Sample records for afm ordering temperature

  1. Temperature-Controlled High-Speed AFM: Real-Time Observation of Ripple Phase Transitions.

    PubMed

    Takahashi, Hirohide; Miyagi, Atsushi; Redondo-Morata, Lorena; Scheuring, Simon

    2016-11-01

    With nanometer lateral and Angstrom vertical resolution, atomic force microscopy (AFM) has contributed unique data improving the understanding of lipid bilayers. Lipid bilayers are found in several different temperature-dependent states, termed phases; the main phases are solid and fluid phases. The transition temperature between solid and fluid phases is lipid composition specific. Under certain conditions some lipid bilayers adopt a so-called ripple phase, a structure where solid and fluid phase domains alternate with constant periodicity. Because of its narrow regime of existence and heterogeneity ripple phase and its transition dynamics remain poorly understood. Here, a temperature control device to high-speed atomic force microscopy (HS-AFM) to observe dynamics of phase transition from ripple phase to fluid phase reversibly in real time is developed and integrated. Based on HS-AFM imaging, the phase transition processes from ripple phase to fluid phase and from ripple phase to metastable ripple phase to fluid phase could be reversibly, phenomenologically, and quantitatively studied. The results here show phase transition hysteresis in fast cooling and heating processes, while both melting and condensation occur at 24.15 °C in quasi-steady state situation. A second metastable ripple phase with larger periodicity is formed at the ripple phase to fluid phase transition when the buffer contains Ca 2+ . The presented temperature-controlled HS-AFM is a new unique experimental system to observe dynamics of temperature-sensitive processes at the nanoscopic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. BOREAS AFM-06 Mean Temperature Profile Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides temperature profiles at 15 heights, containing the variables of virtual temperature, vertical velocity, the speed of sound, and w-bar. The data are stored in tabular ASCII files. The mean temperature profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  3. Room-temperature antiferromagnetic memory resistor.

    PubMed

    Marti, X; Fina, I; Frontera, C; Liu, Jian; Wadley, P; He, Q; Paull, R J; Clarkson, J D; Kudrnovský, J; Turek, I; Kuneš, J; Yi, D; Chu, J-H; Nelson, C T; You, L; Arenholz, E; Salahuddin, S; Fontcuberta, J; Jungwirth, T; Ramesh, R

    2014-04-01

    The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets.

  4. Observation of antiferromagnetic order collapse in the pressurized insulator LaMnPO

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Simonson, Jack; Sun, Liling; Wu, Qi; Guo, Peiwen; Zhang, Chao; Gu, Dachun; Kotliar, Gabriel; Aronson, Meigan; Zhao, Zhongxian

    2014-03-01

    The emergence of superconductivity in the iron pnictide or cuprate high temperature superconductors usually accompanies the suppression of a long-ranged antiferromagnetic (AFM) order state in a corresponding parent compound by doping or pressurizing. A great deal of effort by doping has been made to find superconductivity in Mn-based compounds, which are thought to bridge the gap between the two families of high temperature superconductors, but the AFM order was not successfully suppressed. Here we report the first observations of the pressure-induced elimination of long-ranged AFM order at ~ 34 GPa and a crossover from an AFM insulating to an AFM metallic state at ~ 20 GPa in LaMnPO single crystals that are iso-structural to the LaFeAsO superconductor by in-situ high pressure resistance and ac susceptibility measurements. These findings are of importance to explore potential superconductivity in Mn-based compounds and to shed new light on the underlying mechanism of high temperature superconductivity.

  5. Observation of antiferromagnetic order collapse in the pressurized insulator LaMnPO

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Simonson, J. W.; Sun, Liling; Wu, Qi; Gao, Peiwen; Zhang, Chao; Gu, Dachun; Kotliar, Gabriel; Aronson, Meigan; Zhao, Zhongxian

    2013-08-01

    The emergence of superconductivity in the iron pnictide or cuprate high temperature superconductors usually accompanies the suppression of a long-ranged antiferromagnetic (AFM) order state in a corresponding parent compound by doping or pressurizing. A great deal of effort by doping has been made to find superconductivity in Mn-based compounds, which are thought to bridge the gap between the two families of high temperature superconductors, but the AFM order was not successfully suppressed. Here we report the first observations of the pressure-induced elimination of long-ranged AFM order at ~ 34 GPa and a crossover from an AFM insulating to an AFM metallic state at ~ 20 GPa in LaMnPO single crystals that are iso-structural to the LaFeAsO superconductor by in-situ high pressure resistance and ac susceptibility measurements. These findings are of importance to explore potential superconductivity in Mn-based compounds and to shed new light on the underlying mechanism of high temperature superconductivity.

  6. Observation of antiferromagnetic order collapse in the pressurized insulator LaMnPO.

    PubMed

    Guo, Jing; Simonson, J W; Sun, Liling; Wu, Qi; Gao, Peiwen; Zhang, Chao; Gu, Dachun; Kotliar, Gabriel; Aronson, Meigan; Zhao, Zhongxian

    2013-01-01

    The emergence of superconductivity in the iron pnictide or cuprate high temperature superconductors usually accompanies the suppression of a long-ranged antiferromagnetic (AFM) order state in a corresponding parent compound by doping or pressurizing. A great deal of effort by doping has been made to find superconductivity in Mn-based compounds, which are thought to bridge the gap between the two families of high temperature superconductors, but the AFM order was not successfully suppressed. Here we report the first observations of the pressure-induced elimination of long-ranged AFM order at ~ 34 GPa and a crossover from an AFM insulating to an AFM metallic state at ~ 20 GPa in LaMnPO single crystals that are iso-structural to the LaFeAsO superconductor by in-situ high pressure resistance and ac susceptibility measurements. These findings are of importance to explore potential superconductivity in Mn-based compounds and to shed new light on the underlying mechanism of high temperature superconductivity.

  7. [AFM fishing of proteins under impulse electric field].

    PubMed

    Ivanov, Yu D; Pleshakova, T O; Malsagova, K A; Kaysheva, A L; Kopylov, A T; Izotov, A A; Tatur, V Yu; Vesnin, S G; Ivanova, N D; Ziborov, V S; Archakov, A I

    2016-05-01

    A combination of (atomic force microscopy)-based fishing (AFM-fishing) and mass spectrometry allows to capture protein molecules from solutions, concentrate and visualize them on an atomically flat surface of the AFM chip and identify by subsequent mass spectrometric analysis. In order to increase the AFM-fishing efficiency we have applied pulsed voltage with the rise time of the front of about 1 ns to the AFM chip. The AFM-chip was made using a conductive material, highly oriented pyrolytic graphite (HOPG). The increased efficiency of AFM-fishing has been demonstrated using detection of cytochrome b5 protein. Selection of the stimulating pulse with a rise time of 1 ns, corresponding to the GHz frequency range, by the effect of intrinsic emission from water observed in this frequency range during water injection into the cell.

  8. Improved AFM Mapping of ICF Target Surfaces

    NASA Astrophysics Data System (ADS)

    Olson, D. K.; Drake, T.; Frey, D.; Huang, H.; Stephens, R. B.

    2003-10-01

    Targets for Inertial Confinement Fusion (ICF) research are made from spherical shells with very strict requirements on surface smoothness. Hydrodynamic instabilities are amplified by the presence of surface defects, greatly reducing the gain of ICF targets. Sub-micron variations in the surface can be examined using an Atomic Force Microscope. The current sphere mapping assembly at General Atomics is designed to trace near the equator of a rotating sphere under the AFM head. Spheres are traced on three mutually orthogonal planes. The ˜10 mm piezo-electric actuator range limits how far off the equator we can scan spheres of millimeter diameter. Because only a small fraction of the target's surface can be covered, localized high-mode defects are difficult to detect. In order to meet the needs of ICF research, we need to scan more surface area of the sphere with the AFM. By integrating an additional stepping motor to the sphere mapping assembly, we will be able to recenter the piezo driver of the AFM while mapping. This additional ability allows us to increase the amount of the sphere's surface we are able to scan with the AFM by extending the range of the AFM from the sphere's equator.

  9. Molecular Dynamic Simulations of Interaction of an AFM Probe with the Surface of an SCN Sample

    NASA Technical Reports Server (NTRS)

    Bune, Adris; Kaukler, William; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Molecular dynamic (MD) simulations is conducted in order to estimate forces of probe-substrate interaction in the Atomic Force Microscope (AFM). First a review of available molecular dynamic techniques is given. Implementation of MD simulation is based on an object-oriented code developed at the University of Delft. Modeling of the sample material - succinonitrile (SCN) - is based on the Lennard-Jones potentials. For the polystyrene probe an atomic interaction potential is used. Due to object-oriented structure of the code modification of an atomic interaction potential is straight forward. Calculation of melting temperature is used for validation of the code and of the interaction potentials. Various fitting parameters of the probe-substrate interaction potentials are considered, as potentials fitted to certain properties and temperature ranges may not be reliable for the others. This research provides theoretical foundation for an interpretation of actual measurements of an interaction forces using AFM.

  10. High-field magnetoconductance in La-Sr manganites of FM and AFM ground states

    NASA Astrophysics Data System (ADS)

    Jirák, Zdeněk; Kaman, Ondřej; Knížek, Karel; Levinský, Petr; Míšek, Martin; Veverka, Pavel; Hejtmánek, Jiří

    2018-06-01

    Large-grain La1-xSrxMnO3 ceramic samples of compositions x = 0.45 and 0.55, representing the ferromagnetic (FM) and A-type antiferromagnetic (AFM) ground states, were produced via classical sintering at 1500 °C of cold-pressed sol-gel prepared single-phase nanoparticles. Using the same precursors, nanogranular forms of both manganite ceramics were prepared by fast spark plasma sintering at low temperature of 900 °C, which limits the growth of crystal grains. The magnetotransport of both the bulk and nanogranular forms was investigated in a broad range of magnetic fields up to 130 kOe and analyzed on the basis of detailed magnetic measurements. Both the large-grain and nanogranular systems with x = 0.45, possessing a pure FM state with similar Curie tempereature TC ≈ 345 K), show nearly the same conductivity enhancement in external fields when expressed relatively to the zero-field values. This positive magnetoconductance (MC) can be separated into two terms: (i) the hysteretic low-field MC that reflects the field-induced orientation of magnetic moments of individual grains, and (ii) the high-field MC that depends linearly on external field. In the case of large-grain ceramics with x = 0.55, a partially ordered FM state formed below TC = 264 K is replaced by pure A-type AFM ground state below 204 K. This A-type AFM state is characterized by positive magnetoconductance that is essentially of quadratic dependence on external field in the investigated range up to 130 kOe. On contrary, the nanogranular product with x = 0.55 exhibits a mixed FM/AFM state at low temperatures, and, as a consequence, its magnetotransport combines the features of FM and A-type AFM systems, in which the quadratic term is much enhanced and clearly dominates at high fields. For interpretation of observed behaviors, the theory of grain-boundary tunneling is revisited.

  11. Simultaneous noncontact AFM and STM of Ag:Si(111)-(3×3)R30∘

    NASA Astrophysics Data System (ADS)

    Sweetman, Adam; Stannard, Andrew; Sugimoto, Yoshiaki; Abe, Masayuki; Morita, Seizo; Moriarty, Philip

    2013-02-01

    The Ag:Si(111)-(3×3)R30∘ surface structure has attracted considerable debate concerning interpretation of scanning tunneling microscope (STM) and noncontact atomic force microscope (NC-AFM) images. In particular, the accepted interpretation of atomic resolution images in NC-AFM has been questioned by theoretical and STM studies. In this paper, we use combined NC-AFM and STM to conclusively show that the inequivalent trimer (IET) configuration best describes the surface ground state. Thermal-averaging effects result in a honeycomb-chained-trimer (HCT) appearance at room temperature, in contrast to studies suggesting that the IET configuration remains stable at higher temperatures [Zhang, Gustafsson, and Johansson, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.74.201304 74, 201304(R) (2006) and J. Phys.: Conf. Ser.1742-658810.1088/1742-6596/61/1/264 61, 1336 (2007)]. We also comment on results obtained at an intermediate temperature that suggest an intriguing difference between the imaging mechanisms of NC-AFM and STM on structurally fluctuating samples.

  12. Tip Characterization Method using Multi-feature Characterizer for CD-AFM

    PubMed Central

    Orji, Ndubuisi G.; Itoh, Hiroshi; Wang, Chumei; Dixson, Ronald G.; Walecki, Peter S.; Schmidt, Sebastian W.; Irmer, Bernd

    2016-01-01

    In atomic force microscopy (AFM) metrology, the tip is a key source of uncertainty. Images taken with an AFM show a change in feature width and shape that depends on tip geometry. This geometric dilation is more pronounced when measuring features with high aspect ratios, and makes it difficult to obtain absolute dimensions. In order to accurately measure nanoscale features using an AFM, the tip dimensions should be known with a high degree of precision. We evaluate a new AFM tip characterizer, and apply it to critical dimension AFM (CD-AFM) tips used for high aspect ratio features. The characterizer is made up of comb-shaped lines and spaces, and includes a series of gratings that could be used as an integrated nanoscale length reference. We also demonstrate a simulation method that could be used to specify what range of tip sizes and shapes the characterizer can measure. Our experiments show that for non re-entrant features, the results obtained with this characterizer are consistent to 1 nm with the results obtained by using widely accepted but slower methods that are common practice in CD-AFM metrology. A validation of the integrated length standard using displacement interferometry indicates a uniformity of better than 0.75%, suggesting that the sample could be used as highly accurate and SI traceable lateral scale for the whole evaluation process. PMID:26720439

  13. Scanning hall probe microscopy (SHPM) using quartz crystal AFM feedback.

    PubMed

    Dede, M; Urkmen, K; Girişen, O; Atabak, M; Oral, A; Farrer, I; Ritchie, D

    2008-02-01

    Scanning Hall Probe Microscopy (SHPM) is a quantitative and non-invasive technique for imaging localized surface magnetic field fluctuations such as ferromagnetic domains with high spatial and magnetic field resolution of approximately 50 nm and 7 mG/Hz(1/2) at room temperature. In the SHPM technique, scanning tunneling microscope (STM) or atomic force microscope (AFM) feedback is used to keep the Hall sensor in close proximity of the sample surface. However, STM tracking SHPM requires conductive samples; therefore the insulating substrates have to be coated with a thin layer of gold. This constraint can be eliminated with the AFM feedback using sophisticated Hall probes that are integrated with AFM cantilevers. However it is very difficult to micro fabricate these sensors. In this work, we have eliminated the difficulty in the cantilever-Hall probe integration process, just by gluing a Hall Probe chip to a quartz crystal tuning fork force sensor. The Hall sensor chip is simply glued at the end of a 32.768 kHz or 100 kHz Quartz crystal, which is used as force sensor. An LT-SHPM system is used to scan the samples. The sensor assembly is dithered at the resonance frequency using a digital Phase Locked Loop circuit and frequency shifts are used for AFM tracking. SHPM electronics is modified to detect AFM topography and the frequency shift, along with the magnetic field image. Magnetic domains and topography of an Iron Garnet thin film crystal, NdFeB demagnetised magnet and hard disk samples are presented at room temperature. The performance is found to be comparable with the SHPM using STM feedback.

  14. Tunable negative thermal expansion related with the gradual evolution of antiferromagnetic ordering in antiperovskite manganese nitrides Ag{sub 1−x}NMn{sub 3+x} (0 ≤ x ≤ 0.6)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, J. C.; Tong, P., E-mail: tongpeng@issp.ac.cn; Lin, S.

    2015-02-23

    The thermal expansion and magnetic properties of antiperovskite manganese nitrides Ag{sub 1−x}NMn{sub 3+x} were reported. The substitution of Mn for Ag effectively broadens the temperature range of negative thermal expansion and drives it to cryogenic temperatures. As x increases, the paramagnetic (PM) to antiferromagnetic (AFM) phase transition temperature decreases. At x ∼ 0.2, the PM-AFM transition overlaps with the AFM to glass-like state transition. Above x = 0.2, two new distinct magnetic transitions were observed: One occurs above room temperature from PM to ferromagnetic (FM), and the other one evolves at a lower temperature (T{sup *}) below which both AFM and FM orderings aremore » involved. Further, electron spin resonance measurement suggests that the broadened volume change near T{sup *} is closely related with the evolution of Γ{sup 5g} AFM ordering.« less

  15. Hydration states of AFm cement phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com; Matschei, Thomas; Scrivener, Karen L.

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFmmore » phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.« less

  16. Magnetic and thermodynamic studies on the charge and spin ordering in the highly-doped La2- xSrxCoO4

    NASA Astrophysics Data System (ADS)

    Yoshida, Masahiro; Ueta, Daichi; Ikeda, Yoichi; Yokoo, Tetsuya; Itoh, Shinichi; Yoshizawa, Hideki

    2018-05-01

    We report magnetic studies on the charge and spin ordering in La2- xSrxCoO4 for x = 1 / 3 , 0.60, and 0.75. The magnetic susceptibility displays a clear cusp which we attribute to a spin glass freezing transition in all three compositions stduied. The behaviors of the evaluated effective magnetic moment and Curie-Weiss temperature indicate that the antiferromagnetic (AFM) interaction among Co2+ ions surrounded by the non-magnetic Co3+ weakens with increasing the doping concentration x. In addition, we have found that the incommensurate AFM short range order is frozen at Tg which is further below the onset temperature TIC of the neutron intensity of the incommensurate AFM correlation.

  17. Radiation pressure excitation of Low Temperature Atomic Force & Magnetic Force Microscope (LT-AFM/MFM) for Imaging

    NASA Astrophysics Data System (ADS)

    Karci, Ozgur; Celik, Umit; Oral, Ahmet; NanoMagnetics Instruments Ltd. Team; Middle East Tech Univ Team

    2015-03-01

    We describe a novel method for excitation of Atomic Force Microscope (AFM) cantilevers by means of radiation pressure for imaging in an AFM for the first time. Piezo excitation is the most common method for cantilever excitation, but it may cause spurious resonance peaks. A fiber optic interferometer with 1310 nm laser was used both to measure the deflection of cantilever and apply a force to the cantilever in a LT-AFM/MFM from NanoMagnetics Instruments. The laser power was modulated at the cantilever`s resonance frequency by a digital Phase Lock Loop (PLL). The force exerted by the radiation pressure on a perfectly reflecting surface by a laser beam of power P is F = 2P/c. We typically modulate the laser beam by ~ 800 μW and obtain 10nm oscillation amplitude with Q ~ 8,000 at 2.5x10-4 mbar. The cantilever's stiffness can be accurately calibrated by using the radiation pressure. We have demonstrated performance of the radiation pressure excitation in AFM/MFM by imaging a hard disk sample between 4-300K and Abrikosov vortex lattice in BSCCO single crystal at 4K to for the first time.

  18. Direct and quantitative AFM measurements of the concentration and temperature dependence of the hydrophobic force law at nanoscopic contacts.

    PubMed

    Stock, Philipp; Utzig, Thomas; Valtiner, Markus

    2015-05-15

    By virtue of its importance for self-organization of biological matter the hydrophobic force law and the range of hydrophobic interactions (HI) have been debated extensively over the last 40 years. Here, we directly measure and quantify the hydrophobic force-distance law over large temperature and concentration ranges. In particular, we study the HI between molecularly smooth hydrophobic self-assembled monolayers, and similarly modified gold-coated AFM tips (radii∼8-50 nm). We present quantitative and direct evidence that the hydrophobic force is both long-ranged and exponential down to distances of about 1-2 nm. Therefore, we introduce a self-consistent radius-normalization for atomic force microscopy data. This approach allows quantitative data fitting of AFM-based experimental data to the recently proposed Hydra-model. With a statistical significance of r(2)⩾0.96 our fitting and data directly reveal an exponential HI decay length of 7.2±1.2 Å that is independent of the salt concentration up to 750 mM. As such, electrostatic screening does not have a significant influence on the HI in electrolyte concentrations ranging from 1 mM to 750 mM. In 1 M solutions the observed instability during approach shifts to longer distances, indicating ion correlation/adsorption effects at high salt concentrations. With increasing temperature the magnitude of HI decreases monotonically, while the range increases slightly. We compare our results to the large body of available literature, and shed new light into range and magnitude of hydrophobic interactions at very close distances and over wide temperature and concentration regimes. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. AFM feature definition for neural cells on nanofibrillar tissue scaffolds.

    PubMed

    Tiryaki, Volkan M; Khan, Adeel A; Ayres, Virginia M

    2012-01-01

    A diagnostic approach is developed and implemented that provides clear feature definition in atomic force microscopy (AFM) images of neural cells on nanofibrillar tissue scaffolds. Because the cellular edges and processes are on the same order as the background nanofibers, this imaging situation presents a feature definition problem. The diagnostic approach is based on analysis of discrete Fourier transforms of standard AFM section measurements. The diagnostic conclusion that the combination of dynamic range enhancement with low-frequency component suppression enhances feature definition is shown to be correct and to lead to clear-featured images that could change previously held assumptions about the cell-cell interactions present. Clear feature definition of cells on scaffolds extends the usefulness of AFM imaging for use in regenerative medicine. © Wiley Periodicals, Inc.

