Sample records for aflatoxin producing fungi

  1. Influences of climate on aflatoxin producing fungi and aflatoxin contamination.

    PubMed

    Cotty, Peter J; Jaime-Garcia, Ramon

    2007-10-20

    Aflatoxins are potent mycotoxins that cause developmental and immune system suppression, cancer, and death. As a result of regulations intended to reduce human exposure, crop contamination with aflatoxins causes significant economic loss for producers, marketers, and processors of diverse susceptible crops. Aflatoxin contamination occurs when specific fungi in the genus Aspergillus infect crops. Many industries frequently affected by aflatoxin contamination know from experience and anecdote that fluctuations in climate impact the extent of contamination. Climate influences contamination, in part, by direct effects on the causative fungi. As climate shifts, so do the complex communities of aflatoxin-producing fungi. This includes changes in the quantity of aflatoxin-producers in the environment and alterations to fungal community structure. Fluctuations in climate also influence predisposition of hosts to contamination by altering crop development and by affecting insects that create wounds on which aflatoxin-producers proliferate. Aflatoxin contamination is prevalent both in warm humid climates and in irrigated hot deserts. In temperate regions, contamination may be severe during drought. The contamination process is frequently broken down into two phases with the first phase occurring on the developing crop and the second phase affecting the crop after maturation. Rain and temperature influence the phases differently with dry, hot conditions favoring the first and warm, wet conditions favoring the second. Contamination varies with climate both temporally and spatially. Geostatistics and multiple regression analyses have shed light on influences of weather on contamination. Geostatistical analyses have been used to identify recurrent contamination patterns and to match these with environmental variables. In the process environmental conditions with the greatest impact on contamination are identified. Likewise, multiple regression analyses allow ranking of

  2. Aflatoxigenic Fungi and Aflatoxins in Portuguese Almonds

    PubMed Central

    Rodrigues, P.; Venâncio, A.; Lima, N.

    2012-01-01

    Aflatoxin contamination of nuts is an increasing concern to the consumer's health. Portugal is a big producer of almonds, but there is no scientific knowledge on the safety of those nuts, in terms of mycotoxins. The aim of this paper was to study the incidence of aflatoxigenic fungi and aflatoxin contamination of 21 samples of Portuguese almonds, and its evolution throughout the various stages of production. All fungi belonging to Aspergillus section Flavi were identified and tested for their aflatoxigenic ability. Almond samples were tested for aflatoxin contamination by HPLC-fluorescence. In total, 352 fungi belonging to Aspergillus section Flavi were isolated from Portuguese almonds: 127 were identified as A. flavus (of which 28% produced aflatoxins B), 196 as typical or atypical A. parasiticus (all producing aflatoxins B and G), and 29 as A. tamarii (all nonaflatoxigenic). Aflatoxins were detected in only one sample at 4.97 μg/kg. PMID:22666128

  3. Fungi, aflatoxins, and cyclopiazonic acid associated with peanut retailing in Botswana.

    PubMed

    Mphande, Fingani A; Siame, Bupe A; Taylor, Joanne E

    2004-01-01

    Peanuts are important food commodities, but they are susceptible to fungal infestation and mycotoxin contamination. Raw peanuts were purchased from retail outlets in Botswana and examined for fungi and mycotoxin (aflatoxins and cyclopiazonic acid) contamination. Zygomycetes were the most common fungi isolated; they accounted for 41% of all the isolates and were found on 98% of the peanut samples. Among the Zygomycetes, Absidia corymbifera and Rhizopus stolonifer were the most common. Aspergillus spp. accounted for 35% of all the isolates, with Aspergillus niger being the most prevalent (20.4%). Aspergillus flavus/parasiticus were also present and accounted for 8.5% of all the isolates, with A. flavus accounting for the majority of the A. flavus/parasiticus identified. Of the 32 isolates of A. flavus screened for mycotoxin production, 11 did not produce detectable aflatoxins, 8 produced only aflatoxins B1 and B2, and 13 produced all four aflatoxins (B1, B2, G1, and G2) in varying amounts. Only 6 of the A. flavus isolates produced cyclopiazonic acid at concentrations ranging from 1 to 55 microg/kg. The one A. parasiticus isolate screened also produced all the four aflatoxins (1,200 microg/kg) but did not produce cyclopiazonic acid. When the raw peanut samples (n = 120) were analyzed for total aflatoxins, 78% contained aflatoxins at concentrations ranging from 12 to 329 microg/kg. Many of the samples (49%) contained total aflatoxins at concentrations above the 20 microg/kg limit set by the World Health Organization. Only 21% (n = 83) of the samples contained cyclopiazonic acid with concentrations ranging from 1 to 10 microg/kg. The results show that mycotoxins and toxigenic fungi are common contaminants of peanuts sold at retail in Botswana.

  4. [Inhibition of Growth of Seed-Borne Fungi and Aflatoxin Production on Stored Peanuts by Allyl Isothiocyanate Vapor].

    PubMed

    Okano, Kiyoshi; Nishioka, Chikako; Iida, Tetsuya; Ozu, Yuzi; Kaneko, Misao; Watanabe, Yuko; Mizukami, Yuichi; Ichinoe, Masakatsu

    2018-01-01

    Aspergillus parasiticus contamination of peanuts results in the production of highly toxic metabolites, such as aflatoxin B 1 , B 2 , G 1 and G 2 , and its incidence in imported peanuts is reported to be increasing. Here, we examined whether the antifungal compound allyl isothiocyanate (AIT), which is present in mustard seed, could inhibit the growth of seed-borne fungi and aflatoxin-producing fungi. Peanuts produced in China and Japan were inoculated with A. parasiticus and exposed to AIT vapor released by a commercial mustard seed extract in closed containers under controlled conditions of temperature and humidity. AIT in the inoculated peanut samples reached its highest concentration of 44.8 ng/mL at 3 hr and decreased to 5.6 ng/mL after 9 weeks. Although AIT decreased the growth of the seed-borne fungi during the test period, the inoculated fungi survived. All tested peanuts samples were analyzed for aflatoxin using the HPLC method. There was a correlation between the number of aflatoxin-producing fungi and the total amount of aflatoxin production in the inoculated peanut samples. Our results indicate that AIT was effective in inhibiting the growth of seed-borne fungi and aflatoxin-producing fungi.

  5. Aflatoxins

    Cancer.gov

    Learn about aflatoxins, a family of toxins associated with an increased risk of liver cancer. Aflatoxins are produced by certain fungi found on agricultural crops such as maize (corn), peanuts, cottonseed, and tree nuts.

  6. Biological Controls for Aflatoxin Reduction

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin exposure is frequent and widespread in most African countries where the key staples, maize and groundnut, are particularly vulnerable to aflatoxin contamination. Aflatoxin-producing fungi are ubiquitous in Africa where they occupy soil and colonize diverse organic matter while producing sp...

  7. [REDUCTION OF THE CONTENT OF AFLATOXIN-FORMING FUNGI IN CONTAMINATED GRAINS BY METHODS OF HYDROTHERMAL TREATMENT].

    PubMed

    Shentsova, E S; Lytkina, L I; Shevtsov, A A

    2015-01-01

    Microscopic fungi affecting grain and products of its processing, under certain conditions, are capable of producing over 100 mycotoxins, some of which are carcinogenic. Mycotoxins are falled to the most dangerous contaminants of food and compound animal feedstuff, they possess toxicity, mutagenic and carcinogenic properties. The most toxic and dangerous carcinogens are aflatoxins which affect on virtually all cells of the body of the human and agricultural animals, provoking the occurrence of diseases--aflatoxicoses. Aflatoxins give rise to encephalopathy and fatty degeneration of internal organs. The World Health Organization mentions aflatoxins as a cause of the origin of cancer. Currently in Russia there is a real danger of the negative impact of mycotoxins on farm animals in feeding grain affected by aflatoxins. The gain in the number of aflatoxicoses is a serious hygienic problem. This is related with the wide spread of producers of aflatoxins in nature and also with the intensive trade of grain and products of its processing between countries, a lack of control over their content. Detoxification of the affected products is an actual task, because its use causes irreparable harm to human health andfarm animals. Currently there are known several ways of inactivation of aflatoxins in the grain, based on the use of hydrothermal treatment. IR heat treatment, ultraviolet irradiation and extrusion were established to be the most rational approaches, providing the reduction offungi in the grain of aflatoxin-forming fungi by 80 ... 100%, aflatoxin B1--by the 76... 100% and a decrease in the degree of toxicity by 2.3 times. There are presented experimental data of various ways of disinfecting grain and appropriateness of their application in practice.

  8. Occurrence of Toxigenic Fungi and Aflatoxin Potential of Aspergillus spp. Strains Associated with Subsistence Farmed Crops in Haiti.

    PubMed

    Aristil, Junior; Venturini, Giovanni; Spada, Alberto

    2017-04-01

    Subsistence farming and poor storage facilities favor toxigenic fungal contamination and mycotoxin accumulation in staple foods from tropical countries such as Haiti. The present preliminary study was designed to evaluate the occurrence of toxigenic fungi in Haitian foodstuffs to define the mycotoxin risk associated with Haitian crops. The objectives of this research were to determine the distribution of toxigenic fungi in the Haitian crops maize, moringa, and peanut seeds and to screen Aspergillus section Flavi (ASF) isolates for production of aflatoxins B 1 and G 1 in vitro. Maize, moringa, and peanut samples were contaminated by potential toxigenic fungal taxa, mainly ASF and Fusarium spp. The isolation frequency of Aspergillus spp. and Fusarium spp. was influenced by locality and thus by farming systems, storage systems, and weather conditions. Particularly for ASF in peanut and maize samples, isolation frequencies were directly related to the growing season length. The present study represents the first report of contamination by toxigenic fungi and aflatoxin in moringa seeds, posing concerns about the safety of these seeds, which people in Haiti commonly consume. Most (80%) of the Haitian ASF strains were capable of producing aflatoxins, indicating that Haitian conditions clearly favor the colonization of toxigenic ASF strains over atoxigenic strains. ASF strains producing both aflatoxins B 1 and G 1 were found. Understanding the distribution of toxigenic ASF in Haitian crops and foodstuffs is important for determining accurate toxicological risks because the toxic profile of ASF is species specific. The occurrence of toxigenic fungi and the profiles of the ASF found in various crops highlight the need to prevent formation of aflatoxins in Haitian crops. This study provides relevant preliminary baseline data for guiding the development of legislation regulating the quality and safety of crops in this low-income country.

  9. Global population structure and adaptive evolution of aflatoxin-producing fungi

    USDA-ARS?s Scientific Manuscript database

    We employed interspecific principal component analyses for six different categories (geography, species, precipitation, temperature, aflatoxin chemotype profile, and mating type) and inferred maximum likelihood phylogenies for six combined loci, including two aflatoxin cluster regions (aflM/alfN and...

  10. Global population structure and adaptive evolution of aflatoxin-producing fungi.

    PubMed

    Moore, Geromy G; Olarte, Rodrigo A; Horn, Bruce W; Elliott, Jacalyn L; Singh, Rakhi; O'Neal, Carolyn J; Carbone, Ignazio

    2017-11-01

    Aflatoxins produced by several species in Aspergillus section Flavi are a significant problem in agriculture and a continuous threat to human health. To provide insights into the biology and global population structure of species in section Flavi , a total of 1,304 isolates were sampled across six species ( A. flavus, A. parasiticus, A. nomius, A. caelatus, A. tamarii, and A. alliaceus ) from single fields in major peanut-growing regions in Georgia (USA), Australia, Argentina, India, and Benin (Africa). We inferred maximum-likelihood phylogenies for six loci, both combined and separately, including two aflatoxin cluster regions ( aflM/alfN and aflW/aflX ) and four noncluster regions ( amdS, trpC, mfs and MAT ), to examine population structure and history. We also employed principal component and STRUCTURE analysis to identify genetic clusters and their associations with six different categories (geography, species, precipitation, temperature, aflatoxin chemotype profile, and mating type). Overall, seven distinct genetic clusters were inferred, some of which were more strongly structured by G chemotype diversity than geography. Populations of A. flavus S in Benin were genetically distinct from all other section Flavi species for the loci examined, which suggests genetic isolation. Evidence of trans-speciation within two noncluster regions, whereby A. flavus S BG strains from Australia share haplotypes with either A. flavus or A. parasiticus , was observed. Finally, while clay soil and precipitation may influence species richness in Aspergillus section Flavi , other region-specific environmental and genetic parameters must also be considered.

  11. Aflatoxin B1 and total fumonisin contamination and their producing fungi in fresh and stored sorghum grain in East Hararghe, Ethiopia.

    PubMed

    Taye, Wondimeneh; Ayalew, Amare; Chala, Alemayehu; Dejene, Mashilla

    2016-12-01

    Natural contamination of sorghum grains by aflatoxin B 1 and total fumonisin and their producing toxigenic fungi has been studied. A total of 90 sorghum grain samples were collected from small-scale farmers' threshing floors and 5-6 months later from underground pits during 2013 harvest from three districts of East Hararghe, Ethiopia. Mycotoxin analysis was done using enzyme-linked immunosorbent assay (ELISA). The limits of detection were in the range 0.01-0.03 μg kg -1 . The results revealed that all sorghum grain samples were contaminated with both Aspergillus and Fusarium species. Aflatoxin B 1 was detected at levels ranging from aflatoxin B 1 concentrations between fresh and stored samples, with much higher levels in the latter. Total fumonisin levels varied between 907 and 2041 µg kg -1 grain across the samples. Lowest total fumonisin was recorded in freshly harvested sorghum grain samples. Sorghum is a main staple cereal in the studied districts and its consumption per day per person is high. Daily intake of low doses of mycotoxin-contaminated food stuff over a period of time could lead to chronic mycotoxicosis.

  12. An evaluation of aflatoxin and cyclopiazonic acid production in Aspergillus oryzae.

    PubMed

    Kim, Nam Yeun; Lee, Jin Hee; Lee, Inhyung; Ji, Geun Eog

    2014-06-01

    To date, edible fungi such as Aspergillus flavus var. oryzae (A. oryzae) has been considered as safe. However, some strains can produce mycotoxins. Thus, the biosynthetic ability to produce mycotoxins should be reevaluated to determine the safety of edible fungi. We analyzed the production of aflatoxins and cyclopiazonic acid (CPA) from edible fungi such as A. oryzae isolated from various Korean foods using multiplex PCR, enzyme-linked immunosorbent assay, and high-performance liquid chromatography (HPLC). In the multiplex PCR analysis of aflatoxin biosynthetic genes omtB, aflR, ver-1, and omtA, 5 of 19 Aspergillus strains produced all PCR products. Among them, aflatoxin B1 and aflatoxin B2 were detected from only A. flavus KACC 41403 by HPLC. Aflatoxins were not detected from the other four strains that produced all positive PCR bands. Aflatoxin also was not detected from 12 strains that had PCR patterns without aflR or ver-1 and from 2 strains that did not produce any of the expected PCR products. Only the seven A. oryzae strains that produced all of the positive PCR bands including the CPA biosynthetic genes maoA, dmaT, and pks-nrps produced CPA. CPA and aflatoxin production must be evaluated before A. oryzae strains are used for the development of fermented foods.

  13. Occurrence of mycotoxin producing fungi in bee pollen.

    PubMed

    González, G; Hinojo, M J; Mateo, R; Medina, A; Jiménez, M

    2005-11-15

    The natural mycobiota occurring in bee pollen is studied in the present report with special attention to analyze the incidence of fungal species that are potential producers of mycotoxins. A total of 90 ready-to-eat bee pollen samples were analyzed. Eighty-seven samples were collected in stores placed in different Spanish areas and three were from Buenos Aires (Argentina). The statistical results (ANOVA) showed that yeasts and Penicillium spp. were the predominant fungi. With regard to the potential mycotoxin producing species, Penicillium verrucosum, Aspergillus niger aggregate, Aspergillus carbonarius, Aspergillus ochraceus, Aspergillus flavus, Aspergillus parasiticus and Alternaria spp. were found. The last genus was isolated very frequently. The potential ability for producing ochratoxin A (OTA) and aflatoxins B(1), B(2), G(1) and G(2) was studied by culturing in vitro the isolates followed by analysis of these mycotoxins in culture extracts by HPLC with fluorescent detection. It was found that 100%, 53.3%, 33.3% and 25% of the isolates of A. carbonarius, A. ochraceus, P. verrucosum and A. niger aggregate, respectively, produced OTA. Moreover, 28.6% of the isolates from the A. flavus plus A. parasiticus group were able to produce aflatoxin B(1). Aflatoxin B(2) was detected in only 10% of the cultures. Aflatoxins G(1) and G(2) were not detected in cultures under the assayed conditions. This is the first report carried out on the natural mycobiota occurring in bee pollen in general and on the toxigenic capability of these isolates in particular.

  14. Fungi producing significant mycotoxins.

    PubMed

    2012-01-01

    Mycotoxins are secondary metabolites of microfungi that are known to cause sickness or death in humans or animals. Although many such toxic metabolites are known, it is generally agreed that only a few are significant in causing disease: aflatoxins, fumonisins, ochratoxin A, deoxynivalenol, zearalenone, and ergot alkaloids. These toxins are produced by just a few species from the common genera Aspergillus, Penicillium, Fusarium, and Claviceps. All Aspergillus and Penicillium species either are commensals, growing in crops without obvious signs of pathogenicity, or invade crops after harvest and produce toxins during drying and storage. In contrast, the important Fusarium and Claviceps species infect crops before harvest. The most important Aspergillus species, occurring in warmer climates, are A. flavus and A. parasiticus, which produce aflatoxins in maize, groundnuts, tree nuts, and, less frequently, other commodities. The main ochratoxin A producers, A. ochraceus and A. carbonarius, commonly occur in grapes, dried vine fruits, wine, and coffee. Penicillium verrucosum also produces ochratoxin A but occurs only in cool temperate climates, where it infects small grains. F. verticillioides is ubiquitous in maize, with an endophytic nature, and produces fumonisins, which are generally more prevalent when crops are under drought stress or suffer excessive insect damage. It has recently been shown that Aspergillus niger also produces fumonisins, and several commodities may be affected. F. graminearum, which is the major producer of deoxynivalenol and zearalenone, is pathogenic on maize, wheat, and barley and produces these toxins whenever it infects these grains before harvest. Also included is a short section on Claviceps purpurea, which produces sclerotia among the seeds in grasses, including wheat, barley, and triticale. The main thrust of the chapter contains information on the identification of these fungi and their morphological characteristics, as well as factors

  15. Aflatoxins, hepatocellular carcinoma and public health.

    PubMed

    Magnussen, Arvin; Parsi, Mansour A

    2013-03-14

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths worldwide, primarily affecting populations in the developing countries. Aflatoxin, a food contaminant produced by the fungi Aspergillus flavus and Aspergillus parasiticus, is a known human carcinogen that has been shown to be a causative agent in the pathogenesis of HCC. Aflatoxin can affect a wide range of food commodities including corns, oilseeds, spices, and tree nuts as well as milk, meat, and dried fruit. Many factors affect the growth of Aspergillus fungi and the level of aflatoxin contamination in food. Drought stress is one of the factors that increase susceptibility of plants to Aspergillus and thus aflatoxin contamination. A recent drought is thought to be responsible for finding of trace amounts of aflatoxin in some of the corn harvested in the United States. Although it's too soon to know whether aflatoxin will be a significant problem, since United States is the world's largest corn producer and exporter, this has raised alarm bells. Strict regulations and testing of finished foods and feeds in the United States should prevent a major health scare, and prevent human exposure to deleterious levels of aflatoxin. Unfortunately, such regulations and testing are not in place in many countries. The purpose of this editorial is to summarize the current knowledge on association of aflatoxin and HCC, encourage future research and draw attention to this global public health issue.

  16. Incidence of seed-borne fungi and aflatoxins in Sudanese lentil seeds.

    PubMed

    el-Nagerabi, S A; Elshafie, A E

    2001-01-01

    Thirteen seed samples of lentil (Lens esculenta) were incubated on agar plate and moist filter papers (Moist Chambers) at 28 +/- 2 degrees C for determination of the incidence of seed-borne fungi. Aflatoxins content of the seeds was measured using the bright greenish- yellow fluorescence test (BGYF) and thin-layer chromatography (TLC). Sixty-nine species and seven varieties, which belong to 24 genera of fungi, were isolated from this crop. Of these fungi, 51 species and two varieties are considered new for this crop, whereas seven genera and 13 species are new to the mycoflora of the Sudan. The genus Aspergillus (13 species and 6 varieties) which comprising 44% of the total colony count was the most prevalent genus followed by Rhizopus (2 species, 19%), Penicillium (6 species) and Fusarium (8 species) (12%), Chaetomium (3 species) and Cladosporium (5 species) (6%), where the 18 genera (1-4 species) showed very low level of incidence (19%). Of the possible pathogens of lentil plants, F. oxysporum the main cause of vascular wilt was recovered from seeds of this crop. Thin layer chromatographic analysis of chloroform extracts of 13 seed samples showed that only one samples was naturally contaminated with aflatoxins B1, B2, G1 and G2 (14.3 micrograms/kg).

  17. Aflatoxin contamination of groundnut and maize in Zambia: observed and potential concentrations

    USDA-ARS?s Scientific Manuscript database

    Maize and groundnut, important staples in Zambia, are susceptible to aflatoxin-producing fungi. Aflatoxins are potent human carcinogens also associated with stunting and immunosuppression. Although health and economic burdens of aflatoxins are well known, patterns of contamination in maize and grou...

  18. Occupational exposure to airborne fungi among rice mill workers with special reference to aflatoxin producing A. flavus strains.

    PubMed

    Desai, Manisha Rajib; Ghosh, Sandip

    2003-01-01

    A study was undertaken on environmental mycoflora of rice mills situated in Bawla town, Ahmedabad district. The airborne fungal communities were isolated and identified quantitatively by using Andersen-6-stage viable sampler, midget impinger and high volume samplers (Cone and Hexhlet for total and respirable dusts respectively). Of all the isolates, genus Aspergillus was predominant and among the Aspergillus species, A. flavus was the common isolate, irrespective of the method applied for sample collection. Number of isolates recovered from the working place was significantly greater (p < 0.01) compared to control. Total percentage of aflatoxin positive strains of A. flavus was 8 %. These aflatoxin producing strains were identified on various media, such as Czapek agar (Cz) with 0.05 % anisaldehyde, APA and CAM. Surface morphology of aflatoxin positive strains was studied by SEM. Highly significant total and respirable dust concentrations were found in the work place (p < 0.01) whereas in the store, only the total dust concentration was significantly higher (p < 0.05) than the control site. The study indicates that the rice mill workers are occupationally exposed to airborne aflatoxin producing strains of A. flavus. Thus, they require protective mask for their safety.

  19. Aflatoxin-producing fungi in maize field soils from sea level to over 2000 masl: a three year study in Sonora, Mexico.

    PubMed

    Ortega-Beltran, Alejandro; Jaime, Ramon; Cotty, Peter J

    2015-04-01

    Aflatoxins, highly toxic carcinogens produced by several members of Aspergillus section Flavi, contaminate crops in temperate zones. In the state of Sonora, Mexico, maize is cultivated from 0 to 2100 masl with diverse cultivation practices. This is typical of the nation. In order to design better sampling strategies across Mexico, aflatoxin-producing fungal communities associated with maize production during 2006, 2007, and 2008 in Sonora were investigated in four agro-ecological zones (AEZ) at varying elevation. Fungal communities were dominated by the Aspergillus flavus L strain morphotype (46%), but variation occurred between years and among AEZ. Several atoxigenic isolates with potential to be used as biocontrol agents for aflatoxin mitigation were detected in all AEZ. The characteristics of each AEZ had minimal influences on fungal community structure and should not be a major consideration for future sampling designs for Mexico. Insights into the dynamics and stability of aflatoxin-producing fungal communities across AEZ are discussed. Published by Elsevier Ltd.

  20. Occurrence of Aflatoxins and Aflatoxin-Producing Strains of Aspergillus spp. in Soybeans 1

    PubMed Central

    Bean, George A.; Schillinger, John A.; Klarman, William L.

    1972-01-01

    Above average rainfall in Maryland during August, September, and October 1971 resulted in heavy mold growth in soybeans while still in the field. Of 28 samples of soybean seed, aflatoxins were found in 14, 2 of which had been used in poultry feed. Aflatoxins were identified by thin-layer chromatography, spectrophotometry, and chicken embryo bioassay. Aspergillus spp. were isolated from 11 samples, and 5 of these isolates produced aflatoxins when grown in liquid culture. PMID:4673021

  1. Study of the genetic diversity of the aflatoxin biosynthesis cluster in Aspergillus section Flavi using insertion/deletion markers in peanut seeds from Georgia, USA

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are among the most powerful carcinogens in nature. The major aflatoxin-producing fungi are Aspergillus flavus and A. parasiticus. Numerous crops, including peanut, are susceptible to aflatoxin contamination by these fungi. There has been an increased use of RNA interference (RNAi) technol...

  2. Taxonomic comparison of three different groups of aflatoxin producers and a new efficient producer of aflatoxin B1, sterigmatocystin and 3-O-methylsterigmatocystin, Aspergillus rambellii sp. nov.

    PubMed

    Frisvad, Jens C; Skouboe, Pernille; Samson, Robert A

    2005-07-01

    Accumulation of the carcinogenic mycotoxin aflatoxin B, has been reported from members of three different groups of Aspergilli (4) Aspergillus flavus, A. flavus var. parvisclerotigenus, A. parasiticus, A. toxicarius, A. nomius, A. pseudotamarii, A. zhaoqingensis, A. bombycis and from the ascomycete genus Petromyces (Aspergillus section Flavi), (2) Emericella astellata and E. venezuelensis from the ascomycete genus Emericella (Aspergillus section Nidulantes) and (3) Aspergillus ochraceoroseus from a new section proposed here: Aspergillus section Ochraceorosei. We here describe a new species, A. rambellii referable to Ochraceorosei, that accumulates very large amounts of sterigmatocystin, 3-O-methylsterigmatocystin and aflatoxin B1, but not any of the other known extrolites produced by members of Aspergillus section Flavi or Nidulantes. G type aflatoxins were only found in some of the species in Aspergillus section Flavi, while the B type aflatoxins are common in all three groups. Based on the cladistic analysis of nucleotide sequences of ITS1 and 2 and 5.8S, it appears that type G aflatoxin producers are paraphyletic and that section Ochraceorosei is a sister group to the sections Flavi, Circumdati and Cervini, with Emericella species being an outgroup to these sister groups. All aflatoxin producing members of section Flavi produce kojic acid and most species, except A. bombycis and A. pseudotamarii, produce aspergillic acid. Species in Flavi, that produce B type aflatoxins, but not G type aflatoxins, often produced cyclopiazonic acid. No strain was found which produce both G type aflatoxins and cyclopiazonic acid. It was confirmed that some strains of A. flavus var. columnaris produce aflatoxin B2, but this extrolite was not detected in the ex type strain of that variety. A. flavus var. parvisclerotigenus is raised to species level based on the specific combination of small sclerotia, profile of extrolites and rDNA sequence differences. A. zhaoqingensis is regarded

  3. Mycotoxin-producing potential of fungi associated with qat (Catha edulis) leaves in Yemen.

    PubMed

    Mahmoud, A L

    2000-01-01

    Forty-four fungal species belonging to 20 genera were isolated from 30 samples of qat leaves. The most frequent genera were Aspergillus, Alternaria, Penicillium, and Cladosporium followed by Fusarium, Drechslera, Chaetomium, and Mucor. The most prevalent species in above genera were Aspergillus niger, A. flavus, A fumigatus, Alternaria alternata, Penicillium chrysogenum, P. citrinum, Cladosporium cladosporioides, and Fusarium verticillioides. From these fungi, 17 species (39%) related to 7 genera (35%) proved to be true endophytes. Eleven out of 75 isolates were mycotoxigenic. A. alternata produced alternariol and alternariol monomethyl ether whereas A. flavus produced aflatoxins B1 and B2. Ochratoxin A, sterigmatocystin, citrinin and T-2 toxin were produced by A. ochraceus, A. versicolor, P. citrinum and F. oxysporum, respectively. The presence of such toxigenic fungi associated with qat leaves is considered to be a threat to public health.

  4. Aflatoxin contamination of dried red chilies: Contrasts between the United States and Nigeria, two markets differing in regulation enforcement

    USDA-ARS?s Scientific Manuscript database

    Dried red chilies are among the world’s most consumed spices. From farm to fork, chilies go through cropping, harvest, drying, processing and storage. Chilies are susceptible to infection by aflatoxin producing fungi and subsequent contamination by aflatoxins at every stage. Aflatoxins are highly re...

  5. Light-Irradiation Wavelength and Intensity Changes Influence Aflatoxin Synthesis in Fungi

    PubMed Central

    Suzuki, Tadahiro

    2018-01-01

    Fungi respond to light irradiation by forming conidia and occasionally synthesizing mycotoxins. Several light wavelengths, such as blue and red, affect the latter. However, the relationship between light irradiation and mycotoxin synthesis varies depending on the fungal species or strain. This study focused on aflatoxin (AF), which is a mycotoxin, and the types of light irradiation that increase AF synthesis. Light-irradiation tests using the visible region indicated that blue wavelengths in the lower 500 nm region promoted AF synthesis. In contrast, red wavelengths of 660 nm resulted in limited significant changes compared with dark conditions. Irradiation tests with different intensity levels indicated that a low light intensity increased AF synthesis. For one fungal strain, light irradiation decreased the AF synthesis under all wavelength conditions. However, the decrease was mitigated by 525 nm low intensity irradiation. Thus, blue-green low intensity irradiation may increase AF synthesis in fungi. PMID:29304012

  6. Two new aflatoxin producing species, and an overview of Aspergillus section Flavi

    PubMed Central

    Varga, J.; Frisvad, J.C.; Samson, R.A.

    2011-01-01

    Aspergillus subgenus Circumdati section Flavi includes species with usually biseriate conidial heads, in shades of yellow-green to brown, and dark sclerotia. Several species assigned to this section are either important mycotoxin producers including aflatoxins, cyclopiazonic acid, ochratoxins and kojic acid, or are used in oriental food fermentation processes and as hosts for heterologous gene expression. A polyphasic approach was applied using morphological characters, extrolite data and partial calmodulin, β-tubulin and ITS sequences to examine the evolutionary relationships within this section. The data indicate that Aspergillus section Flavi involves 22 species, which can be grouped into seven clades. Two new species, A. pseudocaelatus sp. nov. and A. pseudonomius sp. nov. have been discovered, and can be distinguished from other species in this section based on sequence data and extrolite profiles. Aspergillus pseudocaelatus is represented by a single isolate collected from Arachis burkartii leaf in Argentina, is closely related to the non-aflatoxin producing A. caelatus, and produces aflatoxins B & G, cyclopiazonic acid and kojic acid, while A. pseudonomius was isolated from insects and soil in the USA. This species is related to A. nomius, and produces aflatoxin B1 (but not G-type aflatoxins), chrysogine and kojic acid. In order to prove the aflatoxin producing abilities of the isolates, phylogenetic analysis of three genes taking part in aflatoxin biosynthesis, including the transcriptional regulator aflR, norsolonic acid reductase and O-methyltransferase were also carried out. A detailed overview of the species accepted in Aspergillus section Flavi is presented. PMID:21892243

  7. Determination of the aflatoxin M1 (AFM1) from milk by direct analysis in real time - mass spectrometry (DART-MS)

    USDA-ARS?s Scientific Manuscript database

    Certain fungi that grow on crops can produce aflatoxins, which are highly carcinogenic. One of these, aflatoxin B1 can be metabolized by mammals to aflatoxin M1, a form that retains potent carcinogenicity and which can be excreted into milk. Direct analysis in real time (DART) ionization coupled to ...

  8. Aflatoxin regulations and global pistachio trade: insights from social network analysis.

    PubMed

    Bui-Klimke, Travis R; Guclu, Hasan; Kensler, Thomas W; Yuan, Jian-Min; Wu, Felicia

    2014-01-01

    Aflatoxins, carcinogenic toxins produced by Aspergillus fungi, contaminate maize, peanuts, and tree nuts in many regions of the world. Pistachios are the main source of human dietary aflatoxins from tree nuts worldwide. Over 120 countries have regulations for maximum allowable aflatoxin levels in food commodities. We developed social network models to analyze the association between nations' aflatoxin regulations and global trade patterns of pistachios from 1996-2010. The main pistachio producing countries are Iran and the United States (US), which together contribute to nearly 75% of the total global pistachio market. Over this time period, during which many nations developed or changed their aflatoxin regulations in pistachios, global pistachio trade patterns changed; with the US increasingly exporting to countries with stricter aflatoxin standards. The US pistachio crop has had consistently lower levels of aflatoxin than the Iranian crop over this same time period. As similar trading patterns have also been documented in maize, public health may be affected if countries without aflatoxin regulations, or with more relaxed regulations, continually import crops with higher aflatoxin contamination. Unlike the previous studies on maize, this analysis includes a dynamic element, examining how trade patterns change over time with introduction or adjustment of aflatoxin regulations.

  9. Aflatoxin Regulations and Global Pistachio Trade: Insights from Social Network Analysis

    PubMed Central

    Bui-Klimke, Travis R.; Guclu, Hasan; Kensler, Thomas W.; Yuan, Jian-Min; Wu, Felicia

    2014-01-01

    Aflatoxins, carcinogenic toxins produced by Aspergillus fungi, contaminate maize, peanuts, and tree nuts in many regions of the world. Pistachios are the main source of human dietary aflatoxins from tree nuts worldwide. Over 120 countries have regulations for maximum allowable aflatoxin levels in food commodities. We developed social network models to analyze the association between nations’ aflatoxin regulations and global trade patterns of pistachios from 1996–2010. The main pistachio producing countries are Iran and the United States (US), which together contribute to nearly 75% of the total global pistachio market. Over this time period, during which many nations developed or changed their aflatoxin regulations in pistachios, global pistachio trade patterns changed; with the US increasingly exporting to countries with stricter aflatoxin standards. The US pistachio crop has had consistently lower levels of aflatoxin than the Iranian crop over this same time period. As similar trading patterns have also been documented in maize, public health may be affected if countries without aflatoxin regulations, or with more relaxed regulations, continually import crops with higher aflatoxin contamination. Unlike the previous studies on maize, this analysis includes a dynamic element, examining how trade patterns change over time with introduction or adjustment of aflatoxin regulations. PMID:24670581

  10. Occurrence of aflatoxin B1 in natural products

    PubMed Central

    Prado, Guilherme; Altoé, Aline F.; Gomes, Tatiana C. B.; Leal, Alexandre S.; Morais, Vanessa A. D.; Oliveira, Marize S.; Ferreira, Marli B.; Gomes, Mateus B.; Paschoal, Fabiano N.; von S. Souza, Rafael; Silva, Daniela A.; Cruz Madeira, Jovita E. G.

    2012-01-01

    The media claims for the consumption of natural resource-based food have gradually increased in both developing and developed countries. The interest in the safety of these products is partially due to the possible presence of toxigenic fungi acting as mycotoxin producers, such as aflatoxins produced during the secondary metabolism of Aspergillus flavus, A. parasiticus and A. nomius. Aflatoxins, mainly aflatoxin B1, are directly associated with liver cancer in human beings. This paper is aimed at evaluating the presence of aflatoxin B1 in a few vegetable drugs, dried plant extracts and industrialized products traded in 2010 in the city of Belo Horizonte, State of Minas Gerais, Brazil. The method used for the quantification of aflatoxin B1 was based on extraction through acetone:water (85:15), immunoaffinity column purification followed by separation and detection in high efficiency liquid chromatography. Under the conditions of analysis, the Limits of Detection and Quantification were 0.6 µg kg-1 and 1.0 µg kg-1 respectively. The complete sets of analyses were carried out in duplicate. Aflatoxin B1 was noticed in a single sample (< 1.0 µg kg-1). The results revealed low aflatoxin B1 contamination in the products under analysis. However, it is required to establish a broad monitoring program in order to obtain additional data and check up on the actual extension of contamination. PMID:24031973

  11. Distribution of sterigmatocystin in filamentous fungi.

    PubMed

    Rank, Christian; Nielsen, Kristian F; Larsen, Thomas O; Varga, Janos; Samson, Rob A; Frisvad, Jens C

    2011-01-01

    During the last 50y, the carcinogenic mycotoxin sterigmatocystin (ST) has been reported in several phylogenetically and phenotypically different genera: Aschersonia, Aspergillus, Bipolaris, Botryotrichum, Chaetomium, Emericella, Eurotium, Farrowia, Fusarium, Humicola, Moelleriella, Monocillium and Podospora. We have reexamined all available strains of the original producers, in addition to ex type and further strains of each species reported to produce ST and the biosynthetically derived aflatoxins. We also screened strains of all available species in Penicillium and Aspergillus for ST and aflatoxin. Six new ST producing fungi were discovered: Aspergillus asperescens, Aspergillus aureolatus, Aspergillus eburneocremeus, Aspergillus protuberus, Aspergillus tardus, and Penicillium inflatum and one new aflatoxin producer: Aspergillus togoensis (=Stilbothamnium togoense). ST was confirmed in 23 Emericella, four Aspergillus, five Chaetomium, one Botryotrichum and one Humicola species grown on a selection of secondary metabolite inducing media, and using multiple detection methods: HPLC-UV/Vis DAD, - HRMS and - MS/MS. The immediate precursor for aflatoxin, O-methylsterigmatocystin was found in Chaetomium cellulolyticum, Chaetomium longicolleum, Chaetomium malaysiense and Chaetomium virescens, but aflatoxin was not detected from any Chaetomium species. In all 55 species, representing more than 11 clades throughout the Pezizomycotina, can be reliably claimed to be ST producers and 13 of these can also produce aflatoxins. It is not known yet whether the ST/aflatoxin pathway has been developed independently 11 times, or is the result of partial horizontal gene transfer. Copyright © 2011 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  12. Recent development of optical methods in rapid and non-destructive detection of aflatoxin and fungal contamination in agricultural products

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are a group of highly toxic secondary metabolites produced predominantly by Aspergillus fungi. Aflatoxin and aflatoxigenic contamination can occur in a wide variety of agricultural products during both pre- and post-harvest conditions, posing potential severe hazards to human health. Howe...

  13. Aflatoxins and fumonisins contamination of home-made food (weanimix) from cereal-legume blends for children.

    PubMed

    Kumi, J; Mitchell, N J; Asare, G A; Dotse, E; Kwaa, F; Phillips, T D; Ankrah, N-A

    2014-09-01

    Weanimix is an important food for children in Ghana. Mothers are trained to prepare homemade weanimix from beans, groundnuts and maize for their infants. Groundnuts and maize are prone to aflatoxin contamination while fumonisin contaminates maize. Aflatoxin, is produced by the Asperguillus fungi while fumonisin, is produced by Fusarium fungi. These mycotoxins occur in tropical areas worldwide due to favorable climate for their growth. The objective of the study was to determine the levels of aflatoxin and fumonisin in homemade weanimix in the Ejura-Sekyedumase district in the Ashanti Region of Ghana. Thirty six homemade weanimix samples (50g each) were collected from households. Aflatoxin and fumonisin were measured using a fluorometric procedure described by the Association of Official Analytical Chemist (AOAC official method 993.31, V1 series 4). Aflatoxin and fumonisin were detected in all 36 samples, range 7.9-500ppb. Fumonisin levels range: 0.74-11.0ppm). Thirty (83.3%) of the thirty six samples were over the action limit of 20ppb for aflatoxin with an overall mean of 145.2 ppb whiles 58.3% of the samples had fumonisins above the action limit of 4 ppm with an overall mean of 4.7 ppm. There were significant aflatoxin and fumonisin contamination of homemade weanimix. Children fed on this nutritional food were being exposed to unacceptable levels of aflatoxin and fumonisin. Therefore there is a critical need to educate mothers on the dangers of mycotoxin exposure and to develop strategies to eliminate exposure of children fed homemade weanimix to aflatoxin and fumonisin.

  14. Non-linear relationships between aflatoxin B1 levels and the biological response of monkey kidney vero cells

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin (AF)-producing fungi contaminate food and feed during preharvest, storage and processing periods. Once consumed, AF accumulates in tissues, causing illnesses in animals and humans. At least 20 different types of AFs have been identified, and of these, aflatoxin B1 (AFB1) is the most ubiqui...

  15. Sexual reproduction in aflatoxin-producing Aspergillus nomius

    USDA-ARS?s Scientific Manuscript database

    Sexual reproduction was examined in the aflatoxin-producing fungus Aspergillus nomius. Crosses between sexually compatible strains resulted in the formation of multiple nonostiolate ascocarps within stromata, which places the teleomorph in the genus Petromyces. Ascocarp and ascospore morphology in...

  16. Real-time PCR assays for detection and quantification of aflatoxin-producing molds in foods.

    PubMed

    Rodríguez, Alicia; Rodríguez, Mar; Luque, M Isabel; Martín, Alberto; Córdoba, Juan J

    2012-08-01

    Aflatoxins are among the most toxic mycotoxins. Early detection and quantification of aflatoxin-producing species is crucial to improve food safety. In the present work, two protocols of real-time PCR (qPCR) based on SYBR Green and TaqMan were developed, and their sensitivity and specificity were evaluated. Primers and probes were designed from the o-methyltransferase gene (omt-1) involved in aflatoxin biosynthesis. Fifty-three mold strains representing aflatoxin producers and non-producers of different species, usually reported in food products, were used as references. All strains were tested for aflatoxins production by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The functionality of the proposed qPCR method was demonstrated by the strong linear relationship of the standard curves constructed with the omt-1 gene copy number and Ct values for the different aflatoxin producers tested. The ability of the qPCR protocols to quantify aflatoxin-producing molds was evaluated in different artificially inoculated foods. A good linear correlation was obtained over the range 4 to 1 log cfu/g per reaction for all qPCR assays in the different food matrices (peanuts, spices and dry-fermented sausages). The detection limit in all inoculated foods ranged from 1 to 2 log cfu/g for SYBR Green and TaqMan assays. No significant effect was observed due to the different equipment, operator, and qPCR methodology used in the tests of repeatability and reproducibility for different foods. The proposed methods quantified with high efficiency the fungal load in foods. These qPCR protocols are proposed for use to quantify aflatoxin-producing molds in food products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Risk of Fungi Associated with Aflatoxin and Fumonisin in Medicinal Herbal Products in the Kenyan Market.

    PubMed

    Keter, Lucia; Too, Richard; Mwikwabe, Nicholas; Mutai, Charles; Orwa, Jennifer; Mwamburi, Lizzy; Ndwigah, Stanley; Bii, Christine; Korir, Richard

    2017-01-01

    Utilization of herbal products is a major concern due to the possibility of contamination by toxigenic fungi that are mycotoxin producers such as Aspergillus species during processing and packaging. Research was carried out to determine the presence of aflatoxins and fumonisins in herbal medicinal products sold in Eldoret and Mombasa towns in Kenya. The study employed both exploratory and laboratory experimental design. The herbal products were purchased from the market and transported to Kenya Medical Research Institute for processing and analysis. Fungal contaminants were determined according to Pharmacopoeia specifications. The toxins were quantified using ELISA based technique. The genus Aspergillus was the most dominant followed by Penicillium . Fungal counts ranged between 1 CFU/g and >1000 cfu/g. Analysis of variance showed that the rate of fungal contaminants for Eldoret and Mombasa samples had significant association ( p ≤ 0.001). Aflatoxin levels ranged from 1 to 24 ppb, while fumonisin levels ranged from 1 to >20 ppb. Only 31% of samples met the standards for microbial limits as specified in Pharmacopoeia. There is need for product microbial quality improvement through proper harvesting, processing, storage, and marketing. It is recommended that a policy be enacted to enable regulation of herbal products in Kenya.

  18. Suppression of Aflatoxin Production in Aspergillus Species by Selected Peanut (Arachis hypogaea) Stilbenoids.

    PubMed

    Sobolev, Victor; Arias, Renee; Goodman, Kerestin; Walk, Travis; Orner, Valerie; Faustinelli, Paola; Massa, Alicia

    2018-01-10

    Aspergillus flavus is a soil fungus that commonly invades peanut seeds and often produces carcinogenic aflatoxins. Under favorable conditions, the fungus-challenged peanut plant produces and accumulates resveratrol and its prenylated derivatives in response to such an invasion. These prenylated stilbenoids are considered peanut antifungal phytoalexins. However, the mechanism of peanut-fungus interaction has not been sufficiently studied. We used pure peanut stilbenoids arachidin-1, arachidin-3, and chiricanine A to study their effects on the viability of and metabolite production by several important toxigenic Aspergillus species. Significant reduction or virtually complete suppression of aflatoxin production was revealed in feeding experiments in A. flavus, Aspergillus parasiticus, and Aspergillus nomius. Changes in morphology, spore germination, and growth rate were observed in A. flavus exposed to the selected peanut stilbenoids. Elucidation of the mechanism of aflatoxin suppression by peanut stilbenoids could provide strategies for preventing plant invasion by the fungi that produce aflatoxins.

  19. Genome-Wide Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Identifies Candidate Gene Signatures in Response to Aflatoxin Producing Fungus Aspergillus flavus.

    PubMed

    Bedre, Renesh; Rajasekaran, Kanniah; Mangu, Venkata Ramanarao; Sanchez Timm, Luis Eduardo; Bhatnagar, Deepak; Baisakh, Niranjan

    2015-01-01

    Aflatoxins are toxic and potent carcinogenic metabolites produced from the fungi Aspergillus flavus and A. parasiticus. Aflatoxins can contaminate cottonseed under conducive preharvest and postharvest conditions. United States federal regulations restrict the use of aflatoxin contaminated cottonseed at >20 ppb for animal feed. Several strategies have been proposed for controlling aflatoxin contamination, and much success has been achieved by the application of an atoxigenic strain of A. flavus in cotton, peanut and maize fields. Development of cultivars resistant to aflatoxin through overexpression of resistance associated genes and/or knocking down aflatoxin biosynthesis of A. flavus will be an effective strategy for controlling aflatoxin contamination in cotton. In this study, genome-wide transcriptome profiling was performed to identify differentially expressed genes in response to infection with both toxigenic and atoxigenic strains of A. flavus on cotton (Gossypium hirsutum L.) pericarp and seed. The genes involved in antifungal response, oxidative burst, transcription factors, defense signaling pathways and stress response were highly differentially expressed in pericarp and seed tissues in response to A. flavus infection. The cell-wall modifying genes and genes involved in the production of antimicrobial substances were more active in pericarp as compared to seed. The genes involved in auxin and cytokinin signaling were also induced. Most of the genes involved in defense response in cotton were highly induced in pericarp than in seed. The global gene expression analysis in response to fungal invasion in cotton will serve as a source for identifying biomarkers for breeding, potential candidate genes for transgenic manipulation, and will help in understanding complex plant-fungal interaction for future downstream research.

  20. Aflatoxin-producing fungi in maize field soils from sea level to over 2000 masl: A three year study in Sonora, Mexico

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins, highly toxic carcinogens produced by several members of Aspergillus section Flavi, contaminate crops in temperate zones. Maize is cultivated from 0 to 2,100 masl under diverse growing regimes in the state of Sonora, Mexico. This is typical of the nation. In order to design sampling strat...

  1. Evaluation of ELISA screening test for detecting aflatoxin in biogenic dust samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durant, J.T.

    Aflatoxin is a carcinogenic chemical that is sometimes produced when agricultural commodities are infested by the fungi Aspergillus flavus and A. Parasiticus. Aflatoxin has been found to be present in air samples taken around persons handling materials likely to be contaminated. The purpose of this investigation was to demonstrate the feasibility of using an Enzyme Linked Immunosorbent Assay (ELISA) test kit that was developed to screen for aflatoxin in bulk agricultural commodities, to an air sample. Samples were taken from two environments likely to be contaminated with aflatoxin, a dairy farm feed mixing operation and a peanut bagging operation. Themore » dust collected from these environments was considered to be biogenic, in that it originated primarily from biological materials.« less

  2. Fragmentation of an aflatoxin-like gene cluster in a forest pathogen

    USDA-ARS?s Scientific Manuscript database

    Secondary metabolic pathway genes are typically clustered in fungi. An exception to this paradigm is seen for genes required for the production of dothistromin, an aflatoxin-like virulence factor produced by the pine needle pathogen Dothistroma septosporum. In contrast to the tight clustering of gen...

  3. Aflatoxins: A Global Concern for Food Safety, Human Health and Their Management

    PubMed Central

    Kumar, Pradeep; Mahato, Dipendra K.; Kamle, Madhu; Mohanta, Tapan K.; Kang, Sang G.

    2017-01-01

    The aflatoxin producing fungi, Aspergillus spp., are widely spread in nature and have severely contaminated food supplies of humans and animals, resulting in health hazards and even death. Therefore, there is great demand for aflatoxins research to develop suitable methods for their quantification, precise detection and control to ensure the safety of consumers’ health. Here, the chemistry and biosynthesis process of the mycotoxins is discussed in brief along with their occurrence, and the health hazards to humans and livestock. This review focuses on resources, production, detection and control measures of aflatoxins to ensure food and feed safety. The review is informative for health-conscious consumers and research experts in the fields. Furthermore, providing knowledge on aflatoxins toxicity will help in ensure food safety and meet the future demands of the increasing population by decreasing the incidence of outbreaks due to aflatoxins. PMID:28144235

  4. Single Aflatoxin Contaminated Corn Kernel Analysis with Fluorescence Hyperspectral Image

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are toxic secondary metabolites of the fungi Aspergillus flavus and Aspergillus parasiticus, among others. Aflatoxin contaminated corn is toxic to domestic animals when ingested in feed and is a known carcinogen associated with liver and lung cancer in humans. Consequently, aflatoxin leve...

  5. Thermophilic Fungi to Dominate Aflatoxigenic/Mycotoxigenic Fungi on Food under Global Warming

    PubMed Central

    Paterson, Robert Russell M.; Lima, Nelson

    2017-01-01

    Certain filamentous fungi produce mycotoxins that contaminate food. Mycotoxin contamination of crops is highly influenced by environmental conditions and is already affected by global warming, where there is a succession of mycotoxigenic fungi towards those that have higher optimal growth temperatures. Aflatoxigenic fungi are at the highest limit of temperature although predicted increases in temperature are beyond that constraint. The present paper discusses what will succeed these fungi and represents the first such consideration. Aflatoxins are the most important mycotoxins and are common in tropical produce, much of which is exported to temperate regions. Hot countries may produce safer food under climate change because aflatoxigenic fungi will be inhibited. The same situation will occur in previously temperate regions where these fungi have recently appeared, although decades later. Existing thermotolerant and thermophilic fungi (TTF) will dominate, in contrast to the conventional mycotoxigenic fungi adapting or mutating, as it will be quicker. TTF produce a range of secondary metabolites, or potential mycotoxins and patulin which may become a new threat. In addition, Aspergillus fumigatus will appear more frequently, a serious human pathogen, because it is (a) thermotolerant and (b) present on crops: hence this is an even greater problem. An incubation temperature of 41 °C needs employing forthwith to detect TTF. Finally, TTF in crops requires study because of the potential for diseases in humans and animals under climate change. PMID:28218685

  6. Thermophilic Fungi to Dominate Aflatoxigenic/Mycotoxigenic Fungi on Food under Global Warming.

    PubMed

    Paterson, Robert Russell M; Lima, Nelson

    2017-02-17

    Certain filamentous fungi produce mycotoxins that contaminate food. Mycotoxin contamination of crops is highly influenced by environmental conditions and is already affected by global warming, where there is a succession of mycotoxigenic fungi towards those that have higher optimal growth temperatures. Aflatoxigenic fungi are at the highest limit of temperature although predicted increases in temperature are beyond that constraint. The present paper discusses what will succeed these fungi and represents the first such consideration. Aflatoxins are the most important mycotoxins and are common in tropical produce, much of which is exported to temperate regions. Hot countries may produce safer food under climate change because aflatoxigenic fungi will be inhibited. The same situation will occur in previously temperate regions where these fungi have recently appeared, although decades later. Existing thermotolerant and thermophilic fungi (TTF) will dominate, in contrast to the conventional mycotoxigenic fungi adapting or mutating, as it will be quicker. TTF produce a range of secondary metabolites, or potential mycotoxins and patulin which may become a new threat. In addition, Aspergillus fumigatus will appear more frequently, a serious human pathogen, because it is (a) thermotolerant and (b) present on crops: hence this is an even greater problem. An incubation temperature of 41 °C needs employing forthwith to detect TTF. Finally, TTF in crops requires study because of the potential for diseases in humans and animals under climate change.

  7. LAMP-based group specific detection of aflatoxin producers within Aspergillus section Flavi in food raw materials, spices, and dried fruit using neutral red for visible-light signal detection.

    PubMed

    Niessen, Ludwig; Bechtner, Julia; Fodil, Sihem; Taniwaki, Marta H; Vogel, Rudi F

    2018-02-02

    Aflatoxins can be produced by 21 species within sections Flavi (16 species), Ochraceorosei (2), and Nidulantes (3) of the fungal genus Aspergillus. They pose risks to human and animal health due to high toxicity and carcinogenicity. Detecting aflatoxin producers can help to assess toxicological risks associated with contaminated commodities. Species specific molecular assays (PCR and LAMP) are available for detection of major producers, but fail to detect species of minor importance. To enable rapid and sensitive detection of several aflatoxin producing species in a single analysis, a nor1 gene-specific LAMP assay was developed. Specificity testing showed that among 128 fungal species from 28 genera, 15 aflatoxigenic species in section Flavi were detected, including synonyms of A. flavus and A. parasiticus. No cross reactions were found with other tested species. The detection limit of the assay was 9.03pg of A. parasiticus genomic DNA per reaction. Visual detection of positive LAMP reactions under daylight conditions was facilitated using neutral red to allow unambiguous distinction between positive and negative assay results. Application of the assay to the detection of A. parasiticus conidia revealed a detection limit of 211 conidia per reaction after minimal sample preparation. The usefulness of the assay was demonstrated in the analysis of aflatoxinogenic species in samples of rice, nuts, raisins, dried figs, as well as powdered spices. Comparison of LAMP results with presence/absence of aflatoxins and aflatoxin producing fungi in 50 rice samples showed good correlation between these parameters. Our study suggests that the developed LAMP assay is a rapid, sensitive and user-friendly tool for surveillance and quality control in our food industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A review on aflatoxin contamination and its implications in the developing world: a sub-Saharan African perspective.

    PubMed

    Gnonlonfin, G J B; Hell, K; Adjovi, Y; Fandohan, P; Koudande, D O; Mensah, G A; Sanni, A; Brimer, L

    2013-01-01

    Mycotoxins contamination in some agricultural food commodities seriously impact human and animal health and reduce the commercial value of crops. Mycotoxins are toxic secondary metabolites produced by fungi that contaminate agricultural commodities pre- or postharvest. Africa is one of the continents where environmental, agricultural and storage conditions of food commodities are conducive of Aspergillus fungi infection and aflatoxin biosynthesis. This paper reviews the commodity-wise aetiology and contamination process of aflatoxins and evaluates the potential risk of exposure from common African foods. Possible ways of reducing risk for fungal infection and aflatoxin development that are relevant to the African context. The presented database would be useful as benchmark information for development and prioritization of future research. There is need for more investigations on food quality and safety by making available advanced advanced equipments and analytical methods as well as surveillance and awareness creation in the region.

  9. Occurrence of Aspergillus spp. and aflatoxin B1 in Malaysian foods used for human consumption.

    PubMed

    Reddy, Kasa R N; Farhana, Nazira I; Salleh, Baharuddin

    2011-05-01

    Malaysian population widely consumes the cereal-based foods, oilseeds, nuts, and spices in their daily diet. Mycotoxigenic fungi are well known to invade food products under storage conditions and produce mycotoxins that have threat to human and animal health. Therefore, determining toxigenic fungi and aflatoxin B(1) (AFB1) in foods used for human consumption is of prime importance to develop suitable management strategies and to minimize risk. Ninety-five food products marketed in Penang, Malaysia were randomly collected from different supermarkets and were analyzed for presence of Aspergillus spp. by agar plate assay and AFB1 by enzyme-linked immunosorbent assay (ELISA). A. flavus was the dominant fungi in all foods followed by A. niger. Fifty-five A. flavus strains were tested for their ability to produce aflatoxins on rice grain substrate. Thirty-six (65.4%) strains out of 55 produced AFB1 ranging from 1700 to 4400 μg/kg and 17 strains (31%) produced AFB2 ranging from 620 to 1670 μg/kg. Natural occurrence of AFB1 could be detected in 72.6% food products ranging from 0.54 to 15.33 μg/kg with a mean of 1.95 μg/kg. Maximum AFB1 levels were detected in peanut products ranging from 1.47 to 15.33 μg/kg. AFB1 levels detected in all food products were below the Malaysian permissible limits (<35 μg/kg). Aspergillus spp. and AFB1 was not detected in any cookies tested. Although this survey was not comprehensive, it provides valuable information on aflatoxin levels in foods marketed in Malaysia. © 2011 Institute of Food Technologists®

  10. Identification of Ochratoxin A Producing Fungi Associated with Fresh and Dry Liquorice

    PubMed Central

    Chen, Amanda Juan; Tang, Dan; Zhou, Ying Qun; Sun, Bing Da; Li, Xiao Jin; Wang, Li Zhi; Gao, Wei Wei

    2013-01-01

    The presence of fungi on liquorice could contaminate the crop and result in elevated levels of mycotoxin. In this study, the mycobiota associated with fresh and dry liquorice was investigated in 3 producing regions of China. Potential toxigenic fungi were tested for ochratoxin A (OTA) and aflatoxin B1 (AFB1) production using liquid chromatography/mass spectrometry/mass spectrometry. Based on a polyphasic approach using morphological characters, β-tubulin and RNA polymerase II second largest subunit gene phylogeny, a total of 9 genera consisting of 22 fungal species were identified, including two new Penicillium species (Penicillium glycyrrhizacola sp. nov. and Penicillium xingjiangense sp. nov.). The similarity of fungal communities associated with fresh and dry liquorice was low. Nineteen species belonging to 8 genera were detected from fresh liquorice with populations affiliated with P. glycyrrhizacola, P. chrysogenum and Aspergillus insuetus comprising the majority (78.74%, 33.33% and 47.06% of total) of the community from Gansu, Ningxia and Xinjiang samples, respectively. In contrast, ten species belonging to 4 genera were detected from dry liquorice with populations affiliated with P. chrysogenum, P. crustosum and Aspergillus terreus comprising the majority (64.00%, 52.38% and 90.91% of total) of the community from Gansu, Ningxia and Xinjiang samples, respectively. Subsequent LC/MS/MS analysis indicated that 5 fungal species were able to synthesize OTA in vitro including P. chrysogenum, P. glycyrrhizacola, P. polonicum, Aspergillus ochraceus and A. westerdijkiae, the OTA concentration varied from 12.99 to 39.03 µg/kg. AFB1 was absent in all tested strains. These results demonstrate the presence of OTA producing fungi on fresh liquorice and suggest that these fungi could survive on dry liquorice after traditional sun drying. Penicillium chrysogenum derived from surrounding environments is likely to be a stable contributor to high OTA level in liquorice. The

  11. Addition of Carbon to the Culture Medium Improves the Detection Efficiency of Aflatoxin Synthetic Fungi

    PubMed Central

    Suzuki, Tadahiro; Iwahashi, Yumiko

    2016-01-01

    Aflatoxin (AF) is a harmful secondary metabolite that is synthesized by the Aspergillus species. Although AF detection techniques have been developed, techniques for detection of AF synthetic fungi are still required. Techniques such as plate culture methods are continually being modified for this purpose. However, plate culture methods require refinement because they suffer from several issues. In this study, activated charcoal powder (carbon) was added to a culture medium containing cyclodextrin (CD) to enhance the contrast of fluorescence and improve the detection efficiency for AF synthetic fungi. Two culture media, potato dextrose agar and yeast extract sucrose agar, were investigated using both plate and liquid cultures. The final concentrations of CD and carbon in the media were 3 mg/mL and 0.3 mg/mL, respectively. Addition of carbon improved the visibility of fluorescence by attenuating approximately 30% of light scattering. Several fungi that could not be detected with only CD in the medium were detected with carbon addition. The carbon also facilitated fungal growth in the potato dextrose liquid medium. The results suggest that addition of carbon to media can enhance the observation of AF-derived fluorescence. PMID:27854283

  12. A Survey of Aflatoxin-Producing Aspergillus sp. from Peanut Field Soils in Four Agroecological Zones of China

    PubMed Central

    Zhang, Chushu; Selvaraj, Jonathan Nimal; Yang, Qingli; Liu, Yang

    2017-01-01

    Peanut pods are easily infected by aflatoxin-producing Aspergillus sp.ecies from field soil. To assess the aflatoxin-producing Aspergillus sp. in different peanut field soils, 344 aflatoxin-producing Aspergillus strains were isolated from 600 soil samples of four agroecological zones in China (the Southeast coastal zone (SEC), the Yangtze River zone (YZR), the Yellow River zone (YR) and the Northeast zone (NE)). Nearly 94.2% (324/344) of strains were A. flavus and 5.8% (20/344) of strains were A. parasiticus. YZR had the highest population density of Aspergillus sp. and positive rate of aflatoxin production in isolated strains (1039.3 cfu·g−1, 80.7%), the second was SEC (191.5 cfu·g−1, 48.7%), the third was YR (26.5 cfu·g−1, 22.7%), and the last was NE (2.4 cfu·g−1, 6.6%). The highest risk of AFB1 contamination on peanut was in YZR which had the largest number of AFB1 producing isolates in 1g soil, followed by SEC and YR, and the lowest was NE. The potential risk of AFB1 contamination in peanuts can increase with increasing population density and a positive rate of aflatoxin-producing Aspergillus sp. in field soils, suggesting that reducing aflatoxigenic Aspergillus sp. in field soils could prevent AFB1 contamination in peanuts. PMID:28117685

  13. A Survey of Aflatoxin-Producing Aspergillus sp. from Peanut Field Soils in Four Agroecological Zones of China.

    PubMed

    Zhang, Chushu; Selvaraj, Jonathan Nimal; Yang, Qingli; Liu, Yang

    2017-01-20

    Peanut pods are easily infected by aflatoxin-producing Aspergillus sp.ecies from field soil. To assess the aflatoxin-producing Aspergillus sp. in different peanut field soils, 344 aflatoxin-producing Aspergillus strains were isolated from 600 soil samples of four agroecological zones in China (the Southeast coastal zone (SEC), the Yangtze River zone (YZR), the Yellow River zone (YR) and the Northeast zone (NE)). Nearly 94.2% (324/344) of strains were A. flavus and 5.8% (20/344) of strains were A. parasiticus . YZR had the highest population density of Aspergillus sp. and positive rate of aflatoxin production in isolated strains (1039.3 cfu·g -1 , 80.7%), the second was SEC (191.5 cfu·g -1 , 48.7%), the third was YR (26.5 cfu·g -1 , 22.7%), and the last was NE (2.4 cfu·g -1 , 6.6%). The highest risk of AFB₁ contamination on peanut was in YZR which had the largest number of AFB₁ producing isolates in 1g soil, followed by SEC and YR, and the lowest was NE. The potential risk of AFB₁ contamination in peanuts can increase with increasing population density and a positive rate of aflatoxin-producing Aspergillus sp. in field soils, suggesting that reducing aflatoxigenic Aspergillus sp. in field soils could prevent AFB₁ contamination in peanuts.

  14. Potential economic losses to the USA corn industry from aflatoxin contamination

    PubMed Central

    Mitchell, N.J.; Bowers, E.; Hurburgh, C.; Wu, F.

    2016-01-01

    Mycotoxins, toxins produced by fungi that colonize food crops, can pose a heavy economic burden to the United States corn industry. In terms of economic burden, aflatoxins are the most problematic mycotoxins in US agriculture. Estimates of their market impacts are important in determining the benefits of implementing mitigation strategies within the US corn industry, and the value of strategies to mitigate mycotoxin problems. Additionally, climate change may cause increases in aflatoxin contamination in corn, greatly affecting the economy of the US Midwest and all sectors in the US and worldwide that rely upon its corn production. We propose two separate models for estimating the potential market loss to the corn industry from aflatoxin contamination, in the case of potential near-future climate scenarios (based on aflatoxin levels in Midwest corn in warm summers in the last decade). One model uses probability of acceptance based on operating characteristic (OC) curves for aflatoxin sampling and testing, while the other employs partial equilibrium economic analysis, assuming no Type 1 or Type 2 errors, to estimate losses due to proportions of lots above the US Food and Drug Administration (FDA) aflatoxin action levels. We estimate that aflatoxin contamination could cause losses to the corn industry ranging from $52.1 million to $1.68 billion annually in the United States, if climate change causes more regular aflatoxin contamination in the Corn Belt as was experienced in years such as 2012. The wide range represents the natural variability in aflatoxin contamination from year to year in US corn, with higher losses representative of warmer years. PMID:26807606

  15. Potential economic losses to the US corn industry from aflatoxin contamination.

    PubMed

    Mitchell, Nicole J; Bowers, Erin; Hurburgh, Charles; Wu, Felicia

    2016-01-01

    Mycotoxins, toxins produced by fungi that colonise food crops, can pose a heavy economic burden to the US corn industry. In terms of economic burden, aflatoxins are the most problematic mycotoxins in US agriculture. Estimates of their market impacts are important in determining the benefits of implementing mitigation strategies within the US corn industry, and the value of strategies to mitigate mycotoxin problems. Additionally, climate change may cause increases in aflatoxin contamination in corn, greatly affecting the economy of the US Midwest and all sectors in the United States and worldwide that rely upon its corn production. We propose two separate models for estimating the potential market loss to the corn industry from aflatoxin contamination, in the case of potential near-future climate scenarios (based on aflatoxin levels in Midwest corn in warm summers in the last decade). One model uses the probability of acceptance based on operating characteristic (OC) curves for aflatoxin sampling and testing, while the other employs partial equilibrium economic analysis, assuming no Type 1 or Type 2 errors, to estimate losses due to proportions of lots above the US Food and Drug Administration (USFDA) aflatoxin action levels. We estimate that aflatoxin contamination could cause losses to the corn industry ranging from US$52.1 million to US$1.68 billion annually in the United States, if climate change causes more regular aflatoxin contamination in the Corn Belt as was experienced in years such as 2012. The wide range represents the natural variability in aflatoxin contamination from year to year in US corn, with higher losses representative of warmer years.

  16. Determination of toxigenic fungi and aflatoxins in nuts and dried fruits using imaging and spectroscopic techniques.

    PubMed

    Wu, Qifang; Xie, Lijuan; Xu, Huirong

    2018-06-30

    Nuts and dried fruits contain rich nutrients and are thus highly vulnerable to contamination with toxigenic fungi and aflatoxins because of poor weather, processing and storage conditions. Imaging and spectroscopic techniques have proven to be potential alternative tools to wet chemistry methods for efficient and non-destructive determination of contamination with fungi and toxins. Thus, this review provides an overview of the current developments and applications in frequently used food safety testing techniques, including near infrared spectroscopy (NIRS), mid-infrared spectroscopy (MIRS), conventional imaging techniques (colour imaging (CI) and hyperspectral imaging (HSI)), and fluorescence spectroscopy and imaging (FS/FI). Interesting classification and determination results can be found in both static and on/in-line real-time detection for contaminated nuts and dried fruits. Although these techniques offer many benefits over conventional methods, challenges remain in terms of heterogeneous distribution of toxins, background constituent interference, model robustness, detection limits, sorting efficiency, as well as instrument development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Enzymatic Formation of G-Group Aflatoxins and Biosynthetic Relationship between G- and B-Group Aflatoxins

    PubMed Central

    Yabe, Kimiko; Nakamura, Miki; Hamasaki, Takashi

    1999-01-01

    We detected biosynthetic activity for aflatoxins G1 and G2 in cell extracts of Aspergillus parasiticus NIAH-26. We found that in the presence of NADPH, aflatoxins G1 and G2 were produced from O-methylsterigmatocystin and dihydro-O-methylsterigmatocystin, respectively. No G-group aflatoxins were produced from aflatoxin B1, aflatoxin B2, 5-methoxysterigmatocystin, dimethoxysterigmatocystin, or sterigmatin, confirming that B-group aflatoxins are not the precursors of G-group aflatoxins and that G- and B-group aflatoxins are independently produced from the same substrates (O-methylsterigmatocystin and dihydro-O-methylsterigmatocystin). In competition experiments in which the cell-free system was used, formation of aflatoxin G2 from dihydro-O-methylsterigmatocystin was suppressed when O-methylsterigmatocystin was added to the reaction mixture, whereas aflatoxin G1 was newly formed. This result indicates that the same enzymes can catalyze the formation of aflatoxins G1 and G2. Inhibition of G-group aflatoxin formation by methyrapone, SKF-525A, or imidazole indicated that a cytochrome P-450 monooxygenase may be involved in the formation of G-group aflatoxins. Both the microsome fraction and a cytosol protein with a native mass of 220 kDa were necessary for the formation of G-group aflatoxins. Due to instability of the microsome fraction, G-group aflatoxin formation was less stable than B-group aflatoxin formation. The ordA gene product, which may catalyze the formation of B-group aflatoxins, also may be required for G-group aflatoxin biosynthesis. We concluded that at least three reactions, catalyzed by the ordA gene product, an unstable microsome enzyme, and a 220-kDa cytosol protein, are involved in the enzymatic formation of G-group aflatoxins from either O-methylsterigmatocystin or dihydro-O-methylsterigmatocystin. PMID:10473388

  18. Efficacy of ozone as a fungicidal and detoxifying agent of aflatoxins in peanuts.

    PubMed

    de Alencar, Ernandes Rodrigues; Faroni, Lêda Rita D'Antonino; Soares, Nilda de Fátima Ferreira; da Silva, Washington Azevedo; Carvalho, Marta Cristina da Silva

    2012-03-15

    Peanut contamination by fungi is a concern of processors and consumers owing to the association of these micro-organisms with quality deterioration and aflatoxin production. In this study the fungicidal and detoxifying effects of ozone on aflatoxins in peanuts was investigated. Peanut kernels were ozonated at concentrations of 13 and 21 mg L⁻¹ for periods of 0, 24, 48, 72 and 96 h. Ozone was effective in controlling total fungi and potentially aflatoxigenic species in peanuts, with a reduction in colony-forming units per gram greater than 3 log cycles at the concentration of 21 mg L⁻¹ after 96 h of exposure. A reduction in the percentage of peanuts with internal fungal populations was also observed, particularly after exposure to ozone at 21 mg L⁻¹. A reduction in the concentrations of total aflatoxins and aflatoxin B1 of approximately 30 and 25% respectively was observed for kernels exposed to ozone at 21 mg L⁻¹ for 96 h. It was concluded that ozone is an important alternative for peanut detoxification because it is effective in controlling potentially aflatoxigenic fungi and also acts in the reduction of aflatoxin levels in kernels. Copyright © 2011 Society of Chemical Industry.

  19. Production of mycotoxins by filamentous fungi in untreated surface water.

    PubMed

    Oliveira, Beatriz R; Mata, Ana T; Ferreira, João P; Barreto Crespo, Maria T; Pereira, Vanessa J; Bronze, Maria R

    2018-04-16

    Several research studies reported that mycotoxins and other metabolites can be produced by fungi in certain matrices such as food. In recent years, attention has been drawn to the wide occurrence and identification of fungi in drinking water sources. Due to the large demand of water for drinking, watering, or food production purposes, it is imperative that further research is conducted to investigate if mycotoxins may be produced in water matrices. This paper describes the results obtained when a validated analytical method was applied to detect and quantify the presence of mycotoxins as a result of fungi inoculation and growth in untreated surface water. Aflatoxins B1 and B2, fumonisin B3, and ochratoxin A were detected at concentrations up to 35 ng/L. These results show that fungi can produce mycotoxins in water matrices in a non-negligible quantity and, as such, attention must be given to the presence of fungi in water.

  20. Characterization of the chitinase gene family and the effect on A. flavus and aflatoxin resistance in maize.

    USDA-ARS?s Scientific Manuscript database

    Maize (Zea mays L.) is a crop of global importance, but is prone to contamination by aflatoxins produced by fungi in the genus Aspergillus. The development of resistant germplasm and the identification of genes contributing to resistance would aid in the reduction of the problem with a minimal need ...

  1. Aflatoxin Control in Maize by Trametes versicolor

    PubMed Central

    Scarpari, Marzia; Bello, Cristiano; Pietricola, Chiara; Zaccaria, Marco; Bertocchi, Luigi; Angelucci, Alessandra; Ricciardi, Maria Rosaria; Scala, Valeria; Parroni, Alessia; Fabbri, Anna A.; Reverberi, Massimo; Zjalic, Slaven; Fanelli, Corrado

    2014-01-01

    Aspergillus flavus is a well-known ubiquitous fungus able to contaminate both in pre- and postharvest period different feed and food commodities. During their growth, these fungi can synthesise aflatoxins, secondary metabolites highly hazardous for animal and human health. The requirement of products with low impact on the environment and on human health, able to control aflatoxin production, has increased. In this work the effect of the basidiomycete Trametes versicolor on the aflatoxin production by A. flavus both in vitro and in maize, was investigated. The goal was to propose an environmental loyal tool for a significant control of aflatoxin production, in order to obtain feedstuffs and feed with a high standard of quality and safety to enhance the wellbeing of dairy cows. The presence of T. versicolor, grown on sugar beet pulp, inhibited the production of aflatoxin B1 in maize by A. flavus. Furthermore, treatment of contaminated maize with culture filtrates of T. versicolor containing ligninolytic enzymes, showed a significant reduction of the content of aflatoxin B1. PMID:25525683

  2. Aflatoxin control in maize by Trametes versicolor.

    PubMed

    Scarpari, Marzia; Bello, Cristiano; Pietricola, Chiara; Zaccaria, Marco; Bertocchi, Luigi; Angelucci, Alessandra; Ricciardi, Maria Rosaria; Scala, Valeria; Parroni, Alessia; Fabbri, Anna A; Reverberi, Massimo; Zjalic, Slaven; Fanelli, Corrado

    2014-12-17

    Aspergillus flavus is a well-known ubiquitous fungus able to contaminate both in pre- and postharvest period different feed and food commodities. During their growth, these fungi can synthesise aflatoxins, secondary metabolites highly hazardous for animal and human health. The requirement of products with low impact on the environment and on human health, able to control aflatoxin production, has increased. In this work the effect of the basidiomycete Trametes versicolor on the aflatoxin production by A. flavus both in vitro and in maize, was investigated. The goal was to propose an environmental loyal tool for a significant control of aflatoxin production, in order to obtain feedstuffs and feed with a high standard of quality and safety to enhance the wellbeing of dairy cows. The presence of T. versicolor, grown on sugar beet pulp, inhibited the production of aflatoxin B1 in maize by A. flavus. Furthermore, treatment of contaminated maize with culture filtrates of T. versicolor containing ligninolytic enzymes, showed a significant reduction of the content of aflatoxin B1.

  3. The Aspergillus flavus Homeobox Gene, hbx1, is Required for Development and Aflatoxin Production.

    PubMed

    Cary, Jeffrey W; Harris-Coward, Pamela; Scharfenstein, Leslie; Mack, Brian M; Chang, Perng-Kuang; Wei, Qijian; Lebar, Matthew; Carter-Wientjes, Carol; Majumdar, Rajtilak; Mitra, Chandrani; Banerjee, Sourav; Chanda, Anindya

    2017-10-12

    Homeobox proteins, a class of well conserved transcription factors, regulate the expression of targeted genes, especially those involved in development. In filamentous fungi, homeobox genes are required for normal conidiogenesis and fruiting body formation. In the present study, we identified eight homeobox ( hbx ) genes in the aflatoxin-producing ascomycete, Aspergillus flavus , and determined their respective role in growth, conidiation and sclerotial production. Disruption of seven of the eight genes had little to no effect on fungal growth and development. However, disruption of the homeobox gene AFLA_069100, designated as hbx1 , in two morphologically different A. flavus strains, CA14 and AF70, resulted in complete loss of production of conidia and sclerotia as well as aflatoxins B₁ and B₂, cyclopiazonic acid and aflatrem. Microscopic examination showed that the Δ hbx1 mutants did not produce conidiophores. The inability of Δ hbx1 mutants to produce conidia was related to downregulation of brlA (bristle) and abaA (abacus), regulatory genes for conidiophore development. These mutants also had significant downregulation of the aflatoxin pathway biosynthetic genes aflC , aflD , aflM and the cluster-specific regulatory gene, aflR . Our results demonstrate that hbx1 not only plays a significant role in controlling A. flavus development but is also critical for the production of secondary metabolites, such as aflatoxins.

  4. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    PubMed Central

    Sakuda, Shohei; Prabowo, Diyan Febri; Takagi, Keiko; Shiomi, Kazuro; Mori, Mihoko; Ōmura, Satoshi; Nagasawa, Hiromichi

    2014-01-01

    Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A) inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III) and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control. PMID:24674936

  5. Exposure measurement of aflatoxins and aflatoxin metabolites in human body fluids. A short review.

    PubMed

    Leong, Yin-Hui; Latiff, Aishah A; Ahmad, Nurul Izzah; Rosma, Ahmad

    2012-05-01

    Aflatoxins are highly toxic secondary fungal metabolites mainly produced by Aspergillus flavus and A. parasiticus. Human exposure to aflatoxins may result directly from ingestion of contaminated foods, or indirectly from consumption of foods from animals previously exposed to aflatoxins in feeds. This paper focuses on exposure measurement of aflatoxins and aflatoxin metabolites in various human body fluids. Research on different metabolites present in blood, urine, breast milk, and other human fluids or tissues including their detection techniques is reviewed. The association between dietary intake of aflatoxins and biomarker measurement is also highlighted. Finally, aspects related to the differences between aflatoxin determination in food versus the biomarker approach are discussed.

