and population structure in elite breeding material is of fundamental importance for the improvement of crops. The objectives of our study were to (a) examine the population structure and the genetic diversity in elite maize germplasm based on simple sequence repeat (SSR) markers, (b) compare these results with those obtained from single nucleotide polymorphism (SNP) markers, and (c) compare the coancestry coefficient calculated from pedigree records with genetic distance estimates calculated from SSR and SNP markers. Our study was based on 1,537 elite maize inbred lines genotyped with 359 SSR and 8,244 SNP markers. The average number of alleles per locus, of group specific alleles, and the gene diversity (D) were higher for SSRs than for SNPs. Modified Roger’s distance (MRD) estimates and membership probabilities of the STRUCTURE matrices were higher for SSR than for SNP markers but the germplasm organization in four heterotic pools was consistent with STRUCTURE results based on SSRs and SNPs. MRD estimates calculated for the two marker systems were highly correlated (0.87). Our results suggested that the same conclusions regarding the structure and the diversity of heterotic pools could be drawn from both markers types. Furthermore, although our results suggested that the ratio of the number of SSRs and SNPs required to obtain MRD or D estimates with similar precision is not constant across the various precision levels, we propose that between 7 and 11 times more SNPs than SSRs should be used for analyzing population structure and genetic diversity. Electronic supplementary material The online version of this article (doi:10.1007/s00122-009-1256-2) contains supplementary material, which is available to authorized users. PMID:20063144

  4. In silico SNP analysis of the breast cancer antigen NY-BR-1.

    PubMed

    Kosaloglu, Zeynep; Bitzer, Julia; Halama, Niels; Huang, Zhiqin; Zapatka, Marc; Schneeweiss, Andreas; Jäger, Dirk; Zörnig, Inka

    2016-11-18

    Breast cancer is one of the most common malignancies with increasing incidences every year and a leading cause of death among women. Although early stage breast cancer can be effectively treated, there are limited numbers of treatment options available for patients with advanced and metastatic disease. The novel breast cancer associated antigen NY-BR-1 was identified by SEREX analysis and is expressed in the majority (>70%) of breast tumors as well as metastases, in normal breast tissue, in testis and occasionally in prostate tissue. The biological function and regulation of NY-BR-1 is up to date unknown. We performed an in silico analysis on the genetic variations of the NY-BR-1 gene using data available in public SNP databases and the tools SIFT, Polyphen and Provean to find possible functional SNPs. Additionally, we considered the allele frequency of the found damaging SNPs and also analyzed data from an in-house sequencing project of 55 breast cancer samples for recurring SNPs, recorded in dbSNP. Over 2800 SNPs are recorded in the dbSNP and NHLBI ESP databases for the NY-BR-1 gene. Of these, 65 (2.07%) are synonymous SNPs, 191 (6.09%) are non-synoymous SNPs, and 2430 (77.48%) are noncoding intronic SNPs. As a result, 69 non-synoymous SNPs were predicted to be damaging by at least two, and 16 SNPs were predicted as damaging by all three of the used tools. The SNPs rs200639888, rs367841401 and rs377750885 were categorized as highly damaging by all three tools. Eight damaging SNPs are located in the ankyrin repeat domain (ANK), a domain known for its frequent involvement in protein-protein interactions. No distinctive features could be observed in the allele frequency of the analyzed SNPs. Considering these results we expect to gain more insights into the variations of the NY-BR-1 gene and their possible impact on giving rise to splice variants and therefore influence the function of NY-BR-1 in healthy tissue as well as in breast cancer.

  5. Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression

    PubMed Central

    Rose, Amy E.; Poliseno, Laura; Wang, Jinhua; Clark, Michael; Pearlman, Alexander; Wang, Guimin; Vega y Saenz de Miera, Eleazar C.; Medicherla, Ratna; Christos, Paul J.; Shapiro, Richard; Pavlick, Anna; Darvishian, Farbod; Zavadil, Jiri; Polsky, David; Hernando, Eva; Ostrer, Harry; Osman, Iman

    2011-01-01

    Superficial spreading melanoma (SSM) and nodular melanoma (NM) are believed to represent sequential phases of linear progression from radial to vertical growth. Several lines of clinical, pathological and epidemiologic evidence suggest, however, that SSM and NM might be the result of independent pathways of tumor development. We utilized an integrative genomic approach that combines single nucleotide polymorphism array (SNP 6.0, Affymetrix) with gene expression array (U133A 2.0, Affymetrix) to examine molecular differences between SSM and NM. Pathway analysis of the most differentially expressed genes between SSM and NM (N=114) revealed significant differences related to metabolic processes. We identified 8 genes (DIS3, FGFR1OP, G3BP2, GALNT7, MTAP, SEC23IP, USO1, ZNF668) in which NM/SSM-specific copy number alterations correlated with differential gene expression (P<0.05, Spearman’s rank). SSM-specific genomic deletions in G3BP2, MTAP, and SEC23IP were independently verified in two external data sets. Forced overexpression of metabolism-related gene methylthioadenosine phosphorylase (MTAP) in SSM resulted in reduced cell growth. The differential expression of another metabolic related gene, aldehyde dehydrogenase 7A1 (ALDH7A1), was validated at the protein level using tissue microarrays of human melanoma. In addition, we show that the decreased ALDH7A1 expression in SSM may be the result of epigenetic modifications. Our data reveal recurrent genomic deletions in SSM not present in NM, which challenge the linear model of melanoma progression. Furthermore, our data suggest a role for altered regulation of metabolism-related genes as a possible cause of the different clinical behavior of SSM and NM. PMID:21343389

  6. High-density SNP Scan of Production and Product Quality Traits in Beef Cattle

    USDA-ARS?s Scientific Manuscript database

    Genotypes from the BovineSNP50 BeadChip (50K) were obtained on animals derived from 150 AI sires from seven breeds (22 sires per breed; Angus, Charolais, Gelbvieh, Hereford, Limousin, Red Angus, and Simmental) as either progeny (F1; 590 steers) or grandprogeny (F1 x F1 = F1**2; 1,306 steers and 707 ...

  7. Development and validation of a low-density SNP panel related to prolificacy in sheep

    USDA-ARS?s Scientific Manuscript database

    High-density SNP panels (e.g., 50,000 and 600,000 markers) have been used in exploratory population genetic studies with commercial and minor breeds of sheep. However, routine genetic diversity evaluations of large numbers of samples with large panels are in general cost-prohibitive for gene banks. ...

  8. Effects of sodium nitroprusside (SNP) pretreatment on UV-B stress tolerance in lettuce (Lactuca sativa L.) seedlings.

    PubMed

    Esringu, Aslıhan; Aksakal, Ozkan; Tabay, Dilruba; Kara, Ayse Aydan

    2016-01-01

    Ultraviolet-B (UV-B) radiation is one of the most important abiotic stress factors that could influence plant growth, development, and productivity. Nitric oxide (NO) is an important plant growth regulator involved in a wide variety of physiological processes. In the present study, the possibility of enhancing UV-B stress tolerance of lettuce seedlings by the exogenous application of sodium nitroprusside (SNP) was investigated. UV-B radiation increased the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD) and total phenolic concentrations, antioxidant capacity, and expression of phenylalanine ammonia lyase (PAL) gene in seedlings, but the combination of SNP pretreatment and UV-B enhanced antioxidant enzyme activities, total phenolic concentrations, antioxidant capacity, and PAL gene expression even more. Moreover, UV-B radiation significantly inhibited chlorophylls, carotenoid, gibberellic acid (GA), and indole-3-acetic acid (IAA) contents and increased the contents of abscisic acid (ABA), salicylic acid (SA), malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide radical (O2•(-)) in lettuce seedlings. When SNP pretreatment was combined with the UV-B radiation, we observed alleviated chlorophylls, carotenoid, GA, and IAA inhibition and decreased content of ABA, SA, MDA, H2O2, and O2•(-) in comparison to non-pretreated stressed seedlings.

  9. A high-density, multi-parental SNP genetic map on apple validates a new mapping approach for outcrossing species.

    PubMed

    Di Pierro, Erica A; Gianfranceschi, Luca; Di Guardo, Mario; Koehorst-van Putten, Herma Jj; Kruisselbrink, Johannes W; Longhi, Sara; Troggio, Michela; Bianco, Luca; Muranty, Hélène; Pagliarani, Giulia; Tartarini, Stefano; Letschka, Thomas; Lozano Luis, Lidia; Garkava-Gustavsson, Larisa; Micheletti, Diego; Bink, Marco Cam; Voorrips, Roeland E; Aziz, Ebrahimi; Velasco, Riccardo; Laurens, François; van de Weg, W Eric

    2016-01-01

    Quantitative trait loci (QTL) mapping approaches rely on the correct ordering of molecular markers along the chromosomes, which can be obtained from genetic linkage maps or a reference genome sequence. For apple ( Malus domestica Borkh), the genome sequence v1 and v2 could not meet this need; therefore, a novel approach was devised to develop a dense genetic linkage map, providing the most reliable marker-loci order for the highest possible number of markers. The approach was based on four strategies: (i) the use of multiple full-sib families, (ii) the reduction of missing information through the use of HaploBlocks and alternative calling procedures for single-nucleotide polymorphism (SNP) markers, (iii) the construction of a single backcross-type data set including all families, and (iv) a two-step map generation procedure based on the sequential inclusion of markers. The map comprises 15 417 SNP markers, clustered in 3 K HaploBlock markers spanning 1 267 cM, with an average distance between adjacent markers of 0.37 cM and a maximum distance of 3.29 cM. Moreover, chromosome 5 was oriented according to its homoeologous chromosome 10. This map was useful to improve the apple genome sequence, design the Axiom Apple 480 K SNP array and perform multifamily-based QTL studies. Its collinearity with the genome sequences v1 and v3 are reported. To our knowledge, this is the shortest published SNP map in apple, while including the largest number of markers, families and individuals. This result validates our methodology, proving its value for the construction of integrated linkage maps for any outbreeding species.

  10. A high-density, multi-parental SNP genetic map on apple validates a new mapping approach for outcrossing species

    PubMed Central

    Di Pierro, Erica A; Gianfranceschi, Luca; Di Guardo, Mario; Koehorst-van Putten, Herma JJ; Kruisselbrink, Johannes W; Longhi, Sara; Troggio, Michela; Bianco, Luca; Muranty, Hélène; Pagliarani, Giulia; Tartarini, Stefano; Letschka, Thomas; Lozano Luis, Lidia; Garkava-Gustavsson, Larisa; Micheletti, Diego; Bink, Marco CAM; Voorrips, Roeland E; Aziz, Ebrahimi; Velasco, Riccardo; Laurens, François; van de Weg, W Eric

    2016-01-01

    Quantitative trait loci (QTL) mapping approaches rely on the correct ordering of molecular markers along the chromosomes, which can be obtained from genetic linkage maps or a reference genome sequence. For apple (Malus domestica Borkh), the genome sequence v1 and v2 could not meet this need; therefore, a novel approach was devised to develop a dense genetic linkage map, providing the most reliable marker-loci order for the highest possible number of markers. The approach was based on four strategies: (i) the use of multiple full-sib families, (ii) the reduction of missing information through the use of HaploBlocks and alternative calling procedures for single-nucleotide polymorphism (SNP) markers, (iii) the construction of a single backcross-type data set including all families, and (iv) a two-step map generation procedure based on the sequential inclusion of markers. The map comprises 15 417 SNP markers, clustered in 3 K HaploBlock markers spanning 1 267 cM, with an average distance between adjacent markers of 0.37 cM and a maximum distance of 3.29 cM. Moreover, chromosome 5 was oriented according to its homoeologous chromosome 10. This map was useful to improve the apple genome sequence, design the Axiom Apple 480 K SNP array and perform multifamily-based QTL studies. Its collinearity with the genome sequences v1 and v3 are reported. To our knowledge, this is the shortest published SNP map in apple, while including the largest number of markers, families and individuals. This result validates our methodology, proving its value for the construction of integrated linkage maps for any outbreeding species. PMID:27917289

  11. Genome-wide SNP discovery and population structure analysis in pepper (Capsicum annuum) using genotyping by sequencing.

    PubMed

    Taranto, F; D'Agostino, N; Greco, B; Cardi, T; Tripodi, P

    2016-11-21

    Knowledge on population structure and genetic diversity in vegetable crops is essential for association mapping studies and genomic selection. Genotyping by sequencing (GBS) represents an innovative method for large scale SNP detection and genotyping of genetic resources. Herein we used the GBS approach for the genome-wide identification of SNPs in a collection of Capsicum spp. accessions and for the assessment of the level of genetic diversity in a subset of 222 cultivated pepper (Capsicum annum) genotypes. GBS analysis generated a total of 7,568,894 master tags, of which 43.4% uniquely aligned to the reference genome CM334. A total of 108,591 SNP markers were identified, of which 105,184 were in C. annuum accessions. In order to explore the genetic diversity of C. annuum and to select a minimal core set representing most of the total genetic variation with minimum redundancy, a subset of 222 C. annuum accessions were analysed using 32,950 high quality SNPs. Based on Bayesian and Hierarchical clustering it was possible to divide the collection into three clusters. Cluster I had the majority of varieties and landraces mainly from Southern and Northern Italy, and from Eastern Europe, whereas clusters II and III comprised accessions of different geographical origins. Considering the genome-wide genetic variation among the accessions included in cluster I, a second round of Bayesian (K = 3) and Hierarchical (K = 2) clustering was performed. These analysis showed that genotypes were grouped not only based on geographical origin, but also on fruit-related features. GBS data has proven useful to assess the genetic diversity in a collection of C. annuum accessions. The high number of SNP markers, uniformly distributed on the 12 chromosomes, allowed the accessions to be distinguished according to geographical origin and fruit-related features. SNP markers and information on population structure developed in this study will undoubtedly support genome

  12. Forensic genetic SNP typing of low-template DNA and highly degraded DNA from crime case samples.

    PubMed

    Børsting, Claus; Mogensen, Helle Smidt; Morling, Niels

    2013-05-01

    Heterozygote imbalances leading to allele drop-outs and disproportionally large stutters leading to allele drop-ins are known stochastic phenomena related to STR typing of low-template DNA (LtDNA). The large stutters and the many drop-ins in typical STR stutter positions are artifacts from the PCR amplification of tandem repeats. These artifacts may be avoided by typing bi-allelic markers instead of STRs. In this work, the SNPforID multiplex assay was used to type LtDNA. A sensitized SNP typing protocol was introduced, that increased signal strengths without increasing noise and without affecting the heterozygote balance. Allele drop-ins were only observed in experiments with 25 pg of DNA and not in experiments with 50 and 100 pg of DNA. The allele drop-in rate in the 25 pg experiments was 0.06% or 100 times lower than what was previously reported for STR typing of LtDNA. A composite model and two different consensus models were used to interpret the SNP data. Correct profiles with 42-49 SNPs were generated from the 50 and 100 pg experiments, whereas a few incorrect genotypes were included in the generated profiles from the 25 pg experiments. With the strict consensus model, between 35 and 48 SNPs were correctly typed in the 25 pg experiments and only one allele drop-out (error rate: 0.07%) was observed in the consensus profiles. A total of 28 crime case samples were selected for typing with the sensitized SNPforID protocol. The samples were previously typed with old STR kits during the crime case investigation and only partial profiles (0-6 STRs) were obtained. Eleven of the samples could not be quantified with the Quantifiler™ Human DNA Quantification kit because of partial or complete inhibition of the PCR. For eight of these samples, SNP typing was only possible when the buffer and DNA polymerase used in the original protocol was replaced with the AmpFℓSTR(®) SEfiler Plus™ Master Mix, which was developed specifically for challenging forensic samples. All

  13. Species trees from consensus single nucleotide polymorphism (SNP) data: Testing phylogenetic approaches with simulated and empirical data.

    PubMed

    Schmidt-Lebuhn, Alexander N; Aitken, Nicola C; Chuah, Aaron

    2017-11-01

    Datasets of hundreds or thousands of SNPs (Single Nucleotide Polymorphisms) from multiple individuals per species are increasingly used to study population structure, species delimitation and shallow phylogenetics. The principal software tool to infer species or population trees from SNP data is currently the BEAST template SNAPP which uses a Bayesian coalescent analysis. However, it is computationally extremely demanding and tolerates only small amounts of missing data. We used simulated and empirical SNPs from plants (Australian Craspedia, Asteraceae, and Pelargonium, Geraniaceae) to compare species trees produced (1) by SNAPP, (2) using SVD quartets, and (3) using Bayesian and parsimony analysis with several different approaches to summarising data from multiple samples into one set of traits per species. Our aims were to explore the impact of tree topology and missing data on the results, and to test which data summarising and analyses approaches would best approximate the results obtained from SNAPP for empirical data. SVD quartets retrieved the correct topology from simulated data, as did SNAPP except in the case of a very unbalanced phylogeny. Both methods failed to retrieve the correct topology when large amounts of data were missing. Bayesian analysis of species level summary data scoring the two alleles of each SNP as independent characters and parsimony analysis of data scoring each SNP as one character produced trees with branch length distributions closest to the true trees on which SNPs were simulated. For empirical data, Bayesian inference and Dollo parsimony analysis of data scored allele-wise produced phylogenies most congruent with the results of SNAPP. In the case of study groups divergent enough for missing data to be phylogenetically informative (because of additional mutations preventing amplification of genomic fragments or bioinformatic establishment of homology), scoring of SNP data as a presence/absence matrix irrespective of allele

  14. GStream: Improving SNP and CNV Coverage on Genome-Wide Association Studies

    PubMed Central

    Alonso, Arnald; Marsal, Sara; Tortosa, Raül; Canela-Xandri, Oriol; Julià, Antonio

    2013-01-01

    We present GStream, a method that combines genome-wide SNP and CNV genotyping in the Illumina microarray platform with unprecedented accuracy. This new method outperforms previous well-established SNP genotyping software. More importantly, the CNV calling algorithm of GStream dramatically improves the results obtained by previous state-of-the-art methods and yields an accuracy that is close to that obtained by purely CNV-oriented technologies like Comparative Genomic Hybridization (CGH). We demonstrate the superior performance of GStream using microarray data generated from HapMap samples. Using the reference CNV calls generated by the 1000 Genomes Project (1KGP) and well-known studies on whole genome CNV characterization based either on CGH or genotyping microarray technologies, we show that GStream can increase the number of reliably detected variants up to 25% compared to previously developed methods. Furthermore, the increased genome coverage provided by GStream allows the discovery of CNVs in close linkage disequilibrium with SNPs, previously associated with disease risk in published Genome-Wide Association Studies (GWAS). These results could provide important insights into the biological mechanism underlying the detected disease risk association. With GStream, large-scale GWAS will not only benefit from the combined genotyping of SNPs and CNVs at an unprecedented accuracy, but will also take advantage of the computational efficiency of the method. PMID:23844243

  15. Genomic signatures reveal geographic adaption and human selection in cattle

    USDA-ARS?s Scientific Manuscript database

    We investigated geographic adaptation and human selection using high-density SNP data of five diverse cattle breeds. Based on allele frequency differences, we detected hundreds of candidate regions under positive selection across Holstein, Angus, Charolais, Brahman, and N'Dama. In addition to well-k...

  16. Multiplexed direct genomic selection (MDiGS): a pooled BAC capture approach for highly accurate CNV and SNP/INDEL detection.