  20. Membrane-based actuation for high-speed single molecule force spectroscopy studies using AFM.

    PubMed

    Sarangapani, Krishna; Torun, Hamdi; Finkler, Ofer; Zhu, Cheng; Degertekin, Levent

    2010-07-01

    Atomic force microscopy (AFM)-based dynamic force spectroscopy of single molecular interactions involves characterizing unbinding/unfolding force distributions over a range of pulling speeds. Owing to their size and stiffness, AFM cantilevers are adversely affected by hydrodynamic forces, especially at pulling speeds >10 microm/s, when the viscous drag becomes comparable to the unbinding/unfolding forces. To circumvent these adverse effects, we have fabricated polymer-based membranes capable of actuating commercial AFM cantilevers at speeds >or=100 microm/s with minimal viscous drag effects. We have used FLUENT, a computational fluid dynamics (CFD) software, to simulate high-speed pulling and fast actuation of AFM cantilevers and membranes in different experimental configurations. The simulation results support the experimental findings on a variety of commercial AFM cantilevers and predict significant reduction in drag forces when membrane actuators are used. Unbinding force experiments involving human antibodies using these membranes demonstrate that it is possible to achieve bond loading rates >or=10(6) pN/s, an order of magnitude greater than that reported with commercial AFM cantilevers and systems.

  1. Large uniaxial magnetostriction with sign inversion at the first order phase transition in the nanolaminated Mn2GaC MAX phase.

    PubMed

    Novoselova, Iuliia P; Petruhins, Andrejs; Wiedwald, Ulf; Ingason, Árni Sigurdur; Hase, Thomas; Magnus, Fridrik; Kapaklis, Vassilios; Palisaitis, Justinas; Spasova, Marina; Farle, Michael; Rosen, Johanna; Salikhov, Ruslan

    2018-02-08

    In 2013, a new class of inherently nanolaminated magnetic materials, the so called magnetic MAX phases, was discovered. Following predictive material stability calculations, the hexagonal Mn 2 GaC compound was synthesized as hetero-epitaxial films containing Mn as the exclusive M-element. Recent theoretical and experimental studies suggested a high magnetic ordering temperature and non-collinear antiferromagnetic (AFM) spin states as a result of competitive ferromagnetic and antiferromagnetic exchange interactions. In order to assess the potential for practical applications of Mn 2 GaC, we have studied the temperature-dependent magnetization, and the magnetoresistive, magnetostrictive as well as magnetocaloric properties of the compound. The material exhibits two magnetic phase transitions. The Néel temperature is T N  ~ 507 K, at which the system changes from a collinear AFM state to the paramagnetic state. At T t  = 214 K the material undergoes a first order magnetic phase transition from AFM at higher temperature to a non-collinear AFM spin structure. Both states show large uniaxial c-axis magnetostriction of 450 ppm. Remarkably, the magnetostriction changes sign, being compressive (negative) above T t and tensile (positive) below the T t . The sign change of the magnetostriction is accompanied by a sign change in the magnetoresistance indicating a coupling among the spin, lattice and electrical transport properties.

  2. Measuring bacterial cells size with AFM

    PubMed Central

    Osiro, Denise; Filho, Rubens Bernardes; Assis, Odilio Benedito Garrido; Jorge, Lúcio André de Castro; Colnago, Luiz Alberto

    2012-01-01

    Atomic Force Microscopy (AFM) can be used to obtain high-resolution topographical images of bacteria revealing surface details and cell integrity. During scanning however, the interactions between the AFM probe and the membrane results in distortion of the images. Such distortions or artifacts are the result of geometrical effects related to bacterial cell height, specimen curvature and the AFM probe geometry. The most common artifact in imaging is surface broadening, what can lead to errors in bacterial sizing. Several methods of correction have been proposed to compensate for these artifacts and in this study we describe a simple geometric model for the interaction between the tip (a pyramidal shaped AFM probe) and the bacterium (Escherichia coli JM-109 strain) to minimize the enlarging effect. Approaches to bacteria immobilization and examples of AFM images analysis are also described. PMID:24031837

  3. Probing ternary solvent effect in high V oc polymer solar cells using advanced AFM techniques

    DOE PAGES

    Li, Chao; Soleman, Mikhael; Lorenzo, Josie; ...

    2016-01-25

    This work describes a simple method to develop a high V oc low band gap PSCs. In addition, two new atomic force microscopy (AFM)-based nanoscale characterization techniques to study the surface morphology and physical properties of the structured active layer are introduced. With the help of ternary solvent processing of the active layer and C 60 buffer layer, a bulk heterojunction PSC with V oc more than 0.9 V and conversion efficiency 7.5% is developed. In order to understand the fundamental properties of the materials ruling the performance of the PSCs tested, AFM-based nanoscale characterization techniques including Pulsed-Force-Mode AFM (PFM-AFM)more » and Mode-Synthesizing AFM (MSAFM) are introduced. Interestingly, MSAFM exhibits high sensitivity for direct visualization of the donor–acceptor phases in the active layer of the PSCs. Lastly, conductive-AFM (cAFM) studies reveal local variations in conductivity in the donor and acceptor phases as well as a significant increase in photocurrent in the PTB7:ICBA sample obtained with the ternary solvent processing.« less

  4. Magnetocaloric effect and negative thermal expansion in hexagonal Fe doped MnNiGe compounds with a magnetoelastic AFM-FM-like transition

    PubMed Central

    Xu, Kun; Li, Zhe; Liu, Enke; Zhou, Haichun; Zhang, Yuanlei; Jing, Chao

    2017-01-01

    We report a detailed study of two successive first-order transitions, including a martensitic transition (MT) and an antiferromagnetic (AFM)-ferromagnetic (FM)-like transition, in Mn1-xFexNiGe (x = 0, 0.06, 0.11) alloys by X-ray diffraction, differential scanning calorimetry, magnetization and linear thermal expansion measurements. Such an AFM-FM-like transition occurring in the martensitic state has seldom been observed in the M(T) curves. The results of Arrott plot and linear relationship of the critical temperature with M2 provide explicit evidence of its first-order magnetoelastic nature. On the other hand, their performances as magnetocaloric and negative thermal expansion materials were characterized. The isothermal entropy change for a field change of 30 kOe reaches an impressive value of −25.8 J/kg K at 203 K for x = 0.11 compared to the other two samples. It demonstrates that the magneto-responsive ability has been significantly promoted since an appropriate amount of Fe doping can break the local Ni-6Mn AFM configuration. Moreover, the Fe-doped samples reveal both the giant negative thermal expansion and near-zero thermal expansion for different temperature ranges. For instance, the average thermal expansion coefficient ā of x = 0.06 reaches −60.7 × 10−6/K over T = 231–338 K and 0.6 × 10−6/K over T = 175–231 K during cooling. PMID:28134355

  5. Finite element modeling of trolling-mode AFM.

    PubMed

    Sajjadi, Mohammadreza; Pishkenari, Hossein Nejat; Vossoughi, Gholamreza

    2018-06-01

    Trolling mode atomic force microscopy (TR-AFM) has overcome many imaging problems in liquid environments by considerably reducing the liquid-resonator interaction forces. The finite element model of the TR-AFM resonator considering the effects of fluid and nanoneedle flexibility is presented in this research, for the first time. The model is verified by ABAQUS software. The effect of installation angle of the microbeam relative to the horizon and the effect of fluid on the system behavior are investigated. Using the finite element model, frequency response curve of the system is obtained and validated around the frequency of the operating mode by the available experimental results, in air and liquid. The changes in the natural frequencies in the presence of liquid are studied. The effects of tip-sample interaction on the excitation of higher order modes of the system are also investigated in air and liquid environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Nano Mechanical Machining Using AFM Probe

    NASA Astrophysics Data System (ADS)

    Mostofa, Md. Golam

    Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces

  7. Estimation of polymer-surface interfacial interaction strength by a contact AFM technique.

    PubMed

    Dvir, H; Jopp, J; Gottlieb, M

    2006-12-01

    Atomic force microscopy (AFM) measurements were employed to assess polymer-surface interfacial interaction strength. The main feature of the measurement is the use of contact-mode AFM as a tool to scratch off the polymer monolayer adsorbed on the solid surface. Tapping-mode AFM was used to determine the depth of the scraped recess. Independent determination of the layer thickness obtained from optical phase interference microscopy (OPIM) confirmed the depth of the AFM scratch. The force required for the complete removal of the polymer layer with no apparent damage to the substrate surface was determined. Polypropylene (PP), low-density polyethylene (PE), and PP-grafted-maleic anhydride (PP-g-ma) were scraped off silane-treated glass slabs, and the strength of surface interaction of the polymer layer was determined. In all cases it was determined that the magnitude of surface interaction force is of the order of van der Waals (VDW) interactions. The interaction strength is influenced either by polymer ability to wet the surface (hydrophobic or hydrophilic interactions) or by hydrogen bonding between the polymer and the surface treatment.

  8. On CD-AFM bias related to probe bending

    NASA Astrophysics Data System (ADS)

    Ukraintsev, V. A.; Orji, N. G.; Vorburger, T. V.; Dixson, R. G.; Fu, J.; Silver, R. M.

    2012-03-01

    Critical Dimension AFM (CD-AFM) is a widely used reference metrology. To characterize modern semiconductor devices, very small and flexible probes, often 15 nm to 20 nm in diameter, are now frequently used. Several recent publications have reported on uncontrolled and significant probe-to-probe bias variation during linewidth and sidewall angle measurements [1,2]. Results obtained in this work suggest that probe bending can be on the order of several nanometers and thus potentially can explain much of the observed CD-AFM probe-to-probe bias variation. We have developed and experimentally tested one-dimensional (1D) and two-dimensional (2D) models to describe the bending of cylindrical probes. An earlier 1D bending model reported by Watanabe et al. [3] was refined. Contributions from several new phenomena were considered, including: probe misalignment, diameter variation near the carbon nanotube tip (CNT) apex, probe bending before snapping, distributed van der Waals-London force, etc. The methodology for extraction of the Hamaker probe-surface interaction energy from experimental probe bending data was developed. To overcome limitations of the 1D model, a new 2D distributed force (DF) model was developed. Comparison of the new model with the 1D single point force (SPF) model revealed about 27 % difference in probe bending bias between the two. A simple linear relation between biases predicted by the 1D SPF and 2D DF models was found. This finding simplifies use of the advanced 2D DF model of probe bending in various CD-AFM applications. New 2D and three-dimensional (3D) CDAFM data analysis software is needed to take full advantage of the new bias correction modeling capabilities.

  9. Probing Cytoskeletal Structures by Coupling Optical Superresolution and AFM Techniques for a Correlative Approach

    PubMed Central

    Chacko, Jenu Varghese; Zanacchi, Francesca Cella; Diaspro, Alberto

    2013-01-01

    In this article, we describe and show the application of some of the most advanced fluorescence superresolution techniques, STED AFM and STORM AFM microscopy towards imaging of cytoskeletal structures, such as microtubule filaments. Mechanical and structural properties can play a relevant role in the investigation of cytoskeletal structures of interest, such as microtubules, that provide support to the cell structure. In fact, the mechanical properties, such as the local stiffness and the elasticity, can be investigated by AFM force spectroscopy with tens of nanometers resolution. Force curves can be analyzed in order to obtain the local elasticity (and the Young's modulus calculation by fitting the force curves from every pixel of interest), and the combination with STED/STORM microscopy integrates the measurement with high specificity and yields superresolution structural information. This hybrid modality of superresolution-AFM working is a clear example of correlative multimodal microscopy. PMID:24027190

  10. Biological Applications of FM-AFM in Liquid Environment

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi; Jarvis, Suzanne P.

    Atomic force microscopy (AFM) was noted for its potential to study biological materials shortly after its first development in 1986 due to its ability to image insulators in liquid environments. The subsequent application of AFM to biology has included lateral characterization via imaging, unraveling of molecules under a tensile load and application of a force either to measure mechanical properties under the tip or to instigate a biochemical response in living cells. To date, the application of frequency modulation AFM (FM-AFM) specifically to biological materials has been limited to relatively few research groups when compared to the extensive application of AFM to biological materials. This is probably due to the perceived complexity of the technique both by researchers in the life sciences and those manufacturing liquid AFMs for biological research. In this chapter, we aim to highlight the advantages of applying the technique to biological materials.

  11. Nano-Bio-Mechanics of Neuroblastoma Cells Using AFM

    NASA Astrophysics Data System (ADS)

    Bastatas, Lyndon; Matthews, James; Kang, Min; Park, Soyeun

    2011-10-01

    We have conducted an in vitro study to determine the elastic moduli of neurobalstoma cell lines using atomic force microscopy. Using a panel of cell lines established from neuroblastoma patients at different stages of disease progress and treatment, we have investigated the differences in elastic moduli during a course of cancer progression and chemotherapy. The cells were grown on the hard substrates that are chemically functionalized to enhance adhesion. We have performed the AFM indentation experiments with different applied forces from the AFM probe. For the purpose of the comparison between cell lines, the indentations were performed only on cell centers. The obtained force-distance curves were analyzed using the Hertz model in order to extract the elastic moduli. We have found that the elastic moduli of human neuroblastoma cells significantly varied during the disease progression. We postulate that the observed difference might be affected by the treatment and chemotherapy.

  12. Adiabatic Compression Sensitivity of AF-M315E

    DTIC Science & Technology

    2015-07-01

    the current work is to expand the knowledge base from previous experiments completed at AFRL for AF-M315E in stainless steel U-tubes at room...addressed, to some degree, with the use of clamps and a large stainless steel plate to dissipate any major vibrations. A large preheated bath of 50:50 v/v...autocatalytic chain decomposition in the propellant. This exothermic decomposition decreases the fume -off initiation temperature of the propellant and its

  13. Force spectroscopy of quadruple H-bonded dimers by AFM: dynamic bond rupture and molecular time-temperature superposition.

    PubMed

    Zou, Shan; Schönherr, Holger; Vancso, G Julius

    2005-08-17

    We report on the application of the time-temperature superposition principle to supramolecular bond-rupture forces on the single-molecule level. The construction of force-loading rate master curves using atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) experiments carried out in situ at different temperatures allows one to extend the limited range of the experimentally accessible loading rates and hence to cross from thermodynamic nonequilibrium to quasi-equilibrium states. The approach is demonstrated for quadruple H-bonded ureido-4[1H]-pyrimidinone (UPy) moieties studied by variable-temperature SMFS in organic media. The unbinding forces of single quadruple H-bonding (UPy)2 complexes, which were identified based on a polymeric spacer strategy, were found to depend on the loading rate in the range of 5 nN/s to 500 nN/s at 301 K in hexadecane. By contrast, these rupture forces were independent of the loading rate from 5 to 200 nN/s at 330 K. These results indicate that the unbinding behavior of individual supramolecular complexes can be directly probed under both thermodynamic nonequilibrium and quasi-equilibrium conditions. On the basis of the time-temperature superposition principle, a master curve was constructed for a reference temperature of 301 K, and the crossover force (from loading-rate independent to -dependent regimes) was determined as approximately 145 pN (at a loading rate of approximately 5.6 nN/s). This approach significantly broadens the accessible loading-rate range and hence provides access to fine details of potential energy landscape of supramolecular complexes based on SMFS experiments.

  14. Interfacial superconductivity in a bi-collinear antiferromagnetically ordered FeTe monolayer on a topological insulator

    NASA Astrophysics Data System (ADS)

    Manna, S.; Kamlapure, A.; Cornils, L.; Hänke, T.; Hedegaard, E. M. J.; Bremholm, M.; Iversen, B. B.; Hofmann, Ph.; Wiebe, J.; Wiesendanger, R.

    2017-01-01

    The discovery of high-temperature superconductivity in Fe-based compounds triggered numerous investigations on the interplay between superconductivity and magnetism, and on the enhancement of transition temperatures through interface effects. It is widely believed that the emergence of optimal superconductivity is intimately linked to the suppression of long-range antiferromagnetic (AFM) order, although the exact microscopic picture remains elusive because of the lack of atomically resolved data. Here we present spin-polarized scanning tunnelling spectroscopy of ultrathin FeTe1-xSex (x=0, 0.5) films on bulk topological insulators. Surprisingly, we find an energy gap at the Fermi level, indicating superconducting correlations up to Tc~6 K for one unit cell FeTe grown on Bi2Te3, in contrast to the non-superconducting bulk FeTe. The gap spatially coexists with bi-collinear AFM order. This finding opens perspectives for theoretical studies of competing orders in Fe-based superconductors and for experimental investigations of exotic phases in superconducting layers on topological insulators.

  15. BOREAS AFM-04 Twin Otter Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    MacPherson, J. Ian; Desjardins, Raymond L.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-4 team used the National Research Council, Canada (NRC) Twin Otter aircraft to make sounding measurements through the boundary layer. These measurements included concentrations of carbon dioxide and ozone, atmospheric pressure, dry bulb temperature, potential temperature, dewpoint temperature, calculated mixing ratio, and wind speed and direction. Aircraft position, heading, and altitude were also recorded. Data were collected at both the Northern Study Area (NSA) and the Southern Study Area (SSA) in 1994 and 1996. These data are stored in tabular ASCII files. The Twin Otter aircraft sounding data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files also are available on a CD-ROM (see document number 20010000884).

  16. Tuning the Curie temperature of L 1 0 ordered FePt thin films through site-specific substitution of Rh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Dongbin; Sun, Cheng-Jun; Chen, Jing-Sheng

    2014-10-14

    In structurally ordered magnetic thin films, the Curie temperature (TC) of ferromagnetic films depends on the exchange integral of the short range ordered neighboring atoms. The exchange integral may be adjusted by controlling elemental substitutional concentration at the lattice site of interest. We show how to control the TC in high anisotropy L10 Fe50Pt50 magnetic thin films by substituting Rh into the Pt site. Rh substitution in L10 FePt modified the local atomic environment and corresponding electronic properties while retaining the ordered L10 phase. The analysis of extended x-ray Absorption Fine Structure (EXAFS) spectra shows that Rh uniformly substitutes formore » Pt in L10 FePt. With 15 at. % of Rh substitution, temperature-dependent magnetic measurements show that the saturation magnetization (Ms) decreases from 1152 emu/cc to 670 emu/cc, the magnetocrystalline anisotropy (Ku) drops from 5×107 erg/cc to 2×107 erg/cc, and TC decreased from 750 to 500 K. A model of antiferromagnetic (AFM) defects caused by controlled Rh substitution of the Pt site, reducing the TC, is proposed to interpret this phenomenon and the validity is further examined by ab initio density functional calculations.« less

  17. Phase transition behaviors of the supported DPPC bilayer investigated by sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM).

    PubMed

    Wu, Heng-Liang; Tong, Yujin; Peng, Qiling; Li, Na; Ye, Shen

    2016-01-21

    The phase transition behaviors of a supported bilayer of dipalmitoylphosphatidyl-choline (DPPC) have been systematically evaluated by in situ sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM). By using an asymmetric bilayer composed of per-deuterated and per-protonated monolayers, i.e., DPPC-d75/DPPC and a symmetric bilayer of DPPC/DPPC, we were able to probe the molecular structural changes during the phase transition process of the lipid bilayer by SFG spectroscopy. It was found that the DPPC bilayer is sequentially melted from the top (adjacent to the solution) to bottom leaflet (adjacent to the substrate) over a wide temperature range. The conformational ordering of the supported bilayer does not decrease (even slightly increases) during the phase transition process. The conformational defects in the bilayer can be removed after the complete melting process. The phase transition enthalpy for the bottom leaflet was found to be approximately three times greater than that for the top leaflet, indicating a strong interaction of the lipids with the substrate. The present SFG and AFM observations revealed similar temperature dependent profiles. Based on these results, the temperature-induced structural changes in the supported lipid bilayer during its phase transition process are discussed in comparison with previous studies.

  18. AFM-porosimetry: density and pore volume measurements of particulate materials.

    PubMed

    Sörensen, Malin H; Valle-Delgado, Juan J; Corkery, Robert W; Rutland, Mark W; Alberius, Peter C

    2008-06-01

    We introduced the novel technique of AFM-porosimetry and applied it to measure the total pore volume of porous particles with a spherical geometry. The methodology is based on using an atomic force microscope as a balance to measure masses of individual particles. Several particles within the same batch were measured, and by plotting particle mass versus particle volume, the bulk density of the sample can be extracted from the slope of the linear fit. The pore volume is then calculated from the densities of the bulk and matrix materials, respectively. In contrast to nitrogen sorption and mercury porosimetry, this method is capable of measuring the total pore volume regardless of pore size distribution and pore connectivity. In this study, three porous samples were investigated by AFM-porosimetry: one ordered mesoporous sample and two disordered foam structures. All samples were based on a matrix of amorphous silica templated by a block copolymer, Pluronic F127, swollen to various degrees with poly(propylene glycol). In addition, the density of silica spheres without a template was measured by two independent techniques: AFM and the Archimedes principle.

