Science.gov

Sample records for afm force measurements

  1. Hydrodynamic effects in fast AFM single-molecule force measurements.

    PubMed

    Janovjak, Harald; Struckmeier, Jens; Müller, Daniel J

    2005-02-01

    Atomic force microscopy (AFM) allows the critical forces that unfold single proteins and rupture individual receptor-ligand bonds to be measured. To derive the shape of the energy landscape, the dynamic strength of the system is probed at different force loading rates. This is usually achieved by varying the pulling speed between a few nm/s and a few microm/s, although for a more complete investigation of the kinetic properties higher speeds are desirable. Above 10 microm/s, the hydrodynamic drag force acting on the AFM cantilever reaches the same order of magnitude as the molecular forces. This has limited the maximum pulling speed in AFM single-molecule force spectroscopy experiments. Here, we present an approach for considering these hydrodynamic effects, thereby allowing a correct evaluation of AFM force measurements recorded over an extended range of pulling speeds (and thus loading rates). To support and illustrate our theoretical considerations, we experimentally evaluated the mechanical unfolding of a multi-domain protein recorded at 30 microm/s pulling speed. PMID:15257425

  2. Imaging and force measurement of LDL and HDL by AFM in air and liquid

    PubMed Central

    Gan, Chaoye; Ao, Meiying; Liu, Zhanghua; Chen, Yong

    2015-01-01

    The size and biomechanical properties of lipoproteins are tightly correlated with their structures/functions. While atomic force microscopy (AFM) has been used to image lipoproteins the force measurement of these nano-sized particles is missing. We detected that the sizes of LDL and HDL in liquid are close to the commonly known values. The Young’s modulus of LDL or HDL is ∼0.4 GPa which is similar to that of some viral capsids or nanovesicles but greatly larger than that of various liposomes. The adhesive force of LDL or HDL is small (∼200 pN). The comparison of AFM detection in air and liquid was also performed which is currently lacking. Our data may provide useful information for better understanding and AFM detection of lipoproteins. PMID:25893163

  3. Time-dependent surface adhesive force and morphology of RBC measured by AFM.

    PubMed

    Wu, Yangzhe; Hu, Yi; Cai, Jiye; Ma, Shuyuan; Wang, Xiaoping; Chen, Yong; Pan, Yunlong

    2009-04-01

    Atomic force microscopy (AFM) is a rapidly developing tool recently introduced into the evaluation of the age of bloodstains, potentially providing legal medical experts useful information for forensic investigation. In this study, the time-dependent, morphological changes of red blood cells (RBC) under three different conditions (including controlled, room-temperature condition, uncontrolled, outdoor-environmental condition, and controlled, low-temperature condition) were observed by AFM, as well as the cellular viscoelasticity via force-vs-distance curve measurements. Firstly, the data indicate that substrate types have different effects on cellular morphology of RBC. RBC presented the typical biconcave shape on mica, whereas either the biconcave shape or flattened shape was evident on glass. The mean volume of RBCs on mica was significantly larger than that of cells on glass. Surprisingly, the adhesive property of RBC membrane surfaces was substrate type-independent (the adhesive forces were statistically similar on glass and mica). With time lapse, the changes in cell volume and adhesive force of RBC under the controlled room-temperature condition were similar to those under the uncontrolled outdoor-environmental condition. Under the controlled low-temperature condition, however, the changes in cell volume occurred mainly due to the collapse of RBCs, and the curves of adhesive force showed the dramatic alternations in viscoelasticity of RBC. Taken together, the AFM detections on the time-dependent, substrate type-dependent, environment (temperature/humidity)-dependent changes in morphology and surface viscoelasticity of RBC imply a potential application of AFM in forensic medicine or investigations, e.g., estimating age of bloodstain or death time. PMID:19019689

  4. Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample.

    PubMed

    Guo, Shifeng; Zhu, Xiaoying; Jańczewski, Dominik; Lee, Serina Siew Chen; He, Tao; Teo, Serena Lay Ming; Vancso, G Julius

    2016-09-01

    Protein charge at various pH and isoelectric point (pI) values is important in understanding protein function. However, often only trace amounts of unknown proteins are available and pI measurements cannot be obtained using conventional methods. Here, we show a method based on the atomic force microscope (AFM) to determine pI using minute quantities of proteins. The protein of interest is immobilized on AFM colloidal probes and the adhesion force of the protein is measured against a positively and a negatively charged substrate made by layer-by-layer deposition of polyelectrolytes. From the AFM force-distance curves, pI values with an estimated accuracy of ±0.25 were obtained for bovine serum albumin, myoglobin, fibrinogen and ribonuclease A over a range of 4.7-9.8. Using this method, we show that the pI of the 'footprint' of the temporary adhesive proteins secreted by the barnacle cyprid larvae of Amphibalanus amphitrite is in the range 9.6-9.7. PMID:27454881

  5. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    SciTech Connect

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; Liu, Hui; Kravchenko, Ivan I.; Chan, Ho Bun; Chan, C. T.; Tong, Penger

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.

  6. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    DOE PAGESBeta

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; Liu, Hui; Kravchenko, Ivan I.; Chan, Ho Bun; Chan, C. T.; Tong, Penger

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength goldmore » disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.« less

  7. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM.

    PubMed

    Guan, Dongshi; Hang, Zhi Hong; Marcet, Zsolt; Liu, Hui; Kravchenko, I I; Chan, C T; Chan, H B; Tong, Penger

    2015-01-01

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. The experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures. PMID:26586455

  8. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM

    PubMed Central

    Guan, Dongshi; Hang, Zhi Hong; Marcet, Zsolt; Liu, Hui; Kravchenko, I. I.; Chan, C. T.; Chan, H. B.; Tong, Penger

    2015-01-01

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. The experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures. PMID:26586455

  9. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM

    NASA Astrophysics Data System (ADS)

    Guan, Dongshi; Hang, Zhi Hong; Marcet, Zsolt; Liu, Hui; Kravchenko, I. I.; Chan, C. T.; Chan, H. B.; Tong, Penger

    2015-11-01

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. The experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.

  10. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM.

    PubMed

    Zhang, Wen; Stack, Andrew G; Chen, Yongsheng

    2011-02-01

    To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite (α-Fe(2)O(3)) and corundum (α-Al(2)O(3)) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3±0.7nN to 0.8±0.4nN as hematite NPs increased from 26nm to 98nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson-Kendall-Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed. PMID:20932723

  11. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM

    SciTech Connect

    Zhang, Wen; Chen, Yongsheng

    2011-01-01

    To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite ( -Fe2 O3 ) and corundum ( -Al2 O3 ) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3 0.7 nN to 0.8 0.4 nN as hematite NPs increased from 26 nm to 98 nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson Kendall Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed.

  12. AFM-based force spectroscopy measurements of mature amyloid fibrils of the peptide glucagon

    NASA Astrophysics Data System (ADS)

    Dong, Mingdong; Bruun Hovgaard, Mads; Mamdouh, Wael; Xu, Sailong; Otzen, Daniel Erik; Besenbacher, Flemming

    2008-09-01

    We report on the mechanical characterization of individual mature amyloid fibrils by atomic force microscopy (AFM) and AFM-based single-molecule force spectroscopy (SMFS). These self-assembling materials, formed from the 29-residue amphiphatic peptide hormone glucagon, were found to display a reversible elastic behaviour. Based on AFM morphology and SMFS studies, we suggest that the observed elasticity is due to a force-induced conformational transition which is reversible due to the β-helical conformation of protofibrils, allowing a high degree of extension. The elastic properties of such mature fibrils contribute to their high stability, suggesting that the internal hydrophobic interactions of amyloid fibrils are likely to be of fundamental importance in the assembly of amyloid fibrils and therefore for the understanding of the progression of their associated pathogenic disorders. In addition, such biological amyloid fibril structures with highly stable mechanical properties can potentially be used to produce nanofibres (nanowires) that may be suitable for nanotechnological applications.

  13. Nanoscopic polypyrrole AFM-SECM probes enabling force measurements under potential control

    NASA Astrophysics Data System (ADS)

    Knittel, P.; Higgins, M. J.; Kranz, C.

    2014-01-01

    Conductive polymers, and in particular polypyrrole, are frequently used as biomimetic interfaces facilitating growth and/or differentiation of cells and tissues. Hence, studying forces and local interactions between such polymer interfaces and cells at the nanoscale is of particular interest. Frequently, such force interactions are not directly accessible with high spatial resolution. Consequently, we have developed nanoscopic polypyrrole electrodes, which are integrated in AFM-SECM probes. Bifunctional AFM-SECM probes were modified via ion beam-induced deposition resulting in pyramidal conductive Pt-C composite electrodes. These nanoscopic electrodes then enabled localized polypyrrole deposition, thus resulting in polymer-modified AFM probes with a well-defined geometry. Furthermore, such probes may be reversibly switched from an insulating to a conductive state. In addition, the hydrophilicity of such polymer tips is dependent on the dopant, and hence, on the oxidation state. Force studies applying different tip potentials were performed at plasma-treated glass surfaces providing localized information on the associated force interactions, which are dependent on the applied potential and the dopant.Conductive polymers, and in particular polypyrrole, are frequently used as biomimetic interfaces facilitating growth and/or differentiation of cells and tissues. Hence, studying forces and local interactions between such polymer interfaces and cells at the nanoscale is of particular interest. Frequently, such force interactions are not directly accessible with high spatial resolution. Consequently, we have developed nanoscopic polypyrrole electrodes, which are integrated in AFM-SECM probes. Bifunctional AFM-SECM probes were modified via ion beam-induced deposition resulting in pyramidal conductive Pt-C composite electrodes. These nanoscopic electrodes then enabled localized polypyrrole deposition, thus resulting in polymer-modified AFM probes with a well

  14. Single cell adhesion force measurement for cell viability identification using an AFM cantilever-based micro putter

    NASA Astrophysics Data System (ADS)

    Shen, Yajing; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Kojima, Masaru; Fukuda, Toshio

    2011-11-01

    Fast and sensitive cell viability identification is a key point for single cell analysis. To address this issue, this paper reports a novel single cell viability identification method based on the measurement of single cell shear adhesion force using an atomic force microscopy (AFM) cantilever-based micro putter. Viable and nonviable yeast cells are prepared and put onto three kinds of substrate surfaces, i.e. tungsten probe, gold and ITO substrate surfaces. A micro putter is fabricated from the AFM cantilever by focused ion beam etching technique. The spring constant of the micro putter is calibrated using the nanomanipulation approach. The shear adhesion force between the single viable or nonviable cell and each substrate is measured using the micro putter based on the nanorobotic manipulation system inside an environmental scanning electron microscope. The adhesion force is calculated based on the deflection of the micro putter beam. The results show that the adhesion force of the viable cell to the substrate is much larger than that of the nonviable cell. This identification method is label free, fast, sensitive and can give quantitative results at the single cell level.

  15. ezAFM: A low cost Atomic Force Microscope(AFM)

    NASA Astrophysics Data System (ADS)

    Celik, Umit; Celik, Kubra; Aslan, Husnu; Kehribar, Ihsan; Dede, Munir; Ozgur Ozer, H.; Oral, Ahmet

    2012-02-01

    A low cost AFM, ezAFM is developed for educational purposes as well as research. Optical beam deflection method is used to measure the deflection of cantilever. ezAFM scanner is built using voice coil motors (VCM) with ˜50x50x6 μm scan area. The microscope uses alignment free cantilevers, which minimizes setup times. FPGA based AFM feedback Control electronics is developed. FPGA technology allows us to drive all peripherals in parallel. ezAFM Controller is connected to PC by USB 2.0 interface as well as Wi-Fi. We have achieved <5nm lateral and ˜0.01nm vertical resolution. ezAFM can image single atomic steps in HOPG and mica. An optical microscope with <3 μm resolution is also integrated into the system. ezAFM supports different AFM operation modes such as dynamic mode, contact mode, lateral force microscopy. Advanced modes like magnetic force microscopy and electric force microscopy will be implemented later on. The new ezAFM system provides, short learning times for student labs, quick setup and easy to transport for portable applications with the best price/performance ratio. The cost of the system starts from 15,000, with system performance comparable with the traditional AFM systems.

  16. Direct AFM force measurements between air bubbles in aqueous monodisperse sodium poly(styrene sulfonate) solutions.

    PubMed

    Browne, Christine; Tabor, Rico F; Grieser, Franz; Dagastine, Raymond R

    2015-08-01

    Structural forces play an important role in the rheology, processing and stability of colloidal systems and complex fluids, with polyelectrolytes representing a key class of structuring colloids. Here, we explore the interactions between soft colloids, in the form of air bubbles, in solutions of monodisperse sodium poly(styrene sulfonate) as a model polyelectrolyte. It is found that by self-consistently modelling the force oscillations due to structuring of the polymer chains along with deformation of the bubbles, it is possible to precisely predict the interaction potential between approaching bubbles. In line with polyelectrolyte scaling theory, two distinct regimes of behaviour are seen, corresponding to dilute and semi-dilute polymer solutions. It is also seen that by blending monodisperse systems to give a bidisperse sample, the interaction forces between soft colloids can be controlled with a high degree of precision. At increasing bubble collision velocity, it is revealed that hydrodynamic flow overwhelms oscillatory structural interactions, showing the important disparity between equilibrium behaviour and dynamic interactions. PMID:25881266

  17. Attractive forces between hydrophobic solid surfaces measured by AFM on the first approach in salt solutions and in the presence of dissolved gases.

    PubMed

    Azadi, Mehdi; Nguyen, Anh V; Yakubov, Gleb E

    2015-02-17

    Interfacial gas enrichment of dissolved gases (IGE) has been shown to cover hydrophobic solid surfaces in water. The atomic force microscopy (AFM) data has recently been supported by molecular dynamics simulation. It was demonstrated that IGE is responsible for the unexpected stability and large contact angle of gaseous nanobubbles at the hydrophobic solid-water interface. Here we provide further evidence of the significant effect of IGE on an attractive force between hydrophobic solid surfaces in water. The force in the presence of dissolved gas, i.e., in aerated and nonaerated NaCl solutions (up to 4 M), was measured by the AFM colloidal probe technique. The effect of nanobubble bridging on the attractive force was minimized or eliminated by measuring forces on the first approach of the AFM probe toward the flat hydrophobic surface and by using high salt concentrations to reduce gas solubility. Our results confirm the presence of three types of forces, two of which are long-range attractive forces of capillary bridging origin as caused by either surface nanobubbles or gap-induced cavitation. The third type is a short-range attractive force observed in the absence of interfacial nanobubbles that is attributed to the IGE in the form of a dense gas layer (DGL) at hydrophobic surfaces. Such a force was found to increase with increasing gas saturation and to decrease with decreasing gas solubility. PMID:25627159

  18. AFM force measurements of the gp120-sCD4 and gp120 or CD4 antigen-antibody interactions

    SciTech Connect

    Chen, Yong; Zeng, Gucheng; Chen, Sherry Shiyi; Feng, Qian; Chen, Zheng Wei

    2011-04-08

    Highlights: {yields} The unbinding force of sCD4-gp120 interaction was 25.45 {+-} 20.46 pN. {yields} The unbinding force of CD4 antigen-antibody interaction was 51.22 {+-} 34.64 pN. {yields} The unbinding force of gp120 antigen-antibody interaction was 89.87 {+-} 44.63 pN. {yields} The interaction forces between various HIV inhibitors and the target molecules are significantly different. {yields} Functionalizing on AFM tip or substrate of an interaction pair caused different results. -- Abstract: Soluble CD4 (sCD4), anti-CD4 antibody, and anti-gp120 antibody have long been regarded as entry inhibitors in human immunodeficiency virus (HIV) therapy. However, the interactions between these HIV entry inhibitors and corresponding target molecules are still poorly understood. In this study, atomic force microscopy (AFM) was utilized to investigate the interaction forces among them. We found that the unbinding forces of sCD4-gp120 interaction, CD4 antigen-antibody interaction, and gp120 antigen-antibody interaction were 25.45 {+-} 20.46, 51.22 {+-} 34.64, and 89.87 {+-} 44.63 pN, respectively, which may provide important mechanical information for understanding the effects of viral entry inhibitors on HIV infection. Moreover, we found that the functionalization of an interaction pair on AFM tip or substrate significantly influenced the results, implying that we must perform AFM force measurement and analyze the data with more caution.

  19. Adhesion forces in AFM of redox responsive polymer grafts: Effects of tip hydrophilicity

    NASA Astrophysics Data System (ADS)

    Feng, Xueling; Kieviet, Bernard D.; Song, Jing; Schön, Peter M.; Vancso, G. Julius

    2014-02-01

    The adherence between silicon nitride AFM tips and redox-active poly(ferrocenylsilanes) (PFS) grafts on gold was investigated by electrochemical AFM force spectroscopy. Before the adhesion measurements silicon nitride AFM probes were cleaned with organic solvents (acetone and ethanol) or piranha solution. Interestingly, these different AFM tip cleaning procedures drastically affected the observed adhesion forces. Water contact angle measurements on the corresponding AFM probe chips showed that piranha treatment resulted in a significant increase of AFM probe chip surface hydrophilicity compared to the organic solvent treatment. Obviously this hydrophilicity change caused drastic, even opposite changes in the tip-PFS adhesive force measurement upon electrode potential change to reversibly oxidize and reduce the PFS grafts. Our findings are of pivotal importance for AFM tip adhesion measurements utilizing standard silicon nitride AFM tips. Probe hydrophilicity must be carefully taken into consideration and controlled.

  20. Contact nanomechanical measurements with the AFM

    NASA Astrophysics Data System (ADS)

    Geisse, Nicholas

    2013-03-01

    The atomic force microscope (AFM) has found broad use in the biological sciences largely due to its ability to make measurements on unfixed and unstained samples under liquid. In addition to imaging at multiple spatial scales ranging from micro- to nanometer, AFMs are commonly used as nanomechanical probes. This is pertinent for cell biology, as it has been demonstrated that the geometrical and mechanical properties of the extracellular microenvironment are important in such processes as cancer, cardiovascular disease, muscular dystrophy, and even the control of cell life and death. Indeed, the ability to control and quantify these external geometrical and mechanical parameters arises as a key issue in the field. Because AFM can quantitatively measure the mechanical properties of various biological samples, novel insights to cell function and to cell-substrate interactions are now possible. As the application of AFM to these types of problems is widened, it is important to understand the performance envelope of the technique and its associated data analyses. This talk will discuss the important issues that must be considered when mechanical models are applied to real-world data. Examples of the effect of different model assumptions on our understanding of the measured material properties will be shown. Furthermore, specific examples of the importance of mechanical stimuli and the micromechanical environment to the structure and function of biological materials will be presented.

  1. Adhesion forces between AFM tips and superficial dentin surfaces.

    PubMed

    Pelin, I M; Piednoir, A; Machon, D; Farge, P; Pirat, C; Ramos, S M M

    2012-06-15

    In this work, we study the adhesion forces between atomic force microscopy (AFM) tips and superficial dentin etched with phosphoric acid. Initially, we quantitatively analyze the effect of acid etching on the surface heterogeneity and the surface roughness, two parameters that play a key role in the adhesion phenomenon. From a statistical study of the force-distance curves, we determine the average adhesion forces on the processed substrates. Our results show that the average adhesion forces, measured in water, increase linearly with the acid exposure time. The highest values of such forces are ascribed to the high density of collagen fibers on the etched surfaces. The individual contribution of exposed collagen fibrils to the adhesion force is highlighted. We also discuss in this paper the influence of the environmental medium (water/air) in the adhesion measurements. We show that the weak forces involved require working in the aqueous medium. PMID:22472512

  2. Introduction to Atomic Force Microscopy (AFM) in Biology.

    PubMed

    Kreplak, Laurent

    2016-01-01

    The atomic force microscope (AFM) has the unique capability of imaging biological samples with molecular resolution in buffer solution over a wide range of time scales from milliseconds to hours. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated from the nano-scale to the micro-scale. Importantly, the measurements are made in buffer solutions, allowing biological samples to "stay alive" within a physiological-like environment while temporal changes in structure are measured-e.g., before and after addition of chemical reagents. These qualities distinguish AFM from conventional imaging techniques of comparable resolution, e.g., electron microscopy (EM). This unit provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins, cells, and tissues. The physical principles of the technique and methodological aspects of its practical use and applications are also described. © 2016 by John Wiley & Sons, Inc. PMID:27479503

  3. Device level 3D characterization using PeakForce AFM

    NASA Astrophysics Data System (ADS)

    Timoney, Padraig; Zhang, Xiaoxiao; Vaid, Alok; Hand, Sean; Osborne, Jason; Milligan, Eric; Feinstein, Adam

    2016-03-01

    Traditional metrology solutions face a range of challenges at the 1X node such as three dimensional (3D) measurement capabilities, shrinking overlay and critical dimension (CD) error budgets driven by multi-patterning and via in trench CD measurements. With advent of advanced technology nodes and 3D processing, an increasing need is emerging for in-die metrology including across-structure and structure-to-structure characterization. A myriad of work has emerged in the past few years intending to address these challenges from various aspects; in-die OCD with reduced spot size and tilt beam on traditional critical dimension scanning electron microscopy (CDSEM) for height measurements. This paper explores the latest capability offered by PeakForceTM Tapping Atomic Force Microscopy (PFT-AFM). The use of traditional harmonic tapping mode for scanning high aspect ratio, and complex "3D" wafer structures, results in limited depth probing capability as well as excessive tip wear. These limitations arise due to the large tip-sample interaction volume in such confined spaces. PeakForce Tapping eliminates these limitations through direct real time control of the tip-sample interaction contact force. The ability of PeakForce to measure, and respond directly to tip- sample interaction forces results in more detailed feature resolution, reduced tip wear, and improved depth capability. In this work, the PFT-AFM tool was applied for multiple applications, including the 14nm fin and replacement metal gate (RMG) applications outlined below. Results from DOE wafers, detailed measurement precision studies and correlation to reference metrology are presented for validation of this methodology. With the fin application, precision of 0.3nm is demonstrated by measuring 5 dies with 10 consecutive runs. Capability to resolve within-die and localized within-macro height variation is also demonstrated. Results obtained from the fin measurements support the increasing trend that measurements

  4. Atomic force microscopy combined with optical tweezers (AFM/OT)

    NASA Astrophysics Data System (ADS)

    Pierini, F.; Zembrzycki, K.; Nakielski, P.; Pawłowska, S.; Kowalewski, T. A.

    2016-02-01

    The role of mechanical properties is essential to understand molecular, biological materials, and nanostructures dynamics and interaction processes. Atomic force microscopy (AFM) is the most commonly used method of direct force evaluation, but due to its technical limitations this single probe technique is unable to detect forces with femtonewton resolution. In this paper we present the development of a combined atomic force microscopy and optical tweezers (AFM/OT) instrument. The focused laser beam, on which optical tweezers are based, provides us with the ability to manipulate small dielectric objects and to use it as a high spatial and temporal resolution displacement and force sensor in the same AFM scanning zone. We demonstrate the possibility to develop a combined instrument with high potential in nanomechanics, molecules manipulation and biological studies. AFM/OT equipment is described and characterized by studying the ability to trap dielectric objects and quantifying the detectable and applicable forces. Finally, optical tweezers calibration methods and instrument applications are given.

  5. AFM-based force microsensor for a microrobot

    NASA Astrophysics Data System (ADS)

    Fatikow, Sergej; Fahlbusch, Stephan

    2001-10-01

    Microrobots are the result of increasing research activities at the border between microsystem technology and robotics. Today already, robots with dimensions of a few cubic- centimeters can be developed. Like conventional robots, microrobots represent a complex system that usually contains several different types of actuators and sensors. The measurement of gripping forces is the most important sensor application in micromanipulation besides visual servoing to protect the parts from too high surface pressures and thereby damage during the assembly process. Very small forces in the range of 200 (mu) N down to 0.1 (mu) N or even less have to be sensed. Thus, the aim of our current research activities is the development of a high-resolution integrated force microsensor for measuring gripping forces in a microhandling robot. On the one hand, the sensor should be a device for teleoperated manipulation tasks in a flexible microhandling station. On the other hand, typical microhandling operations should to a large extend be automated with the aid of computer-based signal processing of sensor information. The user should be provided with an interface for teleoperated manipulation and an interface for partially automated manipulation of microobjects. In this paper, a concept for the measurement of gripping forces in microrobotics using piezoresistive AFM (atomic force microscope) cantilevers is introduced. Further on, the concept of a microrobot-based SEM station and its applications are presented.

  6. Probing fibronectin–antibody interactions using AFM force spectroscopy and lateral force microscopy

    PubMed Central

    Kulik, Andrzej J; Lee, Kyumin; Pyka-Fościak, Grazyna; Nowak, Wieslaw

    2015-01-01

    Summary The first experiment showing the effects of specific interaction forces using lateral force microscopy (LFM) was demonstrated for lectin–carbohydrate interactions some years ago. Such measurements are possible under the assumption that specific forces strongly dominate over the non-specific ones. However, obtaining quantitative results requires the complex and tedious calibration of a torsional force. Here, a new and relatively simple method for the calibration of the torsional force is presented. The proposed calibration method is validated through the measurement of the interaction forces between human fibronectin and its monoclonal antibody. The results obtained using LFM and AFM-based classical force spectroscopies showed similar unbinding forces recorded at similar loading rates. Our studies verify that the proposed lateral force calibration method can be applied to study single molecule interactions. PMID:26114080

  7. Novel Polymer Linkers for Single Molecule AFM Force Spectroscopy

    PubMed Central

    Tong, Zenghan; Mikheikin, Andrey; Krasnoslobodtsev, Alexey; Lv, Zhengjian; Lyubchenko, Yuri L.

    2013-01-01

    Flexible polymer linkers play an important role in various imaging and probing techniques that require surface immobilization, including atomic force microscopy (AFM). In AFM force spectroscopy, polymer linkers are necessary for the covalent attachment of molecules of interest to the AFM tip and the surface. The polymer linkers tether the molecules and provide their proper orientation in probing experiments. Additionally, the linkers separate specific interactions from nonspecific short-range adhesion and serve as a reference point for the quantitative analysis of single molecule probing events. In this report, we present our results on the synthesis and testing of a novel polymer linker and the identification of a number of potential applications for its use in AFM force spectroscopy experiments. The synthesis of the linker is based on the well-developed phosphoramidate (PA) chemistry that allows the routine synthesis of linkers with predetermined lengths and PA composition. These linkers are homogeneous in length and can be terminated with various functional groups. PA linkers with different functional groups were synthesized and tested in experimental systems utilizing different immobilization chemistries. We probed interactions between complementary DNA oligonucleotides; DNA and protein complexes formed by the site-specific binding protein SfiI; and interactions between amyloid peptide (Aβ42). The results of the AFM force spectroscopy experiments validated the feasibility of the proposed approach for the linker design and synthesis. Furthermore, the properties of the tether (length, functional groups) can be adjusted to meet the specific requirements for different force spectroscopy experiments and system characteristics, suggesting that it could be used for a large number of various applications. PMID:23624104

  8. FRAME (Force Review Automation Environment): MATLAB-based AFM data processor.

    PubMed

    Partola, Kostyantyn R; Lykotrafitis, George

    2016-05-01

    Data processing of force-displacement curves generated by atomic force microscopes (AFMs) for elastic moduli and unbinding event measurements is very time consuming and susceptible to user error or bias. There is an evident need for consistent, dependable, and easy-to-use AFM data processing software. We have developed an open-source software application, the force review automation environment (or FRAME), that provides users with an intuitive graphical user interface, automating data processing, and tools for expediting manual processing. We did not observe a significant difference between manually processed and automatically processed results from the same data sets. PMID:26972765

  9. MEMS piezoresistive ring resonator for AFM imaging with pico-Newton force resolution

    NASA Astrophysics Data System (ADS)

    Xiong, Z.; Walter, B.; Mairiaux, E.; Faucher, M.; Buchaillot, L.; Legrand, B.

    2013-03-01

    A new concept of atomic force microscope (AFM) oscillating probes using electrostatic excitation and piezoresistive detection is presented. The probe is characterized by electrical methods in vacuum and by mechanical methods in air. A frequency-mixing measurement technique is developed to reduce the parasitic signal floor. The probe resonance frequencies are in the 1 MHz range and the quality factor is measured about 53 000 in vacuum and 3000 in air. The ring probe is mounted onto a commercial AFM set-up and topographic images of patterned sample surfaces are obtained. The force resolution deduced from the measurements is about 10 pN Hz-0.5.

  10. Savinase action on bovine serum albumin (BSA) monolayers demonstrated with measurements at the air-water interface and liquid Atomic Force Microscopy (AFM) imaging.

    PubMed

    Balashev, Konstantin; Callisen, Thomas H; Svendsen, Allan; Bjørnholm, Thomas

    2011-12-01

    We studied the enzymatic action of Savinase on bovine serum albumin (BSA) organized in a monolayer spread at the air/water interface or adsorbed at the mica surface. We carried out two types of experiments. In the first one we followed the degradation of the protein monolayer by measuring the surface pressure and surface area decrease versus time. In the second approach we applied AFM imaging of the supported BSA monolayers adsorbed on mica solid supports and extracted information for the enzyme action by analyzing the obtained images of the surface topography in the course of enzyme action. In both cases we obtained an estimate for the turnover number (TON) of the enzyme reaction. PMID:21868205

  11. Strength by atomic force microscopy (AFM): Molecular dynamics of water layer squeezing on magnesium oxide

    NASA Astrophysics Data System (ADS)

    Kendall, K.; Dhir, Aman; Yong, Chin W.

    2010-11-01

    Localised strength testing of materials is often carried out in an atomic force microscope (AFM), as foreseen by Kelly in his book Strong Solids (Clarendon Press, Oxford, 1966). During AFM indentation experiments, contamination can strongly influence the observed strength and theoretical interpretation of the results is a major problem. Here, we use molecular dynamics computer modelling to describe the contact of NaCl and MgO crystal probes onto surfaces, comparable to an AFM experiment. Clean NaCl gave elastic, brittle behaviour in contact simulations at 300 K, whereas MgO was more plastic, leading to increased toughness. This paper also considers the strength of an oxide substrate contaminated by water molecules and tested by indentation with a pyramidal probe of oxide crystal. Recent theory on the effect of liquid contaminant layers on surface strength has been mainly focussed on Lennard Jones (LJ) molecules with some studies on alcohols and water, described by molecular dynamics, which allows the molecules to be squeezed out as the crystal lattice is deformed. In this work, we have focused on water by studying the forces between a magnesium oxide (MgO) atomic force microscope (AFM) probe and an MgO slab. Force versus separation has been plotted as the AFM probe was moved towards and away from the substrate. Simulation results showed that the water layers could be removed in steps, giving up to four force peaks. The last monolayer of water could not be squeezed out, even at pressures where MgO deformed plastically. Interestingly, with water present, strength was reduced, but more in tensile than compressive measurements. In conclusion, water contaminating the oxide surface in AFM strength testing is structured. Water layer squeezing removal can be predicted by molecular modelling, which may be verified by AFM experiments to show that water can influence the strength of perfect crystals at the nanometre scale.

  12. Simultaneous current, force and dissipation measurements on the Si(111) 7×7 surface with an optimized qPlus AFM/STM technique

    PubMed Central

    Setvín, Martin; Feltz, Albrecht; Cháb, Vladimír; Jelínek, Pavel

    2012-01-01

    Summary We present the results of simultaneous scanning-tunneling and frequency-modulated dynamic atomic force microscopy measurements with a qPlus setup. The qPlus sensor is a purely electrical sensor based on a quartz tuning fork. If both the tunneling current and the force signal are to be measured at the tip, a cross-talk of the tunneling current with the force signal can easily occur. The origin and general features of the capacitive cross-talk will be discussed in detail in this contribution. Furthermore, we describe an experimental setup that improves the level of decoupling between the tunneling-current and the deflection signal. The efficiency of this experimental setup is demonstrated through topography and site-specific force/tunneling-spectroscopy measurements on the Si(111) 7×7 surface. The results show an excellent agreement with previously reported data measured by optical interferometric deflection. PMID:22496998

  13. In-situ Measurement of In-Plane and Out-of-Plane Force Gradient with a Torsional Resonance Mode AFM

    NASA Astrophysics Data System (ADS)

    Su, C.; Huang, L.; Neilson, P.; Kelley, V.

    2003-12-01

    We introduce a new method to perform sequential measurements of the in-plane and out-of-plane magnetic force gradient components using the same topographic scan lines to preserve geometrical position registry at the nanometer scale. This method applies both flexural and torsional resonant oscillations of the same atomic force microscope cantilever probe for the determination of respective vertical and lateral force gradient components in a sequence of scans. Using magnetic domains in a hard drive with known stray field, as simulated by finite element analysis, we have demonstrated that the two oscillation modes provide complementary information about the orientation of the magnetic momentum of the probe tips. The matching of both vertical and lateral force gradient data with that of the finite element simulation occurs only at a unique orientation of tip magnetization. Furthermore, it was found that force gradient measurements using torsion mode are able to determine in-plane anisotropy.

  14. Single-Molecule Studies of Integrins by AFM-Based Force Spectroscopy on Living Cells

    NASA Astrophysics Data System (ADS)

    Eibl, Robert H.

    The characterization of cell adhesion between two living cells at the single-molecule level, i.e., between one adhesion receptor and its counter-receptor, appears to be an experimental challenge. Atomic force microscopy (AFM) can be used in its force spectroscopy mode to determine unbinding forces of a single pair of adhesion receptors, even with a living cell as a probe. This chapter provides an overview of AFM force measurements of the integrin family of cell adhesion receptors and their ligands. A focus is given to major integrins expressed on leukocytes, such as lymphocyte function-associated antigen 1 (LFA-1) and very late antigen 4 (VLA-4). These receptors are crucial for leukocyte trafficking in health and disease. LFA-1 and VLA-1 can be activated within the bloodstream from a low-affinity to a high-affinity receptor by chemokines in order to adhere strongly to the vessel wall before the receptor-bearing leukocytes extravasate. The experimental considerations needed to provide near-physiological conditions for a living cell and to be able to measure adequate forces at the single-molecule level are discussed in detail. AFM technology has been developed into a modern and extremely sensitive tool in biomedical research. It appears now that AFM force spectroscopy could enter, within a few years, medical applications in diagnosis and therapy of cancer and autoimmune diseases.

  15. Direct AFM force measurements between air bubbles in aqueous polydisperse sodium poly(styrene sulfonate) solutions: effect of collision speed, polyelectrolyte concentration and molar mass.

    PubMed

    Browne, Christine; Tabor, Rico F; Grieser, Franz; Dagastine, Raymond R

    2015-07-01

    Interactions between colliding air bubbles in aqueous solutions of polydisperse sodium poly(styrene sulfonate) (NaPSS) using direct force measurements were studied. The forces measured with deformable interfaces were shown to be more sensitive to the presence of the polyelectrolytes when compared to similar measurements using rigid interfaces. The experimental factors that were examined were NaPSS concentration, bubble collision velocity and polyelectrolyte molar mass. These measurements were then compared with an analytical model based on polyelectrolyte scaling theory in order to explain the effects of concentration and bubble deformation on the interaction between bubbles. Typically structural forces from the presence of monodisperse polyelectrolyte between interacting surfaces may be expected, however, it was found that the polydispersity in molar mass resulted in the structural forces to be smoothed and only a depletion interaction was able to be measured between interacting bubbles. It was found that an increase in number density of NaPSS molecules resulted in an increase in the magnitude of the depletion interaction. Conversely this interaction was overwhelmed by an increase in the fluid flow in the system at higher bubble collision velocities. Polymer molar mass dispersity plays a significant role in the interactions present between the bubbles and has implications that also affect the polyelectrolyte overlap concentration of the solution. Further understanding of these implications can be expected to play a role in the improvement in operations in such fields as water treatment and mineral processing where polyelectrolytes are used extensively. PMID:25596872

  16. Relationship between model bacterial peptidoglycan network structures and AFM force-distance curves

    NASA Astrophysics Data System (ADS)

    Brown, Aidan; Wickham, Robert; Touhami, Ahmed; Dutcher, John

    2010-03-01

    Recent atomic force microscopy (AFM) measurements have involved pulling on Gram-negative bacterial sacculi with the AFM tip as a means of distinguishing between different proposed structures of the peptidoglycan network. The goal of the present study is to provide the theoretical connection between a given network structure and its response to the pulling force. We model the glycan strands as hinged rods, and the peptide cross-links as wormlike chains. Using Monte Carlo simulation to equilibrate the three-dimensional network, subject to a fixed AFM tip-to-substrate distance, we can compute the force exerted by the network on the AFM tip. The effects of adhesion of the sacculi to the substrate and enzymatic action on the network are included. We have modeled both the layered and the scaffold model for the peptidoglycan network structure. We have compared our theoretical force-distance curves for each network structure with experimental curves to determine which structure provides the best agreement with experiment.

  17. Measurement of the interaction forces at various pH levels by using AFM for the interpretation of DNA adsorption on silanized surfaces

    NASA Astrophysics Data System (ADS)

    Han, Seung Pil; Suga, Kosaku; Fujihara, Masamichi; Park, Byung-Eun

    2014-09-01

    Various surfaces have been used for deoxyribonucleic acid (DNA) immobilization, one example being a silanized surface. This is useful for determining DNA lengths and, thus, locating specific gene sequences in DNA by using fluorescence microscopy and scanning probe microscopy. In this study, we deposited DNA by using the molecular combing method and, we used fluorescence microscopy to study how the chain lengths of n-alkylsilanes affected the surface density of DNA deposited on the silanized surfaces in a tris-ethylenediaminetetraacetic acid (TE) buffer. The forces between a cleaned silicon-nitride (Si3N4) tip and each substrate surface in aqueous buffers at various pH levels (1.0 ~ 9.0) were also studied by using atomic force microscopy to measure the force-distance curves. We explain why the density of lambda bacteriophage DNA (λ-DNA) deposited by using the molecular combing method at pH 8 was lower on the silanized surface with the shorter alkyl chain than it was on the silanized surface with the longer alkyl chain in terms of the electrical double layer (EDL) and the adhesive force.

  18. Radiation pressure excitation of Low Temperature Atomic Force & Magnetic Force Microscope (LT-AFM/MFM) for Imaging

    NASA Astrophysics Data System (ADS)

    Karci, Ozgur; Celik, Umit; Oral, Ahmet; NanoMagnetics Instruments Ltd. Team; Middle East Tech Univ Team

    2015-03-01

    We describe a novel method for excitation of Atomic Force Microscope (AFM) cantilevers by means of radiation pressure for imaging in an AFM for the first time. Piezo excitation is the most common method for cantilever excitation, but it may cause spurious resonance peaks. A fiber optic interferometer with 1310 nm laser was used both to measure the deflection of cantilever and apply a force to the cantilever in a LT-AFM/MFM from NanoMagnetics Instruments. The laser power was modulated at the cantilever`s resonance frequency by a digital Phase Lock Loop (PLL). The force exerted by the radiation pressure on a perfectly reflecting surface by a laser beam of power P is F = 2P/c. We typically modulate the laser beam by ~ 800 μW and obtain 10nm oscillation amplitude with Q ~ 8,000 at 2.5x10-4 mbar. The cantilever's stiffness can be accurately calibrated by using the radiation pressure. We have demonstrated performance of the radiation pressure excitation in AFM/MFM by imaging a hard disk sample between 4-300K and Abrikosov vortex lattice in BSCCO single crystal at 4K to for the first time.

  19. Measurement of Fibrin Fiber Strength using AFM

    NASA Astrophysics Data System (ADS)

    Jawerth, Louise; Falvo, Mchael; Canning, Anthony; Matthews, Garrett; Superfine, Richard; Guthold, Martin

    2003-11-01

    Blood clots usually form in the event of injury or damage to blood vessels to prevent the loss of blood. Moreover, as we age, blood clots often form in undesired locations, i.e. in blood vessels around the heart or brain, or in uninjured vessels resulting in heart attacks or strokes. Fibrin fibers, the skeleton of a blood clot, essentially perform the mechanical task of creating a blockage that stems blood flow. Thus, a better understanding of the mechanical properties of these fibers, such as the tensile strength and Young's modulus, will enhance our understanding of blood clots. For quantitative stress and strain measurements, we need to image the deformation of the fiber and measure the applied force simultaneously. For this reason, we are combining fluorescent microscopy with atomic force microscopy. Fibrin fibers were fluorescently labeled with streptavidin-coated quantum dots and deposited on a functionalized glass substrate, imaged and manipulated under buffer. We will describe our progress in obtaining quantitative lateral force measurements under buffer simultaneous with strain measurements from optical microscope images.

  20. Elastic modulus of polypyrrole nanotubes: AFM measurement

    NASA Astrophysics Data System (ADS)

    Cuenot, Stéphane; Demoustier-Champagne, Sophie; Nysten, Bernard

    2001-03-01

    Polypyrrole nanotubes were electrochemically synthesized within the pores of nanoporous track-etched membranes. After dissolution of the template membrane, they were dispersed on PET membranes. Their tensile elastic modulus was measured by probing them in three points bending using an atomic force microscope. The elastic modulus was deduced from force-curve measurements. In this communication, the effect of the synthesis temperature and of the nanotube diameter will be presented. Especially it will be shown that the elastic modulus strongly increases when the nanotube outer diameter is reduced from 160 nm down to 35 nm. These results are in good agreement with previous results showing that the electrical conductivity of polypyrrole nanotubes increases by more than one order of magnitude when the diameter decreases in the same range. These behaviors could be explained by a larger ratio of well-oriented defect-free polymer chains in smaller tubes.

  1. Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes.

    PubMed

    Smirnov, Waldemar; Kriele, Armin; Hoffmann, René; Sillero, Eugenio; Hees, Jakob; Williams, Oliver A; Yang, Nianjun; Kranz, Christine; Nebel, Christoph E

    2011-06-15

    In atomic force microscopy (AFM), sharp and wear-resistant tips are a critical issue. Regarding scanning electrochemical microscopy (SECM), electrodes are required to be mechanically and chemically stable. Diamond is the perfect candidate for both AFM probes as well as for electrode materials if doped, due to diamond's unrivaled mechanical, chemical, and electrochemical properties. In this study, standard AFM tips were overgrown with typically 300 nm thick nanocrystalline diamond (NCD) layers and modified to obtain ultra sharp diamond nanowire-based AFM probes and probes that were used for combined AFM-SECM measurements based on integrated boron-doped conductive diamond electrodes. Analysis of the resonance properties of the diamond overgrown AFM cantilevers showed increasing resonance frequencies with increasing diamond coating thicknesses (i.e., from 160 to 260 kHz). The measured data were compared to performed simulations and show excellent correlation. A strong enhancement of the quality factor upon overgrowth was also observed (120 to 710). AFM tips with integrated diamond nanowires are shown to have apex radii as small as 5 nm and where fabricated by selectively etching diamond in a plasma etching process using self-organized metal nanomasks. These scanning tips showed superior imaging performance as compared to standard Si-tips or commercially available diamond-coated tips. The high imaging resolution and low tip wear are demonstrated using tapping and contact mode AFM measurements by imaging ultra hard substrates and DNA. Furthermore, AFM probes were coated with conductive boron-doped and insulating diamond layers to achieve bifunctional AFM-SECM probes. For this, focused ion beam (FIB) technology was used to expose the boron-doped diamond as a recessed electrode near the apex of the scanning tip. Such a modified probe was used to perform proof-of-concept AFM-SECM measurements. The results show that high-quality diamond probes can be fabricated, which are

  2. AFM forces between mica and polystyrene surfaces in aqueous electrolyte solutions with and without gas bubbles.

    PubMed

    Saavedra, Jorge H; Acuña, Sergio M; Toledo, Pedro G

    2013-11-15

    Force curves between a flat mica substrate and a polystyrene microsphere were measured with an atomic force microscope (AFM) in carefully degassed water and aqueous NaCl, CaCl2, and AlCl3 solutions. The pH of the water used does not change significantly with degassing treatment, and its value remains close to 6. Electrolyte concentration ranges from 10-4 to 10-2M and pH from 4.7 to 5.1. We have found that the repulsive long-range electrostatic force between mica and polystyrene is attenuated by the presence of electrolytes and counterbalanced by a long-range attractive force, which we referred to as a hydrophobic force, which is longer-ranged than the ever present attractive van der Waals force. This force, which includes the adhesive bridging of residual air bubbles and newborn vapor cavities, and any other unknown forces, is reasonably well represented by a unique exponential law. Prefactor and decaying length are not very sensitive to electrolyte type, concentration, and pH, suggesting that any new force included in the law, in addition to adhesive bridges, should obey a non-classical electrostatic mechanism. However, we also know that liquid/solid contact angle and liquid/vapor surface tension increase with electrolyte concentration and valence increasing the stability of bubbles and cavities which in turn increase the bridging force. Clearly, these effects are hidden in the empirical force law. PMID:23998373

  3. Single Dimer E-Cadherin Interaction Forces Characterized Using Modified AFM Cantilevers

    NASA Astrophysics Data System (ADS)

    Rudnitsky, Robert; Drees, Frauke; Nelson, W. James; Kenny, Thomas

    2002-03-01

    In tissue monolayers, adhesion between cells is accomplished chiefly through the action of [Ca++] dependent cadherin proteins. E-cadherin molecules coalesce into large plaques on contacting membranes of adjacent cells. Using specialized AFM cantilevers functionalized with tethered E-cadherin proteins, we studied the interaction forces of trans dimers from the single bond level through to the higher surface densities found in plaques, with pico-Newton force resolution. The measurements demonstrated the dependence of E-cadherin homoassociation on surface protein density. Previous in-vivo studies established the role of Ca++ in E-cadherin adhesion in whole cells. Advances in AFM force spectroscopy allowed us to characterize the unbinding process under force loads, and to differentiate single and multiple molecular binding events. The data correlates the dependence of E-cadherin adhesion at a molecular level to [Ca++], revealing interaction details that cannot be observed using whole-cell studies. This work is supported by NSF (XYZ on a Chip Program) CMS-9980838, NIH (GMB5227), and the Fannie and John Hertz Foundation.

  4. Membrane-based actuation for high-speed single molecule force spectroscopy studies using AFM.

    PubMed

    Sarangapani, Krishna; Torun, Hamdi; Finkler, Ofer; Zhu, Cheng; Degertekin, Levent

    2010-07-01

    Atomic force microscopy (AFM)-based dynamic force spectroscopy of single molecular interactions involves characterizing unbinding/unfolding force distributions over a range of pulling speeds. Owing to their size and stiffness, AFM cantilevers are adversely affected by hydrodynamic forces, especially at pulling speeds >10 microm/s, when the viscous drag becomes comparable to the unbinding/unfolding forces. To circumvent these adverse effects, we have fabricated polymer-based membranes capable of actuating commercial AFM cantilevers at speeds >or=100 microm/s with minimal viscous drag effects. We have used FLUENT, a computational fluid dynamics (CFD) software, to simulate high-speed pulling and fast actuation of AFM cantilevers and membranes in different experimental configurations. The simulation results support the experimental findings on a variety of commercial AFM cantilevers and predict significant reduction in drag forces when membrane actuators are used. Unbinding force experiments involving human antibodies using these membranes demonstrate that it is possible to achieve bond loading rates >or=10(6) pN/s, an order of magnitude greater than that reported with commercial AFM cantilevers and systems. PMID:20054686

  5. Simultaneous non-contact atomic force microscopy (nc-AFM)/STM imaging and force spectroscopy of Si(1 0 0)(2×1) with small oscillation amplitudes

    NASA Astrophysics Data System (ADS)

    Özer, H. Özgür; Atabak, Mehrdad; Ellialtıoğlu, Recai M.; Oral, Ahmet

    2002-03-01

    Si(1 0 0)(2×1) surface is imaged using a new non-contact atomic force microscopy (nc-AFM)/STM with sub-Ångström oscillation amplitudes using stiff tungsten levers. Simultaneous force gradient and STM images of individual dimers and atomic scale defects are obtained. We measured force-distance ( f- d) curves with different tips. Some of the tips show long force interactions, whereas some others resolve short-range interatomic force interactions. We observed that the tips showing short-range force interaction give atomic resolution in force gradient scans. This result suggests that short-range force interactions are responsible for atomic resolution in nc-AFM.

  6. Charge Content In Nanometer Rings from Atomic Force Microscope (AFM) Traces

    NASA Astrophysics Data System (ADS)

    Zypman, F.; Eppell, S.; Feinstein, M.; Fried, Y.; Lazarev, D.; Metzger, C.

    The last few years have seen a growing interest in identifying charge content in small structures such as graphene ribbons and aromatic biorings. More generally it is believed that charge content in proteins holds the key to the ultimate understanding of biological self-assembly. Here we describe a model system, a charged ring inside liquid probed by an AFM tip, and show how the charge content and the relative size of the ring with respect to the tip affect the measured force. More importantly, we explain how to measure the charge from the AFM experimental data. The process involves the modeling of the dynamics of the tip-cantilever sensor under the influence of the charged sample, but also of ambient hydrodynamic forces, electrostatic interactions that appear due to charge induction in the tip and electrolytic screening. Of particular relevance is the possibility of our approach to treat analytically the size of ions. This is relevant when the tip-sample distance becomes sub-nanometric, and the more common description via Poisson-Boltzmann equation breaks down. Funding for this research ``Instrument Development: Charge Sensing In Fluids With Nanometer Precision'' is provided by Chemical Measurement & Imaging, National Science Foundation, Grant Number 1508085.

  7. Oscillatory structural forces due to nonionic surfactant micelles: data by colloidal-probe AFM vs theory.

    PubMed

    Christov, Nikolay C; Danov, Krassimir D; Zeng, Yan; Kralchevsky, Peter A; von Klitzing, Regine

    2010-01-19

    Micellar solutions of nonionic surfactants Brij 35 and Tween 20 are confined between two surfaces in a colloidal-probe atomic-force microscope (CP-AFM). The experimentally detected oscillatory forces due to the layer-by-layer expulsion of the micelles agree very well with the theoretical predictions for hard-sphere fluids. While the experiment gives parts of the stable branches of the force curve, the theoretical model allows reconstruction of the full oscillatory curve. Therewith, the strength and range of the ordering could be determined. The resulting aggregation number from the fits of the force curves for Brij 35 is close to 70 and exhibits a slight tendency to increase with the surfactant concentration. The last layer of micelles cannot be pressed out. The measured force-vs-distance curve has nonequilibrium portions, which represent "jumps" from one to another branch of the respective equilibrium oscillatory curve. In the case of Brij 35, at concentrations <150 mM spherical micelles are present and the oscillation period is close to the micelle diameter, slightly decreasing with the rise of concentration. For elongated micelles (at concentration 200 mM), no harmonic oscillations are observed anymore; instead, the period increases with the decrease of film thickness. In the case of Tween 20, the force oscillations are almost suppressed, which implies that the micelles of this surfactant are labile and are demolished by the hydrodynamic shear stresses due to the colloidal-probe motion. The comparison of the results for the two surfactants demonstrates that in some cases the micelles can be destroyed by the CP-AFM, but in other cases they can be stable and behave as rigid particles. This behavior correlates with the characteristic times of the slow micellar relaxation process for these surfactants. PMID:20067306

  8. Probing of miniPEGγ-PNA-DNA Hybrid Duplex Stability with AFM Force Spectroscopy

    PubMed Central

    Dutta, Samrat; Armitage, Bruce A.; Lyubchenko, Yuri L.

    2016-01-01

    Peptide nucleic acids (PNA) are synthetic polymers, the neutral peptide backbone of which provides elevated stability to PNA-PNA and PNA-DNA hybrid duplex. It was demonstrated that incorporation of diethylene glycol (miniPEG) at the γ position of the peptide backbone increased the thermal stability of the hybrid duplexes (Sahu, B. et al. (2011) Journal of Organic Chemistry 76, 5614-5627). Here, we applied atomic force microscopy (AFM) based single molecule force spectroscopy (SMFS) and dynamic force spectroscopy (DFS) to test the strength and stability of the hybrid 10 bp duplex. This hybrid duplex consisted of miniPEGγ-PNA and DNA of the same length (γMPPNA-DNA), which we compared to a DNA duplex with a homologous sequence. AFM force spectroscopy data obtained at the same conditions showed that γMPPNA-DNA hybrid is more stable than the DNA counterpart, 65 ± 15 pN vs 47 ± 15 pN, respectively. The DFS measurements performed in a range of pulling speeds analyzed in the framework of the Bell-Evans approach yielded a dissociation constant, koff ∼ 0.030 ± 0.01 sec-1 for γMPPNA-DNA hybrid duplex vs. 0.375 ± 0.18 sec-1 for the DNA-DNA duplex suggesting that the hybrid duplex is much more stable. Correlating the high affinity of γMPPNA-DNA to slow dissociation kinetics is consistent with prior bulk characterization by surface plasmon resonance. Given the growing interest in γMPPNA as well as other synthetic DNA analogues, the use of single molecule experiments along with computational analysis of force spectroscopy data will provide direct characterization of various modifications as well as higher order structures such as triplexes and quadruplexes. PMID:26898903

  9. Probing of miniPEGγ-PNA-DNA Hybrid Duplex Stability with AFM Force Spectroscopy.

    PubMed

    Dutta, Samrat; Armitage, Bruce A; Lyubchenko, Yuri L

    2016-03-15

    Peptide nucleic acids (PNA) are synthetic polymers, the neutral peptide backbone of which provides elevated stability to PNA-PNA and PNA-DNA hybrid duplexes. It was demonstrated that incorporation of diethylene glycol (miniPEG) at the γ position of the peptide backbone increased the thermal stability of the hybrid duplexes (Sahu, B. et al. J. Org. Chem. 2011, 76, 5614-5627). Here, we applied atomic force microscopy (AFM) based single molecule force spectroscopy and dynamic force spectroscopy (DFS) to test the strength and stability of the hybrid 10 bp duplex. This hybrid duplex consisted of miniPEGγ-PNA and DNA of the same length (γ(MP)PNA-DNA), which we compared to a DNA duplex with a homologous sequence. AFM force spectroscopy data obtained at the same conditions showed that the γ(MP)PNA-DNA hybrid is more stable than the DNA counterpart, 65 ± 15 pN vs 47 ± 15 pN, respectively. The DFS measurements performed in a range of pulling speeds analyzed in the framework of the Bell-Evans approach yielded a dissociation constant, koff ≈ 0.030 ± 0.01 s⁻¹ for γ(MP)PNA-DNA hybrid duplex vs 0.375 ± 0.18 s⁻¹ for the DNA-DNA duplex suggesting that the hybrid duplex is much more stable. Correlating the high affinity of γ(MP)PNA-DNA to slow dissociation kinetics is consistent with prior bulk characterization by surface plasmon resonance. Given the growing interest in γ(MP)PNA as well as other synthetic DNA analogues, the use of single molecule experiments along with computational analysis of force spectroscopy data will provide direct characterization of various modifications as well as higher order structures such as triplexes and quadruplexes. PMID:26898903

  10. Changes in collagen fibril pattern and adhesion force with collagenase-induced injury in rat Achilles tendon observed via AFM.

    PubMed

    Lee, Gi-Ja; Choi, Samjin; Chon, Jinmann; Yoo, Seungdon; Cho, Ilsung; Park, Hun-Kuk

    2011-01-01

    The Achilles tendon consists mainly of type I collagen fibers that contain collagen fibrils. When the Achilles tendon is injured, it is inflamed. The collagenase-induced model has been widely used to study tendinitis. The major advantages of atomic force microscopy (AFM) over conventional optical and electron microscopy for bio-imaging include its non-requirement of a special coating and vacuum, and its capability to perform imaging in all environments. AFM force-distance measurements have become a fundamental tool in the fields of surface chemistry, biochemistry and materials science. Therefore, the changes in the ultrastructure and adhesion force of the collagen fibrils on the Achilles tendons of rats with Achilles tendinitis were observed using AFM. The changes in the structure of the Achilles tendons were evaluated based on the diameter and D-banding of the collagen fibrils. Collagenase-induced Achilles tendinitis was induced with the injection of 30 microl crude collagenase into 7-week-old male Sprague-Dawley rats. The animals were each sacrificed on the first, second, third, fifth and seventh day after the collagenase injection. The normal and injured Achilles tendons were fixed in 4% buffered formalin and dehydrated with increasing concentrations of ethanol. AFM was performed using the non-contact mode at the resolution of 512 x 512 pixels, with a scan speed of 0.8 line/sec. The adhesion force was measured via the force-distance curve that resulted from the interactions between the AFM tip and the collagen fibril sample using the contact mode. The diameter of the collagen fibrils in the Achilles tendons significantly decreased (p < 0.05) after the collagenase injection, and the pattern of the D-banding of the collagen fibrils was similar to that of the diameter changes. The adhesion force decreased until the fifth day after the collagenase injection, but increased on the seventh day after the collagenase injection (p < 0.0001). PMID:21446543

  11. Charge Measurement of Atoms and Atomic Resolution of Molecules with Noncontact AFM

    NASA Astrophysics Data System (ADS)

    Gross, Leo

    2010-03-01

    Individual gold and silver adatoms [1] and pentacene molecules [2] on ultrathin NaCl films on Cu(111) were investigated using a qPlus tuning fork atomic force microscope (AFM) operated at 5 Kelvin with oscillation amplitudes in the sub-ångstrom regime. Charging a gold adatom by one electron charge increased the force on the AFM tip by a few piconewtons. Employing Kelvin probe force microscopy (KPFM) we also measured the local contact potential difference (LCPD). We observed that the LCPD is shifted depending on the sign of the charge and allows the discrimination of positively charged, neutral, and negatively charged atoms. To image pentacene molecules we modified AFM tips by means of vertical manipulation techniques, i.e. deliberately picking up known atoms and molecules, such as Au, Ag, Cl, CO, and pentacene. Using a CO terminated tip we resolved all individual atoms and bonds within a pentacene molecule. Three dimensional force maps showing the site specific distance dependence above the molecule were extracted. We compared our experimental results with density functional theory (DFT) calculations to gain insight on the physical origin of AFM contrast formation. We found that atomic resolution is only obtained due to repulsive force contributions originating from the Pauli exclusion principle. [4pt] [1] L. Gross, F. Mohn, P. Liljeroth, J. Repp, F. J. Giessibl, G. Meyer, Science 324, 1428 (2009). [0pt] [2] L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, Science 325, 1110 (2009).

  12. Elastic modulus, oxidation depth and adhesion force of surface modified polystyrene studied by AFM and XPS

    NASA Astrophysics Data System (ADS)

    Lubarsky, G. V.; Davidson, M. R.; Bradley, R. H.

    2004-06-01

    AFM and XPS have been used to investigate the surface and near-surface properties of polystyrene (PS) substrates which have been subjected to one of three controlled surface modification processes performed in situ in a specially constructed cell. The cell was fitted to a Digital Instruments Nanoscope III AFM measuring head and allowed close control of the gaseous environment and made it possible to UV irradiate the sample during AFM measurements. Treatments were carried out using UV at 184.9 and 253.7 nm wavelengths, in oxygen (UV-ozone), and in nitrogen (UV-only). Polystyrene surfaces were also modified by an exposure to an atmosphere of ozone in the absence of UV (ozone-only). Data show that adhesion force is highest between tip and sample for the UV-ozone exposed surfaces and that the adhesion force increases with sample exposure time. Exposure to UV-only or ozone alone results in lower ultimate adhesion levels with a slower rate of increase with exposure time. Evaluation of Young's modulus for unmodified PS gave a value of 3.37 (±0.52) GPa which agrees well with the textbook value which ranges from 2 to 4 GPa depending on the measurement technique. A 60 s exposure to combined UV-ozone resulted in the formation of a surface layer with a modulus at the surface of 1.25 (±0.19) GPa which increased to 2.5 (±0.37) GPa at a depth of 3.5 nm. The sample exposed for 60 s to UV-only had a Young's modulus of 2.6 (±0.39) GPa but showed no reduced modulus layer at the surface. The modulus of the ozone-only treated material was the least affected with a decrease of around 0.75 GPa with some evidence for a surface layer with a modulus ranging from 2.6 (±0.39) GPa at the surface to 3.2 (±0.48) GPa at a depth of 2 nm. XPS analyses reveal that the oxygen content of the modified surfaces decreased in the order of UV-ozone > UV > ozone with approximate concentrations for a 60 s exposure of 5, 0.7 and 0.05 at.%, respectively. Friction force imaging of patterned surfaces

  13. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles

    SciTech Connect

    Zhang, Xiaojun; Chen, Yuan; Chen, Yong

    2014-03-28

    Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM) has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release.

  14. Using AFM Force Curves to Explore Properties of Elastomers

    ERIC Educational Resources Information Center

    Ferguson, Megan A.; Kozlowski, Joseph J.

    2013-01-01

    polydimethylsiloxane (PDMS) elastomers. Force curves are used to quantify the stiffness of elastomers prepared with different base-to-curing agent ratios. Trends in observed spring constants of the…

  15. Forced Unfolding of the Coiled-Coils of Fibrinogen by Single-Molecule AFM

    NASA Astrophysics Data System (ADS)

    Brown, Andre; Litvinov, Rustem; Discher, Dennis; Weisel, John

    2007-03-01

    A blood clot needs to have the right degree of stiffness and plasticity for hemostasis, but the origin of these mechanical properties is unknown. Here we report the first measurements using single molecule atomic force microscopy (AFM) to study the forced unfolding of fibrinogen to begin addressing this problem. To generate longer reproducible curves than are possible using monomer, factor XIIIa cross-linked, single chain fibrinogen oligomers were used. When extended under force, these oligomers showed sawtooth shaped force-extension patterns characteristic of unfolding proteins with a peak-to-peak separation of approximately 26 nm, consistent with the independent unfolding of the coiled-coils. These results were then reproduced using a Monte Carlo simulation with parameters in the same range as those previously used for unfolding globular domains. In particular, we found that the refolding time was negligible on experimental time and force scales in contrast to previous work on simpler coiled-coils. We suggest that this difference may be due to fibrinogen's structurally and topologically more complex coiled-coils and that an interaction between the alpha C and central domains may be involved. These results suggest a new functional property of fibrinogen and that the coiled-coil is more than a passive structural element of this molecule.

  16. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM

    NASA Astrophysics Data System (ADS)

    Morales-Rivas, Lucia; González-Orive, Alejandro; Garcia-Mateo, Carlos; Hernández-Creus, Alberto; Caballero, Francisca G.; Vázquez, Luis

    2015-11-01

    The full understanding of the deformation mechanisms in nanostructured bainite requires the local characterization of its mechanical properties, which are expected to change from one phase, bainitic ferrite, to another, austenite. This study becomes a challenging process due to the bainitic nanostructured nature and high Young’s modulus. In this work, we have carried out such study by means of the combination of AFM-based techniques, such as nanoindentation and Peak Force Quantitative Nanomechanical Mapping (PF-QNM) measurements. We have addressed critically the limits and advantages of these techniques and been able to measure some elastoplastic parameters of both phases. Specifically, we have analyzed by PF-QNM two nanostructured bainitic steels, with a finer and a coarser structure, and found that both phases have a similar Young’s modulus.

  17. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM

    PubMed Central

    Morales-Rivas, Lucia; González-Orive, Alejandro; Garcia-Mateo, Carlos; Hernández-Creus, Alberto; Caballero, Francisca G.; Vázquez, Luis

    2015-01-01

    The full understanding of the deformation mechanisms in nanostructured bainite requires the local characterization of its mechanical properties, which are expected to change from one phase, bainitic ferrite, to another, austenite. This study becomes a challenging process due to the bainitic nanostructured nature and high Young’s modulus. In this work, we have carried out such study by means of the combination of AFM-based techniques, such as nanoindentation and Peak Force Quantitative Nanomechanical Mapping (PF-QNM) measurements. We have addressed critically the limits and advantages of these techniques and been able to measure some elastoplastic parameters of both phases. Specifically, we have analyzed by PF-QNM two nanostructured bainitic steels, with a finer and a coarser structure, and found that both phases have a similar Young’s modulus. PMID:26602631

  18. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM.