    PubMed

    Alvarado, David M; Yang, Ping; Druley, Todd E; Lovett, Michael; Gurnett, Christina A

    2014-06-01

    Despite declining sequencing costs, few methods are available for cost-effective single-nucleotide polymorphism (SNP), insertion/deletion (INDEL) and copy number variation (CNV) discovery in a single assay. Commercially available methods require a high investment to a specific region and are only cost-effective for large samples. Here, we introduce a novel, flexible approach for multiplexed targeted sequencing and CNV analysis of large genomic regions called multiplexed direct genomic selection (MDiGS). MDiGS combines biotinylated bacterial artificial chromosome (BAC) capture and multiplexed pooled capture for SNP/INDEL and CNV detection of 96 multiplexed samples on a single MiSeq run. MDiGS is advantageous over other methods for CNV detection because pooled sample capture and hybridization to large contiguous BAC baits reduces sample and probe hybridization variability inherent in other methods. We performed MDiGS capture for three chromosomal regions consisting of ∼ 550 kb of coding and non-coding sequence with DNA from 253 patients with congenital lower limb disorders. PITX1 nonsense and HOXC11 S191F missense mutations were identified that segregate in clubfoot families. Using a novel pooled-capture reference strategy, we identified recurrent chromosome chr17q23.1q23.2 duplications and small HOXC 5' cluster deletions (51 kb and 12 kb). Given the current interest in coding and non-coding variants in human disease, MDiGS fulfills a niche for comprehensive and low-cost evaluation of CNVs, coding, and non-coding variants across candidate regions of interest. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Development of new SNP derived cleaved amplified polymorphic sequence marker set and its successful utilization in the genetic analysis of seed color variation in barley.

    PubMed

    Bungartz, Annemarie; Klaus, Marius; Mathew, Boby; Léon, Jens; Naz, Ali Ahmad

    2016-03-01

    The aim of the present study was to develop a new cost effective PCR based CAPS marker set using advantages of high-throughput SNP genotyping. Initially, SNP survey was made using 20 diverse barley genotypes via 9k iSelect array genotyping that resulted in 6334 polymorphic SNP markers. Principle component analysis using this marker data showed fine differentiation of barley diverse gene pool. Till this end, we developed 200 SNP derived CAPS markers distributed across the genome covering around 991cM with an average marker density of 5.09cM. Further, we genotyped 68 CAPS markers in an F2 population (Cheri×ICB181160) segregating for seed color variation in barley. Genetic mapping of seed color revealed putative linkage of single nuclear gene on chromosome 1H. These findings showed the proof of concept for the development and utility of a newer cost effective genomic tool kit to analyze broader genetic resources of barley worldwide. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Development of a Genetic Map for Onion (Allium cepa L.) Using Reference-Free Genotyping-by-Sequencing and SNP Assays

    PubMed Central

    Jo, Jinkwan; Purushotham, Preethi M.; Han, Koeun; Lee, Heung-Ryul; Nah, Gyoungju; Kang, Byoung-Cheorl

    2017-01-01

    Single nucleotide polymorphisms (SNPs) play important roles as molecular markers in plant genomics and breeding studies. Although onion (Allium cepa L.) is an important crop globally, relatively few molecular marker resources have been reported due to its large genome and high heterozygosity. Genotyping-by-sequencing (GBS) offers a greater degree of complexity reduction followed by concurrent SNP discovery and genotyping for species with complex genomes. In this study, GBS was employed for SNP mining in onion, which currently lacks a reference genome. A segregating F2 population, derived from a cross between ‘NW-001’ and ‘NW-002,’ as well as multiple parental lines were used for GBS analysis. A total of 56.15 Gbp of raw sequence data were generated and 1,851,428 SNPs were identified from the de novo assembled contigs. Stringent filtering resulted in 10,091 high-fidelity SNP markers. Robust SNPs that satisfied the segregation ratio criteria and with even distribution in the mapping population were used to construct an onion genetic map. The final map contained eight linkage groups and spanned a genetic length of 1,383 centiMorgans (cM), with an average marker interval of 8.08 cM. These robust SNPs were further analyzed using the high-throughput Fluidigm platform for marker validation. This is the first study in onion to develop genome-wide SNPs using GBS. The resulting SNP markers and developed linkage map will be valuable tools for genetic mapping of important agronomic traits and marker-assisted selection in onion breeding programs. PMID:28959273

  19. A low-density SNP array for analyzing differential selection in freshwater and marine populations of threespine stickleback (Gasterosteus aculeatus).

    PubMed

    Ferchaud, Anne-Laure; Pedersen, Susanne H; Bekkevold, Dorte; Jian, Jianbo; Niu, Yongchao; Hansen, Michael M

    2014-10-06

    The threespine stickleback (Gasterosteus aculeatus) has become an important model species for studying both contemporary and parallel evolution. In particular, differential adaptation to freshwater and marine environments has led to high differentiation between freshwater and marine stickleback populations at the phenotypic trait of lateral plate morphology and the underlying candidate gene Ectodysplacin (EDA). Many studies have focused on this trait and candidate gene, although other genes involved in marine-freshwater adaptation may be equally important. In order to develop a resource for rapid and cost efficient analysis of genetic divergence between freshwater and marine sticklebacks, we generated a low-density SNP (Single Nucleotide Polymorphism) array encompassing markers of chromosome regions under putative directional selection, along with neutral markers for background. RAD (Restriction site Associated DNA) sequencing of sixty individuals representing two freshwater and one marine population led to the identification of 33,993 SNP markers. Ninety-six of these were chosen for the low-density SNP array, among which 70 represented SNPs under putatively directional selection in freshwater vs. marine environments, whereas 26 SNPs were assumed to be neutral. Annotation of these regions revealed several genes that are candidates for affecting stickleback phenotypic variation, some of which have been observed in previous studies whereas others are new. We have developed a cost-efficient low-density SNP array that allows for rapid screening of polymorphisms in threespine stickleback. The array provides a valuable tool for analyzing adaptive divergence between freshwater and marine stickleback populations beyond the well-established candidate gene Ectodysplacin (EDA).

  20. An improved consensus linkage map of barley based on flow-sorted chromosomes and SNP markers

    USDA-ARS?s Scientific Manuscript database

    Recent advances in high-throughput genotyping have made it easier to combine information from different mapping populations into consensus genetic maps, which provide increased marker density and genome coverage compared to individual maps. Previously, a SNP-based genotyping platform was developed a...

  1. Exogenous NO administration and alpha-adrenergic vasoconstriction in human limbs.

    PubMed

    Rosenmeier, Jaya B; Fritzlar, Sandy J; Dinenno, Frank A; Joyner, Michael J

    2003-12-01

    Nitric oxide (NO) is capable of blunting alpha-adrenergic vasoconstriction in contracting skeletal muscles of experimental animals (functional sympatholysis). We therefore tested the hypothesis that exogenous NO administration can blunt alpha-adrenergic vasoconstriction in resting human limbs by measuring forearm blood flow (FBF; Doppler ultrasound) and blood pressure in eight healthy males during brachial artery infusions of three alpha-adrenergic constrictors (tyramine, which evokes endogenous norepinephrine release; phenylephrine, an alpha1-agonist; and clonidine, an alpha2-agonist). To simulate exercise hyperemia, the vasoconstriction caused by the alpha-agonists was compared during adenosine-mediated (>50% NO independent) and sodium nitroprusside-mediated (SNP; NO donor) vasodilation of the forearm. Both adenosine and SNP increased FBF from approximately 35-40 to approximately 200-250 ml/min. All three alpha-adrenergic constrictor drugs caused marked reductions in FBF and calculated forearm vascular conductance (P < 0.05). The relative reductions in forearm vascular conductance caused by the alpha-adrenergic constrictors during SNP infusion were similar (tyramine, -74 +/- 3 vs. -65 +/- 2%; clonidine, -44 +/- 6 vs. -44 +/- 6%; P > 0.05) or slightly greater (phenylephrine, -47 +/- 6 vs. -33 +/- 6%; P < 0.05) compared with the responses during adenosine. In conclusion, these results indicate that exogenous NO sufficient to raise blood flow to levels simulating those seen during exercise does not blunt alpha-adrenergic vasoconstriction in the resting human forearm.

  2. Development of a 63K SNP Array for Cotton and High-Density Mapping of Intraspecific and Interspecific Populations of Gossypium spp.

    PubMed Central

    Hulse-Kemp, Amanda M.; Lemm, Jana; Plieske, Joerg; Ashrafi, Hamid; Buyyarapu, Ramesh; Fang, David D.; Frelichowski, James; Giband, Marc; Hague, Steve; Hinze, Lori L.; Kochan, Kelli J.; Riggs, Penny K.; Scheffler, Jodi A.; Udall, Joshua A.; Ulloa, Mauricio; Wang, Shirley S.; Zhu, Qian-Hao; Bag, Sumit K.; Bhardwaj, Archana; Burke, John J.; Byers, Robert L.; Claverie, Michel; Gore, Michael A.; Harker, David B.; Islam, Md S.; Jenkins, Johnie N.; Jones, Don C.; Lacape, Jean-Marc; Llewellyn, Danny J.; Percy, Richard G.; Pepper, Alan E.; Poland, Jesse A.; Mohan Rai, Krishan; Sawant, Samir V.; Singh, Sunil Kumar; Spriggs, Andrew; Taylor, Jen M.; Wang, Fei; Yourstone, Scott M.; Zheng, Xiuting; Lawley, Cindy T.; Ganal, Martin W.; Van Deynze, Allen; Wilson, Iain W.; Stelly, David M.

    2015-01-01

    High-throughput genotyping arrays provide a standardized resource for plant breeding communities that are useful for a breadth of applications including high-density genetic mapping, genome-wide association studies (GWAS), genomic selection (GS), complex trait dissection, and studying patterns of genomic diversity among cultivars and wild accessions. We have developed the CottonSNP63K, an Illumina Infinium array containing assays for 45,104 putative intraspecific single nucleotide polymorphism (SNP) markers for use within the cultivated cotton species Gossypium hirsutum L. and 17,954 putative interspecific SNP markers for use with crosses of other cotton species with G. hirsutum. The SNPs on the array were developed from 13 different discovery sets that represent a diverse range of G. hirsutum germplasm and five other species: G. barbadense L., G. tomentosum Nuttal × Seemann, G. mustelinum Miers × Watt, G. armourianum Kearny, and G. longicalyx J.B. Hutchinson and Lee. The array was validated with 1,156 samples to generate cluster positions to facilitate automated analysis of 38,822 polymorphic markers. Two high-density genetic maps containing a total of 22,829 SNPs were generated for two F2 mapping populations, one intraspecific and one interspecific, and 3,533 SNP markers were co-occurring in both maps. The produced intraspecific genetic map is the first saturated map that associates into 26 linkage groups corresponding to the number of cotton chromosomes for a cross between two G. hirsutum lines. The linkage maps were shown to have high levels of collinearity to the JGI G. raimondii Ulbrich reference genome sequence. The CottonSNP63K array, cluster file and associated marker sequences constitute a major new resource for the global cotton research community. PMID:25908569

  3. Identification, Characterization, and Mapping of a Novel SNP Associated with Body Color Transparency in Juvenile Red Sea Bream (Pagrus major).

    PubMed

    Sawayama, Eitaro; Noguchi, Daiki; Nakayama, Kei; Takagi, Motohiro

    2018-03-23

    We previously reported a body color deformity in juvenile red sea bream, which shows transparency in the juvenile stage because of delayed chromatophore development compared with normal individuals, and this finding suggested a genetic cause based on parentage assessments. To conduct marker-assisted selection to eliminate broodstock inheriting the causative gene, developing DNA markers associated with the phenotype was needed. We first conducted SNP mining based on AFLP analysis using bulked-DNA from normal and transparent individuals. One SNP was identified from a transparent-specific AFLP fragment, which significantly associated with transparent individuals. Two alleles (A/G) were observed in this locus, and the genotype G/G was dominantly observed in the transparent groups (97.1%) collected from several production lots produced from different broodstock populations. A few normal individuals inherited the G/G genotype (5.0%), but the A/A and A/G genotypes were dominantly observed in the normal groups. The homologs region of the SNP was searched using a medaka genome database, and intron 12 of the Nell2a gene (located on chromosome 6 of the medaka genome) was highly matched. We also mapped the red sea bream Nell2a gene on the previously developed linkage maps, and this gene was mapped on a male linkage group, LG4-M. The newly found SNP was useful in eliminating broodstock possessing the causative gene of the body color transparency observed in juvenile stage of red sea bream.

  4. RNA sequencing to study gene expression and SNP variations associated with growth in zebrafish fed a plant protein-based diet.

    PubMed

    Ulloa, Pilar E; Rincón, Gonzalo; Islas-Trejo, Alma; Araneda, Cristian; Iturra, Patricia; Neira, Roberto; Medrano, Juan F

    2015-06-01

    The objectives of this study were to measure gene expression in zebrafish and then identify SNP to be used as potential markers in a growth association study. We developed an approach where muscle samples collected from low- and high-growth fish were analyzed using RNA-Sequencing (RNA-seq), and SNP were chosen from the genes that were differentially expressed between the low and high groups. A population of 24 families was fed a plant protein-based diet from the larval to adult stages. From a total of 440 males, 5 % of the fish from both tails of the weight gain distribution were selected. Total RNA was extracted from individual muscle of 8 low-growth and 8 high-growth fish. Two pooled RNA-Seq libraries were prepared for each phenotype using 4 fish per library. Libraries were sequenced using the Illumina GAII Sequencer and analyzed using the CLCBio genomic workbench software. One hundred and twenty-four genes were differentially expressed between phenotypes (p value < 0.05 and FDR < 0.2). From these genes, 164 SNP were selected and genotyped in 240 fish samples. Marker-trait analysis revealed 5 SNP associated with growth in key genes (Nars, Lmod2b, Cuzd1, Acta1b, and Plac8l1). These genes are good candidates for further growth studies in fish and to consider for identification of potential SNPs associated with different growth rates in response to a plant protein-based diet.

  5. Loss of heterozygosity at D8S262: an early genetic event of hepatocarcinogenesis.

    PubMed

    Zhu, Qiao; Gong, Li; Liu, Xiaoyan; Wang, Jun; Ren, Pin; Zhang, Wendong; Yao, Li; Han, Xiujuan; Zhu, Shaojun; Lan, Miao; Li, Yanhong; Zhang, Wei

    2015-06-16

    Hepatocellular carcinoma (HCC) is a multi-factor, multi-step, multi-gene and complicated process resulting from the accumulation of sequential genetic and epigenetic alterations. An important change among them is from precancerous lesions to HCC. However, only few studies have been reported about the sequential genetic changes during hepatocarcinogenesis. We observed firstly molecular karyotypes of 10 matched HCC using Affymetrix single-nucleotide polymorphism (SNP) 6.0 arrays, and found chromosomal fragments with high incidence (more than 70%) of loss of heterozygosity (LOH). Then, we selected 28 microsatellite markers at some gene spanning these chromosomal fragments, and examined the frequency of LOH of 128 matched HCC and 43 matched precancerous lesions-dysplastic nodules (DN) by a PCR-based analysis. Finally, we investigated the expression of proteins encoded by these genes in HCC, DN and the surrounding hepatic tissues. The result of Affymetrix SNP6.0 arrays demonstrated that more than 70% (7/10) cases had chromosomal fragment deletion on 4q13.3-35.1, 8p23.2-21.2, 16q11.2-24.3, and 17p13.3-12. Among 28 microsatellite markers selected, LOH frequencies at D8S262 for DN and HCC were found to be the highest, 51.2% and 72.7%, respectively. Immunohistochemically, the positive rate of its adjacent gene CSMD1 in HCC, DN, and the surrounding hepatic tissues were 27.3% (35/128), 75% (33/44), and 82% (105/128), respectively. LOH at D8S262 may be associated with an early genetic event of hepatocarcinogenesis, and a predictor for the monitor and prevention of HCC. The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1557074981159099 .