  6. Cyclo(l-Leucyl-l-Prolyl) Produced by Achromobacter xylosoxidans Inhibits Aflatoxin Production by Aspergillus parasiticus

    PubMed Central

    Yan, Pei-Sheng; Song, Yuan; Sakuno, Emi; Nakajima, Hiromitsu; Nakagawa, Hiroyuki; Yabe, Kimiko

    2004-01-01

    Aflatoxins are potent carcinogenic and toxic substances that are produced primarily by Aspergillus flavus and Aspergillus parasiticus. We found that a bacterium remarkably inhibited production of norsolorinic acid, a precursor of aflatoxin, by A. parasiticus. This bacterium was identified as Achromobacter xylosoxidans based on its 16S ribosomal DNA sequence and was designated A. xylosoxidans NFRI-A1. A. xylosoxidans strains commonly showed similar inhibition. The inhibitory substance(s) was excreted into the medium and was stable after heat, acid, or alkaline treatment. Although the bacterium appeared to produce several inhibitory substances, we finally succeeded in purifying a major inhibitory substance from the culture medium using Diaion HP20 column chromatography, thin-layer chromatography, and high-performance liquid chromatography. The purified inhibitory substance was identified as cyclo(l-leucyl-l-prolyl) based on physicochemical methods. The 50% inhibitory concentration for aflatoxin production by A. parasiticus SYS-4 (= NRRL2999) was 0.20 mg ml−1, as determined by the tip culture method. High concentrations (more than 6.0 mg ml−1) of cyclo(l-leucyl-l-prolyl) further inhibited fungal growth. Similar inhibitory activities were observed with cyclo(d-leucyl-d-prolyl) and cyclo(l-valyl-l-prolyl), whereas cyclo(d-prolyl-l-leucyl) and cyclo(l-prolyl-d-leucyl) showed weaker activities. Reverse transcription-PCR analyses showed that cyclo(l-leucyl-l-prolyl) repressed transcription of the aflatoxin-related genes aflR, hexB, pksL1, and dmtA. This is the first report of a cyclodipeptide that affects aflatoxin production. PMID:15574949

  7. Automatic detection of aflatoxin contaminated corn kernels using dual-band imagery

    NASA Astrophysics Data System (ADS)

    Ononye, Ambrose E.; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Brown, Robert L.; Cleveland, Thomas E.

    2009-05-01

    Aflatoxin is a mycotoxin predominantly produced by Aspergillus flavus and Aspergillus parasitiucus fungi that grow naturally in corn, peanuts and in a wide variety of other grain products. Corn, like other grains is used as food for human and feed for animal consumption. It is known that aflatoxin is carcinogenic; therefore, ingestion of corn infected with the toxin can lead to very serious health problems such as liver damage if the level of the contamination is high. The US Food and Drug Administration (FDA) has strict guidelines for permissible levels in the grain products for both humans and animals. The conventional approach used to determine these contamination levels is one of the destructive and invasive methods that require corn kernels to be ground and then chemically analyzed. Unfortunately, each of the analytical methods can take several hours depending on the quantity, to yield a result. The development of high spectral and spatial resolution imaging sensors has created an opportunity for hyperspectral image analysis to be employed for aflatoxin detection. However, this brings about a high dimensionality problem as a setback. In this paper, we propose a technique that automatically detects aflatoxin contaminated corn kernels by using dual-band imagery. The method exploits the fluorescence emission spectra from corn kernels captured under 365 nm ultra-violet light excitation. Our approach could lead to a non-destructive and non-invasive way of quantifying the levels of aflatoxin contamination. The preliminary results shown here, demonstrate the potential of our technique for aflatoxin detection.

  8. JEM Spotlight: Fungi, mycotoxins and microbial volatile organic compounds in mouldy interiors from water-damaged buildings.

    PubMed

    Polizzi, Viviana; Delmulle, Barbara; Adams, An; Moretti, Antonio; Susca, Antonia; Picco, Anna Maria; Rosseel, Yves; Kindt, Ruben't; Van Bocxlaer, Jan; De Kimpe, Norbert; Van Peteghem, Carlos; De Saeger, Sarah

    2009-10-01

    Concerns have been raised about exposure to mycotoxin producing fungi and the microbial volatile organic compounds (MVOCs) they produce in indoor environments. Therefore, the presence of fungi and mycotoxins was investigated in 99 samples (air, dust, wallpaper, mycelium or silicone) collected in the mouldy interiors of seven water-damaged buildings. In addition, volatile organic compounds (VOCs) were sampled. The mycotoxins were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) (20 target mycotoxins) and quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS). Morphological and molecular identifications of fungi were performed. Of the 99 samples analysed, the presence of one or more mycotoxins was shown in 62 samples by means of LC-MS/MS analysis. The mycotoxins found were mainly roquefortine C, chaetoglobosin A and sterigmatocystin but also roridin E, ochratoxin A, aflatoxin B(1) and aflatoxin B(2) were detected. Q-TOF-MS analysis elucidated the possible occurrence of another 42 different fungal metabolites. In general, the fungi identified matched well with the mycotoxins detected. The most common fungal species found were Penicillium chrysogenum, Aspergillus versicolor (group), Chaetomium spp. and Cladosporium spp. In addition, one hundred and seventeen (M)VOCs were identified, especially linear alkanes (C(9)-C(17)), aldehydes, aromatic compounds and monoterpenes.

  9. Potential of essential oils for protection of grains contaminated by aflatoxin produced by Aspergillus flavus

    PubMed Central

    Esper, Renata H.; Gonçalez, Edlayne; Marques, Marcia O. M.; Felicio, Roberto C.; Felicio, Joana D.

    2014-01-01

    Aflatoxin B1 (AFB1) is a highly toxic and carcinogenic metabolite produced by Aspergillus species on food and agricultural commodities. Inhibitory effects of essential oils of Ageratum conyzoides (mentrasto) and Origanum vulgare (oregano) on the mycelial growth and aflatoxin B1 production by Aspergillus flavus have been studied previously in culture medium. The aim of this study was to evaluate aflatoxin B1 production by Aspergillus flavus in real food systems (corn and soybean) treated with Ageratum conyzoides (mentrasto) and Origanum vulgare (oregano) essential oils. Samples with 60 g of the grains were treated with different volumes of essential oils, 200, 100, 50, and 10 μL for oregano and 50, 30, 15, and 10 μL for mentrasto. Fungal growth was evaluated by disk diffusion method. Aflatoxin B1 production was evaluated inoculating suspensions of A. flavus containing 1.3 × 105 spores/mL in 60 g of grains (corn and soybeans) after adjusting the water activity at 0.94. Aflatoxin was quantified by photodensitometry. Fungal growth and aflatoxin production were inhibited by essential oils, but the mentrasto oil was more effective in soybeans than that of oregano. On the other hand, in corn samples, the oregano essential oil was more effective than that of mentrasto. Chemical compositions of the essential oils were also investigated. The GC/MS oils analysis showed that the main component of mentrasto essential oil is precocene I and of the main component of oregano essential oil is 4-terpineol. The results indicate that both essential oils can become an alternative for the control of aflatoxins in corn and soybeans. PMID:24926289

  10. Low cost quantitative digital imaging as an alternative to qualitative in vivo bioassays for analysis of active aflatoxin B1

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin B1 (AFB1) producing fungi contaminate food and feed and are a major health concern. To minimize the sources and incidence of AFB1 illness there is a need to develop affordable, sensitive mobile devices for detection of active AFB1. In the present study we used a low cost fluorescence detec...

  11. Occurrence of aflatoxins in milk thistle herbal supplements.

    PubMed

    Tournas, V H; Sapp, C; Trucksess, M W

    2012-01-01

    Milk thistle (MT) dietary supplements are widely consumed due to their possible liver-health-promoting properties. As botanicals they can be contaminated with a variety of fungi and their secondary metabolites, mycotoxins. The aflatoxigenic fungus Aspergillus flavus has been previously isolated from these commodities. Currently, there is no published method for determining aflatoxins (AFs) in MT. Therefore, a liquid chromatography (LC) method validated for aflatoxin analysis in botanicals was evaluated and applied to MT. The method consisted of acetonitrile/water extraction, immunoaffinity column clean-up, LC separation, post-column photochemical reaction derivatisation and fluorescence detection. The average recoveries for AFs added to MT seeds, herb, oil-based liquid extract and alcohol-based liquid extract were 76% or higher. The mean relative standard deviation was <10%. The limit of detection (LOD) was 0.01 µg kg(-1) and the limit of quantification (LOQ) was 0.03 µg kg(-1). The method was used to conduct a small survey. A total of 83 MT samples from the US market were analysed. AFs were detected in 19% of the samples with levels ranging from 0.04 to 2.0 µg kg(-1). Additionally, an aflatoxigenic A. flavus strain from ATTC and an A. parasiticus strain isolated from MT herb powder were found to produce high amounts of aflatoxins (11,200 and 49,100 µg kg(-1), respectively) when cultured in MT seed powder. This is the first study reporting on aflatoxin contamination of MT botanical supplements and identifying methodology for AF analysis of these commodities.

  12. Ethylene Inhibits Aflatoxin Biosynthesis in Aspergillus parasiticus Grown on Peanuts

    PubMed Central

    Gunterus, A.; Roze, L.V.; Beaudry, R.; Linz, J. E.

    2007-01-01

    The filamentous fungi Aspergillus parasiticus and A. flavus synthesize aflatoxins when they grow on a variety of susceptible food and feed crops. These mycotoxins are among the most carcinogenic naturally occurring compounds known and they pose significant health risks to humans and animals. We previously demonstrated that ethylene and CO2 act alone and together to reduce aflatoxin synthesis by A. parasiticus grown on laboratory media. To demonstrate the potential efficacy of treatment of stored seeds and grains with these gases, we tested ethylene and CO2 for ability to inhibit aflatoxin accumulation on Georgia Green peanuts stored for up to 5 days. We demonstrated an inverse relationship between A. parasiticus spore inoculum size and the level of toxin accumulation. We showed that ethylene inhibits aflatoxin synthesis in a dose-dependent manner on peanuts; CO2 also inhibits aflatoxin synthesis over a narrow dose range. Treatments had not discernable effect on mold growth. These observations support further exploration of this technology to reduce aflatoxin contamination of susceptible crops in the field and during storage. PMID:17418318

  13. Mycoflora and aflatoxin production in pigeon pea stored in jute sacks and iron bins.

    PubMed

    Bankole, S A; Eseigbe, D A; Enikuomehin, O A

    The mycoflora, moisture content and aflatoxin contamination of pigeon pea (Cajanus cajan (L.) Millisp) stored in jute sacks and iron bins were determined at monthly intervals for a year. The predominant fungi on freshly harvested seeds were Alternaria spp., Botryodiplodia theobromae, Fusarium spp. and Phoma spp. These fungi gradually disappeared from stored seeds with time and by 5-6 months, most were not isolated. The fungi that succeeded the initially dominant ones were mainly members of the general Aspergillus, Penicillium and Rhizopus. Population of these fungi increased up to the end of one year storage. Higher incidence of mycoflora and Aspergillus flavus were recorded in jute-sack samples throughout the storage period. The moisture content of stored seeds was found to fluctuate with the prevailing weather conditions, being low during the dry season and slightly high during the wet season. The stored seeds were free of aflatoxins for 3 and 5 months in jute sacks and iron bins respectively. The level of aflatoxins detected in jute-sack storage system was considerably higher than that occurring in the iron bin system. Of 196 isolates of A. flavus screened, 48% were toxigenic in liquid culture (54% from jute sacks and 41% from iron bins).

  14. Climate change and the health impact of aflatoxins exposure in Portugal - an overview.

    PubMed

    Assunção, Ricardo; Martins, Carla; Viegas, Susana; Viegas, Carla; Jakobsen, Lea S; Pires, Sara; Alvito, Paula

    2018-03-08

    Climate change has been indicated as a driver for food safety issues worldwide, mainly due to the impact on the occurrence of food safety hazards at various stages of food chain. Mycotoxins, natural contaminants produced by fungi, are among the most important of such hazards. Aflatoxins, which have the highest acute and chronic toxicity of all mycotoxins, assume particular importance. A recent study predicted aflatoxin contamination in maize and wheat crops in Europe within the next 100 years and aflatoxin B1 is predicted to become a food safety issue in Europe, especially in the most probable scenario of climate change (+2°C). This review discusses the potential influence of climate change on the health risk associated to aflatoxins dietary exposure of Portuguese population. We estimated the burden of disease associated to the current aflatoxin exposure for Portuguese population in terms of Disability Adjusted Life Years (DALYs). It is expected that in the future the number of DALYs and the associated cases of hepatocellular carcinoma due to aflatoxins exposure will increase due to climate change. The topics highlighted through this review, including the potential impact on health of the Portuguese population through the dietary exposure to aflatoxins, should represent an alert for the potential consequences of an incompletely explored perspective of climate change. Politics and decision-makers should be involved and committed to implement effective measures to deal with climate change issues and to reduce its possible consequences. This review constitutes a contribution for the prioritisation of strategies to face the unequal burden of effects of weather-related hazards in Portugal and across Europe.

  15. Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis.

    PubMed

    Liu, Kaihui; Ding, Xiaowei; Deng, Baiwan; Chen, Wenqiang

    2009-09-01

    This study investigated the endophytic fungi diversity of Taxus chinensis and screened the taxol-producing fungi in the host. A total of 115 endophytic fungi isolates obtained from bark segments of T. chinensis were grouped into 23 genera based on the morphological traits and sequence analysis of the internal transcribed spacers (ITS1-5.8S-ITS2), indicating endophytic fungi in T. chinensis are diverse and abundant. Diaporthe, Phomopsis (anamorph of Diaporthe), Acremonium, and Pezicula were the dominant genera, whereas the remaining genera were infrequent groups. The 13 representative species of the distinct genera were capable of producing taxol verified by reverse-phase high performance liquid chromatography (HPLC). Among the taxol-producing fungi, the yield of taxol produced by the Metarhizium anisopliae, H-27 was 846.1 microg l(-1) in reformative potato dextrose liquid medium, and the fungal taxol was further validated by mass spectrometry (MS). The taxol-producing fungi (92.3%) were infrequent communities, suggesting that infrequent fungi associated with T. chinensis might be a fascinating reservoir of taxol-generating fungi.

  16. HRAS: a webserver for early warning of human health risk brought by aflatoxin.

    PubMed

    Hu, Ruifeng; Zeng, Xu; Gao, Weiwei; Wang, Qian; Liu, Zhihua

    2013-02-01

    Most people are aware that outdoor air pollution can damage their health, but many do not know that indoor air pollution can also exhibit significant negative health effects. Fungi parasitizing in air conditioning and ventilation systems can be one of indoor air pollution sources. Aflatoxin produced by Aspergillus flavus (A. flavus) became a central focus of indoor air pollution, especially in farmer markets. Therefore we developed an early warning system, Health Risk Assessment System, to estimate the growth rate of A. flavus, predict the amount of aflatoxin and provide early warning information. Firstly, the growth of A. flavus and the production of aflatoxin under different conditions were widely obtained through a comprehensive literature review. Secondly, three mathematical models were established to predict the A. flavus colony growth rate, lag phase duration and aflatoxin content, as functions of temperature and water activity based on present studies. Finally, all the results were evaluated by the user-supplied data using PHP programming language. We utilized the web page to show the results and display warning information. The JpGraph library was used to create a dynamic line chart, refreshing the warning information dynamically in real-time. The HARS provides accurate information for early warning purposes to let us take timely steps to protect ourselves.

  17. Transcriptome, antioxidant enzyme activity and histopathology analysis of hepatopancreas from the white shrimp Litopenaeus vannamei fed with aflatoxin B1(AFB1).

    PubMed

    Zhao, Wei; Wang, Lei; Liu, Mei; Jiang, Keyong; Wang, Mengqiang; Yang, Guang; Qi, Cancan; Wang, Baojie

    2017-09-01

    Aflatoxin produced by Aspergillus flavus or Aspergillus parasiticus fungi during grain and feed processing and storage. Aflatoxins cause severe health problems reducing the yield and profitability of shrimp cultures. We sought to understand the interaction between shrimp immunity and aflatoxin B1 (AFB1), analyzing transcriptome expression, antioxidant enzyme activity, and histological features of the hepatopancreas of shrimp fed with AFB1. From over 4 million high-quality reads, de novo unigene assembly produced 103,644 fully annotated genes. A total of 1024 genes were differentially expressed in shrimp fed with AFB1, being involved in functions, such as peroxidase metabolism, signal transduction, transcriptional control, apoptosis, proteolysis, endocytosis, and cell adhesion and cell junction. Upon AFB1 challenge, there were severe histological alterations in shrimp hepatopancreas. AFB1 challenge increased the activity of several antioxidant enzymes. Our data contribute to improve the current understanding of host-AFB1 interaction, providing an abundant source for identification of novel genes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Detoxification of Aflatoxin B1 by Antifungal Compounds from Lactobacillus brevis and Lactobacillus paracasei, Isolated from Dairy Products.

    PubMed

    Gomaa, Eman Zakaria; Abdelall, Manal Farouk; El-Mahdy, Omima Mohammed

    2018-06-01

    Aflatoxins are a large group of highly toxic, mutagenic, and carcinogenic mycotoxins produced by specific species of fungi. Potential contamination of food commodities by these compounds causes extensive damage that lead to great economic losses. This study explored the potential use of antifungal compounds, produced by Lactobacillus brevis and Lactobacillus paracasei, for growth inhibition and subsequent aflatoxin B1 production from select strains of Aspergillus flavus and Aspergillus parasiticus. Lactobacilli strains were isolated from traditional Egyptian dairy products, whereas fungal strains were isolated from infected cereal seeds. There were noticeable decreases in mycelium biomass and aflatoxin production as well. L. brevis exhibited the highest reduction of aflatoxin B1 production by A. flavus and A. parasiticus, 96.31 and 90.43%, respectively. The concentrations of amino acids of the antifungal compound produced by L. brevis were significantly higher than that produced by L. paracasei. Asparagine, glutamine, glycine, alanine, and leucine were the most concentrated amino acids for both strains. The antifungal compounds produced by L. brevis and L. paracasei were active in a wide range of pH, heat stable and inactivated by proteolytic enzymes (protease K and trypsin A). The expression of Omt-A gene that involved in the later step of aflatoxin production was evaluated by real-time PCR. There was a vigorous reduction at transcriptional level of Omt-A gene observed in A. flavus that is treated by L. brevis and L. paracasei (80 and 70%, respectively). However, the reduction of Omt-A gene observed in A. parasiticus that is treated by L. brevis and L. paracasei was 64.5 and 52%, respectively. Treating maize seeds with antifungal compounds exhibited great efficiency in controlling fungal infection and increasing seed germination. The results confirmed that lactic acid bacteria are a promising strategy to control food contamination of fermented food and dairy

  19. Streptomyces sp. ASBV-1 reduces aflatoxin accumulation by Aspergillus parasiticus in peanut grains.

    PubMed

    Zucchi, T D; de Moraes, L A B; de Melo, I S

    2008-12-01

    To evaluate the ability of Streptomyces sp. (strain ASBV-1) to restrict aflatoxin accumulation in peanut grains. In the control of many phytopathogenic fungi the Streptomyces sp. ASBV-1 strain showed promise. An inhibitory test using this strain and A. parasiticus was conducted in peanut grains to evaluate the effects of this interaction on spore viability and aflatoxin accumulation. In some treatments the Streptomyces sp ASBV-1 strain reduced the viability of A. parasiticus spores by c. 85%, and inhibited aflatoxin accumulation in peanut grains. The values of these reductions ranged from 63 to 98% and from 67% to 96% for aflatoxins B(1) and G(1), respectively. It was demonstrated that Streptomyces sp. ASBV-1 is able to colonize peanut grains and thus inhibit the spore viability of A. parasiticus, as well as reducing aflatoxin production. The positive finding for aflatoxin accumulation reduction in peanut grains seems promising and suggests a wider use of this actinobacteria in biological control programmes.

  20. Aspergillus flavus aflatoxin occurrence and expression of aflatoxin biosynthesis genes in soil.

    PubMed

    Accinelli, Cesare; Abbas, H K; Zablotowicz, R M; Wilkinson, J R

    2008-05-01

    The carcinogen aflatoxin B1 (AFB1) produced by Aspergillus flavus is a major food safety concern in crops. However, information on AFB1 occurrence in soil and crop residue is scarce. A series of experiments investigated the occurrence of AFB1 in soil and corn residues and ascertained the ecology of A. flavus in a Dundee silt loam soil. Samples of untilled soil (0-2 cm) and residues were collected in March 2007 from plots previously planted with a corn isoline containing the Bacillus thuringiensis (Bt) endotoxin gene or the parental non-Bt isoline. AFB1 levels were significantly different in various corn residues. The highest AFB1 levels were observed in cobs containing grain, with 145 and 275 ng.g-1 in Bt and non-Bt, respectively (P > or = F = 0.001). Aflatoxin levels averaged 3.3 and 9.6 ng.g-1 in leaves and (or) stalks and cobs without grain, respectively. All soils had AFB1 ranging from 0.6 to 5.5 ng.g-1 with similar levels in plots from Bt and non-Bt corn. Based on cultural methods, soil contained from log10 3.1 to 4.5 A. flavus cfu.g-1 with about 60% of isolates producing aflatoxin. Laboratory experiments demonstrated that AFB1 is rapidly degraded in soil at 28 degrees C (half-life < or = 5 days). The potential of the soil A. flavus to produce aflatoxins was confirmed by molecular methods. Transcription of 5 aflatoxin biosynthesis genes, including aflD, aflG, aflP, aflR, and aflS, were detected by reverse transcription - polymerase chain reaction analysis in soil. Although AFB1 appears to be transient in soils, it is clear that AFB1 is produced in surface soil in the presence of corn residues, as indicated by A. flavus cfu levels, AFB1 detection, and expression of aflatoxin biosynthetic genes.

  1. [Levels of Ochratoxin A and total Aflatoxins in Panamanian exportation coffee by an ELISA Method].

    PubMed

    Franco, Heriberto; Vega, Aracelly; Reyes, Stephany; De Léon, Javier; Bonilla, Alexis

    2014-03-01

    A study about processing conditions of exportation coffee in 15 benefits located in Chiriqui, western region of Panama, was conducted. In addition, 21 samples of processed coffee (green beans), from the benefits, were analyzed. The samples were microbiologically tested in order to quantify total aflatoxins (B1, B2, G1 and G2) and Ochratoxin A (OTA), using the immunoaffinity ELISA method. A detection limit of 0.017 ng/mL, was determined for Ochratoxin A, which is equivalent to a concentration of 0.829 µg/kg, and a detection limit of 0.027 ng/mL, for total aflatoxins, which is equivalent to a concentration of 1.350 µg/kg. It was found that four (19%) out of the 21 samples were positive to the presence of Ochratoxin A and three (14%) to the presence of total aflatoxins. Samples showed levels of Ochratoxin A in the range 4.90 - 37.73 µg/kg; only three of them exceeded the maximum limit allowed by the European Union, for the concentration of Ochratoxin, which is of 5.0 µg/kg. Total aflatoxins were found in the range 1.51 - 1.93 µg/kg, below 10 µg/kg which is the maximum limit allowed for coffee by the European Union. The results indicate that the processing of coffee produced in Panama successfully meets international standards for postharvest handling, which leads to a low incidence ofmycotoxins and very low levels ofmycotoxin-producing fungi.

  2. Metabolites Identified during Varied Doses of Aspergillus Species in Zea mays Grains, and Their Correlation with Aflatoxin Levels.

    PubMed

    Falade, Titilayo D O; Chrysanthopoulos, Panagiotis K; Hodson, Mark P; Sultanbawa, Yasmina; Fletcher, Mary; Darnell, Ross; Korie, Sam; Fox, Glen

    2018-05-07

    Aflatoxin contamination is associated with the development of aflatoxigenic fungi such as Aspergillus flavus and A. parasiticus on food grains. This study was aimed at investigating metabolites produced during fungal development on maize and their correlation with aflatoxin levels. Maize cobs were harvested at R3 (milk), R4 (dough), and R5 (dent) stages of maturity. Individual kernels were inoculated in petri dishes with four doses of fungal spores. Fungal colonisation, metabolite profile, and aflatoxin levels were examined. Grain colonisation decreased with kernel maturity: milk-, dough-, and dent-stage kernels by approximately 100%, 60%, and 30% respectively. Aflatoxin levels increased with dose at dough and dent stages. Polar metabolites including alanine, proline, serine, valine, inositol, iso-leucine, sucrose, fructose, trehalose, turanose, mannitol, glycerol, arabitol, inositol, myo-inositol, and some intermediates of the tricarboxylic acid cycle (TCA—also known as citric acid or Krebs cycle) were important for dose classification. Important non-polar metabolites included arachidic, palmitic, stearic, 3,4-xylylic, and margaric acids. Aflatoxin levels correlated with levels of several polar metabolites. The strongest positive and negative correlations were with arabitol ( R = 0.48) and turanose and ( R = −0.53), respectively. Several metabolites were interconnected with the TCA; interconnections of the metabolites with the TCA cycle varied depending upon the grain maturity.

  3. Use of response surface methodology to study the effect of media composition on aflatoxin production by Aspergillus flavus.

    PubMed

    Ahmad, Mahboob; Ahmad, Malik M; Hamid, Rifat; Abdin, M Z; Javed, Saleem

    2013-02-01

    Aflatoxins are one of the most important secondary metabolites. These extrolites are produced by a number of Aspergillus fungi. In this study, we demonstrate the effect of media components and enhanced aflatoxin yield shown by A. flavus using response surface methodology in response to different nutrients. Different components of a chemically defined media that influence the aflatoxin production were monitored using Plackett-Burman experimental design and further optimized by Box-Behnken factorial design of response surface methodology in liquid culture. Interactions were studied with five variables, namely sorbitol, fructose, ammonium sulfate, KH(2)PO(4), and MgSO(4).7H(2)O. Maximum aflatoxin production was envisaged in medium containing 4.94 g/l sorbitol, 5.56 g/l fructose, 0.62 g/l ammonium sulfate, 1.33 g/l KH(2)PO(4), and 0.65 g/l MgSO(4)·7H(2)O using response surface plots and the point prediction tool of the DESIGN EXPERT 8.1.0 (Stat-Ease, USA) software. However, a production of 5.25 μg/ml aflatoxin production was obtained, which was in agreement with the prediction observed in verification experiment. The other component (MgSO(4).7H(2)O) was found to be an insignificant variable.

  4. Molecular Characterization of Atoxigenic Strains for Biological Control of Aflatoxins in Nigeria

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are highly toxic, carcinogens produced by several species in Aspergillus section Flavi. Strains of A. flavus that do not produce aflatoxins, called atoxigenic strains, have been used commercially in North America as tools for limiting aflatoxin contamination. A similar aflatoxin manage...

  5. Occurrence of Aspergillus section Flavi and aflatoxins in Brazilian rice: From field to market.

    PubMed

    Katsurayama, Aline M; Martins, Ligia M; Iamanaka, Beatriz T; Fungaro, Maria Helena P; Silva, Josué J; Frisvad, Jens C; Pitt, John I; Taniwaki, Marta H

    2018-02-02

    The guarantee of the high quality of rice is of utmost importance because any toxic contaminant may affect consumer health, especially in countries such as Brazil where rice is part of the daily diet. A total of 187 rice samples, from field, processing and market from two different production systems, wetland from the state of Rio Grande do Sul, dryland, from the state of Maranhão and market samples from the state of São Paulo, were analyzed for fungi belonging to Aspergillus section Flavi and the presence of aflatoxins. Twenty-three soil samples from wetland and dryland were also analyzed. A total of 383 Aspergillus section Flavi strains were isolated from rice and soil samples. Using a polyphasic approach, with phenotypic (morphology and extrolite profiles) and molecular data (beta-tubulin gene sequences), five species were identified: A. flavus, A. caelatus, A. novoparasiticus, A. arachidicola and A. pseudocaelatus. This is the first report of these last three species from rice and rice plantation soil. Only seven (17%) of the A. flavus isolates produced type B aflatoxins, but 95% produced kojic acid and 69% cyclopiazonic acid. Less than 14% of the rice samples were contaminated with aflatoxins, but two of the market samples were well above the maximum tolerable limit (5μg/kg), established by the Brazilian National Health Surveillance Agency. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Biocontrol Activity of Volatile-Producing Bacillus megaterium and Pseudomonas protegens against Aspergillus flavus and Aflatoxin Production on Stored Rice Grains

    PubMed Central

    Mannaa, Mohamed; Oh, Ji Yeon

    2017-01-01

    In our previous study, three bacterial strains, Bacillus megaterium KU143, Microbacterium testaceum KU313, and Pseudomonas protegens AS15, were selected as effective biocontrol agents against Aspergillus flavus on stored rice grains. In this study, we evaluated the inhibitory effects of the volatiles produced by the strains on A. flavus growth and aflatoxin production on stored rice grains. The three strains significantly reduced mycelial growth of A. flavus in dual-culture assays compared with the negative control strain, Sphingomonas aquatilis KU408, and an untreated control. Of these tested strains, volatiles produced by B. megaterium KU143 and P. protegens AS15 markedly inhibited mycelial growth, sporulation, and conidial germination of A. flavus on agar medium and suppressed the fungal populations in rice grains. Moreover, volatiles produced by these two strains significantly reduced aflatoxin production in the rice grains by A. flavus. To our knowledge, this is the first report of the suppression of A. flavus aflatoxin production in rice grains using B. megaterium and P. protegens volatiles. PMID:29138628

  7. Isolation and identification of fungi from a meju contaminated with aflatoxins.

    PubMed

    Jung, Yu Jung; Chung, Soo Hyun; Lee, Hyo Ku; Chun, Hyang Sook; Hong, Seung Beom

    2012-12-01

    A home-made meju sample contaminated naturally with aflatoxins was used for isolation of fungal strains. Overall, 230 fungal isolates were obtained on dichloran rosebengal chloramphenicol (DRBC) and dichloran 18% glycerol (DG18) agar plates. Morphological characteristics and molecular analysis of a partial beta-tubulin gene and the internal transcribed spacer (ITS) of rDNA were used for the identification of the isolates. The fungal isolates were divided into 7 genera: Aspergillus, Eurotium, Penicillium, Eupenicillium, Mucor, Lichtheimia, and Curvularia. Three strains from 56 isolates of the A. oryzae/flavus group were found to be aflatoxigenic A. flavus, by the presence of the aflatoxin biosynthesis genes and confirmatory aflatoxin production by high-performance liquid chromatography (HPLC). The predominant isolate from DRBC plates was A. oryzae (42 strains, 36.2%), whereas that from DG18 was A. candidus (61 strains, 53.5%). Out of the 230 isolates, the most common species was A. candidus (34.3%) followed by A. oryzae (22.2%), Mucor circinelloides (13.0%), P. polonicum (10.0%), A. tubingensis (4.8%), and L. ramosa (3.5%). A. flavus and E. chevalieri presented occurrence levels of 2.2%, respectively. The remaining isolates of A. unguis, P. oxalicum, Eupenicillium cinnamopurpureum, A. acidus, E. rubrum, P. chrysogenum, M. racemosus, and C. inaequalis had lower occurrence levels of < 2.0%.

  8. Effects of temperature and medium composition on inhibitory activities of gossypol-related compounds against aflatoxigenic fungi.

    PubMed

    Mellon, J E; Dowd, M K; Beltz, S B

    2013-07-01

    To investigate the effects of temperature and medium composition on growth/aflatoxin inhibitory activities of terpenoids gossypol, gossypolone and apogossypolone against Aspergillus flavus and A. parasiticus. The compounds were tested at a concentration of 100 μg ml(-1) in a Czapek Dox (Czapek) agar medium at 25, 31 and 37°C. Increased incubation temperature marginally increased growth inhibition caused by these compounds, but reduced the aflatoxin inhibition effected by gossypol. Gossypolone and apogossypolone retained good aflatoxin inhibitory activity against A. flavus and A. parasiticus at higher incubation temperatures. However, increased temperature also significantly reduced aflatoxin production in control cultures. The effects of the terpenoids on fungal growth and aflatoxin production against the same fungi were also determined in Czapek, Czapek with a protein/amino acid addendum and yeast extract sucrose (YES) media. Growth of these fungi in the protein-supplemented Czapek medium or in the YES medium greatly reduced the growth inhibition effects of the terpenoids. Apogossypolone displayed strong anti-aflatoxigenic activity in the Czapek medium, but this activity was significantly reduced in the protein-amended Czapek and YES media. Gossypol, which displayed little to no aflatoxin inhibitory activity in the Czapek medium, did yield significant anti-aflatoxigenic activity in the YES medium. Incubation temperature and media composition are important parameters involved in the regulation of aflatoxin production in A. flavus and A. parasiticus. These parameters also affect the potency of growth and aflatoxin inhibitory activities of these gossypol-related compounds against aflatoxigenic fungi. Studies utilizing gossypol-related compounds as inhibitory agents of biological activities should be interpreted with caution due to compound interaction with multiple components of the test system, especially serum proteins. Published [2013]. This article is a

  9. Metabolites Identified during Varied Doses of Aspergillus Species in Zea mays Grains, and Their Correlation with Aflatoxin Levels

    PubMed Central

    Chrysanthopoulos, Panagiotis K.; Hodson, Mark P.; Darnell, Ross; Korie, Sam

    2018-01-01

    Aflatoxin contamination is associated with the development of aflatoxigenic fungi such as Aspergillus flavus and A. parasiticus on food grains. This study was aimed at investigating metabolites produced during fungal development on maize and their correlation with aflatoxin levels. Maize cobs were harvested at R3 (milk), R4 (dough), and R5 (dent) stages of maturity. Individual kernels were inoculated in petri dishes with four doses of fungal spores. Fungal colonisation, metabolite profile, and aflatoxin levels were examined. Grain colonisation decreased with kernel maturity: milk-, dough-, and dent-stage kernels by approximately 100%, 60%, and 30% respectively. Aflatoxin levels increased with dose at dough and dent stages. Polar metabolites including alanine, proline, serine, valine, inositol, iso-leucine, sucrose, fructose, trehalose, turanose, mannitol, glycerol, arabitol, inositol, myo-inositol, and some intermediates of the tricarboxylic acid cycle (TCA—also known as citric acid or Krebs cycle) were important for dose classification. Important non-polar metabolites included arachidic, palmitic, stearic, 3,4-xylylic, and margaric acids. Aflatoxin levels correlated with levels of several polar metabolites. The strongest positive and negative correlations were with arabitol (R = 0.48) and turanose and (R = −0.53), respectively. Several metabolites were interconnected with the TCA; interconnections of the metabolites with the TCA cycle varied depending upon the grain maturity. PMID:29735944

  10. Safety evaluation of filamentous fungi isolated from industrial doenjang koji.

    PubMed

    Lee, Jin Hee; Jo, Eun Hye; Hong, Eun Jin; Kim, Kyung Min; Lee, Inhyung

    2014-10-01

    A few starters have been developed and used for doenjang fermentation but often without safety evaluation. Filamentous fungi were isolated from industrial doenjang koji, and their potential for mycotoxin production was evaluated. Two fungi were isolated; one was more dominantly present (90%). Both greenish (SNU-G) and whitish (SNU-W) fungi showed 97% and 95% internal transcribed spacer sequence identities to Aspergillus oryzae/flavus, respectively. However, the SmaI digestion pattern of their genomic DNA suggested that both belong to A. oryzae. Moreover, both fungi had morphological characteristics similar to that of A. oryzae. SNU-G and SNU-W did not form sclerotia, which is a typical characteristic of A. oryzae. Therefore, both fungi were identified to be A. oryzae. In aflatoxin gene cluster analysis, both fungi had norB-cypA genes similar to that of A. oryzae. Consistent with this, aflatoxins were not detected in SNU-G and SNU-W using ammonia vapor, TLC, and HPLC analyses. Both fungi seemed to have a whole cyclopiazonic acid (CPA) gene cluster based on PCR of the maoA, dmaT, and pks-nrps genes, which are key genes for CPA biosynthesis. However, CPA was not detected in TLC and HPLC analyses. Therefore, both fungi seem to be safe to use as doenjang koji starters and may be suitable fungal candidates for further development of starters for traditional doenjang fermentation.

  11. A Comparative Study on Aflatoxin B1 Metabolism in Mice and Rats

    PubMed Central

    Steyn, M.; Pitout, M. J.; Purchase, I. F. H.

    1971-01-01

    In vivo metabolic studies on rats and mice revealed a marked difference in the fluorescent compounds produced after ingestion of aflatoxin B1. The mouse converted aflatoxin B1 to three unknown fluorescent compounds, designated x1, x2 and x3 and the known aflatoxin M1, while the rat was only capable of producing aflatoxin M1. The results suggested that metabolites x1, x2, x3 and aflatoxin M1 were not part of a major metabolic pathway, but produced independently. These unknown yellowish-green fluorescent compounds did not seem to be conjugated with sulphate or glucuronic acid. In vitro incubations of various mouse liver cell fractions with aflatoxin B1 showed that metabolites x1, x2, x3 and aflatoxin M1, could only be produced by the microsomal fraction and that NADPH was needed as a co-factor. The differences in aflatoxin metabolism by mice and rats are discussed in relation to the apparent resistance of the mouse to the carcinogenic effects of this toxin. PMID:4398926

  12. Assay for Aflatoxin Production by the Genera Aspergillus and Penicillium1

    PubMed Central

    Mislivec, Philip B.; Hunter, J. H.; Tuite, John

    1968-01-01

    A total of 260 isolates, including 43 species of Penicillium and 7 species of Aspergillus, were screened for their ability to produce aflatoxin on rice. Chloroform extracts were analyzed by thin-layer chromatography. None of the isolates produced aflatoxin. Certain species of Penicillium produced fluorescent substances that either were similar in RF or were of similar color to B and G aflatoxins. These substances were subsequently proved not to be aflatoxin by two-dimensional chromatography, by reaction with iodine fumes, or by both methods. PMID:5664121

  13. Correlation of Aflatoxin Contamination With Zinc Content of Chicken Feed †

    PubMed Central

    Jones, Frank T.; Hagler, Winston M.; Hamilton, Pat B.

    1984-01-01

    Feed samples from chicken houses in five commercial chicken operations were analyzed for Zn, Mn, Fe, Cu, Cd, and aflatoxin content. Mean aflatoxin content of these samples was 14 ppb (14 ng/g) as opposed to 1.2 ppb in samples taken when the feed was made. Aflatoxin content of the feed samples correlated (r = 0.325) significantly (P < 0.05) with Zn content but not with Mn, Fe, or Cu, all of which correlated significantly with Zn. Zn content of unamended feed (<20 ppm [20 μg/g]) is normally supplemented with a mineral premix containing Zn, Mn, Fe, and Cu to meet the nutrient requirements of chickens (40 ppm of Zn). The mean zinc concentration of the feed samples (117 ppm) was about threefold greater than the nutrient requirement and ranged from 58 to 162 ppm in individual samples. These field survey results parallel earlier reports of augmented production of aflatoxin in monocultures of aflatoxigenic fungi in corn and other ingredients supplemented with Zn. These results suggest that stricter control of Zn levels during manufacture could reduce aflatoxin contamination of feed consumed by chickens. PMID:16346486

  14. Downregulation of transcription factor aflR in Aspergillus flavus confers reduction to aflatoxin accumulation in transgenic maize with alteration of host plant architecture.

    PubMed

    Masanga, Joel Okoyo; Matheka, Jonathan Mutie; Omer, Rasha Adam; Ommeh, Sheila Cecily; Monda, Ethel Oranga; Alakonya, Amos Emitati

    2015-08-01

    We report success of host-induced gene silencing in downregulation of aflatoxin biosynthesis in Aspergillus flavus infecting maize transformed with a hairpin construct targeting transcription factor aflR. Infestation of crops by aflatoxin-producing fungi results in economic losses as well as negative human and animal health effects. Currently, the control strategies against aflatoxin accumulation are not effective to the small holder farming systems in Africa and this has led to widespread aflatoxin exposure especially in rural populations of sub-Saharan Africa that rely on maize as a staple food crop. A recent strategy called host-induced gene silencing holds great potential for developing aflatoxin-resistant plant germplasm for the African context where farmers are unable to make further investments other than access to the germplasm. We transformed maize with a hairpin construct targeting the aflatoxin biosynthesis transcription factor aflR. The developed transgenic maize were challenged with an aflatoxigenic Aspergillus flavus strain from Eastern Kenya, a region endemic to aflatoxin outbreaks. Our results indicated that aflR was downregulated in A. flavus colonizing transgenic maize. Further, maize kernels from transgenic plants accumulated significantly lower levels of aflatoxins (14-fold) than those from wild type plants. Interestingly, we observed that our silencing cassette caused stunting and reduced kernel placement in the transgenic maize. This could have been due to "off-target" silencing of unintended genes in transformed plants by aflR siRNAs. Overall, this work indicates that host-induced gene silencing has potential in developing aflatoxin-resistant germplasm.

  15. Mites and fungi in heavily infested stores in the Czech Republic.

    PubMed

    Hubert, J; Stejskal, V; Munzbergová, Z; Kubátová, A; Vánová, M; Zd'árková, E

    2004-12-01

    Toxigenic and allergen-producing fungi represent a serious hazard to human food and animal feed safety. Ninety-four fungal species were isolated from mite-infested samples of seeds taken from Czech seed stores. Fungi were isolated from the surface of four kinds of seeds (wheat, poppy, lettuce, and mustard) and from the gut and external surface of five species of mites (i.e., Acarus siro L., 1758, Caloglyphus rhizoglyphoides (Zachvatkin, 1973), Lepidoglyphus destructor (Schrank, 1781), Tyrophagus putrescentnae (Schrank, 1781) and Cheyletus malaccensis Oudemans 1903) separately. Multivariate analysis of fungi complex composition showed that the frequency of fungal was species significantly influenced by the kind of seed. Fungal frequencies differed between mites gut and exoskeleton surface and between the surfaces of mites and seeds. Three groups of fungal species were recognized: 1) mite surface-associated fungi: Penicillium brevicompactum, Alternaria alternata, and Aspergillus versicolor; 2) mite surface- and seed-associated fungi: Aspergillus niger, Penicillium crustosum, Penicillium aurantiogriseum, Penicillium chrysogenum, and Aspergillus flavus; and 3) seed-associated fungi: Cladosporium herbarum, Mucor dimorphosporus f. dimorphosporus, Botrytis cinerea, Penicillium griseofulvum, and Eurotium repens. Mite-carried species of microfungi are known to produce serious mycotoxins (e.g., aflatoxin B1, cyclopiazonic acid, sterigmatocystin, ochratoxin A, and nephrotoxic glycopeptides) as well as allergen producers (e.g., A. alternata and P. brevicompactum). Storage mites may play an important role in the spread of some medically hazardous micromycetes. In addition, these mite-fungi associations may heighten the risk of occurrence of mycotoxins in food and feed stuffs and cause mixed contamination by fungal and mite allergens.

  16. Mycobiota and Natural Incidence of Aflatoxins, Ochratoxin A, and Citrinin in Indian Spices Confirmed by LC-MS/MS

    PubMed Central

    Jeswal, Punam; Kumar, Dhiraj

    2015-01-01

    Nine different Indian spices (red chilli, black pepper, turmeric, coriander, cumin, fennel, caraway, fenugreek, and dry ginger) commonly cultivated and highly used in India were analysed for natural occurrence of toxigenic mycoflora and aflatoxins (AFs), ochratoxin A (OTA), and citrinin (CTN) contamination. Aspergillus flavus and Aspergillus niger were the most dominant species isolated from all types of spices. Red chilli samples were highly contaminated with aflatoxins (85.4%) followed by dry ginger (77.7%). 56% Aspergillus flavus from red chilli and 45% Aspergillus ochraceus from black pepper were toxigenic and produced aflatoxins and ochratoxin A, respectively. Qualitative detection and quantitative detection of mycotoxins in spices were analyzed by ELISA and further confirmed by LC-MS/MS. Penicillium citrinum produced citrinin in red chilli, black pepper, coriander, cumin, fenugreek, and dry ginger samples. The highest amount of AFs was found in red chilli (219.6 ng/g), OTA was in black pepper (154.1 ng/g), and CTN was in dry ginger samples (85.1 ng/g). The results of this study suggest that the spices are susceptible substrate for growth of mycotoxigenic fungi and further mycotoxin production. This is the first report of natural occurrence of citrinin in black pepper and dry ginger from India. PMID:26229535

  17. RNAi-mediated Control of Aflatoxins in Peanut: Method to Analyze Mycotoxin Production and Transgene Expression in the Peanut/Aspergillus Pathosystem

    PubMed Central

    Arias, Renée S.; Dang, Phat M.; Sobolev, Victor S.

    2015-01-01

    The Food and Agriculture Organization of the United Nations estimates that 25% of the food crops in the world are contaminated with aflatoxins. That represents 100 million tons of food being destroyed or diverted to non-human consumption each year. Aflatoxins are powerful carcinogens normally accumulated by the fungi Aspergillus flavus and A. parasiticus in cereals, nuts, root crops and other agricultural products. Silencing of five aflatoxin-synthesis genes by RNA interference (RNAi) in peanut plants was used to control aflatoxin accumulation following inoculation with A. flavus. Previously, no method existed to analyze the effectiveness of RNAi in individual peanut transgenic events, as these usually produce few seeds, and traditional methods of large field experiments under aflatoxin-conducive conditions were not an option. In the field, the probability of finding naturally contaminated seeds is often 1/100 to 1/1,000. In addition, aflatoxin contamination is not uniformly distributed. Our method uses few seeds per transgenic event, with small pieces processed for real-time PCR (RT-PCR) or small RNA sequencing, and for analysis of aflatoxin accumulation by ultra-performance liquid chromatography (UPLC). RNAi-expressing peanut lines 288-72 and 288-74, showed up to 100% reduction (p≤0.01) in aflatoxin B1 and B2 compared to the control that accumulated up to 14,000 ng.g-1 of aflatoxin B1 when inoculated with aflatoxigenic A. flavus. As reference, the maximum total of aflatoxins allowable for human consumption in the United States is 20 ng.g-1. This protocol describes the application of RNAi-mediated control of aflatoxins in transgenic peanut seeds and methods for its evaluation. We believe that its application in breeding of peanut and other crops will bring rapid advancement in this important area of science, medicine and human nutrition, and will significantly contribute to the international effort to control aflatoxins, and potentially other mycotoxins in major

  18. RNAi-mediated Control of Aflatoxins in Peanut: Method to Analyze Mycotoxin Production and Transgene Expression in the Peanut/Aspergillus Pathosystem.

    PubMed

    Arias, Renée S; Dang, Phat M; Sobolev, Victor S

    2015-12-21

    The Food and Agriculture Organization of the United Nations estimates that 25% of the food crops in the world are contaminated with aflatoxins. That represents 100 million tons of food being destroyed or diverted to non-human consumption each year. Aflatoxins are powerful carcinogens normally accumulated by the fungi Aspergillus flavus and A. parasiticus in cereals, nuts, root crops and other agricultural products. Silencing of five aflatoxin-synthesis genes by RNA interference (RNAi) in peanut plants was used to control aflatoxin accumulation following inoculation with A. flavus. Previously, no method existed to analyze the effectiveness of RNAi in individual peanut transgenic events, as these usually produce few seeds, and traditional methods of large field experiments under aflatoxin-conducive conditions were not an option. In the field, the probability of finding naturally contaminated seeds is often 1/100 to 1/1,000. In addition, aflatoxin contamination is not uniformly distributed. Our method uses few seeds per transgenic event, with small pieces processed for real-time PCR (RT-PCR) or small RNA sequencing, and for analysis of aflatoxin accumulation by ultra-performance liquid chromatography (UPLC). RNAi-expressing peanut lines 288-72 and 288-74, showed up to 100% reduction (p ≤ 0.01) in aflatoxin B1 and B2 compared to the control that accumulated up to 14,000 ng · g(-1) of aflatoxin B1 when inoculated with aflatoxigenic A. flavus. As reference, the maximum total of aflatoxins allowable for human consumption in the United States is 20 ng · g(-1). This protocol describes the application of RNAi-mediated control of aflatoxins in transgenic peanut seeds and methods for its evaluation. We believe that its application in breeding of peanut and other crops will bring rapid advancement in this important area of science, medicine and human nutrition, and will significantly contribute to the international effort to control aflatoxins, and potentially other

  19. Endophytic fungi: expanding the arsenal of industrial enzyme producers.

    PubMed

    Corrêa, Rúbia Carvalho Gomes; Rhoden, Sandro Augusto; Mota, Thatiane Rodrigues; Azevedo, João Lúcio; Pamphile, João Alencar; de Souza, Cristina Giatti Marques; Polizeli, Maria de Lourdes Teixeira de Moraes; Bracht, Adelar; Peralta, Rosane Marina

    2014-10-01

    Endophytic fungi, mostly belonging to the Ascomycota, are found in the intercellular spaces of the aerial plant parts, particularly in leaf sheaths, sometimes even within the bark and root system without inducing any visual symptoms of their presence. These fungi appear to have a capacity to produce a wide range of enzymes and secondary metabolites exhibiting a variety of biological activities. However, they have been only barely exploited as sources of enzymes of industrial interest. This review emphasizes the suitability and possible advantages of including the endophytic fungi in the screening of new enzyme producing organisms as well as in studies aiming to optimize the production of enzymes through well-known culture processes. Apparently endophytic fungi possess the two types of extracellular enzymatic systems necessary to degrade the vegetal biomass: (1) the hydrolytic system responsible for polysaccharide degradation consisting mainly in xylanases and cellulases; and (2) the unique oxidative ligninolytic system, which degrades lignin and opens phenyl rings, comprises mainly laccases, ligninases and peroxidases. The obvious ability of endophytic fungi to degrade the complex structure of lignocellulose makes them useful in the exploration of the lignocellulosic biomass for the production of fuel ethanol and other value-added commodity chemicals. In addition to this, endophytic fungi may become new sources of industrially useful enzymes such as lipases, amylases and proteases.

  20. Effect of γ irradiation on fungal load and aflatoxins reduction in red chillies

    NASA Astrophysics Data System (ADS)

    Iqbal, Shahzad Zafar; Bhatti, Ijaz Ahmad; Asi, Muhammad Rafique; Zuber, Mohammad; Shahid, Muhammad; Parveen, Ishrat

    2013-01-01

    Chillies are a very important cash crop of Pakistan. The effects of gamma irradiation on microbial load, aflatoxin B1 (AFB1) and total aflatoxins have been studied in chillies samples, collected from different districts of Punjab, Pakistan. Aflatoxins were analyzed using HPLC equipped with a fluorescence detector. The results revealed that among the Aspergillus species isolated, those belonging to section parasiticus were predominant. Gamma radiations of doses 2, 4 and 6 kGy were employed on fungi and chilli samples. The results have demonstrated that the dose of 6 kGy reduced the fungal load by 5 logs. Furthermore, 6 kGy reduced the level of AFB1 and total AFs in ground and whole chillies by 1-2 logs (α < 0.05).

  1. Isolation and characterization of endophytic huperzine A-producing fungi from Huperzia serrata.

    PubMed

    Wang, Ya; Zeng, Qing Gui; Zhang, Zhi Bin; Yan, Ri Ming; Wang, Ling Yun; Zhu, Du

    2011-09-01

    Huperzia serrata is a producer of huperzine A (HupA), a cholinesterase inhibitor (ChEI). Over 120 endophytic fungi were recovered from this plant and screened for Hup-A and nine were found. These nine represented seven different fungal genera with the most significant producer being Shiraia sp. A total of 127 endophytic fungi isolates obtained from the root, stem, and leaf segments of H. serrata were grouped into 19 genera based on their morphological traits and sequence analysis of the internal transcribed spacers (ITS1-5.8S-ITS2), indicating endophytic fungi in H. serrata are diverse and abundant. Aspergillus, Podospora, Penicillium, Colletotrichum, and Acremonium were the frequent genera, whereas the remaining genera were infrequent groups. Overall, 39 endophytic fungi isolates showed acetylcholinesterase (AChE) inhibition in vitro. Nine endophytic fungi isolates from seven distinct genera were capable of producing HupA verified by thin-layer chromatography and reverse-phase high-performance liquid chromatography (RP-HPLC). Among the HupA-producing fungi, the yield of HupA produced by the Shiraia sp. Slf14 was 327.8 μg/l in potato dextrose broth, and the fungal HupA was further validated by mass spectrometry (ESI-MS). The present study demonstrated that H. serrata was a fascinating fungal reservoir for producing HupA and other ChEIs.

  2. Efficacy of Bacillus subtilis and Bacillus amyloliquefaciens in the control of Aspergillus parasiticus growth and aflatoxins production on pistachio.

    PubMed

    Siahmoshteh, Fatemeh; Siciliano, Ilenia; Banani, Houda; Hamidi-Esfahani, Zohreh; Razzaghi-Abyaneh, Mehdi; Gullino, Maria Lodovica; Spadaro, Davide

    2017-08-02

    Pistachio (Pistacia vera) is an important nut for its economic, nutritional and health aspects but it can be contaminated by aflatoxigenic fungi in the field and during storage. Biological control could be considered as an alternative to chemical treatment. In this study, we evaluated the antifungal and anti-mycotoxigenic capability of two Bacillus spp. both in vitro and on pistachio kernels. In in vitro conditions, both strains were able to reduce the mycelial growth and they were able to degrade the four aflatoxins during the first three days after inoculation. AFG 1 and AFG 2 were rapidly degraded within two days of incubation with the bacterial strains. No aflatoxin was found in the bacterial cell walls, permitting exclusion of mycotoxin adsorption and hypothesis of an in vitro biodegradation as a mode of action. The cultivar of pistachio most susceptible to fungal colonization was 'Ahmad-Aghaei', selected among four main Iranian cultivars. A. parasiticus was able to grow and produce aflatoxins on pistachios, but at longer inoculation periods, a natural decrease of aflatoxins was registered. Both strains were able to reduce the fungal incidence and number of spores on pistachio with a stronger effect during the first 5dpi. The effect on aflatoxin content in vivo was less pronounced than in vitro, with a maximum effect at 8dpi. At longer times, there was a contrasting effect due to the lower activity of Bacillus spp. in stationary phase and higher growth of Aspergillus species. This consideration could explain the lack of aflatoxin reduction at 12dpi. Both bacterial strains showed good antifungal activity and aflatoxin reduction in in vitro conditions and on pistachio kernels. Altogether, these results indicate that Bacillus species could be considered as potential biocontrol agents to combat toxigenic fungal growth and subsequent aflatoxin contamination of nuts and agricultural crops in practice. Copyright © 2017. Published by Elsevier B.V.

  3. Insight into Genes Regulating Postharvest Aflatoxin Contamination of Tetraploid Peanut from Transcriptional Profiling.

    PubMed

    Korani, Walid; Chu, Ye; Holbrook, C Corley; Ozias-Akins, Peggy

    2018-05-01

    Postharvest aflatoxin contamination is a challenging issue that affects peanut quality. Aflatoxin is produced by fungi belonging to the Aspergilli group, and is known as an acutely toxic, carcinogenic, and immune-suppressing class of mycotoxins. Evidence for several host genetic factors that may impact aflatoxin contamination has been reported, e.g. , genes for lipoxygenase (PnLOX1 and PnLOX2/PnLOX3 that showed either positive or negative regulation with Aspergillus infection), reactive oxygen species, and WRKY (highly associated with or differentially expressed upon infection of maize with Aspergillus flavus ); however, their roles remain unclear. Therefore, we conducted an RNA-sequencing experiment to differentiate gene response to the infection by A. flavus between resistant (ICG 1471) and susceptible (Florida-07) cultivated peanut genotypes. The gene expression profiling analysis was designed to reveal differentially expressed genes in response to the infection (infected vs. mock-treated seeds). In addition, the differential expression of the fungal genes was profiled. The study revealed the complexity of the interaction between the fungus and peanut seeds as the expression of a large number of genes was altered, including some in the process of plant defense to aflatoxin accumulation. Analysis of the experimental data with "keggseq," a novel designed tool for Kyoto Encyclopedia of Genes and Genomes enrichment analysis, showed the importance of α-linolenic acid metabolism, protein processing in the endoplasmic reticulum, spliceosome, and carbon fixation and metabolism pathways in conditioning resistance to aflatoxin accumulation. In addition, coexpression network analysis was carried out to reveal the correlation of gene expression among peanut and fungal genes. The results showed the importance of WRKY, toll/Interleukin1 receptor-nucleotide binding site leucine-rich repeat (TIR-NBS-LRR), ethylene, and heat shock proteins in the resistance mechanism. Copyright

  4. Correlation of aflatoxin contamination with zinc content of chicken feed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, F.T.; Hagler, W.M. Jr.; Hamilton, P.B.

    Feed samples from chicken houses in five commercial chicken operations were analyzed for Zn, Mn, Fe, Cu, Cd, and aflatoxin content. Mean aflatoxin content of these samples was 14 ppb (14 ng/g) as opposed to 1.2 ppb in samples taken when the feed was made. Aflatoxin content of the feed samples correlated significantly with Zn content but not with Mn, Fe, or Cu, all of which correlated significantly with Zn. Zn content of unamended feed (<20 ppm (20 ..mu..g/g) is normally supplemented with a mineral premix containing Zn, Mn, Fe, and Cu to meet the nutrient requirements of chickens (40more » ppm of Zn). The mean zinc concentration of the feed samples (117 ppm) was about threefold greater than the nutrient requirement and ranged from 58 to 162 ppm in individual samples. These field survey results parallel earlier reports of augmented production of aflatoxin in monocultures of aflatoxigenic fungi in corn and other ingredients supplemented with Zn. These results suggest that stricter control of Zn levels during manufacture could reduce aflatoxing contamination of feed consumed by chickens.« less

  5. Sexuality Generates Diversity in the Aflatoxin Gene Cluster: Evidence on a Global Scale

    PubMed Central

    Moore, Geromy G.; Elliott, Jacalyn L.; Singh, Rakhi; Horn, Bruce W.; Dorner, Joe W.; Stone, Eric A.; Chulze, Sofia N.; Barros, German G.; Naik, Manjunath K.; Wright, Graeme C.; Hell, Kerstin; Carbone, Ignazio

    2013-01-01

    Aflatoxins are produced by Aspergillus flavus and A. parasiticus in oil-rich seed and grain crops and are a serious problem in agriculture, with aflatoxin B1 being the most carcinogenic natural compound known. Sexual reproduction in these species occurs between individuals belonging to different vegetative compatibility groups (VCGs). We examined natural genetic variation in 758 isolates of A. flavus, A. parasiticus and A. minisclerotigenes sampled from single peanut fields in the United States (Georgia), Africa (Benin), Argentina (Córdoba), Australia (Queensland) and India (Karnataka). Analysis of DNA sequence variation across multiple intergenic regions in the aflatoxin gene clusters of A. flavus, A. parasiticus and A. minisclerotigenes revealed significant linkage disequilibrium (LD) organized into distinct blocks that are conserved across different localities, suggesting that genetic recombination is nonrandom and a global occurrence. To assess the contributions of asexual and sexual reproduction to fixation and maintenance of toxin chemotype diversity in populations from each locality/species, we tested the null hypothesis of an equal number of MAT1-1 and MAT1-2 mating-type individuals, which is indicative of a sexually recombining population. All samples were clone-corrected using multi-locus sequence typing which associates closely with VCG. For both A. flavus and A. parasiticus, when the proportions of MAT1-1 and MAT1-2 were significantly different, there was more extensive LD in the aflatoxin cluster and populations were fixed for specific toxin chemotype classes, either the non-aflatoxigenic class in A. flavus or the B1-dominant and G1-dominant classes in A. parasiticus. A mating type ratio close to 1∶1 in A. flavus, A. parasiticus and A. minisclerotigenes was associated with higher recombination rates in the aflatoxin cluster and less pronounced chemotype differences in populations. This work shows that the reproductive nature of the population (more

  6. Development of the dichlorvos-ammonia (DV-AM) method for the visual detection of aflatoxigenic fungi.

    PubMed

    Yabe, Kimiko; Hatabayashi, Hidemi; Ikehata, Akifumi; Zheng, Yazhi; Kushiro, Masayo

    2015-12-01

    Aflatoxins (AFs) are carcinogenic and toxic secondary metabolites produced mainly by Aspergillus flavus and Aspergillus parasiticus. To monitor and regulate the AF contamination of crops, a sensitive and precise detection method for these toxigenic fungi in environments is necessary. We herein developed a novel visual detection method, the dichlorvos-ammonia (DV-AM) method, for identifying AF-producing fungi using DV and AM vapor on agar culture plates, in which DV inhibits the esterase in AF biosynthesis, causing the accumulation of anthraquinone precursors (versiconal hemiacetal acetate and versiconol acetate) of AFs in mycelia on the agar plate, followed by a change in the color of the colonies from light yellow to brilliant purple-red by the AM vapor treatment. We also investigated the appropriate culture conditions to increase the color intensity. It should be noted that other species producing the same precursors of AFs such as Aspergillus nidulans and Aspergillus versicolor could be discriminated from the Aspergillus section Flavi based on the differences of their phenotypes. The DV-AM method was also useful for the isolation of nonaflatoxigenic fungi showing no color change, for screening microorganisms that inhibit the AF production by fungi, and for the characterization of the fungi infecting corn kernels. Thus, the DV-AM method can provide a highly sensitive and visible indicator for the detection of aflatoxigenic fungi.

  7. Purification of aflatoxin B1 antibody for the development of aflatoxin biosensor

    NASA Astrophysics Data System (ADS)

    Prihantoro, E. A. B.; Saepudin, E.; Ivandini, T. A.

    2017-07-01

    Aflatoxin B1 (AFB1) is produced from agricultural products especially peanuts overgrown with aspergillus flavus during the post-harvest process. Aflatoxin is classified as a highly toxic and carcinogenic substance to humans by the International Agency for Research on Cancer (IARC), WHO. This research was conducted to develop the AFB1 biosensor using antibody that specifically binds to aflatoxin B1. This antibody was produced by injecting an AFB1 hapten-protein (immunogen) to a rabbit. Antibody was obtained from rabbit's blood serum and purified using Protein A affinity chromatography and precipitation at the isoelectric point. The result showed that purification using protein A contains antibody of 4.0 mg/mL, whereas purification using precipitation at isoelectric pH contains antibody of 0.3 mg/mL. The pure antibody was tested for its specificity against AFB1, tetrahydrofuran (THF), dimethyl formamide (DMF), bovine serum albumin (BSA), and ethanol. The result revealed that THF, BSA, and ethanol were bound to antibody, while DMF showed no interaction. It was concluded that the polyclonal antibody which have been successfully purified from rabbit's blood serum using protein A affinity chromatography and precipitation methods showed an unspecific identification.

  8. Citrate-Coated Silver Nanoparticles Growth-Independently Inhibit Aflatoxin Synthesis in Aspergillus parasiticus.

    PubMed

    Mitra, Chandrani; Gummadidala, Phani M; Afshinnia, Kamelia; Merrifield, Ruth C; Baalousha, Mohammed; Lead, Jamie R; Chanda, Anindya

    2017-07-18

    Manufactured silver nanoparticles (Ag NPs) have long been used as antimicrobials. However, little is known about how these NPs affect fungal cell functions. While multiple previous studies reveal that Ag NPs inhibit secondary metabolite syntheses in several mycotoxin producing filamentous fungi, these effects are associated with growth repression and hence need sublethal to lethal NP doses, which besides stopping fungal growth, can potentially accumulate in the environment. Here we demonstrate that citrate-coated Ag NPs of size 20 nm, when applied at a selected nonlethal dose, can result in a >2 fold inhibition of biosynthesis of the carcinogenic mycotoxin and secondary metabolite, aflatoxin B 1 in the filamentous fungus and an important plant pathogen, Aspergillus parasiticus, without inhibiting fungal growth. We also show that the observed inhibition was not due to Ag ions, but was specifically associated with the mycelial uptake of Ag NPs. The NP exposure resulted in a significant decrease in transcript levels of five aflatoxin genes and at least two key global regulators of secondary metabolism, laeA and veA, with a concomitant reduction of total reactive oxygen species (ROS). Finally, the depletion of Ag NPs in the growth medium allowed the fungus to regain completely its ability of aflatoxin biosynthesis. Our results therefore demonstrate the feasibility of Ag NPs to inhibit fungal secondary metabolism at nonlethal concentrations, hence providing a novel starting point for discovery of custom designed engineered nanoparticles that can efficiently prevent mycotoxins with minimal risk to health and environment.

  9. Endophytic fungi from pigeon pea [Cajanus cajan (L.) Millsp.] produce antioxidant Cajaninstilbene acid.

    PubMed

    Zhao, JinTong; Fu, YuJie; Luo, Meng; Zu, YuanGang; Wang, Wei; Zhao, ChunJian; Gu, ChengBo

    2012-05-02

    In this study, novel endophytic fungi producing cajaninstilbene acid (CSA) from pigeon pea [ Cajanus cajan (L.) Millsp.] were investigated and screened. CSA has prominent pharmacological activities. A total of 110 endophytic fungi isolates were grouped into 8 genera on the basis of morphological characteristics, and CSA-producing fungi were screened by liquid chromatography-tandem mass spectrometry (LC-MS/MS). According to ITS-rDNA sequences analysis, the CSA-producing fungi were identified as Fusarium solani (ERP-07), Fusarium oxysporum (ERP-10), and Fusarium proliferatum (ERP-13), respectively. The amount of CSA produced by the ERP-13 reached 504.8 ± 20.1 μg/L or 100.5 ± 9.4 μg/g dry weight of mycelium. In a DPPH radical-scavenging assay, when the concentration of fungal CSA was 500 μg/mL, inhibition percentage could reach 80%, which was almost the same as that of standard CSA. This study first reported the natural antioxidant CSA from endophytic fungi F. solani and F. proliferatum isolated from pigeon pea.

  10. Coconut as a Medium for the Experimental Production of Aflatoxin

    PubMed Central

    Arseculeratne, S. N.; De Silva, L. M.; Wijesundera, S.; Bandunatha, C. H. S. R.

    1969-01-01

    Fresh, grated coconut has been found to be an excellent medium for aflatoxin production by Aspergillus flavus. Under optimal conditions, yields of 8 mg of total aflatoxin per g of substrate were obtained. Continuous agitation of the growth medium under moist conditions at 24 C produced highest yields. Aflatoxin was assayed both biologically and chromatographically. The aflatoxin content of cultures varied biphasically with the duration of incubation. It is suggested that this pattern could result from the sequential operation of factors promoting aflatoxin formation on the one hand and a detoxifying mechanism on the other. Images PMID:5803632

  11. Identification of O-methylsterigmatocystin as an aflatoxin B1 and G1 precursor in Aspergillus parasiticus.

    PubMed Central

    Bhatnagar, D; McCormick, S P; Lee, L S; Hill, R A

    1987-01-01

    An isolate of Aspergillus parasiticus CP461 (SRRC 2043) produced no detectable aflatoxins, but accumulated O-methylsterigmatocystin (OMST). When sterigmatocystin (ST) was fed to this isolate in a low-sugar medium, there was an increase in the accumulation of OMST, without aflatoxin synthesis. When radiolabeled [14C]OMST was fed to resting mycelia of a non-aflatoxin-, non-ST-, and non-OMST-producing mutant of A. parasiticus AVN-1 (SRRC 163), 14C-labeled aflatoxins B1 and G1 were produced; 10 nmol of OMST produced 7.8 nmol of B1 and 1.0 nmol of G1, while 10 nmol of ST produced 6.4 nmol of B1 and 0.6 nmol of G1. A time course study of aflatoxin synthesis in ST feeding experiments with AVN-1 revealed that OMST is synthesized by the mold during the onset of aflatoxin synthesis. The total amount of aflatoxins recovered from OMST feeding experiments was higher than from experiments in which ST was fed to the resting mycelia. These results suggest that OMST is a true metabolite in the aflatoxin biosynthetic pathway between sterigmatocystin and aflatoxins B1 and G1 and is not a shunt metabolite, as thought previously. PMID:3111363

  12. Total aflatoxins in complementary foods produced at community levels using locally available ingredients in Ethiopia.

    PubMed

    Ayelign, Abebe; Woldegiorgis, Ashagrie Zewdu; Adish, Abdulaziz; De Saeger, Sarah

    2018-06-01

    This study was conducted to determine the occurrence and levels of total aflatoxins in complementary foods (CFs) and their ingredients. A total of 126 samples collected from 20 Districts from Amhara, Tigray, Oromia, and Southern Nations Nationalities and Peoples (SNNP) regions were analysed for levels of total aflatoxins using enzyme linked immunosorbent assay (ELISA). Aflatoxins were detected in 62 out of 66 pre-milling samples with mean range of 0.3-9.9 µg/kg. Aflatoxins were also detected in 19 out of 20 post-production CFs and in all of the one-month stored CFs at households and grain banks, with a mean range of 0.5-8.0, 3.6-11.3, and 0.2-12.4 µg/kg, respectively. Overall, 3 out of 126 samples exceeded the maximum limit (10 µg/kg). Although most aflatoxin levels were below the maximum limit and thus considered to be safe for consumption, more effort should be implemented to reduce contamination, as these CFs are intended for consumption by young children.

  13. [Morphological characteristics and physiological properties of aflatoxin B1 producing and non-producing Aspergillus flavus strains].

    PubMed

    Kogbo, W; Lemarinier, S; Boutibonnes, P

    1985-09-01

    Comparison between about 80 strains of Aspergillus flavus, belonging to the series flavus and oryzae, obtained from international collections but also isolated from French or African substrates revealed the following observations: 1. Cultural and morphological characteristics of toxicogenic and atoxicogenic strains of A. flavus are similar. However, the former produce a diffusible yellow pigment in 83% of isolates. 2. The two groups of conidiospores have the same resistance to UV irradiation (254 nm, 5 and 10 min). All the strains are equally sensitive to 4 antifungal antibiotics: nystatine, ketoconazole, clotrimazole and amphotericine. 3. A difference was seen in the capacity to produce enzymes as alpha-galactosidase, beta-galactosidase and beta-glucosidase, implicated in the glucid metabolism. The specific hydrolytic activity has been confirmed by the characterization of a large amount of beta-galactosidase and by a diauxic growth on glucose medium supplemented by lactose. Possible relationship between these characters and aflatoxin B1 production by A. flavus strains is discussed.

  14. Aflatoxin B1 Detoxification by Aspergillus oryzae from Meju, a Traditional Korean Fermented Soybean Starter.

    PubMed

    Lee, Kyu Ri; Yang, Sun Min; Cho, Sung Min; Kim, Myunghee; Hong, Sung-Yong; Chung, Soo Hyun

    2016-11-04

    Aflatoxins are classified as Group 1 (carcinogenic to humans) by the International Agency for Research on Cancer (IARC). In this study, a total of 134 fungal strains were isolated from 65 meju samples, and two fungal isolates were selected as potential aflatoxin B₁ (AFB₁)-biodetoxification fungi. These fungi were identified as Aspergillus oryzae MAO103 and A. oryzae MAO104 by sequencing the beta-tubulin gene. The two A. oryzae strains were able to degrade more than 90% of AFB1 (initial concentration: 40 µg/L) in a culture broth in 14 days. The mutagenic effects of AFB₁ treated with A. oryzae MAO103 and MAO104 significantly decreased to 5.7% and 6.4%, respectively, in the frame-shift mutation of Ames tests using Salmonella typhimurium TA 98. The base-substituting mutagenicity of AFB₁ was also decreased by the two fungi. Moreover, AFB1 production by A. flavus was significantly decreased by the two A. oryzae strains on soybean-based agar plates. Our data suggest that the two AFB1-detoxification A. oryzae strains have potential application to control AFB₁ in foods and feeds.

  15. How peroxisomes affect aflatoxin biosynthesis in Aspergillus flavus.

    PubMed

    Reverberi, Massimo; Punelli, Marta; Smith, Carrie A; Zjalic, Slaven; Scarpari, Marzia; Scala, Valeria; Cardinali, Giorgia; Aspite, Nicaela; Pinzari, Flavia; Payne, Gary A; Fabbri, Anna A; Fanelli, Corrado

    2012-01-01

    In filamentous fungi, peroxisomes are crucial for the primary metabolism and play a pivotal role in the formation of some secondary metabolites. Further, peroxisomes are important site for fatty acids β-oxidation, the formation of reactive oxygen species and for their scavenging through a complex of antioxidant activities. Oxidative stress is involved in different metabolic events in all organisms and it occurs during oxidative processes within the cell, including peroxisomal β-oxidation of fatty acids. In Aspergillus flavus, an unbalance towards an hyper-oxidant status into the cell is a prerequisite for the onset of aflatoxin biosynthesis. In our preliminary results, the use of bezafibrate, inducer of both peroxisomal β-oxidation and peroxisome proliferation in mammals, significantly enhanced the expression of pex11 and foxA and stimulated aflatoxin synthesis in A. flavus. This suggests the existence of a correlation among peroxisome proliferation, fatty acids β-oxidation and aflatoxin biosynthesis. To investigate this correlation, A. flavus was transformed with a vector containing P33, a gene from Cymbidium ringspot virus able to induce peroxisome proliferation, under the control of the promoter of the Cu,Zn-sod gene of A. flavus. This transcriptional control closely relates the onset of the antioxidant response to ROS increase, with the proliferation of peroxisomes in A. flavus. The AfP33 transformant strain show an up-regulation of lipid metabolism and an higher content of both intracellular ROS and some oxylipins. The combined presence of a higher amount of substrates (fatty acids-derived), an hyper-oxidant cell environment and of hormone-like signals (oxylipins) enhances the synthesis of aflatoxins in the AfP33 strain. The results obtained demonstrated a close link between peroxisome metabolism and aflatoxin synthesis.

  16. Crop stress and aflatoxin contamination: perspectives and prevention strategies.

    USDA-ARS?s Scientific Manuscript database

    The fungal metabolites called aflatoxins are potent naturally occurring carcinogens, produced primarily by Aspergillus flavus and A. parasiticus. A. flavus affects many agricultural crops such as maize, cotton, peanuts, and tree nuts. It can contaminate these crops with aflatoxins in the field befor...

  17. New analytical techniques for mycotoxins in complex organic matrices. [Aflatoxins B1, B2, G1, and G2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bicking, M.K.L.

    1982-07-01

    Air samples are collected for analysis from the Ames Solid Waste Recovery System. The high level of airborne fungi within the processing area is of concern due to the possible presence of toxic mycotoxins, and carcinogenic fungal metabolites. An analytical method has been developed to determine the concentration of aflatoxins B1, B2, G1, and G2 in the air of the plant which produces Refuse Derived Fuel (RDF). After extraction with methanol, some components in the matrix are precipitated by dissolving the sample in 30% acetonitrile/chloroform. An aliquot of this solution is injected onto a Styragel column where the sample componentsmore » undergo simultaneous size exclusion and reverse phase partitioning. Additional studies have provided a more thorough understanding of solvent related non-exclusion effects on size exclusion gels. The Styragel column appears to have a useable lifetime of more than six months. After elution from Styragel, the sample is diverted to a second column containing Florisil which has been modified with oxalic acid and deactivated with water. Aflatoxins are eluted with 5% water/acetone. After removal of this solvent, the sample is dissolved in 150 ..mu..L of a spotting solvent and the entire sample applied to a thin layer chromatography (TLC) plate using a unique sample applicator developed here. The aflatoxins on the TLC plate are analyzed by laser fluorescence. A detection limit of 10 pg is possible for aflatoxin standards using a nitrogen laser as the excitation source. Sample concentrations are determined by comparing with an internal standard, a specially synthesized aflatoxin derivative. In two separate RDF samples, aflatoxin B1 was found at levels of 6.5 and 17.0 ppB. The analytical method has also proven useful in the analysis of contaminated corn and peanut meal samples. 42 figures, 8 tables.« less

  18. Effect of temperature on aflatoxin production in Mucuna pruriens seeds.

    PubMed Central

    Roy, A K; Chourasia, H K

    1989-01-01

    This paper describes the effect of temperature on the level of aflatoxin production in Mucuna pruriens seeds. The highest level of aflatoxin B1 (1.75 micrograms/g) was detected in the samples incubated at 25 degrees C for three weeks. At 20, 30, and 35 degrees C, aflatoxin levels were 0.30 to 0.56, 0.37 to 1.20, and 0.26 to 0.65 micrograms/g, respectively. The lowest concentration of aflatoxin B1 (0.10 to 0.29 microgram/g) was produced at 15 degrees C. PMID:2719482

  19. Single aflatoxin contaminated corn kernel analysis with fluorescence hyperspectral image

    NASA Astrophysics Data System (ADS)

    Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Cleveland, Thomas E.

    2010-04-01

    Aflatoxins are toxic secondary metabolites of the fungi Aspergillus flavus and Aspergillus parasiticus, among others. Aflatoxin contaminated corn is toxic to domestic animals when ingested in feed and is a known carcinogen associated with liver and lung cancer in humans. Consequently, aflatoxin levels in food and feed are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food and 100 ppb in feed for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests including thin-layer chromatography (TCL) and high performance liquid chromatography (HPLC). These analytical tests require the destruction of samples, and are costly and time consuming. Thus, the ability to detect aflatoxin in a rapid, nondestructive way is crucial to the grain industry, particularly to corn industry. Hyperspectral imaging technology offers a non-invasive approach toward screening for food safety inspection and quality control based on its spectral signature. The focus of this paper is to classify aflatoxin contaminated single corn kernels using fluorescence hyperspectral imagery. Field inoculated corn kernels were used in the study. Contaminated and control kernels under long wavelength ultraviolet excitation were imaged using a visible near-infrared (VNIR) hyperspectral camera. The imaged kernels were chemically analyzed to provide reference information for image analysis. This paper describes a procedure to process corn kernels located in different images for statistical training and classification. Two classification algorithms, Maximum Likelihood and Binary Encoding, were used to classify each corn kernel into "control" or "contaminated" through pixel classification. The Binary Encoding approach had a slightly better performance with accuracy equals to 87% or 88% when 20 ppb or 100 ppb was used as classification threshold, respectively.