  19. Multifrequency AFM: from origins to convergence.

    PubMed

    Santos, Sergio; Lai, Chia-Yun; Olukan, Tuza; Chiesa, Matteo

    2017-04-20

    Since the inception of the atomic force microscope (AFM) in 1986, influential papers have been presented by the community and tremendous advances have been reported. Being able to routinely image conductive and non-conductive surfaces in air, liquid and vacuum environments with nanoscale, and sometimes atomic, resolution, the AFM has long been perceived by many as the instrument to unlock the nanoscale. From exploiting a basic form of Hooke's law to interpret AFM data to interpreting a seeming zoo of maps in the more advanced multifrequency methods however, an inflection point has been reached. Here, we discuss this evolution, from the fundamental dilemmas that arose in the beginning, to the exploitation of computer sciences, from machine learning to big data, hoping to guide the newcomer and inspire the experimenter.

  20. AFM investigation and optical band gap study of chemically deposited PbS thin films

    NASA Astrophysics Data System (ADS)

    Zaman, S.; Mansoor, M.; Abubakar; Asim, M. M.

    2016-08-01

    The interest into deposition of nanocrystalline PbS thin films, the potential of designing and tailoring both the topographical features and the band gap energy (Eg) by controlling growth parameters, has significant technological importance. Nanocrystalline thin films of lead sulfide were grown onto glass substrates by chemical bath deposition (CBD) method. The experiments were carried out by varying deposition temperature. We report on the modification of structural and optical properties as a function of deposition temperature. The morphological changes of the films were analyzed by using SEM and AFM. AFM was also used to calculate average roughness of the films. XRD spectra indicated preferred growth of cubic phase of PbS films in (200) direction with increasing deposition time. Optical properties have been studied by UV-Spectrophotometer. From the diffused reflectance spectra we have calculated the optical Eg shift from 0.649-0.636 eV with increasing deposition time.

  1. MetaRep, an extended CMAS 3D program to visualize mafic (CMAS, ACF-S, ACF-N) and pelitic (AFM-K, AFM-S, AKF-S) projections

    NASA Astrophysics Data System (ADS)

    France, Lydéric; Nicollet, Christian

    2010-06-01

    MetaRep is a program based on our earlier program CMAS 3D. It is developed in MATLAB ® script. MetaRep objectives are to visualize and project major element compositions of mafic and pelitic rocks and their minerals in the pseudo-quaternary projections of the ACF-S, ACF-N, CMAS, AFM-K, AFM-S and AKF-S systems. These six systems are commonly used to describe metamorphic mineral assemblages and magmatic evolutions. Each system, made of four apices, can be represented in a tetrahedron that can be visualized in three dimensions with MetaRep; the four tetrahedron apices represent oxides or combination of oxides that define the composition of the projected rock or mineral. The three-dimensional representation allows one to obtain a better understanding of the topology of the relationships between the rocks and minerals and relations. From these systems, MetaRep can also project data in ternary plots (for example, the ACF, AFM and AKF ternary projections can be generated). A functional interface makes it easy to use and does not require any knowledge of MATLAB ® programming. To facilitate the use, MetaRep loads, from the main interface, data compiled in a Microsoft Excel ™ spreadsheet. Although useful for scientific research, the program is also a powerful tool for teaching. We propose an application example that, by using two combined systems (ACF-S and ACF-N), provides strong confirmation in the petrological interpretation.

  2. High-resolution AFM structure of DNA G-wires in aqueous solution.

    PubMed

    Bose, Krishnashish; Lech, Christopher J; Heddi, Brahim; Phan, Anh Tuân

    2018-05-17

    We investigate the self-assembly of short pieces of the Tetrahymena telomeric DNA sequence d[G 4 T 2 G 4 ] in physiologically relevant aqueous solution using atomic force microscopy (AFM). Wire-like structures (G-wires) of 3.0 nm height with well-defined surface periodic features were observed. Analysis of high-resolution AFM images allowed their classification based on the periodicity of these features. A major species is identified with periodic features of 4.3 nm displaying left-handed ridges or zigzag features on the molecular surface. A minor species shows primarily left-handed periodic features of 2.2 nm. In addition to 4.3 and 2.2 nm ridges, background features with periodicity of 0.9 nm are also observed. Using molecular modeling and simulation, we identify a molecular structure that can explain both the periodicity and handedness of the major G-wire species. Our results demonstrate the potential structural diversity of G-wire formation and provide valuable insight into the structure of higher-order intermolecular G-quadruplexes. Our results also demonstrate how AFM can be combined with simulation to gain insight into biomolecular structure.

  3. AFM 4.0: a toolbox for DNA microarray analysis

    PubMed Central

    Breitkreutz, Bobby-Joe; Jorgensen, Paul; Breitkreutz, Ashton; Tyers, Mike

    2001-01-01

    We have developed a series of programs, collectively packaged as Array File Maker 4.0 (AFM), that manipulate and manage DNA microarray data. AFM 4.0 is simple to use, applicable to any organism or microarray, and operates within the familiar confines of Microsoft Excel. Given a database of expression ratios, AFM 4.0 generates input files for clustering, helps prepare colored figures and Venn diagrams, and can uncover aneuploidy in yeast microarray data. AFM 4.0 should be especially useful to laboratories that do not have access to specialized commercial or in-house software. PMID:11532221

  4. Temperature-dependent and anisotropic optical response of layered Pr0.5Ca1.5MnO4 probed by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Majidi, M. A.; Thoeng, E.; Gogoi, P. K.; Wendt, F.; Wang, S. H.; Santoso, I.; Asmara, T. C.; Handayani, I. P.; van Loosdrecht, P. H. M.; Nugroho, A. A.; Rübhausen, M.; Rusydi, A.

    2013-06-01

    We study the temperature dependence as well as anisotropy of optical conductivity (σ1) in the pseudocubic single crystal Pr0.5Ca1.5MnO4 using spectrocopic ellipsometry. Three transition temperatures are observed and can be linked to charge-orbital (TCO/OO˜320 K), two-dimensional-antiferromagnetic (2D-AFM) (˜200 K), and three-dimensional AFM (TN˜125 K) orderings. Below TCO/OO, σ1 shows a charge-ordering peak (˜0.8 eV) with a significant blue shift as the temperature decreases. Calculations based on a model that incorporates a static Jahn-Teller distortion and assumes the existence of a local charge imbalance between two different sublattices support this assignment and explain the blue shift. This view is further supported by the partial spectral weight analysis showing the onset of optical anisotropy at TCO/OO in the charge-ordering region (0.5-2.5 eV). Interestingly, in the charge-transfer region (2.5-4 eV), the spectral weight shows anomalies around the T2D-AFM that we attribute to the role of oxygen-p orbitals in stabilizing the CE-type magnetic ordering. Our result shows the importance of spin, charge, orbital, and lattice degrees of freedom in this layered manganite.

  5. Doping evolution of spin fluctuations and their peculiar suppression at low temperatures in Ca(Fe 1 -xCox)2As2

    NASA Astrophysics Data System (ADS)

    Sapkota, A.; Das, P.; Böhmer, A. E.; Ueland, B. G.; Abernathy, D. L.; Bud'ko, S. L.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.; McQueeney, R. J.

    2018-05-01

    Results of inelastic neutron scattering measurements are reported for two annealed compositions of Ca(Fe 1 -xCox)2As2,x =0.026 and 0.030, which possess stripe-type antiferromagnetically ordered and superconducting ground states, respectively. In the AFM ground state, well-defined and gapped spin waves are observed for x =0.026 , similar to the parent CaFe2As2 compound. We conclude that the well-defined spin waves are likely to be present for all x corresponding to the AFM state. This behavior is in contrast to the smooth evolution to overdamped spin dynamics observed in Ba(Fe 1 -xCox)2As2 , wherein the crossover corresponds to microscopically coexisting AFM order and SC at low temperature. The smooth evolution is likely absent in Ca(Fe 1 -xCox)2As2 due to the mutual exclusion of AFM ordered and SC states. Overdamped spin dynamics characterize paramagnetism of the x =0.030 sample and high-temperature x =0.026 sample. A sizable loss of magnetic intensity is observed over a wide energy range upon cooling the x =0.030 sample, at temperatures just above and within the superconducting phase. This phenomenon is unique amongst the iron-based superconductors and is consistent with a temperature-dependent reduction in the fluctuating moment. One possible scenario ascribes this loss of moment to a sensitivity to the c -axis lattice parameter in proximity to the nonmagnetic collapsed tetragonal phase and another scenario ascribes the loss to a formation of a pseudogap.

  6. Spin-flop quasi-first order phase transition and putative tricritical point in Gd3Co

    NASA Astrophysics Data System (ADS)

    Samatham, S. Shanmukharao; Barua, Soumendu; Suresh, K. G.

    2017-12-01

    Magnetic nature of Gd3Co is investigated using detailed measurements of temperature and field dependent magnetization. The antiferromagnetic phase is field-instable due to prevailing ferromagnetic exchange correlations above Néel temperature TN ∼ 130K . Below TN , with gradually increasing magnetic fields, the compound undergoes a quasi-first order phase transition from AFM to spin-flop over region and eventually acquires ferromagnetic phase in higher fields. Further the point at which the quasi-first order transition ends and second order transition sets in is the tricritical point, TTCP ∼ 125.6K , HTCP ∼ 4.4kOe .

  7. AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging.

    PubMed

    Dazzi, Alexandre; Prater, Craig B

    2016-12-13

    Atomic force microscopy-based infrared spectroscopy (AFM-IR) is a rapidly emerging technique that provides chemical analysis and compositional mapping with spatial resolution far below conventional optical diffraction limits. AFM-IR works by using the tip of an AFM probe to locally detect thermal expansion in a sample resulting from absorption of infrared radiation. AFM-IR thus can provide the spatial resolution of AFM in combination with the chemical analysis and compositional imaging capabilities of infrared spectroscopy. This article briefly reviews the development and underlying technology of AFM-IR, including recent advances, and then surveys a wide range of applications and investigations using AFM-IR. AFM-IR applications that will be discussed include those in polymers, life sciences, photonics, solar cells, semiconductors, pharmaceuticals, and cultural heritage. In the Supporting Information , the authors provide a theoretical section that reviews the physics underlying the AFM-IR measurement and detection mechanisms.

  8. The effect of pressure and temperature on the magnetic and magnetocaloric properties of an MnNi0.9Ge1.1 alloy

    NASA Astrophysics Data System (ADS)

    Das, S. C.; Mandal, K.; Dutta, P.; Pramanick, S.; Chatterjee, S.

    2018-02-01

    The magnetic and magnetocaloric properties of a self-doped MnNiGe alloy of nominal composition MnNi0.9Ge1.1 have been investigated in ambient as well as in high pressure conditions. It orders ferromagnetically below around 225 K and undergoes first order martensitic phase transition (MPT) to an antiferromagnetic (AFM) martensite phase below 147 K. This self-doping results in a significant decrease in the lattice volume and hence the Mn-Mn intra-layer distance which induces ferromagnetism (FM) in otherwise AFM alloys. MPT affects this FM ordering and the alloy becomes predominantly AFM in nature below the structural transition temperature. The observed values of the magnetocaloric effects (MCE) are reasonably large at the magnetic (-5.5 J kg-1 K-1 for magnetic field changing from 0 to 50 kOe around 210 K) and structural (8.3 J kg-1 K-1 for magnetic field changing from 0 to 50 kOe around 136 K) transition temperatures in ambient condition. MCE is found to decrease with increasing external hydrostatic pressure (P) at MPT region, whilst this external P has vanishingly small effect on MCE around the magnetic transition temperature.

  9. Contact nanomechanical measurements with the AFM

    NASA Astrophysics Data System (ADS)

    Geisse, Nicholas

    2013-03-01

    The atomic force microscope (AFM) has found broad use in the biological sciences largely due to its ability to make measurements on unfixed and unstained samples under liquid. In addition to imaging at multiple spatial scales ranging from micro- to nanometer, AFMs are commonly used as nanomechanical probes. This is pertinent for cell biology, as it has been demonstrated that the geometrical and mechanical properties of the extracellular microenvironment are important in such processes as cancer, cardiovascular disease, muscular dystrophy, and even the control of cell life and death. Indeed, the ability to control and quantify these external geometrical and mechanical parameters arises as a key issue in the field. Because AFM can quantitatively measure the mechanical properties of various biological samples, novel insights to cell function and to cell-substrate interactions are now possible. As the application of AFM to these types of problems is widened, it is important to understand the performance envelope of the technique and its associated data analyses. This talk will discuss the important issues that must be considered when mechanical models are applied to real-world data. Examples of the effect of different model assumptions on our understanding of the measured material properties will be shown. Furthermore, specific examples of the importance of mechanical stimuli and the micromechanical environment to the structure and function of biological materials will be presented.

  10. Applications of AFM for atomic manipulation and spectroscopy

    NASA Astrophysics Data System (ADS)

    Custance, Oscar

    2009-03-01

    Since the first demonstration of atom-by-atom assembly [1], atomic manipulation with scanning tunneling microscopy has yielded stunning realizations in nanoscience. A new exciting panorama has been recently opened with the possibility of manipulating atoms at surfaces using atomic force microscopy (AFM) [2-5]. In this talk, we will present two different approaches that enable patterning structures at semiconductor surfaces by manipulating individual atoms with AFM and at room temperature [2, 3]. We will discuss the physics behind each protocol through the analysis of the measured forces associated with these manipulations [3-5]. Another challenging issue in scanning probe microscopy is the ability to disclose the local chemical composition of a multi-element system at atomic level. Here, we will introduce a single-atom chemical identification method, which is based on detecting the forces between the outermost atom of the AFM tip and the atoms at a surface [6]. We demonstrate this identification procedure on a particularly challenging system, where any discrimination attempt based solely on topographic measurements would be impossible to achieve. [4pt] References: [0pt] [1] D. M. Eigler and E. K. Schweizer, Nature 344, 524 (1990); [0pt] [2] Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, O. Custance and S. Morita, Nature Materials 4, 156 (2005); [0pt] [3] Y. Sugimoto, P. Pou, O. Custance, P. Jelinek, M. Abe, R. Perez and S. Morita, Science 322, 413 (2008); [0pt] [4] Y. Sugimoto, P. Jelinek, P. Pou, M. Abe, S. Morita, R. Perez and O. Custance, Phys. Rev. Lett. 98, 106104 (2007); [0pt] [5] M. Ternes, C. P. Lutz, C. F. Hirjibehedin, F. J. Giessibl and A. J. Heinrich, Science 319, 1066 (2008); [0pt] [6] Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita, and O. Custance, Nature 446, 64 (2007)

  11. Simultaneous AFM and fluorescence imaging: A method for aligning an AFM-tip with an excitation beam using a 2D galvanometer

    NASA Astrophysics Data System (ADS)

    Moores, A. N.; Cadby, A. J.

    2018-02-01

    Correlative fluorescence and atomic force microscopy (AFM) imaging is a highly attractive technique for use in biological imaging, enabling force and mechanical measurements of particular structures whose locations are known due to the specificity of fluorescence imaging. The ability to perform these two measurements simultaneously (rather than consecutively with post-processing correlation) is highly valuable because it would allow the mechanical properties of a structure to be tracked over time as changes in the sample occur. We present an instrument which allows simultaneous AFM and fluorescence imaging by aligning an incident fluorescence excitation beam with an AFM-tip. Alignment was performed by calibrating a 2D galvanometer present in the excitation beam path and using it to reposition the incident beam. Two programs were developed (one manual and one automated) which correlate sample features between the AFM and fluorescence images, calculating the distance required to translate the incident beam towards the AFM-tip. Using this method, we were able to obtain beam-tip alignment (and therefore field-of-view alignment) from an offset of >15 μm to within one micron in two iterations of the program. With the program running alongside data acquisition for real-time feedback between AFM and optical images, this offset was maintained over a time period of several hours. Not only does this eliminate the need to image large areas with both techniques to ensure that fields-of-view overlap, but it also raises the possibility of using this instrument for tip-enhanced fluorescence applications, a technique in which super-resolution images have previously been achieved.

  12. An AFM-SIMS Nano Tomography Acquisition System

    NASA Astrophysics Data System (ADS)

    Swinford, Richard William

    An instrument, adding the capability to measure 3D volumetric chemical composition, has been constructed by me as a member of the Sanchez Nano Laboratory. The laboratory's in situ atomic force microscope (AFM) and secondary ion mass spectrometry systems (SIMS) are functional and integrated as one instrument. The SIMS utilizes a Ga focused ion beam (FIB) combined with a quadrupole mass analyzer. The AFM is comprised of a 6-axis stage, three coarse axes and three fine. The coarse stage is used for placing the AFM tip anywhere inside a (13x13x5 mm3) (xyz) volume. Thus the tip can be moved in and out of the FIB processing region with ease. The planned range for the Z-axis piezo was 60 microm, but was reduced after it was damaged from arc events. The repaired Z-axis piezo is now operated at a smaller nominal range of 18 microm (16.7 microm after pre-loading), still quite respectable for an AFM. The noise floor of the AFM is approximately 0.4 nm Rq. The voxel size for the combined instrument is targeted at 50 nm or larger. Thus 0.4 nm of xyz uncertainty is acceptable. The instrument has been used for analyzing samples using FIB beam currents of 250 pA and 5.75 nA. Coarse tip approaches can take a long time so an abbreviated technique is employed. Because of the relatively long thro of the Z piezo, the tip can be disengaged by deactivating the servo PID. Once disengaged, it can be moved laterally out of the way of the FIB-SIMS using the coarse stage. This instrument has been used to acquire volumetric data on AlTiC using AFM tip diameters of 18.9 nm and 30.6 nm. Acquisition times are very long, requiring multiple days to acquire a 50-image stack. New features to be added include auto stigmation, auto beam shift, more software automation, etc. Longer term upgrades to include a new lower voltage Z-piezo with strain-gauge feedback and a new design to extend the life for the coarse XY nano-positioners. This AFM-SIMS instrument, as constructed, has proven to be a great proof

  13. Application of focused ion beam for the fabrication of AFM probes

    NASA Astrophysics Data System (ADS)

    Kolomiytsev, A. S.; Lisitsyn, S. A.; Smirnov, V. A.; Fedotov, A. A.; Varzarev, Yu N.

    2017-10-01

    The results of an experimental study of the probe tips fabrication for critical-dimension atomic force microscopy (CD-AFM) using the focused ion beam (FIB) induced deposition are presented. Methods of the FIB-induced deposition of tungsten and carbon onto the tip of an AFM probe are studied. Based on the results obtained in the study, probes for the CD-AFM technique with a tip height about 1 μm and radius of 20 nm were created. The formation of CD-AFM probes by FIB-induced deposition allows creating a high efficiency tool for nanotechnology and nanodiagnostics. The use of modified cantilevers allows minimizing the artefacts of AFM images and increasing the accuracy of the relief measurement. The obtained results can be used for fabrication of AFM probes for express monitoring of the technological process in the manufacturing of the elements for micro- and nanoelectronics.

  14. Distribution of blocking temperatures in nano-oxide layers of specular spin valves

    NASA Astrophysics Data System (ADS)

    Ventura, J.; Araujo, J. P.; Sousa, J. B.; Veloso, A.; Freitas, P. P.

    2007-06-01

    Specular spin valves show enhanced giant magnetoresistive (GMR) ratio when compared to other, simpler, spin valve structures. The enhancement of GMR results from specular reflection in nano-oxide layers (NOLs) formed by the partial oxidation of the pinned and free layer. These oxides forming the NOL order antiferromagnetically (AFM) below a temperature T ˜175 K. Here, we study the effects of the pinned layer magnetization and its domain structure on the AFM ordering of the NOL by performing field cooling measurements with different cooling fields (H0). We observe enhanced (reduced) exchange field and magnetoresistive ratio for H0>0(<0), i.e., parallel (antiparallel) to the pinned magnetization. These measurements allowed us to confirm the existence of a wide distribution of blocking temperatures (TB) in the NOL of specular spin valves, having a maximum at T ≈175 K, and extending to NOL regions with TB as low as 15 K.