  6. Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study

    PubMed Central

    Fox, Ervin R.; Young, J. Hunter; Li, Yali; Dreisbach, Albert W.; Keating, Brendan J.; Musani, Solomon K.; Liu, Kiang; Morrison, Alanna C.; Ganesh, Santhi; Kutlar, Abdullah; Ramachandran, Vasan S.; Polak, Josef F.; Fabsitz, Richard R.; Dries, Daniel L.; Farlow, Deborah N.; Redline, Susan; Adeyemo, Adebowale; Hirschorn, Joel N.; Sun, Yan V.; Wyatt, Sharon B.; Penman, Alan D.; Palmas, Walter; Rotter, Jerome I.; Townsend, Raymond R.; Doumatey, Ayo P.; Tayo, Bamidele O.; Mosley, Thomas H.; Lyon, Helen N.; Kang, Sun J.; Rotimi, Charles N.; Cooper, Richard S.; Franceschini, Nora; Curb, J. David; Martin, Lisa W.; Eaton, Charles B.; Kardia, Sharon L.R.; Taylor, Herman A.; Caulfield, Mark J.; Ehret, Georg B.; Johnson, Toby; Chakravarti, Aravinda; Zhu, Xiaofeng; Levy, Daniel; Munroe, Patricia B.; Rice, Kenneth M.; Bochud, Murielle; Johnson, Andrew D.; Chasman, Daniel I.; Smith, Albert V.; Tobin, Martin D.; Verwoert, Germaine C.; Hwang, Shih-Jen; Pihur, Vasyl; Vollenweider, Peter; O'Reilly, Paul F.; Amin, Najaf; Bragg-Gresham, Jennifer L.; Teumer, Alexander; Glazer, Nicole L.; Launer, Lenore; Zhao, Jing Hua; Aulchenko, Yurii; Heath, Simon; Sõber, Siim; Parsa, Afshin; Luan, Jian'an; Arora, Pankaj; Dehghan, Abbas; Zhang, Feng; Lucas, Gavin; Hicks, Andrew A.; Jackson, Anne U.; Peden, John F.; Tanaka, Toshiko; Wild, Sarah H.; Rudan, Igor; Igl, Wilmar; Milaneschi, Yuri; Parker, Alex N.; Fava, Cristiano; Chambers, John C.; Kumari, Meena; JinGo, Min; van der Harst, Pim; Kao, Wen Hong Linda; Sjögren, Marketa; Vinay, D.G.; Alexander, Myriam; Tabara, Yasuharu; Shaw-Hawkins, Sue; Whincup, Peter H.; Liu, Yongmei; Shi, Gang; Kuusisto, Johanna; Seielstad, Mark; Sim, Xueling; Nguyen, Khanh-Dung Hoang; Lehtimäki, Terho; Matullo, Giuseppe; Wu, Ying; Gaunt, Tom R.; Charlotte Onland-Moret, N.; Cooper, Matthew N.; Platou, Carl G.P.; Org, Elin; Hardy, Rebecca; Dahgam, Santosh; Palmen, Jutta; Vitart, Veronique; Braund, Peter S.; Kuznetsova, Tatiana; Uiterwaal, Cuno S.P.M.; Campbell, Harry; Ludwig, Barbara; Tomaszewski, Maciej; Tzoulaki, Ioanna; Palmer, Nicholette D.; Aspelund, Thor; Garcia, Melissa; Chang, Yen-Pei C.; O'Connell, Jeffrey R.; Steinle, Nanette I.; Grobbee, Diederick E.; Arking, Dan E.; Hernandez, Dena; Najjar, Samer; McArdle, Wendy L.; Hadley, David; Brown, Morris J.; Connell, John M.; Hingorani, Aroon D.; Day, Ian N.M.; Lawlor, Debbie A.; Beilby, John P.; Lawrence, Robert W.; Clarke, Robert; Collins, Rory; Hopewell, Jemma C.; Ongen, Halit; Bis, Joshua C.; Kähönen, Mika; Viikari, Jorma; Adair, Linda S.; Lee, Nanette R.; Chen, Ming-Huei; Olden, Matthias; Pattaro, Cristian; Hoffman Bolton, Judith A.; Köttgen, Anna; Bergmann, Sven; Mooser, Vincent; Chaturvedi, Nish; Frayling, Timothy M.; Islam, Muhammad; Jafar, Tazeen H.; Erdmann, Jeanette; Kulkarni, Smita R.; Bornstein, Stefan R.; Grässler, Jürgen; Groop, Leif; Voight, Benjamin F.; Kettunen, Johannes; Howard, Philip; Taylor, Andrew; Guarrera, Simonetta; Ricceri, Fulvio; Emilsson, Valur; Plump, Andrew; Barroso, Inês; Khaw, Kay-Tee; Weder, Alan B.; Hunt, Steven C.; Bergman, Richard N.; Collins, Francis S.; Bonnycastle, Lori L.; Scott, Laura J.; Stringham, Heather M.; Peltonen, Leena; Perola, Markus; Vartiainen, Erkki; Brand, Stefan-Martin; Staessen, Jan A.; Wang, Thomas J.; Burton, Paul R.; SolerArtigas, Maria; Dong, Yanbin; Snieder, Harold; Wang, Xiaoling; Zhu, Haidong; Lohman, Kurt K.; Rudock, Megan E.; Heckbert, Susan R.; Smith, Nicholas L.; Wiggins, Kerri L.; Shriner, Daniel; Veldre, Gudrun; Viigimaa, Margus; Kinra, Sanjay; Prabhakaran, Dorairajan; Tripathy, Vikal; Langefeld, Carl D.; Rosengren, Annika; Thelle, Dag S.; MariaCorsi, Anna; Singleton, Andrew; Forrester, Terrence; Hilton, Gina; McKenzie, Colin A.; Salako, Tunde; Iwai, Naoharu; Kita, Yoshikuni; Ogihara, Toshio; Ohkubo, Takayoshi; Okamura, Tomonori; Ueshima, Hirotsugu; Umemura, Satoshi; Eyheramendy, Susana; Meitinger, Thomas; Wichmann, H.-Erich; Cho, Yoon Shin; Kim, Hyung-Lae; Lee, Jong-Young; Scott, James; Sehmi, Joban S.; Zhang, Weihua; Hedblad, Bo; Nilsson, Peter; Smith, George Davey; Wong, Andrew; Narisu, Narisu; Stančáková, Alena; Raffel, Leslie J.; Yao, Jie; Kathiresan, Sekar; O'Donnell, Chris; Schwartz, Steven M.; Arfan Ikram, M.; Longstreth, Will T.; Seshadri, Sudha; Shrine, Nick R.G.; Wain, Louise V.; Morken, Mario A.; Swift, Amy J.; Laitinen, Jaana; Prokopenko, Inga; Zitting, Paavo; Cooper, Jackie A.; Humphries, Steve E.; Danesh, John; Rasheed, Asif; Goel, Anuj; Hamsten, Anders; Watkins, Hugh; Bakker, Stephan J.L.; van Gilst, Wiek H.; Janipalli, Charles S.; Radha Mani, K.; Yajnik, Chittaranjan S.; Hofman, Albert; Mattace-Raso, Francesco U.S.; Oostra, Ben A.; Demirkan, Ayse; Isaacs, Aaron; Rivadeneira, Fernando; Lakatta, Edward G.; Orru, Marco; Scuteri, Angelo; Ala-Korpela, Mika; Kangas, Antti J.; Lyytikäinen, Leo-Pekka; Soininen, Pasi; Tukiainen, Taru; Würz, Peter; Twee-Hee Ong, Rick; Dörr, Marcus; Kroemer, Heyo K.; Völker, Uwe; Völzke, Henry; Galan, Pilar; Hercberg, Serge; Lathrop, Mark; Zelenika, Diana; Deloukas, Panos; Mangino, Massimo; Spector, Tim D.; Zhai, Guangju; Meschia, James F.; Nalls, Michael A.; Sharma, Pankaj; Terzic, Janos; Kranthi Kumar, M.J.; Denniff, Matthew; Zukowska-Szczechowska, Ewa; Wagenknecht, Lynne E.; Fowkes, Gerald R.; Charchar, Fadi J.; Schwarz, Peter E.H.; Hayward, Caroline; Guo, Xiuqing; Bots, Michiel L.; Brand, Eva; Samani, Nilesh J.; Polasek, Ozren; Talmud, Philippa J.; Nyberg, Fredrik; Kuh, Diana; Laan, Maris; Hveem, Kristian; Palmer, Lyle J.; van der Schouw, Yvonne T.; Casas, Juan P.; Mohlke, Karen L.; Vineis, Paolo; Raitakari, Olli; Wong, Tien Y.; Shyong Tai, E.; Laakso, Markku; Rao, Dabeeru C.; Harris, Tamara B.; Morris, Richard W.; Dominiczak, Anna F.; Kivimaki, Mika; Marmot, Michael G.; Miki, Tetsuro; Saleheen, Danish; Chandak, Giriraj R.; Coresh, Josef; Navis, Gerjan; Salomaa, Veikko; Han, Bok-Ghee; Kooner, Jaspal S.; Melander, Olle; Ridker, Paul M.; Bandinelli, Stefania; Gyllensten, Ulf B.; Wright, Alan F.; Wilson, James F.; Ferrucci, Luigi; Farrall, Martin; Tuomilehto, Jaakko; Pramstaller, Peter P.; Elosua, Roberto; Soranzo, Nicole; Sijbrands, Eric J.G.; Altshuler, David; Loos, Ruth J.F.; Shuldiner, Alan R.; Gieger, Christian; Meneton, Pierre; Uitterlinden, Andre G.; Wareham, Nicholas J.; Gudnason, Vilmundur; Rettig, Rainer; Uda, Manuela; Strachan, David P.; Witteman, Jacqueline C.M.; Hartikainen, Anna-Liisa; Beckmann, Jacques S.; Boerwinkle, Eric; Boehnke, Michael; Larson, Martin G.; Järvelin, Marjo-Riitta; Psaty, Bruce M.; Abecasis, Gonçalo R.; Elliott, Paul; van Duijn , Cornelia M.; Newton-Cheh, Christopher

    2011-01-01

    The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10−8) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10−8). The top IBC association for SBP was rs2012318 (P= 6.4 × 10−6) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10−6) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexity. PMID:21378095

  7. Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study.

    PubMed

    Fox, Ervin R; Young, J Hunter; Li, Yali; Dreisbach, Albert W; Keating, Brendan J; Musani, Solomon K; Liu, Kiang; Morrison, Alanna C; Ganesh, Santhi; Kutlar, Abdullah; Ramachandran, Vasan S; Polak, Josef F; Fabsitz, Richard R; Dries, Daniel L; Farlow, Deborah N; Redline, Susan; Adeyemo, Adebowale; Hirschorn, Joel N; Sun, Yan V; Wyatt, Sharon B; Penman, Alan D; Palmas, Walter; Rotter, Jerome I; Townsend, Raymond R; Doumatey, Ayo P; Tayo, Bamidele O; Mosley, Thomas H; Lyon, Helen N; Kang, Sun J; Rotimi, Charles N; Cooper, Richard S; Franceschini, Nora; Curb, J David; Martin, Lisa W; Eaton, Charles B; Kardia, Sharon L R; Taylor, Herman A; Caulfield, Mark J; Ehret, Georg B; Johnson, Toby; Chakravarti, Aravinda; Zhu, Xiaofeng; Levy, Daniel

    2011-06-01

    The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10(-8)) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10(-8)). The top IBC association for SBP was rs2012318 (P= 6.4 × 10(-6)) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10(-6)) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexity.

  8. Lack of association of mirSNP rs11174811 in AVPR1A gene with arterial blood pressure and hypertension in South Indian population.

    PubMed

    Koshy, Linda; Vijayalekshmi, S V; Harikrishnan, S; Raman, Kutty V; Jissa, V T; Jayakumaran Nair, A; Gangaprasad, A; Nair, G M; Sudhakaran, P R

    2017-11-28

    Epigenetic regulation of arterial blood pressure mediated through mirSNPs in renin-angiotensin aldosterone system (RAAS) genes is a less explored hypothesis. Recently, the mirSNP rs11174811 in the 3'UTR of the AVPR1A gene was associated with higher arterial blood pressure in a large study population from the Study of Myocardial Infarctions Leiden (SMILE). The aim of the present study was to replicate the association of mirSNP rs11174811 with blood pressure outcomes and hypertension in a south Indian population. Four hundred and fifteen hypertensive cases and 416 normotensive controls were genotyped using a 5' nuclease allelic discrimination assay. Logistic regression was used to test the association of mirSNP rs11174811 with the hypertension phenotype. Censored normal regression was used to test the association of the polymorphism with continuous blood pressure outcomes such as systolic and diastolic blood pressure. The mirSNP rs11174811 did not show any significant association with hypertension. The adjusted odds ratio was 1.02, with 95% CI of 0.72 to 1.45 (p = 0.909). The mean systolic and diastolic blood pressure values were not significantly different across the three genotypic groups, between hypertensives and normotensives, or when stratified by gender. Despite having a similar minor allele frequency (MAF) of 14.5% compared with the SMILE cohort, our results did not support an association of the mirSNP rs11174811 with the hypertension phenotype or with continuous blood pressure outcomes in the south Indian population.

  9. SNP discovery and High Resolution Melting Analysis from massive transcriptome sequencing in the California red abalone Haliotis rufescens.

    PubMed

    Valenzuela-Muñoz, Valentina; Araya-Garay, José Miguel; Gallardo-Escárate, Cristian

    2013-06-01

    The California red abalone, Haliotis rufescens that belongs to the Haliotidae family, is the largest species of abalone in the world that has sustained the major fishery and aquaculture production in the USA and Mexico. This native mollusk has not been evaluated or assigned a conservation category even though in the last few decades it was heavily exploited until it disappeared in some areas along the California coast. In Chile, the red abalone was introduced in the 1970s from California wild abalone stocks for the purposes of aquaculture. Considering the number of years that the red abalone has been cultivated in Chile crucial genetic information is scarce and critical issues remain unresolved. This study reports and validates novel single nucleotide polymorphisms (SNP) markers for the red abalone H. rufescens using cDNA pyrosequencing. A total of 622 high quality SNPs were identified in 146 sequences with an estimated frequency of 1 SNP each 1000bp. Forty-five SNPs markers with functional information for gene ontology were selected. Of these, 8 were polymorphic among the individuals screened: Heat shock protein 70 (HSP70), vitellogenin (VTG), lysin, alginate lyase enzyme (AL), Glucose-regulated protein 94 (GRP94), fructose-bisphosphate aldolase (FBA), sulfatase 1A precursor (S1AP) and ornithine decarboxylase antizyme (ODC). Two additional sequences were also identified with polymorphisms but no similarities with known proteins were achieved. To validate the putative SNP markers, High Resolution Melting Analysis (HRMA) was conducted in a wild and hatchery-bred population. Additionally, SNP cross-amplifications were tested in two further native abalone species, Haliotis fulgens and Haliotis corrugata. This study provides novel candidate genes that could be used to evaluate loss of genetic diversity due to hatchery selection or inbreeding effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Sample-to-SNP kit: a reliable, easy and fast tool for the detection of HFE p.H63D and p.C282Y variations associated to hereditary hemochromatosis.

    PubMed

    Nielsen, Peter B; Petersen, Maja S; Ystaas, Viviana; Andersen, Rolf V; Hansen, Karin M; Blaabjerg, Vibeke; Refstrup, Mette

    2012-10-01

    Classical hereditary hemochromatosis involves the HFE-gene and diagnostic analysis of the DNA variants HFE p.C282Y (c.845G>A; rs1800562) and HFE p.H63D (c.187C>G; rs1799945). The affected protein alters the iron homeostasis resulting in iron overload in various tissues. The aim of this study was to validate the TaqMan-based Sample-to-SNP protocol for the analysis of the HFE-p.C282Y and p.H63D variants with regard to accuracy, usefulness and reproducibility compared to an existing SNP protocol. The Sample-to-SNP protocol uses an approach where the DNA template is made accessible from a cell lysate followed by TaqMan analysis. Besides the HFE-SNPs other eight SNPs were used as well. These SNPs were: Coagulation factor II-gene F2 c.20210G>A, Coagulation factor V-gene F5 p.R506Q (c.1517G>A; rs121917732), Mitochondria SNP: mt7028 G>A, Mitochondria SNP: mt12308 A>G, Proprotein convertase subtilisin/kexin type 9-gene PCSK9 p.R46L (c.137G>T), Plutathione S-transferase pi 1-gene GSTP1 p.I105V (c313A>G; rs1695), LXR g.-171 A>G, ZNF202 g.-118 G>T. In conclusion the Sample-to-SNP kit proved to be an accurate, reliable, robust, easy to use and rapid TaqMan-based SNP detection protocol, which could be quickly implemented in a routine diagnostic or research facility. Copyright © 2012. Published by Elsevier B.V.

  11. Revisiting adverse effects of cross-hybridization in Affymetrix gene expression data: do they matter for correlation analysis?

    PubMed

    Klebanov, Lev; Chen, Linlin; Yakovlev, Andrei

    2007-11-07

    This work was undertaken in response to a recently published paper by Okoniewski and Miller (BMC Bioinformatics 2006, 7: Article 276). The authors of that paper came to the conclusion that the process of multiple targeting in short oligonucleotide microarrays induces spurious correlations and this effect may deteriorate the inference on correlation coefficients. The design of their study and supporting simulations cast serious doubt upon the validity of this conclusion. The work by Okoniewski and Miller drove us to revisit the issue by means of experimentation with biological data and probabilistic modeling of cross-hybridization effects. We have identified two serious flaws in the study by Okoniewski and Miller: (1) The data used in their paper are not amenable to correlation analysis; (2) The proposed simulation model is inadequate for studying the effects of cross-hybridization. Using two other data sets, we have shown that removing multiply targeted probe sets does not lead to a shift in the histogram of sample correlation coefficients towards smaller values. A more realistic approach to mathematical modeling of cross-hybridization demonstrates that this process is by far more complex than the simplistic model considered by the authors. A diversity of correlation effects (such as the induction of positive or negative correlations) caused by cross-hybridization can be expected in theory but there are natural limitations on the ability to provide quantitative insights into such effects due to the fact that they are not directly observable. The proposed stochastic model is instrumental in studying general regularities in hybridization interaction between probe sets in microarray data. As the problem stands now, there is no compelling reason to believe that multiple targeting causes a large-scale effect on the correlation structure of Affymetrix gene expression data. Our analysis suggests that the observed long-range correlations in microarray data are of a

  12. Genome-Wide SNP Genotyping to Infer the Effects on Gene Functions in Tomato

    PubMed Central

    Hirakawa, Hideki; Shirasawa, Kenta; Ohyama, Akio; Fukuoka, Hiroyuki; Aoki, Koh; Rothan, Christophe; Sato, Shusei; Isobe, Sachiko; Tabata, Satoshi

    2013-01-01

    The genotype data of 7054 single nucleotide polymorphism (SNP) loci in 40 tomato lines, including inbred lines, F1 hybrids, and wild relatives, were collected using Illumina's Infinium and GoldenGate assay platforms, the latter of which was utilized in our previous study. The dendrogram based on the genotype data corresponded well to the breeding types of tomato and wild relatives. The SNPs were classified into six categories according to their positions in the genes predicted on the tomato genome sequence. The genes with SNPs were annotated by homology searches against the nucleotide and protein databases, as well as by domain searches, and they were classified into the functional categories defined by the NCBI's eukaryotic orthologous groups (KOG). To infer the SNPs' effects on the gene functions, the three-dimensional structures of the 843 proteins that were encoded by the genes with SNPs causing missense mutations were constructed by homology modelling, and 200 of these proteins were considered to carry non-synonymous amino acid substitutions in the predicted functional sites. The SNP information obtained in this study is available at the Kazusa Tomato Genomics Database (http://plant1.kazusa.or.jp/tomato/). PMID:23482505

  13. Signatures of negative selection in the genetic architecture of human complex traits.

    PubMed

    Zeng, Jian; de Vlaming, Ronald; Wu, Yang; Robinson, Matthew R; Lloyd-Jones, Luke R; Yengo, Loic; Yap, Chloe X; Xue, Angli; Sidorenko, Julia; McRae, Allan F; Powell, Joseph E; Montgomery, Grant W; Metspalu, Andres; Esko, Tonu; Gibson, Greg; Wray, Naomi R; Visscher, Peter M; Yang, Jian

    2018-05-01

    We develop a Bayesian mixed linear model that simultaneously estimates single-nucleotide polymorphism (SNP)-based heritability, polygenicity (proportion of SNPs with nonzero effects), and the relationship between SNP effect size and minor allele frequency for complex traits in conventionally unrelated individuals using genome-wide SNP data. We apply the method to 28 complex traits in the UK Biobank data (N = 126,752) and show that on average, 6% of SNPs have nonzero effects, which in total explain 22% of phenotypic variance. We detect significant (P < 0.05/28) signatures of natural selection in the genetic architecture of 23 traits, including reproductive, cardiovascular, and anthropometric traits, as well as educational attainment. The significant estimates of the relationship between effect size and minor allele frequency in complex traits are consistent with a model of negative (or purifying) selection, as confirmed by forward simulation. We conclude that negative selection acts pervasively on the genetic variants associated with human complex traits.

  14. A Whole Genome DArTseq and SNP Analysis for Genetic Diversity Assessment in Durum Wheat from Central Fertile Crescent

    PubMed Central

    Shahid, Muhammad Qasim; Çiftçi, Vahdettin; E. Sáenz de Miera, Luis; Aasim, Muhammad; Nadeem, Muhammad Azhar; Aktaş, Husnu; Özkan, Hakan; Hatipoğlu, Rüştü

    2017-01-01

    Until now, little attention has been paid to the geographic distribution and evaluation of genetic diversity of durum wheat from the Central Fertile Crescent (modern-day Turkey and Syria). Turkey and Syria are considered as primary centers of wheat diversity, and thousands of locally adapted wheat landraces are still present in the farmers’ small fields. We planned this study to evaluate the genetic diversity of durum wheat landraces from the Central Fertile Crescent by genotyping based on DArTseq and SNP analysis. A total of 39,568 DArTseq and 20,661 SNP markers were used to characterize the genetic characteristic of 91 durum wheat land races. Clustering based on Neighbor joining analysis, principal coordinate as well as Bayesian model implemented in structure, clearly showed that the grouping pattern is not associated with the geographical distribution of the durum wheat due to the mixing of the Turkish and Syrian landraces. Significant correlation between DArTseq and SNP markers was observed in the Mantel test. However, we detected a non-significant relationship between geographical coordinates and DArTseq (r = -0.085) and SNP (r = -0.039) loci. These results showed that unconscious farmer selection and lack of the commercial varieties might have resulted in the exchange of genetic material and this was apparent in the genetic structure of durum wheat in Turkey and Syria. The genomic characterization presented here is an essential step towards a future exploitation of the available durum wheat genetic resources in genomic and breeding programs. The results of this study have also depicted a clear insight about the genetic diversity of wheat accessions from the Central Fertile Crescent. PMID:28099442

  15. Prediction of the optimum hybridization conditions of dot-blot-SNP analysis using estimated melting temperature of oligonucleotide probes.