  20. Aspergillus section Flavi community structure in Zambia influences aflatoxin contamination of maize and groundnut.

    PubMed

    Kachapulula, Paul W; Akello, Juliet; Bandyopadhyay, Ranajit; Cotty, Peter J

    2017-11-16

    Aflatoxins are cancer-causing, immuno-suppressive mycotoxins that frequently contaminate important staples in Zambia including maize and groundnut. Several species within Aspergillus section Flavi have been implicated as causal agents of aflatoxin contamination in Africa. However, Aspergillus populations associated with aflatoxin contamination in Zambia have not been adequately detailed. Most of Zambia's arable land is non-cultivated and Aspergillus communities in crops may originate in non-cultivated soil. However, relationships between Aspergillus populations on crops and those resident in non-cultivated soils have not been explored. Because characterization of similar fungal populations outside of Zambia have resulted in strategies to prevent aflatoxins, the current study sought to improve understanding of fungal communities in cultivated and non-cultivated soils and in crops. Crops (n=412) and soils from cultivated (n=160) and non-cultivated land (n=60) were assayed for Aspergillus section Flavi from 2012 to 2016. The L-strain morphotype of Aspergillus flavus and A. parasiticus were dominant on maize and groundnut (60% and 42% of Aspergillus section Flavi, respectively). Incidences of A. flavus L-morphotype were negatively correlated with aflatoxin in groundnut (log y=2.4990935-0.09966x, R 2 =0.79, P=0.001) but not in maize. Incidences of A. parasiticus partially explained groundnut aflatoxin concentrations in all agroecologies and maize aflatoxin in agroecology III (log y=0.1956034+0.510379x, R 2 =0.57, P<0.001) supporting A. parasiticus as the dominant etiologic agent of aflatoxin contamination in Zambia. Communities in both non-cultivated and cultivated soils were dominated by A. parasiticus (69% and 58%, respectively). Aspergillus parasiticus from cultivated and non-cultivated land produced statistically similar concentrations of aflatoxins. Aflatoxin-producers causing contamination of crops in Zambia may be native and, originate from non-cultivated areas

  1. Aflatoxin in detannin coffee and tea and its destruction.

    PubMed

    Hasan, H A H

    2002-05-01

    The aflatoxins produced byAspergillus parasiticus var. globosus IMI 12090 in detannin-caffeinated coffee and black tea were five times more concentrated than in regular coffee and tea. The activity of caffeine and tannin on the fungus growth and aflatoxin production in liquid broth was tested at three levels: viz. 0.1, 0.3, and 0.6%. Tannin and caffeine induced 95% inhibition in aflatoxins at 0.3% and 0.6%, respectively. The antiaflatoxigenic properties of regular coffee and tea appear to be due to tannin, followed by caffeine. The roasting of contaminated coffee beans at 200 degrees C for 20 min is effective in the destruction of aflatoxins.

  2. A Caleosin-Like Protein with Peroxygenase Activity Mediates Aspergillus flavus Development, Aflatoxin Accumulation, and Seed Infection.

    PubMed

    Hanano, Abdulsamie; Almousally, Ibrahem; Shaban, Mouhnad; Blee, Elizabeth

    2015-09-01

    Caleosins are a small family of calcium-binding proteins endowed with peroxygenase activity in plants. Caleosin-like genes are present in fungi; however, their functions have not been reported yet. In this work, we identify a plant caleosin-like protein in Aspergillus flavus that is highly expressed during the early stages of spore germination. A recombinant purified 32-kDa caleosin-like protein supported peroxygenase activities, including co-oxidation reactions and reduction of polyunsaturated fatty acid hydroperoxides. Deletion of the caleosin gene prevented fungal development. Alternatively, silencing of the gene led to the increased accumulation of endogenous polyunsaturated fatty acid hydroperoxides and antioxidant activities but to a reduction of fungal growth and conidium formation. Two key genes of the aflatoxin biosynthesis pathway, aflR and aflD, were downregulated in the strains in which A. flavus PXG (AfPXG) was silenced, leading to reduced aflatoxin B1 production in vitro. Application of caleosin/peroxygenase-derived oxylipins restored the wild-type phenotype in the strains in which AfPXG was silenced. PXG-deficient A. flavus strains were severely compromised in their capacity to infect maize seeds and to produce aflatoxin. Our results uncover a new branch of the fungal oxylipin pathway and may lead to the development of novel targets for controlling fungal disease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. [Survey of aflatoxins contamination of foodstuffs and edible oil in Shenzhen].

    PubMed

    Li, Ke; Qiu, Fen; Yang, Mei; Liang, Zhaohai; Zhou, Haitao

    2013-07-01

    To identify the aflatoxins contamination of foodstuffs and edible oil sold in Shenzhen. As research subjects stratified random sampling of 238 foodstuffs and edible oil, and applied with immuno-affinity column clean-up plus UPLC to determine the content of aflatoxin B1, B2, G1, and G2. Positive ratio of aflatoxin in rice, rice products, wheat flour, corn flour, edible oil were 35.3%, 33.8%, 13.9%, 46.7% and 24.5%,respectively. There were statistical differences between the positive ratio of aflatoxin in stereotypes packaged rice (26.5%) and bulk rice (56.3%) (chi2 = 11.6, P < 0.05). There were statistical differences between the positive ratio of aflatoxin in the rice produced in the area north of the Yangtze River (27.3%) and in the rice (41.4%) produced in the area south of the Yangtze River (chi2 = 7.257, P < 0.05). Aflatoxin B1 and B2 were detected in rice products, wheat flour, corn flour. Positive ratio of aflatoxin B1, B2, G1, and G2 were 24.5%, 24.5%, 11.3% and 3.8% in the edible oil,respectively. The over standard rate of aflatoxin B1 was 5.66%, excessive samples were producted bulk and self-pressed peanut oil from unlicensed workshop. All the four kinds of aflatoxin were detected, while subtype B1 and B2 dominated aflatoxin contamination in the rice and edible oil samples. There are differences between in the northern and southern rice, and the same as in the stereotypes packaged and bulk rice sold at Shenzhen.

  4. Biological control products for aflatoxin prevention in Italy: Commercial field evaluation of atoxigenic A.flavus active ingredients

    USDA-ARS?s Scientific Manuscript database

    Since 2003, non-compliant aflatoxin concentrations have been detected in maize produced in Italy. The most successful worldwide experiments in aflatoxin prevention resulted from distribution of atoxigenic strains of Aspergillus flavus to displace aflatoxin-producers during crop development. The disp...

  5. Fluorescence imaging spectroscopy (FIS) for comparing spectra from corn ears naturally and artificially infected with aflatoxin producing fungus

    USDA-ARS?s Scientific Manuscript database

    In an effort to address the aflatoxin problem in grain, the current study assessed the spectral differences of aflatoxin production in kernels from a cornfield inoculated with spores from two different strains of toxigenic Aspergillus flavus. Aflatoxin production in corn from the same field due to n...

  6. Acute effects of aflatoxin on northern bobwhites (Colinus virginianus).

    PubMed

    Moore, Deana L; Henke, Scott E; Fedynich, Alan M; Laurenz, Jamie C; Morgan, Robert

    2013-07-01

    Aflatoxin is a widely occurring and harmful mycotoxin produced by strains of Aspergillus spp. growing on vegetable matter. We investigated the concentration of aflatoxin needed to impair normal physiologic responses and induce acute morbidity and mortality in Northern Bobwhites (Colinus virginianus). Ten wild-caught adult bobwhites (five males and five females) from southern Texas were randomly assigned to each treatment group (0, 100, 500, 1,000, and 2,000 parts per billion (ppb) aflatoxin; n=50). We orally administered 100 μL of aflatoxin, derived from Aspergillus flavus, once per week for 4 wk and monitored bird mass, daily feed consumption, liver histology, and blood chemistries. An in vitro white blood cell proliferation test was conducted using spleen tissue to determine the effect of aflatoxin on the immune system. There was no mortality in the control groups, whereas mortalities occurred in all treatment groups except in the 100 ppb aflatoxin treatment. Immunosuppression, reduction in gamma-globulin, glucose, and gamma-glutamyltransferase blood levels, and abnormal liver histology were observed in aflatoxin-exposed quail. Blood chemistry indicated cellular damage to the liver and kidneys. We concluded that short-term, acute doses of aflatoxin as low as 100 ppb can be detrimental to the health of Northern Bobwhites.

  7. Genome Sequences of Three Strains of Aspergillus flavus for the Biological Control of Aflatoxin

    PubMed Central

    Scheffler, Brian E.; Duke, Mary; Ballard, Linda; Abbas, Hamed K.; Grodowitz, Michael J.

    2017-01-01

    ABSTRACT Aflatoxin is a carcinogenic contaminant of many commodities that are infected by Aspergillus flavus. Nonaflatoxigenic strains of A. flavus have been utilized as biological control agents. Here, we report the genome sequences from three biocontrol strains. This information will be useful in developing markers for postrelease monitoring of these fungi. PMID:29097466

  8. Characterizing small RNA populations in non-transgenic and aflatoxin-reducing-transgenic peanut lines

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination is a major constraint in the food production worlwide. In peanut these aflatoxins are mainly produced by Aspergillus flavus (Link) and A. parasiticus (Speare). The use of RNA interference (RNAi) is a promising method to reduce or prevent the accumulation of aflatoxin in pean...

  9. Current understanding on aflatoxin biosynthesis and future perspective in reducing aflatoxin contamination.

    PubMed

    Yu, Jiujiang

    2012-10-25

    Traditional molecular techniques have been used in research in discovering the genes and enzymes that are involved in aflatoxin formation and genetic regulation. We cloned most, if not all, of the aflatoxin pathway genes. A consensus gene cluster for aflatoxin biosynthesis was discovered in 2005. The factors that affect aflatoxin formation have been studied. In this report, the author summarized the current status of research progress and future possibilities that may be used for solving aflatoxin contamination.

  10. Current Understanding on Aflatoxin Biosynthesis and Future Perspective in Reducing Aflatoxin Contamination

    PubMed Central

    Yu, Jiujiang

    2012-01-01

    Traditional molecular techniques have been used in research in discovering the genes and enzymes that are involved in aflatoxin formation and genetic regulation. We cloned most, if not all, of the aflatoxin pathway genes. A consensus gene cluster for aflatoxin biosynthesis was discovered in 2005. The factors that affect aflatoxin formation have been studied. In this report, the author summarized the current status of research progress and future possibilities that may be used for solving aflatoxin contamination. PMID:23202305

  11. Classification of corn kernels contaminated with aflatoxins using fluorescence and reflectance hyperspectral image analysis

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are secondary metabolites produced by certain fungal species of the Aspergillus genus. Aflatoxin contamination remains a problem in agricultural products due to its toxic and carcinogenic properties. Conventional chemical methods for aflatoxin detection are time-consuming and destructive....

  12. Dietary exposure to aflatoxin in human male infertility in Benin City, Nigeria.

    PubMed

    Ibeh, I N; Uraih, N; Ogonar, J I

    1994-01-01

    To discover the relationship between aflatoxin levels, if any, in serum of infertile men in comparison with random controls from the community. In a parallel experiment, adult male rats were given an aflatoxin-contaminated diet. 100 adult males, yielding 50 semen samples, from men attending Infertility Clinics at a university teaching hospital and 50 normal men in the same community. The staple foods of the men were assayed for aflatoxin content. The rats were given the aflatoxin-rich diet, and their spermatozoa were examined and their ability to reproduce assessed. A random sampling of semen from 100 adult males comprising 50 samples drawn from infertile men and 50 drawn from normal individuals within the same community revealed the presence of aflatoxins in 20 semen samples from the infertile group (40.0%) and four samples from the fertile group (8.0%). The mean aflatoxin concentrations were 1.660 +/- 0.04 micrograms/mL (infertile men) and 1.041 +/- 0.01 micrograms/mL (fertile men). Infertile men with aflatoxin in their semen showed a higher percentage of spermatozoal abnormality (50.0%) than the fertile men (10.0-15.0%). Dietary exposure of adult male Albino rats to aflatoxin (8.5 micrograms AF1/g of Guinea growers feed for 14 days) produced deleterious effects on the spermatozoa of the affected rats, producing features that resemble those seen in semen of infertile men exposed to aflatoxin.

  13. The effect of substrate, season, and agroecological zone on mycoflora and aflatoxin contamination of poultry feed from Khyber Pakhtunkhwa, Pakistan.

    PubMed

    Alam, Sahib; Shah, Hamid Ullah; Khan, Habibullah; Magan, Naresh

    2012-10-01

    To study the effects of and interactions among feed types, seasons, and agroecological zones on the total fungal viable count and aflatoxins B1 (AFB1), B2 (AFB2), G1 (AFG1), and G2 (AFG2) production in poultry feed, an experiment was conducted using three-factorial design. A total of 216 samples of poultry feed ingredients, viz. maize, wheat, rice, cotton seed meal (CSM), and finished products, that is, starter and finisher broilers' rations, were collected from Peshawar, Swat, and D. I. Khan districts of Khyber Pakhtunkhwa, Pakistan, during the winter, spring, summer, and autumn seasons of the year 2007/2008. Analysis of variance showed that there was a complex interaction among all these factors and that this influenced the total fungal viable count and relative concentrations of the aflatoxins produced. Minimum total culturable fungi (6.43 × 10³ CFUs/g) were counted in CSM from D. I. Khan region in winter season while maximum (26.68 × 10³ CFUs/g) in starter ration from Peshawar region in summer. Maximum concentrations of AFB1 (191.65 ng/g), AFB2 (86.85 ng/g), and AFG2 (89.90 ng/g) were examined during the summer season whereas the concentration of AFG1 was maximum (167.82 ng/g) in autumn in finisher ration from Peshawar region. Minimum aflatoxins were produced in the winter season across all the three agroecological zones.

  14. Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins.

    PubMed

    Siciliano, Ilenia; Spadaro, Davide; Prelle, Ambra; Vallauri, Dario; Cavallero, Maria Chiara; Garibaldi, Angelo; Gullino, Maria Lodovica

    2016-04-26

    Aflatoxins, produced by Aspergillus flavus and A. parasiticus, can contaminate different foodstuffs, such as nuts. Cold atmospheric pressure plasma has the potential to be used for mycotoxin detoxification. In this study, the operating parameters of cold atmospheric pressure plasma were optimized to reduce the presence of aflatoxins on dehulled hazelnuts. First, the effect of different gases was tested (N₂, 0.1% O₂ and 1% O₂, 21% O₂), then power (400, 700, 1000, 1150 W) and exposure time (1, 2, 4, and 12 min) were optimized. In preliminary tests on aflatoxin standard solutions, this method allowed to obtain a complete detoxification using a high power for a few minutes. On hazelnuts, in similar conditions (1000 W, 12 min), a reduction in the concentration of total aflatoxins and AFB₁ of over 70% was obtained. Aflatoxins B₁ and G₁ were more sensitive to plasma treatments compared to aflatoxins B₂ and G₂, respectively. Under plasma treatment, aflatoxin B₁ was more sensitive compared to aflatoxin G₁. At the highest power, and for the longest time, the maximum temperature increment was 28.9 °C. Cold atmospheric plasma has the potential to be a promising method for aflatoxin detoxification on food, because it is effective and it could help to maintain the organoleptic characteristics.

  15. The potential effects of Zataria multiflora Boiss essential oil on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes of toxigenic Aspergillus parasiticus.

    PubMed

    Yahyaraeyat, R; Khosravi, A R; Shahbazzadeh, D; Khalaj, V

    2013-01-01

    This study aims at evaluating the effects of Zataria multiflora (Z. multiflora) essential oil (EO) on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes. Total RNAs of Aspergillus parasiticus (A.parasiticus) ATCC56775 grown in yeast extract sucrose (YES) broth medium treated with Z. multiflora EO were subjected to reverse transcription- polymerase chain reaction (RT-PCR). Specific primers of nor-1, ver-1, omt-A and aflR genes were used. In parallel mycelial dry weight of samples were measured and all the media were assayed by high-pressure liquid chromatography (HPLC) for aflatoxinB1 (AFB1), aflatoxinB2 (AFB2), aflatoxinG1 (AFG1), aflatoxinG2 (AFG2) and aflatoxin total (AFTotal) production. The results showed that mycelial dry weight and aflatoxin production reduce in the presence of Z. multiflora EO (100 ppm) on day 5 of growth. It was found that the expression of nor-1, ver-1, omt-A and aflR genes was correlated with the ability of fungus to produce aflatoxins on day 5 in YES medium. RT-PCR showed that in the presence of Z.multiflora EO (100 ppm) nor-1, ver-1 and omtA genes expression was reduced. It seems that toxin production inhibitory effects of Z. multiflora EO on day 5 may be at the transcription level and this herb may cause reduction in aflatoxin biosynthesis pathway genes activity.

  16. The potential effects of Zataria multiflora Boiss essential oil on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes of toxigenic Aspergillus parasiticus

    PubMed Central

    Yahyaraeyat, R.; Khosravi, A.R.; Shahbazzadeh, D.; Khalaj, V.

    2013-01-01

    This study aims at evaluating the effects of Zataria multiflora (Z. multiflora) essential oil (EO) on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes. Total RNAs of Aspergillus parasiticus (A.parasiticus) ATCC56775 grown in yeast extract sucrose (YES) broth medium treated with Z. multiflora EO were subjected to reverse transcription- polymerase chain reaction (RT-PCR). Specific primers of nor-1, ver-1, omt-A and aflR genes were used. In parallel mycelial dry weight of samples were measured and all the media were assayed by high-pressure liquid chromatography (HPLC) for aflatoxinB1 (AFB1), aflatoxinB2 (AFB2), aflatoxinG1 (AFG1), aflatoxinG2 (AFG2) and aflatoxin total (AFTotal) production. The results showed that mycelial dry weight and aflatoxin production reduce in the presence of Z. multiflora EO (100 ppm) on day 5 of growth. It was found that the expression of nor-1, ver-1, omt-A and aflR genes was correlated with the ability of fungus to produce aflatoxins on day 5 in YES medium. RT-PCR showed that in the presence of Z.multiflora EO (100 ppm) nor-1, ver-1 and omtA genes expression was reduced. It seems that toxin production inhibitory effects of Z. multiflora EO on day 5 may be at the transcription level and this herb may cause reduction in aflatoxin biosynthesis pathway genes activity. PMID:24294264

  17. Phytotoxins Produced by Fungi Associated with Grapevine Trunk Diseases

    PubMed Central

    Andolfi, Anna; Mugnai, Laura; Luque, Jordi; Surico, Giuseppe; Cimmino, Alessio; Evidente, Antonio

    2011-01-01

    Up to 60 species of fungi in the Botryosphaeriaceae family, genera Cadophora, Cryptovalsa, Cylindrocarpon, Diatrype, Diatrypella, Eutypa, Eutypella, Fomitiporella, Fomitiporia, Inocutis, Phaeoacremonium and Phaeomoniella have been isolated from decline-affected grapevines all around the World. The main grapevine trunk diseases of mature vines are Eutypa dieback, the esca complex and cankers caused by the Botryospheriaceae, while in young vines the main diseases are Petri and black foot diseases. To understand the mechanism of these decline-associated diseases and the symptoms associated with them, the toxins produced by the pathogens involved in these diseases were isolated and characterised chemically and biologically. So far the toxins of only a small number of these decline fungi have been studied. This paper presents an overview of the toxins produced by the most serious of these vine wood pathogens: Eutypa lata, Phaeomoniella chlamydospora, Phaeoacremonium aleophilum and some taxa in the Botryosphaeriaceae family, and examines how these toxins produce decline symptoms. The chemical structure of these metabolites and in some cases their vivotoxin nature are also discussed. PMID:22295177

  18. Distribution and stability of aflatoxin M1 during processing, ripening and storage of Telemes cheese.

    PubMed

    Govaris, A; Roussi, V; Koidis, P A; Botsoglou, N A

    2001-05-01

    Telemes cheeses were produced using milk that was artificially-contaminated with aflatoxin M1 at the levels of 0.050 and 0.100 microg/l. The cheeses produced in the two cheese-making trials were allowed to ripen for 2 months and stored for an additional 4 months to simulate commercial production of Telemes cheese. Concentrations of aflatoxin M1 in whey, curd, brine, and the produced cheeses were determined at intervals by liquid chromatography and fluorometric detection coupled with immunoaffinity column extraction. Concentrations of aflatoxin M1 in the produced curds were found to be 3.9 and 4.4 times higher than those in milk, whereas concentrations in whey were lower than those in curd and milk. Aflatoxin M1 was present in cheese at higher concentrations at the beginning than at the end of the ripening/storage period, and it declined to concentrations 2.7 and 3.4 times higher than those initially present in milk by the end of the sixth month of storage. Concentrations of aflatoxin M1 in brine started low and increased by the end of the ripening/storage period but only a portion of the amounts of aflatoxin M1 lost from cheese was found in the brine. Results showed that Telemes cheeses produced from milk containing aflatoxin M1 at a concentration close to either the maximum acceptable level of 0.05 microg/l set by the European union (EU) or at double this value, will contain the toxin at a level that is much lower or slightly higher, respectively, than the maximum acceptable level of 0.250 microg of aflatoxin M1/kg cheese set by some countries.

  19. Metabolism of aflatoxin B-1 in cotton bolls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mellon, J.E.; Lee, L.S.

    Aspergillus flavus is a fungus capable of producing the potent carcinogen aflatoxin (AFB-1) when it infects developing cotton seed. Although high levels of toxin can readily be isolated from internal tissues of infected seeds, very low toxin levels are observed in the fiber-linter matrix. In order to test the hypothesis that constituents associated with the lint of the host plant are metabolizing aflatoxin, {sup 14}C-AFB-1 was introduced into cotton bolls (30 days postanthesis). Other sets of bolls received inoculations of toxigenic or nontoxigenic strains of A. flavus plus exogenous {sup 14}C-AFB-1. In addition to the exogenously applied {sup 14}C-AFB-1, atmore » least two new labelled metabolites were recovered from the test bolls. One of these metabolites was very polar and remained on the origin of the thin layer analysis system. Test bolls which received both A. flavus and AFB-1 produced significantly lower levels of this polar metabolite. Results indicated that some constituent(s) associated with cotton fiber may metabolize fungal-produced aflatoxin, rather than inhibit its formation.« less

  20. Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins

    PubMed Central

    Siciliano, Ilenia; Spadaro, Davide; Prelle, Ambra; Vallauri, Dario; Cavallero, Maria Chiara; Garibaldi, Angelo; Gullino, Maria Lodovica

    2016-01-01

    Aflatoxins, produced by Aspergillus flavus and A. parasiticus, can contaminate different foodstuffs, such as nuts. Cold atmospheric pressure plasma has the potential to be used for mycotoxin detoxification. In this study, the operating parameters of cold atmospheric pressure plasma were optimized to reduce the presence of aflatoxins on dehulled hazelnuts. First, the effect of different gases was tested (N2, 0.1% O2 and 1% O2, 21% O2), then power (400, 700, 1000, 1150 W) and exposure time (1, 2, 4, and 12 min) were optimized. In preliminary tests on aflatoxin standard solutions, this method allowed to obtain a complete detoxification using a high power for a few minutes. On hazelnuts, in similar conditions (1000 W, 12 min), a reduction in the concentration of total aflatoxins and AFB1 of over 70% was obtained. Aflatoxins B1 and G1 were more sensitive to plasma treatments compared to aflatoxins B2 and G2, respectively. Under plasma treatment, aflatoxin B1 was more sensitive compared to aflatoxin G1. At the highest power, and for the longest time, the maximum temperature increment was 28.9 °C. Cold atmospheric plasma has the potential to be a promising method for aflatoxin detoxification on food, because it is effective and it could help to maintain the organoleptic characteristics. PMID:27128939

  1. Aflatoxin contamination of developing corn kernels.

    PubMed

    Amer, M A

    2005-01-01

    Preharvest of corn and its contamination with aflatoxin is a serious problem. Some environmental and cultural factors responsible for infection and subsequent aflatoxin production were investigated in this study. Stage of growth and location of kernels on corn ears were found to be one of the important factors in the process of kernel infection with A. flavus & A. parasiticus. The results showed positive correlation between the stage of growth and kernel infection. Treatment of corn with aflatoxin reduced germination, protein and total nitrogen contents. Total and reducing soluble sugar was increase in corn kernels as response to infection. Sucrose and protein content were reduced in case of both pathogens. Shoot system length, seeding fresh weigh and seedling dry weigh was also affected. Both pathogens induced reduction of starch content. Healthy corn seedlings treated with aflatoxin solution were badly affected. Their leaves became yellow then, turned brown with further incubation. Moreover, their total chlorophyll and protein contents showed pronounced decrease. On the other hand, total phenolic compounds were increased. Histopathological studies indicated that A. flavus & A. parasiticus could colonize corn silks and invade developing kernels. Germination of A. flavus spores was occurred and hyphae spread rapidly across the silk, producing extensive growth and lateral branching. Conidiophores and conidia had formed in and on the corn silk. Temperature and relative humidity greatly influenced the growth of A. flavus & A. parasiticus and aflatoxin production.

  2. Aflatoxin variability in pistachios.

    PubMed Central

    Mahoney, N E; Rodriguez, S B

    1996-01-01

    Pistachio fruit components, including hulls (mesocarps and epicarps), seed coats (testas), and kernels (seeds), all contribute to variable aflatoxin content in pistachios. Fresh pistachio kernels were individually inoculated with Aspergillus flavus and incubated 7 or 10 days. Hulled, shelled kernels were either left intact or wounded prior to inoculation. Wounded kernels, with or without the seed coat, were readily colonized by A. flavus and after 10 days of incubation contained 37 times more aflatoxin than similarly treated unwounded kernels. The aflatoxin levels in the individual wounded pistachios were highly variable. Neither fungal colonization nor aflatoxin was detected in intact kernels without seed coats. Intact kernels with seed coats had limited fungal colonization and low aflatoxin concentrations compared with their wounded counterparts. Despite substantial fungal colonization of wounded hulls, aflatoxin was not detected in hulls. Aflatoxin levels were significantly lower in wounded kernels with hulls than in kernels of hulled pistachios. Both the seed coat and a water-soluble extract of hulls suppressed aflatoxin production by A. flavus. PMID:8919781

  3. Aflatoxin decomposition in various soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angle, J.S.

    The persistence of aflatoxin in the soil environment could potentially result in a number of adverse environmental consequences. To determine the persistence of aflatoxin in soil, /sup 14/C-labeled aflatoxin B1, was added to silt loam, sandy loam, and silty clay loam soils and the subsequent release of /sup 14/CO/sub 2/ was determined. After 120 days of incubation, 8.1% of the original aflatoxin added to the silt loam soil was released as CO/sub 2/. Aflatoxin decomposition in the sandy loam soil proceeded more quickly than the other two soils for the first 20 days of incubation. After this time, the decompositionmore » rate declined and by the end of the study, 4.9% of the aflatoxin was released as CO/sub 2/. Aflatoxin decomposition proceeded most slowly in the silty clay loam soil. Only 1.4% of aflatoxin added to the soil was released as CO/sub 2/ after 120 days incubation. To determine whether aflatoxin was bound to the silty clay loam soil, aflatoxin B1 was added to this soil and incubated for 20 days. The soil was periodically extracted and the aflatoxin species present were determined using thin layer chromatographic (TLC) procedures. After one day of incubation, the degradation products, aflatoxins B2 and G2, were observed. It was also found that much of the aflatoxin extracted from the soil was not mobile with the TLC solvent system used. This indicated that a conjugate may have formed and thus may be responsible for the lack of aflatoxin decomposition.« less

  4. RNA interference reduces aflatoxin accumulation by Aspergillus flavus in peanut seeds

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are among the most powerful carcinogens in nature. They are produced by the fungal pathogen Aspergillus flavus Link and other Aspergillus species. Aflatoxins accumulate in many crops, including rice, wheat, oats, pecans, pistachios, soybean, cassava, almonds, peanuts, beans, corn and cot...

  5. Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media

    PubMed Central

    2013-01-01

    Background Endophytic fungi represent underexplored resource of novel lead compounds and have a capacity to produce diverse class of plant secondary metabolites. Here we investigated endophytic fungi diversity and screening of paclitaxel-producing fungi from Taxus x media. Results Eighty-one endophytic fungi isolated from T. media were grouped into 8 genera based on the morphological and molecular identification. Guignardia and Colletotrichum were the dominant genera, whereas the remaining genera were infrequent groups. The genera Glomerella and Gibberella were first reported in Taxus. Three representative species of the distinct genera gave positive hits by molecular marker screening and were capable of producing taxol which were validated by HPLC-MS. Among these 3 taxol-producing fungi, the highest yield of taxol was 720 ng/l by Guignardia mangiferae HAA11 compared with those of Fusarium proliferatum HBA29 (240 ng/l) and Colletotrichum gloeosporioides TA67 (120 ng/l). This is the first report of taxol producer from Guignardia. Moreover, the lower similarities of ts and bapt between microbial and plant origin suggested that fungal taxol biosynthetic cluster might be repeatedly invented during evolution, nor horizontal gene transfer from Taxus species. Conclusions Taxol-producing endophytic fungi could be a fascinating reservoir to generate taxol-related drug lead and to elucidate the remained 5 unknown genes or the potential regulation mechanism in the taxol biosynthesis pathway. PMID:23537181

  6. Aflatoxin biosynthesis control produced by Aspergillus flavus in layer hens feed during storage period of six months.

    PubMed

    Hassan, S M; Sultana, B; Iqbal, M

    2017-06-01

    Aflatoxins (AFTs) are a group of closely related toxins that are produced by different fungus species. Food and feed contamination with AFT is a worldwide health-related problem. As a result of fungal attack, the food and feed resulted in a principal socioeconomic loss and toxins produced in feed and food items harm the humans and animals in different ways. The anti-aflatoxigenic effect Psidium guajava, Ficus benghalensis, Gardenia radicans, Punica granatum and Ziziphus jujuba leaves were evaluated against aflatoxins (AFTs), produced by Aspergillus flavus in layer feed during storage. Among the investigated medicinal plant leaves, P. granatum showed highly promising anti-aflatoxigenic activity and completely inhibited the AFTs (B1 and B2) production over storage period without compromising the nutritive quality of feed (ash, protein, fat, fiber, Fe, Ca, P and K contents). Leaves of F. benghalensis and Z. jujuba were also effective however, higher concentration (15%) inhibited the AFTs production up to 99% and also maintained nutritive quality of feed. G. radicans was found least effective in controlling the AFTs production. Results revealed that all plant leaves were effective in controlling AFTs production in layer feed over the storage period of six months and these plants are potential candidate to replace the fungicides used to protect feed and other agricultural commodities from AFTs production during storage. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Detoxification of Aflatoxin-Contaminated Maize by Neutral Electrolyzed Oxidizing Water

    PubMed Central

    Jardon-Xicotencatl, Samantha; Díaz-Torres, Roberto; Marroquín-Cardona, Alicia; Villarreal-Barajas, Tania; Méndez-Albores, Abraham

    2015-01-01

    Aflatoxins, a group of extremely toxic mycotoxins produced by Aspergillus flavus, A. parasiticus and A. nomius, can occur as natural contaminants of certain agricultural commodities, particularly maize. These toxins have been shown to be hepatotoxic, carcinogenic, mutagenic and cause severe human and animal diseases. The effectiveness of neutral electrolyzed oxidizing water (NEW) on aflatoxin detoxification was investigated in HepG2 cells using several validation methodologies such as the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, the induction of lipid peroxidation, the oxidative damage by means of glutathione modulation, the Ames test and the alkaline Comet assay. Our results showed that, after the aflatoxin-contaminated maize containing 360 ng/g was soaked in NEW (60 mg/L available chlorine, pH 7.01) during 15 min at room temperature, the aflatoxin content did not decrease as confirmed by the immunoaffinity column and ultra performance liquid chromatography methods. Aflatoxin fluorescence strength of detoxified samples was similar to untreated samples. However, aflatoxin-associated cytotoxicity and genotoxicity effects were markedly reduced upon treatment. According to these results, NEW can be effectively used to detoxify aflatoxin-contaminated maize. PMID:26512692

  8. Biological Control Products for Aflatoxin Prevention in Italy: Commercial Field Evaluation of Atoxigenic Aspergillus flavus Active Ingredients.

    PubMed

    Mauro, Antonio; Garcia-Cela, Esther; Pietri, Amedeo; Cotty, Peter J; Battilani, Paola

    2018-01-05

    Since 2003, non-compliant aflatoxin concentrations have been detected in maize produced in Italy. The most successful worldwide experiments in aflatoxin prevention resulted from distribution of atoxigenic strains of Aspergillus flavus to displace aflatoxin-producers during crop development. The displacement results in lower aflatoxin concentrations in harvested grain. The current study evaluated in field performances of two atoxigenic strains of A . flavus endemic to Italy in artificially inoculated maize ears and in naturally contaminated maize. Co-inoculation of atoxigenic strains with aflatoxin producers resulted in highly significant reductions in aflatoxin concentrations (>90%) in both years only with atoxigenic strain A2085. The average percent reduction in aflatoxin B₁ concentration in naturally contaminated maize fields was 92.3%, without significant differences in fumonisins between treated and control maize. The vegetative compatibility group of A2085 was the most frequently recovered A. flavus in both treated and control plots (average 61.9% and 53.5% of the A. flavus , respectively). A2085 was therefore selected as an active ingredient for biocontrol products and deposited under provisions of the Budapest Treaty in the Belgian Co-Ordinated Collections of Micro-Organisms (BCCM/MUCL) collection (accession MUCL54911). Further work on development of A2085 as a tool for preventing aflatoxin contamination in maize produced in Italy is ongoing with the commercial product named AF-X1™.

  9. Candida parapsilosis as a Potent Biocontrol Agent against Growth and Aflatoxin Production by Aspergillus Species

    PubMed Central

    Niknejad, F; Zaini, F; Faramarzi, MA; Amini, M; Kordbacheh, P; Mahmoudi, M; Safara, M

    2012-01-01

    Background: Aflatoxin contamination of food and feed stuff is a serious health problem and significant economic concerns. In the present study, the inhibitory effect of Candida parapsilosis IP1698 on mycelial growth and aflatoxin production in aflatoxigenic strains of Aspergillus species was investigated. Methods: Mycelial growth inhibitions of nine strains of aflatoxigenic and non-aflatoxigenic Aspergillus species in the presence of C. parapsilosis investigated by pour plate technique at different pH, temperature and time of incubation. Reduction of aflatoxin was evaluated in co-cultured fungi in yeast extract sucrose broth after seven days of incubation using HPLC method. The data were analyzed by SPSS 11.5. Results: The presence of the C. parapsilosis at different pH did not affect significantly the growth rate of Aspergillus isolates. On the other hand, temperature and time of incubation showed to be significantly effective when compared to controls without C. parapsilosis (P≤0.05). In aflatoxigenic strains, minimum percentage of reductions in total aflatoxin and B1, B2, G1, G2 fractions were 92.98, 92.54, 77.48, 54.54 and 72.22 and maximum percentage of reductions were 99.59, not detectable, 94.42, and not detectable in both G1 and G2, respectively. Conclusion: C. parapsilosis might employ as a good biocontrol agent against growth and aflatoxin production by aflatoxigenic Aspergillus species PMID:23308351

  10. Hyperspectral image classification and development of fluorescence index for single corn kernels infected with Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are toxic secondary metabolites predominantly produced by the fungi Aspergillus flavus and A. parasiticus. Aflatoxin contaminated corn is toxic to domestic animals when ingested in feed and is a known carcinogen associated with liver and lung cancer in humans. Consequently, aflatoxin leve...

  11. Milk kefir: ultrastructure, antimicrobial activity and efficacy on aflatoxin B1 production by Aspergillus flavus.

    PubMed

    Ismaiel, Ahmed A; Ghaly, Mohamed F; El-Naggar, Ayman K

    2011-05-01

    The association of kefir microbiota was observed by electron microscopic examination. Scanning electron microscopic (SEM) observations revealed that kefir grain surface is very rough and the inner portions had scattered irregular holes on its surface. The interior of the grain comprised fibrillar materials which were interpreted as protein, lipid and a soluble polysaccharide, the kefiran complex that surrounds yeast and bacteria in the grain. Yeast was observed more clearly than bacteria on the outer portion of the grain. Transmission electron microscopic (TEM) observations of kefir revealed that the grain comprised a mixed culture of yeast and bacteria growing in close association with each other. Microbiota is dominated by budded and long-flattened yeast cells growing together with lactobacilli and lactococci bacteria. Bacterial cells with rounded ends were also observed in this mixed culture. Kefir grains, kefir suspensions, and kefiran were tested for antimicrobial activities against several bacterial and fungal species. The highest activity was obtained against Streptococcus faecalis KR6 and Fusarium graminearum CZ1. Growth of Aspergillus flavus AH3 producing for aflatoxin B1 for 10 days in broth medium supplemented with varying concentrations of kefir filtrate (%, v/v) showed that sporulation was completely inhibited at the higher concentrations of kefir filtrate (7-10%, v/v). The average values of both mycelial dry weights and aflatoxin B1 were completely inhibited at 10% (v/v). This is the first in vitro study about the antifungal characteristics of kefir against filamentous fungi which was manifested by applying its inhibitory effect on the productivity of aflatoxin B1 by A. flavus AH3.

  12. Improved method of screening for aflatoxin with a coconut agar medium.

    PubMed Central

    Davis, N D; Iyer, S K; Diener, U L

    1987-01-01

    Nine isolates of Aspergillus flavus and Aspergillus parasiticus were screened for aflatoxin production on a coconut extract agar medium. Aflatoxin-producing colonies were detected under long-wave UV light (365 nm) by blue fluorescence on the reverse side after 2 to 5 days of growth. Aflatoxin production was verified by chemical analysis. Several types of shredded coconut available in the United States were tested and found to be satisfactory. No additives were required. Various parameters affecting the test were investigated. PMID:3116928

  13. Nuclear Ribosomal DNA Variation and Pathogenic Specialization in Alternaria Fungi Known To Produce Host-Specific Toxins †

    PubMed Central

    Kusaba, Motoaki; Tsuge, Takashi

    1994-01-01

    A total of 99 strains of 11 Alternaria species, including 68 strains of seven fungi known to produce host-specific toxins, were subjected to analysis of restriction fragment length polymorphism (RFLP) in nuclear ribosomal DNA (rDNA). Total DNA was digested with XbaI, and the Southern blots were probed with a nuclear rDNA clone of Alternaria kikuchiana. The hybridization gave 17 different RFLPs from the 99 strains. On the basis of these RFLPs, populations of host-specific toxin-producing fungi could not be differentiated from one another nor from nonpathogenic A. alternata. Each population of the toxin-producing fungi carried rDNA variants. Nine different types, named A1 to A6 and B1 to B3, were detected among the toxin-producing fungi and nonpathogenic A. alternata. All of the populations contained the type A4 variant, and the other rDNA types were also shared by different toxin-producing fungi and A. alternata. In contrast, Alternaria species that are morphologically distinguishable from A. alternata could be differentiated from A. alternata on the basis of the rDNA RFLPs. Polymorphisms in rDNA digested with HaeIII and MspI were also evaluated in 61 Alternaria strains. These restriction enzymes produced 31 variations among all of the samples. The seven toxin-producing fungi and nonpathogenic A. alternata could not be resolved by phylogenetic analysis based on the RFLPs, although they could be differentiated from the other Alternaria species studied. These results provide support for the hypothesis that Alternaria fungi known to produce host-specific toxins are intraspecific variants of A. alternata specialized in pathogenicity. Images PMID:16349367

  14. Aspergillus Volatiles Regulate Aflatoxin Synthesis and Asexual Sporulation in Aspergillus parasiticus▿

    PubMed Central

    Roze, Ludmila V.; Beaudry, Randolph M.; Arthur, Anna E.; Calvo, Ana M.; Linz, John E.

    2007-01-01

    Aspergillus parasiticus is one primary source of aflatoxin contamination in economically important crops. To prevent the potential health and economic impacts of aflatoxin contamination, our goal is to develop practical strategies to reduce aflatoxin synthesis on susceptible crops. One focus is to identify biological and environmental factors that regulate aflatoxin synthesis and to manipulate these factors to control aflatoxin biosynthesis in the field or during crop storage. In the current study, we analyzed the effects of aspergillus volatiles on growth, development, aflatoxin biosynthesis, and promoter activity in the filamentous fungus A. parasiticus. When colonies of Aspergillus nidulans and A. parasiticus were incubated in the same growth chamber, we observed a significant reduction in aflatoxin synthesis and asexual sporulation by A. parasiticus. Analysis of the headspace gases demonstrated that A. nidulans produced much larger quantities of 2-buten-1-ol (CA) and 2-ethyl-1-hexanol (EH) than A. parasiticus. In its pure form, EH inhibited growth and increased aflatoxin accumulation in A. parasiticus at all doses tested; EH also stimulated aflatoxin transcript accumulation. In contrast, CA exerted dose-dependent up-regulatory or down-regulatory effects on aflatoxin accumulation, conidiation, and aflatoxin transcript accumulation. Experiments with reporter strains carrying nor-1 promoter deletions and mutations suggested that the differential effects of CA were mediated through separate regulatory regions in the nor-1 promoter. The potential efficacy of CA as a tool for analysis of transcriptional regulation of aflatoxin biosynthesis is discussed. We also identify a novel, rapid, and reliable method to assess norsolorinic acid accumulation in solid culture using a Chroma Meter CR-300 apparatus. PMID:17890344

  15. Effect of almond processing on levels and distribution of aflatoxins in finished products and byproducts.

    PubMed

    Zivoli, Rosanna; Gambacorta, Lucia; Perrone, Giancarlo; Solfrizzo, Michele

    2014-06-18

    The fate of aflatoxins during processing of contaminated almonds into nougat, pastries, and almond syrup was evaluated by testing the effect of each processing step (blanching, peeling, roasting, caramelization, cooking, and water infusion) on the distribution and levels of aflatoxins. Blanching and peeling did not reduce total aflatoxins that were distributed between peeled almonds (90-93%) and skins (7-10%). Roasting of peeled almonds reduced up to 50% of aflatoxins. Up to 70% reduction of aflatoxins was observed during preparation and cooking of almond nougat in caramelized sugar. Aflatoxins were substantially stable during preparation and cooking of almond pastries. The whole process of almond syrup preparation produced a marked increase of total aflatoxins (up to 270%) that were distributed between syrup (18-25%) and spent almonds (75-82%). The increase of total aflatoxins was probably due to the activation of almond enzymes during the infusion step that released free aflatoxins from masked aflatoxins.

  16. Reduction of aflatoxins by Rhizopus oryzae and Trichoderma reesei.

    PubMed

    Hackbart, H C S; Machado, A R; Christ-Ribeiro, A; Prietto, L; Badiale-Furlong, E

    2014-08-01

    This study evaluated the ability of the microorganisms Rhizopus oryzae (CCT7560) and Trichoderma reesei (QM9414), producers of generally recognized as safe (GRAS) enzymes, to reduce the level of aflatoxins B1, B2, G1, G2, and M1. The variables considered to the screening were the initial number of spores in the inoculum and the culture time. The culture was conducted in contaminated 4 % potato dextrose agar (PDA) medium, and the residual mycotoxins were determined every 24 h by HPLC-FL. The fungus R. oryzae has reduced aflatoxins B1, B2, and G1 in the 96 h and aflatoxins M1 and G2 in the range of 120 h of culture by approximately 100 %. The fungus T. reesei has reduced aflatoxins B1, B2, and M1 in the 96 h and aflatoxin G1 in the range of 120 h of culture by approximately 100 %. The highest reduction occurred in the middle of R. oryzae culture.

  17. Citrate coated silver nanoparticles with modulatory effects on aflatoxin biosynthesis in Aspergillus parasiticus

    NASA Astrophysics Data System (ADS)

    Mitra, Chandrani

    The manufacture and usage of silver nanoparticles has drastically increased in recent years (Fabrega et al. 2011a). Hence, the levels of nanoparticles released into the environment through various routes have measurably increased and therefore are concern to the environment and to public health (Panyala, Pena-Mendez and Havel 2008). Previous studies have shown that silver nanoparticles are toxic to various organisms such as bacteria (Kim et al. 2007), fungi (Kim et al. 2008), aquatic plants (He, Dorantes-Aranda and Waite 2012a), arthropods (Khan et al. 2015), and mammalian cells (Asharani, Hande and Valiyaveettil 2009) etc. Most of the toxicity studies are carried out using higher concentrations or lethal doses of silver nanoparticles. However, there is no information available on how the fungal community reacts to the silver nanoparticles at nontoxic concentrations. In this study, we have investigated the effect of citrate coated silver nanoparticles (AgNp-cit) at a size of 20nm on Aspergillus parasiticus, a popular plant pathogen and well-studied model for secondary metabolism (natural product synthesis). A. parasiticus produces 4 major types of aflatoxins. Among other aflatoxins, aflatoxin B1 is considered to be one of most potent naturally occurring liver carcinogen, and is associated with an estimated 155,000 liver cancer cases globally (Liu and Wu 2010); therefore, contaminated food and feed are a significant risk factor for liver cancer in humans and animals (CAST 2003; Liu and Wu 2010). In this study, we have demonstrated the uptake of AgNp-cit (20nm) by A. parasiticus cells from the growth medium using a time course ICP-OES experiment. It was observed that the uptake of AgNp-cit had no effect on fungal growth and significantly decreased intracellular oxidative stress. It also down-regulated aflatoxin biosynthesis at the level of gene expression of aflatoxin pathway genes and the global regulatory genes of secondary metabolism. We also observed that the

  18. Activation of Aflatoxin Biosynthesis Alleviates Total ROS in Aspergillus parasiticus

    PubMed Central

    Kenne, Gabriel J.; Gummadidala, Phani M.; Omebeyinje, Mayomi H.; Mondal, Ananda M.; Bett, Dominic K.; McFadden, Sandra; Bromfield, Sydney; Banaszek, Nora; Velez-Martinez, Michelle; Mitra, Chandrani; Mikell, Isabelle; Chatterjee, Saurabh; Wee, Josephine; Chanda, Anindya

    2018-01-01

    An aspect of mycotoxin biosynthesis that remains unclear is its relationship with the cellular management of reactive oxygen species (ROS). Here we conduct a comparative study of the total ROS production in the wild-type strain (SU-1) of the plant pathogen and aflatoxin producer, Aspergillus parasiticus, and its mutant strain, AFS10, in which the aflatoxin biosynthesis pathway is blocked by disruption of its pathway regulator, aflR. We show that SU-1 demonstrates a significantly faster decrease in total ROS than AFS10 between 24 h to 48 h, a time window within which aflatoxin synthesis is activated and reaches peak levels in SU-1. The impact of aflatoxin synthesis in alleviation of ROS correlated well with the transcriptional activation of five superoxide dismutases (SOD), a group of enzymes that protect cells from elevated levels of a class of ROS, the superoxide radicals (O2−). Finally, we show that aflatoxin supplementation to AFS10 growth medium results in a significant reduction of total ROS only in 24 h cultures, without resulting in significant changes in SOD gene expression. Our findings show that the activation of aflatoxin biosynthesis in A. parasiticus alleviates ROS generation, which in turn, can be both aflR dependent and aflatoxin dependent. PMID:29382166

  19. Correlation of Zn2+ content with aflatoxin content of corn.

    PubMed Central

    Failla, L J; Lynn, D; Niehaus, W G

    1986-01-01

    Forty-nine samples from the 1983 Virginia corn harvest were analyzed for aflatoxin, zinc, copper, iron, and manganese content. Values (mean +/- standard deviation) were as follows: aflatoxin, 117 +/- 360 micrograms/kg; zinc, 22.5 +/- 3.4 mg/kg; copper, 2.27 +/- 0.56 mg/kg; iron, 40.8 +/- 18.7 mg/kg; and manganese, 5.1 +/- 1.1 mg/kg. Aflatoxin levels positively correlated with zinc (Spearman correlation coefficient, 0.385; P less than 0.006) and copper levels (Spearman correlation coefficient, 0.573; P less than 0.0001). Based on biochemical data in the literature, we believe that the correlation with zinc is important and that there may be a cause-and-effect relationship between zinc levels in corn and aflatoxin levels which are produced upon infection with Aspergillus flavus or A. parasiticus. Control of aflatoxin contamination in field corn by decreasing the zinc levels may be feasible, but no methods to decrease zinc levels are currently available. PMID:3729406

  20. Combining genomic approaches to understand genetic control of aflatoxin contamination in peanut

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination in peanut is more prevalent under rainfed conditions making produce unfit for human and animal consumption, affecting the international trade adversely. Although the losses in yield and quality due to aflatoxin contamination is higher than realized, there are limited resistan...

  1. Aflatoxin Production in Peanut Varieties by aspergillus flavus Link and Aspergillus parasiticus Speare

    PubMed Central

    Nagarajan, V.; Bhat, Ramesh V.

    1973-01-01

    Levels of aflatoxin produced in peanuts differed with the genetic variety of plant and with the species and strain of invading fungus. Possibilities for identifying groundnut varieties partially resistant to aflatoxin production are discussed. PMID:4632857

  2. A preliminary survey on the occurrence of mycotoxigenic fungi and mycotoxins contaminating red rice at consumer level in Selangor, Malaysia.

    PubMed

    Samsudin, Nik Iskandar Putra; Abdullah, Noorlidah

    2013-05-01

    Red rice is a fermented product of Monascus spp. It is widely consumed by Malaysian Chinese who believe in its pharmacological properties. The traditional method of red rice preparation disregards safety regulation and renders red rice susceptible to fungal infestation and mycotoxin contamination. A preliminary study was undertaken aiming to determine the occurrence of mycotoxigenic fungi and mycotoxins contamination on red rice at consumer level in Selangor, Malaysia. Fifty red rice samples were obtained and subjected to fungal isolation, enumeration, and identification. Citrinin, aflatoxin, and ochratoxin-A were quantitated by ELISA based on the presence of predominant causal fungi. Fungal loads of 1.4 × 10(4) to 2.1 × 10(6) CFU/g exceeded Malaysian limits. Monascus spp. as starter fungi were present in 50 samples (100%), followed by Penicillium chrysogenum (62%), Aspergillus niger (54%), and Aspergillus flavus (44%). Citrinin was present in 100% samples (0.23-20.65 mg/kg), aflatoxin in 92% samples (0.61-77.33 μg/kg) and Ochratoxin-A in 100% samples (0.23-2.48 μg/kg); 100% citrinin and 76.09% aflatoxin exceeded Malaysian limits. The presence of mycotoxigenic fungi served as an indicator of mycotoxins contamination and might imply improper production, handling, transportation, and storage of red rice. Further confirmatory analysis (e.g., HPLC) is required to verify the mycotoxins level in red rice samples and to validate the safety status of red rice.

  3. Reduction of aflatoxins by Korean soybean paste and its effect on cytotoxicity and reproductive toxicity--Part 3. Inhibitory effects of Korean soybean paste (doen-jang) on aflatoxin toxicity in laying hens and aflatoxin accumulation in their eggs.

    PubMed

    Kim, Jong-Gyu; Lee, Yong-Wook; Kim, Pan-Gyi; Roh, Woo-Sup; Shintani, Hideharu

    2003-05-01

    This study was conducted to determine the effects of Korean soybean paste (doen-jang [dwen-jahng]) (at concentrations of 0.5, 1, and 5%) on the toxicity of 500 ppb of aflatoxin in the diets of 60 laying hens (Isa Brown) divided into five groups and treated from week 15 to week 67. The aflatoxin-treated hens exhibited many deleterious effects, including reduced body weight; increased relative organ weights; decreased egg production; aflatoxin accumulation in eggs; decreased serum calcium, phosphorus, and alanino amonotransferase (ALT) levels; increased serum gammaglutamil transferase and lactic dehydrogenase levels; and, most significantly, severely altered cell foci and sinusoid dilatation in the liver, relative to control hens. The feeding of 1% soybean paste to hens reduced the adverse effects of aflatoxin on body weight, relative organ weights, egg production, and aflatoxin accumulation in eggs and improved serum calcium and ALT levels and the histopathological lesions of the liver. The feeding of 5% soybean paste to hens resulted in higher levels of the same types of improvements, especially with regard to the histopathological findings for the liver. On the basis of these results, it was suggested that a diet including 5% (and in some cases only 1%) Korean soybean paste protected laying hens and their eggs from the major deleterious effects of 500 microg of aflatoxin per kg of diet and from aflatoxin accumulation. These results indicate that dietary supplementation with Korean soybean paste reduces aflatoxin toxicity in laying hens that ultimately produce human foods such as eggs and poultry.

  4. NsdC and NsdD affect Aspergillus flavus morphogenesis and aflatoxin production

    USDA-ARS?s Scientific Manuscript database

    The transcription factors NsdC and NsdD have been shown to be necessary for sexual development in Aspergillus nidulans. Herein we examine the role of these proteins in development and aflatoxin production of the agriculturally important, aflatoxin-producing fungus, Aspergillus flavus. We found tha...

  5. Biological control of aflatoxin is effective and economical in Mississippi field trials

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination of corn is a major grain quality issue and can be a major economic limiting factor to Mississippi corn farmers. Biological control products based on aflatoxin non-producing strains of Aspergillus flavus are commercially available to prevent the contamination of corn with afl...

  6. Atoxigenic Aspergillus flavus endemic to Italy for biocontrol of aflatoxins in maize

    USDA-ARS?s Scientific Manuscript database

    Effective biological control of aflatoxin­producing Aspergillus flavus with atoxigenic members of that species requires suitable A. flavus well adapted to and resident in target agroecosystems. Eighteen atoxigenic isolates of A. flavus endemic in Italy were compared for ability to reduce aflatoxin c...

  7. Autoxidated linolenic acid inhibits aflatoxin biosynthesis in Aspergillus flavus via oxylipin species.

    PubMed

    Yan, Shijuan; Liang, Yating; Zhang, Jindan; Chen, Zhuang; Liu, Chun-Ming

    2015-08-01

    Aflatoxins produced by Aspergillus species are among the most toxic and carcinogenic compounds in nature. Although it has been known for a long time that seeds with high oil content are more susceptible to aflatoxin contamination, the role of fatty acids in aflatoxin biosynthesis remains controversial. Here we demonstrate in A. flavus that both the saturated stearic acid (C18:0) and the polyunsaturated linolenic acid (C18:3) promoted aflatoxin production, while C18:3, but not C18:0, inhibited aflatoxin biosynthesis after exposure to air for several hours. Further experiments showed that autoxidated C18:3 promoted mycelial growth, sporulation, and kojic acid production, but inhibited the expression of genes in the AF biosynthetic gene cluster. Mass spectrometry analyses of autoxidated C18:3 fractions that were able to inhibit aflatoxin biosynthesis led to the identification of multiple oxylipin species. These results may help to clarify the role of fatty acids in aflatoxin biosynthesis, and may explain why controversial results have been obtained for fatty acids in the past. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Averufanin is an aflatoxin B1 precursor between averantin and averufin in the biosynthetic pathway.

    PubMed Central

    McCormick, S P; Bhatnagar, D; Lee, L S

    1987-01-01

    Wild-type Aspergillus parasiticus produces, in addition to the colorless aflatoxins, a number of pigmented secondary metabolites. Examination of these pigments demonstrated that a major component was an anthraquinone, averufanin. Radiolabeling studies with [14C]averufanin showed that 23% of the label was incorporated into aflatoxin B1 by the wild type and that 31% of the label was incorporated into O-methylsterigmatocystin by a non-aflatoxin-producing isolate. In similar studies with blocked mutants of A. parasiticus the 14C label from averufanin was accumulated in averufin (72%) and versicolorin A (54%) but not averantin. The results demonstrate that averufanin is a biosynthetic precursor of aflatoxin B1 between averantin and averufin. PMID:3103529

  9. Production of Aflatoxin on Soybeans

    PubMed Central

    Gupta, S. K.; Venkitasubramanian, T. A.

    1975-01-01

    Probable factors influencing resistance to aflatoxin synthesis in soybeans have been investigated by using cultures of Aspergillus parasiticus NRRL 3240. Soybeans contain a small amount of zinc (0.01 μg/g) bound to phytic acid. Autoclaving soybeans at 15 pounds (6803.88 g) for 15 min increases the aflatoxin production, probably by making zinc available. Addition of zinc to both autoclaved and nonautoclaved soybeans promotes aflatoxin production. However, addition of varying levels of phytic acid at a constant concentration of zinc depresses aflatoxin synthesis with an increase in the added phytic acid. In a synthetic medium known to give good yields of aflatoxin, the addition of phytic acid (10 mM) decreases aflatoxin synthesis. PMID:1171654

  10. Trichoderma harzianum: Inhibition of mycotoxin producing fungi and toxin biosynthesis.

    PubMed

    Braun, H; Woitsch, L; Hetzer, B; Geisen, R; Zange, B; Schmidt-Heydt, M

    2018-04-19

    A quarter of the world-wide crop is spoiled by filamentous fungi and their mycotoxins and weather extremes associated with the climate change lead to further deterioration of the situation. The ingestion of mycotoxins causes several health issues leading in the worst case to cancer in humans and animals. Common intervention strategies against mycotoxin producing fungi, such as the application of fungicides, may result in undesirable residues and in some cases to a stress induction of mycotoxin biosynthesis. Moreover, development of fungicide resistances has greatly impacted pre- and postharvest fungal diseases. Hence there is the need to develop alternative strategies to reduce fungal infestation and thus mycotoxin contamination in the food chain. Such a strategy for natural competition of important plant-pathogenic and mycotoxin producing fungi could be Trichoderma harzianum, a mycoparasitic fungus. Especially in direct comparison to certain tested fungicides, the inhibition of different tested fungal species by T. harzianum was comparable, more sustainable and in some cases more effective, too. Besides substantially reduced growth rates, a transcriptional based inhibition of mycotoxin biosynthesis in the competed Aspergillus species could be shown. Furthermore it could be clearly observed by high-resolution Scanning Electron Microscopy (SEM) that T. harzianum actively attaches to the competitor species followed by subsequent enzymatic lysis of those mycelial filaments. The analyzed isolate of T. harzianum MRI349 is not known to produce mycotoxins. In this study it could be successfully proven that T. harzianum as a biological competitor is an effective complement to the use of fungicides. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Absence of the aflatoxin biosynthesis gene, norA, allows accumulation of deoxyaflatoxin B1 in Aspergillus flavus cultures.

    PubMed

    Ehrlich, Kenneth C; Chang, Perng-Kuang; Scharfenstein, Leslie L; Cary, Jeffrey W; Crawford, Jason M; Townsend, Craig A

    2010-04-01

    Biosynthesis of the highly toxic and carcinogenic aflatoxins in select Aspergillus species from the common intermediate O-methylsterigmatocystin has been postulated to require only the cytochrome P450 monooxygenase, OrdA (AflQ). We now provide evidence that the aryl alcohol dehydrogenase NorA (AflE) encoded by the aflatoxin biosynthetic gene cluster in Aspergillus flavus affects the accumulation of aflatoxins in the final steps of aflatoxin biosynthesis. Mutants with inactive norA produced reduced quantities of aflatoxin B(1) (AFB(1)), but elevated quantities of a new metabolite, deoxyAFB(1). To explain this result, we suggest that, in the absence of NorA, the AFB(1) reduction product, aflatoxicol, is produced and is readily dehydrated to deoxyAFB(1) in the acidic medium, enabling us to observe this otherwise minor toxin produced in wild-type A. flavus.

  12. Aflatoxin and sterigmatocystin contamination of pistachio nuts in orchards.

    PubMed Central

    Sommer, N F; Buchanan, J R; Fortlage, R J

    1976-01-01

    Aspergillus flavus and A. versicolor were both shown to be weak pathogens of developing pistachio fruits, producing aflatoxin and sterigmatocystin, respectively. Aflatoxin concentrations approached those reported in cereal and legume seeds. Fungus lesions on the first hulls were followed by invasion of seeds despite the sclerified shell. Infections and mycotoxins present before harvest would presumably lead to further build-up after harvest if drying was slow or storage was under high humidity. PMID:823868

  13. Inhibitory Effect of Cinnamaldehyde, Citral, and Eugenol on Aflatoxin Biosynthetic Gene Expression and Aflatoxin B1 Biosynthesis in Aspergillus flavus.

    PubMed

    Liang, Dandan; Xing, Fuguo; Selvaraj, Jonathan Nimal; Liu, Xiao; Wang, Limin; Hua, Huijuan; Zhou, Lu; Zhao, Yueju; Wang, Yan; Liu, Yang

    2015-12-01

    In order to reveal the inhibitory effects of cinnamaldehyde, citral, and eugenol on aflatoxin biosynthesis, the expression levels of 5 key aflatoxin biosynthetic genes were evaluated by real-time PCR. Aspergillus flavus growth and AFB1 production were completely inhibited by 0.80 mmol/L of cinnamaldehyde and 2.80 mmol/L of citral. However, at lower concentration, cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L) significantly reduced AFB1 production with inhibition rate of 68.9%, 95.4%, and 41.8%, respectively, while no effect on fungal growth. Real-time PCR showed that the expressions of aflR, aflT, aflD, aflM, and aflP were down-regulated by cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L). In the presence of cinnamaldehyde, AflM was highly down-regulated (average of 5963 folds), followed by aflP, aflR, aflD, and aflT with the average folds of 55, 18, 6.5, and 5.8, respectively. With 0.80 mmol/L of eugenol, aflP was highly down-regulated (average of 2061-folds), followed by aflM, aflR, aflD, and aflT with average of 138-, 15-, 5.2-, and 4.8-folds reduction, respectively. With 0.56 mmol/L of citral, aflT was completely inhibited, followed by aflM, aflP, aflR, and aflD with average of 257-, 29-, 3.5-, and 2.5-folds reduction, respectively. These results suggest that the reduction in AFB1 production by cinnamaldehyde, eugenol, and citral at low concentration may be due to the down-regulations of the transcription level of aflatoxin biosynthetic genes. Cinnamaldehyde and eugenol may be employed successfully as a good candidate in controlling of toxigenic fungi and subsequently contamination with aflatoxins in practice. © 2015 Institute of Food Technologists®

  14. Characterization of small RNA populations in non-transgenic and aflatoxin-reducing-transformed peanut

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are powerful carcinogenic secondary metabolites produced mainly by Aspergillus flavus and A. parasiticus. These mycotoxins accumulate in crops and pose a serious risk to food safety and human health. No consistently effective method exists to control aflatoxins in crops. RNA interferen...

  15. Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops.

    PubMed

    Bhatnagar-Mathur, Pooja; Sunkara, Sowmini; Bhatnagar-Panwar, Madhurima; Waliyar, Farid; Sharma, Kiran Kumar

    2015-05-01

    Aflatoxins are toxic, carcinogenic, mutagenic, teratogenic and immunosuppressive byproducts of Aspergillus spp. that contaminate a wide range of crops such as maize, peanut, and cotton. Aflatoxin not only affects crop production but renders the produce unfit for consumption and harmful to human and livestock health, with stringent threshold limits of acceptability. In many crops, breeding for resistance is not a reliable option because of the limited availability of genotypes with durable resistance to Aspergillus. Understanding the fungal/crop/environment interactions involved in aflatoxin contamination is therefore essential in designing measures for its prevention and control. For a sustainable solution to aflatoxin contamination, research must be focused on identifying and improving knowledge of host-plant resistance factors to aflatoxin accumulation. Current advances in genetic transformation, proteomics, RNAi technology, and marker-assisted selection offer great potential in minimizing pre-harvest aflatoxin contamination in cultivated crop species. Moreover, developing effective phenotyping strategies for transgenic as well as precision breeding of resistance genes into commercial varieties is critical. While appropriate storage practices can generally minimize post-harvest aflatoxin contamination in crops, the use of biotechnology to interrupt the probability of pre-harvest infection and contamination has the potential to provide sustainable solution. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Aflatoxins produced by Aspergillus parasiticus present in the diet of quails increase the activities of cholinesterase and adenosine deaminase.

    PubMed

    da Silva, Aleksandro Schafer; Santurio, Janio M; Roza, Lenilson F; Bottari, Nathieli B; Galli, Gabriela M; Morsch, Vera M; Schetinger, Maria Rosa C; Baldissera, Matheus D; Stefani, Lenita M; Radavelli, Willian M; Tomasi, Thainã; Boiago, Marcel M

    2017-06-01

    The aim of this study was to evaluate the effects of aflatoxins on cholinesterases (acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and adenosine deaminase (ADA) activities in quails. For this, twenty male quails were randomly distributed into two groups (n = 10 each): the group A was composed by quails that received feed without aflatoxin (the control group); while the group B was composed by quails that received feed contaminated with 200 ppm/kg of feed of aflatoxin. On day 20, the animals were euthanized to measure the activities of AChE (total blood and brain), BChE (serum) and ADA (serum, liver, and brain), as well as for histopathological analyses (liver and intestine). AChE, BChE, and ADA levels increased in animals intoxicated by aflatoxin compared to the control group. The presence of aflatoxin lead to severe hydropic degeneration of hepatocytes and small focus of hepatocyte necrosis. In conclusion, aflatoxins poisoning increased AChE, BChE, and ADA activities, suggesting the involvement of these enzymes during this type of intoxication, in addition to the fact that they are well known molecules that participate in physiological and pathological events as inflammatory mediators. In summary, increased AChE, BChE and ADA activities contribute directly to the inflammatory process and tissue damage, and they might be involved in disease development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Determination of Aflatoxin M1 Contamination and Integrity as well as Credibility

    PubMed Central

    Ataee, R; Tavana, A Mehrabi; Ataee, MH

    2012-01-01

    Aspergillums can produce and secrete directly aflatoxin M1. During the previous decade several papers pertaining to aflatoxin M1 have been published in different journals. Not mention of their more or less scientific aspects, they have fundamentally some problems in different features. In this paper we are going to have a bird’s eye view on some articles published on this topic. It is suggested that complete research must be performed in order to find out the source of aflatoxin M1 contamination. PMID:23304667

  18. Simultaneous determination of four aflatoxins and ochratoxin A in ginger after inoculation with fungi by ultra-fast liquid chromatography-tandem mass spectrometry.

    PubMed

    Yang, Ying; Wen, Jing; Kong, Weijun; Liu, Qiutao; Luo, Hongli; Wang, Jian; Yang, Meihua

    2016-09-01

    Aflatoxins (AFs) and ochratoxin A (OTA) have been detected frequently in food, agricultural products and traditional Chinese medicines, and their presence poses serious health and economic problems worldwide. Ginger can easily be polluted with mycotoxins. In this study, ginger samples were cultivated for 15 days after inoculation with fungi and were prepared based on ultrasound-assisted solid-liquid extraction using methanol/water followed by immunoaffinity column clean-up and analysed by ultra-fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) for AFs and OTA. The limits of detection and quantification of AFs and OTA were 0.04-0.30 µg mL(-1) and 0.125-1.0 µg mL(-1) , respectively. The recoveries were 82.0-100.2%. After 15 days' cultivation, no macroscopic mildew was found in ginger. But, the content of AFB1 expressed an increasing trend in ginger, peel [less than the limit of quantification (LOQ)] to the innermost layer (51.86 µ mL(-1) ), AFB2 was only detected in the innermost layer at the level of 0.87 µ mL(-1) . A small amount (fungi were inoculated on the surface of ginger. The developed method was successfully applied to analyse five mycotoxins, and has many advantages including rapid determination and high sensitivity. Meanwhile, in practice, more attention should be paid to the safety and quality of ginger. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Characterization of the maize lipoxygenase gene family in relation to aflatoxin accumulation resistance

    Treesearch

    Oluwaseun F. Ogunola; Leigh K. Hawkins; Erik Mylroie; Michael V. Kolomiets; Eli Borrego; Juliet D. Tang; Paul W. Williams; Marilyn L. Warburton

    2017-01-01

    Maize (Zea mays L.) is a globally important staple food crop prone to contamination by aflatoxin, a carcinogenic secondary metabolite produced by the fungus Aspergillus flavus. An efficient approach to reduce accumulation of aflatoxin is the development of germplasm resistant to colonization and toxin...

  20. Aspergillus flavus secondary metabolites: more than just aflatoxins

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is best known for producing the family of potent carcinogenic secondary metabolites known as aflatoxins. However, this opportunistic plant and animal pathogen also produces numerous other secondary metabolites, many of which have also been shown to be toxic. While about forty of t...

  1. Fungi and mycotoxins in cocoa: from farm to chocolate.

    PubMed

    Copetti, Marina V; Iamanaka, Beatriz T; Pitt, John I; Taniwaki, Marta H

    2014-05-16

    Cocoa is an important crop, as it is the raw material from which chocolate is manufactured. It is grown mainly in West Africa although significant quantities also come from Asia and Central and South America. Primary processing is carried out on the farm, and the flavour of chocolate starts to develop at that time. Freshly harvested pods are opened, the beans, piled in heaps or wooden boxes, are fermented naturally by yeasts and bacteria, then dried in the sun on wooden platforms or sometimes on cement or on the ground, where a gradual reduction in moisture content inhibits microbial growth. Beans are then bagged and marketed. In processing plants, the dried fermented beans are roasted, shelled and ground, then two distinct processes are used, to produce powdered cocoa or chocolate. Filamentous fungi may contaminate many stages in cocoa processing, and poor practices may have a strong influence on the quality of the beans. Apart from causing spoilage, filamentous fungi may also produce aflatoxins and ochratoxin A. This review deals with the growth of fungal species and formation of mycotoxins during the various steps in cocoa processing, as well as reduction of these contaminants by good processing practices. Methodologies for fungal and mycotoxin detection and quantification are discussed while current data about dietary exposure and regulation are also presented. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Dietary Factors and Hepatoma in Rainbow Trout (Salmo gairdneri). I. Aflatoxins in Vegetable Protein Feedstuffs

    USGS Publications Warehouse

    Sinnhuber, R.O.; Wales, J.H.; Ayers, J.L.; Engebrecht, R.H.; Amend, D.F.

    1968-01-01

    Aflatoxins (toxic metabolites of the mold Aspergillus flavus) were present in a commercial trout ration causing hepatoma in rainbow trout. Cottonseed meal and solvent extracts of cottonseed meal and of rations containing cottonseed meal and peanut meal were found by chemical assay and confirmed by duckling assay to contain aflatoxins. Diets containing these materials and a purified test diet to which aflatoxins had been added produced microscopic tumors in 6 months and gross lesions of hepatocarcinoma in 9 months. Similar diets without aflatoxin were negative.

  3. Genome-Wide Association Mapping of and Aspergillus flavus Aflatoxin Accumulation Resistance in Maize

    Treesearch

    Marilyn L. Warburton; Juliet D. Tang; Gary L. Windham; Leigh K. Hawkins; Seth C. Murray; Wenwei Xu; Debbie Boykin; Andy Perkins; W. Paul Williams

    2015-01-01

    Contamination of maize (Zea mays L.) with aflatoxin, produced by the fungus Aspergillus flavus Link, has severe health and economic consequences. Efforts to reduce aflatoxin accumulation in maize have focused on identifying and selecting germplasm with natural host resistance factors, and several maize lines with significantly...

  4. Computational search for aflatoxin binding proteins

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Jinfeng; Zhang, Lujia; He, Xiao; Zhang, John Z. H.

    2017-10-01

    Aflatoxin is one of the mycotoxins that contaminate various food products. Among various aflatoxin types (B1, B2, G1, G2 and M1), aflatoxin B1 is the most important and the most toxic one. In this study, through computational screening, we found that several proteins may bind specifically with different type of aflatoxins. Combination of theoretical methods including target fishing, molecular docking, molecular dynamics (MD) simulation, MM/PBSA calculation were utilized to search for new aflatoxin B1 binding proteins. A recently developed method for calculating entropic contribution to binding free energy called interaction entropy (IE) was employed to compute the binding free energy between the protein and aflatoxin B1. Through comprehensive comparison, three proteins, namely, trihydroxynaphthalene reductase, GSK-3b, and Pim-1 were eventually selected as potent aflatoxin B1 binding proteins. GSK-3b and Pim-1 are drug targets of cancers or neurological diseases. GSK-3b is the strongest binder for aflatoxin B1.

  5. Antioxidant enzymes stimulation in Aspergillus parasiticus by Lentinula edodes inhibits aflatoxin production.

    PubMed

    Reverberi, M; Fabbri, A A; Zjalic, S; Ricelli, A; Punelli, F; Fanelli, C

    2005-11-01

    Biosynthesis of aflatoxins, toxic metabolites produced by Aspergillus parasiticus, is correlated to the fungal oxidative stress and cell ageing. In this paper, the mechanism underlying the aflatoxin-inhibiting effect of the Lentinula edodes culture filtrates was studied by analysing their anti-oxidant activity and beta-glucan content. Mushroom beta-glucans are pharmacologically active compounds stimulating anti-oxidant responses in animal cells. L. edodes lyophilised filtrates stimulate A. parasiticus anti-oxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) and aflatoxin inhibition was better correlated with beta-glucan content than with anti-oxidant activity of the filtrates. RT-PCR analyses on treated mycelia showed a delay in the activation of aflR, and norA, genes of aflatoxin cluster and a synchronous activation of hsf2-like, a homologue of a yeast transcription factor involved in oxidative stress responses. The first evidence of hsf2-like in A. parasiticus and its activation during aflatoxin biosynthesis is reported. L. edodes filtrates could play a role as external stimulus affecting the anti-oxidant status in the fungal cell that, in turn, leads to aflatoxin inhibition. In the fungal cell, beta-glucans present in the filtrates could stimulate the activation of transcription factors related to anti-oxidant response and anti-oxidant enzyme activity with a contemporaneous delay of aflatoxin genes transcription, which led to a marked reduction of aflatoxin production. This research suggests new perspectives to set suitable strategies against aflatoxins and L. edodes could be considered a promising tool.

  6. Fungal communities associated with almond throughout crop development: Implications for aflatoxin biocontrol management in California.

    PubMed

    Ortega-Beltran, Alejandro; Moral, Juan; Puckett, Ryan D; Morgan, David P; Cotty, Peter J; Michailides, Themis J

    2018-01-01

    Interactions between pathogenic and nonpathogenic fungal species in the tree canopy are complex and can determine if disease will manifest in the plant and in other organisms such as honey bees. Seasonal dynamics of fungi were studied in an almond orchard in California where experimental release of the atoxigenic biopesticide Aspergillus flavus AF36 to displace toxigenic Aspergillus strains has been conducted for five years. The presence of the vegetative compatibility group (VCG) YV36, to which AF36 belongs, in the blossoms, and the honey bees that attend these blossoms, was assessed. In blossoms, A. flavus frequencies ranged from 0 to 4.5%, depending on the year of study. Frequencies of honey bees carrying A. flavus ranged from 6.5 to 10%. Only one A. flavus isolate recovered from a blossom in 2016 belonged to YV36, while members of the VCG were not detected contaminating honey bees. Exposure of pollinator honey bees to AF36 was detected to be very low. The density of several Aspergillus species was found to increase during almond hull split and throughout the final stages of maturation; this also occurred in pistachio orchards during the maturation period. Additionally, we found that AF36 effectively limited almond aflatoxin contamination in laboratory assays. This study provides knowledge and understanding of the seasonal dynamics of Aspergillus fungi and will help design aflatoxin management strategies for almond. The evidence of the low levels of VCG YV36 encountered on almond blossoms and bees during pollination and AF36's effectiveness in limiting aflatoxin contamination in almond provided additional support for the registration of AF36 with USEPA to use in almond in California.

  7. Photolysis of Cyclopiazonic Acid to Fluorescent Products

    USDA-ARS?s Scientific Manuscript database

    Cyclopiazonic acid (CPA) is a mycotoxin produced by some of the same species of fungi that produce the more widely known aflatoxins. As a consequence it has been found previously that CPA and the aflatoxins may co-occur in commodities under certain conditions. CPA, which is a substituted indole, h...

  8. A comparative rapid and sensitive method to screen l-asparaginase producing fungi.

    PubMed

    Dhale, Mohan A; Mohan-Kumari, H Puttananjaiah

    2014-07-01

    Fungi are well known to produce various industrial enzymes and secondary metabolites with different colours. Fungi producing l-asparaginase enzyme are conventionally screened on medium containing phenol red (PR). The contrast between enzyme-hydrolysed zone and unhydrolysed l-asparagine is not very evident and distinct in medium containing PR and bromothymol blue (BB) due to coloured secondary metabolite production. Thus, PR and BB limit and affect the detection and screening method. In the present investigation, an improved method for screening is reported by comparing with PR and BB, wherein methyl red (MR) is incorporated as pH indicator. The enzyme activity was distinctly observed (red and light-yellow) in MR incorporated medium compared to PR and BB. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. High Aflatoxin Production on a Chemically Defined Medium 1

    PubMed Central

    Reddy, T. V.; Viswanathan, L.; Venkitasubramanian, T. A.

    1971-01-01

    Aspergillus parasiticus ATCC 15517 produced 28 to 30 mg of aflatoxin per 100 ml of a medium containing sucrose, asparagine, and salts in stationary and shaken cultures. In the absence of asparagine in the medium, the toxin yields fell drastically, and the thin-layer chromatograms of the chloroform extracts of the cultures indicated the total absence of aflatoxin G1 and the presence of new intense blue and green fluorescent bands having RF values lower than aflatoxins. Initial pH was critical and had to be around 4.5 for good growth and high toxin production on this medium. Optimum concentrations of KH2PO4 and MgSO4·7H2O in the medium were much lower than those normally used in fungal growth media. PMID:5119206

  10. Genetic characterization of the maize lipoxygenase gene family in relation to aflatoxin accumuation resistance.

    USDA-ARS?s Scientific Manuscript database

    Maize (Zea mays L.) is a globally important staple food crop. It is prone to contamination by aflatoxin, a secondary carcinogenic metabolite produced by the fungus Aspergillus flavus. An efficient approach to combat the accumulation of aflatoxin is the development of germplasm resistant to infection...