  15. University of Maryland MRSEC - Facilities: SEM/STM/AFM

    Science.gov Websites

    MRSEC Templates Opportunities Search Home » Facilities » SEM/STM/AFM Shared Experimental Facilities conducting and non conducting samples. The sample stage permits electronic device imaging under operational Specifications: Image Modes - STM, STS, MFM, EFM, SKPM, contact- and non-contact AFM Three Sample Contacts 0.1 nm

  16. Characterization of the interaction between AFM tips and surface nanobubbles.

    PubMed

    Walczyk, Wiktoria; Schönherr, Holger

    2014-06-24

    While the presence of gaseous enclosures observed at various solid-water interfaces, the so-called "surface nanobubles", has been confirmed by many groups in recent years, their formation, properties, and stability have not been convincingly and exhaustively explained. Here we report on an atomic force microscopy (AFM) study of argon nanobubbles on highly oriented pyrolitic graphite (HOPG) in water to elucidate the properties of nanobubble surfaces and the mechanism of AFM tip-nanobubble interaction. In particular, the deformation of the nanobubble-water interface by the AFM tip and the question whether the AFM tip penetrates the nanobubble during scanning were addressed by this combined intermittent contact (tapping) mode and force volume AFM study. We found that the stiffness of nanobubbles was smaller than the cantilever spring constant and comparable with the surface tension of water. The interaction with the AFM tip resulted in severe quasi-linear deformation of the bubbles; however, in the case of tip-bubble attraction, the interface deformed toward the tip. We tested two models of tip-bubble interaction, namely, the capillary force and the dynamic interaction model, and found, depending on the tip properties, good agreement with experimental data. The results showed that the tip-bubble interaction strength and the magnitude of the bubble deformation depend strongly on tip and bubble geometry and on tip and substrate material, and are very sensitive to the presence of contaminations that alter the interfacial tension. In particular, nanobubbles interacted differently with hydrophilic and hydrophobic AFM tips, which resulted in qualitatively and quantitatively different force curves measured on the bubbles in the experiments. To minimize bubble deformation and obtain reliable AFM results, nanobubbles must be measured with a sharp hydrophilic tip and with a cantilever having a very low spring constant in a contamination-free system.

  17. Doping evolution of spin fluctuations and their peculiar suppression at low temperatures in Ca ( Fe 1 – x Co x ) 2 As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapkota, A.; Das, P.; Bohmer, A. E.

    Results of inelastic neutron scattering measurements are reported for two annealed compositions of Ca(Fe 1–xCo x) 2As 2, x = 0.026 and 0.030, which possess stripe-type antiferromagnetically ordered and superconducting ground states, respectively. In the AFM ground state, well-defined and gapped spin waves are observed for x = 0.026, similar to the parent CaFe 2As 2 compound. We conclude that the well-defined spin waves are likely to be present for all x corresponding to the AFM state. This behavior is in contrast to the smooth evolution to overdamped spin dynamics observed in Ba(Fe 1–xCo x) 2As 2, wherein the crossovermore » corresponds to microscopically coexisting AFM order and SC at low temperature. The smooth evolution is likely absent in Ca(Fe 1–xCo x) 2As 2 due to the mutual exclusion of AFM ordered and SC states. Overdamped spin dynamics characterize paramagnetism of the x = 0.030 sample and high-temperature x = 0.026 sample. A sizable loss of magnetic intensity is observed over a wide energy range upon cooling the x = 0.030 sample, at temperatures just above and within the superconducting phase. This phenomenon is unique amongst the iron-based superconductors and is consistent with a temperature-dependent reduction in the fluctuating moment. In conclusion, one possible scenario ascribes this loss of moment to a sensitivity to the c-axis lattice parameter in proximity to the nonmagnetic collapsed tetragonal phase and another scenario ascribes the loss to a formation of a pseudogap.« less

  18. Doping evolution of spin fluctuations and their peculiar suppression at low temperatures in Ca ( Fe 1 – x Co x ) 2 As 2

    DOE PAGES

    Sapkota, A.; Das, P.; Bohmer, A. E.; ...

    2018-05-29

    Results of inelastic neutron scattering measurements are reported for two annealed compositions of Ca(Fe 1–xCo x) 2As 2, x = 0.026 and 0.030, which possess stripe-type antiferromagnetically ordered and superconducting ground states, respectively. In the AFM ground state, well-defined and gapped spin waves are observed for x = 0.026, similar to the parent CaFe 2As 2 compound. We conclude that the well-defined spin waves are likely to be present for all x corresponding to the AFM state. This behavior is in contrast to the smooth evolution to overdamped spin dynamics observed in Ba(Fe 1–xCo x) 2As 2, wherein the crossovermore » corresponds to microscopically coexisting AFM order and SC at low temperature. The smooth evolution is likely absent in Ca(Fe 1–xCo x) 2As 2 due to the mutual exclusion of AFM ordered and SC states. Overdamped spin dynamics characterize paramagnetism of the x = 0.030 sample and high-temperature x = 0.026 sample. A sizable loss of magnetic intensity is observed over a wide energy range upon cooling the x = 0.030 sample, at temperatures just above and within the superconducting phase. This phenomenon is unique amongst the iron-based superconductors and is consistent with a temperature-dependent reduction in the fluctuating moment. In conclusion, one possible scenario ascribes this loss of moment to a sensitivity to the c-axis lattice parameter in proximity to the nonmagnetic collapsed tetragonal phase and another scenario ascribes the loss to a formation of a pseudogap.« less

  19. Characterization of surface roughness of laser deposited titanium alloy and copper using AFM

    NASA Astrophysics Data System (ADS)

    Erinosho, M. F.; Akinlabi, E. T.; Johnson, O. T.

    2018-03-01

    Laser Metal Deposition (LMD) is the process of using the laser beam of a nozzle to produce a melt pool on a metal surface usually the substrate and metal powder is been deposited into it thereby creating a fusion bond with the substrate to form a new material layer against the force gravity. A good metal laminate is formed when the wettability between the dropping metal powder and the substrate adheres. This paper reports the surface roughness of laser deposited titanium alloy and copper (Ti6Al4V + Cu) using the Atomic Force Microscopy (AFM). This AFM is employed in order to sense the surface and produce different manipulated images using the micro-fabricated mechanical tip under a probe cartridge of high resolution. The process parameters employed during the deposition routine determines the output of the deposit. A careful attention is given to the laser deposited Ti6Al4V + Cu samples under the AFM probe because of their single tracked layers with semi-circular pattern of deposition. This research work can be applicable in the surface modification of laser deposited samples for the marine industry.

  20. Influence of Pt substitution on magnetic properties of multipolar ordering compounds Ce(Pd,Pt)3S4

    NASA Astrophysics Data System (ADS)

    Michimura, S.; Nishikawa, Ushio; Shimizu, Akihide; Kosaka, Masashi; Numakura, Ryosuke; Iizuka, Ryosuke; Katano, Susumu

    2018-05-01

    We have studied the magnetic properties of the multipolar ordering compounds Ce(Pd1-xPtx) 3S4 with 0.00 ≤ x ≤ 0.53 by means of magnetic susceptibility and magnetization measurements. In CePd3S4 , a simultaneous phase transition of the antiferro quadrupolar (AFQ) ordering and ferro magnetic (FM) ordering has been observed at 6.3 K. It has been suggested that the primary order parameter of CePd3S4 is the quadrupole moments, and it has not been understood why the FM ordering occurs at very high temperature which is almost the same magnetic transition temperature of GdPd3S4 . GdPd3S4 shows an antiferromagnetic (AFM) transition at 5.8 K. With increasing Pt substitution in CePd3S4 , the FM transition temperature TC (x) is rapidly suppressed to 2.4 K for x ≃ 0.3 and approaches asymptotically to 1.9 K (x = 0.53) . The results of magnetization curve suggest that the ordered state below TC (x) remains FM and AFQ ordered state for the whole range of x. For x ≥ 0.29 , TC (x) reaches at around 2 K, a new AFM transition was observed at TN (x) ≃ 7 K . We determined the T - x phase diagram, and discuss the phase transitions at TC (x) and TN (x) . The results suggest the possibility of the presence of the correlation between the magnetic interaction and the quadrupole interaction, and the correlation is not understood based on the previous multipolar model.

  1. Cell mechanics as a marker for diseases: Biomedical applications of AFM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rianna, Carmela; Radmacher, Manfred, E-mail: mr@biophysik.uni-bremen.de

    Many diseases are related to changes in cell mechanics. Atomic Force Microscopy (AFM) is one of the most suitable techniques allowing the investigation of both topography and mechanical properties of adherent cells with high spatial resolution under physiological conditions. Over the years the use of this technique in medical and clinical applications has largely increased, resulting in the notion of cell mechanics as a biomarker to discriminate between different physiological and pathological states of cells. Cell mechanics has proven to be a biophysical fingerprint able discerning between cell phenotypes, unraveling processes in aging or diseases, or even detecting and diagnosingmore » cellular pathologies. We will review in this report some of the works on cell mechanics investigated by AFM with clinical and medical relevance in order to clarify the state of research in this field and to highlight the role of cell mechanics in the study of pathologies, focusing on cancer, blood and cardiovascular diseases.« less

  2. In-Process Atomic-Force Microscopy (AFM) Based Inspection

    PubMed Central

    Mekid, Samir

    2017-01-01

    A new in-process atomic-force microscopy (AFM) based inspection is presented for nanolithography to compensate for any deviation such as instantaneous degradation of the lithography probe tip. Traditional method used the AFM probes for lithography work and retract to inspect the obtained feature but this practice degrades the probe tip shape and hence, affects the measurement quality. This paper suggests a second dedicated lithography probe that is positioned back-to-back to the AFM probe under two synchronized controllers to correct any deviation in the process compared to specifications. This method shows that the quality improvement of the nanomachining, in progress probe tip wear, and better understanding of nanomachining. The system is hosted in a recently developed nanomanipulator for educational and research purposes. PMID:28561747

  3. Recent developments in dimensional nanometrology using AFMs

    NASA Astrophysics Data System (ADS)

    Yacoot, Andrew; Koenders, Ludger

    2011-12-01

    Scanning probe microscopes, in particular the atomic force microscope (AFM), have developed into sophisticated instruments that, throughout the world, are no longer used just for imaging, but for quantitative measurements. A role of the national measurement institutes has been to provide traceable metrology for these instruments. This paper presents a brief overview as to how this has been achieved, highlights the future requirements for metrology to support developments in AFM technology and describes work in progress to meet this need.

  4. Manufacturing and advanced characterization of sub-25nm diameter CD-AFM probes with sub-10nm tip edges radius

    NASA Astrophysics Data System (ADS)

    Foucher, Johann; Filippov, Pavel; Penzkofer, Christian; Irmer, Bernd; Schmidt, Sebastian W.

    2013-04-01

    Atomic force microscopy (AFM) is increasingly used in the semiconductor industry as a versatile monitoring tool for highly critical lithography and etching process steps. Applications range from the inspection of the surface roughness of new materials, over accurate depth measurements to the determination of critical dimension structures. The aim to address the rapidly growing demands on measurement uncertainty and throughput more and more shifts the focus of attention to the AFM tip, which represents the crucial link between AFM tool and the sample to be monitored. Consequently, in order to reach the AFM tool's full potential, the performance of the AFM tip has to be considered as a determining parameter. Currently available AFM tips made from silicon are generally limited by their diameter, radius, and sharpness, considerably restricting the AFM measurement capabilities on sub-30nm spaces. In addition to that, there's lack of adequate characterization structures to accurately characterize sub-25nm tip diameters. Here, we present and discuss a recently introduced AFM tip design (T-shape like design) with precise tip diameters down to 15nm and tip radii down to 5nm fabricated from amorphous, high density diamond-like carbon (HDC/DLC) using electron beam induced processing (EBIP). In addition to that advanced design, we propose a new characterizer structure, which allows for accurate characterization and design control of sub-25nm tip diameters and sub-10nm tip edges radii. We demonstrate the potential advantages of combining a small tip shape design, i.e. tip diameter and tip edge radius, and an advanced tip characterizer for the semiconductor industry by the measurement of advanced lithography patterns.

  5. Sub-diffraction nano manipulation using STED AFM.

    PubMed

    Chacko, Jenu Varghese; Canale, Claudio; Harke, Benjamin; Diaspro, Alberto

    2013-01-01

    In the last two decades, nano manipulation has been recognized as a potential tool of scientific interest especially in nanotechnology and nano-robotics. Contemporary optical microscopy (super resolution) techniques have also reached the nanometer scale resolution to visualize this and hence a combination of super resolution aided nano manipulation ineluctably gives a new perspective to the scenario. Here we demonstrate how specificity and rapid determination of structures provided by stimulated emission depletion (STED) microscope can aid another microscopic tool with capability of mechanical manoeuvring, like an atomic force microscope (AFM) to get topological information or to target nano scaled materials. We also give proof of principle on how high-resolution real time visualization can improve nano manipulation capability within a dense sample, and how STED-AFM is an optimal combination for this job. With these evidences, this article points to future precise nano dissections and maybe even to a nano-snooker game with an AFM tip and fluorospheres.

  6. Design and Realization of 3D Printed AFM Probes.

    PubMed

    Alsharif, Nourin; Burkatovsky, Anna; Lissandrello, Charles; Jones, Keith M; White, Alice E; Brown, Keith A

    2018-05-01

    Atomic force microscope (AFM) probes and AFM imaging by extension are the product of exceptionally refined silicon micromachining, but are also restricted by the limitations of these fabrication techniques. Here, the nanoscale additive manufacturing technique direct laser writing is explored as a method to print monolithic cantilevered probes for AFM. Not only are 3D printed probes found to function effectively for AFM, but they also confer several advantages, most notably the ability to image in intermittent contact mode with a bandwidth approximately ten times larger than analogous silicon probes. In addition, the arbitrary structural control afforded by 3D printing is found to enable programming the modal structure of the probe, a capability that can be useful in the context of resonantly amplifying nonlinear tip-sample interactions. Collectively, these results show that 3D printed probes complement those produced using conventional silicon micromachining and open the door to new imaging techniques. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Correlating melting and collapse of charge ordering with magnetic transitions in La{sub 0.5-x}Pr{sub x}Ca{sub 0.5}MnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadeem, M., E-mail: mnadeemsb@gmail.com; Iqbal, M. Javid; Farhan, M. Arshad

    2016-08-15

    Highlights: • Concept of normalized magnetization is introduced to explain relative magnetic transitions. • Coexistence of two magnetic modes is correlated with the magnetic transitions and MIT. • Field induced melting and collapse of charge ordered antiferromagnetic (CO-AFM) state into ferromagnetic (FM) state is conferred. - Abstract: The magnetic properties of polycrystalline La{sub 0.5-x}Pr{sub x}Ca{sub 0.5}MnO{sub 3} material are investigated at different temperatures. The existence of magnetically diverse phases associated with various relaxation modes and their modulation with temperature and doping is analyzed. La{sub 0.5}Ca{sub 0.5}MnO{sub 3} exhibited field induced melting and collapse of charge ordered antiferromagnetic (CO-AFM) phase intomore » ferromagnetic (FM) state. This phenomenon results in lowering of Neel’s temperature (T{sub N}) along with changes in the slope of magnetic moment with temperature. Using normalized M(T) curves, the variation and interplay of charge ordered temperature (T{sub CO}), Curie temperature (T{sub C}) and T{sub N} is conferred. The coexistence of two magnetic modes is explained as major ingredient for the magnetic transitions as well as metal to insulator transition (MIT); where melting and collapse of charge ordering is conversed as basic feature in these Praseodymium (Pr) doped La{sub 0.5}Ca{sub 0.5}MnO{sub 3} materials.« less

  8. Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification.

    PubMed

    Lassnig, R; Hollerer, M; Striedinger, B; Fian, A; Stadlober, B; Winkler, A

    2015-11-01

    In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p ++ -silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3-4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact-channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility.

  9. Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification

    PubMed Central

    Lassnig, R.; Hollerer, M.; Striedinger, B.; Fian, A.; Stadlober, B.; Winkler, A.

    2015-01-01

    In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p++-silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3–4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact–channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility. PMID:26543442

  10. NC-AFM observation of atomic scale structure of rutile-type TiO2(110) surface prepared by wet chemical process.

    PubMed

    Namai, Yoshimichi; Matsuoka, Osamu

    2006-04-06

    We succeeded in observing the atomic scale structure of a rutile-type TiO2(110) single-crystal surface prepared by the wet chemical method of chemical etching in an acid solution and surface annealing in air. Ultrahigh vacuum noncontact atomic force microscopy (UHV-NC-AFM) was used for observing the atomic scale structures of the surface. The UHV-NC-AFM measurements at 450 K, which is above a desorption temperature of molecularly adsorbed water on the TiO2(110) surface, enabled us to observe the atomic scale structure of the TiO2(110) surface prepared by the wet chemical method. In the UHV-NC-AFM measurements at room temperature (RT), however, the atomic scale structure of the TiO2(110) surface was not observed. The TiO2(110) surface may be covered with molecularly adsorbed water after the surface was prepared by the wet chemical method. The structure of the TiO2(110) surface that was prepared by the wet chemical method was consistent with the (1 x 1) bulk-terminated model of the TiO2(110) surface.

  11. Studying post-etching silicon crystal defects on 300mm wafer by automatic defect review AFM

    NASA Astrophysics Data System (ADS)

    Zandiatashbar, Ardavan; Taylor, Patrick A.; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il

    2016-03-01

    Single crystal silicon wafers are the fundamental elements of semiconductor manufacturing industry. The wafers produced by Czochralski (CZ) process are very high quality single crystalline materials with known defects that are formed during the crystal growth or modified by further processing. While defects can be unfavorable for yield for some manufactured electrical devices, a group of defects like oxide precipitates can have both positive and negative impacts on the final device. The spatial distribution of these defects may be found by scattering techniques. However, due to limitations of scattering (i.e. light wavelength), many crystal defects are either poorly classified or not detected. Therefore a high throughput and accurate characterization of their shape and dimension is essential for reviewing the defects and proper classification. While scanning electron microscopy (SEM) can provide high resolution twodimensional images, atomic force microscopy (AFM) is essential for obtaining three-dimensional information of the defects of interest (DOI) as it is known to provide the highest vertical resolution among all techniques [1]. However AFM's low throughput, limited tip life, and laborious efforts for locating the DOI have been the limitations of this technique for defect review for 300 mm wafers. To address these limitations of AFM, automatic defect review AFM has been introduced recently [2], and is utilized in this work for studying DOI on 300 mm silicon wafer. In this work, we carefully etched a 300 mm silicon wafer with a gaseous acid in a reducing atmosphere at a temperature and for a sufficient duration to decorate and grow the crystal defects to a size capable of being detected as light scattering defects [3]. The etched defects form a shallow structure and their distribution and relative size are inspected by laser light scattering (LLS). However, several groups of defects couldn't be properly sized by the LLS due to the very shallow depth and low

  12. Elastic modulus measurements at variable temperature: Validation of atomic force microscopy techniques

    NASA Astrophysics Data System (ADS)

    Natali, Marco; Reggente, Melania; Passeri, Daniele; Rossi, Marco

    2016-06-01

    The development of polymer-based nanocomposites to be used in critical thermal environments requires the characterization of their mechanical properties, which are related to their chemical composition, size, morphology and operating temperature. Atomic force microscopy (AFM) has been proven to be a useful tool to develop techniques for the mechanical characterization of these materials, thanks to its nanometer lateral resolution and to the capability of exerting ultra-low loads, down to the piconewton range. In this work, we demonstrate two techniques, one quasi-static, i.e., AFM-based indentation (I-AFM), and one dynamic, i.e., contact resonance AFM (CR-AFM), for the mechanical characterization of compliant materials at variable temperature. A cross-validation of I-AFM and CR-AFM has been performed by comparing the results obtained on two reference materials, i.e., low-density polyethylene (LDPE) and polycarbonate (PC), which demonstrated the accuracy of the techniques.

  13. Neutron diffraction studies of magnetic ordering in Ni-doped LaCoO3

    NASA Astrophysics Data System (ADS)

    Rajeevan, N. E.; Kumar, Vinod; Kumar, Rajesh; Kumar, Ravi; Kaushik, S. D.

    2015-11-01

    Research in rare earth cobaltite has recently been intensified due to its fascinating magnetic properties. LaCoO3, an important cobaltite, exhibits two prominent susceptibility features at 90 K and 500 K in low field measurement. The magnetic behavior below 100 K is predominantly antiferromagnetic (AFM), but absence of pure AFM ordering and emergence of ferromagnetic coupling on further decreasing temperature made situation more intricate. The present work of studying the effect of Ni substitution at Co site in polycrystalline LaCo1-xNixO3 (0≤x≤0.3) is motivated by the interesting changes in magnetic and electronic properties. For lucid understanding, temperature dependent neutron diffraction (ND) study was carried out. ND patterns fitted with rhombohedral structure in perovskite form with R-3c space group, elucidated information on phase purity. Further temperature dependent cell parameter, Co-O bond-length and Co-O-Co bond angle were calculated for the series of Ni doped LaCoO3. The results are explained in terms of decrease in the crystal field energy which led to the transition of cobalt from low Spin (LS) state to intermediate spin state (IS).