    PubMed

    Shiokai, Sachiko; Kitashiba, Hiroyasu; Nishio, Takeshi

    2010-08-01

    Although the dot-blot-SNP technique is a simple cost-saving technique suitable for genotyping of many plant individuals, optimization of hybridization and washing conditions for each SNP marker requires much time and labor. For prediction of the optimum hybridization conditions for each probe, we compared T (m) values estimated from nucleotide sequences using the DINAMelt web server, measured T (m) values, and hybridization conditions yielding allele-specific signals. The estimated T (m) values were comparable to the measured T (m) values with small differences of less than 3 degrees C for most of the probes. There were differences of approximately 14 degrees C between the specific signal detection conditions and estimated T (m) values. Change of one level of SSC concentrations of 0.1, 0.2, 0.5, and 1.0x SSC corresponded to a difference of approximately 5 degrees C in optimum signal detection temperature. Increasing the sensitivity of signal detection by shortening the exposure time to X-ray film changed the optimum hybridization condition for specific signal detection. Addition of competitive oligonucleotides to the hybridization mixture increased the suitable hybridization conditions by 1.8. Based on these results, optimum hybridization conditions for newly produced dot-blot-SNP markers will become predictable.

  16. Identification of T1D susceptibility genes within the MHC region by combining protein interaction networks and SNP genotyping data

    PubMed Central

    Brorsson, C.; Hansen, N. T.; Lage, K.; Bergholdt, R.; Brunak, S.; Pociot, F.

    2009-01-01

    Aim To develop novel methods for identifying new genes that contribute to the risk of developing type 1 diabetes within the Major Histocompatibility Complex (MHC) region on chromosome 6, independently of the known linkage disequilibrium (LD) between human leucocyte antigen (HLA)-DRB1, -DQA1, -DQB1 genes. Methods We have developed a novel method that combines single nucleotide polymorphism (SNP) genotyping data with protein–protein interaction (ppi) networks to identify disease-associated network modules enriched for proteins encoded from the MHC region. Approximately 2500 SNPs located in the 4 Mb MHC region were analysed in 1000 affected offspring trios generated by the Type 1 Diabetes Genetics Consortium (T1DGC). The most associated SNP in each gene was chosen and genes were mapped to ppi networks for identification of interaction partners. The association testing and resulting interacting protein modules were statistically evaluated using permutation. Results A total of 151 genes could be mapped to nodes within the protein interaction network and their interaction partners were identified. Five protein interaction modules reached statistical significance using this approach. The identified proteins are well known in the pathogenesis of T1D, but the modules also contain additional candidates that have been implicated in β-cell development and diabetic complications. Conclusions The extensive LD within the MHC region makes it important to develop new methods for analysing genotyping data for identification of additional risk genes for T1D. Combining genetic data with knowledge about functional pathways provides new insight into mechanisms underlying T1D. PMID:19143816

  17. Nitric oxide is not permissive for cutaneous active vasodilatation in humans.

    PubMed

    Wilkins, Brad W; Holowatz, Lacy A; Wong, Brett J; Minson, Christopher T

    2003-05-01

    The precise role of nitric oxide (NO) in cutaneous active vasodilatation in humans is unknown. We tested the hypothesis that NO is necessary to permit the action of an unknown vasodilator. Specifically, we investigated whether a low-dose infusion of exogenous NO, in the form of sodium nitroprusside (SNP), would fully restore vasodilatation in an area of skin in which endogenous NO was inhibited during hyperthermia. This finding would suggest a 'permissive' role for NO in active vasodilatation. Eight subjects were instrumented with three microdialysis fibres in forearm skin. Sites were randomly assigned to (1) Site A: control site; (2) Site B: NO synthase (NOS) inhibition during established hyperthermia; or (3) Site C: NOS inhibition throughout the protocol. Red blood cell flux was measured using laser-Doppler flowmetry (LDF) and cutaneous vascular conductance (CVC; LDF/mean arterial pressure) was normalized to maximal vasodilatation at each site. In Site B, NG-nitro-L-arginine methyl ester (L-NAME) infusion during hyperthermia reduced CVC by approximately 32 % (65 +/- 4 % CVCmax vs. 45 +/- 4 % CVCmax; P < 0.05). Vasodilatation was not restored to pre-NOS inhibition values in this site following low-dose SNP infusion (55 +/- 4 % CVCmax vs. 65 +/- 4 % CVCmax; P < 0.05). CVC remained significantly lower than the control site with low-dose SNP infusion in Site C (P < 0.05). The rise in CVC with low-dose SNP (deltaCVC) was significantly greater in Site B and Site C during hyperthermia compared to normothermia (P < 0.05). No difference in deltaCVC was observed between hyperthermia and normothermia in the control site (Site A). Thus, NO does not act permissively in cutaneous active vasodilatation in humans but may directly mediate vasodilatation and enhance the effect of an unknown active vasodilator.

  18. [SNP-19 genotypic variants of CAPN10 gene and its relation to diabetes mellitus type 2 in a population of Ciudad Juarez, Mexico].

    PubMed

    Loya Méndez, Yolanda; Reyes Leal, Gilberto; Sánchez González, Adriana; Portillo Reyes, Verónica; Reyes Ruvalcaba, David; Bojórquez Rangel, Guillermo

    2014-09-28

    Diabetes Mellitus (DM) type 2 is a common pathology with multifactorial etiology, which exact genetic bases remain unknown. Some studies suggest that single nucleotides polymorphisms (SNPs) in the CAPN10 gene (Locus 2q37.3) could be associated with the development of this disease, including the insertion/deletion polymorphism SNP-19 (2R→3R). The present study determined the association between the SNP-19 and the risk of developing DM type 2 in Ciudad Juarez population. For this study 107 participants were selected: 43 diabetics type 2 (cases) and 64 non diabetics with no family history of DM type 2 in first grade (control). Anthropometric studies were realized as well as lipids, lipoproteins and serum glucose biochemical profiles. The genotypification of SNP-19 was performed using peripheral blood lymphocytes DNA, polymerase chain reactions (PCR), and electrophoretic analysis in agarose gels. Once obtained the genotypic and allelic frequencies, the Hardy-Weinberg equilibrium test (GenAlEx 6.4) was also performed. Using the X² analysis it was identified the genotypic differences between cases and control with higher frequency of the homozygous genotype 3R of SNP- 19 in the cases group (0.418) compared to control group (0.265). Also, it was observed an association between genotype 2R/3R with elevated weight, body mass index, and waist and hip circumferences, but only in the diabetic group (P=< 0.05). The findings in this study suggest that SNP-19 in CAPN10 may participate in the development of DM type 2 in the studied population. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  19. Modeling heterogeneous (co)variances from adjacent-SNP groups improves genomic prediction for milk protein composition traits.

    PubMed

    Gebreyesus, Grum; Lund, Mogens S; Buitenhuis, Bart; Bovenhuis, Henk; Poulsen, Nina A; Janss, Luc G

    2017-12-05

    Accurate genomic prediction requires a large reference population, which is problematic for traits that are expensive to measure. Traits related to milk protein composition are not routinely recorded due to costly procedures and are considered to be controlled by a few quantitative trait loci of large effect. The amount of variation explained may vary between regions leading to heterogeneous (co)variance patterns across the genome. Genomic prediction models that can efficiently take such heterogeneity of (co)variances into account can result in improved prediction reliability. In this study, we developed and implemented novel univariate and bivariate Bayesian prediction models, based on estimates of heterogeneous (co)variances for genome segments (BayesAS). Available data consisted of milk protein composition traits measured on cows and de-regressed proofs of total protein yield derived for bulls. Single-nucleotide polymorphisms (SNPs), from 50K SNP arrays, were grouped into non-overlapping genome segments. A segment was defined as one SNP, or a group of 50, 100, or 200 adjacent SNPs, or one chromosome, or the whole genome. Traditional univariate and bivariate genomic best linear unbiased prediction (GBLUP) models were also run for comparison. Reliabilities were calculated through a resampling strategy and using deterministic formula. BayesAS models improved prediction reliability for most of the traits compared to GBLUP models and this gain depended on segment size and genetic architecture of the traits. The gain in prediction reliability was especially marked for the protein composition traits β-CN, κ-CN and β-LG, for which prediction reliabilities were improved by 49 percentage points on average using the MT-BayesAS model with a 100-SNP segment size compared to the bivariate GBLUP. Prediction reliabilities were highest with the BayesAS model that uses a 100-SNP segment size. The bivariate versions of our BayesAS models resulted in extra gains of up to 6% in

  20. Construction of an SNP-based high-density linkage map for flax (Linum usitatissimum L.) using specific length amplified fragment sequencing (SLAF-seq) technology.

    PubMed

    Yi, Liuxi; Gao, Fengyun; Siqin, Bateer; Zhou, Yu; Li, Qiang; Zhao, Xiaoqing; Jia, Xiaoyun; Zhang, Hui

    2017-01-01

    Flax is an important crop for oil and fiber, however, no high-density genetic maps have been reported for this species. Specific length amplified fragment sequencing (SLAF-seq) is a high-resolution strategy for large scale de novo discovery and genotyping of single nucleotide polymorphisms. In this study, SLAF-seq was employed to develop SNP markers in an F2 population to construct a high-density genetic map for flax. In total, 196.29 million paired-end reads were obtained. The average sequencing depth was 25.08 in male parent, 32.17 in the female parent, and 9.64 in each F2 progeny. In total, 389,288 polymorphic SLAFs were detected, from which 260,380 polymorphic SNPs were developed. After filtering, 4,638 SNPs were found suitable for genetic map construction. The final genetic map included 4,145 SNP markers on 15 linkage groups and was 2,632.94 cM in length, with an average distance of 0.64 cM between adjacent markers. To our knowledge, this map is the densest SNP-based genetic map for flax. The SNP markers and genetic map reported in here will serve as a foundation for the fine mapping of quantitative trait loci (QTLs), map-based gene cloning and marker assisted selection (MAS) for flax.

  1. High-Density SNP Genotyping to Define β-Globin Locus Haplotypes

    PubMed Central

    Liu, Li; Muralidhar, Shalini; Singh, Manisha; Sylvan, Caprice; Kalra, Inderdeep S.; Quinn, Charles T.; Onyekwere, Onyinye C.; Pace, Betty S.

    2014-01-01

    Five major β-globin locus haplotypes have been established in individuals with sickle cell disease (SCD) from the Benin, Bantu, Senegal, Cameroon, and Arab-Indian populations. Historically, β-haplotypes were established using restriction fragment length polymorphism (RFLP) analysis across the β-locus, which consists of five functional β-like globin genes located on chromosome 11. Previous attempts to correlate these haplotypes as robust predictors of clinical phenotypes observed in SCD have not been successful. We speculate that the coverage and distribution of the RFLP sites located proximal to or within the globin genes are not sufficiently dense to accurately reflect the complexity of this region. To test our hypothesis, we performed RFLP analysis and high-density single nucleotide polymorphism (SNP) genotyping across the β-locus using DNA samples from either healthy African Americans with normal hemoglobin A (HbAA) or individuals with homozygous SS (HbSS) disease. Using the genotyping data from 88 SNPs and Haploview analysis, we generated a greater number of haplotypes than that observed with RFLP analysis alone. Furthermore, a unique pattern of long-range linkage disequilibrium between the locus control region and the β-like globin genes was observed in the HbSS group. Interestingly, we observed multiple SNPs within the HindIII restriction site located in the Gγ-globin intervening sequence II which produced the same RFLP pattern. These findings illustrated the inability of RFLP analysis to decipher the complexity of sequence variations that impacts genomic structure in this region. Our data suggest that high density SNP mapping may be required to accurately define β-haplotypes that correlate with the different clinical phenotypes observed in SCD. PMID:18829352

  2. Genomewide single nucleotide polymorphism discovery in Atlantic salmon (Salmo salar): validation in wild and farmed American and European populations.

    PubMed

    Yáñez, J M; Naswa, S; López, M E; Bassini, L; Correa, K; Gilbey, J; Bernatchez, L; Norris, A; Neira, R; Lhorente, J P; Schnable, P S; Newman, S; Mileham, A; Deeb, N; Di Genova, A; Maass, A

    2016-07-01

    A considerable number of single nucleotide polymorphisms (SNPs) are required to elucidate genotype-phenotype associations and determine the molecular basis of important traits. In this work, we carried out de novo SNP discovery accounting for both genome duplication and genetic variation from American and European salmon populations. A total of 9 736 473 nonredundant SNPs were identified across a set of 20 fish by whole-genome sequencing. After applying six bioinformatic filtering steps, 200 K SNPs were selected to develop an Affymetrix Axiom(®) myDesign Custom Array. This array was used to genotype 480 fish representing wild and farmed salmon from Europe, North America and Chile. A total of 159 099 (79.6%) SNPs were validated as high quality based on clustering properties. A total of 151 509 validated SNPs showed a unique position in the genome. When comparing these SNPs against 238 572 markers currently available in two other Atlantic salmon arrays, only 4.6% of the SNP overlapped with the panel developed in this study. This novel high-density SNP panel will be very useful for the dissection of economically and ecologically relevant traits, enhancing breeding programmes through genomic selection as well as supporting genetic studies in both wild and farmed populations of Atlantic salmon using high-resolution genomewide information. © 2016 John Wiley & Sons Ltd.

  3. Association of the expression levels in the skeletal muscle and a SNP in the CDC10 gene with growth-related traits in Japanese Black beef cattle.

    PubMed

    Tong, B; Li, G P; Sasaki, S; Muramatsu, Y; Ohta, T; Kose, H; Yamada, T

    2015-04-01

    Growth performance, as well as marbling, is the main breeding objective in Japanese Black (JB) cattle, the major beef breed in Japan. The septin 7 (CDC10) gene, involved in cellular proliferation, is located within a genomic region of a quantitative trait locus for growth-related traits. In this study, we first showed that the expression levels of the CDC10 gene in the skeletal muscle were higher in JB steers with extremely high growth performance than in JB steers with extremely low growth, using real-time PCR. Further, a single nucleotide polymorphism (SNP), NC_007302.5:g.63264949G>C, was detected in the promoter region of the CDC10 gene and genotyped in three Japanese cattle breeds (known as 'Wagyu' in Japan) and the Brown Swiss dairy cattle breed. All four cattle populations showed a moderate genetic diversity at the SNP of the CDC10 gene. An association analysis indicated that the SNP was associated with growth-related traits in JB cattle. These findings suggest possible effects of the expression levels in the skeletal muscle and the SNP of the CDC10 gene on growth-related traits in JB cattle. The CDC10 SNP may be useful for effective marker-assisted selection to increase beef productivity in JB beef cattle. © 2015 Stichting International Foundation for Animal Genetics.

  4. Whole-Genome SNP Association in the Horse: Identification of a Deletion in Myosin Va Responsible for Lavender Foal Syndrome

    PubMed Central

    Brooks, Samantha A.; Gabreski, Nicole; Miller, Donald; Brisbin, Abra; Brown, Helen E.; Streeter, Cassandra; Mezey, Jason; Cook, Deborah; Antczak, Douglas F.

    2010-01-01

    Lavender Foal Syndrome (LFS) is a lethal inherited disease of horses with a suspected autosomal recessive mode of inheritance. LFS has been primarily diagnosed in a subgroup of the Arabian breed, the Egyptian Arabian horse. The condition is characterized by multiple neurological abnormalities and a dilute coat color. Candidate genes based on comparative phenotypes in mice and humans include the ras-associated protein RAB27a (RAB27A) and myosin Va (MYO5A). Here we report mapping of the locus responsible for LFS using a small set of 36 horses segregating for LFS. These horses were genotyped using a newly available single nucleotide polymorphism (SNP) chip containing 56,402 discriminatory elements. The whole genome scan identified an associated region containing these two functional candidate genes. Exon sequencing of the MYO5A gene from an affected foal revealed a single base deletion in exon 30 that changes the reading frame and introduces a premature stop codon. A PCR–based Restriction Fragment Length Polymorphism (PCR–RFLP) assay was designed and used to investigate the frequency of the mutant gene. All affected horses tested were homozygous for this mutation. Heterozygous carriers were detected in high frequency in families segregating for this trait, and the frequency of carriers in unrelated Egyptian Arabians was 10.3%. The mapping and discovery of the LFS mutation represents the first successful use of whole-genome SNP scanning in the horse for any trait. The RFLP assay can be used to assist breeders in avoiding carrier-to-carrier matings and thus in preventing the birth of affected foals. PMID:20419149

  5. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Jae-Sung; Jung, Yeon-Hwa; Cho, Mi-Young

    Highlights: • Co-culture of hSDMSCs with SNP-stimulated chondrocytes improves anti-inflammation. • Co-culture system produces IGF-1. • Co-culture system suppresses inflammatory genes expression. • Co-culture system improves cell proliferation. • Exogenous IGF-1 inhibits inflammatory activity in SNP-stimulated chondrocytes. - Abstract: Rheumatoid arthritis (RA) and osteoarthritis (OA) are primarily chronic inflammatory diseases. Mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the mesodermal lineage, and to regulate immunomodulatory activity. Specifically, MSCs have been shown to secrete insulin-like growth factor 1 (IGF-1). The purpose of the present study was to examine the inhibitory effects on inflammatory activity from a co-culturemore » of human synovium-derived mesenchymal stem cells (hSDMSCs) and sodium nitroprusside (SNP)-stimulated chondrocytes. First, chondrocytes were treated with SNP to generate an in vitro model of RA or OA. Next, the co-culture of hSDMSCs with SNP-stimulated chondrocytes reduced inflammatory cytokine secretion, inhibited expression of inflammation activity-related genes, generated IGF-1 secretion, and increased the chondrocyte proliferation rate. To evaluate the effect of IGF-1 on inhibition of inflammation, chondrocytes pre-treated with IGF-1 were treated with SNP, and then the production of inflammatory cytokines was analyzed. Treatment with IGF-1 was shown to significantly reduce inflammatory cytokine secretion in SNP-stimulated chondrocytes. Our results suggest that hSDMSCs offer a new strategy to promote cell-based cartilage regeneration in RA or OA.« less

  6. SNP discovery in candidate adaptive genes using exon capture in a free-ranging alpine ungulate

    Treesearch

    Gretchen H. Roffler; Stephen J. Amish; Seth Smith; Ted Cosart; Marty Kardos; Michael K. Schwartz; Gordon Luikart

    2016-01-01

    Identification of genes underlying genomic signatures of natural selection is key to understanding adaptation to local conditions. We used targeted resequencing to identify SNP markers in 5321 candidate adaptive genes associated with known immunological, metabolic and growth functions in ovids and other ungulates. We selectively targeted 8161 exons in protein-coding...