  11. Prevalence of Aflatoxin Contamination in Herbs and Spices in Different Regions of Iran

    PubMed Central

    KHAZAELI, Payam; MEHRABANI, Mitra; HEIDARI, Mahmoud Reza; ASADIKARAM, Gholamreza; LARI NAJAFI, Moslem

    2017-01-01

    Background: Mycotoxins are natural toxins, produced by several fungal species and are associated with morbidity or even mortality in animals, plants, and humans. In this study, 120 samples of herbs and spices in both bulk and packaged forms were prepared in order to measure aflatoxin level in different regions of Iran Methods: The aflatoxin was extracted during Mar to May 2015, using 80% methanol and then purified via immunoaffinity column. Measurements were performed, using high-performance liquid chromatography, equipped with a fluorescence detection system at excitation and emission wavelengths of 365 and 435 nm, respectively. Results: The highest prevalence of aflatoxin contamination in food products was attributed to aflatoxin B1 (30.8%). In addition, the highest prevalence of aflatoxin contamination was reported in red pepper (100%). Examination of effective factors indicated the substantial impact of moisture on aflatoxin level (P=0.046). Conclusion: Even at low levels of aflatoxin, contamination could be a serious threat, given the prevalent use of spices (either raw or not) as ingredients in food preparation. Therefore, regular monitoring of spices, especially chili pepper, is highly recommended. PMID:29167773

  12. Manual sorting to eliminate aflatoxin from peanuts.

    PubMed

    Galvez, F C F; Francisco, M L D L; Villarino, B J; Lustre, A O; Resurreccion, A V A

    2003-10-01

    A manual sorting procedure was developed to eliminate aflatoxin contamination from peanuts. The efficiency of the sorting process in eliminating aflatoxin-contaminated kernels from lots of raw peanuts was verified. The blanching of 20 kg of peanuts at 140 degrees C for 25 min in preheated roasters facilitated the manual sorting of aflatoxin-contaminated kernels after deskinning. The manual sorting of raw materials with initially high aflatoxin contents (300 ppb) resulted in aflatoxin-free peanuts (i.e., peanuts in which no aflatoxin was detected). Verification procedures showed that the sorted sound peanuts contained no aflatoxin or contained low levels (<15 ppb) of aflatoxin. The results obtained confirmed that the sorting process was effective in separating contaminated peanuts whether or nor contamination was extensive. At the commercial level, when roasters were not preheated, the dry blanching of 50 kg of peanuts for 45 to 55 min facilitated the proper deskinning and subsequent manual sorting of aflatoxin-contaminated peanut kernels from sound kernels.

  13. Kinetics of aflatoxin degradation during peanut roasting.

    PubMed

    Martins, Ligia M; Sant'Ana, Anderson S; Iamanaka, Beatriz T; Berto, Maria Isabel; Pitt, John I; Taniwaki, Marta H

    2017-07-01

    This study investigated aflatoxin degradation during peanut roasting. First, peanuts contaminated with three initial aflatoxin concentrations (35, 332 and 695μg/kg) were roasted at 180°C for up to 20min. The percentage of aflatoxin degradation after 20min were 55, 64 and 81% for peanuts contaminated with aflatoxin at 35, 332 and 695μg/kg, respectively. This difference was statistically significant (p<0.05), showing that initial concentration influences aflatoxin reduction. Thereafter, peanut samples contaminated with an initial aflatoxin concentration of 85μg/kg were roasted at 160, 180 and 200°C for 5, 10, 15, 20 and 25min, then residual concentrations of aflatoxin were determined. Roasting at 160, 180 and 200°C resulted in an aflatoxin reduction of 61.6, 83.6 and 89.7%, respectively. This study has provided quantitative data reinforcing the fact that roasting alone is not enough to control aflatoxins in peanuts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Differentiation of volatile profiles of stockpiled almonds at varying relative humidity levels using benchtop and portable GC-MS

    USDA-ARS?s Scientific Manuscript database

    Contamination by aflatoxin, a toxic metabolite produced by Aspergillus fungi ubiquitous in California almond and pistachio orchards, results in millions of dollars of lost product annually. Current detection of aflatoxin relies on destructive, expensive and time-intensive laboratory-based methods. T...

  15. Natural postharvest aflatoxin occurrence in food legumes in the smallholder farming sector of Zimbabwe.

    PubMed

    Maringe, David Tinayeshe; Chidewe, Cathrine; Benhura, Mudadi Albert; Mvumi, Brighton Marimanzi; Murashiki, Tatenda Clive; Dembedza, Mavis Precious; Siziba, Lucia; Nyanga, Loveness Kuziwa

    2017-03-01

    Aflatoxins, mainly produced by Aspergillus flavus and Aspergillus parasiticus, are highly toxic and may lead to health problems such as liver cancer. Exposure to aflatoxins may result from ingestion of contaminated foods. Levels of AFB 1 , AFB 2 , AFG 1 and AFG 2 in samples of groundnuts (Arachis hypogaea), beans (Phaseolus vulgaris), cowpeas (Vigna unguiculata) and bambara nuts (Vigna subterranean) grown by smallholder farmers in Shamva and Makoni districts, Zimbabwe, were determined at harvesting, using high performance liquid chromatography after immunoaffinity clean-up. Aflatoxins were detected in 12.5% of groundnut samples with concentrations ranging up to 175.9 µg/kg. Aflatoxins were present in 4.3% of the cowpea samples with concentrations ranging from 1.4 to 103.4 µg/kg. Due to alarming levels of aflatoxins detected in legumes versus maximum permissible levels, there is a need to assist smallholder farmers to develop harvest control strategies to reduce contamination of aflatoxins in legumes.

  16. Fluorescence imaging spectroscopy (FIS) for comparing spectra from corn ears naturally and artificially infected with aflatoxin producing fungus.

    PubMed

    Hruska, Zuzana; Yao, Haibo; Kincaid, Russell; Darlington, Dawn; Brown, Robert L; Bhatnagar, Deepak; Cleveland, Thomas E

    2013-08-01

    In an effort to address the problem of rapid detection of aflatoxin in grain, particularly oilseeds, the current study assessed the spectral differences of aflatoxin production in kernels from a cornfield inoculated with spores from 2 different strains of toxigenic Aspergillus flavus. Aflatoxin production in corn from the same field due to natural infestation was also assessed. A small corn plot in Baton Rouge, La., U.S.A., was used during the 2008-growing season. Two groups of 400 plants were inoculated with 2 different inocula and 1 group of 400 plants was designated as controls. Any contamination detected in the controls was attributed to natural infestation. A subset of each group was imaged with a visible near infra red (VNIR) hyperspectral system under ultra violet (UV) excitation and subsequently analyzed for aflatoxin using affinity column fluorometry. Group differences were statistically analyzed. Results indicate that when all the spectral data across all groups were averaged, any potential differences between groups (treated and untreated) were obscured. However, spectral analysis based on contaminated "hot" pixel classification showed a distinct spectral shift/separation between contaminated and clean ears with fluorescence peaks at 501 and 478 nm, respectively. All inoculated and naturally infected control ears had fluorescence peaks at 501 nm that differed from uninfected corn ears. Results from this study may be useful in evaluating rapid, noninvasive instrumentation and/or methodology for aflatoxin detection in grain. © 2013 Institute of Food Technologists®

  17. Transformation of taxol-producing endophytic fungi by restriction enzyme-mediated integration (REMI).

    PubMed

    Wang, Yechun; Guo, Binhui; Miao, Zhiqi; Tang, Kexuan

    2007-08-01

    The REMI method was used to introduce the plasmid pV2 harboring the hygromycin B phosphotransferase (hph) gene controlled by the Aspergillus nidulans trpC promoter and the trpC terminator into a taxol-producing endophytic fungus BT2. REMI transformation yielded stable transformants capable of continuing to grow on PDA medium containing 125 mug mL(-1) hygromycin B. The transformation efficiency was about 5-6 transformants mug(-1) plasmid DNA. The presence of hph gene in transformants was confirmed by PCR and Southern blot analyses. To the authors' knowledge, this is the first report on the transformation of taxol-producing endophytic fungi by the REMI technique. This study provides an effective approach for improving taxol production of endophytic fungi by the genetic engineering of taxol biosynthetic pathway genes in the future.

  18. Population structure and aflatoxin production by Aspergillus Sect. Flavi from maize in Nigeria and Ghana.

    PubMed

    Perrone, Giancarlo; Haidukowski, Miriam; Stea, Gaetano; Epifani, Filomena; Bandyopadhyay, Ranajit; Leslie, John F; Logrieco, Antonio

    2014-08-01

    Aflatoxins are highly toxic carcinogens that contaminate crops worldwide. Previous studies conducted in Nigeria and Ghana found high concentrations of aflatoxins in pre- and post-harvest maize. However, little information is available on the population structure of Aspergillus Sect. Flavi in West Africa. We determined the incidence of Aspergillus Sect. Flavi and the level of aflatoxin contamination in 91 maize samples from farms and markets in Nigeria and Ghana. Aspergillus spp. were recovered from 61/91 maize samples and aflatoxins B1 and/or B2 occurred in 36/91 samples. Three samples from the farms also contained aflatoxin G1 and/or G2. Farm samples were more highly contaminated than were samples from the market, in terms of both the percentage of the samples contaminated and the level of mycotoxin contamination. One-hundred-and-thirty-five strains representative of the 1163 strains collected were identified by using a multilocus sequence analysis of portions of the genes encoding calmodulin, β-tubulin and actin, and evaluated for aflatoxin production. Of the 135 strains, there were 110 - Aspergillus flavus, 20 - Aspergillus tamarii, 2 - Aspergillus wentii, 2 - Aspergillus flavofurcatus, and 1 - Aspergillus parvisclerotigenus. Twenty-five of the A. flavus strains and the A. parvisclerotigenus strain were the only strains that produced aflatoxins. The higher contamination of the farm than the market samples suggests that the aflatoxin exposure of rural farmers is even higher than previously estimated based on reported contamination of market samples. The relative infrequency of the A. flavus SBG strains, producing small sclerotia and high levels of both aflatoxins (B and G), suggests that long-term chronic exposure to this mycotoxin are a much higher health risk in West Africa than is the acute toxicity due to very highly contaminated maize in east Africa. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Field ecology, fungal sex and food contamination involving Aspergillus species

    USDA-ARS?s Scientific Manuscript database

    Several species within the genus Aspergillus are capable of producing a myriad of toxic secondary metabolites, with aflatoxin being of most concern. These fungi happen to colonize important agricultural commodities, thereby having the potential to contaminate our food with carcinogenic aflatoxins. P...

  20. Distribution of Aspergillus section flavi in soils of maize fields in three agroecological zones of Nigeria

    USDA-ARS?s Scientific Manuscript database

    Fungal communities in soils of Nigerian maize fields were examined to determine distributions of aflatoxin-producing fungi and to identify endemic atoxigenic strains of potential value as biological control agents for limiting aflatoxin contamination in West African crops. Over 1,000 isolates belon...

  1. Characterization of the Maize Chitinase Genes and Their Effect on Aspergillus flavus and Aflatoxin Accumulation Resistance

    PubMed Central

    Hawkins, Leigh K.; Mylroie, J. Erik; Oliveira, Dafne A.; Smith, J. Spencer; Ozkan, Seval; Windham, Gary L.; Williams, W. Paul; Warburton, Marilyn L.

    2015-01-01

    Maize (Zea mays L.) is a crop of global importance, but prone to contamination by aflatoxins produced by fungi in the genus Aspergillus. The development of resistant germplasm and the identification of genes contributing to resistance would aid in the reduction of the problem with a minimal need for intervention by farmers. Chitinolytic enzymes respond to attack by potential pathogens and have been demonstrated to increase insect and fungal resistance in plants. Here, all chitinase genes in the maize genome were characterized via sequence diversity and expression patterns. Recent evolution within this gene family was noted. Markers from within each gene were developed and used to map the phenotypic effect on resistance of each gene in up to four QTL mapping populations and one association panel. Seven chitinase genes were identified that had alleles associated with increased resistance to aflatoxin accumulation and A. flavus infection in field grown maize. The chitinase in bin 1.05 identified a new and highly significant QTL, while chitinase genes in bins 2.04 and 5.03 fell directly beneath the peaks of previously published QTL. The expression patterns of these genes corroborate possible grain resistance mechanisms. Markers from within the gene sequences or very closely linked to them are presented to aid in the use of marker assisted selection to improve this trait. PMID:26090679

  2. Characterization of the Maize Chitinase Genes and Their Effect on Aspergillus flavus and Aflatoxin Accumulation Resistance.

    PubMed

    Hawkins, Leigh K; Mylroie, J Erik; Oliveira, Dafne A; Smith, J Spencer; Ozkan, Seval; Windham, Gary L; Williams, W Paul; Warburton, Marilyn L

    2015-01-01

    Maize (Zea mays L.) is a crop of global importance, but prone to contamination by aflatoxins produced by fungi in the genus Aspergillus. The development of resistant germplasm and the identification of genes contributing to resistance would aid in the reduction of the problem with a minimal need for intervention by farmers. Chitinolytic enzymes respond to attack by potential pathogens and have been demonstrated to increase insect and fungal resistance in plants. Here, all chitinase genes in the maize genome were characterized via sequence diversity and expression patterns. Recent evolution within this gene family was noted. Markers from within each gene were developed and used to map the phenotypic effect on resistance of each gene in up to four QTL mapping populations and one association panel. Seven chitinase genes were identified that had alleles associated with increased resistance to aflatoxin accumulation and A. flavus infection in field grown maize. The chitinase in bin 1.05 identified a new and highly significant QTL, while chitinase genes in bins 2.04 and 5.03 fell directly beneath the peaks of previously published QTL. The expression patterns of these genes corroborate possible grain resistance mechanisms. Markers from within the gene sequences or very closely linked to them are presented to aid in the use of marker assisted selection to improve this trait.

  3. Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi.

    PubMed

    Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Roepstorff, Peter; Boomsma, Jacobus J

    2010-12-31

    Leaf-cutting (attine) ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus Leucocoprinus gongylophorus that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets contain proteins that are produced by the fungal symbiont to pass unharmed through the digestive system of the ants, so they can enhance new fungus garden growth. We tested this hypothesis by using proteomics methods to determine the gene sequences of fecal proteins in Acromyrmex echinatior leaf-cutting ants. Seven (21%) of the 33 identified proteins were pectinolytic enzymes that originated from the fungal symbiont and which were still active in the fecal droplets produced by the ants. We show that these enzymes are found in the fecal material only when the ants had access to fungus garden food, and we used quantitative polymerase chain reaction analysis to show that the expression of six of these enzyme genes was substantially upregulated in the fungal gongylidia. These unique structures serve as food for the ants and are produced only by the evolutionarily advanced garden symbionts of higher attine ants, but not by the fungi reared by the basal lineages of this ant clade. Pectinolytic enzymes produced in the gongylidia of the fungal symbiont are ingested but not digested by Acromyrmex leaf-cutting ants so that they end up in the fecal fluid and become mixed with new garden substrate. Substantial quantities of pectinolytic enzymes are typically found in pathogenic fungi that attack live plant tissue, where they are known to breach the cell walls to allow the fungal mycelium access to the cell contents. As the leaf-cutting ant symbionts are derived from fungal clades that decompose dead plant material, our results suggest that their pectinolytic enzymes represent secondarily evolved adaptations that are convergent to those normally found in phytopathogens.

  4. Diversity of Mn oxides produced by Mn(II)-oxidizing fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santelli, Cara M.; Webb, Samuel M.; Dohnalkova, Alice

    Manganese (Mn) oxides are environmentally abundant, highly reactive mineral phases that mediate the biogeochemical cycling of nutrients, contaminants, carbon, and numerous other elements. Despite the belief that microorganisms (specifically bacteria and fungi) are responsible for the majority of Mn oxide formation in the environment, the impact of microbial species, physiology, and growth stage on Mn oxide formation is largely unresolved. Here, we couple microscopic and spectroscopic techniques to characterize the Mn oxides produced by four different species of Mn(II)-oxidizing Ascomycete fungi (Plectosphaerella cucumerina strain DS2psM2a2, Pyrenochaeta sp. DS3sAY3a, Stagonospora sp. SRC1lsM3a, and Acremonium strictum strain DS1bioAY4a) isolated from acid minemore » drainage treatment systems in central Pennsylvania. The site of Mn oxide formation varies greatly among the fungi, including deposition on hyphal surfaces, at the base of reproductive structures (e.g., fruiting bodies), and on envisaged extracellular polymers adjacent to the cell. The primary product of Mn(II) oxidation for all species growing under the same chemical and physical conditions is a nanoparticulate, poorly-crystalline hexagonal birnessite-like phase resembling synthetic d-MnO2. The phylogeny and growth conditions (planktonic versus surface-attached) of the fungi, however, impact the conversion of the initial phyllomanganate to more ordered phases, such as todorokite (A. strictum strain DS1bioAY4a) and triclinic birnessite (Stagonospora sp. SRC1lsM3a). Our findings reveal that the species of Mn(II)-oxidizing fungi impacts the size, morphology, and structure of Mn biooxides, which will likely translate to large differences in the reactivity of the Mn oxide phases.« less

  5. Microbial degradation of aflatoxin B1: Current status and future advances.

    PubMed

    Verheecke, C; Liboz, T; Mathieu, F

    2016-11-21

    Aflatoxin B1 (AFB1) is a natural toxin produced by many food-contaminant fungi and is a threat to human and animal health. This review summarizes current knowledge of the different ways to limit AFB1 in the food chain. We start by introducing current data and reviews available on the prevention of AFB1 occurrence, on AFB1 non-biological decontamination and biological adsorption. We then focus on microbial AFB1-degradation. The latter has already been well studied using living organisms, supernatants or purified enzymes. This review compiles information on the variety of protocols and the efficacy of the different sub-kingdoms or classes of microorganisms or their enzymes. We pay particular attention to publications closest to in vivo applications of microbial AFB1-degradation. In addition, this review also provides a summary of the currently known microbial degradation metabolites of AFB1 and their levels of toxicity, and provides recommendations on the most promising techniques to pursue the aim of minimizing ABF1 in the food supply. Copyright © 2016. Published by Elsevier B.V.

  6. Phytochemicals reduce aflatoxin-induced toxicity in chicken embryos

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins (AF) are toxic metabolites produced by molds, Aspergillus flavus and Aspergillus parasiticus, which frequently contaminate poultry feed ingredients. Ingestion of AF-contaminated feed by chickens leads to deleterious effects, including decreased bird performance and reduced egg production....

  7. Phytochemicals reduce aflatoxin-induced toxicity in chicken embryos

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins (AF) are toxic metabolites produced by molds, Aspergillus flavus and Aspergillus parasicitus, which frequently contaminate chicken feed ingredients. Ingestion of AF-contaminated feed by chickens leads to deleterious effects, including decreased chicken performance and reduced egg producti...

  8. Assessment of aflatoxigenic Aspergillus and other fungi in millet and sesame from Plateau State, Nigeria

    PubMed Central

    Ezekiel, C.N.; Udom, I.E.; Frisvad, J.C.; Adetunji, M.C.; Houbraken, J.; Fapohunda, S.O.; Samson, R.A.; Atanda, O.O.; Agi-Otto, M.C.; Onashile, O.A.

    2014-01-01

    Sixteen fonio millet and 17 sesame samples were analysed for incidence of moulds, especially aflatoxigenic Aspergillus species, in order to determine the safety of both crops to consumers, and to correlate aflatoxin levels in the crops with levels produced by toxigenic isolates on laboratory medium. Diverse moulds including Alternaria, Aspergillus, Cercospora, Fusarium, Mucor, Penicillium, Rhizopus and Trichoderma were isolated. Aspergillus was predominantly present in both crops (46–48%), and amongst the potentially aflatoxigenic Aspergillus species, A. flavus recorded the highest incidence (68% in fonio millet; 86% in sesame kernels). All A. parvisclerotigenus isolates produced B and G aflatoxins in culture while B aflatoxins were produced by only 39% and 20% of A. flavus strains isolated from the fonio millet and sesame kernels, respectively. Aflatoxin concentrations in fonio millet correlated inversely (r = −0.55; p = 0.02) with aflatoxin levels produced by toxigenic isolates on laboratory medium, but no correlation was observed in the case of the sesame samples. Both crops, especially sesame, may not be suitable substrates for aflatoxin biosynthesis. This is the first report on A. parvisclerotigenus in sesame. PMID:24772370

  9. The first report of A. novoparasiticus, A. arachidicola and A. pseudocaelatus in Brazilian corn kernels.

    PubMed

    Viaro, Helena Paula; da Silva, Josué José; de Souza Ferranti, Larissa; Bordini, Jaqueline Gozzi; Massi, Fernanda Pelisson; Fungaro, Maria Helena Pelegrinelli

    2017-02-21

    Maize is one of the most important commercial crops cultivated throughout the world, mostly in tropical and subtropical countries. It is highly susceptible to mycotoxins, toxic secondary metabolites produced by fungi. In this study, we assessed freshly harvested corn produced in Brazil for aflatoxin contamination and the presence of Aspergillus. B type aflatoxins (AFB 1 +AFB 2 ) were detected in 56% of 16 grain samples, while G type aflatoxins (AFG 1 +AFG 2 ) were detected in 25%. Of the total number of grains (n=1920) evaluated for the presence of fungi species, 4.7% were infected with Aspergillus species, 74.5% and 16.7% respectively with Fusarium and Penicillium species and 4.1% with other fungi genera. In total, 89 Aspergillus isolates were identified, most (86 isolates) characterized as belonging to Aspergillus section Flavi, and the remainder to Aspergillus section Cremei (2 isolates) and Aspergillus section Terrei (1 isolate). All the isolates of section Flavi were subjected to molecular analysis. They were found to belong to six species, including Aspergillus novoparasiticus, Aspergillus arachidicola and Aspergillus pseudocaelatus, all aflatoxins B and G producing species, which are herein described for the first time infecting corn kernels. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Efficacy of a biopesticide for control of aflatoxins in corn.

    PubMed

    Dorner, Joe W

    2010-03-01

    A 2-year study was carried out to determine the efficacy of a biopesticide in reducing aflatoxin contamination in corn. The biopesticide, afla-guard, delivers a nontoxigenic strain of Aspergillus flavus to the field where it competes with naturally occurring toxigenic strains of the fungus. Afla-guard was applied to entire fields in two areas of Texas at either 11.2 or 22.4 kg/ha. Specific nontreated fields in close proximity to treated fields were designated as controls. Samples of corn were collected at harvest and analyzed for aflatoxins and density of toxigenic and nontoxigenic isolates of A. flavus. Aflatoxin concentrations were generally quite low in 2007, but the mean concentration in treated samples (0.5 ppb) was reduced by 85% compared with controls (3.4 ppb). In 2008, samples from treated and control fields averaged 1.5 and 12.4 ppb, respectively, an 88% reduction. There were no significant differences between the two afla-guard application rates. In conjunction with the reductions in aflatoxin contamination, treatments produced significant reductions in the incidence of toxigenic isolates of A. flavus in corn.

  11. 7 CFR 983.150 - Aflatoxin regulations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA... handler shall ship for domestic human consumption, pistachios that exceed an aflatoxin level of 15 ppb... covered by an aflatoxin inspection certificate. Pistachios that fail to meet the aflatoxin requirements...

  12. A review on the inhibitory potential of Nigella sativa against pathogenic and toxigenic fungi.

    PubMed

    Shokri, Hojjatollah

    2016-01-01

    Nigella sativa (N. sativa) grows in various parts of the world, particularly in Iran. It has been traditionally used as a folk remedy to treat a number of diseases. The seeds of this plant contain moisture, proteins, carbohydrates, crude fiber, alkaloids, saponins, ash, fixed oils and essential oil. The major components of the essential oil are thymoquinone, p-cymene, trans-anethole, 2-methyl-5(1-methyl ethyl)-Bicyclo[3.1.0]hex-2-en and γ-terpinene. So far, several pharmacological effects such as anti-oxidant, anti-inflammatory, anti-cancer and anti-microbial have been reported for N. sativa or its active compounds. Thymoquinone, thymohydroquinone and thymol are the most active constituents which have different beneficial properties. The oil, extracts and some of N. sativa active components possessed moderate in vitro and in vivo inhibitory activity against pathogenic yeasts, dermatophytes, non-dermatophytic filamentous fungi and aflatoxin-producing fungi. The main morphological changes of pathogenic and toxigenic fungi treated with N. sativa oil were observed in the cell wall, plasma membrane and membranous organelles, particularly in the nuclei and mitochondria. Although this review represents first step in the search for a new anti-fungal drug, the full potential of N. sativa as a fungitoxic agent has not been exploited and necessitates further investigations.

  13. Characterization and competitive ability of non-aflatoxigenic Aspergillus flavus isolated from the maize agro-ecosystem in Argentina as potential aflatoxin biocontrol agents.

    PubMed

    Alaniz Zanon, María Silvina; Clemente, María Paz; Chulze, Sofía Noemí

    2018-07-20

    Aspergillus flavus is an opportunistic pathogen and may produce aflatoxins in maize, one of the most important crops in Argentina. A promising strategy to reduce aflatoxin accumulation is the biological control based on competitive exclusion. In order to select potential biocontrol agents among isolates from the maize growing region in Argentina, a total of 512 A. flavus strains were isolated from maize kernels and soil samples. Thirty-six per cent of the isolates from maize kernels did not produce detectable levels of aflatoxins, while 73% of the isolates from soil were characterized as non-aflatoxin producers. Forty percent and 49% of the isolates from maize kernels and soil samples, respectively, were not producers of cyclopiazonic acid (CPA). Sclerotia morphology was evaluated using Czapek Dox media. Eighty-six per cent of the isolates from maize kernels and 85% of the isolates from soil samples were L sclerotia morphotype (average diameter > 400 μm). The remaining isolates did not produce sclerotia. All isolates had MAT 1-1 idiomorph. The competitive ability of 9 non aflatoxigenic strains, 4 CPA(+) and 5 CPA(-), was evaluated in co-inoculations of maize kernels with an aflatoxigenic strain. All evaluated strains significantly (p < 0.05) reduced aflatoxin contamination in maize kernels. The aflatoxin B 1 (AFB 1 ) reduction ranged from 6 to 60%. The strain A. flavus ARG5/30 isolated from maize kernels would be a good candidate as a potential biocontrol agent to be used in maize, since it was characterized as neither aflatoxin nor CPA producer, morphotype L, MAT 1-1 idiomorph, and reduced AFB 1 content in maize kernels by 59%. This study showed the competitive ability of potential aflatoxin biocontrol agents to be evaluated under field trials in a maize agro-ecosystem in Argentina. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. The proportion of non-aflatoxigenic strains of the Aspergillus flavus/oryzae complex from meju by analyses of the aflatoxin biosynthetic genes.

    PubMed

    Hong, Seung-Beom; Lee, Mina; Kim, Dae-Ho; Chung, Soo-Hyun; Shin, Hyeon-Dong; Samson, Robert A

    2013-12-01

    Strains of the Aspergillus flavus/oryzae complex are frequently isolated from meju, a fermented soybean product, that is used as the starting material for ganjang (soy sauce) and doenjang (soybean paste) production. In this study, we examined the aflatoxin producing capacity of A. flavus/oryzae strains isolated from meju. 192 strains of A. flavus/oryzae were isolated from more than 100 meju samples collected from diverse regions of Korea from 2008 to 2011, and the norB-cypA, omtA, and aflR genes in the aflatoxin biosynthesis gene cluster were analyzed. We found that 178 strains (92.7%) belonged to non-aflatoxigenic group (Type I of norB-cypA, IB-L-B-, IC-AO, or IA-L-B- of omtA, and AO type of aflR), and 14 strains (7.3%) belonged to aflatoxin-producible group (Type II of norB-cypA, IC-L-B+/B- or IC-L-B+ of omtA, and AF type of aflR). Only 7 strains (3.6%) in the aflatoxin-producible group produced aflatoxins on Czapek yeast-extract medium. The aflatoxin-producing capability of A. flavus/oryzae strains from other sources in Korea were also investigated, and 92.9% (52/56) strains from air, 93.9% (31/33) strains from rice straw, 91.7% (11/12) strains from soybean, 81.3% (13/16) strains from corn, 82% (41/50) strains from peanut, and 73.2% (41/56) strains from arable soil were included in the non-aflatoxigenic group. The proportion of non-aflatoxigenicity of meju strains was similar to that of strains from soybean, air and rice straw, all of which have an effect on the fermentation of meju. The data suggest that meju does not have a preference for non-aflatoxigenic or aflatoxin-producible strains of A. flavus/oryzae from the environment of meju. The non-aflatoxigenic meju strains are proposed to be named A. oryzae, while the meju strains that can produce aflatoxins should be referred to A. flavus in this study.

  15. Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi.

    PubMed

    Proctor, Robert H; McCormick, Susan P; Kim, Hye-Seon; Cardoza, Rosa E; Stanley, April M; Lindo, Laura; Kelly, Amy; Brown, Daren W; Lee, Theresa; Vaughan, Martha M; Alexander, Nancy J; Busman, Mark; Gutiérrez, Santiago

    2018-04-01

    Trichothecenes are a family of terpenoid toxins produced by multiple genera of fungi, including plant and insect pathogens. Some trichothecenes produced by the fungus Fusarium are among the mycotoxins of greatest concern to food and feed safety because of their toxicity and frequent occurrence in cereal crops, and trichothecene production contributes to pathogenesis of some Fusarium species on plants. Collectively, fungi produce over 150 trichothecene analogs: i.e., molecules that share the same core structure but differ in patterns of substituents attached to the core structure. Here, we carried out genomic, phylogenetic, gene-function, and analytical chemistry studies of strains from nine fungal genera to identify genetic variation responsible for trichothecene structural diversity and to gain insight into evolutionary processes that have contributed to the variation. The results indicate that structural diversity has resulted from gain, loss, and functional changes of trichothecene biosynthetic (TRI) genes. The results also indicate that the presence of some substituents has arisen independently in different fungi by gain of different genes with the same function. Variation in TRI gene duplication and number of TRI loci was also observed among the fungi examined, but there was no evidence that such genetic differences have contributed to trichothecene structural variation. We also inferred ancestral states of the TRI cluster and trichothecene biosynthetic pathway, and proposed scenarios for changes in trichothecene structures during divergence of TRI cluster homologs. Together, our findings provide insight into evolutionary processes responsible for structural diversification of toxins produced by pathogenic fungi.

  16. Detection of aflatoxin and surface mould contaminated figs by using Fourier transform near-infrared reflectance spectroscopy.

    PubMed

    Durmuş, Efkan; Güneş, Ali; Kalkan, Habil

    2017-01-01

    Aflatoxins are toxic metabolites that are mainly produced by members of the Aspergillus section Flavi on many agricultural products. Certain agricultural products such as figs are known to be high risk products for aflatoxin contamination. Aflatoxin contaminated figs may show a bright greenish yellow fluorescence (BGYF) under ultraviolet (UV) light at a wavelength of 365 nm. Traditionally, BGYF positive figs are manually selected by workers. However, manual selection depends on the expertise level of the workers and it may cause them skin-related health problems due to UV radiation. In this study, we propose a non-invasive approach to detect aflatoxin and surface mould contaminated figs by using Fourier transform near-infrared (FT-NIR) reflectance spectroscopy. A classification accuracy of 100% is achieved for classifying the figs into aflatoxin contaminated/uncontaminated and surface mould contaminated/uncontaminated categories. In addition, a strong correlation has been found between aflatoxin and surface mould. Combined with pattern classification methods, the NIR spectroscopy can be used to detect aflatoxin contaminated figs non-invasively. Furthermore, a positive correlation between surface mould and aflatoxin contamination leads to a promising alternative indicator for the detection of aflatoxin-contaminated figs. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Mycobiota of ground red pepper and their aflatoxigenic potential.

    PubMed

    Ham, Hyeonheui; Kim, Sosoo; Kim, Min-Hee; Lee, Soohyung; Hong, Sung Kee; Ryu, Jae-Gee; Lee, Theresa

    2016-12-01

    To investigate contamination of ground red pepper with fungi and mycotoxin, we obtained 30 ground red pepper samples from 15 manufacturers in the main chili-pepper-producing areas in Korea. Fungal contamination was evaluated by spreading diluted samples on potato dextrose agar plates. The total fungi counts ranged from 0 to 7.3 × 10 3 CFU/g. In the samples, the genus Aspergillus had the highest incidence, while Paecilomyces was isolated most frequently. The next most frequent genera were Rhizopus, Penicillium, Cladosporium, and Alternaria. Within Aspergillus, A. ruber was predominant, followed by A. niger, A. amstelodami, A. ochraceus, A. terreus, A. versicolor, A. flavus, and A. fumigatus. The samples were analyzed for aflatoxins, ochratoxin A, and citrinin by ultra-perfomance liquid chromatography (UPLC) with a fluorescence detector. Ochratoxin A was detected from three samples at 1.03‒2.08 μg/kg, whereas no aflatoxins or citrinin were detected. To test the potential of fungal isolates to produce aflatoxin, we performed a PCR assay that screened for the norB-cypA gene for 64 Aspergillus isolates. As a result, a single 800-bp band was amplified from 10 A. flavus isolates, and one Aspergillus sp. isolate. UPLC analyses confirmed aflatoxin production by nine A. flavus isolates and one Aspergillus sp. isolate, which produced total aflatoxins at 146.88‒909.53 μg/kg. This indicates that continuous monitoring of ground red pepper for toxigenic fungi is necessary to minimize mycotoxin contamination.

  18. Screening a strain of Aspergillus niger and optimization of fermentation conditions for degradation of aflatoxin B₁.

    PubMed

    Zhang, Wei; Xue, Beibei; Li, Mengmeng; Mu, Yang; Chen, Zhihui; Li, Jianping; Shan, Anshan

    2014-11-13

    Aflatoxin B₁, a type of highly toxic mycotoxin produced by some species belonging to the Aspergillus genus, such as Aspergillus flavus and Aspergillus parasiticus, is widely distributed in feed matrices. Here, coumarin was used as the sole carbon source to screen microorganism strains that were isolated from types of feed ingredients. Only one isolate (ND-1) was able to degrade aflatoxin B₁ after screening. ND-1 isolate, identified as a strain of Aspergillus niger using phylogenetic analysis on the basis of 18S rDNA, could remove 26.3% of aflatoxin B₁ after 48 h of fermentation in nutrient broth (NB). Optimization of fermentation conditions for aflatoxin B₁ degradation by selected Aspergillus niger was also performed. These results showed that 58.2% of aflatoxin B₁ was degraded after 24 h of culture under the optimal fermentation conditions. The aflatoxin B₁ degradation activity of Aspergillus niger supernatant was significantly stronger than cells and cell extracts. Furthermore, effects of temperature, heat treatment, pH, and metal ions on aflatoxin B₁ degradation by the supernatant were examined. Results indicated that aflatoxin B₁ degradation of Aspergillus niger is enzymatic and this process occurs in the extracellular environment.

  19. Characterization of small RNA populations in non-transgenic and aflatoxin-reducing-transformed peanut.

    PubMed

    Power, Imana L; Dang, Phat M; Sobolev, Victor S; Orner, Valerie A; Powell, Joseph L; Lamb, Marshall C; Arias, Renee S

    2017-04-01

    Aflatoxin contamination is a major constraint in food production worldwide. In peanut (Arachis hypogaea L.), these toxic and carcinogenic aflatoxins are mainly produced by Aspergillus flavus Link and A. parasiticus Speare. The use of RNA interference (RNAi) is a promising method to reduce or prevent the accumulation of aflatoxin in peanut seed. In this study, we performed high-throughput sequencing of small RNA populations in a control line and in two transformed peanut lines that expressed an inverted repeat targeting five genes involved in the aflatoxin-biosynthesis pathway and that showed up to 100% less aflatoxin B 1 than the controls. The objective was to determine the putative involvement of the small RNA populations in aflatoxin reduction. In total, 41 known microRNA (miRNA) families and many novel miRNAs were identified. Among those, 89 known and 10 novel miRNAs were differentially expressed in the transformed lines. We furthermore found two small interfering RNAs derived from the inverted repeat, and 39 sRNAs that mapped without mismatches to the genome of A. flavus and were present only in the transformed lines. This information will increase our understanding of the effectiveness of RNAi and enable the possible improvement of the RNAi technology for the control of aflatoxins. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Evaluation of maize inbred lines for resistance to pre-harvest aflatoxin and fumonisin contamination in the field

    USDA-ARS?s Scientific Manuscript database

    Two important mycotoxins, aflatoxin and fumonisin, are among the most potent naturally occurring carcinogens, contaminating maize (Zea mays L.) and affecting the crop yield and quality. Resistance of maize to pre-harvest mycotoxin contamination, specifically aflatoxin produced by Aspergillus flavus ...

  1. Lysine Succinylation Contributes to Aflatoxin Production and Pathogenicity in Aspergillus flavus*

    PubMed Central

    Ren, Silin; Yang, Mingkun; Yue, Yuewei; Ge, Feng; Li, Yu; Guo, Xiaodong; Zhang, Jia; Zhang, Feng; Nie, Xinyi; Wang, Shihua

    2018-01-01

    Aspergillus flavus (A. flavus) is a ubiquitous saprophytic and pathogenic fungus that produces the aflatoxin carcinogen, and A. flavus can have tremendous economic and health impacts worldwide. Increasing evidence demonstrates that lysine succinylation plays an important regulatory role in metabolic processes in both bacterial and human cells. However, little is known about the extent and function of lysine succinylation in A. flavus. Here, we performed a global succinylome analysis of A. flavus using high accuracy nano-LC-MS/MS in combination with the enrichment of succinylated peptides from digested cell lysates and subsequent peptide identification. In total, 985 succinylation sites on 349 succinylated proteins were identified in this pathogen. Bioinformatics analysis revealed that the succinylated proteins were involved in various biological processes and were particularly enriched in the aflatoxin biosynthesis process. Site-specific mutagenesis and biochemical studies showed that lysine succinylation on the norsolorinic acid reductase NorA (AflE), a key enzyme in aflatoxins biosynthesis, can affect the production of sclerotia and aflatoxins biosynthesis in A. flavus. Together, our findings reveal widespread roles for lysine succinylation in regulating metabolism and aflatoxins biosynthesis in A. flavus. Our data provide a rich resource for functional analyses of lysine succinylation and facilitate the dissection of metabolic networks in this pathogen. PMID:29298838

  2. Interaction of Wild Strains of Aspergilla with Aspergillus parasiticus ATCC15517 and Aflatoxin Production †

    PubMed Central

    Martins, H. Marina; Almeida, Inês; Marques, Marta; Bernardo, Fernando

    2008-01-01

    Aflatoxins are secondary metabolites produced by some competent mould strains of Aspergillus flavus, A. parasiticus and A. nomius. These compounds have been extensively studied with regards to their toxicity for animals and humans; they are able to induce liver cancer and may cause a wide range of adverse effects in living organisms. Aflatoxins are found as natural contaminants of food and feed; the main line of the strategy to control them is based on the prevention of the mould growth in raw vegetable or during its storage and monitoring of each crop batch. Mould growth is conditioned by many ecological factors, including biotic ones. Hazard characterization models for aflatoxins in crops must take into consideration biotic interactions between moulds and their potential effects on growth development. The aim of this work is to study the effect of the biotic interaction of 14 different wild strains of Aspergilla (different species), with a competent strain (Aspergillus parasiticus ATCC 15517) using an in vitro production model. The laboratory model used was a natural matrix (humidified cracked corn), on which each wild strain challenged the aflatoxin production of a producer strain. Cultures were incubated at 28°C for 12 days and sampled at the 8th and 12th. Aflatoxin detection and quantification was performed by HPLC using a procedure with a MRPL = 1 μg/kg. Results of those interactive cultures revealed both synergic and antagonistic effects on aflatoxin biosynthesis. Productivity increases were particularly evident on the 8th day of incubation with wild strains of A. flavipes (+ 70.4 %), A. versicolor (+ 54.9 %) and A. flavus 3 (+ 62.6 %). Antagonistic effects were found with A. niger (− 69.5%), A. fumigatus (− 47.6 %) and A. terreus (− 47.6 %) on the 12th day. The increased effects were more evident on the 8th of incubation and the decreases were more patent on the 12th day. Results show that the development of Aspergilla strains concomitantly with

  3. Evaluation of different genotypes of nontoxigenic Aspergillus flavus for their ability to reduce aflatoxin contamination in peanuts

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins produced by the fungus Aspergillus flavus are potent carcinogens and account for large monetary losses worldwide in peanuts, maize and cottonseed. Biological control in which a nontoxigenic strain of A. flavus is applied to crops at high concentrations effectively reduces aflatoxins thro...

  4. Caffeine inhibition of aflatoxin production: mode of action.

    PubMed Central

    Buchanan, R L; Hoover, D G; Jones, S B

    1983-01-01

    Evaluation of caffeine and a number of related methylxanthines indicated that the ability of the compound to inhibit growth and aflatoxin production by Aspergillus parasiticus is highly specific and does not involve an inhibition of cyclic AMP phosphodiesterase. Supplementation of the culture medium with purine bases, nucleosides, and nucleotides suggested that the inhibition of fungal growth could be partially overcome by adenine or guanine but that the purines had little effect on the inhibition of aflatoxin production. Likewise, increasing the levels of trace minerals did not overcome the inhibition of toxin production. Electron microscopic evaluation of caffeine-treated and -untreated cultures indicated that the compound produced observable changes in the ultrastructure of the fungus. Images PMID:6316853

  5. Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi

    PubMed Central

    McCormick, Susan P.; Lee, Theresa; Vaughan, Martha M.; Alexander, Nancy J.; Busman, Mark

    2018-01-01

    Trichothecenes are a family of terpenoid toxins produced by multiple genera of fungi, including plant and insect pathogens. Some trichothecenes produced by the fungus Fusarium are among the mycotoxins of greatest concern to food and feed safety because of their toxicity and frequent occurrence in cereal crops, and trichothecene production contributes to pathogenesis of some Fusarium species on plants. Collectively, fungi produce over 150 trichothecene analogs: i.e., molecules that share the same core structure but differ in patterns of substituents attached to the core structure. Here, we carried out genomic, phylogenetic, gene-function, and analytical chemistry studies of strains from nine fungal genera to identify genetic variation responsible for trichothecene structural diversity and to gain insight into evolutionary processes that have contributed to the variation. The results indicate that structural diversity has resulted from gain, loss, and functional changes of trichothecene biosynthetic (TRI) genes. The results also indicate that the presence of some substituents has arisen independently in different fungi by gain of different genes with the same function. Variation in TRI gene duplication and number of TRI loci was also observed among the fungi examined, but there was no evidence that such genetic differences have contributed to trichothecene structural variation. We also inferred ancestral states of the TRI cluster and trichothecene biosynthetic pathway, and proposed scenarios for changes in trichothecene structures during divergence of TRI cluster homologs. Together, our findings provide insight into evolutionary processes responsible for structural diversification of toxins produced by pathogenic fungi. PMID:29649280

  6. Reduction of aflatoxin production by Aspergillus flavus and Aspergillus parasiticus in interaction with Streptomyces.

    PubMed

    Verheecke, C; Liboz, T; Anson, P; Diaz, R; Mathieu, F

    2015-05-01

    The aim of this study is to investigate aflatoxin gene expression during Streptomyces-Aspergillus interaction. Aflatoxins are carcinogenic compounds produced mainly by Aspergillus flavus and Aspergillus parasiticus. A previous study has shown that Streptomyces-A. flavus interaction can reduce aflatoxin content in vitro. Here, we first validated this same effect in the interaction with A. parasiticus. Moreover, we showed that growth reduction and aflatoxin content were correlated in A. parasiticus but not in A. flavus. Secondly, we investigated the mechanisms of action by reverse-transcriptase quantitative PCR. As microbial interaction can lead to variations in expression of household genes, the most stable [act1, βtub (and cox5 for A. parasiticus)] were chosen using geNorm software. To shed light on the mechanisms involved, we studied during the interaction the expression of five genes (aflD, aflM, aflP, aflR and aflS). Overall, the results of aflatoxin gene expression showed that Streptomyces repressed gene expression to a greater level in A. parasiticus than in A. flavus. Expression of aflR and aflS was generally repressed in both Aspergillus species. Expression of aflM was repressed and was correlated with aflatoxin B1 content. The results suggest that aflM expression could be a potential aflatoxin indicator in Streptomyces species interactions. Therefore, we demonstrate that Streptomyces can reduce aflatoxin production by both Aspergillus species and that this effect can be correlated with the repression of aflM expression. © 2015 The Authors.

  7. Development of an enzyme-linked immunosorbent assay method specific for the detection of G-group aflatoxins

    USDA-ARS?s Scientific Manuscript database

    To detect and monitor G-group aflatoxins in agricultural products, we generated class-specific monoclonal antibodies that specifically recognized aflatoxins G1 and G2. Of the final three positive and stable hybridomas obtained, hybridoma 2G6 produced a monoclonal antibody that did not cross-react wi...

  8. Evaluation of atoxigenic isolates of Aspergillus flavus as potential biocontrol agents for aflatoxin in maize.

    PubMed

    Atehnkeng, J; Ojiambo, P S; Ikotun, T; Sikora, R A; Cotty, P J; Bandyopadhyay, R

    2008-10-01

    Aflatoxin contamination resulting from maize infection by Aspergillus flavus is both an economic and a public health concern. Therefore, strategies for controlling aflatoxin contamination in maize are being investigated. The abilities of eleven naturally occurring atoxigenic isolates in Nigeria to reduce aflatoxin contamination in maize were evaluated in grain competition experiments and in field studies during the 2005 and 2006 growing seasons. Treatments consisted of inoculation of either grains in vials or ears at mid-silking stage in field plots, with the toxigenic isolate (La3228) or atoxigenic isolate alone and co-inoculation of each atoxigenic isolate and La3328. Aflatoxin B(1) + B(2) concentrations were significantly (p < 0.05) lower in the co-inoculation treatments compared with the treatment in which the aflatoxin-producing isolate La3228 was inoculated alone. Relative levels of aflatoxin B(1) + B(2) reduction ranged from 70.1% to 99.9%. Among the atoxigenics, two isolates from Lafia, La3279 and La3303, were most effective at reducing aflatoxin B(1) + B(2) concentrations in both laboratory and field trials. These two isolates have potential value as agents for the biocontrol of aflatoxin contamination in maize. Because these isolates are endemic to West Africa, they are both more likely than introduced isolates to be well adapted to West African environments and to meet regulatory concerns over their use throughout that region.

  9. Aflatoxin exposure during the first 1000 days of life in rural South Asia assessed by aflatoxin B₁-lysine albumin biomarkers.

    PubMed

    Groopman, John D; Egner, Patricia A; Schulze, Kerry J; Wu, Lee S-F; Merrill, Rebecca; Mehra, Sucheta; Shamim, Abu A; Ali, Hasmot; Shaikh, Saijuddin; Gernand, Alison; Khatry, Subarna K; LeClerq, Steven C; West, Keith P; Christian, Parul

    2014-12-01

    Aflatoxin B1 is a potent carcinogen, occurring from mold growth that contaminates staple grains in hot, humid environments. In this investigation, aflatoxin B1-lysine albumin biomarkers were measured by mass spectrometry in rural South Asian women, during the first and third trimester of pregnancy, and their children at birth and at two years of age. These subjects participated in randomized community trials of antenatal micronutrient supplementation in Sarlahi District, southern Nepal and Gaibandha District in northwestern Bangladesh. Findings from the Nepal samples demonstrated exposure to aflatoxin, with 94% detectable samples ranging from 0.45 to 2939.30 pg aflatoxin B1-lysine/mg albumin during pregnancy. In the Bangladesh samples the range was 1.56 to 63.22 pg aflatoxin B1-lysine/mg albumin in the first trimester, 3.37 to 72.8 pg aflatoxin B1-lysine/mg albumin in the third trimester, 4.62 to 76.69 pg aflatoxin B1-lysine/mg albumin at birth and 3.88 to 81.44 pg aflatoxin B1-lysine/mg albumin at age two years. Aflatoxin B1-lysine adducts in cord blood samples demonstrated that the fetus had the capacity to convert aflatoxin into toxicologically active compounds and the detection in the same 2-year-old children illustrates exposure over the first 1000 days of life. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application - A review.

    PubMed

    Udomkun, Patchimaporn; Wiredu, Alexander Nimo; Nagle, Marcus; Müller, Joachim; Vanlauwe, Bernard; Bandyopadhyay, Ranajit

    2017-06-01

    Aflatoxins are mainly produced by certain strains of Aspergillus flavus , which are found in diverse agricultural crops. In many lower-income countries, aflatoxins pose serious public health issues since the occurrence of these toxins can be considerably common and even extreme. Aflatoxins can negatively affect health of livestock and poultry due to contaminated feeds. Additionally, they significantly limit the development of international trade as a result of strict regulation in high-value markets. Due to their high stability, aflatoxins are not only a problem during cropping, but also during storage, transport, processing, and handling steps. Consequently, innovative evidence-based technologies are urgently required to minimize aflatoxin exposure. Thus far, biological control has been developed as the most innovative potential technology of controlling aflatoxin contamination in crops, which uses competitive exclusion of toxigenic strains by non-toxigenic ones. This technology is commercially applied in groundnuts maize, cottonseed, and pistachios during pre-harvest stages. Some other effective technologies such as irradiation, ozone fumigation, chemical and biological control agents, and improved packaging materials can also minimize post-harvest aflatoxins contamination in agricultural products. However, integrated adoption of these pre- and post-harvest technologies is still required for sustainable solutions to reduce aflatoxins contamination, which enhances food security, alleviates malnutrition, and strengthens economic sustainability.

  11. Spices Mycobiota and Mycotoxins Available in Saudi Arabia and Their Abilities to Inhibit Growth of Some Toxigenic Fungi

    PubMed Central

    2007-01-01

    The prevalence and population density of the mycobiota of 50 samples belonging to 10 kinds of spices (anise, black pepper, red pepper, black cumin, peppermint, cardamom, clove, cumin, ginger and marjoram) which collected from different places in Jeddah Governorate were studied. The natural occurrence of mycotoxins in those samples was also investigated. Fifteen genera and thirty - one species of fungi in addition to one species variety were isolated and identified during this study. The most common genera were Aspergillus, Penicillium and Fusarium. Aflatoxins (12~40 µg/kg) were detected in the extract of 5 samples of each of anise seeds and black pepper fruits; three samples of black cumin seeds and on sample only of each of peppermint and marjoram leaves out of 5 samples tested of each. Sterigmatocystin (15~20 µg/kg) was detected in some samples of red pepper, cumin and marjoram. The inhibitory effects of 10 kinds of powdered spices were tested against 3 toxigenic isolates of fungi (Aspergillus flavus, A. versicolor and Penicillium citrinum). Clove proved to be antimycotic compounds. It inhibited the growth of the tested toxigenic fungi. Black pepper, peppermint, cardamom, cumin and marjoram completely inhibited aflatoxins production, while black pepper and cardamom also completely inhibited sterigmatocystin production. PMID:24015069

  12. Ochratoxigenic fungi associated with green coffee beans (Coffea arabica L.) in conventional and organic cultivation in Brazil.

    PubMed

    de Fátima Rezende, Elisângela; Borges, Josiane Gonçalves; Cirillo, Marcelo Ângelo; Prado, Guilherme; Paiva, Leandro Carlos; Batista, Luís Roberto

    2013-01-01

    The genera Aspergillus comprises species that produce mycotoxins such as aflatoxins, ochratoxins and patulin. These are cosmopolitan species, natural contaminants of agricultural products. In coffee grains, the most important Aspergillus species in terms of the risk of presenting mycotoxins belong to the genera Aspergillus Section Circumdati and Section Nigri. The purpose of this study was to assess the occurrence of isolated ochratoxigenic fungi of coffee grains from organic and conventional cultivation from the South of Minas Gerais, Brazil, as well as to evaluate which farming system presents higher contamination risk by ochratoxin A (OTA) produced by fungi. Thirty samples of coffee grains (Coffea arabica L.) were analysed, being 20 of them of conventional coffee grains and 10 of them organic. The microbiological analysis was done with the Direct Plating Technique in a Dichloran Rose Bengal Chloramphenicol Agar (DRBC) media. The identification was done based on the macro and micro morphological characteristics and on the toxigenic potential with the Plug Agar technique. From the 30 samples analysed, 480 filamentous fungi of the genera Aspergillus of the Circumdati and Nigri Sections were isolated. The ochratoxigenic species identified were: Aspergillus auricoumus, A. ochraceus, A. ostianus, A. niger and A. niger Aggregate. The most frequent species which produces ochratoxin A among the isolated ones was A. ochraceus, corresponding to 89.55%. There was no significant difference regarding the presence of ochratoxigenic A. ochreceus between the conventional and organic cultivation systems, which suggests that the contamination risk is similar for both cultivation systems.

  13. Ochratoxigenic fungi associated with green coffee beans (Coffea arabica L.) in conventional and organic cultivation in Brazil

    PubMed Central

    de Fátima Rezende, Elisângela; Borges, Josiane Gonçalves; Cirillo, Marcelo Ângelo; Prado, Guilherme; Paiva, Leandro Carlos; Batista, Luís Roberto

    2013-01-01

    The genera Aspergillus comprises species that produce mycotoxins such as aflatoxins, ochratoxins and patulin. These are cosmopolitan species, natural contaminants of agricultural products. In coffee grains, the most important Aspergillus species in terms of the risk of presenting mycotoxins belong to the genera Aspergillus Section Circumdati and Section Nigri. The purpose of this study was to assess the occurrence of isolated ochratoxigenic fungi of coffee grains from organic and conventional cultivation from the South of Minas Gerais, Brazil, as well as to evaluate which farming system presents higher contamination risk by ochratoxin A (OTA) produced by fungi. Thirty samples of coffee grains (Coffea arabica L.) were analysed, being 20 of them of conventional coffee grains and 10 of them organic. The microbiological analysis was done with the Direct Plating Technique in a Dichloran Rose Bengal Chloramphenicol Agar (DRBC) media. The identification was done based on the macro and micro morphological characteristics and on the toxigenic potential with the Plug Agar technique. From the 30 samples analysed, 480 filamentous fungi of the genera Aspergillus of the Circumdati and Nigri Sections were isolated. The ochratoxigenic species identified were: Aspergillus auricoumus, A. ochraceus, A. ostianus, A. niger and A. niger Aggregate. The most frequent species which produces ochratoxin A among the isolated ones was A. ochraceus, corresponding to 89.55%. There was no significant difference regarding the presence of ochratoxigenic A. ochreceus between the conventional and organic cultivation systems, which suggests that the contamination risk is similar for both cultivation systems. PMID:24294225

  14. Aflatoxin exposure during the first 1000 days of life in rural South Asia assessed by aflatoxin B1-lysine albumin biomarkers

    PubMed Central

    Groopman, John D.; Egner, Patricia A.; Schulze, Kerry J.; Wu, Lee S-F; Merrill, Rebecca; Mehra, Sucheta; Shamim, Abu A.; Ali, Hasmot; Shaikh, Saijuddin; Gernand, Alison; Khatry, Subarna K.; LeClerq, Steven C.; West, Keith P.; Christian, Parul

    2015-01-01

    Aflatoxin B1 is a potent carcinogen, occurring from mold growth that contaminates staple grains in hot, humid environments. In this investigation, aflatoxin B1-lysine albumin biomarkers were measured by mass spectrometry in rural South Asian women, during the first and third trimester of pregnancy, and their children at birth and at two years of age. These subjects participated in randomized community trials of antenatal micronutrient supplementation in Sarlahi District, southern Nepal and Gaibandha District in northwestern Bangladesh. Findings from the Nepal samples demonstrated exposure to aflatoxin, with 94% detectable samples ranging from 0.45 to 2939.30 pg aflatoxin B1-lysine/mg albumin during pregnancy. In the Bangladesh samples the range was 1.56 to 63.22 pg aflatoxin B1-lysine/mg albumin in the first trimester, 3.37 to 72.8 pg aflatoxin B1-lysine/mg albumin in the third trimester, 4.62 to 76.69 pg aflatoxin B1-lysine/mg albumin at birth and 3.88 to 81.44 pg aflatoxin B1-lysine/mg albumin at age two years. Aflatoxin B1-lysine adducts in cord blood samples demonstrated that the fetus had the capacity to convert aflatoxin into toxicologically active compounds and the detection in the same 2-year-old children illus trates exposure over the first 1000 days of life. PMID:25308602

  15. Aflatoxins in Iran: Nature, Hazards and Carcinogenicity

    PubMed Central

    Khoshpey, B; Farhud, DD; Zaini, F

    2011-01-01

    Many studies have shown that mycotoxin contamination of agricultural products is a challenge for individual’s health especially in developing countries. Improper production and storage of foods, prepare conditions for aflatoxin production in crops, especially rice, wheat, pistachio, walnut, almond, etc which are the main sources of foods for people. Feeding livestock by contaminated bread is another way of human exposure to mycotoxins, especially aflatoxin and because of expensive methods for detecting and analyzing aflatoxin in laboratory; it is not measured in foods. This manuscript is a review of some Iranian and nonIranian reports about aflatoxin, its exposure ways, its adverse effect on human health and nutrition, as well as methods for reducing its exposure. Based on studies on foods, aflatoxin exposure is high in Iran. Since livestock feeding by contaminated bread is one of the potential ways for milk contamination, we should control and reduce aflatoxin contamination by improving production process, storage condition and livestock feeding as soon as possible. Pistachio is one of the most important exporting products of Iran and to maintain Iran’s position in exporting of this product, specific regulations on lowering its contamination with aflatoxin should be considered seriously. Finally, effective controlling of all food and feedstuffs which are vulnerable to aflatoxin contamination is necessary to prevent its effects. PMID:23113099

  16. Aspergillus flavus GPI-anchored protein-encoding ecm33 has a role in growth, development, aflatoxin biosynthesis, and maize infection.

    PubMed

    Chang, Perng-Kuang; Zhang, Qi; Scharfenstein, Leslie; Mack, Brian; Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu

    2018-06-01

    Many glycosylphosphatidylinositol-anchored proteins (GPI-APs) of fungi are membrane enzymes, organization components, and extracellular matrix adhesins. We analyzed eight Aspergillus flavus transcriptome sets for the GPI-AP gene family and identified AFLA_040110, AFLA_063860, and AFLA_113120 to be among the top 5 highly expressed genes of the 36 family genes analyzed. Disruption of the former two genes did not drastically affect A. flavus growth and development. In contrast, disruption of AFLA_113120, an orthologue of Saccharomyces cerevisiae ECM33, caused a significant decrease in vegetative growth and conidiation, promoted sclerotial production, and altered conidial pigmentation. The A. flavus ecm33 null mutant, compared with the wild type and the complemented strain, produced predominantly aflatoxin B 2 but accumulated comparable amounts of cyclopiazonic acid. It showed decreased sensitivity to Congo red at low concentrations (25-50 μg/mL) but had increased sensitivity to calcofluor white at high concentrations (250-500 μg/mL). Analyses of cell wall carbohydrates indicated that the α-glucan content was decreased significantly (p < 0.05), but the contents of chitin and ß-glucan were increased in the mutant strain. In a maize colonization study, the mutant was shown to be impaired in its infectivity and produced 3- to 4-fold lower amounts of conidia than the wild type and the complemented strain. A. flavus Ecm33 is required for proper cell wall composition and plays an important role in normal fungal growth and development, aflatoxin biosynthesis, and seed colonization.

  17. Aflatoxin

    MedlinePlus

    ... found in the following foods: Peanuts and peanut butter Tree nuts such as pecans Corn Wheat Oil ... foods that may contain aflatoxin. Peanuts and peanut butter are some of the most rigorously tested products ...

  18. 7 CFR 996.11 - Negative aflatoxin content.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Negative aflatoxin content. 996.11 Section 996.11 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING... aflatoxin content. Negative aflatoxin content means 15 parts per billion (ppb) or less for peanuts that have...

  19. 7 CFR 996.11 - Negative aflatoxin content.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Negative aflatoxin content. 996.11 Section 996.11 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING... aflatoxin content. Negative aflatoxin content means 15 parts per billion (ppb) or less for peanuts that have...

  20. 7 CFR 996.11 - Negative aflatoxin content.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Negative aflatoxin content. 996.11 Section 996.11 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... aflatoxin content. Negative aflatoxin content means 15 parts per billion (ppb) or less for peanuts that have...

  1. Comparison of the efficiency between two sampling plans for aflatoxins analysis in maize

    PubMed Central

    Mallmann, Adriano Olnei; Marchioro, Alexandro; Oliveira, Maurício Schneider; Rauber, Ricardo Hummes; Dilkin, Paulo; Mallmann, Carlos Augusto

    2014-01-01

    Variance and performance of two sampling plans for aflatoxins quantification in maize were evaluated. Eight lots of maize were sampled using two plans: manual, using sampling spear for kernels; and automatic, using a continuous flow to collect milled maize. Total variance and sampling, preparation, and analysis variance were determined and compared between plans through multifactor analysis of variance. Four theoretical distribution models were used to compare aflatoxins quantification distributions in eight maize lots. The acceptance and rejection probabilities for a lot under certain aflatoxin concentration were determined using variance and the information on the selected distribution model to build the operational characteristic curves (OC). Sampling and total variance were lower at the automatic plan. The OC curve from the automatic plan reduced both consumer and producer risks in comparison to the manual plan. The automatic plan is more efficient than the manual one because it expresses more accurately the real aflatoxin contamination in maize. PMID:24948911

  2. Degradation of Aflatoxin B1 during the Fermentation of Alcoholic Beverages

    PubMed Central

    Inoue, Tomonori; Nagatomi, Yasushi; Uyama, Atsuo; Mochizuki, Naoki

    2013-01-01

    Aflatoxin B1 (AFB1) is a contaminant of grain and fruit and has one of the highest levels of carcinogenicity of any natural toxin. AFB1 and the fungi that produce it can also contaminate the raw materials used for beer and wine manufacture, such as corn and grapes. Therefore, brewers must ensure strict monitoring to reduce the risk of contamination. In this study, the fate of AFB1 during the fermentation process was investigated using laboratory-scale bottom and top beer fermentation and wine fermentation. During fermentation, cool wort beer samples and wine must samples were artificially spiked with AFB1 and the levels of AFB1 remaining after fermentation were analyzed. AFB1 levels were unchanged during both types of fermentation used for beer but were reduced to 30% of their initial concentration in wine. Differential analysis of the spiked and unspiked wine samples showed that the degradation compound was AFB2a, a hydrated derivative of AFB1. Thus, the results showed that the risk of AFB1 carryover was still present for both types of beer fermentation but was reduced in the case of wine fermentation because of hydration. PMID:23812408

  3. Identification and reduction of urinary aflatoxin metabolites in dogs.

    PubMed

    Bingham, A K; Huebner, H J; Phillips, T D; Bauer, J E

    2004-11-01

    Hydrated sodium calcium aluminosilicate (HSCAS) is a phyllosilicate clay commonly used as an anticaking agent in animal feeds. HSCAS tightly and selectively adsorbs aflatoxin. In 1998, 55 dogs died in Texas after eating dog food containing aflatoxin (150-300 ppb). The corn in the diets was contaminated with aflatoxin. Six dogs were given a low-level, sub-clinical dose of aflatoxin B(1). On average, 71.5% of aflatoxin M(1) cleared within 6 h after dosing, increasing to 90.4% after 12 h. Aflatoxin M(1) was no longer detectable in urine after 48 h. Aflatoxin P(1) was not found in urine compared to large amounts of M(1) and trace amounts of Q(1). In a crossover study, six dogs randomly fed a commercial dog food (no-clay control) or coated with HSCAS (0.5% by weight) were subsequently administered a sub-clinical dose of aflatoxin B(1). Diets were switched and the process repeated. The HSCAS-coated diet significantly reduced urinary aflatoxin M(1) by 48.4%+/-16.6 SD versus the control diet. In conclusion, HSCAS protects dogs fed diets with even minimal aflatoxin contamination. Despite regular and careful ingredient screening for aflatoxin, low concentrations may reach the final product undetected. Therefore, HSCAS may provide the pet food industry further assurance of canine diet safety.

  4. Mycoflora and mycotoxin-producing fungi of air-dust particles from Egypt.

    PubMed

    Abdel-Hafez, S I; Shoreit, A A; Abdel-Hafez, A I; el Maghraby, O M

    1986-01-01

    Using the dilution-plate method, 27 genera and 64 species were collected from 20 air-dust samples on glucose - (24 genera and 57 species) and cellulose - (21 genera and 45 species) Czapek's agar at 28 degrees C. There are basic similarities between the mycoflora of air-dust on the two media and the most prevalent species were Aspergillus niger, A. flavus, A. ochraceus, A. terreus, A. versicolor, Penicillium chrysogenum, P. funiculosum, Alternaria alternata, Cladosporium herbarum, Fusarium oxysporum, Rhizopus stolonifer and Trichoderma viride. Chaetomium globosum, Stachybotrys chartarum, Humicola grisea and Arthrobotrys oligospora were common only on cellulose agar plates. Extracts of mycelium from 25 isolates were tested with brine schrimp (Artemia salina); of these 23 displayed varying degrees of toxicity. Thin layer chromatographic analysis of 12 isolates of Aspergillus flavus revealed that 4 strains were producing detectable aflatoxin. Zearalenone production was noted for 3 out of 5 strains of Fusarium oxysporum and 2 out of 5 strains of F. solani.

  5. Mycological and aflatoxin contamination of peanuts sold at markets in Kinshasa, Democratic Republic of Congo, and Pretoria, South Africa.

    PubMed

    Kamika, Ilunga; Mngqawa, Pamella; Rheeder, John P; Teffo, Snow L; Katerere, David R

    2014-01-01

    Peanut (Arachis hypogaea L.) is an important food crop in sub-Saharan Africa. In this survey, the mycological and aflatoxin contamination of peanuts collected from Kinshasa, Democratic Republic of Congo, and Pretoria, South Africa, was assessed. Twenty peanut samples were purchased randomly at informal markets in the two cities and analysed for mycoflora and aflatoxins (AFB1, AFB2, AFG1 and AFG2) using standard methods. The results indicated that 95% of the Kinshasa samples and 100% of the Pretoria samples were contaminated with aflatoxigenic fungi in the ranges 20-49,000 and 40-21,000 CFU/g, respectively. Seventy-five per cent of the Kinshasa samples and 35% of the Pretoria samples exceeded the maximum limits of AFB1 as set by The Joint FAO/WHO Expert Committee on Food Additives. Residents of both cities are at a high risk of aflatoxin exposure despite their apparent cultural, socio-economic, geographic and climatic differences. Further work needs to be done to understand the supply chains of peanut trade in informal markets of the two countries so that interventions are well targeted on a regional rather than a national level.

  6. Evaluation of the expression genes associated with resistance to Aspergillus flavus colonization and aflatoxin production in different maize lines.

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are carcinogenic toxic compounds produced by Aspergillus flavus during infection of crops including maize (Zea mays L.). Contamination of maize with aflatoxin is exacerbated by late season drought stress. Previous studies have implicated numerous resistance-associated proteins (RAPs) that...

  7. Aflatoxin-free transgenic maize using host-induced gene silencing

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are potent carcinogenic anti-nutritionals that suppress immune systems and contaminate staple foods in warm regions across the globe as the result of crop infection by certain Aspergillus species. Despite decades of control efforts, millions of tons of crops are produced annually that exc...

  8. [Hazardous food-borne fungi and present and future approaches to the mycotoxin regulations in Japan].

    PubMed

    Takatori, Kosuke; Aihara, Maki; Sugita-Konishi, Yoshiko

    2006-01-01

    In recent years, various food-related accidents and health scares have dissipated trust in the food industry. Health hazards resulting from food contaminated with fungi is increasing. Food contamination by fungi causes many problems, especially in Japan, which relies on foreign countries for about 60% of its food: the contamination of imported food by fungi and mycotoxins constitutes a serious problem. As the quantity of imported food increases and changes in food distribution have occurred, so too has the number and type of fungi causing food-related damages; osmophilic and thermotolerant fungi, in addition to the mainstream fungi of genera Cladosporium, Pecinillium, and Aspergillus, have become a problem. Although European countries and the U.S. have recently conducted risk assessments for mycotoxins, Japan has not attained an international level in the determination of baseline values. However, in addition to risk management for Aflatoxin M1, Ochratoxin, T-2 toxin/HT-2 toxin, and Fumonisin, determination of baseline values for mycotoxins is beginning in Japan. In this review, we summarize hazardous food-borne fungi, and present and future approaches to the mycotoxin regulations in Japan.

  9. Use of Selected Essential Oils to Control Aflatoxin Contaminated Stored Cashew and Detection of Aflatoxin Biosynthesis Gene

    PubMed Central

    Abd El-Aziz, Abeer R. M.; Mahmoud, Mohamed A.; Al-Othman, Monira R.; Al-Gahtani, Munirah F.

    2015-01-01

    Aspergillus spp. associated with cashew from the regions of Riyadh, Dammam, and Abha were isolated and three different culture media were used to qualitatively measure aflatoxin production by Aspergillus via UV light (365 nm), which was expressed as positive or negative. The obtained data showed that six isolates of A. flavus and four isolates of A. parasiticus were positive for aflatoxin production, while all isolates of A. niger were negative. Five commercially essential oils (thyme, garlic, cinnamon, mint, and rosemary) were tested to determine their influence on growth and aflatoxin production in A. flavus and A. parasiticus by performing high-performance liquid chromatography (HPLC). The results showed that the tested essential oils caused highly significant inhibition of fungal growth and aflatoxin production in A. flavus and A. parasiticus. The extent of the inhibition of fungal growth and aflatoxin production was dependent on the type and concentration of essential oils applied. The results indicate that cinnamon and thyme oils show strong antimicrobial potential. PCR was used with four sets of primer pairs for nor-1, omt-1, ver-1, and aflR genes, enclosed in the aflatoxin biosynthetic pathway. The interpretation of the results revealed that PCR is a rapid and sensitive method. PMID:25705718

  10. Use of selected essential oils to control aflatoxin contaminated stored cashew and detection of aflatoxin biosynthesis gene.

    PubMed

    Abd El-Aziz, Abeer R M; Mahmoud, Mohamed A; Al-Othman, Monira R; Al-Gahtani, Munirah F

    2015-01-01

    Aspergillus spp. associated with cashew from the regions of Riyadh, Dammam, and Abha were isolated and three different culture media were used to qualitatively measure aflatoxin production by Aspergillus via UV light (365 nm), which was expressed as positive or negative. The obtained data showed that six isolates of A. flavus and four isolates of A. parasiticus were positive for aflatoxin production, while all isolates of A. niger were negative. Five commercially essential oils (thyme, garlic, cinnamon, mint, and rosemary) were tested to determine their influence on growth and aflatoxin production in A. flavus and A. parasiticus by performing high-performance liquid chromatography (HPLC). The results showed that the tested essential oils caused highly significant inhibition of fungal growth and aflatoxin production in A. flavus and A. parasiticus. The extent of the inhibition of fungal growth and aflatoxin production was dependent on the type and concentration of essential oils applied. The results indicate that cinnamon and thyme oils show strong antimicrobial potential. PCR was used with four sets of primer pairs for nor-1, omt-1, ver-1, and aflR genes, enclosed in the aflatoxin biosynthetic pathway. The interpretation of the results revealed that PCR is a rapid and sensitive method.

  11. Aflatoxin formation and gene expression in response to carbon source media shift in Aspergillus parasiticus.

    PubMed

    Wilkinson, J R; Yu, J; Abbas, H K; Scheffler, B E; Kim, H S; Nierman, W C; Bhatnagar, D; Cleveland, T E

    2007-10-01

    Aflatoxins are toxic and carcinogenic polyketide metabolites produced by fungal species, including Aspergillus flavus and A. parasiticus. The biosynthesis of aflatoxins is modulated by many environmental factors, including the availability of a carbon source. The gene expression profile of A. parasiticus was evaluated during a shift from a medium with low concentration of simple sugars, yeast extract (YE), to a similar medium with sucrose, yeast extract sucrose (YES). Gene expression and aflatoxins (B1, B2, G1, and G2) were quantified from fungal mycelia harvested pre- and post-shifting. When compared with YE media, YES caused temporary reduction of the aflatoxin levels detected at 3-h post-shifting and they remained low well past 12 h post-shift. Aflatoxin levels did not exceed the levels in YE until 24 h post-shift, at which time point a tenfold increase was observed over YE. Microarray analysis comparing the RNA samples from the 48-h YE culture to the YES samples identified a total of 2120 genes that were expressed across all experiments, including most of the aflatoxin biosynthesis genes. One-way analysis of variance (ANOVA) identified 56 genes that were expressed with significant variation across all time points. Three genes responsible for converting norsolorinic acid to averantin were identified among these significantly expressed genes. The potential involvement of these genes in the regulation of aflatoxin biosynthesis is discussed.

  12. Identification of averantin as an aflatoxin B1 precursor: placement in the biosynthetic pathway.

    PubMed Central

    Bennett, J W; Lee, L S; Shoss, S M; Boudreaux, G H

    1980-01-01

    A new blocked mutant of Aspergillus parasiticus produces no detectable aflatoxin B1, but accumulates several polyhydroxyanthraquinones. One of these pigments was identified as averantin. This is the first report of its formation by A. parasiticus. Radiotracer studies with [14C]averantin showed that 15.3% of label from averantin was incorporated into aflatoxin B1. This incorporation was blocked by dichlorvos. With radiotracers and other mutants, averantin was placed after norsolorinic acid and before averufin in the biosynthetic pathway in which the general steps are norsolorinic acid leads to averantin leads to averufin leads to versiconal hemiacetal acetate leads to versicolorin A leads to sterigmatocystin leads to aflatoxin B1. PMID:7377778

  13. Breeding aflatoxin-resistant maize lines using recent advances in technologies - a review.

    PubMed

    Brown, Robert L; Menkir, Abebe; Chen, Zhi-Yuan; Bhatnagar, Deepak; Yu, Jiujiang; Yao, Haibo; Cleveland, Thomas E

    2013-01-01

    Aflatoxin contamination caused by Aspergillus flavus infection of corn is a significant and chronic threat to corn being used as food or feed. Contamination of crops at levels of 20 ng g(-1) or higher (as regulated by the USFDA) by this toxin and potent carcinogen makes the crop unsalable, resulting in a significant economic burden on the producer. This review focuses on elimination of this contamination in corn which is a major US crop and the basis of many products. Corn is also "nature's example" of a crop containing heritable resistance to aflatoxin contamination, thereby serving as a model for achieving resistance to aflatoxin contamination in other crops as well. This crop is the largest production grain crop worldwide, providing food for billions of people and livestock and critical feedstock for production of biofuels. In 2011, the economic value of the US corn crop was US$76 billion, with US growers producing an estimated 12 billion bushels, more than one-third of the world's supply. Thus, the economics and significance of corn as a food crop and the threat to food safety due to aflatoxin contamination of this major food crop have prompted the many research efforts in many parts of the world to identify resistance in corn to aflatoxin contamination. Plant breeding and varietal selection has been used as a tool to develop varieties resistance to disease. This methodology has been employed in defining a few corn lines that show resistance to A. flavus invasion; however, no commercial lines have been marketed. With the new tools of proteomics and genomics, identification of resistance mechanisms, and rapid resistance marker selection methodologies, there is an increasing possibility of finding significant resistance in corn, and in understanding the mechanism of this resistance.

  14. Effects of a Calcium Bentonite Clay in Diets Containing Aflatoxin when Measuring Liver Residues of Aflatoxin B₁ in Starter Broiler Chicks.

    PubMed

    Fowler, Justin; Li, Wei; Bailey, Christopher

    2015-08-26

    Research has shown success using clay-based binders to adsorb aflatoxin in animal feeds; however, no adsorbent has been approved for the prevention or treatment of aflatoxicosis. In this study, growth and relative organ weights were evaluated along with a residue analysis for aflatoxin B₁ in liver tissue collected from broiler chickens consuming dietary aflatoxin (0, 600, 1200, and 1800 µg/kg) both with and without 0.2% of a calcium bentonite clay additive (TX4). After one week, only the combined measure of a broiler productivity index was significantly affected by 1800 µg/kg aflatoxin. However, once birds had consumed treatment diets for two weeks, body weights and relative kidney weights were affected by the lowest concentration. Then, during the third week, body weights, feed conversion, and the productivity index were affected by the 600 µg/kg level. Results also showed that 0.2% TX4 was effective at reducing the accumulation of aflatoxin B₁ residues in the liver and improving livability in birds fed aflatoxin. The time required to clear all residues from the liver was less than one week. With evidence that the liver's ability to process aflatoxin becomes relatively efficient within three weeks, this would imply that an alternative strategy for handling aflatoxin contamination in feed could be to allow a short, punctuated exposure to a higher level, so long as that exposure is followed by at least a week of a withdrawal period on a clean diet free of aflatoxin.