  14. Modeling the Interaction between AFM Tips and Pinned Surface Nanobubbles.

    PubMed

    Guo, Zhenjiang; Liu, Yawei; Xiao, Qianxiang; Schönherr, Holger; Zhang, Xianren

    2016-01-26

    Although the morphology of surface nanobubbles has been studied widely with different AFM modes, AFM images may not reflect the real shapes of the nanobubbles due to AFM tip-nanobubble interactions. In addition, the interplay between surface nanobubble deformation and induced capillary force has not been well understood in this context. In our work we used constraint lattice density functional theory to investigate the interaction between AFM tips and pinned surface nanobubbles systematically, especially concentrating on the effects of tip hydrophilicity and shape. For a hydrophilic tip contacting a nanobubble, its hydrophilic nature facilitates its departure from the bubble surface, displaying a weak and intermediate-range attraction. However, when the tip squeezes the nanobubble during the approach process, the nanobubble shows an elastic effect that prevents the tip from penetrating the bubble, leading to a strong nanobubble deformation and repulsive interactions. On the contrary, a hydrophobic tip can easily pierce the vapor-liquid interface of the nanobubble during the approach process, leading to the disappearance of the repulsive force. In the retraction process, however, the adhesion between the tip and the nanobubble leads to a much stronger lengthening effect on nanobubble deformation and a strong long-range attractive force. The trends of force evolution from our simulations agree qualitatively well with recent experimental AFM observations. This favorable agreement demonstrates that our model catches the main intergradient of tip-nanobubble interactions for pinned surface nanobubbles and may therefore provide important insight into how to design minimally invasive AFM experiments.

  15. Noise in NC-AFM measurements with significant tip–sample interaction

    PubMed Central

    Lübbe, Jannis; Temmen, Matthias

    2016-01-01

    The frequency shift noise in non-contact atomic force microscopy (NC-AFM) imaging and spectroscopy consists of thermal noise and detection system noise with an additional contribution from amplitude noise if there are significant tip–sample interactions. The total noise power spectral density D Δ f(f m) is, however, not just the sum of these noise contributions. Instead its magnitude and spectral characteristics are determined by the strongly non-linear tip–sample interaction, by the coupling between the amplitude and tip–sample distance control loops of the NC-AFM system as well as by the characteristics of the phase locked loop (PLL) detector used for frequency demodulation. Here, we measure D Δ f(f m) for various NC-AFM parameter settings representing realistic measurement conditions and compare experimental data to simulations based on a model of the NC-AFM system that includes the tip–sample interaction. The good agreement between predicted and measured noise spectra confirms that the model covers the relevant noise contributions and interactions. Results yield a general understanding of noise generation and propagation in the NC-AFM and provide a quantitative prediction of noise for given experimental parameters. We derive strategies for noise-optimised imaging and spectroscopy and outline a full optimisation procedure for the instrumentation and control loops. PMID:28144538

  16. Noise in NC-AFM measurements with significant tip-sample interaction.

    PubMed

    Lübbe, Jannis; Temmen, Matthias; Rahe, Philipp; Reichling, Michael

    2016-01-01

    The frequency shift noise in non-contact atomic force microscopy (NC-AFM) imaging and spectroscopy consists of thermal noise and detection system noise with an additional contribution from amplitude noise if there are significant tip-sample interactions. The total noise power spectral density D Δ f ( f m ) is, however, not just the sum of these noise contributions. Instead its magnitude and spectral characteristics are determined by the strongly non-linear tip-sample interaction, by the coupling between the amplitude and tip-sample distance control loops of the NC-AFM system as well as by the characteristics of the phase locked loop (PLL) detector used for frequency demodulation. Here, we measure D Δ f ( f m ) for various NC-AFM parameter settings representing realistic measurement conditions and compare experimental data to simulations based on a model of the NC-AFM system that includes the tip-sample interaction. The good agreement between predicted and measured noise spectra confirms that the model covers the relevant noise contributions and interactions. Results yield a general understanding of noise generation and propagation in the NC-AFM and provide a quantitative prediction of noise for given experimental parameters. We derive strategies for noise-optimised imaging and spectroscopy and outline a full optimisation procedure for the instrumentation and control loops.

  17. Wettability of AFM tip influences the profile of interfacial nanobubbles

    NASA Astrophysics Data System (ADS)

    Teshima, Hideaki; Takahashi, Koji; Takata, Yasuyuki; Nishiyama, Takashi

    2018-02-01

    To accurately characterize the shape of interfacial nanobubbles using atomic force microscopy (AFM), we investigated the effect of wettability of the AFM tip while operating in the peak force tapping (PFT) mode. The AFM tips were made hydrophobic and hydrophilic by Teflon AF coating and oxygen plasma treatment, respectively. It was found that the measured base radius of nanobubbles differed between AFM height images and adhesion images, and that this difference depended on the tip wettability. The force curves obtained during the measurements were also different depending on the wettability, especially in the range of the tip/nanobubble interaction and in the magnitude of the maximum attractive force in the retraction period. The difference suggests that hydrophobic tips penetrate the gas/liquid interface of the nanobubbles, with the three phase contact line being pinned on the tip surface; hydrophilic tips on the other hand do not penetrate the interface. We then quantitatively estimated the pinning position and recalculated the true profiles of the nanobubbles by comparing the height images and adhesion images. As the AFM tip was made more hydrophilic, the penetration depth decreased and eventually approached zero. This result suggests that the PFT measurement using a hydrophilic tip is vital for the acquisition of reliable nanobubble profiles.

  18. Ferri-magnetic order in Mn induced spinel Co3-xMnxO4 (0.1≤x≤1.0) ceramic compositions

    NASA Astrophysics Data System (ADS)

    Meena, P. L.; Sreenivas, K.; Singh, M. R.; Kumar, Ashok; Singh, S. P.; Kumar, Ravi

    2016-04-01

    We report structural and magnetic properties of spinel Co3-xMnxO4 (x=0.1-1.0) synthesized by solid state reaction technique. Rietveld refinement analysis of X-ray diffraction (XRD) data, revealed the formation of polycrystalline single phase Co3-xMnxO4 without any significant structural change in cubic crystal symmetry with Mn substitution, except change in lattice parameter. Temperature dependent magnetization data show changes in magnetic ordering temperature, indicating formation of antiferromagnetic (AFM) and ferrimagnetic (FM) phase at low Mn concentration (x≤0.3) and well-defined FM phase at high Mn concentration (x≥0.5). The isothermal magnetization records established an AFM/FM mixed phase for composition ranging 0.10.5.

  19. Tracing the beginning of crystallization of amorphous forsterite thin films using AFM and IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Oehm, B.; Burchard, M.; Lattard, D.; Dohmen, R.; Chakraborty, S.

    2009-12-01

    Observations of accretion disks of Young Stellar Objects revealed dust of crystalline Mg-silicates, in particular of forsterite, which is assumed to result from high temperature annealing of amorphous cosmic dust particles. We are performing annealing experiments to obtain kinetic parameters of the crystallization that are necessary for the numerical modeling of accretion disks. We use thin films obtained by Pulsed Laser Deposition (PLD) on Si (111) wafers. The thin films are completely amorphous, chemically homogeneous (on the Mg2SiO4 composition) and with a continuous and flat surface. They are annealed for 1 to 260 h at 1073K in a vertical furnace and drop-quenched. To monitor the progress of crystallization, the samples are characterized by AFM and SEM imaging and IR spectroscopy. After 2.5 h of annealing AFM images reveal elliptical features, below 1 µm in diameter, with a central elevation and surrounded by a lowering of the surface which indicate material transport within the elliptical domains. These elliptical features most probably represent early nucleation sites in an amorphous matrix. The IR spectra still show the broad bands of Si-O stretching modes typical of amorphous silica without clear evidence for crystalline forsterite. After 6 h of annealing, AFM and SEM images show circular and square features both with a central elevation in the range of 80 to 120 nm. IR spectra show a few weak bands that can be assigned to crystalline forsterite (bending and stretching of tetrahedra). After 10 h of annealing planar faces appear in the former pyramidal features and the surrounding matrix evolves into domains with spherolitic appearance. IR spectra of these samples display typical bands of crystalline forsterite. With increasing annealing time AFM images picture the further growth of the planar faces towards idiomorphic crystals. SEM imaging shows surface roughening with increasing annealing time. The quantitative evaluation of the surface roughness of AFM

  20. Influence of smectite suspension structure on sheet orientation in dry sediments: XRD and AFM applications.

    PubMed

    Zbik, Marek S; Frost, Ray L

    2010-06-15

    The structure-building phenomena within clay aggregates are governed by forces acting between clay particles. Measurements of such forces are important to understand in order to manipulate the aggregate structure for applications such as dewatering of mineral processing tailings. A parallel particle orientation is required when conducting XRD investigation on the oriented samples and conduct force measurements acting between basal planes of clay mineral platelets using atomic force microscopy (AFM). To investigate how smectite clay platelets were oriented on silicon wafer substrate when dried from suspension range of methods like SEM, XRD and AFM were employed. From these investigations, we conclude that high clay concentrations and larger particle diameters (up to 5 microm) in suspension result in random orientation of platelets in the substrate. The best possible laminar orientation in the clay dry film, represented in the XRD 001/020 intensity ratio of 47 was obtained by drying thin layers from 0.02 wt.% clay suspensions of the natural pH. Conducted AFM investigations show that smectite studied in water based electrolytes show very long-range repulsive forces lower in strength than electrostatic forces from double-layer repulsion. It was suggested that these forces may have structural nature. Smectite surface layers rehydrate in water environment forms surface gel with spongy and cellular texture which cushion approaching AFM probe. This structural effect can be measured in distances larger than 1000 nm from substrate surface and when probe penetrate this gel layer, structural linkages are forming between substrate and clay covered probe. These linkages prevent subsequently smooth detachments of AFM probe on way back when retrieval. This effect of tearing new formed structure apart involves larger adhesion-like forces measured in retrieval. It is also suggested that these effect may be enhanced by the nano-clay particles interaction. 2010 Elsevier Inc. All

  1. GPIM AF-M315E Propulsion System

    NASA Technical Reports Server (NTRS)

    Spores, Ronald A.; Masse, Robert; Kimbrel, Scott; McLean, Chris

    2014-01-01

    The NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) will demonstrate an operational AF-M315E green propellant propulsion system. Aerojet-Rocketdyne is responsible for the development of the propulsion system payload. This paper statuses the propulsion system module development, including thruster design and system design; Initial test results for the 1N engineering model thruster are presented. The culmination of this program will be high-performance, green AF-M315E propulsion system technology at TRL 7+, with components demonstrated to TRL 9, ready for direct infusion to a wide range of applications for the space user community.

  2. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    PubMed Central

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-01-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation. PMID:27452115

  3. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-07-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation.

  4. Temperature, ordering, and equilibrium with time-dependent confining forces

    PubMed Central

    Schiffer, J. P.; Drewsen, M.; Hangst, J. S.; Hornekær, L.

    2000-01-01

    The concepts of temperature and equilibrium are not well defined in systems of particles with time-varying external forces. An example is a radio frequency ion trap, with the ions laser cooled into an ordered solid, characteristic of sub-mK temperatures, whereas the kinetic energies associated with the fast coherent motion in the trap are up to 7 orders of magnitude higher. Simulations with 1,000 ions reach equilibrium between the degrees of freedom when only aperiodic displacements (secular motion) are considered. The coupling of the periodic driven motion associated with the confinement to the nonperiodic random motion of the ions is very small at low temperatures and increases quadratically with temperature. PMID:10995471

  5. Local suppression of the hidden-order phase by impurities in URu2Si2

    NASA Astrophysics Data System (ADS)

    Pezzoli, Maria E.; Graf, Matthias J.; Haule, Kristjan; Kotliar, Gabriel; Balatsky, Alexander V.

    2011-06-01

    We consider the effects of impurities on the enigmatic hidden order (HO) state of the heavy-fermion material URu2Si2. In particular, we focus on local effects of Rh impurities as a tool to probe the suppression of the HO state. To study local properties, we introduce a lattice free energy, where the time invariant HO order parameter Ψ and local antiferromagnetic (AFM) order parameter M are competing orders. Near each Rh atom, the HO order parameter is suppressed, creating a hole in which local AFM order emerges as a result of competition. These local holes are created in the fabric of the HO state like in a Swiss cheese and “filled” with droplets of AFM order. We compare our analysis with recent NMR results on U(RhxRu1-x)2Si2 and find good agreement with the data.

  6. High aspect ratio AFM Probe processing by helium-ion-beam induced deposition.

    PubMed

    Onishi, Keiko; Guo, Hongxuan; Nagano, Syoko; Fujita, Daisuke

    2014-11-01

    A Scanning Helium Ion Microscope (SHIM) is a high resolution surface observation instrument similar to a Scanning Electron Microscope (SEM) since both instruments employ finely focused particle beams of ions or electrons [1]. The apparent difference is that SHIMs can be used not only for a sub-nanometer scale resolution microscopic research, but also for the applications of very fine fabrication and direct lithography of surfaces at the nanoscale dimensions. On the other hand, atomic force microscope (AFM) is another type of high resolution microscopy which can measure a three-dimensional surface morphology by tracing a fine probe with a sharp tip apex on a specimen's surface.In order to measure highly uneven and concavo-convex surfaces by AFM, the probe of a high aspect ratio with a sharp tip is much more necessary than the probe of a general quadrangular pyramid shape. In this paper we report the manufacture of the probe tip of the high aspect ratio by ion-beam induced gas deposition using a nanoscale helium ion beam of SHIM.Gas of platinum organic compound was injected into the sample surface neighborhood in the vacuum chamber of SHIM. The decomposition of the gas and the precipitation of the involved metal brought up a platinum nano-object in a pillar shape on the normal commercial AFM probe tip. A SHIM system (Carl Zeiss, Orion Plus) equipped with the gas injection system (OmniProbe, OmniGIS) was used for the research. While the vacuum being kept to work, we injected platinum organic compound ((CH3)3(CH3C5H4)Pt) into the sample neighborhood and irradiated the helium ion beam with the shape of a point on the apex of the AFM probe tip. It is found that we can control the length of the Pt nano-pillar by irradiation time of the helium ion beam. The AFM probe which brought up a Pt nano-pillar is shown in Figure 1. It is revealed that a high-aspect-ratio Pt nano-pillar of ∼40nm diameter and up to ∼2000 nm length can be grown. In addition, for possible heating

  7. Magnetic ordering induced giant optical property change in tetragonal BiFeO3

    NASA Astrophysics Data System (ADS)

    Tong, Wen-Yi; Ding, Hang-Chen; Gong, Shi Jing; Wan, Xiangang; Duan, Chun-Gang

    2015-12-01

    Magnetic ordering could have significant influence on band structures, spin-dependent transport, and other important properties of materials. Its measurement, especially for the case of antiferromagnetic (AFM) ordering, however, is generally difficult to be achieved. Here we demonstrate the feasibility of magnetic ordering detection using a noncontact and nondestructive optical method. Taking the tetragonal BiFeO3 (BFO) as an example and combining density functional theory calculations with tight-binding models, we find that when BFO changes from C1-type to G-type AFM phase, the top of valance band shifts from the Z point to Γ point, which makes the original direct band gap become indirect. This can be explained by Slater-Koster parameters using the Harrison approach. The impact of magnetic ordering on band dispersion dramatically changes the optical properties. For the linear ones, the energy shift of the optical band gap could be as large as 0.4 eV. As for the nonlinear ones, the change is even larger. The second-harmonic generation coefficient d33 of G-AFM becomes more than 13 times smaller than that of C1-AFM case. Finally, we propose a practical way to distinguish the two AFM phases of BFO using the optical method, which is of great importance in next-generation information storage technologies.

  8. In-field X-ray and neutron diffraction studies of re-entrant charge-ordering and field induced metastability in La0.175Pr0.45Ca0.375MnO3-δ

    NASA Astrophysics Data System (ADS)

    Sharma, Shivani; Shahee, Aga; Yadav, Poonam; da Silva, Ivan; Lalla, N. P.

    2017-11-01

    Low-temperature high-magnetic field (2 K, 8 T) (LTHM) powder X-ray diffraction (XRD) and time of flight powder neutron diffraction (NPD), low-temperature transmission electron microscopic (TEM), and resistivity and magnetization measurements have been carried out to investigate the re-entrant charge ordering (CO), field induced structural phase transitions, and metastability in phase-separated La0.175Pr0.45Ca0.375MnO3-δ (LPCMO). Low-temperature TEM and XRD studies reveal that on cooling under zero-field, paramagnetic Pnma phase transforms to P21/m CO antiferromagnetic (AFM) insulating phase below ˜233 K. Unlike reported literature, no structural signature of CO AFM P21/m to ferromagnetic (FM) Pnma phase-transition during cooling down to 2 K under zero-field was observed. However, the CO phase was found to undergo a re-entrant transition at ˜40 K. Neutron diffraction studies revealed a pseudo CE type spin arrangement of the observed CO phase. The low-temperature resistance, while cooled under zero-field, shows insulator to metal like transition below ˜105 K with minima at ˜25 K. On application of field, the CO P21/m phase was found to undergo field-induced transition to FM Pnma phase, which shows irreversibility on field removal below ˜40 K. Zero-field warming XRD and NPD studies reveal that field-induced FM Pnma phase is a metastable phase, which arise due to the arrest of kinetics of the first-order phase transition of FM Pnma to CO-AFM P21/m phase, below 40 K. Thus, a strong magneto-structural coupling is observed for this system. A field-temperature (H-T) phase-diagram has been constructed based on the LTHM-XRD, which matches very nicely with the reported H-T phase-diagram constructed based on magnetic measurements. Due to the occurrence of gradual growth of the re-entrant CO phase and the absence of a clear structural signature of phase-separation of CO-AFM P21/m and FM Pnma phases, the H-T minima in the phase-diagram of the present LPCMO sample has been

  9. Conductance of AFM Deformed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Maiti, Amitesh; Anatram, M. P.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the electrical conductivity of carbon nanotubes upon deformation by atomic force microscopy (AFM). The density of states and conductance were computed using four orbital tight-binding method with various parameterizations. Different chiralities develop bandgap that varies with chirality.

  10. Theory of intertwined orders in high temperature superconductors

    DOE PAGES

    Fradkin, Eduardo; Tranquada, John M.; Kivelson, Steven A.

    2015-03-26

    The electronic phase diagrams of many highly correlated systems, and in particular the cuprate high temperature superconductors, are complex, with many different phases appearing with similar—sometimes identical—ordering temperatures even as material properties, such as a dopant concentration, are varied over wide ranges. This complexity is sometimes referred to as “competing orders.” However, since the relation is intimate, and can even lead to the existence of new phases of matter such as the putative “pair-density-wave,” the general relation is better thought of in terms of “intertwined orders.” We selectively analyze some of the experiments in the cuprates which suggest that essentialmore » aspects of the physics are reflected in the intertwining of multiple orders—not just in the nature of each order by itself. We also summarize and critique several theoretical ideas concerning the origin and implications of this complexity.« less

  11. Nanomechanics of Yeast Surfaces Revealed by AFM

    NASA Astrophysics Data System (ADS)

    Dague, Etienne; Beaussart, Audrey; Alsteens, David

    Despite the large and well-documented characterization of the microbial cell wall in terms of chemical composition, the determination of the mechanical properties of surface molecules in relation to their function remains a key challenge in cell biology.The emergence of powerful tools allowing molecular manipulations has already revolutionized our understanding of the surface properties of fungal cells. At the frontier between nanophysics and molecular biology, atomic force microscopy (AFM), and more specifically single-molecule force spectroscopy (SMFS), has strongly contributed to our current knowledge of the cell wall organization and nanomechanical properties. However, due to the complexity of the technique, measurements on live cells are still at their infancy.In this chapter, we describe the cell wall composition and recapitulate the principles of AFM as well as the main current methodologies used to perform AFM measurements on live cells, including sample immobilization and tip functionalization.The current status of the progress in probing nanomechanics of the yeast surface is illustrated through three recent breakthrough studies. Determination of the cell wall nanostructure and elasticity is presented through two examples: the mechanical response of mannoproteins from brewing yeasts and elasticity measurements on lacking polysaccharide mutant strains. Additionally, an elegant study on force-induced unfolding and clustering of adhesion proteins located at the cell surface is also presented.

  12. Ductile long range ordered alloys with high critical ordering temperature and wrought articles fabricated therefrom

    DOEpatents

    Liu, Chain T.; Inouye, Henry

    1979-01-01

    Malleable long range ordered alloys having high critical ordering temperatures exist in the V(Fe, Co).sub.3 and V(Fe, Co, Ni).sub.3 systems. These alloys have the following compositions comprising by weight: 22-23% V, 14-30% Fe, and the remainder Co or Co and Ni with an electron density no more than 7.85. The maximum combination of high temperature strength, ductility and creep resistance are manifested in the alloy comprising by weight 22-23% V, 14-20% Fe and the remainder Co and having an atomic composition of V(Fe .sub.0.20-0.26 C Co.sub.0.74-0.80).sub.3. The alloy comprising by weight 22-23% V, 16-17% Fe and 60-62% Co has excellent high temperature properties. The alloys are fabricable into wrought articles by casting, deforming, and annealing for sufficient time to provide ordered structure.