  7. Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine

    PubMed Central

    2011-01-01

    Background Single nucleotide polymorphisms (SNPs) are the most abundant source of genetic variation among individuals of a species. New genotyping technologies allow examining hundreds to thousands of SNPs in a single reaction for a wide range of applications such as genetic diversity analysis, linkage mapping, fine QTL mapping, association studies, marker-assisted or genome-wide selection. In this paper, we evaluated the potential of highly-multiplexed SNP genotyping for genetic mapping in maritime pine (Pinus pinaster Ait.), the main conifer used for commercial plantation in southwestern Europe. Results We designed a custom GoldenGate assay for 1,536 SNPs detected through the resequencing of gene fragments (707 in vitro SNPs/Indels) and from Sanger-derived Expressed Sequenced Tags assembled into a unigene set (829 in silico SNPs/Indels). Offspring from three-generation outbred (G2) and inbred (F2) pedigrees were genotyped. The success rate of the assay was 63.6% and 74.8% for in silico and in vitro SNPs, respectively. A genotyping error rate of 0.4% was further estimated from segregating data of SNPs belonging to the same gene. Overall, 394 SNPs were available for mapping. A total of 287 SNPs were integrated with previously mapped markers in the G2 parental maps, while 179 SNPs were localized on the map generated from the analysis of the F2 progeny. Based on 98 markers segregating in both pedigrees, we were able to generate a consensus map comprising 357 SNPs from 292 different loci. Finally, the analysis of sequence homology between mapped markers and their orthologs in a Pinus taeda linkage map, made it possible to align the 12 linkage groups of both species. Conclusions Our results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in maritime pine, a conifer species that has a genome seven times the size of the human genome. This SNP-array will be extended thanks to recent sequencing effort using new generation

  8. Linkage disequilibrium and signatures of positive selection around LINE-1 retrotransposons in the human genome.

    PubMed

    Kuhn, Alexandre; Ong, Yao Min; Cheng, Ching-Yu; Wong, Tien Yin; Quake, Stephen R; Burkholder, William F

    2014-06-03

    Insertions of the human-specific subfamily of LINE-1 (L1) retrotransposon are highly polymorphic across individuals and can critically influence the human transcriptome. We hypothesized that L1 insertions could represent genetic variants determining important human phenotypic traits, and performed an integrated analysis of L1 elements and single nucleotide polymorphisms (SNPs) in several human populations. We found that a large fraction of L1s were in high linkage disequilibrium with their surrounding genomic regions and that they were well tagged by SNPs. However, L1 variants were only partially captured by SNPs on standard SNP arrays, so that their potential phenotypic impact would be frequently missed by SNP array-based genome-wide association studies. We next identified potential phenotypic effects of L1s by looking for signatures of natural selection linked to L1 insertions; significant extended haplotype homozygosity was detected around several L1 insertions. This finding suggests that some of these L1 insertions may have been the target of recent positive selection.

  9. Identification of biomarkers in human head and neck tumor cell lines that predict for in vitro sensitivity to gefitinib.

    PubMed

    Hickinson, D Mark; Marshall, Gayle B; Beran, Garry J; Varella-Garcia, Marileila; Mills, Elizabeth A; South, Marie C; Cassidy, Andrew M; Acheson, Kerry L; McWalter, Gael; McCormack, Rose M; Bunn, Paul A; French, Tim; Graham, Alex; Holloway, Brian R; Hirsch, Fred R; Speake, Georgina

    2009-06-01

    Potential biomarkers were identified for in vitro sensitivity to the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib in head and neck cancer. Gefitinib sensitivity was determined in cell lines, followed by transcript profiling coupled with a novel pathway analysis approach. Eleven cell lines were highly sensitive to gefitinib (inhibitor concentration required to give 50% growth inhibition [GI(50)] < 1 microM), three had intermediate sensitivity (GI(50) 1-7 microM), and six were resistant (GI(50) > 7 microM); an exploratory principal component analysis revealed a separation between the genomic profiles of sensitive and resistant cell lines. Subsequently, a hypothesis-driven analysis of Affymetrix data (Affymetrix, Inc., Santa Clara, CA, USA) revealed higher mRNA levels for E-cadherin (CDH1); transforming growth factor, alpha (TGF-alpha); amphiregulin (AREG); FLJ22662; EGFR; p21-activated kinase 6 (PAK6); glutathione S-transferase Pi (GSTP1); and ATP-binding cassette, subfamily C, member 5 (ABCC5) in sensitive versus resistant cell lines. A hypothesis-free analysis identified 46 gene transcripts that were strongly differentiated, seven of which had a known association with EGFR and head and neck cancer (human EGF receptor 3 [HER3], TGF-alpha, CDH1, EGFR, keratin 16 [KRT16], fibroblast growth factor 2 [FGF2], and cortactin [CTTN]). Polymerase chain reaction (PCR) and enzyme-linked immunoabsorbant assay analysis confirmed Affymetrix data, and EGFR gene mutation, amplification, and genomic gain correlated strongly with gefitinib sensitivity. We identified biomarkers that predict for in vitro responsiveness to gefitinib, seven of which have known association with EGFR and head and neck cancer. These in vitro predictive biomarkers may have potential utility in the clinic and warrant further investigation.

  10. Development of genetic markers in abalone through construction of a SNP database.

    PubMed

    Kang, J-H; Appleyard, S A; Elliott, N G; Jee, Y-J; Lee, J B; Kang, S W; Baek, M K; Han, Y S; Choi, T-J; Lee, Y S

    2011-06-01

    In the absence of a reference genome, single-nucleotide polymorphisms (SNP) discovery in a group of abalone species was undertaken by random sequence assembly. A web-based interface was constructed, and 11 932 DNA sequences from the genus Haliotis were assembled, with 1321 contigs built. Of these, 118 contigs that consisted of at least ten annotation groups were selected. The 1577 putative SNPs were identified from the 118 contigs, with SNPs in several HSP70 gene contigs confirmed by PCR amplification of an 809-bp DNA fragment. SNPs in the HSP70 gene were compared across eight abalone species. A total of 129 polymorphic sites, including heterozygote sites within and among species, were observed. Phylogenetic analysis of the partial HSP70 gene region showed separation of the tested abalone into two groups, one reflecting the southern hemisphere species and the other the northern hemisphere species. Interestingly, Haliotis iris from New Zealand showed a closer relationship to species distributed in the northern Pacific region. Although HSP genes are known to be highly conserved among taxa, the validation of polymorphic SNPs from HSP70 in this mollusc demonstrates the applicability of cross-species SNP markers in abalone and the first step towards universal nuclear markers in Haliotis. © 2010 NFRDI, Animal Genetics © 2010 Stichting International Foundation for Animal Genetics.

  11. Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus × domestica Borkh).

    PubMed

    Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela

    2014-01-01

    High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs.

  12. Development and Validation of a 20K Single Nucleotide Polymorphism (SNP) Whole Genome Genotyping Array for Apple (Malus × domestica Borkh)

    PubMed Central

    Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela

    2014-01-01

    High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs. PMID:25303088

  13. Novel quantitative pigmentation phenotyping enhances genetic association, epistasis, and prediction of human eye colour.

    PubMed

    Wollstein, Andreas; Walsh, Susan; Liu, Fan; Chakravarthy, Usha; Rahu, Mati; Seland, Johan H; Soubrane, Gisèle; Tomazzoli, Laura; Topouzis, Fotis; Vingerling, Johannes R; Vioque, Jesus; Böhringer, Stefan; Fletcher, Astrid E; Kayser, Manfred

    2017-02-27

    Success of genetic association and the prediction of phenotypic traits from DNA are known to depend on the accuracy of phenotype characterization, amongst other parameters. To overcome limitations in the characterization of human iris pigmentation, we introduce a fully automated approach that specifies the areal proportions proposed to represent differing pigmentation types, such as pheomelanin, eumelanin, and non-pigmented areas within the iris. We demonstrate the utility of this approach using high-resolution digital eye imagery and genotype data from 12 selected SNPs from over 3000 European samples of seven populations that are part of the EUREYE study. In comparison to previous quantification approaches, (1) we achieved an overall improvement in eye colour phenotyping, which provides a better separation of manually defined eye colour categories. (2) Single nucleotide polymorphisms (SNPs) known to be involved in human eye colour variation showed stronger associations with our approach. (3) We found new and confirmed previously noted SNP-SNP interactions. (4) We increased SNP-based prediction accuracy of quantitative eye colour. Our findings exemplify that precise quantification using the perceived biological basis of pigmentation leads to enhanced genetic association and prediction of eye colour. We expect our approach to deliver new pigmentation genes when applied to genome-wide association testing.

  14. Novel quantitative pigmentation phenotyping enhances genetic association, epistasis, and prediction of human eye colour

    PubMed Central

    Wollstein, Andreas; Walsh, Susan; Liu, Fan; Chakravarthy, Usha; Rahu, Mati; Seland, Johan H.; Soubrane, Gisèle; Tomazzoli, Laura; Topouzis, Fotis; Vingerling, Johannes R.; Vioque, Jesus; Böhringer, Stefan; Fletcher, Astrid E.; Kayser, Manfred

    2017-01-01

    Success of genetic association and the prediction of phenotypic traits from DNA are known to depend on the accuracy of phenotype characterization, amongst other parameters. To overcome limitations in the characterization of human iris pigmentation, we introduce a fully automated approach that specifies the areal proportions proposed to represent differing pigmentation types, such as pheomelanin, eumelanin, and non-pigmented areas within the iris. We demonstrate the utility of this approach using high-resolution digital eye imagery and genotype data from 12 selected SNPs from over 3000 European samples of seven populations that are part of the EUREYE study. In comparison to previous quantification approaches, (1) we achieved an overall improvement in eye colour phenotyping, which provides a better separation of manually defined eye colour categories. (2) Single nucleotide polymorphisms (SNPs) known to be involved in human eye colour variation showed stronger associations with our approach. (3) We found new and confirmed previously noted SNP-SNP interactions. (4) We increased SNP-based prediction accuracy of quantitative eye colour. Our findings exemplify that precise quantification using the perceived biological basis of pigmentation leads to enhanced genetic association and prediction of eye colour. We expect our approach to deliver new pigmentation genes when applied to genome-wide association testing. PMID:28240252

  15. Gene expression and pathway analysis of human hepatocellular carcinoma cells treated with cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cartularo, Laura; Laulicht, Freda; Sun, Hong

    Cadmium (Cd) is a toxic and carcinogenic metal naturally occurring in the Earth's crust. A common route of human exposure is via diet and cadmium accumulates in the liver. The effects of Cd exposure on gene expression in human hepatocellular carcinoma (HepG2) cells were examined in this study. HepG2 cells were acutely-treated with 0.1, 0.5, or 1.0 μM Cd for 24 h; or chronically-treated with 0.01, 0.05, or 0.1 μM Cd for three weeks and gene expression analysis was performed using Affymetrix GeneChip® Human Gene 1.0 ST Arrays. Acute and chronic exposures significantly altered the expression of 333 and 181more » genes, respectively. The genes most upregulated by acute exposure included several metallothioneins. Downregulated genes included the monooxygenase CYP3A7, involved in drug and lipid metabolism. In contrast, CYP3A7 was upregulated by chronic Cd exposure, as was DNAJB9, an anti-apoptotic J protein. Genes downregulated following chronic exposure included the transcriptional regulator early growth response protein 1. Ingenuity Pathway Analysis revealed that the top networks altered by acute exposure were lipid metabolism, small molecule biosynthesis, cell morphology, organization, and development; while top networks altered by chronic exposure were organ morphology, cell cycle, cell signaling, and renal and urological diseases/cancer. Many of the dysregulated genes play important roles in cellular growth, proliferation, and apoptosis, and may be involved in carcinogenesis. In addition to gene expression changes, HepG2 cells treated with cadmium for 24 h indicated a reduction in global levels of histone methylation and acetylation that persisted 72 h post-treatment. - Highlights: • A common route of human exposure to the carcinogenic metal cadmium is via diet. • HepG2 cells were treated acutely or chronically with varying doses of cadmium. • Gene expression analysis was performed using Affymetrix Human Gene 1.0 Arrays. • Acute and chronic exposures

  16. Cloud computing-based TagSNP selection algorithm for human genome data.

    PubMed

    Hung, Che-Lun; Chen, Wen-Pei; Hua, Guan-Jie; Zheng, Huiru; Tsai, Suh-Jen Jane; Lin, Yaw-Ling

    2015-01-05

    Single nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together. Genetics research has revealed SNPs within certain haplotype blocks that introduce few distinct common haplotypes into most of the population. Haplotype block structures are used in association-based methods to map disease genes. In this paper, we propose an efficient algorithm for identifying haplotype blocks in the genome. In chromosomal haplotype data retrieved from the HapMap project website, the proposed algorithm identified longer haplotype blocks than an existing algorithm. To enhance its performance, we extended the proposed algorithm into a parallel algorithm that copies data in parallel via the Hadoop MapReduce framework. The proposed MapReduce-paralleled combinatorial algorithm performed well on real-world data obtained from the HapMap dataset; the improvement in computational efficiency was proportional to the number of processors used.

  17. Population structure and genome-wide association analysis for frost tolerance in oat using continuous SNP array signal intensity ratios.

    PubMed

    Tumino, Giorgio; Voorrips, Roeland E; Rizza, Fulvia; Badeck, Franz W; Morcia, Caterina; Ghizzoni, Roberta; Germeier, Christoph U; Paulo, Maria-João; Terzi, Valeria; Smulders, Marinus J M

    2016-09-01

    Infinium SNP data analysed as continuous intensity ratios enabled associating genotypic and phenotypic data from heterogeneous oat samples, showing that association mapping for frost tolerance is a feasible option. Oat is sensitive to freezing temperatures, which restricts the cultivation of fall-sown or winter oats to regions with milder winters. Fall-sown oats have a longer growth cycle, mature earlier, and have a higher productivity than spring-sown oats, therefore improving frost tolerance is an important goal in oat breeding. Our aim was to test the effectiveness of a Genome-Wide Association Study (GWAS) for mapping QTLs related to frost tolerance, using an approach that tolerates continuously distributed signals from SNPs in bulked samples from heterogeneous accessions. A collection of 138 European oat accessions, including landraces, old and modern varieties from 27 countries was genotyped using the Infinium 6K SNP array. The SNP data were analyzed as continuous intensity ratios, rather than converting them into discrete values by genotype calling. PCA and Ward's clustering of genetic similarities revealed the presence of two main groups of accessions, which roughly corresponded to Continental Europe and Mediterranean/Atlantic Europe, although a total of eight subgroups can be distinguished. The accessions were phenotyped for frost tolerance under controlled conditions by measuring fluorescence quantum yield of photosystem II after a freezing stress. GWAS were performed by a linear mixed model approach, comparing different corrections for population structure. All models detected three robust QTLs, two of which co-mapped with QTLs identified earlier in bi-parental mapping populations. The approach used in the present work shows that SNP array data of heterogeneous hexaploid oat samples can be successfully used to determine genetic similarities and to map associations to quantitative phenotypic traits.

  18. Role of VGF-derived carboxy-terminal peptides in energy balance and reproduction: analysis of "humanized" knockin mice expressing full-length or truncated VGF.

    PubMed

    Sadahiro, Masato; Erickson, Connor; Lin, Wei-Jye; Shin, Andrew C; Razzoli, Maria; Jiang, Cheng; Fargali, Samira; Gurney, Allison; Kelley, Kevin A; Buettner, Christoph; Bartolomucci, Alessandro; Salton, Stephen R

    2015-05-01

    Targeted deletion of VGF, a secreted neuronal and endocrine peptide precursor, produces lean, hypermetabolic, and infertile mice that are resistant to diet-, lesion-, and genetically-induced obesity and diabetes. Previous studies suggest that VGF controls energy expenditure (EE), fat storage, and lipolysis, whereas VGF C-terminal peptides also regulate reproductive behavior and glucose homeostasis. To assess the functional equivalence of human VGF(1-615) (hVGF) and mouse VGF(1-617) (mVGF), and to elucidate the function of the VGF C-terminal region in the regulation of energy balance and susceptibility to obesity, we generated humanized VGF knockin mouse models expressing full-length hVGF or a C-terminally deleted human VGF(1-524) (hSNP), encoded by a single nucleotide polymorphism (rs35400704). We show that homozygous male and female hVGF and hSNP mice are fertile. hVGF female mice had significantly increased body weight compared with wild-type mice, whereas hSNP mice have reduced adiposity, increased activity- and nonactivity-related EE, and improved glucose tolerance, indicating that VGF C-terminal peptides are not required for reproductive function, but 1 or more specific VGF C-terminal peptides are likely to be critical regulators of EE. Taken together, our results suggest that human and mouse VGF proteins are largely functionally conserved but that species-specific differences in VGF peptide function, perhaps a result of known differences in receptor binding affinity, likely alter the metabolic phenotype of hVGF compared with mVGF mice, and in hSNP mice in which several C-terminal VGF peptides are ablated, result in significantly increased activity- and nonactivity-related EE.

  19. Functional characterisation of a SNP in the ABCC11 allele - effects on axillary skin metabolism, odour generation and associated behaviours.

    PubMed

    Harker, Mark; Carvell, Ann-Marie; Marti, Vernon P J; Riazanskaia, Svetlana; Kelso, Hailey; Taylor, David; Grimshaw, Sally; Arnold, David S; Zillmer, Ruediger; Shaw, Jane; Kirk, Jayne M; Alcasid, Zee M; Gonzales-Tanon, Sheila; Chan, Gertrude P; Rosing, Egge A E; Smith, Adrian M

    2014-01-01

    A single nucleotide polymorphism (SNP), 538G→A, leading to a G180R substitution in the ABCC11 gene results in reduced concentrations of apocrine derived axillary odour precursors. Determine the axillary odour levels in the SNP ABCC11 genotype variants and to investigate if other parameters associated with odour production are affected. Axillary odour was assessed by subjective quantification and gas chromatography headspace analysis. Metabolite profiles, microbiome diversity and personal hygiene habits were also assessed. Axillary odour in the A/A homozygotes was significantly lower compared to the G/A and G/G genotypes. However, the perception-based measures still detected appreciable levels of axillary odour in the A/A subjects. Metabolomic analysis highlighted significant differences in axillary skin metabolites between A/A subjects compared to those carrying the G allele. These differences resulted in A/A subjects lacking specific volatile odourants in the axillary headspace, but all genotypes produced odoriferous short chain fatty acids. Microbiomic analysis revealed differences in the relative abundance of key bacterial genera associated with odour generation between the different genotypes. Deodorant usage indicated a high level of self awareness of axillary odour levels with A/A individuals less likely to adopt personal hygiene habits designed to eradicate/mask its presence. The SNP in the ABCC11 gene results in lower levels of axillary odour in the A/A homozygotes compared to those carrying the G allele, but A/A subjects still produce noticeable amounts of axillary odour. Differences in axillary skin metabolites, bacterial genera and personal hygiene behaviours also appear to be influenced by this SNP. Copyright © 2013. Published by Elsevier Ireland Ltd.

  20. Low copulatory activity in selectively bred Sardinian alcohol-nonpreferring (sNP) relative to alcohol-preferring (sP) rats

    PubMed Central

    Karlsson, Oskar; Colombo, Giancarlo

    2015-01-01

    Background There is a growing consensus that similar neural mechanisms are involved in the reinforcing properties of natural rewards, like food and sex, and drugs of abuse. Rat lines selectively bred for high and low oral alcohol intake and preference have been useful for understanding factors contributing to excessive alcohol intake and may constitute proper animal models for investigating the neurobiological basis of natural rewarding stimuli. Methods The present study evaluated copulatory behavior in alcohol and sexually naïve Sardinian alcohol-preferring (sP) and -nonpreferring (sNP) male rats in three consecutive copulatory behavior tests. Results The main finding was that, under the conditions used in this study, sNP rats were sexually inactive relative to sP rats. To gain more information about the sexual behavior in sP rats, Wistar rats were included as an external reference strain. Only minor differences between sP and Wistar rats were revealed. Conclusions The reason behind the low copulatory activity of sNP rats remains to be elucidated, but may in part be mediated by innate differences in brain transmitter systems. The comparison between sP and Wistar rats may also suggest that the inherent proclivity to excessive alcohol drinking in sP rats may mainly be dependent on its anxiolytic properties, as previously proposed, and not changes in the reward system. PMID:25728453

  1. Developing Single Nucleotide Polymorphism (SNP) markers from transcriptome sequences for the identification of longan (Dimocarpus longan) germplasm

    USDA-ARS?s Scientific Manuscript database

    Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in...