  15. Influence of Temperature and Water Activity on Deleterious Fungi and Mycotoxin Production during Grain Storage

    PubMed Central

    Mannaa, Mohamed

    2017-01-01

    Cereal grains are the most important food source for humans. As the global population continues to grow exponentially, the need for the enhanced yield and minimal loss of agricultural crops, mainly cereal grains, is increasing. In general, harvested grains are stored for specific time periods to guarantee their continuous supply throughout the year. During storage, economic losses due to reduction in quality and quantity of grains can become very significant. Grain loss is usually the result of its deterioration due to fungal contamination that can occur from preharvest to postharvest stages. The deleterious fungi can be classified based on predominance at different stages of crop growth and harvest that are affected by environmental factors such as water activity (aw) and eco-physiological requirements. These fungi include species such as those belonging to the genera Aspergillus and Penicillium that can produce mycotoxins harmful to animals and humans. The grain type and condition, environment, and biological factors can also influence the occurrence and predominance of mycotoxigenic fungi in stored grains. The main environmental factors influencing grain fungi and mycotoxins are temperature and aw. This review discusses the effects of temperature and aw on fungal growth and mycotoxin production in stored grains. The focus is on the occurrence and optimum and minimum growth requirements for grain fungi and mycotoxin production. The environmental influence on aflatoxin production and hypothesized mechanisms of its molecular suppression in response to environmental changes are also discussed. In addition, the use of controlled or modified atmosphere as an environmentally safe alternative to harmful agricultural chemicals is discussed and recommended future research issues are highlighted. PMID:29371792

  16. Prevalance of aflatoxin contamination in maize and groundnut in Ghana: Population structure, distribution, and toxigenicity of the causal agents

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination in maize and groundnut is perennial in Ghana with substantial health and economic burden on the population. The present study examined for the first time the prevalence of aflatoxin contamination in maize and groundnut in major producing regions across three agroecological zo...

  17. Evaluating the skill of seasonal weather forecasts in predicting aflatoxin contamination of groundnut in Senegal

    NASA Astrophysics Data System (ADS)

    Brak, B.; Challinor, A.

    2011-12-01

    Aflatoxins, a group of toxic secondary metabolites produced by some strains of a number of species within Aspergillus section Flavi, contaminate a range of crops grown at latitudes between 40N° and 40S° of the equator. Digestion of food products derived from aflatoxin-contaminated crops may result in acute and chronic health problems in human beings. Countries in sub-Saharan Africa in particular have seen large percentages of the human population exposed to aflatoxin. A recent study showed that over 98% of subjects in West Africa tested positive for aflatoxin biomarkers. According to other research, every year 250,000 people die from hepato-cellular carcinoma related causes due to aflatoxin ingestion in parts of West Africa. Strict aflatoxin levels set by importing countries in accordance with the WTO Agreement on the Application of Sanitary and Phytosanitary Measures (SPS Agreement) also impair the value of agricultural trade. Over the last thirty years this has led to a reduction of African exports of groundnut by 19% despite the consumption of groundnut derived food products going up by 209%. The occurrence of aflatoxin on crops is strongly influenced by weather. Empirical studies in the US have shown that pre-harvest, aflatoxin contamination of groundnuts is induced by conditions of drought stress in combination with soil temperatures between 25°C and 31°C. Post-harvest, aflatoxin production of stored, Aspergillus-contaminated groundnuts is exacerbated in conditions where relative humidity is above 83%. The GLAM crop model was extended to include a soil temperature subroutine and subroutines containing pre- and post-harvest aflatoxin algorithms. The algorithms used to estimate aflatoxin contamination indices are based on findings from multiple empirical studies and the pre-harvest aflatoxin model has been validated for Australian conditions. Hence, there was sufficient scope to use GLAM with these algorithms to answer the foremost research question: Is the

  18. Evaluation of the expression of genes associated with resistance to Aspergillus flavus colonization and aflatoxin production in different maize lines

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are carcinogenic toxic compounds produced by Aspergillus flavus during infection of crops including maize (Zea mays L.). Contamination of maize with aflatoxin is exacerbated by late season drought stress. Previous studies have implicated numerous resistance-associated proteins (RAPs) that...

  19. Suppression of aflatoxin production in Aspergillus species by selected peanut (Arachis hypogaea) stilbenoids

    USDA-ARS?s Scientific Manuscript database

    Aspergillus (A.) flavus is a soil fungus that commonly invades peanut seeds and often produces the carcinogenic aflatoxins. Under favorable conditions, the fungus-challenged peanut plant produces and accumulates resveratrol and its prenylated derivatives in response to such invasion. These prenylate...

  20. Static Hot Air and Infrared Rays Roasting are Efficient Methods for Aflatoxin Decontamination on Hazelnuts

    PubMed Central

    Siciliano, Ilenia; Dal Bello, Barbara; Zeppa, Giuseppe; Spadaro, Davide; Gullino, Maria Lodovica

    2017-01-01

    Aflatoxins are a group of secondary metabolites produced by members of Aspergillus Section Flavi that are dangerous to humans and animals. Nuts can be potentially contaminated with aflatoxins, often over the legal threshold. Food processes, including roasting, may have different effects on mycotoxins, and high temperatures have proven to be very effective in the reduction of mycotoxins. In this work, two different roasting methods—traditional static hot air roasting and infra-red rays roasting—were applied and compared for the detoxification of hazelnuts from Italy and Turkey. At the temperature of 140 °C for 40 min of exposure, detoxification was effective for both roasting techniques. Residual aflatoxins after infra-red rays treatments were lower compared to static hot air roasting. On Italian hazelnuts, residual aflatoxins were lower than 5%, while for Turkish hazelnuts they were lower than 15% after 40 min of exposure to an infra-red rays roaster. After roasting, the perisperm was detached from the nuts and analyzed for aflatoxin contents. Residual aflatoxins in the perisperm ranged from 80% up to 100%. After roasting, the lipid profile and the nutritional quality of hazelnuts were not affected. Fatty acid methyl esters analyses showed a similar composition for Italian and Turkish hazelnuts. PMID:28230792

  1. Static Hot Air and Infrared Rays Roasting are Efficient Methods for Aflatoxin Decontamination on Hazelnuts.

    PubMed

    Siciliano, Ilenia; Dal Bello, Barbara; Zeppa, Giuseppe; Spadaro, Davide; Gullino, Maria Lodovica

    2017-02-21

    Aflatoxins are a group of secondary metabolites produced by members of Aspergillus Section Flavi that are dangerous to humans and animals. Nuts can be potentially contaminated with aflatoxins, often over the legal threshold. Food processes, including roasting, may have different effects on mycotoxins, and high temperatures have proven to be very effective in the reduction of mycotoxins. In this work, two different roasting methods-traditional static hot air roasting and infra-red rays roasting-were applied and compared for the detoxification of hazelnuts from Italy and Turkey. At the temperature of 140 °C for 40 min of exposure, detoxification was effective for both roasting techniques. Residual aflatoxins after infra-red rays treatments were lower compared to static hot air roasting. On Italian hazelnuts, residual aflatoxins were lower than 5%, while for Turkish hazelnuts they were lower than 15% after 40 min of exposure to an infra-red rays roaster. After roasting, the perisperm was detached from the nuts and analyzed for aflatoxin contents. Residual aflatoxins in the perisperm ranged from 80% up to 100%. After roasting, the lipid profile and the nutritional quality of hazelnuts were not affected. Fatty acid methyl esters analyses showed a similar composition for Italian and Turkish hazelnuts.

  2. Development of narrow-band fluorescence index for the detection of aflatoxin contaminated corn

    NASA Astrophysics Data System (ADS)

    Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2011-06-01

    Aflatoxin is produced by the fungus Aspergillus flavus when the fungus invades developing corn kernels. Because of its potent toxicity, the levels of aflatoxin are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food, and feed intended for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests. These tests require the destruction of samples, can be costly and time consuming, and often rely on less than desirable sampling techniques. Thus, the ability to detect aflatoxin in a rapid, non-invasive way is crucial to the corn industry in particular. This paper described how narrow-band fluorescence indices were developed for aflatoxin contamination detection based on single corn kernel samples. The indices were based on two bands extracted from full wavelength fluorescence hyperspectral imagery. The two band results were later applied to two large sample experiments with 25 g and 1 kg of corn per sample. The detection accuracies were 85% and 95% when 100 ppb threshold was used. Since the data acquisition period is significantly lower for several image bands than for full wavelength hyperspectral data, this study would be helpful in the development of real-time detection instrumentation for the corn industry.

  3. Present status of the aflatoxin situation in the Philippines.

    PubMed

    Arim, R H

    1995-01-01

    Aflatoxin research in the Philippines started at the FNRI in 1967 with a survey on the aflatoxin content of various foods. Local researchers from government institutions and academe also conducted studies on the aflatoxin contamination of agricultural crops and their products/by-products. The data indicated that corn and peanuts are the two commodities that contain toxic levels of aflatoxin. Past and current research in the country is documented. Problems and research needs for the surveillance and/or control of aflatoxin contamination are discussed.

  4. Leaf application of a sprayable bioplastic-based formulation of biocontrol Aspergillus flavus strains for reduction of aflatoxins in corn.

    PubMed

    Accinelli, Cesare; Abbas, Hamed K; Vicari, Alberto; Shier, W Thomas

    2016-08-01

    Applying non-aflatoxin-producing Aspergillus flavus isolates to the soil has been shown to be effective in reducing aflatoxin levels in harvested crops, including peanuts, cotton and corn. The aim of this study was to evaluate the possibility of controlling aflatoxin contamination using a novel sprayable formulation consisting of a partially gelatinized starch-based bioplastic dispersion embedded with spores of biocontrol A. flavus strains, which is applied to the leaf surfaces of corn plants. The formulation was shown to be adherent, resulting in colonization of leaf surfaces with the biocontrol strain of A. flavus, and to reduce aflatoxin contamination of harvested kernels by up to 80% in Northern Italy and by up to 89% in the Mississippi Delta. The percentage of aflatoxin-producing isolates in the soil reservoir under leaf-treated corn was not significantly changed, even when the soil was amended with additional A. flavus as a model of changes to the soil reservoir that occur in no-till agriculture. This study indicated that it is not necessary to treat the soil reservoir in order to achieve effective biocontrol of aflatoxin contamination in kernel corn. Spraying this novel bioplastic-based formulation to leaves can be an effective alternative in the biocontrol of A. flavus in corn. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  5. Transformation of adsorbed aflatoxin B1 on smectite at elevated temperatures

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins cause liver damage and suppress immunity. Smectites can be used to reduce the bioavailability of aflatoxins through adsorption. To further reduce the toxicity of aflatoxins and to eliminate the treatments of aflatoxin-loaded smectites, degrading the adsorbed aflatoxin to nontoxic or less ...

  6. Streptomyces-Aspergillus flavus interactions: impact on aflatoxin B accumulation.

    PubMed

    Verheecke, C; Liboz, T; Anson, P; Zhu, Y; Mathieu, F

    2015-01-01

    The aim of this work was to investigate the potential of Streptomyces sp. as biocontrol agents against aflatoxins in maize. As such, we assumed that Streptomyces sp. could provide a complementary approach to current biocontrol systems such as Afla-guard(®) and we focused on biocontrol that was able to have an antagonistic contact with A. flavus. A previous study showed that 27 (out of 38) Streptomyces sp. had mutual antagonism in contact with A. flavus. Among these, 16 Streptomyces sp. were able to reduce aflatoxin content to below 17% of the residual concentration. We selected six strains to understand the mechanisms involved in the prevention of aflatoxin accumulation. Thus, in interaction with A. flavus, we monitored by RT-qPCR the gene expression of aflD, aflM, aflP, aflR and aflS. All the Streptomyces sp. were able to reduce aflatoxin concentration (24.0-0.2% residual aflatoxin B1). They all impacted on gene expression, but only S35 and S38 were able to repress expression significantly. Indeed, S35 significantly repressed aflM expression and S38 significantly repressed aflR, aflM and aflP. S6 reduced aflatoxin concentrations (2.3% residual aflatoxin B1) and repressed aflS, aflM and enhanced aflR expression. In addition, the S6 strain (previously identified as the most reducing pure aflatoxin B1) was further tested to determine a potential adsorption mechanism. We did not observe any adsorption phenomenon. In conclusion, this study showed that Streptomyces sp. prevent the production of (aflatoxin gene expression) and decontamination of (aflatoxin B1 reduction) aflatoxins in vitro.

  7. Dip-strip method for monitoring environmental contamination of aflatoxin in food and feed: use of a portable aflatoxin detection kit.

    PubMed

    Sashidhar, R B

    1993-10-01

    Aflatoxin contamination of food and feed have gained global significance due to its deleterious effect on human and animal health and its importance in the international trade. The potential of aflatoxin as a carcinogen, mutagen, teratogen, and immunosuppressive agent is well documented. The problem of aflatoxin contamination of food and feed has led to the enactment of various legislation. However, meaningful strategies for implementation of this legislation is limited by nonavailability of simple, cost-effective method for screening and detection of aflatoxin under field conditions. Keeping in mind the analytical constraints in developing countries, a simple-to-operate, rapid, reliable, and cost-effective portable aflatoxin detection kit has been developed. The important components of the kit include a hand-held UV lamp (365 nm, 4 W output), a solvent blender (12,000 rpm) for toxin extraction, and adsorbent-coated dip-strips (polyester film) for detecting and quantifying aflatoxin. Analysis of variance indicates that there were no significant differences between various batches of dip-strips (p > 0.05). The minimum detection limit for aflatoxin B1 was 10 ppb per spot. The kit may find wide application as a research tool in public health laboratories, environmental monitoring agencies, and in the poultry industry.

  8. Dip-strip method for monitoring environmental contamination of aflatoxin in food and feed: use of a portable aflatoxin detection kit.

    PubMed Central

    Sashidhar, R B

    1993-01-01

    Aflatoxin contamination of food and feed have gained global significance due to its deleterious effect on human and animal health and its importance in the international trade. The potential of aflatoxin as a carcinogen, mutagen, teratogen, and immunosuppressive agent is well documented. The problem of aflatoxin contamination of food and feed has led to the enactment of various legislation. However, meaningful strategies for implementation of this legislation is limited by nonavailability of simple, cost-effective method for screening and detection of aflatoxin under field conditions. Keeping in mind the analytical constraints in developing countries, a simple-to-operate, rapid, reliable, and cost-effective portable aflatoxin detection kit has been developed. The important components of the kit include a hand-held UV lamp (365 nm, 4 W output), a solvent blender (12,000 rpm) for toxin extraction, and adsorbent-coated dip-strips (polyester film) for detecting and quantifying aflatoxin. Analysis of variance indicates that there were no significant differences between various batches of dip-strips (p > 0.05). The minimum detection limit for aflatoxin B1 was 10 ppb per spot. The kit may find wide application as a research tool in public health laboratories, environmental monitoring agencies, and in the poultry industry. Images FIGURE 1. PMID:8143644

  9. Aflatoxins, discolouration and insect damage in dried cowpea and pigeon pea in Malawi and the effectiveness of flotation/washing operation in eliminating the aflatoxins.

    PubMed

    Matumba, Limbikani; Singano, Lazarus; Pungulani, Lawrent; Mvula, Naomi; Matumba, Annie; Singano, Charles; Matita, Grey

    2017-05-01

    Aflatoxin contamination and biodeterioration were examined in 302 samples of dry cowpeas and pigeon peas that were randomly purchased from 9 districts of the Southern Region of Malawi during July and November 2015. Further, the impact of flotation/washing on aflatoxin levels on the pulses was elucidated. Aflatoxin analyses involved immunoaffinity column (IAC) clean-up and HPLC quantification with fluorescence detection (FLD) while legume biodeterioration assessments were done by visual inspection. Aflatoxins were frequently detected in cowpea (24%, max., 66 μg/kg) and pigeon pea (22%, max., 80 μg/kg) samples that were collected in the month of July. Lower aflatoxin incidence of 15% in cowpeas (max., 470 μg/kg) and 14% in pigeon peas (max., 377 μg/kg) was recorded in the November collection. Overall, aflatoxin levels were significantly higher in the pulses that were collected in November. However, there were no significant differences in the total aflatoxin (aflatoxin B 1 (AFB 1 ) + AFB 2 + AFG 1 + AFG 2 ) levels between the two types of pulses. Remarkably, in 76.2% of the aflatoxin positive cowpea and in 41.7% of the aflatoxin positive pigeon pea samples, aflatoxin G 1 concentration exceeded aflatoxin B 1. Insect damage percentage averaged at 18.1 ± 18.2% (mean ± SD) in the cowpeas and 16.1 ± 19.4% in pigeon peas. Mean discolouration percentage (number of pulses) of the cowpeas and pigeon peas was found to be at 6.7 ± 4.9 and 8.7 ± 6.2%, respectively. Washing and discarding the buoyant fraction was highly efficient in reducing aflatoxin levels; only 5.2 ± 11.1% of the initial aflatoxin level was found in the cleaned samples. In conclusion, cowpeas and pigeon peas sold on the local market in Malawi may constitute a hazard especially if floatation/washing step is skipped.

  10. Inhibition of aflatoxin biosynthesis in Aspergillus flavus by phenolic compounds extracted of Piper betle L.

    PubMed

    Yazdani, Darab; Mior Ahmad, Zainal Abidin; Yee How, Tan; Jaganath, Indu Bala; Shahnazi, Sahar

    2013-12-01

    Food contamination by aflatoxins is an important food safety concern for agricultural products. In order to identify and develop novel antifungal agents, several plant extracts and isolated compounds have been evaluated for their bioactivities. Anti-infectious activity of Piper betle used in traditional medicine of Malaysia has been reported previously. Crude methanol extract from P. betel powdered leaves was partitioned between chloroform and water. The fractions were tested against A. flavus UPMC 89, a strong aflatoxin producing strain. Inhibition of mycelial growth and aflatoxin biosynthesis were tested by disk diffusion and macrodillution techniques, respectively. The presence of aflatoxin was determined by thin-layer chromatography (TLC) and fluorescence spectroscopy techniques using AFB1 standard. The chloroform soluble compounds were identified using HPLC-Tandem mass spectrometry technique. The results, evaluated by measuring the mycelial growth and quantification of aflatoxin B1(AFLB1) production in broth medium revealed that chloroform soluble compounds extract from P. betle dried leaves was able to block the aflatoxin biosynthesis pathway at concentration of 500μg/ml without a significant effect on mycelium growth. In analyzing of this effective fractions using HPLC-MS(2) with ESI ionization technique, 11 phenolic compounds were identified. The results showed that the certain phenolic compounds are able to decline the aflatoxin production in A. flavus with no significant effect on the fungus mycelia growth. The result also suggested P. betle could be used as potential antitoxin product.

  11. Occurrence of aflatoxins in oilseeds providing cocoa-butter substitutes.

    PubMed Central

    Kershaw, S J

    1982-01-01

    Four oilseeds providing cocoa-butter substitutes--shea, pentadecima, illipe, and salseed--when tested as substrates for aflatoxin production by two strains of Aspergillus parasiticus, gave varying levels of aflatoxin. Aflatoxins were found at low levels occurring naturally in moldy shea-nuts, but none of 21 commercial shea-nut samples contained greater than 20 micrograms of aflatoxin B1 per kg. PMID:6808919

  12. Occurrence of aflatoxins in oilseeds providing cocoa-butter substitutes.

    PubMed

    Kershaw, S J

    1982-05-01

    Four oilseeds providing cocoa-butter substitutes--shea, pentadecima, illipe, and salseed--when tested as substrates for aflatoxin production by two strains of Aspergillus parasiticus, gave varying levels of aflatoxin. Aflatoxins were found at low levels occurring naturally in moldy shea-nuts, but none of 21 commercial shea-nut samples contained greater than 20 micrograms of aflatoxin B1 per kg.

  13. [Biological contamination by micromycetes in dried Boletus edulis: research of aflatoxin B1, B2 G1, G2 and ochratoxin A].

    PubMed

    Lorini, C; Rossetti, F; Palazzoni, S; Comodo, N; Bonaccorsi, G

    2008-01-01

    Aim of this survey is to identify those filamentous fungi which parasite Boletus edulis and its group and check the potential presence of secondary metabolites, specifically aflatoxin B1, total aflatoxins and ochratoxin A, in order to assess the risk to consumers' health. Forty samples of dried Boletus edulis, collected by two food industries which distribute the product in many Italian regions, have been analysed. The sampling plan has been conducted from November 2005 to March 2006, collecting 50 g from each commercial category of dried Boletus edulis available in the factory at the time of sampling. All the samples have been tested by visual macroscopic and stereoscopic assays; for some samples--those referred to commercial category presumably at higher risk--we have performed cultural assays as well, typization of isolated micromycetes, extraction and quantification of aflatoxins and ochratoxin A. Mycotoxin detection has been made by HPLC, using the UNI EN 14123 and UNI EN 14132 standard methods, respectively applied to aflatoxins determination in peanuts, pistachios, figs and paprika and to ochratoxin A in barley and coffee. Non pathogenic micromycetes, common in food products, have been frequently observed in cultural assays, while Aspergillus flavus and Aspergillus niger have been found in some samples. However the concentration of aflatoxins was always under the quantification limit. The survey confirm that, if the cold chain is kept throughout the process and the distribution, Boletus edulis and analogue mycetes are not a favourable substratum for the growth and the development of moulds.

  14. Liver lesions produced by aflatoxins in Rana catesbeiana (bullfrog).

    PubMed

    Grassi, Tony Fernando; Pires, Paulo Wagner; Barbisan, Luis Fernando; Pai-Silva, Maeli Dal; Said, Roueda Abou; de Camargo, João Lauro Viana

    2007-09-01

    This study describes alterations induced in Rana catesbeiana (bullfrog) liver after extended dietary exposure to aflatoxins (AFs). Bullfrogs of both sexes were fed for 120 days a commercial chow blended with a rice bran-based mixture of AFs containing 667.0, 11.65, 141.74, and 3.53 mg/kg of AFs B1, B2, G1, and G2, respectively. Animals were sacrificed on study days 45, 90, and 120. Severe and progressive liver lesions with structural collapse, increased hepatocyte and biliary duct cell proliferation, appearance of basophilic hepatocytes, and diffuse scarring, were observed at all time points. There were no quantitative alterations in the liver melanomacrophage centers of the AFs-exposed animals. Increased amounts of lipid hydroperoxides, indicative of ongoing oxidative stress, were more evident in the Addutor magnum muscle than in the AFs-damaged livers. No tumors were found in the R. catesbeiana livers after 120 days of exposure to relatively high doses of AFs.

  15. Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus (A. flavus) is an opportunistic, saprophytic fungus that infects maize and other fatty acid-rich food and feed crops and produces toxic and carcinogenic secondary metabolites known as aflatoxins. Contamination of maize with aflatoxin poses a serious threat to human health in addit...

  16. Molecular biodiversity of mycotoxigenic fungi that threaten food safety.

    PubMed

    Moretti, A; Susca, A; Mulé, G; Logrieco, A F; Proctor, R H

    2013-10-01

    Fungal biodiversity is one of the most important contributors to the occurrence and severity of mycotoxin contamination of crop plants. Phenotypic and metabolic plasticity has enabled mycotoxigenic fungi to colonize a broad range of agriculturally important crops and to adapt to a range of environmental conditions. New mycotoxin-commodity combinations provide evidence for the ability of fungi to adapt to changing conditions and the emergence of genotypes that confer enhanced aggressiveness toward plants and/or altered mycotoxin production profiles. Perhaps the most important contributor to qualitative differences in mycotoxin production among fungi is variation in mycotoxin biosynthetic genes. Molecular genetic and biochemical analyses of toxigenic fungi have elucidated specific differences in biosynthetic genes that are responsible for intra- and inter-specific differences in mycotoxin production. For Aspergillus and Fusarium, the mycotoxigenic genera of greatest concern, variation in biosynthetic genes responsible for production of individual families of mycotoxins appears to be the result of evolutionary adaptation. Examples of such variation have been reported for: a) aflatoxin biosynthetic genes in Aspergillus flavus and Aspergillus parasiticus; b) trichothecene biosynthetic genes within and among Fusarium species; and c) fumonisin biosynthetic genes in Aspergillus and Fusarium species. Understanding the variation in these biosynthetic genes and the basis for variation in mycotoxin production is important for accurate assessment of the risks that fungi pose to food safety and for prevention of mycotoxin contamination of crops in the field and in storage. © 2013.

  17. Effect of gamma-irradiation on aflatoxin B1 production by Aspergillus flavus and chemical composition of three crop seeds.

    PubMed

    Aziz, Nagy H; Mahrous, Souzan R

    2004-06-01

    The effect of gamma-irradiation on aflatoxin B1 production by Aspergillus flavus, and the chemical composition of some different crop seeds were investigated. A. flavus infected seeds behaved differently according to their principal constituents. A. flavus caused an increase in protein and decrease in lipids and carbohydrate contents of wheat, soyabean and fababean seeds. Growth of A. flavus and production of aflatoxin B1 was inhibited at a dose level of 5 kGy. A. flavus utilizes carbohydrates of seeds for its growth and aflatoxin production. Crops were arranged, in descending order, according to aflatoxin produced in seeds as wheat > soyabean > fababean. There were no changes in chemical constituents of irradiated seeds, such as protein, lipids, and carbohydrates.

  18. Influence of the antimicrobial compound allyl isothiocyanate against the Aspergillus parasiticus growth and its aflatoxins production in pizza crust.

    PubMed

    Quiles, Juan M; Manyes, Lara; Luciano, Fernando; Mañes, Jordi; Meca, Giuseppe

    2015-09-01

    Aflatoxins (AFs) are secondary metabolites produced by different species of Aspergillus, such as Aspergillus flavus and Aspergillus parasiticus, which possess mutagenic, teratogenic and carcinogenic activities in humans. In this study, active packaging devices containing allyl isothiocyanate (AITC) or oriental mustard flour (OMF) + water were tested to inhibit the growth of A. parasiticus and AFs production in fresh pizza crust after 30 d. The antimicrobial and anti-aflatoxin activities were compared to a control group (no antimicrobial treatment) and to a group added with commercial preservatives (sorbic acid + sodium propionate). A. parasiticus growth was only inhibited after 30 d by AITC in filter paper at 5 μL/L and 10 μL/L, AITC sachet at 5 μL/L and 10 μL/L and OMF sachet at 850 mg + 850 μL of water. However, AFs production was inhibited by all antimicrobial treatments in a dose-dependent manner. More importantly, AITC in a filter paper at 10 μL/L, AITC sachet at 10 μL/L, OMF sachet at 850 mg + 850 μL of water and sorbic acid + sodium propionate at 0.5-2.0 g/Kg completely inhibited AFs formation. The use of AITC in active packaging devices could be a natural alternative to avoid the growth of mycotoxinogenic fungi in refrigerated bakery products in substitution of common commercial preservatives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Environmental distribution and genetic diversity of vegetative compatibility groups determine biocontrol strategies to mitigate aflatoxin contamination of maize by Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Maize infected by aflatoxin-producing Aspergillus flavus may become contaminated with aflatoxins and as a result, threaten human health, food security, and farmers’ income in developing countries where maize is a staple. Environmental distribution and genetic diversity of A. flavus can influence the...

  20. Aflatoxin Exposure During Pregnancy, Maternal Anemia, and Adverse Birth Outcomes

    PubMed Central

    Smith, Laura E.; Prendergast, Andrew J.; Turner, Paul C.; Humphrey, Jean H.; Stoltzfus, Rebecca J.

    2017-01-01

    Pregnant women and their developing fetuses are vulnerable to multiple environmental insults, including exposure to aflatoxin, a mycotoxin that may contaminate as much as 25% of the world food supply. We reviewed and integrated findings from studies of aflatoxin exposure during pregnancy and evaluated potential links to adverse pregnancy outcomes. We identified 27 studies (10 human cross-sectional studies and 17 animal studies) assessing the relationship between aflatoxin exposure and adverse birth outcomes or anemia. Findings suggest that aflatoxin exposure during pregnancy may impair fetal growth. Only one human study investigated aflatoxin exposure and prematurity, and no studies investigated its relationship with pregnancy loss, but animal studies suggest aflatoxin exposure may increase risk for prematurity and pregnancy loss. The fetus could be affected by maternal aflatoxin exposure through direct toxicity as well as indirect toxicity, via maternal systemic inflammation, impaired placental growth, or elevation of placental cytokines. The cytotoxic and systemic effects of aflatoxin could plausibly mediate maternal anemia, intrauterine growth restriction, fetal loss, and preterm birth. Given the widespread exposure to this toxin in developing countries, longitudinal studies in pregnant women are needed to provide stronger evidence for the role of aflatoxin in adverse pregnancy outcomes, and to explore biological mechanisms. Potential pathways for intervention to reduce aflatoxin exposure are urgently needed, and this might reduce the global burden of stillbirth, preterm birth, and low birthweight. PMID:28500823

  1. Aflatoxin Exposure During Pregnancy, Maternal Anemia, and Adverse Birth Outcomes.

    PubMed

    Smith, Laura E; Prendergast, Andrew J; Turner, Paul C; Humphrey, Jean H; Stoltzfus, Rebecca J

    2017-04-01

    AbstractPregnant women and their developing fetuses are vulnerable to multiple environmental insults, including exposure to aflatoxin, a mycotoxin that may contaminate as much as 25% of the world food supply. We reviewed and integrated findings from studies of aflatoxin exposure during pregnancy and evaluated potential links to adverse pregnancy outcomes. We identified 27 studies (10 human cross-sectional studies and 17 animal studies) assessing the relationship between aflatoxin exposure and adverse birth outcomes or anemia. Findings suggest that aflatoxin exposure during pregnancy may impair fetal growth. Only one human study investigated aflatoxin exposure and prematurity, and no studies investigated its relationship with pregnancy loss, but animal studies suggest aflatoxin exposure may increase risk for prematurity and pregnancy loss. The fetus could be affected by maternal aflatoxin exposure through direct toxicity as well as indirect toxicity, via maternal systemic inflammation, impaired placental growth, or elevation of placental cytokines. The cytotoxic and systemic effects of aflatoxin could plausibly mediate maternal anemia, intrauterine growth restriction, fetal loss, and preterm birth. Given the widespread exposure to this toxin in developing countries, longitudinal studies in pregnant women are needed to provide stronger evidence for the role of aflatoxin in adverse pregnancy outcomes, and to explore biological mechanisms. Potential pathways for intervention to reduce aflatoxin exposure are urgently needed, and this might reduce the global burden of stillbirth, preterm birth, and low birthweight.

  2. Cytotoxicity of aflatoxin on red blood corpuscles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, R.J.; Raval, P.J.

    The exact mechanism of aflatoxin action is not clearly understood. In the present investigation the authors report morphological aberrations and increased rate of hemolysis caused by aflatoxins in vitro.

  3. Costs and efficacy of public health interventions to reduce aflatoxin-induced human disease.

    PubMed

    Khlangwiset, P; Wu, F

    2010-07-01

    This study reviews available information on the economics and efficacy of aflatoxin risk-reduction interventions, and it provides an approach for analysis of the cost-effectiveness of public health interventions to reduce aflatoxin-induced human disease. Many strategies have been developed to reduce aflatoxin or its adverse effects in the body. However, a question that has been under-addressed is how likely these strategies will be adopted in the countries that need them most to improve public health. This study evaluates two aspects crucial to the adoption of new technologies and methods: the costs and the efficacy of different strategies. First, different aflatoxin risk-reduction strategies are described and categorized into pre-harvest, post-harvest, dietary, and clinical settings. Relevant data on the costs and efficacy of each strategy, in reducing either aflatoxin in food or its metabolites in the body are then compiled and discussed. In addition, we describe which crops are affected by each intervention, who is likely to pay for the control strategy, and who is likely to benefit. A framework is described for how to evaluate cost-effectiveness of strategies according to World Health Organization (WHO) standards. Finally, it is discussed which strategies are likely to be cost-effective and helpful under different conditions worldwide of regulations, local produce and soil ecology, and potential health emergencies.

  4. Determination of aflatoxin risk components for in-shell Brazil nuts.

    PubMed

    Vargas, E A; dos Santos, E A; Whitaker, T B; Slate, A B

    2011-09-01

    A study was conducted on the risk from aflatoxins associated with the kernels and shells of Brazil nuts. Samples were collected from processing plants in Amazonia, Brazil. A total of 54 test samples (40 kg) were taken from 13 in-shell Brazil nut lots ready for market. Each in-shell sample was shelled and the kernels and shells were sorted in five fractions: good kernels, rotten kernels, good shells with kernel residue, good shells without kernel residue, and rotten shells, and analysed for aflatoxins. The kernel:shell ratio mass (w/w) was 50.2/49.8%. The Brazil nut shell was found to be contaminated with aflatoxin. Rotten nuts were found to be a high-risk fraction for aflatoxin in in-shell Brazil nut lots. Rotten nuts contributed only 4.2% of the sample mass (kg), but contributed 76.6% of the total aflatoxin mass (µg) in the in-shell test sample. The highest correlations were found between the aflatoxin concentration in in-shell Brazil nuts samples and the aflatoxin concentration in all defective fractions (R(2)=0.97). The aflatoxin mass of all defective fractions (R(2)=0.90) as well as that of the rotten nut (R(2)=0.88) were also strongly correlated with the aflatoxin concentration of the in-shell test samples. Process factors of 0.17, 0.16 and 0.24 were respectively calculated to estimate the aflatoxin concentration in the good kernels (edible) and good nuts by measuring the aflatoxin concentration in the in-shell test sample and in all kernels, respectively. © 2011 Taylor & Francis

  5. Human aflatoxin exposure in Kenya, 2007: a cross-sectional study

    PubMed Central

    Yard, Ellen E.; Daniel, Johnni H.; Lewis, Lauren S.; Rybak, Michael E.; Paliakov, Ekaterina M.; Kim, Andrea A.; Montgomery, Joel M.; Bunnell, Rebecca; Abudo, Mamo Umuro; Akhwale, Willis; Breiman, Robert F.; Sharif, Shahnaaz K.

    2013-01-01

    Aflatoxins contaminate approximately 25% of agricultural products worldwide. They can cause liver failure and liver cancer. Kenya has experienced multiple aflatoxicosis outbreaks in recent years, often resulting in fatalities. However, the full extent of aflatoxin exposure in Kenya has been unknown. Our objective was to quantify aflatoxin exposure across Kenya. We analysed aflatoxin levels in serum specimens from the 2007 Kenya AIDS Indicator Survey – a nationally representative, cross-sectional serosurvey. KAIS collected 15,853 blood specimens. Of the 3180 human immunodeficiency virus-negative specimens with ≥1 mL sera, we randomly selected 600 specimens stratified by province and sex. We analysed serum specimens for aflatoxin albumin adducts by using isotope dilution MS/MS to quantify aflatoxin B1-lysine, and normalised with serum albumin. Aflatoxin concentrations were then compared by demographic, socioeconomic and geographic characteristics. We detected serum aflatoxin B1-lysine in 78% of serum specimens (range = Aflatoxin exposure did not vary by sex, age group, marital status, religion or socioeconomic characteristics. Aflatoxin exposure varied by province (p < 0.05); it was highest in Eastern (median = 7.87 pg/mg albumin) and Coast (median = 3.70 pg/mg albumin) provinces and lowest in Nyanza (median = aflatoxin exposure is a public health problem throughout Kenya, and it could be substantially impacting human health. Wide-scale, evidence-based interventions are urgently needed to decrease exposure and subsequent health effects. PMID:23767939

  6. Temporal Effects on Internal Fluorescence Emissions Associated with Aflatoxin Contamination from Corn Kernel Cross-Sections Inoculated with Toxigenic and Atoxigenic Aspergillus flavus.

    PubMed

    Hruska, Zuzana; Yao, Haibo; Kincaid, Russell; Brown, Robert L; Bhatnagar, Deepak; Cleveland, Thomas E

    2017-01-01

    Non-invasive, easy to use and cost-effective technology offers a valuable alternative for rapid detection of carcinogenic fungal metabolites, namely aflatoxins, in commodities. One relatively recent development in this area is the use of spectral technology. Fluorescence hyperspectral imaging, in particular, offers a potential rapid and non-invasive method for detecting the presence of aflatoxins in maize infected with the toxigenic fungus Aspergillus flavus . Earlier studies have shown that whole maize kernels contaminated with aflatoxins exhibit different spectral signatures from uncontaminated kernels based on the external fluorescence emission of the whole kernels. Here, the effect of time on the internal fluorescence spectral emissions from cross-sections of kernels infected with toxigenic and atoxigenic A. flavus , were examined in order to elucidate the interaction between the fluorescence signals emitted by some aflatoxin contaminated maize kernels and the fungal invasion resulting in the production of aflatoxins. First, the difference in internal fluorescence emissions between cross-sections of kernels incubated in toxigenic and atoxigenic inoculum was assessed. Kernels were inoculated with each strain for 5, 7, and 9 days before cross-sectioning and imaging. There were 270 kernels (540 halves) imaged, including controls. Second, in a different set of kernels (15 kernels/group; 135 total), the germ of each kernel was separated from the endosperm to determine the major areas of aflatoxin accumulation and progression over nine growth days. Kernels were inoculated with toxigenic and atoxigenic fungal strains for 5, 7, and 9 days before the endosperm and germ were separated, followed by fluorescence hyperspectral imaging and chemical aflatoxin determination. A marked difference in fluorescence intensity was shown between the toxigenic and atoxigenic strains on day nine post-inoculation, which may be a useful indicator of the location of aflatoxin contamination

  7. Temporal Effects on Internal Fluorescence Emissions Associated with Aflatoxin Contamination from Corn Kernel Cross-Sections Inoculated with Toxigenic and Atoxigenic Aspergillus flavus

    PubMed Central

    Hruska, Zuzana; Yao, Haibo; Kincaid, Russell; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2017-01-01

    Non-invasive, easy to use and cost-effective technology offers a valuable alternative for rapid detection of carcinogenic fungal metabolites, namely aflatoxins, in commodities. One relatively recent development in this area is the use of spectral technology. Fluorescence hyperspectral imaging, in particular, offers a potential rapid and non-invasive method for detecting the presence of aflatoxins in maize infected with the toxigenic fungus Aspergillus flavus. Earlier studies have shown that whole maize kernels contaminated with aflatoxins exhibit different spectral signatures from uncontaminated kernels based on the external fluorescence emission of the whole kernels. Here, the effect of time on the internal fluorescence spectral emissions from cross-sections of kernels infected with toxigenic and atoxigenic A. flavus, were examined in order to elucidate the interaction between the fluorescence signals emitted by some aflatoxin contaminated maize kernels and the fungal invasion resulting in the production of aflatoxins. First, the difference in internal fluorescence emissions between cross-sections of kernels incubated in toxigenic and atoxigenic inoculum was assessed. Kernels were inoculated with each strain for 5, 7, and 9 days before cross-sectioning and imaging. There were 270 kernels (540 halves) imaged, including controls. Second, in a different set of kernels (15 kernels/group; 135 total), the germ of each kernel was separated from the endosperm to determine the major areas of aflatoxin accumulation and progression over nine growth days. Kernels were inoculated with toxigenic and atoxigenic fungal strains for 5, 7, and 9 days before the endosperm and germ were separated, followed by fluorescence hyperspectral imaging and chemical aflatoxin determination. A marked difference in fluorescence intensity was shown between the toxigenic and atoxigenic strains on day nine post-inoculation, which may be a useful indicator of the location of aflatoxin contamination

  8. Food Safety Legislation Regarding Of Aflatoxins Contamination

    NASA Astrophysics Data System (ADS)

    Ketney, Otto

    2015-09-01

    The main objective of the European Union (EU) is to reduce certain contaminants in foodstuffs to acceptable levels. The occurrence of aflatoxin B1 in food was considered to be one of the most important issues of global food security to protect the health of humans and animals, over 100 nations have established maximum tolerable levels for aflatoxin in food. Although EU legislation covers many aspects of food safety was not legally establish an integrated framework that could effectively combat and cover all sectors of the food chain. Monitoring and reporting levels of aflatoxins after controls are essential actions that assist to identify potential risks to human health. The review process for aflatoxin regulations is a complex activity involving many factors and stakeholders.

  9. Structure and Oxidation of Pyrrole Adducts Formed between Aflatoxin B2a and Biological Amines.

    PubMed

    Rushing, Blake R; Selim, Mustafa I

    2017-06-19

    Aflatoxin B 2a has been shown to bind to proteins through a dialdehyde intermediate under physiological conditions. The proposed structure of this adduct has been published showing a Schiff base interaction, but adequate verification using structural elucidation instrumental techniques has not been performed. In this work, we synthesized the aflatoxin B 2a amino acid adduct under alkaline conditions, and the formation of a new product was determined using high performance liquid chromatography-time-of-flight mass spectrometry. The resulting accurate mass was used to generate a novel proposed chemical structure of the adduct in which the dialdehyde forms a pyrrole ring with primary amines rather than the previously proposed Schiff base interaction. The pyrrole structure was confirmed using 1 H, 13 C, correlation spectroscopy, heteronuclear single quantum correlation, and heteronuclear multiple bond correlation NMR and tandem mass spectrometry. Reaction kinetics show that the reaction is overall second order and that the rate increases as pH increases. Additionally, this study shows for the first time that aflatoxin B 2a dialdehyde forms adducts with phosphatidylethanolamines and does so through pyrrole ring formation, which makes it the first aflatoxin-lipid adduct to be structurally identified. Furthermore, oxidation of the pyrrole adduct produced a product that was 16 m/z heavier. When the aflatoxin B 2a -lysine (ε) adduct was oxidized, it gave a product with an accurate mass, mass fragmentation pattern, and 1 H NMR spectrum that match aflatoxin B 1 -lysine, which suggest the transformation of the pyrrole ring to a pyrrolin-2-one ring. These data give new insight into the fate and chemical properties of biological adducts formed from aflatoxin B 2a as well as possible interferences with known aflatoxin B 1 exposure biomarkers.

  10. 7 CFR 996.11 - Negative aflatoxin content.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.11 Negative aflatoxin content. Negative aflatoxin content means 15 parts per billion (ppb) or less for peanuts that have...

  11. 7 CFR 996.11 - Negative aflatoxin content.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.11 Negative aflatoxin content. Negative aflatoxin content means 15 parts per billion (ppb) or less for peanuts that have...

  12. Effect of temperature and water activity on growth and aflatoxin production by Aspergillus flavus and Aspergillus parasiticus on cured meat model systems.

    PubMed

    Peromingo, Belén; Rodríguez, Alicia; Bernáldez, Victoria; Delgado, Josué; Rodríguez, Mar

    2016-12-01

    Dry-cured hams may be colonised by aflatoxin-producing Aspergillus flavus and Aspergillus parasiticus during the ripening process. The objective of this study was to evaluate the interaction between non-ionic water stress and temperatures may have on lag phases prior to growth, growth rates and aflatoxin production by two strains of each A. parasiticus and A. flavus on meat matrices over a period of 12days. Results showed that A. flavus CBS 573.65 had shorter lag phases than A. parasiticus CECT 2688, however the growth rates were quite similar. For both species, no growth occurred at 10°C and all aw tested and optimum growth happened at 25°C and 0.95 aw. Similar aflatoxin B1 production profiles between both species were found, however A. flavus produced much higher concentration of such toxin than A. parasiticus. Both species produced aflatoxins when the temperature and the aw were ≥15°C and ≥0.90. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Indentification of huperzine A-producing endophytic fungi isolated from Huperzia serrata.

    PubMed

    Dong, Li-Hui; Fan, San-Wei; Ling, Qing-Zhi; Huang, Bei-Bei; Wei, Zhao-Jun

    2014-03-01

    This present study was designed to investigate the production of huperzine A (HupA), an acetylcholine inhibitor, which was produced by an endophytic fungi isolated from Huperzia serrata. Screening of 94 endophytic fungal isolates obtained from plant H. serrata was carried out for the production of HupA. Their morphological characteristics were studied and rDNA sequence analysis was carried out. The cultures were grown in liquid culture medium and the extracted metabolites were analyzed by thin layer chromatography and high performance liquid chromatograph for the presence of HupA. The DPPH scavenging ratio and inhibition ratio of acetylcholinesterase (AchE) of the same were determined. 3 out of 94 strains i.e. S29, L44 and S94 showed significant AchE-inhibitory activity and antioxidant activity. Strain L44 which exhibited maximum yield of HupA (37.63 μg/g on dry weight basis) was identified as Trichoderma species by ITS sequence analysis. In conclusion, endophytic fungi from H. serrata can be used as a new resource of HupA.

  14. Use of $gamma$ irradiation to prevent aflatoxin production in bread

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullerman, L.B.; Barnhart, H.M.; Hartung, T.E.

    Irradiation doses of 100 and 200 Krad reduced the growth of Aspergillus parasiticus in bread stored for 10 days at 254DEC. With bread stored longer than 2 wk, mold growth in irradiated samples tended to approach the amount which occurred in the non-irradiated controls. Mold strain NRRL 3000 seemed slightly more sensitive to irradiation-than strain NRRL 2999. A 200 Krad dose prevented anatoxin production by either strain at both high and low levels of inoculation with spores in bread stored for 10 days, except in one case where a very low level of anatoxins was detected. At 100 Krad, breadmore » inoculated with 102 spores/ slice contained none to low concentrations of anatoxins after storage for 10 days, but with 106 spores/slice higher amounts of toxins were detected. When ihe inoculated bread was stored for periods up to 6 wk, the 200 Krad treatment prevented aflatoxin production in all bread samples containing 10/sup 2/ spores/ slice, and in almost all samples containing 10/sup 6/ spores/ slice. The 100 Krad treatment also prevented aflatoxin production during 6 wk of storage in bread that contained 10/sup 2/ spores/ slice. However, with 10/sup 6/ spores/ slice both strains were capable of producing very high amounts of aflatoxins after irradiation nt 100 Krad. At 1, 2 and 6 wk of storage, these amounts were greater than the unirradiated controls, suggesting possible stimulation of aflatoxin production. (auth)« less

  15. Aflatoxin biosynthesis is a novel source of reactive oxygen species--a potential redox signal to initiate resistance to oxidative stress?

    PubMed

    Roze, Ludmila V; Laivenieks, Maris; Hong, Sung-Yong; Wee, Josephine; Wong, Shu-Shyan; Vanos, Benjamin; Awad, Deena; Ehrlich, Kenneth C; Linz, John E

    2015-04-28

    Aflatoxin biosynthesis in the filamentous fungus Aspergillus parasiticus involves a minimum of 21 enzymes, encoded by genes located in a 70 kb gene cluster. For aflatoxin biosynthesis to be completed, the required enzymes must be transported to specialized early and late endosomes called aflatoxisomes. Of particular significance, seven aflatoxin biosynthetic enzymes are P450/monooxygenases which catalyze reactions that can produce reactive oxygen species (ROS) as byproducts. Thus, oxidative reactions in the aflatoxin biosynthetic pathway could potentially be an additional source of intracellular ROS. The present work explores the hypothesis that the aflatoxin biosynthetic pathway generates ROS (designated as "secondary" ROS) in endosomes and that secondary ROS possess a signaling function. We used specific dyes that stain ROS in live cells and demonstrated that intracellular ROS levels correlate with the levels of aflatoxin synthesized. Moreover, feeding protoplasts with precursors of aflatoxin resulted in the increase in ROS generation. These data support the hypothesis. Our findings also suggest that secondary ROS may fulfill, at least in part, an important mechanistic role in increased tolerance to oxidative stress in germinating spores (seven-hour germlings) and in regulation of fungal development.

  16. Aflatoxin Biosynthesis Is a Novel Source of Reactive Oxygen Species—A Potential Redox Signal to Initiate Resistance to Oxidative Stress?

    PubMed Central

    Roze, Ludmila V.; Laivenieks, Maris; Hong, Sung-Yong; Wee, Josephine; Wong, Shu-Shyan; Vanos, Benjamin; Awad, Deena; Ehrlich, Kenneth C.; Linz, John E.

    2015-01-01

    Aflatoxin biosynthesis in the filamentous fungus Aspergillus parasiticus involves a minimum of 21 enzymes, encoded by genes located in a 70 kb gene cluster. For aflatoxin biosynthesis to be completed, the required enzymes must be transported to specialized early and late endosomes called aflatoxisomes. Of particular significance, seven aflatoxin biosynthetic enzymes are P450/monooxygenases which catalyze reactions that can produce reactive oxygen species (ROS) as byproducts. Thus, oxidative reactions in the aflatoxin biosynthetic pathway could potentially be an additional source of intracellular ROS. The present work explores the hypothesis that the aflatoxin biosynthetic pathway generates ROS (designated as “secondary” ROS) in endosomes and that secondary ROS possess a signaling function. We used specific dyes that stain ROS in live cells and demonstrated that intracellular ROS levels correlate with the levels of aflatoxin synthesized. Moreover, feeding protoplasts with precursors of aflatoxin resulted in the increase in ROS generation. These data support the hypothesis. Our findings also suggest that secondary ROS may fulfill, at least in part, an important mechanistic role in increased tolerance to oxidative stress in germinating spores (seven-hour germlings) and in regulation of fungal development. PMID:25928133

  17. Mold and aflatoxin reduction by gamma radiation of packed hot peppers and their evolution during storage.

    PubMed

    Iqbal, Qumer; Amjad, Muhammad; Asi, Muhammad Rafique; Ariño, Agustin

    2012-08-01

    The effect of gamma radiation on moisture content, total mold counts, Aspergillus counts, and aflatoxins of three hot pepper hybrids (Sky Red, Maha, and Wonder King) was investigated. Whole dried peppers packed in polyethylene bags were gamma irradiated at 0 (control), 2, 4, and 6 kGy and stored at 25°C for 90 days. Gamma radiation proved to be effective in reducing total mold and Aspergillus counts in a dose-dependent relationship. Total mold counts in irradiated peppers immediately after treatments were significantly lowered compared with those in nonirradiated samples, achieving 90 and 99% reduction at 2- and 4-kGy doses, respectively. Aspergillus counts were significantly reduced, by 93 and 97%, immediately after irradiation at doses of 2 and 4 kGy, respectively. A radiation dose of 6 kGy completely eliminated the population of total molds and Aspergillus fungi. The evolution of total molds in control and irradiated samples indicated no further fungal proliferation during 3 months of storage at 25°C. Aflatoxin levels were slightly affected by radiation doses of 2 and 4 kGy and showed a nonsignificant reduction of 6% at the highest radiation dose of 6 kGy. The distinct effectiveness of gamma radiation in molds and aflatoxins can be explained by the target theory of food irradiation, which states that the likelihood of a microorganism or a molecule being inactivated by gamma rays increases as its size increases.

  18. Effect of inoculum concentrations of Aspergillus flavus and A. parasiticus on aflatoxin accumulation and kernel infection in resistant and susceptible maize hybrids

    USDA-ARS?s Scientific Manuscript database

    Over a three year period, we compared aflatoxin accumulation and kernel infection in maize hybrids inoculated with six inoculum concentrations of Aspergillus flavus isolate NRRL 3357 or A. parasiticus isolate NRRL 6111 which is a norsolorinic acid producer. Aflatoxin resistant and susceptible mai...

  19. Effect of pH and pulsed electric field process parameters on the aflatoxin reduction in model system using response surface methodology: Effect of pH and PEF on Aflatoxin Reduction.

    PubMed

    Vijayalakshmi, Subramanian; Nadanasabhapathi, Shanmugam; Kumar, Ranganathan; Sunny Kumar, S

    2018-03-01

    The presence of aflatoxin, a carcinogenic and toxigenic secondary metabolite produced by Aspergillus species, in food matrix has been a major worldwide problem for years now. Food processing methods such as roasting, extrusion, etc. have been employed for effective destruction of aflatoxins, which are known for their thermo-stable nature. The high temperature treatment, adversely affects the nutritive and other quality attributes of the food, leading to the necessity of application of non-thermal processing techniques such as ultrasonication, gamma irradiation, high pressure processing, pulsed electric field (PEF), etc. The present study was focused on analysing the efficacy of the PEF process in the reduction of the toxin content, which was subsequently quantified using HPLC. The process parameters of different pH model system (potato dextrose agar) artificially spiked with aflatoxin mix standard was optimized using the response surface methodology. The optimization of PEF process effects on the responses aflatoxin B1 and total aflatoxin reduction (%) by pH (4-10), pulse width (10-26 µs) and output voltage (20-65%), fitted 2FI model and quadratic model respectively. The response surface plots obtained for the processes were of saddle point type, with the absence of minimum or maximum response at the centre point. The implemented numerical optimization showed that the predicted and actual values were similar, proving the adequacy of the fitted models and also proved the possible application of PEF in toxin reduction.

  20. Characterization of the maize lipoxygenase gene family in relation to aflatoxin accumulation resistance.

    PubMed

    Ogunola, Oluwaseun F; Hawkins, Leigh K; Mylroie, Erik; Kolomiets, Michael V; Borrego, Eli; Tang, Juliet D; Williams, W Paul; Warburton, Marilyn L

    2017-01-01

    Maize (Zea mays L.) is a globally important staple food crop prone to contamination by aflatoxin, a carcinogenic secondary metabolite produced by the fungus Aspergillus flavus. An efficient approach to reduce accumulation of aflatoxin is the development of germplasm resistant to colonization and toxin production by A. flavus. Lipoxygenases (LOXs) are a group of non-heme iron containing dioxygenase enzymes that catalyze oxygenation of polyunsaturated fatty acids (PUFAs). LOX derived oxylipins play critical roles in plant defense against pathogens including A. flavus. The objectives of this study were to summarize sequence diversity and expression patterns for all LOX genes in the maize genome, and map their effect on aflatoxin accumulation via linkage and association mapping. In total, 13 LOX genes were identified, characterized, and mapped. The sequence of one gene, ZmLOX10, is reported from 5 inbred lines. Genes ZmLOX1/2, 5, 8, 9, 10 and 12 (GRMZM2G156861, or V4 numbers ZM00001D042541 and Zm00001D042540, GRMZM2G102760, GRMZM2G104843, GRMZM2G017616, GRMZM2G015419, and GRMZM2G106748, respectively) fell under previously published QTL in one or more mapping populations and are linked to a measurable reduction of aflatoxin in maize grains. Association mapping results found 28 of the 726 SNPs tested were associated with reduced aflatoxin levels at p ≤ 9.71 x 10-4 according to association statistics. These fell within or near nine of the ZmLOX genes. This work confirms the importance of some lipoxygenases for resistance to aflatoxin accumulation and may be used to direct future genetic selection in maize.

  1. Effect of Various Compounds Blocking the Colony Pigmentation on the Aflatoxin B1 Production by Aspergillus flavus.

    PubMed

    Dzhavakhiya, Vitaly G; Voinova, Tatiana M; Popletaeva, Sofya B; Statsyuk, Natalia V; Limantseva, Lyudmila A; Shcherbakova, Larisa A

    2016-10-28

    Aflatoxins and melanins are the products of a polyketide biosynthesis. In this study, the search of potential inhibitors of the aflatoxin B1 (AFB1) biosynthesis was performed among compounds blocking the pigmentation in fungi. Four compounds-three natural (thymol, 3-hydroxybenzaldehyde, compactin) and one synthetic (fluconazole)-were examined for their ability to block the pigmentation and AFB1 production in Aspergillus flavus . All compounds inhibited the mycelium pigmentation of a fungus growing on solid medium. At the same time, thymol, fluconazole, and 3-hydroxybenzaldehyde stimulated AFB1 accumulation in culture broth of A. flavus under submerged fermentation, whereas the addition of 2.5 μg/mL of compactin resulted in a 50× reduction in AFB1 production. Moreover, compactin also suppressed the sporulation of A. flavus on solid medium. In vivo treatment of corn and wheat grain with compactin (50 μg/g of grain) reduced the level of AFB1 accumulation 14 and 15 times, respectively. Further prospects of the compactin study as potential AFB1 inhibitor are discussed.

  2. Host-Induced Gene Silencing (HIGS) of aflatoxin synthesis genes in peanut and maize: use of RNA interference and genetic diversity of Aspergillus

    USDA-ARS?s Scientific Manuscript database

    Approximately 4.5 billion people are chronically exposed to aflatoxins, these are powerful carcinogens produced by Aspergillus flavus and A. parasiticus. High levels of aflatoxins in crops result in approximately 100 million metric tons of cereals, ¬nuts, root crops and other agricultural products ...

  3. Aflatoxin B1 in common Egyptian foods.

    PubMed

    Selim, M I; Popendorf, W; Ibrahim, M S; el Sharkawy, S; el Kashory, E S

    1996-01-01

    Samples of common Egyptian foods (17 nuts and seeds, 10 spices, 31 herbs and medicinal plants, 12 dried vegetables, and 28 cereal grains) were collected from markets in Cairo and Giza. A portion of each sample was extracted with chloroform, and the concentrated extract was cleaned by passing through a silica gel column. Aflatoxin B1 was determined by reversed-phase liquid chromatography with UV detection. The highest prevalence of aflatoxin B1 was in nuts and seeds (82%), followed by spices (40%), herbs and medicinal plants (29%), dried vegetables (25%), and cereal grains (21%). The highest mean concentration of aflatoxin B1 was in herb and medicinal plants (49 ppb), followed by cereals (36 ppb), spices (25 ppb), nuts and seeds (24 ppb), and dried vegetables (20 ppb). Among nuts and seeds, the prevalence of aflatoxin B1 was highest (100%) in watermelon seeds, inshell peanuts, and unshelled peanuts. The lowest prevalence and concentrations were in hommos (garbanzo beans). The highest concentrations of aflatoxin B1 were detected in foods that had no potential for field contamination but required drying during processing and storage, such as pomegranate peel, watermelon seeds, and molokhia.

  4. A potent feed preservative candidate produced by Calcarisporium sp., an endophyte residing in stargrass (Cynodon dactylon).

    PubMed

    Ji, L L; Song, Y C; Tan, R X

    2004-01-01

    The cultures of an endophytic fungus Calcarisporium sp. were screened for inhibitors on the growth of feed-associated moulds and on the aflatoxin biosynthesis to find a safe and effective feed preservative. Eight test fungi were isolated from the spoiled poultry feed. The endophytic fungus Calcarisporium sp. was separated from the Chinese coastal grass Cynodon dactylon. The antifungal action concerning the endophytic culture extract (ECE) was performed with propionic acid (PPA) as the corresponding reference. The ECE had a similar antifungal efficacy to PPA in a concentration-dependent manner. The susceptibility order of the ECE to the test fungi was found to be Fusarium sp. > Aspergillus spp. > Penicillium spp. Furthermore, the application of the ECE in pelleted-layer duck feed as a preservative was carried out at a humidity of 10, 15 and 20%. It has been discerned that mould growth and aflatoxin biosynthesis could be co-inhibited almost completely by ECE at concentrations higher than 1.0% (w/w). The LD50 of the ECE on mice was shown to be higher than 28 g kg-1. The ECE can be selected as an inhibitor to preserve poultry feed on inhibiting the growth of mould and aflatoxin biosynthesis during feed storage. The ECE may be an effective and biosafe antifungal ingredient for poultry feed and holds a potential market prospect in feed industry.

  5. High pressure liquid chromatographic determination of aflatoxins in spices.

    PubMed

    Awe, M J; Schranz, J L

    1981-11-01

    High pressure liquid chromatography with fluorescence detection is used to determine aflatoxin in 5 common spices. A 10 micrometer microparticulate silica gel column is used with a dichloromethane-cyclohexane-acetonitrile solvent system to resolve aflatoxins B1, G1, B2, and G2. The fluorescence detector contained a silica gel-packed flowcell. Samples of black, white, and red pepper, ginger, and nutmeg were extracted according to a previously published method. Recoveries from aflatoxin-free samples of white pepper, ginger, and red pepper spiked with 1-50 micrograms aflatoxin/kg ranged from 64 to 92%.

  6. The threats to food safety and biocontrol of aflatoxins

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are a serious food safety concern for human and animal health. Great attention should be paid to the dietary exposure to these toxins in order to reduce the risk of aflatoxin contamination in the food chain. Although the research on aflatoxins was started more than 50 years ago, it is sti...

  7. Indentification of vincamine indole alkaloids producing endophytic fungi isolated from Nerium indicum, Apocynaceae.

    PubMed

    Na, Ren; Jiajia, Liu; Dongliang, Yang; Yingzi, Peng; Juan, Hong; Xiong, Liu; Nana, Zhao; Jing, Zhou; Yitian, Luo

    2016-11-01

    Vincamine, a monoterpenoid indole alkaloid which had been marketed as nootropic drugs for the treatment of cerebral insufficiencies, is widely found in plants of the Apocynaceae family. Nerium indicum is a plant belonging to the Apocynaceae family. So, the purpose of this research was designed to investigate the vincamine alkaloids producing endophytic fungi from Nerium indicum, Apocynaceae. 11 strains of endophytic fungi, isolated from the stems and roots of the plant, were grouped into 5 genera on the basis of morphological characteristics. All fungal isolates were fermented and their extracts were preliminary screened by Dragendorff's reagent and thin layer chromatography (TLC). One isolated strain CH1, isolated from the stems of Nerium indicum, had the same Rf value (about 0.56) as authentic vincamine. The extracts of strain CH1 were further analyzed by high performance liquid chromatography (HPLC) and liquid chromatograph-mass spectrometry (LC-MS), and the results showed that the strain CH1 could produce vincamine and vincamine analogues. The acetylcholinesterase (AchE) inhibitory activity assays using Ellman's method revealed that the metabolites of strain CH1 had significant AchE inhibitory activity with an IC50 value of 5.16μg/mL. The isolate CH1 was identified as Geomyces sp. based on morphological and molecular identification, and has been deposited in the China Center for Type Culture Collection (CCTCCM 2014676). This study first reported the natural compounds tabersonine and ethyl-vincamine from endophytic fungi CH1, Geomyces sp. In conclusion, the fungal endophytes from Nerium indicum can be used as alternative source for the production of vincamine and vincamine analogues. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. The Molecular Epidemiology of Chronic Aflatoxin Driven Impaired Child Growth

    PubMed Central

    Turner, Paul Craig

    2013-01-01

    Aflatoxins are toxic secondary fungal metabolites that contaminate dietary staples in tropical regions; chronic high levels of exposure are common for many of the poorest populations. Observations in animals indicate that growth and/or food utilization are adversely affected by aflatoxins. This review highlights the development of validated exposure biomarkers and their use here to assess the role of aflatoxins in early life growth retardation. Aflatoxin exposure occurs in utero and continues in early infancy as weaning foods are introduced. Using aflatoxin-albumin exposure biomarkers, five major studies clearly demonstrate strong dose response relationships between exposure in utero and/or early infancy and growth retardation, identified by reduced birth weight and/or low HAZ and WAZ scores. The epidemiological studies include cross-sectional and longitudinal surveys, though aflatoxin reduction intervention studies are now required to further support these data and guide sustainable options to reduce the burden of exposure. The use of aflatoxin exposure biomarkers was essential in understanding the observational data reviewed and will likely be a critical monitor of the effectiveness of interventions to restrict aflatoxin exposure. Given that an estimated 4.5 billion individuals live in regions at risk of dietary contamination the public health concern cannot be over stated. PMID:24455429

  9. Complex regulation of the aflatoxin biosynthesis gene cluster of Aspergillus flavus in relation to various combinations of water activity and temperature.

    PubMed

    Schmidt-Heydt, Markus; Abdel-Hadi, Ahmed; Magan, Naresh; Geisen, Rolf

    2009-11-15

    A microarray analysis was performed to study the effect of varying combinations of water activity and temperature on the activation of aflatoxin biosynthesis genes in Aspergillusflavus grown on YES medium. Generally A. flavus showed expression of the aflatoxin biosynthetic genes at all parameter combinations tested. Certain combinations of a(w) and temperature, especially combinations which imposed stress on the fungus resulted in a significant reduction of the growth rate. At these conditions induction of the whole aflatoxin biosynthesis gene cluster occurred, however the produced aflatoxin B(1) was low. At all other combinations (25 degrees C/0.95 and 0.99; 30 degrees C/0.95 and 0.99; 35 degrees C/0.95 and 0.99) a reduced basal level of cluster gene expression occurred. At these combinations a high growth rate was obtained as well as high aflatoxin production. When single genes were compared, two groups with different expression profiles in relation to water activity/temperature combinations occurred. These two groups were co-ordinately localized within the aflatoxin gene cluster. The ratio of aflR/aflJ expression was correlated with increased aflatoxin biosynthesis.

  10. Step of Dichlorvos Inhibition in the Pathway of Aflatoxin Biosynthesis

    PubMed Central

    Yao, Raymond C.; Hsieh, Dennis P. H.

    1974-01-01

    Dichlorvos (dimethyl 2,2-dichlorovinyl phosphate) inhibits the biosynthesis of aflatoxin by Aspergillus parasiticus. Cultures treated with dichlorvos excrete an orange pigment which can be converted into aflatoxin B1 by the untreated mycelia. The orange pigment was partially identified as an acetyl derivative of versiconol-type compound. In the presence of dichlorvos, sterigmatocystin is converted into aflatoxin B1 without being interfered, but averufin is converted into the orange pigment instead of aflatoxin B1. Therefore, dichlorvos appears to block an enzymatic step in the aflatoxin biosynthetic pathway, which lies beyond averufin but before sterigmatocystin, at the formation of the orange pigment. PMID:4844267

  11. A mini review on aflatoxin exposure in Malaysia: past, present and future.

    PubMed

    Mohd-Redzwan, Sabran; Jamaluddin, Rosita; Abd-Mutalib, Mohd Sokhini; Ahmad, Zuraini

    2013-11-13

    This mini review article described the exposure of aflatoxin in Malaysia, including its presence in the foodstuffs and the detection of aflatoxin biomarkers in human biological samples. Historically, the exposure of aflatoxin in Malaysia can be dated in 1960s where an outbreak of disease in pig farms caused severe liver damage to the animals. Later, an aflatoxicosis case in Perak in 1988 was reported and caused death to 13 children, as up to 3 mg of aflatoxin was present in a single serving of contaminated noodles. Since then, extensive research on aflatoxin has been conducted in Malaysia. The food commodities such as peanuts, cereals, spices, and their products are the main commodities commonly found to be contaminated with aflatoxin. Surprisingly, some of the contaminated foods had levels greater than the permissible limit adopted by the Malaysian Food Regulation 1985. Besides, exposure assessment through the measurement of aflatoxin biomarkers in human biological samples is still in its infancy stage. Nevertheless, some studies had reported the presence of these biomarkers. In fact, it is postulated that Malaysians are moderately exposed to aflatoxin compared to those high risk populations, where aflatoxin contamination in the diets is prevalent. Since the ingestion of aflatoxin could be the integral to the development of liver cancer, the incidence of cancer attributable by dietary aflatoxin exposure in Malaysia has also been reported and published in the literatures. Regardless of these findings, the more important task is to monitor and control humans from being exposed to aflatoxin. The enforcement of law is insufficient to minimize human exposure to aflatoxin. Preventive strategies include agricultural, dietary, and clinical measures should be implemented. With the current research on aflatoxin in Malaysia, a global networking for research collaboration is needed to expand the knowledge and disseminate the information to the global scientific community.

  12. A mini review on aflatoxin exposure in Malaysia: past, present and future

    PubMed Central

    Mohd-Redzwan, Sabran; Jamaluddin, Rosita; Abd.-Mutalib, Mohd Sokhini; Ahmad, Zuraini

    2013-01-01

    This mini review article described the exposure of aflatoxin in Malaysia, including its presence in the foodstuffs and the detection of aflatoxin biomarkers in human biological samples. Historically, the exposure of aflatoxin in Malaysia can be dated in 1960s where an outbreak of disease in pig farms caused severe liver damage to the animals. Later, an aflatoxicosis case in Perak in 1988 was reported and caused death to 13 children, as up to 3 mg of aflatoxin was present in a single serving of contaminated noodles. Since then, extensive research on aflatoxin has been conducted in Malaysia. The food commodities such as peanuts, cereals, spices, and their products are the main commodities commonly found to be contaminated with aflatoxin. Surprisingly, some of the contaminated foods had levels greater than the permissible limit adopted by the Malaysian Food Regulation 1985. Besides, exposure assessment through the measurement of aflatoxin biomarkers in human biological samples is still in its infancy stage. Nevertheless, some studies had reported the presence of these biomarkers. In fact, it is postulated that Malaysians are moderately exposed to aflatoxin compared to those high risk populations, where aflatoxin contamination in the diets is prevalent. Since the ingestion of aflatoxin could be the integral to the development of liver cancer, the incidence of cancer attributable by dietary aflatoxin exposure in Malaysia has also been reported and published in the literatures. Regardless of these findings, the more important task is to monitor and control humans from being exposed to aflatoxin. The enforcement of law is insufficient to minimize human exposure to aflatoxin. Preventive strategies include agricultural, dietary, and clinical measures should be implemented. With the current research on aflatoxin in Malaysia, a global networking for research collaboration is needed to expand the knowledge and disseminate the information to the global scientific community

  13. [Appearance of aflatoxin M1 during the manufacture of Camembert cheese].

    PubMed

    Frémy, J M; Roiland, J C

    1979-01-01

    Several classic cheese making of camembert are made from raw milk spiked with Aflatoxin M1. Three Aflatoxin levels 7.5 microgram/l, 3 microgram/l are used. In respective curds 35.6, 47.1 and 57.7% of Aflatoxin M1 are recovered and 64.4, 52.9 and 42.3% in respective whey. During the first 15 days of storage the Aflatoxin M1 content of different cheeses decrease respectively 25, 55, 75%. A similar experience is made with a milk contamined in Aflatoxin M1 C14 labelled. Same results are recovered, except about behaviour of Aflatoxin M1 in cheese: a same C14 activity is recovered during storage for 30 days.

  14. The hydrolytic enzymes produced by fungi strains isolated from the sand and soil of recreational areas

    PubMed

    Kurnatowski, Piotr; Wójcik, Anna; Błaszkowska, Joanna; Góralska, Katarzyna

    2016-10-01

    The pathogenicity of fungi depends on, inter alia, the secretion of hydrolytic enzymes. The aim of this study was to determine the enzymatic activity of yeasts and yeast-like fungi isolated from children’s recreation areas, and compare the results with literature data of strains obtained from patients with mycoses. The enzymatic activity of 96 strains was assessed using an API ZYM kit (bioMerieux, France) and their biotypes were established. The fungal species were found to produce from 16 to 19 hydrolases: the most active were: leucine arylamidase (e5), acid phosphatase (e10), alkaline phosphatase (e1), naphthol-AS-BI-phosphohydrolase (e11), esterase – C4 (e2), β-galac - tosidase (e13) and β-glucosidase (e16). In addition, 13 biotypes characteristic of particular species of fungi were defined. Most strains could be categorized as biotypes C2 – 39.5% and A – 26%. The examined fungal strains isolated from recreational areas have selected biochemical characteristics i.e. production of hydrolases, which demonstrate their pathogenicity. They produce a number of enzymes which are also present in strains isolated from patients with mycoses, including: leucine arylamidase (e5), acid phosphatase (e10), naphthol-AS-BI-phosphohydrolase (e11) and alkaline phosphatase (e1). The biotypes identified in the course of this study (A, B3, B4, C1, C6 and D3) have been also reported in cases of fungal infection. Therefore, the fungi present in the sand and soil of recreational have pathogenic properties and are possible factors of fungal infection among children.

  15. Regulation of aflatoxin biosynthesis and branched-chain amino acids metabolism in Aspergillus flavus by 2-phenylethanol reveal biocontrol mechanism of Pichia anomala

    USDA-ARS?s Scientific Manuscript database

    Pichia anomala WRL-076 is a biocontrol yeast which has been shown to inhibit growth and aflatoxin production of A. flavus. Using the SPME-GC/MS analysis we identified that the volatile, 2-phenylethanol (2-PE) produced by this yeast and demonstrated that the compound inhibited aflatoxin production. W...

  16. Monoclonal IgA Antibodies for Aflatoxin Immunoassays

    PubMed Central

    Ertekin, Özlem; Pirinçci, Şerife Şeyda; Öztürk, Selma

    2016-01-01

    Antibody based techniques are widely used for the detection of aflatoxins which are potent toxins with a high rate of occurrence in many crops. We developed a murine monoclonal antibody of immunoglobulin A (IgA) isotype with a strong binding affinity to aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2) and aflatoxin M1 (AFM1). The antibody was effectively used in immunoaffinity column (IAC) and ELISA kit development. The performance of the IACs was compatible with AOAC performance standards for affinity columns (Test Method: AOAC 991.31). The total binding capacity of the IACs containing our antibody was 111 ng, 70 ng, 114 ng and 73 ng for AFB1, AFB2, and AFG1 andAFG2, respectively. Furthermore, the recovery rates of 5 ng of each AF derivative loaded to the IACs were determined as 104.9%, 82.4%, 85.5% and 70.7% for AFB1, AFB2, AFG1 and AFG2, respectively. As for the ELISA kit developed using non-oriented, purified IgA antibody, we observed a detection range of 2–50 µg/L with 40 min total test time. The monoclonal antibody developed in this research is hitherto the first presentation of quadruple antigen binding IgA monoclonal antibodies in mycotoxin analysis and also the first study of their utilization in ELISA and IACs. IgA antibodies are valuable alternatives for immunoassay development, in terms of both sensitivity and ease of preparation, since they do not require any orientation effort. PMID:27187470

  17. Comparison of major biocontrol strains of non-aflatoxigenic Aspergillus flavus for the reduction of aflatoxins and cyclopiazonic acid in maize.

    PubMed

    Abbas, H K; Zablotowicz, R M; Horn, B W; Phillips, N A; Johnson, B J; Jin, X; Abel, C A

    2011-02-01

    Biological control of toxigenic Aspergillus flavus in maize through competitive displacement by non-aflatoxigenic strains was evaluated in a series of field studies. Four sets of experiments were conducted between 2007 and 2009 to assess the competitiveness of non-aflatoxigenic strains when challenged against toxigenic strains using a pin-bar inoculation technique. In three sets of experiments the non-aflatoxigenic strain K49 effectively displaced toxigenic strains at various concentrations or combinations. The fourth study compared the relative competitiveness of three non-aflatoxigenic strains (K49, NRRL 21882 from Afla-Guard®, and AF36) when challenged on maize against two aflatoxin- and cyclopiazonic acid (CPA)-producing strains (K54 and F3W4). These studies indicate that K49 and NRRL 21882 are superior to AF36 in reducing total aflatoxin contamination. Neither K49 nor NRRL 21882 produce CPA and when challenged with K54 and F3W4, CPA and aflatoxins were reduced by 84-97% and 83-98%, respectively. In contrast, AF36 reduced aflatoxins by 20% with F3W4 and 93% with K54 and showed no reduction in CPA with F3W4 and only a 62% reduction in CPA with K54. Because AF36 produces CPA, high levels of CPA accumulate when maize is inoculated with AF36 alone or in combination with F3W4 or K54. These results indicate that K49 may be equally effective as NRRL 21882 in reducing both aflatoxins and CPA in maize.

  18. In vitro experimental environments lacking or containing soil disparately affect competition experiments of Aspergillus flavus and co-occurring fungi in maize grains.

    PubMed

    Falade, Titilayo D O; Syed Mohdhamdan, Sharifah H; Sultanbawa, Yasmina; Fletcher, Mary T; Harvey, Jagger J W; Chaliha, Mridusmita; Fox, Glen P

    2016-07-01

    In vitro experimental environments are used to study interactions between microorganisms, and to predict dynamics in natural ecosystems. This study highlights that experimental in vitro environments should be selected to match closely the natural environment of interest during in vitro studies to strengthen extrapolations about aflatoxin production by Aspergillus and competing organisms. Fungal competition and aflatoxin accumulation were studied in soil, cotton wool or tube (water-only) environments, for Aspergillus flavus competition with Penicillium purpurogenum, Fusarium oxysporum or Sarocladium zeae within maize grains. Inoculated grains were incubated in each environment at two temperature regimes (25 and 30°C). Competition experiments showed interaction between the main effects of aflatoxin accumulation and the environment at 25°C, but not so at 30°C. However, competition experiments showed fungal populations were always interacting with their environments. Fungal survival differed after the 72-h incubation in different experimental environments. Whereas all fungi incubated within the soil environment survived, in the cotton wool environment none of the competitors of A. flavus survived at 30°C. With aflatoxin accumulation, F. oxysporum was the only fungus able to interdict aflatoxin production at both temperatures. This occurred only in the soil environment and fumonisins accumulated instead. Smallholder farmers in developing countries face serious mycotoxin contamination of their grains, and soil is a natural reservoir for the associated fungal propagules, and a drying and storage surface for grains on these farms. Studying fungal dynamics in the soil environment and other environments in vitro can provide insights into aflatoxin accumulation post-harvest.

  19. Quantitative Scrutinization of Aflatoxins in Different Spices from Pakistan

    PubMed Central

    Kashif, Aiza; Kanwal, Kinza; Khan, Abdul Muqeet; Abbas, Mateen

    2016-01-01

    The current research work aimed to access the contamination level of aflatoxins B1, B2, G1, and G2 in the household spices that are widely consumed in huge amounts. 200 different spice samples, 100 packed and 100 unpacked, were analyzed for the aflatoxins profile by HPLC with an incidence of 61.5% contamination out of which 53.66% samples exceed the EU limit. The results disclosed that the unpacked samples are more contaminated as compared to the packed samples except for white cumin seeds. Among packed and unpacked samples of spices, the maximum value of aflatoxins was detected in fennel, that is, 27.93 μg/kg and 67.04 μg/kg, respectively. The lowest concentration of aflatoxin was detected in cinnamon in packed form (0.79 μg/kg) and in the unpacked samples of white cumin seeds which is 1.75 μg/kg. Caraway seeds and coriander in its unpacked form showed positive results whereas black pepper (packed and unpacked) was found free from aflatoxins. This is the first report on the occurrence of aflatoxins in packed and unpacked samples of spices from Pakistan. To ensure safe consumption of spices, there should be constant monitoring of aflatoxin and more studies need to be executed with the intention of preventing mycotoxin accretion in this commodity. PMID:27781067

  20. Peanuts that keep aflatoxin at bay: a threshold that matters.

    PubMed

    Sharma, Kiran K; Pothana, Arunima; Prasad, Kalyani; Shah, Dilip; Kaur, Jagdeep; Bhatnagar, Deepak; Chen, Zhi-Yuan; Raruang, Yenjit; Cary, Jeffrey W; Rajasekaran, Kanniah; Sudini, Hari Kishan; Bhatnagar-Mathur, Pooja

    2018-05-01

    Aflatoxin contamination in peanuts poses major challenges for vulnerable populations of sub-Saharan Africa and South Asia. Developing peanut varieties to combat preharvest Aspergillus flavus infection and resulting aflatoxin contamination has thus far remained a major challenge, confounded by highly complex peanut-Aspergilli pathosystem. Our study reports achieving a high level of resistance in peanut by overexpressing (OE) antifungal plant defensins MsDef1 and MtDef4.2, and through host-induced gene silencing (HIGS) of aflM and aflP genes from the aflatoxin biosynthetic pathway. While the former improves genetic resistance to A. flavus infection, the latter inhibits aflatoxin production in the event of infection providing durable resistance against different Aspergillus flavus morphotypes and negligible aflatoxin content in several peanut events/lines well. A strong positive correlation was observed between aflatoxin accumulation and decline in transcription of the aflatoxin biosynthetic pathway genes in both OE-Def and HIGS lines. Transcriptomic signatures in the resistant lines revealed key mechanisms such as regulation of aflatoxin synthesis, its packaging and export control, besides the role of reactive oxygen species-scavenging enzymes that render enhanced protection in the OE and HIGS lines. This is the first study to demonstrate highly effective biotechnological strategies for successfully generating peanuts that are near-immune to aflatoxin contamination, offering a panacea for serious food safety, health and trade issues in the semi-arid regions. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Effects of Zinc Chelators on Aflatoxin Production in Aspergillus parasiticus

    PubMed Central

    Wee, Josephine; Day, Devin M.; Linz, John E.