  13. AFM nanoscale indentation in air of polymeric and hybrid materials with highly different stiffness

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Credi, Caterina; Levi, Marinella; Turri, Stefano

    2014-08-01

    In this study, nanomechanical properties of a variety of polymeric materials was investigated by means of AFM. In particular, selecting different AFM probes, poly(methyl methacrylate) (PMMA), polydimethylsiloxane (PDMS) bulk samples, sol-gel hybrid thin films and hydrated hyaluronic acid hydrogels were indented in air to determine the elastic modulus. The force-distance curves and the indentation data were found to be greatly affected by the cantilever stiffness and by tip geometry. AFM indentation tests show that the choice of the cantilever spring constant and of tip shape is crucially influenced by elastic properties of samples. When adhesion-dominated interactions occur between the tip and the surface of samples, force-displacement curves reveal that a suitable functionalization of AFM probes allows the control of such interactions and the extraction of Young' modulus from AFM curves that would be otherwise unfeasible. By applying different mathematical models depending on AFM probes and materials under investigation, the values of Young's modulus were obtained and compared to those measured by rheological and dynamic mechanical analysis or to literature data. Our results show that a wide range of elastic moduli (10 kPa-10 GPa) can be determined by AFM in good agreement with those measured by conventional macroscopic measurements.

  14. Near-Field Spectroscopy with Nanoparticles Deposited by AFM

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.

    2008-01-01

    An alternative approach to apertureless near-field optical spectroscopy involving an atomic-force microscope (AFM) entails less complexity of equipment than does a prior approach. The alternative approach has been demonstrated to be applicable to apertureless near-field optical spectroscopy of the type using an AFM and surface enhanced Raman scattering (SERS), and is expected to be equally applicable in cases in which infrared or fluorescence spectroscopy is used. Apertureless near-field optical spectroscopy is a means of performing spatially resolved analyses of chemical compositions of surface regions of nanostructured materials. In apertureless near-field spectroscopy, it is common practice to utilize nanostructured probe tips or nanoparticles (usually of gold) having shapes and dimensions chosen to exploit plasmon resonances so as to increase spectroscopic-signal strengths. To implement the particular prior approach to which the present approach is an alternative, it is necessary to integrate a Raman spectrometer with an AFM and to utilize a special SERS-active probe tip. The resulting instrumentation system is complex, and the tasks of designing and constructing the system and using the system to acquire spectro-chemical information from nanometer-scale regions on a surface are correspondingly demanding.

  15. BOREAS AFM-04 Twin Otter Aircraft Flux Data

    NASA Technical Reports Server (NTRS)

    MacPherson, J. Ian; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Desjardins, Raymond L.; Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing AES aerological network, both temporally and spatially. This data set includes basic upper-air parameters collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  16. Functionalized AFM probes for force spectroscopy: eigenmode shapes and stiffness calibration through thermal noise measurements.

    PubMed

    Laurent, Justine; Steinberger, Audrey; Bellon, Ludovic

    2013-06-07

    The functionalization of an atomic force microscope (AFM) cantilever with a colloidal bead is a widely used technique when the geometry between the probe and the sample must be controlled, particularly in force spectroscopy. But some questions remain: how does a bead glued at the end of a cantilever influence its mechanical response? And more importantly for quantitative measurements, can we still determine the stiffness of the AFM probe with traditional techniques?In this paper, the influence of the colloidal mass loading on the eigenmode shape and resonant frequency is investigated by measuring the thermal noise on rectangular AFM microcantilevers with and without beads attached at their extremities. The experiments are performed with a home-made ultra-sensitive AFM, based on differential interferometry. The focused beam from the interferometer probes the cantilever at different positions and the spatial shapes of the modes are determined up to the fifth resonance, without external excitation. The results clearly demonstrate that the first eigenmode is almost unchanged by mass loading. However the oscillation behavior of higher resonances presents a marked difference: with a particle glued at its extremity, the nodes of the modes are displaced towards the free end of the cantilever. These results are compared to an analytical model taking into account the mass and inertial moment of the load in an Euler-Bernoulli framework, where the normalization of the eigenmodes is explicitly worked out in order to allow a quantitative prediction of the thermal noise amplitude of each mode. A good agreement between the experimental results and the analytical model is demonstrated, allowing a clean calibration of the probe stiffness.

  17. Dehomogenized Elastic Properties of Heterogeneous Layered Materials in AFM Indentation Experiments.

    PubMed

    Lee, Jia-Jye; Rao, Satish; Kaushik, Gaurav; Azeloglu, Evren U; Costa, Kevin D

    2018-06-05

    Atomic force microscopy (AFM) is used to study mechanical properties of biological materials at submicron length scales. However, such samples are often structurally heterogeneous even at the local level, with different regions having distinct mechanical properties. Physical or chemical disruption can isolate individual structural elements but may alter the properties being measured. Therefore, to determine the micromechanical properties of intact heterogeneous multilayered samples indented by AFM, we propose the Hybrid Eshelby Decomposition (HED) analysis, which combines a modified homogenization theory and finite element modeling to extract layer-specific elastic moduli of composite structures from single indentations, utilizing knowledge of the component distribution to achieve solution uniqueness. Using finite element model-simulated indentation of layered samples with micron-scale thickness dimensions, biologically relevant elastic properties for incompressible soft tissues, and layer-specific heterogeneity of an order of magnitude or less, HED analysis recovered the prescribed modulus values typically within 10% error. Experimental validation using bilayer spin-coated polydimethylsiloxane samples also yielded self-consistent layer-specific modulus values whether arranged as stiff layer on soft substrate or soft layer on stiff substrate. We further examined a biophysical application by characterizing layer-specific microelastic properties of full-thickness mouse aortic wall tissue, demonstrating that the HED-extracted modulus of the tunica media was more than fivefold stiffer than the intima and not significantly different from direct indentation of exposed media tissue. Our results show that the elastic properties of surface and subsurface layers of microscale synthetic and biological samples can be simultaneously extracted from the composite material response to AFM indentation. HED analysis offers a robust approach to studying regional micromechanics of

  18. 3D Color Digital Elevation Map of AFM Sample

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This color image is a three dimensional (3D) view of a digital elevation map of a sample collected by NASA's Phoenix Mars Lander's Atomic Force Microscope (AFM).

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate, which is the background plane shown in red. This image has been processed to reflect the levelness of the substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The particle was part of a sample informally called 'Sorceress' delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008). The AFM is part of Phoenix's microscopic station called MECA, or the Microscopy, Electrochemistry, and Conductivity Analyzer.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation.

    PubMed

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-02-21

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  20. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation

    PubMed Central

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-01-01

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance. PMID:28772570

  1. Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.

    Magnetic ordering temperatures in heavy rare earth metal Dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to extreme conditions of pressure to 69 GPa and temperature to 10 K. Previous studies using magnetic susceptibility measurements at high pressures were only able to track magnetic ordering temperature till 7 GPa in the hexagonal close packed ( hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. Thismore » is followed by a rapid increase in the magnetic ordering temperatures in the double hexagonal close packed phase and finally leveling off in the distorted face centered cubic phase of Dy. Lastly, our studies reaffirm that 4f-shell remain localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.« less

  2. Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures

    DOE PAGES

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; ...

    2014-04-03

    Magnetic ordering temperatures in heavy rare earth metal Dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to extreme conditions of pressure to 69 GPa and temperature to 10 K. Previous studies using magnetic susceptibility measurements at high pressures were only able to track magnetic ordering temperature till 7 GPa in the hexagonal close packed ( hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. Thismore » is followed by a rapid increase in the magnetic ordering temperatures in the double hexagonal close packed phase and finally leveling off in the distorted face centered cubic phase of Dy. Lastly, our studies reaffirm that 4f-shell remain localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.« less

  3. Temperature dependence of the enhanced inverse spin Hall voltage in Pt/Antiferromagnetic/ Y3Fe5O12

    NASA Astrophysics Data System (ADS)

    Brangham, J. T.; Lee, A. J.; Cheng, Y.; Yu, S. S.; Dunsiger, S. R.; Page, M. R.; Hammel, P. C.; Yang, F. Y.

    The generation, propagation, and detection of spin currents are of intense interest in the field of spintronics. Spin current generation by FMR spin pumping using Y3Fe5O12 (YIG) and spin current detection by the inverse spin Hall effect (ISHE) in metals such as Pt have been well studied. This is due to YIG's exceptionally low damping and insulating behavior and the large spin Hall angle of Pt. Previously, our group showed that the ISHE voltages are significantly enhanced by adding a thin intermediate layer of an antiferromagnet (AFM) between Pt and YIG at room temperature. Recent theoretical work predicts a mechanism for this enhancement as well as the temperature dependence of the ISHE voltages of metal/AFM/YIG trilayers. The predictions show a maximum in the ISHE voltages for these systems near the magnetic phase transition temperature of the AFM. Here we present experimental results showing the temperature dependence for Pt/AFM/YIG structures with various AFMs. DOE Grant No. DE-SC0001304.

  4. Characterization of opto-electrical enhancement of tandem photoelectrochemical cells by using photoconductive-AFM

    NASA Astrophysics Data System (ADS)

    Park, Sun-Young; Elbersen, Rick; Huskens, Jurriaan; Gardeniers, Han; Lee, Joo-Yul; Mul, Guido; Heo, Jinhee

    2017-07-01

    Solar-to-hydrogen conversion by water splitting in photoelectrochemical cells (PECs) is a promising approach to alleviate problems associated with intermittency in solar energy supply and demand. Several interfacial resistances in photoelectrodes limit the performance of such cells, while the properties of interfaces are not easy to analyze in situ. We applied photoconductive-AFM to analyze the performance of WO3/p+n Si photoanodes, containing an ultra-thin metal interface of either Au or Pt. The Au interface consisted of Au nanoparticles with well-ordered interspacing, while Pt was present in the form of a continuous film. Photoconductive-AFM data show that upon illumination significantly larger currents are measured for the WO3/p+n Si anode equipped with the Au interface, as compared to the WO3/p+n Si anode with the Pt interface, in agreement with the better performance of the former electrode in a photoelectrochemical cell. The remarkable performance of the Au-containing electrode is proposed to be the result of favorable electron-hole recombination rates induced by the Au nanoparticles in a plasmon resonance excited state.

  5. Beyond topography - enhanced imaging of cometary dust with the MIDAS AFM

    NASA Astrophysics Data System (ADS)

    Bentley, M. S.; Torkar, K.; Jeszenszky, H.; Romstedt, J.

    2013-09-01

    The MIDAS atomic force microscope (AFM) onboard the Rosetta spacecraft is primarily designed to return the 3D shape and structure of cometary dust particles collected at comet 67P/Churyumov-Gerasimenko [1]. Commercial AFMs have, however, been further developed to measure many other sample properties. The possibilities to make such measurements with MIDAS are explored here.

  6. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma

    PubMed Central

    Rothe, Achim; Sasse, Stephanie; Topp, Max S.; Eichenauer, Dennis A.; Hummel, Horst; Reiners, Katrin S.; Dietlein, Markus; Kuhnert, Georg; Kessler, Joerg; Buerkle, Carolin; Ravic, Miroslav; Knackmuss, Stefan; Marschner, Jens-Peter; Pogge von Strandmann, Elke; Borchmann, Peter

    2015-01-01

    AFM13 is a bispecific, tetravalent chimeric antibody construct (TandAb) designed for the treatment of CD30-expressing malignancies. AFM13 recruits natural killer (NK) cells via binding to CD16A as immune effector cells. In this phase 1 dose-escalation study, 28 patients with heavily pretreated relapsed or refractory Hodgkin lymphoma received AFM13 at doses of 0.01 to 7 mg/kg body weight. Primary objectives were safety and tolerability. Secondary objectives included pharmacokinetics, antitumor activity, and pharmacodynamics. Adverse events were generally mild to moderate. The maximum tolerated dose was not reached. Pharmacokinetics assessment revealed a half-life of up to 19 hours. Three of 26 evaluable patients achieved partial remission (11.5%) and 13 patients achieved stable disease (50%), with an overall disease control rate of 61.5%. AFM13 was also active in brentuximab vedotin–refractory patients. In 13 patients who received doses of ≥1.5 mg/kg AFM13, the overall response rate was 23% and the disease control rate was 77%. AFM13 treatment resulted in a significant NK-cell activation and a decrease of soluble CD30 in peripheral blood. In conclusion, AFM13 represents a well-tolerated, safe, and active targeted immunotherapy of Hodgkin lymphoma. A phase 2 study is currently planned to optimize the dosing schedule in order to further improve the therapeutic efficacy. This phase 1 study was registered at www.clinicaltrials.gov as #NCT01221571. PMID:25887777

  7. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma.

    PubMed

    Rothe, Achim; Sasse, Stephanie; Topp, Max S; Eichenauer, Dennis A; Hummel, Horst; Reiners, Katrin S; Dietlein, Markus; Kuhnert, Georg; Kessler, Joerg; Buerkle, Carolin; Ravic, Miroslav; Knackmuss, Stefan; Marschner, Jens-Peter; Pogge von Strandmann, Elke; Borchmann, Peter; Engert, Andreas

    2015-06-25

    AFM13 is a bispecific, tetravalent chimeric antibody construct (TandAb) designed for the treatment of CD30-expressing malignancies. AFM13 recruits natural killer (NK) cells via binding to CD16A as immune effector cells. In this phase 1 dose-escalation study, 28 patients with heavily pretreated relapsed or refractory Hodgkin lymphoma received AFM13 at doses of 0.01 to 7 mg/kg body weight. Primary objectives were safety and tolerability. Secondary objectives included pharmacokinetics, antitumor activity, and pharmacodynamics. Adverse events were generally mild to moderate. The maximum tolerated dose was not reached. Pharmacokinetics assessment revealed a half-life of up to 19 hours. Three of 26 evaluable patients achieved partial remission (11.5%) and 13 patients achieved stable disease (50%), with an overall disease control rate of 61.5%. AFM13 was also active in brentuximab vedotin-refractory patients. In 13 patients who received doses of ≥1.5 mg/kg AFM13, the overall response rate was 23% and the disease control rate was 77%. AFM13 treatment resulted in a significant NK-cell activation and a decrease of soluble CD30 in peripheral blood. In conclusion, AFM13 represents a well-tolerated, safe, and active targeted immunotherapy of Hodgkin lymphoma. A phase 2 study is currently planned to optimize the dosing schedule in order to further improve the therapeutic efficacy. This phase 1 study was registered at www.clinicaltrials.gov as #NCT01221571. © 2015 by The American Society of Hematology.

  8. Pinning effects from substrate and AFM tip surfaces on interfacial nanobubbles

    NASA Astrophysics Data System (ADS)

    Teshima, Hideaki; Takahashi, Koji; Takata, Yasuyuki; Nishiyama, Takashi

    2017-11-01

    Measurement accuracy of atomic force microscopy (AFM) is vital to understand the mechanism of interfacial nanobubbles. In this study, we report the influence of pinning derived from both substrate and AFM tip surfaces on the measured shape of interfacial nanobubbles in peak force tapping mode. First, we pushed the nanobubbles using the AFM tip with high peak force setpoint. As a result, the deformed nanobubbles kept their flat shape for several tens of minutes. We quantitatively discuss the pinning force from substrate surface, which retains the flat shape enhancing the stability of nanobubbles. Next, we prepared three AFM tips with different wettability and measured the nanobubbles with an identical setpoint. By comparing the force curves obtained during the measurements, it seems that the (middle-)hydrophobic tips penetrated the liquid/gas interface and received repulsive force resulting from positive meniscus formed by pinning at the tip surface. In contrast, hydrophilic tip didn't penetrate the interface and received the force from the deformation of the interface of the nanobubbles. In addition, the measurements using the (middle-)hydrophobic tips led to the underestimation of the nanobubbles profile corresponding to the pinning position at the tip surfaces.

  9. The Atomic Force Microscopic (AFM) Characterization of Nanomaterials

    DTIC Science & Technology

    2009-06-01

    Several Types of Microscopes ..................................................................................................7 8 OM on Mica Surface...12 9 AFM on Mica Surface...12 10 OM Images SWNTs on Mica After 1) 30 Minutes, b) 60

  10. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaojun; Department of Biotechnology, Nanchang University, Nanchang, Jiangxi 330031; Chen, Yuan

    2014-03-28

    Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM)more » has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release.« less

  11. Pathogen identification using peptide nanotube biosensors and impedance AFM

    NASA Astrophysics Data System (ADS)

    Maccuspie, Robert I.

    Pathogen identification at highly sensitive levels is crucial to meet urgent needs in fighting the spread of disease or detecting bioterrorism events. Toward that end, a new method for biosensing utilizing fluorescent antibody nanotubes is proposed. Fundamental studies on the self-assembly of these peptide nanotubes are performed, as are applications of aligning these nanotubes on surfaces. As biosensors, these nanotubes incorporate recognition units with antibodies at their ends and fluorescent signaling units at their sidewalls. When viral pathogens were mixed with these antibody nanotubes in solution, the nanotubes rapidly aggregated around the viruses. The size of the aggregates increased as the concentration of viruses increased, as detected by flow cytometry on the order of attomolar concentrations by changes in fluorescence and light scattering intensities. This enabled determination of the concentrations of viruses at trace levels (102 to 106 pfu/mL) within 30 minutes from the receipt of samples to the final quantitative data analysis, as demonstrated on Adenovirus, Herpes Simplex Virus, Influenza, and Vaccinia virus. As another separate approach, impedance AFM is used to study the electrical properties of individual viruses and nanoparticles used as model systems. The design, development, and implementation of the impedance AFM for an Asylum Research platform is described, as well as its application towards studying the impedance of individual nanoparticles as a model system for understanding the fundamental science of how the life cycle of a virus affects its electrical properties. In combination, these approaches fill a pressing need to quantify viruses both rapidly and sensitively.

  12. Distinct magnetic spectra in the hidden order and antiferromagnetic phases in URu 2 - x Fe x Si 2

    DOE PAGES

    Butch, Nicholas P.; Ran, Sheng; Jeon, Inho; ...

    2016-11-07

    We use neutron scattering to compare the magnetic excitations in the hidden order (HO) and antiferromagnetic (AFM) phases in URu 2-xFe xSi 2 as a function of Fe concentration. The magnetic excitation spectra change significantly between x = 0.05 and x = 0.10, following the enhancement of the AFM ordered moment, in good analogy to the behavior of the parent compound under applied pressure. Prominent lattice-commensurate low-energy excitations characteristic of the HO phase vanish in the AFM phase. The magnetic scattering is dominated by strong excitations along the Brillouin zone edges, underscoring the important role of electron hybridization to bothmore » HO and AFM phases, and the similarity of the underlying electronic structure. The stability of the AFM phase is correlated with enhanced local-itinerant electron hybridization.« less

  13. Application of Contact Mode AFM to Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Giordano, Michael A.; Schmid, Steven R.

    A review of the application of contact mode atomic force microscopy (AFM) to manufacturing processes is presented. A brief introduction to common experimental techniques including hardness, scratch, and wear testing is presented, with a discussion of challenges in the extension of manufacturing scale investigations to the AFM. Differences between the macro- and nanoscales tests are discussed, including indentation size effects and their importance in the simulation of processes such as grinding. The basics of lubrication theory are presented and friction force microscopy is introduced as a method of investigating metal forming lubrication on the nano- and microscales that directly simulates tooling/workpiece asperity interactions. These concepts are followed by a discussion of their application to macroscale industrial manufacturing processes and direct correlations are made.

  14. Low-Temperature Reduction of Graphene Oxide: Electrical Conductance and Scanning Kelvin Probe Force Microscopy

    NASA Astrophysics Data System (ADS)

    Slobodian, Oleksandr M.; Lytvyn, Peter M.; Nikolenko, Andrii S.; Naseka, Victor M.; Khyzhun, Oleg Yu.; Vasin, Andrey V.; Sevostianov, Stanislav V.; Nazarov, Alexei N.

    2018-05-01

    Graphene oxide (GO) films were formed by drop-casting method and were studied by FTIR spectroscopy, micro-Raman spectroscopy (mRS), X-ray photoelectron spectroscopy (XPS), four-points probe method, atomic force microscopy (AFM), and scanning Kelvin probe force (SKPFM) microscopy after low-temperature annealing at ambient conditions. It was shown that in temperature range from 50 to 250 °C the electrical resistivity of the GO films decreases by seven orders of magnitude and is governed by two processes with activation energies of 6.22 and 1.65 eV, respectively. It was shown that the first process is mainly associated with water and OH groups desorption reducing the thickness of the film by 35% and causing the resistivity decrease by five orders of magnitude. The corresponding activation energy is the effective value determined by desorption and electrical connection of GO flakes from different layers. The second process is mainly associated with desorption of oxygen epoxy and alkoxy groups connected with carbon located in the basal plane of GO. AFM and SKPFM methods showed that during the second process, first, the surface of GO plane is destroyed forming nanostructured surface with low work function and then at higher temperature a flat carbon plane is formed that results in an increase of the work function of reduced GO.