  2. Ubiquitin-conjugating enzyme E2-like gene associated to pathogen response in Concholepas concholepas: SNP identification and transcription expression.

    PubMed

    Núñez-Acuña, Gustavo; Aguilar-Espinoza, Andrea; Chávez-Mardones, Jacqueline; Gallardo-Escárate, Cristian

    2012-10-01

    Ubiquitin-conjugated E2 enzyme (UBE2) is one of the main components of the proteasome degradation cascade. Previous studies have shown an increase of expression levels in individuals challenged to some pathogen organism such as virus and bacteria. The study was to characterize the immune response of UBE2 gene in the gastropod Concholepas concholepas through expression analysis and single nucleotide polymorphisms (SNP) discovery. Hence, UBE2 was identified from a cDNA library by 454 pyrosequencing, while SNP identification and validation were performed using De novo assembly and high resolution melting analysis. Challenge trials with Vibrio anguillarum was carried out to evaluate the relative transcript abundance of UBE2 gene from two to thirty-three hours post-treatment. The results showed a partial UBE2 sequence of 889 base pair (bp) with a partial coding region of 291 bp. SNP variation (A/C) was observed at the 546th position. Individuals challenged by V. anguillarum showed an overexpression of the UBE2 gene, the expression being significantly higher in homozygous individuals (AA) than (CC) or heterozygous individuals (A/C). This study contributes useful information relating to the UBE2 gene and its association with innate immune response in marine invertebrates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao.

    USDA-ARS?s Scientific Manuscript database

    Theobroma cacao, the key ingredient in chocolate production, is one of the world's most important tree fruit crops, with ~4,000,000 metric tons produced across 50 countries. To move towards gene discovery and marker-assisted breeding in cacao, a single-nucleotide polymorphism (SNP) identification pr...

  4. Applying SNP marker technology in the cacao breeding program at the Cocoa Research Institute of Ghana

    USDA-ARS?s Scientific Manuscript database

    In this investigation 45 parental cacao plants and five progeny derived from the parental stock studied were genotyped using six SNP markers to determine off-types or mislabeled clones and to authenticate crosses made in the Cocoa Research Institute of Ghana (CRIG) breeding program. Investigation wa...

  5. The Impact of a Common MDM2 SNP on the Sensitivity of Breast Cancer to Treatment

    DTIC Science & Technology

    2011-06-01

    Kirchhoff T, Alexe G, Bond EE, Robins H, Bartel F, Taubert H, Wuerl P, Hait W, Toppmeyer D, Offit K, and Levine A. MDM2 SNP309 accelerates tumor...the Western blot analysis corresponding to the quantification in the upper graphs . 29 Figure 5. Effect of

  6. The impact of SNP fingerprinting and parentage analysis on the effectiveness of variety recommendations in cacao

    USDA-ARS?s Scientific Manuscript database

    Evidence for the impact of mislabeling and/or pollen contamination on consistency of field performance has been lacking to reinforce the need for strict adherence to quality control protocols in cacao seed garden and germplasm plot management. The present study used SNP fingerprinting at 64 loci to ...

  7. High-density single nucleotide polymorphism (SNP) array mapping in Brassica oleracea: identification of QTL associated with carotenoid variation in broccoli florets.

    PubMed

    Brown, Allan F; Yousef, Gad G; Chebrolu, Kranthi K; Byrd, Robert W; Everhart, Koyt W; Thomas, Aswathy; Reid, Robert W; Parkin, Isobel A P; Sharpe, Andrew G; Oliver, Rebekah; Guzman, Ivette; Jackson, Eric W

    2014-09-01

    A high-resolution genetic linkage map of B. oleracea was developed from a B. napus SNP array. The work will facilitate genetic and evolutionary studies in Brassicaceae. A broccoli population, VI-158 × BNC, consisting of 150 F2:3 families was used to create a saturated Brassica oleracea (diploid: CC) linkage map using a recently developed rapeseed (Brassica napus) (tetraploid: AACC) Illumina Infinium single nucleotide polymorphism (SNP) array. The map consisted of 547 non-redundant SNP markers spanning 948.1 cM across nine chromosomes with an average interval size of 1.7 cM. As the SNPs are anchored to the genomic reference sequence of the rapid cycling B. oleracea TO1000, we were able to estimate that the map provides 96 % coverage of the diploid genome. Carotenoid analysis of 2 years data identified 3 QTLs on two chromosomes that are associated with up to half of the phenotypic variation associated with the accumulation of total or individual compounds. By searching the genome sequences of the two related diploid species (B. oleracea and B. rapa), we further identified putative carotenoid candidate genes in the region of these QTLs. This is the first description of the use of a B. napus SNP array to rapidly construct high-density genetic linkage maps of one of the constituent diploid species. The unambiguous nature of these markers with regard to genomic sequences provides evidence to the nature of genes underlying the QTL, and demonstrates the value and impact this resource will have on Brassica research.

  8. A High Density SNP Array for the Domestic Horse and Extant Perissodactyla: Utility for Association Mapping, Genetic Diversity, and Phylogeny Studies

    PubMed Central

    McCue, Molly E.; Bannasch, Danika L.; Petersen, Jessica L.; Gurr, Jessica; Bailey, Ernie; Binns, Matthew M.; Distl, Ottmar; Guérin, Gérard; Hasegawa, Telhisa; Hill, Emmeline W.; Leeb, Tosso; Lindgren, Gabriella; Penedo, M. Cecilia T.; Røed, Knut H.; Ryder, Oliver A.; Swinburne, June E.; Tozaki, Teruaki; Valberg, Stephanie J.; Vaudin, Mark; Lindblad-Toh, Kerstin

    2012-01-01

    An equine SNP genotyping array was developed and evaluated on a panel of samples representing 14 domestic horse breeds and 18 evolutionarily related species. More than 54,000 polymorphic SNPs provided an average inter-SNP spacing of ∼43 kb. The mean minor allele frequency across domestic horse breeds was 0.23, and the number of polymorphic SNPs within breeds ranged from 43,287 to 52,085. Genome-wide linkage disequilibrium (LD) in most breeds declined rapidly over the first 50–100 kb and reached background levels within 1–2 Mb. The extent of LD and the level of inbreeding were highest in the Thoroughbred and lowest in the Mongolian and Quarter Horse. Multidimensional scaling (MDS) analyses demonstrated the tight grouping of individuals within most breeds, close proximity of related breeds, and less tight grouping in admixed breeds. The close relationship between the Przewalski's Horse and the domestic horse was demonstrated by pair-wise genetic distance and MDS. Genotyping of other Perissodactyla (zebras, asses, tapirs, and rhinoceros) was variably successful, with call rates and the number of polymorphic loci varying across taxa. Parsimony analysis placed the modern horse as sister taxa to Equus przewalski. The utility of the SNP array in genome-wide association was confirmed by mapping the known recessive chestnut coat color locus (MC1R) and defining a conserved haplotype of ∼750 kb across all breeds. These results demonstrate the high quality of this SNP genotyping resource, its usefulness in diverse genome analyses of the horse, and potential use in related species. PMID:22253606

  9. Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio).

    PubMed

    Xu, Jian; Zhao, Zixia; Zhang, Xiaofeng; Zheng, Xianhu; Li, Jiongtang; Jiang, Yanliang; Kuang, Youyi; Zhang, Yan; Feng, Jianxin; Li, Chuangju; Yu, Juhua; Li, Qiang; Zhu, Yuanyuan; Liu, Yuanyuan; Xu, Peng; Sun, Xiaowen

    2014-04-24

    A large number of single nucleotide polymorphisms (SNPs) have been identified in common carp (Cyprinus carpio) but, as yet, no high-throughput genotyping platform is available for this species. C. carpio is an important aquaculture species that accounts for nearly 14% of freshwater aquaculture production worldwide. We have developed an array for C. carpio with 250,000 SNPs and evaluated its performance using samples from various strains of C. carpio. The SNPs used on the array were selected from two resources: the transcribed sequences from RNA-seq data of four strains of C. carpio, and the genome re-sequencing data of five strains of C. carpio. The 250,000 SNPs on the resulting array are distributed evenly across the reference C.carpio genome with an average spacing of 6.6 kb. To evaluate the SNP array, 1,072 C. carpio samples were collected and tested. Of the 250,000 SNPs on the array, 185,150 (74.06%) were found to be polymorphic sites. Genotyping accuracy was checked using genotyping data from a group of full-siblings and their parents, and over 99.8% of the qualified SNPs were found to be reliable. Analysis of the linkage disequilibrium on all samples and on three domestic C.carpio strains revealed that the latter had the longer haplotype blocks. We also evaluated our SNP array on 80 samples from eight species related to C. carpio, with from 53,526 to 71,984 polymorphic SNPs. An identity by state analysis divided all the samples into three clusters; most of the C. carpio strains formed the largest cluster. The Carp SNP array described here is the first high-throughput genotyping platform for C. carpio. Our evaluation of this array indicates that it will be valuable for farmed carp and for genetic and population biology studies in C. carpio and related species.

  10. Cloud Computing-Based TagSNP Selection Algorithm for Human Genome Data

    PubMed Central

    Hung, Che-Lun; Chen, Wen-Pei; Hua, Guan-Jie; Zheng, Huiru; Tsai, Suh-Jen Jane; Lin, Yaw-Ling

    2015-01-01

    Single nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together. Genetics research has revealed SNPs within certain haplotype blocks that introduce few distinct common haplotypes into most of the population. Haplotype block structures are used in association-based methods to map disease genes. In this paper, we propose an efficient algorithm for identifying haplotype blocks in the genome. In chromosomal haplotype data retrieved from the HapMap project website, the proposed algorithm identified longer haplotype blocks than an existing algorithm. To enhance its performance, we extended the proposed algorithm into a parallel algorithm that copies data in parallel via the Hadoop MapReduce framework. The proposed MapReduce-paralleled combinatorial algorithm performed well on real-world data obtained from the HapMap dataset; the improvement in computational efficiency was proportional to the number of processors used. PMID:25569088

  11. High-Performance Multiplex SNP Analysis of Three Hemochromatosis-Related Mutations With Capillary Array Electrophoresis Microplates

    PubMed Central

    Medintz, Igor; Wong, Wendy W.; Berti, Lorenzo; Shiow, Lawrence; Tom, Jennifer; Scherer, James; Sensabaugh, George; Mathies, Richard A.

    2001-01-01

    An assay is described for high-throughput single nucleotide polymorphism (SNP) genotyping on a microfabricated capillary array electrophoresis (CAE) microchip. The assay targets the three common variants at the HFE locus associated with the genetic disease hereditary hemochromatosis (HHC). The assay employs allele-specific PCR (ASPCR) for the C282Y (845g->a), H63D (187c->g), and S65C (193a->t) variants using fluorescently-labeled energy-transfer (ET) allele-specific primers. Using a 96-channel radial CAE microplate, the labeled ASPCR products generated from 96 samples in a reference Caucasian population are simultaneously separated with single-base-pair resolution and genotyped in under 10 min. Detection is accomplished with a laser-excited rotary four-color fluorescence scanner. The allele-specific amplicons are differentiated on the basis of both their size and the color of the label emission. This study is the first demonstration of the combined use of ASPCR with ET primers and microfabricated radial CAE microplates to perform multiplex SNP analyses in a clinically relevant population. PMID:11230165

  12. Elevated extracellular potassium prior to muscle contraction reduces onset and steady-state exercise hyperemia in humans.

    PubMed

    Terwoord, Janée D; Hearon, Christopher M; Luckasen, Gary J; Richards, Jennifer C; Joyner, Michael J; Dinenno, Frank A

    2018-05-03

    The increase in interstitial potassium (K + ) during muscle contractions is thought to be a vasodilatory signal that contributes to exercise hyperemia. To determine the role of extracellular K + in exercise hyperemia, we perfused skeletal muscle with K + prior to contractions such that the effect of any endogenously-released K + would be minimized. We tested the hypothesis that local, intra-arterial infusion of potassium chloride (KCl) at rest would impair vasodilation in response to subsequent rhythmic handgrip exercise in humans. In 11 young adults, we determined forearm blood flow (FBF; Doppler ultrasound) and vascular conductance (FVC; FBF/mean arterial pressure) during 4 minutes of rhythmic handgrip exercise at 10% of maximal voluntary contraction during 1) control conditions (CTRL), 2) infusion of KCl prior to the initiation of exercise, and 3) infusion of sodium nitroprusside (SNP) as a control vasodilator. Infusion of KCl or SNP elevated resting FVC similarly prior to the onset of exercise (CTRL: 39 {plus minus} 6 vs. KCl: 81 {plus minus} 12 and SNP: 82 {plus minus} 13 ml/min/100 mmHg; both P < 0.05 vs. CTRL). Infusion of KCl at rest diminished the hyperemic (Δ FBF) and vasodilatory (Δ FVC) response to subsequent exercise by 22 {plus minus} 5% and 30 {plus minus} 5%, respectively (both P < 0.05 vs. CTRL), whereas SNP did not affect the change in FBF (P = 0.74 vs. CTRL) or FVC (P = 0.61 vs. CTRL) from rest to steady-state exercise. These findings implicate the K + ion as an essential vasodilator substance contributing to exercise hyperemia in humans.

  13. Using RNA-Seq to assemble a rose transcriptome with more than 13,000 full-length expressed genes and to develop the WagRhSNP 68k Axiom SNP array for rose (Rosa L.).

    PubMed

    Koning-Boucoiran, Carole F S; Esselink, G Danny; Vukosavljev, Mirjana; van 't Westende, Wendy P C; Gitonga, Virginia W; Krens, Frans A; Voorrips, Roeland E; van de Weg, W Eric; Schulz, Dietmar; Debener, Thomas; Maliepaard, Chris; Arens, Paul; Smulders, Marinus J M

    2015-01-01

    In order to develop a versatile and large SNP array for rose, we set out to mine ESTs from diverse sets of rose germplasm. For this RNA-Seq libraries containing about 700 million reads were generated from tetraploid cut and garden roses using Illumina paired-end sequencing, and from diploid Rosa multiflora using 454 sequencing. Separate de novo assemblies were performed in order to identify single nucleotide polymorphisms (SNPs) within and between rose varieties. SNPs among tetraploid roses were selected for constructing a genotyping array that can be employed for genetic mapping and marker-trait association discovery in breeding programs based on tetraploid germplasm, both from cut roses and from garden roses. In total 68,893 SNPs were included on the WagRhSNP Axiom array. Next, an orthology-guided assembly was performed for the construction of a non-redundant rose transcriptome database. A total of 21,740 transcripts had significant hits with orthologous genes in the strawberry (Fragaria vesca L.) genome. Of these 13,390 appeared to contain the full-length coding regions. This newly established transcriptome resource adds considerably to the currently available sequence resources for the Rosaceae family in general and the genus Rosa in particular.

  14. A study of associations between early DHA status and fatty acid desaturase (FADS) SNP and developmental outcomes in children of obese mothers.

    PubMed

    Andersen, Karina R; Harsløf, Laurine B S; Schnurr, Theresia M; Hansen, Torben; Hellgren, Lars I; Michaelsen, Kim F; Lauritzen, Lotte

    2017-01-01

    DHA from diet or endogenous synthesis has been proposed to affect infant development, however, results are inconclusive. In this study, we aim to verify previously observed fatty acid desaturase gene cluster (FADS) SNP-specific associations with erythrocyte DHA status in 9-month-old children and sex-specific association with developmental outcomes. The study was performed in 166 children (55 % boys) of obese mothers. Erythrocyte fatty acid composition was analysed in blood-samples obtained at 9 months of age, and developmental outcomes assessed by the Ages and Stages Questionnaire at 3 years. Erythrocyte DHA level ranged from 4·4 to 9·9 % of fatty acids, but did not show any association with FADS SNP or other potential determinants. Regression analysis showed associations between erythrocyte DHA and scores for personal-social skills (β 1·8 (95 % CI 0·3, 3·3), P=0·019) and problem solving (β 3·4 (95 % CI 1·2, 5·6), P=0·003). A tendency was observed for an association in opposite direction between minor alleles (G-variant) of rs1535 and rs174575 and personal-social skills (P=0·062 and 0·068, respectively), which became significant when the SNP were combined based on their previously observed effect on erythrocyte DHA at 9 months of age (β 2·6 (95 % CI 0·01, 5·1), P=0·011). Sex-SNP interaction was indicated for rs174575 genotype on fine motor scores (P=0·016), due to higher scores among minor allele carrying girls (P=0·043), whereas no effect was seen among boys. In conclusion, DHA-increasing FADS SNP and erythrocyte DHA status were consistently associated with improved personal-social skills in this small cohort of children of obese mothers irrespective of sex, but the sample was too small to verify potential sex-specific effects.

  15. Software for optimization of SNP and PCR-RFLP genotyping to discriminate many genomes with the fewest assays

    PubMed Central

    Gardner, Shea N; Wagner, Mark C

    2005-01-01

    Background Microbial forensics is important in tracking the source of a pathogen, whether the disease is a naturally occurring outbreak or part of a criminal investigation. Results A method and SPR Opt (SNP and PCR-RFLP Optimization) software to perform a comprehensive, whole-genome analysis to forensically discriminate multiple sequences is presented. Tools for the optimization of forensic typing using Single Nucleotide Polymorphism (SNP) and PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) analyses across multiple isolate sequences of a species are described. The PCR-RFLP analysis includes prediction and selection of optimal primers and restriction enzymes to enable maximum isolate discrimination based on sequence information. SPR Opt calculates all SNP or PCR-RFLP variations present in the sequences, groups them into haplotypes according to their co-segregation across those sequences, and performs combinatoric analyses to determine which sets of haplotypes provide maximal discrimination among all the input sequences. Those set combinations requiring that membership in the fewest haplotypes be queried (i.e. the fewest assays be performed) are found. These analyses highlight variable regions based on existing sequence data. These markers may be heterogeneous among unsequenced isolates as well, and thus may be useful for characterizing the relationships among unsequenced as well as sequenced isolates. The predictions are multi-locus. Analyses of mumps and SARS viruses are summarized. Phylogenetic trees created based on SNPs, PCR-RFLPs, and full genomes are compared for SARS virus, illustrating that purported phylogenies based only on SNP or PCR-RFLP variations do not match those based on multiple sequence alignment of the full genomes. Conclusion This is the first software to optimize the selection of forensic markers to maximize information gained from the fewest assays, accepting whole or partial genome sequence data as input. As more sequence data becomes

  16. Duplication of 20p12.3 associated with familial Wolff-Parkinson-White syndrome.

    PubMed

    Mills, Kimberly I; Anderson, Jacqueline; Levy, Philip T; Cole, F Sessions; Silva, Jennifer N A; Kulkarni, Shashikant; Shinawi, Marwan

    2013-01-01

    Wolff-Parkinson-White (WPW) syndrome is caused by preexcitation of the ventricular myocardium via an accessory pathway which increases the risk for paroxysmal supraventricular tachycardia. The condition is often sporadic and of unknown etiology in the majority of cases. Autosomal dominant inheritance and association with congenital heart defects or ventricular hypertrophy were described. Microdeletions of 20p12.3 have been associated with WPW syndrome with either cognitive dysfunction or Alagille syndrome. Here, we describe the association of 20p12.3 duplication with WPW syndrome in a patient who presented with non-immune hydrops. Her paternal uncle carries the duplication and has attention-deficit hyperactivity disorder and electrocardiographic findings consistent with WPW. The 769 kb duplication was detected by the Affymetrix Whole Genome-Human SNP Array 6.0 and encompasses two genes and the first two exons of a third gene. We discuss the potential role of the genes in the duplicated region in the pathogenesis of WPW and possible neurobehavioral abnormalities. Our data provide additional support for a significant role of 20p12.3 chromosomal rearrangements in the etiology of WPW syndrome. Copyright © 2012 Wiley Periodicals, Inc.