    PubMed

    Morales-Rivas, Lucia; González-Orive, Alejandro; Garcia-Mateo, Carlos; Hernández-Creus, Alberto; Caballero, Francisca G; Vázquez, Luis

    2015-01-01

    The full understanding of the deformation mechanisms in nanostructured bainite requires the local characterization of its mechanical properties, which are expected to change from one phase, bainitic ferrite, to another, austenite. This study becomes a challenging process due to the bainitic nanostructured nature and high Young's modulus. In this work, we have carried out such study by means of the combination of AFM-based techniques, such as nanoindentation and Peak Force Quantitative Nanomechanical Mapping (PF-QNM) measurements. We have addressed critically the limits and advantages of these techniques and been able to measure some elastoplastic parameters of both phases. Specifically, we have analyzed by PF-QNM two nanostructured bainitic steels, with a finer and a coarser structure, and found that both phases have a similar Young's modulus. PMID:26602631

  19. LET Spectrum Measurements In CR-39 PNTD With AFM

    NASA Astrophysics Data System (ADS)

    Johnson, C. E.; DeWitt, J. M.; Benton, E. R.; Yasuda, N.; Benton, E. V.

    2011-06-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range (˜<10 μm) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching (˜<1 μm) following by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features inherently present in the post-etch detector surface. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/μm. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to 1 GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  20. LET Spectrum Measurements In CR-39 PNTD With AFM

    SciTech Connect

    Johnson, C. E.; DeWitt, J. M.; Benton, E. R.; Yasuda, N.; Benton, E. V.

    2011-06-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range ({approx}<10 {mu}m) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching ({approx}<1 {mu}m) following by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features inherently present in the post-etch detector surface. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/{mu}m. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to 1 GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  1. LET spectrum measurements in Cr-39 PNTD with AFM

    SciTech Connect

    Johnson, Carl Edward; De Witt, Joel M; Benton, Eric R; Yasuda, Nakahiro; Benton, Eugene V

    2010-01-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range ({approx}< 10 {mu}m) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching ({approx}< 1 {mu}m) followed by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/{mu}m. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to I GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  2. Multiparametric imaging of biological systems by force-distance curve-based AFM.

    PubMed

    Dufrêne, Yves F; Martínez-Martín, David; Medalsy, Izhar; Alsteens, David; Müller, Daniel J

    2013-09-01

    A current challenge in the life sciences is to understand how biological systems change their structural, biophysical and chemical properties to adjust functionality. Addressing this issue has been severely hampered by the lack of methods capable of imaging biosystems at high resolution while simultaneously mapping their multiple properties. Recent developments in force-distance (FD) curve-based atomic force microscopy (AFM) now enable researchers to combine (sub)molecular imaging with quantitative mapping of physical, chemical and biological interactions. Here we discuss the principles and applications of advanced FD-based AFM tools for the quantitative multiparametric characterization of complex cellular and biomolecular systems under physiological conditions. PMID:23985731

  3. An advanced AFM sensor for high-aspect ratio pattern profile in-line measurement

    NASA Astrophysics Data System (ADS)

    Watanabe, Masahiro; Baba, Shuichi; Nakata, Toshihiko; Kurenuma, Toru; Kuroda, Hiroshi; Hiroki, Takenori

    2006-03-01

    Design rule shrinkage and the wider adoption of new device structures such as STI, copper damascene interconnects, and deep trench structures have increased the necessity of in-line process monitoring of step heights and profiles of device structures. For monitoring active device patterns, not test patterns as in OCD, AFM is the only non-destructive 3D monitoring tool. The barriers to using AFM in-line monitoring are its slow throughput and the accuracy degradation associated with probe tip wear and spike noise caused by unwanted oscillation on the steep slopes of high-aspect-ratio patterns. Our proprietary AFM scanning method, Step in mode®, is the method best suited to measuring high-aspect-ratio pattern profiles. Because the probe is not dragged on the sample surface as in conventional AFM, the profile trace fidelity across steep slopes is excellent. Because the probe does not oscillate and hit the sample at a high frequency as in AC scanning mode, this mode is free from unwanted spurious noises on steep sample slopes and incurs extremely little probe tip wear. To fully take advantage of the above properties, we have developed an AFM sensor optimized for in-line use, which produces accurate profile data at high speeds. The control scheme we have developed for the AFM sensor, which we call "Smart Step-in", elaborately analyses the contact force signal, enabling efficient probe tip scanning and a low and stable contact force. The mechanism of the AFM sensor has been optimized for the higher scanning rate and has improved the accuracy, such as the scanning planarity, position and height accuracy, and slope angle accuracy. Our prototype AFM sensor can scan high-aspect-ratio patterns while stabilizing the contact force at 3 nN. The step height measurement repeatability was 0.8 nm (3σ). A STI-like test pattern was scanned, and the steep sidewalls with angles of 84° were measured with high fidelity and without spurious noises.

  4. Multiparametric high-resolution imaging of native proteins by force-distance curve-based AFM.

    PubMed

    Pfreundschuh, Moritz; Martinez-Martin, David; Mulvihill, Estefania; Wegmann, Susanne; Muller, Daniel J

    2014-05-01

    A current challenge in the life sciences is to understand how the properties of individual molecular machines adjust in order to meet the functional requirements of the cell. Recent developments in force-distance (FD) curve-based atomic force microscopy (FD-based AFM) enable researchers to combine sub-nanometer imaging with quantitative mapping of physical, chemical and biological properties. Here we present a protocol to apply FD-based AFM to the multiparametric imaging of native proteins under physiological conditions. We describe procedures for experimental FD-based AFM setup, high-resolution imaging of proteins in the native unperturbed state with simultaneous quantitative mapping of multiple parameters, and data interpretation and analysis. The protocol, which can be completed in 1-3 d, enables researchers to image proteins and protein complexes in the native unperturbed state and to simultaneously map their biophysical and biochemical properties at sub-nanometer resolution. PMID:24743419

  5. Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments.

    PubMed

    Guzman, Horacio V; Garcia, Pablo D; Garcia, Ricardo

    2015-01-01

    We present a simulation environment, dForce, which can be used for a better understanding of dynamic force microscopy experiments. The simulator presents the cantilever-tip dynamics for two dynamic AFM methods, tapping mode AFM and bimodal AFM. It can be applied for a wide variety of experimental situations in air or liquid. The code provides all the variables and parameters relevant in those modes, for example, the instantaneous deflection and tip-surface force, velocity, virial, dissipated energy, sample deformation and peak force as a function of time or distance. The simulator includes a variety of interactions and contact mechanics models to describe AFM experiments including: van der Waals, Hertz, DMT, JKR, bottom effect cone correction, linear viscoelastic forces or the standard linear solid viscoelastic model. We have compared two numerical integration methods to select the one that offers optimal accuracy and speed. The graphical user interface has been designed to facilitate the navigation of non-experts in simulations. Finally, the accuracy of dForce has been tested against numerical simulations performed during the last 18 years. PMID:25821676

  6. Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments

    PubMed Central

    Guzman, Horacio V; Garcia, Pablo D

    2015-01-01

    Summary We present a simulation environment, dForce, which can be used for a better understanding of dynamic force microscopy experiments. The simulator presents the cantilever–tip dynamics for two dynamic AFM methods, tapping mode AFM and bimodal AFM. It can be applied for a wide variety of experimental situations in air or liquid. The code provides all the variables and parameters relevant in those modes, for example, the instantaneous deflection and tip–surface force, velocity, virial, dissipated energy, sample deformation and peak force as a function of time or distance. The simulator includes a variety of interactions and contact mechanics models to describe AFM experiments including: van der Waals, Hertz, DMT, JKR, bottom effect cone correction, linear viscoelastic forces or the standard linear solid viscoelastic model. We have compared two numerical integration methods to select the one that offers optimal accuracy and speed. The graphical user interface has been designed to facilitate the navigation of non-experts in simulations. Finally, the accuracy of dForce has been tested against numerical simulations performed during the last 18 years. PMID:25821676

  7. Combined quantitative ultrasonic and time-resolved interaction force AFM imaging

    SciTech Connect

    Parlak, Z.; Degertekin, F. L.

    2011-01-15

    The authors describe a method where quantitative ultrasonic atomic force microscopy (UAFM) is achieved during time-resolved interaction force (TRIF) imaging in intermittent contact mode. The method uses a calibration procedure for quantitative UAFM. It improves elasticity measurements of stiff regions of surfaces while retaining the capabilities of the TRIF mode for topography, adhesion, dissipation, and elasticity measurements on soft regions of sample surfaces. This combination is especially advantageous when measuring and imaging samples with broad stiffness range in a nondestructive manner. The experiments utilize an active AFM probe with high bandwidth and the UAFM calibration is performed by measuring the magnitude of the time-resolved UAFM signal at a judiciously chosen frequency for different contact stiffness values during individual taps. Improved sensitivity to stiff surface elasticity is demonstrated on a special sample. The results show that combining UAFM with TRIF provides 2.5 GPa (5%) standard deviation on the silicon surface reduced Young's modulus, representing 5x improvement over using only TRIF mode imaging.

  8. Conservative and dissipative tip-sample interaction forces probed with dynamic AFM

    NASA Astrophysics Data System (ADS)

    Gotsmann, B.; Seidel, C.; Anczykowski, B.; Fuchs, H.

    1999-10-01

    The conservative and dissipative forces between tip and sample of a dynamic atomic force microscopy (AFM) were investigated using a combination of computer simulations and experimental AFM data obtained by the frequency modulation technique. In this way it became possible to reconstruct complete force versus distance curves and damping coefficient versus distance curves from experimental data without using fit parameters for the interaction force and without using analytical interaction models. A comparison with analytical approaches is given and a way to determine a damping coefficient curve from experimental data is proposed. The results include the determination of the first point of repulsive contact of a vibrating tip when approaching a sample. The capability of quantifying the tip-sample interaction is demonstrated using experimental data obtained with a silicon tip and a mica sample in UHV.

  9. Force-controlled manipulation of single cells: from AFM to FluidFM.

    PubMed

    Guillaume-Gentil, Orane; Potthoff, Eva; Ossola, Dario; Franz, Clemens M; Zambelli, Tomaso; Vorholt, Julia A

    2014-07-01

    The ability to perturb individual cells and to obtain information at the single-cell level is of central importance for addressing numerous biological questions. Atomic force microscopy (AFM) offers great potential for this prospering field. Traditionally used as an imaging tool, more recent developments have extended the variety of cell-manipulation protocols. Fluidic force microscopy (FluidFM) combines AFM with microfluidics via microchanneled cantilevers with nano-sized apertures. The crucial element of the technology is the connection of the hollow cantilevers to a pressure controller, allowing their operation in liquid as force-controlled nanopipettes under optical control. Proof-of-concept studies demonstrated a broad spectrum of single-cell applications including isolation, deposition, adhesion and injection in a range of biological systems. PMID:24856959

  10. An AFM study of the chlorite-fluid interface. [Atomic Force Microscopy

    SciTech Connect

    Vrdoljak, G.A.; Henderson, G.S.; Fawcett, J.J. . Dept. of Geology)

    1992-01-01

    Chlorite is a ubiquitous mineral in many geologic environments and plays an important role in elemental adsorption and retention in soils. Chlorite has a 2:1 layer structure consisting of two tetrahedral sheets with an octahedral sheet between them (talc-like layer). The 2:1 layer is charge balanced and hydrogen-bonded by an interlayer of MgOH[sub 6] octahedra (brucite-like layer). The nature of chlorite's structure, its ease of imaging, and perfect 001 cleavage, make this mineral an ideal substrate for use in elemental adsorption studies in solution, with the AFM. The 001 cleavage plane of a 2b polytype with composition (Mg[sub 4.4]Fe[sub 0.6]Al[sub 1.0])[(Si[sub 2.9]Al[sub 1.1])]O[sub 10](OH)[sub g] has been imaged in air, water, and oil by atomic force microscopy. Dissolution features are observed in water, showing sub-micron features dissolving in real-time. Atomic resolution of both the talc-like and brucite-like layers has been obtained in air. However, only the tetrahedral sheet of the talc-like layer has been imaged at atomic resolution in oil and water, which may indicate a structural instability of the brucite-like surface in solution. Measurements of the unit-cell dimensions (a and b) for the talc-like layer in the three different media indicate a structural expansion of the mineral surface in solution. The a unit cell dimension expands by 7.4 [+-] 0.1% when in water; conversely, the b dimension varies greatly when in oil ([minus]10% to +20%), relative to air. The effects of these solution media on the structure of chlorite are revealed by characterization with the AFM. This information should prove useful in future studies of adsorption onto layer silicates.

  11. Experimental evidence of ultrathin polymer film stratification by AFM force spectroscopy.

    PubMed

    Delorme, Nicolas; Chebil, Mohamed Souheib; Vignaud, Guillaume; Le Houerou, Vincent; Bardeau, Jean-François; Busselez, Rémi; Gibaud, Alain; Grohens, Yves

    2015-06-01

    By performing Atomic Force Microscopy measurements of pull-off force as a function of the temperature, we were able to probe the dynamic of supported thin polystyrene (PS) films. Thermal transitions induce modifications in the surface energy, roughness and surface modulus that are clearly detected by AFM and related to PS chain relaxation mechanisms. We demonstrated the existence of three transition temperatures that can be associated to the relaxation of polymer chains located at different depth regions within the polymer film. Independently of the film thickness, we have confirmed the presence of a region of high mobility for the polymer chains at the free interface. The thickness of this region is estimated to be above 7nm. The detection of a transition only present for film thicker than the gyration radius Rg is linked to the dynamics of polymer chains in a bulk conformation (i.e. not in contact with the free interface). We claim here that our results demonstrate, in agreement with other techniques, the stratification of thin polymer film depth profile in terms of relaxation behavior. PMID:26087914

  12. Ultra-small oscillation amplitude nc-AFM/STM imaging, force and dissipation spectroscopy of Si(100)(2×1)

    NASA Astrophysics Data System (ADS)

    Özgür Özer, H.; Atabak, Mehrdad; Oral, Ahmet

    2002-12-01

    Si(100)(2×1) surface is imaged using a new nc-AFM (non-contact atomic force microscopy)/STM with sub-Ångstrom oscillation amplitudes using stiff hand-made tungsten levers. Simultaneous force gradient and scanning tunneling microscopy images of individual dimers and atomic scale defects are obtained. We measured force-distance and dissipation-distance curves with different tips. Some of the tips show long-range force interactions, whereas some others resolve short-range interatomic force interactions. We observed that the tips showing short-range force interaction give atomic resolution in force gradient scans. This result suggests that short-range force interactions are responsible for atomic resolution in nc-AFM. We also observed an increase in the dissipation as the tip is approached closer to the surface, followed by an unexpected decrease as we pass the inflection point in the energy-distance curve.

  13. Molecular shape and binding force of Mycoplasma mobile's leg protein Gli349 revealed by an AFM study

    SciTech Connect

    Lesoil, Charles; Nonaka, Takahiro; Sekiguchi, Hiroshi; Osada, Toshiya; Miyata, Makoto; Afrin, Rehana; Ikai, Atsushi

    2010-01-15

    Recent studies of the gliding bacteria Mycoplasma mobile have identified a family of proteins called the Gli family which was considered to be involved in this novel and yet fairly unknown motility system. The 349 kDa protein called Gli349 was successfully isolated and purified from the bacteria, and electron microscopy imaging and antibody experiments led to the hypothesis that it acts as the 'leg' of M. mobile, responsible for attachment to the substrate as well as for gliding motility. However, more precise evidence of the molecular shape and function of this protein was required to asses this theory any further. In this study, an atomic force microscope (AFM) was used both as an imaging and a force measurement device to provide new information about Gli349 and its role in gliding motility. AFM images of the protein were obtained revealing a complex structure with both rigid and flexible parts, consistent with previous electron micrographs of the protein. Single-molecular force spectroscopy experiments were also performed, revealing that Gli349 is able to specifically bind to sialyllactose molecules and withstand unbinding forces around 70 pN. These findings strongly support the idea that Gli349 is the 'leg' protein of M. mobile, responsible for binding and also most probably force generation during gliding motility.

  14. AFM-porosimetry: density and pore volume measurements of particulate materials.

    PubMed

    Sörensen, Malin H; Valle-Delgado, Juan J; Corkery, Robert W; Rutland, Mark W; Alberius, Peter C

    2008-06-01

    We introduced the novel technique of AFM-porosimetry and applied it to measure the total pore volume of porous particles with a spherical geometry. The methodology is based on using an atomic force microscope as a balance to measure masses of individual particles. Several particles within the same batch were measured, and by plotting particle mass versus particle volume, the bulk density of the sample can be extracted from the slope of the linear fit. The pore volume is then calculated from the densities of the bulk and matrix materials, respectively. In contrast to nitrogen sorption and mercury porosimetry, this method is capable of measuring the total pore volume regardless of pore size distribution and pore connectivity. In this study, three porous samples were investigated by AFM-porosimetry: one ordered mesoporous sample and two disordered foam structures. All samples were based on a matrix of amorphous silica templated by a block copolymer, Pluronic F127, swollen to various degrees with poly(propylene glycol). In addition, the density of silica spheres without a template was measured by two independent techniques: AFM and the Archimedes principle. PMID:18503284

  15. Bacteria attachment to surfaces--AFM force spectroscopy and physicochemical analyses.

    PubMed

    Harimawan, Ardiyan; Rajasekar, Aruliah; Ting, Yen-Peng

    2011-12-01

    Understanding bacterial adhesion to surfaces requires knowledge of the forces that govern bacterial-surface interactions. Biofilm formation on stainless steel 316 (SS316) by three bacterial species was investigated by examining surface force interaction between the cells and metal surface using atomic force microscopy (AFM). Bacterial-metal adhesion force was quantified at different surface delay time from 0 to 60s using AFM tip coated with three different bacterial species: Gram-negative Massilia timonae and Pseudomonas aeruginosa, and Gram-positive Bacillus subtilis. The results revealed that bacterial adhesion forces on SS316 surface by Gram-negative bacteria is higher (8.53±1.40 nN and 7.88±0.94 nN) when compared to Gram-positive bacteria (1.44±0.21 nN). Physicochemical analysis on bacterial surface properties also revealed that M. timonae and P. aeruginosa showed higher hydrophobicity and surface charges than B. subtilis along with the capability of producing extracellular polymeric substances (EPS). The higher hydrophobicity, surface charges, and greater propensity to form EPS by M. timonae and P. aeruginosa led to high adhesive force on the metal surface. PMID:21889162

  16. Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations.

    PubMed

    Nawaz, Schanila; Sánchez, Paula; Bodensiek, Kai; Li, Sai; Simons, Mikael; Schaap, Iwan A T

    2012-01-01

    The measurement of the elastic properties of cells is widely used as an indicator for cellular changes during differentiation, upon drug treatment, or resulting from the interaction with the supporting matrix. Elasticity is routinely quantified by indenting the cell with a probe of an AFM while applying nano-Newton forces. Because the resulting deformations are in the micrometer range, the measurements will be affected by the finite thickness of the cell, viscous effects and even cell damage induced by the experiment itself. Here, we have analyzed the response of single 3T3 fibroblasts that were indented with a micrometer-sized bead attached to an AFM cantilever at forces from 30-600 pN, resulting in indentations ranging from 0.2 to 1.2 micrometer. To investigate the cellular response at lower forces up to 10 pN, we developed an optical trap to indent the cell in vertical direction, normal to the plane of the coverslip. Deformations of up to two hundred nanometers achieved at forces of up to 30 pN showed a reversible, thus truly elastic response that was independent on the rate of deformation. We found that at such small deformations, the elastic modulus of 100 Pa is largely determined by the presence of the actin cortex. At higher indentations, viscous effects led to an increase of the apparent elastic modulus. This viscous contribution that followed a weak power law, increased at larger cell indentations. Both AFM and optical trapping indentation experiments give consistent results for the cell elasticity. Optical trapping has the benefit of a lower force noise, which allows a more accurate determination of the absolute indentation. The combination of both techniques allows the investigation of single cells at small and large indentations and enables the separation of their viscous and elastic components. PMID:23028915

  17. Pattern formation and control in polymeric systems: From Minkowski measures to in situ AFM imaging

    NASA Astrophysics Data System (ADS)

    Jacobs, Karin

    2014-03-01

    Thin liquid polymer films are not only of great technical importance, they also exhibit a variety of dynamical instabilities. Some of them may be desired, some rather not. To analyze and finally control pattern formation, modern thin film theories are as vital as techniques to characterize the morphologies and structures in and on the films. Examples for the latter are atomic force microscopy (AFM) as well as scattering techniques. The talk will introduce into the practical applications of Minkowski measures to characterize patterns and explain what thin film properties (e.g. capillary number, solid/liquid boundary condition, glass transition temperature, chain mobility) can further be extracted including new technical possibilities by AFM and scattering techniques.

  18. Automated AFM force curve analysis for determining elastic modulus of biomaterials and biological samples.

    PubMed

    Chang, Yow-Ren; Raghunathan, Vijay Krishna; Garland, Shaun P; Morgan, Joshua T; Russell, Paul; Murphy, Christopher J

    2014-09-01

    The analysis of atomic force microscopy (AFM) force data requires the selection of a contact point (CP) and is often time consuming and subjective due to influence from intermolecular forces and low signal-to-noise ratios (SNR). In this report, we present an automated algorithm for the selection of CPs in AFM force data and the evaluation of elastic moduli. We propose that CP may be algorithmically easier to detect by identifying a linear elastic indentation region of data (high SNR) rather than the contact point itself (low SNR). Utilizing Hertzian mechanics, the data are fitted for the CP. We first detail the algorithm and then evaluate it on sample polymeric and biological materials. As a demonstration of automation, 64 × 64 force maps were analyzed to yield spatially varying topographical and mechanical information of cells. Finally, we compared manually selected CPs to automatically identified CPs and demonstrated that our automated approach is both accurate (< 10nm difference between manual and automatic) and precise for non-interacting polymeric materials. Our data show that the algorithm is useful for analysis of both biomaterials and biological samples. PMID:24951927

  19. Nanopuller-open data acquisition platform for AFM force spectroscopy experiments.

    PubMed

    Pawlak, Konrad; Strzelecki, Janusz

    2016-05-01

    Atomic Force Microscope (AFM) is a widely used tool in force spectroscopy studies. Presently, this instrument is accessible from numerous vendors, albeit commercial solutions are expensive and almost always hardware and software closed. Approaches for open setups were published, as with modern low cost and readily available piezoelectric actuators, data acquisition interfaces and optoelectronic components building such force spectroscopy AFM is relatively easy. However, suitable software to control such laboratory made instrument was not released. Developing it in the lab requires significant time and effort. Our Nanopuller software described in this paper is intended to eliminate this obstacle. With only minimum adjustments this program can be used to control and acquire data with any suitable National Instruments universal digital/analog interface and piezoelectric actuator analog controller, giving significant freedom and flexibility in designing force spectroscopy experiment. Since the full code, written in a graphical LabVIEW environment is available, our Nanopuller can be easily customized. In this paper we describe the program and test its performance in controlling different setups. Successful and accurate force curve acquisition for standard samples (single molecules of I27O reference titin polyprotein and DNA as well as red blood cells) is shown. PMID:26994468

  20. Implications of the contact radius to line step (CRLS) ratio in AFM for nanotribology measurements.

    PubMed

    Helt, James M; Batteas, James D

    2006-07-01

    Investigating the mechanisms of defect generation and growth at surfaces on the nanometer scale typically requires high-resolution tools such as the atomic force microscope (AFM). To accurately assess the kinetics and activation parameters of defect production over a wide range of loads (F(z)), the AFM data should be properly conditioned. Generally, AFM wear trials are performed over an area defined by the length of the slow (L(sscan)) and fast scan axes. The ratio of L(sscan) to image resolution (res, lines per image) becomes an important experimental parameter in AFM wear trials because it defines the magnitude of the line step (LS = L(sscan)/res), the distance the AFM tip steps along the slow scan axis. Comparing the contact radius (a) to the line step (LS) indicates that the overlap of successive scans will result unless the contact radius-line step ratio (CRLS) is < or =(1)/(2). If this relationship is not considered, then the scan history (e.g., contact frequency) associated with a single scan is not equivalent at different loads owing to the scaling of contact radius with load (a proportional variant F(z)(1/3)). Here, we present a model in conjunction with empirical wear tests on muscovite mica to evaluate the effects of scan overlap on surface wear. Using the Hertz contact mechanics definition of a, the CRLS model shows that scan overlap pervades AFM wear trials even under low loads. Such findings indicate that simply counting the number of scans (N(scans)) in an experiment underestimates the full history conveyed to the surface by the tip and translates into an error in the actual extent to which a region on the surface is contacted. Utilizing the CRLS method described here provides an approach to account for image scan history accurately and to predict the extent of surface wear. This general model also has implications for any AFM measurement where one wishes to correlate scan-dependent history to image properties as well as feature resolution in scanned

  1. Hydrodynamic effects of the tip movement on surface nanobubbles: a combined tapping mode, lift mode and force volume mode AFM study.

    PubMed

    Walczyk, Wiktoria; Hain, Nicole; Schönherr, Holger

    2014-08-28

    We report on an Atomic Force Microscopy (AFM) study of AFM tip-nanobubble interactions in experiments conducted on argon surface nanobubbles on HOPG (highly oriented pyrolytic graphite) in water in tapping mode, lift mode and Force Volume (FV) mode AFM. By subsequent data acquisition on the same nanobubbles in these three different AFM modes, we could directly compare the effect of different tip-sample interactions. The tip-bubble interaction strength was found to depend on the vertical and horizontal position of the tip on the bubble with respect to the bubble center. The interaction forces measured experimentally were in good agreement with the forces calculated using the dynamic interaction model. The strength of the hydrodynamic effect was also found to depend on the direction of the tip movement. It was more pronounced in the FV mode, in which the tip approaches the bubble from the top, than in the lift mode, in which the tip approaches the bubble from the side. This result suggests that the direction of tip movement influences the bubble deformation. The effect should be taken into account when nanobubbles are analysed by AFM in various scanning modes. PMID:24988375

  2. Molecular dynamics simulation of dextran extension by constant force in single molecule AFM.

    PubMed

    Neelov, Igor M; Adolf, David B; McLeish, Tom C B; Paci, Emanuele

    2006-11-15

    The extension of 1-6 polysaccharides has been studied in a series of recent single molecule AFM experiments. For dextran, a key finding was the existence of a plateau in the force-extension curve at forces between 700 and 1000 pN. We studied the extension of the dextran 10-mer under constant force using atomistic simulation with various force fields. All the force fields reproduce the experimental plateau on the force-extension curve. With AMBER94 and AMBER-GLYCAM04 force fields the plateau can be explained by a transition of the glucopyranose rings in the dextran monomers from the chair ((4)C(1)) to the inverted chair ((1)C(4)) conformation while other processes occur at smaller (rotation around C5-C6 bond) or higher (chairs to boat transitions) forces. The CHARMM force field provides a different picture which associates the occurrence of the plateau to chair-boat transitions of the glucopyranose rings. PMID:16950842

  3. Graphene Nanopore Support System for Simultaneous High-Resolution AFM Imaging and Conductance Measurements

    PubMed Central

    2015-01-01

    Accurately defining the nanoporous structure and sensing the ionic flow across nanoscale pores in thin films and membranes has a wide range of applications, including characterization of biological ion channels and receptors, DNA sequencing, molecule separation by nanoparticle films, sensing by block co-polymers films, and catalysis through metal–organic frameworks. Ionic conductance through nanopores is often regulated by their 3D structures, a relationship that can be accurately determined only by their simultaneous measurements. However, defining their structure–function relationships directly by any existing techniques is still not possible. Atomic force microscopy (AFM) can image the structures of these pores at high resolution in an aqueous environment, and electrophysiological techniques can measure ion flow through individual nanoscale pores. Combining these techniques is limited by the lack of nanoscale interfaces. We have designed a graphene-based single-nanopore support (∼5 nm thick with ∼20 nm pore diameter) and have integrated AFM imaging and ionic conductance recording using our newly designed double-chamber recording system to study an overlaid thin film. The functionality of this integrated system is demonstrated by electrical recording (<10 pS conductance) of suspended lipid bilayers spanning a nanopore and simultaneous AFM imaging of the bilayer. PMID:24581087

  4. Designer cantilevers for even more accurate quantitative measurements of biological systems with multifrequency AFM

    NASA Astrophysics Data System (ADS)

    Contera, S.

    2016-04-01

    Multifrequency excitation/monitoring of cantilevers has made it possible both to achieve fast, relatively simple, nanometre-resolution quantitative mapping of mechanical of biological systems in solution using atomic force microscopy (AFM), and single molecule resolution detection by nanomechanical biosensors. A recent paper by Penedo et al [2015 Nanotechnology 26 485706] has made a significant contribution by developing simple methods to improve the signal to noise ratio in liquid environments, by selectively enhancing cantilever modes, which will lead to even more accurate quantitative measurements.

  5. Measuring the energy landscape of complex bonds using AFM

    NASA Astrophysics Data System (ADS)

    Mayyas, Essa; Hoffmann, Peter; Runyan, Lindsay

    2009-03-01

    We measured rupture force of a complex bond of two interacting proteins with atomic force microscopy. Proteins of interest were active and latent Matrix metalloproteinases (MMPs), type 2 and 9, and their tissue inhibitors TIMP1 and TIMP2. Measurements show that the rupture force depends on the pulling speed; it ranges from 30 pN to 150 pN at pulling speeds 30nm/s to 48000nm/s. Analyzing data using an extended theory enabled us to understand the mechanism of MMP-TIMP interaction; we determined all physical parameters that form the landscape energy of the interaction, in addition to the life time of the bond and its length. Moreover, we used the pulling experiment to study the interaction of TIMP2 with the receptor MT1-MMP on the surface of living cells.

  6. Cellular mechanoadaptation to substrate mechanical properties: contributions of substrate stiffness and thickness to cell stiffness measurements using AFM.

    PubMed

    Vichare, Shirish; Sen, Shamik; Inamdar, Mandar M

    2014-02-28

    Mechanosensing by adherent cells is usually studied by quantifying cell responses on hydrogels that are covalently linked to a rigid substrate. Atomic force microscopy (AFM) represents a convenient way of characterizing the mechanoadaptation response of adherent cells on hydrogels of varying stiffness and thickness. Since AFM measurements reflect the effective cell stiffness, therefore, in addition to measuring real cytoskeletal alterations across different conditions, these measurements might also be influenced by the geometry and physical properties of the substrate itself. To better understand how the physical attributes of the gel influence AFM stiffness measurements of cells, we have used finite element analysis to simulate the indentation of cells of various spreads resting on hydrogels of varying stiffness and thickness. Consistent with experimental results, our simulation results indicate that for well spread cells, stiffness values are significantly over-estimated when experiments are performed on cells cultured on soft and thin gels. Using parametric studies, we have developed scaling relationships between the effective stiffness probed by AFM and the bulk cell stiffness, taking cell and tip geometry, hydrogel properties, nuclear stiffness and cell contractility into account. Finally, using simulated mechanoadaptation responses, we have demonstrated that a cell stiffening response may arise purely due to the substrate properties. Collectively, our results demonstrate the need to take hydrogel properties into account while estimating cell stiffness using AFM indentation. PMID:24651595

  7. PREFACE: NC-AFM 2005: Proceedings of the 8th International Conference on Non-Contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Reichling, M.; Mikosch, W.

    2006-04-01

    The 8th International Conference on Non-Contact Atomic Force Microscopy, held in Bad Essen, Germany, from 15 18th August 2005, attracted a record breaking number of participants presenting excellent contributions from a variety of scientific fields. This clearly demonstrated the high level of activity and innovation present in the community of NC-AFM researchers and the continuous growth of the field. The strongest ever participation of companies for a NC-AFM meeting is a sign for the emergence of new markets for the growing NC-AFM community; and the high standard of the products presented at the exhibition, many of them brand-new developments, reflected the unbroken progress in technology. The development of novel technologies and the sophistication of known techniques in research laboratories and their subsequent commercialization is still a major driving force for progress in this area of nanoscience. The conference was a perfect demonstration of how progress in the development of enabling technologies can readily be transcribed into basic research yielding fundamental insight with an impact across disciplines. The NC-AFM 2005 scientific programme was based on five cornerstones, each representing an area of vivid research and scientific progress. Atomic resolution imaging on oxide surfaces, which has long been a vision for the catalysis community, appears to be routine in several laboratories and after a period of demonstrative experiments NC-AFM now makes unique contributions to the understanding of processes in surface chemistry. These capabilities also open up new routes for the analysis of clusters and molecules deposited on dielectric surfaces where resolution limits are pushed towards the single atom level. Atomic precision manipulation with the dynamic AFM left the cradle of its infancy and flourishes in the family of bottom-up fabrication nanotechnologies. The systematic development of established and the introduction of new concepts of contrast

  8. Elastic modulus of nanomaterials: resonant contact-AFM measurement and reduced-size effects (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Nysten, Bernard; Fretigny, Christian; Cuenot, Stephane

    2005-05-01

    Resonant contact atomic force microscopy (resonant C-AFM) is used to quantitatively measure the elastic modulus of polymer nanotubes and metallic nanowires. To achieve this, an oscillating electric field is applied between the sample holder and the microscope head to excite the oscillation of the cantilever in contact with the nanostructures suspended over the pores of a membrane. The resonance frequency of the cantilever with the tip in contact with a nanostructure is shifted to higher values with respect to the resonance frequency of the free cantilever. It is demonstrated that the system can simply be modeled by a cantilever with the tip in contact with two springs. The measurement of the frequency shift enables the direct determination of the spring stiffness, i.e. the nanowires or nanotube stiffness. The method also enables the determination of the boundary conditions of the nanobeam on the membrane. The tensile elastic modulus is then simply determined using the classical theory of beam deflection. The obtained results for the larger nanostructures fairly agree to the values reported in the literature for the macroscopic elastic modulus of the corresponding materials. The measured modulus of the nanomaterials with smaller diameters is significantly higher than that of the larger ones. The increase of the apparent elastic modulus for the smaller diameters is attributed to the surface tension effects. It is thus demonstrated that resonant C-AFM enables the measurement of the elastic modulus and of the surface tension of nanomaterials.

  9. Measuring cell wall elasticity on enteroaggregative Escherichia coli wild type and dispersin mutant by AFM

    SciTech Connect

    Beckmann, Melissa; Venkataraman, Sankar; Doktycz, Mitchel John; Nataro, James P; Sullivan, Claretta J; Morrell-Falvey, Jennifer L; Allison, David P

    2006-07-01

    Enteroaggregative Escherichia coli (EAEC) is pathogenic and produces severe diarrhea in humans. A mutant of EAEC that does not produce dispersin, a cell surface protein, is not pathogenic. It has been proposed that dispersin imparts a positive charge to the bacterial cell surface allowing the bacteria to colonize on the negatively charged intestinal mucosa. However, physical properties of the bacterial cell surface, such as rigidity, may be influenced by the presence of dispersin and may contribute to pathogenicity. Using the system developed in our laboratory for mounting and imaging bacterial cells by atomic force microscopy (AFM), in liquid, on gelatin coated mica surfaces, studies were initiated to measure cell surface elasticity. This was carried out in both wild type EAEC, that produces dispersin, and the mutant that does not produce dispersin. This was accomplished using AFM force-distance (FD) spectroscopy on the wild type and mutant grown in liquid or on solid medium. Images in liquid and in air of both the wild-type and mutant grown in liquid and on solid media are presented. This work represents an initial step in efforts to understand the pathogenic role of the dispersin protein in the wild-type bacteria.

  10. Interlaboratory comparison of traceable atomic force microscope pitch measurements

    NASA Astrophysics Data System (ADS)

    Dixson, Ronald; Chernoff, Donald A.; Wang, Shihua; Vorburger, Theodore V.; Tan, Siew Leng; Orji, Ndubuisi G.; Fu, Joseph

    2010-06-01

    The National Institute of Standards and Technology (NIST), Advanced Surface Microscopy (ASM), and the National Metrology Centre (NMC) of the Agency for Science, Technology, and Research (A*STAR) in Singapore have completed a three-way interlaboratory comparison of traceable pitch measurements using atomic force microscopy (AFM). The specimen being used for this comparison is provided by ASM and consists of SiO2 lines having a 70 nm pitch patterned on a silicon substrate. NIST has a multifaceted program in atomic force microscope (AFM) dimensional metrology. One component of this effort is a custom in-house metrology AFM, called the calibrated AFM (C-AFM). The NIST C-AFM has displacement metrology for all three axes traceable to the 633 nm wavelength of the iodine-stabilized He-Ne laser - a recommended wavelength for realization of the SI (Système International d'Unités, or International System of Units) meter. NIST used the C-AFM to participate in this comparison. ASM used a commercially available AFM with an open-loop scanner, calibrated by a 144 nm pitch transfer standard. In a prior collaboration with Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute, ASM's transfer standard was calibrated using PTB's traceable optical diffractometry instrument. Thus, ASM's measurements are also traceable to the SI meter. NMC/A*STAR used a large scanning range metrological atomic force microscope (LRM-AFM). The LRM-AFM integrates an AFM scanning head into a nano-stage equipped with three built-in He-Ne laser interferometers so that its measurement related to the motion on all three axes is directly traceable to the SI meter. The measurements for this interlaboratory comparison have been completed and the results are in agreement within their expanded uncertainties and at the level of a few parts in 104.

  11. Single molecule force spectroscopy by AFM indicates helical structure of poly(ethylene-glycol) in water

    NASA Astrophysics Data System (ADS)

    Oesterhelt, F.; Rief, M.; Gaub, H. E.

    1999-03-01

    We elongated individual poly(ethylene-glycol) (PEG) molecules tethered at one end to an AFM cantilever. We observed the resistive force as a function of elongation in different solvents. In all cases the molecular response was found to be fully reversible and thus in thermodynamic equilibrium. In hexadecane the stretched PEG acts like an ideal entropy spring and can be well described as a freely jointed chain. In water we observed marked deviations in the transition region from entropic to enthalpic elasticity, indicating the deformation of a supra-structure within the polymer. An analysis based on elastically coupled Markovian two-level systems agrees well with recent ab initio calculations predicting that PEG in water forms a non-planar supra-structure which is stabilized by water bridges. We obtained a binding free energy of 3.0+/-0.3 kT.

  12. Toward an uncertainty budget for measuring nanoparticles by AFM

    NASA Astrophysics Data System (ADS)

    Delvallée, A.; Feltin, N.; Ducourtieux, S.; Trabelsi, M.; Hochepied, J. F.

    2016-02-01

    This article reports on the evaluation of an uncertainty budget associated with the measurement of the mean diameter of a nanoparticle (NP) population by Atomic Force Microscopy. The measurement principle consists in measuring the height of a spherical-like NP population to determine the mean diameter and the size distribution. This method assumes that the NPs are well-dispersed on the substrate and isolated enough to avoid measurement errors due to agglomeration phenomenon. Since the measurement is directly impacted by the substrate roughness, the NPs have been deposited on a mica sheet presenting a very low roughness. A complete metrological characterization of the instrument has been carried out and the main error sources have been evaluated. The measuring method has been tested on a population of SiO2 NPs. Homemade software has been used to build the height distribution histogram taking into account only isolated NP. Finally, the uncertainty budget including main components has been established for the mean diameter measurement of this NP population. The most important components of this uncertainty budget are the calibration process along Z-axis, the scanning speed influence and then the vertical noise level.

  13. PREFACE: NC-AFM 2006: Proceedings of the 9th International Conference on Non-contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Tomitori, Masahiko; Onishi, Hiroshi

    2007-02-01

    The advent of scanning probe microscopy (SPM) in the 1980s has significantly promoted nanoscience and nanotechnology. In particular, non-contact atomic force microscopy (NC-AFM), one of the SPM family, has unique capabilities with high spatial resolution for nanoscale measurements in vacuum, air and liquids. In the last decade we have witnessed the rapid progress of NC-AFM with improved performance and increasing applications. A series of NC-AFM international conferences have greatly contributed to this field. Initiated in Osaka in 1998, the NC-AFM meeting has been followed by annual conferences at Pontresina, Hamburg, Kyoto, Montreal, Dingle, Seattle and Bad Essen. The 9th conference was held in Kobe, Japan, 16-20 July 2006. This special issue of Nanotechnology contains the outstanding contributions of the conference. During the meeting delegates learnt about a number of significant advances. Topics covered atomic resolution imaging of metals, semiconductors, insulators, ionic crystals, oxides, molecular systems, imaging of biological materials in various environments and novel instrumentation. Work also included the characterization of electronic and magnetic properties, tip and cantilever fabrication and characterization, atomic distinction based on analysis of tip-sample interaction, atomic scale manipulation, fabrication of nanostructures using NC-AFM, and related theories and simulations. We are greatly impressed by the increasing number of applications, and convinced that NC-AFM and related techniques are building a bridge to a future nano world, where quantum phenomena will dominate and nano devices will be realized. In addition, a special session on SPM road maps was held as a first trial in the field, where the future prospects of SPM were discussed enthusiastically. The overall success of the NC-AFM 2006 conference was due to the efforts of many individuals and groups with respect to scientific and technological progress, as well as the international

  14. Force-Measuring Clamp

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2004-01-01

    A precision clamp that accurately measures force over a wide range of conditions is described. Using a full bridge or other strain gage configuration. the elastic deformation of the clamp is measured or detected by the strain gages. Thc strain gages transmit a signal that corresponds to the degree of stress upon the clamp. Thc strain gage signal is converted to a numeric display. Calibration is achieved by ero and span potentiometers which enable accurate measurements by the force-measuring clamp.

  15. AFM PeakForce QNM mode: Evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites.

    PubMed

    Smolyakov, G; Pruvost, S; Cardoso, L; Alonso, B; Belamie, E; Duchet-Rumeau, J

    2016-10-20

    PeakForce Quantitative Nanomechanical Mapping (QNM) AFM mode was used to explore the mechanical properties of textured chitin-silica hybrid films at the nanoscale. The influence of the force applied by the tip on the sample surface was studied for standard homogeneous samples, for chitin nanorods and for chitin-silica hybrid nanocomposites. Thick films of superimposed chitin nanorods showed a monotonous increase of DMT modulus (based on the Derjaguin-Muller-Toporov model) owing to an increase in modulus at the interface between nanorods due to geometrical constraints of the AFM acquisition. A similar variation of DMT modulus was obtained for chitin-silica hybrid thick films related to mechanical strengthening induced by the presence of silica. This work revealed the role of the organic-inorganic interface, at the nanoscale, in the mechanical behaviour of textured materials using PeakForce QNM mode, with optimized analysis conditions. PMID:27474579

  16. Influence of spurious resonances on the interaction force in dynamic AFM.

    PubMed

    Costa, Luca; Rodrigues, Mario S

    2015-01-01

    The quantification of the tip-sample interaction in amplitude modulation atomic force microscopy is challenging, especially when measuring in liquid media. Here, we derive formulas for the tip-sample interactions and investigate the effect of spurious resonances on the measured interaction. Highlighting the differences between measuring directly the tip position or the cantilever deflection, and considering both direct and acoustic excitation, we show that the cantilever behavior is insensitive to spurious resonances as long as the measured signal corresponds to the tip position, or if the excitation force is correctly considered. Since the effective excitation force may depend on the presence of such spurious resonances, only the case in which the frequency is kept constant during the measurement is considered. Finally, we show the advantages that result from the use of a calibration method based on the acquisition of approach-retract curves. PMID:25821682

  17. Lateral force calibration: accurate procedures for colloidal probe friction measurements in atomic force microscopy.

    PubMed

    Chung, Koo-Hyun; Pratt, Jon R; Reitsma, Mark G

    2010-01-19

    The colloidal probe technique for atomic force microscopy (AFM) has allowed the investigation of an extensive range of surface force phenomena, including the measurement of frictional (lateral) forces between numerous materials. The quantitative accuracy of such friction measurements is often debated, in part due to a lack of confidence in existing calibration strategies. Here we compare three in situ AFM lateral force calibration techniques using a single colloidal probe, seeking to establish a foundation for quantitative measurement by linking these techniques to accurate force references available at the National Institute of Standards and Technology. We introduce a procedure for calibrating the AFM lateral force response to known electrostatic forces applied directly to the conductive colloidal probe. In a second procedure, we apply known force directly to the colloidal probe using a precalibrated piezo-resistive reference cantilever. We found agreement between these direct methods on the order of 2% (within random uncertainty for both measurements). In a third procedure, we performed a displacement-based calibration using the piezo-resistive reference cantilever as a stiffness reference artifact. The method demonstrated agreement on the order of 7% with the direct force methods, with the difference attributed to an expected systematic uncertainty, caused by in-plane deflection in the cantilever during loading. The comparison establishes the existing limits of instrument accuracy and sets down a basis for selection criteria for materials and methods in colloidal probe friction (lateral) force measurements via atomic force microscopy. PMID:19827782

  18. Numerical study of the hydrodynamic drag force in atomic force microscopy measurements undertaken in fluids.

    PubMed

    Méndez-Méndez, J V; Alonso-Rasgado, M T; Faria, E Correia; Flores-Johnson, E A; Snook, R D

    2014-11-01

    When atomic force microscopy (AFM) is employed for in vivo study of immersed biological samples, the fluid medium presents additional complexities, not least of which is the hydrodynamic drag force due to viscous friction of the cantilever with the liquid. This force should be considered when interpreting experimental results and any calculated material properties. In this paper, a numerical model is presented to study the influence of the drag force on experimental data obtained from AFM measurements using computational fluid dynamics (CFD) simulation. The model provides quantification of the drag force in AFM measurements of soft specimens in fluids. The numerical predictions were compared with experimental data obtained using AFM with a V-shaped cantilever fitted with a pyramidal tip. Tip velocities ranging from 1.05 to 105 μm/s were employed in water, polyethylene glycol and glycerol with the platform approaching from a distance of 6000 nm. The model was also compared with an existing analytical model. Good agreement was observed between numerical results, experiments and analytical predictions. Accurate predictions were obtained without the need for extrapolation of experimental data. In addition, the model can be employed over the range of tip geometries and velocities typically utilized in AFM measurements. PMID:25080275

  19. Sequential adaptation in latent tuberculosis bacilli: observation by atomic force microscopy (AFM).

    PubMed

    Velayati, Ali Akbar; Farnia, Parissa; Masjedi, Mohammad Reza; Zhavnerko, Gennady Konstantinovich; Merza, Muayad Aghali; Ghanavi, Jalladein; Tabarsi, Payam; Farnia, Poopak; Poleschuyk, Nikolai Nikolaevich; Ignatyev, George

    2011-01-01

    Mycobacterium tuberculosis (MTB) can persist within the human host for years without causing disease, in a syndrome known as latent tuberculosis. The mechanisms by which M. tuberculosis establishes a latent metabolic state is unknown, but it is hypothesized that reduced oxygen tension may trigger the bacillus to enter a state of latency. Therefore, we are studying anaerobic culture of M. tuberculosis (H37RV) as a model of latency. For the first time, the sequential adaptation of latent bacilli (every 90 days for 48 months) viewed under Atomic Force Microscopy (AFM). Two types of adaptation were observed and are described here. First, cells are undergoing temporary adaptation (from 1 to 18 months of latency) that includes; thickening of cell wall (20.5±1.8 nm versus 15.2±1.8 nm, P<0.05), formation of ovoid cells by "folding phenomena"(65-70%), size reduction (0.8±0.1 μm versus 2.5±0.5 μm), and budding type of cell division (20-25%).A second feature include changes that accompany development of specialized cells i.e., production of spore like cells (0.5±0.2 μm) and their progeny (filterable non -acid fast forms; 150 to 300 μm in size). Although, these cells were not real spore because they fail to form a heat resistant colony forming units, after incubation for 35-40 min at 65°C. The filterable non-acid fast forms of bacilli are metabolically active and increased their number by symmetrical type of cell-division. Therefore, survival strategies that developed by M. tuberculosis under oxygen limited condition are linked to its shape, size and conspicuous loss of acid fastness. PMID:21977232

  20. Mechanical properties of in situ demineralised human enamel measured by AFM nanoindentation

    NASA Astrophysics Data System (ADS)

    Finke, Manuela; Hughes, Julie A.; Parker, David M.; Jandt, Klaus D.

    2001-10-01

    Diet-induced demineralisation is one of the key factors in surface changes of tooth enamel, with soft drinks being a significant etiological agent. The first step in this dissolution process is characterised by a change in the mechanical properties of the enamel and a roughening of the surface. The objective of this pilot study was to measure early stages of in situ induced hardness changes of polished human enamel surfaces with high accuracy using a nanoindenter attached to an atomic force microscope (AFM). Human unerupted third molars were cleaned, sterilised with sodium hypochlorite, sectioned and embedded in epoxy resin. The outer enamel surface was polished and the samples partly covered with a tape, allowing a 2-mm-wide zone to be exposed to the oral environment. Samples were fitted in an intra-oral appliance, which was worn from 9 a.m. to 5 p.m. for one day. During this time the volunteer sipped 250 ml of a drink over 10 min periods at 9.00, 11.00, 13.00 and 15.00 h. Three different drinks, mineral water, orange juice and the prototype of a blackcurrant drink with low demineralisation potential were used in this study. At the end of the experiment the samples were detached from the appliance, the tape removed and the surfaces chemically cleaned. The surface hardness and reduced Young's modulus of the exposed and unexposed areas of each sample were determined. In addition, high resolution topographical AFM images were obtained. This study shows that by determining the hardness and reduced Young's modulus, the difference in demineralisation caused by the drinks can be detected and quantified before statistically significant changes in surface topography could be observed with the AFM. The maximum decrease in surface hardness and Young's modulus occurred in the samples exposed to orange juice, followed by those exposed to the blackcurrant drink, while exposure to water led to the same values as unexposed areas. A one-way ANOVA showed a statistically significant

  1. Dynamic measurement and modeling of the Casimir force at the nanometer scale

    SciTech Connect

    Kohoutek, John; Wan, Ivy Yoke Leng; Mohseni, Hooman

    2010-02-08

    We present a dynamic method for measurement of the Casimir force with an atomic force microscope (AFM) with a conventional AFM tip. With this method, originally based on the phase of vibration of the AFM tip, we are able to verify the Casimir force at distances of nearly 6 nm with an AFM tip that has a radius of curvature of nearly 100 nm. Until now dynamic methods have been done using large metal spheres at greater distances. Also presented is a theoretical model based on the harmonic oscillator, including nonidealities. This model accurately predicts the experimental data.

  2. The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding

    NASA Astrophysics Data System (ADS)

    Hughes, Megan L.; Dougan, Lorna

    2016-07-01

    One of the most exciting developments in the field of biological physics in recent years is the ability to manipulate single molecules and probe their properties and function. Since its emergence over two decades ago, single molecule force spectroscopy has become a powerful tool to explore the response of biological molecules, including proteins, DNA, RNA and their complexes, to the application of an applied force. The force versus extension response of molecules can provide valuable insight into its mechanical stability, as well as details of the underlying energy landscape. In this review we will introduce the technique of single molecule force spectroscopy using the atomic force microscope (AFM), with particular focus on its application to study proteins. We will review the models which have been developed and employed to extract information from single molecule force spectroscopy experiments. Finally, we will end with a discussion of future directions in this field.

  3. The ReactorAFM: Non-contact atomic force microscope operating under high-pressure and high-temperature catalytic conditions

    SciTech Connect

    Roobol, S. B.; Cañas-Ventura, M. E.; Bergman, M.; Spronsen, M. A. van; Onderwaater, W. G.; Tuijn, P. C. van der; Koehler, R.; Frenken, J. W. M.; Ofitserov, A.; Baarle, G. J. C. van

    2015-03-15

    An Atomic Force Microscope (AFM) has been integrated in a miniature high-pressure flow reactor for in-situ observations of heterogeneous catalytic reactions under conditions similar to those of industrial processes. The AFM can image model catalysts such as those consisting of metal nanoparticles on flat oxide supports in a gas atmosphere up to 6 bar and at a temperature up to 600 K, while the catalytic activity can be measured using mass spectrometry. The high-pressure reactor is placed inside an Ultrahigh Vacuum (UHV) system to supplement it with standard UHV sample preparation and characterization techniques. To demonstrate that this instrument successfully bridges both the pressure gap and the materials gap, images have been recorded of supported palladium nanoparticles catalyzing the oxidation of carbon monoxide under high-pressure, high-temperature conditions.

  4. The ReactorAFM: Non-contact atomic force microscope operating under high-pressure and high-temperature catalytic conditions

    NASA Astrophysics Data System (ADS)

    Roobol, S. B.; Cañas-Ventura, M. E.; Bergman, M.; van Spronsen, M. A.; Onderwaater, W. G.; van der Tuijn, P. C.; Koehler, R.; Ofitserov, A.; van Baarle, G. J. C.; Frenken, J. W. M.

    2015-03-01

    An Atomic Force Microscope (AFM) has been integrated in a miniature high-pressure flow reactor for in-situ observations of heterogeneous catalytic reactions under conditions similar to those of industrial processes. The AFM can image model catalysts such as those consisting of metal nanoparticles on flat oxide supports in a gas atmosphere up to 6 bar and at a temperature up to 600 K, while the catalytic activity can be measured using mass spectrometry. The high-pressure reactor is placed inside an Ultrahigh Vacuum (UHV) system to supplement it with standard UHV sample preparation and characterization techniques. To demonstrate that this instrument successfully bridges both the pressure gap and the materials gap, images have been recorded of supported palladium nanoparticles catalyzing the oxidation of carbon monoxide under high-pressure, high-temperature conditions.

  5. Evaluating interaction forces between BSA and rabbit anti-BSA in sulphathiazole sodium, tylosin and levofloxacin solution by AFM

    NASA Astrophysics Data System (ADS)

    Wang, Congzhou; Wang, Jianhua; Deng, Linhong

    2011-11-01

    Protein-protein interactions play crucial roles in numerous biological processes. However, it is still challenging to evaluate the protein-protein interactions, such as antigen and antibody, in the presence of drug molecules in physiological liquid. In this study, the interaction between bovine serum albumin (BSA) and rabbit anti-BSA was investigated using atomic force microscopy (AFM) in the presence of various antimicrobial drugs (sulphathiazole sodium, tylosin and levofloxacin) under physiological condition. The results show that increasing the concentration of tylosin decreased the single-molecule-specific force between BSA and rabbit anti-BSA. As for sulphathiazole sodium, it dramatically decreased the specific force at a certain critical concentration, but increased the nonspecific force as its concentration increasing. In addition, the presence of levofloxacin did not greatly influence either the specific or nonspecific force. Collectively, these results suggest that these three drugs may adopt different mechanisms to affect the interaction force between BSA and rabbit anti-BSA. These findings may enhance our understanding of antigen/antibody binding processes in the presence of drug molecules, and hence indicate that AFM could be helpful in the design and screening of drugs-modulating protein-protein interaction processes.

  6. Force spectroscopy 101: how to design, perform, and analyze an AFM-based single molecule force spectroscopy experiment.

    PubMed

    Noy, Aleksandr

    2011-10-01

    Single molecule force spectroscopy presents a deceptively simple approach to probing interaction between molecules and molecular assemblies on the nanoscale by measuring forces that it takes to pull the molecules apart. Yet, a more detailed analysis reveals a wealth of different behaviors and interesting physics. This article aims to explore basic physical concepts behind these experiments from a strictly practical point of using these data to extract meaningful information about the interactions. It also focuses on different loading regimes in these experiments, different kinetics that they cause, and different data interpretation that is required for measurements in those regimes. PMID:21862386

  7. PREFACE: NC-AFM 2004: Proceedings of the 7th International Conference on Non-contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Schwarz, Udo

    2005-03-01

    With the ongoing miniaturization of devices and controlled nanostructuring of materials, the importance of atomic-scale information on surfaces and surface properties is growing continuously. The astonishing progress in nanoscience and nanotechnology that took place during the last two decades was in many ways related to recent progress in high-resolution imaging techniques such as scanning tunnelling microscopy and transmission electron microscopy. Since the mid-1990s, non-contact atomic force microscopy (NC-AFM) performed in ultrahigh vacuum has evolved as an alternative technique that achieves atomic resolution, but without the restriction to conducting surfaces of the previously established techniques. Advances of the rapidly developing field of NC-AFM are discussed at annual conferences as part of a series that started in 1998 in Osaka, Japan. This special issue of Nanotechnology is a compilation of original work presented at the 7th International Conference on Non-contact Atomic Force Microscopy that took place in Seattle, USA, 12-15 September 2004. Over the years, the conference grew in size and scope. Atomic resolution imaging of oxides and semiconductors remains an issue. Noticeable new developments have been presented in this regard such as, e.g., the demonstrated ability to manipulate individual atoms. Additionally, the investigation of individual molecules, clusters, and organic materials gains more and more attention. In this context, considerable effort is undertaken to transfer the NC-AFM principle based on frequency modulation to applications in air and liquids with the goal of enabling high-resolution surface studies of biological material in native environments, as well as to reduce the experimental complexity, which so far involves the availability of (costly) vacuum systems. Force spectroscopy methods continue to be improved and are applied to topics such as the imaging of the three-dimensional force field as a function of the distance with

  8. Interaction measurements between a tip and a sample in proximity regions controlled by tunneling current in a UHV STM AFM

    NASA Astrophysics Data System (ADS)

    Arai, Toyoko; Tomitori, Masahiko

    1999-04-01

    The interaction force-distance curves between a tip and a sample surface in close proximity were measured by logarithmically changing a tunneling current passing through them with a ultrahigh vacuum scanning tunneling microscopy-atomic force microscopy (UHV STM-AFM). Since the tunneling current changes exponentially with the separation between the tip and the sample, the separation can be controlled precisely and linearly by modulating a logarithmic target value fed into the STM feedback circuit to be a triangular waveform. A piezoresistive cantilever with a conductive Si tip was used after cleaning the tip by heating it in the UHV chamber. As a preliminary result, force-separation curves with reversible and irreversible jumps in close proximity were presented.

  9. Sensor for direct measurement of interaction forces in probe microscopy

    NASA Astrophysics Data System (ADS)

    Degertekin, F. L.; Onaran, A. G.; Balantekin, M.; Lee, W.; Hall, N. A.; Quate, C. F.

    2005-11-01

    We introduce a sensor for direct measurement of tip-sample interaction forces in probe microscopy. The sensor uses a micromachined membrane structure built on a transparent substrate with an integrated diffraction grating for optical interferometric detection, and a built-in electrostatic actuator. To demonstrate our concept for this sensor, we measured the force curves between an atomic force microscope (AFM) cantilever tip and a micromachined aluminum sensor membrane built on a quartz substrate. We also measured transient interaction forces exerted on the sensor membrane during each cycle of the vibrating AFM cantilever. These agree well with the temporal response of the sensor to a short force pulse applied by our integrated electrostatic actuator. With the addition of an integrated tip, this structure may be used for scanning probe microscopy with a bandwidth limited by the membrane dynamics.

  10. Photothermally excited force modulation microscopy for broadband nanomechanical property measurements

    NASA Astrophysics Data System (ADS)

    Wagner, Ryan; Killgore, Jason P.

    2015-11-01

    We demonstrate photothermally excited force modulation microscopy (PTE FMM) for mechanical property characterization across a broad frequency range with an atomic force microscope (AFM). Photothermal excitation allows for an AFM cantilever driving force that varies smoothly as a function of drive frequency, thus avoiding the problem of spurious resonant vibrations that hinder piezoelectric excitation schemes. A complication of PTE FMM is that the sub-resonance cantilever vibration shape is fundamentally different compared to piezoelectric excitation. By directly measuring the vibrational shape of the cantilever, we show that PTE FMM is an accurate nanomechanical characterization method. PTE FMM is a pathway towards the characterization of frequency sensitive specimens such as polymers and biomaterials with frequency range limited only by the resonance frequency of the cantilever and the low frequency limit of the AFM.

  11. Photothermally excited force modulation microscopy for broadband nanomechanical property measurements

    SciTech Connect

    Wagner, Ryan Killgore, Jason P.

    2015-11-16

    We demonstrate photothermally excited force modulation microscopy (PTE FMM) for mechanical property characterization across a broad frequency range with an atomic force microscope (AFM). Photothermal excitation allows for an AFM cantilever driving force that varies smoothly as a function of drive frequency, thus avoiding the problem of spurious resonant vibrations that hinder piezoelectric excitation schemes. A complication of PTE FMM is that the sub-resonance cantilever vibration shape is fundamentally different compared to piezoelectric excitation. By directly measuring the vibrational shape of the cantilever, we show that PTE FMM is an accurate nanomechanical characterization method. PTE FMM is a pathway towards the characterization of frequency sensitive specimens such as polymers and biomaterials with frequency range limited only by the resonance frequency of the cantilever and the low frequency limit of the AFM.

  12. Real time drift measurement for colloidal probe atomic force microscope: a visual sensing approach

    SciTech Connect

    Wang, Yuliang Bi, Shusheng; Wang, Huimin

    2014-05-15

    Drift has long been an issue in atomic force microscope (AFM) systems and limits their ability to make long time period measurements. In this study, a new method is proposed to directly measure and compensate for the drift between AFM cantilevers and sample surfaces in AFM systems. This was achieved by simultaneously measuring z positions for beads at the end of an AFM colloidal probe and on sample surface through an off-focus image processing based visual sensing method. The working principle and system configuration are presented. Experiments were conducted to validate the real time drift measurement and compensation. The implication of the proposed method for regular AFM measurements is discussed. We believe that this technique provides a practical and efficient approach for AFM experiments requiring long time period measurement.