  15. BOREAS AFM-2 Wyoming King Air 1994 Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    Kelly, Robert D.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-2 team used the University of Wyoming King Air aircraft during IFCs 1, 2, and 3 in 1994 to collected pass-by-pass fluxes (and many other statistics) for the large number of level (constant altitude), straight-line passes used in a variety of flight patterns over the SSA and NSA and areas along the transect between these study areas. The data described here form a second set, namely soundings that were incorporated into nearly every research flight by the King Air in 1994. These soundings generally went from near the surface to above the inversion layer. Most were flown immediately after takeoff or immediately after finishing the last flux pattern of that particular day's flights. The parameters that were measured include wind direction, wind speed, west wind component (u), south wind component (v), static pressure, air dry bulb temperature, potential temperature, dewpoint, temperature, water vapor mixing ratio, and CO2 concentration. Data on the aircraft's location, attitude, and altitude during data collection are also provided. These data are stored in tabular ASCH files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  16. Reversible Dissolution of Microdomains in Detergent-Resistant Membranes at Physiological Temperature

    PubMed Central

    Cremona, Andrea; Orsini, Francesco; Corsetto, Paola A.; Hoogenboom, Bart W.; Rizzo, Angela M.

    2015-01-01

    The formation of lipid microdomains (“rafts”) is presumed to play an important role in various cellular functions, but their nature remains controversial. Here we report on microdomain formation in isolated, detergent-resistant membranes from MDA-MB-231 human breast cancer cells, studied by atomic force microscopy (AFM). Whereas microdomains were readily observed at room temperature, they shrunk in size and mostly disappeared at higher temperatures. This shrinking in microdomain size was accompanied by a gradual reduction of the height difference between the microdomains and the surrounding membrane, consistent with the behaviour expected for lipids that are laterally segregated in liquid ordered and liquid disordered domains. Immunolabeling experiments demonstrated that the microdomains contained flotillin-1, a protein associated with lipid rafts. The microdomains reversibly dissolved and reappeared, respectively, on heating to and cooling below temperatures around 37°C, which is indicative of radical changes in local membrane order close to physiological temperature. PMID:26147107

  17. Experimentally validated 3D MD model for AFM-based tip-based nanomanufacturing

    NASA Astrophysics Data System (ADS)

    Promyoo, Rapeepan

    In order to control AFM-based TBN to produce precise nano-geometry efficiently, there is a need to conduct a more focused study of the effects of different parameters, such as feed, speed, and depth of cut on the process performance and outcome. This is achieved by experimentally validating a MD simulation model of nanomachining, and using it to conduct parametric studies to guide AFM-based TBN. A 3D MD model with a larger domain size was developed and used to gain a unique insight into the nanoindentation and nanoscratching processes such as the effect of tip speed (e.g. effect of tip speed on indentation force above 10 nm of indentation depth). The model also supported a more comprehensive parametric study (than other published work) in terms of number of parameters and ranges of values investigated, as well as a more cost effective design of experiments. The model was also used to predict material properties at the nanoscale (e.g. hardness of gold predicted within 6% error). On the other hand, a comprehensive experimental parametric study was conducted to produce a database that is used to select proper machining conditions for guiding the fabrication of nanochannels (e.g. scratch rate = 0.996 Hz, trigger threshold = 1 V, for achieving a nanochannel depth = 50 nm for the case of gold device). Similar trends for the variation of indentation force with depth of cut, pattern of the material pile-up around the indentation mark or scratched groove were found. The parametric studies conducted using both MD model simulations and AFM experiments showed the following: Normal forces for both nanoindentation and nanoscratching increase as the depth of cut increases. The indentation depth increases with tip speed, but the depth of scratch decrease with increasing tip speed. The width and depth of scratched groove also depend on the scratch angle. The recommended scratch angle is at 90°. The surface roughness increases with step over, especially when the step over is larger

  18. Investigating Oil-Prone Kerogen Conversion to Hydrocarbons Using AFM-based Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Eoghan, D.; Cook, D.; Hackley, P. C.; Kjoller, K.; Dawson, D.; Shetty, R.

    2016-12-01

    Understanding in situ chemical changes occurring during thermal conversion of oil-prone kerogen to hydrocarbons can provide fundamental information regarding the origin of the earth's fossil fuel endowment and reduce uncertainty in hydrocarbon prospecting and resource assessment. Tasmanites algal bodies were studied using an Atomic Force Microscope-based IR spectroscopy technique (AFM-IR) that offers chemical characterization of organic materials with spatial resolution below the diffraction limit. The AFM allows precise positioning within the algal bodies. A tunable IR laser irradiates the sample under the AFM probe. At absorbing wavenumbers, the sample heats up and expands. The AFM detects the expansion of the material under the probe tip to generate local IR spectra. The Tasmanites algal bodies from the Devonian-Mississippian Woodford Shale were contained in two polished rock fragment pellets. To simulate maturation, one was subjected to isothermal hydrous pyrolysis at 320 °C for 72 hours. AFM-IR spectra were collected at multiple sites on algal bodies in both samples (Figure 1). The aromatic C=C ring stretching at 1600 cm-1 (unheated) shifted to 1606 cm-1 with increased absorption in the heated algal bodies, indicating development of increased aromaticity with thermal maturation. The ratio of the 1606 cm-1 peak to peaks at 1708 cm-1 (C=O stretching) and 1460 cm-1 (CH2 wag) was higher in the heated sample, indicating loss of oxygenated functional groups and aliphatic components with thermal advance. A shift of the 1372 cm-1 peak to 1376 cm-1 with lower absorption in the heated samples suggests reduction in the abundance of methyl substituents and development of preferred localization. These results are consistent with extant information from FTIR analysis and demonstrate the ability of AFM-IR to provide in situ characterization of organic matter with respect to thermal maturity advance, and its application to understanding conversion of oil-prone kerogen to

  19. Large-moment antiferromagnetic order in overdoped high-Tc superconductor 154SmFeAsO1-xDx

    NASA Astrophysics Data System (ADS)

    Iimura, Soshi; Okanishi, Hiroshi; Matsuishi, Satoru; Hiraka, Haruhiro; Honda, Takashi; Ikeda, Kazutaka; Hansen, Thomas C.; Otomo, Toshiya; Hosono, Hideo

    2017-05-01

    In iron-based superconductors, high critical temperature (Tc) superconductivity over 50 K has only been accomplished in electron-doped hREFeAsO (hRE is heavy rare earth (RE) element). Although hREFeAsO has the highest bulk Tc (58 K), progress in understanding its physical properties has been relatively slow due to difficulties in achieving high-concentration electron doping and carrying out neutron experiments. Here, we present a systematic neutron powder diffraction study of 154SmFeAsO1-xDx, and the discovery of a long-range antiferromagnetic ordering with x ≥ 0.56 (AFM2) accompanying a structural transition from tetragonal to orthorhombic. Surprisingly, the Fe magnetic moment in AFM2 reaches a magnitude of 2.73 μB/Fe, which is the largest in all nondoped iron pnictides and chalcogenides. Theoretical calculations suggest that the AFM2 phase originates in kinetic frustration of the Fe-3dxy orbital, in which the nearest-neighbor hopping parameter becomes zero. The unique phase diagram, i.e., highest-Tc superconducting phase adjacent to the strongly correlated phase in electron-overdoped regime, yields important clues to the unconventional origins of superconductivity.

  20. Cell mechanics as a marker for diseases: Biomedical applications of AFM

    NASA Astrophysics Data System (ADS)

    Rianna, Carmela; Radmacher, Manfred

    2016-08-01

    Many diseases are related to changes in cell mechanics. Atomic Force Microscopy (AFM) is one of the most suitable techniques allowing the investigation of both topography and mechanical properties of adherent cells with high spatial resolution under physiological conditions. Over the years the use of this technique in medical and clinical applications has largely increased, resulting in the notion of cell mechanics as a biomarker to discriminate between different physiological and pathological states of cells. Cell mechanics has proven to be a biophysical fingerprint able discerning between cell phenotypes, unraveling processes in aging or diseases, or even detecting and diagnosing cellular pathologies. We will review in this report some of the works on cell mechanics investigated by AFM with clinical and medical relevance in order to clarify the state of research in this field and to highlight the role of cell mechanics in the study of pathologies, focusing on cancer, blood and cardiovascular diseases. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 26 September 2016. The original version supplied to AIP Publishing contained blurred figures introduced during the PDF conversion process. Moreover, Equations (5), (6), and (7) were not correctly cited in the text. These errors have been corrected in the updated and republished article.

  1. Electrical characterization of FIB processed metal layers for reliable conductive-AFM on ZnO microstructures

    NASA Astrophysics Data System (ADS)

    Pea, M.; Maiolo, L.; Giovine, E.; Rinaldi, A.; Araneo, R.; Notargiacomo, A.

    2016-05-01

    We report on the conductive-atomic force microscopy (C-AFM) study of metallic layers in order to find the most suitable configuration for electrical characterization of individual ZnO micro-pillars fabricated by focused ion beam (FIB). The electrical resistance between the probe tip and both as deposited and FIB processed metal layers (namely, Cr, Ti, Au and Al) has been investigated. Both chromium and titanium evidenced a non homogenous and non ohmic behaviour, non negligible scanning probe induced anodic oxidation associated to electrical measurements, and after FIB milling they exhibited significantly higher tip-sample resistance. Aluminium had generally a more apparent non conductive behaviour. Conversely, gold films showed very good tip-sample conduction properties being less sensitive to FIB processing than the other investigated metals. We found that a reliable C-AFM electrical characterization of ZnO microstructures obtained by FIB machining is feasible by using a combination of metal films as top contact layer. An Au/Ti bilayer on top of ZnO was capable to sustain the FIB fabrication process and to form a suitable ohmic contact to the semiconductor, allowing for reliable C-AFM measurement. To validate the consistency of this approach, we measured the resistance of ZnO micropillars finding a linear dependence on the pillar height, as expected for an ohmic conductor, and evaluated the resistivity of the material. This procedure has the potential to be downscaled to nanometer size structures by a proper choice of metal films type and thickness.

  2. AFM of the ultrastructural and mechanical properties of lipid-raft-disrupted and/or cold-treated endothelial cells.

    PubMed

    Wu, Li; Huang, Jie; Yu, Xiaoxue; Zhou, Xiaoqing; Gan, Chaoye; Li, Ming; Chen, Yong

    2014-02-01

    The nonionic detergent extraction at 4 °C and the cholesterol-depletion-induced lipid raft disruption are the two widely used experimental strategies for lipid raft research. However, the effects of raft disruption and/or cold treatment on the ultrastructural and mechanical properties of cells are still unclear. Here, we evaluated the effects of raft disruption and/or cold (4 °C) treatment on these properties of living human umbilical vein endothelial cells (HUVECs). At first, the cholesterol-depletion-induced raft disruption was visualized by confocal microscopy and atomic force microscopy (AFM) in combination with fluorescent quantum dots. Next, the cold-induced cell contraction and the formation of end-branched filopodia were observed by confocal microscopy and AFM. Then, the cell-surface ultrastructures were imaged by AFM, and the data showed that raft disruption and cold treatment induced opposite effects on cell-surface roughness (a significant decrease and a significant increase, respectively). Moreover, the cell-surface mechanical properties (stiffness and adhesion force) of raft-disrupted- and/or cold-treated HUVECs were measured by the force measurement function of AFM. We found that raft disruption and cold treatment induced parallel effects on cell stiffness (increase) or adhesion force (decrease) and that the combination of the two treatments caused dramatically strengthened effects. Finally, raft disruption was found to significantly impair cell migration as previously reported, whereas temporary cold treatment only caused a slight but nonsignificant decrease in cell migration performed at physiological temperature. Although the mechanisms for causing these results might be complicated and more in-depth studies will be needed, our data may provide important information for better understanding the effects of raft disruption or cold treatment on cells and the two strategies for lipid raft research.

  3. Room temperature exchange bias in multiferroic BiFeO3 nano- and microcrystals with antiferromagnetic core and two-dimensional diluted antiferromagnetic shell

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Wang, Shou Yu; Liu, Wei Fang; Xu, Xun Ling; Li, Xiu; Zhang, Hong; Gao, Ju; Li, De Jun

    2017-05-01

    Exchange bias (EB) of multiferroics presents many potential opportunities for magnetic devices. However, instead of using low-temperature field cooling in the hysteresis loop measurement, which usually shows an effective approach to obtain obvious EB phenomenon, there are few room temperature EB. In this article, extensive studies on room temperature EB without field cooling were observed in BiFeO3 nano- and microcrystals. Moreover, with increasing size the hysteresis loops shift from horizontal negative exchange bias (NEB) to positive exchange bias (PEB). In order to explain the tunable EB behaviors with size dependence, a phenomenological qualitative model based on the framework of antiferromagnetic (AFM) core-two-dimensional diluted antiferromagnet in a field (2D-DAFF) shell structure was proposed. The training effect (TE) ascertained the validity of model and the presence of unstable magnetic structure using Binek's model. Experimental results show that the tunable EB effect can be explained by the competition of ferromagnetic (FM) exchange coupling and AFM exchange coupling interaction between AFM core and 2D-DAFF shell. Additionally, the local distortion of lattice fringes was observed in hexagonal-shaped BiFeO3 nanocrystals with well-dispersed behavior. The electrical conduction properties agreed well with the space charge-limited conduction mechanism.

  4. Using 2D correlation analysis to enhance spectral information available from highly spatially resolved AFM-IR spectra

    NASA Astrophysics Data System (ADS)

    Marcott, Curtis; Lo, Michael; Hu, Qichi; Kjoller, Kevin; Boskey, Adele; Noda, Isao

    2014-07-01

    The recent combination of atomic force microscopy and infrared spectroscopy (AFM-IR) has led to the ability to obtain IR spectra with nanoscale spatial resolution, nearly two orders-of-magnitude better than conventional Fourier transform infrared (FT-IR) microspectroscopy. This advanced methodology can lead to significantly sharper spectral features than are typically seen in conventional IR spectra of inhomogeneous materials, where a wider range of molecular environments are coaveraged by the larger sample cross section being probed. In this work, two-dimensional (2D) correlation analysis is used to examine position sensitive spectral variations in datasets of closely spaced AFM-IR spectra. This analysis can reveal new key insights, providing a better understanding of the new spectral information that was previously hidden under broader overlapped spectral features. Two examples of the utility of this new approach are presented. Two-dimensional correlation analysis of a set of AFM-IR spectra were collected at 200-nm increments along a line through a nucleation site generated by remelting a small spot on a thin film of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). There are two different crystalline carbonyl band components near 1720 cm-1 that sequentially disappear before a band at 1740 cm-1 due to more disordered material appears. In the second example, 2D correlation analysis of a series of AFM-IR spectra spaced every 1 μm of a thin cross section of a bone sample measured outward from an osteon center of bone growth. There are many changes in the amide I and phosphate band contours, suggesting changes in the bone structure are occurring as the bone matures.

  5. Revival of ferromagnetic behavior in charge-ordered Pr0.75Na0.25MnO3 manganite by ruthenium doping at Mn site and its MR effect

    NASA Astrophysics Data System (ADS)

    Elyana, E.; Mohamed, Z.; Kamil, S. A.; Supardan, S. N.; Chen, S. K.; Yahya, A. K.

    2018-02-01

    Ru doping in charge-ordered Pr0.75Na0.25Mn1-xRuxO3 (x = 0-0.1) manganites was studied to investigate its effect on structure, electrical transport, magnetic properties, and magnetotransport properties. DC electrical resistivity (ρ), magnetic susceptibility, and χ' measurements showed that sample x = 0 exhibits insulating behavior within the entire temperature range and antiferromagnetic (AFM) behavior below the charge-ordering (CO) transition temperature TCO of 221 K. Ru4+ substitution (x>0.01) suppressed the CO state, which resulted in the revival of paramagnetic to ferromagnetic (FM) transition at the Curie temperature Tc, increasing from 120 K (x = 0.01) to 193 K (x = 0.1). Deviation from the Curie-Weiss law above Tc in the 1/χ' versus T plot for x = 0.01 doped samples indicated the existence of Griffiths phase with Griffith temperature at 169 K. Electrical resistivity measurements showed that Ru4+ substitution increased the metallic-to-insulating transition temperature TMI from 144 K (x = 0.01) to 192 K (x = 0.05) due to enhanced double-exchange mechanism, but TMI decreased to 176 K (x = 0.1) probably due to the existence of AFM clusters within the FM domain. The present work also discussed the possible theoretical models at the resistivity curve of Pr0.75Na0.25Mn1-xRuxO3 (x = 0-0.1) for the entire temperature range.

  6. Fast and controlled fabrication of porous graphene oxide: application of AFM tapping for mechano-chemistry

    NASA Astrophysics Data System (ADS)

    Chu, Liangyong; Korobko, Alexander V.; Bus, Marcel; Boshuizen, Bart; Sudhölter, Ernst J. R.; Besseling, Nicolaas A. M.

    2018-05-01

    This paper describes a novel method to fabricate porous graphene oxide (PGO) from GO by exposure to oxygen plasma. Compared to other methods to fabricate PGO described so far, e.g. the thermal and steam etching methods, oxygen plasma etching method is much faster. We studied the development of the porosity with exposure time using atomic force microscopy (AFM). It was found that the development of PGO upon oxygen-plasma exposure can be controlled by tapping mode AFM scanning using a Si tip. AFM tapping stalls the growth of pores upon further plasma exposure at a level that coincides with the fraction of sp2 carbons in the GO starting material. We suggest that AFM tapping procedure changes the bond structure of the intermediate PGO structure, and these stabilized PGO structures cannot be further etched by oxygen plasma. This constitutes the first report of tapping AFM as a tool for local mechano-chemistry.

  7. Fast and controlled fabrication of porous graphene oxide: application of AFM tapping for mechano-chemistry.

    PubMed

    Chu, Liangyong; Korobko, Alexander V; Bus, Marcel; Boshuizen, Bart; Sudhölter, Ernst J R; Besseling, Nicolaas A M

    2018-05-04

    This paper describes a novel method to fabricate porous graphene oxide (PGO) from GO by exposure to oxygen plasma. Compared to other methods to fabricate PGO described so far, e.g. the thermal and steam etching methods, oxygen plasma etching method is much faster. We studied the development of the porosity with exposure time using atomic force microscopy (AFM). It was found that the development of PGO upon oxygen-plasma exposure can be controlled by tapping mode AFM scanning using a Si tip. AFM tapping stalls the growth of pores upon further plasma exposure at a level that coincides with the fraction of sp 2 carbons in the GO starting material. We suggest that AFM tapping procedure changes the bond structure of the intermediate PGO structure, and these stabilized PGO structures cannot be further etched by oxygen plasma. This constitutes the first report of tapping AFM as a tool for local mechano-chemistry.

  8. A Novel Method to Reconstruct the Force Curve by Higher Harmonics of the First Two Flexural Modes in Frequency Modulation Atomic Force Microscope (FM-AFM).

    PubMed

    Zhang, Suoxin; Qian, Jianqiang; Li, Yingzi; Zhang, Yingxu; Wang, Zhenyu

    2018-06-04

    Atomic force microscope (AFM) is an idealized tool to measure the physical and chemical properties of the sample surfaces by reconstructing the force curve, which is of great significance to materials science, biology, and medicine science. Frequency modulation atomic force microscope (FM-AFM) collects the frequency shift as feedback thus having high force sensitivity and it accomplishes a true noncontact mode, which means great potential in biological sample detection field. However, it is a challenge to establish the relationship between the cantilever properties observed in practice and the tip-sample interaction theoretically. Moreover, there is no existing method to reconstruct the force curve in FM-AFM combining the higher harmonics and the higher flexural modes. This paper proposes a novel method that a full force curve can be reconstructed by any order higher harmonics of the first two flexural modes under any vibration amplitude in FM-AFM. Moreover, in the small amplitude regime, short range forces are reconstructed more accurately by higher harmonics analysis compared with fundamental harmonics using the Sader-Jarvis formula.

  9. Contact resonance atomic force microscopy for viscoelastic characterization of polymer-based nanocomposites at variable temperature

    NASA Astrophysics Data System (ADS)

    Natali, Marco; Passeri, Daniele; Reggente, Melania; Tamburri, Emanuela; Terranova, Maria Letizia; Rossi, Marco

    2016-06-01

    Characterization of mechanical properties at the nanometer scale at variable temperature is one of the main challenges in the development of polymer-based nanocomposites for application in high temperature environments. Contact resonance atomic force microscopy (CR-AFM) is a powerful technique to characterize viscoelastic properties of materials at the nanoscale. In this work, we demonstrate the capability of CR-AFM of characterizing viscoelastic properties (i.e., storage and loss moduli, as well as loss tangent) of polymer-based nanocomposites at variable temperature. CR-AFM is first illustrated on two polymeric reference samples, i.e., low-density polyethylene (LDPE) and polycarbonate (PC). Then, temperature-dependent viscoelastic properties (in terms of loss tangent) of a nanocomposite sample constituted by a epoxy resin reinforced with single-wall carbon nanotubes (SWCNTs) are investigated.