  17. SPSmart: adapting population based SNP genotype databases for fast and comprehensive web access.

    PubMed

    Amigo, Jorge; Salas, Antonio; Phillips, Christopher; Carracedo, Angel

    2008-10-10

    In the last five years large online resources of human variability have appeared, notably HapMap, Perlegen and the CEPH foundation. These databases of genotypes with population information act as catalogues of human diversity, and are widely used as reference sources for population genetics studies. Although many useful conclusions may be extracted by querying databases individually, the lack of flexibility for combining data from within and between each database does not allow the calculation of key population variability statistics. We have developed a novel tool for accessing and combining large-scale genomic databases of single nucleotide polymorphisms (SNPs) in widespread use in human population genetics: SPSmart (SNPs for Population Studies). A fast pipeline creates and maintains a data mart from the most commonly accessed databases of genotypes containing population information: data is mined, summarized into the standard statistical reference indices, and stored into a relational database that currently handles as many as 4 x 10(9) genotypes and that can be easily extended to new database initiatives. We have also built a web interface to the data mart that allows the browsing of underlying data indexed by population and the combining of populations, allowing intuitive and straightforward comparison of population groups. All the information served is optimized for web display, and most of the computations are already pre-processed in the data mart to speed up the data browsing and any computational treatment requested. In practice, SPSmart allows populations to be combined into user-defined groups, while multiple databases can be accessed and compared in a few simple steps from a single query. It performs the queries rapidly and gives straightforward graphical summaries of SNP population variability through visual inspection of allele frequencies outlined in standard pie-chart format. In addition, full numerical description of the data is output in

  18. Development and dissection of diagnostic SNP markers for the downy mildew resistance genes Pl Arg and Pl 8 and maker-assisted gene pyramiding in sunflower (Helianthus annuus L.).

    PubMed

    Qi, L L; Talukder, Z I; Hulke, B S; Foley, M E

    2017-06-01

    Diagnostic DNA markers are an invaluable resource in breeding programs for successful introgression and pyramiding of disease resistance genes. Resistance to downy mildew (DM) disease in sunflower is mediated by Pl genes which are known to be effective against the causal fungus, Plasmopara halstedii. Two DM resistance genes, Pl Arg and Pl 8 , are highly effective against P. halstedii races in the USA, and have been previously mapped to the sunflower linkage groups (LGs) 1 and 13, respectively, using simple sequence repeat (SSR) markers. In this study, we developed high-density single nucleotide polymorphism (SNP) maps encompassing the Pl arg and Pl 8 genes and identified diagnostic SNP markers closely linked to these genes. The specificity of the diagnostic markers was validated in a highly diverse panel of 548 sunflower lines. Dissection of a large marker cluster co-segregated with Pl Arg revealed that the closest SNP markers NSA_007595 and NSA_001835 delimited Pl Arg to an interval of 2.83 Mb on the LG1 physical map. The SNP markers SFW01497 and SFW06597 delimited Pl 8 to an interval of 2.85 Mb on the LG13 physical map. We also developed sunflower lines with homozygous, three gene pyramids carrying Pl Arg , Pl 8 , and the sunflower rust resistance gene R 12 using the linked SNP markers from a segregating F 2 population of RHA 340 (carrying Pl 8 )/RHA 464 (carrying Pl Arg and R 12 ). The high-throughput diagnostic SNP markers developed in this study will facilitate marker-assisted selection breeding, and the pyramided sunflower lines will provide durable resistance to downy mildew and rust diseases.

  19. Identification of the mechanism underlying a human chimera by SNP array analysis.

    PubMed

    Shin, So Youn; Yoo, Han-Wook; Lee, Beom Hee; Kim, Kun Suk; Seo, Eul-Ju

    2012-09-01

    Human chimerism resulting from the fusion of two different zygotes is a rare phenomenon. Two mechanisms of chimerism have been hypothesized: dispermic fertilization of an oocyte and its second polar body and dispermic fertilization of two identical gametes from parthenogenetic activation, and these can be identified and discriminated using DNA polymorphism. In the present study we describe a patient with chimerism presenting as a true hermaphrodite and applied single nucleotide polymorphism array analysis to demonstrate dispermic fertilization of two identical gametes from parthenogenetic activation as the underlying mechanism at the whole chromosome level. We suggest that application of genotyping array analysis to the diagnostic process in patients with disorders of sex development will help identify more human chimera patients and increase our understanding of the underlying mechanisms. Copyright © 2012 Wiley Periodicals, Inc.

  20. No evidence that GATA3 rs570613 SNP modifies breast cancer risk

    PubMed Central

    Johnatty, Sharon E.; Couch, Fergus J.; Fredericksen, Zachary; Tarrell, Robert; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Gschwantler-Kaulich, Daphne; Singer, Christian F.; Fuerhauser, Christine; Fink-Retter, Anneliese; Domchek, Susan M.; Nathanson, Katherine L.; Pankratz, Vernon S.; Lindor, Noralane M.; Godwin, Andrew K.; Caligo, Maria A.; Hopper, John; Southey, Melissa C.; Giles, Graham G.; Justenhoven, Christina; Brauch, Hiltrud; Hamann, Ute; Ko, Yon-Dschun; Heikkinen, Tuomas; Aaltonen, Kirsimari; Aittomäki, Kristiina; Blomqvist, Carl; Nevanlinna, Heli; Hall, Per; Czene, Kamila; Liu, Jianjun; Peock, Susan; Cook, Margaret; Platte, Radka; Evans, D. Gareth; Lalloo, Fiona; Eeles, Rosalind; Pichert, Gabriella; Eccles, Diana; Davidson, Rosemarie; Cole, Trevor; Cook, Jackie; Douglas, Fiona; Chu, Carol; Hodgson, Shirley; Paterson, Joan; Hogervorst, Frans B.L.; Rookus, Matti A.; Seynaeve, Caroline; Wijnen, Juul; Vreeswijk, Maaike; Ligtenberg, Marjolijn; Luijt, Rob B. van der; van Os, Theo A.M.; Gille, Hans J.P.; Blok, Marinus J.; Issacs, Claudine; Humphreys, Manjeet K.; McGuffog, Lesley; Healey, Sue; Sinilnikova, Olga; Antoniou, Antonis C.; Easton, Douglas F.; Chenevix-Trench, Georgia

    2009-01-01

    GATA-binding protein 3 (GATA3) is a transcription factor that is crucial to mammary gland morphogenesis and differentiation of progenitor cells, and has been suggested to have a tumor suppressor function. The rs570613 single nucleotide polymorphism (SNP) in intron 4 of GATA3 was previously found to be associated with a reduction in breast cancer risk in the Cancer Genetic Markers of Susceptibility project and in pooled analysis of two case-control studies from Norway and Poland (Ptrend =0.004), with some evidence for a stronger association with estrogen receptor (ER) negative tumours [1]. We genotyped GATA3 rs570613 in 6,388 cases and 4,995 controls from the Breast Cancer Association Consortium (BCAC) and 5,617 BRCA1 and BRCA2 carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). We found no association between this SNP and breast cancer risk in BCAC cases overall (ORper-allele = 1.00, 95% CI 0.94 − 1.05), in ER negative BCAC cases (ORper-allele = 1.02, 95% CI 0.91−1.13), in BRCA1 mutation carriers RRper-allele = 0.99, 95% CI 0.90−1.09) or BRCA2 mutation carriers (RRper-allele = 0.93, 95% CI 0.80−1.07). We conclude that there is no evidence that either GATA3 rs570613, or any variant in strong linkage disequilibrium with it, is associated with breast cancer risk in women. PMID:19082709

  1. Development and application of a novel genome-wide SNP array reveals domestication history in soybean

    PubMed Central

    Wang, Jiao; Chu, Shanshan; Zhang, Huairen; Zhu, Ying; Cheng, Hao; Yu, Deyue

    2016-01-01

    Domestication of soybeans occurred under the intense human-directed selections aimed at developing high-yielding lines. Tracing the domestication history and identifying the genes underlying soybean domestication require further exploration. Here, we developed a high-throughput NJAU 355 K SoySNP array and used this array to study the genetic variation patterns in 367 soybean accessions, including 105 wild soybeans and 262 cultivated soybeans. The population genetic analysis suggests that cultivated soybeans have tended to originate from northern and central China, from where they spread to other regions, accompanied with a gradual increase in seed weight. Genome-wide scanning for evidence of artificial selection revealed signs of selective sweeps involving genes controlling domestication-related agronomic traits including seed weight. To further identify genomic regions related to seed weight, a genome-wide association study (GWAS) was conducted across multiple environments in wild and cultivated soybeans. As a result, a strong linkage disequilibrium region on chromosome 20 was found to be significantly correlated with seed weight in cultivated soybeans. Collectively, these findings should provide an important basis for genomic-enabled breeding and advance the study of functional genomics in soybean. PMID:26856884

  2. Development and application of a novel genome-wide SNP array reveals domestication history in soybean.

    PubMed

    Wang, Jiao; Chu, Shanshan; Zhang, Huairen; Zhu, Ying; Cheng, Hao; Yu, Deyue

    2016-02-09

    Domestication of soybeans occurred under the intense human-directed selections aimed at developing high-yielding lines. Tracing the domestication history and identifying the genes underlying soybean domestication require further exploration. Here, we developed a high-throughput NJAU 355 K SoySNP array and used this array to study the genetic variation patterns in 367 soybean accessions, including 105 wild soybeans and 262 cultivated soybeans. The population genetic analysis suggests that cultivated soybeans have tended to originate from northern and central China, from where they spread to other regions, accompanied with a gradual increase in seed weight. Genome-wide scanning for evidence of artificial selection revealed signs of selective sweeps involving genes controlling domestication-related agronomic traits including seed weight. To further identify genomic regions related to seed weight, a genome-wide association study (GWAS) was conducted across multiple environments in wild and cultivated soybeans. As a result, a strong linkage disequilibrium region on chromosome 20 was found to be significantly correlated with seed weight in cultivated soybeans. Collectively, these findings should provide an important basis for genomic-enabled breeding and advance the study of functional genomics in soybean.

  3. Application of next-generation sequencing technology to study genetic diversity and identify unique SNP markers in bread wheat from Kazakhstan.

    PubMed

    Shavrukov, Yuri; Suchecki, Radoslaw; Eliby, Serik; Abugalieva, Aigul; Kenebayev, Serik; Langridge, Peter

    2014-09-28

    New SNP marker platforms offer the opportunity to investigate the relationships between wheat cultivars from different regions and assess the mechanism and processes that have led to adaptation to particular production environments. Wheat breeding has a long history in Kazakhstan and the aim of this study was to explore the relationship between key varieties from Kazakhstan and germplasm from breeding programs for other regions. The study revealed 5,898 polymorphic markers amongst ten cultivars, of which 2,730 were mapped in the consensus genetic map. Mapped SNP markers were distributed almost equally across the A and B genomes, with between 279 and 484 markers assigned to each chromosome. Marker coverage was approximately 10-fold lower in the D genome. There were 863 SNP markers identified as unique to specific cultivars, and clusters of these markers (regions containing more than three closely mapped unique SNPs) showed specific patterns on the consensus genetic map for each cultivar. Significant intra-varietal genetic polymorphism was identified in three cultivars (Tzelinnaya 3C, Kazakhstanskaya rannespelaya and Kazakhstanskaya 15). Phylogenetic analysis based on inter-varietal polymorphism showed that the very old cultivar Erythrospermum 841 was the most genetically distinct from the other nine cultivars from Kazakhstan, falling in a clade together with the American cultivar Sonora and genotypes from Central and South Asia. The modern cultivar Kazakhstanskaya 19 also fell into a separate clade, together with the American cultivar Thatcher. The remaining eight cultivars shared a single sub-clade but were categorised into four clusters. The accumulated data for SNP marker polymorphisms amongst bread wheat genotypes from Kazakhstan may be used for studying genetic diversity in bread wheat, with potential application for marker-assisted selection and the preparation of a set of genotype-specific markers.

  4. Association of FTO rs9939609 SNP with Obesity and Obesity- Associated Phenotypes in a North Indian Population

    PubMed Central

    Prakash, Jai; Mittal, Balraj; Srivastava, Apurva; Awasthi, Shally; Srivastava, Neena

    2016-01-01

    Objectives Obesity is a common disorder that has a significant impact on morbidity and mortality. Twin and adoption studies support the genetic influence on variation of obesity, and the estimates of the heritability of body mass index (BMI) is significantly high (30 to 70%). Variants in the fat mass and obesity-associated (FTO) gene have been associated with obesity and obesity-related phenotypes in different populations. The aim of this study was to examine the association of FTO rs9939609 with obesity and related phenotypes in North Indian subjects.   Methods Gene variants were investigated for association with obesity in 309 obese and 333 non-obese patients. Genotyping of the FTO rs9939609 single nucleotide polymorphism (SNP) was analyzed using Restriction Fragment Length Polymorphism Analysis of PCR-Amplified Fragments. We also measured participants fasting glucose and insulin levels, lipid profile, percentage body fat, fat mass and fat free mass.   Results Waist to hip ratio, systolic blood pressure, diastolic blood pressure, percentage body fat, fat mass, insulin concentration, and homeostasis model assessment index (HOMA-Index) showed a significant difference between the study groups. Significant associations were found for FTO rs9939609 SNP with obesity and obesity-related phenotypes. The significant associations were observed between the rs9939609 SNP and blood pressure, fat mass, insulin, and HOMA-index under a different model.   Conclusion This study presents significant association between FTO rs9939609 and obesity defined by BMI and also established the strong association with several measures of obesity in North Indian population. PMID:27168919

  5. Construction and Annotation of a High Density SNP Linkage Map of the Atlantic Salmon (Salmo salar) Genome.

    PubMed

    Tsai, Hsin Y; Robledo, Diego; Lowe, Natalie R; Bekaert, Michael; Taggart, John B; Bron, James E; Houston, Ross D

    2016-07-07

    High density linkage maps are useful tools for fine-scale mapping of quantitative trait loci, and characterization of the recombination landscape of a species' genome. Genomic resources for Atlantic salmon (Salmo salar) include a well-assembled reference genome, and high density single nucleotide polymorphism (SNP) arrays. Our aim was to create a high density linkage map, and to align it with the reference genome assembly. Over 96,000 SNPs were mapped and ordered on the 29 salmon linkage groups using a pedigreed population comprising 622 fish from 60 nuclear families, all genotyped with the 'ssalar01' high density SNP array. The number of SNPs per group showed a high positive correlation with physical chromosome length (r = 0.95). While the order of markers on the genetic and physical maps was generally consistent, areas of discrepancy were identified. Approximately 6.5% of the previously unmapped reference genome sequence was assigned to chromosomes using the linkage map. Male recombination rate was lower than females across the vast majority of the genome, but with a notable peak in subtelomeric regions. Finally, using RNA-Seq data to annotate the reference genome, the mapped SNPs were categorized according to their predicted function, including annotation of ∼2500 putative nonsynonymous variants. The highest density SNP linkage map for any salmonid species has been created, annotated, and integrated with the Atlantic salmon reference genome assembly. This map highlights the marked heterochiasmy of salmon, and provides a useful resource for salmonid genetics and genomics research. Copyright © 2016 Tsai et al.

  6. The single nucleotide polymorphism Gly482Ser in the PGC-1α gene impairs exercise-induced slow-twitch muscle fibre transformation in humans.

    PubMed

    Steinbacher, Peter; Feichtinger, René G; Kedenko, Lyudmyla; Kedenko, Igor; Reinhardt, Sandra; Schönauer, Anna-Lena; Leitner, Isabella; Sänger, Alexandra M; Stoiber, Walter; Kofler, Barbara; Förster, Holger; Paulweber, Bernhard; Ring-Dimitriou, Susanne

    2015-01-01

    PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α) is an important regulator of mitochondrial biogenesis and a master regulator of enzymes involved in oxidative phosphorylation. Recent evidence demonstrated that the Gly482Ser single nucleotide polymorphism (SNP) in the PGC-1α gene affects insulin sensitivity, blood lipid metabolism and binding to myocyte enhancer factor 2 (MEF2). Individuals carrying this SNP were shown to have a reduced cardiorespiratory fitness and a higher risk to develop type 2 diabetes. Here, we investigated the responses of untrained men with the Gly482Ser SNP to a 10 week programme of endurance training (cycling, 3 x 60 min/week, heart rate at 70-90% VO2peak). Quantitative data from analysis of biopsies from vastus lateralis muscle revealed that the SNP group, in contrast to the control group, lacked a training-induced increase in content of slow contracting oxidative fibres. Capillary supply, mitochondrial density, mitochondrial enzyme activities and intramyocellular lipid content increased similarly in both groups. These results indicate that the impaired binding of MEF2 to PGC-1α in humans with this SNP impedes exercise-induced fast-to-slow muscle fibre transformation.

  7. The Single Nucleotide Polymorphism Gly482Ser in the PGC-1α Gene Impairs Exercise-Induced Slow-Twitch Muscle Fibre Transformation in Humans

    PubMed Central

    Steinbacher, Peter; Feichtinger, René G.; Kedenko, Lyudmyla; Kedenko, Igor; Reinhardt, Sandra; Schönauer, Anna-Lena; Leitner, Isabella; Sänger, Alexandra M.; Stoiber, Walter; Kofler, Barbara; Förster, Holger; Paulweber, Bernhard; Ring-Dimitriou, Susanne

    2015-01-01

    PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α) is an important regulator of mitochondrial biogenesis and a master regulator of enzymes involved in oxidative phosphorylation. Recent evidence demonstrated that the Gly482Ser single nucleotide polymorphism (SNP) in the PGC-1α gene affects insulin sensitivity, blood lipid metabolism and binding to myocyte enhancer factor 2 (MEF2). Individuals carrying this SNP were shown to have a reduced cardiorespiratory fitness and a higher risk to develop type 2 diabetes. Here, we investigated the responses of untrained men with the Gly482Ser SNP to a 10 week programme of endurance training (cycling, 3 x 60 min/week, heart rate at 70-90% VO2peak). Quantitative data from analysis of biopsies from vastus lateralis muscle revealed that the SNP group, in contrast to the control group, lacked a training-induced increase in content of slow contracting oxidative fibres. Capillary supply, mitochondrial density, mitochondrial enzyme activities and intramyocellular lipid content increased similarly in both groups. These results indicate that the impaired binding of MEF2 to PGC-1α in humans with this SNP impedes exercise-induced fast-to-slow muscle fibre transformation. PMID:25886402

  8. A comparison of restriction fragment length polymorphism, tetra primer amplification refractory mutation system PCR and unlabeled probe melting analysis for LTA+252 C>T SNP genotyping.