  13. Nanonet Force Microscopy for Measuring Cell Forces.

    PubMed

    Sheets, Kevin; Wang, Ji; Zhao, Wei; Kapania, Rakesh; Nain, Amrinder S

    2016-07-12

    The influence of physical forces exerted by or felt by cells on cell shape, migration, and cytoskeleton arrangement is now widely acknowledged and hypothesized to occur due to modulation of cellular inside-out forces in response to changes in the external fibrous environment (outside-in). Our previous work using the non-electrospinning Spinneret-based Tunable Engineered Parameters' suspended fibers has revealed that cells are able to sense and respond to changes in fiber curvature and structural stiffness as evidenced by alterations to focal adhesion cluster lengths. Here, we present the development and application of a suspended nanonet platform for measuring C2C12 mouse myoblast forces attached to fibers of three diameters (250, 400, and 800 nm) representing a wide range of structural stiffness (3-50 nN/μm). The nanonet force microscopy platform measures cell adhesion forces in response to symmetric and asymmetric external perturbation in single and cyclic modes. We find that contractility-based, inside-out forces are evenly distributed at the edges of the cell, and that forces are dependent on fiber structural stiffness. Additionally, external perturbation in symmetric and asymmetric modes biases cell-fiber failure location without affecting the outside-in forces of cell-fiber adhesion. We then extend the platform to measure forces of (1) cell-cell junctions, (2) single cells undergoing cyclic perturbation in the presence of drugs, and (3) cancerous single-cells transitioning from a blebbing to a pseudopodial morphology. PMID:27410747

  14. Use of atomic force microscopy (AFM) for microfabric study of cohesive soils.

    PubMed

    Sachan, A

    2008-12-01

    Microfabric reflects the imprints of the geologic and stress history of the soil deposit, the depositional environment and weathering history. Many investigators have been concerned with the fundamental problem of how the engineering properties of clay depend on the microfabric, which can be defined as geometric arrangement of particles within the soil mass. It is believed that scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are the only techniques that can reveal particle arrangements of clayey soils directly; however, current research introduces a novel and more advanced technique, atomic force microscopy, to evaluate the microfabric of cohesive materials. The atomic force microscopy has several advantages over SEM/TEM for characterizing cohesive particles at the sub-micrometre range by providing 3D images and 2D images with Z-information used in quantitative measurements of soil microfabric using SPIP software, and having the capability of obtaining images in all environments (ambient air, liquids and vacuums). This paper focuses on the use of atomic force microscopy technique to quantify the microfabric of clayey soils by developing the criteria for average and maximum values of angle of particle orientation within the soil mass using proposed empirical equations for intermediate and extreme microfabrics (dispersed, flocculated). PMID:19094019

  15. Recombinant albumin adsorption on mica studied by AFM and streaming potential measurements.

    PubMed

    Kujda, Marta; Adamczyk, Zbigniew; Morga, Maria; Sofińska, Kamila

    2015-03-01

    Recombinant human serum albumin (rHSA) in monomeric state is widely used in pharmaceutical industry as a drug excipient and for preparing coatings for medical devices. In this work the adsorption process of rHSA on model mica surface at pH 3.5 was studied using the atomic force microscopy (AFM) and in situ streaming potential measurements. The kinetics of albumin adsorption was determined by a direct enumeration of single molecules over various substrate areas. These results were consistent with streaming potential measurements carried out for the parallel-plate channel flow and with theoretical predictions derived from the random sequential adsorption (RSA) model. Desorption kinetics of albumin under flow conditions was also evaluated via the streaming potential measurements. In this way, the amount of irreversibly bound albumin was quantitatively evaluated to be 0.64 and 1.2 mg m(-2) for ionic strength of 0.01 and 0.15 M, respectively. This agrees with previous results obtained for HSA and theoretical calculations derived from the RSA model. Additionally, it was demonstrated that there existed a fraction of reversibly bound albumin that can be fully eluted within a few hours. The binding energy of these fraction of molecules was -18 kT that is consistent with the electrostatic controlled adsorption mechanism of albumin at this pH. It was concluded that the rHSA monolayers of well-defined coverage can find applications for quantitatively analyzing ligand binding and for performing efficient biomaterials and immunological tests. PMID:25679491

  16. Examination of Humidity Effects on Measured Thickness and Interfacial Phenomena of Exfoliated Graphene on SiO2 via AC-AFM

    NASA Astrophysics Data System (ADS)

    Jinkins, Katherine; Camacho, Jorge; Farina, Lee; Wu, Yan

    2015-03-01

    Tapping (AC) mode Atomic Force Microscopy (AFM) is commonly used to determine the thickness of graphene samples. However, AFM measurements have been shown to be sensitive to environmental conditions such as adsorbed water, in turn dependent on relative humidity (RH). In the present study, AC-AFM is used to measure the thickness and loss tangent of exfoliated graphene on silicon dioxide (SiO2) as RH is increased from 10% to 80%. We show that the measured thickness of graphene is dependent on RH. Loss tangent is an AFM imaging technique that interprets the phase information as a relationship between the stored and dissipated energy in the tip-sample interaction. This study demonstrates the loss tangent of the graphene and oxide regions are both affected by humidity, with generally higher loss tangent for graphene than SiO2. As RH increases, we observe the loss tangent of both materials approaches the same value. We hypothesize that there is a layer of water trapped between the graphene and SiO2 substrate to explain this observation. Using this interpretation, the loss tangent images also indicate movement and change in this trapped water layer as RH increases, which impacts the measured thickness of graphene using AC-AFM.

  17. Spatial dependence of polycrystalline FTO’s conductance analyzed by conductive atomic force microscope (C-AFM)

    SciTech Connect

    Peixoto, Alexandre Pessoa; Costa, J. C. da

    2014-05-15

    Fluorine-doped Tin oxide (FTO) is a highly transparent, electrically conductive polycrystalline material frequently used as an electrode in organic solar cells and optical-electronic devices [1–2]. In this work a spatial analysis of the conductive behavior of FTO was carried out by Conductive-mode Atomic Force Microscopy (C-AFM). Rare highly oriented grains sample give us an opportunity to analyze the top portion of polycrystalline FTO and compare with the border one. It is shown that the current flow essentially takes place through the polycrystalline edge at grain boundaries.

  18. Direct comparison of AFM and SEM measurements on the same set of nanoparticles

    NASA Astrophysics Data System (ADS)

    Delvallée, A.; Feltin, N.; Ducourtieux, S.; Trabelsi, M.; Hochepied, J. F.

    2015-08-01

    This article is the first step in the development of a hybrid metrology combining AFM and SEM techniques for measuring the dimensions of a nanoparticle population in 3D space (X,Y,Z). This method exploits the strengths of each technique on the same set of nanoparticles. AFM is used for measuring the nanoparticle height and the measurements along X and Y axes are deduced from SEM images. A sampling method is proposed in order to obtain the best deposition conditions of SiO2 and gold nanoparticles on mica or silicon substrates. Only the isolated nanoparticles are taken into account in the histogram of size distribution. Moreover, a semi-automatic Matlab routine has also been developed to process the AFM and SEM images, measure and count the nanoparticles. This routine allows the user to exclusively select the isolated nanoparticles through a control interface. The measurements have been performed on spherical-like nanoparticles to test the method by comparing the results obtained with both techniques.

  19. The Analog Atomic Force Microscope: Measuring, Modeling, and Graphing for Middle School

    ERIC Educational Resources Information Center

    Goss, Valerie; Brandt, Sharon; Lieberman, Marya

    2013-01-01

    using an analog atomic force microscope (A-AFM) made from a cardboard box and mailing tubes. Varying numbers of ping pong balls inside the tubes mimic atoms on a surface. Students use a dowel to make macroscale measurements similar to those of a nanoscale AFM tip as it…

  20. Easy and direct method for calibrating atomic force microscopy lateral force measurements

    PubMed Central

    Liu, Wenhua; Bonin, Keith; Guthold, Martin

    2010-01-01

    We have designed and tested a new, inexpensive, easy-to-make and easy-to-use calibration standard for atomic force microscopy (AFM) lateral force measurements. This new standard simply consists of a small glass fiber of known dimensions and Young’s modulus, which is fixed at one end to a substrate and which can be bent laterally with the AFM tip at the other end. This standard has equal or less error than the commonly used method of using beam mechanics to determine a cantilever’s lateral force constant. It is transferable, thus providing a universal tool for comparing the calibrations of different instruments. It does not require knowledge of the cantilever dimensions and composition or its tip height. This standard also allows direct conversion of the photodiode signal to force and, thus, circumvents the requirement for a sensor response (sensitivity) measurement. PMID:17614616

  1. Minimising the effect of nanoparticle deformation in intermittent contact amplitude modulation atomic force microscopy measurements

    NASA Astrophysics Data System (ADS)

    Babic, Bakir; Lawn, Malcolm A.; Coleman, Victoria A.; Jämting, Åsa K.; Herrmann, Jan

    2016-06-01

    The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation to zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.

  2. EEMD based pitch evaluation method for accurate grating measurement by AFM

    NASA Astrophysics Data System (ADS)

    Li, Changsheng; Yang, Shuming; Wang, Chenying; Jiang, Zhuangde

    2016-09-01

    The pitch measurement and AFM calibration precision are significantly influenced by the grating pitch evaluation method. This paper presents the ensemble empirical mode decomposition (EEMD) based pitch evaluation method to relieve the accuracy deterioration caused by high and low frequency components of scanning profile during pitch evaluation. The simulation analysis shows that the application of EEMD can improve the pitch accuracy of the FFT-FT algorithm. The pitch error is small when the iteration number of the FFT-FT algorithms was 8. The AFM measurement of the 500 nm-pitch one-dimensional grating shows that the EEMD based pitch evaluation method could improve the pitch precision, especially the grating line position precision, and greatly expand the applicability of the gravity center algorithm when particles and impression marks were distributed on the sample surface. The measurement indicates that the nonlinearity was stable, and the nonlinearity of x axis and forward scanning was much smaller than their counterpart. Finally, a detailed pitch measurement uncertainty evaluation model suitable for commercial AFMs was demonstrated and a pitch uncertainty in the sub-nanometer range was achieved. The pitch uncertainty was reduced about 10% by EEMD.

  3. Adhesion Forces between Lewis(X) Determinant Antigens as Measured by Atomic Force Microscopy.

    PubMed

    Tromas, C; Rojo, J; de la Fuente, J M; Barrientos, A G; García, R; Penadés, S

    2001-01-01

    The adhesion forces between individual molecules of Lewis(X) trisaccharide antigen (Le(X) ) have been measured in water and in calcium solution by using atomic force microscopy (AFM, see graph). These results demonstrate the self-recognition capability of this antigen, and reinforce the hypothesis that carbohydrate-carbohydrate interaction could be considered as the first step in the cell-adhesion process in nature. PMID:12203646

  4. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy.

    PubMed

    Black, Jennifer M; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R; Guo, Daqiang; Okatan, M Baris; Dai, Sheng; Cummings, Peter T; Kalinin, Sergei V; Feng, Guang; Balke, Nina

    2016-01-01

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained. PMID:27587276

  5. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    PubMed Central

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina

    2016-01-01

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained. PMID:27587276

  6. Force profiles of protein pulling with or without cytoskeletal links studied by AFM

    SciTech Connect

    Afrin, Rehana; Ikai, Atsushi . E-mail: aikai@bio.titech.ac.jp

    2006-09-15

    To test the capability of the atomic force microscope for distinguishing membrane proteins with/without cytoskeletal associations, we studied the pull-out mechanics of lipid tethers from the red blood cell (RBC). When wheat germ agglutinin, a glycophorin A (GLA) specific lectin, was used to pull out tethers from RBC, characteristic force curves for tether elongation having a long plateau force were observed but without force peaks which are usually attributed to the forced unbinding of membrane components from the cytoskeleton. The result was in agreement with the reports that GLA is substantially free of cytoskeletal interactions. On the contrary, when the Band 3 specific lectin, concanavalin A, was used, the force peaks were indeed observed together with a plateau supporting its reported cytoskeletal association. Based on these observations, we postulate that the state of cytoskeletal association of particular membrane proteins can be identified from the force profiles of their pull-out mechanics.

  7. Point of zero charge of a corundum-water interface probed with optical second harmonic generation (SHG) and atomic force microscopy (AFM): New approaches to oxide surface charge

    NASA Astrophysics Data System (ADS)

    Stack, Andrew G.; Higgins, Steven R.; Eggleston, Carrick M.

    2001-09-01

    The pH and ionic strength dependence of light generated at a corundum-solution interface by the nonlinear optical process of second harmonic generation (SHG) is reported. A point of zero salt effect occurs in the pH range 5 to 6. The pH and ionic strength dependence of the SHG is qualitatively consistent with a model describing SHG from a charged mineral/water interface from Ong et al. (1992) and Zhao et al. (1993a, 1993b), but certain aspects of the model appear inadequate to describe the full range of our data. Atomic force microscopy (AFM) force-distance measurements, though imprecise, were consistent with a point of zero charge (p.z.c.) for the interface also in the pH range 5 to 6. The SHG (and AFM) results are different from expectation; the observed p.z.s.e. (and presumably also the p.z.c.) is considerably lower than the accepted point of zero charge of clean alumina powders ( pH 8-9.4; Parks, 1965; Sverjenksy and Sahai, 1996). Although the reasons for this are unclear, SHG holds promise as a probe of oxide-water interfaces that is independent of interpretation of acid-base titration stoichiometry.

  8. Characterization of deep nanoscale surface trenches with AFM using thin carbon nanotube probes in amplitude-modulation and frequency-force-modulation modes

    NASA Astrophysics Data System (ADS)

    Solares, Santiago D.

    2008-01-01

    The characterization of deep surface trenches with atomic force microscopy (AFM) presents significant challenges due to the sharp step edges that disturb the instrument and prevent it from faithfully reproducing the sample topography. Previous authors have developed AFM methodologies to successfully characterize semiconductor surface trenches with dimensions on the order of tens of nanometers. However, the study of imaging fidelity for features with dimensions smaller than 10 nm has not yet received sufficient attention. Such a study is necessary because small features in some cases lead to apparently high-quality images that are distorted due to tip and sample mechanical deformation. This paper presents multi-scale simulations, illustrating common artifacts affecting images of nanoscale trenches taken with fine carbon nanotube probes within amplitude-modulation and frequency-force-modulation AFM (AM-AFM and FFM-AFM, respectively). It also describes a methodology combining FFM-AFM with a step-in/step-out algorithm analogous to that developed by other groups for larger trenches, which can eliminate the observed artifacts. Finally, an overview of the AFM simulation methods is provided. These methods, based on atomistic and continuum simulation, have been previously used to study a variety of samples including silicon surfaces, carbon nanotubes and biomolecules.

  9. Combined atomic force microscopy and voltage pulse technique to accurately measure electrostatic force

    NASA Astrophysics Data System (ADS)

    Inami, Eiichi; Sugimoto, Yoshiaki

    2016-08-01

    We propose a new method of extracting electrostatic force. The technique is based on frequency modulation atomic force microscopy (FM-AFM) combined with a voltage pulse. In this method, the work that the electrostatic field does on the oscillating tip is measured through the cantilever energy dissipation. This allows us to directly extract capacitive forces including the longer range part, to which the conventional FM-AFM is insensitive. The distance-dependent contact potential difference, which is modulated by local charges distributed on the surfaces of the tip and/or sample, could also be correctly obtained. In the absence of local charges, our method can perfectly reproduce the electrostatic force as a function of the distance and the bias voltage. Furthermore, we demonstrate that the system serves as a sensitive sensor enabling us to check the existence of the local charges such as trapped charges and patch charges.

  10. Impedance Spectroscopic Investigation of Proton Conductivity in Nafion Using Transient Electrochemical Atomic Force Microscopy (AFM)

    PubMed Central

    Hink, Steffen; Wagner, Norbert; Bessler, Wolfgang G.; Roduner, Emil

    2012-01-01

    Spatially resolved impedance spectroscopy of a Nafion polyelectrolyte membrane is performed employing a conductive and Pt-coated tip of an atomic force microscope as a point-like contact and electrode. The experiment is conducted by perturbing the system by a rectangular voltage step and measuring the incurred current, followed by Fourier transformation and plotting the impedance against the frequency in a conventional Bode diagram. To test the potential and limitations of this novel method, we present a feasibility study using an identical hydrogen atmosphere at a well-defined relative humidity on both sides of the membrane. It is demonstrated that good quality impedance spectra are obtained in a frequency range of 0.2–1000 Hz. The extracted polarization curves exhibit a maximum current which cannot be explained by typical diffusion effects. Simulation based on equivalent circuits requires a Nernst element for restricted diffusion in the membrane which suggests that this effect is based on the potential dependence of the electrolyte resistance in the high overpotential region. PMID:24958175

  11. Measuring the elastic properties of living cells with atomic force microscopy indentation.

    PubMed

    Mackay, Joanna L; Kumar, Sanjay

    2013-01-01

    Atomic force microscopy (AFM) is a powerful and versatile tool for probing the mechanical properties of biological samples. This chapter describes the procedures for using AFM indentation to measure the elastic moduli of living cells. We include step-by-step instructions for cantilever calibration and data acquisition using a combined AFM/optical microscope system, as well as a detailed protocol for data analysis. Our protocol is written specifically for the BioScope™ Catalyst™ AFM system (Bruker AXS Inc.); however, most of the general concepts can be readily translated to other commercial systems. PMID:23027009

  12. Recording the dynamic endocytosis of single gold nanoparticles by AFM-based force tracing

    NASA Astrophysics Data System (ADS)

    Ding, Bohua; Tian, Yongmei; Pan, Yangang; Shan, Yuping; Cai, Mingjun; Xu, Haijiao; Sun, Yingchun; Wang, Hongda

    2015-04-01

    We utilized force tracing to directly record the endocytosis of single gold nanoparticles (Au NPs) with different sizes, revealing the size-dependent endocytosis dynamics and the crucial role of membrane cholesterol. The force, duration and velocity of Au NP invagination are accurately determined at the single-particle and microsecond level unprecedentedly.We utilized force tracing to directly record the endocytosis of single gold nanoparticles (Au NPs) with different sizes, revealing the size-dependent endocytosis dynamics and the crucial role of membrane cholesterol. The force, duration and velocity of Au NP invagination are accurately determined at the single-particle and microsecond level unprecedentedly. Electronic supplementary information (ESI) available: Details of the experimental procedures and the results of the control experiments. See DOI: 10.1039/c5nr01020a

  13. Accuracy of AFM force distance curves via direct solution of the Euler-Bernoulli equation

    NASA Astrophysics Data System (ADS)

    Eppell, Steven J.; Liu, Yehe; Zypman, Fredy R.

    2016-03-01

    In an effort to improve the accuracy of force-separation curves obtained from atomic force microscope data, we compare force-separation curves computed using two methods to solve the Euler-Bernoulli equation. A recently introduced method using a direct sequential forward solution, Causal Time-Domain Analysis, is compared against a previously introduced Tikhonov Regularization method. Using the direct solution as a benchmark, it is found that the regularization technique is unable to reproduce accurate curve shapes. Using L-curve analysis and adjusting the regularization parameter, λ, to match either the depth or the full width at half maximum of the force curves, the two techniques are contrasted. Matched depths result in full width at half maxima that are off by an average of 27% and matched full width at half maxima produce depths that are off by an average of 109%.

  14. Sample stage designed for force modulation microscopy using a tip-mounted AFM scanner.

    PubMed

    Lu, Lu; Xu, Song; Zhang, Donghui; Garno, Jayne C

    2016-02-15

    Among the modes of scanning probe microscopy (SPM), force modulation microscopy (FMM) is often used to acquire mechanical properties of samples concurrent with topographic information. The FMM mode is useful for investigations with polymer and organic thin film samples. Qualitative evaluation of the mixed domains of co-polymers or composite films can often be accomplished with high resolution using FMM phase and amplitude images. We have designed and tested a sample stage for FMM constructed of machined polycarbonate. A generic design enables FMM experiments for instrument configurations with a tip-mounted SPM scanner. A piezoactuator within the sample stage was used to drive the sample to vibrate in the z-direction according to selected parameters. To evaluate the FMM sample stage, we tested samples of known composition with nanoscale dimensions for increasingly complex surface morphologies. Excellent resolution was achieved in ambient conditions using the home-constructed sample stage, as revealed for complex surfaces or multi-component samples. Test structures of nanoholes within a film of organosilanes provided the simplest platform with two distinct surface domains. Ring-shaped nanostructures prepared on Si(111) with mixed organosilanes provided three regions for evaluating FMM results. A complex sample consisting of a cyclic gel polymer containing fibril nanostructures was also tested with FMM measurements. Frequency spectra were acquired for sample domains, revealing distinct differences in local mechanical response. We demonstrate a practical approach to construct a sample stage accessory to facilitate z-sample modulation for FMM experiments with tip-mounted SPM scanners. PMID:26824091

  15. A new approach to decoupling of bacterial adhesion energies measured by AFM into specific and nonspecific components.

    PubMed

    Eskhan, Asma O; Abu-Lail, Nehal I

    2014-02-01

    A new method to decoupling of bacterial interactions measured by atomic force microscopy (AFM) into specific and nonspecific components is proposed. The new method is based on computing the areas under the approach and retraction curves. To test the efficacy of the new method, AFM was used to probe the repulsion and adhesion energies present between L. monocytogenes cells cultured at five pH values (5, 6, 7, 8 and 9) and silicon nitride (Si3N4). Overall adhesion energy was then decoupled into its specific and nonspecific components using the new method as well as using Poisson statistical approach. Poisson statistical method represents the most commonly used approach to decouple bacterial interactions into their components. For all pH conditions investigated, specific energies dominated the adhesion and a transition in adhesion and repulsion energies for cells cultured at pH 7 was observed. When compared, the differences in the specific and nonspecific energies obtained using Poisson analysis and the new method were on average 2.2% and 6.7%, respectively. The relatively close energies obtained using the two approaches demonstrate the efficacy of the new method as an alternative way to decouple adhesion energies into their specific and nonspecific components. PMID:24563576

  16. A new approach to decoupling of bacterial adhesion energies measured by AFM into specific and nonspecific components

    PubMed Central

    Eskhan, Asma O.; Abu-Lail, Nehal I.

    2013-01-01

    A new method to decoupling of bacterial interactions measured by atomic force microscopy (AFM) into specific and nonspecific components is proposed. The new method is based on computing the areas under the approach and retraction curves. To test the efficacy of the new method, AFM was used to probe the repulsion and adhesion energies present between L. monocytogenes cells cultured at five pH values (5, 6, 7, 8 and 9) and silicon nitride (Si3N4). Overall adhesion energy was then decoupled into its specific and nonspecific components using the new method as well as using Poisson statistical approach. Poisson statistical method represents the most commonly used approach to decouple bacterial interactions into their components. For all pH conditions investigated, specific energies dominated the adhesion and a transition in adhesion and repulsion energies for cells cultured at pH 7 was observed. When compared, the differences in the specific and nonspecific energies obtained using Poisson analysis and the new method were on average 2.2% and 6.7%, respectively. The relatively close energies obtained using the two approaches demonstrate the efficacy of the new method as an alternative way to decouple adhesion energies into their specific and nonspecific components. PMID:24563576

  17. Uncertainty in NIST Force Measurements

    PubMed Central

    Bartel, Tom

    2005-01-01

    This paper focuses upon the uncertainty of force calibration measurements at the National Institute of Standards and Technology (NIST). The uncertainty of the realization of force for the national deadweight force standards at NIST is discussed, as well as the uncertainties associated with NIST’s voltage-ratio measuring instruments and with the characteristics of transducers being calibrated. The combined uncertainty is related to the uncertainty of dissemination for force transfer standards sent to NIST for calibration. PMID:27308181

  18. Force measurements during vibration testing

    SciTech Connect

    Smallwood, D.O.; Coleman, R.G.

    1993-12-31

    Experimental measurements of force into a ``rigid`` test item representing a typical system level vibration test were conducted to evaluate several methods of force measurements. The methods evaluated included: (1) Direct measurement with force gages between the test item and the fixturing; (2) Measurement of the force at the shaker/fixture interface and correcting the force required to drive the fixturing using two methods, (a) mass subtraction and (b) SWAT (sum of weighted accelerations technique), (3) Force deduced from voltage and current needed to drive the test item. All of the methods worked over a limited frequency range of five to a few hundred Hertz. The widest bandwidth was achieved with force at the shaker/fixture interface with SWAT corrections and from the voltage and current measurements.

  19. PREFACE: Non-contact AFM Non-contact AFM

    NASA Astrophysics Data System (ADS)

    Giessibl, Franz J.; Morita, Seizo

    2012-02-01

    This special issue is focussed on high resolution non-contact atomic force microscopy (AFM). Non-contact atomic force microscopy was established approximately 15 years ago as a tool to image conducting and insulating surfaces with atomic resolution. Since 1998, an annual international conference has taken place, and although the proceedings of these conferences are a useful source of information, several key developments warrant devoting a special issue to this subject. In the theoretic field, the possibility of supplementing established techniques such as scanning tunneling microscopy (STM) and Kelvin probe microscopy with atomically resolved force micrsoscopy poses many challenges in the calculation of contrast and contrast reversal. The surface science of insulators, self-assembled monolayers and adsorbates on insulators is a fruitful field for the application of non-contact AFM: several articles in this issue are devoted to these subjects. Atomic imaging and manipulation have been pioneered using STM, but because AFM allows the measurement of forces, AFM has had a profound impact in this field as well. Three-dimensional force spectroscopy has allowed many important insights into surface science. In this issue a combined 3D tunneling and force microscopy is introduced. Non-contact AFM typically uses frequency modulation to measure force gradients and was initially used mainly in a vacuum. As can be seen in this issue, frequency modulation is now also used in ambient conditions, allowing better spatial and force resolution. We thank all of the contributors for their time and efforts in making this special issue possible. We are also very grateful to the staff of IOP Publishing for handling the administrative aspects and for steering the refereeing process. Non-contact AFM contents Relation between the chemical force and the tunnelling current in atomic point contacts: a simple model Pavel Jelínek, Martin Ondrácek and Fernando Flores Theoretical simulation of

  20. Differential force microscope for long time-scale biophysical measurements

    PubMed Central

    Choy, Jason L.; Parekh, Sapun H.; Chaudhuri, Ovijit; Liu, Allen P.; Bustamante, Carlos; Footer, Matthew J.; Theriot, Julie A.; Fletcher, Daniel A.

    2011-01-01

    Force microscopy techniques including optical trapping, magnetic tweezers, and atomic force microscopy (AFM) have facilitated quantification of forces and distances on the molecular scale. However, sensitivity and stability limitations have prevented the application of these techniques to biophysical systems that generate large forces over long times, such as actin filament networks. Growth of actin networks drives cellular shape change and generates nano-Newtons of force over time scales of minutes to hours, and consequently network growth properties have been difficult to study. Here, we present an AFM-based differential force microscope with integrated epifluorescence imaging in which two adjacent cantilevers on the same rigid support are used to provide increased measurement stability. We demonstrate 14 nm displacement control over measurement times of 3 hours and apply the instrument to quantify actin network growth in vitro under controlled loads. By measuring both network length and total network fluorescence simultaneously, we show that the average cross-sectional density of the growing network remains constant under static loads. The differential force microscope presented here provides a sensitive method for quantifying force and displacement with long time-scale stability that is useful for measurements of slow biophysical processes in whole cells or in reconstituted molecular systems in vitro. PMID:17477674

  1. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    NASA Astrophysics Data System (ADS)

    Labuda, Aleksander; Proksch, Roger

    2015-06-01

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  2. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    SciTech Connect

    Labuda, Aleksander; Proksch, Roger

    2015-06-22

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  3. Single Cell Wall Nonlinear Mechanics Revealed by a Multiscale Analysis of AFM Force-Indentation Curves.

    PubMed

    Digiuni, Simona; Berne-Dedieu, Annik; Martinez-Torres, Cristina; Szecsi, Judit; Bendahmane, Mohammed; Arneodo, Alain; Argoul, Françoise

    2015-05-01

    Individual plant cells are rather complex mechanical objects. Despite the fact that their wall mechanical strength may be weakened by comparison with their original tissue template, they nevertheless retain some generic properties of the mother tissue, namely the viscoelasticity and the shape of their walls, which are driven by their internal hydrostatic turgor pressure. This viscoelastic behavior, which affects the power-law response of these cells when indented by an atomic force cantilever with a pyramidal tip, is also very sensitive to the culture media. To our knowledge, we develop here an original analyzing method, based on a multiscale decomposition of force-indentation curves, that reveals and quantifies for the first time the nonlinearity of the mechanical response of living single plant cells upon mechanical deformation. Further comparing the nonlinear strain responses of these isolated cells in three different media, we reveal an alteration of their linear bending elastic regime in both hyper- and hypotonic conditions. PMID:25954881

  4. Single Cell Wall Nonlinear Mechanics Revealed by a Multiscale Analysis of AFM Force-Indentation Curves

    PubMed Central

    Digiuni, Simona; Berne-Dedieu, Annik; Martinez-Torres, Cristina; Szecsi, Judit; Bendahmane, Mohammed; Arneodo, Alain; Argoul, Françoise

    2015-01-01

    Individual plant cells are rather complex mechanical objects. Despite the fact that their wall mechanical strength may be weakened by comparison with their original tissue template, they nevertheless retain some generic properties of the mother tissue, namely the viscoelasticity and the shape of their walls, which are driven by their internal hydrostatic turgor pressure. This viscoelastic behavior, which affects the power-law response of these cells when indented by an atomic force cantilever with a pyramidal tip, is also very sensitive to the culture media. To our knowledge, we develop here an original analyzing method, based on a multiscale decomposition of force-indentation curves, that reveals and quantifies for the first time the nonlinearity of the mechanical response of living single plant cells upon mechanical deformation. Further comparing the nonlinear strain responses of these isolated cells in three different media, we reveal an alteration of their linear bending elastic regime in both hyper- and hypotonic conditions. PMID:25954881

  5. An intercepted feedback mode for light sensitive spectroscopic measurements in atomic force microscopy.

    PubMed

    Smoliner, J; Brezna, W

    2007-10-01

    In most atomic force microscopes (AFMs), the motion of the tip is detected by the deflection of a laser beam shining onto the cantilever. AFM applications such as scanning capacitance spectroscopy or photocurrent spectroscopy, however, are severely disturbed by the intense stray light of the AFM laser. For this reason, an intercepted feedback method was developed, which allows to switch off the laser temporarily while the feedback loop keeps running. The versatility of this feedback method is demonstrated by measuring tip-force dependent Schottky barrier heights on GaAs samples. PMID:17979460

  6. Friction measurements using force versus distance friction loops in force microscopy

    NASA Astrophysics Data System (ADS)

    Watson, G. S.; Dinte, B. P.; Blach-Watson, J. A.; Myhra, S.

    2004-07-01

    The atomic force microscope (AFM) allows investigation of the properties of surfaces and interfaces at atomic scale resolution. However, several different operational modes (imaging, force versus distance and lateral force), need to be deployed in order to gain insight into the structure, tribiological and mechanical properties. A new method, based on a variation of the force versus distance mode, has been developed. In essence, a coupling of the deformational modes of the probe is exploited whereby the tip is induced to undergo lateral travel in response to application of an out-of-plane force (and thus normal bending of the force-sensing lever). The lateral travel induces in-plane forces that are then measurable as a consequence of stimulation of the 'buckling' deformational mode of the lever. Outcomes will be demonstrated for atomically flat surfaces of WTe 2 and highly oriented pyrolytic graphite.

  7. Application of the Johnson-Kendall-Roberts model in AFM-based mechanical measurements on cells and gel.

    PubMed

    Efremov, Yu M; Bagrov, D V; Kirpichnikov, M P; Shaitan, K V

    2015-10-01

    The force-distance curves (FCs) obtained by the atomic force microscope (AFM) with colloid probes contain information about both the viscoelastic properties and adhesion of a sample. Here, we processed both the approach and retraction parts of FCs obtained on polyacrylamide gels (in water or PBS) and Vero cells (in a culture medium). The Johnson-Kendall-Roberts model was applied to the retraction curves to account for the adhesion. The effects of loading rate, holding time and indentation depth on adhesion force and Young's modulus, calculated from approach and retraction curves, were studied. It was shown that both bulk and local interfacial viscoelasticity can affect the observed approach-retraction hysteresis and measured parameters. The addition of 1% bovine serum albumin (BSA) decreased adhesion of the probe to the PAA gel surface, so interfacial viscoelasticity effects were diminished. On the contrary, the adhesiveness of Vero cells increased after BSA addition, indicating the complex nature of the cell-probe interaction. PMID:26186106

  8. High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor–acceptor dyads

    PubMed Central

    Schwartz, Pierre-Olivier; Biniek, Laure; Brinkmann, Martin; Leclerc, Nicolas; Zaborova, Elena

    2016-01-01

    Summary Self-assembled donor–acceptor dyads are used as model nanostructured heterojunctions for local investigations by noncontact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy (KPFM). With the aim to probe the photo-induced charge carrier generation, thin films deposited on transparent indium tin oxide substrates are investigated in dark conditions and upon illumination. The topographic and contact potential difference (CPD) images taken under dark conditions are analysed in view of the results of complementary transmission electron microscopy (TEM) experiments. After in situ annealing, it is shown that the dyads with longer donor blocks essentially lead to standing acceptor–donor lamellae, where the acceptor and donor groups are π-stacked in an edge-on configuration. The existence of strong CPD and surface photo-voltage (SPV) contrasts shows that structural variations occur within the bulk of the edge-on stacks. SPV images with a very high lateral resolution are achieved, which allows for the resolution of local photo-charging contrasts at the scale of single edge-on lamella. This work paves the way for local investigations of the optoelectronic properties of donor–acceptor supramolecular architectures down to the elementary building block level. PMID:27335768

  9. High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor-acceptor dyads.

    PubMed

    Grévin, Benjamin; Schwartz, Pierre-Olivier; Biniek, Laure; Brinkmann, Martin; Leclerc, Nicolas; Zaborova, Elena; Méry, Stéphane

    2016-01-01

    Self-assembled donor-acceptor dyads are used as model nanostructured heterojunctions for local investigations by noncontact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy (KPFM). With the aim to probe the photo-induced charge carrier generation, thin films deposited on transparent indium tin oxide substrates are investigated in dark conditions and upon illumination. The topographic and contact potential difference (CPD) images taken under dark conditions are analysed in view of the results of complementary transmission electron microscopy (TEM) experiments. After in situ annealing, it is shown that the dyads with longer donor blocks essentially lead to standing acceptor-donor lamellae, where the acceptor and donor groups are π-stacked in an edge-on configuration. The existence of strong CPD and surface photo-voltage (SPV) contrasts shows that structural variations occur within the bulk of the edge-on stacks. SPV images with a very high lateral resolution are achieved, which allows for the resolution of local photo-charging contrasts at the scale of single edge-on lamella. This work paves the way for local investigations of the optoelectronic properties of donor-acceptor supramolecular architectures down to the elementary building block level. PMID:27335768

  10. Nanodimentional Aggregates In Organic Monolayers Studied With Atomic Force Microscopy (AFM) And Fluorescence Lifetime Imaging Microscopy (FLIM)

    NASA Astrophysics Data System (ADS)

    Ivanov, George R.; Burov, Julian

    2007-04-01

    Organic monolayers from a fluorescently labeled phospholipid (DPPE-NBD) were deposited on solid supports under special conditions that form stable nanometer wide bilayers cylinders that protrude from the monolayer. This molecule was frequently used in sensor applications due to its sensitivity to environment changes. The proposed configuration should provide both fast response times (ultra thin film) and increased sensitivity (greatly increased surface area). AFM can clearly distinguish between the different phases. The height difference between the solid-expanded and the liquid-expanded phase was measured to be 1.4 nm while the bilayer thickness was 5.6 nm. The solid domains show a 20 % decrease in fluorescence lifetime in comparison to the monolayer as measured by FLIM. This difference in lifetimes is explained in the model of fluorescence self quenching in the solid phase due to the molecules being closer to each other.

  11. A Model for Step Height, Edge Slope and Linewidth Measurements Using AFM

    NASA Astrophysics Data System (ADS)

    Zhao, Xuezeng; Vorburger, Theodore V.; Fu, Joseph; Song, John; Nguyen, Cattien V.

    2003-09-01

    Nano-scale linewidth measurements are performed in semiconductor manufacturing and in the data storage industry and will become increasingly important in micro-mechanical engineering. With the development of manufacturing technology in recent years, the sizes of linewidths are steadily shrinking and are in the range of hundreds of nanometers. As a result, it is difficult to achieve accurate measurement results for nanometer scale linewidth, primarily because of the interaction volume of electrons in materials for an SEM probe or the tip size of an AFM probe. However, another source of methods divergence is the mathematical model of the line itself. In order to reduce the methods divergences caused by different measurement methods and instruments for an accurate determination of nanometer scale linewidth parameters, a metrological model and algorithm are proposed for linewidth measurements with AFM. The line profile is divided into 5 parts with 19 sections and 20 key derived points. Each section is fitted by a least squares straight line, so that the profile can be represented by a set of straight lines and 6 special points, or by a 20×2 matrix of fitted points and a 6×2 matrix of starter points. According to the algorithm, WT and WTF, WM and WMF, WB and WBF represent the widths at the top, the middle and the bottom of the line profile before and after the least squares fitting, respectively. AL and AR represent the left and right sidewall angles, and H represents the step height of the line profile. Based on this algorithm, software has been developed using MATLAB for the calculation of width and height parameters of the line profile. A NIST nanometer scale linewidth artifact developed at NIST's Electronics and Electrical Engineering Laboratory (EEEL) was measured using a commercial AFM with nanotube tips. The measured linewidth profiles are analyzed using our model, algorithm and software. The model developed in this paper is straightforward to understand, and

  12. Mechanism of amyloid β-protein dimerization determined using single-molecule AFM force spectroscopy

    NASA Astrophysics Data System (ADS)

    Lv, Zhengjian; Roychaudhuri, Robin; Condron, Margaret M.; Teplow, David B.; Lyubchenko, Yuri L.

    2013-10-01

    Aβ42 and Aβ40 are the two primary alloforms of human amyloid β-protein (Aβ). The two additional C-terminal residues of Aβ42 result in elevated neurotoxicity compared with Aβ40, but the molecular mechanism underlying this effect remains unclear. Here, we used single-molecule force microscopy to characterize interpeptide interactions for Aβ42 and Aβ40 and corresponding mutants. We discovered a dramatic difference in the interaction patterns of Aβ42 and Aβ40 monomers within dimers. Although the sequence difference between the two peptides is at the C-termini, the N-terminal segment plays a key role in the peptide interaction in the dimers. This is an unexpected finding as N-terminal was considered as disordered segment with no effect on the Aβ peptide aggregation. These novel properties of Aβ proteins suggests that the stabilization of N-terminal interactions is a switch in redirecting of amyloids form the neurotoxic aggregation pathway, opening a novel avenue for the disease preventions and treatments.

  13. The thermal stability of Pt/Ir coated AFM tips for resistive switching measurements

    NASA Astrophysics Data System (ADS)

    Wojtyniak, M.; Szot, K.; Waser, R.

    2011-06-01

    In this paper, we focus on the thermally treated atomic force microscope tips used in the investigation of the resistive switching phenomenon. Since the resistive switching phenomenon is often connected with the red-ox process, it is crucial to investigate the influence of oxidizing and reducing conditions at elevated temperatures on typical AFM tips. To fully characterize the influence of different conditions on the tip properties we used several techniques such as: X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and local-conductivity atomic force microscopy. The chemical composition as well as the topography and morphology of the most popular Pt/Ir coated silicon tips were investigated. The influence of thermal treatment on the tip apex was also imaged and the changes in the electrical behavior of the tip coating were observed. Applied temperatures ranges were: 500-700 ° C for oxidizing conditions (air) and 300-700 ° C for reducing conditions (vacuum 10 -6 Torr), the annealing time was set to 0.5 h. Results yielded the formation of Pt 2Si and SiO 2 on the tip surface. The Pt tends to agglomerate into particles over time, depending on the temperature and conditions. The tip apex radius increases while the electrical conductivity decreases with the temperature. In conclusion, even the lowest applied temperature leads to changes in the tip properties, while these changes are much more pronounced under oxidizing conditions.

  14. Robust high-resolution imaging and quantitative force measurement with tuned-oscillator atomic force microscopy.

    PubMed

    Dagdeviren, Omur E; Götzen, Jan; Hölscher, Hendrik; Altman, Eric I; Schwarz, Udo D

    2016-02-12

    Atomic force microscopy (AFM) and spectroscopy are based on locally detecting the interactions between a surface and a sharp probe tip. For highest resolution imaging, noncontact modes that avoid tip-sample contact are used; control of the tip's vertical position is accomplished by oscillating the tip and detecting perturbations induced by its interaction with the surface potential. Due to this potential's nonlinear nature, however, achieving reliable control of the tip-sample distance is challenging, so much so that despite its power vacuum-based noncontact AFM has remained a niche technique. Here we introduce a new pathway to distance control that prevents instabilities by externally tuning the oscillator's response characteristics. A major advantage of this operational scheme is that it delivers robust position control in both the attractive and repulsive regimes with only one feedback loop, thereby providing an easy-to-implement route to atomic resolution imaging and quantitative tip-sample interaction force measurement. PMID:26754332

  15. Reconciling measurements in AFM reference metrology when using different probing techniques

    NASA Astrophysics Data System (ADS)

    Rana, Narender; Archie, Charles; Foucher, Johann

    2011-03-01

    CD-AFM can report CD measurements to several nanometer differences when different probing techniques including probe types, scan methods, or data analyses are employed on the same sample despite using standard calibration techniques. This potentially weakens the assertion that this instrument is inherently accurate. It is particularly important to resolve these discrepancies given the measurement challenges where multiple probing techniques need to be employed to get complete CD information. Probe type refers to tip construction methods that can significantly affect geometrical aspects of probe such as effective length, width, and edge height as well as material composition and coating. Scan code refers to CD or DT mode of tool operation. Analysis includes probe geometry deconvolution and measurement algorithms. These challenges in measurement accuracy are especially significant for the foot or bottom CD metrology of 3D structures. This paper explores the impact of these different probing techniques on the measurement accuracy. In one series of experiments, measurements for different probing techniques are compared when the test and the referencing structures are composed of similar material and possess smooth vertical profiles. The investigation is then extended to explore the accuracy of bottom CD measurement of non vertical profiles encountered in actual process development. A hybrid method using CD and DT modes has been tested to measure the bottom CD of challenging pitch structures. The limited space for the probe is particularly problematic for CD mode but the accuracy of DT mode for CD measurement is a concern. Other challenges will also be discussed along with possible solutions. CD-AFM has increased uncertainty when it comes to measuring within 15 nm of the bottom of a structure. In this regime details of the shape of the probe and the method by which this shape is extracted from the raw data become important. Measured CDs can vary by a few nanometers

  16. Measuring energies with an Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Langer, J.; Díez-Pérez, I.; Sanz, F.; Fraxedas, J.

    2006-04-01

    The elastic and plastic response of ordered inorganic, organic and biological materials involving nanometer-scale volumes in the nano- and low micronewton force range can be characterized by means of an Atomic Force Microscope (AFM) using ultrasharp cantilever tips with radius R typically below 10 nm. Because the plastic onset can be easily identified, the maximal accumulated elastic energy can be directly determined from the force curves (force F vs. penetration δ curves), thus giving a realistic estimate of the characteristic energies of the materials. We illustrate the ability of AFMs to determine such energies with the case example of the molecular organic metal TTF-TCNQ (TTF = tetrathiafulvalene, TCNQ = tetracyanoquinodimethane), where the enthalpy of sublimation is obtained.

  17. Atomic Force Microscopy Protocol for Measurement of Membrane Plasticity and Extracellular Interactions in Single Neurons in Epilepsy

    PubMed Central

    Wu, Xin; Muthuchamy, Mariappan; Reddy, Doodipala Samba

    2016-01-01

    Physiological interactions between extracellular matrix (ECM) proteins and membrane integrin receptors play a crucial role in neuroplasticity in the hippocampus, a key region involved in epilepsy. The atomic force microscopy (AFM) is a cutting-edge technique to study structural and functional measurements at nanometer resolution between the AFM probe and cell surface under liquid. AFM has been incrementally employed in living cells including the nervous system. AFM is a unique technique that directly measures functional information at a nanoscale resolution. In addition to its ability to acquire detailed 3D imaging, the AFM probe permits quantitative measurements on the structure and function of the intracellular components such as cytoskeleton, adhesion force and binding probability between membrane receptors and ligands coated in the AFM probe, as well as the cell stiffness. Here we describe an optimized AFM protocol and its application for analysis of membrane plasticity and mechanical dynamics of individual hippocampus neurons in mice with chronic epilepsy. The unbinding force and binding probability between ECM, fibronectin-coated AFM probe and membrane integrin were strikingly lower in dentate gyrus granule cells in epilepsy. Cell elasticity, which represents changes in cytoskeletal reorganization, was significantly increased in epilepsy. The fibronectin-integrin binding probability was prevented by anti-α5β1 integrin. Thus, AFM is a unique nanotechnique that allows progressive functional changes in neuronal membrane plasticity and mechanotransduction in epilepsy and related brain disorders. PMID:27199735

  18. Development of a Hybrid Atomic Force Microscopic Measurement System Combined with White Light Scanning Interferometry

    PubMed Central

    Guo, Tong; Wang, Siming; Dorantes-Gonzalez, Dante J.; Chen, Jinping; Fu, Xing; Hu, Xiaotang

    2012-01-01

    A hybrid atomic force microscopic (AFM) measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system’s dynamic response, the frequency modulation (FM) mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system’s good measurement performance and feasibility of the hybrid measurement method. PMID:22368463

  19. Development of a hybrid atomic force microscopic measurement system combined with white light scanning interferometry.

    PubMed

    Guo, Tong; Wang, Siming; Dorantes-Gonzalez, Dante J; Chen, Jinping; Fu, Xing; Hu, Xiaotang

    2012-01-01

    A hybrid atomic force microscopic (AFM) measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system's dynamic response, the frequency modulation (FM) mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system's good measurement performance and feasibility of the hybrid measurement method. PMID:22368463

  20. Nano-scale temperature dependent visco-elastic properties of polyethylene terephthalate (PET) using atomic force microscope (AFM).

    PubMed

    Grant, Colin A; Alfouzan, Abdulrahman; Gough, Tim; Twigg, Peter C; Coates, Phil D

    2013-01-01

    Visco-elastic behaviour at the nano-level of a commonly used polymer (PET) is characterised using atomic force microscopy (AFM) at a range of temperatures. The modulus, indentation creep and relaxation time of the PET film (thickness=100 μm) is highly sensitive to temperature over an experimental temperature range of 22-175°C. The analysis showed a 40-fold increase in the amount of indentation creep on raising the temperature from 22°C to 100°C, with the most rapid rise occurring above the glass-to-rubber transition temperature (T(g)=77.1°C). At higher temperatures, close to the crystallisation temperature (T(c)=134.7°C), the indentation creep reduced to levels similar to those at temperatures below T(g). The calculated relaxation time showed a similar temperature dependence, rising from 0.6s below T(g) to 1.2s between T(g) and T(c) and falling back to 0.6s above T(c). Whereas, the recorded modulus of the thick polymer film decreases above T(g), subsequently increasing near T(c). These visco-elastic parameters are obtained via mechanical modelling of the creep curves and are correlated to the thermal phase changes that occur in PET, as revealed by differential scanning calorimetry (DSC). PMID:22750040

  1. COOLING FORCE MEASUREMENTS IN CELSIUS.

    SciTech Connect

    GALNANDER, B.; FEDOTOV, A.V.; LITVINENKO, V.N.; ET AL.

    2005-09-18

    The design of future high energy coolers relies heavily on extending the results of cooling force measurements into new regimes by using simulation codes. In order to carefully benchmark these codes we have accurately measured the longitudinal friction force in CELSIUS by recording the phase shift between the beam and the RF voltage while varying the RF frequency. Moreover, parameter dependencies on the electron current, solenoid magnetic field and magnetic field alignment were carried out.

  2. Cooling Force Measurements at CELSIUS

    SciTech Connect

    Ga ring lnander, B.; Lofnes, T.; Ziemann, V.; Fedotov, A. V.; Litvinenko, V. N.; Sidorin, A. O.; Smirnov, A. V.

    2006-03-20

    The design of future high energy coolers relies heavily on extending the results of cooling force measurements into new regimes by using simulation codes. In order to carefully benchmark these codes we have accurately measured the longitudinal friction force in CELSIUS by recording the phase shift between the beam and the RF voltage while varying the RF frequency. Moreover, parameter dependencies on the electron current, solenoid magnetic field and magnetic field alignment were carried out.

  3. Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells.

    PubMed

    Gavara, Núria

    2016-01-01

    Atomic Force Microscopy (AFM) is a widely used tool to study cell mechanics. Current AFM setups perform high-throughput probing of living cells, generating large amounts of force-indentations curves that are subsequently analysed using a contact-mechanics model. Here we present several algorithms to detect the contact point in force-indentation curves, a crucial step to achieve fully-automated analysis of AFM-generated data. We quantify and rank the performance of our algorithms by analysing a thousand force-indentation curves obtained on thin soft homogeneous hydrogels, which mimic the stiffness and topographical profile of adherent cells. We take advantage of the fact that all the proposed algorithms are based on sequential search strategies, and show that a combination of them yields the most accurate and unbiased results. Finally, we also observe improved performance when force-indentation curves obtained on adherent cells are analysed using our combined strategy, as compared to the classical algorithm used in the majority of previous cell mechanics studies. PMID:26891762

  4. Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells

    PubMed Central

    Gavara, Núria

    2016-01-01

    Atomic Force Microscopy (AFM) is a widely used tool to study cell mechanics. Current AFM setups perform high-throughput probing of living cells, generating large amounts of force-indentations curves that are subsequently analysed using a contact-mechanics model. Here we present several algorithms to detect the contact point in force-indentation curves, a crucial step to achieve fully-automated analysis of AFM-generated data. We quantify and rank the performance of our algorithms by analysing a thousand force-indentation curves obtained on thin soft homogeneous hydrogels, which mimic the stiffness and topographical profile of adherent cells. We take advantage of the fact that all the proposed algorithms are based on sequential search strategies, and show that a combination of them yields the most accurate and unbiased results. Finally, we also observe improved performance when force-indentation curves obtained on adherent cells are analysed using our combined strategy, as compared to the classical algorithm used in the majority of previous cell mechanics studies. PMID:26891762

  5. Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells

    NASA Astrophysics Data System (ADS)

    Gavara, Núria

    2016-02-01

    Atomic Force Microscopy (AFM) is a widely used tool to study cell mechanics. Current AFM setups perform high-throughput probing of living cells, generating large amounts of force-indentations curves that are subsequently analysed using a contact-mechanics model. Here we present several algorithms to detect the contact point in force-indentation curves, a crucial step to achieve fully-automated analysis of AFM-generated data. We quantify and rank the performance of our algorithms by analysing a thousand force-indentation curves obtained on thin soft homogeneous hydrogels, which mimic the stiffness and topographical profile of adherent cells. We take advantage of the fact that all the proposed algorithms are based on sequential search strategies, and show that a combination of them yields the most accurate and unbiased results. Finally, we also observe improved performance when force-indentation curves obtained on adherent cells are analysed using our combined strategy, as compared to the classical algorithm used in the majority of previous cell mechanics studies.

  6. Unbinding Force Measurement of a Histidine--Nickel Complex. The His-Tag Immobilization Force.

    NASA Astrophysics Data System (ADS)

    Forbes, Jeffrey G.; Yim, Peter

    1998-03-01

    A sequence of six or more histidines will bind tightly to a nickel complex. The compound typically used to immobilized the nickel is N-(5-amino-1-carboxypentyl)iminodiacetic acid (NTA). Most proteins will not bind to the complex unless there is a sequence of histidines, which is readily added using recombinant DNA techniques. The histidine tag may be removed from the nickel complex with a high concentration of imidazole or by protonating the histidines at a pH below 6. We have studied the the unbinding strength of this interaction with the atomic force microscope (AFM). To perform this measurement, we have functionalized silicon nitride AFM tips with Ni--NTA. A glass slide was coated with recombinant DNAse I with a his-tag on the C-terminus. Unbinding force measurements were made in phosphate buffered saline (PBS) to reduce electrostatic interactions. We find that the unbinding force for the NTA-Ni/His-tag interaction to be ca. 50 pN. Interestingly, 0.5 M imidazole does not remove the interaction, but only changes the distribution of the measured forces. This is a result of the non-equilibrium condition of the tip being forced into the protein coated surface. The interaction is completely removed by lowering the pH to 5.0 where the histidines are protonated and can no longer coordinate with the nickel.

  7. Uncertainty quantification in nanomechanical measurements using the atomic force microscope

    NASA Astrophysics Data System (ADS)

    Wagner, Ryan; Moon, Robert; Pratt, Jon; Shaw, Gordon; Raman, Arvind

    2011-11-01

    Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale resolution of both inorganic and biological surfaces and nanomaterials. We present a framework to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. We demonstrate the framework by quantifying uncertainty in AFM-based measurements of the transverse elastic modulus of cellulose nanocrystals (CNCs), an abundant, plant-derived nanomaterial whose mechanical properties are comparable to Kevlar fibers. For a single, isolated CNC the transverse elastic modulus was found to have a mean of 8.1 GPa and a 95% confidence interval of 2.7-20 GPa. A key result is that multiple replicates of force-distance curves do not sample the important sources of uncertainty, which are systematic in nature. The dominant source of uncertainty is the nondimensional photodiode sensitivity calibration rather than the cantilever stiffness or Z-piezo calibrations. The results underscore the great need for, and open a path towards, quantifying and minimizing uncertainty in AFM-based material property measurements of nanoparticles, nanostructured surfaces, thin films, polymers and biomaterials. This work is a partial contribution of the USDA Forest Service and NIST, agencies of the US government, and is not subject to copyright.

  8. Vision-based force measurement.

    PubMed

    Greminger, Michael A; Nelson, Bradley J

    2004-03-01

    This paper demonstrates a method to visually measure the force distribution applied to a linearly elastic object using the contour data in an image. The force measurement is accomplished by making use of the result from linear elasticity that the displacement field of the contour of a linearly elastic object is sufficient to completely recover the force distribution applied to the object. This result leads naturally to a deformable template matching approach where the template is deformed according to the governing equations of linear elasticity. An energy minimization method is used to match the template to the contour data in the image. This technique of visually measuring forces we refer to as vision-based force measurement (VBFM). VBFM has the potential to increase the robustness and reliability of micromanipulation and biomanipulation tasks where force sensing is essential for success. The effectiveness of VBFM is demonstrated for both a microcantilever beam and a microgripper. A sensor resolution of less than +/- 3 nN for the microcantilever and +/- 3 mN for the microgripper was achieved using VBFM. Performance optimizations for the energy minimization problem are also discussed that make this algorithm feasible for real-time applications. PMID:15376877

  9. Experimental validation of atomic force microscopy-based cell elasticity measurements

    NASA Astrophysics Data System (ADS)

    Harris, Andrew R.; Charras, G. T.

    2011-08-01

    Atomic force microscopy (AFM) is widely used for measuring the elasticity of living cells yielding values ranging from 100 Pa to 100 kPa, much larger than those obtained using bead-tracking microrheology or micropipette aspiration (100-500 Pa). AFM elasticity measurements appear dependent on tip geometry with pyramidal tips yielding elasticities 2-3 fold larger than spherical tips, an effect generally attributed to the larger contact area of spherical tips. In AFM elasticity measurements, experimental force-indentation curves are analyzed using contact mechanics models that infer the tip-cell contact area from the tip geometry and indentation depth. The validity of these assumptions has never been verified. Here we utilize combined AFM-confocal microscopy of epithelial cells expressing a GFP-tagged membrane marker to directly characterize the indentation geometry and measure the indentation depth. Comparison with data derived from AFM force-indentation curves showed that the experimentally measured contact area for spherical tips agrees well with predicted values, whereas for pyramidal tips, the contact area can be grossly underestimated at forces larger than ~ 0.2 nN leading to a greater than two-fold overestimation of elasticity. These data suggest that a re-examination of absolute cellular elasticities reported in the literature may be necessary and we suggest guidelines for avoiding elasticity measurement artefacts introduced by extraneous cantilever-cell contact.

  10. Measuring the Elasticity of Clathrin-Coated Vesicles via Atomic Force Microscopy

    PubMed Central

    Jin, Albert J.; Prasad, Kondury; Smith, Paul D.; Lafer, Eileen M.; Nossal, Ralph

    2006-01-01

    Using a new scheme based on atomic force microscopy (AFM), we investigate mechanical properties of clathrin-coated vesicles (CCVs). CCVs are multicomponent protein and lipid complexes of ∼100 nm diameter that are implicated in many essential cell-trafficking processes. Our AFM imaging resolves clathrin lattice polygons and provides height deformation in quantitative response to AFM-substrate compression force. We model CCVs as multilayered elastic spherical shells and, from AFM measurements, estimate their bending rigidity to be 285 ± 30 kBT, i.e., ∼20 times that of either the outer clathrin cage or inner vesicle membrane. Further analysis reveals a flexible coupling between the clathrin coat and the membrane, a structural property whose modulation may affect vesicle biogenesis and cellular function. PMID:16473913

  11. Application of Electron Backscattered Diffraction (EBSD) and Atomic Force Microscopy (AFM) to Determine Texture, Microtexture, and Grain Boundary Energies in Ceramics

    SciTech Connect

    Glass, S.J.; Rohrer, G.S.; Saylor, D.M.; Vedula, V.R.

    1999-05-19

    Crystallographic orientations in alumina (Al203) and magnesium aluminate spinel (MgAl204) were obtained using electron backscattered diffraction (EBSD) patterns. The texture and mesotexture (grain boundary misorientations) were random and no special boundaries were observed. The relative grain boundary energies were determined by thermal groove geometries using atomic force microscopy (AFM) to identify relationships between the grain boundary energies and misorientations.

  12. Automatic HTS force measurement instrument

    DOEpatents

    Sanders, Scott T.; Niemann, Ralph C.

    1999-01-01

    A device for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed.

  13. Automatic HTS force measurement instrument

    DOEpatents

    Sanders, S.T.; Niemann, R.C.

    1999-03-30

    A device is disclosed for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed. 3 figs.

  14. AFM measurements of the topography and the roughness of ECR plasma treated polypropylene

    NASA Astrophysics Data System (ADS)

    Collaud Coen, M.; Dietler, G.; Kasas, S.; Gröning, P.

    1996-09-01

    Polypropylene (PP) samples have been treated in an ECR-rf plasma with several gases and at different treatment times and rf-potentials. Modifications of the surface topography have been analyzed by AFM and the results were correlated with previous XPS measurements of the surface chemistry. Plasma treatments with reactive gases (N 2, O 2) lead to the incorporation of new chemical species in the PP surface, whereas plasma treatments with noble gases (He, Ar, Xe) induce a desorption of hydrogen and a graphitization. The untreated PP sample has a rough surface with a granular structure. Plasma treatments with reactive gases induce weak morphology changes, but no new defined structures. Moreover, the modifications of the surface roughness are very sensitive to the treatment conditions. Noble gas plasma treatments, on the contrary, create a completely new surface morphology, which consists of a network of chains of 40-100 nm in diameter oriented in a random way. The size and the shape of these structures are very sensitive to the nature of the gas and to the treatment conditions (ion energy and dose, total energy deposition).

  15. Measuring Adhesion And Friction Forces

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1991-01-01

    Cavendish balance adapted to new purpose. Apparatus developed which measures forces of adhesion and friction between specimens of solid materials in vacuum at temperatures from ambient to 900 degrees C. Intended primarily for use in studying adhesion properties of ceramics and metals, including silicon carbide, aluminum oxide, and iron-base amorphous alloys.

  16. Long reach cantilevers for sub-cellular force measurements.

    PubMed

    Paneru, Govind; Thapa, Prem S; McBride, Sean P; Ramm, Adam; Law, Bruce M; Flanders, Bret N

    2012-11-16

    Maneuverable, high aspect ratio poly(3,4-ethylene dioxythiophene) (PEDOT) fibers are fabricated for use as cellular force probes that can interface with individual pseudopod adhesive contact sites without forming unintentional secondary contacts to the cell. The straight fibers have lengths between 5 and 40 μm and spring constants in the 0.07-23.2 nN μm(-1) range. The spring constants of these fibers were measured directly using an atomic force microscope (AFM). These AFM measurements corroborate determinations based on the transverse vibrational resonance frequencies of the fibers, which is a more convenient method. These fibers are employed to characterize the time dependent forces exerted at adhesive contacts between apical pseudopods of highly migratory D. discoideum cells and the PEDOT fibers, finding an average terminal force of 3.1 ± 2.7 nN and lifetime of 23.4 ± 18.5 s to be associated with these contacts. PMID:23085541

  17. Capillary and van der Waals interactions on CaF2 crystals from amplitude modulation AFM force reconstruction profiles under ambient conditions

    PubMed Central

    Calò, Annalisa; Robles, Oriol Vidal; Santos, Sergio

    2015-01-01

    Summary There has been much interest in the past two decades to produce experimental force profiles characteristic of the interaction between nanoscale objects or a nanoscale object and a plane. Arguably, the advent of the atomic force microscope AFM was instrumental in driving such efforts because, in principle, force profiles could be recovered directly. Nevertheless, it has taken years before techniques have developed enough as to recover the attractive part of the force with relatively low noise and without missing information on critical ranges, particularly under ambient conditions where capillary interactions are believed to dominate. Thus a systematic study of the different profiles that may arise in such situations is still lacking. Here we employ the surfaces of CaF2, on which nanoscale water films form, to report on the range and force profiles that might originate by dynamic capillary interactions occurring between an AFM tip and nanoscale water patches. Three types of force profiles were observed under ambient conditions. One in which the force decay resembles the well-known inverse-square law typical of van der Waals interactions during the first 0.5–1 nm of decay, a second one in which the force decays almost linearly, in relatively good agreement with capillary force predicted by the constant chemical potential approximation, and a third one in which the attractive force is almost constant, i.e., forms a plateau, up to 3–4 nm above the surface when the formation of a capillary neck dominates the tip–sample interaction. PMID:25977852

  18. Qplus AFM driven nanostencil.

    PubMed

    Grévin, B; Fakir, M; Hayton, J; Brun, M; Demadrille, R; Faure-Vincent, J

    2011-06-01

    We describe the development of a novel setup, in which large stencils with suspended silicon nitride membranes are combined with atomic force microscopy (AFM) regulation by using tuning forks. This system offers the possibility to perform separate AFM and nanostencil operations, as well as combined modes when using stencil chips with integrated tips. The flexibility and performances are demonstrated through a series of examples, including wide AFM scans in closed loop mode, probe positioning repeatability of a few tens of nanometer, simultaneous evaporation of large (several hundred of micron square) and nanoscopic metals and fullerene patterns in static, multistep, and dynamic modes. This approach paves the way for further developments, as it fully combines the advantages of conventional stenciling with the ones of an AFM driven shadow mask. PMID:21721701

  19. Nano Mechanical Machining Using AFM Probe

    NASA Astrophysics Data System (ADS)

    Mostofa, Md. Golam

    and burr formations through intermittent cutting. Combining the AFM probe based machining with vibration-assisted machining enhanced nano mechanical machining processes by improving the accuracy, productivity and surface finishes. In this study, several scratching tests are performed with a single crystal diamond AFM probe to investigate the cutting characteristics and model the ploughing cutting forces. Calibration of the probe for lateral force measurements, which is essential, is also extended through the force balance method. Furthermore, vibration-assisted machining system is developed and applied to fabricate different materials to overcome some of the limitations of the AFM probe based single point nano mechanical machining. The novelty of this study includes the application of vibration-assisted AFM probe based nano scale machining to fabricate micro/nano scale features, calibration of an AFM by considering different factors, and the investigation of the nano scale material removal process from a different perspective.

  20. High-sensitivity noncontact atomic force microscope/scanning tunneling microscope (nc AFM/STM) operating at subangstrom oscillation amplitudes for atomic resolution imaging and force spectroscopy

    NASA Astrophysics Data System (ADS)

    Oral, A.; Grimble, R. A.; Özer, H. Ö.; Pethica, J. B.

    2003-08-01

    We describe a new, highly sensitive noncontact atomic force microscope/scanning tunneling microscope (STM) operating in ultrahigh vacuum (UHV) with subangstrom oscillation amplitudes for atomic resolution imaging and force-distance spectroscopy. A novel fiber interferometer with ˜4×10-4 Å/√Hz noise level is employed to detect cantilever displacements. Subangstrom oscillation amplitude is applied to the lever at a frequency well below the resonance and changes in the oscillation amplitude due to tip-sample force interactions are measured with a lock-in amplifier. Quantitative force gradient images can be obtained simultaneously with the STM topography. Employment of subangstrom oscillation amplitudes lets us perform force-distance measurements, which reveal very short-range force interactions, consistent with the theory. Performance of the microscope is demonstrated with quantitative atomic resolution images of Si(111)(7×7) and force-distance curves showing short interaction range, all obtained with <0.25 Å lever oscillation amplitude. Our technique is not limited to UHV only and operation under liquids and air is feasible.