    2016-01-01

    Zinc concentrations strongly influence aflatoxin accumulation in laboratory media and in food and feed crops. The presence of zinc stimulates aflatoxin production, and the absence of zinc impedes toxin production. Initial studies that suggested a link between zinc and aflatoxin biosynthesis were presented in the 1970s. In the present study, we utilized two zinc chelators, N,N,N′,N′-tetrakis (2-pyridylmethyl) ethane-1,2-diamine (TPEN) and 2,3-dimercapto-1-propanesulfonic acid (DMPS) to explore the effect of zinc limitation on aflatoxin synthesis in Aspergillus parasiticus. TPEN but not DMPS decreased aflatoxin biosynthesis up to six-fold depending on whether A. parasiticus was grown on rich or minimal medium. Although we observed significant inhibition of aflatoxin production by TPEN, no detectable changes were observed in expression levels of the aflatoxin pathway gene ver-1 and the zinc binuclear cluster transcription factor, AflR. Treatment of growing A. parasiticus solid culture with a fluorescent zinc probe demonstrated an increase in intracellular zinc levels assessed by increases in fluorescent intensity of cultures treated with TPEN compared to controls. These data suggest that TPEN binds to cytoplasmic zinc therefore limiting fungal access to zinc. To investigate the efficacy of TPEN on food and feed crops, we found that TPEN effectively decreases aflatoxin accumulation on peanut medium but not in a sunflower seeds-derived medium. From an application perspective, these data provide the basis for biological differences that exist in the efficacy of different zinc chelators in various food and feed crops frequently contaminated by aflatoxin. PMID:27271668

  2. Effect of Aflatoxin B1 on Growth of Bovine Mammary Epithelial Cells in 3D and Monolayer Culture System.

    PubMed

    Forouharmehr, Ali; Harkinezhad, Taher; Qasemi-Panahi, Babak

    2013-01-01

    Many studies have been showed transfer of aflatoxins, toxins produced by Aspergillus flvaus and Aspergillus parasiticus fungi, into milk. These toxins are transferred into the milk through digestive system by eating contaminated food. Due to the toxicity of these materials, it seems that it has side effects on the growth of mammary cells. Therefore, the present work aimed to investigate possible toxic effects of aflatoxin B1 (AFB1) on bovine mammary epithelial cells in monolayer and three-dimensional cultures. Specimens of the mammary tissue of bovine were sized out in size 2×2 cm in slaughterhouse. After disinfection and washing in sterile PBS, primary cell culture was performed by enzymatic digestion of tissue with collagenase. When proper numbers of cells were achieved in monolayer culture, cells were seeded in a 24-well culture plate for three-dimensional (3D) culture in Matrigel matrix. After 21 days of 3D culture and reaching the required number of cells, the concentrations of 15, 25 and 35 µL of AFB1 were added to the culture in quadruplicate and incubated for 8 hours. Cellular cytotoxicity was examined using standard colorimetric assay and finally, any change in the morphology of the cells was studied by microscopic technique. Microscopic investigations showed necrosis of the AFB1-exposed cells compared to the control cells. Also, bovine mammary epithelial cells were significantly affected by AFB1 in dose and time dependent manner in cell viability assays. According to the results, it seems that AFB1 can induce cytotoxicity and necrosis in bovine mammary epithelial cells.

  3. Behavior of 14C aflatoxin M1 during camembert cheese making.

    PubMed

    Fremy, J M; Roiland, J C; Gaymard, A

    1990-01-01

    Camembert cheeses are made from raw milk spiked with aflatoxin M1. Three aflatoxin M1 levels (7.5 micrograms/L, 3 micrograms/L, and 0.3 micrograms/L) are used. In curds 35.6, 47.1, and 57.7% of aflatoxin M1, respectively, are recovered, and in wheys 64.4, 52.9, and 42.3%, respectively, are recovered. During the first 15 days of storage, the aflatoxin M1 content of different cheeses decreases 25, 55, and 75%, respectively. A similar experiment is made with milk contaminated with 14C labeled aflatoxin M1. The same results are obtained, except for the behavior of aflatoxin M1 in cheese; the same 14C activity is recovered during storage for 30 days.

  4. RNA sequencing of contaminated seeds reveals the state of the seed permissive for pre-harvest aflatoxin contamination and points to a potential susceptibility factor

    USDA-ARS?s Scientific Manuscript database

    Pre-harvest aflatoxin contamination (PAC) is a major problem facing peanut production worldwide. Produced by the ubiquitous soil fungus, Aspergillus flavus, aflatoxin is the most potent naturally occurring known carcinogen. The interaction between fungus and host resulting in PAC is complex, and b...

  5. Identification of aflatoxin biosynthesis genes by genetic complementation in an Aspergillus flavus mutant lacking the aflatoxin gene cluster.

    PubMed Central

    Prieto, R; Yousibova, G L; Woloshuk, C P

    1996-01-01

    Aspergillus flavus mutant strain 649, which has a genomic DNA deletion of at least 120 kb covering the aflatoxin biosynthesis cluster, was transformed with a series of overlapping cosmids that contained DNA harboring the cluster of genes. The mutant phenotype of strain 649 was rescued by transformation with a combination of cosmid clones 5E6, 8B9, and 13B9, indicating that the cluster of genes involved in aflatoxin biosynthesis resides in the 90 kb of A. flavus genomic DNA carried by these clones. Transformants 5E6 and 20B11 and transformants 5E6 and 8B9 accumulated intermediate metabolites of the aflatoxin pathway, which were identified as averufanin and/or averufin, respectively.These data suggest that avf1, which is involved in the conversion of averufin to versiconal hemiacetal acetate, was present in the cosmid 13B9. Deletion analysis of 13B9 located the gene on a 7-kb DNA fragment of the cosmid. Transformants containing cosmid 8B9 converted exogenously supplied O-methylsterigmatocystin to aflatoxin, indicating that the oxidoreductase gene (ord1), which mediates the conversion of O-methylsterigmatocystin to aflatoxin, is carried by this cosmid. The analysis of transformants containing deletions of 8B9 led to the localization of ord1 on a 3.3-kb A. flavus genomic DNA fragment of the cosmid. PMID:8967772

  6. Degradation of Pure Aflatoxins by Tetrahymena pyriformis

    PubMed Central

    Teunisson, Dorothea J.; Robertson, James A.

    1967-01-01

    Tetrahymena pyriformis W with nutrients, ca. 22 × 106 cells, decreased the concentration of aflatoxin B1 58% in 24 hr and 67% in 48 hr. An unknown, bright-blue fluorescent substance was produced, with intensity about one-half that of the unchanged B1, with an Rf of 0.52 compared with 0.59 for B1 and 0.55 for B2 on a thin-layer chromatography plate, and with an ultraviolet spectrum showing maxima of 253, 261, and 328 mμ. In a separate assay, the cells with nutrients did not degrade pure G1. Starved, washed cells, ca. 11 × 106, decreased the concentration of B1 50% in 10 hr, 70% in 22 hr, and 75% in 30 hr, producing the same unknown component. Ethyl alcohol, 1.96% (v/v), decreased cell populations and size, but the cells remained actively motile in broth plus the alcohol for 96 hr. In 72 hr, neither toxin (ca. 2 ppm) in combination with ethyl alcohol had more inhibitory effect on cell numbers, with or without nutrients, than was produced by alcohol alone. Aflatoxin B1 had no observed effect on the viability of the starved cells for 30 hr or on the nourished cells for 72 hr. There was no noticeable effect of G1 on the starved cells in 30 hr or on the nourished cells in 48 hr. After 72 hr with G1 plus nutrients, many of the cells were round with blisters, nonmotile, and apparently dead or dying. PMID:16349725

  7. Multiclonal plastic antibodies for selective aflatoxin extraction from food samples.

    PubMed

    Bayram, Engin; Yılmaz, Erkut; Uzun, Lokman; Say, Rıdvan; Denizli, Adil

    2017-04-15

    Herein, we focused on developing a new generation of monolithic columns for extracting aflatoxin from real food samples by combining the superior features of molecularly imprinted polymers and cryogels. To accomplish this, we designed multiclonal plastic antibodies through simultaneous imprinting of aflatoxin subtypes B1, B2, G1, and G2. We applied Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and spectrofluorimetry to characterize the materials, and conducted selectivity studies using ochratoxin A and aflatoxin M1 (a metabolite of aflatoxin B1), as well as other aflatoxins, under competitive conditions. We determined optimal aflatoxin extraction conditions in terms of concentration, flow rate, temperature, and embedded particle amount as up to 25ng/mL for each species, 0.43mL/min, 7.0, 30°C, and 200mg, respectively. These multiclonal plastic antibodies showed imprinting efficiencies against ochratoxin A and aflatoxin M1 of 1.84 and 26.39, respectively, even under competitive conditions. Finally, we tested reusability, repeatability, reproducibility, and robustness of columns throughout inter- and intra-column variation studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels.

    PubMed

    Gilbert, Matthew K; Majumdar, Rajtilak; Rajasekaran, Kanniah; Chen, Zhi-Yuan; Wei, Qijian; Sickler, Christine M; Lebar, Matthew D; Cary, Jeffrey W; Frame, Bronwyn R; Wang, Kan

    2018-06-01

    Expressing an RNAi construct in maize kernels that targets the gene for alpha-amylase in Aspergillus flavus resulted in suppression of alpha-amylase (amy1) gene expression and decreased fungal growth during in situ infection resulting in decreased aflatoxin production. Aspergillus flavus is a saprophytic fungus and pathogen to several important food and feed crops, including maize. Once the fungus colonizes lipid-rich seed tissues, it has the potential to produce toxic secondary metabolites, the most dangerous of which is aflatoxin. The pre-harvest control of A. flavus contamination and aflatoxin production is an area of intense research, which includes breeding strategies, biological control, and the use of genetically-modified crops. Host-induced gene silencing, whereby the host crop produces siRNA molecules targeting crucial genes in the invading fungus and targeting the gene for degradation, has shown to be promising in its ability to inhibit fungal growth and decrease aflatoxin contamination. Here, we demonstrate that maize inbred B104 expressing an RNAi construct targeting the A. flavus alpha-amylase gene amy1 effectively reduces amy1 gene expression resulting in decreased fungal colonization and aflatoxin accumulation in kernels. This work contributes to the development of a promising technology for reducing the negative economic and health impacts of A. flavus growth and aflatoxin contamination in food and feed crops.

  9. Investigation of Non-Covalent Interactions of Aflatoxins (B1, B2, G1, G2, and M1) with Serum Albumin

    PubMed Central

    Poór, Miklós; Bálint, Mónika; Hetényi, Csaba; Gődér, Beatrix; Kunsági-Máté, Sándor; Lemli, Beáta

    2017-01-01

    Aflatoxins are widely spread mycotoxins produced mainly by Aspergillus species. Consumption of aflatoxin-contaminated foods and drinks causes serious health risks for people worldwide. It is well-known that the reactive epoxide metabolite of aflatoxin B1 (AFB1) forms covalent adducts with serum albumin. However, non-covalent interactions of aflatoxins with human serum albumin (HSA) are poorly characterized. Thus, in this study the complex formation of aflatoxins was examined with HSA applying spectroscopic and molecular modelling studies. Our results demonstrate that aflatoxins form stable complexes with HSA as reflected by binding constants between 2.1 × 104 and 4.5 × 104 dm3/mol. A binding free energy value of −26.90 kJ mol−1 suggests a spontaneous binding process between AFB1 and HSA at room-temperature, while the positive entropy change of 55.1 JK−1 mol−1 indicates a partial decomposition of the solvation shells of the interacting molecules. Modeling studies and investigations with site markers suggest that Sudlow’s Site I of subdomain IIA is the high affinity binding site of aflatoxins on HSA. Interaction of AFB1 with bovine, porcine, and rat serum albumins was also investigated. Similar stabilities of the examined AFB1-albumin complexes were observed suggesting the low species differences of the albumin-binding of aflatoxins. PMID:29068381

  10. Variation in the Microbiome, Trichothecenes, and Aflatoxins in Stored Wheat Grains in Wuhan, China.

    PubMed

    Yuan, Qing-Song; Yang, Peng; Wu, Ai-Bo; Zuo, Dong-Yun; He, Wei-Jie; Guo, Mao-Wei; Huang, Tao; Li, He-Ping; Liao, Yu-Cai

    2018-04-24

    Contamination by fungal and bacterial species and their metabolites can affect grain quality and health of wheat consumers. In this study, sequence analyses of conserved DNA regions of fungi and bacteria combined with determination of trichothecenes and aflatoxins revealed the microbiome and mycotoxins of wheat from different silo positions (top, middle, and bottom) and storage times (3, 6, 9, and 12 months). The fungal community in wheat on the first day of storage (T₀) included 105 classified species (81 genera) and 41 unclassified species. Four species had over 10% of the relative abundance: Alternaria alternata (12%), Filobasidium floriforme (27%), Fusarium graminearum (12%), and Wallemia sebi (12%). Fungal diversity and relative abundance of Fusarium in wheat from top silo positions were significantly lower than at other silo positions during storage. Nivalenol and deoxynivalenol in wheat were 13⁻34% higher in all positions at 3 months compared to T₀, and mycotoxins in wheat from middle and bottom positions at 6 to 12 months were 24⁻57% higher than at T₀. The relative abundance of toxigenic Aspergillus and aflatoxins were low at T₀ and during storage. This study provides information on implementation and design of fungus and mycotoxin management strategies as well as prediction models.

  11. Variation in the Microbiome, Trichothecenes, and Aflatoxins in Stored Wheat Grains in Wuhan, China

    PubMed Central

    Yuan, Qing-Song; Yang, Peng; Zuo, Dong-Yun; He, Wei-Jie; Guo, Mao-Wei; Huang, Tao; Li, He-Ping; Liao, Yu-Cai

    2018-01-01

    Contamination by fungal and bacterial species and their metabolites can affect grain quality and health of wheat consumers. In this study, sequence analyses of conserved DNA regions of fungi and bacteria combined with determination of trichothecenes and aflatoxins revealed the microbiome and mycotoxins of wheat from different silo positions (top, middle, and bottom) and storage times (3, 6, 9, and 12 months). The fungal community in wheat on the first day of storage (T0) included 105 classified species (81 genera) and 41 unclassified species. Four species had over 10% of the relative abundance: Alternaria alternata (12%), Filobasidium floriforme (27%), Fusarium graminearum (12%), and Wallemia sebi (12%). Fungal diversity and relative abundance of Fusarium in wheat from top silo positions were significantly lower than at other silo positions during storage. Nivalenol and deoxynivalenol in wheat were 13–34% higher in all positions at 3 months compared to T0, and mycotoxins in wheat from middle and bottom positions at 6 to 12 months were 24–57% higher than at T0. The relative abundance of toxigenic Aspergillus and aflatoxins were low at T0 and during storage. This study provides information on implementation and design of fungus and mycotoxin management strategies as well as prediction models. PMID:29695035

  12. Degradation of Aflatoxins by Means of Laccases from Trametes versicolor: An In Silico Insight.

    PubMed

    Dellafiora, Luca; Galaverna, Gianni; Reverberi, Massimo; Dall'Asta, Chiara

    2017-01-01

    Mycotoxins are secondary metabolites of fungi that contaminate food and feed, and are involved in a series of foodborne illnesses and disorders in humans and animals. The mitigation of mycotoxin content via enzymatic degradation is a strategy to ensure safer food and feed, and to address the forthcoming issues in view of the global trade and sustainability. Nevertheless, the search for active enzymes is still challenging and time-consuming. The in silico analysis may strongly support the research by providing the evidence-based hierarchization of enzymes for a rational design of more effective experimental trials. The present work dealt with the degradation of aflatoxin B₁ and M₁ by laccase enzymes from Trametes versicolor . The enzymes-substrate interaction for various enzyme isoforms was investigated through 3D molecular modeling techniques. Structural differences among the isoforms have been pinpointed, which may cause different patterns of interaction between aflatoxin B₁ and M₁. The possible formation of different products of degradation can be argued accordingly. Moreover, the laccase gamma isoform was identified as the most suitable for protein engineering aimed at ameliorating the substrate specificity. Overall, 3D modeling proved to be an effective analytical tool to assess the enzyme-substrate interaction and provided a solid foothold for supporting the search of degrading enzyme at the early stage.

  13. Survey of aflatoxins in maize tortillas from Mexico City.

    PubMed

    Castillo-Urueta, Pável; Carvajal, Magda; Méndez, Ignacio; Meza, Florencia; Gálvez, Amanda

    2011-01-01

    In Mexico, maize tortillas are consumed on a daily basis, leading to possible aflatoxin exposure. In a survey of 396 2-kg samples, taken over four sampling days in 2006 and 2007 from tortilla shops and supermarkets in Mexico City, aflatoxin levels were quantified by HPLC. In Mexico, the regulatory limit is 12 µg kg⁻¹ total aflatoxins for maize tortillas. In this survey, 17% of tortillas contained aflatoxins at levels of 3-385 µg kg⁻¹ or values below the limit of quantification (12 µg kg⁻¹ and 87% were below the regulatory limit. Average aflatoxin concentrations in 56 contaminated samples were: AFB1 (12.1 µg kg⁻¹); AFB2 (2.7 µg kg⁻¹); AFG1 (64.1 µg kg⁻¹) and AFG2 (3.7 µg kg⁻¹), and total AF (20.3 µg kg⁻¹).

  14. Occurrence of aflatoxins in human foodstuffs in South Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loetter, L.H.; Kroehm, H.J.

    1988-02-01

    Aflatoxins are toxic metabolites of Aspergillus spp and have been reported as contaminants in a number of foodstuffs, namely corn, rice, peanuts, and cereals. In the Republic of South Africa, aflatoxin levels in human foodstuffs are limited to a maximum of 10 ..mu..g/kg for the total and 5 ..mu..g/kg for aflatoxin B/sub 1/. During 1985 and 1986, samples of sorghum beer, sorghum cereal, peanuts, peanut butter and maize meal were purchased from supermarkets in Johannesburg and analyzed for aflatoxins. A total of 414 samples were analyzed during the survey. In 1985, roughly a third of the samples were contaminated withmore » aflatoxins, with no levels in excess of the legal limit. In 1986 the percentage of contaminated samples rose significantly, but the levels of contamination remained low, with only one sample exceeding the legal maximum.« less

  15. Classification of corn kernels contaminated with aflatoxins using fluorescence and reflectance hyperspectral images analysis

    NASA Astrophysics Data System (ADS)

    Zhu, Fengle; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Brown, Robert; Bhatnagar, Deepak; Cleveland, Thomas

    2015-05-01

    Aflatoxins are secondary metabolites produced by certain fungal species of the Aspergillus genus. Aflatoxin contamination remains a problem in agricultural products due to its toxic and carcinogenic properties. Conventional chemical methods for aflatoxin detection are time-consuming and destructive. This study employed fluorescence and reflectance visible near-infrared (VNIR) hyperspectral images to classify aflatoxin contaminated corn kernels rapidly and non-destructively. Corn ears were artificially inoculated in the field with toxigenic A. flavus spores at the early dough stage of kernel development. After harvest, a total of 300 kernels were collected from the inoculated ears. Fluorescence hyperspectral imagery with UV excitation and reflectance hyperspectral imagery with halogen illumination were acquired on both endosperm and germ sides of kernels. All kernels were then subjected to chemical analysis individually to determine aflatoxin concentrations. A region of interest (ROI) was created for each kernel to extract averaged spectra. Compared with healthy kernels, fluorescence spectral peaks for contaminated kernels shifted to longer wavelengths with lower intensity, and reflectance values for contaminated kernels were lower with a different spectral shape in 700-800 nm region. Principal component analysis was applied for data compression before classifying kernels into contaminated and healthy based on a 20 ppb threshold utilizing the K-nearest neighbors algorithm. The best overall accuracy achieved was 92.67% for germ side in the fluorescence data analysis. The germ side generally performed better than endosperm side. Fluorescence and reflectance image data achieved similar accuracy.

  16. Aflatoxins in spices marketed in Portugal.

    PubMed

    Martins, M L; Martins, H M; Bernardo, F

    2001-04-01

    Seventy-nine prepackaged samples of 12 different types of spice powders (five cardamom, five cayenne pepper, eight chilli, five cloves, seven cumin, five curry) powder, five ginger, five mustard, 10 nutmeg, 12 paprika, five saffron and seven white pepper) were selected from supermarkets and ethnic shops in Lisbon (Portugal) for estimation of aflatoxins by immunoaffinity column clean-up followed by HPLC. Aflatoxin B1 (AFB1) was detected in 34 samples of prepackaged spices (43.0%). All of the cayenne pepper samples were contaminated with levels ranging from 2 to 32 microg AFB1/kg. Three nutmeg samples contained levels ranging from 1 to 5 microg/kg, three samples had levels ranging from 6 to 20 microg/kg, and there were two with 54 microg/kg and 58 microg/ kg. Paprika contained levels of aflatoxin B1 ranging from 1 to 20 microg/kg. Chilli, cumin, curry powder, saffron and white pepper samples had levels ranging from 1 to 5 microg/kg. Aflotoxins were not detected in cardamon, cloves, ginger and mustard. None of the samples analysed contained aflatoxins B2, G1 and G2.

  17. Survey of aflatoxin concentrations in wild bird seed purchased in Texas.

    PubMed

    Henke, S E; Gallardo, V C; Martinez, B; Balley, R

    2001-10-01

    The use of backyard feeders to attract avian wildlife is a common practice throughout the United States. However, feeding wildlife may create a problem due to aflatoxin, a harmful fungal metabolite, which can affect wildlife that are fed contaminated grain. Our study was initiated to determine if songbirds were being exposed to aflatoxin-contaminated feed throughout Texas. Bags of wild bird seed (n = 142) were purchased from grain cooperatives, grocery stores, and pet shops located in the panhandle, central, south, east, and west regions of Texas during spring and summer 1999. Aflatoxin concentrations in bird seed ranged from non-detectable to 2,780 micrograms/kg. Overall, 17% of samples had aflatoxin concentrations greater than 100 micrograms/kg, of which 83% contained corn as an ingredient. Retail establishment effects were noted in the southern and western regions of Texas, with average concentrations of aflatoxin greater from bags of bird seed purchased from grain cooperatives, followed by pet shops, then grocery stores. Regional differences in aflatoxin levels were not apparent from bags of seed purchased at pet shops: however, regional differences were noted in aflatoxin levels from seeds obtained at grocery stores and grain cooperatives. Average aflatoxin concentration from seed purchased at grocery stores was greatest in the panhandle region, followed by the remaining regions. Within grain cooperatives, the panhandle, south, and west regions of Texas exhibited higher levels of aflatoxin-contaminated bird seed than cooperatives within the east and central regions of Texas. Granivorous songbirds in Texas are exposed to aflatoxins at backyard feeders, which may be a significant morbidity and mortality factor.

  18. Non-aflatoxigenic Aspergillus flavus as potential biocontrol agents to reduce aflatoxin contamination in peanuts harvested in Northern Argentina.

    PubMed

    Alaniz Zanon, María Silvina; Barros, Germán Gustavo; Chulze, Sofía Noemí

    2016-08-16

    Biological control is one of the most promising strategies for preventing aflatoxin contamination in peanuts at field stage. A population of 46 native Aspergillus flavus nonaflatoxin producers were analysed based on phenotypic, physiological and genetic characteristics. Thirty-three isolates were characterized as L strain morphotype, 3 isolates as S strain morphotype, and 10 isolates did not produce sclerotia. Only 11 of 46 non-aflatoxigenic isolates did not produce cyclopiazonic acid. The vegetative compatibility group (VCG) diversity index for the population was 0.37. For field trials we selected the non-aflatoxigenic A. flavus AR27, AR100G and AFCHG2 strains. The efficacy of single and mixed inocula as potential biocontrol agents in Northern Argentina was evaluated through a 2-year study (2014-2015). During the 2014 peanut growing season, most of the treatments reduced the incidence of aflatoxigenic strains in both soil and peanut kernel samples, and no aflatoxin was detected in kernels. During the 2015 growing season, there was a reduction of aflatoxigenic strains in kernel samples from the plots treated with the potential biocontrol agents. Reductions of aflatoxin contamination between 78.36% and 89.55% were observed in treated plots in comparison with the un-inoculated control plots. This study provides the first data on aflatoxin biocontrol based on competitive exclusion in the peanut growing region of Northern Argentina, and proposes bioproducts with potential use as biocontrol agents. Copyright © 2016. Published by Elsevier B.V.

  19. Positive yield response of eggplant (Solanum melongena L.) to inoculation with AM fungi produced on-farm

    USDA-ARS?s Scientific Manuscript database

    Inoculation of vegetable seedlings with arbuscular mycorrhizal [AM] fungi during the greenhouse growth phase is both biologically and economically practical. Inocula may be purchased or produced on-farm. This work contrasted the fruit yield response of eggplant seedlings with and without inoculati...

  20. Aflatoxin contamination in foods and foodstuffs in Tokyo: 1986-1990.

    PubMed

    Tabata, S; Kamimura, H; Ibe, A; Hashimoto, H; Iida, M; Tamura, Y; Nishima, T

    1993-01-01

    Aflatoxins were determined in 3054 samples of foods or foodstuffs, including cereals, nuts, beans, spices, dairy products, dry fruits, and edible oil. Samples were collected in Tokyo from 1986 to 1990. Aflatoxins were found in rice products, adlay, corn, crude sugar, peanut products, pistachio nuts, brazil nuts, sesame products, butter beans, white pepper, red pepper, paprika, nutmeg, and mixed spices. The highest incidence of aflatoxin contamination was observed in nutmeg (80%), and the highest level of aflatoxin B1 was observed in pistachio nuts (1382 ppb).

  1. Ameliorating Effects of Bacillus subtilis ANSB060 on Growth Performance, Antioxidant Functions, and Aflatoxin Residues in Ducks Fed Diets Contaminated with Aflatoxins.

    PubMed

    Zhang, Liyuan; Ma, Qiugang; Ma, Shanshan; Zhang, Jianyun; Jia, Ru; Ji, Cheng; Zhao, Lihong

    2016-12-22

    Bacillus subtilis ANSB060 isolated from fish gut is very effective in detoxifying aflatoxins in feed and feed ingredients. The purpose of this research was to investigate the effects of B. subtilis ANSB060 on growth performance, body antioxidant functions, and aflatoxin residues in ducks fed moldy maize naturally contaminated with aflatoxins. A total of 1500 18-d-old male Cherry Valley ducks with similar body weight were randomly assigned to five treatments with six replicates of 50 ducks per repeat. The experiment design consisted of five dietary treatments labeled as C0 (basal diet containing 60% normal maize), M0 (basal diet containing 60% moldy maize contaminated with aflatoxins substituted for normal maize), M500, M1000, and M2000 (M0 +500, 1000 or 2000 g/t aflatoxin biodegradation preparation mainly consisted of B. subtilis ANSB060). The results showed that ducks fed 22.44 ± 2.46 μg/kg of AFB₁ (M0) exhibited a decreasing tendency in average daily gain (ADG) and total superoxide dismutase (T-SOD) activity in serum, and T-SOD and glutathione peroxidase (GSH-Px) activities in the liver significantly decreased along with the appearance of AFB₁ and AFM₁ compared with those in Group C0. The supplementation of B. subtilis ANSB060 into aflatoxin-contaminated diets increased the ADG of ducks ( p > 0.05), significantly improved antioxidant enzyme activities, and reduced aflatoxin accumulation in duck liver. In conclusion, Bacillus subtilis ANSB060 in diets showed an ameliorating effect to duck aflatoxicosis and may be a promising feed additive.

  2. Ameliorating Effects of Bacillus subtilis ANSB060 on Growth Performance, Antioxidant Functions, and Aflatoxin Residues in Ducks Fed Diets Contaminated with Aflatoxins

    PubMed Central

    Zhang, Liyuan; Ma, Qiugang; Ma, Shanshan; Zhang, Jianyun; Jia, Ru; Ji, Cheng; Zhao, Lihong

    2016-01-01

    Bacillus subtilis ANSB060 isolated from fish gut is very effective in detoxifying aflatoxins in feed and feed ingredients. The purpose of this research was to investigate the effects of B. subtilis ANSB060 on growth performance, body antioxidant functions, and aflatoxin residues in ducks fed moldy maize naturally contaminated with aflatoxins. A total of 1500 18-d-old male Cherry Valley ducks with similar body weight were randomly assigned to five treatments with six replicates of 50 ducks per repeat. The experiment design consisted of five dietary treatments labeled as C0 (basal diet containing 60% normal maize), M0 (basal diet containing 60% moldy maize contaminated with aflatoxins substituted for normal maize), M500, M1000, and M2000 (M0 +500, 1000 or 2000 g/t aflatoxin biodegradation preparation mainly consisted of B. subtilis ANSB060). The results showed that ducks fed 22.44 ± 2.46 μg/kg of AFB1 (M0) exhibited a decreasing tendency in average daily gain (ADG) and total superoxide dismutase (T-SOD) activity in serum, and T-SOD and glutathione peroxidase (GSH-Px) activities in the liver significantly decreased along with the appearance of AFB1 and AFM1 compared with those in Group C0. The supplementation of B. subtilis ANSB060 into aflatoxin-contaminated diets increased the ADG of ducks (p > 0.05), significantly improved antioxidant enzyme activities, and reduced aflatoxin accumulation in duck liver. In conclusion, Bacillus subtilis ANSB060 in diets showed an ameliorating effect to duck aflatoxicosis and may be a promising feed additive. PMID:28025501

  3. Extracellular Polysaccharides Produced by Yeasts and Yeast-Like Fungi

    NASA Astrophysics Data System (ADS)

    van Bogaert, Inge N. A.; de Maeseneire, Sofie L.; Vandamme, Erick J.

    Several yeasts and yeast-like fungi are known to produce extracellular polysaccharides. Most of these contain D-mannose, either alone or in combination with other sugars or phosphate. A large chemical and structural variability is found between yeast species and even among different strains. The types of polymers that are synthesized can be chemically characterized as mannans, glucans, phosphoman-nans, galactomannans, glucomannans and glucuronoxylomannans. Despite these differences, almost all of the yeast exopolysaccharides display some sort of biological activity. Some of them have already applications in chemistry, pharmacy, cosmetics or as probiotic. Furthermore, some yeast exopolysaccharides, such as pullulan, exhibit specific physico-chemical and rheological properties, making them useful in a wide range of technical applications. A survey is given here of the production, the characteristics and the application potential of currently well studied yeast extracellular polysaccharides.

  4. The capability of fungi isolated from moldy dwellings to produce toxins.

    PubMed

    Jeżak, Karolina; Kozajda, Anna; Sowiak, Małgorzata; Brzeźnicki, Sławomir; Bonczarowska, Marzena; Szadkowska-Stańczyk, Irena

    2016-01-01

    The main objective was analysis and assessment of toxinogenic capabilities of fungi isolated from moldy surfaces in residential rooms in an urban agglomeration situated far from flooded areas in moderate climate zone. The assessment of environmental exposure to mycotoxins was carried out in samples collected from moldy surfaces in form of scrapings and airborne dust from 22 moldy dwellings in winter season. In each sample 2 mycotoxins were analyzed: sterigmatocystin and roquefortine C produced by Aspergillus versicolor and Penicillium chrysogenum, respectively. Mycotoxins were analyzed by high-performance liquid chromatography (HPLC) in: scrapings from moldy surfaces, mixture of all species of fungi cultured from scrapings on microbiological medium (malt extract agar), pure cultures of Aspergillus versicolor and Penicillium chrysogenum cultured from scrapings on microbiological medium; mycotoxins in the indoor air dust were also analyzed. The production of sterigmatocystin by individual strains of Aspergillus versicolor cultured on medium was confirmed for 8 of 13 isolated strains ranging 2.1-235.9 μg/g and production of roquefortine C by Penicillium chrysogenum for 4 of 10 strains ranging 12.9-27.6 μg/g. In 11 of 13 samples of the mixture of fungi cultured from scrapings, in which Aspergillus versicolor was found, sterigmatocystin production was at the level of 3.1-1683.2 μg/g, whereas in 3 of 10 samples in which Penicillium chrysogenum occurred, the production of roquefortine C was 0.9-618.9 μg/g. The analysis did not show in any of the tested air dust and scrapings samples the presence of analyzed mycotoxins in the amount exceeding the determination limit. The capability of synthesis of sterigmatocystin by Aspergillus versicolor and roquefortine C by Penicillium chrysogenum growing in mixtures of fungi from scrapings and pure cultures in laboratory conditions was confirmed. The absence of mycotoxins in scrapings and air dust samples indicates an

  5. Spiral and Rotor Patterns Produced by Fairy Ring Fungi

    NASA Astrophysics Data System (ADS)

    Karst, N.; Dralle, D.; Thompson, S. E.

    2014-12-01

    Soil fungi fill many essential ecological and biogeochemical roles, e.g. decomposing litter, redistributing nutrients, and promoting biodiversity. Fairy ring fungi offer a rare glimpse into the otherwise opaque spatiotemporal dynamics of soil fungal growth, because subsurface mycelial patterns can be inferred from observations at the soil's surface. These observations can be made directly when the fungi send up fruiting bodies (e.g., mushrooms and toadstools), or indirectly via the effect the fungi have on neighboring organisms. Grasses in particular often temporarily thrive on the nutrients liberated by the fungus, creating bands of rich, dark green turf at the edge of the fungal mat. To date, only annular (the "ring" in fairy ring) and arc patterns have been described in the literature. We report observations of novel spiral and rotor pattern formation in fairy ring fungi, as seen in publically available high-resolution aerial imagery of 22 sites across the continental United States. To explain these new behaviors, we first demonstrate that a well-known model describing fairy ring formation is equivalent to the Gray-Scott reaction-diffusion model, which is known to support a wide range of dynamical behaviors, including annular traveling waves, rotors, spirals, and stable spatial patterns including spots and stripes. Bifurcation analysis and numerical simulation are then used to define the region of parameter space that supports spiral and rotor formation. We find that this region is adjacent to one within which typical fairy rings develop. Model results suggest simple experimental procedures that could potentially induce traditional ring structures to exhibit rotor or spiral dynamics. Intriguingly, the Gray-Scott model predicts that these same procedures could be used to solicit even richer patterns, including spots and stripes, which have not yet been identified in the field.

  6. Spiral and Rotor Patterns Produced by Fairy Ring Fungi

    NASA Astrophysics Data System (ADS)

    Karst, N.; Dralle, D.; Thompson, S. E.

    2015-12-01

    Soil fungi fill many essential ecological and biogeochemical roles, e.g. decomposing litter, redistributing nutrients, and promoting biodiversity. Fairy ring fungi offer a rare glimpse into the otherwise opaque spatiotemporal dynamics of soil fungal growth, because subsurface mycelial patterns can be inferred from observations at the soil's surface. These observations can be made directly when the fungi send up fruiting bodies (e.g., mushrooms and toadstools), or indirectly via the effect the fungi have on neighboring organisms. Grasses in particular often temporarily thrive on the nutrients liberated by the fungus, creating bands of rich, dark green turf at the edge of the fungal mat. To date, only annular (the "ring" in fairy ring) and arc patterns have been described in the literature. We report observations of novel spiral and rotor pattern formation in fairy ring fungi, as seen in publically available high-resolution aerial imagery of 22 sites across the continental United States. To explain these new behaviors, we first demonstrate that a well-known model describing fairy ring formation is equivalent to the Gray-Scott reaction-diffusion model, which is known to support a wide range of dynamical behaviors, including annular traveling waves, rotors, spirals, and stable spatial patterns including spots and stripes. Bifurcation analysis and numerical simulation are then used to define the region of parameter space that supports spiral and rotor formation. We find that this region is adjacent to one within which typical fairy rings develop. Model results suggest simple experimental procedures that could potentially induce traditional ring structures to exhibit rotor or spiral dynamics. Intriguingly, the Gray-Scott model predicts that these same procedures could be used to solicit even richer patterns, including spots and stripes, which have not yet been identified in the field.

  7. Inoculation of sweet potatoes with AM fungi produced on-farm increases yield in high P soil

    USDA-ARS?s Scientific Manuscript database

    Vegetable farmers who grow seedlings for later outplanting to the field have the opportunity to incorporate arbuscular mycorrhizal [AM] fungus inocula into potting media to produce plants ready to benefit from the symbiosis upon outplanting. Inocula of AM fungi are available commercially or may be ...

  8. Effect of methionine and lactic acid bacteria as aflatoxin binder on broiler performance

    NASA Astrophysics Data System (ADS)

    Istiqomah, Lusty; Damayanti, Ema; Julendra, Hardi; Suryani, Ade Erma; Sakti, Awistaros Angger; Anggraeni, Ayu Septi

    2017-06-01

    The use of aflatoxin binder product based amino acids, lacic acid bacteria, and natural product gived the opportunity to be an alternative biological decontamination of aflatoxins. A study was conducted to determine the efficacy of aflatoxin binder administration (amino acid methionine and lactic acid bacteria (Lactobacillus plantarum G7)) as feed additive on broiler performance. In this study, 75 Lohmann unsexed day old chicks were distributed randomly into 5 units of cages, each filled with 15 broilers. Five cages were assigned into 5 treatments groups and fed with feed contained aflatoxin. The treatments as follow: P1 (aflatoxin feed without aflatoxin binder), P3 (aflatoxin feed + 0.8% of methionine + 1% of LAB), P4 (aflatoxin feed + 1.2% of methionine + 1% of LAB), P5 (aflatoxin feed + 1% of LAB), and K0 (commercial feed). The measurement of aflatoxin content in feed was performed by Enzyme Linked Immunosorbent Assay method using AgraQuant® Total Aflatoxin Assay Romer Labs procedure. The experimental period was 35 days with feeding and drinking ad libitum. LAB was administered into drinking water, while methionine into feed. Vaccination program of Newcastle Disease (ND) was using active vaccine at 4 and 18 day old, while Infectious Bursal Disease (IBD) was given at 8 day old. Parameter of body weight was observed weekly, while feed consumption noted daily. The result showed that aflatoxin in feed for 35 days period did not significantly affect the body weight gain and feed conversion. The lowest percentage of organ damage at 21 day old was found in P5 treatment (55%), while at 35day old was found in P4 treatment (64%). It could be concluded that technological process of detoxifying aflatoxin could be applied in an attempt to reduce the effect on the toxicity of aflatoxin in poultry feed.

  9. Screening and Identification of Novel Ochratoxin A-Producing Fungi from Grapes

    PubMed Central

    Zhang, Xiaoyun; Li, Yulin; Wang, Haiying; Gu, Xiangyu; Zheng, Xiangfeng; Wang, Yun; Diao, Junwei; Peng, Yaping; Zhang, Hongyin

    2016-01-01

    Ochratoxin A (OTA) contamination has been established as a world-wide problem. In this study, the strains with the ability of OTA production were screened by analyzing the green fluorescence of the isolates colonies from the grapes in Zhenjiang with 365 nm UV light and confirmed by HPLC with fluorescent detection (HPLC-FLD). The results showed that seven isolates acquired the characteristic of the fluorescence, of which only five showed the ability of OTA production as confirmed by HPLC-FLD analysis. The five OTA-producing strains were identified based on comparative sequence analysis of three conserved genes (ITS, BenA and RPB2) of the strains, and they are Talaromyces rugulosus (O1 and Q3), Penicillium commune (V5-1), Penicillium rubens (MQ-5) and Aspergillus aculeatus (MB1-1). There are two Penicillium species of the five OTA-producing strains and our study is the first to report that P. rubens, T. rugulosus and A. aculeatus can produce OTA. This work would contribute to comprehensively understanding the fungi with an OTA-producing ability in grapes before harvest and then take effective measures to prevent OTA production. PMID:27845758

  10. Sampling hazelnuts for aflatoxin: uncertainty associated with sampling, sample preparation, and analysis.

    PubMed

    Ozay, Guner; Seyhan, Ferda; Yilmaz, Aysun; Whitaker, Thomas B; Slate, Andrew B; Giesbrecht, Francis

    2006-01-01

    The variability associated with the aflatoxin test procedure used to estimate aflatoxin levels in bulk shipments of hazelnuts was investigated. Sixteen 10 kg samples of shelled hazelnuts were taken from each of 20 lots that were suspected of aflatoxin contamination. The total variance associated with testing shelled hazelnuts was estimated and partitioned into sampling, sample preparation, and analytical variance components. Each variance component increased as aflatoxin concentration (either B1 or total) increased. With the use of regression analysis, mathematical expressions were developed to model the relationship between aflatoxin concentration and the total, sampling, sample preparation, and analytical variances. The expressions for these relationships were used to estimate the variance for any sample size, subsample size, and number of analyses for a specific aflatoxin concentration. The sampling, sample preparation, and analytical variances associated with estimating aflatoxin in a hazelnut lot at a total aflatoxin level of 10 ng/g and using a 10 kg sample, a 50 g subsample, dry comminution with a Robot Coupe mill, and a high-performance liquid chromatographic analytical method are 174.40, 0.74, and 0.27, respectively. The sampling, sample preparation, and analytical steps of the aflatoxin test procedure accounted for 99.4, 0.4, and 0.2% of the total variability, respectively.

  11. Influence of gamma-irradiation and maize lipids on the production of aflatoxin B1 by Aspergillus flavus.

    PubMed

    Aziz, Nagy H; el-Zeany, Samia A; Moussa, Lotfy A A

    2002-10-01

    The effect of gamma-irradiation and maize lipids on aflatoxin B1 production by Aspergillus flavus artificially inoculated into sterilized maize at reduced water activity (aw 0.84) was investigated. By increasing the irradiation doses the total viable population of A. flavus decreased and the fungus was completely inhibited at 3.0 kGy. The amounts of aflatoxin B1 were enhanced at irradiation dose levels 1.0 and 1.5 kGy in both full-fat maize (FM) and defatted maize (DM) media and no aflatoxin B1 production at 3.0 kGy gamma-irradiation over 45 days of storage was observed. The level in free lipids of FM decreased gradually, whereas free fatty acid values and fungal lipase activity increased markedly by increasing the storage periods. The free fatty acid values decreased by increasing the irradiation dose levels and there was a significant enhancement of fungal lipase activity at doses of 1.0 and 1.50 kGy. The ability of A. flavus to grow at aw 0.84 and produce aflatoxin B1 is related to the lipid composition of maize. The enhancement of aflatoxin B1 at low doses was correlated to the enhancement of fungal lipase activity.

  12. Effect of γ-radiation on the production of aflatoxin B1 by Aspergillus parasiticus in raisins (Vitis vinifera L.)

    NASA Astrophysics Data System (ADS)

    Kanapitsas, Alexandros; Batrinou, Anthimia; Aravantinos, Athanasios; Markaki, Panagiota

    2015-01-01

    Aflatoxin B1 (AFB1) mostly produced by Aspergillus flavus and Aspergillus parasiticus, is an extremely toxic and carcinogenic metabolite. The effect of gamma irradiation at dose of 10 kGy on the production of aflatoxin B1 (AFB1) inoculated by Aspergillus parasiticus in raisins (Vitis vinifera L.) and on AFB1 in contaminated samples, was investigated. Values of the amount of aflatoxin B1 produced on the 12th day of incubation, after irradiation, showed that gamma radiation exposure at 10 kGy decreased AFB1 production at 65% compared with the non-irradiated sample, on the same day. The application of 10 kGy gamma radiation directly on 100 ng of AFB1 which were spiked in raisins resulted in ~29% reduction of AFB1. According to the risk assessment analysis the Provisional Maximum Tolerable Daily Intake (PMTDI) of 1.0 ng AFB1 kg-1bw, indicates that consumers are less exposed to AFB1 from the irradiated raisins.

  13. [Semicontinuous cultivation of fungi of the genus Aspergillus, producers of hydrolases].

    PubMed

    Blieva, R K

    1982-01-01

    The production of exohydrolases (alpha-amylase and pectinase) by fungi belonging to the genus Aspergillus was studied in the course of batch cultivation and, if immobilized cells were used, in the semicontinuous regime of growth. The cells were immobilized on a fixed filtering plate and on floating, in the growth medium, polyhedrons. Such a cultivation of immobilized microbial cells in the semicontinuous regime of growth on submerged polyhedrons freely floating in the nutrient medium makes it possible to cultivate the cells for 1.5 months with the active production of exocellular hydrolases. Under these conditions, Aspergillus oryzae 3-9-15 produces more alpha-amylase and A. awamori synthesizes more pectinases.

  14. Cost-Effectiveness of Aflatoxin Control Methods: Economic Incentives

    USDA-ARS?s Scientific Manuscript database

    Multiple sectors in U.S. crop industries – growers, elevators, handlers/shellers, processors, distributors, and consumers – are affected by aflatoxin contamination of commodities, and have the potential to control it. Aflatoxin control methods at both preharvest and postharvest levels have been dev...

  15. Occurrence of ochratoxin A-producing fungi in raw Brazilian coffee.

    PubMed

    Urbano, G R; Taniwaki, M H; Leitão, M F; Vicentini, M C

    2001-08-01

    Ochratoxin A (OA)-producing fungi were identified in coffee at different stages of maturation. The toxin was quantified in coffee during terrace drying and in coffee stored in barns. By direct plating, a high level of contamination (100%) was found in the coffee beans studied, with the genus Aspergillus representing 33.2%, of which Aspergillus ochraceus and Aspergillus niger represented 10.3 and 22.9%, respectively, of the strains isolated from the coffee beans. The capacity to produce ochratoxin was determined in 155 strains of A. ochraceus and A. niger using both the agar plug method and extraction with chloroform, giving positive results for 88.1% of the A. ochraceus strains and 11.5% of the A. niger strains. Analysis for OA in the terrace and barn coffee samples showed that, independent of cultivar, year harvested, or production region, all except one of the samples analyzed showed mycotoxin levels below the limit suggested by the European Common Market (8 microg/kg), thus indicating that the problem is restricted and due to severe faults in harvesting and storage practices.

  16. Optimization and validation of a minicolumn method for determining aflatoxins in copra meal.

    PubMed

    Arim, R H; Aguinaldo, A R; Tanaka, T; Yoshizawa, T

    1999-01-01

    A minicolumn (MC) method for determining aflatoxins in copra meal was optimized and validated. The method uses methanol-4% KCl solution as extractant and CuSO4 solution as clarifying agent. The chloroform extract is applied to an MC that incorporates "lahar," an indigenous material, as substitute for silica gel. The "lahar"-containing MC produces a more distinct and intense blue fluoresence on the Florisil layer than an earlier MC. The method has a detection limit of 15 micrograms total aflatoxins/kg sample. Confirmatory tests using 50% H2SO4 and trifluoroacetic acid in benzene with 25% HNO3 showed that copra meal samples contained aflatoxins and no interfering agents. The MC responses of the copra meal samples were in good agreement with their behavior in thin-layer chromatography. This modified MC method is accurate, giving linearity-valid results; rapid, being done in 15 min; economical, using low-volume reagents; relatively safe, having low-exposure risk of analysts to chemicals; and simple, making its field application feasible.

  17. Endophytic fungi producing of esterases: Evaluation in vitro of the enzymatic activity using pH indicator

    PubMed Central

    Lisboa, Helen Cristina Fávero; Biasetto, Carolina Rabal; de Medeiros, João Batista; Araújo, Ângela Regina; Silva, Dulce Helena Siqueira; Teles, Helder Lopes; Trevisan, Henrique Celso

    2013-01-01

    A sensitive and efficient colorimetric method was optimized for detection of esterase enzymes produced by endophytic fungi for development of High-Throughput Screening (HTS). The fungi were isolated and obtained previously from plant species of Cerrado and Atlantic Forest located in areas of environmental preservation in the State of Sao Paulo / Brazil, as part of the project “Chemical and biological prospecting endophytic fungi associated to plant species of Cerrado and Atlantic Forest”. The compounds ethyl butyrate, ethyl acetate and methyl propionate were used as standards esters which were hydrolyzed by extracellular enzyme from endophytic fungi (EC. 3.1.1.1 - carboxyl-esterases) for production of carboxylic acids. Thus, the reduction of the pH increases the protonated indicator concentration (bromothymol blue), changing the color of the reaction medium (from blue to yellow), that can be observed and measured by spectrophotometry at 616 nm. The methodology with acid-base indicator was performed on 13 microorganisms, aiming Periconia atropurpurea as a potential source of esterase for biotransformation of short chain esters. The results also evidenced that this methodology showed to be efficient, fast, cheap, having low consumption of reagents and easy development, and can be applied to screen carboxylic-ester hydrolases in a large number of microorganisms. PMID:24516461

  18. Graphene oxide-coated stir bar sorptive extraction of trace aflatoxins from soy milk followed by high performance liquid chromatography-laser-induced fluorescence detection.

    PubMed

    Ma, Haiyan; Ran, Congcong; Li, Mengjiao; Gao, Jinglin; Wang, Xinyu; Zhang, Lina; Bian, Jing; Li, Junmei; Jiang, Ye

    2018-04-01

    Mycotoxins are potential food pollutants produced by fungi. Among them, aflatoxins (AFs) are the most toxic. Therefore, AFs were selected as models, and a sensitive, simple and green graphene oxide (GO)-based stir bar sorptive extraction (SBSE) method was developed for extraction and determination of AFs with high performance liquid chromatography-laser-induced fluorescence detector (HPLC-LIF). This method improved the sensitivity of AFs detection and solved the deposition difficulty of the direct use of GO as adsorbent. Several parameters including a spiked amount of NaCl, stirring rate, extraction time and desorption time were investigated. Under optimal conditions, the quantitative method had low limits of detection of 2.4-8.0 pg/mL, which were better than some reported AFs analytical methods. The developed method has been applied to soy milk samples with good recoveries ranging from 80.5 to 102.3%. The prepared GO-based SBSE can be used as a sensitive screening technique for detecting AFs in soy milk.

  19. Reduction of Aflatoxins in Apricot Kernels by Electronic and Manual Color Sorting.

    PubMed

    Zivoli, Rosanna; Gambacorta, Lucia; Piemontese, Luca; Solfrizzo, Michele

    2016-01-19

    The efficacy of color sorting on reducing aflatoxin levels in shelled apricot kernels was assessed. Naturally-contaminated kernels were submitted to an electronic optical sorter or blanched, peeled, and manually sorted to visually identify and sort discolored kernels (dark and spotted) from healthy ones. The samples obtained from the two sorting approaches were ground, homogenized, and analysed by HPLC-FLD for their aflatoxin content. A mass balance approach was used to measure the distribution of aflatoxins in the collected fractions. Aflatoxin B₁ and B₂ were identified and quantitated in all collected fractions at levels ranging from 1.7 to 22,451.5 µg/kg of AFB₁ + AFB₂, whereas AFG₁ and AFG₂ were not detected. Excellent results were obtained by manual sorting of peeled kernels since the removal of discolored kernels (2.6%-19.9% of total peeled kernels) removed 97.3%-99.5% of total aflatoxins. The combination of peeling and visual/manual separation of discolored kernels is a feasible strategy to remove 97%-99% of aflatoxins accumulated in naturally-contaminated samples. Electronic optical sorter gave highly variable results since the amount of AFB₁ + AFB₂ measured in rejected fractions (15%-18% of total kernels) ranged from 13% to 59% of total aflatoxins. An improved immunoaffinity-based HPLC-FLD method having low limits of detection for the four aflatoxins (0.01-0.05 µg/kg) was developed and used to monitor the occurrence of aflatoxins in 47 commercial products containing apricot kernels and/or almonds commercialized in Italy. Low aflatoxin levels were found in 38% of the tested samples and ranged from 0.06 to 1.50 μg/kg for AFB₁ and from 0.06 to 1.79 μg/kg for total aflatoxins.

  20. Reduction of Aflatoxins in Apricot Kernels by Electronic and Manual Color Sorting

    PubMed Central

    Zivoli, Rosanna; Gambacorta, Lucia; Piemontese, Luca; Solfrizzo, Michele

    2016-01-01

    The efficacy of color sorting on reducing aflatoxin levels in shelled apricot kernels was assessed. Naturally-contaminated kernels were submitted to an electronic optical sorter or blanched, peeled, and manually sorted to visually identify and sort discolored kernels (dark and spotted) from healthy ones. The samples obtained from the two sorting approaches were ground, homogenized, and analysed by HPLC-FLD for their aflatoxin content. A mass balance approach was used to measure the distribution of aflatoxins in the collected fractions. Aflatoxin B1 and B2 were identified and quantitated in all collected fractions at levels ranging from 1.7 to 22,451.5 µg/kg of AFB1 + AFB2, whereas AFG1 and AFG2 were not detected. Excellent results were obtained by manual sorting of peeled kernels since the removal of discolored kernels (2.6%–19.9% of total peeled kernels) removed 97.3%–99.5% of total aflatoxins. The combination of peeling and visual/manual separation of discolored kernels is a feasible strategy to remove 97%–99% of aflatoxins accumulated in naturally-contaminated samples. Electronic optical sorter gave highly variable results since the amount of AFB1 + AFB2 measured in rejected fractions (15%–18% of total kernels) ranged from 13% to 59% of total aflatoxins. An improved immunoaffinity-based HPLC-FLD method having low limits of detection for the four aflatoxins (0.01–0.05 µg/kg) was developed and used to monitor the occurrence of aflatoxins in 47 commercial products containing apricot kernels and/or almonds commercialized in Italy. Low aflatoxin levels were found in 38% of the tested samples and ranged from 0.06 to 1.50 μg/kg for AFB1 and from 0.06 to 1.79 μg/kg for total aflatoxins. PMID:26797635

  1. Behavior of sup 14 C aflatoxin M1 during camembert cheese making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fremy, J.M.; Roiland, J.C.; Gaymard, A.

    Camembert cheeses are made from raw milk spiked with aflatoxin M1. Three aflatoxin M1 levels (7.5 micrograms/L, 3 micrograms/L, and 0.3 micrograms/L) are used. In curds 35.6, 47.1, and 57.7% of aflatoxin M1, respectively, are recovered, and in wheys 64.4, 52.9, and 42.3%, respectively, are recovered. During the first 15 days of storage, the aflatoxin M1 content of different cheeses decreases 25, 55, and 75%, respectively. A similar experiment is made with milk contaminated with {sup 14}C labeled aflatoxin M1. The same results are obtained, except for the behavior of aflatoxin M1 in cheese; the same 14C activity is recoveredmore » during storage for 30 days.« less

  2. Susceptibility to aflatoxin contamination among maize landraces from Mexico.

    PubMed

    Ortega-Beltran, Alejandro; Guerrero-Herrera, Manuel D J; Ortega-Corona, Alejandro; Vidal-Martinez, Victor A; Cotty, Peter J

    2014-09-01

    Maize, the critical staple food for billions of people, was domesticated in Mexico about 9,000 YBP. Today, a great array of maize landraces (MLRs) across rural Mexico is harbored in a living library that has been passed among generations since before the establishment of the modern state. MLRs have been selected over hundreds of generations by ethnic groups for adaptation to diverse environmental settings. The genetic diversity of MLRs in Mexico is an outstanding resource for development of maize cultivars with beneficial traits. Maize is frequently contaminated with aflatoxins by Aspergillus flavus, and resistance to accumulation of these potent carcinogens has been sought for over three decades. However, MLRs from Mexico have not been evaluated as potential sources of resistance. Variation in susceptibility to both A. flavus reproduction and aflatoxin contamination was evaluated on viable maize kernels in laboratory experiments that included 74 MLR accessions collected from 2006 to 2008 in the central west and northwest regions of Mexico. Resistant and susceptible MLR accessions were detected in both regions. The most resistant accessions accumulated over 99 % less aflatoxin B1 than did the commercial hybrid control Pioneer P33B50. Accessions supporting lower aflatoxin accumulation also supported reduced A. flavus sporulation. Sporulation on the MLRs was positively correlated with aflatoxin accumulation (R = 0.5336, P < 0.0001), suggesting that resistance to fungal reproduction is associated with MLR aflatoxin resistance. Results of the current study indicate that MLRs from Mexico are potentially important sources of aflatoxin resistance that may contribute to the breeding of commercially acceptable and safe maize hybrids and/or open pollinated cultivars for human and animal consumption.

  3. The current state of mycotoxin biomarker development in humans and animals and the potential for application to plant systems

    USDA-ARS?s Scientific Manuscript database

    Filamentous fungi that contaminate livestock feeds and human food supply often produce toxigenic secondary metabolites known as mycotoxins. Among the hundreds of known mycotoxins, aflatoxins, deoxynivalenol, fumonisins, ochratoxin A and zearalenone are considered the most commercially important. In...

  4. Atypical Aspergillus parasiticus isolates from pistachio with aflR gene nucleotide insertion identical to Aspergillus sojae

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are the most toxic and carcinogenic secondary metabolites produced primarily by the filamentous fungi Aspergillus flavus and Aspergillus parasiticus. The toxins cause devastating economic losses because of strict regulations on distribution of contaminated products. Aspergillus sojae are...

  5. Confirming QTL for aflatoxin resistance from Mp313E in different genetic backgrounds

    USDA-ARS?s Scientific Manuscript database

    The fungus Aspergillus flavus (Link:Fr) causes ear rot of maize (Zea mays L.) and produces the toxic metabolic product aflatoxin. One particularly effective method to control the fungus is via host plant resistance, but while several resistant breeding lines have been identified, transferring the r...

  6. Mycotoxin producing potential of some isolates of Aspergillus flavus and Eurotium groups from meat products.

    PubMed

    el-Kady, I; el-Maraghy, S; Zohri, A N

    1994-09-01

    All strains (92) of A. flavus group proved to be positive for production of aflatoxin (45 to 1200 micrograms/50 ml medium) on potato dextrose liquid medium, while 59 strains only proved to be positive (35-310 micrograms/50 ml) on 15% NaCl potato-dextrose liquid medium. Most of the strains tested of A. flavus, A. flavus var. columnaris and A. oryzae produced aflatoxins B1, B2, G1 & G2. All positive strains of A. tamarii produced aflatoxins G1 & G2 while the tested isolate of A. zonatus produced aflatoxins B1 & G1. Of 95 strains tested of Eurotium, aflatoxins B1 & G1 were produced by one strain of each of E. chevalieri var. intermedium, E. repens and E. rubrum. Gliotoxin was detected in the extract of two strains of E. chevalieri and one strain of each of E. chevalieri var. intermedium and E. pseudoglaucum on the salt-free medium, and two strains of each of E. chevalieri, E. chevalieri var. intermedium and one of E. pseudoglaucum on 15% NaCl medium. Sterigmatocystin was produced by some strains of E. chevalieri, E. chevalieri var. intermedium, E. amstelodami, E. pseudoglaucum and E. rubrum on the two experimental media. One strain only of E. repens produced ochratoxin A while citrinin was detected in the extract of one strain of E. pseudoglaucum.

  7. Assessment of mycoflora and infestation of insects, vector of Aspergillus section Flavi, in stored peanut from Argentina.

    PubMed

    Nesci, Andrea; Montemarani, Analía; Etcheverry, Miriam

    2011-02-01

    The occurrence of spoilage fungi and Aspergillus section Flavi populations, the aflatoxins incidence, the role of insects as vectors of mycotoxin-producing fungi and the AFs-producing ability of the isolated species throughout the peanut (Arachis hypogaea L.) storage period were evaluated. Analyses of fungal populations from 95 peanut seed samples did not demonstrate significant differences between the incidences in each sampling period. Aspergillus section Flavi were isolated during all incubation periods. Cryptolestes spp. (Coleoptera: Cucujidae) were collected in August, September and October with 18, 16 and 28% of peanut samples contaminated, respectively. Insects isolated during August showed 69% of Aspergillus section Flavi contamination. A. flavus was the most frequently isolated (79%) from peanut seeds and from insect (59%). The greater levels of AFB1 were detected in September and October with a mean of 68.86 μg/kg and 69.12 μg/kg respectively. The highest proportion of A. flavus toxigenic strains (87.5%) was obtained in June. The presence of Aspergillus section Flavi and insect vectors of aflatoxigenic fungi presented a potential risk for aflatoxin production during the peanut storage period. Integrated management of fungi and insect vectors is in progress.

  8. Effect of Aflatoxin B1 on Growth of Bovine Mammary Epithelial Cells in 3D and Monolayer Culture System

    PubMed Central

    Forouharmehr, Ali; Harkinezhad, Taher; Qasemi-Panahi, Babak

    2013-01-01

    Purpose: Many studies have been showed transfer of aflatoxins, toxins produced by Aspergillus flvaus and Aspergillus parasiticus fungi, into milk. These toxins are transferred into the milk through digestive system by eating contaminated food. Due to the toxicity of these materials, it seems that it has side effects on the growth of mammary cells. Therefore, the present work aimed to investigate possible toxic effects of aflatoxin B1 (AFB1) on bovine mammary epithelial cells in monolayer and three-dimensional cultures. Methods: Specimens of the mammary tissue of bovine were sized out in size 2×2 cm in slaughterhouse. After disinfection and washing in sterile PBS, primary cell culture was performed by enzymatic digestion of tissue with collagenase. When proper numbers of cells were achieved in monolayer culture, cells were seeded in a 24-well culture plate for three-dimensional (3D) culture in Matrigel matrix. After 21 days of 3D culture and reaching the required number of cells, the concentrations of 15, 25 and 35 µL of AFB1 were added to the culture in quadruplicate and incubated for 8 hours. Cellular cytotoxicity was examined using standard colorimetric assay and finally, any change in the morphology of the cells was studied by microscopic technique. Results: Microscopic investigations showed necrosis of the AFB1-exposed cells compared to the control cells. Also, bovine mammary epithelial cells were significantly affected by AFB1 in dose and time dependent manner in cell viability assays. Conclusion: According to the results, it seems that AFB1 can induce cytotoxicity and necrosis in bovine mammary epithelial cells. PMID:24312827

  9. Chronic aflatoxin exposure in children living in Bhaktapur, Nepal: Extension of the MAL-ED study

    USDA-ARS?s Scientific Manuscript database

    Fumonisin B1 (FB1) and aflatoxin B1 (AFB1) are toxic chemicals produced by molds. The molds that produce these two toxic chemicals are commonly found in corn and their co-occurence in corn has been demonstrated in many surveys. This study was conducted because it is suspected that exposure to eith...

  10. Reduced Graphene Oxide-Gold Nanoparticle Nanoframework as a Highly Selective Separation Material for Aflatoxins.

    PubMed

    Guo, Wenbo; Wu, Lidong; Fan, Kai; Nie, Dongxia; He, Weijing; Yang, Junhua; Zhao, Zhihui; Han, Zheng

    2017-11-03

    Graphene-based materials have been studied in many applications, owing to the excellent electrical, mechanical, and thermal properties of graphene. In the current study, an environmentally friendly approach to the preparation of a reduced graphene oxide-gold nanoparticle (rGO-AuNP) nanocomposite was developed by using L-cysteine and vitamin C as reductants under mild reaction conditions. The rGO-AuNP material showed a highly selective separation ability for 6 naturally occurring aflatoxins, which are easily adsorbed onto traditional graphene materials but are difficult to be desorbed. The specificity of the nanocomposite was evaluated in the separation of 6 aflatoxin congeners (aflatoxin B1, aflatoxin B2, aflatoxin G1, aflatoxin G2, aflatoxin M1 and aflatoxin M2) from 23 other biotoxins (including, ochratoxin A, citrinin, and deoxynivalenol). The results indicated that this material was specific for separating aflatoxin congeners. The synthesized material was further validated by determining the recovery (77.6-105.0%), sensitivity (limit of detection in the range of 0.05-0.21 μg kg -1 ), and precision (1.5-11.8%), and was then successfully applied to the separation of aflatoxins from real-world maize, wheat and rice samples.

  11. RNA Sequencing of Contaminated Seeds Reveals the State of the Seed Permissive for Pre-Harvest Aflatoxin Contamination and Points to a Potential Susceptibility Factor

    PubMed Central

    Clevenger, Josh; Marasigan, Kathleen; Liakos, Vasileios; Sobolev, Victor; Vellidis, George; Holbrook, Corley; Ozias-Akins, Peggy

    2016-01-01

    Pre-harvest aflatoxin contamination (PAC) is a major problem facing peanut production worldwide. Produced by the ubiquitous soil fungus, Aspergillus flavus, aflatoxin is the most naturally occurring known carcinogen. The interaction between fungus and host resulting in PAC is complex, and breeding for PAC resistance has been slow. It has been shown that aflatoxin production can be induced by applying drought stress as peanut seeds mature. We have implemented an automated rainout shelter that controls temperature and moisture in the root and peg zone to induce aflatoxin production. Using polymerase chain reaction (PCR) and high performance liquid chromatography (HPLC), seeds meeting the following conditions were selected: infected with Aspergillus flavus and contaminated with aflatoxin; and not contaminated with aflatoxin. RNA sequencing analysis revealed groups of genes that describe the transcriptional state of contaminated vs. uncontaminated seed. These data suggest that fatty acid biosynthesis and abscisic acid (ABA) signaling are altered in contaminated seeds and point to a potential susceptibility factor, ABR1, as a repressor of ABA signaling that may play a role in permitting PAC. PMID:27827875

  12. Aflatoxin contamination of groundnut and maize in Zambia: observed and potential concentrations.

    PubMed

    Kachapulula, P W; Akello, J; Bandyopadhyay, R; Cotty, P J

    2017-06-01

    The aims of the study were to quantify aflatoxins, the potent carcinogens associated with stunting and immune suppression, in maize and groundnut across Zambia's three agroecologies and to determine the vulnerability to aflatoxin increases after purchase. Aflatoxin concentrations were determined for 334 maize and groundnut samples from 27 districts using lateral-flow immunochromatography. Seventeen per cent of crops from markets contained aflatoxin concentrations above allowable levels in Zambia (10 μg kg -1 ). Proportions of crops unsafe for human consumption differed significantly (P < 0·001) among agroecologies with more contamination (38%) in the warmest (Agroecology I) and the least (8%) in cool, wet Agroecology III. Aflatoxin in groundnut (39 μg kg -1 ) and maize (16 μg kg -1 ) differed (P = 0·032). Poor storage (31°C, 100% RH, 1 week) increased aflatoxin in safe crops by over 1000-fold in both maize and groundnut. The L morphotype of Aspergillus flavus was negatively correlated with postharvest increases in groundnut. Aflatoxins are common in Zambia's food staples with proportions of unsafe crops dependent on agroecology. Fungal community structure influences contamination suggesting Zambia would benefit from biocontrol with atoxigenic A. flavus. Aflatoxin contamination across the three agroecologies of Zambia is detailed and the case for aflatoxin management with atoxigenic biocontrol agents provided. The first method for evaluating the potential for aflatoxin increase after purchase is presented. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.

  13. Effects of salicylic acid on Aspergillus flavus infection and aflatoxin B₁ accumulation in pistachio (Pistacia vera L.) fruit.

    PubMed

    Panahirad, Sima; Zaare-Nahandi, Fariborz; Mohammadi, Nilufar; Alizadeh-Salteh, Saeedeh; Safaie, Naser

    2014-07-01

    One of the most important saprophytic infections in fresh pistachio fruits after harvesting is Aspergillus flavus colonization, which significantly reduces fruit quality. Salicylic acid plays a crucial role in plant tissues and has a suppression effect on some fungi. The inhibitory effect of salicylic acid on the growth of A. flavus was assessed in vitro and in vivo. For this purpose, seven concentrations (0, 1, 3, 5, 7, 9 and 11 mmol L(-1)) of salicylic acid were used in both experiments. Also, aflatoxin B1 contents of the samples were analysed using immunoaffinity chromatography. The results obtained from in vitro experiments showed that salicylic acid significantly reduced Aspergillus growth at all concentrations, and at 9 mmol L(-1) growth was completely suppressed. In vivo evaluation showed relatively high levels of inhibition, though the intact treated fruits as compared with the injured treated fruits demonstrated higher inhibitory effects. Regarding the inhibitory effects of salicylic acid on the control of A. flavus contamination, its application on pistachio fruits after harvesting could be a promising approach to control the fungus infection and reduce aflatoxin production in treated fruits. © 2013 Society of Chemical Industry.

  14. Aflatoxins--experimental studies.

    PubMed

    Tulpule, P G

    1981-01-01

    The susceptibility of animals to both chronic and acute aflatoxicosis is variable between species and depends upon not only the dose of the toxin and the duration of exposure but also upon the age, sex, and nutritional status of the animal. In general, acute toxicity is manifested by necrosis and cirrhosis, and chronic toxicity by carcinoma of the liver. Current research using both in vivo and in vitro studies has shown that the differences in response to aflatoxin in different animals can be attributed to their differential metabolism. The rates of metabolism and intermediate products formed are important factors in determining the type of toxic action of aflatoxin B1. According to these criteria, monkey and man are more susceptible to acute aflatoxicosis and relatively resistant to carcinogenic effects. On the other hand, animals, such as sheep and rat, are more susceptible to carcinogenic effects.

  15. Degradation of Aflatoxins by Means of Laccases from Trametes versicolor: An In Silico Insight

    PubMed Central

    Dellafiora, Luca; Galaverna, Gianni; Reverberi, Massimo; Dall’Asta, Chiara

    2017-01-01

    Mycotoxins are secondary metabolites of fungi that contaminate food and feed, and are involved in a series of foodborne illnesses and disorders in humans and animals. The mitigation of mycotoxin content via enzymatic degradation is a strategy to ensure safer food and feed, and to address the forthcoming issues in view of the global trade and sustainability. Nevertheless, the search for active enzymes is still challenging and time-consuming. The in silico analysis may strongly support the research by providing the evidence-based hierarchization of enzymes for a rational design of more effective experimental trials. The present work dealt with the degradation of aflatoxin B1 and M1 by laccase enzymes from Trametes versicolor. The enzymes–substrate interaction for various enzyme isoforms was investigated through 3D molecular modeling techniques. Structural differences among the isoforms have been pinpointed, which may cause different patterns of interaction between aflatoxin B1 and M1. The possible formation of different products of degradation can be argued accordingly. Moreover, the laccase gamma isoform was identified as the most suitable for protein engineering aimed at ameliorating the substrate specificity. Overall, 3D modeling proved to be an effective analytical tool to assess the enzyme–substrate interaction and provided a solid foothold for supporting the search of degrading enzyme at the early stage. PMID:28045427

  16. Present and future directions of translational research on aflatoxin and hepatocellular carcinoma. A review.

    PubMed

    Wogan, Gerald N; Kensler, Thomas W; Groopman, John D

    2012-01-01

    The aflatoxins were discovered in toxic peanut meal causing "turkey X" disease, which killed large numbers of turkey poults, ducklings and chicks in the UK in the early 1960s. Extracts of toxic feed induced the symptoms in experimental animals, and purified metabolites with properties identical to aflatoxins B(1) and G(1) (AFB(1) and AFG(1)) were isolated from Aspergillus flavus cultures. Structure elucidation of aflatoxin B(1) was accomplished and confirmed by total synthesis in 1963. AFB(1) is a potent liver carcinogen in rodents, non-human primates, fish and birds, operating through a genotoxic mechanism involving metabolic activation to an epoxide, formation of DNA adducts and, in humans, modification of the p53 gene. Aflatoxins are unique among environmental carcinogens, in that elucidation of their mechanisms of action combined with molecular epidemiology provides a foundation for quantitative risk assessment; extensive evidence confirms that contamination of the food supply by AFB(1) puts an exposed population at increased risk of developing hepatocellular carcinoma (HCC). Molecular biomarkers to quantify aflatoxin exposure in individuals were essential to link aflatoxin exposure with liver cancer risk. Biomarkers were validated in populations with high HCC incidence in China and The Gambia, West Africa; urinary AFB(1)-N (7)-Guanine excretion was linearly related to aflatoxin intake, and levels of aflatoxin-serum albumin adducts also reflected aflatoxin intake. Two major cohort studies employing aflatoxin biomarkers identified their causative role in HCC etiology. Results of a study in Shanghai men strongly support a causal relationship between HCC risk and the presence of biomarkers for aflatoxin and HBV infection, and also show that the two risk factors act synergistically. Subsequent cohort studies in Taiwan confirm these results. IARC classified aflatoxin as a Group 1 human carcinogen in 1993, based on sufficient evidence in humans and experimental

  17. Period of susceptibility of almonds to aflatoxin contamination during development in the orchard

    USDA-ARS?s Scientific Manuscript database

    Almonds can be contaminated by aflatoxins, mainly produced by Aspergillus flavus and A. parasiticus. Infection by Aspergillus species can be facilitated by insect damage to the kernel during hull split, which occurs 4 to 6 weeks before harvest. Within this period of time, it is unknown which kernel ...

  18. Effect of sexual recombination on population diversity in aflatoxin production by Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is the major producer of carcinogenic aflatoxins (AFs) in crops worldwide. Recent efforts to reduce AF concentrations in crops have focused on the use of two non-aflatoxigenic A. flavus strains, AF36 and NRRL 21882 (Afla-Guard), as biological control agents. These products are a...

  19. Banana peel: an effective biosorbent for aflatoxins.

    PubMed

    Shar, Zahid Hussain; Fletcher, Mary T; Sumbal, Gul Amer; Sherazi, Syed Tufail Hussain; Giles, Cindy; Bhanger, Muhammad Iqbal; Nizamani, Shafi Muhammad

    2016-05-01

    This work reports the application of banana peel as a novel bioadsorbent for in vitro removal of five mycotoxins (aflatoxins (AFB1, AFB2, AFG1, AFG2) and ochratoxin A). The effect of operational parameters including initial pH, adsorbent dose, contact time and temperature were studied in batch adsorption experiments. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and point of zero charge (pHpzc) analysis were used to characterise the adsorbent material. Aflatoxins' adsorption equilibrium was achieved in 15 min, with highest adsorption at alkaline pH (6-8), while ochratoxin has not shown any significant adsorption due to surface charge repulsion. The experimental equilibrium data were tested by Langmuir, Freundlich and Hill isotherms. The Langmuir isotherm was found to be the best fitted model for aflatoxins, and the maximum monolayer coverage (Q0) was determined to be 8.4, 9.5, 0.4 and 1.1 ng mg(-1) for AFB1, AFB2, AFG1 and AFG2 respectively. Thermodynamic parameters including changes in free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) were determined for the four aflatoxins. Free energy change and enthalpy change demonstrated that the adsorption process was exothermic and spontaneous. Adsorption and desorption study at different pH further demonstrated that the sorption of toxins was strong enough to sustain pH changes that would be experienced in the gastrointestinal tract. This study suggests that biosorption of aflatoxins by dried banana peel may be an effective low-cost decontamination method for incorporation in animal feed diets.

  20. Analysis of cocoa products for ochratoxin A and aflatoxins.

    PubMed

    Turcotte, Anne-Marie; Scott, Peter M; Tague, Brett

    2013-08-01

    Eighty-five samples of cocoa products sampled in Canada were analysed for ochratoxin A (OTA) and aflatoxins in 2011-2012. Inclusion of the aflatoxins in this survey required additional method development. Chocolate was extracted with methanol-water plus NaCl, while for cocoa two successive extractions with methanol and methanol-water were made. Extracts were cleaned on an AflaOchra immunoaffinity column (IAC). Determination was by reversed phase high performance liquid chromatography (HPLC). Detection of the aflatoxins was with a post-column photochemical reactor and of OTA by fluorescence detection. Mean limits of quantification (LOQ) of chocolate and cocoa powders were 0.16 ng/g (OTA) and 0.07 ng/g (aflatoxin B1), respectively. Survey results showed that the incidences of OTA above the LOQ in natural cocoa were 15/15 (mean 1.17 ng/g), 20/21 for alkalized cocoa (mean 1.06 ng/g), 9/9 for baking chocolate (mean 0.49 ng/g), 20/20 for dark chocolate (mean 0.39 ng/g), 7/10 for milk chocolate (mean 0.19 ng/g), 5/5 for cocoa liquor (mean 0.43 ng/g), and 0/5 for cocoa butter. These results confirm our previous work with OTA. In the same samples, incidences of aflatoxin B1 above the LOQ were 14/15 for natural cocoa (mean 0.86 ng/g), 20/21 for alkalized cocoa (mean 0.37 ng/g), 7/9 for baking chocolate (mean 0.22 ng/g), 16/20 for dark chocolate (mean 0.19 ng/g), 7/10 for milk chocolate (mean 0.09 ng/g), 4/5 for cocoa liquor (mean 0.43 ng/g), and 0/5 for cocoa butter. Both aflatoxins and OTA were confirmed by HPLC-MS/MS when OTA or aflatoxin levels found were above 2 ng/g in cocoa.