    PubMed

    Soler, Stephan; Rittore, Cécile; Touitou, Isabelle; Philibert, Laurent

    2011-02-20

    From the wide range of methods currently available for genotyping, we wished to identify a quick, reliable and affordable approach for routine use in our laboratory for LTA+252 C>T SNP screening. We set up and compared three genotyping methods for SNP detection: restriction fragment length polymorphism (RFLP), tetra primer amplification refractory mutation system PCR (TPAP) and unlabeled probe melting analysis (UPMA). The SNP model used was LTA+252 C>T, a cytokine gene polymorphism that has been associated with response to treatment in rheumatoid arthritis. The study was performed using 46 samples from healthy Caucasian volunteers. Allele and genotype distribution was similar to that previously described in the same population. All three genotyping methods showed good reproducibility and are suitable for a medium scale throughput molecular platform. UPMA was the most cost effective, reliable and safe method since it required the shortest technician time, could be performed in a single closed tube and involved automatic data analysis. This work is the first to compare these three genotyping techniques and provides evidence for UPMA being the method of choice for LTA+252 C>T SNP genotyping. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Combination of RNAseq and SNP nanofluidic array reveals the center of genetic diversity of cacao pathogen Moniliophthora roreri in the upper Magdalena Valley of Colombia and its clonality.

    PubMed

    Ali, Shahin S; Shao, Jonathan; Strem, Mary D; Phillips-Mora, Wilberth; Zhang, Dapeng; Meinhardt, Lyndel W; Bailey, Bryan A

    2015-01-01

    Moniliophthora roreri is the fungal pathogen that causes frosty pod rot (FPR) disease of Theobroma cacao L., the source of chocolate. FPR occurs in most of the cacao producing countries in the Western Hemisphere, causing yield losses up to 80%. Genetic diversity within the FPR pathogen population may allow the population to adapt to changing environmental conditions and adapt to enhanced resistance in the host plant. The present study developed single nucleotide polymorphism (SNP) markers from RNASeq results for 13 M. roreri isolates and validated the markers for their ability to reveal genetic diversity in an international M. roreri collection. The SNP resources reported herein represent the first study of RNA sequencing (RNASeq)-derived SNP validation in M. roreri and demonstrates the utility of RNASeq as an approach for de novo SNP identification in M. roreri. A total of 88 polymorphic SNPs were used to evaluate the genetic diversity of 172 M. roreri cacao isolates resulting in 37 distinct genotypes (including 14 synonymous groups). Absence of heterozygosity for the 88 SNP markers indicates reproduction in M. roreri is clonal and likely due to a homothallic life style. The upper Magdalena Valley of Colombia showed the highest levels of genetic diversity with 20 distinct genotypes of which 13 were limited to this region, and indicates this region as the possible center of origin for M. roreri.

  10. Combination of RNAseq and SNP nanofluidic array reveals the center of genetic diversity of cacao pathogen Moniliophthora roreri in the upper Magdalena Valley of Colombia and its clonality

    PubMed Central

    Ali, Shahin S.; Shao, Jonathan; Strem, Mary D.; Phillips-Mora, Wilberth; Zhang, Dapeng; Meinhardt, Lyndel W.; Bailey, Bryan A.

    2015-01-01

    Moniliophthora roreri is the fungal pathogen that causes frosty pod rot (FPR) disease of Theobroma cacao L., the source of chocolate. FPR occurs in most of the cacao producing countries in the Western Hemisphere, causing yield losses up to 80%. Genetic diversity within the FPR pathogen population may allow the population to adapt to changing environmental conditions and adapt to enhanced resistance in the host plant. The present study developed single nucleotide polymorphism (SNP) markers from RNASeq results for 13 M. roreri isolates and validated the markers for their ability to reveal genetic diversity in an international M. roreri collection. The SNP resources reported herein represent the first study of RNA sequencing (RNASeq)-derived SNP validation in M. roreri and demonstrates the utility of RNASeq as an approach for de novo SNP identification in M. roreri. A total of 88 polymorphic SNPs were used to evaluate the genetic diversity of 172 M. roreri cacao isolates resulting in 37 distinct genotypes (including 14 synonymous groups). Absence of heterozygosity for the 88 SNP markers indicates reproduction in M. roreri is clonal and likely due to a homothallic life style. The upper Magdalena Valley of Colombia showed the highest levels of genetic diversity with 20 distinct genotypes of which 13 were limited to this region, and indicates this region as the possible center of origin for M. roreri. PMID:26379633

  11. SNP detection in Na/K ATP-ase gene α1 subunit of bisexual and parthenogenetic Artemia strains by RFLP screening.

    PubMed

    Manaffar, R; Zare, S; Agh, N; Abdolahzadeh, N; Soltanian, S; Sorgeloos, P; Bossier, P; Van Stappen, G

    2011-01-01

    In order to find a marker for differentiating between a bisexual and a parthenogenetic Artemia strain, Exon-7 of the Na/K ATPase α(1) subunit gene was screened by RFLP technique. The results revealed a constant synonymous SNP (single nucleotide polymorphism) in digestion by the Tru1I enzyme that was consistent with these two types of Artemia. This SNP was identified as an accurate molecular marker for discrimination between bisexual and parthenogenetic Artemia. According to the Nei's genetic distance (1973), the lowest genetic distance was found between individuals from Artemia urmiana Günther 1890 and parthenogenetic populations, making the described marker the first marker to easily distinguish between these two cooccurring species. © 2010 Blackwell Publishing Ltd.

  12. DNA sequences of Pima (Gossypium barbadense L.) cotton leaf for examining transcriptome diversity and SNP biomarker discovery

    USDA-ARS?s Scientific Manuscript database

    As an initial step to explore the transcriptome genetic diversity and to discover single nucleotide polymorphic (SNP)-biomarkers for marker assisted breeding within Pima (Gossypium barbadense L.) cotton, leaves from 25 day plants of three diverse genotypes were used to develop cDNA libraries. Using ...

  13. Towards a consensus Y-chromosomal phylogeny and Y-SNP set in forensics in the next-generation sequencing era.

    PubMed

    Larmuseau, Maarten H D; Van Geystelen, Anneleen; Kayser, Manfred; van Oven, Mannis; Decorte, Ronny

    2015-03-01

    Currently, several different Y-chromosomal phylogenies and haplogroup nomenclatures are presented in scientific literature and at conferences demonstrating the present diversity in Y-chromosomal phylogenetic trees and Y-SNP sets used within forensic and anthropological research. This situation can be ascribed to the exponential growth of the number of Y-SNPs discovered due to mostly next-generation sequencing (NGS) studies. As Y-SNPs and their respective phylogenetic positions are important in forensics, such as for male lineage characterization and paternal bio-geographic ancestry inference, there is a need for forensic geneticists to know how to deal with these newly identified Y-SNPs and phylogenies, especially since these phylogenies are often created with other aims than to carry out forensic genetic research. Therefore, we give here an overview of four categories of currently used Y-chromosomal phylogenies and the associated Y-SNP sets in scientific research in the current NGS era. We compare these categories based on the construction method, their advantages and disadvantages, the disciplines wherein the phylogenetic tree can be used, and their specific relevance for forensic geneticists. Based on this overview, it is clear that an up-to-date reduced tree with a consensus Y-SNP set and a stable nomenclature will be the most appropriate reference resource for forensic research. Initiatives to reach such an international consensus are therefore highly recommended. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Design and coverage of high throughput genotyping arrays optimized for individuals of East Asian, African American, and Latino race/ethnicity using imputation and a novel hybrid SNP selection algorithm.

    PubMed

    Hoffmann, Thomas J; Zhan, Yiping; Kvale, Mark N; Hesselson, Stephanie E; Gollub, Jeremy; Iribarren, Carlos; Lu, Yontao; Mei, Gangwu; Purdy, Matthew M; Quesenberry, Charles; Rowell, Sarah; Shapero, Michael H; Smethurst, David; Somkin, Carol P; Van den Eeden, Stephen K; Walter, Larry; Webster, Teresa; Whitmer, Rachel A; Finn, Andrea; Schaefer, Catherine; Kwok, Pui-Yan; Risch, Neil

    2011-12-01

    Four custom Axiom genotyping arrays were designed for a genome-wide association (GWA) study of 100,000 participants from the Kaiser Permanente Research Program on Genes, Environment and Health. The array optimized for individuals of European race/ethnicity was previously described. Here we detail the development of three additional microarrays optimized for individuals of East Asian, African American, and Latino race/ethnicity. For these arrays, we decreased redundancy of high-performing SNPs to increase SNP capacity. The East Asian array was designed using greedy pairwise SNP selection. However, removing SNPs from the target set based on imputation coverage is more efficient than pairwise tagging. Therefore, we developed a novel hybrid SNP selection method for the African American and Latino arrays utilizing rounds of greedy pairwise SNP selection, followed by removal from the target set of SNPs covered by imputation. The arrays provide excellent genome-wide coverage and are valuable additions for large-scale GWA studies. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Construction of a high density SNP linkage map of kelp (Saccharina japonica) by sequencing Taq I site associated DNA and mapping of a sex determining locus.

    PubMed

    Zhang, Ning; Zhang, Linan; Tao, Ye; Guo, Li; Sun, Juan; Li, Xia; Zhao, Nan; Peng, Jie; Li, Xiaojie; Zeng, Liang; Chen, Jinsa; Yang, Guanpin

    2015-03-15

    Kelp (Saccharina japonica) has been intensively cultured in China for almost a century. Its genetic improvement is comparable with that of rice. However, the development of its molecular tools is extremely limited, thus its genes, genetics and genomics. Kelp performs an alternative life cycle during which sporophyte generation alternates with gametophyte generation. The gametophytes of kelp can be cloned and crossed. Due to these characteristics, kelp may serve as a reference for the biological and genetic studies of Volvox, mosses and ferns. We constructed a high density single nucleotide polymorphism (SNP) linkage map for kelp by restriction site associated DNA (RAD) sequencing. In total, 4,994 SNP-containing physical (tag-defined) RAD loci were mapped on 31 linkage groups. The map expanded a total genetic distance of 1,782.75 cM, covering 98.66% of the expected (1,806.94 cM). The length of RAD tags (85 bp) was extended to 400-500 bp with Miseq method, offering us an easiness of developing SNP chips and shifting SNP genotyping to a high throughput track. The number of linkage groups was in accordance with the documented with cytological methods. In addition, we identified a set of microsatellites (99 in total) from the extended RAD tags. A gametophyte sex determining locus was mapped on linkage group 2 in a window about 9.0 cM in width, which was 2.66 cM up to marker_40567 and 6.42 cM down to marker_23595. A high density SNP linkage map was constructed for kelp, an intensively cultured brown alga in China. The RAD tags were also extended so that a SNP chip could be developed. In addition, a set of microsatellites were identified among mapped loci, and a gametophyte sex determining locus was mapped. This map will facilitate the genetic studies of kelp including for example the evaluation of germplasm and the decipherment of the genetic bases of economic traits.

  16. The Discovery of Single-Nucleotide Polymorphisms—and Inferences about Human Demographic History

    PubMed Central

    Wakeley, John; Nielsen, Rasmus; Liu-Cordero, Shau Neen; Ardlie, Kristin

    2001-01-01

    A method of historical inference that accounts for ascertainment bias is developed and applied to single-nucleotide polymorphism (SNP) data in humans. The data consist of 84 short fragments of the genome that were selected, from three recent SNP surveys, to contain at least two polymorphisms in their respective ascertainment samples and that were then fully resequenced in 47 globally distributed individuals. Ascertainment bias is the deviation, from what would be observed in a random sample, caused either by discovery of polymorphisms in small samples or by locus selection based on levels or patterns of polymorphism. The three SNP surveys from which the present data were derived differ both in their protocols for ascertainment and in the size of the samples used for discovery. We implemented a Monte Carlo maximum-likelihood method to fit a subdivided-population model that includes a possible change in effective size at some time in the past. Incorrectly assuming that ascertainment bias does not exist causes errors in inference, affecting both estimates of migration rates and historical changes in size. Migration rates are overestimated when ascertainment bias is ignored. However, the direction of error in inferences about changes in effective population size (whether the population is inferred to be shrinking or growing) depends on whether either the numbers of SNPs per fragment or the SNP-allele frequencies are analyzed. We use the abbreviation “SDL,” for “SNP-discovered locus,” in recognition of the genomic-discovery context of SNPs. When ascertainment bias is modeled fully, both the number of SNPs per SDL and their allele frequencies support a scenario of growth in effective size in the context of a subdivided population. If subdivision is ignored, however, the hypothesis of constant effective population size cannot be rejected. An important conclusion of this work is that, in demographic or other studies, SNP data are useful only to the extent that

  17. Enhanced statistical tests for GWAS in admixed populations: assessment using African Americans from CARe and a Breast Cancer Consortium.

    PubMed

    Pasaniuc, Bogdan; Zaitlen, Noah; Lettre, Guillaume; Chen, Gary K; Tandon, Arti; Kao, W H Linda; Ruczinski, Ingo; Fornage, Myriam; Siscovick, David S; Zhu, Xiaofeng; Larkin, Emma; Lange, Leslie A; Cupples, L Adrienne; Yang, Qiong; Akylbekova, Ermeg L; Musani, Solomon K; Divers, Jasmin; Mychaleckyj, Joe; Li, Mingyao; Papanicolaou, George J; Millikan, Robert C; Ambrosone, Christine B; John, Esther M; Bernstein, Leslie; Zheng, Wei; Hu, Jennifer J; Ziegler, Regina G; Nyante, Sarah J; Bandera, Elisa V; Ingles, Sue A; Press, Michael F; Chanock, Stephen J; Deming, Sandra L; Rodriguez-Gil, Jorge L; Palmer, Cameron D; Buxbaum, Sarah; Ekunwe, Lynette; Hirschhorn, Joel N; Henderson, Brian E; Myers, Simon; Haiman, Christopher A; Reich, David; Patterson, Nick; Wilson, James G; Price, Alkes L

    2011-04-01

    While genome-wide association studies (GWAS) have primarily examined populations of European ancestry, more recent studies often involve additional populations, including admixed populations such as African Americans and Latinos. In admixed populations, linkage disequilibrium (LD) exists both at a fine scale in ancestral populations and at a coarse scale (admixture-LD) due to chromosomal segments of distinct ancestry. Disease association statistics in admixed populations have previously considered SNP association (LD mapping) or admixture association (mapping by admixture-LD), but not both. Here, we introduce a new statistical framework for combining SNP and admixture association in case-control studies, as well as methods for local ancestry-aware imputation. We illustrate the gain in statistical power achieved by these methods by analyzing data of 6,209 unrelated African Americans from the CARe project genotyped on the Affymetrix 6.0 chip, in conjunction with both simulated and real phenotypes, as well as by analyzing the FGFR2 locus using breast cancer GWAS data from 5,761 African-American women. We show that, at typed SNPs, our method yields an 8% increase in statistical power for finding disease risk loci compared to the power achieved by standard methods in case-control studies. At imputed SNPs, we observe an 11% increase in statistical power for mapping disease loci when our local ancestry-aware imputation framework and the new scoring statistic are jointly employed. Finally, we show that our method increases statistical power in regions harboring the causal SNP in the case when the causal SNP is untyped and cannot be imputed. Our methods and our publicly available software are broadly applicable to GWAS in admixed populations.

  18. Diversity in 113 cowpea [Vigna unguiculata (L) Walp] accessions assessed with 458 SNP markers.

    PubMed

    Egbadzor, Kenneth F; Ofori, Kwadwo; Yeboah, Martin; Aboagye, Lawrence M; Opoku-Agyeman, Michael O; Danquah, Eric Y; Offei, Samuel K

    2014-01-01

    Single Nucleotide Polymorphism (SNP) markers were used in characterization of 113 cowpea accessions comprising of 108 from Ghana and 5 from abroad. Leaf tissues from plants cultivated at the University of Ghana were genotyped at KBioscience in the United Kingdom. Data was generated for 477 SNPs, out of which 458 revealed polymorphism. The results were used to analyze genetic dissimilarity among the accessions using Darwin 5 software. The markers discriminated among all of the cowpea accessions and the dissimilarity values which ranged from 0.006 to 0.63 were used for factorial plot. Unexpected high levels of heterozygosity were observed on some of the accessions. Accessions known to be closely related clustered together in a dendrogram drawn with WPGMA method. A maximum length sub-tree which comprised of 48 core accessions was constructed. The software package structure was used to separate accessions into three groups, and the programme correctly identified varieties that were known hybrids. The hybrids were those accessions with numerous heterozygous loci. The structure plot showed closely related accessions with similar genome patterns. The SNP markers were more efficient in discriminating among the cowpea germplasm than morphological, seed protein polymorphism and simple sequence repeat studies reported earlier on the same collection.

  19. Japaneseplex: A forensic SNP assay for identification of Japanese people using Japanese-specific alleles.

    PubMed

    Yuasa, Isao; Akane, Atsushi; Yamamoto, Toshimichi; Matsusue, Aya; Endoh, Minoru; Nakagawa, Mayumi; Umetsu, Kazuo; Ishikawa, Takaki; Iino, Morio

    2018-04-24

    It is sometimes necessary to determine whether a forensic biological sample came from a Japanese person. In this study, we developed a 60-locus SNP assay designed for the differentiation of Japanese people from other East Asians using entirely and nearly Japanese-specific alleles. This multiplex assay consisted of 6 independent PCR reactions followed by single nucleotide extension. The average number and standard deviation of Japanese-specific alleles possessed by an individual were 0.81 ± 0.93 in 108 Koreans from Seoul, 8.87 ± 2.89 in 103 Japanese from Tottori, 17.20 ± 3.80 in 88 Japanese from Okinawa, and 0 in 220 Han Chinese from Wuxi and Changsha. The Koreans had 0-4 Japanese-specific alleles per individual, whereas the Japanese had 4-26 Japanese-specific alleles. Almost all Japanese were distinguished from the Koreans and other people by the factorial correspondence and principal component analyses. The Snipper program was also useful to estimate the degree of Japaneseness. The method described here was successfully applied to the differentiation of Japanese from non-Japanese people in forensic cases. This Japanese-specific SNP assay was named Japaneseplex. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds

    PubMed Central

    Kijas, James W.; Townley, David; Dalrymple, Brian P.; Heaton, Michael P.; Maddox, Jillian F.; McGrath, Annette; Wilson, Peter; Ingersoll, Roxann G.; McCulloch, Russell; McWilliam, Sean; Tang, Dave; McEwan, John; Cockett, Noelle; Oddy, V. Hutton; Nicholas, Frank W.; Raadsma, Herman

    2009-01-01

    The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identifying the first genome-wide set of SNP for sheep, we report on levels of genetic variability both within and between a diverse sample of ovine populations. Then, using cluster analysis and the partitioning of genetic variation, we demonstrate sheep are characterised by weak phylogeographic structure, overlapping genetic similarity and generally low differentiation which is consistent with their short evolutionary history. The degree of population substructure was, however, sufficient to cluster individuals based on geographic origin and known breed history. Specifically, African and Asian populations clustered separately from breeds of European origin sampled from Australia, New Zealand, Europe and North America. Furthermore, we demonstrate the presence of stratification within some, but not all, ovine breeds. The results emphasize that careful documentation of genetic structure will be an essential prerequisite when mapping the genetic basis of complex traits. Furthermore, the identification of a subset of SNP able to assign individuals into broad groupings demonstrates even a small panel of markers may be suitable for applications such as traceability. PMID:19270757