  1. Direct measurement of electrostatic fields using single Teflon nanoparticle attached to AFM tip

    PubMed Central

    2013-01-01

    Abstract A single 210-nm Teflon nanoparticle (sTNP) was attached to the vertex of a silicon nitride (Si3N4) atomic force microscope tip and charged via contact electrification. The charged sTNP can then be considered a point charge and used to measure the electrostatic field adjacent to a parallel plate condenser using 30-nm gold/20-nm titanium as electrodes. This technique can provide a measurement resolution of 250/100 nm along the X- and Z-axes, and the minimum electrostatic force can be measured within 50 pN. PACS 07.79.Lh, 81.16.-c, 84.37. + q PMID:24314111

  2. Particle deformation induced by AFM tapping under different setpoint voltages

    NASA Astrophysics Data System (ADS)

    Wu, Chung-Lin; Farkas, Natalia; Dagata, John A.; He, Bo-Ching; Fu, Wei-En

    2014-09-01

    The measured height of polystyrene nanoparticles varies with setpoint voltage during atomic force microscopy (AFM) tapping-mode imaging. Nanoparticle height was strongly influenced by the magnitude of the deformation caused by the AFM tapping forces, which was determined by the setpoint voltage. This influence quantity was studied by controlling the operational AFM setpoint voltage. A test sample consisting of well-dispersed 60-nm polystyrene and gold nanoparticles co-adsorbed on poly-l-lysine-coated mica was studied in this research. Gold nanoparticles have not only better mechanical property than polystyrene nanoparticles, but also obvious facets in AFM phase image. By using this sample of mixed nanoparticles, it allows us to confirm that the deformation resulted from the effect of setpoint voltage, not noise. In tapping mode, the deformation of polystyrene nanoparticles increased with decreasing setpoint voltage. Similar behavior was observed with both open loop and closed loop AFM instruments.

  3. The origin of the "snap-in" in the force curve between AFM probe and the water/gas interface of nanobubbles.

    PubMed

    Song, Yang; Zhao, Binyu; Zhang, Lijuan; Lü, Junhong; Wang, Shuo; Dong, Yaming; Hu, Jun

    2014-02-24

    The long-range attractive force or "snap-in" is an important phenomenon usually occurring when a solid particle interacts with a water/gas interface. By using PeakForce quantitative nanomechanics the origin of snap-in in the force curve between the atomic force microscopy (AFM) probe and the water/gas interface of nanobubbles has been investigated. The snap-in frequently happened when the probe was preserved for a certain time or after being used for imaging solid surfaces under atmospheric conditions. In contrast, imaging in liquids rarely induced a snap-in. After a series of control experiments, it was found that the snap-in can be attributed to hydrophobic interactions between the water/gas interface and the AFM probe, which was either modified or contaminated with hydrophobic material. The hydrophobic contamination could be efficiently removed by a conventional plasma-cleaning treatment, which prevents the occurring of the snap-in. In addition, the adsorption of sodium dodecyl sulfate onto the nanobubble surface changed the water/gas interface into hydrophilic, which also eliminated the snap-in phenomenon. PMID:24478257

  4. Two-Dimensional Measurement of n+-p Asymmetrical Junctions in Multicrystalline Silicon Solar Cells Using AFM-Based Electrical Techniques with Nanometer Resolution: Preprint

    SciTech Connect

    Jiang, C. S.; Moutinho, H. R.; Li, J. V.; Al-Jassim, M. M.; Heath, J. T.

    2011-07-01

    Lateral inhomogeneities of modern solar cells demand direct electrical imaging with nanometer resolution. We show that atomic force microscopy (AFM)-based electrical techniques provide unique junction characterizations, giving a two-dimensional determination of junction locations. Two AFM-based techniques, scanning capacitance microscopy/spectroscopy (SCM/SCS) and scanning Kelvin probe force microscopy (SKPFM), were significantly improved and applied to the junction characterizations of multicrystalline silicon (mc-Si) cells. The SCS spectra were taken pixel by pixel by precisely controlling the tip positions in the junction area. The spectra reveal distinctive features that depend closely on the position relative to the electrical junction, which allows us to indentify the electrical junction location. In addition, SKPFM directly probes the built-in potential over the junction area modified by the surface band bending, which allows us to deduce the metallurgical junction location by identifying a peak of the electric field. Our results demonstrate resolutions of 10-40 nm, depending on the techniques (SCS or SKPFM). These direct electrical measurements with nanometer resolution and intrinsic two-dimensional capability are well suited for investigating the junction distribution of solar cells with lateral inhomogeneities.

  5. A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope.

    PubMed

    Lange, Manfred; van Vörden, Dennis; Möller, Rolf

    2012-01-01

    Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM) allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements). When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface of the tip-sample system, and the process can be understood as a hysteresis of forces between approach and retraction of the tip. In this paper, we present the direct measurement of the whole hysteresis loop in force-spectroscopy curves at 77 K on the PTCDA/Ag/Si(111) √3 × √3 surface by means of a tuning-fork-based NC-AFM with an oscillation amplitude smaller than the distance range of the hysteresis loop. The hysteresis effect is caused by the making and breaking of a bond between PTCDA molecules on the surface and a PTCDA molecule at the tip. The corresponding energy loss was determined to be 0.57 eV by evaluation of the force-distance curves upon approach and retraction. Furthermore, a second dissipation process was identified through the damping of the oscillation while the molecule on the tip is in contact with the surface. This dissipation process occurs mainly during the retraction of the tip. It reaches a maximum value of about 0.22 eV/cycle. PMID:22496993

  6. Charge injection in thin dielectric layers by atomic force microscopy: influence of geometry and material work function of the AFM tip on the injection process

    NASA Astrophysics Data System (ADS)

    Villeneuve-Faure, C.; Makasheva, K.; Boudou, L.; Teyssedre, G.

    2016-06-01

    Charge injection and retention in thin dielectric layers remain critical issues for the reliability of many electronic devices because of their association with a large number of failure mechanisms. To overcome this drawback, a deep understanding of the mechanisms leading to charge injection close to the injection area is needed. Even though the charge injection is extensively studied and reported in the literature to characterize the charge storage capability of dielectric materials, questions about charge injection mechanisms when using atomic force microscopy (AFM) remain open. In this paper, a thorough study of charge injection by using AFM in thin plasma-processed amorphous silicon oxynitride layers with properties close to that of thermal silica layers is presented. The study considers the impact of applied voltage polarity, work function of the AFM tip coating and tip curvature radius. A simple theoretical model was developed and used to analyze the obtained experimental results. The electric field distribution is computed as a function of tip geometry. The obtained experimental results highlight that after injection in the dielectric layer the charge lateral spreading is mainly controlled by the radial electric field component independently of the carrier polarity. The injected charge density is influenced by the nature of electrode metal coating (work function) and its geometry (tip curvature radius). The electron injection is mainly ruled by the Schottky injection barrier through the field electron emission mechanism enhanced by thermionic electron emission. The hole injection mechanism seems to differ from the electron one depending on the work function of the metal coating. Based on the performed analysis, it is suggested that for hole injection by AFM, pinning of the metal Fermi level with the metal-induced gap states in the studied silicon oxynitride layers starts playing a role in the injection mechanisms.

  7. Charge injection in thin dielectric layers by atomic force microscopy: influence of geometry and material work function of the AFM tip on the injection process.

    PubMed

    Villeneuve-Faure, C; Makasheva, K; Boudou, L; Teyssedre, G

    2016-06-17

    Charge injection and retention in thin dielectric layers remain critical issues for the reliability of many electronic devices because of their association with a large number of failure mechanisms. To overcome this drawback, a deep understanding of the mechanisms leading to charge injection close to the injection area is needed. Even though the charge injection is extensively studied and reported in the literature to characterize the charge storage capability of dielectric materials, questions about charge injection mechanisms when using atomic force microscopy (AFM) remain open. In this paper, a thorough study of charge injection by using AFM in thin plasma-processed amorphous silicon oxynitride layers with properties close to that of thermal silica layers is presented. The study considers the impact of applied voltage polarity, work function of the AFM tip coating and tip curvature radius. A simple theoretical model was developed and used to analyze the obtained experimental results. The electric field distribution is computed as a function of tip geometry. The obtained experimental results highlight that after injection in the dielectric layer the charge lateral spreading is mainly controlled by the radial electric field component independently of the carrier polarity. The injected charge density is influenced by the nature of electrode metal coating (work function) and its geometry (tip curvature radius). The electron injection is mainly ruled by the Schottky injection barrier through the field electron emission mechanism enhanced by thermionic electron emission. The hole injection mechanism seems to differ from the electron one depending on the work function of the metal coating. Based on the performed analysis, it is suggested that for hole injection by AFM, pinning of the metal Fermi level with the metal-induced gap states in the studied silicon oxynitride layers starts playing a role in the injection mechanisms. PMID:27158768

  8. Electrostatic patch potentials in Casimir force measurements

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph; Somers, David; Munday, Jeremy

    2015-03-01

    Measurements of the Casimir force require the elimination of the electrostatic force between interacting surfaces. The force can be minimized by applying a potential to one of the two surfaces. However, electrostatic patch potentials remain and contribute an additional force which can obscure the Casimir force signal. We will discuss recent measurements of patch potentials made with Heterodyne Amplitude-Modulated Kelvin Probe Force Microscopy that suggest patches could be responsible for >1% of the signal in some Casimir force measurements, and thus make the distinction between different theoretical models of the Casimir force (e.g. a Drude-model or a plasma-model for the dielectric response) difficult to discern.

  9. Viscoelastic properties of healthy human artery measured in saline solution by AFM based indentation technique

    SciTech Connect

    Lundkvist, A.; Lilleodden, E.; Sickhaus, W.; Kinney, J.; Pruitt, L.; Balooch, M.

    1998-02-09

    Using an Atomic Force Microscope with an attachment for indentation, we have measured local, in vitro mechanical properties of healthy femoral artery tissue held in saline solution. The elastic modulus (34. 3 kPa) and viscoelastic response ({tau}sub{epsilon} {equals} 16.9 s and {tau}sub{sigma} {equals} 29.3 s) of the unstretched,intimal vessel wall have been determined using Sneddon theory and a three element model(standard linear solid) for viscoelastic materials. The procedures necessary to employ the indenting attachment to detect elastic moduli in the kPa range in liquid are described.

  10. A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope

    PubMed Central

    van Vörden, Dennis; Möller, Rolf

    2012-01-01

    Summary Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM) allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements). When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface of the tip–sample system, and the process can be understood as a hysteresis of forces between approach and retraction of the tip. In this paper, we present the direct measurement of the whole hysteresis loop in force-spectroscopy curves at 77 K on the PTCDA/Ag/Si(111) √3 × √3 surface by means of a tuning-fork-based NC-AFM with an oscillation amplitude smaller than the distance range of the hysteresis loop. The hysteresis effect is caused by the making and breaking of a bond between PTCDA molecules on the surface and a PTCDA molecule at the tip. The corresponding energy loss was determined to be 0.57 eV by evaluation of the force–distance curves upon approach and retraction. Furthermore, a second dissipation process was identified through the damping of the oscillation while the molecule on the tip is in contact with the surface. This dissipation process occurs mainly during the retraction of the tip. It reaches a maximum value of about 0.22 eV/cycle. PMID:22496993

  11. AFM Studies of Conformational Changes in Proteins and Peptides

    NASA Astrophysics Data System (ADS)

    Ploscariu, Nicoleta; Sukthankar, Pinakin; Tomich, John; Szoszkiewicz, Robert

    2015-03-01

    Here, we present estimates of molecular stiffness and mechanical energy dissipation factors for some examples of proteins and peptides. The results are obtained from AFM force spectroscopy measurements. To determine molecular stiffness and mechanical energy dissipation factors we developed a model based on measuring several resonance frequencies of an AFM cantilever in contact with either single protein molecule or peptides adsorbed on arbitrary surface. We used compliant AFM cantilevers with a small aspect ratio - a ratio of length to width - in air and in liquid, including biologically relevant phosphate buffered saline medium. Department of Physics.

  12. Elasticity measurement of breast cancer cells by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Chaoxian; Wang, Yuhua; Jiang, Ningcheng; Yang, Hongqin; Lin, Juqiang; Xie, Shusen

    2014-09-01

    Mechanical properties of living cells play an important role in understanding various cells' function and state. Therefore cell biomechanics is expected to become a useful tool for cancer diagnosis. In this study, atomic force microscopy (AFM) using a square pyramid probe was performed to investigate cancerous (MCF-7) and benign (MCF-10A) human breast epithelial cells. The new QITM mode was used to acquire high-resolution topographic images and elasticity of living cells. Furthermore, individual force curves were recorded at maximum loads of 0.2, 0.5 and 1 nN, and the dependence of cell's elasticity with loading force was discussed. It was showed that the cancerous cells exhibited smaller elasticity modulus in comparison to non-cancerous counterparts. The elasticity modulus increased as the loading force increased from 0.2 nN to 1 nN. This observation indicates that loading force affects the cell's apparent elasticity and it is important to choose the appropriate force applied to cells in order to distinguish normal and cancer cells. The results reveal that the mechanical properties of living cells measured by atomic force microscopy may be a useful indicator of cell type and disease.

  13. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction.

    PubMed

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-01-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation. PMID:27452115

  14. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    PubMed Central

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-01-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation. PMID:27452115

  15. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-07-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation.

  16. Robust high-resolution imaging and quantitative force measurement with tuned-oscillator atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Omur E.; Götzen, Jan; Hölscher, Hendrik; Altman, Eric I.; Schwarz, Udo D.

    2016-02-01

    Atomic force microscopy (AFM) and spectroscopy are based on locally detecting the interactions between a surface and a sharp probe tip. For highest resolution imaging, noncontact modes that avoid tip–sample contact are used; control of the tip’s vertical position is accomplished by oscillating the tip and detecting perturbations induced by its interaction with the surface potential. Due to this potential’s nonlinear nature, however, achieving reliable control of the tip–sample distance is challenging, so much so that despite its power vacuum-based noncontact AFM has remained a niche technique. Here we introduce a new pathway to distance control that prevents instabilities by externally tuning the oscillator’s response characteristics. A major advantage of this operational scheme is that it delivers robust position control in both the attractive and repulsive regimes with only one feedback loop, thereby providing an easy-to-implement route to atomic resolution imaging and quantitative tip–sample interaction force measurement.

  17. Beyond topography - enhanced imaging of cometary dust with the MIDAS AFM

    NASA Astrophysics Data System (ADS)

    Bentley, M. S.; Torkar, K.; Jeszenszky, H.; Romstedt, J.

    2013-09-01

    The MIDAS atomic force microscope (AFM) onboard the Rosetta spacecraft is primarily designed to return the 3D shape and structure of cometary dust particles collected at comet 67P/Churyumov-Gerasimenko [1]. Commercial AFMs have, however, been further developed to measure many other sample properties. The possibilities to make such measurements with MIDAS are explored here.

  18. The influence of deformation rate on polymer nanomechanical properties as measured by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Pittenger, Bede; Mueller, Thomas; AFM Unit Team

    Polymeric composites often have heterogeneities at the nanometer length scale. AFM based mechanical property measurements have the sensitivity and resolution necessary to visualize these features and better understand their influence on bulk properties. In the past few years, AFM mechanical property mapping has evolved from slow force volume to faster, but conceptually very similar, PeakForce Tapping. Currently, the time scale of tip-sample interaction spans from microseconds to seconds, tip sample forces can be controlled from piconewtons to micronewtons, and spatial resolution can reach sub-nanometer. AFM has become a unique mechanical measurement tool having large dynamic range (1kPa to >100GPa in modulus) with the flexibility to integrate with other physical property characterization techniques in versatile environments. In particular, researchers have begun to take advantage of the wide range of deformation rates accessible to AFM in order to study time dependent properties of materials such as viscoelasticity. This presentation will review this recent progress, providing examples that demonstrate the dynamic range of the measurements and the resolution with which they were obtained. Additionally, the effect of time dependent material properties on the types of measurements will be explored.

  19. Segmental calibration for commercial AFM in vertical direction

    NASA Astrophysics Data System (ADS)

    Shi, Yushu; Gao, Sitian; Lu, Mingzhen; Li, Wei; Xu, Xuefang

    2013-01-01

    Atomic force microscopy (AFM) is most widely applied in scientific research and industrial production. AFM is a scanning probe imaging and measuring device, useful for physical and chemical studies. Depends on its basic structure, microscopic surface pattern can be measured and captured by mechanically scanning. Its vertical and horizon resolution can reach to 0.01nm and 0.1nm. Commonly the measurement values of commercial AFM are directly from scanning piezoelectric tube, so that it not a traceable value. In order to solve the problem of commercial AFM's traceability, step height standard references are applied to calibrate the piezoelectric ceramic housing in scanning tube. All of the serial of step height standard references, covering the commercial AFM vertical scale, are calibrated by Metrology AFM developed by National Institute of Metrology (NIM), China. Three interferometers have been assembled in its XYZ axis, therefore the measurement value can directly trace to laser wavelength. Because of nonlinear characteristic of PZT, the method of segmental calibration is proposed. The measurement scale can be divided into several subsections corresponding to the calibrated values of the series of step height standards references. By this method the accuracy of measurements can be ensured in each segment measurement scale and the calibration level of the whole instrument can be promoted. In order to get a standard step shape by commercial AFM, substrate removal method is applied to deal with the bow shape problem.

  20. Long range metrological atomic force microscope with versatile measuring head

    NASA Astrophysics Data System (ADS)

    Lu, Mingzhen; Gao, Sitian; Li, Qi; Li, Wei; Shi, Yushu; Tao, Xingfu

    2013-01-01

    A long range metrological atomic force microscope (AFM) has been developed at NIM. It aims to realize a maximum measurement volume of 50mm×50mm×2mm with an uncertainty of a few tens of nanometers in the whole range. In compliance with Abbe Principle, the instrument is designed as a sample-scanning type. The sample is moved by a 6-DOF piezostage in combination with a hybrid slide-air bearing stage for long scanning range. Homodyne interferometers with four passes attached to a metrological frame measure relative displacement between the probe and sample thus the instrument is directly traceable to the SI. An AFM head is developed as the measuring head for the instrument. Considering accuracy and dynamic performance of the instrument, it is designed to be capable of scanning perpendicularly in a range of 5μm×5μm×5μm with a 3-DOF piezostage. Optical beam deflection method is used and a minimum of components are mounted on the moving part. A novel design is devised so that the photodetector is only sensitive to the deflection of cantilever, but not the displacement of the head. Moving manner of the head varies with scanning range and mode of the instrument. Results of different measurements are demonstrated, showing the excellent performance of the instrument.

  1. Long range constant force profiling for measurement of engineering surfaces

    NASA Astrophysics Data System (ADS)

    Howard, L. P.; Smith, S. T.

    1992-10-01

    A new instrument bridging the gap between atomic force microscopes (AFMs) and stylus profiling instruments is described. The constant force profiler is capable of subnanometer resolution over a 15-μm vertical range with a horizontal traverse length of 50 mm. This long traverse length, coupled with the possibilities of utilizing standard radius, diamond measurement styli, make the force profiler more compatible with existing profiling instrument standards. The forces between the specimen and a diamond stylus tipped cantilever spring are sensed as displacements using a capacitance bridge. This displacement signal is then fed through a proportional plus integral controller to a high stability piezoelectric actuator to maintain a constant tip-to-sample force of approximately 100 nN. Much of the sensor head and traverse mechanism is made of Zerodur glass-ceramic to provide the thermal stability needed for long travel measurements. Profiles of a 30-nm silica step height standard and an 8.5-μm step etched on Zerodur are presented.

  2. Measurement of cell adhesion force by vertical forcible detachment using an arrowhead nanoneedle and atomic force microscopy

    SciTech Connect

    Ryu, Seunghwan; Hashizume, Yui; Mishima, Mari; Kawamura, Ryuzo; Tamura, Masato; Matsui, Hirofumi; Matsusaki, Michiya; Akashi, Mitsuru; Nakamura, Chikashi

    2014-08-15

    Graphical abstract: - Highlights: • We developed a method to measure cell adhesion force by detaching cell using an arrowhead nanoneedle and AFM. • A nanofilm consisting of fibronectin and gelatin was formed on cell surface to reinforce the cell cortex. • By the nanofilm lamination, detachment efficiencies of strongly adherent cell lines were improved markedly. - Abstract: The properties of substrates and extracellular matrices (ECM) are important factors governing the functions and fates of mammalian adherent cells. For example, substrate stiffness often affects cell differentiation. At focal adhesions, clustered–integrin bindings link cells mechanically to the ECM. In order to quantitate the affinity between cell and substrate, the cell adhesion force must be measured for single cells. In this study, forcible detachment of a single cell in the vertical direction using AFM was carried out, allowing breakage of the integrin–substrate bindings. An AFM tip was fabricated into an arrowhead shape to detach the cell from the substrate. Peak force observed in the recorded force curve during probe retraction was defined as the adhesion force, and was analyzed for various types of cells. Some of the cell types adhered so strongly that they could not be picked up because of plasma membrane breakage by the arrowhead probe. To address this problem, a technique to reinforce the cellular membrane with layer-by-layer nanofilms composed of fibronectin and gelatin helped to improve insertion efficiency and to prevent cell membrane rupture during the detachment process, allowing successful detachment of the cells. This method for detaching cells, involving cellular membrane reinforcement, may be beneficial for evaluating true cell adhesion forces in various cell types.

  3. Dynamic Force Measurement with Strain Gauges

    ERIC Educational Resources Information Center

    Lee, Bruce E.

    1974-01-01

    Discusses the use of four strain gauges, a Wheatstone bridge, and an oscilloscope to measure forces dynamically. Included is an example of determining the centripetal force of a pendulum in a general physics laboratory. (CC)

  4. Characterization of the interaction between AFM tips and surface nanobubbles.

    PubMed

    Walczyk, Wiktoria; Schönherr, Holger

    2014-06-24

    While the presence of gaseous enclosures observed at various solid-water interfaces, the so-called "surface nanobubles", has been confirmed by many groups in recent years, their formation, properties, and stability have not been convincingly and exhaustively explained. Here we report on an atomic force microscopy (AFM) study of argon nanobubbles on highly oriented pyrolitic graphite (HOPG) in water to elucidate the properties of nanobubble surfaces and the mechanism of AFM tip-nanobubble interaction. In particular, the deformation of the nanobubble-water interface by the AFM tip and the question whether the AFM tip penetrates the nanobubble during scanning were addressed by this combined intermittent contact (tapping) mode and force volume AFM study. We found that the stiffness of nanobubbles was smaller than the cantilever spring constant and comparable with the surface tension of water. The interaction with the AFM tip resulted in severe quasi-linear deformation of the bubbles; however, in the case of tip-bubble attraction, the interface deformed toward the tip. We tested two models of tip-bubble interaction, namely, the capillary force and the dynamic interaction model, and found, depending on the tip properties, good agreement with experimental data. The results showed that the tip-bubble interaction strength and the magnitude of the bubble deformation depend strongly on tip and bubble geometry and on tip and substrate material, and are very sensitive to the presence of contaminations that alter the interfacial tension. In particular, nanobubbles interacted differently with hydrophilic and hydrophobic AFM tips, which resulted in qualitatively and quantitatively different force curves measured on the bubbles in the experiments. To minimize bubble deformation and obtain reliable AFM results, nanobubbles must be measured with a sharp hydrophilic tip and with a cantilever having a very low spring constant in a contamination-free system. PMID:24856074

  5. Direct measurement of single-molecule visco-elasticity in atomic force microscope force-extension experiments.

    PubMed

    Bippes, Christian A; Humphris, Andrew D L; Stark, Martin; Müller, Daniel J; Janovjak, Harald

    2006-02-01

    Measuring the visco-elastic properties of biological macromolecules constitutes an important step towards the understanding of dynamic biological processes, such as cell adhesion, muscle function, or plant cell wall stability. Force spectroscopy techniques based on the atomic force microscope (AFM) are increasingly used to study the complex visco-elastic response of (bio-)molecules on a single-molecule level. These experiments either require that the AFM cantilever is actively oscillated or that the molecule is clamped at constant force to monitor thermal cantilever motion. Here we demonstrate that the visco-elasticity of single bio-molecules can readily be extracted from the Brownian cantilever motion during conventional force-extension measurements. It is shown that the characteristics of the cantilever determine the signal-to-noise (S/N) ratio and time resolution. Using a small cantilever, the visco-elastic properties of single dextran molecules were resolved with a time resolution of 8.3 ms. The presented approach can be directly applied to probe the dynamic response of complex bio-molecular systems or proteins in force-extension experiments. PMID:16237549

  6. Stability enhancement of an atomic force microscope for long-term force measurement including cantilever modification for whole cell deformation

    NASA Astrophysics Data System (ADS)

    Weafer, P. P.; McGarry, J. P.; van Es, M. H.; Kilpatrick, J. I.; Ronan, W.; Nolan, D. R.; Jarvis, S. P.

    2012-09-01

    Atomic force microscopy (AFM) is widely used in the study of both morphology and mechanical properties of living cells under physiologically relevant conditions. However, quantitative experiments on timescales of minutes to hours are generally limited by thermal drift in the instrument, particularly in the vertical (z) direction. In addition, we demonstrate the necessity to remove all air-liquid interfaces within the system for measurements in liquid environments, which may otherwise result in perturbations in the measured deflection. These effects severely limit the use of AFM as a practical tool for the study of long-term cell behavior, where precise knowledge of the tip-sample distance is a crucial requirement. Here we present a readily implementable, cost effective method of minimizing z-drift and liquid instabilities by utilizing active temperature control combined with a customized fluid cell system. Long-term whole cell mechanical measurements were performed using this stabilized AFM by attaching a large sphere to a cantilever in order to approximate a parallel plate system. An extensive examination of the effects of sphere attachment on AFM data is presented. Profiling of cantilever bending during substrate indentation revealed that the optical lever assumption of free ended cantilevering is inappropriate when sphere constraining occurs, which applies an additional torque to the cantilevers "free" end. Here we present the steps required to accurately determine force-indentation measurements for such a scenario. Combining these readily implementable modifications, we demonstrate the ability to investigate long-term whole cell mechanics by performing strain controlled cyclic deformation of single osteoblasts.

  7. Force measurements in aerodynamics using piezoelectric multicomponent force transducers

    NASA Astrophysics Data System (ADS)

    Schewe, G.

    The present paper is concerned with a device for the measurement of steady and unsteady aerodynamic forces in a wind tunnel test. The paper represents a continuation of an article written by Schewe (1982) about a multicomponent balance consisting of piezoelectric force transducers for a high-pressure wind tunnel. Advantages of the piezoelectric force-measuring technique compared to other techniques are related to the high rigidity of the quartz crystal sensor elements, taking into account low interference (cross talk) for multicomponent measurements, high natural frequency, and broad dynamic range. It is pointed out that the limitations with respect to quasi-static measurements imposed by the drift of the zero point are not as extensive as generally believed, while drift correction methods improve the measurement accuracy.

  8. Molecular-scale quantitative charge density measurement of biological molecule by frequency modulation atomic force microscopy in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Umeda, Kenichi; Kobayashi, Kei; Oyabu, Noriaki; Matsushige, Kazumi; Yamada, Hirofumi

    2015-07-01

    Surface charge distributions on biological molecules in aqueous solutions are essential for the interactions between biomolecules, such as DNA condensation, antibody-antigen interactions, and enzyme reactions. There has been a significant demand for a molecular-scale charge density measurement technique for better understanding such interactions. In this paper, we present the local electric double layer (EDL) force measurements on DNA molecules in aqueous solutions using frequency modulation atomic force microscopy (FM-AFM) with a three-dimensional force mapping technique. The EDL forces measured in a 100 mM KCl solution well agreed with the theoretical EDL forces calculated using reasonable parameters, suggesting that FM-AFM can be used for molecular-scale quantitative charge density measurements on biological molecules especially in a highly concentrated electrolyte.

  9. Utilization of profilometry, SEM, AFM and contact angle measurements in describing surfaces of plastic floor coverings and explaining their cleanability

    NASA Astrophysics Data System (ADS)

    Kuisma, R.; Pesonen-Leinonen, E.; Redsven, I.; Kymäläinen, H.-R.; Saarikoski, I.; Sjöberg, A.-M.; Hautala, M.

    2005-06-01

    The tendency to soil and cleanability of ten commercial plastic floor coverings: eight vinyl (PVC) floor coverings, one vinyl composite tile and one plastic composite tile, were examined. Floor coverings were soiled with inorganic, organic and biological soil. The cleanability was measured both by bioluminescence of ATP (adenosine triphosphate) and colorimetrically. The surface topography was studied by AFM, SEM and with a profilometer. From the 2D- and 3D-profilometric measurements several characteristic parameters of the surface profiles were extracted. The tendency to soil and cleanability were compared with the characteristics of the surface. A weak correlation was found between roughness and soilability but no correlation between roughness and cleanability. Roughness had no correlation with contact angle.

  10. Force measurement in a nanomachining instrument

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Hocken, Robert J.; Patten, John A.; Lovingood, John

    2000-11-01

    Two miniature, high sensitivity force transducers were employed to measure the thrust force along the in-feed direction and the cutting force along the cross-feed direction in a nanomachining instrument. The instrument was developed for conducting fundamental experiments of nanocutting especially on brittle materials. The force transducers of piezoelectric quartz type can measure machining forces ranging from 0.2 mN to 10 N. The submillinewton resolution makes it possible to measure the machining forces in the cutting experiments with depths of cut as small as the nanometer level. The stiffness and resonant frequency of the force transducers are 400 mN/nm and 300 kHz, respectively, which meet the specification of the instrument. A force transducer assembly is designed to provide a mechanism to adjust the preload on the force transducer and to decouple the measurement of forces. The assembly consists of three dual-axis circular flexures and a subframe. The axial stiffness of the flexures is designed to be greater than 6×107 N/m and the lateral stiffness of the flexures is designed to be 1×106 N/m to provide proper decoupling of forces.

  11. Kinetics of degradation of dipalmitoylphosphatidylcholine (DPPC) bilayers as a result of vipoxin phospholipase A2 activity: an atomic force microscopy (AFM) approach.

    PubMed

    Balashev, Konstantin; Atanasov, Vasil; Mitewa, Mariana; Petrova, Svetla; Bjørnholm, Thomas

    2011-01-01

    In this paper we used AFM as an analytical tool to visualize the degradation of a phospholipid bilayer undergoing hydrolysis of the vipoxin's PLA(2). We obtained time series images during the degradation process of supported 1, 2-dipalmitoylphosphatidylcholine (DPPC) bilayers and evaluated the occurrence and the growth rate of the bilayer defects. The special resolution of the AFM images allowed us to measure the area and the perimeter length of these defects and to draw conclusions about the kinetics of the enzyme reaction. Moreover, we also report for some unique characteristics discovered during the vipoxin's PLA(2) action. Experimentally for the first time, we observed the appearance and the growth of three-dimensional (3D), crystal-like structures within the formed defects of the degraded bilayer. In an effort to explain their nature, we applied bearing image analysis to estimate the volume of these crystals and we found that their growth rate follows a similar kinetic pattern as the degradation rate of the supported bilayer. PMID:20959114

  12. Knee joint forces: prediction, measurement, and significance

    PubMed Central

    D’Lima, Darryl D.; Fregly, Benjamin J.; Patil, Shantanu; Steklov, Nikolai; Colwell, Clifford W.

    2011-01-01

    Knee forces are highly significant in osteoarthritis and in the survival and function of knee arthroplasty. A large number of studies have attempted to estimate forces around the knee during various activities. Several approaches have been used to relate knee kinematics and external forces to internal joint contact forces, the most popular being inverse dynamics, forward dynamics, and static body analyses. Knee forces have also been measured in vivo after knee arthroplasty, which serves as valuable validation of computational predictions. This review summarizes the results of published studies that measured knee forces for various activities. The efficacy of various methods to alter knee force distribution, such as gait modification, orthotics, walking aids, and custom treadmills are analyzed. Current gaps in our knowledge are identified and directions for future research in this area are outlined. PMID:22468461

  13. Knee joint forces: prediction, measurement, and significance.

    PubMed

    D'Lima, Darryl D; Fregly, Benjamin J; Patil, Shantanu; Steklov, Nikolai; Colwell, Clifford W

    2012-02-01

    Knee forces are highly significant in osteoarthritis and in the survival and function of knee arthroplasty. A large number of studies have attempted to estimate forces around the knee during various activities. Several approaches have been used to relate knee kinematics and external forces to internal joint contact forces, the most popular being inverse dynamics, forward dynamics, and static body analyses. Knee forces have also been measured in vivo after knee arthroplasty, which serves as valuable validation of computational predictions. This review summarizes the results of published studies that measured knee forces for various activities. The efficacy of various methods to alter knee force distribution, such as gait modification, orthotics, walking aids, and custom treadmills are analyzed. Current gaps in our knowledge are identified and directions for future research in this area are outlined. PMID:22468461

  14. Analysis of the effect of LRP-1 silencing on the invasive potential of cancer cells by nanomechanical probing and adhesion force measurements using atomic force microscopy.

    PubMed

    Le Cigne, A; Chièze, L; Beaussart, A; El-Kirat-Chatel, S; Dufrêne, Y F; Dedieu, S; Schneider, C; Martiny, L; Devy, J; Molinari, M

    2016-04-01

    Low-density lipoprotein receptor-related protein 1 (LRP-1) can internalize proteases involved in cancer progression and is thus considered a promising therapeutic target. However, it has been demonstrated that LRP-1 is also able to regulate the endocytosis of membrane-anchored proteins. Thus, strategies that target LRP-1 to modulate proteolysis could also affect adhesion and cytoskeleton dynamics. Here, we investigated the effect of LRP-1 silencing on parameters reflecting cancer cells' invasiveness by atomic force microscopy (AFM). The results show that LRP-1 silencing induces changes in the cells' adhesion behavior, particularly the dynamics of cell attachment. Clear alterations in morphology, such as more pronounced stress fibers and increased spreading, leading to increased area and circularity, were also observed. The determination of the cells' mechanical properties by AFM showed that these differences are correlated with an increase in Young's modulus. Moreover, the measurements show an overall decrease in cell motility and modifications of directional persistence. An overall increase in the adhesion force between the LRP-1-silenced cells and a gelatin-coated bead was also observed. Ultimately, our AFM-based force spectroscopy data, recorded using an antibody directed against the β1 integrin subunit, provide evidence that LRP-1 silencing modifies the rupture force distribution. Together, our results show that techniques traditionally used for the investigation of cancer cells can be coupled with AFM to gain access to complementary phenotypic parameters that can help discriminate between specific phenotypes associated with different degrees of invasiveness. PMID:26965453

  15. Investigation of biopolymer networks by means of AFM

    NASA Astrophysics Data System (ADS)

    Keresztes, Z.; Rigó, T.; Telegdi, J.; Kálmán, E.

    Natural hydrogel alginate was investigated by means of atomic force microscopy (AFM) to gain microscale information on the morphological and rheological properties of the biopolymer network cross-linked by various cations. Local rheological properties of the gels measured by force spectroscopy gave correlation between increasing ion selectivity and increasing polymer elasticity. Adhesive forces acting between the surface of the gel and the probe, and also the intrinsic rheological properties of bulk polymers affect the microscopical image formation.

  16. A simple atomic force microscopy calibration method for direct measurement of surface energy on nanostructured surfaces covered with molecularly thin liquid films

    SciTech Connect

    Brunner, Ralf; Talke, Frank E.; Etsion, Izhak

    2009-05-15

    A simple calibration method is described for the determination of surface energy by atomic force microscopy (AFM) pull-off force measurements on nanostructured surfaces covered with molecularly thin liquid films. The method is based on correlating pull-off forces measured in arbitrary units on a nanostructured surface with pull-off forces measured on macroscopically smooth dip-coated gauge surfaces with known surface energy. The method avoids the need for complex calibration of the AFM cantilever stiffness and the determination of the radius of curvature of the AFM tip. Both of the latter measurements are associated with indirect and less accurate measurements of surface energy based on various contact mechanics adhesion models.

  17. Axial force measurement for esophageal function testing.

    PubMed

    Gravesen, Flemming H; Funch-Jensen, Peter; Gregersen, Hans; Drewes, Asbjørn Mohr

    2009-01-14

    The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the "golden standard" for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method. PMID:19132762

  18. Force Measurement Device for ARIANE 5 Payloads

    NASA Astrophysics Data System (ADS)

    Brunner, O.; Braeken, R.

    2004-08-01

    ESTEC uses since 1991 a Force Measurement Device (FMD) for the measurement of dynamic mechanical forces and moments. This tool allows the determination of forces and moments applied to the test hardware at its interface to the test facilities during dynamic testing. Three forces and three moments are calculated from the measurements of eight tri-axial force links and used to either characterize the dynamic mechanical behaviour of the test item and/or to control forces and moments during vibration testing (force limited vibration control). The current FMD is limited to test items with an interface diameter of up to about 1.2 m (adapter already available) and a mass compatible with ARIANE 4 payloads. The limitations of the current system come from the maximum of eight tri-axial force links and from the analogue technique of the Signal Processing Unit (SPU) that allows only a limited number of geometric configurations for the mechanical interface. Following the success of the FMD during former test campaigns, e.g. ROSETTA STM + FM, the need for a FMD, compatible with ARIANE 5 payloads has been established. Therefore ESA decided to develop a new FMD system. The system will include a digital real time SPU with 72 force input channels, corresponding to 24 tri-axes force sensors or 72 mono axial force sensors. The SPU design will allow extending the number of force input channels to 144. The set-up of the FMD will be done via a standard PC interface. The user will enter for each force sensor the location and the measurement direction in the reference coordinate system. Based on the geometrical information and the maximum forces and moments expected the PC will calculate the optimum range settings for the charge-amplifiers and the corresponding matrix with weighting factors which will allow to perform a fast calculation of the six output forces and moments from the 72 (or 144) input forces. The six output channels with forces and moments can then be connected either to the

  19. Development of a force measurement device

    NASA Astrophysics Data System (ADS)

    Wilmar, Otto

    1991-10-01

    The development of a Force Measurement Device (FMD) for recording interface forces between shaker table and Ariane 4 satellites is reported. The FMD is designed to measure forces and moments in the frequency range from 0.1 to 100 Hz with an accuracy better than 3 percent in basic modes up to 20 Hz, and 7 percent for higher modes. The ring shaped FMD concept contains 8 piezoelectronic force links and an analog electronic signal processing unit for reduction of the measured signals to 3 total forces and 3 moments. These are output to the test site signal analysis system. The required accuracy of the output and the structural safety of the device were verified by static tests.

  20. Augmented Computer Mouse Would Measure Applied Force

    NASA Technical Reports Server (NTRS)

    Li, Larry C. H.

    1993-01-01

    Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.

  1. Measuring anisotropic friction on WTe2 using atomic force microscopy in the force-distance and friction modes.

    PubMed

    Watson, Gregory S; Myhra, Sverre; Watson, Jolanta A

    2010-04-01

    Layered materials which can be easily cleaved have proved to be excellent samples for the study of atomic scale friction. The layered transition metal dichalcogenides have been particularly popular. These materials exhibit a number of interesting properties ranging from superconductivity to low frictional coefficients. In this paper we have investigated the tribology of the dichalcogenide-WTe2. The coefficient of friction is less than 0.040 along the Te rows and increases to over 0.045 across the rows. The frictional forces almost doubled at normal loads of 5000 nN when scanning in the [010] direction in comparison to the [100] direction. The frictional responses of the AFM probe have been monitored in the frictional force and force-versus-distance (f-d) mode. A comparison between the outcomes using the two different modes demonstrates the factors which need to be considered for accurate measurements. PMID:20355449

  2. Adhesive force measurement between HOPG and zinc oxide as an indicator for interfacial bonding of carbon fiber composites.

    PubMed

    Patterson, Brendan A; Galan, Ulises; Sodano, Henry A

    2015-07-22

    Vertically aligned zinc oxide (ZnO) nanowires have recently been utilized as an interphase to increase the interfacial strength of carbon fiber composites. It was shown that the interaction between the carbon fiber and the ZnO nanowires was a critical parameter in adhesion; however, fiber based testing techniques are dominated by local defects and cannot be used to effectively study the bonding interaction directly. Here, the strength of the interface between ZnO and graphitic carbon is directly measured with atomic force microscopy (AFM) using oxygen plasma treated highly oriented pyrolytic graphite (HOPG) and an AFM tip coated with ZnO nanoparticles. X-ray photoelectron spectroscopy analysis is used to compare the surface chemistry of HOPG and carbon fiber and to quantify the presence of various oxygen functional groups. An indirect measurement of the interfacial strength is then performed through single fiber fragmentation testing (SFF) on functionalized carbon fibers coated with ZnO nanowires to validate the AFM measurements. The SFF and AFM methods showed the same correlation, demonstrating the capacity of the AFM method to study the interfacial properties in composite materials. Additionally, the chemical interactions between oxygen functional groups and the ionic structure of ZnO suggest that intermolecular forces at the interface are responsible for the strong interface. PMID:26107931

  3. Analysis of Atomic Force Microscopy Images of Crystal Originated "Particles" on (100) Silicon Wafer through its Side Wall Angle Measurement

    NASA Astrophysics Data System (ADS)

    Lee, W. P.; Yow, H. K.; Tou, T. Y.

    2001-04-01

    Crystal originated "particle" (COP) on (100) silicon wafer surface was analyzed by Atomic Force Microscopy (AFM). The AFM analyzed COP was pyramidal pit mostly originated from twin octahedral voids surrounded by side walls in {111} planes. The appearance of COP on the (100) polished silicon wafer surface could be either single, separated or joined twin type and square in shape depends which portion of octahedral voids had been cut across during watering processes. As a result, the measured COP image by AFM might not reflect the shape of the COP or in the worst case, the AFM tip shape is misinterpreted as the COP shape. Hence, the side wall angle of COP image obtained by AFM is used to differentiate between actual COP or tip shape. If the side wall angle is comparable to the maximum measurable slope angle of tip, the tip shape is obtained instead of true COP shape. However, if the side wall angle is 55° or below with respect to (100) plane, the AFM image reflect the true COP shape.

  4. Micromechanical apparatus for measurement of forces

    DOEpatents

    Tanner, Danelle Mary; Allen, James Joe

    2004-05-25

    A new class of micromechanical dynamometers has been disclosed which are particularly suited to fabrication in parallel with other microelectromechanical apparatus. Forces in the microNewton regime and below can be measured with such dynamometers which are based on a high-compliance deflection element (e.g. a ring or annulus) suspended above a substrate for deflection by an applied force, and one or more distance scales for optically measuring the deflection.

  5. High speed AFM studies of 193 nm immersion photoresists during TMAH development

    NASA Astrophysics Data System (ADS)

    Ngunjiri, Johnpeter; Meyers, Greg; Cameron, Jim; Suzuki, Yasuhiro; Jeon, Hyun; Lee, Dave; Choi, Kwang Mo; Kim, Jung Woo; Im, Kwang-Hwyi; Lim, Hae-Jin

    2016-03-01

    In this paper we report on our studies of the dynamic process of resist development in real time. Using High Speed - Atomic Force Microscopy (HS-AFM) in dilute developer solution, changes in morphology and nanomechanical properties of patterned resist were monitored. The Bruker Dimension FastScan AFMTM was applied to analyze 193 nm acrylic-based immersion resists in developer. HS-AFM operated in Peak Force mapping mode allowed for concurrent measurements of image topography resist stiffness, adhesion to AFM probe and deformation during development. In our studies we focused on HS-AFM topography data as it readily revealed detailed information about initial resist morphology, followed by a resist swelling process and eventual dissolution of the exposed resist areas. HS-AFM showed potential for tracking and understanding development of patterned resist films and can be useful in evaluating the dissolution properties of different resist designs.

  6. Fabrication and measurement of nanostructures on the micro ball surface using a modified atomic force microscope.

    PubMed

    Zhao, X S; Geng, Y Q; Li, W B; Yan, Y D; Hu, Z J; Sun, T; Liang, Y C; Dong, S

    2012-11-01

    In order to machine and measure nanostructures on the micro ball surface, a modified atomic force microscope (AFM) combining a commercial AFM system with a home built precision air bearing spindle is established. Based on this system, motions of both the AFM scanner and the air bearing spindle are controlled to machine nanostructures on the micro ball based on the AFM tip-based nano mechanical machining approach. The eccentric error between the axis of the micro ball and the axis of the spindle is reduced to 3-4 μm by the provided fine adjusting method. A 1000 nano lines array, 36 square pits structure, 10 square pits structure, and a zig-zag structure on the circumference of the micro ball with the diameter of 1.5 mm are machined successfully. The measurement results achieved by the same system reveal that the profiles and mode-power spectra curves of the micro ball are influenced by the artificially machined nanostructures significantly according to their distributions. This work is an useful attempt for modifying the micro ball profile and manufacture of the spherical modulation targets to study the experimental performance of the micro ball in implosion. PMID:23206095

  7. Enabling the measurement of in-situ, atomic scale mineral transformation rates in supercritical CO2 through development of a high pressure AFM

    NASA Astrophysics Data System (ADS)

    Lea, S.; Higgins, S. R.; Knauss, K. G.; Rosso, K. M.

    2010-12-01

    Capture and storage of carbon dioxide in deep geologic formations represents one promising scenario for minimizing the impacts of greenhouse gases on global warming. The ability to demonstrate that CO2 will remain stored in the geological formation over the long-term is needed in support of widespread implementation decisions, and knowledge of mineral-fluid chemical transformation rates is an essential aspect. The majority of previous research on mineral-fluid interactions has focused primarily on the reactivity of minerals in aqueous solutions containing various amounts of dissolved CO2. Long-term caprock integrity, however, could also be dictated by mineral transformations occurring in low-water environments dominated by the supercritical CO2 (scCO2) fluid phase, which is expected to slowly displace or dessicate residual aqueous solution at the caprock-fluid interface. Many of the mechanisms of mineral interfacial reactions with hydrated or water-saturated scCO2 are unknown and there are unique challenges to obtain kinetic and thermodynamic data for mineral transformation reactions in these fluids. We are developing a high-pressure atomic force microscope (AFM) that will enable in-situ, atomic scale measurements of metal carbonate nucleation and growth rates on mineral surfaces in contact with hydrated scCO2 fluids. This apparatus is based on the hydrothermal AFM that was developed by Higgins et al.1, but includes some enhancements and is designed to handle pressures up to 100 bar. The noise in our optically-based cantilever deflection detection scheme is subject to perturbations in the density (due to index of refraction dependence) of the compressible supercritical fluid. Consequently, variations in temperature and pressure within the fluid cell are a primary technical challenge with possible significant impact in imaging resolution. We demonstrate with our test fluid cell that the equivalent rms noise in the deflection signal is similar to (and in some cases

  8. Measurement of tool forces in diamond turning

    SciTech Connect

    Drescher, J.; Dow, T.A.

    1988-12-01

    A dynamometer has been designed and built to measure forces in diamond turning. The design includes a 3-component, piezoelectric transducer. Initial experiments with this dynamometer system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Many cutting experiments have been conducted on OFHC Copper and 6061-T6 Aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool forces. Velocity has been determined to have negligible effects between 4 and 21 m/s. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a simple model may not be sufficient to describe the forces produced in the diamond turning process.

  9. Detection of Pathogens Using AFM and SPR

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok

    2005-03-01

    A priori detection of pathogens in food and water has become a subject of paramount importance. Several recent incidents have resulted in the government passing stringent regulations for tolerable amounts of contamination of food products. Identification and/or monitoring of bacterial contamination in food are critical. The conventional methods of pathogen detection require time-consuming steps to arrive disembark at meaningful measurement in a timely manner as the detection time exceeds the time in which perishable food recycles through the food chain distribution. The aim of this presentation is to outline surface plasmon resonance (SPR) and atomic force microscopy (AFM) as two methods for fast detect6ion of pathogens. Theoretical basis of SPR and experimental results of SPR and AFM on E. coli O157:H7 and prion are presented.

  10. Casimir force measurements from silicon carbide surfaces

    NASA Astrophysics Data System (ADS)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-02-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold- coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was measured to obtain information for the minimum separation distance upon contact. Ellipsometry data for both systems were used to extract optical properties needed for the calculation of the Casimir force via the Lifshitz theory and for comparison to the experiment. Special attention is devoted to the separation of the electrostatic contribution to the measured total force. Our measurements demonstrate large contact potential V0(≈0.67 V ) , and a relatively small density of charges trapped in SiC. Knowledge of both Casimir and electrostatic forces between interacting materials is not only important from the fundamental point of view, but also for device applications involving actuating components at separations of less than 200 nm where surface forces play dominant role.

  11. Force Measurements of a varying camber hydrofoil

    NASA Astrophysics Data System (ADS)

    Najdzin, Derek; Bardet, Philippe M.; Leftwich, Megan C.

    2013-11-01

    The swimming motion of cetaceans (dolphins, whales) is capable of producing large amounts of thrust as observed in nature. This project aims to determine the propulsive efficiency of this swimming motion through force and power measurements. A mechanism was constructed to replicate this motion by applying a combination of pitching and heaving motions to a varying camber hydrofoil. A novel force balance allows the measurement of three direction force and moments as the fin oscillates. A range of Reynolds and Strouhal numbers were tested to identify the most efficient conditions. Allowing the camber of the hydrofoil to vary has shown to increase lift generated, while generating similar thrust forces when compared to a constant camber hydrofoil.

  12. Brief: Field measurements of casing tension forces

    SciTech Connect

    Quigley, M.S.; Lewis, D.B.; Boswell, R.S.

    1995-02-01

    Tension forces acting on individual casing joints were accurately measured during installation of 10,158 ft of 9 5/8-in. {times} 47-lbm/ft casing and 11,960 ft of 11 7/8-in. {times} 71.8-lbm/ft casing. A unique casing load table (CLT) weighed the casing string after the addition of each casing joint. Strain gauges attached inside the pin ends of instrumented casing joints (ICJ`s) directly measured tension force on those joints. A high-speed computer data-acquisition system (DAS) automatically recorded data from all the sensors. Several casing joints were intentionally subjected to extreme deceleration to determine upper limits for dynamic tension forces. Data from these tests clearly show effects of wellbore friction and casing handling conditions. In every case, tension forces in the casing during maximum deceleration were considerably less than expected. In some cases, the highest tension forces occurred when the casing lifted out of the slips. Peak tension forces caused by setting the casing slips were typically no more than 5% greater than tension forces in the casing at rest. This dynamic amplification was far less than the 60% value used in the previous casing design method. Reducing the safety factor for installation loads has permitted use of lighter, less-expensive casing than dictated by older design criteria.

  13. Nanoscale spatially resolved simultaneous measurement of in-plane and out-of-plane force components on surfaces: a novel operational mode in atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Watson, Gregory S.; Dinte, Bradley P.; Blach, Jolanta A.; Myhra, Sverre

    2002-11-01

    The atomic force microscope (AFM) allows investigation of the properties of surfaces and interfaces at atomic scale resolution. However, several different operational modes, (imaging, force versus distance and lateral force modes), need to be deployed in order to gain insight into the structure, tribological and mechanical properties. A new method, based on a variation of the force versus distance mode, has been developed. In essence, a coupling of the deformational modes of the probe is exploited whereby the tip is induced to undergo lateral travel in response to application of an out-of-plane force (and thus normal bending of the force-sensing lever). The lateral travel induces in-plane forces that are then measurable as a consequence of stimulation of the 'buckling' deformational mode of the lever. Due to the lever geometry, the technique offers an increase in resolution of an order of magnitude over existing AFM methods for measurement of atomic scale stick-slip events. In addition, the method allows measurement of the lateral deformation of the sample as well as scanner calibration. Outcomes will be demonstrated for atomically flat surfaces such as WTe2 and highly oriented pyrolytic graphite.

  14. Measuring Cell Forces by a Photoelastic Method

    PubMed Central

    Curtis, Adam; Sokolikova-Csaderova, Lucia; Aitchison, Gregor

    2007-01-01

    A new method for measuring the mechanical forces exerted by cells on the substratum and through the substratum to act on other cells is described. This method depends upon the growth of cells on a photoelastic substratum, polydimethylsiloxane coated with a near monolayer of fibronectin. Changes in the forces applied by the cells to the substratum lead to changes in birefringence, which can be measured and recorded by the Polscope computer-controlled polarizing microscope. The changes in azimuth and retardance can be measured. A method for calibrating the stress is described. The method is sensitive down to forces of 1 pN per square microns. Fairly rapid changes with time can be recorded with a time resolution of ∼1 s. The observations show that both isolated adhering, spread cells and also cells close to contact exert stresses on the substratum and that the stresses are those that would be produced by forces of 10–1000 pN per cell. The forces are almost certainly exerted on nearby cells since movement of one cell causes strains to appear around other nearby cells. The method has the defect that strains under the cells, though detectable in principle, are unclear due to birefringence of the components of the cytoplasm and nucleus. It is of special interest that the strains on the substratum can change in the time course of a few seconds and appear to be concentrated near the base of the lamellopodium of the cell as though they originated there. As well as exerting forces on the substratum in the direction of the long axis of the cell, appreciable forces are exerted from the lateral sides of the cell. The observations and measurements tend to argue that microtopography and embedded beads can concentrate the forces. PMID:17189310

  15. Imaging and measuring the biophysical properties of Fc gamma receptors on single macrophages using atomic force microscopy

    SciTech Connect

    Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao; Xiao, Xiubin; Zhang, Weijing

    2013-09-06

    Highlights: •Nanoscale cellular ultra-structures of macrophages were observed. •The binding affinities of FcγRs were measured directly on macrophages. •The nanoscale distributions of FcγRs were mapped on macrophages. -- Abstract: Fc gamma receptors (FcγR), widely expressed on effector cells (e.g., NK cells, macrophages), play an important role in clinical cancer immunotherapy. The binding of FcγRs to the Fc portions of antibodies that are attached to the target cells can activate the antibody-dependent cell-mediated cytotoxicity (ADCC) killing mechanism which leads to the lysis of target cells. In this work, we used atomic force microscopy (AFM) to observe the cellular ultra-structures and measure the biophysical properties (affinity and distribution) of FcγRs on single macrophages in aqueous environments. AFM imaging was used to obtain the topographies of macrophages, revealing the nanoscale cellular fine structures. For molecular interaction recognition, antibody molecules were attached onto AFM tips via a heterobifunctional polyethylene glycol (PEG) crosslinker. With AFM single-molecule force spectroscopy, the binding affinities of FcγRs were quantitatively measured on single macrophages. Adhesion force mapping method was used to localize the FcγRs, revealing the nanoscale distribution of FcγRs on local areas of macrophages. The experimental results can improve our understanding of FcγRs on macrophages; the established approach will facilitate further research on physiological activities involved in antibody-based immunotherapy.

  16. Flapping wing PIV and force measurements

    NASA Astrophysics Data System (ADS)

    Cameron, Benjamin H.

    Flapping wing aerodynamics has been of interest to engineers recently due in part to the DARPA (Defense Advanced Research Projects Agency) MAV (Micro-Aerial Vehicle) initiative. MAVs are small unmanned aerial vehicles with length scales similar to birds and insects. Flapping wing MAVs would serve as mobile and stealthy sensing platforms capable of gathering intelligence in hazardous and physically inaccessible locations. Traditional means of lift and thrust generation become inefficient when scaled to these sizes, therefore a flapping wing propulsion system will be necessary. The design of a flapping wing MAV requires the ability to measure forces and velocities around the wing. Three components of velocity were measured in the wake of a two dimensional (2D) flapping airfoil model using a novel application of stereoscopic DPIV (Digital Particle Image Velocimetry). One component of force was measured using a newly proposed method outlined in the dissertation. The force measurement technique relies on a specific sequence of data acquisition, which has the benefit of reducing measurement uncertainty and noise. No experiments of this type have been conducted, and no direct aerodynamic force data exists for the low Reynolds numbers applicable to flapping wing MAVs. The well-established stereoscopic DPIV technique produces relatively low uncertainties while the new force measurement technique has not been previously tested. Theoretical analysis and experimental results show that aerodynamic forces are attainable for chord Reynolds numbers as low as 1,000, which is significantly lower than previous studies. PIV measurements reveal symmetric and asymmetric wake topologies for a NACA 0012 and flat plate airfoil. A sinusoidally heaving flat plate airfoil produces highly deflected wakes for a wider range of flapping conditions than a NACA 0012 airfoil. Deflected wakes are of potentially interest since both lift and thrust components of force are developed. The flat plate also

  17. Measuring Young's modulus of biological objects in a liquid medium using an atomic force microscope with a special probe

    NASA Astrophysics Data System (ADS)

    Lebedev, D. V.; Chuklanov, A. P.; Bukharaev, A. A.; Druzhinina, O. S.

    2009-04-01

    A special probe with a 5-μm-diameter ball fixed at the end is developed for an atomic force microscope (AFM), with the use of which it is possible to obtain more correct values of the Young’s moduli of biological objects in liquid media and eliminate the risk of damaging the sample surface. In particular, the AFM measurements with this probe in situ revealed an increase in the Young’s modulus of rat blood vessel under the action of chlorhexidine.

  18. Elastic modulus measurements at variable temperature: Validation of atomic force microscopy techniques

    NASA Astrophysics Data System (ADS)

    Natali, Marco; Reggente, Melania; Passeri, Daniele; Rossi, Marco

    2016-06-01

    The development of polymer-based nanocomposites to be used in critical thermal environments requires the characterization of their mechanical properties, which are related to their chemical composition, size, morphology and operating temperature. Atomic force microscopy (AFM) has been proven to be a useful tool to develop techniques for the mechanical characterization of these materials, thanks to its nanometer lateral resolution and to the capability of exerting ultra-low loads, down to the piconewton range. In this work, we demonstrate two techniques, one quasi-static, i.e., AFM-based indentation (I-AFM), and one dynamic, i.e., contact resonance AFM (CR-AFM), for the mechanical characterization of compliant materials at variable temperature. A cross-validation of I-AFM and CR-AFM has been performed by comparing the results obtained on two reference materials, i.e., low-density polyethylene (LDPE) and polycarbonate (PC), which demonstrated the accuracy of the techniques.

  19. Single ricin detection by AFM chemomechanical mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research reports a method of detecting ricin molecules immobilized on chemically modified gold (Au;111) surface by chemomechanically mapping the molecular interactions with a chemically modified Atomic Force Microscope (AFM) tip. AFM images resolved the different fold-up conformations of single...

  20. Statistical analysis of long- and short-range forces involved in bacterial adhesion to substratum surfaces as measured using atomic force microscopy.

    PubMed

    Chen, Yun; Busscher, Henk J; van der Mei, Henny C; Norde, Willem

    2011-08-01

    Surface thermodynamic analyses of microbial adhesion using measured contact angles on solid substrata and microbial cell surfaces are widely employed to determine the nature of the adhesion forces, i.e., the interplay between Lifshitz-van der Waals and acid-base forces. While surface thermodynamic analyses are often viewed critically, atomic force microscopy (AFM) can also provide information on the nature of the adhesion forces by means of Poisson analysis of the measured forces. This review first presents a description of Poisson analysis and its underlying assumptions. The data available from the literature for different combinations of bacterial strains and substrata are then summarized, leading to the conclusion that bacterial adhesion to surfaces is generally dominated by short-range, attractive acid-base interactions, in combination with long-range, weaker Lifshitz-van der Waals forces. This is in line with the findings of surface thermodynamic analyses of bacterial adhesion. Comparison with single-molecule ligand-receptor forces from the literature suggests that the short-range-force contribution from Poisson analysis involves a discrete adhesive bacterial cell surface site rather than a single molecular force. The adhesion force arising from these cell surface sites and the number of sites available may differ from strain to strain. Force spectroscopy, however, involves the tedious task of identifying the minor peaks in the AFM retraction force-distance curve. This step can be avoided by carrying out Poisson analysis on the work of adhesion, which can also be derived from retraction force-distance curves. This newly proposed way of performing Poisson analysis confirms that multiple molecular bonds, rather than a single molecular bond, contribute to a discrete adhesive bacterial cell surface site. PMID:21642399

  1. Coaxial atomic force microscope tweezers

    NASA Astrophysics Data System (ADS)

    Brown, K. A.; Aguilar, J. A.; Westervelt, R. M.

    2010-03-01

    We demonstrate coaxial atomic force microscope (AFM) tweezers that can trap and place small objects using dielectrophoresis (DEP). An attractive force is generated at the tip of a coaxial AFM probe by applying a radio frequency voltage between the center conductor and a grounded shield; the origin of the force is found to be DEP by measuring the pull-off force versus applied voltage. We show that the coaxial AFM tweezers can perform three-dimensional assembly by picking up a specified silica microsphere, imaging with the microsphere at the end of the tip, and placing it at a target destination.

  2. Probing Cytoskeletal Structures by Coupling Optical Superresolution and AFM Techniques for a Correlative Approach

    PubMed Central

    Chacko, Jenu Varghese; Zanacchi, Francesca Cella; Diaspro, Alberto

    2013-01-01

    In this article, we describe and show the application of some of the most advanced fluorescence superresolution techniques, STED AFM and STORM AFM microscopy towards imaging of cytoskeletal structures, such as microtubule filaments. Mechanical and structural properties can play a relevant role in the investigation of cytoskeletal structures of interest, such as microtubules, that provide support to the cell structure. In fact, the mechanical properties, such as the local stiffness and the elasticity, can be investigated by AFM force spectroscopy with tens of nanometers resolution. Force curves can be analyzed in order to obtain the local elasticity (and the Young's modulus calculation by fitting the force curves from every pixel of interest), and the combination with STED/STORM microscopy integrates the measurement with high specificity and yields superresolution structural information. This hybrid modality of superresolution-AFM working is a clear example of correlative multimodal microscopy. PMID:24027190

  3. AFM study of polymer lubricants on hard disk surfaces

    NASA Astrophysics Data System (ADS)

    Bao, G. W.; Troemel, M.; Li, S. F. Y.

    Thin liquid films of PFPE (perfluoropolyether) lubricants dip-coated on hard disk surfaces were imaged with non-contact mode AFM. Demnum lubricants with phosphazene additives exhibited strong interactions with a silicon tip due to the formation of liquid bridges between the lubricants and the tip, as indicated by a remarkable hysteresis loop between approach and retraction curves in force vs. distance measurements. Features resulting from capillary forces due to tip tapping to the lubricants were revealed, which demonstrated that the capillary forces could be used to lock the non-contacting tip at a certain separation from the substrate surface to obtain AFM images. Force vs. distance curves for Fomblin Z-dol lubricants showed negligible hysteresis effects and features corresponding to lateral distortion of the tip by the lubricants only were observed. In both cases, only when the tip was positioned far above the surfaces could the natural distributions of the lubricants be imaged.

  4. High-throughput and non-destructive sidewall roughness measurement using 3-dimensional atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Hua, Yueming; Buenviaje-Coggins, Cynthia; Lee, Yong-ha; Park, Sang-il

    2012-03-01

    As the feature size of the semiconductor device is becoming increasingly smaller and the transistor has become three-dimensional (e.g. Fin-FET structure), a simple Line Edge Roughness (LER) is no longer sufficient for characterizing these devices. Sidewall Roughness (SWR) is now the more proper metric for these metrology applications. However, current metrology technologies, such as SEM and OCD, provide limited information on the sidewall of such small structures. The subject of this study is the sidewall roughness measurement with a three-dimensional Atomic Force Microscopy (AFM) using tilted Z scanner. This 3D AFM is based on a decoupled XY and Z scanning configuration, in which the Z scanner can be intentionally tilted to the side. A sharp conical tip is typically used for imaging, which provides high resolution capability on both the flat surfaces (top and bottom) and the steep sidewalls.

  5. A MEMS sensor for microscale force measurements

    NASA Astrophysics Data System (ADS)

    Majcherek, S.; Aman, A.; Fochtmann, J.

    2016-02-01

    This paper describes the development and testing of a new MEMS-based sensor device for microscale contact force measurements. A special MEMS cell was developed to reach higher lateral resolution than common steel-based load cells with foil-type strain gauges as mechanical-electrical converters. The design provided more than one normal force measurement point with spatial resolution in submillimeter range. Specific geometric adaption of the MEMS-device allowed adjustability of its measurement range between 0.5 and 5 N. The thin film nickel-chromium piezo resistors were used to achieve a mechanical-electrical conversion. The production process was realized by established silicon processing technologies such as deep reactive ion etching and vapor deposition (sputtering). The sensor was tested in two steps. Firstly, the sensor characteristics were carried out by application of defined loads at the measurement points by a push-pull tester. As a result, the sensor showed linear behavior. A measurement system analysis (MSA1) was performed to define the reliability of the measurement system. The measured force values had the maximal relative deviation of 1% to average value of 1.97 N. Secondly, the sensor was tested under near-industrial conditions. In this context, the thermal induced relaxation behavior of the electrical connector contact springs was investigated. The handling of emerging problems during the characterization process of the sensor is also described.