  1. First Report of an Atypical New Aspergillus parasiticus Isolates with Nucleotides Insertion in aflR Gene Identical to Aspergillus sojae

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are toxic and carcinogenic secondary metabolites produced primarily by the filamentous fungi Aspergillus favus and Aspergillus parasitic and cause toxin contamination in food chain worldwide. Aspergillus oryzae and Aspergillus sojae are highly valued as koji molds in the traditional prep...

  2. Aflatoxin B1 albumin adducts in plasma and aflatoxin M1 in urine are associated with plasma concentrations of vitamins A and E

    PubMed Central

    Obuseh, Francis A.; Jolly, Pauline E.; Jiang, Yi; Shuaib, Faisal M. B.; Waterbor, John; Ellis, William O.; Piyathilake, Chandrika J.; Desmond, Renee A.; Afriyie-Gyawu, Evans; Phillips, Timothy D.

    2011-01-01

    Background Although aflatoxin exposure has been shown to be associated with micronutrient deficiency in animals, there are few investigations on the effects of aflatoxin exposure on micronutrient metabolism in humans. Objective To examine the relationship between aflatoxin B1 (AFB1) albumin adducts (AF-ALB) in plasma and the aflatoxin M1 (AFM1) metabolite in urine and plasma concentrations of retinol (vitamin A) and α-tocopherol (vitamin E) in Ghanaians. Methods A cross-sectional study of 147 adult participants was conducted. Blood and urine samples were tested for aflatoxin and vitamins A and E levels. Results Multivariable analysis showed that participants with high AF-ALB (≥ 0.80 pmol/mg albumin) had increased odds of having vitamin A deficiency compared to those with lower AF-ALB [Odds Ratio (OR) = 2.61; CI = 1.03 – 6.58; p=0.04]. Participants with high AF-ALB also showed increased odds of having vitamin E deficiency but this was not statistically significant (OR = 2.4; CI = 0.96–6.05; p = 0.06). Conversely, those with higher AFM1 values had a statistically nonsignificant reduced odds of having vitamin A deficiency (OR = 0.31; CI = 1.15–0.09; p=0.05) and statistically significant reduced odds of having vitamin E deficiency (OR = 0.31; CI = 0.10 – 0.97; p = 0.04). Participants with high AF-ALB or high AFM1 (≥ 437.95 pg/dL creatinine) were almost 6 times more likely to be hepatitis B virus surface antigen (HBsAg)- positive (OR = 5.88; CI = 1.71–20.14; p = 0.005) and (OR = 5.84; CI = 1.15–29.54; p = 0.03) respectively. Conclusions These data indicate that aflatoxin may modify plasma micronutrient status. Thus, preventing aflatoxin exposure may greatly reduce vitamins A and E deficiencies. PMID:21792816

  3. The case for aflatoxins in the causal chain of gallbladder cancer.

    PubMed

    Foerster, Claudia; Koshiol, Jill; Guerrero, Ariel R; Kogan, Marcelo J; Ferreccio, Catterina

    2016-01-01

    Chronic aflatoxin exposure has long been related to hepatocellular carcinoma (HCC). Recently, its association with gallbladder cancer (GBC) was postulated. Here we present the data supporting this hypothesis in Chile, the country with the highest GBC mortality worldwide with age-standardized mortality rates (ASMR) of 10.3 in women and 5.04 in men. The highest GBC rates occur in Southern Chile (ASMR=18), characterized by: high Amerindian ancestry, associated with high bile acid synthesis and gallstones; high poverty and high cereal agriculture, both associated with aflatoxin exposure. Aflatoxins have been detected in imported and locally grown foods items. We estimated population dietary exposure ranging from 0.25 to 35.0 ng/kg-body weight/day. The only report on human exposure in Chile found significantly more aflatoxin biomarkers in GBC than in controls (Odds Ratio=13.0). The hypothesis of aflatoxin-GBC causal link in the Chilean population is supported by: genetically-determined rapid cholesterol excretion and high gallstones prevalence (49.4%); low prevalence of HCC (ASMR=4.9) and low HBV infection (0.15%) the main co-factor of aflatoxins in HCC risk. If the association between aflatoxins and GBC were confirmed, public health interventions based on food regulation could have a substantial public health impact. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Clustered Genes Involved in Cyclopiazonic Acid Production are Next to the Aflatoxin Biosynthesis Gene Cluster in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Cyclopiazonic acid (CPA), an indole-tetramic acid toxin, is produced by many species of Aspergillus and Penicillium. In addition to CPA Aspergillus flavus produces polyketide-derived carcinogenic aflatoxins (AFs). AF biosynthesis genes form a gene cluster in a subtelomeric region. Isolates of A. fla...

  5. Biotransformation of aflatoxin B1 and its conjugated metabolites by rat gastrointestinal microfloras.

    PubMed Central

    Wei, C; Macy, J M; Hsieh, D P

    1981-01-01

    Rat cecal microflora from high- and low-fiber-fed animals hydrolyzed aflatoxin conjugates to metabolites indistinguishable from aflatoxin B1 and aflatoxin P1, but aflatoxicol was not a transformation product. PMID:6263185

  6. Some high-performance liquid-chromatographic studies of the metabolism of aflatoxins by rat liver microsomal preparations.

    PubMed Central

    Neal, G E; Colley, P J

    1978-01-01

    The metabolism of aflatoxin B1 in vitro was examined in rat liver microsomal preparations. 2. H.p.l.c. (high-performance liquid-chromatographic) systems were used. A silica column was used to separate non-polar metabolites. A system utilizing a reversed-phase column which separates both poar and non-polar metabolites was also developed. 3. The principal metabolites of aflatoxin B1 found were aflatoxin M1, aflatoxin Q1 and a compound which co-chromatographed with a degradation product of aflatoxin B1 2,3-dihydrodiol. 4. The time course of metabolism of aflatoxin B1 by microsomal preparations isolated from control and phenobarbitone-pretreated rats was examined. The rate and extent of metabolism was greater with microsomal preparations from the latter. The formation of aflatoxin Q1 was enhanced 4--5-fold by phenobarbitone pretreatment, whereas the production of aflatoxin M1 was only increased 1--2-fold. The formation of the degradation product of aflatoxin B1 2,3-dihydrodiol was increased 4--5-fold by the pretreatment with phenobarbitone. 5. The microsomal metabolism of aflatoxins M1, P1 and Q1 was examined. Aflatoxin M1 apparently underwent very limited microsomal metabolism to more polar compounds. Aflatoxin P1 was not metabolized. The situation with aflatoxin Q1 was complicated in that it was metabolized in the absence of NADPH to an unidentified metabolite. Aflatoxin B1 appeared as a metabolite of aflatoxin Q1 only when NADPH was present, and the formation of more polar metabolites was also then observed. PMID:728090

  7. Diffusible and Volatile Antifungal Compounds Produced by an Antagonistic Bacillus velezensis G341 against Various Phytopathogenic Fungi.

    PubMed

    Lim, Seong Mi; Yoon, Mi-Young; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Shin, Teak Soo; Park, Hae Woong; Yu, Nan Hee; Kim, Young Ho; Kim, Jin-Cheol

    2017-10-01

    The aim of this study was to identify volatile and agar-diffusible antifungal metabolites produced by Bacillus sp. G341 with strong antifungal activity against various phytopathogenic fungi. Strain G341 isolated from four-year-old roots of Korean ginseng with rot symptoms was identified as Bacillus velezensis based on 16S rDNA and gyrA sequences. Strain G341 inhibited mycelial growth of all phytopathogenic fungi tested. In vivo experiment results revealed that n -butanol extract of fermentation broth effectively controlled the development of rice sheath blight, tomato gray mold, tomato late blight, wheat leaf rust, barley powdery mildew, and red pepper anthracnose. Two antifungal compounds were isolated from strain G341 and identified as bacillomycin L and fengycin A by MS/MS analysis. Moreover, volatile compounds emitted from strain G341 were found to be able to inhibit mycelial growth of various phytopathogenic fungi. Based on volatile compound profiles of strain G341 obtained through headspace collection and analysis on GC-MS, dimethylsulfoxide, 1-butanol, and 3-hydroxy-2-butanone (acetoin) were identified. Taken together, these results suggest that B. valezensis G341 can be used as a biocontrol agent for various plant diseases caused by phytopathogenic fungi.

  8. Aflatoxins: mechanisms of inhibition by antagonistic plants and microorganisms

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are a family of toxic fungal secondary metabolites. The rapid expansion in our knowledge about inhibition of aflatoxin biosynthesis by compounds from plants and microorganisms has enabled us to utilize them as potential biocontrol agents. Substantial efforts have been devoted to identify ...

  9. Identification and toxigenic potential of the industrially important fungi, Aspergillus oryzae and Aspergillus sojae.

    PubMed

    Jørgensen, Thomas R

    2007-12-01

    Mold strains belonging to the species Aspergillus oryzae and Aspergillus sojae are highly valued as koji molds in the traditional preparation of fermented foods, such as miso, sake, and shoyu, and as protein production hosts in modern industrial processes. A. oryzae and A. sojae are relatives of the wild molds Aspergillus flavus and Aspergillus parasiticus. All four species are classified to the A. flavus group. Strains of the A. flavus group are characterized by a high degree of morphological similarity. Koji mold species are generally perceived of as being nontoxigenic, whereas wild molds are associated with the carcinogenic aflatoxins. Thus, reliable identification of individual strains is very important for application purposes. This review considers the pheno- and genotypic markers used in the classification of A. flavus group strains and specifically in the identification of A. oryzae and A. sojae strains. Separation of A. oryzae and A. sojae from A. flavus and A. parasiticus, respectively, is inconsistent, and both morphologic and molecular evidence support conspecificity. The high degree of identity is reflected by the divergent identification of reference cultures maintained in culture collections. As close relatives of aflatoxin-producing wild molds, koji molds possess an aflatoxin gene homolog cluster. Some strains identified as A. oryzae and A. sojae have been implicated in aflatoxin production. Identification of a strain as A. oryzae or A. sojae is no guarantee of its inability to produce aflatoxins or other toxic metabolites. Toxigenic potential must be determined specifically for individual strains. The species taxa, A. oryzae and A. sojae, are currently conserved by societal issues.

  10. Aflatoxin: A 50-Year Odyssey of Mechanistic and Translational Toxicology

    PubMed Central

    Kensler, Thomas W.; Roebuck, Bill D.; Wogan, Gerald N.; Groopman, John D.

    2011-01-01

    Since their discovery 50 years ago, the aflatoxins have become recognized as ubiquitous contaminants of the human food supply throughout the economically developing world. The adverse toxicological consequences of these compounds in populations are quite varied because of a wide range of exposures leading to acute effects, including rapid death, and chronic outcomes such as hepatocellular carcinoma. Furthermore, emerging studies describe a variety of general adverse health effects associated with aflatoxin, such as impaired growth in children. Aflatoxin exposures have also been demonstrated to multiplicatively increase the risk of liver cancer in people chronically infected with hepatitis B virus (HBV) illustrating the deleterious impact that even low toxin levels in the diet can pose for human health. The public health impact of aflatoxin exposure is pervasive. Aflatoxin biomarkers of internal and biologically effective doses have been integral to the establishment of the etiologic role of this toxin in human disease through better estimates of exposure, expanded knowledge of the mechanisms of disease pathogenesis, and as tools for implementing and evaluating preventive interventions. PMID:20881231

  11. Present and future directions of translational research on aflatoxin and hepatocellular carcinoma. A review

    PubMed Central

    Wogan, Gerald N.; Kensler, Thomas W.; Groopman, John D.

    2015-01-01

    The aflatoxins were discovered in toxic peanut meal causing “turkey X” disease, which killed large numbers of turkey poults, ducklings and chicks in the UK in the early 1960s. Extracts of toxic feed induced the symptoms in experimental animals, and purified metabolites with properties identical to aflatoxins B1 and G1 (AFB1 and AFG1) were isolated from Aspergillus flavus cultures. Structure elucidation of aflatoxin B1 was accomplished and confirmed by total synthesis in 1963. AFB1 is a potent liver carcinogen in rodents, non-human primates, fish and birds, operating through a genotoxic mechanism involving metabolic activation to an epoxide, formation of DNA adducts and, in humans, modification of the p53 gene. Aflatoxins are unique among environmental carcinogens, in that elucidation of their mechanisms of action combined with molecular epidemiology provides a foundation for quantitative risk assessment; extensive evidence confirms that contamination of the food supply by AFB1 puts an exposed population at increased risk of developing hepatocellular carcinoma (HCC). Molecular biomarkers to quantify aflatoxin exposure in individuals were essential to link aflatoxin exposure with liver cancer risk. Biomarkers were validated in populations with high HCC incidence in China and The Gambia, West Africa; urinary AFB1–N7-Guanine excretion was linearly related to aflatoxin intake, and levels of aflatoxin– serum albumin adducts also reflected aflatoxin intake. Two major cohort studies employing aflatoxin biomarkers identified their causative role in HCC etiology. Results of a study in Shanghai men strongly support a causal relationship between HCC risk and the presence of biomarkers for aflatoxin and HBV infection, and also show that the two risk factors act synergistically. Subsequent cohort studies in Taiwan confirm these results. IARC classified aflatoxin as a Group 1 human carcinogen in 1993, based on sufficient evidence in humans and experimental animals

  12. Efficacy of probiotic bacteria in reducing Aspergillus parasiticus aflatoxin production and hepatic cytotoxicity in vitro

    USDA-ARS?s Scientific Manuscript database

    Aspergillus parasiticus produces highly hepatocarcinogenic aflatoxins (AF) in grains, which are used as poultry feed ingredients. Contamination of poultry feed with AF is a major concern to the poultry industry due to serious economic losses stemming from poor performance and diminished egg hatchabi...

  13. [Adsorption of aflatoxin on montmorillonite modified by low-molecular-weight humic acids].

    PubMed

    Yao, Jia-Jia; Kang, Fu-Xing; Gao, Yan-Zheng

    2012-03-01

    The adsorption of a typical biogenic toxin aflatoxin B1 on montmorillonite modified by low-molecular-weight humic acids (M(r) < 3 500) was investigated. The montmorillonite rapidly adsorbed the aflatoxin B1 until amounting to the maximal capacity, and then the adsorbed aflatoxin B1 slowly released into solution and reached the sorption equilibrium state after 12 h. The sorption isotherm of aflatoxin B1 by montmorillonite could be well described by Langmiur model, while the sorption isotherm by humic acid-modified montmorillonite was well fitted by using the Freundlich model. The modification of the montmorillonite with humic acids obviously enhanced its adsorption capacity for aflatoxin B1, and the amounts of aflatoxin adsorbed by modified montmorillonite were obviously higher than those by montmorillonite. The sorption enhancement by humic acid modification was attributed to (1) the enlarged adsorption sites which owed to the surface collapse of crystal layers induced by organic acids, and (2) the binding of aflatoxin with the humic acid sorbed on mineral surface. In addition, the adsorption amounts of aflatoxin by montmorillonite and modified montmorillonite increased with the increase of pH values in solution, and more significant enhancement was observed for the latter than the former, which attributed to the release of humic acids from the modified montmorillonite with the high pH values in solution. This indicates that increasing the pH values resulted in the enhanced hydrophilic property and the release of the organic acids presented in modified montmorillonite, and more sorption sites were available for aflatoxin on the modified montmorillonite. Results of this work would strengthen our understanding of the behavior and fate of biological contaminants in the environment.

  14. Aspergillus: introduction

    USDA-ARS?s Scientific Manuscript database

    Species in the genus Aspergillus possess versatile metabolic activities that impact our daily life both positively and negatively. Aspergillus flavus and Aspergillus oryzae are closely related fungi. While the former is able to produce carcinogenic aflatoxins and is an etiological agent of aspergill...

  15. Aflatoxin and outcome from acute lower respiratory infection in children in The Philippines.

    PubMed

    Denning, D W; Quiepo, S C; Altman, D G; Makarananda, K; Neal, G E; Camallere, E L; Morgan, M R; Tupasi, T E

    1995-09-01

    Aflatoxin is immunosuppressive in experimental conditions. This study addressed its potentially contributory role in the poor outcome of acute lower respiratory infections (ALRI) in children in The Philippines. The catchment area included peri-urban slums and middle-class housing. One hundred and fifteen children (mean age 2.1, range 0.08-12 years) were enrolled and their serum and urine obtained at presentation with ALRI. Aflatoxins in serum and aflatoxin metabolites in urine were measured by previously validated ELISA tests. Using the 1986 WHO criteria for the severity of ALRI, 31% had mild, 12% moderate, 49% severe and 8% severe complicated pneumonia. Eighty of 97 (82%) chest radiographs were abnormal. Ninety per cent of the children were below average weight for age, using Filipino standards, with a mean of 79% (range 27-157%). Thirteen (11%) children died. Aflatoxin in their serum, reflecting recent ingestion, was detected in 33%, with a mean positive value of 462 pg/ml. Aflatoxin metabolites (reflecting chronic ingestion) were detected in 64 of 65 urines collected, with a mean value of 0.1-4.77ng/ml. None of the children with detectable serum aflatoxin died. Anorexia and impaired consciousness were strongly associated with a poor outcome (prolonged fever or death). There was a strong association between undetectable serum aflatoxin concentrations and death (p = 0.004), perhaps reflecting anorexia. There was no relationship between the concentration of urinary aflatoxin metabolites and outcome. Serum was also obtained from 29 mothers on admission and none contained detectable aflatoxin. As virtually all the children had evidence of exposure to aflatoxin, a potentially immunosuppressive role in the context of pneumonia cannot be excluded.

  16. Antimicrobial activity of saponins produced by two novel endophytic fungi from Panax notoginseng.

    PubMed

    Jin, Zhaoxia; Gao, Lin; Zhang, Lin; Liu, Tianyi; Yu, Fang; Zhang, Zongshen; Guo, Qiong; Wang, Biying

    2017-11-01

    Endophytes in plants may be co-producer of the bioactive compounds of their hosts. We conducted a study to bioprospect for saponin-producing endophytic fungi from Panax notoginseng and evaluate the antimicrobial activity of saponins. Two novel fungal endophytes, Fusarium sp. PN8 and Aspergillus sp. PN17, were isolated from traditional Chinese medicinal herb P. notoginseng. After eight days of fermentation, the total saponins produced in the culture broth of PN8 and PN17 were 1.061 and 0.583 mg mL -1 , respectively. The saponin extracts exhibited moderate to high (inhibition zone diameter 15.7-28.4 mm, MIC 1.6-12.5 mg mL -1 ) antimicrobial activity against pathogens tested. Further analysis showed that triterpenoid saponins produced by Fusarium PN8 were Rb 1 , Rd and 20(S)-Rg 3 , while Aspergillus PN17 had the ability to synthesise ginsenoside Re, Rd and 20(S)-Rg 3 . The isolated endophytes may be used as potential sources for microbial production of plant secondary metabolites and for antimicrobial agents.

  17. Assessing airborne aflatoxin B1 during on-farm grain handling activities.

    PubMed

    Selim, M I; Juchems, A M; Popendorf, W

    1998-04-01

    The presence of aflatoxin in corn and corn dust during relatively normal years and the increased risk of Aspergillus flavus infestation during drought conditions suggest that airborne agricultural exposures should be of considerable concern. Liquid extraction, thin layer chromatography, and high pressure liquid chromatography were used for the analysis of aflatoxin B1 in grain dust and bulk corn samples. A total of 24 samples of airborne dust were collected from 8 farms during harvest, 22 samples from 9 farms during animal feeding, and 14 sets of Andersen samples from 11 farms during bin cleaning. A total of 14 samples of settled dust and 18 samples of bulk corn were also collected and analyzed. The airborne concentration of aflatoxin B1 found in dust collected during harvest and grain unloading ranged from 0.04 to 92 ng/m3. Higher levels of aflatoxin B1 were found in the airborne dust samples collected from enclosed animal feeding buildings (5-421 ng/m3) and during bin cleaning (124-4849 ng/m3). Aflatoxin B1 up to 5100 ng/g were detected in settled dust collected from an enclosed animal feeding building; however, no apparent correlation was found between the airborne concentration of aflatoxin B1 and its concentration in settled dust or bulk corn. The data demonstrate that farmers and farm workers may be exposed to potentially hazardous concentrations of aflatoxin B1, particularly during bin cleaning and animal feeding in enclosed buildings.

  18. Determination of aflatoxins in by-products of industrial processing of cocoa beans.

    PubMed

    Copetti, Marina V; Iamanaka, Beatriz T; Pereira, José Luiz; Lemes, Daniel P; Nakano, Felipe; Taniwaki, Marta H

    2012-01-01

    This study has examined the occurrence of aflatoxins in 168 samples of different fractions obtained during the processing of cocoa in manufacturing plants (shell, nibs, mass, butter, cake and powder) using an optimised methodology for cocoa by-products. The method validation was based on selectivity, linearity, limit of detection and recovery. The method was shown to be adequate for use in quantifying the contamination of cocoa by aflatoxins B(1), B(2), G(1) and G(2). Furthermore, the method was easier to use than other methods available in the literature. For aflatoxin extraction from cocoa samples, a methanol-water solution was used, and then immunoaffinity columns were employed for clean-up before the determination by high-performance liquid chromatography. A survey demonstrated a widespread occurrence of aflatoxins in cocoa by-products, although in general the levels of aflatoxins present in the fractions from industrial processing of cocoa were low. A maximum aflatoxin contamination of 13.3 ng g(-1) was found in a nib sample. The lowest contamination levels were found in cocoa butter. Continued monitoring of aflatoxins in cocoa by-products is nevertheless necessary because these toxins have a high toxicity to humans and cocoa is widely consumed by children through cocoa-containing products, like candies.

  19. Aflatoxin B1 Contamination in Chicken Livers and Gizzards from Industrial and Small Abattoirs, Measured by ELISA Technique in Maputo, Mozambique

    PubMed Central

    Sineque, Alberto Romão; Macuamule, Custódia Lina; Dos Anjos, Filomena Rosa

    2017-01-01

    Aflatoxins are the most toxic and carcinogenic mycotoxins produced by Aspergillus species. Aflatoxin B1 (AFB1) contamination in industrial and local chicken livers and gizzards in Maputo was investigated. One hundred boiler livers and 80 boiler gizzards were collected from industrial and local cutting poultry production sectors. The samples were analyzed by the ELISA method (MaxSignal®, Bioo Scientific Corporation). AFB1 was found in 39% of liver samples and 13.8% of gizzards, with mean levels of 1.73 µg/kg and 1.07 µg/kg, respectively. The frequency of contamination and AFB1 levels in samples from local sector producers was not significantly higher than those from industrial sector producers (p > 0.05). No correlation was found (p = 0.493; r2 = 0.013) between AFB1 levels in livers and hepatic weights. The AFB1 levels were lower than the allowed limits, suggesting that these products do not pose high risk to consumers. Notwithstanding, there is a need to implement aflatoxin residue monitoring and controls in all chicken meat products; this economic and efficient technique appears to be valuable for improved food safety in Mozambique. PMID:28832541

  20. Efficacy of Some Essential Oils Against Aspergillus flavus with Special Reference to Lippia alba Oil an Inhibitor of Fungal Proliferation and Aflatoxin B1 Production in Green Gram Seeds during Storage.

    PubMed

    Pandey, Abhay K; Sonker, Nivedita; Singh, Pooja

    2016-04-01

    During mycofloral analysis of green gram (Vigna radiata (L.) R. Wilczek) seed samples taken from different grocery stores by agar and standard blotter paper methods, 5 fungal species were identified, of which Aspergillus flavus exhibited higher relative frequency (75.20% to 80.60%) and was found to produce aflatoxin B1 . On screening of 11 plant essential oils against this mycotoxigenic fungi, Lippia alba essential oil was found to be most effective and showed absolute inhibition of mycelia growth at 0.28 μL/mL. The oil of L. alba was fungistatic and fungicidal at 0.14 and 0.28 μL/mL, respectively. Oil had broad range of fungitoxicity at its MIC value and was absolutely inhibited the AFB1 production level at 2.0 μL/mL. Chemical analysis of this oil revealed geranial (36.9%) and neral (29.3%) as major components followed by myrcene (18.6%). Application of a dose of 80 μL/0.25 L air of Lippia oil in the storage system significantly inhibited the fungal proliferation and aflatoxin production without affecting the seed germination rate. By the virtue of fungicidal, antiaflatoxigenic nature and potent efficacy in storage food system, L. alba oil can be commercialized as botanical fungicide for the protection of green gram seeds during storage. © 2016 Institute of Food Technologists®

  1. Detection of N2O-producing fungi in environment using nitrite reductase gene (nirK)-targeting primers.

    PubMed

    Chen, Huaihai; Yu, Fangbo; Shi, Wei

    2016-12-01

    Fungal denitrification has been increasingly investigated, but its community ecology is poorly understood due to the lack of culture-independent tools. In this work, four pairs of nirK-targeting primers were designed and evaluated for primer specificity and efficiency using thirty N 2 O-producing fungal cultures and an agricultural soil. All primers amplified nirK from fungi and soil, but their efficiency and specificity were different. A primer set, FnirK_F3/R2 amplified ∼80 % of tested fungi, including Aspergillus, Fusarium, Penicillium, and Trichoderma, as compared to ∼40-70 % for other three primers. The nirK fragments of fungal and soil DNA amplified by FnirK_F3/R2 were phylogenetically related to denitrifying fungi in the orders Eurotiales, Hypocreales, and Sordariales; and clone sequences were also distributed in the clusters of Chaetomium, Metarhizium, and Myceliophthora that were uncultured from soil in our previous work. This proved the wide-range capability of primers for amplifying diverse denitrifying fungi from environment. However, our primers and recently-developed other primers amplified bacterial nirK from soil and this co-amplification of fungal and bacterial nirK was theoretically discussed. The FnirK_F3/R2 was further compared with published primers; results from clone libraries demonstrated that FnirK_F3/R2 was more specifically targeted on fungi and had broader taxonomical coverage than some others. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  2. Effects of Pistacia atlantica subsp. kurdica on Growth and Aflatoxin Production by Aspergillus parasiticus

    PubMed Central

    Khodavaisy, Sadegh; Rezaie, Sassan; Noorbakhsh, Fatemeh; Baghdadi, Elham; Sharifynia, Somayeh; Aala, Farzad

    2016-01-01

    Background Aflatoxins are highly toxic secondary metabolites mainly produced by Aspergillus parasiticus. This species can contaminate a wide range of agricultural commodities, including cereals, peanuts, and crops in the field. In recent years, research on medicinal herbs, such as Pistacia atlantica subsp. kurdica, have led to reduced microbial growth, and these herbs also have a particular effect on the production of aflatoxins as carcinogenic compounds. Objectives In this study, we to examine P. atlantica subsp. kurdica as a natural compound used to inhibit the growth of A. parasiticus and to act as an anti-mycotoxin. Materials and Methods In vitro antifungal susceptibility testing of P. atlantica subsp. kurdica for A. parasiticus was performed according to CLSI document M38-A2. The rate of aflatoxin production was determined using the HPLC technique after exposure to different concentrations (62.5 - 125 mg/mL) of the gum. The changes in expression levels of the aflR gene were analyzed with a quantitative real-time PCR assay. Results The results showed that P. atlantica subsp. kurdica can inhibit A. parasiticus growth at a concentration of 125 mg/mL. HPLC results revealed a significant decrease in aflatoxin production with 125 mg/mL of P. atlantica subsp. kurdica, and AFL-B1 production was entirely inhibited. Based on quantitative real-time PCR results, the rate of aflR gene expression was significantly decreased after treatment with P. atlantica subsp. kurdica. Conclusions Pistacia atlantica subsp. kurdica has anti-toxic properties in addition to an inhibitory effect on A. parasiticus growth, and is able to decrease aflatoxin production effectively in a dose-dependent manner. Therefore, this herbal extract maybe considered a potential anti-mycotoxin agent in medicine or industrial agriculture. PMID:27800127

  3. Phylogeny of Alternaria fungi known to produce host-specific toxins on the basis of variation in internal transcribed spacers of ribosomal DNA.

    PubMed

    Kusaba, M; Tsuge, T

    1995-10-01

    The internal transcribed spacer regions (ITS1 and ITS2) of ribosomal DNA from Alternaria species, including seven fungi known to produce host-specific toxins, were analyzed by polymerase chain reaction-amplification and direct sequencing. Phylogenetic analysis of the sequence data by the Neighbor-joining method showed that the seven toxin-producing fungi belong to a monophyletic group together with A. alternata. In contract, A. dianthi, A. panax, A. dauci, A. bataticola, A. porri, A. sesami and A. solani, species that can be morphologically distinguished from A. alternata, could be clearly separated from A. alternata by phylogenetic of the ITS variation. These results suggest that Alternaria pathogens which produce host-specific toxins are pathogenic variants within a single variable species, A. alternata.

  4. Efficacy of Lippia alba (Mill.) N.E. Brown essential oil and its monoterpene aldehyde constituents against fungi isolated from some edible legume seeds and aflatoxin B1 production.

    PubMed

    Shukla, Ravindra; Kumar, Ashok; Singh, Priyanka; Dubey, Nawal Kishore

    2009-10-31

    The present study deals with evaluation of antifungal properties of Lippia alba essential oil (EO) and two of its monoterpene aldehyde constituents against legume-contaminating fungi. Seventeen different fungal species were isolated from 11 varieties of legumes, and aflatoxigenic isolates of Aspergillus flavus were identified. Hydrodistillation method was used to extract the EO from fresh leaves. The GC and GC-MS analysis of EO revealed the monoterpene aldehydes viz. geranial (22.2%) and neral (14.2%) as the major components. The antifungal activity of EO, geranial and neral was evaluated by contact assay on Czapek's-dox agar. The EO (0.25-1 microL/mL) and its two constituents (1 microL/mL) showed remarkable antifungal effects against all the fungal isolates (growth inhibition range 32.1-100%). Their minimal inhibitory (MIC) and fungicidal (MFC) concentrations for A. flavus were lower than those of the systemic fungicide Bavistin. Aflatoxin B(1) (AFB(1)) production by three isolates of A. flavus was strongly inhibited even at the lower fungistatic concentration of EO and its constituents. There was no adverse effect of treatments on seed germination, and rather, there was enhanced seedling growth in the EO-treated seeds. It is concluded that L. alba EO and two of its constituents could be safely used as effective preservative for food legumes against fungal infections and mycotoxins.

  5. Aflatoxin contamination in corn sold for wildlife feed in texas.

    PubMed

    Dunham, Nicholas R; Peper, Steven T; Downing, Carson D; Kendall, Ronald J

    2017-05-01

    Supplemental feeding with corn to attract and manage deer is a common practice throughout Texas. Other species, including northern bobwhites (Colinus virginianus), are commonly seen feeding around supplemental deer feeders. In many cases, supplemental feeding continues year-round so feed supply stores always have supplemental corn in stock. Fluctuating weather and improper storage of corn can lead to and/or amplify aflatoxin contamination. Due to the recent decline of bobwhites throughout the Rolling Plains ecoregion of Texas, there has been interest in finding factors such as toxins that could be linked to their decline. In this study, we purchased and sampled supplemental corn from 19 locations throughout this ecoregion to determine if aflatoxin contamination was present in individual bags prior to being dispersed to wildlife. Of the 57 bags sampled, 33 bags (approximately 58%) contained aflatoxin with a bag range between 0.0-19.91 parts per billion (ppb). Additionally, three metal and three polypropylene supplemental feeders were each filled with 45.4 kg of triple cleaned corn and placed in an open field to study long-term aflatoxin buildup. Feeders were sampled every 3 months from November 2013-November 2014. Average concentration of aflatoxin over the year was 4.08 ± 2.53 ppb (±SE) in metal feeders, and 1.43 ± 0.89 ppb (±SE) in polypropylene feeders. The concentration of aflatoxins is not affected by the type of feeder (metal vs polypropylene), the season corn was sampled, and the location in the feeder (top, middle, bottom) where corn is sampled. It is unlikely that corn used in supplemental feeders is contributing to the bobwhite decline due to the low levels of aflatoxin found in purchased corn and long-term storage of corn used in supplemental feeders.

  6. Fungal Diversity and Community Composition of Culturable Fungi in Stanhopea trigrina Cast Gibberellin Producers

    PubMed Central

    Salazar-Cerezo, Sonia; Martinez-Montiel, Nancy; Cruz-Lopez, Maria del Carmen; Martinez-Contreras, Rebeca D.

    2018-01-01

    Stanhopea tigrina is a Mexican endemic orchid reported as a threatened species. The naturally occurring microorganisms present in S. tigrina are unknown. In this work, we analyzed the diversity of endophytic and epiphytic culturable fungi in S. tigrina according to morphological and molecular identification. Using this combined approach, in this study we retrieved a total of 634 fungal isolates that presented filamentous growth, which were grouped in 134 morphotypes that were associated to 63 genera, showing that S. tigrina harbors a rich diversity of both endophytic and epiphytic fungi. Among these, the majority of the isolates corresponded to Ascomycetes, with Trichoderma and Penicillium as the most frequent genera followed by Fusarium and Aspergillus. Non-ascomycetes isolated were associated only to the genus Mucor (Mucoromycota) and Schizophyllum (Basidiomycota). Identified genera showed a differential distribution considering their epiphytic or endophytic origin, the tissue from which they were isolated, and the ability of the orchid to grow on different substrates. To our knowledge, this work constitutes the first study of the mycobiome of S. tigrina. Interestingly, 21 fungal isolates showed the ability to produce gibberellins. Almost half of the isolates were related to the gibberellin-producer genus Penicillium based on morphological and molecular identification. However, the rest of the isolates were related to the following genera, which have not been reported as gibberellin producers so far: Bionectria, Macrophoma, Nectria, Neopestalotiopsis, Talaromyces, Trichoderma, and Diplodia. Taken together, we found that S. tigrina possess a significant fungal diversity that could be a rich source of fungal metabolites with the potential to develop biotechnological approaches oriented to revert the threatened state of this orchid in the near future. PMID:29670591

  7. Fungal Diversity and Community Composition of Culturable Fungi in Stanhopea trigrina Cast Gibberellin Producers.

    PubMed

    Salazar-Cerezo, Sonia; Martinez-Montiel, Nancy; Cruz-Lopez, Maria Del Carmen; Martinez-Contreras, Rebeca D

    2018-01-01

    Stanhopea tigrina is a Mexican endemic orchid reported as a threatened species. The naturally occurring microorganisms present in S. tigrina are unknown. In this work, we analyzed the diversity of endophytic and epiphytic culturable fungi in S. tigrina according to morphological and molecular identification. Using this combined approach, in this study we retrieved a total of 634 fungal isolates that presented filamentous growth, which were grouped in 134 morphotypes that were associated to 63 genera, showing that S. tigrina harbors a rich diversity of both endophytic and epiphytic fungi. Among these, the majority of the isolates corresponded to Ascomycetes, with Trichoderma and Penicillium as the most frequent genera followed by Fusarium and Aspergillus . Non-ascomycetes isolated were associated only to the genus Mucor (Mucoromycota) and Schizophyllum (Basidiomycota). Identified genera showed a differential distribution considering their epiphytic or endophytic origin, the tissue from which they were isolated, and the ability of the orchid to grow on different substrates. To our knowledge, this work constitutes the first study of the mycobiome of S. tigrina . Interestingly, 21 fungal isolates showed the ability to produce gibberellins. Almost half of the isolates were related to the gibberellin-producer genus Penicillium based on morphological and molecular identification. However, the rest of the isolates were related to the following genera, which have not been reported as gibberellin producers so far: Bionectria, Macrophoma, Nectria, Neopestalotiopsis, Talaromyces, Trichoderma , and Diplodia . Taken together, we found that S. tigrina possess a significant fungal diversity that could be a rich source of fungal metabolites with the potential to develop biotechnological approaches oriented to revert the threatened state of this orchid in the near future.

  8. Evaluation of five essential oils from aromatic plants of Cameroon for controlling food spoilage and mycotoxin producing fungi.

    PubMed

    Nguefack, J; Leth, V; Amvam Zollo, P H; Mathur, S B

    2004-08-01

    Five essential oils (EO) extracted from Cymbopogon citratus, Monodora myristica, Ocimum gratissimum, Thymus vulgaris and Zingiber officinale were investigated for their inhibitory effect against three food spoilage and mycotoxin producing fungi, Fusarium moniliforme, Aspergillus flavus and Aspergillus fumigatus. Five strains of each fungus were tested. The agar dilution technique was used to determine the inhibitory effect of each EO on the radial growth of the fungus, and a dose response was recorded. The EO from O. gratissimum, T. vulgaris and C. citratus were the most effective and prevented conidial germination and the growth of all three fungi on corn meal agar at 800, 1000 and 1200 ppm, respectively. Moderate activity was observed for the EO from Z. officinale between 800 and 2500 ppm, while the EO from M. myristica was less inhibitory. These effects against food spoilage and mycotoxin producing fungi indicated the possible ability of each essential oil as a food preservative. A comparative test on the preservative ability of the EO from O. gratissimum and potassium sorbate against A. flavus at pH 3.0 and 4.5 showed that the EO remained stable at both pH, whereas the efficacy of potassium sorbate was reduced at higher pH. We concluded that the EO from O. gratissimum is a potential food preservative with a pH dependent superiority against potassium sorbate, and these are novel scientific information.

  9. Evaluation of STAT5A Gene Expression in Aflatoxin B1 Treated Bovine Mammary Epithelial Cells

    PubMed Central

    Forouharmehr, Ali; Harkinezhad, Taher; Qasemi-Panahi, Babak

    2013-01-01

    Purpose: Aflatoxin B1 (AFB1) is a potent mycotoxin which has been produced by fungi such as Aspergillus flavus and Aspergillus parasiticus as secondary metabolites due to their growth on food stuffs and induces hepatocellular carcinoma in many animal species, including humans. In the present study, the effect of AFB1 on STAT5A gene expression was investigated in bovine mammary epithelial cells using real time RT-PCR. Methods: Bovine mammary epithelial cells were seeded in a 24-well culture plate for three-dimensional (3D) culture in Matrigel matrix. After 21 days of 3D culture and reaching the required number of cells, cells were treated with AFB1 and incubated for 8 h. For real time PCR reaction, total RNA from the cultured and treated cells was extracted and used for complementary DNA synthesis. Results: The expression of STAT5A gene was significantly down regulated by AFB1 in dose- dependent manner and led to the reduction of proliferation and differentiation of epithelial cells, which has direct effect in milk protein quantity and quality. Conclusion: According to the results, it seems that down regulation of STAT5A gene in AFB1-treated cells maybe due to DNA damage induced by AFB1 in bovine mammary epithelial cells. PMID:24312879

  10. Reduction of aflatoxin level in aflatoxin-induced rats by the activity of probiotic Lactobacillus casei strain Shirota.

    PubMed

    Nikbakht Nasrabadi, E; Jamaluddin, R; Abdul Mutalib, M S; Khaza'ai, H; Khalesi, S; Mohd Redzwan, S

    2013-05-01

    Aflatoxin B1 (AFB1 ) is considered as the most toxic food contaminant, and microorganisms, especially bacteria, have been studied for their potential to reduce the bioavailability of mycotoxins including aflatoxins. Therefore, this research investigated the efficacy of oral administration of Lactobacillus casei Shirota (LcS) in aflatoxin-induced rats. Sprague Dawley rats were divided into three groups of untreated control, the group induced with AFB1 only, and the group given probiotic in addition to AFB1. In the group induced with AFB1 only, food intake and body weight were reduced significantly. The liver and kidney enzymes were significantly enhanced in both groups induced with AFB1 , but they were lower in the group given LcS. AFB1 was detected from all serum samples except for untreated control group's samples. Blood serum level of AFB1 in the group induced with AFB1 only was significantly higher than the group which received probiotic as a treatment (P < 0·05), and there was no significant difference between the control group and the group treated with probiotic. LcS supplementation could improve the adverse effect of AFB1 induction on rats' body weight, plasma biochemical parameters and also could reduce the level of AFB1 in blood serum. This study's outcomes contribute to better understanding of the potential of probiotic to reduce the bioavailability ofAFB1 . Moreover, it can open an opportunity for future investigations to study the efficacy of oral supplementation of probiotic LcS in reducing aflatoxin level in human. © 2013 The Society for Applied Microbiology.

  11. Occupational exposure to Aspergillus and aflatoxins among food-grain workers in India.

    PubMed

    Malik, Abida; Ali, Sana; Shahid, Mohd; Bhargava, Rakesh

    2014-01-01

    Aflatoxins are a metabolite of Aspergillus molds and are widespread in the natural environment. Workers who handle food grains are at increased risk of exposure to aflatoxins and subsequently certain respiratory conditions. In India, more than half of the employed population is engaged in some type of agricultural work, yet little known about the respiratory problems as a result of exposure to aflatoxins among workers who handle food grains in India. The aim of this study was to determine the risk of occupational exposure to aflatoxins in food-grain workers compared to workers who are not occupationally exposed to food grains. Bronchoalveolar lavage (BAL) and serum samples from 46 food-grain workers and 44 non-food-grain workers were analyzed for the presence of aflatoxins. Microscopy and culture of BAL samples were performed to detect Aspergillus species. Aflatoxins were detected in 32·6% of the food-grain workers and 9·1% of non food grain workers (P<0·01). A significant difference was also found in BAL culture for Aspergillus (P<0·01) between the two groups. About 47·8% of the food-grain workers and 11·4% of non-food-grain workers had chronic respiratory symptoms. Occupational exposure to aflatoxins in food-grain workers was found to be associated with the increased presence of respiratory symptoms.

  12. Facing the problem of "false positives": re-assessment and improvement of a multiplex RT-PCR procedure for the diagnosis of A. flavus mycotoxin producers.

    PubMed

    Degola, F; Berni, E; Spotti, E; Ferrero, I; Restivo, F M

    2009-02-28

    The aim of our research project was to consolidate a multiplex RT-PCR protocol to detect aflatoxigenic strains of Aspergillus flavus. Several independent A. flavus strains were isolated from corn and flour samples from the North of Italy and from three European countries. Aflatoxin producing/not producing phenotype was assessed by qualitative and quantitative assays at day five of growth in aflatoxin inducing conditions. Expression of 16 genes belonging to the aflatoxin cluster was assayed by multiplex or monomeric RT-PCR. There is a good correlation between gene expression and aflatoxin production. Strains that apparently transcribed all the relevant genes but did not release aflatoxin in the medium ("false positives") were re-assessed for mycotoxin production after extended growth in inducing condition. All the "false positive" strains in actual fact were positive when aflatoxin determination was performed after 10 days of growth. These strains should then be re-classified as "slow aflatoxin accumulators". To optimise the diagnostic procedure, a quintuplex RT-PCR procedure was designed consisting of a primer set directed against four informative aflatoxin cluster genes and the beta-tubulin gene as an internal amplification control. In conclusion we have provided evidence for the robustness and reliability of our RT-PCR protocol in discriminating mycotoxin producer from non-producer strains of A. flavus. and the molecular procedure we devised is a promising tool with which to screen and control the endemic population of A. flavus colonising different areas of the World.

  13. Genetically Engineering Entomopathogenic Fungi.

    PubMed

    Zhao, H; Lovett, B; Fang, W

    2016-01-01

    Entomopathogenic fungi have been developed as environmentally friendly alternatives to chemical insecticides in biocontrol programs for agricultural pests and vectors of disease. However, mycoinsecticides currently have a small market share due to low virulence and inconsistencies in their performance. Genetic engineering has made it possible to significantly improve the virulence of fungi and their tolerance to adverse conditions. Virulence enhancement has been achieved by engineering fungi to express insect proteins and insecticidal proteins/peptides from insect predators and other insect pathogens, or by overexpressing the pathogen's own genes. Importantly, protein engineering can be used to mix and match functional domains from diverse genes sourced from entomopathogenic fungi and other organisms, producing insecticidal proteins with novel characteristics. Fungal tolerance to abiotic stresses, especially UV radiation, has been greatly improved by introducing into entomopathogens a photoreactivation system from an archaean and pigment synthesis pathways from nonentomopathogenic fungi. Conversely, gene knockout strategies have produced strains with reduced ecological fitness as recipients for genetic engineering to improve virulence; the resulting strains are hypervirulent, but will not persist in the environment. Coupled with their natural insect specificity, safety concerns can also be mitigated by using safe effector proteins with selection marker genes removed after transformation. With the increasing public concern over the continued use of synthetic chemical insecticides and growing public acceptance of genetically modified organisms, new types of biological insecticides produced by genetic engineering offer a range of environmentally friendly options for cost-effective control of insect pests. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Extracellular compounds produced by fungi associated with Botryosphaeria dieback induce differential defence gene expression patterns and necrosis in Vitis vinifera cv. Chardonnay cells.

    PubMed

    Ramírez-Suero, M; Bénard-Gellon, M; Chong, J; Laloue, H; Stempien, E; Abou-Mansour, E; Fontaine, F; Larignon, P; Mazet-Kieffer, F; Farine, S; Bertsch, C

    2014-11-01

    Three major grapevine trunk diseases, esca, botryosphaeria dieback and eutypa dieback, pose important economic problems for vineyards worldwide, and currently, no efficient treatment is available to control these diseases. The different fungi associated with grapevine trunk diseases can be isolated in the necrotic wood, but not in the symptomatic leaves. Other factors seem to be responsible for the foliar symptoms and may represent the link between wood and foliar symptoms. One hypothesis is that the extracellular compounds produced by the fungi associated with grapevine trunk diseases are responsible for pathogenicity.In the present work, we used Vitis vinifera cv. Chardonnay cells to test the aggressiveness of total extracellular compounds produced by Diplodia seriata and Neofusicoccum parvum, two causal agents associated with botryosphaeria dieback. Additionally, the toxicity of purified mellein, a characteristic toxin present in the extracellular compounds of Botryosphaeriaceae, was assessed.Our results show that the total extracellular compounds produced by N. parvum induce more necrosis on Chardonnay calli and induce a different defence gene expression pattern than those of D. seriata. Mellein was produced by both fungi in amounts proportional to its aggressiveness. However, when purified mellein was added to the culture medium of calli, only a delayed necrosis and a lower-level expression of defence genes were observed. Extracellular compounds seem to be involved in the pathogenicity of the fungi associated with botryosphaeria dieback. However, the doses of mellein used in this study are 100 times higher than those found in the liquid fungal cultures: therefore, the possible function of this toxin is discussed.

  15. Fractionation of radioactivity in the milk of goats administered UC-aflatoxin B1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, T.; Hsieh, D.P.

    A detailed fractionation of radioactivity in the milk of goats administered UC-aflatoxin B1 at low doses was performed. The milk collected in the first 24 h following dosing contained radioactivity equivalent to 0.45-1.1% of the dose given. The radioactivity in each sample was partitioned into 4 fractions: ether, protein, dichloromethane, and water-alcohol. Over 80% of the radioactivity was detected in the dichloromethane fraction, of which over 95% was attributable to aflatoxin M1. No aflatoxin B1 or other known aflatoxin metabolites were detected in any fraction. The results indicate that the major metabolite of aflatoxin B1 in goat milk is aflatoxinmore » M1 and that other metabolites, including conjugates, are of minor significance.« less

  16. [Dietary exposure assessment of aflatoxin of foodstuff and edible oil from Shenzhen residents].

    PubMed

    Li, Ke; Qiu, Fen; Jiang, Lixin; Yang, Mei

    2014-07-01

    To assess the dietary exposure aflatoxin B1 and total aflatoxins of foodstuff and edible oil in Shenzhen residents. Aflatoxins in the samples were determined by the immuno-affinity column clean-up plus UPLC. The aflatoxin B1 and aflatoxins dietary exposure were calculated by the level of aflatoxins contamination in the food and consumption of dietary. The average diary aflatoxin B1 dietary exposure of the man of the 2 to 6, 7 to 14, 15 to 50 and > 50 age group in Shenzhen were 0.320, 0.385, 0.401 and 0.398 ng/(kg BW x d), the results of the woman were 0.282, 0.222, 0.367 and 0.470 ng/(kg BW x d) respectively. The total average daily dietary aflatoxin B1 exposure of the man were 0.012, 0.015, 0.016 and 0.016 ng/(kg BW x d) about each age group. The results of the woman were 78.4, 167, 113 and 103 ng/(kg BW d). According to the the average levels of consumption and the high levels of consumption, the risk of AFB, of the man were 0.012,0.015, 0.016, 0. 016 and 3.0, 8.2, 4.1, 4.4 cancer patient per one hundred thousand, respectively. The results of the woman were 0.010, 0.009, 0.014, 0.018 and 2.9, 6.7, 4.4, 4.0 cancer patient per one hundred thousand, respectively. 7 to 14 age group compared with adults age group face higher exposure levels. The rice and peanut oil are most primary aflatoxin dietary exposure sources in Shenzhen.

  17. The inhibitory effect of Bacillus megaterium on aflatoxin biosynthetic pathway gene expression in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is one of the major fungal mold that colonize peanut in the field and during storage. The impacts to human and animal health and to economy in agriculture and commerce are significant since this mould produces the most potent natural toxins, aflatoxins, which are carcinogenic, mut...

  18. Aflatoxin exposure in utero causes growth faltering in Gambian infants.

    PubMed

    Turner, Paul C; Collinson, Andrew C; Cheung, Yin Bun; Gong, Yunyun; Hall, Andrew J; Prentice, Andrew M; Wild, Christopher P

    2007-10-01

    Growth faltering in West African children has previously been associated with dietary exposure to aflatoxins, particularly upon weaning. However, in animal studies in utero exposure to low levels of aflatoxin also results in growth faltering. This study investigated the effect of in utero aflatoxin exposure on infant growth in the first year of life in The Gambia. Height and weight were measured for 138 infants at birth and at regular monthly intervals for one year. Aflatoxin-albumin (AF-alb) adduct level was measured in maternal blood during pregnancy, in cord blood and in infants at age 16 weeks. The geometric mean AF-alb levels were 40.4 pg/mg (range 4.8-260.8 pg/mg), 10.1 pg/mg (range 5.0-189.6 pg/mg) and 8.7 pg/mg (range 5.0-30.2 pg/mg) in maternal, cord and infant blood, respectively. AF-alb in maternal blood was a strong predictor of both weight (P = 0.012) and height (P = 0.044) gain, with lower gain in those with higher exposure. A reduction of maternal AF-alb from 110 pg/mg to 10 pg/mg would lead to a 0.8 kg increase in weight and 2 cm increase in height within the first year of life. This study shows a strong effect of maternal aflatoxin exposure during pregnancy on growth in the first year of life and thus extends earlier observations of an association between aflatoxin exposure during infancy and growth faltering. The findings imply value in targeting intervention strategies at early life exposures.

  19. Fungi contamination of drinking water.

    PubMed

    Al-Gabr, Hamid Mohammad; Zheng, Tianling; Yu, Xin

    2014-01-01

    Aquatic fungi commonly infest various aqueous environments and play potentially crucial roles in nutrient and carbon cycling. Aquatic fungi also interact with other organisms to influence food web dynamics. In recent decades, numerous studies have been conducted to address the problem of microorganism contamination of water. The major concern has been potential effects on human health from exposure to certain bacteria, viruses, and protozoa that inhabit water and the microbial metabolites,pigments, and odors which are produced in the water, and their effects on human health and animals. Fungi are potentially important contaminants because they produce certain toxic metabolites that can cause severe health hazards to humans and animals. Despite the potential hazard posed by fungi, relatively few studies on them as contaminants have been reported for some countries.A wide variety of fungi species have been isolated from drinking water, and some of them are known to be strongly allergenic and to cause skin irritation, or immunosuppression in immunocompromised individuals (e.g., AIDS, cancer, or organ transplant patients). Mycotoxins are naturally produced as secondary metabolites by some fungi species, and exposure of humans or animals to them can cause health problems. Such exposure is likely to occur from dietary intake of either food,water or beverages made with water. However, mycotoxins, as residues in water,may be aerosolized when showering or when being sprayed for various purposes and then be subject to inhalation. Mycotoxins, or at least some of them, are regarded to be carcinogenic. There is also some concern that toxic mycotoxins or other secondary metabolites of fungi could be used by terrorists as a biochemical weapon by adding amounts of them to drinking water or non drinking water. Therefore, actions to prevent mycotoxin contaminated water from affecting either humans or animals are important and are needed. Water treatment plants may serve to partially

  20. Correlation and classification of single kernel fluorescence hyperspectral data with aflatoxin concentration in corn kernels inoculated with Aspergillus flavus spores.

    PubMed

    Yao, H; Hruska, Z; Kincaid, R; Brown, R; Cleveland, T; Bhatnagar, D

    2010-05-01

    The objective of this study was to examine the relationship between fluorescence emissions of corn kernels inoculated with Aspergillus flavus and aflatoxin contamination levels within the kernels. Aflatoxin contamination in corn has been a long-standing problem plaguing the grain industry with potentially devastating consequences to corn growers. In this study, aflatoxin-contaminated corn kernels were produced through artificial inoculation of corn ears in the field with toxigenic A. flavus spores. The kernel fluorescence emission data were taken with a fluorescence hyperspectral imaging system when corn kernels were excited with ultraviolet light. Raw fluorescence image data were preprocessed and regions of interest in each image were created for all kernels. The regions of interest were used to extract spectral signatures and statistical information. The aflatoxin contamination level of single corn kernels was then chemically measured using affinity column chromatography. A fluorescence peak shift phenomenon was noted among different groups of kernels with different aflatoxin contamination levels. The fluorescence peak shift was found to move more toward the longer wavelength in the blue region for the highly contaminated kernels and toward the shorter wavelengths for the clean kernels. Highly contaminated kernels were also found to have a lower fluorescence peak magnitude compared with the less contaminated kernels. It was also noted that a general negative correlation exists between measured aflatoxin and the fluorescence image bands in the blue and green regions. The correlation coefficients of determination, r(2), was 0.72 for the multiple linear regression model. The multivariate analysis of variance found that the fluorescence means of four aflatoxin groups, <1, 1-20, 20-100, and >or=100 ng g(-1) (parts per billion), were significantly different from each other at the 0.01 level of alpha. Classification accuracy under a two-class schema ranged from 0.84 to

  1. Aflatoxin metabolism in humans: detection of metabolites and nucleic acid adducts in urine by affinity chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groopman, J.D.; Donahue, P.R.; Zhu, J.Q.

    A high-affinity IgM monoclonal antibody specific for aflatoxins was covalently bound to Sepharose 4B and used as a preparative column to isolate aflatoxin derivatives from the urine of people and experimental animals who had been exposed to the carcinogen environmentally or under laboratory conditions. Aflatoxin levels were quantified by radioimmunoassay and high-performance liquid chromatography after elution from the affinity column. In studies on rats injected with ( UC)aflatoxin B1, the authors identified the major aflatoxin-DNA adduct, 2,3-dihydro-2-(N7-guanyl)-3-hydroxy-aflatoxin B1 (AFB1-N7-Gua), and the oxidative metabolites M1 and P1 as the major aflatoxin species present in the urine. When this methodology was appliedmore » to human urine samples obtained from people from the Guangxi Province of China exposed to aflatoxin B1 through dietary contamination, the aflatoxin metabolites detected were also AFB1-N7-Gua and aflatoxins M1 and P1. Therefore, affinity chromatography using a monoclonal antibody represents a useful and rapid technique with which to isolate this carcinogen and its metabolites in biochemical epidemiology and for subsequent quantitative measurements, providing exposure information that can be used for risk assessment.« less

  2. Does aflatoxin exposure in the United Kingdom constitute a cancer risk?

    PubMed Central

    Harrison, J C; Carvajal, M; Garner, R C

    1993-01-01

    Although the aflatoxins were discovered more than 30 years ago, there is still considerable controversy surrounding their human health effects. Most countries have introduced legislation to control the level of aflatoxins in food, but it is not known if these permitted levels still pose a significant cancer risk. Furthermore, it is unlikely that all the sources of human aflatoxin exposure have been discovered, nor if the liver is the only, or indeed, major target organ for aflatoxin-induced cancer in man. In our laboratory we have used both immunological and HPLC methods to examine human DNA from a variety of tissues and organs to identify and quantify aflatoxin DNA-adducts. We have already detected aflatoxin B1 (AFB1)-DNA adducts in formalin-fixed tissue from an acute poisoning incident in Southeast Asia. Here we have examined human colon and rectum DNA from normal and tumorous tissue obtained from cancer patients and colon, liver, pancreas, breast, and cervix DNA from autopsy specimens. AFB1-DNA adducts were detected in all tissue types examined and ranged from 0-60 adducts/10(6) nucleotides. Where sample size allowed, the adduct levels were confirmed by HPLC analysis. Tumor tissues tended to have higher adduct levels than normal tissue from the same individual, and levels generally increased with patient age. In samples analyzed by HPLC, the adducts present had the chromatographic properties of [8,9-dihydro-8-(N5-formyl)-2',5',6'-triamino-4'-oxo-(N5-pyramidyl) -9- hydroxy-aflatoxin B1, the ring-opened form of the AFB1-guanine adduct.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8319666

  3. Effects of naturally occurring and synthetic synergists on the toxicity of three insecticides, a phytochemical and a mycotoxin to the navel orangeworm Amyelois transitella (Lepidoptera: Pyralidae)

    USDA-ARS?s Scientific Manuscript database

    The navel orangeworm is the most destructive lepidopteran pest of almonds and pistachios in California as well as a serious problem in figs and walnuts. Larval feeding leaves nuts vulnerable to infection by Aspergillus spp., fungi that produce toxic aflatoxins. A potentially safe and sustainable app...

  4. Borelli's lactritmel agar induces conidiation in rare-macroconidia producing dermatophytic fungi.

    PubMed

    Ilkit, Macit; Gümral, Ramazan; Döğen, Aylin

    2012-10-01

    Macroconidia are among the most important indicators used to identify dermatophytic fungi, but several do not usually sporulate and/or produce macroconidia on Sabouraud glucose agar. Specifically, Microsporum audouinii, M. ferrugineum, Trichophyton concentricum, T. schoenleinii, T. verrucosum, and T. violaceum (including T. soudanense and T. yaoundei) rarely form macroconidia and, therefore, cannot be easily identified. In this study, we investigated the production of macroconidia on nine common laboratory media, including Borelli's lactritmel agar (BLA), modified Borelli's lactritmel agar (MBLA), brain heart infusion agar (BHIA), Christensen's urease agar in Petri dishes (UPA), cornmeal dextrose agar (CMDA), Lowenstein-Jensen agar (LJA), malt extract agar (MEA), oatmeal agar (OA), and potato dextrose agar (PDA). The performance of these media was evaluated using 18 rare-macroconidia producing isolates, including representative of the six species mentioned above. All cultures in this study were incubated at 26°C on the bench, and conidia formation on each was investigated at 5, 10, 15, 20, 25, and 30 days of incubation. BLA apparently improved macroconidia production after 15 days and was the most useful nutrient agar medium to induce these phenotypic characters in daily practice, closely followed by OA, PDA, and MBLA.

  5. Aflatoxin contamination of red chili pepper from Bolivia and Peru, countries with high gallbladder cancer incidence rates.

    PubMed

    Asai, Takao; Tsuchiya, Yasuo; Okano, Kiyoshi; Piscoya, Alejandro; Nishi, Carlos Yoshito; Ikoma, Toshikazu; Oyama, Tomizo; Ikegami, Kikuo; Yamamoto, Masaharu

    2012-01-01

    Chilean red chili peppers contaminated with aflatoxins were reported in a previous study. If the development of gallbladder cancer (GBC) in Chile is associated with a high level of consumption of aflatoxin-contaminated red chili peppers, such peppers from other countries having a high GBC incidence rate may also be contaminated with aflatoxins. We aimed to determine whether this might be the case for red chili peppers from Bolivia and Peru. A total of 7 samples (3 from Bolivia, 4 from Peru) and 3 controls (2 from China, 1 from Japan) were evaluated. Aflatoxins were extracted with acetonitrile:water (9:1, v/v) and eluted through an immuno-affinity column. The concentrations of aflatoxins B1, B2, G1, and G2 were measured using high-performance liquid chromatography (HPLC), and then the detected aflatoxins were identified using HPLC-mass spectrometry. In some but not all of the samples from Bolivia and Peru, aflatoxin B1 or aflatoxins B1 and B2 were detected. In particular, aflatoxin B1 or total aflatoxin concentrations in a Bolivian samples were above the maximum levels for aflatoxins in spices proposed by the European Commission. Red chili peppers from Bolivia and Peru consumed by populations having high GBC incidence rates would appear to be contaminated with aflatoxins. These data suggest the possibility that a high level of consumption of aflatoxin-contaminated red chili peppers is related to the development of GBC, and the association between the two should be confirmed by a case-control study.

  6. Peanuts that keep aflatoxin at bay: a threshold that matters

    USDA-ARS?s Scientific Manuscript database

    High levels of aflatoxin in peanuts pose major health hazards for vulnerable populations of Sub-Saharan Africa (SSA) and South Asia. We used two independent approaches to generate peanuts that exhibit strong resistance to both A. flavus seed infection and aflatoxin production. A high level of geneti...

  7. Enzyme-linked immunosorbent assay for determination of aflatoxin M1 based on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Atanasova, M. K.; Ivanova, N. V.; Godjevargova, T. I.

    2017-02-01

    A sensitive enzyme immunoassay with magnetic nanoparticles (Method A) for the quantitative determination of aflatoxin M1 in milk was developed. This immunoassay was based on the immobilization of monoclonal antibody (mAb) on the modified magnetic nanoparticles (MNPs-NH2). It was observed that for each mg of the MNPs, 25 µg of antibody was immobilized. Both aflatoxin M1 in the sample and aflatoxin M1-BSA-peroxidase conjugate competed for the immobilized antibody. The proposed Method A was compared with other method (B). The Method B was based on the immobilization of aflatoxin M1-BSA conjugate on the MNPs-NH2, which competed with the aflatoxin M1 in the sample for binding to the added mAb. The binding of mAb to the aflatoxin M1-BSA-MNPs-NH2 was detected using a target secondary IgG-peroxidase antibody. The analytical characteristics of the two methods were compared. Real milk samples were investigated for present of aflatoxin M1. Two methods were based on the use of MNPs as a solid support for covalently immunoreagents immobilization. A comfortable separation of bound and free fraction of the tracer can be performed only through a simple collection of the MNPs by a permanent magnet. The application of MNPs helps to eliminate non-specific binding and to retain higher activity of bound biomolecules. The development of a MNPs-based ELISA for determination of aflatoxin M1 has a great potential to supersede the traditional ELISA for aflatoxin M1 diagnosis.

  8. Molecular genetics of secondary chemistry in Metarhizium fungi

    USDA-ARS?s Scientific Manuscript database

    As with many microbes, entomopathogenic fungi from the genus Metarhizium produce a plethora of small molecule metabolites, often referred to as secondary metabolites. Although these intriguing compounds are a conspicuous feature of the biology of the producing fungi, their roles in pathogenicity and...

  9. Effects of extrusion temperature and dwell time on aflatoxin levels in cottonseed.

    PubMed

    Buser, Michael D; Abbas, Hamed K

    2002-04-24

    Cottonseed is an economical source of protein and is commonly used in balancing livestock rations; however, its use is typically limited by protein, fat, gossypol, and aflatoxin contents. Whole cottonseed was extruded to determine if the temperature and dwell time (multiple stages of processing) associated with the process affected aflatoxin levels. The extrusion temperature study showed that aflatoxin levels were reduced by an additional 33% when the cottonseed was extruded at 160 degrees C as compared to 104 degrees C. Furthermore, the multiple-pass extrusion study indicated that aflatoxin levels were reduced by an additional 55% when the cottonseed was extruded four times as compared to one time. To estimate the aflatoxin reductions due to extrusion temperature and dwell time, the least mean fits obtained for the individual studies were combined. Total estimated reductions of 55% (three stages of processing at 104 degrees C), 50% (two stages of processing at 132 degrees C), and 47% (one stage of processing at 160 degrees C) were obtained from the combined equations. If the extreme conditions (four stages of processing at 160 degrees C) of the evaluation studies are applied to the combined temperature and processing equation, the resulting aflatoxin reduction would be 76%.

  10. Scaling-Up the Impact of Aflatoxin Research in Africa. The Role of Social Sciences

    PubMed Central

    Stepman, Francois

    2018-01-01

    At the interface between agriculture and nutrition, the aflatoxin contamination of food and feed touches on agriculture, health, and trade. For more than three decades now, the problem of aflatoxin has been researched in Africa. The interest of development cooperation for aflatoxin and the support to aflatoxin mitigation projects has its ups and downs. The academic world and the development world still seem to operate in different spheres and a collaboration is still challenging due to the complexity of the contamination sources at pre-harvest and post-harvest levels. There is a growing call by research funders and development actors for the impact of solutions at a scale. The solutions to mitigate aflatoxin contamination require new ways of working together. A more prominent role is to be played by social scientists. The role of social scientists in scaling-up the impact of aflatoxin research in Africa and the proposed mitigation solutions is to ensure that awareness, advantage, affordability, and access are systematically assessed. Aflatoxin-reduced staple foods and feed would be an agricultural result with a considerable health and food safety impact. PMID:29570687

  11. Effects of temperature, water activity and incubation time on fungal growth and aflatoxin B1 production by toxinogenic Aspergillus flavus isolates on sorghum seeds.

    PubMed

    Lahouar, Amani; Marin, Sonia; Crespo-Sempere, Ana; Saïd, Salem; Sanchis, Vicente

    2016-01-01

    Sorghum, which is consumed in Tunisia as human food, suffers from severe colonization by several toxigenic fungi and contamination by mycotoxins. The Tunisian climate is characterized by high temperature and humidity that stimulates mold proliferation and mycotoxin accumulation in foodstuffs. This study investigated the effects of temperature (15, 25 and 37°C), water activity (aw, between 0.85 and 0.99) and incubation time (7, 14, 21 and 28 d) on fungal growth and aflatoxin B1 (AFB1) production by three Aspergillus flavus isolates (8, 10 and 14) inoculated on sorghum grains. The Baranyi model was applied to identify the limits of growth and mycotoxin production. Maximum diameter growth rates were observed at 0.99 a(w) at 37°C for two of the isolates. The minimum aw needed for mycelial growth was 0.91 at 25 and 37°C. At 15°C, only isolate 8 grew at 0.99 a(w). Aflatoxin B1 accumulation could be avoided by storing sorghum at low water activity levels (≤0.91 a(w)). Aflatoxin production was not observed at 15°C. This is the first work on the effects of water activity and temperature on A. flavus growth and AFB1 production by A. flavus isolates on sorghum grains. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Role of metabolism and viruses in aflatoxin-induced liver cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groopman, John D.; Kensler, Thomas W.

    The use of biomarkers in molecular epidemiology studies for identifying stages in the progression of development of the health effects of environmental agents has the potential for providing important information for critical regulatory, clinical and public health problems. Investigations of aflatoxins probably represent one of the most extensive data sets in the field and this work may serve as a template for future studies of other environmental agents. The aflatoxins are naturally occurring mycotoxins found on foods such as corn, peanuts, various other nuts and cottonseed and they have been demonstrated to be carcinogenic in many experimental models. As amore » result of nearly 30 years of study, experimental data and epidemiological studies in human populations, aflatoxin B{sub 1} was classified as carcinogenic to humans by the International Agency for Research on Cancer. The long-term goal of the research described herein is the application of biomarkers to the development of preventative interventions for use in human populations at high-risk for cancer. Several of the aflatoxin-specific biomarkers have been validated in epidemiological studies and are now being used as intermediate biomarkers in prevention studies. The development of these aflatoxin biomarkers has been based upon the knowledge of the biochemistry and toxicology of aflatoxins gleaned from both experimental and human studies. These biomarkers have subsequently been utilized in experimental models to provide data on the modulation of these markers under different situations of disease risk. This systematic approach provides encouragement for preventive interventions and should serve as a template for the development, validation and application of other chemical-specific biomarkers to cancer or other chronic diseases.« less

  13. Application of superabsorbent polymers (SAP) as desiccants to dry maize and reduce aflatoxin contamination.

    PubMed

    Mbuge, Duncan O; Negrini, Renata; Nyakundi, Livine O; Kuate, Serge P; Bandyopadhyay, Ranajit; Muiru, William M; Torto, Baldwyn; Mezzenga, Raffaele

    2016-08-01

    The ability of superabsorbent polymers (SAP) in drying maize and controlling aflatoxin contamination was studied under different temperatures, drying times and SAP-to-maize ratios. Temperature and drying time showed significant influence on the aflatoxin formation. SAP-to-maize ratios between 1:1 and 1:5 showed little or no aflatoxin contamination after drying to the optimal moisture content (MC) of 13 %, while for ratios 1:10 and 1:20, aflatoxin contamination was not well controlled due to the overall higher MC and drying time, which made these ratios unsuitable for the drying process. Results clearly show that temperature, frequency of SAP change, drying time and SAP-to-maize ratio influenced the drying rate and aflatoxin contamination. Furthermore, it was shown that SAP had good potential for grain drying and can be used iteratively, which can make this system an optimal solution to reduce aflatoxin contamination in maize, particular for developing countries and resource-lacking areas.

  14. Surveys of aflatoxin B1 contamination of retail Turkish foods and of products intended for export between 2007 and 2009.

    PubMed

    Ulca, P; Evcimen, M K; Senyuva, H Z

    2010-01-01

    Surveys were carried out between 2007 and 2009 to determine the aflatoxin B1 content of 3345 commercial Turkish foodstuffs supplied by producers for testing for their own purposes or for export certification. To simplify the reporting of data, foods were categorized as: 1, high sugar products with nuts; 2, nuts and seeds; 3, spices; 4, grain; 5, cocoa products; 6, dried fruit and vegetables; 7, processed cereal products; 8, tea; and 9, baby food and infant formula. Aflatoxin analysis was carried out by high-performance liquid chromatography with fluorescence detection after immunoaffinity column clean-up, with a recoveries ranging from 91% to 99%, depending on the matrix. Of the 3345 samples analysed, 94% contained aflatoxin B1 below the European Union limit of 2 µg kg(-1), which applies to nuts, dried fruit, and cereals products. The 6% of the 206 contaminated samples were mainly nuts and spices. For pistachios, 24%, 38%, and 42% of the totals of 207, 182, and 24 samples tested for 2007, 2008 and 2009, respectively, were above 2 µg kg(-1), with 50 samples containing aflatoxin B1 at levels ranging from 10 to 477 µg kg(-1).

  15. Aflatoxigenic and ochratoxigenic fungi and their mycotoxins in spices marketed in Brazil.

    PubMed

    Garcia, Marcelo Valle; Mallmann, Carlos Augusto; Copetti, Marina Venturini

    2018-04-01

    During their processing, spices usually remain close to the ground for drying, a fact that disposes to fungal contamination, as well as moisture transferred from the tropical environment can allow their multiplication and synthesis of mycotoxins. The objective of this study was to evaluate the presence of potentially toxigenic fungi and mycotoxins in spices marketed in Brazil. The fungal contamination was evaluated by direct plating for samples of clove, black and white peppers. Spread plate was used for the samples of rosemary, cinnamon, fennel, pepperoni pepper and oregano. Analyses were performed in triplicate in DG18 media with incubation at 25°C for 7days. The isolation and identification of fungi followed specific recommendations of culture media and incubation period for each genus. The presence of mycotoxins in spices was verified by high-performance liquid chromatography (HPLC) coupled to fluorescence. The frequency of species potentially toxigenic was high in white and black peppers with presence of both aflatoxigenic and ochratoxigenic fungi. Only rosemary and fennel showed contamination with aflatoxin B1 and there was a positive correlation (ρ<0.01) between the rosemary contamination with the presence of AFB1 and A. flavus. Even in the presence of ochratoxigenic fungi, ochratoxin A was not detected in the samples. The presence of natural components with antimicrobial activity could justify the low presence of mycotoxins, even in the presence of known toxigenic fungi in the samples. Mycotoxins were not detected in spices covered by Brazilian regulation of mycotoxins. On the other hand, these contaminants were present in other spices consumed by population and not mentioned in the regulation, which could be considered a cause to concern. Copyright © 2017. Published by Elsevier Ltd.

  16. Hydrolysers of modified mycotoxins in maize: α-Amylase and cellulase induce an underestimation of the total aflatoxin content.

    PubMed

    Vidal, Arnau; Marín, Sonia; Sanchis, Vicente; De Saeger, Sarah; De Boevre, Marthe

    2018-05-15

    Aflatoxins are the most potent genotoxic and carcinogenic mycotoxins. To date, research has only focused on the presence of free aflatoxins in agricultural commodities. Therefore, the main objective of this study was to investigate the occurrence of possible modified aflatoxins in maize. Different hydrolysis methods were applied to convert modified mycotoxins into their free aflatoxins. Eighteen aflatoxin-contaminated maize samples were incubated with potassium hydroxide, trifluoromethanesulfonic acid and several enzymes to induce hydrolysis. Potassium hydroxide caused a total reduction of aflatoxins, while trifluoromethanesulfonic acid did not lead to an increase in free aflatoxins, neither did treatment with a protease. However, α-amylase and cellulase incubation caused significant increases in the total free aflatoxin content, 15 ± 8% and 13 ± 5%, respectively. These results show that a small proportion of aflatoxins could be associated to matrix substances in plants. Consequently, hydrolysis could occur during food processing and during mammalian digestion, leading to an underestimation of the total aflatoxin content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Comparison of homogenization techniques and incidence of aflatoxin contamination in dried figs for export.

    PubMed

    Bircan, Cavit

    2009-01-01

    To determine differences in mean aflatoxin contamination and subsample variance from dry and slurry homogenizations, 10 kg of six different, naturally contaminated dried fig samples were collected from various exporting companies in accordance with the EU Commission Directive. The samples were first dry-mixed for 5 min using a blender and sub-sampled seven times; the remainder was slurry homogenized (1 : 1, v/v) and sub-sampled seven times. Aflatoxin B1 and total aflatoxin levels were recorded and coefficient of variations (CV) computed for all sub-samples. Only a small reduction in sub-sample variations, indicated by the lower CV values, and slight differences in mean aflatoxin B1 and total aflatoxin levels were observed when slurry homogenization was applied. Therefore, 7326 dried figs, destined for export from Turkey to the EU and collected during the 2008 crop year, were dry-homogenized and tested for aflatoxins (B1, B2, G1 and G2) by immunoaffinity column clean-up using RP-HPLC. While 34% of the samples contained detectable levels of total aflatoxins (0.20-208.75 µg kg(-1)), only 9% of them exceeded the EU limit of 4 µg kg(-1) in the range 2.0-208.75 µg kg(-1), respectively. A substantial increase in the incidence of aflatoxins was observed in 2008, most likely due to the drought stress experienced in Aydin province as occurred in 2007.

  18. Inactivation of aflatoxin B1 by using the synergistic effect of hydrogen peroxide and gamma radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, U.D.; Govindarajan, P.; Dave, P.J.

    Inactivation of aflatoxin B1 was studied by using gamma radiation and hydrogen peroxide. A 100-krad dose of gamma radiation was sufficient to inactivate 50 micrograms of aflatoxin B1 in the presence of 5% hydrogen peroxide, and 400 krad was required for total degradation of 100 micrograms of aflatoxin in the same system. Degradation of aflatoxin B1 was confirmed by high-pressure liquid chromatographic and thin-layer chromatographic analysis. Ames microsomal mutagenicity test showed loss of aflatoxin activity. This method of detoxification also reduces the toxin levels effectively in artificially contaminated groundnuts.

  19. Caryolan-1-ol, an antifungal volatile produced by Streptomyces spp., inhibits the endomembrane system of fungi.

    PubMed

    Cho, Gyeongjun; Kim, Junheon; Park, Chung Gyoo; Nislow, Corey; Weller, David M; Kwak, Youn-Sig

    2017-07-01

    Streptomyces spp. have the ability to produce a wide variety of secondary metabolites that interact with the environment. This study aimed to discover antifungal volatiles from the genus Streptomyces and to determine the mechanisms of inhibition. Volatiles identified from Streptomyces spp. included three major terpenes, geosmin, caryolan-1-ol and an unknown sesquiterpene. antiSMASH and KEGG predicted that the volatile terpene synthase gene clusters occur in the Streptomyces genome. Growth inhibition was observed when fungi were exposed to the volatiles. Biological activity of caryolan-1-ol has previously not been investigated. Fungal growth was inhibited in a dose-dependent manner by a mixture of the main volatiles, caryolan-1-ol and the unknown sesquiterpene, from Streptomyces sp. S4-7. Furthermore, synthesized caryolan-1-ol showed similar antifungal activity. Results of chemical-genomics profiling assays showed that caryolan-1-ol affected the endomembrane system by disrupting sphingolipid synthesis and normal vesicle trafficking in the fungi. © 2017 The Authors.