  6. Genetically encoded force sensors for measuring mechanical forces in proteins

    PubMed Central

    Wang, Yuexiu; Sachs, Frederick

    2011-01-01

    There are three sources of free energy for cells: chemical potential, electrical potential and mechanical potential. There is little known about the last one since there have not been simple ways to measure stress in proteins in cells. we have now developed genetically encoded force sensors to assess the stress in fibrous proteins in living cells. These FReT based fluorescence sensors can be read out at video rates and provide real time maps of the stress distribution in cells, tissues and animals. The sensors can be inserted into specific proteins and in general do not disturb the normal function or anatomy. The original sensors used mutant GFPs linked by elastic linkers. These sensors provide a linear output with applied stress but the response is linear in strain. To improve contrast and dynamic range we have now developed a new class of sensors that are smaller making them less invasive, and have much higher intrinsic sensitivity since force modulates the angle between the donor and acceptor much more than the distance between them. Known as cpstFRET, the probe shows improved biocompatibility, wider dynamic range and higher sensitivity. PMID:21966553

  7. Simplified fundamental force and mass measurements

    NASA Astrophysics Data System (ADS)

    Robinson, I. A.

    2016-08-01

    The watt balance relates force or mass to the Planck constant h, the metre and the second. It enables the forthcoming redefinition of the unit of mass within the SI by measuring the Planck constant in terms of mass, length and time with an uncertainty of better than 2 parts in 108. To achieve this, existing watt balances require complex and time-consuming alignment adjustments limiting their use to a few national metrology laboratories. This paper describes a simplified construction and operating principle for a watt balance which eliminates the need for the majority of these adjustments and is readily scalable using either electromagnetic or electrostatic actuators. It is hoped that this will encourage the more widespread use of the technique for a wide range of measurements of force or mass. For example: thrust measurements for space applications which would require only measurements of electrical quantities and velocity/displacement.

  8. Accurate measurement of Atomic Force Microscope cantilever deflection excluding tip-surface contact with application to force calibration.

    PubMed

    Slattery, Ashley D; Blanch, Adam J; Quinton, Jamie S; Gibson, Christopher T

    2013-08-01

    Considerable attention has been given to the calibration of AFM cantilever spring constants in the last 20 years. Techniques that do not require tip-sample contact are considered advantageous since the imaging tip is not at risk of being damaged. Far less attention has been directed toward measuring the cantilever deflection or sensitivity, despite the fact that the primary means of determining this factor relies on the AFM tip being pressed against a hard surface, such as silicon or sapphire; which has the potential to significantly damage the tip. A recent method developed by Tourek et al. in 2010 involves deflecting the AFM cantilever a known distance from the imaging tip by pressing the cantilever against a sharpened tungsten wire. In this work a similar yet more precise method is described, whereby the deflection of the cantilever is achieved using an AFM probe with a spring constant much larger than the test cantilever, essentially a rigid cantilever. The exact position of loading on the test cantilever was determined by reverse AFM imaging small spatial markers that are milled into the test cantilever using a focussed ion beam. For V shaped cantilevers it is possible to reverse image the arm intersection in order to determine the exact loading point without necessarily requiring FIB milled spatial markers, albeit at the potential cost of additional uncertainty. The technique is applied to tip-less, beam shaped and V shaped cantilevers and compared to the hard surface contact technique with very good agreement (on average less than 5% difference). While the agreement with the hard surface contact technique was very good the error on the technique is dependent upon the assumptions inherent in the method, such as cantilever shape, loading point distance and ratio of test to rigid cantilever spring constants. The average error ranged between 2 to 5% for the majority of test cantilevers studied. The sensitivity derived with this technique can then be used to

  9. Calibration of lateral force measurements in atomic force microscopy with a piezoresistive force sensor

    SciTech Connect

    Xie Hui; Vitard, Julien; Haliyo, Sinan; Regnier, Stephane

    2008-03-15

    We present here a method to calibrate the lateral force in the atomic force microscope. This method makes use of an accurately calibrated force sensor composed of a tipless piezoresistive cantilever and corresponding signal amplifying and processing electronics. Two ways of force loading with different loading points were compared by scanning the top and side edges of the piezoresistive cantilever. Conversion factors between the lateral force and photodiode signal using three types of atomic force microscope cantilevers with rectangular geometries (normal spring constants from 0.092 to 1.24 N/m and lateral stiffness from 10.34 to 101.06 N/m) were measured in experiments using the proposed method. When used properly, this method calibrates the conversion factors that are accurate to {+-}12.4% or better. This standard has less error than the commonly used method based on the cantilever's beam mechanics. Methods such of this allow accurate and direct conversion between lateral forces and photodiode signals without any knowledge of the cantilevers and the laser measuring system.

  10. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy

    SciTech Connect

    Loganathan, Muthukumaran; Bristow, Douglas A.

    2014-04-15

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  11. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy.

    PubMed

    Loganathan, Muthukumaran; Bristow, Douglas A

    2014-04-01

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields. PMID:24784614

  12. Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction

    PubMed Central

    Dagdeviren, Omur E; Schwendemann, Todd C; Mönig, Harry; Altman, Eric I

    2012-01-01

    Summary Noncontact atomic force microscopy (NC-AFM) is being increasingly used to measure the interaction force between an atomically sharp probe tip and surfaces of interest, as a function of the three spatial dimensions, with picometer and piconewton accuracy. Since the results of such measurements may be affected by piezo nonlinearities, thermal and electronic drift, tip asymmetries, and elastic deformation of the tip apex, these effects need to be considered during image interpretation. In this paper, we analyze their impact on the acquired data, compare different methods to record atomic-resolution surface force fields, and determine the approaches that suffer the least from the associated artifacts. The related discussion underscores the idea that since force fields recorded by using NC-AFM always reflect the properties of both the sample and the probe tip, efforts to reduce unwanted effects of the tip on recorded data are indispensable for the extraction of detailed information about the atomic-scale properties of the surface. PMID:23019560

  13. Analysis of the effect of LRP-1 silencing on the invasive potential of cancer cells by nanomechanical probing and adhesion force measurements using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Le Cigne, A.; Chièze, L.; Beaussart, A.; El-Kirat-Chatel, S.; Dufrêne, Y. F.; Dedieu, S.; Schneider, C.; Martiny, L.; Devy, J.; Molinari, M.

    2016-03-01

    Low-density lipoprotein receptor-related protein 1 (LRP-1) can internalize proteases involved in cancer progression and is thus considered a promising therapeutic target. However, it has been demonstrated that LRP-1 is also able to regulate the endocytosis of membrane-anchored proteins. Thus, strategies that target LRP-1 to modulate proteolysis could also affect adhesion and cytoskeleton dynamics. Here, we investigated the effect of LRP-1 silencing on parameters reflecting cancer cells' invasiveness by atomic force microscopy (AFM). The results show that LRP-1 silencing induces changes in the cells' adhesion behavior, particularly the dynamics of cell attachment. Clear alterations in morphology, such as more pronounced stress fibers and increased spreading, leading to increased area and circularity, were also observed. The determination of the cells' mechanical properties by AFM showed that these differences are correlated with an increase in Young's modulus. Moreover, the measurements show an overall decrease in cell motility and modifications of directional persistence. An overall increase in the adhesion force between the LRP-1-silenced cells and a gelatin-coated bead was also observed. Ultimately, our AFM-based force spectroscopy data, recorded using an antibody directed against the β1 integrin subunit, provide evidence that LRP-1 silencing modifies the rupture force distribution. Together, our results show that techniques traditionally used for the investigation of cancer cells can be coupled with AFM to gain access to complementary phenotypic parameters that can help discriminate between specific phenotypes associated with different degrees of invasiveness.Low-density lipoprotein receptor-related protein 1 (LRP-1) can internalize proteases involved in cancer progression and is thus considered a promising therapeutic target. However, it has been demonstrated that LRP-1 is also able to regulate the endocytosis of membrane-anchored proteins. Thus, strategies

  14. AFM nanoscale indentation in air of polymeric and hybrid materials with highly different stiffness

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Credi, Caterina; Levi, Marinella; Turri, Stefano

    2014-08-01

    In this study, nanomechanical properties of a variety of polymeric materials was investigated by means of AFM. In particular, selecting different AFM probes, poly(methyl methacrylate) (PMMA), polydimethylsiloxane (PDMS) bulk samples, sol-gel hybrid thin films and hydrated hyaluronic acid hydrogels were indented in air to determine the elastic modulus. The force-distance curves and the indentation data were found to be greatly affected by the cantilever stiffness and by tip geometry. AFM indentation tests show that the choice of the cantilever spring constant and of tip shape is crucially influenced by elastic properties of samples. When adhesion-dominated interactions occur between the tip and the surface of samples, force-displacement curves reveal that a suitable functionalization of AFM probes allows the control of such interactions and the extraction of Young' modulus from AFM curves that would be otherwise unfeasible. By applying different mathematical models depending on AFM probes and materials under investigation, the values of Young's modulus were obtained and compared to those measured by rheological and dynamic mechanical analysis or to literature data. Our results show that a wide range of elastic moduli (10 kPa-10 GPa) can be determined by AFM in good agreement with those measured by conventional macroscopic measurements.

  15. Trends of measured climate forcing agents

    PubMed Central

    Hansen, James E.; Sato, Makiko

    2001-01-01

    The growth rate of climate forcing by measured greenhouse gases peaked near 1980 at almost 5 W/m2 per century. This growth rate has since declined to ≈3 W/m2 per century, largely because of cooperative international actions. We argue that trends can be reduced to the level needed for the moderate “alternative” climate scenario (≈2 W/m2 per century for the next 50 years) by means of concerted actions that have other benefits, but the forcing reductions are not automatic “co-benefits” of actions that slow CO2 emissions. Current trends of climate forcings by aerosols remain very uncertain. Nevertheless, practical constraints on changes in emission levels suggest that global warming at a rate +0.15 ± 0.05°C per decade will occur over the next several decades. PMID:11752424

  16. Trends of Measured Climate Forcing Agents

    NASA Technical Reports Server (NTRS)

    Hansen, James E.; Sato, Makiko; Einaudi, Franco (Technical Monitor)

    2002-01-01

    The growth rate of climate forcing by measured greenhouse gases peaked near 1980 at almost 5 W/sq m per century. This growth rate has since declined to approximately equal to 3 W/sq m per century, largely because of cooperative international actions. We argue that trends can be reduced to the level needed for the moderate "alternative" climate scenario (approximately equal to 2 W/M2 per century for the next 50 years) by means of concerted actions that have other benefits, but the forcing reductions are not automatic "co-benefits" of actions that slow CO2 emissions. Current trends of climate forcings by aerosols remain very uncertain. Nevertheless, practical constraints on changes in emission levels suggest that global warming at a rate + 0.15 +/- 0.05 C per decade will occur over the next several decades.

  17. Force measurement in heaving and pitching foils

    NASA Astrophysics Data System (ADS)

    Pardo, Enrique; Najdzin, Derek; Leftwich, Megan C.; Bardet, Philippe M.

    2012-11-01

    This study analyzes the efficiency of a cambering hydrofoil built to simulate the movement of flukes on cetaceans. The mechanism is a 10 bar assembly that allows a hydrofoil to move in a cambered pitching and heaving motion similar to that of a dolphin. The mechanism sits on a force-balance with six strain gages that together measure the three forces and three moments experienced by the fin during a cycle of motion. These gages are attached to a traveling mechanism that rest on a water flume. To analyze the efficiency of the hydrofoil we took measurements at various Reynolds and Strouhal numbers. These measurements were done twice were compared to the thrust produced by a rigid (non-cambered) hydrofoil at the same conditions.

  18. An atomic force microscopy-based method for line edge roughness measurement

    NASA Astrophysics Data System (ADS)

    Fouchier, M.; Pargon, E.; Bardet, B.

    2013-03-01

    With the constant decrease of semiconductor device dimensions, line edge roughness (LER) becomes one of the most important sources of device variability and needs to be controlled below 2 nm for the future technological nodes of the semiconductor roadmap. LER control at the nanometer scale requires accurate measurements. We introduce a technique for LER measurement based upon the atomic force microscope (AFM). In this technique, the sample is tilted at about 45° and feature sidewalls are scanned along their length with the AFM tip to obtain three-dimensional images. The small radius of curvature of the tip together with the low noise level of a laboratory AFM result in high resolution images. Half profiles and LER values on all the height of the sidewalls are extracted from the 3D images using a procedure that we developed. The influence of sample angle variations on the measurements is shown to be small. The technique is applied to the study of a full pattern transfer into a simplified gate stack. The images obtained are qualitatively consistent with cross-section scanning electron microscopy images and the average LER values agree with that obtained by critical dimension scanning electron microscopy. In addition to its high resolution, this technique presents several advantages such as the ability to image the foot of photoresist lines, complex multi-layer stacks regardless of the materials, and deep re-entrant profiles.

  19. The role of confinement and corona crystallinity on the bending modulus of copolymer micelles measured directly by AFM flexural tests.

    PubMed

    Jennings, L; Glazer, P; Laan, A C; de Kruijff, R M; Waton, G; Schosseler, F; Mendes, E

    2016-09-21

    We present an approach which makes it possible to directly determine the bending modulus of single elongated block copolymer micelles. This is done by forming arrays of suspended micelles onto microfabricated substrates and by performing three-point bending flexural tests, using an atomic force microscope, on their suspended portions. By coupling the direct atomic force microscopy measurements with differential scanning calorimetry data, we show that the presence of a crystalline corona strongly increases the modulus of the copolymer elongated micelles. This large increase suggests that crystallites in the corona are larger and more uniformly oriented due to confinement effects. Our findings together with this hypothesis open new interesting avenues for the preparation of core-templated polymer fibres with enhanced mechanical properties. PMID:27506248

  20. Forced free-shear layer measurements

    NASA Technical Reports Server (NTRS)

    Leboeuf, Richard L.

    1994-01-01

    Detailed three-dimensional three-component phase averaged measurements of the spanwise and streamwise vorticity formation and evolution in acoustically forced plane free-shear flows have been obtained. For the first time, phase-averaged measurements of all three velocity components have been obtained in both a mixing layer and a wake on three-dimensional grids, yielding the spanwise and streamwise vorticity distributions without invoking Taylor's hypothesis. Initially, two-frequency forcing was used to phase-lock the roll-up and first pairing of the spanwise vortical structures in a plane mixing layer. The objective of this study was to measure the near-field vortical structure morphology in a mixing layer with 'natural' laminar initial boundary layers. For the second experiment the second and third subharmonics of the fundamental roll-up frequency were added to the previous two-frequency forcing in order to phase-lock the roll-up and first three pairings of the spanwise rollers in the mixing layer. The objective of this study was to determine the details of spanwise scale changes observed in previous time-averaged measurements and flow visualization of unforced mixing layers. For the final experiment, single-frequency forcing was used to phase-lock the Karman vortex street in a plane wake developing from nominally two-dimensional laminar initial boundary layers. The objective of this study was to compare measurements of the three-dimensional structure in a wake developing from 'natural' initial boundary layers to existing models of wake vortical structure.

  1. Multi-terminal magnetotransport measurements over a tunable graphene p-n junction created by AFM-nanomachining

    SciTech Connect

    Schmidt, H.; Smirnov, D.; Rode, J.; Haug, R. J.

    2013-12-04

    An Atomic Force Microscope is used to alter one part of a single layer graphene sample locally. Transport experiments at low temperatures are then used to characterize the different parts independently with field effect and Hall measurements. It is shown, that the nanomachining leads to an effective doping in the altered area and therefore to a difference in the charge carrier density of Δn = 3.5 ⋅ 10{sup 15}m{sup −2} between the unchanged and changed part. These two parts can be tuned with a global backgate to form a junction of different polarity, i.e. a p-n junction.

  2. Preparation and Friction Force Microscopy Measurements of Immiscible, Opposing Polymer Brushes

    PubMed Central

    de Beer, Sissi; Kutnyanszky, Edit; Müser, Martin H.; Vancso, G. Julius

    2014-01-01

    Solvated polymer brushes are well known to lubricate high-pressure contacts, because they can sustain a positive normal load while maintaining low friction at the interface. Nevertheless, these systems can be sensitive to wear due to interdigitation of the opposing brushes. In a recent publication, we have shown via molecular dynamics simulations and atomic force microscopy experiments, that using an immiscible polymer brush system terminating the substrate and the slider surfaces, respectively, can eliminate such interdigitation. As a consequence, wear in the contacts is reduced. Moreover, the friction force is two orders of magnitude lower compared to traditional miscible polymer brush systems. This newly proposed system therefore holds great potential for application in industry. Here, the methodology to construct an immiscible polymer brush system of two different brushes each solvated by their own preferred solvent is presented. The procedure how to graft poly(N-isopropylacrylamide) (PNIPAM) from a flat surface and poly(methyl methacrylate) (PMMA) from an atomic force microscopy (AFM) colloidal probe is described. PNIPAM is solvated in water and PMMA in acetophenone. Via friction force AFM measurements, it is shown that the friction for this system is indeed reduced by two orders of magnitude compared to the miscible system of PMMA on PMMA solvated in acetophenone. PMID:25590429

  3. Preparation and friction force microscopy measurements of immiscible, opposing polymer brushes.

    PubMed

    de Beer, Sissi; Kutnyanszky, Edit; Müser, Martin H; Vancso, G Julius

    2014-01-01

    Solvated polymer brushes are well known to lubricate high-pressure contacts, because they can sustain a positive normal load while maintaining low friction at the interface. Nevertheless, these systems can be sensitive to wear due to interdigitation of the opposing brushes. In a recent publication, we have shown via molecular dynamics simulations and atomic force microscopy experiments, that using an immiscible polymer brush system terminating the substrate and the slider surfaces, respectively, can eliminate such interdigitation. As a consequence, wear in the contacts is reduced. Moreover, the friction force is two orders of magnitude lower compared to traditional miscible polymer brush systems. This newly proposed system therefore holds great potential for application in industry. Here, the methodology to construct an immiscible polymer brush system of two different brushes each solvated by their own preferred solvent is presented. The procedure how to graft poly(N-isopropylacrylamide) (PNIPAM) from a flat surface and poly(methyl methacrylate) (PMMA) from an atomic force microscopy (AFM) colloidal probe is described. PNIPAM is solvated in water and PMMA in acetophenone. Via friction force AFM measurements, it is shown that the friction for this system is indeed reduced by two orders of magnitude compared to the miscible system of PMMA on PMMA solvated in acetophenone. PMID:25590429

  4. Measuring viscoelasticity of soft samples using atomic force microscopy.

    PubMed

    Tripathy, S; Berger, E J

    2009-09-01

    Relaxation indentation experiments using atomic force microscopy (AFM) are used to obtain viscoelastic material properties of soft samples. The quasilinear viscoelastic (QLV) model formulated by Fung (1972, "Stress Strain History Relations of Soft Tissues in Simple Elongation," in Biomechanics, Its Foundation and Objectives, Prentice-Hall, Englewood Cliffs, NJ, pp. 181-207) for uniaxial compression data was modified for the indentation test data in this study. Hertz contact mechanics was used for the instantaneous deformation, and a reduced relaxation function based on continuous spectrum is used for the time-dependent part in the model. The modified QLV indentation model presents a novel method to obtain viscoelastic properties from indentation data independent of relaxation times of the test. The major objective of the present study is to develop the QLV indentation model and implement the model on AFM indentation data for 1% agarose gel and a viscoelastic polymer using spherical indenter. PMID:19725704

  5. Proximity effect on hydrodynamic interaction between a sphere and a plane measured by force feedback microscopy at different frequencies

    NASA Astrophysics Data System (ADS)

    Carpentier, Simon; Rodrigues, Mario S.; Charlaix, Elisabeth; Chevrier, Joël

    2015-07-01

    In this article, we measure the viscous damping G″, and the associated stiffness G', of a liquid flow in sphere-plane geometry over a large frequency range. In this regime, the lubrication approximation is expected to dominate. We first measure the static force applied to the tip. This is made possible thanks to a force feedback method. Adding a sub-nanometer oscillation of the tip, we obtain the dynamic part of the interaction with solely the knowledge of the lever properties in the experimental context using a linear transformation of the amplitude and phase change. Using a Force Feedback Microscope (FFM), we are then able to measure simultaneously the static force, the stiffness, and the dissipative part of the interaction in a broad frequency range using a single AFM probe. Similar measurements have been performed by the Surface Force Apparatus (SFA) with a probe radius hundred times bigger. In this context, the FFM can be called nano-SFA.

  6. Investigation of the Mechanoelectrical Transduction at Single Stereocilia by Afm

    NASA Astrophysics Data System (ADS)

    Langer, M. G.; Fink, S.; Löffler, K.; Koitschev, A.; Zenner, H.-P.

    2003-02-01

    The transduction of sound into an electrical signal in the inner ear is closely related to the mechanical properties of the hair bundles cytoskeleton and cross-linkage. In this study the effect of lateral cross-links on hair bundle mechanics and the transduction current response is demonstrated on the level of individual stereocilia. For experiments stereocilia of outer hair cells of postnatal rats (P3 - P8) were scanned with a sharp AFM tip at nanometerscale. Transduction currents were simultaneously recorded in the whole-cell-recording mode with patch clamp. AFM was used as a nanotool for local mechanical stimulation and force measurement at stereocilia whereas patch clamp serves as a detector for the electrical response of the cell. In a first experiment force transmission between adjacent stereocilia of the V- and W- shaped hair bundles of outer hair cells was investigated. Results showed that a force exerted to a single stereocilium declined to 36 % at the nearest adjacent stereocilium of the same row. This result supposes AFM to be convenient for local displacement of single stereocilia. For control, the local response of transduction channels was measured at single stereocilia of the same hair bundle. Measured transduction current amplitudes ranged from 9 to 49 pA supposing an opening of one to five transduction channels. Both, weak force transmission by lateral cross-links and small transduction current amplitudes indicate a weak mechanical interaction between individual stereocilia of the tallest row of stereocilia of outer hair cells from postnatal rats.

  7. A simple apparatus for electrostatic force measurement

    NASA Astrophysics Data System (ADS)

    Hale, D. P.

    1981-01-01

    Electrostatic attraction can explain as a first approximation the binding of ionic solids. One of the two reasons for constructing the apparatus described was to demonstrate that electrostatic forces can be large, thus giving at least some plausibility to the theory of ionic solids. Secondly, it is an attempt to create a cheap and simple apparatus for measuring these forces and relating them to other physical quantities. An apparatus giving similar results of some precision has already been described (Hale 1978a). That was constructed by skilled instrument makers for undergraduate teaching, cost several hundred pounds and needed a considerable amount of time to iron out the problems encountered. The present apparatus was made in a few hours largely from scrap and using only ordinary hand tools. Although it is somewhat crude, quite acceptable results can be obtained from it. It could be used to advantage in courses dealing with fields and potential for example Nuffield advanced physics, unit 3.

  8. Structural investigations on native collagen type I fibrils using AFM

    SciTech Connect

    Strasser, Stefan; Zink, Albert; Janko, Marek; Heckl, Wolfgang M.; Thalhammer, Stefan . E-mail: stefan.thalhammer@gsf.de

    2007-03-02

    This study was carried out to determine the elastic properties of single collagen type I fibrils with the use of atomic force microscopy (AFM). Native collagen fibrils were formed by self-assembly in vitro characterized with the AFM. To confirm the inner assembly of the collagen fibrils, the AFM was used as a microdissection tool. Native collagen type I fibrils were dissected and the inner core uncovered. To determine the elastic properties of collagen fibrils the tip of the AFM was used as a nanoindentor by recording force-displacement curves. Measurements were done on the outer shell and in the core of the fibril. The structural investigations revealed the banding of the shell also in the core of native collagen fibrils. Nanoindentation experiments showed the same Young's modulus on the shell as well as in the core of the investigated native collagen fibrils. In addition, the measurements indicate a higher adhesion in the core of the collagen fibrils compared to the shell.

  9. Force measurement of low forces in combination with high dead loads by the use of electromagnetic force compensation

    NASA Astrophysics Data System (ADS)

    Diethold, Christian; Hilbrunner, Falko

    2012-07-01

    This paper discusses the force measurement of small forces in combination with high dead loads. The measurement force acts perpendicular to gravity, while the dead load is orientated in the direction of gravity. Furthermore, the influence of the dead load on the metrological properties is described. The application is the flow rate measurement of conducting fluids by Lorentz force (Thess et al 2006 Phys. Rev. Lett. 96 164501). The aim is to measure forces with a resolution of FM = 10-6 N. The dead load is mainly due to the mass of the magnet system. It is of the order of magnitude of FG = 10 N. The force measurement system works with the principle of electromagnetic force compensation. The applied force is compensated by a Lorentz force induced by a current in a voice coil and a magnetic field of a permanent magnet. The current is proportional to the applied force.

  10. Microcantilevers with embedded accelerometers for dynamic atomic force microscopy

    SciTech Connect

    Shaik, Nurul Huda; Raman, Arvind; Reifenberger, Ronald G.

    2014-02-24

    The measurement of the intermittent interaction between an oscillating nanotip and the sample surface is a key challenge in dynamic Atomic Force Microscopy (AFM). Accelerometers integrated onto AFM cantilevers can directly measure this interaction with minimal cantilever modification but have been difficult to realize. Here, we design and fabricate high frequency bandwidth accelerometers on AFM cantilevers to directly measure the tip acceleration in commercial AFM systems. We demonstrate a simple way of calibrating such accelerometers and present experiments using amplitude modulated AFM on freshly cleaved mica samples in water to study the response of the accelerometer.

  11. Direct measurement of depletion and hydrodynamic forces in solutions of a reversible supramolecular polymer.

    PubMed

    Knoben, W; Besseling, N A M; Stuart, M A Cohen

    2007-05-22

    In this paper, the investigation of surface forces in semidilute solutions of a nonadsorbing hydrogen-bonded reversible supramolecular polymer is described. Colloidal probe atomic force microscopy was used for direct measurement of depletion forces. Hydrodynamic drag on the AFM cantilever with the colloidal probe was measured both far away from and close to the planar substrate surface. The results indicate that the presence of the depletion layer causes slip at the surfaces with a large apparent slip length. Our analysis explains how the presence of slip enables the measurement of (relatively weak) depletion forces in solutions with a high viscosity by significantly reducing the hydrodynamic forces. The range and magnitude of the measured depletion forces are qualitatively in agreement with previous experiments and theoretical predictions. Due to the relatively large experimental error, no quantitative conclusions can be drawn. Depletion-induced phase separation of suspensions of stearylated silica particles was also observed. Phase separation becomes more pronounced with increasing polymer concentration. PMID:17439251

  12. Quantitative Measurements of Grain Boundary Sliding in an Ultrafine-Grained Al Alloy by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Han, Jung H.; Mohamed, Farghalli A.

    2011-12-01

    In the current study, quantitative measurements for grain boundary sliding (GBS) in ultrafine-grained (UFG) 5083 Al by atomic force microscopy (AFM) were performed. An ion beam polishing and etching technique was used to reveal grain boundaries in the alloy for AFM characterization. A comparison between the average grain sizes measured from AFM images and those estimated from transmission electron microscopy micrographs and electron backscatter diffraction (EBSD) maps showed excellent agreement. The vertical offset of GBS was measured by comparing predeformation and postdeformation AFM images. By analyzing these measurements, the contribution of GBS to the total tensile strain in 5083 Al was estimated as 25 pct at a strain rate of 10-4 seconds-1 and a temperature of 473 K (200 °C). It was demonstrated that the relatively low value of the contribution of GBS to the total strain is most likely the result of testing UFG 5083 Al under experimental conditions that favor the dominance of region I (low-stress region) of the sigmoidal behavior characterizing high-strain-rate superplasticity, which was reported previously for the alloy.

  13. Biophysical measurements of cells, microtubules, and DNA with an atomic force microscope

    NASA Astrophysics Data System (ADS)

    Devenica, Luka M.; Contee, Clay; Cabrejo, Raysa; Kurek, Matthew; Deveney, Edward F.; Carter, Ashley R.

    2016-04-01

    Atomic force microscopes (AFMs) are ubiquitous in research laboratories and have recently been priced for use in teaching laboratories. Here, we review several AFM platforms and describe various biophysical experiments that could be done in the teaching laboratory using these instruments. In particular, we focus on experiments that image biological materials (cells, microtubules, and DNA) and quantify biophysical parameters including membrane tension, persistence length, contour length, and the drag force.

  14. Micro- and Nano-scale Measurement of the Thermophysical Properties of Polymeric Materials Using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Dawson, Angela; Rides, Martin; Cuenat, Alexandre; Winkless, Laurie

    2013-05-01

    To realize the benefits and optimize the performance of micro- and nano-structured materials and thin films, designers need to understand and thus be able to characterize their thermal, thermophysical, and thermomechanical properties on appropriate length scales. This paper describes the determination of glass-transition temperatures of polymers on the micro-scale, obtained from contact force-distance curves for poly(methyl methacrylate) and poly(vinyl acetate) measured using an atomic force microscope (AFM). Measurements were made using a standard AFM tip where thin films were heated using a temperature controlled hot stage and by using a scanning thermal microscopy (SThM) probe. The latter was used either with the hot stage or with the SThM probe providing a localized heating source via Joule heating. Differences in the glass-transition temperature measured using the hot stage and Joule heating were apparent and considered to be due to heat transfer effects between the probe, specimen, and surroundings. Gradients of force-distance curves, pull-off and snap-in forces, and adhesion energy were obtained. The results suggest that the onset of changes in the material's mechanical properties at the glass transition was found to be dependent on the mechanical property measured, with pull-off force values changing at lower temperatures than the snap-in force and adhesion energy.

  15. Micro-wilhelmy and related liquid property measurements using constant-diameter nanoneedle-tipped atomic force microscope probes.

    PubMed

    Yazdanpanah, Mehdi M; Hosseini, Mahdi; Pabba, Santosh; Berry, Scott M; Dobrokhotov, Vladimir V; Safir, Abdelilah; Keynton, Robert S; Cohn, Robert W

    2008-12-01

    The micro-Wilhelmy method is a well-established method of determining surface tension by measuring the force of withdrawing a tens of microns to millimeters in diameter cylindrical wire or fiber from a liquid. A comparison of insertion force to retraction force can also be used to determine the contact angle with the fiber. Given the limited availability of atomic force microscope (AFM) probes that have long constant diameter tips, force-distance (F-D) curves using probes with standard tapered tips have been difficult to relate to surface tension. In this report, constant diameter metal alloy nanowires (referred to as "nanoneedles") between 7.2 and 67 microm in length and 108 and 1006 nm in diameter were grown on AFM probes. F-D and Q damping AFM measurements of wetting and drag forces made with the probes were compared against standard macroscopic models of these forces on slender cylinders to estimate surface tension, contact angle, meniscus height, evaporation rate, and viscosity. The surface tensions for several low molecular weight liquids that were measured with these probes were between -4.2% and +8.3% of standard reported values. Also, the F-D curves show well-defined stair-step events on insertion and retraction from partial wetting liquids, compared to the continuously growing attractive force of standard tapered AFM probe tips. In the AFM used, the stair-step feature in F-D curves was repeatably monitored for at least 0.5 h (depending on the volatility of the liquid), and this feature was then used to evaluate evaporation rates (as low as 0.30 nm/s) through changes in the surface height of the liquid. A nanoneedle with a step change in diameter at a known distance from its end produced two steps in the F-D curve from which the meniscus height was determined. The step features enable meniscus height to be determined from distance between the steps, as an alternative to calculating the height corresponding to the AFM measured values of surface tension and

  16. Monitoring the osmotic response of single yeast cells through force measurement in the environmental scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Jansson, Anna; Nafari, Alexandra; Hedfalk, Kristina; Olsson, Eva; Svensson, Krister; Sanz-Velasco, Anke

    2014-02-01

    We present a measurement system that combines an environmental scanning electron microscope (ESEM) and an atomic force microscope (AFM). This combination enables studies of static and dynamic mechanical properties of hydrated specimens, such as individual living cells. The integrated AFM sensor provides direct and continuous force measurement based on piezoresistive force transduction, allowing the recording of events in the millisecond range. The in situ ESEM-AFM setup was used to study Pichia pastoris wild-type yeast cells. For the first time, a quantified measure of the osmotic response of an individual yeast cell inside an ESEM is presented. With this technique, cell size changes due to humidity variations can be monitored with nanometre accuracy. In addition, mechanical properties were extracted from load-displacement curves. A Young's modulus of 13-15 MPa was obtained for the P. pastoris yeast cells. The developed method is highly interesting as a complementary tool for the screening of drugs directed towards cellular water transport activity and provides new possibilities of studying mechanosensitive regulation of aquaporins.

  17. AFM CHARACTERIZATION OF LASER INDUCED DAMAGE ON CDZNTE CRYSTAL SURFACES

    SciTech Connect

    Hawkins, S; Lucile Teague, L; Martine Duff, M; Eliel Villa-Aleman, E

    2008-06-10

    Semi-conducting CdZnTe (or CZT) crystals can be used in a variety of detector-type applications. CZT shows great promise for use as a gamma radiation spectrometer. However, its performance is adversely affected by point defects, structural and compositional heterogeneities within the crystals, such as twinning, pipes, grain boundaries (polycrystallinity), secondary phases and in some cases, damage caused by external forces. One example is damage that occurs during characterization of the surface by a laser during Raman spectroscopy. Even minimal laser power can cause Te enriched areas on the surface to appear. The Raman spectra resulting from measurements at moderate intensity laser power show large increases in peak intensity that is attributed to Te. Atomic Force Microscopy (AFM) was used to characterize the extent of damage to the CZT crystal surface following exposure to the Raman laser. AFM data reveal localized surface damage in the areas exposed to the Raman laser beam. The degree of surface damage to the crystal is dependent on the laser power, with the most observable damage occurring at high laser power. Moreover, intensity increases in the Te peaks of the Raman spectra are observed even at low laser power with little to no visible damage observed by AFM. AFM results also suggest that exposure to the same amount of laser power yields different amounts of surface damage depending on whether the exposed surface is the Te terminating face or the Cd terminating face of CZT.

  18. Probing the PEDOT:PSS/cell interface with conductive colloidal probe AFM-SECM

    NASA Astrophysics Data System (ADS)

    Knittel, P.; Zhang, H.; Kranz, C.; Wallace, G. G.; Higgins, M. J.

    2016-02-01

    Conductive colloidal probe Atomic Force-Scanning Electrochemical Microscopy (AFM-SECM) is a new approach, which employs electrically insulated AFM probes except for a gold-coated colloid located at the end of the cantilever. Hence, force measurements can be performed while biasing the conductive colloid under physiological conditions. Moreover, such colloids can be modified by electrochemical polymerization resulting, e.g. in conductive polymer-coated spheres, which in addition may be loaded with specific dopants. In contrast to other AFM-based single cell force spectroscopy measurements, these probes allow adhesion measurements at the cell-biomaterial interface on multiple cells in a rapid manner while the properties of the polymer can be changed by applying a bias. In addition, spatially resolved electrochemical information e.g., oxygen reduction can be obtained simultaneously. Conductive colloid AFM-SECM probes modified with poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) are used for single cell force measurements in mouse fibroblasts and single cell interactions are investigated as a function of the applied potential.Conductive colloidal probe Atomic Force-Scanning Electrochemical Microscopy (AFM-SECM) is a new approach, which employs electrically insulated AFM probes except for a gold-coated colloid located at the end of the cantilever. Hence, force measurements can be performed while biasing the conductive colloid under physiological conditions. Moreover, such colloids can be modified by electrochemical polymerization resulting, e.g. in conductive polymer-coated spheres, which in addition may be loaded with specific dopants. In contrast to other AFM-based single cell force spectroscopy measurements, these probes allow adhesion measurements at the cell-biomaterial interface on multiple cells in a rapid manner while the properties of the polymer can be changed by applying a bias. In addition, spatially resolved electrochemical

  19. Fabrication of cone-shaped boron doped diamond and gold nanoelectrodes for AFM-SECM.

    PubMed

    Avdic, A; Lugstein, A; Wu, M; Gollas, B; Pobelov, I; Wandlowski, T; Leonhardt, K; Denuault, G; Bertagnolli, E

    2011-04-01

    We demonstrate a reliable microfabrication process for a combined atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM) measurement tool. Integrated cone-shaped sensors with boron doped diamond (BDD) or gold (Au) electrodes were fabricated from commercially available AFM probes. The sensor formation process is based on mature semiconductor processing techniques, including focused ion beam (FIB) machining, and highly selective reactive ion etching (RIE). The fabrication approach preserves the geometry of the original AFM tips resulting in well reproducible nanoscaled sensors. The feasibility and functionality of the fully featured tips are demonstrated by cyclic voltammetry, showing good agreement between the measured and calculated currents of the cone-shaped AFM-SECM electrodes. PMID:21368355

  20. Fabrication of cone-shaped boron doped diamond and gold nanoelectrodes for AFM-SECM

    NASA Astrophysics Data System (ADS)

    Avdic, A.; Lugstein, A.; Wu, M.; Gollas, B.; Pobelov, I.; Wandlowski, T.; Leonhardt, K.; Denuault, G.; Bertagnolli, E.

    2011-04-01

    We demonstrate a reliable microfabrication process for a combined atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM) measurement tool. Integrated cone-shaped sensors with boron doped diamond (BDD) or gold (Au) electrodes were fabricated from commercially available AFM probes. The sensor formation process is based on mature semiconductor processing techniques, including focused ion beam (FIB) machining, and highly selective reactive ion etching (RIE). The fabrication approach preserves the geometry of the original AFM tips resulting in well reproducible nanoscaled sensors. The feasibility and functionality of the fully featured tips are demonstrated by cyclic voltammetry, showing good agreement between the measured and calculated currents of the cone-shaped AFM-SECM electrodes.

  1. AFM-based mechanical characterization of single nanofibres.

    PubMed

    Neugirg, Benedikt R; Koebley, Sean R; Schniepp, Hannes C; Fery, Andreas

    2016-04-28

    Nanofibres are found in a broad variety of hierarchical biological systems as fundamental structural units, and nanofibrillar components are playing an increasing role in the development of advanced functional materials. Accurate determination of the mechanical properties of single nanofibres is thus of great interest, yet measurement of these properties is challenging due to the intricate specimen handling and the exceptional force and deformation resolution that is required. The atomic force microscope (AFM) has emerged as an effective, reliable tool in the investigation of nanofibrillar mechanics, with the three most popular approaches-AFM-based tensile testing, three-point deformation testing, and nanoindentation-proving preferable to conventional tensile testing in many (but not all) cases. Here, we review the capabilities and limitations of each of these methods and give a comprehensive overview of the recent advances in this field. PMID:27055900

  2. AFM-based mechanical characterization of single nanofibres

    NASA Astrophysics Data System (ADS)

    Neugirg, Benedikt R.; Koebley, Sean R.; Schniepp, Hannes C.; Fery, Andreas

    2016-04-01

    Nanofibres are found in a broad variety of hierarchical biological systems as fundamental structural units, and nanofibrillar components are playing an increasing role in the development of advanced functional materials. Accurate determination of the mechanical properties of single nanofibres is thus of great interest, yet measurement of these properties is challenging due to the intricate specimen handling and the exceptional force and deformation resolution that is required. The atomic force microscope (AFM) has emerged as an effective, reliable tool in the investigation of nanofibrillar mechanics, with the three most popular approaches--AFM-based tensile testing, three-point deformation testing, and nanoindentation--proving preferable to conventional tensile testing in many (but not all) cases. Here, we review the capabilities and limitations of each of these methods and give a comprehensive overview of the recent advances in this field.

  3. Measurement of interaction force between nanoarrayed integrin {alpha}{sub v}{beta}{sub 3} and immobilized vitronectin on the cantilever tip

    SciTech Connect

    Lee, Minsu; Yang, Hyun-Kyu; Park, Keun-Hyung; Kang, Dong-Ku; Chang, Soo-Ik Kang, In-Cheol

    2007-11-03

    Protein nanoarrays containing integrin {alpha}{sub v}{beta}{sub 3} or BSA were fabricated on ProLinker{sup TM}-coated Au surface by dip-pen nanolithography (DPN). An atomic force microscope (AFM) tip coated with ProLinker{sup TM} was modified by vitronectin. We measured the interaction force between nanoarrayed integrin {alpha}{sub v}{beta}{sub 3} or BSA and immobilized vitronectin on the cantilever tip by employing tethering-unbinding method. The unbinding force between integrin {alpha}{sub v}{beta}{sub 3} and vitronectin (1087 {+-} 62 pN) was much higher than that of between BSA and vitronectin (643 {+-} 74 pN). These results demonstrate that one can distinguish a specific protein interaction from non-specific interactions by means of force measurement on the molecular interactions between the nanoarrayed protein and its interacting protein on the AFM tip.

  4. Spring constants and adhesive properties of native bacterial biofilm cells measured by atomic force microscopy.

    PubMed

    Volle, C B; Ferguson, M A; Aidala, K E; Spain, E M; Núñez, M E

    2008-11-15

    Bacterial biofilms were imaged by atomic force microscopy (AFM), and their elasticity and adhesion to the AFM tip were determined from a series of tip extension and retraction cycles. Though the five bacterial strains studied included both Gram-negative and -positive bacteria and both environmental and laboratory strains, all formed simple biofilms on glass surfaces. Cellular spring constants, determined from the extension portion of the force cycle, varied between 0.16+/-0.01 and 0.41+/-0.01 N/m, where larger spring constants were measured for Gram-positive cells than for Gram-negative cells. The nonlinear regime in the extension curve depended upon the biomolecules on the cell surface: the extension curves for the smooth Gram-negative bacterial strains with the longest lipopolysaccharides on their surface had a larger nonlinear region than the rough bacterial strain with shorter lipopolysaccharides on the surface. Adhesive forces between the retracting silicon nitride tip and the cells varied between cell types in terms of the force components, the distance components, and the number of adhesion events. The Gram-negative cells' adhesion to the tip showed the longest distance components, sometimes more than 1 microm, whereas the shortest distance adhesion events were measured between the two Gram-positive cell types and the tip. Fixation of free-swimming planktonic cells by NHS and EDC perturbed both the elasticity and the adhesive properties of the cells. Here we consider the biochemical meaning of the measured physical properties of simple biofilms and implications to the colonization of surfaces in the first stages of biofilm formation. PMID:18815013

  5. A Simple Apparatus for Electrostatic Force Measurement.

    ERIC Educational Resources Information Center

    Hale, D. P.

    1981-01-01

    Describes the construction of an apparatus that demonstrates that electrostatic forces can be large and also gives some idea of dependence of electrostatic forces between charged parallel discs on potential differences and separation. (CS)

  6. Review and perspectives of AFM application on the study of deformable drop/bubble interactions.

    PubMed

    Wang, Wei; Li, Kai; Ma, Mengyu; Jin, Hang; Angeli, Panagiota; Gong, Jing

    2015-11-01

    The applications of Atomic Force Microscopy (AFM) on the study of dynamic interactions and film drainage between deformable bodies dispersed in aqueous solutions are reviewed in this article. Novel experimental designs and recent advances in experimental methodologies are presented, which show the advantage of using AFM as a tool for probing colloidal interactions. The effects of both DLVO and non-DLVO forces on the colloid stabilization mechanism are discussed. Good agreement is found between the force - drop/bubble deformation behaviour revealed by AFM measurements and the theoretical modeling of film drainage process, giving a convincing explanation of the occurrence of certain phenomenon. However, the behaviour and shape of deformable drops as they approach or retract is still not well resolved. In addition, when surfactants are present further research is needed on the absorption of surfactant molecules into the interfaces, their mobility and the effects on interfacial film properties. PMID:26344865

  7. Condensed-phase thermal decomposition of TATB investigated by atomic force microscopy (AFM) and simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS)

    SciTech Connect

    Land, T.A.; Siekhaus, W.J.; Foltz, M.F.; Behrens, R. Jr.

    1993-05-01

    A combination of techniques has been used to investigate the condensed-phase thermal decomposition of TATB. STMBMS has been used to identify the thermal decomposition products and their temporal correlation`s. These experiments have shown that the condensed-phase decomposition proceeds through several autocatalytic pathways. Both low and high molecular weight decomposition products have been identified. Mono-, di- and tri-furazans products have been identified and, their temporal behaviors are consistent with a stepwise loss of water. AFM has been used to correlate the decomposition chemistry with morphological changes occurring as a function of heating. Patches of small 25-140 nm round holes were observed throughout the lattice of TATB crystals that were heated briefly to 300C. It is likely that these holes show where decomposition reactions have started. Evidence of decomposition products have been seen in TATB that has been held at 250C for one hour.

  8. Measurements of the rotordynamic shroud forces for centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Guinzburg, A.; Brennen, C. E.; Acosta, A. J.; Caughey, T. K.

    1990-01-01

    An experiment was designed to measure the rotordynamic shroud forces on a centrifugal pump impeller. The measurements were done for various whirl/impeller speed ratios and for different flow rates. A destabilizing tangential force was measured for small positive whirl ratios and this force decreased with increasing flow rate.

  9. 21 CFR 890.1575 - Force-measuring platform.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Force-measuring platform. 890.1575 Section 890...) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1575 Force-measuring platform. (a) Identification. A force-measuring platform is a device intended for medical purposes...

  10. 21 CFR 890.1575 - Force-measuring platform.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Force-measuring platform. 890.1575 Section 890...) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1575 Force-measuring platform. (a) Identification. A force-measuring platform is a device intended for medical purposes...

  11. 21 CFR 890.1575 - Force-measuring platform.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Force-measuring platform. 890.1575 Section 890...) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1575 Force-measuring platform. (a) Identification. A force-measuring platform is a device intended for medical purposes...

  12. 21 CFR 890.1575 - Force-measuring platform.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Force-measuring platform. 890.1575 Section 890...) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1575 Force-measuring platform. (a) Identification. A force-measuring platform is a device intended for medical purposes...

  13. 21 CFR 890.1575 - Force-measuring platform.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Force-measuring platform. 890.1575 Section 890...) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1575 Force-measuring platform. (a) Identification. A force-measuring platform is a device intended for medical purposes...

  14. DNA studies using atomic force microscopy: capabilities for measurement of short DNA fragments

    PubMed Central

    Pang, Dalong; Thierry, Alain R.; Dritschilo, Anatoly

    2015-01-01

    Short DNA fragments, resulting from ionizing radiation induced DNA double strand breaks (DSBs), or released from cells as a result of physiological processes and circulating in the blood stream, may play important roles in cellular function and potentially in disease diagnosis and early intervention. The size distribution of DNA fragments contribute to knowledge of underlining biological processes. Traditional techniques used in radiation biology for DNA fragment size measurements lack the resolution to quantify short DNA fragments. For the measurement of cell-free circulating DNA (ccfDNA), real time quantitative Polymerase Chain Reaction (q-PCR) provides quantification of DNA fragment sizes, concentration and specific gene mutation. A complementary approach, the imaging-based technique using Atomic Force Microscopy (AFM) provides direct visualization and measurement of individual DNA fragments. In this review, we summarize and discuss the application of AFM-based measurements of DNA fragment sizes. Imaging of broken plasmid DNA, as a result of exposure to ionizing radiation, as well as ccfDNA in clinical specimens offer an innovative approach for studies of short DNA fragments and their biological functions. PMID:25988169

  15. Measurement of the electrical and mechanical responses of a force transducer against impact forces

    NASA Astrophysics Data System (ADS)

    Fujii, Yusaku

    2006-08-01

    A method for measuring the electrical and mechanical responses of force transducers to impact loads is proposed. The levitation mass method (LMM) is used to generate and measure the reference impact force used. In the LMM, a mass that is levitated using an aerostatic linear bearing (and hence encounters negligible friction) is made to collide with the force transducer under test, and the force acting on the mass is measured using an optical interferometer. The electrical response is evaluated by comparing the output signal of the force transducer with the inertial force of the mass as measured using the optical interferometer. Simultaneously, the mechanical response is evaluated by comparing the displacement of the sensing point of the transducer, which is measured using another optical interferometer, with the inertial force of the mass. To demonstrate the efficiency of the proposed method, the impact responses of a force transducer are accurately determined.

  16. Atomic Force Microscopy Imaging and Force Spectroscopy of Supported Lipid Bilayers.

    PubMed

    Unsay, Joseph D; Cosentino, Katia; García-Sáez, Ana J

    2015-01-01

    Atomic force microscopy (AFM) is a versatile, high-resolution imaging technique that allows visualization of biological membranes. It has sufficient magnification to examine membrane substructures and even individual molecules. AFM can act as a force probe to measure interactions and mechanical properties of membranes. Supported lipid bilayers are conventionally used as membrane models in AFM studies. In this protocol, we demonstrate how to prepare supported bilayers and characterize their structure and mechanical properties using AFM. These include bilayer thickness and breakthrough force. The information provided by AFM imaging and force spectroscopy help define mechanical and chemical properties of membranes. These properties play an important role in cellular processes such as maintaining cell hemostasis from environmental stress, bringing membrane proteins together, and stabilizing protein complexes. PMID:26273958

  17. Cantilevers orthodontics forces measured by fiber sensors

    NASA Astrophysics Data System (ADS)

    Schneider, Neblyssa; Milczewski, Maura S.; de Oliveira, Valmir; Guariza Filho, Odilon; Lopes, Stephani C. P. S.; Kalinowski, Hypolito J.

    2015-09-01

    Fibers Bragg Gratings were used to evaluate the transmission of the forces generates by orthodontic mechanic based one and two cantilevers used to move molars to the upright position. The results showed levels forces of approximately 0,14N near to the root of the molar with one and two cantilevers.

  18. Conductive supports for combined AFM SECM on biological membranes

    NASA Astrophysics Data System (ADS)

    Frederix, Patrick L. T. M.; Bosshart, Patrick D.; Akiyama, Terunobu; Chami, Mohamed; Gullo, Maurizio R.; Blackstock, Jason J.; Dooleweerdt, Karin; de Rooij, Nico F.; Staufer, Urs; Engel, Andreas

    2008-09-01

    Four different conductive supports are analysed regarding their suitability for combined atomic force and scanning electrochemical microscopy (AFM-SECM) on biological membranes. Highly oriented pyrolytic graphite (HOPG), MoS2, template stripped gold, and template stripped platinum are compared as supports for high resolution imaging of reconstituted membrane proteins or native membranes, and as electrodes for transferring electrons from or to a redox molecule. We demonstrate that high resolution topographs of the bacterial outer membrane protein F can be recorded by contact mode AFM on all four supports. Electrochemical feedback experiments with conductive cantilevers that feature nanometre-scale electrodes showed fast re-oxidation of the redox couple Ru(NH3)63+/2+ with the two metal supports after prolonged immersion in electrolyte. In contrast, the re-oxidation rates decayed quickly to unpractical levels with HOPG or MoS2 under physiological conditions. On HOPG we observed heterogeneity in the re-oxidation rate of the redox molecules with higher feedback currents at step edges. The latter results demonstrate the capability of conductive cantilevers with small electrodes to measure minor variations in an SECM signal and to relate them to nanometre-scale features in a simultaneously recorded AFM topography. Rapid decay of re-oxidation rate and surface heterogeneity make HOPG or MoS2 less attractive for combined AFM-SECM experiments on biological membranes than template stripped gold or platinum supports.

  19. Electron work functions of ferrite and austenite phases in a duplex stainless steel and their adhesive forces with AFM silicon probe.

    PubMed

    Guo, Liqiu; Hua, Guomin; Yang, Binjie; Lu, Hao; Qiao, Lijie; Yan, Xianguo; Li, Dongyang

    2016-01-01

    Local electron work function, adhesive force, modulus and deformation of ferrite and austenite phases in a duplex stainless steel were analyzed by scanning force microscopy. It is demonstrated that the austenite has a higher electron work function than the ferrite, corresponding to higher modulus, smaller deformation and larger adhesive force. Relevant first-principles calculations were conducted to elucidate the mechanism behind. It is demonstrated that the difference in the properties between austenite and ferrite is intrinsically related to their electron work functions. PMID:26868719

  20. Electron work functions of ferrite and austenite phases in a duplex stainless steel and their adhesive forces with AFM silicon probe

    PubMed Central

    Guo, Liqiu; Hua, Guomin; Yang, Binjie; Lu, Hao; Qiao, Lijie; Yan, Xianguo; Li, Dongyang

    2016-01-01

    Local electron work function, adhesive force, modulus and deformation of ferrite and austenite phases in a duplex stainless steel were analyzed by scanning force microscopy. It is demonstrated that the austenite has a higher electron work function than the ferrite, corresponding to higher modulus, smaller deformation and larger adhesive force. Relevant first-principles calculations were conducted to elucidate the mechanism behind. It is demonstrated that the difference in the properties between austenite and ferrite is intrinsically related to their electron work functions. PMID:26868719

  1. Following aptamer-ricin specific binding by single molecule recognition and force spectroscopy measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The atomic force microscope (AFM) recognition and dynamic force spectroscopy (DFS) experiments provide both morphology and interaction information of the aptamer and protein, which can be used for the future study on the thermodynamics and kinetics properties of ricin-aptamer/antibody interactions. ...

  2. Measuring the Magnetic Force on a Current-Carrying Conductor.

    ERIC Educational Resources Information Center

    Herreman, W.; Huysentruyt, R.

    1995-01-01

    Describes a fast and simple method for measuring the magnetic force acting on a current-carrying conductor using a digital balance. Discusses the influence of current intensity and wire length on the magnetic force on the conductor. (JRH)

  3. Dynamometer for measuring machining forces in two perpendicular directions

    NASA Technical Reports Server (NTRS)

    Sutherland, I. A.

    1974-01-01

    Published report discusses development of two-component force dynamometer which is used for dynamic measurement of machining forces in cutting and thrust directions. Resulting data suggest that faster metal-cutting machines may be developed that have reduced vibrations.

  4. A Simple Method for Measuring Linguopalatal Contact Force During Speech

    NASA Astrophysics Data System (ADS)

    Tsuji, Ryunosuke; Matsumuta, Masafumi; Niikawa, Takuya; Nohara, Kanji; Tachimura, Takashi; Wada, Takeshi; Chihara, Kunihiro

    This paper proposes a using probe for measuring of contact force between tongue and palatal, during speech. We developed a 0.03 mm-thick stainless steel tongue force probe with a 3x5 mm force sensor at the tip. Linguopalatal contact force was measured by inserting the probe into the oral cavity. Contact force was measured at the following three locations. Based on the coordinate and measurement obtained at the three points, the action point of tongue force was calculated by the weighted mean. Linguopalatal contact force was measured in four adult men and women without articulation disorder and in three adult men with articulation disorders. Results showed that the action point of tongue force in subjects with articulation disorders was further toward the pharynx than that in subjects without articulation disorders. Linguopalatal contact pressure was then measured again by asking the subjects with articulation disorders to wear a palatal augmentation prosthesis (PAP) to compensate for insufficient linguopalatal contact force. The action point of tongue force became better approximated to that of subjects without articulation disorders. Given these results, our simple method for measuring linguopalatal contact force using a tongue force probe appears to be a promising tool for speech therapists treating articulation disorders.

  5. Fractal analysis and atomic force microscopy measurements of surface roughness for Hastelloy C276 substrates and amorphous alumina buffer layers in coated conductors

    NASA Astrophysics Data System (ADS)

    Feng, F.; Shi, K.; Xiao, S.-Z.; Zhang, Y.-Y.; Zhao, Z.-J.; Wang, Z.; Wei, J.-J.; Han, Z.

    2012-02-01

    In coated conductors, surface roughness of metallic substrates and buffer layers could significantly affect the texture of subsequently deposited buffer layers and the critical current density of superconductor layer. Atomic force microscopy (AFM) is usually utilized to measure surface roughness. However, the roughness values are actually relevant to scan scale. Fractal geometry could be exerted to analyze the scaling performance of surface roughness. In this study, four samples were prepared, which were electro polished Hastelloy C276 substrate, mechanically polished Hastelloy C276 substrate and the amorphous alumina buffer layers deposited on both the substrates by ion beam deposition. The surface roughness, described by root mean squared (RMS) and arithmetic average (Ra) values, was analyzed considering the scan scale of AFM measurements. The surfaces of amorphous alumina layers were found to be fractal in nature because of the scaling performance of roughness, while the surfaces of Hastelloy substrates were not. The flatten modification of AFM images was discussed. And the calculation of surface roughness in smaller parts divided from the whole AFM images was studied, compared with the results of actual AFM measurements of the same scan scales.

  6. Direct surface force measurements of polyelectrolyte multilayer films containing nanocrystalline cellulose.

    PubMed

    Cranston, Emily D; Gray, Derek G; Rutland, Mark W

    2010-11-16

    Polyelectrolyte multilayer films containing nanocrystalline cellulose (NCC) and poly(allylamine hydrochloride) (PAH) make up a new class of nanostructured composite with applications ranging from coatings to biomedical devices. Moreover, these materials are amenable to surface force studies using colloid-probe atomic force microscopy (CP-AFM). For electrostatically assembled films with either NCC or PAH as the outermost layer, surface morphology was investigated by AFM and wettability was examined by contact angle measurements. By varying the surrounding ionic strength and pH, the relative contributions from electrostatic, van der Waals, steric, and polymer bridging interactions were evaluated. The ionic cross-linking in these films rendered them stable under all solution conditions studied although swelling at low pH and high ionic strength was inferred. The underlying polymer layer in the multilayered film was found to dictate the dominant surface forces when polymer migration and chain extension were facilitated. The precontact normal forces between a silica probe and an NCC-capped multilayer film were monotonically repulsive at pH values where the material surfaces were similarly and fully charged. In contrast, at pH 3.5, the anionic surfaces were weakly charged but the underlying layer of cationic PAH was fully charged and attractive forces dominated due to polymer bridging from extended PAH chains. The interaction with an anionic carboxylic acid probe showed similar behavior to the silica probe; however, for a cationic amine probe with an anionic NCC-capped film, electrostatic double-layer attraction at low pH, and electrostatic double-layer repulsion at high pH, were observed. Finally, the effect of the capping layer was studied with an anionic probe, which indicated that NCC-capped films exhibited purely repulsive forces which were larger in magnitude than the combination of electrostatic double-layer attraction and steric repulsion, measured for PAH

  7. Measurement of Surface Photovoltage by Atomic Force Microscopy under Pulsed Illumination

    NASA Astrophysics Data System (ADS)

    Schumacher, Zeno; Miyahara, Yoichi; Spielhofer, Andreas; Grutter, Peter

    2016-04-01

    Measuring the structure-function relation in photovoltaic materials has been a major drive for atomic force microscopy (AFM) and Kelvin-probe force microscopy (KPFM). The local surface photovoltage (SPV) is measured as the change in contact potential difference (CPD) between the tip and sample upon illumination. The quantities of interest that one will like to correlate with the structure are the decay times of SPV and/or its wavelength dependence. KPFM depends on the tip and sample potential; therefore, SPV is prone to tip changes, rendering an accurate measurement of SPV challenging. We present a measurement technique which allows us to directly measure the difference in the CPD between illuminated and dark states and, thus, SPV as well as the capacitance derivative by using pulsed illumination. The variation of the measured SPV can be minimized due to the time-domain measurement, allowing accurate measurements of the SPV. The increased accuracy enables the systematic comparison of SPV across different measurement setups and excitation conditions (e.g., wavelength dependence and decay time of SPV).

  8. Blocked force measurement of an electro-active paper actuator using a cantilevered force transducer

    NASA Astrophysics Data System (ADS)

    Yun, Gyu-young; Kim, Heung Soo; Kim, Jaehwan

    2008-04-01

    The blocked force of an electro-active paper (EAPap) actuator was measured by a custom-built force transducer. The tip deflection of the force transducer was measured and converted into force using a simple Euler beam model. Since the blocked force is the maximum force generated at the tip of a bending actuator without displacement, the blocked force was found from the measured force of the transducer by extrapolating it. The force transducer was made from a thin steel cantilever beam and calibrated using a linear stage and a micro-balance. The measured maximum free bending displacement of the EAPap actuator was 4.4 mm and the blocked force was 224 µN under 350 V mm-1 AC electric field and 33 µN under DC electric field with the same field strength. When an AC electric field was applied to the actuator, the generated blocked force of the EAPap was about 700% larger than that caused by DC excitation. The proposed blocked force measurement is accurate down to a micro-Newton resolution under DC as well as AC electric fields.

  9. Accurate Calibration and Uncertainty Estimation of the Normal Spring Constant of Various AFM Cantilevers

    PubMed Central

    Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing

    2015-01-01

    Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke’s law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%. PMID:25763650

  10. Setting-Up Of A Cutting Forces Measurement System

    NASA Astrophysics Data System (ADS)

    Turc, Cristian-Gheorghe; Belgiu, George; Banciu, Felicia Veronica

    2015-07-01

    The paper is focused in the field of cutting forces measurement by modern sensors and data acquisition systems. It is presented the measurement chain with its components. Thus, there are presented the piezoelectric sensors that are commonly used in modern cutting forces dynamometers construction, as well as some typical topologies. The measurement system includes a data acquisition system that allows the real time data acquisition during the cutting process. The proposed cutting force measurement system can be used in the measurement of three orthogonal forces in milling processes, as well as the measurement of the torque in drilling processes.

  11. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    PubMed Central

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-01-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of −3.0 ± 0.4 nN and −330 ± 43 aJ (10−18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions. PMID:26585552

  12. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles.

    PubMed

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B; Chen, Wenli

    2015-01-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of -3.0 ± 0.4 nN and -330 ± 43 aJ (10(-18) J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions. PMID:26585552

  13. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    NASA Astrophysics Data System (ADS)

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-11-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of -3.0 ± 0.4 nN and -330 ± 43 aJ (10-18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions.

  14. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy

    PubMed Central

    Leite, Fabio L.; Bueno, Carolina C.; Da Róz, Alessandra L.; Ziemath, Ervino C.; Oliveira, Osvaldo N.

    2012-01-01

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of AFS, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution. PMID:23202925

  15. A new transducer system for direct motor unit force measurement.

    PubMed

    Turkawski, S J; van Ruijven, L J; van Kuyen, M; Schreurs, A W; Weijs, W A

    1996-11-01

    A new transducer was developed for in situ measurement of the force vector in a complex muscle. The transducer measures the magnitude, and the line of action of a force in a single plane. The dynamic range of the transducer is 0-5 N. This range includes the small forces developed by an active motor unit and the relatively large passive force of a whole muscle. In this study we present the details of the transducer design and specifications, and describe its application in the measurement of motor unit forces of the rabbit masseter muscle. PMID:8894930

  16. Direct measurements of drag forces in C. elegans crawling locomotion.

    PubMed

    Rabets, Yegor; Backholm, Matilda; Dalnoki-Veress, Kari; Ryu, William S

    2014-10-21

    With a simple and versatile microcantilever-based force measurement technique, we have probed the drag forces involved in Caenorhabditis elegans locomotion. As a worm crawls on an agar surface, we found that substrate viscoelasticity introduces nonlinearities in the force-velocity relationships, yielding nonconstant drag coefficients that are not captured by original resistive force theory. A major contributing factor to these nonlinearities is the formation of a shallow groove on the agar surface. We measured both the adhesion forces that cause the worm's body to settle into the agar and the resulting dynamics of groove formation. Furthermore, we quantified the locomotive forces produced by C. elegans undulatory motions on a wet viscoelastic agar surface. We show that an extension of resistive force theory is able to use the dynamics of a nematode's body shape along with the measured drag coefficients to predict the forces generated by a crawling nematode. PMID:25418179

  17. The effect of patch potentials in Casimir force measurements determined by heterodyne Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph L.; Somers, David; Munday, Jeremy N.

    2015-06-01

    Measurements of the Casimir force require the elimination of the electrostatic force between the surfaces. However, due to electrostatic patch potentials, the voltage required to minimize the total force may not be sufficient to completely nullify the electrostatic interaction. Thus, these surface potential variations cause an additional force, which can obscure the Casimir force signal. In this paper, we inspect the spatially varying surface potential of e-beamed, sputtered, sputtered and annealed, and template stripped gold surfaces with Heterodyne amplitude modulated Kelvin probe force microscopy (HAM-KPFM). It is demonstrated that HAM-KPFM improves the spatial resolution of surface potential measurements compared to amplitude modulated Kelvin probe force microscopy. We find that patch potentials vary depending on sample preparation, and that the calculated pressure can be similar to the pressure difference between Casimir force calculations employing the plasma and Drude models.

  18. The effect of patch potentials in Casimir force measurements determined by heterodyne Kelvin probe force microscopy.

    PubMed

    Garrett, Joseph L; Somers, David; Munday, Jeremy N

    2015-06-01

    Measurements of the Casimir force require the elimination of the electrostatic force between the surfaces. However, due to electrostatic patch potentials, the voltage required to minimize the total force may not be sufficient to completely nullify the electrostatic interaction. Thus, these surface potential variations cause an additional force, which can obscure the Casimir force signal. In this paper, we inspect the spatially varying surface potential of e-beamed, sputtered, sputtered and annealed, and template stripped gold surfaces with Heterodyne amplitude modulated Kelvin probe force microscopy (HAM-KPFM). It is demonstrated that HAM-KPFM improves the spatial resolution of surface potential measurements compared to amplitude modulated Kelvin probe force microscopy. We find that patch potentials vary depending on sample preparation, and that the calculated pressure can be similar to the pressure difference between Casimir force calculations employing the plasma and Drude models. PMID:25964997

  19. Sub-surface imaging of carbon nanotube-polymer composites using dynamic AFM methods.

    PubMed

    Cadena, Maria J; Misiego, Rocio; Smith, Kyle C; Avila, Alba; Pipes, Byron; Reifenberger, Ron; Raman, Arvind

    2013-04-01

    High-resolution sub-surface imaging of carbon nanotube (CNT) networks within polymer nanocomposites is demonstrated through electrical characterization techniques based on dynamic atomic force microscopy (AFM). We compare three techniques implemented in the single-pass configuration: DC-biased amplitude modulated AFM (AM-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM) in terms of the physics of sub-surface image formation and experimental robustness. The methods were applied to study the dispersion of sub-surface networks of single-walled nanotubes (SWNTs) in a polyimide (PI) matrix. We conclude that among these methods, the KPFM channel, which measures the capacitance gradient (∂C/∂d) at the second harmonic of electrical excitation, is the best channel to obtain high-contrast images of the CNT network embedded in the polymer matrix, without the influence of surface conditions. Additionally, we propose an analysis of the ∂C/∂d images as a tool to characterize the dispersion and connectivity of the CNTs. Through the analysis we demonstrate that these AFM-based sub-surface methods probe sufficiently deep within the SWNT composites, to resolve clustered networks that likely play a role in conductivity percolation. This opens up the possibility of dynamic AFM-based characterization of sub-surface dispersion and connectivity in nanostructured composites, two critical parameters for nanocomposite applications in sensors and energy storage devices. PMID:23478510

  20. Advanced atomic force microscopy techniques for characterizing the properties of cellulosic nanomaterials

    NASA Astrophysics Data System (ADS)

    Wagner, Ryan Bradley

    The measurement of nanomechanical properties is of great interest to science and industry. Key to progress in this area is the development of new techniques and analysis methods to identify, measure, and quantify these properties. In this dissertation, new data analysis methods and experimental techniques for measuring nanomechanical properties with the atomic force microscope (AFM) are considered. These techniques are then applied to the study of cellulose nanoparticles, an abundant, plant derived nanomaterial. Quantifying uncertainty is a prerequisite for the manufacture of reliable nano-engineered materials and products. However, rigorous uncertainty quantification is rarely applied for material property measurements with the AFM. A framework is presented to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. This method is demonstrated by quantifying uncertainty in force displacement AFM based measurements of the transverse elastic modulus of tunicate cellulose nanocrystals. Next, a more comprehensive study of different types of cellulose nanoparticles is undertaken with contact resonance (CR) AFM. CR-AFM is a dynamic AFM technique that exploits the resonance frequency of the AFM cantilever while it is permanent contact with the sample surface to predict nanomechanical properties. This technique offers improved measurement sensitivity over static AFM methods for some material systems. The effects of cellulose source material and processing technique on the properties of cellulose nanoparticles are compared. Finally, dynamic AFM cantilever vibration shapes are studied. Many AFM modes exploit the dynamic response of a cantilever in permanent contact with a sample to extract local material properties. A common challenge to these modes is that they assume a certain shape of cantilever vibration, which is not accessible in

  1. Simultaneous measurement of normal and friction forces using a cantilever-based optical interfacial force microscope

    NASA Astrophysics Data System (ADS)

    Kim, Byung I.; Bonander, Jeremy R.; Rasmussen, Jared A.

    2011-05-01

    We measured normal and friction forces simultaneously using a recently developed cantilever-based optical interfacial force microscope technique for studies of interfacial structures and mechanical properties of nanoscale materials. We derived how the forces can be incorporated into the detection signal using the classical Euler equation for beams. A lateral modulation with the amplitude of nanometers was applied to create the friction forces between tip and sample. We demonstrated its capability by measuring normal and friction forces of interfacial water at the molecular scale over all distance ranges.

  2. Simultaneous measurement of normal and friction forces using a cantilever-based optical interfacial force microscope.

    PubMed

    Kim, Byung I; Bonander, Jeremy R; Rasmussen, Jared A

    2011-05-01

    We measured normal and friction forces simultaneously using a recently developed cantilever-based optical interfacial force microscope technique for studies of interfacial structures and mechanical properties of nanoscale materials. We derived how the forces can be incorporated into the detection signal using the classical Euler equation for beams. A lateral modulation with the amplitude of nanometers was applied to create the friction forces between tip and sample. We demonstrated its capability by measuring normal and friction forces of interfacial water at the molecular scale over all distance ranges. PMID:21639511

  3. Quantitative measurement of tip sample forces by dynamic force spectroscopy in ambient conditions

    NASA Astrophysics Data System (ADS)

    Hölscher, H.; Anczykowski, B.

    2005-03-01

    We introduce a dynamic force spectroscopy technique enabling the quantitative measurement of conservative and dissipative tip-sample forces in ambient conditions. In difference to the commonly detected force-vs-distance curves dynamic force microscopy allows to measure the full range of tip-sample forces without hysteresis effects caused by a jump-to-contact. The approach is based on the specific behavior of a self-driven cantilever (frequency-modulation technique). Experimental applications on different samples (Fischer-sample, silicon wafer) are presented.

  4. Lateral force microscope calibration using a modified atomic force microscope cantilever

    SciTech Connect

    Reitsma, M. G.

    2007-10-15

    A proof-of-concept study is presented for a prototype atomic force microscope (AFM) cantilever and associated calibration procedure that provide a path for quantitative friction measurement using a lateral force microscope (LFM). The calibration procedure is based on the method proposed by Feiler et al. [Rev. Sci. Instrum. 71, 2746 (2000)] but allows for calibration and friction measurements to be carried out in situ and with greater precision. The modified AFM cantilever is equipped with lateral lever arms that facilitate the application of normal and lateral forces, comparable to those acting in a typical LFM friction experiment. The technique allows the user to select acceptable precision via a potentially unlimited number of calibration measurements across the full working range of the LFM photodetector. A microfabricated version of the cantilever would be compatible with typical commercial AFM instrumentation and allow for common AFM techniques such as topography imaging and other surface force measurements to be performed.

  5. Nanomechanical probing of soft matter through hydrophobic AFM tips fabricated by two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Zandrini, Tommaso; De Marco, Carmela; Osellame, Roberto; Turri, Stefano; Bragheri, Francesca

    2016-04-01

    Atomic force microscopy (AFM) nanoindentation of soft materials is a powerful tool for probing mechanical properties of biomaterials. Though many results have been reported in this field over the last decade, adhesion forces between the tip and the sample hinder the elastic modulus measurement when hydrophilic soft samples are investigated. Here, two-photon polymerization (2PP) technology was used to fabricate hydrophobic perfluoropolyether-based AFM tips. The hydrophobic 2PP tips allowed us to overcome the limitations of commercial and functionalized tips as well as to successfully measure the elastic modulus of medically relevant soft materials in air. Our results obtained in the characterization of poly(dimethyl siloxane) and polyethylene glycol hydrogels showed lower adhesion forces over a larger measurement range when compared to measurements performed with commercial tips. The elastic moduli measured by means of hydrophobic 2PP AFM tips were also found to be comparable to those obtained using conventional techniques for macroscopic samples. We successfully showed that the hydrophobic AFM tips developed by this highly versatile technology enable the study of mechanical properties of soft matter, benefiting from reduced sample-tip interactions, and a custom-made shape and dimension of the tips.

  6. Nanomechanical probing of soft matter through hydrophobic AFM tips fabricated by two-photon polymerization.

    PubMed

    Suriano, Raffaella; Zandrini, Tommaso; De Marco, Carmela; Osellame, Roberto; Turri, Stefano; Bragheri, Francesca

    2016-04-15

    Atomic force microscopy (AFM) nanoindentation of soft materials is a powerful tool for probing mechanical properties of biomaterials. Though many results have been reported in this field over the last decade, adhesion forces between the tip and the sample hinder the elastic modulus measurement when hydrophilic soft samples are investigated. Here, two-photon polymerization (2PP) technology was used to fabricate hydrophobic perfluoropolyether-based AFM tips. The hydrophobic 2PP tips allowed us to overcome the limitations of commercial and functionalized tips as well as to successfully measure the elastic modulus of medically relevant soft materials in air. Our results obtained in the characterization of poly(dimethyl siloxane) and polyethylene glycol hydrogels showed lower adhesion forces over a larger measurement range when compared to measurements performed with commercial tips. The elastic moduli measured by means of hydrophobic 2PP AFM tips were also found to be comparable to those obtained using conventional techniques for macroscopic samples. We successfully showed that the hydrophobic AFM tips developed by this highly versatile technology enable the study of mechanical properties of soft matter, benefiting from reduced sample-tip interactions, and a custom-made shape and dimension of the tips. PMID:26926558

  7. Measuring the Forces between Magnetic Dipoles

    ERIC Educational Resources Information Center

    Gayetsky, Lisa E.; Caylor, Craig L.

    2007-01-01

    We describe a simple undergraduate lab in which students determine how the force between two magnetic dipoles depends on their separation. We consider the case where both dipoles are permanent and the case where one of the dipoles is induced by the field of the other (permanent) dipole. Agreement with theoretically expected results is quite good.

  8. Conductance of AFM Deformed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Maiti, Amitesh; Anatram, M. P.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the electrical conductivity of carbon nanotubes upon deformation by atomic force microscopy (AFM). The density of states and conductance were computed using four orbital tight-binding method with various parameterizations. Different chiralities develop bandgap that varies with chirality.

  9. A Batch Fabricated SECM-AFM Probe

    NASA Astrophysics Data System (ADS)

    Dobson, P. S.; Macpherson, J. V.; Holder, M.; Weaver, J. M. R.

    2003-12-01

    A scheme for the fabrication of combined Scanning Electrochemical Microscopy — Atomic Force Microscopy (SECM-AFM) probes is presented for both silicon nitride and silicon cantilevers. The advantages over exsisting methods used for their production is explained. The process flow is described and initial results from electrodeposition of silver are presented.

  10. Surface conformations of anti-ricin aptamer and its affinity to ricin determined by atomic force microscopy and surface plasmon resonance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The specific interactions between ricin and anti-ricin aptamer were measured with atomic force microscopy (AFM) and surface plasmon resonance (SPR) spectrometry and the results were compared. In AFM, a single-molecule experiment with ricin functionalized AFM tip was used for scanning the aptamer mol...

  11. Force dependency of biochemical reactions measured by single molecule force-clamp spectroscopy

    PubMed Central

    Popa, Ionel; Kosuri, Pallav; Alegre-Cebollada, Jorge; Garcia-Manyes, Sergi; Fernandez, Julio M.

    2015-01-01

    Here we describe a protocol for using force-clamp spectroscopy to precisely quantify the effect of force on biochemical reactions. A calibrated force is used to control the exposure of reactive sites in a single polyprotein substrate composed of repeated domains. The use of polyproteins allows the identification of successful single-molecule recordings from unambiguous mechanical unfolding fingerprints. Biochemical reactions are then measured directly by detecting the length changes of the substrate held at a constant force. We present the layout of a force-clamp spectrometer along with protocols to design and conduct experiments. These experiments measure reaction kinetics as a function of applied force. We show sample data of the force dependency of two different reactions, protein unfolding and disulfide reduction. These data, which can be acquired in just a few days, reveal mechanistic details of the reactions that currently cannot be resolved by any other technique. PMID:23744288

  12. Effect of AFM probe geometry on visco-hyperelastic characterization of soft materials.

    PubMed

    Boccaccio, Antonio; Lamberti, Luciano; Papi, Massimiliano; De Spirito, Marco; Pappalettere, Carmine

    2015-08-14

    Atomic force microscopy (AFM) nanoindentation is very suited for nano- and microscale mechanical characterization of soft materials. Although the structural response of polymeric networks that form soft matter depends on viscous effects caused by the relative slippage of polymeric chains, the usual assumption made in the AFM-based characterization is that the specimen behaves as a purely elastic material and viscous forces are negligible. However, for each geometric configuration of the AFM tip, there will be a limit indentation rate above which viscous effects must be taken into account to correctly determine mechanical properties. A parametric finite element study conducted on 12 geometric configurations of a blunt cone AFM tip (overall, the study included about 200 finite element analyses) allowed us to determine the limit indentation rate for each configuration. The selected tip dimensions cover commercially available products and account for changes in tip geometry caused by serial measurements. Nanoindentation rates cover typical experimental conditions set in AFM bio-measurements on soft matter. Viscous effects appear to be more significant in the case of sharper tips. This implies that, if quantitative data on sample viscosity are not available, using a rounded indenter and carrying out experiments below the limit indentation rate will allow errors in the determination of mechanical properties to be minimized. PMID:26201503

  13. Sliding/rolling phobic droplets along a fiber: measurement of interfacial forces.

    PubMed

    Mead-Hunter, Ryan; Bergen, Tanja; Becker, Thomas; O'Leary, Rebecca A; Kasper, Gerhard; Mullins, Benjamin J

    2012-02-21

    Phobic droplet-fiber systems possess complex geometries, which have made full characterization of such systems difficult. This work has used atomic force microscopy (AFM) to measure droplet-fiber forces for oil droplets on oleophobic fibers over a range of fiber diameters. The work adapted a previous method and a theoretical model developed by the authors for philic droplet-fiber systems. A Bayesian statistical model was also used to account for the influence of surface roughness on the droplet-fiber force. In general, it has been found that the force required to move a liquid droplet along an oleophobic filter fiber will be less than that required to move a droplet along an oleophilic fiber. However, because of the effects of pinning and/or wetting behavior, this difference may be less than would otherwise be expected. Droplets with a greater contact angle (~110°) were observed to roll along the fiber, whereas droplets with a lesser contact angle (<90°) would slide. PMID:22260243

  14. Direct force measurement of the stability of poly(ethylene glycol)-polyethylenimine graft films.

    PubMed

    Nnebe, Ijeoma M; Tilton, Robert D; Schneider, James W

    2004-08-15

    The stability and passivity of poly(ethylene glycol)-polyethylenimine (PEG-PEI) graft films are important for their use as antifouling coatings in a variety of biotechnology applications. We have used AFM colloidal-probe force measurements combined with optical reflectometry to characterize the surface properties and stability of PEI and dense PEG-PEI graft films on silica. Initial contact between bare silica probes and PEI-modified surfaces yields force curves that exhibit a long-range electrostatic repulsion and short-range attraction between the surfaces, indicating spontaneous desorption of PEI in the aqueous medium. Further transfer of PEI molecules to the probe occurs with subsequent application of forces between FR = 300 and 500 microN/m. The presence of PEG reduces the adhesive properties of the PEI surface and prevents transfer of PEI molecules to the probe with continuous contact, though an initial desorption of PEI still occurs. Glutaraldehyde crosslinking of the graft films prevents both the initial desorption and subsequent transfer of the PEI, resulting in sustained attractive interaction forces of electrostatic origin between the negatively charged probe and the positively charged copolymer graft films. PMID:15271557

  15. Atomic Force Microscopy Measurements of the Mechanical Properties of Cell Walls on Living Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Bailey, Richard; Mullin, Nic; Turner, Robert; Foster, Simon; Hobbs, Jamie

    2014-03-01

    Staphylococcus aureus is a major cause of infection in humans, including the Methicillin resistant strain, MRSA. However, very little is known about the mechanical properties of these cells. Our investigations use AFM to examine live S. aureus cells to quantify mechanical properties. These were explored using force spectroscopy with different trigger forces, allowing the properties to be extracted at different indentation depths. A value for the cell wall stiffness has been extracted, along with a second, higher value which is found upon indenting at higher forces. This higher value drops as the cells are exposed to high salt, sugar and detergent concentrations, implying that this measurement contains a contribution from the internal turgor pressure. We have monitored these properties as the cells progress through the cell cycle. Force maps were taken over the cells at different stages of the growth process to identify changes in the mechanics throughout the progression of growth and division. The effect of Oxacillin has also been studied, to better understand its mechanism of action. Finally mutant strains of S. aureus and a second species Bacillus subtilis have been used to link the mechanical properties of the cell walls with the chain lengths and substructures involved.

  16. Diagnosis of cervical cancer cell taken from scanning electron and atomic force microscope images of the same patients using discrete wavelet entropy energy and Jensen Shannon, Hellinger, Triangle Measure classifier

    NASA Astrophysics Data System (ADS)

    Aytac Korkmaz, Sevcan

    2016-05-01

    The aim of this article is to provide early detection of cervical cancer by using both Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM) images of same patient. When the studies in the literature are examined, it is seen that the AFM and SEM images of the same patient are not used together for early diagnosis of cervical cancer. AFM and SEM images can be limited when using only one of them for the early detection of cervical cancer. Therefore, multi-modality solutions which give more accuracy results than single solutions have been realized in this paper. Optimum feature space has been obtained by Discrete Wavelet Entropy Energy (DWEE) applying to the 3 × 180 AFM and SEM images. Then, optimum features of these images are classified with Jensen Shannon, Hellinger, and Triangle Measure (JHT) Classifier for early diagnosis of cervical cancer. However, between classifiers which are Jensen Shannon, Hellinger, and triangle distance have been validated the measures via relationships. Afterwards, accuracy diagnosis of normal, benign, and malign cervical cancer cell was found by combining mean success rates of Jensen Shannon, Hellinger, and Triangle Measure which are connected with each other. Averages of accuracy diagnosis for AFM and SEM images by averaging the results obtained from these 3 classifiers are found as 98.29% and 97.10%, respectively. It has been observed that AFM images for early diagnosis of cervical cancer have higher performance than SEM images. Also in this article, surface roughness of malign AFM images in the result of the analysis made for the AFM images, according to the normal and benign AFM images is observed as larger, If the volume of particles has found as smaller. She has been a Faculty Member at Fırat University in the Electrical- Electronic Engineering Department since 2007. Her research interests include image processing, computer vision systems, pattern recognition, data fusion, wavelet theory, artificial neural

  17. Diagnosis of cervical cancer cell taken from scanning electron and atomic force microscope images of the same patients using discrete wavelet entropy energy and Jensen Shannon, Hellinger, Triangle Measure classifier.

    PubMed

    Aytac Korkmaz, Sevcan

    2016-05-01

    The aim of this article is to provide early detection of cervical cancer by using both Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM) images of same patient. When the studies in the literature are examined, it is seen that the AFM and SEM images of the same patient are not used together for early diagnosis of cervical cancer. AFM and SEM images can be limited when using only one of them for the early detection of cervical cancer. Therefore, multi-modality solutions which give more accuracy results than single solutions have been realized in this paper. Optimum feature space has been obtained by Discrete Wavelet Entropy Energy (DWEE) applying to the 3×180 AFM and SEM images. Then, optimum features of these images are classified with Jensen Shannon, Hellinger, and Triangle Measure (JHT) Classifier for early diagnosis of cervical cancer. However, between classifiers which are Jensen Shannon, Hellinger, and triangle distance have been validated the measures via relationships. Afterwards, accuracy diagnosis of normal, benign, and malign cervical cancer cell was found by combining mean success rates of Jensen Shannon, Hellinger, and Triangle Measure which are connected with each other. Averages of accuracy diagnosis for AFM and SEM images by averaging the results obtained from these 3 classifiers are found as 98.29% and 97.10%, respectively. It has been observed that AFM images for early diagnosis of cervical cancer have higher performance than SEM images. Also in this article, surface roughness of malign AFM images in the result of the analysis made for the AFM images, according to the normal and benign AFM images is observed as larger, If the volume of particles has found as smaller. PMID:26921605

  18. Conductivity Measurements of Pyrrole Molecules Incorporated into Chemically Adsorbed Monolayer by Conducting Probe Technique in Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shin‑ichi; Ogawa, Kazufumi

    2006-03-01

    A monomolecular layer containing pyrrolyl groups at the surface was prepared between two parallel Pt electrodes on a glass substrate by a chemical adsorption technique using N-[11-(trichlorosilyl)undecyl] pyrrole (PNN). Then, the pyrrolyl was polymerized with pure water by applying a DC voltage of 10 V between the two Pt electrodes. It was confirmed using an optical microscope that many electric paths were formed between the two Pt electrodes by a decoration technique using electrochemical polymerization in an aqueous medium containing pyrrole after the polymerization. Next, a conductive probe of an atomic force microscope (AFM) was used to examine an electrical polymerized path through the surface of the polypyrrolyl group in a chemically adsorbed monomolecular layer. The resistance of one electric path in the monomolecular layer was measured using an AFM with an attached Au-covered tip at room temperature. With a measurement volume of about 0.2 nm (the thickness of the electric path in the monomolecular layer) × 200 μm (the average width of the electric path) × 100 μm (the distance between the Pt electrode and the Au-covered AFM tip), the resistance at room temperature of one electric path was 4 k Ω under ambient conditions. From the results in the atmosphere, the conductivity of a super long conjugated polypyrrolyl group without any dopant in a lateral direction was ohmically estimated to be at least 6.0 × 105 S/m.

  19. Toward isometric force capabilities evaluation by using a musculoskeletal model: Comparison with direct force measurement.

    PubMed

    Hernandez, Vincent; Rezzoug, Nasser; Gorce, Philippe

    2015-09-18

    Developing formalisms to determine force capabilities of human limbs by using musculoskeletal models could be useful for biomechanical and ergonomic applications. In this framework, the purpose of this study was to compare measured maximal isometric force capabilities at the hand in a set of Cartesian directions with forces computed from a musculoskeletal model of the upper-limb. The results were represented under the form of a measured force polytope (MFP) and a musculoskeletal force polytope (MSFP). Both of them were obtained from the convex hull of measured and simulated force vectors endpoints. Nine subjects participated to the experiment. For one posture recorded with an optoelectronic system, maximum isometric forces exerted at the hand were recorded in twenty six directions of the Cartesian space with a triaxial force sensor. Results showed significant differences between the polytopes global shapes. The MSFP was more elongated than the MFP. Concerning the polytopes volumes, no significant difference was found. Mean maximal isometric forces provided by MFP and MSFP were 509.6 (118.4)N and 627.9 (73.3)N respectively. Moreover, the angle between the main axes of the two polytopes was 5.5 (2.3)° on average. Finally, RMS error values between MFP and MSFP were lower than 100N in 88% of the considered directions. The proposed MSFP based on a musculoskeletal model gave interesting information on optimal force orientation parameters. The possible applications in the frame of ergonomics, rehabilitation and biomechanics are proposed and discussed. PMID:26206551

  20. Direct Force Measurements of Receptor-Ligand Interactions on Living Cells

    NASA Astrophysics Data System (ADS)

    Eibl, Robert H.

    The characterization of cell adhesion between two living cells at the level of single receptor-ligand bonds is an experimental challenge. This chapter describes how the extremely sensitive method of atomic force microscopy (AFM) based force spectroscopy can be applied to living cells in order to probe for cell-to-cell or cell-to-substrate interactions mediated by single pairs of adhesion receptors. In addition, it is outlined how single-molecule AFM force spectroscopy can be used to detect physiologic changes of an adhesion receptor in a living cell. This force spectroscopy allows us to detect in living cells rapidly changing, chemokine SDF-1 triggered activation states of single VLA-4 receptors. This recently developed AFM application will allow for the detailed investigation of the integrin-chemokine crosstalk of integrin activation mechanisms and on how other adhesion receptors are modulated in health and disease. As adhesion molecules, living cells and even bacteria can be studied by single-molecule AFM force spectroscopy, this method is set to become a powerful tool that can not only be used in biophysics, but in cell biology as well as in immunology and cancer research.

  1. Force Measurement on the GLAST Delta II Flight

    NASA Technical Reports Server (NTRS)

    Gordon, Scott; Kaufman, Daniel

    2009-01-01

    This viewgraph presentation reviews the interface force measurement at spacecraft separation of GLAST Delta II. The contents include: 1) Flight Force Measurement (FFM) Background; 2) Team Members; 3) GLAST Mission Overview; 4) Methodology Development; 5) Ground Test Validation; 6) Flight Data; 7) Coupled Loads Simulation (VCLA & Reconstruction); 8) Basedrive Simulation; 9) Findings; and 10) Summary and Conclusions.

  2. Development of cylindrical-type finger force measuring system using force sensors and its characteristics evaluation

    NASA Astrophysics Data System (ADS)

    Kim, Hyeon-Min; Yoon, Joungwon; Shin, Hee-Suk; Kim, Gab-Soon

    2012-02-01

    Some patients cannot use their hands because of the paralysis of their fingers. Their fingers can recover with rehabilitative training, and the extent of rehabilitation can be judged by grasping a cylindrical-object with their fingers. At present, the cylindrical-object used in hospitals is only a plastic cylinder, which cannot measure grasping force of the fingers. Therefore, doctors must judge the extent of rehabilitation by watching patients' fingers as they grasp the plastic cylinder. In this paper, the development of two cylindrical-type finger force measuring systems with four force sensors for left hand and right hand were developed. The developed finger force measuring system can measure the grasping force of patients' each finger (forefinger, middle finger, ring finger and little finger), and the measured results could be used to judge the rehabilitation extent of a finger patient. The grasping force tests of men and women were performed using the developed cylindrical-type finger force measuring systems. The tests confirm that the average finger forces of right hand and left hand for men were about 194 N and 179 N, and for women, 108 N and 95 N.

  3. Casimir force and in situ surface potential measurements on nanomembranes.

    PubMed

    Garcia-Sanchez, Daniel; Fong, King Yan; Bhaskaran, Harish; Lamoreaux, Steve; Tang, Hong X

    2012-07-13

    We present Casimir force measurements in a sphere-plate configuration that consists of a high quality nanomembrane resonator and a millimeter sized gold coated sphere. The nanomembrane is fabricated from stoichiometric silicon nitride metallized with gold. A Kelvin probe method is used in situ to image the surface potentials to minimize the distance-dependent residual force. Resonance-enhanced frequency-domain measurements of the nanomembrane motion allow for very high resolution measurements of the Casimir force gradient (down to a force gradient sensitivity of 3  μN/m). Using this technique, the Casimir force in the range of 100 nm to 2  μm is accurately measured. Experimental data thus obtained indicate that the device system in the measured range is best described with the Drude model. PMID:23030202

  4. Recent Investments by NASA's National Force Measurement Technology Capability

    NASA Technical Reports Server (NTRS)

    Commo, Sean A.; Ponder, Jonathan D.

    2016-01-01

    The National Force Measurement Technology Capability (NFMTC) is a nationwide partnership established in 2008 and sponsored by NASA's Aeronautics Evaluation and Test Capabilities (AETC) project to maintain and further develop force measurement capabilities. The NFMTC focuses on force measurement in wind tunnels and provides operational support in addition to conducting balance research. Based on force measurement capability challenges, strategic investments into research tasks are designed to meet the experimental requirements of current and future aerospace research programs and projects. This paper highlights recent and force measurement investments into several areas including recapitalizing the strain-gage balance inventory, developing balance best practices, improving calibration and facility capabilities, and researching potential technologies to advance balance capabilities.

  5. Impact of Thermal Gradients on Wind Tunnel Force Measurements

    NASA Technical Reports Server (NTRS)

    Hereford, James; Parker, Peter A.; Rhew, Ray D.

    1999-01-01

    In a wind tunnel facility, the direct measurement of forces and moments induced on the model are performed by a force measurement balance. The measurement balance is a precision-machined device that has strain gages at strategic locations to measure the strain (i.e., deformations) due to applied forces and moments. The strain gages convert the strain (and hence the applied force) to an electrical voltage that is measured by external meters. Thermal gradients can complicate the process, however. Thermal gradients on the balance cause differential expansion (or contraction) of various parts of the balance that induce a strain that is detected by the strain gages and is indistinguishable from an external applied force. The thermal gradients can result when testing is done at elevated temperatures or at cryogenic temperatures such as at the National Transonic Facility (NTF) at NASA Langley Research Center (LaRC).

  6. Interactions of biopolymers with silica surfaces: Force measurements and electronic structure calculation studies

    NASA Astrophysics Data System (ADS)

    Kwon, Kideok D.; Vadillo-Rodriguez, Virginia; Logan, Bruce E.; Kubicki, James D.

    2006-08-01

    Pull-off forces were measured between a silica colloid attached to an atomic force microscope (AFM) cantilever and three homopolymer surfaces representing constituents of extracellular polymeric substances (EPS). The pull-off forces were -0.84 (±0.16), -0.68 (±0.15), and -2.37 (±0.31) nN as measured in water for dextran, phosphorylated dextran, and poly- L-lysine, respectively. Molecular orbital and density functional theory methods (DFT) were applied to analyze the measured pull-off forces using dimer clusters representing interactions between the three polymers and silica surfaces. Binding energies for each dimer were calculated with basis set superposition error (BSSE) and interpolated using corrections for silica surface hydroxyl density and silica charge density. The binding energies were compared with the normalized pull-off forces with the effective silica surface area contacting the polymer surfaces. The predicted binding energies at a -0.064 C/m 2 silica surface charge density corresponding to circum-neutral pH were -0.055, -0.029, and -0.338 × 10 -18 J/nm 2 for the dimers corresponding to the silica surface with dextran, phosphorylated dextran, and poly- L-lysine, respectively. Polarizable continuum model (PCM) calculations with different solvents, silanol vibrational frequency calculations, and orbital interaction analysis based on natural bonding orbital (NBO) showed that phosphate groups formed stronger H-bonds with neutral silanols than hydroxyl and amino functional groups of polymers, implying that phosphate containing polymers would play important roles in EPS binding to silica surfaces.

  7. Atomically resolved force microscopy at room temperature

    SciTech Connect

    Morita, Seizo

    2014-04-24

    Atomic force microscopy (AFM) can now not only image individual atoms but also construct atom letters using atom manipulation method even at room temperature (RT). Therefore, the AFM is the second generation atomic tool following the scanning tunneling microscopy (STM). However the AFM can image even insulating atoms, and also directly measure/map the atomic force and potential at the atomic scale. Noting these advantages, we have been developing a bottom-up nanostructuring system at RT based on the AFM. It can identify chemical species of individual atoms and then manipulate selected atom species to the predesigned site one-by-one to assemble complex nanostructures consisted of multi atom species at RT. Here we introduce our results toward atom-by-atom assembly of composite nanostructures based on the AFM at RT including the latest result on atom gating of nano-space for atom-by-atom creation of atom clusters at RT for semiconductor surfaces.

  8. [AFM fishing of proteins under impulse electric field].

    PubMed

    Ivanov, Yu D; Pleshakova, T O; Malsagova, K A; Kaysheva, A L; Kopylov, A T; Izotov, A A; Tatur, V Yu; Vesnin, S G; Ivanova, N D; Ziborov, V S; Archakov, A I

    2016-05-01

    A combination of (atomic force microscopy)-based fishing (AFM-fishing) and mass spectrometry allows to capture protein molecules from solutions, concentrate and visualize them on an atomically flat surface of the AFM chip and identify by subsequent mass spectrometric analysis. In order to increase the AFM-fishing efficiency we have applied pulsed voltage with the rise time of the front of about 1 ns to the AFM chip. The AFM-chip was made using a conductive material, highly oriented pyrolytic graphite (HOPG). The increased efficiency of AFM-fishing has been demonstrated using detection of cytochrome b5 protein. Selection of the stimulating pulse with a rise time of 1 ns, corresponding to the GHz frequency range, by the effect of intrinsic emission from water observed in this frequency range during water injection into the cell. PMID:27562998

  9. A variable temperature ultrahigh vacuum atomic force microscope

    SciTech Connect

    Dai, Q.; Vollmer, R.; Carpick, R.W.; Ogletree, D.F.; Salmeron, M.

    1995-11-01

    A new atomic force microscope (AFM) that operates in ultrahigh vacuum (UHV) is described. The sample is held fixed with spring clamps while the AMF cantilever and deflection sensor are scanned above it. Thus, the sample is easily coupled to a liquid nitrogen cooled thermal reservoir which allows AFM operation from {approx}100 K to room temperature. AFM operation above room temperature is also possible. The microscope head is capable of coarse {ital x}-{ital y} positioning over millimeter distances so that AFM images can be taken virtually anywhere upon a macroscopic sample. The optical beam deflection scheme is used for detection, allowing simultaneous normal and lateral force measurements. The sample can be transferred from the AFM stage to a low energy electron diffraction/Auger electron spectrometer stage for surface analysis. Atomic lattice resolution AFM images taken in UHV are presented at 110, 296, and 430 K. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  10. Crystallization of Probucol in Nanoparticles Revealed by AFM Analysis in Aqueous Solution.

    PubMed

    Egami, Kiichi; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu

    2015-08-01

    The crystallization behavior of a pharmaceutical drug in nanoparticles was directly evaluated by atomic force microscopy (AFM) force curve measurements in aqueous solution. A ternary spray-dried sample (SPD) was prepared by spray drying the organic solvent containing probucol (PBC), hypromellose (HPMC), and sodium dodecyl sulfate (SDS). The amorphization of PBC in the ternary SPD was confirmed by powder X-ray diffraction (PXRD) and solid-state 13C NMR measurements. A nanosuspension containing quite small particles of 25 nm in size was successfully prepared immediately after dispersion of the ternary SPD into water. Furthermore, solution-state 1H NMR measurements revealed that a portion of HPMC coexisted with PBC as a mixed state in the freshly prepared nanosuspension particles. After storing the nanosuspension at 25 °C, a gradual increase in the size of the nanoparticles was observed, and the particle size changed to 93.9 nm after 7 days. AFM enabled the direct observation of the morphology and agglomeration behavior of the nanoparticles in water. Moreover, AFM force-distance curves were changed from (I) to (IV), depending on the storage period, as follows: (I) complete indentation within an applied force of 1 nN, (II) complete indentation with an applied force of 1-5 nN, (III) partial indentation with an applied force of 5 nN, and (IV) nearly no indentation with an applied force of 5 nN. This stiffness increase of the nanoparticles was attributed to gradual changes in the molecular state of PBC from the amorphous to the crystal state. Solid-state 13C NMR measurements of the freeze-dried samples demonstrated the presence of metastable PBC Form II crystals in the stored nanosuspension, strongly supporting the AFM results. PMID:26106951

  11. AFM indentation study of breast cancer cells

    SciTech Connect

    Li, Q.S.; Lee, G.Y.H.; Ong, C.N.; Lim, C.T.

    2008-10-03

    Mechanical properties of individual living cells are known to be closely related to the health and function of the human body. Here, atomic force microscopy (AFM) indentation using a micro-sized spherical probe was carried out to characterize the elasticity of benign (MCF-10A) and cancerous (MCF-7) human breast epithelial cells. AFM imaging and confocal fluorescence imaging were also used to investigate their corresponding sub-membrane cytoskeletal structures. Malignant (MCF-7) breast cells were found to have an apparent Young's modulus significantly lower (1.4-1.8 times) than that of their non-malignant (MCF-10A) counterparts at physiological temperature (37 deg. C), and their apparent Young's modulus increase with loading rate. Both confocal and AFM images showed a significant difference in the organization of their sub-membrane actin structures which directly contribute to their difference in cell elasticity. This change may have facilitated easy migration and invasion of malignant cells during metastasis.

  12. The Effects of Noncellulosic Compounds on the Nanoscale Interaction Forces Measured between Carbohydrate-Binding Module and Lignocellulosic Biomass.

    PubMed

    Arslan, Baran; Colpan, Mert; Ju, Xiaohui; Zhang, Xiao; Kostyukova, Alla; Abu-Lail, Nehal I

    2016-05-01

    The lack of fundamental understanding of the types of forces that govern how cellulose-degrading enzymes interact with cellulosic and noncellulosic components of lignocellulosic surfaces limits the design of new strategies for efficient conversion of biomass to bioethanol. In a step to improve our fundamental understanding of such interactions, nanoscale forces acting between a model cellulase-a carbohydrate-binding module (CBM) of cellobiohydrolase I (CBH I)-and a set of lignocellulosic substrates with controlled composition were measured using atomic force microscopy (AFM). The three model substrates investigated were kraft (KP), sulfite (SP), and organosolv (OPP) pulped substrates. These substrates varied in their surface lignin coverage, lignin type, and xylan and acetone extractives' content. Our results indicated that the overall adhesion forces of biomass to CBM increased linearly with surface lignin coverage with kraft lignin showing the highest forces among lignin types investigated. When the overall adhesion forces were decoupled into specific and nonspecific component forces via the Poisson statistical model, hydrophobic and Lifshitz-van der Waals (LW) forces dominated the binding forces of CBM to kraft lignin, whereas permanent dipole-dipole interactions and electrostatic forces facilitated the interactions of lignosulfonates to CBM. Xylan and acetone extractives' content increased the attractive forces between CBM and lignin-free substrates, most likely through hydrogen bonding forces. When the substrates treated differently were compared, it was found that both the differences in specific and nonspecific forces between lignin-containing and lignin-free substrates were the least for OPP. Therefore, cellulase enzymes represented by CBM would weakly bind to organosolv lignin. This will facilitate an easy enzyme recovery compared to other substrates treated with kraft or sulfite pulping. Our results also suggest that altering the surface hydrophobicity

  13. Direct Measurement of Forces Between Linear Polysaccharides Xanthan and Schizophyllan

    NASA Astrophysics Data System (ADS)

    Rau, Donald C.; Parsegian, V. Adrian

    1990-09-01

    Direct osmotic stress measurements have been made of forces between helices of xanthan, an industrially important charged polysaccharide. Exponentially decaying hydration forces, much like those already measured between lipid bilayer membranes or DNA double helices, dominate the interactions at close separation. Interactions between uncharged schizophyllans also show the same kind of hydration force seen between xanthans. In addition to the practical possibilities for modifying solution and suspension properties through recognition and control of molecular forces, there is now finally the opportunity for theorists to relate macroscopic properties of a polymer solution to the microscopic properties that underlie them.

  14. An ABS control logic based on wheel force measurement

    NASA Astrophysics Data System (ADS)

    Capra, D.; Galvagno, E.; Ondrak, V.; van Leeuwen, B.; Vigliani, A.

    2012-12-01

    The paper presents an anti-lock braking system (ABS) control logic based on the measurement of the longitudinal forces at the hub bearings. The availability of force information allows to design a logic that does not rely on the estimation of the tyre-road friction coefficient, since it continuously tries to exploit the maximum longitudinal tyre force. The logic is designed by means of computer simulation and then tested on a specific hardware in the loop test bench: the experimental results confirm that measured wheel force can lead to a significant improvement of the ABS performances in terms of stopping distance also in the presence of road with variable friction coefficient.

  15. A measurable force driven by an excitonic condensate

    SciTech Connect

    Hakioğlu, T.; Özgün, Ege; Günay, Mehmet

    2014-04-21

    Free energy signatures related to the measurement of an emergent force (≈10{sup −9}N) due to the exciton condensate (EC) in Double Quantum Wells are predicted and experiments are proposed to measure the effects. The EC-force is attractive and reminiscent of the Casimir force between two perfect metallic plates, but also distinctively different from it by its driving mechanism and dependence on the parameters of the condensate. The proposed experiments are based on a recent experimental work on a driven micromechanical oscillator. Conclusive observations of EC in recent experiments also provide a strong promise for the observation of the EC-force.

  16. Forces and torques on the nanoscale: from measurement to applications

    NASA Astrophysics Data System (ADS)

    Volpe, Giovanni

    2012-10-01

    The possibility of measuring microscopic forces down to the femtonewton range has opened new possibilities in fields such as biophysics and nanophotonics. I will review some of the techniques most often employed, namely the photonic force microscope (PFM) and the total internal reflection microscope (TIRM), which are able to measure tiny forces acting on optically trapped particles. I will then discuss several applications of such nanoscopic forces: from plasmonic optical manipulation, to self-propelled microswimmers, to self-organization in large ensembles of particles.

  17. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment

    PubMed Central

    Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang

    2015-01-01

    Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments. PMID:26203364

  18. A non-integral, axial-force measuring element

    NASA Astrophysics Data System (ADS)

    Ringel, M.; Levin, D.; Seginer, A.

    1989-10-01

    A new approach to the measurement of the axial force is presented. A nonintegral axial-force measuring element, housed within the wind-tunnel model, avoids the interactions that are caused by nonlinear elastic phenomena characteristic of integral balances. The new design overcomes other problems, such as friction, misalignment and relative motion between metric elements, that plagued previous attempts at separate measurement of the axial force. Calibration and test results prove the ability of the new approach to duplicate and even surpass the results of much more complicated and expensive integral balances. The advantages of the new design make it the best known solution for particular measurement problems.

  19. Quantitative nano-mechanics of biological cells with AFM

    NASA Astrophysics Data System (ADS)

    Sokolov, Igor

    2013-03-01

    The importance of study of living cells is hard to overestimate. Cell mechanics is a relatively young, yet not a well-developed area. Besides just a fundamental interest, large practical need has emerged to measure cell mechanics quantitatively. Recent studies revealed a significant correlation between stiffness of biological cells and various human diseases, such as cancer, malaria, arthritis, and even aging. However, really quantitative studies of mechanics of biological cells are virtually absent. It is not even clear if the cell, being a complex and heterogeneous object, can be described by the elastic modulus at all. Atomic force microscopy (AFM) is a natural instrument to study properties of cells in their native environments. Here we will demonstrate that quantitative measurements of elastic modulus of cells with AFM are possible. Specifically, we will show that the ``cell body'' (cell without ``brush'' surface layer, a non-elastic layer surrounding cells) typically demonstrates the response of a homogeneous elastic medium up to the deformation of 10-20%, but if and only if a) the cellular brush layer is taken into account, b) rather dull AFM probes are used. This will be justified with the help of the strong condition of elastic behavior of material: the elastic modulus is shown to be independent on the indentation depth. We will also demonstrate that an attempt either to ignore the brush layer or to use sharp AFM probes will result in the violation of the strong condition, which implies impossibility to use the concept of the elastic modulus to describe cell mechanics in such experiments. Examples of quantitative measurements of the Young's modulus of the cell body and the cell brush parameters will be given for various cells. Address when submitting: Clarkson University, Potsdam, NY 13699

  20. Examination of humidity effects on measured thickness and interfacial phenomena of exfoliated graphene on silicon dioxide via amplitude modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Jinkins, K.; Camacho, J.; Farina, L.; Wu, Y.

    2015-12-01

    The properties of Few-Layer Graphene (FLG) change with the number of layers and Amplitude Modulation (AM) Atomic Force Microscopy (AFM) is commonly used to determine the thickness of FLG. However, AFM measurements have been shown to be sensitive to environmental conditions such as relative humidity (RH). In the present study, AM-AFM is used to measure the thickness and loss tangent of exfoliated graphene on silicon dioxide (SiO2) as RH is increased from 10% to 80%. We show that the measured thickness of graphene is dependent on RH. The loss tangent values of the graphene and oxide regions are both affected by humidity, with generally higher loss tangent for graphene than SiO2. As RH increases, we observe the loss tangent of both materials approaches the same value. We hypothesize that there is a layer of water trapped between the graphene and SiO2 substrate to explain this observation. Using this interpretation, the loss tangent images also indicate movement and change in this trapped water layer as RH increases, which impacts the measured thickness of graphene using AM-AFM.

  1. Examination of humidity effects on measured thickness and interfacial phenomena of exfoliated graphene on silicon dioxide via amplitude modulation atomic force microscopy

    SciTech Connect

    Jinkins, K.; Farina, L.; Wu, Y.; Camacho, J.

    2015-12-14

    The properties of Few-Layer Graphene (FLG) change with the number of layers and Amplitude Modulation (AM) Atomic Force Microscopy (AFM) is commonly used to determine the thickness of FLG. However, AFM measurements have been shown to be sensitive to environmental conditions such as relative humidity (RH). In the present study, AM-AFM is used to measure the thickness and loss tangent of exfoliated graphene on silicon dioxide (SiO{sub 2}) as RH is increased from 10% to 80%. We show that the measured thickness of graphene is dependent on RH. The loss tangent values of the graphene and oxide regions are both affected by humidity, with generally higher loss tangent for graphene than SiO{sub 2}. As RH increases, we observe the loss tangent of both materials approaches the same value. We hypothesize that there is a layer of water trapped between the graphene and SiO{sub 2} substrate to explain this observation. Using this interpretation, the loss tangent images also indicate movement and change in this trapped water layer as RH increases, which impacts the measured thickness of graphene using AM-AFM.

  2. NASA Langley Research Center Force and Strain Measurement Capabilities

    NASA Technical Reports Server (NTRS)

    Roberts, Paul W.

    1999-01-01

    Direct measurements of forces and moments are some of the most important data acquired during aerodynamic testing. This paper deals with the force and strain measurement capabilities at the Langley Research Center (LaRC). It begins with a progressive history of LaRC force measurement developments beginning in the 1940's and ends with the center's current capabilities. Various types of force and moment transducers used at LaRC are discussed including six-component sting mounted balances, semi-span balances, hinge moment balances, flow-through balances, rotor balances, and many other unique transducers. Also discussed are some unique strain-gage applications, such as those used in extreme environments. The final topics deal with the LaRC's ability to perform custom calibrations and our current levels of effort in the area of force and strain measurement.

  3. Micromechanical cohesion force measurements to determine cyclopentane hydrate interfacial properties.

    PubMed

    Aman, Zachary M; Joshi, Sanjeev E; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2012-06-15

    Hydrate aggregation and deposition are critical factors in determining where and when hydrates may plug a deepwater flowline. We present the first direct measurement of structure II (cyclopentane) hydrate cohesive forces in the water, liquid hydrocarbon and gas bulk phases. For fully annealed hydrate particles, gas phase cohesive forces were approximately twice that obtained in a liquid hydrocarbon phase, and approximately six times that obtained in the water phase. Direct measurements show that hydrate cohesion force in a water-continuous bulk may be only the product of solid-solid cohesion. When excess water was present on the hydrate surface, gas phase cohesive forces increased by a factor of three, suggesting the importance of the liquid or quasi-liquid layer (QLL) in determining cohesive force. Hydrate-steel adhesion force measurements show that, when the steel surface is coated with hydrophobic wax, forces decrease up to 96%. As the micromechanical force technique is uniquely capable of measuring hydrate-surface forces with variable contact time, the present work contains significant implications for hydrate applications in flow assurance. PMID:22484169

  4. Calibration of AFM cantilever stiffness: a microfabricated array of reflective springs.

    PubMed

    Cumpson, P J Peter J; Zhdan, Peter; Hedley, John

    2004-08-01

    Calibration of the spring constant of atomic force microscope (AFM) cantilevers is necessary for the measurement of nanonewton and piconewton forces, which are critical to analytical applications of AFM in the analysis of polymer surfaces, biological structures and organic molecules. We have developed a compact and easy-to-use reference standard for this calibration. The new artifact consists of an array of 12 dual spiral-cantilever springs, each supporting a mirrored polycrystalline silicon disc of 160 microm in diameter. These devices were fabricated by a three-layer polysilicon surface micromachining method, including a reflective layer of gold on chromium. We call such an array a Microfabricated Array of Reference Springs (MARS). These devices have a number of advantages. Cantilever calibration using this device is straightforward and rapid. The devices have very small inertia, and are therefore resistant to shock and vibration. This means they need no careful treatment except reasonably clean laboratory conditions. The array spans the range of spring constant from around 0.16 to 11 N/m important in AFM, allowing almost all contact-mode AFM cantilevers to be calibrated easily and rapidly. Each device incorporates its own discrete gold mirror to improve reflectivity. The incorporation of a gold mirror both simplifies calibration of the devices themselves (via Doppler velocimetry) and allows interferometric calibration of the AFM z-axis using the apparent periodicity in the force-distance curve before contact. Therefore, from a single force-distance curve, taking about one second to acquire, one can calibrate the cantilever spring constant and, optionally, the z-axis scale. These are all the data one needs to make accurate and reliable force measurements. PMID:15231316

  5. Micromechanical adhesion force measurements between tetrahydrofuran hydrate particles.

    PubMed

    Taylor, Craig J; Dieker, Laura E; Miller, Kelly T; Koh, Carolyn A; Sloan, E Dendy

    2007-02-15

    Adhesion forces between tetrahydrofuran (THF) hydrate particles in n-decane were measured using an improved micromechanical technique. The experiments were performed at atmospheric pressure over the temperature range 261-275 K. The observed forces and trends were explained by a capillary bridge between the particles. The adhesion force of hydrates was directly proportional to the contact force and contact time. A scoping study examined the effects of temperature, anti-agglomerants, and interfacial energy on the particle adhesion forces. The adhesion force of hydrates was found to be directly proportional to interfacial energy of the surrounding liquid, and to increase with temperature. Both sorbitan monolaurate (Span20) and poly-N-vinyl caprolactam (PVCap) decreased the adhesion force between the hydrate particles. PMID:17126359

  6. Imaging and measuring the rituximab-induced changes of mechanical properties in B-lymphoma cells using atomic force microscopy

    SciTech Connect

    Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao; Dong, Zaili; Tabata, Osamu; Xiao, Xiubin; Zhang, Weijing

    2011-01-14

    Research highlights: {yields} Single B-lymphoma living cells were imaged by AFM with the assistance of microfabricated pillars. {yields} The apoptosis of B-lymphoma cells triggered by rituximab without cross-linking was observed by AO/EB double fluorescent staining. {yields} The B-lymphoma cells became dramatically softer after adding rituximab. -- Abstract: The topography and mechanical properties of single B-lymphoma cells have been investigated by atomic force microscopy (AFM). With the assistance of microfabricated patterned pillars, the surface topography and ultrastructure of single living B-lymphoma cell were visualized by AFM. The apoptosis of B-lymphoma cells induced by rituximab alone was observed by acridine orange/ethidium bromide (AO/EB) double fluorescent staining. The rituximab-induced changes of mechanical properties in B-lymphoma cells were measured dynamically and the results showed that B-lymphoma cells became dramatically softer after incubation with rituximab. These results can improve our understanding of rituximab'effect and will facilitate the further investigation of the underlying mechanisms.

  7. SU-8 force sensing pillar arrays for biological measurements.

    PubMed

    Doll, Joseph C; Harjee, Nahid; Klejwa, Nathan; Kwon, Ronald; Coulthard, Sarah M; Petzold, Bryan; Goodman, Miriam B; Pruitt, Beth L

    2009-05-21

    The generation and sensation of mechanical force plays a role in many dynamic biological processes, including touch sensation. This paper presents a two-axis micro strain gauge force sensor constructed from multiple layers of SU-8 and metal on quartz substrates. The sensor was designed to meet requirements for measuring tactile sensitivity and interaction forces exerted during locomotion by small organisms such as the nematode Caenorhabditis elegans. The device is transparent and compatible with light microscopes, allowing behavioral experiments to be combined with quantitative force measurements. For the first time, we have characterized the scale of interaction forces generated in wild-type C. elegans in probing and responding to their environment during locomotion. The device features sub-microN force resolution from 1 Hz to 1 kHz, >25 microN range, kHz acquisition rates and biocompatibility. PMID:19417913

  8. Applications of AFM for atomic manipulation and spectroscopy

    NASA Astrophysics Data System (ADS)

    Custance, Oscar

    2009-03-01

    Since the first demonstration of atom-by-atom assembly [1], atomic manipulation with scanning tunneling microscopy has yielded stunning realizations in nanoscience. A new exciting panorama has been recently opened with the possibility of manipulating atoms at surfaces using atomic force microscopy (AFM) [2-5]. In this talk, we will present two different approaches that enable patterning structures at semiconductor surfaces by manipulating individual atoms with AFM and at room temperature [2, 3]. We will discuss the physics behind each protocol through the analysis of the measured forces associated with these manipulations [3-5]. Another challenging issue in scanning probe microscopy is the ability to disclose the local chemical composition of a multi-element system at atomic level. Here, we will introduce a single-atom chemical identification method, which is based on detecting the forces between the outermost atom of the AFM tip and the atoms at a surface [6]. We demonstrate this identification procedure on a particularly challenging system, where any discrimination attempt based solely on topographic measurements would be impossible to achieve. [4pt] References: [0pt] [1] D. M. Eigler and E. K. Schweizer, Nature 344, 524 (1990); [0pt] [2] Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, O. Custance and S. Morita, Nature Materials 4, 156 (2005); [0pt] [3] Y. Sugimoto, P. Pou, O. Custance, P. Jelinek, M. Abe, R. Perez and S. Morita, Science 322, 413 (2008); [0pt] [4] Y. Sugimoto, P. Jelinek, P. Pou, M. Abe, S. Morita, R. Perez and O. Custance, Phys. Rev. Lett. 98, 106104 (2007); [0pt] [5] M. Ternes, C. P. Lutz, C. F. Hirjibehedin, F. J. Giessibl and A. J. Heinrich, Science 319, 1066 (2008); [0pt] [6] Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita, and O. Custance, Nature 446, 64 (2007)

  9. Sensitivity of Force Specifications to the Errors in Measuring the Interface Force

    NASA Technical Reports Server (NTRS)

    Worth, Daniel

    1999-01-01

    Force-Limited Random Vibration Testing has been applied in the last several years at NASA/GSFC for various programs at the instrument and system level. Different techniques have been developed over the last few decades to estimate the dynamic forces that the test article under consideration will encounter in the operational environment. Some of these techniques are described in the handbook, NASA-HDBK-7004, and the monograph, NASA-RP-1403. A key element in the ability to perform force-limited testing is multi-component force gauges. This paper will show how some measurement and calibration errors in force gauges are compensated for w en tie force specification is calculated. The resulting notches in the acceleration spectrum, when a random vibration test is performed, are the same as the notches produced during an uncompensated test that has no measurement errors. The paper will also present the results of tests that were used to validate this compensation. Knowing that the force specification can compensate for some measurement errors allows tests to continue after force gauge failures or allows dummy gauges to be used in places that are inaccessible.

  10. Extracting local surface charges and charge regulation behavior from atomic force microscopy measurements at heterogeneous solid-electrolyte interfaces

    NASA Astrophysics Data System (ADS)

    Zhao, Cunlu; Ebeling, Daniel; Siretanu, Igor; van den Ende, Dirk; Mugele, Frieder

    2015-10-01

    We present a method to determine the local surface charge of solid-liquid interfaces from Atomic Force Microscopy (AFM) measurements that takes into account shifts of the adsorption/desorption equilibria of protons and ions as the cantilever tip approaches the sample. We recorded AFM force distance curves in dynamic mode with sharp tips on heterogeneous silica surfaces partially covered by gibbsite nano-particles immersed in an aqueous electrolyte with variable concentrations of dissolved NaCl and KCl at pH 5.8. Forces are analyzed in the framework of Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in combination with a charge regulation boundary that describes adsorption and desorption reactions of protons and ions. A systematic method to extract the equilibrium constants of these reactions by simultaneous least-squared fitting to experimental data for various salt concentrations is developed and is shown to yield highly consistent results for silica-electrolyte interfaces. For gibbsite-electrolyte interfaces, the surface charge can be determined, yet, an unambiguous identification of the relevant surface speciation reactions is not possible, presumably due to a combination of intrinsic chemical complexity and heterogeneity of the nano-particle surfaces.

  11. Extracting local surface charges and charge regulation behavior from atomic force microscopy measurements at heterogeneous solid-electrolyte interfaces.

    PubMed

    Zhao, Cunlu; Ebeling, Daniel; Siretanu, Igor; van den Ende, Dirk; Mugele, Frieder

    2015-10-21

    We present a method to determine the local surface charge of solid-liquid interfaces from Atomic Force Microscopy (AFM) measurements that takes into account shifts of the adsorption/desorption equilibria of protons and ions as the cantilever tip approaches the sample. We recorded AFM force distance curves in dynamic mode with sharp tips on heterogeneous silica surfaces partially covered by gibbsite nano-particles immersed in an aqueous electrolyte with variable concentrations of dissolved NaCl and KCl at pH 5.8. Forces are analyzed in the framework of Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in combination with a charge regulation boundary that describes adsorption and desorption reactions of protons and ions. A systematic method to extract the equilibrium constants of these reactions by simultaneous least-squared fitting to experimental data for various salt concentrations is developed and is shown to yield highly consistent results for silica-electrolyte interfaces. For gibbsite-electrolyte interfaces, the surface charge can be determined, yet, an unambiguous identification of the relevant surface speciation reactions is not possible, presumably due to a combination of intrinsic chemical complexity and heterogeneity of the nano-particle surfaces. PMID:26377347

  12. A force balance system for the measurement of skin friction drag force

    NASA Technical Reports Server (NTRS)

    Moore, J. W.; Mcvey, E. S.

    1971-01-01

    Research on force balance instrumentation to measure the skin friction of hypersonic vehicles at extreme temperatures, high altitudes and in a vibration field is discussed. A rough overall summary and operating instructions for the equipment are presented.

  13. Direct measurement of the forces generated by an undulatory microswimmer

    NASA Astrophysics Data System (ADS)

    Schulman, Rafael; Backholm, Matilda; Ryu, William; Dalnoki-Veress, Kari

    2014-11-01

    C. elegans is a millimeter-sized nematode which has served as a model organism in biology for several decades, primarily due to its simple anatomy. Employing an undulatory form of locomotion, this worm is capable of propelling itself through various media. Using a micropipette deflection technique, in conjunction with high speed imaging, we directly measure the time-varying forces generated by C. elegans. We observe excellent agreement between our measured forces and the predictions of resistive force theory, through which we determine the drag coefficients of the worm. We also perform the direct force measurements at controlled distances from a single solid boundary as well as between two solid boundaries. We extract the drag coefficients of the worm to quantify the influence of the boundary on the swimming and the hydrodynamic forces involved.

  14. Piconewton force measurement using a nanometric photonic crystal diaphragm.

    PubMed

    Jo, Wonuk; Digonnet, Michel J F

    2014-08-01

    A compact force fiber sensor capable of measuring forces at the piconewton level is reported. It consists of a miniature Fabry-Perot cavity fabricated at the tip a single-mode fiber, in which the external reflector is a compliant photonic-crystal diaphragm that deflects when subjected to a force. In the laboratory environment, this sensor was able to detect a force of only ∼4  pN generated by the radiation pressure of a laser beam. Its measured minimum detectable force (MDF) at 3 kHz was as weak as 1.3  pN/√Hz. In a quiet environment, the measured noise was ∼16 times lower, and the MDF predicted to be ∼76  fN/√Hz. PMID:25078221

  15. Measurement and analysis of forces in grinding of silicon nitride

    SciTech Connect

    Jahanmir, S.; Hwang, T.; Whitenton, E.P.; Job, L.S.; Evans, C.J.

    1995-12-31

    Using an instrumented surface grinder, the two components of grinding forces (normal and tangential) were measured for different types of silicon nitride ceramics. The influences of grinding parameters, such as down feed and table speed, and grinding fluids on forces were determined. In addition to these measurements, the specific grinding energy defined as the energy per unit volume of removed material was calculated. This parameter and the measured forces were then analyzed to determine possible correlations with mechanical properties of the silicon nitrides. It was found that, in general, the grinding forces and the specific grinding energy increase with the hardness. Both the grinding forces and the specific grinding energy were influenced by the grinding fluid and the grinding parameters. The implication of these results on the mechanisms of material removal in grinding of silicon nitride and the possible tribological effects are discussed.

  16. Force Measurements in Magnetic Suspension and Balance System

    NASA Technical Reports Server (NTRS)

    Kuzin, Alexander; Shapovalov, George; Prohorov, Nikolay

    1996-01-01

    The description of an infrared telemetry system for measurement of drag forces in Magnetic Suspension and Balance Systems (MSBS) is presented. This system includes a drag force sensor, electronic pack and transmitter placed in the model which is of special construction, and receiver with a microprocessor-based measuring device, placed outside of the test section. Piezosensitive resonators as sensitive elements and non-magnetic steel as the material for the force sensor are used. The main features of the proposed system for load measurements are discussed and the main characteristics are presented.

  17. Surface force measurements at kaolinite edge surfaces using atomic force microscopy.

    PubMed

    Liu, Jing; Sandaklie-Nikolova, Linda; Wang, Xuming; Miller, Jan D

    2014-04-15

    Fundamental results obtained from research on the properties of the edge surfaces of kaolinite particles (~500 nm) are reported. Of particular significance was the development of the experimental protocol. Well-ordered kaolinite edge surfaces were prepared as an epoxy resin sandwich structure having layered kaolinite particles in the center of the epoxy resin sandwich. Images of the sectioned kaolinite edge surfaces were examined by atomic force microscopy (AFM), and the average thickness of kaolinite particles in this study was determined to be 38.3 nm±11.7 nm. Furthermore, the surface charge of the kaolinite edge surfaces was evaluated with a super sharp Si tip. The point of zero charge (PZC) of the kaolinite edge surface was determined to be below pH 4, in contrast to the traditional view that the edge surfaces of kaolinite particles may carry a positive charge at pH 4. This lower PZC of the kaolinite edge surface was attributed to the lack of isomorphous substitution in the silica tetrahedral layer when compared to the PZC for the muscovite edge surface. Our results are consistent with the particle aggregation and flotation behavior of kaolinite, and should provide the basis for improved flotation strategies leading to the efficient recovery and utilization of mineral and energy resources. PMID:24559697

  18. Spatial Mapping of the Biomechanical Properties of the Pericellular Matrix of Articular Cartilage Measured In Situ via Atomic Force Microscopy

    PubMed Central

    Darling, Eric M.; Wilusz, Rebecca E.; Bolognesi, Michael P.; Zauscher, Stefan; Guilak, Farshid

    2010-01-01

    Abstract In articular cartilage, chondrocytes are surrounded by a narrow region called the pericellular matrix (PCM), which is biochemically, structurally, and mechanically distinct from the bulk extracellular matrix (ECM). Although multiple techniques have been used to measure the mechanical properties of the PCM using isolated chondrons (the PCM with enclosed cells), few studies have measured the biomechanical properties of the PCM in situ. The objective of this study was to quantify the in situ mechanical properties of the PCM and ECM of human, porcine, and murine articular cartilage using atomic force microscopy (AFM). Microscale elastic moduli were quantitatively measured for a region of interest using stiffness mapping, or force-volume mapping, via AFM. This technique was first validated by means of elastomeric models (polyacrylamide or polydimethylsiloxane) of a soft inclusion surrounded by a stiff medium. The elastic properties of the PCM were evaluated for regions surrounding cell voids in the middle/deep zone of sectioned articular cartilage samples. ECM elastic properties were evaluated in regions visually devoid of PCM. Stiffness mapping successfully depicted the spatial arrangement of moduli in both model and cartilage surfaces. The modulus of the PCM was significantly lower than that of the ECM in human, porcine, and murine articular cartilage, with a ratio of PCM to ECM properties of ∼0.35 for all species. These findings are consistent with previous studies of mechanically isolated chondrons, and suggest that stiffness mapping via AFM can provide a means of determining microscale inhomogeneities in the mechanical properties of articular cartilage in situ. PMID:20550897

  19. Measuring Drag Force in Newtonian Liquids

    ERIC Educational Resources Information Center

    Mawhinney, Matthew T.; O'Donnell, Mary Kate; Fingerut, Jonathan; Habdas, Piotr

    2012-01-01

    The experiments described in this paper have two goals. The first goal is to show how students can perform simple but fundamental measurements of objects moving through simple liquids (such as water, oil, or honey). In doing so, students can verify Stokes' law, which governs the motion of spheres through simple liquids, and see how it fails at…

  20. Vehicle Lateral State Estimation Based on Measured Tyre Forces

    PubMed Central

    Tuononen, Ari J.