  20. Global Risk Assessment of Aflatoxins in Maize and Peanuts: Are Regulatory Standards Adequately Protective?

    PubMed Central

    Wu, Felicia

    2013-01-01

    The aflatoxins are a group of fungal metabolites that contaminate a variety of staple crops, including maize and peanuts, and cause an array of acute and chronic human health effects. Aflatoxin B1 in particular is a potent liver carcinogen, and hepatocellular carcinoma (HCC) risk is multiplicatively higher for individuals exposed to both aflatoxin and chronic infection with hepatitis B virus (HBV). In this work, we sought to answer the question: do current aflatoxin regulatory standards around the world adequately protect human health? Depending upon the level of protection desired, the answer to this question varies. Currently, most nations have a maximum tolerable level of total aflatoxins in maize and peanuts ranging from 4 to 20ng/g. If the level of protection desired is that aflatoxin exposures would not increase lifetime HCC risk by more than 1 in 100,000 cases in the population, then most current regulatory standards are not adequately protective even if enforced, especially in low-income countries where large amounts of maize and peanuts are consumed and HBV prevalence is high. At the protection level of 1 in 10,000 lifetime HCC cases in the population, however, almost all aflatoxin regulations worldwide are adequately protective, with the exception of several nations in Africa and Latin America. PMID:23761295

  1. Dynamic variation of bioactive compounds and aflatoxins in contaminated Radix Astragali during extraction process.

    PubMed

    Hu, Yichen; Kong, Weijun; Luo, Hongli; Zhao, Lianhua; Yang, Meihua

    2016-03-30

    Although increasing attention has been paid to the health threat caused by mycotoxins in commodities such as food or medicines, mycotoxin transfer processes from crude material to products have raised little concern so far. Radix Astragali is a commonly used edible and medicinal herbal plant that is susceptible to contamination with aflatoxins from Aspergillus flavus. There have been no studies on mycotoxin transfer into pharmaceutical preparations or derivative products. To facilitate the aflatoxin reduction and bioactivity retention, the dynamic variations of aflatoxins as well as herbal compounds, namely calycosin-7-glucoside, astragaloside and formononetin, in Radix Astragali contaminated by A. flavus during water decoction and ethanol refluxing treatments were evaluated simultaneously by an ultra-fast liquid chromatography-triple quadrupole linear ion trap mass spectrometry method. After the extraction processes, although the amount of alfatoxins was reduced remarkably, aflatoxin residuals in preparation still exceed recommended limits, manifesting the great need to establish a limit for aflatoxins in herbal extractions or derivative products. Meanwhile, due to the hydrolysis of glucoside, water decoction period should be no longer than 4 h. This investigation would benefit from the determination of the dynamic variation of aflatoxins in infected herbs in preparation treatments, in order to further develop aflatoxin limits in herbal preparations. © 2015 Society of Chemical Industry.

  2. Survey of fungal counts and natural occurrence of aflatoxins in Malaysian starch-based foods.

    PubMed

    Abdullah, N; Nawawi, A; Othman, I

    1998-01-01

    In a survey of starch-based foods sampled from retail outlets in Malaysia, fungal colonies were mostly detected in wheat flour (100%), followed by rice flour (74%), glutinous rice grains (72%), ordinary rice grains (60%), glutinous rice flour (48%) and corn flour (26%). All positive samples of ordinary rice and glutinous rice grains had total fungal counts below 10(3) cfu/g sample, while among the positive rice flour, glutinous rice flour and corn flour samples, the highest total fungal count was more than 10(3) but less than 10(4) cfu/g sample respectively. However, in wheat flour samples total fungal count ranged from 10(2) cfu/g sample to slightly more than 10(4) cfu/g sample. Aflatoxigenic colonies were mostly detected in wheat flour (20%), followed by ordinary rice grains (4%), glutinous rice grains (4%) and glutinous rice flour (2%). No aflatoxigenic colonies were isolated from rice flour and corn flour samples. Screening of aflatoxin B1, aflatoxin B2, aflatoxin G1 and aflatoxin G2 using reversed-phase HPLC were carried out on 84 samples of ordinary rice grains and 83 samples of wheat flour. Two point four percent (2.4%) of ordinary rice grains were positive for aflatoxin G1 and 3.6% were positive for aflatoxin G2. All the positive samples were collected from private homes at concentrations ranging from 3.69-77.50 micrograms/kg. One point two percent (1.2%) of wheat flour samples were positive for aflatoxin B1 at a concentration of 25.62 micrograms/kg, 4.8% were positive for aflatoxin B2 at concentrations ranging from 11.25-252.50 micrograms/kg, 3.6% were positive for aflatoxin G1 at concentrations ranging from 25.00-289.38 micrograms/kg and 13.25% were positive for aflatoxin G2 at concentrations ranging from 16.25-436.25 micrograms/kg. Similarly, positive wheat flour samples were mostly collected from private homes.

  3. Effect of anilinopyrimidine resistance on aflatoxin production and fitness parameters in Aspergillus parasiticus Speare.

    PubMed

    Markoglou, Anastasios N; Doukas, Eleftherios G; Malandrakis, Anastasios A

    2011-03-30

    Mutants of Aspergillus parasiticus resistant to the anilinopyrimidine fungicides were isolated at a high mutation frequency after UV-mutagenesis and selection on media containing cyprodinil. In vitro fungitoxicity tests resulted in the identification of two predominant resistant phenotypes that were highly (R(1)-phenotype) and moderately (R(2)-phenotype) resistant to the anilinopyrimidines cyprodinil, pyrimethanil and mepanipyrim. Cross-resistance studies with fungicides from other chemical groups showed that the highly resistance mutation(s) did not affect the sensitivity of R(1)-mutant strains to fungicides affecting other cellular pathways. Contrary to that, a reduction in the sensitivity to the triazoles epoxiconazole and flusilazole, the benzimidazole carbendazim, the phenylpyrrole fludioxonil, the dicarboximide iprodione and to the strobilurin-type fungicide pyraclostrobin was observed in R(2)-mutant strains. Study of fitness parameters of anilinopyrimidine-resistant strains of both phenotypic classes showed that all R(1) mutant strains had mycelial growth rate, sporulation and conidial germination similar to or even higher than the wild-type parent strain, while these fitness parameters were negatively affected in R(2) mutant strains. Analysis of the aflatoxin production showed that most R(1) mutant strains produced aflatoxins at concentrations markedly higher than the wild-type parent strain. A considerable reduction in the aflatoxin production was observed on cultured medium and on wheat grains by all R(2) mutant strains, indicating a possible correlation between fitness penalties and aflatoxigenic ability of A. parasiticus. The potential risk of increased aflatoxin contamination of agricultural products and their byproducts by the appearance and predominance of highly aflatoxigenic mutant strains of A. parasiticus resistant to the anilinopyrimidines is discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Aflatoxin M1 contamination of milk and ice cream in Abeokuta and Odeda local governments of Ogun State, Nigeria.

    PubMed

    Atanda, Olusegun; Oguntubo, Adenike; Adejumo, Oloyede; Ikeorah, John; Akpan, Iyang

    2007-07-01

    A survey was undertaken to determine the aflatoxin M(1) contamination of milk and some locally produced dairy products in Abeokuta and Odeda local governments of Ogun State, Nigeria. Samples of human and cow milk, yoghurt, "wara", ice cream and "nono" were collected randomly within the local governments and analysed for aflatoxin M(1) using the two-dimensional TLC. Aflatoxin M(1) contamination in the range of 2.04-4.00 microg l(-1) was noticed only in milk and ice cream. In particular, samples of human milk, cow milk and ice cream recorded high scores of 4.0 microg l(-1), 2.04 microg l(-1) and 2.23 microg l(-1), respectively in Abeokuta local governments and a score of 4.0 microg l(-1) for cow milk in Odeda local government. This indicates a high level contamination in the local governments since the weighted mean concentration of aflatoxin M1 in milk for African diet is 0.002 microg l(-1). Therefore the concentration of AFB1 in feeds which is transformed to AFM1 in milk should be reduced by good manufacturing and good storage practices. Furthermore, there is need for stringent quality control during processing and distribution of these products.

  5. An efficient Agrobacterium-mediated transformation method for aflatoxin generation fungus Aspergillus flavus.

    PubMed

    Han, Guomin; Shao, Qian; Li, Cuiping; Zhao, Kai; Jiang, Li; Fan, Jun; Jiang, Haiyang; Tao, Fang

    2018-05-01

    Aspergillus flavus often invade many important corps and produce harmful aflatoxins both in preharvest and during storage stages. The regulation mechanism of aflatoxin biosynthesis in this fungus has not been well explored mainly due to the lack of an efficient transformation method for constructing a genome-wide gene mutant library. This challenge was resolved in this study, where a reliable and efficient Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for A. flavus NRRL 3357 was established. The results showed that removal of multinucleate conidia, to collect a homogenous sample of uninucleate conidia for use as the transformation material, is the key step in this procedure. A. tumefaciens strain AGL-1 harboring the ble gene for zeocin resistance under the control of the gpdA promoter from A. nidulans is suitable for genetic transformation of this fungus. We successfully generated A. flavus transformants with an efficiency of ∼ 60 positive transformants per 10 6 conidia using our protocol. A small-scale insertional mutant library (∼ 1,000 mutants) was constructed using this method and the resulting several mutants lacked both production of conidia and aflatoxin biosynthesis capacity. Southern blotting analysis demonstrated that the majority of the transformants contained a single T-DNA insert on the genome. To the best of our knowledge, this is the first report of genetic transformation of A. flavus via ATMT and our protocol provides an effective tool for construction of genome-wide gene mutant libraries for functional analysis of important genes in A. flavus.

  6. The master transcription factor mtfA governs aflatoxin production, morphological development, and pathogenicity in the fungus Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus produces a variety of toxic secondary metabolites, among them the aflatoxins (AFs) are the most well-known. These compounds are highly mutagenic and carcinogenic, particularly AFB1. A. flavus is capable of colonizing economically important crops contaminating them with AFs. Molecu...

  7. Aspergillus and aflatoxin in groundnut (Arachis hypogaea L.) and groundnut cake in Eastern Ethiopia.

    PubMed

    Mohammed, Abdi; Chala, Alemayehu; Dejene, Mashilla; Fininsa, Chemeda; Hoisington, David A; Sobolev, Victor S; Arias, Renee S

    2016-12-01

    This study was conducted to assess major Aspergillus species and aflatoxins associated with groundnut seeds and cake in Eastern Ethiopia and evaluate growers' management practices. A total of 160 groundnut seed samples from farmers' stores and 50 groundnut cake samples from cafe and restaurants were collected. Fungal isolation was done from groundnut seed samples. Aspergillus flavus was the dominant species followed by Aspergillus parasiticus. Aflatoxin analyses of groundnut seed samples were performed using ultra performance liquid chromatography; 22.5% and 41.3% of samples were positive, with total aflatoxin concentrations of 786 and 3135 ng g -1 from 2013/2014 and 2014/2015 samples, respectively. The level of specific aflatoxin concentration varied between 0.1 and 2526 ng g -1 for B 2 and B 1 , respectively. Among contaminated samples of groundnut cake, 68% exhibited aflatoxin concentration below 20 ng g -1 , while as high as 158 ng g -1 aflatoxin B 1 was recorded. The study confirms high contamination of groundnut products in East Ethiopia.

  8. Determination of Aflatoxin B1 in Smokeless Tobacco Products by use of UHPLC-MS/MS

    PubMed Central

    Zitomer, Nicholas; Rybak, Michael E.; Li, Zhong; Walters, Matthew J.; Holman, Matthew R.

    2017-01-01

    We have developed a UHPLC-MS/MS method for the detection and quantitation of aflatoxins in smokeless tobacco products and used it to determine aflatoxin B1 concentrations in 32 smokeless tobacco products commercially available in the US. Smokeless tobacco products were dried, milled and amended with 13C17-labelled internal standards, extracted in water/methanol solution in the presence of a surfactant, isolated through use of immunoaffinity column chromatography and reconstituted in mobile phase prior to UHPLC-MS/MS analysis. Our method was capable of baseline separation of aflatoxins B1, B2, G1 and G2 in a 2.5 min run by use of a fused core C18 column and a water/methanol gradient. MS/MS transition (m/z) 313.3>241.2 was used for aflatoxin B1 quantitation, with 313.3>285.1 used for confirmation. The limit of detection (LOD) for aflatoxin B1 was 0.007 parts per billion (ppb). Method imprecision for aflatoxin B1 (expressed as coefficient of variation) ranged from 5.5% to 9.4%. Spike recoveries were 105–111%. Aflatoxin B1 concentrations in the smokeless tobacco products analysed ranged from Aflatoxin B1 was most frequently detected in dry snuffs and chews, whereas all moist snuff products tested were below LOD. The amounts of aflatoxin B1 we detected were low relative to the 20 ppb regulatory limit established by the Food and Drug Administration for foods and feeds. PMID:26452144

  9. [Extrinsic and intrinsic factors associated with mycotoxigenic fungi populations of maize grains (Zea mays L.) stored in silobags in Argentina].

    PubMed

    Castellari, Claudia C; Cendoya, María G; Marcos Valle, Facundo J; Barrera, Viviana; Pacin, Ana M

    2015-01-01

    In order to determine the behavior of mycotoxin-producing fungal populations linked with silobags stored corn grains with a moisture content greater at the recommended as safe, 270 samples taken in three times (beginning, 90 days, final) over a five month period of storage were evaluated. The fungal biota was quantified and identified and the contamination with fumonisin and aflatoxin was determined. Extrinsic factors (environment), intrinsic factors (grains) and technological factors (location of the grains in the profile of silobag) were taken into account to evaluate the presence and quantity of total and mycotoxigenic fungal populations. The pH of grains and O2 levels were significantly reduced after five months, while CO2 concentration increased in the same period. The total counts of mycobiota were significantly higher in grains located in the top layer of silobag. Mycotoxigenic species of Fusarium, Aspergillus, Penicillium and Eurotium were identified. The frequency of isolation of Fusarium verticillioides decreased at the end of storage and Aspergillus flavus was isolated only at the beginning of storage. The counts of the Penicillium spp. and Eurotium spp. were increased at the end of storage. Fumonisin contamination was found in all the samples (100%) with maximum levels of 5.707mg/kg whereas aflatoxin contaminated only 40% with maximum levels of 0.0008mg/kg. The environmental and substrate conditions generated during the storage limited the development of mycotoxigenic fungi and mycotoxin production. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Maize aflatoxin accumulation segregates with early maturing selections from an S2 breeding cross population.

    PubMed

    Henry, W Brien

    2013-01-15

    Maize breeders continue to seek new sources of aflatoxin resistance, but most lines identified as resistance sources are late maturing. The vast difference in flowering time makes it hard to cross these lines with proprietary commercial lines that mature much earlier and often subjects the reproductive phase of these resistant lines to the hottest and driest portion of the summer, making silking, pollination and grain fill challenging. Two hundred crosses from the GEM Project were screened for aflatoxin accumulation at Mississippi State in 2008, and a subset of these lines were screened again in 2009. The breeding cross UR13085:S99g99u was identified as a potential source of aflatoxin resistance, and maturity-based selections were made from an S2 breeding population from this same germplasm source: UR13085:S99g99u-B-B. The earliest maturing selections performed poorly for aflatoxin accumulation, but later maturing selections were identified with favorable levels of aflatoxin accumulation. These selections, while designated as "late" within this study, matured earlier than most aflatoxin resistant lines presently available to breeders. Two selections from this study, designated S5_L7 and S5_L8, are potential sources of aflatoxin resistance and will be advanced for line development and additional aflatoxin screening over more site years and environments.

  11. Sterigmatocystin: A mycotoxin to be seriously considered.

    PubMed

    Díaz Nieto, César Horacio; Granero, Adrian Marcelo; Zon, María Alicia; Fernández, Héctor

    2018-05-26

    Sterigmatocystin is a carcinogenic compound that affects several species of crops and several species of experimental animals. The sterigmatocystin biosynthetic pathway is the best known and most studied. The International Agency for Research on Cancer classifies sterigmatocystin in the Group 2B. Three groups of analytical methods to determine sterigmatocystin in food can be found: chromatographic, ELISA immunoassays and chemical sensors. In addition, sterigmatocystin is a precursor of aflatoxin B 1 in those cases where cereals and/or food are contaminated with fungi capable of producing aflatoxins. Chemical structures of sterigmatocystin and aflatoxin B 1 are similar. These mycotoxins are pathogens of animals and cereals, producing a major economic impact on biotechnology and agricultural and food industries. This review summarizes different aspects related to sterigmatocystin such as its biosynthesis, toxicological studies and analytical methods for its determination. Copyright © 2018. Published by Elsevier Ltd.

  12. [Analysis on contamination of aflatoxins in food samples in Shaanxi Province from 2012-2015].

    PubMed

    Hu, Jiawei; Tian, Li; Wang, Caixia; Qiao, Haiou; Wang, Minjuan

    2016-09-01

    To investigate the contamination of aflatoxins in food in Shaanxi Province, and provide the basic data of dietary intakes of aflatoxins for food safety assessment. In year 2012- 2015, 1007 food samples of eight kinds of food including grains, beans, vegetable oil, nuts and seeds, condiment, liquor, tea and infants' food were collected randomly from ten cities, and determined with UPLC. 1007 samples were detected aflatoxins and the total detection rate was 10. 7%. The detection range was 0. 070- 323 μg / kg, with the mean value of 2. 34 μg / kg. Among all food samples, only peanut products were more seriously polluted than other kinds of foods. The overall level of aflatoxins contamination in market food is low, but peanut products might be the contaminated foods with aflatoxins in Shaanxi Province, and should be given more attention.

  13. Biosorption of B-aflatoxins Using Biomasses Obtained from Formosa Firethorn [Pyracantha koidzumii (Hayata) Rehder

    PubMed Central

    Ramales-Valderrama, Rosa Adriana; Vázquez-Durán, Alma; Méndez-Albores, Abraham

    2016-01-01

    Mycotoxin adsorption onto biomaterials is considered as a promising alternative for decontamination without harmful chemicals. In this research, the adsorption of B-aflatoxins (AFB1 and AFB2) using Pyracantha koidzumii biomasses (leaves, berries and the mixture of leaves/berries) from aqueous solutions was explored. The biosorbent was used at 0.5% (w/v) in samples spiked with 100 ng/mL of B-aflatoxin standards and incubated at 40 °C for up to 24 h. A standard biosorption methodology was employed and aflatoxins were quantified by an immunoaffinity column and UPLC methodologies. The biosorbent-aflatoxin interaction mechanism was investigated from a combination of zeta potential (ζ), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The highest aflatoxin uptakes were 86% and 82% at 6 h using leaves and the mixture of leaves/berries biomasses, respectively. A moderate biosorption of 46% was attained when using berries biomass. From kinetic studies, the biosorption process is described using the first order adsorption model. Evidence from FTIR spectra suggests the participation of hydroxyl, amine, carboxyl, amide, phosphate and ketone groups in the biosorption and the mechanism was proposed to be dominated by the electrostatic interaction between the negatively charged functional groups and the positively charged aflatoxin molecules. Biosorption by P. koidzumii biomasses has been demonstrated to be an alternative to conventional systems for B-aflatoxins removal. PMID:27420096

  14. Biosorption of B-aflatoxins Using Biomasses Obtained from Formosa Firethorn [Pyracantha koidzumii (Hayata) Rehder].

    PubMed

    Ramales-Valderrama, Rosa Adriana; Vázquez-Durán, Alma; Méndez-Albores, Abraham

    2016-07-13

    Mycotoxin adsorption onto biomaterials is considered as a promising alternative for decontamination without harmful chemicals. In this research, the adsorption of B-aflatoxins (AFB₁ and AFB₂) using Pyracantha koidzumii biomasses (leaves, berries and the mixture of leaves/berries) from aqueous solutions was explored. The biosorbent was used at 0.5% (w/v) in samples spiked with 100 ng/mL of B-aflatoxin standards and incubated at 40 °C for up to 24 h. A standard biosorption methodology was employed and aflatoxins were quantified by an immunoaffinity column and UPLC methodologies. The biosorbent-aflatoxin interaction mechanism was investigated from a combination of zeta potential (ζ), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The highest aflatoxin uptakes were 86% and 82% at 6 h using leaves and the mixture of leaves/berries biomasses, respectively. A moderate biosorption of 46% was attained when using berries biomass. From kinetic studies, the biosorption process is described using the first order adsorption model. Evidence from FTIR spectra suggests the participation of hydroxyl, amine, carboxyl, amide, phosphate and ketone groups in the biosorption and the mechanism was proposed to be dominated by the electrostatic interaction between the negatively charged functional groups and the positively charged aflatoxin molecules. Biosorption by P. koidzumii biomasses has been demonstrated to be an alternative to conventional systems for B-aflatoxins removal.

  15. Biotransformation of aflatoxin B1 and aflatoxin G1 in peanut meal by anaerobic solid fermentation of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Chen, Yujie; Kong, Qing; Chi, Chen; Shan, Shihua; Guan, Bin

    2015-10-15

    The purpose of this study was to explore the ability of anaerobic solid fermentation of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus to biotransform aflatoxins in peanut meal. The pH of the peanut meal was adjusted above 10, and then heated for 10 min at 100 °C, 115 °C and 121 °C. The S. thermophilus and L. delbrueckii subsp. bulgaricus were precultured together in MRS broth for 48 h at 37 °C. The heated peanut meal was mixed with precultured MRS broth containing 7.0×10(8) CFU/mL of S. thermophilus and 3.0×10(3) CFU/mL of L. delbrueckii subsp. bulgaricus with the ratio of 1 to 1 (weight to volume) and incubated in anaerobic jars at 37 °C for 3 days. The aflatoxin content in the peanut meal samples was determined by HPLC. The results showed that the peanut meal contained mainly aflatoxin B1 (AFB1) (10.5±0.64 μg/kg) and aflatoxin G1 (AFG1) (18.7±0.55 μg/kg). When heat treatment was combined with anaerobic solid fermentation, the biotransformation rate of aflatoxins in peanut meal could attain 100%. The cytotoxicity of fermented peanut meal to L929 mouse connective tissue fibroblast cells was determined by MTT assay and no significant toxicity was observed in the fermented peanut meal. Furthermore, heat treatment and anaerobic solid fermentation did not change the amino acid concentrations and profile in peanut meal. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. 7 CFR 983.4 - Aflatoxin.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Aflatoxin. 983.4 Section 983.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA, ARIZONA, AND...

  17. The global geographical overlap of aflatoxin and hepatitis C: Controlling risk factors for liver cancer worldwide

    PubMed Central

    Palliyaguru, Dushani L.; Wu, Felicia

    2012-01-01

    About 85% of hepatocellular carcinoma (HCC, liver cancer) cases occur in low-income countries, where the risk factors of dietary aflatoxin exposure and chronic hepatitis B and C (HBV and HCV) viral infection are common. While studies have shown synergism between aflatoxin and HBV in causing HCC, much less is known about whether aflatoxin and HCV synergize similarly. From an exposure perspective, we examine whether there is a geographical overlap in populations worldwide exposed to high dietary aflatoxin levels and with high HCV prevalence. While HCV is one of the most important risk factors for HCC in high-income nations (where aflatoxin exposure is low), we find that HCV prevalence is much higher in Africa and Asia, where aflatoxin exposure is also high. However, within a given world region, there are some inconsistencies regarding exposure and cancer risk. Therefore, there is a need to control risk factors such as aflatoxin and hepatitis viruses in a cost-effective manner to prevent global HCC, while continuing to evaluate biological mechanisms by which these risk factors interact to increase HCC risk. PMID:23281740

  18. Effects of Trace Metals on the Production of Aflatoxins by Aspergillus parasiticus

    PubMed Central

    Marsh, Paul B.; Simpson, Marion E.; Trucksess, Mary W.

    1975-01-01

    Certain metals added as salts to a defined basal culture medium influenced the level of aflatoxin production by Aspergillus parasiticus in the low microgramsper-milliliter range of the added metal. In many cases no change or a relatively small change in mat weight and final pH of the medium accompanied this effect. With zinc at added levels of 0 to 10 μg/ml in the medium, aflatoxin increased 30-to 1,000-fold with increasing of zinc, whereas mat weight increased less than threefold. At 25 μg of added zinc per ml, aflatoxin decreased, but mat weight did not. At an added level of 25 μg or less of the metal per ml, salts of iron, manganese, copper, cadmium, trivalent chromium, silver, and mercury partly or completely inhibited aflatoxin production, without influencing mat weight. PMID:238471

  19. Effects of different sources of Saccharomyces cerevisiae biomass on milk production, composition, and aflatoxin M1 excretion in milk from dairy cows fed aflatoxin B1.

    PubMed

    Gonçalves, B L; Gonçalves, J L; Rosim, R E; Cappato, L P; Cruz, A G; Oliveira, C A F; Corassin, C H

    2017-07-01

    The aim of the present study was to evaluate the effect of different sources of Saccharomyces cerevisiae (SC) biomass (20.0 g/d) obtained from sugarcane (cell wall, CW; dried yeast, DY; autolyzed yeast, AY) and the beer industry (partially dehydrated brewery yeast, BY) on milk production, fat and protein percentages, and aflatoxin M 1 (AFM 1 ) excretion in milk from dairy cows receiving 480 µg aflatoxin B 1 (AFB 1 ) per day. A completely randomized design was used with 2 lactating cows assigned to each of 10 dietary treatments, as follows: negative controls (no AFB 1 or SC-based biomass), positive controls (AFB 1 alone), DY alone, DY + AFB 1 , BY alone, BY + AFB 1 , CW alone, CW + AFB 1 , AY alone, and AY + AFB 1 . The cows in the aflatoxin treatment group received AFB 1 from d 1 to 6, while the SC biomass was administered with the AFB 1 bolus from d 4 to 6. Aflatoxin B 1 or SC-based products did not affect milk production or milk composition during the experimental period. Aflatoxin M 1 was detected in the milk from all aflatoxin treatment group cows, reaching maximum levels at d 3 and varying from 0.52 ± 0.03 to 1.00 ± 0.04 µg/L. At end of the treatment period, CW, AY, DY, and BY removed 78%, 89%, 45%, and 50% of AFM 1 from the milk, respectively, based on the highest level found on d 3. Results indicate a potential application of industrial fermentation by-products, especially CW and AY, as a feed additive in the diets of dairy cows to reduce the excretion of AFM 1 in milk. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. 75 FR 43045 - Pistachios Grown in California, Arizona, and New Mexico; Modification of the Aflatoxin Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    .... SUMMARY: This rule modifies the aflatoxin sampling and testing regulations currently prescribed under the... Administrative Committee for Pistachios (Committee). This rule streamlines the aflatoxin sampling and testing... by providing a uniform and consistent aflatoxin sampling and testing procedure for pistachios shipped...

  1. Impact of aflatoxin B1 on the pharmacokinetic disposition of enrofloxacin in broiler chickens.

    PubMed

    Kalpana, Starling; Srinivasa Rao, G; Malik, Jitendra K

    2015-09-01

    The potential impact of subchronic exposure of aflatoxin B1 was investigated on the pharmacokinetic disposition of enrofloxacin in broiler chickens. Broiler chickens given either normal or aflatoxin B1 (750μg/kg diet) supplemented diet for 6 weeks received a single oral dose of enrofloxacin (10mg/kg body wt). Blood samples were drawn from the brachial vein at predetermined time intervals after drug administration. Enrofloxacin plasma concentrations analyzed by RP-HPLC were significantly lower in aflatoxin B1-exposed broiler chickens at 0.167, 0.5 and 1.0h after drug administration. In aflatoxin B1-exposed broiler chickens, the absorption rate constant (ka) of enrofloxacin (0.20±0.05h(-1)) was significantly decreased as compared to the unexposed birds (0.98±0.31h(-1)). The values of [Formula: see text] , tmax and AUC0-∞ of enrofloxacin were nonsignificantly increased by 17%, 26% and 17% in aflatoxin-exposed broiler chickens, respectively. Subchronic aflatoxin B1 exposure markedly decreased the initial absorption of enrofloxacin without significantly influencing other pharmacokinetic parameters in broiler chickens. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Effect of dietary macronutrients on aflatoxicosis: a mini-review.

    PubMed

    Nurul Adilah, Zainuddin; Mohd Redzwan, Sabran

    2017-06-01

    Aflatoxin is a toxin produced by Aspergillus species of fungi. The main route of aflatoxin exposure is through the diet. Indeed, long-term aflatoxin exposure is linked to the development of hepatocellular carcinoma (HCC). Aflatoxin causes aflatoxicosis, which can be affected by several factors and is prevalent in many developing Asian and African countries. This mini-review discusses the effects of carbohydrate, fat and protein on aflatoxicosis based on findings from animal and human studies. It was found that high carbohydrate intake enhanced aflatoxicosis occurrence, while low ingestion of carbohydrate with caloric restriction slowed the symptoms associated with aflatoxicosis. Additionally, diets with low protein content worsened the symptoms related to HCC due to aflatoxin exposure. Nevertheless, a study reported that a high-protein diet favored detoxification of aflatoxin in vivo. There were also conflicting results on the influence of dietary fat, as high ingestion of fat enhanced aflatoxicosis development as compared with a low-fat diet. Moreover, the type of fat also plays a significant role in influencing aflatoxin toxicity. In regard to food safety, understanding the influence of macronutrients toward the progression of aflatoxicosis can improve preventive measures against human and animal exposure to aflatoxin. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Screening for Endophytic Fungi from Turmeric Plant (Curcuma longa L.) of Sukabumi and Cibinong with Potency as Antioxidant Compounds Producer.

    PubMed

    Bustanussalam; Rachman, Fauzy; Septiana, Eris; Lekatompessy, Sylvia J R; Widowati, Tiwit; Sukiman, Harmastini I; Simanjuntak, Partomuan

    2015-01-01

    Potency of medicinal plant is related to microorganisms lived in the plant tissue. Those microorganisms are known as endophytic microbes that live and form colonies in the plant tissue without harming its host. Each plant may contains several endophytic microbes that produce biological compounds or secondary metabolites due to co-evolution or genetic transfer from the host plant to endophytic microbes. Endophytic fungi research done for turmeric plant (Curcuma longa L.) gave 44 isolated fungi as results. Those 44 fungi isolated were fermented in Potato Dextrose Broth (PDB) media, filtered, extracted with ethylacetate and then were analyzed by Thin Layer Chromatography (TLC) method and tested for their antioxidant activity by radical scavenging method. The antioxidant activity of the ethylacetate filtrate extracts either from Sukabumi or Cibinong were higher than the biomass extracts. There were 6 fungi that showed antioxidant activities over 65%, i.e., with code name K.Cl.Sb.R9 (93.58%), K.Cl.Sb.A11 (81.49%), KCl.Sb.B1 (78.81%), KCl.Sb.R11 (71.67%) and K.Cl.Sb.A12 (67.76%) from Sukabumi and K.Cl.Cb.U1 (69.27%) from Cibinong. These results showed that bioproduction by endophytic microbes can gave potential antioxidant compounds.

  4. Polyphasic approach to the identification and characterization of aflatoxigenic strains of Aspergillus section Flavi isolated from peanuts and peanut-based products marketed in Malaysia.

    PubMed

    Norlia, M; Jinap, S; Nor-Khaizura, M A R; Son, R; Chin, C K; Sardjono

    2018-05-31

    Peanuts are widely consumed as the main ingredient in many local dishes in Malaysia. However, the tropical climate in Malaysia (high temperature and humidity) favours the growth of fungi from Aspergillus section Flavi, especially during storage. Most of the species from this section, such as A. flavus, A. parasiticus and A. nomius, are natural producers of aflatoxins. Precise identification of local isolates and information regarding their ability to produce aflatoxins are very important to evaluate the safety of food marketed in Malaysia. Therefore, this study aimed to identify and characterize the aflatoxigenic and non-aflatoxigenic strains of Aspergillus section Flavi in peanuts and peanut-based products. A polyphasic approach, consisting of morphological and chemical characterizations was applied to 128 isolates originating from raw peanuts and peanut-based products. On the basis of morphological characters, 127 positively identified as Aspergillus flavus, and the other as A. nomius. Chemical characterization revealed six chemotype profiles which indicates diversity of toxigenic potential. About 58.6%, 68.5%, and 100% of the isolates are positive for aflatoxins, cyclopiazonic acid and aspergillic acid productions respectively. The majority of the isolates originating from raw peanut samples (64.8%) were aflatoxigenic, while those from peanut-based products were less toxigenic (39.1%). The precise identification of these species may help in developing control strategies for aflatoxigenic fungi and aflatoxin contamination in peanuts, especially during storage. These findings also highlight the possibility of the co-occurrence of other toxins, which could increase the potential toxic effects of peanuts. Copyright © 2018. Published by Elsevier B.V.

  5. Rapid pretreatment and detection of trace aflatoxin B1 in traditional soybean sauce.

    PubMed

    Xie, Fang; Lai, WeiHua; Saini, Jasdeep; Shan, Shan; Cui, Xi; Liu, DaoFeng

    2014-05-01

    Soybean sauce, a traditional fermented food in China, has different levels of aflatoxin B1 pollution. Two kinds of direct and indirect immunomagnetic bead methods for the pretreatment of aflatoxin B1 were evaluated in this work. A method was established to detect aflatoxin B1 in soybean sauce using an immunomagnetic bead system for pretreatment and ELISA for quantification. The pretreatment method of immunomagnetic beads performed better compared with the conventional extraction and immunoaffinity column method. ELISA exhibited a good linear relationship at an aflatoxin B1 concentration of 0.05-0.3μg/kg (r(2)=0.9842). The average recoveries across spike levels varied from 0.5 to 7μg/kg were 83.6-104% with a relative standard deviation between 4.2% and 11.7%. With the advantages of rapid detection, easy operation, simple equipment, sensitivity, accuracy, and high recovery; this method can be well applied in the trace determination of aflatoxin B1 in soybean sauce samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Redox systems are a potential link between drought stress susceptibility and the exacerbation of aflatoxin contamination in crops

    USDA-ARS?s Scientific Manuscript database

    Drought stress aggravates Aspergillus flavus infection and aflatoxin contamination in oilseed crops such as peanut and maize. Reactive oxygen species (ROS) are produced in plants in response to abiotic and biotic stresses as a means of defense. In the host plant-A. flavus interaction under drought c...

  7. In vivo detoxification of aflatoxinB1 by magnetic carbon nanostructures prepared from bagasse.

    PubMed

    Khan, Farhat Ali; Zahoor, Muhammad

    2014-10-30

    Aflatoxins are serious hazard to poultry industry and human health. Broiler chickens fed on aflatoxin contaminated feed develop various abnormal signs and behavior including less attraction toward feed, abnormal faeces consistency, growth retardation, dirty and ruffled feather, abnormal organs size and weight and blood serum biochemistry. Therefore the study was aimed to detoxify aflatoxin B1 in poultry feed. In this study a novel adsorbent was prepared from bagasse, characterized in vitro and in vivo it was fed to different groups of poultry birds along with aflatoxin B1. The groups were given arbitrary names A, B, C, D, E and F. Group A was fed with normal decontaminated feed, group B was fed with aflatoxin contaminated (200 μg/kg feed) feed while the groups C, D, E and F were fed with aflatoxin contaminated (200 μg/kg feed) feed plus 0.2, 0.3, 0.4 and 0.5% adsorbent respectively. Clinical signs and behavior of the chicks; blood level of alanine transferase, alkaline phosphatase, serum albumen, serum total proteins and serum globulin; Mortality; Body and organ weights; Hemorrhages in organs etc. were monitored in order to study the efficacy of the adsorbent for binding of aflatoxin B1 in the gastrointestinal tract of chickens. Statistical approach was adopted to analyze the data. It was found that adsorbent amount 0.3%/kg feed was highly effective to adsorb and detoxify aflatoxin B1 in gastrointestinal tract of broiler chickens and pass safely leaving no harmful effects. However the results of groups E and F fed on 0.4% and 0.5% respectively showed slight variation in tested parameters from group A. The prepared adsorbent was efficient for the detoxification of aflatoxin B1 in gastrointestinal tract of chicks and no negative symptoms associated with the use of activated carbon as previously reported were observed for the adsorbent under study.

  8. The use of powder and essential oil of Cymbopogon citratus against mould deterioration and aflatoxin contamination of "egusi" melon seeds.

    PubMed

    Bankole, S A; Joda, A O; Ashidi, J S

    2005-01-01

    Experiments were carried out to determine the potential of using the powder and essential oil from dried ground leaves of Cymbopogon citratus (lemon grass) to control storage deterioration and aflatoxin contamination of melon seeds. Four mould species: Aspergillus flavus, A. niger, A. tamarii and Penicillium citrinum were inoculated in the form of conidia suspension (approx. 10(6) conidia per ml) unto shelled melon seeds. The powdered dry leaves and essential oil from lemon grass were mixed with the inoculated seeds at levels ranging from 1-10 g/100 g seeds and 0.1 to 1.0 ml/100 g seeds respectively. The ground leaves significantly reduced the extent of deterioration in melon seeds inoculated with different fungi compared to the untreated inoculated seeds. The essential oil at 0.1 and 0.25 ml/100 g seeds and ground leaves at 10 g/100 g seeds significantly reduced deterioration and aflatoxin production in shelled melon seeds inoculated with toxigenic A. flavus. At higher dosages (0.5 and 1.0 ml/100 g seeds), the essential oil completely prevented aflatoxin production. After 6 months in farmers' stores, unshelled melon seeds treated with 0.5 ml/ 100 g seeds of essential oil and 10 g/100 g seeds of powdered leaves of C. citratus had significantly lower proportion of visibly diseased seeds and Aspergillus spp. infestation levels and significantly higher seed germination compared to the untreated seeds. The oil content, free fatty acid and peroxide values in seeds protected with essential oil after 6 months did not significantly differ from the values in seeds before storage. The efficacy of the essential oil in preserving the quality of melon seeds in stores was statistically at par with that of fungicide (iprodione) treatment. ((c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

  9. Aflatoxin-induced biochemical changes in liver of mice and its mitigation by black tea extract.

    PubMed

    Jha, Anamika; Shah, Komal; Verma, Ramtej J

    2012-01-01

    Aflatoxin belongs to the class of naturally occurring mycotoxins, food contaminants having potent carcinogenicity. We have evaluated the ameliorative role of black tea extract on aflatoxin-induced biochemical changes in the liver of albino male mice. Adult male mice were orally administered with 750 and 1500 pg of aflatoxin in 0.2 mL olive oil/kg b.w./day for 30 days. Oral administration of aflatoxin caused, as compared with controls, significant, dose-dependent reduction in DNA, RNA, protein and glycogen contents; however, cholesterol content and phsphorylase activity were significantly increased. Black tea is one of the most potent antioxidants containing numerous bioactive phytonurtients having therapeutic applications. Aflatoxin-induced changes in the liver of mice were significantly ameliorated on co-treatment of black tea extract (2% infusion in water).

  10. Aflatoxin and nutrient contents of peanut collected from local market and their processed foods

    NASA Astrophysics Data System (ADS)

    Ginting, E.; Rahmianna, A. A.; Yusnawan, E.

    2018-01-01

    Peanut is succeptable to aflatoxin contamination and the sources of peanut as well as processing methods considerably affect aflatoxin content of the products. Therefore, the study on aflatoxin and nutrient contents of peanut collected from local market and their processed foods were performed. Good kernels of peanut were prepared into fried peanut, pressed-fried peanut, peanut sauce, peanut press cake, fermented peanut press cake (tempe) and fried tempe, while blended kernels (good and poor kernels) were processed into peanut sauce and tempe and poor kernels were only processed into tempe. The results showed that good and blended kernels which had high number of sound/intact kernels (82,46% and 62,09%), contained 9.8-9.9 ppb of aflatoxin B1, while slightly higher level was seen in poor kernels (12.1 ppb). However, the moisture, ash, protein, and fat contents of the kernels were similar as well as the products. Peanut tempe and fried tempe showed the highest increase in protein content, while decreased fat contents were seen in all products. The increase in aflatoxin B1 of peanut tempe prepared from poor kernels > blended kernels > good kernels. However, it averagely decreased by 61.2% after deep-fried. Excluding peanut tempe and fried tempe, aflatoxin B1 levels in all products derived from good kernels were below the permitted level (15 ppb). This suggests that sorting peanut kernels as ingredients and followed by heat processing would decrease the aflatoxin content in the products.

  11. Biochemical mutagens affect the preservation of fungi and biodiversity estimations.

    PubMed

    Paterson, R Russell M; Lima, Nelson

    2013-01-01

    Many fungi have significant industrial applications or biosafety concerns and maintaining the original characteristics is essential. The preserved fungi have to represent the situation in nature for posterity, biodiversity estimations, and taxonomic research. However, spontaneous fungal mutations and secondary metabolites affecting producing fungi are well known. There is increasing interest in the preservation of microbes in Biological Resource Centers (BRC) to ensure that the organisms remain viable and stable genetically. It would be anathema if they contacted mutagens routinely. However, for the purpose of this discussion, there are three potential sources of biochemical mutagens when obtaining individual fungi from the environment: (a) mixtures of microorganisms are plated routinely onto growth media containing mutagenic antibiotics to control overgrowth by contaminants, (b) the microbial mixtures may contain microorganisms capable of producing mutagenic secondary metabolites, and (c) target fungi for isolation may produce "self" mutagens in pure culture. The probability that these compounds could interact with fungi undermines confidence in the preservation process and the potential effects of these biochemical mutagens are considered for the first time on strains held in BRC in this review.

  12. Bioactive alkaloids produced by fungi. I. Updates on alkaloids from the species of the genera Boletus, Fusarium and psilocybe.

    PubMed

    Mahmood, Zafar Alam; Ahmed, Syed Waseemuddin; Azhar, Iqbal; Sualeh, Mohammad; Baig, Mirza Tasawer; Zoha, Sms

    2010-07-01

    Fungi, in particular, are able in common with the higher plants and bacteria, to produce metabolites, including alkaloids. Alkaloids, along with other metabolites are the most important fungal metabolites from pharmaceutical and industrial point of view. Based on this observation, the authors of this review article have tried to provide an information on the alkaloids produced by the species of genera: Boletus, Fusarium and Psilocybef from 1981-2009. Thus the review would be helpful and provides valuable information for the researchers of the same field.

  13. Occurrence of Aflatoxins in Selected Processed Foods from Pakistan

    PubMed Central

    Mushtaq, Muhammad; Sultana, Bushra; Anwar, Farooq; Khan, Muhammad Zargham; Ashrafuzzaman, Muhammad

    2012-01-01

    A total of 125 (ready to eat) processed food samples (70 intended for infant and 55 for adult intake) belonging to 20 different food categories were analyzed for aflatoxins contamination using Reverse Phase High Performance Liquid Chromatography (RP-HPLC) with fluorescent detection. A solvent mixture of acetonitrile-water was used for the extraction followed by immunoaffinity clean-up to enhance sensitivity of the method. The limit of detection (LOD) (0.01–0.02 ng·g−1) and limit of quantification (LOQ) (0.02 ng·g−1) was established for aflatoxins based on signal to noise ratio of 3:1 and 10:1, respectively. Of the processed food samples tested, 38% were contaminated with four types of aflatoxins, i.e., AFB1 (0.02–1.24 μg·kg−1), AFB2 (0.02–0.37 μg·kg−1), AFG1 (0.25–2.7 μg·kg−1) and AFG2 (0.21–1.3 μg·kg−1). In addition, the results showed that 21% of the processed foods intended for infants contained AFB1 levels higher than the European Union permissible limits (0.1 μg·kg−1), while all of those intended for adult consumption had aflatoxin contamination levels within the permitted limits. PMID:22942705

  14. In vitro metabolism of the pro-carcinogen aflatoxin B1 by liver preparations of the calf, nurse shark and clearnose skate.

    PubMed

    Bodine, A B; Luer, C A; Gangjee, S A; Walsh, C J

    1989-01-01

    1. Liver postmitochondrial supernatant preparations of calf, clearnose skate, and nurse shark were able to metabolize the fungal toxin aflatoxin B1 to various metabolites. 2. Calf liver produced aflatoxin M1 and Q1 as the major chloroform soluble metabolites, with small amounts of aflatoxicol formed during incubation. 3. Liver preparations of the elasmobranchs, however, produced aflatoxicol as the major chloroform soluble metabolite with no other metabolite being detected. 4. The water soluble metabolite profiles for the three species were also quite different with the tris diol adduct being produced to a much greater extent in calf liver preparations. 5. Aflatoxicol production by the elasmobranch liver homogenates was reversible with the skate reconverting a large amount (30%) of aflatoxicol to AFB1. The nurse shark, however, appeared to convert a portion of aflatoxicol to an unknown metabolite more polar than AFB1. 6. Calf liver DNA bound approximately 3 x more 3H-AFB1 than shark liver DNA.

  15. Evaluation of particulate air samplers for airborne aflatoxin B1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silas, J.C.; Harrison, M.A.; Carpenter, J.A.

    Five air samplers (Millipore, all-glass impinger, centrifugal, Andersen, and absorbent cotton) were evaluated for their ability to collect airborne grain particles contaminated with aflatoxin B1. Corn dust containing 100 micrograms aflatoxin B1/g was aerosolized within a containment system. Each device sampled 100 I air, thus exchanging the air in the chamber two times. Aflatoxin B1 was extracted from all sampling matrices and was detected and quantitated with thin-layer chromatography and scanning fluorodensitometry. The highest efficiency was obtained with the Millipore sampler, while the efficiencies of the centrifugal and the cotton samplers were almost identical. Efficiency of an Andersen was less,more » with no toxin recovered from an all-glass impinger. Measurement of particle size was accomplished with the Andersen sampler.« less

  16. An empirical evaluation of three vibrational spectroscopic methods for detection of aflatoxins in maize.

    PubMed

    Lee, Kyung-Min; Davis, Jessica; Herrman, Timothy J; Murray, Seth C; Deng, Youjun

    2015-04-15

    Three commercially available vibrational spectroscopic techniques, including Raman, Fourier transform near infrared reflectance (FT-NIR), and Fourier transform infrared (FTIR) were evaluated to help users determine the spectroscopic method best suitable for aflatoxin analysis in maize (Zea mays L.) grain based on their relative efficiency and predictive ability. Spectral differences of Raman and FTIR spectra were more marked and pronounced among aflatoxin contamination groups than those of FT-NIR spectra. From the observations and findings in our current and previous studies, Raman and FTIR spectroscopic methods are superior to FT-NIR method in terms of predictive power and model performance for aflatoxin analysis and they are equally effective and accurate in predicting aflatoxin concentration in maize. The present study is considered as the first attempt to assess how spectroscopic techniques with different physical processes can influence and improve accuracy and reliability for rapid screening of aflatoxin contaminated maize samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Moisture content and its impact on aflatoxin levels in ready-to-use red chillies.

    PubMed

    Sahar, Najmus; Arif, Saqib; Iqbal, Sajid; Afzal, Qurat Ul Ain; Aman, Sahar; Ara, Jahan; Ahmed, Mubarik

    2015-01-01

    Moisture content (MC) and aflatoxin contamination were analysed to determine Red Chilli quality. A wide range (9.1-19.8%) of MC with a mean value of 11.4 ± 2.4% was found. Of 116 chilli samples, about 37% had low MC (<10%), 29.4% had medium-low MC (10-12%), 18.9% had medium-high MC (12 < MC < 14%) and 14.7% were above 14%. These four chilli groups had average aflatoxin levels of 2.1 ± 1.1, 5.3 ± 4.2, 8.9 ± 5.9 and 37 ± 20 µg/Kg, respectively. A direct relationship between moisture and aflatoxin content was found. The data best fitted a polynomial trend (R² = 0.89). The obtained equation could be utilised to assess aflatoxin levels based on MC. This study highlights the importance of using properly dried chillies with low MC, that is, ≤10%, to minimise health hazards associated with aflatoxin contamination.

  18. Demonstration of Aflatoxin Inhibitory Activity in a Cotton Seed Coat Xylan

    PubMed Central

    Mellon, J. E.; Cotty, P. J.; Godshall, M. A.; Roberts, E.

    1995-01-01

    An inhibitor of aflatoxin biosynthesis localized in the seed coats of developing cotton was partially purified and characterized. Aqueous extracts from 25-day postanthesis seed coat tissue inhibited aflatoxin (B(inf1)) production in liquid cultures of Aspergillus flavus AF13. Inhibition was concentration dependent, with a 50% effective dose of 173 (mu)g of crude extract per ml of medium. The inhibitor was neutral in charge. Two active fractions were obtained from crude preparations by gel filtration chromatography (BioGel P-100). The purest fraction eluted in the void volume. Carbohydrate composition analysis of this void volume inhibitor indicated a composition of xylose (>90%) and mannose. Aflatoxin production in vitro was inversely related to inhibitor concentration in the fermentation medium (log of aflatoxin versus log of [inhibitor]; r(sup2) = 0.82; P < 0.002). The void volume inhibitor had a 50% effective dose of 6.2 (mu)g/ml, a 28-fold purification of the inhibitor material. These data support the hypothesis that seed coat inhibitory activity is associated with a cottonseed-specific xylan. PMID:16535194

  19. The pathogenesis-related maize seed (PRms) gene plays a role in resistance to Aspergillus flavus infection and aflatoxin contamination

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is an opportunistic plant pathogen that colonizes and produces the toxic and carcinogenic secondary metabolites, aflatoxins, in oil-rich crops such as maize (Zea mays ssp. mays L.). Pathogenesis-related proteins serve as a first line of defense against invading pathogens by confer...

  20. Aflatoxin effect on erythrocyte profile and histopathology of broilers given different additives

    NASA Astrophysics Data System (ADS)

    Karimy, M. F.; Sutrisno, B.; Agus, A.; Suryani, A. E.; Istiqomah, L.; Damayanti, E.

    2017-12-01

    The aim of this study was to evaluate erythrocyte profile and microscopic changes effect of AF induces by low level (57.18 ppb) and chronic exposure (34 days) with administration of additive (Lactobacillus plantarum G7 and methionine). Aflatoxin-contaminated corn was prepared by inoculate Aspergillus flavus FNCC 6002 on corn. Total number of 576 broiler Lohman strain (MB202) unsexed DOC were allocated completely randomized into four treatments and 12 replicates, with 12 broiler chicks each. The treatments as follows: T1 = aflatoxin-contaminated diet, T2 = aflatoxin-contaminated diet + 1% of LAB (w/w), T3 = aflatoxin-contaminated diet + 0.8% of methionine (w/w), and T4 = aflatoxin-contaminated diet + 1% of LAB + 0.8% of methionine (w/w). The effect of treatments was evaluated using ANOVA and the difference among mean treatments were analyzed using DMRT. The result showed that administration of additives had no significant effect (P>0.05) on erythrocyte profile, liver, and bursa of Fabricius. The dose of additive in each treatment (T2, T3, T4) were insufficient to reduce adverse effect of chronic aflatoxicosis. It was concluded that the LAB dose for binding AF (57.18%) should be evaluated and the dose for methionine should be reduced for chronic treatment of aflatoxicosis.

  1. Workgroup Report: Public Health Strategies for Reducing Aflatoxin Exposure in Developing Countries

    PubMed Central

    Strosnider, Heather; Azziz-Baumgartner, Eduardo; Banziger, Marianne; Bhat, Ramesh V.; Breiman, Robert; Brune, Marie-Noel; DeCock, Kevin; Dilley, Abby; Groopman, John; Hell, Kerstin; Henry, Sara H.; Jeffers, Daniel; Jolly, Curtis; Jolly, Pauline; Kibata, Gilbert N.; Lewis, Lauren; Liu, Xiumei; Luber, George; McCoy, Leslie; Mensah, Patience; Miraglia, Marina; Misore, Ambrose; Njapau, Henry; Ong, Choon-Nam; Onsongo, Mary T.K.; Page, Samuel W.; Park, Douglas; Patel, Manish; Phillips, Timothy; Pineiro, Maya; Pronczuk, Jenny; Rogers, Helen Schurz; Rubin, Carol; Sabino, Myrna; Schaafsma, Arthur; Shephard, Gordon; Stroka, Joerg; Wild, Christopher; Williams, Jonathan T.; Wilson, David

    2006-01-01

    Consecutive outbreaks of acute aflatoxicosis in Kenya in 2004 and 2005 caused > 150 deaths. In response, the Centers for Disease Control and Prevention and the World Health Organization convened a workgroup of international experts and health officials in Geneva, Switzerland, in July 2005. After discussions concerning what is known about aflatoxins, the workgroup identified gaps in current knowledge about acute and chronic human health effects of aflatoxins, surveillance and food monitoring, analytic methods, and the efficacy of intervention strategies. The workgroup also identified public health strategies that could be integrated with current agricultural approaches to resolve gaps in current knowledge and ultimately reduce morbidity and mortality associated with the consumption of aflatoxin-contaminated food in the developing world. Four issues that warrant immediate attention were identified: a) quantify the human health impacts and the burden of disease due to aflatoxin exposure; b) compile an inventory, evaluate the efficacy, and disseminate results of ongoing intervention strategies; c) develop and augment the disease surveillance, food monitoring, laboratory, and public health response capacity of affected regions; and d) develop a response protocol that can be used in the event of an outbreak of acute aflatoxicosis. This report expands on the workgroup’s discussions concerning aflatoxin in developing countries and summarizes the findings. PMID:17185282

  2. Saccharification efficiencies of multi-enzyme complexes produced by aerobic fungi.

    PubMed

    Badhan, Ajay; Huang, Jiangli; Wang, Yuxi; Abbott, D Wade; Di Falco, Marcos; Tsang, Adrian; McAllister, Tim

    2018-05-24

    In the present study, we have characterized high molecular weight multi-enzyme complexes in two commercial enzymes produced by Trichoderma reesei (Spezyme CP) and Penicillium funiculosum (Accellerase XC). We successfully identified 146-1000 kDa complexes using Blue native polyacrylamide gel electrophoresis (BN-PAGE) to fractionate the protein profile in both preparations. Identified complexes dissociated into lower molecular weight constituents when loaded on SDS PAGE. Unfolding of the secondary structure of multi-enzyme complexes with trimethylamine (pH >10) suggested that they were not a result of unspecific protein aggregation. Cellulase (CMCase) profiles of extracts of BN-PAGE fractionated protein bands confirmed cellulase activity within the multi-enzyme complexes. A microassay was used to identify protein bands that promoted high levels of glucose release from barley straw. Those with high saccharification yield were subjected to LC-MS analysis to identify the principal enzymatic activities responsible. The results suggest that secretion of proteins by aerobic fungi leads to the formation of high molecular weight multi-enzyme complexes that display activity against carboxymethyl cellulose and barley straw. Copyright © 2018. Published by Elsevier B.V.

  3. Effect of boiling, frying, and baking on recovery of aflatoxin from naturally contaminated corn grits or cornmeal.

    PubMed

    Stoloff, L; Trucksess, M W

    1981-05-01

    Corn grits naturally contaminated with aflatoxins were used for making boiled grits, and portions of the boiled grits were used for making pan-fried grits; cornmeal naturally contaminated with aflatoxins was used for making corn muffins. Procedures and recipes were derived from cookbook and market package recommendations. From analyses of the products for aflatoxins before and after preparation of the table-ready products, it was determined that 72 +/- 9% (n = 15) of the aflatoxin found in the original grits could be recovered after the grits were boiled. The recovery of aflatoxin B1 after the grits were fried was either 66 +/- 10% (n = 6) or 47 +/- 8% (n = 9), depending on whether 3 cups of water or 4 cups of water per cup of grits, respectively, were used for preparing the boiled grits before frying. Similarly, it was determined that 87 +/- 4% (n = 9) of the aflatoxin B1 found in the original cornmeal could be recovered from the baked muffins. No detectable aflatoxin B2 a was present in the extracts from any of the table-ready products.

  4. Positive and negative aspects of green coffee consumption - antioxidant activity versus mycotoxins.

    PubMed

    Jeszka-Skowron, Magdalena; Zgoła-Grześkowiak, Agnieszka; Waśkiewicz, Agnieszka; Stępień, Łukasz; Stanisz, Ewa

    2017-09-01

    The quality of coffee depends not only on the contents of healthy compounds but also on its contamination with microorganisms that can produce mycotoxins during development, harvesting, preparation, transport and storage. The antioxidant activity of green coffee brews measured in this study by ABTS, DPPH and Folin-Ciocalteu assays showed that coffee extracts from Robusta beans possessed higher activity in all assays than extracts from Arabica beans. The occurrence of ochratoxin A and aflatoxins (B1, B2, G1 and G2) in green coffee beans was studied using liquid chromatography/mass spectrometry. Apart from mycotoxins, the content of ergosterol as a marker indicating fungal occurrence was also determined. Among aflatoxins, aflatoxin B1 was the dominant mycotoxin in coffee bean samples, with the highest level at 17.45 ng g -1 . Ochratoxin A was detected in four samples at levels ranging from 1.27 to 4.34 ng g -1 , and fungi potentially producing this toxin, namely Aspergillus oryzae, Alternaria sp., Aspergillus foetidus, Aspergillus tamarii and Penicillium citrinum, were isolated. Steaming and decaffeination of coffee beans increased antioxidant activities of brews in comparison with those prepared from unprocessed beans. Although toxins can be quantified in green coffee beans and novel fungi were isolated, their concentrations are acceptable according to legal limits. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Influence of Modified Atmosphere Storage on Aflatoxin Production in High Moisture Corn

    PubMed Central

    Wilson, David M.; Jay, Edward

    1975-01-01

    Samples of freshly harvested corn and remoistened corn were inoculated with Aspergillus flavus and stored for 4 weeks at about 27 C in air and three modified atmospheres. Aflatoxins and fat acidity were determined weekly. Corn stored in the modified atmospheres did not accumulate over 15 μg of aflatoxin B1 per kg and 20 μg of total aflatoxins per kg. Corn from the high CO2 treatment (61.7% CO2, 8.7% O2, and 29.6% N2) was visibly molded at 4 weeks and had a higher fat acidity than the other treatments. In the N2 (99.7% N2 and 0.3% O2) and controlled atmosphere (13.5% CO2, 0.5% O2, 84.8% N2) treatments, a fermentation-like odor was detected. When the corn was removed from the modified atmospheres it deteriorated rapidly and was soon contaminated with aflatoxins. PMID:803817

  6. Sexual reproduction in Aspergillus flavus sclerotia naturally produced in corn

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is the major producer of carcinogenic aflatoxins worldwide in crops. Populations of A. flavus are characterized by high genetic variation and the source of this variation is likely sexual reproduction. The fungus is heterothallic and laboratory crosses produce ascospore-bearing ...

  7. Chemistry and Biology of Aflatoxin-DNA Adducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Michael P.; Banerjee, Surajit; Brown, Kyle L.

    Aspergillus flavus is a fungal contaminant of stored rice, wheat, corn, and other grainstuffs, and peanuts. This is of concern to human health because it produces the mycotoxin aflatoxin B{sub 1} (AFB{sub 1}), which is genotoxic and is implicated in the etiology of liver cancer. AFB{sub 1} is oxidized in vivo by cytochrome P450 to form aflatoxin B{sub 1} epoxide, which forms an N7-dG adduct (AFB{sub 1}-N7-dG) in DNA. The latter rearranges to a formamidopyrimidine (AFB{sub 1}-FAPY) derivative that equilibrates between {alpha} and {beta} anomers of the deoxyribose. In DNA, both the AFB{sub 1}-N7-dG and AFB{sub 1}-{beta}-FAPY adducts intercalate abovemore » the 5'-face of the damaged guanine. Each produces G {yields} T transversions in Escherichia coli, but the AFB{sub 1}-{beta}-FAPY adduct is more mutagenic. The Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) provides a model for understanding error-prone bypass of the AFB{sub 1}-N7-dG and AFB{sub 1}-{beta}-FAPY adducts. It bypasses the AFB{sub 1}-N7-dG adduct, but it conducts error-prone replication past the AFB{sub 1}-FAPY adduct, including mis-insertion of dATP, consistent with the G {yields} T mutations characteristic of AFB{sub 1} mutagenesis in E. coli. Crystallographic analyses of a series of binary and ternary complexes with the Dpo4 polymerase revealed differing orientations of the N7-C8 bond of the AFB{sub 1}-N7-dG adduct as compared to the N{sup 5}-C8 bond in the AFB{sub 1}-{beta}-FAPY adduct, and differential accommodation of the intercalated AFB{sub 1} moieties within the active site. These may modulate AFB{sub 1} lesion bypass by this polymerase.« less

  8. Use of Probiotics to Control Aflatoxin Production in Peanut Grains

    PubMed Central

    da Silva, Juliana Fonseca Moreira; Peluzio, Joenes Mucci; Madeira, Jovita Eugênia Gazzinelli Cruz; Silva, Marize Oliveira; de Morais, Paula Benevides; Rosa, Carlos Augusto; Pimenta, Raphael Sanzio; Nicoli, Jacques Robert

    2015-01-01

    Probiotic microorganisms (Saccharomyces cerevisiae var. boulardii, S. cerevisiae UFMG 905, and Lactobacillus delbrueckii UFV H2b20) were evaluated as biological control agents to reduce aflatoxin and spore production by Aspergillus parasiticus IMI 242695 in peanut. Suspensions containing the probiotics alone or in combinations were tested by sprinkling on the grains followed by incubation for seven days at 25°C. All probiotic microorganisms, in live and inactivated forms, significantly reduced A. parasiticus sporulation, but the best results were obtained with live cells. The presence of probiotics also altered the color of A. parasiticus colonies but not the spore morphology. Reduction in aflatoxin production of 72.8 and 65.8% was observed for S. boulardii and S. cerevisiae, respectively, when inoculated alone. When inoculated in pairs, all probiotic combinations reduced significantly aflatoxin production, and the best reduction was obtained with S. boulardii plus L. delbrueckii (96.1%) followed by S. boulardii plus S. cerevisiae and L. delbrueckii plus S. cerevisiae (71.1 and 66.7%, resp.). All probiotics remained viable in high numbers on the grains even after 300 days. The results of the present study suggest a different use of probiotics as an alternative treatment to prevent aflatoxin production in peanut grains. PMID:26221629

  9. Use of Probiotics to Control Aflatoxin Production in Peanut Grains.

    PubMed

    da Silva, Juliana Fonseca Moreira; Peluzio, Joenes Mucci; Prado, Guilherme; Madeira, Jovita Eugênia Gazzinelli Cruz; Silva, Marize Oliveira; de Morais, Paula Benevides; Rosa, Carlos Augusto; Pimenta, Raphael Sanzio; Nicoli, Jacques Robert

    2015-01-01

    Probiotic microorganisms (Saccharomyces cerevisiae var. boulardii, S. cerevisiae UFMG 905, and Lactobacillus delbrueckii UFV H2b20) were evaluated as biological control agents to reduce aflatoxin and spore production by Aspergillus parasiticus IMI 242695 in peanut. Suspensions containing the probiotics alone or in combinations were tested by sprinkling on the grains followed by incubation for seven days at 25°C. All probiotic microorganisms, in live and inactivated forms, significantly reduced A. parasiticus sporulation, but the best results were obtained with live cells. The presence of probiotics also altered the color of A. parasiticus colonies but not the spore morphology. Reduction in aflatoxin production of 72.8 and 65.8% was observed for S. boulardii and S. cerevisiae, respectively, when inoculated alone. When inoculated in pairs, all probiotic combinations reduced significantly aflatoxin production, and the best reduction was obtained with S. boulardii plus L. delbrueckii (96.1%) followed by S. boulardii plus S. cerevisiae and L. delbrueckii plus S. cerevisiae (71.1 and 66.7%, resp.). All probiotics remained viable in high numbers on the grains even after 300 days. The results of the present study suggest a different use of probiotics as an alternative treatment to prevent aflatoxin production in peanut grains.

  10. Pulmonary interstitial fibrosis with evidence of aflatoxin B1 in lung tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvorackova, I.; Pichova, V.

    Three cases of pulmonary interstitial fibrosis, two in agricultural workers and one in a textile worker, are reported. In lung samples of all three patients the presence of aflatoxin B1 was demonstrated by radioimmunoassay (RIA). A possible occupational risk of aflatoxin exposure via the respiratory tract is suggested.

  11. Relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress.

    PubMed

    Kebede, Hirut; Abbas, Hamed K; Fisher, Daniel K; Bellaloui, Nacer

    2012-11-20

    Increased aflatoxin contamination in corn by the fungus Aspergillus flavus is associated with frequent periods of drought and heat stress during the reproductive stages of the plants. The objective of this study was to evaluate the relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress. The study was conducted in Stoneville, MS, USA under irrigated and non-irrigated conditions. Five commercial hybrids, P31G70, P33F87, P32B34, P31B13 and DKC63-42 and two inbred germplasm lines, PI 639055 and PI 489361, were evaluated. The plants were inoculated with Aspergillus flavus (K-54) at mid-silk stage, and aflatoxin contamination was determined on the kernels at harvest. Several physiological measurements which are indicators of stress response were determined. The results suggested that PI 639055, PI 489361 and hybrid DKC63-42 were more sensitive to drought and high temperature stress in the non-irrigated plots and P31G70 was the most tolerant among all the genotypes. Aflatoxin contamination was the highest in DKC63-42 and PI 489361 but significantly lower in P31G70. However, PI 639055, which is an aflatoxin resistant germplasm, had the lowest aflatoxin contamination, even though it was one of the most stressed genotypes. Possible reasons for these differences are discussed. These results suggested that the physiological responses were associated with the level of aflatoxin contamination in all the genotypes, except PI 639055. These and other physiological responses related to stress may help examine differences among corn genotypes in aflatoxin contamination.

  12. Characterization of Lactic Acid Bacteria as Poultry Probiotic Candidates with Aflatoxin B1 Binding Activities

    NASA Astrophysics Data System (ADS)

    Damayanti, E.; Istiqomah, L.; Saragih, J. E.; Purwoko, T.; Sardjono

    2017-12-01

    Our previous studies have selected lactic acid bacteria (LAB) with antifungal activities from traditional fermented foods made from cassava (G7) and silage feed palm leaf (PDS5 and PDS3). In this study we evaluated their ability to bind aflatoxin B1 (AFB1) and probiotic characteristic. The probiotic characteristic assays of LAB consisted of resistance to acidic conditions (pH 3), gastric juice and bile salts 0.3%. We also carried out an in vitro evaluation of LAB aflatoxin binding ability in viable and non-viable cell for 24 and 48 hours of incubation. The measurement of aflatoxin content was performed by ELISA method using AgraQuant Total Aflatoxin Assay kit. The results showed that all isolates were potential as probiotics and the G7 isolate had the highest viability among other isolates in pH 3 (92.61 %) and the bile salts assay (97.71 %). The percentage of aflatoxin reduction between viable and non-viable cell from each LAB isolate were different. The highest aflatoxin reduction in viable cell assay was performed by G7 isolate (69.11 %) whereas in non-viable cell assay was performed by PDS3 isolate (73.75 %) during incubation time 48 hours. In this study, G7 isolate performed the best probiotic characteristics with the highest viability in acid pH assay, bile salt 0.3% assay and percentage of aflatoxin B1 reduction in viable cell condition. Molecular identification using 16S rRNA sequence analysis showed that G7 isolate had homology with Lactobacillus plantarum (99.9%). It was concluded that Lactobacillus plantarum G7 was potential as probiotic with aflatoxin binding activities.

  13. Screening of micro-organisms for decolorization of melanins produced by bluestain fungi.

    PubMed

    Rättö, M; Chatani, M; Ritschkoff, A C; Viikari, L

    2001-03-01

    A total of 17 fungi and four bacteria were screened for their ability to decolorize melanin, using isolated extracellular melanin of the bluestain fungus Aureobasidium pullulans as substrate. On agar media, decolorization was observed by four fungal strains: Bjerkandera adusta VTT-D-99746, Galactomyces geotrichum VTT-D-84228, Trametes hirsuta VTT-D-95443 and Trametes versicolor VTT-D-99747. The four fungi were more efficient on nitrogen-limited medium than on complete medium. The melanin-decolorizing activity of G. geotrichum appeared to be located on the mycelium and could be liberated into the medium enzymatically.

  14. Aflatoxin B1 levels in groundnut products from local markets in Zambia.

    PubMed

    Njoroge, Samuel M C; Matumba, Limbikani; Kanenga, Kennedy; Siambi, Moses; Waliyar, Farid; Maruwo, Joseph; Machinjiri, Norah; Monyo, Emmanuel S

    2017-05-01

    In Zambia, groundnut products (milled groundnut powder, groundnut kernels) are mostly sold in under-regulated markets. Coupled with the lack of quality enforcement in such markets, consumers may be at risk to aflatoxin exposure. However, the level of aflatoxin contamination in these products is not known. Compared to groundnut kernels, milled groundnut powder obscures visual indicators of aflatoxin contamination in groundnuts such as moldiness, discoloration, insect damage or kernel damage. A survey was therefore conducted from 2012 to 2014, to estimate and compare aflatoxin levels in these products (n = 202), purchased from markets in important groundnut growing districts and in urban areas. Samples of whole groundnut kernels (n = 163) and milled groundnut powder (n = 39) were analysed for aflatoxin B 1 (AFB 1 ) by competitive enzyme-linked immunosorbent assay (cELISA). Results showed substantial AFB 1 contamination levels in both types of groundnut products with maximum AFB 1 levels of 11,100 μg/kg (groundnut kernels) and 3000 μg/kg (milled groundnut powder). However, paired t test analysis showed that AFB 1 contamination levels in milled groundnut powder were not always significantly higher (P > 0.05) than those in groundnut kernels. Even for products from the same vendor, AFB 1 levels were not consistently higher in milled groundnut powder than in whole groundnut kernels. This suggests that vendors do not systematically sort out whole groundnut kernels of visually poor quality for milling. However, the overall contamination levels of groundnut products with AFB 1 were found to be alarmingly high in all years and locations. Therefore, solutions are needed to reduce aflatoxin levels in such under-regulated markets.

  15. Area-wide programs for aflatoxin mitigation: treatment to cotton can be cost effective

    USDA-ARS?s Scientific Manuscript database

    Biological control of aflatoxin contamination with atoxigenic genotypes of Aspergillus flavus is currently used commercially on several crops including corn, peanut, and pistachio. However, biopesticides utilizing this technology were first developed and registered for use in preventing aflatoxin co...

  16. Efficacy of water-dispersible formulations of biological control strains of Aspergillus flavus for aflatoxin management in corn.

    PubMed

    Weaver, Mark A; Abbas, Hamed K; Jin, Xixuan; Elliott, Brad

    2016-01-01

    Field experiments were conducted in 2011 and 2012 to evaluate the efficacy of water-dispersible granule (WDG) formulations of biocontrol strains of Aspergillus flavus in controlling aflatoxin contamination of corn. In 2011, when aflatoxin was present at very high levels, there was no WDG treatment that could provide significant protection against aflatoxin contamination. The following year a new WDG formulation was tested that resulted in 100% reduction in aflatoxin in one field experiment and ≥ 49% reduction in all five WDG treatments with biocontrol strain 21882. Large sampling error, however, limited the resolution of various treatment effects. Corn samples were also subjected to microbial analysis to understand better the mechanisms of successful biocontrol. In the samples examined here, the size of the A. flavus population on the grain was associated with the amount of aflatoxin, but the toxigenic status of that population was a poor predictor of aflatoxin concentration.

  17. Effect of light on growth, intracellular and extracellular pigment production by five pigment-producing filamentous fungi in synthetic medium.

    PubMed

    Velmurugan, Palanivel; Lee, Yong Hoon; Venil, Chidambaram Kulandaisamy; Lakshmanaperumalsamy, Perumalsamy; Chae, Jong-Chan; Oh, Byung-Taek

    2010-04-01

    The competence of the living creatures to sense and respond to light is well known. The effect of darkness and different color light quality on biomass, extracellular and intracellular pigment yield of five potent pigment producers Monascus purpureus, Isaria farinosa, Emericella nidulans, Fusarium verticillioides and Penicillium purpurogenum, with different color shades such as red, pink, reddish brown and yellow, were investigated. Incubation in total darkness increased the biomass, extracellular and intracellular pigment production in all the fungi. Extracellular red pigment produced by M. purpureus resulted maximum in darkness 36.75 + or - 2.1 OD and minimum in white unscreened light 5.90 + or - 1.1 OD. Similarly, intracellular red pigment produced by M. purpureus resulted maximum in darkness 18.27 + or - 0.9 OD/g and minimum in yellow light 8.03 + or - 0.6 OD/g of substrate. The maximum biomass production was also noticed in darkness 2.51 g/L and minimum in yellow light 0.5 g/L of dry weight. In contrast, growth of fungi in green and yellow wavelengths resulted in low biomass and pigment yield. It was found that darkness, (red 780-622 nm, blue 492-455 nm) and white light influenced pigment and biomass yield. Copyright 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Effect of UV irradiation on aflatoxin reduction: a cytotoxicity evaluation study using human hepatoma cell line.

    PubMed

    Patras, Ankit; Julakanti, Sharath; Yannam, Sudheer; Bansode, Rishipal R; Burns, Mallory; Vergne, Matthew J

    2017-11-01

    In this proof-of-concept study, the efficacy of a medium-pressure UV (MPUV) lamp source to reduce the concentrations of aflatoxin B 1 , aflatoxin B 2 , and aflatoxin G 1 (AFB 1, AFB 2 , and AFG 1 ) in pure water is investigated. Irradiation experiments were conducted using a collimated beam system operating between 200 to 360 nm. The optical absorbance of the solution and the irradiance of the lamp are considered in calculating the average fluence rate. Based on these factors, the UV dose was quantified as a product of average fluence rate and treatment time. Known concentrations of aflatoxins were spiked in water and irradiated at UV doses ranging from 0, 1.22, 2.44, 3.66, and 4.88 J cm -2 . The concentration of aflatoxins was determined by HPLC with fluorescence detection. LC-MS/MS product ion scans were used to identify and semi-quantify degraded products of AFB 1 , AFB 2 , and AFG 1 . It was observed that UV irradiation significantly reduced aflatoxins in pure water (p < 0.05). Irradiation doses of 4.88 J cm -2 reduced concentrations 67.22% for AFG 1 , 29.77% for AFB 2 , and 98.25% for AFB 1 (p < 0.05). Using this technique, an overall reduction of total aflatoxin content of ≈95% (p < 0.05) was achieved. We hypothesize that the formation of ˙OH radicals initiated by UV light may have caused photolysis of AFB 1 , AFB 2 , and AFG 1 molecules. In cell culture studies, our results demonstrated that the increase of UV dosage decreased the aflatoxin-induced cytotoxicity in HepG 2 cells. Therefore, our research finding suggests that UV irradiation can be used as an effective technique for the reduction of aflatoxins.

  19. Spatial patterns of aflatoxin levels in relation to ear-feeding insect damage in pre-harvest corn.

    PubMed

    Ni, Xinzhi; Wilson, Jeffrey P; Buntin, G David; Guo, Baozhu; Krakowsky, Matthew D; Lee, R Dewey; Cottrell, Ted E; Scully, Brian T; Huffaker, Alisa; Schmelz, Eric A

    2011-07-01

    Key impediments to increased corn yield and quality in the southeastern US coastal plain region are damage by ear-feeding insects and aflatoxin contamination caused by infection of Aspergillus flavus. Key ear-feeding insects are corn earworm, Helicoverpa zea, fall armyworm, Spodoptera frugiperda, maize weevil, Sitophilus zeamais, and brown stink bug, Euschistus servus. In 2006 and 2007, aflatoxin contamination and insect damage were sampled before harvest in three 0.4-hectare corn fields using a grid sampling method. The feeding damage by each of ear/kernel-feeding insects (i.e., corn earworm/fall armyworm damage on the silk/cob, and discoloration of corn kernels by stink bugs), and maize weevil population were assessed at each grid point with five ears. The spatial distribution pattern of aflatoxin contamination was also assessed using the corn samples collected at each sampling point. Aflatoxin level was correlated to the number of maize weevils and stink bug-discolored kernels, but not closely correlated to either husk coverage or corn earworm damage. Contour maps of the maize weevil populations, stink bug-damaged kernels, and aflatoxin levels exhibited an aggregated distribution pattern with a strong edge effect on all three parameters. The separation of silk- and cob-feeding insects from kernel-feeding insects, as well as chewing (i.e., the corn earworm and maize weevil) and piercing-sucking insects (i.e., the stink bugs) and their damage in relation to aflatoxin accumulation is economically important. Both theoretic and applied ramifications of this study were discussed by proposing a hypothesis on the underlying mechanisms of the aggregated distribution patterns and strong edge effect of insect damage and aflatoxin contamination, and by discussing possible management tactics for aflatoxin reduction by proper management of kernel-feeding insects. Future directions on basic and applied research related to aflatoxin contamination are also discussed.

  20. Spatial Patterns of Aflatoxin Levels in Relation to Ear-Feeding Insect Damage in Pre-Harvest Corn

    PubMed Central

    Ni, Xinzhi; Wilson, Jeffrey P.; Buntin, G. David; Guo, Baozhu; Krakowsky, Matthew D.; Lee, R. Dewey; Cottrell, Ted E.; Scully, Brian T.; Huffaker, Alisa; Schmelz, Eric A.

    2011-01-01

    Key impediments to increased corn yield and quality in the southeastern US coastal plain region are damage by ear-feeding insects and aflatoxin contamination caused by infection of Aspergillus flavus. Key ear-feeding insects are corn earworm, Helicoverpa zea, fall armyworm, Spodoptera frugiperda, maize weevil, Sitophilus zeamais, and brown stink bug, Euschistus servus. In 2006 and 2007, aflatoxin contamination and insect damage were sampled before harvest in three 0.4-hectare corn fields using a grid sampling method. The feeding damage by each of ear/kernel-feeding insects (i.e., corn earworm/fall armyworm damage on the silk/cob, and discoloration of corn kernels by stink bugs), and maize weevil population were assessed at each grid point with five ears. The spatial distribution pattern of aflatoxin contamination was also assessed using the corn samples collected at each sampling point. Aflatoxin level was correlated to the number of maize weevils and stink bug-discolored kernels, but not closely correlated to either husk coverage or corn earworm damage. Contour maps of the maize weevil populations, stink bug-damaged kernels, and aflatoxin levels exhibited an aggregated distribution pattern with a strong edge effect on all three parameters. The separation of silk- and cob-feeding insects from kernel-feeding insects, as well as chewing (i.e., the corn earworm and maize weevil) and piercing-sucking insects (i.e., the stink bugs) and their damage in relation to aflatoxin accumulation is economically important. Both theoretic and applied ramifications of this study were discussed by proposing a hypothesis on the underlying mechanisms of the aggregated distribution patterns and strong edge effect of insect damage and aflatoxin contamination, and by discussing possible management tactics for aflatoxin reduction by proper management of kernel-feeding insects. Future directions on basic and applied research related to aflatoxin contamination are also discussed. PMID