    2009-01-01

    Future active safety systems need more accurate information about the state of vehicles. This article proposes a method to evaluate the lateral state of a vehicle based on measured tyre forces. The tyre forces of two tyres are estimated from optically measured tyre carcass deflections and transmitted wirelessly to the vehicle body. The two remaining tyres are so-called virtual tyre sensors, the forces of which are calculated from the real tyre sensor estimates. The Kalman filter estimator for lateral vehicle state based on measured tyre forces is presented, together with a simple method to define adaptive measurement error covariance depending on the driving condition of the vehicle. The estimated yaw rate and lateral velocity are compared with the validation sensor measurements. PMID:22291535

  1. What Does the Force Concept Inventory Actually Measure?

    ERIC Educational Resources Information Center

    Huffman, Douglas; Heller, Patricia

    1995-01-01

    The Force Concept Inventory (FCI) is a 29-question, multiple-choice test designed to assess students' Newtonian and non-Newtonian conceptions of force. Presents an analysis of FCI results as one way to determine what the inventory actually measures. (LZ)

  2. Report of the Task Force on Institutional Effectiveness Measures.

    ERIC Educational Resources Information Center

    Arizona State Board of Directors for Community Colleges, Phoenix.

    The Task Force on Institutional Effectiveness Measures was formed by the State Board of Directors for Community Colleges of Arizona to develop a statewide plan for systematically demonstrating the degree to which community colleges accomplish their diverse missions. Two subgroups were formed in the Task Force on transfer and college programs and…

  3. Measurement of the Casimir force between parallel metallic surfaces.

    PubMed

    Bressi, G; Carugno, G; Onofrio, R; Ruoso, G

    2002-01-28

    We report on the measurement of the Casimir force between conducting surfaces in a parallel configuration. The force is exerted between a silicon cantilever coated with chromium and a similar rigid surface and is detected by looking at the shifts induced in the cantilever frequency when the latter is approached. The scaling of the force with the distance between the surfaces was tested in the 0.5-3.0 microm range, and the related force coefficient was determined at the 15% precision level. PMID:11801108

  4. Enabling accurate gate profile control with inline 3D-AFM

    NASA Astrophysics Data System (ADS)

    Bao, Tianming; Lopez, Andrew; Dawson, Dean

    2009-05-01

    The logic and memory semiconductor device technology strives to follow the aggressive ITRS roadmap. The ITRS calls for increased 3D metrology to meet the demand for tighter process control at 45nm and 32nm nodes. In particular, gate engineering has advanced to a level where conventional metrology by CD-SEM and optical scatterometry (OCD) faces fundamental limitations without involvement of 3D atomic force microscope (3D-AFM or CD-AFM). This paper reports recent progress in 3D-AFM to address the metrology need to control gate dimension in MOSFET transistor formation. 3D-AFM metrology measures the gate electrode at post-etch with the lowest measurement uncertainty for critical gate geometry, including linewidth, sidewall profile, sidewall angle (SWA), line width roughness (LWR), and line edge roughness (LER). 3D-AFM enables accurate gate profile control in three types of metrology applications: reference metrology to validate CD-SEM and OCD, inline depth or 3D monitoring, or replacing TEM for 3D characterization for engineering analysis.

  5. Sub-Angstrom oscillation amplitude non-contact atomic force microscopy for lateral force gradient measurement

    NASA Astrophysics Data System (ADS)

    Atabak, Mehrdad; Ünverdi, Özhan; Özer, H. Özgür; Oral, Ahmet

    2009-12-01

    We report the first results from novel sub-Angstrom oscillation amplitude non-contact atomic force microscopy developed for lateral force gradient measurements. Quantitative lateral force gradients between a tungsten tip and Si(1 1 1)-(7 × 7) surface can be measured using this microscope. Simultaneous lateral force gradient and scanning tunnelling microscope images of single and multi atomic steps are obtained. In our measurement, tunnel current is used as feedback. The lateral stiffness contrast has been observed to be 2.5 N/m at single atomic step, in contrast to 13 N/m at multi atomic step on Si(1 1 1) surface. We also carried out a series of lateral stiffness-distance spectroscopy. We observed lateral stiffness-distance curves exhibit sharp increase in the stiffness as the sample is approached towards the surface. We usually observed positive stiffness and sometimes going into slightly negative region.

  6. Getting Physical with Your Chemistry: Mechanically Investigating Local Structure and Properties of Surfaces with the Atomic Force Microscope

    ERIC Educational Resources Information Center

    Heinz, William F.; Hoh, Jan H.

    2005-01-01

    Atomic force microscope (AFM) investigates mechanically the chemical properties of individual molecules, surfaces, and materials using suitably designed probes. The current state of the art of AFM in terms of imaging, force measurement, and sample manipulation and its application to physical chemistry is discussed.

  7. SU-8 hollow cantilevers for AFM cell adhesion studies

    NASA Astrophysics Data System (ADS)

    Martinez, Vincent; Behr, Pascal; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva; Vörös, Janos; Zambelli, Tomaso

    2016-05-01

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m‑1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification.

  8. Icing Research Tunnel (IRT) Force Measurement System (FMS)

    NASA Technical Reports Server (NTRS)

    Roberts, Paul W.

    2012-01-01

    An Electronics Engineer at the Glenn Research Center (GRC), requested the NASA Engineering and Safety Center (NESC) provide technical support for an evaluation of the existing force measurement system (FMS) at the GRC's Icing Research Tunnel (IRT) with the intent of developing conceptual designs to improve the tunnel's force measurement capability in order to better meet test customer needs. This report contains the outcome of the NESC technical review.

  9. Laser Photon Force Measurements using a CW Laser

    NASA Technical Reports Server (NTRS)

    Gray, Perry; Edwards, David L.; Carruth, M. Ralph, Jr.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    The photon force resulting from the non-damaging impact of laser derived photons on a metallic target was measured using a vacuum compatible microbalance. This experiment quantitatively verified that the force resulting from laser photons impacting a reflective surface is measurable and predictable. The photon wavelength is 1064 mn and the laser is a multi-mode 30OW Nd YAG continuous wave (CW) laser.

  10. Flight of a Rufous Hummingbird Robotic Model-Force Measurements

    NASA Astrophysics Data System (ADS)

    Chavez Alarcon, Ramiro; Bocanegra Evans, Humberto; Ferreira de Sousa, Paulo; Tobalske, Bret; Allen, James

    2008-11-01

    Aerodynamic force data was measured on a 2-DOF scaled robotic hummingbird model for both hovering and translational flight. Experiments were conducted in a large water channel facility at New Mexico State University. Reynolds and Strouhal numbers for the experiment are in the range of 3600 and 0.97, respectively. Forces are directly measured using strain gages and compared with phase-locked PIV results.

  11. Surface force measurement of ultraviolet nanoimprint lithography materials

    NASA Astrophysics Data System (ADS)

    Taniguchi, Jun; Hasegawa, Masayuki; Amemiya, Hironao; Kobayashi, Hayato

    2016-02-01

    Ultraviolet nanoimprint lithography (UV-NIL) has advantages such as room-temperature operation, high through-put, and high resolution. In the UV-NIL process, the mold needs a release coating material to prevent adhesion of the transfer resin. Usually, fluorinated silane coupling agents are used as release coating materials. To evaluate the release property, surface force analyzer equipment was used. This equipment can measure the surface forces between release-coated or noncoated mold material surfaces and UV-cured resin surfaces in the solid state. Lower surface forces were measured when a release coating was used on the mold material surface.

  12. Flight Force Measurements on a Spacecraft to Launch Vehicle Interface

    NASA Astrophysics Data System (ADS)

    Kaufman, Daniel S.; Gordon, Scott A.

    2012-07-01

    For several years we had wanted to measure interface forces between a launch vehicle and the Payload. Finally in July 2006 a proposal was made and funded to evaluate the use of flight force measurements (FFM) to improve the loads process of a Spacecraft in its design and test cycle. A NASA/Industry team was formed, the core Team consisted of 20 people. The proposal identified two questions that this assessment would attempt to address by obtaining the flight forces. These questions were: 1) Is flight correlation and reconstruction with acceleration methods sufficient? 2) How much can the loads and therefore the design and qualification be reduced by having force measurements? The objective was to predict the six interface driving forces between the Spacecraft and the Launch Vehicle throughout the boost phase. Then these forces would be compared with reconstructed loads analyses for evaluation in an attempt to answer them. The paper will present the development of a strain based force measurement system and also an acceleration method, actual flight results, post flight evaluations and lessons learned.

  13. Application of Lorentz force techniques for flow rate measurement

    NASA Astrophysics Data System (ADS)

    Ebert, Reschad Johann; Resagk, Christian

    2014-11-01

    We report on the progress of the Lorentz force velocimetry (LFV): a contactless non-invasive flow velocity measurement technique. This method has been developed and demonstrated for various applications in our institute and in industry. At applications for weakly conducting fluids such as electrolytes with conductivities in the range of 1 - 10 S/m the challenging bottleneck is the detection of the tiny Lorentz forces in the noisy environment of the test channel. For the force measurement a state-of-the-art electromagnetic force compensation balance is used. Due to this device the mass of the Lorentz force generating magnets is limited. For enabling larger magnet systems and for higher force signals we have developed and tested a buoyancy based weight force compensation method which will be presented here. Additionally, results of LFV measurements at non-symmetric fluid profiles will be shown. By that an evaluation of the feasibility of this measurement principle for disturbed fluid profiles that are relevant for developing the LFV for weakly conducting fluids towards industrial applications can be made. Additionally a prospective setup for using the LFV for molten salt flows will be explained.

  14. Friction force measurements relevant to de-inking by means of atomic force microscope.

    PubMed

    Theander, Katarina; Pugh, Robert J; Rutland, Mark W

    2005-11-15

    In the pulping step of the de-inking process, the ink detaches from the fibers due to shear and physical chemical interaction. In order to get a better understanding of the forces involved between cellulose and ink, the atomic force microscope and the colloidal probe technique have been used in the presence of a model chemical dispersant (hexa-ethyleneglycol mono n-dodecyl ether, C12E6). A cellulose bead was used as the colloidal probe and three different lower surfaces have been used, an alkyd resin, mica and a cellulose sphere. The normal and lateral forces have been measured at a range of nonionic concentrations. It was found that the lateral sliding friction forces deceased with increasing surfactant concentration for both the alkyd resin and mica while no differences were observed for the cellulose surface. In addition, only a very small change in normal force could be detected for the alkyd surface as the concentration changed. PMID:15961095

  15. Molecular Dynamic Simulations of Interaction of an AFM Probe with the Surface of an SCN Sample

    NASA Technical Reports Server (NTRS)

    Bune, Adris; Kaukler, William; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Molecular dynamic (MD) simulations is conducted in order to estimate forces of probe-substrate interaction in the Atomic Force Microscope (AFM). First a review of available molecular dynamic techniques is given. Implementation of MD simulation is based on an object-oriented code developed at the University of Delft. Modeling of the sample material - succinonitrile (SCN) - is based on the Lennard-Jones potentials. For the polystyrene probe an atomic interaction potential is used. Due to object-oriented structure of the code modification of an atomic interaction potential is straight forward. Calculation of melting temperature is used for validation of the code and of the interaction potentials. Various fitting parameters of the probe-substrate interaction potentials are considered, as potentials fitted to certain properties and temperature ranges may not be reliable for the others. This research provides theoretical foundation for an interpretation of actual measurements of an interaction forces using AFM.

  16. In situ monitoring of the Li-O2 electrochemical reaction on nanoporous gold using electrochemical AFM.

    PubMed

    Wen, Rui; Byon, Hye Ryung

    2014-03-11

    The lithium-oxygen (Li-O2) electrochemical reaction on nanoporous gold (NPG) is observed using in situ atomic force microscopy (AFM) imaging coupled with potentiostatic measurement. Dense Li2O2 nanoparticles form a film at 2.5 V, which is decomposed at 3.8-4.0 V in an ether-based electrolyte. PMID:24469227

  17. Quantitative measurements of force and displacement using an optical trap.

    PubMed Central

    Simmons, R M; Finer, J T; Chu, S; Spudich, J A

    1996-01-01

    We combined a single-beam gradient optical trap with a high-resolution photodiode position detector to show that an optical trap can be used to make quantitative measurements of nanometer displacements and piconewton forces with millisecond resolution. When an external force is applied to a micron-sized bead held by an optical trap, the bead is displaced from the center of the trap by an amount proportional to the applied force. When the applied force is changed rapidly, the rise time of the displacement is on the millisecond time scale, and thus a trapped bead can be used as a force transducer. The performance can be enhanced by a feedback circuit so that the position of the trap moves by means of acousto-optic modulators to exert a force equal and opposite to the external force applied to the bead. In this case the position of the trap can be used to measure the applied force. We consider parameters of the trapped bead such as stiffness and response time as a function of bead diameter and laser beam power and compare the results with recent ray-optic calculations. PMID:8785341

  18. Measuring the conductivity dependence of the Casimir force

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Schafer, Robert; Banishev, Alexandr; Mohideen, Umar

    2015-03-01

    The strength and distance dependence of the Casimir force can be controlled through the conductivity of the material bodies, with lower conductivity in general leading to lower Casimir forces. However low conductivity, large bandgap materials which are insulating, have drawbacks as any surface electrostatic charges cannot be easily compensated. This restricts experiments to metallic or highly doped semiconductor materials. We will report on measurements of the Casimir force gradient using the frequency shift technique. Improvements in the measurement technique will be discussed. Measurements of the Casimir force gradient using low and high conductivity silicon surfaces will be reported. The authors thank G.L. Klimchitskaya and V.M. Mostepanenko for help with the theory and the US National Science Foundation for funding the research.

  19. Video measurements of instantaneous forces of flapping wing vehicles

    NASA Astrophysics Data System (ADS)

    Jennings, Alan; Mayhew, Michael; Black, Jonathan

    2015-12-01

    Flapping wings for small aerial vehicles have revolutionary potential for maneuverability and endurance. Ornithopters fail to achieve the performance of their biological equivalents, despite extensive research on how animals fly. Flapping wings produce peak forces due to the stroke reversal of the wing. This research demonstrates in-flight measurements of an ornithopter through the use of image processing, specifically measuring instantaneous forces. Results show that the oscillation about the flight path is significant, being about 20% of the mean velocity and up to 10 g's. Results match forces with deformations of the wing to contrast the timing and wing shape of the upstroke and the downstroke. Holding the vehicle fixed (e.g. wind tunnel testing or simulations) structural resonance is affected along with peak forces, also affecting lift. Non-contact, in-flight measurements are proposed as the best method for matching the flight conditions of flapping wing vehicles.

  20. NASA ATP Force Measurement Technology Capability Strategic Plan

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    2008-01-01

    The Aeronautics Test Program (ATP) within the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD) initiated a strategic planning effort to re-vitalize the force measurement capability within NASA. The team responsible for developing the plan included members from three NASA Centers (Langley, Ames and Glenn) as well as members from the Air Force s Arnold Engineering and Development Center (AEDC). After visiting and discussing force measurement needs and current capabilities at each participating facility as well as selected force measurement companies, a strategic plan was developed to guide future NASA investments. This paper will provide the details of the strategic plan and include asset management, organization and technology research and development investment priorities as well as efforts to date.

  1. The Kilogram and Measurements of Mass and Force

    PubMed Central

    Jabbour, Z. J.; Yaniv, S. L.

    2001-01-01

    This paper describes the facilities, measurement capabilities, and ongoing research activities in the areas of mass and force at the National Institute of Standards and Technology (NIST). The first section of the paper is devoted to mass metrology and starts with a brief historical perspective on the developments that led to the current definition of the kilogram. An overview of mass measurement procedures is given with a brief discussion of current research on alternative materials for mass standards and surface profiles of the U.S. national prototype kilograms. A brief outlook into the future possible redefinition of the unit of mass based on fundamental principles is included. The second part of this paper focuses on the unit of force and describes the realization of the unit, measurement procedures, uncertainty in the realized force, facilities, and current efforts aimed at the realization of small forces.

  2. Phoretic and Radiometric Force Measurements on Microparticles in Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Davis, E. James

    1996-01-01

    Thermophoretic, diffusiophoretic and radiometric forces on microparticles are being measured over a wide range of gas phase and particle conditions using electrodynamic levitation of single particles to simulate microgravity conditions. The thermophoretic force, which arises when a particle exists in a gas having a temperature gradient, is measured by levitating an electrically charged particle between heated and cooled plates mounted in a vacuum chamber. The diffusiophoretic force arising from a concentration gradient in the gas phase is measured in a similar manner except that the heat exchangers are coated with liquids to establish a vapor concentration gradient. These phoretic forces and the radiation pressure force acting on a particle are measured directly in terms of the change in the dc field required to levitate the particle with and without the force applied. The apparatus developed for the research and the experimental techniques are discussed, and results obtained by thermophoresis experiments are presented. The determination of the momentum and energy accommodation coefficients associated with molecular collisions between gases molecules and particles and the measurement of the interaction between electromagnetic radiation and small particles are of particular interest.

  3. Sharp high-aspect-ratio AFM tips fabricated by a combination of deep reactive ion etching and focused ion beam techniques.

    PubMed

    Caballero, David; Villanueva, Guillermo; Plaza, Jose Antonio; Mills, Christopher A; Samitier, Josep; Errachid, Abdelhamid

    2010-01-01

    The shape and dimensions of an atomic force microscope tip are crucial factors to obtain high resolution images at the nanoscale. When measuring samples with narrow trenches, inclined sidewalls near 90 degrees or nanoscaled structures, standard silicon atomic force microscopy (AFM) tips do not provide satisfactory results. We have combined deep reactive ion etching (DRIE) and focused ion beam (FIB) lithography techniques in order to produce probes with sharp rocket-shaped silicon AFM tips for high resolution imaging. The cantilevers were shaped and the bulk micromachining was performed using the same DRIE equipment. To improve the tip aspect ratio we used FIB nanolithography technique. The tips were tested on narrow silicon trenches and over biological samples showing a better resolution when compared with standard AFM tips, which enables nanocharacterization and nanometrology of high-aspect-ratio structures and nanoscaled biological elements to be completed, and provides an alternative to commercial high aspect ratio AFM tips. PMID:20352882

  4. A Novel Graphene Oxide-Based Protein Interaction Measurement Using Atomic Force Microscopy.

    PubMed

    Han, Sung-Woong; Morita, Kyohei; Adachi, Taiji

    2015-02-01

    Graphene oxide (GO) is a promising material for biological applications because of its excellent physical/chemical properties such as aqueous processability, amphiphilicity, and surface functionalizability. Here we introduce a new biological application of GO, a novel GO-based technique for probing protein interactions using atomic force microscopy (AFM). GO sheets were intercalated between the protein-modified AFM probe and the polymer substrate in order to reduce the non-specific adhesion force observed during single-molecule force spectroscopy (SMFS). In this study, we used SMFS to probe the interaction of the actin filament and actin-related protein 2/3 complex (Arp2/3), an actin-binding protein. Our results confirm that the GO sheet reduces nonspecific adhesion of the probe to the substrate. Using the GO-based technique, we succeeded in estimating the dissociation constant of the actin filament-binding protein interaction. PMID:26353630

  5. Measuring the force of drag on air sheared sessile drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Amirfazli, Alidad

    2012-11-01

    To blow a drop along or off of a surface (i.e. to shed the drop), the drag force on the drop (based on flow conditions, drop shape, and fluid properties) must overcome the adhesion force between the drop and the surface (based on surface tension, drop shape, and contact angle). While the shedding of sessile drops by shear flow has been studied [Milne, A. J. B. & Amirfazli, A. Langmuir 25, 14155 (2009).], no independent measurements of the drag or adhesion forces have been made. Likewise, analytic predictions are limited to hemispherical drops and low air velocities. We present, therefore, measurements of the drag force on sessile drops at air velocities up to the point of incipient motion. Measurements were made using a modified floating element shear sensor in a laminar low speed wind tunnel to record drag force over the surface with the drop absent, and over the combined system of the surface and drop partially immersed in the boundary layer. Surfaces of different wettabilities were used to study the effects of drop shape and contact angles, with drop volume ranged between approximately 10 and 100 microlitres. The drag force for incipient motion (which by definition equals the maximum of the adhesion force) is compared to simplified models for drop adhesion such as that of Furmidge

  6. Direct Aerosol Radiative Forcing: Calculations and Measurements from the Tropospheric

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hignett, P.; Stowe, L. L.; Livingston, J. M.; Kinne, S.; Wong, J.; Chan, K. Roland (Technical Monitor)

    1997-01-01

    Radiative forcing is defined as the change in the net (downwelling minus upwelling) radiative flux at a given level in the atmosphere. This net flux is the radiative power density available to drive climatic processes in the earth-atmosphere system below that level. Recent research shows that radiative forcing by aerosol particles is a major source of uncertainty in climate predictions. To reduce those uncertainties, TARFOX was designed to determine direct (cloud-free) radiative forcing by the aerosols in one of the world's major industrial pollution plumes--that flowing from the east coast of the US over the Atlantic Ocean. TARFOX measured a variety of aerosol radiative effects (including direct forcing) while simultaneously measuring the chemical, physical, and optical properties of the aerosol particles causing those effects. The resulting data sets permit a wide variety of tests of the consistency, or closure, among the measurements and the models that link them. Because climate predictions use the same or similar model components, closure tests help to assess and reduce prediction uncertainties. In this work we use the TARFOX-determined aerosol, gas, and surface properties to compute radiative forcing for a variety of aerosol episodes, with inadvisable optical depths ranging from 0.07 to 0.6. We calculate forcing by several techniques with varying degrees of sophistication, in part to test the range of applicability of simplified techniques--which are often the only ones feasible in climate predictions by general circulation models (GCMs). We then compare computed forcing to that determined from: (1) Upwelling and downwelling fluxes (0.3-0.7 mm and 0.7-3.0 mm) measured by radiometers on the UK MRF C-130. and (2) Daily average cloud-free absorbed solar and emitted thermal radiative flux at the top of the atmosphere derived from the AVHRR radiometer on the NOAA- 14 satellite. The calculations and measurements all yield aerosol direct radiative forcing in the

  7. Designing an experiment to measure cellular interaction forces

    NASA Astrophysics Data System (ADS)

    McAlinden, Niall; Glass, David G.; Millington, Owain R.; Wright, Amanda J.

    2013-09-01

    Optical trapping is a powerful tool in Life Science research and is becoming common place in many microscopy laboratories and facilities. The force applied by the laser beam on the trapped object can be accurately determined allowing any external forces acting on the trapped object to be deduced. We aim to design a series of experiments that use an optical trap to measure and quantify the interaction force between immune cells. In order to cause minimum perturbation to the sample we plan to directly trap T cells and remove the need to introduce exogenous beads to the sample. This poses a series of challenges and raises questions that need to be answered in order to design a set of effect end-point experiments. A typical cell is large compared to the beads normally trapped and highly non-uniform - can we reliably trap such objects and prevent them from rolling and re-orientating? In this paper we show how a spatial light modulator can produce a triple-spot trap, as opposed to a single-spot trap, giving complete control over the object's orientation and preventing it from rolling due, for example, to Brownian motion. To use an optical trap as a force transducer to measure an external force you must first have a reliably calibrated system. The optical trapping force is typically measured using either the theory of equipartition and observing the Brownian motion of the trapped object or using an escape force method, e.g. the viscous drag force method. In this paper we examine the relationship between force and displacement, as well as measuring the maximum displacement from equilibrium position before an object falls out of the trap, hence determining the conditions under which the different calibration methods should be applied.

  8. Comparative quantification and statistical analysis of η′ and η precipitates in aluminum alloy AA7075-T651 by TEM and AFM

    SciTech Connect

    Garcia-Garcia, Adrian Luis Dominguez-Lopez, Ivan Lopez-Jimenez, Luis Barceinas-Sanchez, J.D. Oscar

    2014-01-15

    Quantification of nanometric precipitates in metallic alloys has been traditionally performed using transmission electron microscopy, which is nominally a low throughput technique. This work presents a comparative study of quantification of η′ and η precipitates in aluminum alloy AA7075-T651 using transmission electron microscopy (TEM) and non-contact atomic force microscopy (AFM). AFM quantification was compared with 2-D stereological results reported elsewhere. Also, a method was developed, using specialized software, to characterize nanometric size precipitates observed in dark-field TEM micrographs. Statistical analysis of the quantification results from both measurement techniques supports the use of AFM for precipitate characterization. Once the precipitate stoichiometry has been determined by appropriate analytical techniques like TEM, as it is the case for η′ and η in AA7075-T651, the relative ease with which specimens are prepared for AFM analysis could be advantageous in product and process development, and quality control, where a large number of samples are expected for analysis on a regular basis. - Highlights: • Nanometric MgZn{sub 2} precipitates in AA7075-T651 were characterized using AFM and TEM. • Phase-contrast AFM was used to differentiate metal matrix from MgZn{sub 2} precipitates. • TEM and AFM micrographs were analyzed using commercially available software. • AFM image analysis and TEM 2-D stereology render statistically equivalent results.

  9. Deconvolution Kalman filtering for force measurements of revolving wings

    NASA Astrophysics Data System (ADS)

    Vester, R.; Percin, M.; van Oudheusden, B.

    2016-09-01

    The applicability of a deconvolution Kalman filtering approach is assessed for the force measurements on a flat plate undergoing a revolving motion, as an alternative procedure to correct for test setup vibrations. The system identification process required for the correct implementation of the deconvolution Kalman filter is explained in detail. It is found that in the presence of a relatively complex forcing history, the DK filter is better suited to filter out structural test rig vibrations than conventional filtering techniques that are based on, for example, low-pass or moving-average filtering. The improvement is especially found in the characterization of the generated force peaks. Consequently, more reliable force data is obtained, which is vital to validate semi-empirical estimation models, but is also relevant to correlate identified flow phenomena to the force production.

  10. AFM as an analysis tool for high-capacity sulfur cathodes for Li-S batteries.

    PubMed

    Hiesgen, Renate; Sörgel, Seniz; Costa, Rémi; Carlé, Linus; Galm, Ines; Cañas, Natalia; Pascucci, Brigitta; Friedrich, K Andreas

    2013-01-01

    In this work, material-sensitive atomic force microscopy (AFM) techniques were used to analyse the cathodes of lithium-sulfur batteries. A comparison of their nanoscale electrical, electrochemical, and morphological properties was performed with samples prepared by either suspension-spraying or doctor-blade coating with different binders. Morphological studies of the cathodes before and after the electrochemical tests were performed by using AFM and scanning electron microscopy (SEM). The cathodes that contained polyvinylidene fluoride (PVDF) and were prepared by spray-coating exhibited a superior stability of the morphology and the electric network associated with the capacity and cycling stability of these batteries. A reduction of the conductive area determined by conductive AFM was found to correlate to the battery capacity loss for all cathodes. X-ray diffraction (XRD) measurements of Li2S exposed to ambient air showed that insulating Li2S hydrolyses to insulating LiOH. This validates the significance of electrical ex-situ AFM analysis after cycling. Conductive tapping mode AFM indicated the existence of large carbon-coated sulfur particles. Based on the analytical findings, the first results of an optimized cathode showed a much improved discharge capacity of 800 mA·g(sulfur)(-1) after 43 cycles. PMID:24205455

  11. Nanoscale crystallization of phase change Ge2Sb2Te5 film with AFM lithography.

    PubMed

    Kim, JunHo

    2010-01-01

    We have made nanoindents on Ge(2)Sb(2)Te(5)(GST) films using electric field-assisted atomic force microscope (AFM) lithography. GST shows increase of material density and electric conductivity as it changes from amorphous to crystalline phases. By applying electric field between AFM probe-tip and GST surface, nanoscale crystallization could be induced on tip contact area. As the crystallized GST exhibits increase of material density, that is to say depression of volume, nanoindented surface with crystallization is created on host amorphous GST (a-GST) film. For the AFM lithography, a highly conductive tip, which showed voltage-switching characteristics in current-voltage spectroscopy of GST film, was found to be very suitable for recording and sensing crystallized nanoindents on the GST film. By varying sample bias voltages, we performed nanoscale crystallization, and measured the nanostructured film in AFM conductance-image (C-image) mode and topography-image (T-image) mode, simultaneously. Two types of crystallized wires were fabricated on (a-GST) film. Type-I was sensed in only C-image, whereas Type-II was sensed in both C-image and T-image. These nanowires are discussed in terms of crystallization of GST and sensitivity of current (or topography) sensing. By repeated lithography, larger size of nanoindented wires were also produced, which indicates line-dimension controllability of AFM lithography. PMID:20853405

  12. AFM as an analysis tool for high-capacity sulfur cathodes for Li–S batteries

    PubMed Central

    Sörgel, Seniz; Costa, Rémi; Carlé, Linus; Galm, Ines; Cañas, Natalia; Pascucci, Brigitta; Friedrich, K Andreas

    2013-01-01

    Summary In this work, material-sensitive atomic force microscopy (AFM) techniques were used to analyse the cathodes of lithium–sulfur batteries. A comparison of their nanoscale electrical, electrochemical, and morphological properties was performed with samples prepared by either suspension-spraying or doctor-blade coating with different binders. Morphological studies of the cathodes before and after the electrochemical tests were performed by using AFM and scanning electron microscopy (SEM). The cathodes that contained polyvinylidene fluoride (PVDF) and were prepared by spray-coating exhibited a superior stability of the morphology and the electric network associated with the capacity and cycling stability of these batteries. A reduction of the conductive area determined by conductive AFM was found to correlate to the battery capacity loss for all cathodes. X-ray diffraction (XRD) measurements of Li2S exposed to ambient air showed that insulating Li2S hydrolyses to insulating LiOH. This validates the significance of electrical ex-situ AFM analysis after cycling. Conductive tapping mode AFM indicated the existence of large carbon-coated sulfur particles. Based on the analytical findings, the first results of an optimized cathode showed a much improved discharge capacity of 800 mA·g(sulfur)−1 after 43 cycles. PMID:24205455

  13. Measuring cell viscoelastic properties using a force-spectrometer: influence of protein-cytoplasm interactions

    PubMed Central

    Canetta, Elisabetta; Duperray, Alain; Leyrat, Anne; Verdier, Claude

    2005-01-01

    Cell adhesive and rheological properties play a very important role in cell transmigration through the endothelial barrier, in particular in the case of inflammation (leukocytes) or cancer metastasis (cancer cells). In order to characterize cell viscoelastic properties, we have designed a force spectrometer (AFM) which can stretch cells thereby allowing measurement of their rheological properties. This custom-made force spectrometer allows two different visualizations, one lateral and one from below. It allows investigation of the effects of rheology involved during cell stretching. To test the ability of our system to characterize such viscoelastic properties, ICAM-1 transfected CHO cells were analyzed. Two forms of ICAM-1 were tested; wild type ICAM-1, which can interact with the cytoskeleton, and a mutant form which lacks the cytoplasmic domain, and is unable to associate with the cytoskeleton. Stretching experiments carried out on these cells show the formation of long filaments. Using a previous model of filament elongation, we could determine the viscoelastic properties of a single cell. As expected, different viscoelastic components were found between the wild type and the mutant, which reveal that the presence of interactions between ICAM-1 and the cytoskeleton increases the stiffness of the cell. PMID:16308464

  14. Fiber optic micro sensor for the measurement of tendon forces

    PubMed Central

    2012-01-01

    A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces. The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements. PMID:23033868

  15. Unbiased line width roughness measurements with critical dimension scanning electron microscopy and critical dimension atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Azarnouche, L.; Pargon, E.; Menguelti, K.; Fouchier, M.; Fuard, D.; Gouraud, P.; Verove, C.; Joubert, O.

    2012-04-01

    With the constant decrease of semiconductor device dimensions, line width roughness (LWR) becomes one of the most important sources of device variability and thus needs to be controlled below 2 nm for the future technological nodes of the semiconductor roadmap. The LWR control at the nanometer scale requires accurate measurements, which are inevitably impacted by the noise level of the equipment that causes bias from true LWR values. In this article, we compare the capability of two metrology tools, the critical dimension scanning electron microscopy (CD-SEM) and critical dimension atomic force microscopy (CD-AFM) to measure the true line width roughness of silicon and photoresist lines. For this purpose, we propose several methods based on previous works to estimate the noise level of those two equipments and thus extract the true LWR. One of the developed methods for the CD-SEM technique generalizes the power spectral densities (PSD) fitting method proposed by Hiraiwa and Nishida with a more universal autocorrelation function, which includes both correlation length and roughness exponent. However, PSD fitting method could not be used with CD-AFM due to the time consuming character of this technique. Hence, other experimental protocols have been set up for CD-AFM in order to accurately characterize the LWR. Our study shows that the CD-SEM technique combined with our PSD fitting method is much more powerful than CD-AFM to get all roughness information (true LWR, correlation length, and roughness exponent) with a good accuracy and efficiency on hard materials such as silicon. Concerning materials degradable under electron beam exposure such as photoresist, the choice is more disputable, since ultimately they are impacted by the electrons. Fortunately, our PSD fitting method allows working with low number of integration frames, which limits the resist degradation. Besides, we have highlighted some limitations of the CD-AFM technique due to the tip diameter. This

  16. Prototype cantilevers for quantitative lateral force microscopy

    SciTech Connect

    Reitsma, Mark G.; Gates, Richard S.; Friedman, Lawrence H.; Cook, Robert F.

    2011-09-15

    Prototype cantilevers are presented that enable quantitative surface force measurements using contact-mode atomic force microscopy (AFM). The ''hammerhead'' cantilevers facilitate precise optical lever system calibrations for cantilever flexure and torsion, enabling quantifiable adhesion measurements and friction measurements by lateral force microscopy (LFM). Critically, a single hammerhead cantilever of known flexural stiffness and probe length dimension can be used to perform both a system calibration as well as surface force measurements in situ, which greatly increases force measurement precision and accuracy. During LFM calibration mode, a hammerhead cantilever allows an optical lever ''torque sensitivity'' to be generated for the quantification of LFM friction forces. Precise calibrations were performed on two different AFM instruments, in which torque sensitivity values were specified with sub-percent relative uncertainty. To examine the potential for accurate lateral force measurements using the prototype cantilevers, finite element analysis predicted measurement errors of a few percent or less, which could be reduced via refinement of calibration methodology or cantilever design. The cantilevers are compatible with commercial AFM instrumentation and can be used for other AFM techniques such as contact imaging and dynamic mode measurements.

  17. Suture Forces in Undersized Mitral Annuloplasty: Novel Device and Measurements

    PubMed Central

    Siefert, Andrew; Pierce, Eric; Lee, Madonna; Jensen, Morten; Aoki, Chikashi; Takebayashi, Satoshi; Gorman, Robert; Gorman, Joseph; Yoganathan, Ajit

    2014-01-01

    Purpose: Demonstrate the first use of a novel technology for quantifying suture forces on annuloplasty rings to better understand the mechanisms of ring dehiscence. Description: Force transducers were developed, attached to a size 24 Physio™ ring, and implanted in the mitral annulus of an ovine animal. Ring suture forces were measured after implantation and for cardiac cycles reaching peak left ventricular pressures (LVP) of 100, 125, and 150 mmHg. Evaluation: After implanting the undersized ring to the flaccid annulus, the mean suture force was 2.0±0.6 N. During cyclic contraction, anterior ring suture forces were greater than posterior ring suture forces at peak LVPs of 100 mmHg (4.9±2.0 N vs. 2.1±1.1 N), 125 mmHg (5.4±2.3 N vs. 2.3±1.2 N), and 150 mmHg (5.7±2.4 N vs. 2.4±1.1 N). The largest force was 7.4 N at 150 mmHg. Conclusions: Preliminary results demonstrate trends in annuloplasty suture forces and their variation with location and LVP. Future studies will significantly contribute to clinical knowledge by elucidating the mechanisms of ring dehiscence while improving annuloplasty ring design and surgical repair techniques. PMID:24996707

  18. Sensitivity of Force Specifications to the Errors in Measuring the Interface Force

    NASA Technical Reports Server (NTRS)

    Worth, Daniel

    2000-01-01

    Force-Limited Random Vibration Testing has been applied in the last several years at the NASA Goddard Space Flight Center (GSFC) and other NASA centers for various programs at the instrument and spacecraft level. Different techniques have been developed over the last few decades to estimate the dynamic forces that the test article under consideration will encounter in the flight environment. Some of these techniques are described in the handbook, NASA-HDBK-7004, and the monograph, NASA-RP-1403. This paper will show the effects of some measurement and calibration errors in force gauges. In some cases, the notches in the acceleration spectrum when a random vibration test is performed with measurement errors are the same as the notches produced during a test that has no measurement errors. The paper will also present the results Of tests that were used to validate this effect. Knowing the effect of measurement errors can allow tests to continue after force gauge failures or allow dummy gauges to be used in places that are inaccessible to a force gage.

  19. Detecting unknown lateral forces on a bar by vibration measurement

    NASA Astrophysics Data System (ADS)

    Ben-Haim, Y.

    1990-07-01

    In this paper a method is presented for using standard vibration measurements for detecting and characterizing spatially uncertain lateral step forces on a damped hinged-hinged bar. The analysis leads to the specification of the sensor positions and the sampling frequency. An algorithm for signal processing is proposed and tested by computer simulation. Uncertainty in the excitation force profile is described by employing the non-probabilistic, set-theoretical technique called convex modelling. Three different convex models of force-profile uncertainty are discussed.

  20. A system for performing simultaneous in situ atomic force microscopy/optical microscopy measurements on electrode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Beaulieu, L. Y.; Cumyn, V. K.; Eberman, K. W.; Krause, L. J.; Dahn, J. R.

    2001-08-01

    An atomic force microscope (AFM) equipped with an optical charge coupled device camera has been placed in an Ar filled glovebox for the purpose of studying the change in morphology of electrode materials as they react with lithium. In order to minimize noise induced by vibration, the AFM is mounted on granite blocks suspended from the ceiling of the glovebox by a combination of flexible rubber cords and metal springs. The AFM, which is equipped with an environmental chamber surrounding the sample, is then enclosed in a specially constructed draft shield that allows the circulation of Ar gas by the purification system during imaging. A special electrochemical cell was constructed to hold the working electrode under study. Repeated imaging with little drift is possible while electrodes are reacted with lithium for periods of many days. Examples of measurements made by this device will be given for the case of lithium alloying with sputter-deposited Si-Sn thin films. The optical and AFM images obtained as a function of lithium content in the films are assembled into time-lapsed "movies" showing the evolution of the morphology of the sample along with the corresponding electrochemistry. These movies are available for download through the Electronic Physics Auxiliary Publication Service (EPAPS).

  1. Monitoring Coaxial-Probe Contact Force for Dielectric Properties Measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A means is described for measuring and monitoring the contact force applied to a material sample with an open-ended coaxial-line probe for purposes of measuring the dielectric properties of semisolid material samples such as fruit, vegetable and animal tissues. The equipment consists of a stainless...

  2. Accuracy of orthodontic force and tooth movement measurements.

    PubMed

    Lundgren, D; Owman-Moll, P; Kurol, J; Mårtensson, B

    1996-08-01

    This study was designed to test the accuracy of measurement methods for assessment of force and tooth movement in orthodontic procedures. Daily in vivo measurements of the force produced by activated archwires showed that the initial force declined substantially (by 20 per cent of mean value) within 3 days. Both the 'trueness' (validity) and precision of the force measurements, obtained with a strain gauge, were found to be high (SD values were 1.0 cN and 0.4 cN, respectively). Horizontal tooth movements were measured with three different instruments: a slide calliper, a co-ordinate measuring machine, and laser measuring equipment based on holograms. There was a good level of agreement between these methods. This was also confirmed by calibration data. The precision of the methods was (SD values) 0.06, 0.07, and 0.13 mm, respectively. The benefits of the use of the co-ordinate measuring machine are obvious, since it can measure tooth movements in relation to reference planes in all directions. PMID:8894157

  3. Field measurement of basal forces generated by erosive debris flows

    USGS Publications Warehouse

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  4. Capillary-force measurement on SiC surfaces

    NASA Astrophysics Data System (ADS)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-06-01

    Capillary forces have been measured by atomic force microscopy in the sphere-plate geometry, in a controlled humidity environment, between smooth silicon carbide and borosilicate glass spheres. The force measurements were performed as a function of the rms surface roughness ˜4-14 nm mainly due to sphere morphology, the relative humidity (RH) ˜0%-40%, the applied load on the cantilever, and the contact time. The pull-off force was found to decrease by nearly two orders of magnitude with increasing rms roughness from 8 to 14 nm due to formation of a few capillary menisci for the roughest surfaces, while it remained unchanged for rms roughness <8 nm implying fully wetted surface features leading to a single meniscus. The latter reached a steady state in less than 5 s for the smoothest surfaces, as force measurements versus contact time indicated for increased RH˜40%. Finally, the pull-off force increases and reaches a maximum with applied load, which is associated with plastic deformation of surface asperities, and decreases at higher loads.

  5. Capillary-force measurement on SiC surfaces.

    PubMed

    Sedighi, M; Svetovoy, V B; Palasantzas, G

    2016-06-01

    Capillary forces have been measured by atomic force microscopy in the sphere-plate geometry, in a controlled humidity environment, between smooth silicon carbide and borosilicate glass spheres. The force measurements were performed as a function of the rms surface roughness ∼4-14 nm mainly due to sphere morphology, the relative humidity (RH) ∼0%-40%, the applied load on the cantilever, and the contact time. The pull-off force was found to decrease by nearly two orders of magnitude with increasing rms roughness from 8 to 14 nm due to formation of a few capillary menisci for the roughest surfaces, while it remained unchanged for rms roughness <8 nm implying fully wetted surface features leading to a single meniscus. The latter reached a steady state in less than 5 s for the smoothest surfaces, as force measurements versus contact time indicated for increased RH∼40%. Finally, the pull-off force increases and reaches a maximum with applied load, which is associated with plastic deformation of surface asperities, and decreases at higher loads. PMID:27415337

  6. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

    PubMed Central

    Glatzel, Thilo; Schmölzer, Thomas; Schöner, Adolf; Reshanov, Sergey; Bartolf, Holger; Meyer, Ernst

    2015-01-01

    Summary Background: The resolution in electrostatic force microscopy (EFM), a descendant of atomic force microscopy (AFM), has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV) conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip–sample interface for optically excited measurements such as local surface photo voltage detection. Results: We present Kelvin probe force microscopy (KPFM) measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination. PMID:26885461

  7. Investigation of the depletion layer by scanning capacitance force microscopy with Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Uruma, Takeshi; Satoh, Nobuo; Yamamoto, Hidekazu

    2016-08-01

    We have developed a scanning probe microscope (SPM) that combines atomic force microscopy (AFM) with both Kelvin probe force microscopy (KFM — to measure the surface potential) and scanning capacitance force microscopy (SCFM — to measure the differential capacitance). The surface physical characteristics of a commercial Si Schottky barrier diode (Si-SBD), with and without an applied reverse bias, were measured over the same area by our AFM/KFM/SCFM system. We thus investigated the discrete power device by calculating the depletion-layer width and drawing an energy-band diagram.

  8. Modeling the Interaction between AFM Tips and Pinned Surface Nanobubbles.

    PubMed

    Guo, Zhenjiang; Liu, Yawei; Xiao, Qianxiang; Schönherr, Holger; Zhang, Xianren

    2016-01-26

    Although the morphology of surface nanobubbles has been studied widely with different AFM modes, AFM images may not reflect the real shapes of the nanobubbles due to AFM tip-nanobubble interactions. In addition, the interplay between surface nanobubble deformation and induced capillary force has not been well understood in this context. In our work we used constraint lattice density functional theory to investigate the interaction between AFM tips and pinned surface nanobubbles systematically, especially concentrating on the effects of tip hydrophilicity and shape. For a hydrophilic tip contacting a nanobubble, its hydrophilic nature facilitates its departure from the bubble surface, displaying a weak and intermediate-range attraction. However, when the tip squeezes the nanobubble during the approach process, the nanobubble shows an elastic effect that prevents the tip from penetrating the bubble, leading to a strong nanobubble deformation and repulsive interactions. On the contrary, a hydrophobic tip can easily pierce the vapor-liquid interface of the nanobubble during the approach process, leading to the disappearance of the repulsive force. In the retraction process, however, the adhesion between the tip and the nanobubble leads to a much stronger lengthening effect on nanobubble deformation and a strong long-range attractive force. The trends of force evolution from our simulations agree qualitatively well with recent experimental AFM observations. This favorable agreement demonstrates that our model catches the main intergradient of tip-nanobubble interactions for pinned surface nanobubbles and may therefore provide important insight into how to design minimally invasive AFM experiments. PMID:26751634

  9. Combined Poisson and soft-particle DLVO analysis of the specific and nonspecific adhesion forces measured between L. monocytogenes grown at various temperatures and silicon nitride.

    PubMed

    Gordesli, F Pinar; Abu-Lail, Nehal I

    2012-09-18

    Adhesion forces between pathogenic L. monocytogenes EGDe and silicon nitride (Si(3)N(4)) were measured using atomic force microscopy (AFM) under water and at room temperature for cells grown at five different temperatures (10, 20, 30, 37, and 40 °C). Adhesion forces were then decoupled into specific (hydrogen bonding) and nonspecific (electrostatic and Lifshitz-van der Waals) force components using Poisson statistical analysis. The strongest specific and nonspecific attraction forces were observed for cells grown at 30 °C, compared to those observed for cells grown at higher or lower temperatures, respectively. By combining the results of Poisson analysis with the results obtained through soft-particle Derjaguin-Landau-Verwey-Overbeek (DLVO) analysis, the contributions of the Lifshitz-van der Waals and electrostatic forces to the overall nonspecific interaction forces were determined. Our results showed that the Lifshitz-van der Waals attraction forces dominated the total nonspecific adhesion forces for all investigated thermal conditions. However, irrespective of the temperature of growth investigated, hydrogen bonding forces were always stronger than the nonspecific forces. Finally, by combining Poisson analysis with soft-particle analysis of DLVO forces, the closest separation distances where the irreversible bacterial adhesion takes place can be determined relatively easily. For all investigated thermal conditions, the closest separation distances were <1 nm. PMID:22917240

  10. The mapping of yeast's G-protein coupled receptor with an atomic force microscope

    NASA Astrophysics Data System (ADS)

    Takenaka, Musashi; Miyachi, Yusuke; Ishii, Jun; Ogino, Chiaki; Kondo, Akihiko

    2015-03-01

    An atomic force microscope (AFM) can measure the adhesion force between a sample and a cantilever while simultaneously applying a rupture force during the imaging of a sample. An AFM should be useful in targeting specific proteins on a cell surface. The present study proposes the use of an AFM to measure the adhesion force between targeting receptors and their ligands, and to map the targeting receptors. In this study, Ste2p, one of the G protein-coupled receptors (GPCRs), was chosen as the target receptor. The specific force between Ste2p on a yeast cell surface and a cantilever modified with its ligand, α-factor, was measured and found to be approximately 250 pN. In addition, through continuous measuring of the cell surface, a mapping of the receptors on the cell surface could be performed, which indicated the differences in the Ste2p expression levels. Therefore, the proposed AFM system is accurate for cell diagnosis.

  11. A pressure gauge based on gas density measurement from analysis of the thermal noise of an atomic force microscope cantilever

    SciTech Connect

    Seo, Dongjin; Ducker, William A.; Paul, Mark R.

    2012-05-15

    We describe a gas-density gauge based on the analysis of the thermally-driven fluctuations of an atomic force microscope (AFM) cantilever. The fluctuations are modeled as a ring-down of a simple harmonic oscillator, which allows fitting of the resonance frequency and damping of the cantilever, which in turn yields the gas density. The pressure is obtained from the density using the known equation of state. In the range 10-220 kPa, the pressure readings from the cantilever gauge deviate by an average of only about 5% from pressure readings on a commercial gauge. The theoretical description we use to determine the pressure from the cantilever motion is based upon the continuum hypothesis, which sets a minimum pressure for our analysis. It is anticipated that the cantilever gauge could be extended to measure lower pressures given a molecular theoretical description. Alternatively, the gauge could be calibrated for use in the non-continuum range. Our measurement technique is similar to previous AFM cantilever measurements, but the analysis produces improved accuracy.

  12. Direct thrust force measurement of pulse detonation engine

    NASA Astrophysics Data System (ADS)

    Wahid, Mazlan Abdul; Faiz, M. Z. Ahmad; Saqr, Khalid M.

    2012-06-01

    In this paper we present the result of High-Speed Reacting Flow Laboratory (HiREF) pulse detonation engine (PDE) experimental study on direct thrust measurement. The thrust force generated by the repetitive detonation from a 50 mm inner diameter and 600 mm length tube was directly measured using load cell. Shchelkin spiral was used as an accelerator for the Deflagration to Detonation Transition (DDT) phenomenon. Propane-oxygen at stoichiometric condition was used as the combustible fuel-air mixture for the PDE. The PDE was operated at the operation frequency of 3Hz during the test. The amount of thrust force that was measured during the test reaching up to 70N. These values of thrust force were found to be fluctuating and its combustion phenomenon has been analyzed and discussed.

  13. Simultaneous measurement of force and tunneling current at room temperature

    NASA Astrophysics Data System (ADS)

    Sawada, Daisuke; Sugimoto, Yoshiaki; Morita, Ken-ichi; Abe, Masayuki; Morita, Seizo

    2009-04-01

    We have performed simultaneous scanning tunneling microscopy and atomic force microscopy measurements in the dynamic mode using metal-coated Si cantilevers at room temperature. Frequency shift (Δf) and time-average tunneling current (⟨It⟩) images are obtained by tip scanning on the Si(111)-(7×7) surface at constant height mode. By measuring site-specific Δf(⟨It⟩) versus tip-surface distance curves, we derive the force (tunneling current) at the closest separation between the sample surface and the oscillating tip. We observe the drop in the tunneling current due to the chemical interaction between the tip apex atom and the surface adatom, which was found recently, and estimate the value of the chemical bonding force. Scanning tunneling spectroscopy using the same tip shows that the tip is metallic enough to measure local density of states of electrons on the surface.

  14. Phoretic Force Measurement for Microparticles Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Davis, E. J.; Zheng, R.

    1999-01-01

    This theoretical and experimental investigation of the collisional interactions between gas molecules and solid and liquid surfaces of microparticles involves fundamental studies of the transfer of energy, mass and momentum between gas molecules and surfaces. The numerous applications include particle deposition on semiconductor surfaces and on surfaces in combustion processes, containerless processing, the production of nanophase materials, pigments and ceramic precursors, and pollution abatement technologies such as desulfurization of gaseous effluents from combustion processes. Of particular emphasis are the forces exerted on microparticles present in a nonuniform gas, that is, in gaseous surroundings involving temperature and concentration gradients. These so-called phoretic forces become the dominant forces when the gravitational force is diminished, and they are strongly dependent on the momentum transfer between gas molecules and the surface. The momentum transfer, in turn, depends on the gas and particle properties and the mean free path and kinetic energy of the gas molecules. The experimental program involves the particle levitation system shown. A micrometer size particle is held between two heat exchangers enclosed in a vacuum chamber by means of ac and dc electric fields. The ac field keeps the particle centered on the vertical axis of the chamber, and the dc field balances the gravitational force and the thermophoretic force. Some measurements of the thermophoretic force are presented in this paper.

  15. Measured long-range repulsive Casimir–Lifshitz forces

    PubMed Central

    Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian

    2014-01-01

    Quantum fluctuations create intermolecular forces that pervade macroscopic bodies1–3. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces4. However, as recognized in the theories of Casimir, Polder and Lifshitz5–7, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies8–11. Here we show experimentally that, in accord with theoretical prediction12, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir–Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction13–15. PMID:19129843

  16. Application of Sensing Techniques to Cellular Force Measurement

    PubMed Central

    Li, Bin; Wang, James H.-C.

    2010-01-01

    Cell traction forces (CTFs) are the forces produced by cells and exerted on extracellular matrix or an underlying substrate. CTFs function to maintain cell shape, enable cell migration, and generate and detect mechanical signals. As such, they play a vital role in many fundamental biological processes, including angiogenesis, inflammation, and wound healing. Therefore, a close examination of CTFs can enable better understanding of the cellular and molecular mechanisms of such processes. To this end, various force-sensing techniques for CTF measurement have been developed over the years. This article will provide a concise review of these sensing techniques and comment on the needs for improved force-sensing technologies for cell mechanics and biology research. PMID:22163449

  17. New magnetoelastic materials for force-measuring transducers

    NASA Astrophysics Data System (ADS)

    Zakrzewski, J.; Kwiczala, J.; Urzedniczok, H.

    1997-02-01

    Some alloys specially chosen for their resistivity and low permeability have been investigated in order to detect their utility for force measuring transducer design. The changes of their magnetic characteristic due to the stress applied either parallel or perpendicular to the magnetic flux have been measured. It was found that all of these materials have significant magnetoelastic properties, but one of them (marked 0H23J5) is the best. A new method of presentation of the magnetoelastic effect is proposed. Some designing remarks connected to improvement of metrological properties (sensitivity, linearity, temperature influence) of magnetoelastic force transducers are given.

  18. A Load Cell for the Measurement of Slack Mooring Forces

    NASA Astrophysics Data System (ADS)

    Balaji, R.; Sannasiraj, S. A.; Sundar, V.

    2014-07-01

    A load cell for the measurement of mooring forces is designed using the load-strain principles and the same is verified for its efficiency by structural modeling. A model load cell is fabricated and calibrated through laboratory experiments using three axes loading as well as mooring chain catenary principles. Experiments are also conducted in the physical wave tank to measure the mooring forces exerted on a disc shaped data buoy by using the designed load cell. The details of the design concepts, structural modeling, instrumentation, calibration, wave tank experiments and the results are discussed in this paper.

  19. Raman and AFM study of gamma irradiated plastic bottle sheets

    SciTech Connect

    Ali, Yasir; Kumar, Vijay; Dhaliwal, A. S.; Sonkawade, R. G.

    2013-02-05

    In this investigation, the effects of gamma irradiation on the structural properties of plastic bottle sheet are studied. The Plastic sheets were exposed with 1.25MeV {sup 60}Co gamma rays source at various dose levels within the range from 0-670 kGy. The induced modifications were followed by micro-Raman and atomic force microscopy (AFM). The Raman spectrum shows the decrease in Raman intensity and formation of unsaturated bonds with an increase in the gamma dose. AFM image displays rough surface morphology after irradiation. The detailed Raman analysis of plastic bottle sheets is presented here, and the results are correlated with the AFM observations.

  20. Dynamics of the nanoneedle probe in trolling mode AFM.

    PubMed

    Abdi, Ahmad; Pishkenari, Hossein Nejat; Keramati, Ramtin; Minary-Jolandan, Majid

    2015-05-22

    Atomic force microscopy (AFM), as an indispensable tool for nanoscale characterization, presents major drawbacks for operation in a liquid environment arising from the large hydrodynamic drag on the vibrating cantilever. The newly introduced 'Trolling mode' (TR-mode) AFM resolves this complication by using a specialized nanoneedle cantilever that keeps the cantilever outside of the liquid. Herein, a mechanical model with a lumped mass was developed to capture the dynamics of such a cantilever with a nanoneedle tip. This new developed model was applied to investigate the effects of the needle-liquid interface on the performance of the AFM, including the imaging capability in liquid. PMID:25915451

  1. Applications of AFM in semiconductor R&D and manufacturing at 45 nm technology node and beyond

    NASA Astrophysics Data System (ADS)

    Lee, Moon-Keun; Shin, Minjung; Bao, Tianming; Song, Chul-Gi; Dawson, Dean; Ihm, Dong-Chul; Ukraintsev, Vladimir

    2009-03-01

    Continuing demand for high performance microelectronic products propelled integrated circuit technology into 45 nm node and beyond. The shrinking device feature geometry created unprecedented challenges for dimension metrology in semiconductor manufacturing and research and development. Automated atomic force microscope (AFM) has been used to meet the challenge and characterize narrower lines, trenches and holes at 45nm technology node and beyond. AFM is indispensable metrology techniques capable of non-destructive full three-dimensional imaging, surface morphology characterization and accurate critical dimension (CD) measurements. While all available dimensional metrology techniques approach their limits, AFM continues to provide reliable information for development and control of processes in memory, logic, photomask, image sensor and data storage manufacturing. In this paper we review up-todate applications of automated AFM in every mentioned above semiconductor industry sector. To demonstrate benefits of AFM at 45 nm node and beyond we compare capability of automated AFM with established in-line and off-line metrologies like critical dimension scanning electron microscopy (CDSEM), optical scatterometry (OCD) and transmission electronic microscopy (TEM).

  2. Label-free and quantitative evaluation of cytotoxicity based on surface nanostructure and biophysical property of cells utilizing AFM.

    PubMed

    Lee, Young Ju; Lee, Gi-Ja; Kang, Sung Wook; Cheong, Youjin; Park, Hun-Kuk

    2013-06-01

    In this study, the four commonly used cytotoxicity assays and the mechanical properties as evaluated by atomic force microscopy (AFM) were compared in a cellular system. A cytotoxicity assay is the first and most essential test to evaluate biocompatibility of various toxic substances. Many of the cytotoxicity methods require complicated and labor-intensive process, as well as introduce experimental error. In addition, these methods cannot provide instantaneous and quantitative cell viability information. AFM has become an exciting analytical tool in medical, biological, and biophysical research due to its unique abilities. AFM-based force-distance curve measurements precisely measure the changes in the biophysical properties of the cell. Therefore, we observed the morphological changes and mechanical property changes in L929 cells following sodium lauryl sulfate (SLS) treatment utilizing AFM. AFM imaging showed that the toxic effects of SLS changed not only the spindle-like shape of L929 cells into a round shape, but also made a rough cell surface. As the concentration of SLS was increased, the surface roughness of L929 cell was increased, and stiffness decreased. We confirmed that inhibition of proliferation clearly increased with increases in SLS concentration based on results from MTT, WST, neutral red uptake, and LIVE/DEAD viability/cytotoxicity assays. The estimated IC₅₀ value by AFM analysis was similar to those of other conventional assays and was included within the 95% confidence interval range. We suggest that an AFM quantitative analysis of the morphological and biophysical changes in cells can be utilized as a new method for evaluating cytotoxicity. PMID:23582483

  3. Simultaneous mechanical stiffness and electrical potential measurements of living vascular endothelial cells using combined atomic force and epifluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Callies, Chiara; Schön, Peter; Liashkovich, Ivan; Stock, Christian; Kusche-Vihrog, Kristina; Fels, Johannes; Sträter, Alexandra S.; Oberleithner, Hans

    2009-04-01

    The degree of mechanical stiffness of vascular endothelial cells determines the endogenous production of the vasodilating gas nitric oxide (NO). However, the underlying mechanisms are not yet understood. Experiments on vascular endothelial cells suggest that the electrical plasma membrane potential is involved in this regulatory process. To test this hypothesis we developed a technique that simultaneously measures the electrical membrane potential and stiffness of vascular endothelial cells (GM7373 cell line derived from bovine aortic endothelium) under continuous perfusion with physiological electrolyte solution. The cellular stiffness was determined by nano-indentation using an atomic force microscope (AFM) while the electrical membrane potential was measured with bis-oxonol, a voltage-reporting fluorescent dye. These two methods were combined using an AFM attached to an epifluorescence microscope. The electrical membrane potential and mechanical stiffness of the same cell were continuously recorded for a time span of 5 min. Fast fluctuations (in the range of seconds) of both the electrical membrane potential and mechanical stiffness could be observed that were not related to each other. In contrast, slow cell depolarizations (in the range of minutes) were paralleled by significant increases in mechanical stiffness. In conclusion, using the combined AFM-fluorescence technique we monitored for the first time simultaneously the electrical plasma membrane potential and mechanical stiffness in a living cell. Vascular endothelial cells exhibit oscillatory non-synchronized waves of electrical potential and mechanical stiffness. The sustained membrane depolarization, however, is paralleled by a concomitant increase of cell stiffness. The described method is applicable for any fluorophore, which opens new perspectives in biomedical research.

  4. A laboratory apparatus to measure clast-bed contact forces

    NASA Astrophysics Data System (ADS)

    Cohen, D.

    2007-12-01

    Glacier dynamics, sediment transport, and erosion are controlled in part by processes occurring at the interface between basal ice and bedrock. One critical parameter is the contact force between a clast and the bedrock. This force affects many processes such as basal friction which regulates sliding speed, slip resistance which influences basal shear stress and may cause micro-seismic events associated with slip instabilities, abrasion which controls rates of erosion, landscape evolution, and production of sediments. Despite field and laboratory evidences indicating that contact forces may be up to one order of magnitude higher than estimated from leading theories, no studies have yet measured with precision the magnitude of contact forces and how contact forces vary as a function of key glaciological variables such as basal melt rate and effective pressure. An apparatus was designed to make two independent measurements: (1) the contact force between a clast and a hard bed as a function of melt rate and effective pressure; (2) the drag force on an identical clast away from the bed as a function of the ice speed. The contact force differs from the drag force because of the presence of the bed which modifies the ice flow field. Measurement (2) is necessary to estimate the rheological properties of the ice and to quantify wall- (bed) effects on the drag force. The apparatus consists of a hydraulic press that pressurizes an ice cylinder, 24~cm high and 20~cm in diameter, to 1.0 - 1.5~MPa. The ice cylinder is contained inside a polycarbonate vessel. Above and below the ice cylinder are three disks: an aluminum disk sandwiched between two Delrin disks. The aluminum disks are hollow and used to circulate a fluid at a controlled temperature. The Delrin disks are used to isolate the ice from the cold room and to control the flow of heat to the ice block. The ice is kept at the melting temperature by circulating a fluid in channels inside the polycarbonate vessel and in the

  5. Forced and Moment Measurements with Pressure-Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Bell, James H.

    1999-01-01

    The potential of pressure-sensitive paint (PSP) to provide aerodynamic loads measurements has been a driving force behind the development of this measurement technique. To demonstrate the suitability of PSP for this purpose, it is necessary to show that PSP-derived pressures can be accurately integrated over the model surface. This cannot be done simply by demonstrating the accuracy of PSP as compared to pressure taps. PSP errors due to misregistration or temperature sensitivity may be high near model edges, where they will have a strong effect on moment measurements, but where pressure taps are rarely installed. A more suitable technique is to compare integrated PSP data over the entire model surface with balance and/or CFD results. This paper presents results from three experiments in which integrated PSP data is compared with balance and/or CFD data. This allows the usefulness of PSP for force and moment measurements, and by implication for loads measurements, to be assessed.

  6. Comparison of the cohesion-adhesion balance approach to colloidal probe atomic force microscopy and the measurement of Hansen partial solubility parameters by inverse gas chromatography for the prediction of dry powder inhalation performance.

    PubMed

    Jones, Matthew D; Buckton, Graham

    2016-07-25

    The abilities of the cohesive-adhesive balance approach to atomic force microscopy (AFM) and the measurement of Hansen partial solubility parameters by inverse gas chromatography (IGC) to predict the performance of carrier-based dry powder inhaler (DPI) formulations were compared. Five model drugs (beclometasone dipropionate, budesonide, salbutamol sulphate, terbutaline sulphate and triamcinolone acetonide) and three model carriers (erythritol, α-lactose monohydrate and d-mannitol) were chosen, giving fifteen drug-carrier combinations. Comparison of the AFM and IGC interparticulate adhesion data suggested that they did not produce equivalent results. Comparison of the AFM data with the in vitro fine particle delivery of appropriate DPI formulations normalised to account for particle size differences revealed a previously observed pattern for the AFM measurements, with a slightly cohesive AFM CAB ratio being associated with the highest fine particle fraction. However, no consistent relationship between formulation performance and the IGC data was observed. The results as a whole highlight the complexity of the many interacting variables that can affect the behaviour of DPIs and suggest that the prediction of their performance from a single measurement is unlikely to be successful in every case. PMID:27265314

  7. Systematic review of ground reaction force measurements in cats.

    PubMed

    Schnabl, E; Bockstahler, B

    2015-10-01

    Although orthopaedic abnormalities in cats are frequently observed radiographically, they remain clinically underdiagnosed, and kinetic motion analysis, a fundamental aspect of orthopaedic research in dogs and horses, is not commonly performed. More information obtained with non-invasive measurement techniques to assess normal and abnormal gait in cats would provide a greater insight into their locomotion and biomechanics and improve the objective measurement of disease alterations and treatment modalities. In this systematic review, 12 previously performed studies that investigated ground reaction force measurements in cats during locomotion were evaluated. The aims of these studies, the measurement methods and equipment used, and the outcomes of parameters used to assess both sound and diseased cats are summarised and discussed. All reviewed studies used pressure sensitive walkways to gain data and all provided an acclimatisation period as a prerequisite for measurements. In sound cats during walking, the forelimb peak vertical force was greater than in the hindlimb and the peak vertical force in the hindlimb was greater in cats than in dogs. This review confirms that ground reaction forces can be used to evaluate lameness and treatment effects in the cat. PMID:26118478

  8. A Simple Instrument for Measuring Surface Forces in Liquids

    NASA Astrophysics Data System (ADS)

    Hannon, James; Tromp, Rudolf; Haight, Richard; Ellis, Arthur

    2015-03-01

    We have constructed a simple instrument to measure the interaction force between two surfaces in solution, or in vacuum. Specifically, we measure the interaction between a lens and a thin silicon cantilever. Either the lens, or the cantilever (or both) can be coated with the species of interest. When the lens is brought close to the cantilever surface, the force of interaction causes the cantilever to bend. By measuring the deflection as a function of the distance between the lens and cantilever, the long-range interactions between the two surfaces can be determined. Our approach includes three important innovations. First, a commercial lens with a radius of ~ 1 cm is used for one surface. The relatively large radius of curvature enhances force sensitivity of the method. Second, we use optical interference (Newton's Rings) to determine the distance between lens and cantilever with ~ 1 nm accuracy. Third, we make use of thin crystalline cantilevers (100 μm thick) whose elastic properties can be easily measured. We have achieved a force sensitivity F / R better than 0.001 mN/m. I will discuss the theory of operation of the new instrument and describe measurements made on SiO2 and metal oxide surfaces in water.

  9. Spatial spectrograms of vibrating atomic force microscopy cantilevers coupled to sample surfaces

    SciTech Connect

    Wagner, Ryan; Raman, Arvind; Proksch, Roger

    2013-12-23

    Many advanced dynamic Atomic Force Microscopy (AFM) techniques such as contact resonance, force modulation, piezoresponse force microscopy, electrochemical strain microscopy, and AFM infrared spectroscopy exploit the dynamic response of a cantilever in contact with a sample to extract local material properties. Achieving quantitative results in these techniques usually requires the assumption of a certain shape of cantilever vibration. We present a technique that allows in-situ measurements of the vibrational shape of AFM cantilevers coupled to surfaces. This technique opens up unique approaches to nanoscale material property mapping, which are not possible with single point measurements alone.

  10. Charge Transport of Self-assembled DNA Networks measured by Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Lee, Hea-Yeon; Tanaka, Hidekazu; Kawai, Tomoji

    2001-03-01

    DNA is important not only a source of biological information but also an important scaffold for nanostructure. Recently, electrical transport measurements on micrometer-long DNA ropes in film or networks have indicated that DNA behaves as a good linear conductor. A structure containing a single type of base pair appears to be a good candidate for one-dimensional energy transfer and conduction along the Ĉ-electron cloudes of stacked bases. Especially, it is found that the poly (dG)-poly (dC) DNA has the best conductivity and can act as a conducting nanowire. Here we will describe measurement of the electrical transport characteristic through double-stranded poly (dG)-poly (dC) DNA molecules using a conducting probe atomic force microscope (CP-AFM). Self-assembled poly (dG)-poly (dC) networks performing the uniform two-dimensional reticulate structure _1) show the rectification character by current-voltage (I-V) curve. Charge transport structure will be present by an asymmetric bands diagram. The research has significant implication for the application of DNA in electronic devices and DNA-based electrochemical biosensors. --- _1) T. Kanno, H. Tanaka, N. Miyoshi, T. Kawai, Jpn. J Appl. Phys., 39 (2000) L269 : L. Cai, H. Tabata, T. Kawai Appl. Phys. Lett., 77 (2000) 3105

  11. Thermodynamic work of adhesion measurements of polymer bonded explosive constituents via the Wilhelmy plate technique and their application to AFM pull-off experiments

    NASA Astrophysics Data System (ADS)

    Williamson, D. M.; Hamilton, N. R.; Palmer, S. J. P.; Jardine, A. P.; Leppard, C.

    2014-05-01

    A major strength limiting factor for polymer bonded explosives above their glass-transition conditions is the magnitude of adhesion that exists between the polymeric matrix binder-system and the filler particles. Experimental measurements of the components of the free surface energy of the binder KEL-F8OO have been made using the Wilhelmy Plate technique. These data can be combined with equivalent data on the filler particles to calculate the so-called Thermodynamic Work of Adhesion. This under-pinning quantity can be used to predict the levels of load (stress) required to cause debonding in different geometries. A simple geometry of interest is a spherical-cap of polymer debonding from a flat substrate. Experiments using this geometry have been performed with an Atomic Force Microscope pulloff technique to measure the critical loads (stresses) required for debonding. There is excellent agreement between the predicted values based on the Wilhelmy Plate data and the measured values from the Atomic Force Microscope. Experimental data and understanding are required for the development and validation of microstructural models of mechanical behaviour.

  12. Dual AFM probes alignment based on vision guidance

    NASA Astrophysics Data System (ADS)

    Zhang, Hua-kun; Gao, Si-tian; Lu, Ming-zhen; Wang, Long-long

    2013-10-01

    Atomic force microscope (AFM) with dual probes that operate together can measure both side walls excellently at the same time, which virtually eliminates the prevalent effect of probe width that contributes a large component of uncertainty in measurement results and finally obtains the critical dimension (CD)(e.g. the linewidth) through data synthesis. In calibration process, the dual probes must contact each other in advance, which realizes the alignment in the three dimensions, to establish a zero reference point and ensure the accuracy of measurement. Because nowadays the optical resolution of advanced lens have exceeded micrometer range, and the size of probes is within micro level, it is possible to acquire dual probes images in both horizontal and vertical directions, through which the movement of the probes can be controlled in time. In order to further enhance the alignment precision, sub-pixel edge detection method based on Zernike orthogonal moment is used to obtain relative position between these two probes, which helps the tips alignment attains sub-micron range. Piezoelectric nanopositioning stages calibrated by laser interferometer are used to implement fine movement of the probes to verify the accuracy of the experimental results. To simplify the system, novel self-sensing and self-actuating probe based on a quartz tuning fork combined with a micromachined cantilever is used for dynamic mode AFM. In this case, an external optical detection system is not needed, so the system is simple and small.

  13. Force probing cell shape changes to molecular resolution.

    PubMed

    Stewart, Martin P; Toyoda, Yusuke; Hyman, Anthony A; Muller, Daniel J

    2011-08-01

    Atomic force microscopy (AFM) is a force sensing nanoscopic tool that can be used to undertake a multiscale approach to understand the mechanisms that underlie cell shape change, ranging from the cellular to molecular scale. In this review paper, we discuss the use of AFM to characterize the dramatic shape changes of mitotic cells. AFM-based mechanical assays can be applied to measure the considerable rounding force and hydrostatic pressure generated by mitotic cells. A complementary AFM technique, single-molecule force spectroscopy, is able to quantify the interactions and mechanisms that functionally regulate individual proteins. Future developments of these nanomechanical methods, together with advances in light microscopy imaging and cell biological and genetic tools, should provide further insight into the biochemical, cellular and mechanical processes that govern mitosis and other cell shape change phenomena. PMID:21646023

  14. Toward Standardized Acoustic Radiation Force (ARF)-Based Ultrasound Elasticity Measurements With Robotic Force Control

    PubMed Central

    Kumar, Shalki; Lily, Kuo; Sen, H. Tutkun; Iordachita, Iulian; Kazanzides, Peter

    2016-01-01

    Objective Acoustic radiation force (ARF)-based approaches to measure tissue elasticity require transmission of a focused high-energy acoustic pulse from a stationary ultrasound probe and ultrasound-based tracking of the resulting tissue displacements to obtain stiffness images or shear wave speed estimates. The method has established benefits in biomedical applications such as tumor detection and tissue fibrosis staging. One limitation, however, is the dependence on applied probe pressure, which is difficult to control manually and prohibits standardization of quantitative measurements. To overcome this limitation, we built a robot prototype that controls probe contact forces for shear wave speed quantification. Methods The robot was evaluated with controlled force increments applied to a tissue-mimicking phantom and in vivo abdominal tissue from three human volunteers. Results The root-mean-square error between the desired and measured forces was 0.07 N in the phantom and higher for the fatty layer of in vivo abdominal tissue. The mean shear wave speeds increased from 3.7 to 4.5 m/s in the phantom and 1.0 to 3.0 m/s in the in vivo fat for compressive forces ranging from 2.5 to 30 N. The standard deviation of shear wave speeds obtained with the robotic approach were low in most cases (< 0.2 m/s) and comparable to that obtained with a semiquantitative landmark-based method. Conclusion Results are promising for the introduction of robotic systems to control the applied probe pressure for ARF-based measurements of tissue elasticity. Significance This approach has potential benefits in longitudinal studies of disease progression, comparative studies between patients, and large-scale multidimensional elasticity imaging. PMID:26552071

  15. Force Exertion Capacity Measurements in Haptic Virtual Environments

    ERIC Educational Resources Information Center

    Munih, Marko; Bardorfer, Ales; Ceru, Bojan; Bajd, Tadej; Zupan, Anton

    2010-01-01

    An objective test for evaluating functional status of the upper limbs (ULs) in patients with muscular distrophy (MD) is presented. The method allows for quantitative assessment of the UL functional state with an emphasis on force exertion capacity. The experimental measurement setup and the methodology for the assessment of maximal exertable force…

  16. A non-invasive method of tendon force measurement.

    PubMed

    Pourcelot, Philippe; Defontaine, Marielle; Ravary, Bérangère; Lemâtre, Mickaël; Crevier-Denoix, Nathalie

    2005-10-01

    The ability to measure the forces exerted in vivo on tendons and, consequently, the forces produced by muscles on tendons, offers a unique opportunity to investigate questions in disciplines as varied as physiology, biomechanics, orthopaedics and neuroscience. Until now, tendon loads could be assessed directly only by means of invasive sensors implanted within or attached to these collagenous structures. This study shows that the forces acting on tendons can be measured, in a non-invasive way, from the analysis of the propagation of an acoustic wave. Using the equine superficial digital flexor tendon as a model, it is demonstrated that the velocity of an ultrasonic wave propagating along the main axis of a tendon increases with the force applied to this tendon. Furthermore, we show that this velocity measurement can be performed even in the presence of skin overlying the tendon. To validate this measurement technique in vivo, the ultrasonic velocity plots obtained in the Achilles tendon at the walk were compared to the loads plots reported by other authors using invasive transducers. PMID:16084214

  17. Direct force-measuring transducer used in blood pressure research

    NASA Technical Reports Server (NTRS)

    Eige, J. J.; Newgard, P. M.; Pressman, G. L.

    1965-01-01

    Direct force measuring transducer acts as an arterial tonometer, gives a direct readout to instrumentation, and is unaffected by ambient noise. It uses a semiconductor strain gage which is deflected by pressure pulses in the artery. The deflection changes the resistance of the gage and alters the voltage reading on the associated instrumentation.

  18. Model Engine Performance Measurement From Force Balance Instrumentation

    NASA Technical Reports Server (NTRS)

    Jeracki, Robert J.

    1998-01-01

    A large scale model representative of a low-noise, high bypass ratio turbofan engine was tested for acoustics and performance in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. This test was part of NASA's continuing Advanced Subsonic Technology Noise Reduction Program. The low tip speed fan, nacelle, and an un-powered core passage (with core inlet guide vanes) were simulated. The fan blades and hub are mounted on a rotating thrust and torque balance. The nacelle, bypass duct stators, and core passage are attached to a six component force balance. The two balance forces, when corrected for internal pressure tares, measure the total thrust-minus-drag of the engine simulator. Corrected for scaling and other effects, it is basically the same force that the engine supports would feel, operating at similar conditions. A control volume is shown and discussed, identifying the various force components of the engine simulator thrust and definitions of net thrust. Several wind tunnel runs with nearly the same hardware installed are compared, to identify the repeatability of the measured thrust-minus-drag. Other wind tunnel runs, with hardware changes that affected fan performance, are compared to the baseline configuration, and the thrust and torque effects are shown. Finally, a thrust comparison between the force balance and nozzle gross thrust methods is shown, and both yield very similar results.

  19. Designing an optical bendloss sensor for clinical force measurement

    NASA Astrophysics Data System (ADS)

    Linders, David R.; Wang, Wei-Chih; Nuckley, David J.

    2009-03-01

    In current physical medicine, specific manual forces are applied to patients for diagnosis, treatment, and evaluation, but these forces remain largely qualitiative. No universal tool exists to measure these forces and display them in real-time. To provide real-time quantitative feedback to clinicians, we have developed a disposable glove with a force sensor embedded in the fingertips or palm. The sensor is based on the fiberoptic bendloss effect whereby light intensity from an infrared source is attenuated as the fiber is bent between a series of corrugated teeth. The sensor fabricated has a very low profile (10 × 7 × 1 mm) and has demonstrated high sensitivity, accuracy, range, and durability. Forces as low as 0.1 N and up to 90 N have been measured with high signal to noise ratios. Good agreement with theoretical predictions of bendloss has been demonstrated. Current trials have obtained data from 20 ACL reconstruction patients demonstrating a significant increase in range of motion recovery for patients who consistently stretch at home over those who do not.

  20. Enclosed Electronic System for Force Measurements in Knee Implants

    PubMed Central

    Forchelet, David; Simoncini, Matteo; Arami, Arash; Bertsch, Arnaud; Meurville, Eric; Aminian, Kamiar; Ryser, Peter; Renaud, Philippe

    2014-01-01

    Total knee arthroplasty is a widely performed surgical technique. Soft tissue force balancing during the operation relies strongly on the experience of the surgeon in equilibrating tension in the collateral ligaments. Little information on the forces in the implanted prosthesis is available during surgery and post-operative treatment. This paper presents the design, fabrication and testing of an instrumented insert performing force measurements in a knee prosthesis. The insert contains a closed structure composed of printed circuit boards and incorporates a microfabricated polyimide thin-film piezoresistive strain sensor for each condylar compartment. The sensor is tested in a mechanical knee simulator that mimics in-vivo conditions. For characterization purposes, static and dynamic load patterns are applied to the instrumented insert. Results show that the sensors are able to measure forces up to 1.5 times body weight with a sensitivity fitting the requirements for the proposed use. Dynamic testing of the insert shows a good tracking of slow and fast changing forces in the knee prosthesis by the sensors. PMID:25196007

  1. Enclosed electronic system for force measurements in knee implants.

    PubMed

    Forchelet, David; Simoncini, Matteo; Arami, Arash; Bertsch, Arnaud; Meurville, Eric; Aminian, Kamiar; Ryser, Peter; Renaud, Philippe

    2014-01-01

    Total knee arthroplasty is a widely performed surgical technique. Soft tissue force balancing during the operation relies strongly on the experience of the surgeon in equilibrating tension in the collateral ligaments. Little information on the forces in the implanted prosthesis is available during surgery and post-operative treatment. This paper presents the design, fabrication and testing of an instrumented insert performing force measurements in a knee prosthesis. The insert contains a closed structure composed of printed circuit boards and incorporates a microfabricated polyimide thin-film piezoresistive strain sensor for each condylar compartment. The sensor is tested in a mechanical knee simulator that mimics in-vivo conditions. For characterization purposes, static and dynamic load patterns are applied to the instrumented insert. Results show that the sensors are able to measure forces up to 1.5 times body weight with a sensitivity fitting the requirements for the proposed use. Dynamic testing of the insert shows a good tracking of slow and fast changing forces in the knee prosthesis by the sensors. PMID:25196007

  2. Atomic force microscopy as a tool to study Xenopus laevis embryo

    NASA Astrophysics Data System (ADS)

    Pukhlyakova, E. A.; Efremov, Yu M.; Bagrov, D. V.; Luchinskaya, N. N.; Kiryukhin, D. O.; Belousov, L. V.; Shaitan, K. V.

    2012-02-01

    Atomic force microscopy (AFM) has become a powerful tool for imaging biological structures (from single molecules to living cells) and carrying out measurements of their mechanical properties. AFM provides three-dimensional high-resolution images of the studied biological objects in physiological environment. However there are only few AFM investigations of fresh tissue explants and virtually no such research on a whole organism, since most researchers work with cell cultures. In the current work AFM was used to observe the surface of living and fixed embryos and to measure mechanical properties of naive embryos and embryos with overexpression of guanine nucleotide-binding protein G-alpha-13.

  3. Measuring forces and spatiotemporal evolution of thin water films between an air bubble and solid surfaces of different hydrophobicity.

    PubMed

    Shi, Chen; Cui, Xin; Xie, Lei; Liu, Qingxia; Chan, Derek Y C; Israelachvili, Jacob N; Zeng, Hongbo

    2015-01-27

    A combination of atomic force microscopy (AFM) and reflection interference contrast microscopy (RICM) was used to measure simultaneously the interaction force and the spatiotemporal evolution of the thin water film between a bubble in water and mica surfaces with varying degrees of hydrophobicity. Stable films, supported by the repulsive van der Waals-Casimir-Lifshitz force were always observed between air bubble and hydrophilic mica surfaces (water contact angle, θ(w) < 5°) whereas bubble attachment occurred on hydrophobized mica surfaces. A theoretical model, based on the Reynolds lubrication theory and the augmented Young-Laplace equation including the effects of disjoining pressure, provided excellent agreement with experiment results, indicating the essential physics involved in the interaction between air bubble and solid surfaces can be elucidated. A hydrophobic interaction free energy per unit area of the form: WH(h) = -γ(1 - cos θ(w))exp(-h/D(H)) can be used to quantify the attraction between bubble and hydrophobized solid substrate at separation, h, with γ being the surface tension of water. For surfaces with water contact angle in the range 45° < θ(w) < 90°, the decay length DH varied between 0.8 and 1.0 nm. This study quantified the hydrophobic interaction in asymmetric system between air bubble and hydrophobic surfaces, and provided a feasible method for synchronous measurements of the interaction forces with sub-nN resolution and the drainage dynamics of thin films down to nm thickness. PMID:25514470

  4. Intrinsic adhesion force of lubricants to steel surface.

    PubMed

    Lee, Jonghwi

    2004-09-01

    The intrinsic adhesion forces of lubricants and other pharmaceutical materials to a steel surface were quantitatively compared using Atomic Force Microscopy (AFM). A steel sphere was attached to the tip of an AFM cantilever, and its adhesion forces to the substrate surfaces of magnesium stearate, sodium stearyl fumarate, lactose, 4-acetamidophenol, and naproxen were measured. Surface roughness varied by an order of magnitude among the materials. However, the results clearly showed that the two lubricants had about half the intrinsic adhesion force as lactose, 4-acetamidophenol, and naproxen. Differences in the intrinsic adhesion forces of the two lubricants were insignificant. The lubricant molecules were unable to cover the steel surface during AFM measurements. Intrinsic adhesion force can slightly be modified by surface treatment and compaction, and its tip-to-tip variation was not greater than its difference between lubricants and other pharmaceutical particles. This study provides a quantitative fundamental basis for understanding adhesion related issues. PMID:15295791

  5. Aerodynamics of Dragonfly in Hover: Force measurements and PIV results

    NASA Astrophysics Data System (ADS)

    Deng, Xinyan; Hu, Zheng

    2009-11-01

    We useda pair of dynamically scaled robotic dragonfly model wings to investigate the aerodynamic effects of wing-wing interaction in dragonflies. We follow the wing kinematics of real dragonflies in hover, while systematically varied the phase difference between the forewing and hindwing. Instantaneous aerodynamic forces and torques were measured on both wings, while flow visualization and PIV results were obtained. The results show that, in hovering flight, wing-wing interaction causes force reduction for both wings at most of the phase angle differences except around 0 degree (when the wings are beating in-phase).

  6. Effect of permanent-magnet irregularities in levitation force measurements.

    SciTech Connect

    Hull, J. R.

    1999-10-14

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a nonnegligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analog of Earnshaw's theorem, in which at the field-cooling position the vertical stiffness is equal to the sum of the horizontal stiffnesses, independent of angular distribution of magnetic moments within the PM.

  7. Evaluation of interaction between histidine binding Cu2+ ion and histidine by atomic force microscopy.

    PubMed

    Kim, Jong Min; Lee, Haeng-Ja; Kim, Woo-Sik; Sano, Masato; Muramatsu, Hiroshi; Chang, Sang-Mok

    2012-07-01

    This paper presents a direct interaction force measurement between histidine molecules using AFM force-distance curve measurement. AFM force-distance curves between the histidine-modified cantilever and substrate in the different conditions with or without intercalating Cu2+ ion were measured and interpreted via Gaussian curve fitting analyses. The adhesion force between histidine molecules was shown to be 110 pN under the presence of Cu2+. The result was compareable to the measured adhesion force about 0 pN, which was measured by the removal of Cu2+ ion with the addition of EDTA. The result indicated the direct histidine-histidie interaction was difficult without the role of the bridigible ionic component. From the results, the possibility of direct measurement on chemical affinities between biomolecules was suggested by using AFM force-distance curve analyses. Especially, the current approach showed the possible affinity measurement techniques that elucidate the role of bridge ions. PMID:22966539

  8. Comparison of particle sizes determined with impactor, AFM and SEM

    NASA Astrophysics Data System (ADS)

    Gwaze, Patience; Annegarn, Harold J.; Huth, Joachim; Helas, Günter

    2007-11-01

    Particles size comparisons were made between conventional aerodynamic and mobility sizing techniques and physical geometric sizes measured by high resolution microscopes. Atmospheric particles were collected during the wet and dry seasons in the Amazonian ecosystems. Individual particles deposited on four stages of the MOUDI (Micro-Orifice Uniform Deposition Impactor) were characterised for particle volumes, projected surface diameters and morphologies with an Atomic Force Microscope (AFM) and a Scanning Electron Microscope (SEM). AFM and SEM size distributions were verified against distributions derived from response functions of individual MOUDI stages as specified by Winklmayr et al. [Winklmayr, W., Wang, H.-C., John, W., 1990. Adaptation of the Twomey algorithm to the inversion of cascade impactor data. Aerosol Science and Technology 13, 322-331.]. Particles indicated inherent discrepancies in sizing techniques. Particle volumes were systematically lower than expected by factors of up to 3.6. Differences were attributed to loss of mass, presumably water adsorbed on particles. Losses were high and could not be accounted for by measured humidity growth factors suggesting significant losses of other volatile compounds as well, particularly on particles that were collected during the wet season. Microscopy results showed that for hygroscopic particles, microscopy sizes depend on the relative humidity history of particles before and after sampling. Changes in relative humidity significantly altered particle morphologies. Depending on when changes occur, such losses will bias not only microscopy particle sizes but also impactor mass distributions and number concentrations derived from collected particles.

  9. Microfluidics, Chromatography, and Atomic-Force Microscopy

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2008-01-01

    A Raman-and-atomic-force microscope (RAFM) has been shown to be capable of performing several liquid-transfer and sensory functions essential for the operation of a microfluidic laboratory on a chip that would be used to perform rapid, sensitive chromatographic and spectro-chemical analyses of unprecedentedly small quantities of liquids. The most novel aspect of this development lies in the exploitation of capillary and shear effects at the atomic-force-microscope (AFM) tip to produce shear-driven flow of liquids along open microchannels of a microfluidic device. The RAFM can also be used to perform such functions as imaging liquids in microchannels; removing liquid samples from channels for very sensitive, tip-localized spectrochemical analyses; measuring a quantity of liquid adhering to the tip; and dip-pen deposition from a chromatographic device. A commercial Raman-spectroscopy system and a commercial AFM were integrated to make the RAFM so as to be able to perform simultaneous topographical AFM imaging and surface-enhanced Raman spectroscopy (SERS) at the AFM tip. The Raman-spectroscopy system includes a Raman microprobe attached to an optical microscope, the translation stage of which is modified to accommodate the AFM head. The Raman laser excitation beam, which is aimed at the AFM tip, has a wavelength of 785 nm and a diameter of about 5 m, and its power is adjustable up to 10 mW. The AFM is coated with gold to enable tip-localized SERS.

  10. Optical tweezers force measurements to study parasites chemotaxis

    NASA Astrophysics Data System (ADS)

    de Thomaz, A. A.; Pozzo, L. Y.; Fontes, A.; Almeida, D. B.; Stahl, C. V.; Santos-Mallet, J. R.; Gomes, S. A. O.; Feder, D.; Ayres, D. C.; Giorgio, S.; Cesar, C. L.

    2009-07-01

    In this work, we propose a methodology to study microorganisms chemotaxis in real time using an Optical Tweezers system. Optical Tweezers allowed real time measurements of the force vectors, strength and direction, of living parasites under chemical or other kinds of gradients. This seems to be the ideal tool to perform observations of taxis response of cells and microorganisms with high sensitivity to capture instantaneous responses to a given stimulus. Forces involved in the movement of unicellular parasites are very small, in the femto-pico-Newton range, about the same order of magnitude of the forces generated in an Optical Tweezers. We applied this methodology to investigate the Leishmania amazonensis (L. amazonensis) and Trypanossoma cruzi (T. cruzi) under distinct situations.

  11. Using optics to measure biological forces and mechanics.

    PubMed

    Kuo, S C

    2001-11-01

    Spanning all size levels, regulating biological forces and transport are fundamental life processes. Used by various investigators over the last dozen years, optical techniques offer unique advantages for studying biological forces. The most mature of these techniques, optical tweezers, or the single-beam optical trap, is commercially available and is used by numerous investigators. Although technical innovations have improved the versatility of optical tweezers, simple optical tweezers continue to provide insights into cell biology. Two new, promising optical technologies, laser-tracking microrheology and the optical stretcher, allow mechanical measurements that are not possible with optical tweezers. Here, I review these various optical technologies and their roles in understanding mechanical forces in cell biology. PMID:11733041

  12. An advanced AFM sensor: its profile accuracy and low probe wear property for high aspect ratio patterns

    NASA Astrophysics Data System (ADS)

    Watanabe, Masahiro; Baba, Shuichi; Nakata, Toshihiko; Kurenuma, Toru; Kunitomo, Yuichi; Edamura, Manabu

    2007-03-01

    Design rule shrinkage and wider adoption of new device structures such as STI, copper damascene interconnects, and deep trench structures have made the need for in-line process monitoring of step heights and profiles of device structures more urgent. To monitor active device patterns, as opposed to test patterns as in OCD, AFM is the only non-destructive 3D monitoring tool. The barriers to using AFM in-line monitoring are its slow throughput and the accuracy degradation associated with probe tip wear and spike noise caused by unwanted oscillation on the steep slopes of high-aspect-ratio patterns. Our proprietary AFM scanning method, StepIn TM mode, is the method best suited to measuring high-aspect-ratio pattern profiles. Because the probe is not dragged on the sample surface as in conventional AFM, the profile trace fidelity across steep slopes is excellent. Because the probe does not oscillate and hit the sample at a high frequency, as in AC scanning mode, this mode is free from unwanted spurious noises on steep sample slopes and incurs extremely little probe tip wear. To take full advantage of the above properties, we have developed an AFM sensor that is optimized for in-line use and produces accurate profile data at high speeds and incurs little probe tip wear. The control scheme we have developed for the AFM sensor, which we call "Advanced StepIn TM", elaborately analyses the contact force signal, enabling efficient probe tip scanning and a low and stable contact force. With a developed AFM sensor that realizes this concept, we conducted an intensive evaluation on the effect of low and stable contact force scan. Probes with HDC (high density carbon) tips were used for the evaluation. The experiment proves that low contact force enhances the measured profile fidelity by preventing probe tip slip on steep slopes. Dynamics simulation of these phenomena was also conducted, and its results agreed well with the experimental results. The low contact force scan also

  13. Measurement of the Casimir force between dissimilar metals.

    PubMed

    Decca, R S; López, D; Fischbach, E; Krause, D E

    2003-08-01

    The first precise measurement of the Casimir force between dissimilar metals is reported. The attractive force, between a Cu layer evaporated on a microelectromechanical torsional oscillator and an Au layer deposited on an Al2O3 sphere, was measured dynamically with a noise level of 6 fN/sqrt[Hz]. Measurements were performed for separations in the 0.2-2 micro m range. The results agree to better than 1% in the 0.2-0.5 micro m range with a theoretical model that takes into account the finite conductivity and roughness of the two metals. The observed discrepancies, which are much larger than the experimental precision, can be attributed to a lack of a complete characterization of the optical properties of the specific samples used in the experiment. PMID:12906584

  14. Measurement of turbine blade-tip rotordynamic excitation forces

    SciTech Connect

    Martinez-Sanchez, M.; Jaroux, B.; Song, S.J.; Yoo, S.

    1995-07-01

    This paper presents results of a program to investigate the magnitude, original, and parametric variations of destabilizing forces that arise in high power turbines due to blade-tip leakage effects. Five different unshrouded turbine configurations and one configuration shrouded with a labyrinth seal were tested with static offsets of the turbine shaft. The forces along and perpendicular to the offset were measured directly with a dynamometer, and were also inferred from velocity triangles and pressure distributions obtained form detailed flow surveys. These two routes yielded values in fair agreement in all case. For unshrouded turbines, the cross-forces are seen to originate mainly ({approximately} 2/3) from the classical Alford mechanism (nonuniform work extraction due to varying blade efficiency with tip gap) and about 1/3 from a slightly skewed hub pressure pattern. The direct forces arise mainly (3/4) from this pressure pattern, with the rest due to a slight skewness of the Alford mechanism. The pressure nonuniformity (lower pressures near the widest gap) is seen to arise from a large-scale redistribution of the substantially when the gap is reduced from 3.0 to 1.9 percent of blade height, probably due to viscous blade-tip effects. The forces also increase when the hub gap between stator and rotor decreases. The force coefficient decreases with operating flow coefficient. In the case of the shrouded turbine, most of the forces arise from rest appears to come from uneven work extraction (Alford mechanism). Their level is about 50 percent higher than in the unshrouded cases.

  15. Breast Cancer EDGE Task Force Outcomes: Clinical Measures of Pain

    PubMed Central

    Harrington, Shana; Gilchrist, Laura; Sander, Antoinette

    2014-01-01

    Background Pain is one of the most commonly reported impairments after breast cancer treatment affecting anywhere from 16-73% of breast cancer survivors Despite the high reported incidence of pain from cancer and its treatments, the ability to evaluate cancer pain continues to be difficult due to the complexity of the disease and the subjective experience of pain. The Oncology Section Breast Cancer EDGE Task Force was created to evaluate the evidence behind clinical outcome measures of pain in women diagnosed with breast cancer. Methods The authors systematically reviewed the literature for pain outcome measures published in the research involving women diagnosed with breast cancer. The goal was to examine the reported psychometric properties that are reported in the literature in order to determine clinical utility. Results Visual Analog Scale, Numeric Rating Scale, Pressure Pain Threshold, McGill Pain Questionnaire, McGill Pain Questionnaire – Short Form, Brief Pain Inventory and Brief Pain Inventory – Short Form were highly recommended by the Task Force. The Task Force was unable to recommend two measures for use in the breast cancer population at the present time. Conclusions A variety of outcome measures were used to measure pain in women diagnosed with breast cancer. When assessing pain in women with breast cancer, researchers and clinicians need to determine whether a unidimensional or multidimensional tool is most appropriate as well as whether the tool has strong psychometric properties. PMID:25346950

  16. Cytochrome c provokes the weakening of zwitterionic membranes as measured by force spectroscopy.

    PubMed

    Morandat, Sandrine; El Kirat, Karim

    2011-01-01

    Cytochrome c (cyt c) is a small soluble protein from the intermembrane space of mitochondria. This protein is essential because it transfers electrons between two membrane complexes of the respiratory chain. In fact, during this transfer, the positively charged amino-acid residues surrounding the heme in the protein structure allow the cyt c to interact properly with the anionic part of other molecules: mainly the cardiolipin-rich membrane of mitochondria and respiratory complexes. We have previously shown that besides its interaction with anionic lipids, the cyt c is also able to cross neutral lipid membranes. In this work, with the help of AFM and punch-through experiments, we have measured the force required to penetrate the membrane in the fluid and in the gel phases with or without cyt c molecules. In the presence of cyt c molecules, the structures generated by the interaction with the protein were considerably weakened, which led to the desorption of the fluid bilayer and to a considerable loss of cohesion of the gel phase. These results show the usefulness of punch-through experiments in determining the changes of membrane properties in the presence of external agents. PMID:20832261

  17. Directly measuring single molecule heterogeneity in proteins and RNA using force spectroscopy

    NASA Astrophysics Data System (ADS)

    Hinczewski, Michael; Hyeon, Changbong; Thirumalai, Devarajan

    One of the most intriguing results of single molecule experiments on proteins and nucleic acids is the discovery of functional heterogeneity: the observation that complex cellular machines exhibit multiple, biologically active conformations. The structural differences between these conformations may be subtle, but each distinct state can be remarkably long-lived, with stochastic interconversions occurring only at macroscopic timescales, fractions of a second or longer. Though we now have proof of functional heterogeneity in a handful of systems--enzymes, motors, adhesion complexes--identifying and measuring it remains a formidable challenge. We show that evidence of this phenomenon is more widespread than previously known, encoded in data collected from some of the most well-established single molecule techniques: AFM or optical tweezer pulling experiments. We present a theoretical procedure for analyzing distributions of rupture/unfolding forces recorded at different pulling speeds. This results in a single parameter, quantifying the degree of heterogeneity, and also leads to bounds on the equilibration and conformational interconversion timescales. Our work suggests experimental approaches for estimating the timescales of these fluctuations with unprecedented accuracy.

  18. Development of measuring system to measure standing pose of the foot using distributed triaxial force sensor.

    PubMed

    Nishi, Akimi; Tanaka, Noriko; Tsujiuchi, Nobutaka; Koizumi, Takayuki; Oshima, Hiroko; Minato, Kotaro; Yoshida, Masaki; Tsuchiya, Yotaro

    2006-01-01

    The bottom of a person's foot grips the floor for balance, and the action force and action moment work at the foot bottom when he maintains posture and when he moves. They are important indices in the evaluation and the medical attention of standing pose balance and gait disturbances. A lot of equipments to measure the floor reaction force have been researched. However, no floor reaction force meter exists that can measure distribution information force in three directions. This paper aims at the development of a system that can measure the standing pose of the foot that exists from a measuring instrument and that can measure the standing pose of foot distributed 6times4 three axis force sensors and software that displays and preserves the output of the sensor element. A time change of force that worked at the foot bottom is sought as a vector by outputting each sensor element. Moreover, an action vector is three dimensionally displayed whose data can be intuitively understood. The results of experiments show that the measuring system can measure the action force of the foot bottom as distribution information on force in three directions. PMID:17945646

  19. Apparatus for measuring the thermal Casimir force at large distances.

    PubMed

    Bimonte, Giuseppe

    2014-12-12

    We describe a Casimir apparatus based on a differential force measurement between a Au-coated sphere and a planar slab divided in two regions, one of which is made of high-resistivity (dielectric) Si, and the other of Au. The crucial feature of the setup is a semitransparent plane parallel conducting overlayer, covering both regions. The setup offers two important advantages over existing Casimir setups. On one hand, it leads to a large amplification of the difference between the Drude and the plasma prescriptions that are currently used to compute the thermal Casimir force. On the other hand, thanks to the screening power of the overlayer, it is in principle immune from electrostatic forces caused by potential patches on the plates surfaces, that plague present large distance Casimir experiments. If a semitransparent conductive overlayer with identical patch structure over the Au-Si regions of the plate can be manufactured, similar to the opaque overlayers used in recent searches of non-Newtonian gravitational forces based on the isoelectronic technique, the way will be paved for a clear observation of the thermal Casimir force up to separations of several microns, and an unambiguous discrimination between the Drude and the plasma prescriptions. PMID:25541756

  20. Apparatus for Measuring the Thermal Casimir Force at Large Distances

    NASA Astrophysics Data System (ADS)

    Bimonte, Giuseppe

    2014-12-01

    We describe a Casimir apparatus based on a differential force measurement between a Au-coated sphere and a planar slab divided in two regions, one of which is made of high-resistivity (dielectric) Si, and the other of Au. The crucial feature of the setup is a semitransparent plane parallel conducting overlayer, covering both regions. The setup offers two important advantages over existing Casimir setups. On one hand, it leads to a large amplification of the difference between the Drude and the plasma prescriptions that are currently used to compute the thermal Casimir force. On the other hand, thanks to the screening power of the overlayer, it is in principle immune from electrostatic forces caused by potential patches on the plates surfaces, that plague present large distance Casimir experiments. If a semitransparent conductive overlayer with identical patch structure over the Au-Si regions of the plate can be manufactured, similar to the opaque overlayers used in recent searches of non-Newtonian gravitational forces based on the isoelectronic technique, the way will be paved for a clear observation of the thermal Casimir force up to separations of several microns, and an unambiguous discrimination between the Drude and the plasma prescriptions.

  1. Nanoscale resolution microchannel flow velocimetry by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Piorek, Brian; Mechler, Ádám; Lal, Ratnesh; Freudenthal, Patrick; Meinhart, Carl; Banerjee, Sanjoy

    2006-10-01

    The velocity of a microchannel flow was determined by atomic force microscopy (AFM) using a 50nm wide "whisker," which was partially submerged and scanned transverse to the flow while drag was recorded. A peaked, near parabolic, flow velocity profile was found. Particle image velocity (PIV) measurements using 70nm diameter quantum-dot-coated polystyrene spheres confirmed the shape of the AFM-measured velocity profile. AFM-based nanometer resolution velocimetry confirms that the drag-velocity relationship for the whisker remains consistent over a wide range of shear values and appears to successfully resolve submicron scale flows, which are beyond the limits of conventional PIV measurements.

  2. On the molecular interaction between albumin and ibuprofen: An AFM and QCM-D study.

    PubMed

    Eleta-Lopez, Aitziber; Etxebarria, Juan; Reichardt, Niels-Christian; Georgieva, Radostina; Bäumler, Hans; Toca-Herrera, José L

    2015-10-01

    The adsorption of proteins on surfaces often results in a change of their structural behavior and consequently, a loss of bioactivity. One experimental method to study interactions on a molecular level is single molecular force spectroscopy that permits to measure forces down to the pico-newton range. In this work, the binding force between human serum albumin (HSA), covalently immobilized on glutaraldehyde modified gold substrates, and ibuprofen sodium salt was studied by means of single molecular force spectroscopy. First of all, a protocol was established to functionalize atomic force microscopy (AFM) tips with ibuprofen. The immobilization protocol was additionally tested by quartz crystal microbalance with dissipation (QCM-D) and contact angle measurements. AFM was used to characterize the adsorption of HSA on gold substrates, which lead to a packed monolayer of thickness slightly lower than the reported value in solution. Finally, single molecule spectroscopy results were used to characterize the binding force between albumin and ibuprofen and calculate the distance of the transition state (0.6 nm) and the dissociation rate constant (0.055 s(-1)). The results might indicate that part of the adsorbed protein still preserves its functionality upon adsorption. PMID:26218522

  3. Atomic Force Microscopy Application in Biological Research: A Review Study

    PubMed Central

    Vahabi, Surena; Nazemi Salman, Bahareh; Javanmard, Anahita

    2013-01-01

    Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, including measuring friction, adhesion forces and viscoelastic properties as well as determining the Young modulus and imaging magnetic or electrostatic properties. The AFM technique can analyze any kind of samples such as polymers, adsorbed molecules, films or fibers, and powders in the air whether in a controlled atmosphere or in a liquid medium. In the past decade, the AFM has emerged as a powerful tool to obtain the nanostructural details and biomechanical properties of biological samples, including biomolecules and cells. The AFM applications, techniques, and -in particular- its ability to measure forces, are not still familiar to most clinicians. This paper reviews the literature on the main principles of the AFM modality and highlights the advantages of this technique in biology, medicine, and- especially- dentistry. This literature review was performed through E-resources, including Science Direct, PubMed, Blackwell Synergy, Embase, Elsevier, and Scholar Google for the references published between 1985 and 2010. PMID:23825885

  4. Direct visualization of triplex DNA molecular dynamics by fluorescence resonance energy transfer and atomic force microscopy measurements

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Ching; Lin, Po-Yen; Chen, Yen-Fu; Chang, Chia-Seng; Kan, Lou-Sing

    2007-11-01

    We have detected the dynamics of 17-mer DNA triplex dissociation mechanism at the molecular level. Fluorescence resonance energy transfer (FRET) was used as an indicator of intermolecular interaction in nanometer range, whereas atomic force microscopy (AFM) was employed to address single molecule with sub-angstrom precision. The maximum rupture force of DNA triplex was found at pH 4.65, consistent with macroscopic observations. These results indicated that the FRET together with an AFM detection system could be used to reveal the DNA triplex interaction in nanometer scale unambiguously.

  5. Measurement of depletion-induced force in microtubule bundles

    NASA Astrophysics Data System (ADS)

    Hilitski, Fiodar; Ward, Andrew; Dogic, Zvonimir

    2014-03-01

    Microtubule (MT) bundles formed in the presence of non-adsorbing polymers - poly-ethylene glycol (PEG) or Dextran - are widely used in experimental active matter systems. However, many properties of such MT bundles have not been studied experimentally. In this work, we combine optical trapping techniques with an umbrella sampling method in order to measure the depletion force acting on individual microtubule in the axial direction within the bundle. We find depletion force is independent of bundle overlap length and measure its magnitude to be on the order of tens of kB/T μm. We explore the dependence of the depletion force on concentration of depletant (PEG 20K) as well as K+ ions (necessary for screening electrostatic repulsion between MT filaments). We also verify additivity of depletion interaction and confirm that force is increased by a factor of two for three-MT bundles. Additionally, our experimental technique allows us to probe interactions between MTs within the bundle. Experimental data suggests that filaments in the bundle interact only hydrodynamically when depletant concentrations are low enough; however, we observe onset of solid-like friction when osmotic pressure is increased above a certain threshold.

  6. Measuring red blood cell aggregation forces using double optical tweezers.

    PubMed

    Fernandes, Heloise P; Fontes, Adriana; Thomaz, André; Castro, Vagner; Cesar, Carlos L; Barjas-Castro, Maria L

    2013-04-01

    Classic immunohematology approaches, based on agglutination techniques, have been used in manual and automated immunohematology laboratory routines. Red blood cell (RBC) agglutination depends on intermolecular attractive forces (hydrophobic bonds, Van der Walls, electrostatic forces and hydrogen bonds) and repulsive interactions (zeta potential). The aim of this study was to measure the force involved in RBC aggregation using double optical tweezers, in normal serum, in the presence of erythrocyte antibodies and associated to agglutination potentiator solutions (Dextran, low ionic strength solution [LISS] and enzymes). The optical tweezers consisted of a neodymium:yattrium aluminium garnet (Nd:YAG) laser beam focused through a microscope equipped with a minicam, which registered the trapped cell image in a computer where they could be analyzed using a software. For measuring RBC aggregation, a silica bead attached to RBCs was trapped and the force needed to slide one RBC over the other, as a function of the velocities, was determined. The median of the RBC aggregation force measured in normal serum (control) was 1 × 10(-3) (0.1-2.5) poise.cm. The samples analyzed with anti-D showed 2 × 10(-3) (1.0-4.0) poise.cm (p < 0.001). RBC diluted in potentiator solutions (Dextran 0.15%, Bromelain and LISS) in the absence of erythrocyte antibodies, did not present agglutination. High adherence was observed when RBCs were treated with papain. Results are in agreement with the imunohematological routine, in which non-specific results are not observed when using LISS, Dextran and Bromelain. Nevertheless, false positive results are frequently observed in manual and automated microplate analyzer using papain enzyme. The methodology proposed is simple and could provide specific information with the possibility of meansuration regarding RBC interaction. PMID:23402665

  7. Lorentz force velocimetry based on time-of-flight measurements

    NASA Astrophysics Data System (ADS)

    Viré, Axelle; Knaepen, Bernard; Thess, André

    2010-12-01

    Lorentz force velocimetry (LFV) is a contactless technique for the measurement of liquid metal flowrates. It consists of measuring the force acting upon a magnetic system and arising from the interaction between an external magnetic field and the flow of an electrically conducting fluid. In this study, a new design is proposed so as to make the measurement independent of the fluid's electrical conductivity. It is made of one or two coils placed around a circular pipe. The forces produced on each coil are recorded in time as the liquid metal flows through the pipe. It is highlighted that the auto- or cross-correlation of these forces can be used to determine the flowrate. The reliability of the flowmeter is first investigated with a synthetic velocity profile associated with a single vortex ring, which is convected at a constant speed. This configuration is similar to the movement of a solid rod and enables a simple analysis of the flowmeter. Then, the flowmeter is applied to a realistic three-dimensional turbulent flow. In both cases, the influence of the coil radii, coil separation, and sign of the coil-carrying currents is systematically assessed. The study is entirely numerical and uses a second-order finite volume method. Two sets of simulations are performed. First, the equations of motion are solved without accounting for the effect of the magnetic field on the flow (kinematic simulations). Second, the Lorentz force is explicitly added to the momentum balance (dynamic simulations), and the influence of the external magnetic field on the flow is then quantified.

  8. An approach towards 3D sensitive AFM cantilevers

    NASA Astrophysics Data System (ADS)

    Koops, Richard; Fokkema, Vincent

    2014-04-01

    The atomic force microscope (AFM) tapping mode is a highly sensitive local probing technique that is very useful to study and measure surface properties down to the atomic scale. The tapping mode is mostly implemented using the resonance of the first bending mode of the cantilever and therefore provides sensitivity mainly along the direction of this oscillation. Driven by the semiconductor industry, there is an increasing need for accurate measurements of nanoscale structures for side wall characterization by AFM that requires additional sensitivity in the lateral direction. The conventional tapping mode has been augmented by various authors, for example by tilting the cantilever system (Cho et al 2011 Rev. Sci. Instrum. 82 023707) to access the sidewall or using a torsion mode (Dai et al 2011 Meas. Sci. Technol. 22 094009) of the cantilever to provide additional lateral sensitivity. These approaches however trade lateral sensitivity for vertical sensitivity or still lack sensitivity in the remaining lateral direction. We present an approach towards true 3D sensitivity for AFM cantilevers based on simultaneous excitation and optical detection of multiple cantilever resonance modes along three axes. Tuning the excitation of the cantilever to specific frequencies provides a mechanism to select only those cantilever modes that have the desired characteristics. Additionally, cantilever engineering has been used to design and create a substructure within the cantilever that has been optimized for specific resonance behavior around 4 MHz. In contrast to the conventional approach of using a piezo to actuate the cantilever modulation, we present results on photo-thermal excitation using an intensity modulated low-power laser source. By tightly focusing the excitation spot on the cantilever we were able to attain a deflection efficiency of 0.7 nm µW-1 for the first bending mode. The presented approach results in an efficient all optical excitation and deflection detection

  9. Measuring adhesion forces in powder collectives by inertial detachment.

    PubMed

    Wanka, Stefanie; Kappl, Michael; Wolkenhauer, Markus; Butt, Hans-Jürgen

    2013-12-31

    One way of measuring adhesion forces in fine powders is to place the particles on a surface, retract the surface with a high acceleration, and observe their detachment due to their inertia. To induce detachment of micrometer-sized particles, an acceleration in the order of 500,000g is required. We developed a device in which such high acceleration is provided by a Hopkinson bar and measured via laser vibrometry. Using a Hopkinson bar, the fundamental limit of mechanically possible accelerations is reached, since higher values cause material failure. Particle detachment is detected by optical video microscopy. With subsequent automated data evaluation a statistical distribution of adhesion forces is obtained. To validate the method, adhesion forces for ensembles of single polystyrene and silica particles on a polystyrene coated steel surface were measured under ambient conditions. We were able to investigate more than 150 individual particles in one experiment and obtained adhesion values of particles in a diameter range of 3-13 μm. Measured adhesion forces of small particles agreed with values from colloidal probe measurements and theoretical predictions. However, we observe a stronger increase of adhesion for particles with a diameter larger than roughly 7-10 μm. We suggest that this discrepancy is caused by surface roughness and heterogeneity. Large particles adjust and find a stable position on the surface due to their inertia while small particles tend to remain at the position of first contact. The new device will be applicable to study a broad variety of different particle-surface combinations on a routine basis, including strongly cohesive powders like pharmaceutical drugs for treatment of lung diseases. PMID:24320051

  10. Characterizing Cell Mechanics with AFM and Microfluidics

    NASA Astrophysics Data System (ADS)

    Walter, N.; Micoulet, A.; Suresh, S.; Spatz, J. P.

    2007-03-01

    Cell mechanical properties and functionality are mainly determined by the cytoskeleton, besides the cell membrane, the nucleus and the cytosol, and depend on various parameters e.g. surface chemistry and rigidity, surface area and time available for cell spreading, nutrients and drugs provided in the culture medium. Human epithelial pancreatic and mammary cancer cells and their keratin intermediate filaments are the main focus of our work. We use Atomic Force Microscopy (AFM) to study cells adhering to substrates and Microfluidic Channels to probe cells in suspension, respectively. Local and global properties are extracted by varying AFM probe tip size and the available adhesion area for cells. Depth-sensing, instrumented indentation tests with AFM show a clear difference in contact stiffness for cells that are spread of controlled substrates and those that are loosely attached. Microfluidic Channels are utilized in parallel to evaluate cell deformation and ``flow resistance'', which are dependent on channel cross section, flow rate, cell nucleus size and the mechanical properties of cytoskeleton and membrane. The results from the study are used to provide some broad and quantitative assessments of the connections between cellular/subcellular mechanics and biochemical origins of disease states.

  11. Compact cantilever force probe for plasma pressure measurements

    SciTech Connect

    Nedzelskiy, I. S.; Silva, C.; Fernandes, H.; Duarte, P.; Varandas, C. A. F.

    2007-12-15

    A simple, compact cantilever force probe (CFP) has been developed for plasma pressure measurements. It is based on the pull-in phenomenon well known in microelectromechanical-system electrostatic actuators. The probe consists of a thin (25 {mu}m) titanium foil cantilever (38 mm of length and 14 mm of width) and a fixed electrode separated by a 0.75 mm gap. The probe is shielded by brass box and enclosed into boron nitride housing with a 9 mm diameter window for exposing part of cantilever surface to the plasma. When the voltage is applied between the cantilever and the electrode, an attractive electrostatic force is counterbalanced by cantilever restoring spring force. At some threshold (pull-in) voltage the system becomes unstable and the cantilever abruptly pulls toward the fixed electrode until breakdown occurs between them. The threshold voltage is sensitive to an additional externally applied force, while a simple detection of breakdown occurrence can be used to measure that threshold voltage value. The sensitivity to externally applied forces obtained during calibration is 0.28 V/{mu}N (17.8 V/Pa for pressure). However, the resolution of the measurements is {+-}0.014 mN ({+-}0.22 Pa) due to the statistical scattering in measured pull-in voltages. The diagnostic temporal resolution is {approx}10 ms, being determined by the dynamics of pull-in process. The probe has been tested in the tokamak ISTTOK edge plasma, and a plasma force of {approx}0.07 mN (plasma pressure {approx}1.1 Pa) has been obtained near the leading edge of the limiter. This value is in a reasonable agreement with the estimations using local plasma parameters measured by electrical probes. The use of the described CFP is limited by a heat flux of Q{approx}10{sup 6} W/m{sup 2} due to uncontrollable rise of the cantilever temperature ({delta}T{approx}20 deg. C) during CFP response time.

  12. Dynamic Forces in Spur Gears - Measurement, Prediction, and Code Validation

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Townsend, Dennis P.; Rebbechi, Brian; Lin, Hsiang Hsi

    1996-01-01

    Measured and computed values for dynamic loads in spur gears were compared to validate a new version of the NASA gear dynamics code DANST-PC. Strain gage data from six gear sets with different tooth profiles were processed to determine the dynamic forces acting between the gear teeth. Results demonstrate that the analysis code successfully simulates the dynamic behavior of the gears. Differences between analysis and experiment were less than 10 percent under most conditions.

  13. Development of Field Excavator with Embedded Force Measurement

    NASA Technical Reports Server (NTRS)

    Johnson, K.; Creager, C.; Izadnegahdar, A.; Bauman, S.; Gallo, C.; Abel, P.

    2012-01-01

    A semi-intelligent excavation mechanism was developed for use with the NASA-built Centaur 2 rover prototype. The excavator features a continuously rotatable large bucket supported between two parallel arms, both of which share a single pivot axis near the excavator base attached to the rover. The excavator is designed to simulate the collection of regolith, such as on the Moon, and to dump the collected soil into a hopper up to one meter tall for processing to extract oxygen. Because the vehicle can be autonomous and the terrain is generally unknown, there is risk of damaging equipment or using excessive power when attempting to extract soil from dense or rocky terrain. To minimize these risks, it is critical for the rover to sense the digging forces and adjust accordingly. It is also important to understand the digging capabilities and limitations of the excavator. This paper discusses the implementation of multiple strain gages as an embedded force measurement system in the excavator's arms. These strain gages can accurately measure and resolve multi-axial forces on the excavator. In order to validate these sensors and characterize the load capabilities, a series of controlled excavation tests were performed at Glenn Research Center with the excavator at various depths and cut angles while supported by a six axis load cell. The results of these tests are both compared to a force estimation model and used for calibration of the embedded strain gages. In addition, excavation forces generated using two different types of bucket edge (straight vs. with teeth) were compared.

  14. Taking nanomedicine teaching into practice with atomic force microscopy and force spectroscopy.

    PubMed

    Carvalho, Filomena A; Freitas, Teresa; Santos, Nuno C

    2015-12-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic force microscope by performing AFM scanning images of human blood cells and force spectroscopy measurements of the fibrinogen-platelet interaction. Since the beginning of this course, in 2008, the overall rating by the students was 4.7 (out of 5), meaning a good to excellent evaluation. Students were very enthusiastic and produced high-quality AFM images and force spectroscopy data. The implementation of the hands-on AFM course was a success, giving to the students the opportunity of contact with a technique that has a wide variety of applications on the nanomedicine field. In the near future, nanomedicine will have remarkable implications in medicine regarding the definition, diagnosis, and treatment of different diseases. AFM enables students to observe single molecule interactions, enabling the understanding of molecular mechanisms of different physiological and pathological processes at the nanoscale level. Therefore, the introduction of nanomedicine courses in bioscience and medical school curricula is essential. PMID:26628660

  15. Accurate spring constant calibration for very stiff atomic force microscopy cantilevers

    SciTech Connect

    Grutzik, Scott J.; Zehnder, Alan T.; Gates, Richard S.; Gerbig, Yvonne B.; Smith, Douglas T.; Cook, Robert F.

    2013-11-15

    There are many atomic force microscopy (AFM) applications that rely on quantifying the force between the AFM cantilever tip and the sample. The AFM does not explicitly measure force, however, so in such cases knowledge of the cantilever stiffness is required. In most cases, the forces of interest are very small, thus compliant cantilevers are used. A number of methods have been developed that are well suited to measuring low stiffness values. However, in some cases a cantilever with much greater stiffness is required. Thus, a direct, traceable method for calibrating very stiff (approximately 200 N/m) cantilevers is presented here. The method uses an instrumented and calibrated nanoindenter to determine the stiffness of a reference cantilever. This reference cantilever is then used to measure the stiffness of a number of AFM test cantilevers. This method is shown to have much smaller uncertainty than previously proposed methods. An example application to fracture testing of nanoscale silicon beam specimens is included.

  16. Physical properties of polyacrylamide gels probed by AFM and rheology

    NASA Astrophysics Data System (ADS)

    Abidine, Yara; Laurent, Valérie M.; Michel, Richard; Duperray, Alain; Iulian Palade, Liviu; Verdier, Claude

    2015-02-01

    Polymer gels have been shown to behave as viscoelastic materials but only a small amount of data is usually provided in the glass transition. In this paper, the dynamic moduli G\\prime and G\\prime\\prime of polyacrylamide hydrogels are investigated using both an AFM in contact force modulation mode and a classical rheometer. The validity is shown by the matching of the two techniques. Measurements are carried out on gels of increasing polymer concentration in a wide frequency range. A model based on fractional derivatives is successfully used, covering the whole frequency range. G\\text{N}0 , the plateau modulus, as well as several other parameters are obtained at low frequencies. The model also predicts the slope a of both moduli in the glass transition, and a transition frequency f\\text{T} is introduced to separate the gel-like behavior with the glassy state. Its variation with polymer content c gives a dependence f\\text{T}∼ c1.6 , in good agreement with previous theories. Therefore, the AFM data provides new information on the physics of polymer gels.

  17. A scanning force microscope for simultaneous force and patch-clamp measurements on living cell tissues

    NASA Astrophysics Data System (ADS)

    Langer, M. G.; Öffner, W.; Wittmann, H.; Flösser, H.; Schaar, H.; Häberle, W.; Pralle, A.; Ruppersberg, J. P.; Hörber, J. K. H.

    1997-06-01

    For the investigation of mechanosensitive ion channels of living cells it is of great interest to apply very local forces in the piconewton range and to measure, simultaneously, ion currents down to 1 pA. Scanning force microscopy (SFM) is a suitable technique, that allows the application of such small forces with a lateral resolution in the range of 10 nm. We developed a novel type of experimental setup, because no existing SFM, home built or commercial, allows a simultaneous investigation of ion currents and mechanical properties of living cells. The construction consists of a SFM that is combined with an upright infrared differential interference contrast (DIC) video microscope and a conventional patch-clamp setup. Instead of the object, the force sensor is scanned to prevent relative movements between the patch pipette and the patched cell. The deflection of the SFM cantilever is detected with the so-called optical deflection method through the objective of the optical microscope. In opposite to common optical setups the laser beam was not focused on the force sensor. The presented optic creates a parallel laser beam between the objective and the SFM cantilever, which allows a vertical displacement of the sensor without any changes of the detector signal. For the three-dimensional positioning of the specimen chamber a two-axis translation stage including a vertical piezoelectric translation device was developed. The SFM tip is fixed on a combined lateral and vertical translation stage including a piezoelectric tube scanner for three-dimensional fine positioning. Thus the instrument enables an easy approach of the SFM tip to any optically identified cell structure. The head stage of the patch-clamp electronics and the patch pipette are directly fixed on the specimen stage. This prevents relative movements between patched cells and patch pipette during the approach to the SFM tip. The three-axis positioning of the patch pipette is done by a compact hydraulic

  18. Single molecule force measurements of perlecan/HSPG2: A key component of the osteocyte pericellular matrix.

    PubMed

    Wijeratne, Sithara S; Martinez, Jerahme R; Grindel, Brian J; Frey, Eric W; Li, Jingqiang; Wang, Liyun; Farach-Carson, Mary C; Kiang, Ching-Hwa

    2016-03-01

    Perlecan/HSPG2, a large, monomeric heparan sulfate proteoglycan (HSPG), is a key component of the lacunar canalicular system (LCS) of cortical bone, where it is part of the mechanosensing pericellular matrix (PCM) surrounding the osteocytic processes and serves as a tethering element that connects the osteocyte cell body to the bone matrix. Within the pericellular space surrounding the osteocyte cell body, perlecan can experience physiological fluid flow drag force and in that capacity function as a sensor to relay external stimuli to the osteocyte cell membrane. We previously showed that a reduction in perlecan secretion alters the PCM fiber composition and interferes with bone's response to a mechanical loading in vivo. To test our hypothesis that perlecan core protein can sustain tensile forces without unfolding under physiological loading conditions, atomic force microscopy (AFM) was used to capture images of perlecan monomers at nanoscale resolution and to perform single molecule force measurement (SMFMs). We found that the core protein of purified full-length human perlecan is of suitable size to span the pericellular space of the LCS, with a measured end-to-end length of 170±20 nm and a diameter of 2-4 nm. Force pulling revealed a strong protein core that can withstand over 100 pN of tension well over the drag forces that are estimated to be exerted on the individual osteocyte tethers. Data fitting with an extensible worm-like chain model showed that the perlecan protein core has a mean elastic constant of 890 pN and a corresponding Young's modulus of 71 MPa. We conclude that perlecan has physical properties that would allow it to act as a strong but elastic tether in the LCS. PMID:26546708

  19. AFM tip characterization by using FFT filtered images of step structures.

    PubMed

    Yan, Yongda; Xue, Bo; Hu, Zhenjiang; Zhao, Xuesen

    2016-01-01

    The measurement resolution of an atomic force microscope (AFM) is largely dependent on the radius of the tip. Meanwhile, when using AFM to study nanoscale surface properties, the value of the tip radius is needed in calculations. As such, estimation of the tip radius is important for analyzing results taken using an AFM. In this study, a geometrical model created by scanning a step structure with an AFM tip was developed. The tip was assumed to have a hemispherical cone shape. Profiles simulated by tips with different scanning radii were calculated by fast Fourier transform (FFT). By analyzing the influence of tip radius variation on the spectra of simulated profiles, it was found that low-frequency harmonics were more susceptible, and that the relationship between the tip radius and the low-frequency harmonic amplitude of the step structure varied monotonically. Based on this regularity, we developed a new method to characterize the radius of the hemispherical tip. The tip radii estimated with this approach were comparable to the results obtained using scanning electron microscope imaging and blind reconstruction methods. PMID:26517548

  20. Radial force development during root growth measured by photoelasticity

    NASA Astrophysics Data System (ADS)

    Kolb, Evelyne; Hartmann, Christian; Genet, Patricia

    2012-02-01

    The mechanical and topological properties of a soil like the global porosity and the distribution of void sizes greatly affect the development of a plant root, which in turn affects the shoot development. In particular, plant roots growing in heterogeneous medium like sandy soils or cracked substrates have to adapt their morphology and exert radial forces depending on the pore size in which they penetrate. We propose a model experiment in which a pivot root (chick-pea seeds) of millimetric diameter has to grow in a size-controlled gap δ (δ ranging 0.5-2.3 mm) between two photoelastic grains. By time-lapse imaging, we continuously monitored the root growth and the development of optical fringes in the photoelastic neighbouring grains when the root enters the gap. Thus we measured simultaneously and in situ the root morphological changes (length and diameter growth rates, circumnutation) as well as the radial forces the root exerts. Radial forces were increasing in relation with gap constriction and experiment duration but a levelling of the force was not observed, even after 5 days and for narrow gaps. The inferred mechanical stress was consistent with the turgor pressure of compressed cells. Therefore our set-up could be a basis for testing mechanical models of cellular growth.