  10. Theory of the interplay between the superconductivity and the blocked antiferromagnetic order in A(y)Fe(2-x)Se2.

    PubMed

    Jiang, Hong-Min

    2012-09-26

    Based on an effective two-orbital tight-binding model, we examine the possible superconducting states in iron-vacancy-ordered A(y)Fe(2-x)Se(2). In the presence of ordered vacancies and blocked antiferromagnetic order, it is shown that the emergent SC pairing is the nodeless next-nearest-neighbor (NNN)-pairing due to the dominant antiferromagnetic (AFM) interaction between the inter-block NNN sites. In particular, we show that due to the ordered vacancies and the associated blocked AFM order, the interplay between the superconducting and AFM states results in three distinct states in the phase diagram as doping is varied. The divergent experimental observations can be accounted for by considering the different charge carrier concentrations in their respective compounds.

  11. [Coupling AFM fluid imaging with micro-flocculation filtration process for the technological optimization].

    PubMed

    Zheng, Bei; Ge, Xiao-peng; Yu, Zhi-yong; Yuan, Sheng-guang; Zhang, Wen-jing; Sun, Jing-fang

    2012-08-01

    Atomic force microscope (AFM) fluid imaging was applied to the study of micro-flocculation filtration process and the optimization of micro-flocculation time and the agitation intensity of G values. It can be concluded that AFM fluid imaging proves to be a promising tool in the observation and characterization of floc morphology and the dynamic coagulation processes under aqueous environmental conditions. Through the use of AFM fluid imaging technique, optimized conditions for micro-flocculation time of 2 min and the agitation intensity (G value) of 100 s(-1) were obtained in the treatment of dye-printing industrial tailing wastewater by the micro-flocculation filtration process with a good performance.

  12. An Evaluation of the Impacts of AF-M315E Propulsion Systems for Varied Mission Applications

    NASA Technical Reports Server (NTRS)

    Deans, Matthew C.; Oleson, Steven R.; Fittje, James; Colozza, Anthony; Packard, Tom; Gyekenyesi, John; McLean, Christopher H.; Spores, Ronald A.

    2015-01-01

    The purpose of the AF-M315E COMPASS study is to identify near-term (3-5 years) and long term (5 years +) opportunities for infusion, specifically the thruster and associated component technologies being developed as part of the GPIM project. Develop design reference missions which show the advantages of the AF-M315E green propulsion system. Utilize a combination of past COMPASS designs and selected new designs to demonstrate AF-M315E advantages. Use the COMPASS process to show the puts and takes of using AF-M315E at the integrated system level.

  13. Low temperature corneal laser welding investigated by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Matteini, Paolo; Sbrana, Francesca; Tiribilli, Bruno; Pini, Roberto

    2009-02-01

    The structural modifications in the stromal matrix induced by low-temperature corneal laser welding were investigated by atomic force microscopy (AFM). This procedure consists of staining the wound with Indocyanine Green (ICG), followed by irradiation with a near-infrared laser operated at low-power densities. This induces a local heating in the 55-65 °C range. In welded tissue, extracellular components undergo heat-induced structural modifications, resulting in a joining effect between the cut edges. However, the exact mechanism generating the welding, to date, is not completely understood. Full-thickness cuts, 3.5 mm in length, were made in fresh porcine cornea samples, and these were then subjected to laser welding operated at 16.7 W/cm2 power density. AFM imaging was performed on resin-embedded semi-thin slices once they had been cleared by chemical etching, in order to expose the stromal bulk of the tissue within the section. We then carried out a morphological analysis of characteristic fibrillar features in the laser-treated and control samples. AFM images of control stromal regions highlighted well-organized collagen fibrils (36.2 +/- 8.7 nm in size) running parallel to each other as in a typical lamellar domain. The fibrils exhibited a beaded pattern with a 22-39 nm axial periodicity. Laser-treated corneal regions were characterized by a significant disorganization of the intralamellar architecture. At the weld site, groups of interwoven fibrils joined the cut edges, showing structural properties that were fully comparable with those of control regions. This suggested that fibrillar collagen is not denatured by low-temperature laser welding, confirming previous transmission electron microscopy (TEM) observations, and thus it is probably not involved in the closure mechanism of corneal cuts. The loss of fibrillar organization may be related to some structural modifications in some interfibrillar substance as proteoglycans or collagen VI. Furthermore, AFM

  14. AFM Studies of Lunar Soils and Application to the Mars 2001 Mission

    NASA Technical Reports Server (NTRS)

    Weitz, C. M.; Anderson, M. S.; Marshall, J.

    1999-01-01

    The upcoming Mars 01 mission will carry an Atomic Force Microscope (AFM) as part of the Mars Environmental Compatibility Assessment (MECA) instrument. By operating in a tapping mode, the AFM is capable of sub-nanometer resolution in three dimensions and can distinguish between substances of different compositions by employing phase contrast imaging. To prepare for the Mars 01 mission, we are testing the AFM on a lunar soil to determine its ability to define particle shapes and sizes and grain-surface textures. The test materials are from the Apollo 17 soil 79221, which is a mixture of agglutinates, impact and volcanic beads, and mare and highland rock and mineral fragments. The majority of the lunar soil particles are less than 100 microns in size, comparable to the sizes estimated for martian dust. We have used the AFM to examine several different soil particles at various resolutions. The instrument has demonstrated the ability to identify parallel ridges characteristic of twinning on a 150 micron plagioclase feldspar particle. Extremely small (10-100 nanometer) adhering particles are visible on the surface of the feldspar grain, and they appear elongate with smooth surfaces. Phase contrast imaging of the nanometer particles shows several compositions to be present. When the AFM was applied to a 100 micron glass spherule, it was possible to define an extremely smooth surface; this is in clear contrast to results from a basalt fragment which exhibited a rough surface texture. Also visible on the surface of the glass spherule were chains of 100 nanometer and smaller impact melt droplets. For the '01 Mars mission, the AFM is intended to define the size and shape distributions of soil particles, in combination with the NMCA optical microscope system and images from the Robot Arm Camera (RAC). These three data sets will provide a means of assessing potentially hazardous soil and dust properties. The study that we have conducted on the lunar soils now suggests that the

  15. AFMS Flight Path: Building Future Leaders

    DTIC Science & Technology

    2009-02-12

    small numbers of deactivated squadrons were reactivated. In general, the Flight Path maintains the four squadron framework of OMG with an additional...MC fill all but two. Vast differences in rank and promotion rates further bias the AFMS to a non-DOPMA corps led entity . The Flight Path has done...Aeromedical Squadron (AMDS) can combine into an Aeromedical Dental Squadron ( ADOS ) or can reside as flights under the Medical Operations Squadron

  16. AFM as an analysis tool for high-capacity sulfur cathodes for Li–S batteries

    PubMed Central

    Sörgel, Seniz; Costa, Rémi; Carlé, Linus; Galm, Ines; Cañas, Natalia; Pascucci, Brigitta; Friedrich, K Andreas

    2013-01-01

    Summary In this work, material-sensitive atomic force microscopy (AFM) techniques were used to analyse the cathodes of lithium–sulfur batteries. A comparison of their nanoscale electrical, electrochemical, and morphological properties was performed with samples prepared by either suspension-spraying or doctor-blade coating with different binders. Morphological studies of the cathodes before and after the electrochemical tests were performed by using AFM and scanning electron microscopy (SEM). The cathodes that contained polyvinylidene fluoride (PVDF) and were prepared by spray-coating exhibited a superior stability of the morphology and the electric network associated with the capacity and cycling stability of these batteries. A reduction of the conductive area determined by conductive AFM was found to correlate to the battery capacity loss for all cathodes. X-ray diffraction (XRD) measurements of Li2S exposed to ambient air showed that insulating Li2S hydrolyses to insulating LiOH. This validates the significance of electrical ex-situ AFM analysis after cycling. Conductive tapping mode AFM indicated the existence of large carbon-coated sulfur particles. Based on the analytical findings, the first results of an optimized cathode showed a much improved discharge capacity of 800 mA·g(sulfur)−1 after 43 cycles. PMID:24205455

  17. Long range magnetic ordering of ultracold fermions in an optical lattice

    NASA Astrophysics Data System (ADS)

    Duarte, P. M.; Hart, R. A.; Yang, T.-L.; Hulet, R. G.

    2013-05-01

    We present progress towards the observation of long range antiferromagnetic (AFM) ordering of fermionic 6Li atoms in an optical lattice. We prepare a two spin state mixture of 106 atoms at T /TF = 0 . 1 by evaporatively cooling in an optical dipole trap. The sample is then transferred to a dimple trap formed by three retroreflected laser beams at 1064 nm that propagate in orthogonal directions. The polarization of the retroreflected light is controlled using liquid crystal retarders, which allow us to adiabatically transform the dimple trap into a 3D lattice. Overlapped with each of the three dimple/lattice beams is a beam at 532 nm, which can cancel the harmonic confinement and flatten the band structure in the lattice. This setup offers the possibility of implementing proposed schemes which enlarge the size of the AFM phase in the trap. As a probe for AFM we use Bragg scattering of light. We have observed Bragg scattering off of the (100) lattice planes, and using an off-angle probe we can see the diffuse scattering from the sample which serves as background for the small signals expected before the onset of AFM ordering. Supported by NSF, ONR, DARPA, and the Welch Foundation.

  18. Amyloid and membrane complexity: The toxic interplay revealed by AFM.

    PubMed

    Canale, Claudio; Oropesa-Nuñez, Reinier; Diaspro, Alberto; Dante, Silvia

    2018-01-01

    Lipid membranes play a fundamental role in the pathological development of protein misfolding diseases. Several pieces of evidence suggest that the lipid membrane could act as a catalytic surface for protein aggregation. Furthermore, a leading theory indicates the interaction between the cell membrane and misfolded oligomer species as the responsible for cytotoxicity, hence, for neurodegeneration in disorders such as Alzheimer's and Parkinson's disease. The definition of the mechanisms that drive the interaction between pathological protein aggregates and plasma membrane is fundamental for the development of effective therapies for a large class of diseases. Atomic force microscopy (AFM) has been employed to study how amyloid aggregates affect the cell physiological properties. Considerable efforts were spent to characterize the interaction with model systems, i.e., planar supported lipid bilayers, but some works also addressed the problem directly on living cells. Here, an overview of the main works involving the use of the AFM on both model system and living cells will be provided. Different kind of approaches will be presented, as well as the main results derived from the AFM analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Dynamic characterization of AFM probes by laser Doppler vibrometry and stroboscopic holographic methodologies

    NASA Astrophysics Data System (ADS)

    Kuppers, J. D.; Gouverneur, I. M.; Rodgers, M. T.; Wenger, J.; Furlong, C.

    2006-08-01

    In atomic probe microscopy, micro-probes of various sizes, geometries, and materials are used to define the interface between the samples under investigation and the measuring detectors and instrumentation. Therefore, measuring resolution in atomic probe microscopy is highly dependent on the transfer function characterizing the micro-probes used. In this paper, characterization of the dynamic transfer function of specific micro-cantilever probes used in an Atomic Force Microscope (AFM) operating in the tapping mode is presented. Characterization is based on the combined application of laser Doppler vibrometry (LDV) and real-time stroboscopic optoelectronic holographic microscopy (OEHM) methodologies. LDV is used for the rapid measurement of the frequency response of the probes due to an excitation function containing multiple frequency components. Data obtained from the measured frequency response is used to identify the principal harmonics. In order to identify mode shapes corresponding to the harmonics, full-field of view OEHM is applied. This is accomplished by measurements of motion at various points on the excitation curve surrounding the identified harmonics. It is shown that the combined application of LDV and OEHM enables the high-resolution characterization of mode shapes of vibration, damping characteristics, as well as transient response of the micro-cantilever probes. Such characterization is necessary in high-resolution AFM measurements.

  20. A fully-automated neural network analysis of AFM force-distance curves for cancer tissue diagnosis

    NASA Astrophysics Data System (ADS)

    Minelli, Eleonora; Ciasca, Gabriele; Sassun, Tanya Enny; Antonelli, Manila; Palmieri, Valentina; Papi, Massimiliano; Maulucci, Giuseppe; Santoro, Antonio; Giangaspero, Felice; Delfini, Roberto; Campi, Gaetano; De Spirito, Marco

    2017-10-01

    Atomic Force Microscopy (AFM) has the unique capability of probing the nanoscale mechanical properties of biological systems that affect and are affected by the occurrence of many pathologies, including cancer. This capability has triggered growing interest in the translational process of AFM from physics laboratories to clinical practice. A factor still hindering the current use of AFM in diagnostics is related to the complexity of AFM data analysis, which is time-consuming and needs highly specialized personnel with a strong physical and mathematical background. In this work, we demonstrate an operator-independent neural-network approach for the analysis of surgically removed brain cancer tissues. This approach allowed us to distinguish—in a fully automated fashion—cancer from healthy tissues with high accuracy, also highlighting the presence and the location of infiltrating tumor cells.

  1. Analysis of photothermally induced vibration in metal coated AFM cantilever

    NASA Astrophysics Data System (ADS)

    Kadri, Shahrul; Fujiwara, Hideki; Sasaki, Keiji

    2010-05-01

    We report the vibration reduction in the optically driven V-shaped AFM cantilever with 70 nm gold surface coating. The driving laser at 780 nm is intensity modulated at 1 kHz to 100 kHz and focused on the AFM cantilever surface. The cantilever vibration amplitude is monitored by HeNe probe laser. Two features are observed: high vibration amplitude of the cantilever (1) at several kHz modulation frequencies regime and (2) at around its mechanical resonance. In addition, we found that vibration at the resonance peak increases when the excitation spot is positioned farther from the free end of the cantilever.

  2. FRAME (Force Review Automation Environment): MATLAB-based AFM data processor.

    PubMed

    Partola, Kostyantyn R; Lykotrafitis, George

    2016-05-03

    Data processing of force-displacement curves generated by atomic force microscopes (AFMs) for elastic moduli and unbinding event measurements is very time consuming and susceptible to user error or bias. There is an evident need for consistent, dependable, and easy-to-use AFM data processing software. We have developed an open-source software application, the force review automation environment (or FRAME), that provides users with an intuitive graphical user interface, automating data processing, and tools for expediting manual processing. We did not observe a significant difference between manually processed and automatically processed results from the same data sets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Curie temperatures of titanomagnetite in ignimbrites: Effects of emplacement temperatures, cooling rates, exsolution, and cation ordering

    NASA Astrophysics Data System (ADS)

    Jackson, Mike; Bowles, Julie A.

    2014-11-01

    Pumices, ashes, and tuffs from Mt. St. Helens and from Novarupta contain two principal forms of titanomagnetite: homogeneous grains with Curie temperatures in the range 350-500°C and oxyexsolved grains with similar bulk composition, containing ilmenite lamellae and having Curie temperatures above 500°C. Thermomagnetic analyses and isothermal annealing experiments in combination with stratigraphic settings and thermal models show that emplacement temperatures and cooling history may have affected the relative proportions of homogeneous and exsolved grains and have clearly had a strong influence on the Curie temperature of the homogeneous phase. The exsolved grains are most common where emplacement temperatures exceeded 600°C, and in laboratory experiments, heating to over 600°C in air causes the homogeneous titanomagnetites to oxyexsolve rapidly. Where emplacement temperatures were lower, Curie temperatures of the homogeneous grains are systematically related to overburden thickness and cooling timescales, and thermomagnetic curves are generally irreversible, with lower Curie temperatures measured during cooling, but little or no change is observed in room temperature susceptibility. We interpret this irreversible behavior as reflecting variations in the degree of cation ordering in the titanomagnetites, although we cannot conclusively rule out an alternative interpretation involving fine-scale subsolvus unmixing. Short-range ordering within the octahedral sites may play a key role in the observed phenomena. Changes in the Curie temperature have important implications for the acquisition, stabilization, and retention of natural remanence and may in some cases enable quantification of the emplacement temperatures or cooling rates of volcanic units containing homogeneous titanomagnetites.

  4. BOREAS AFM-5 Level-1 Upper Air Network Data

    NASA Technical Reports Server (NTRS)

    Barr, Alan; Hrynkiw, Charmaine; Newcomer, Jeffrey A. (Editor); Hall, Forrest G. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing Atmospheric Environment Service (AES) aerological network, both temporally and spatially. This data set includes basic upper-air parameters collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The level-1 upper-air network data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files also are available on a CD-ROM (see document number 20010000884).

  5. Tip-enhanced Raman mapping with top-illumination AFM.

    PubMed

    Chan, K L Andrew; Kazarian, Sergei G

    2011-04-29

    Tip-enhanced Raman mapping is a powerful, emerging technique that offers rich chemical information and high spatial resolution. Currently, most of the successes in tip-enhanced Raman scattering (TERS) measurements are based on the inverted configuration where tips and laser are approaching the sample from opposite sides. This results in the limitation of measurement for transparent samples only. Several approaches have been developed to obtain tip-enhanced Raman mapping in reflection mode, many of which involve certain customisations of the system. We have demonstrated in this work that it is also possible to obtain TERS nano-images using an upright microscope (top-illumination) with a gold-coated Si atomic force microscope (AFM) cantilever without significant modification to the existing integrated AFM/Raman system. A TERS image of a single-walled carbon nanotube has been achieved with a spatial resolution of ∼ 20-50 nm, demonstrating the potential of this technique for studying non-transparent nanoscale materials.

  6. Force Spectroscopy with 9-μs Resolution and Sub-pN Stability by Tailoring AFM Cantilever Geometry.

    PubMed

    Edwards, Devin T; Faulk, Jaevyn K; LeBlanc, Marc-André; Perkins, Thomas T

    2017-12-19

    Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is a powerful yet accessible means to characterize the unfolding/refolding dynamics of individual molecules and resolve closely spaced, transiently occupied folding intermediates. On a modern commercial AFM, these applications and others are now limited by the mechanical properties of the cantilever. Specifically, AFM-based SMFS data quality is degraded by a commercial cantilever's limited combination of temporal resolution, force precision, and force stability. Recently, we modified commercial cantilevers with a focused ion beam to optimize their properties for SMFS. Here, we extend this capability by modifying a 40 × 18 μm 2 cantilever into one terminated with a gold-coated, 4 × 4 μm 2 reflective region connected to an uncoated 2-μm-wide central shaft. This "Warhammer" geometry achieved 8.5-μs resolution coupled with improved force precision and sub-pN stability over 100 s when measured on a commercial AFM. We highlighted this cantilever's biological utility by first resolving a calmodulin unfolding intermediate previously undetected by AFM and then measuring the stabilization of calmodulin by myosin light chain kinase at dramatically higher unfolding velocities than in previous AFM studies. More generally, enhancing data quality via an improved combination of time resolution, force precision, and force stability will broadly benefit biological applications of AFM. Published by Elsevier Inc.

  7. The LER/LWR metrology challenge for advance process control through 3D-AFM and CD-SEM

    NASA Astrophysics Data System (ADS)

    Faurie, P.; Foucher, J.; Foucher, A.-L.

    2009-12-01

    The continuous shrinkage in dimensions of microelectronic devices has reached such level, with typical gate length in advance R&D of less than 20nm combine with the introduction of new architecture (FinFET, Double gate...) and new materials (porous interconnect material, 193 immersion resist, metal gate material, high k materials...), that new process parameters have to be well understood and well monitored to guarantee sufficient production yield in a near future. Among these parameters, there are the critical dimensions (CD) associated to the sidewall angle (SWA) values, the line edge roughness (LER) and the line width roughness (LWR). Thus, a new metrology challenge has appeared recently and consists in measuring "accurately" the fabricated patterns on wafers in addition to measure the patterns on a repeatable way. Therefore, a great effort has to be done on existing techniques like CD-SEM, Scatterometry and 3D-AFM in order to develop them following the two previous criteria: Repeatability and Accuracy. In this paper, we will compare the 3D-AFM and CD-SEM techniques as a mean to measure LER and LWR on silicon and 193 resist and point out CD-SEM impact on the material during measurement. Indeed, depending on the material type, the interaction between the electron beam and the material or between the AFM tip and the material can vary a lot and subsequently can generate measurements bias. The first results tend to show that depending on CD-SEM conditions (magnification, number of acquisition frames) the final outputs can vary on a large range and therefore show that accuracy in such measurements are really not obvious to obtain. On the basis of results obtained on various materials that present standard sidewall roughness, we will show the limit of each technique and will propose different ways to improve them in order to fulfil advance roadmap requirements for the development of the next IC generation.

  8. Raman and AFM study of gamma irradiated plastic bottle sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Yasir; Kumar, Vijay; Dhaliwal, A. S.

    2013-02-05

    In this investigation, the effects of gamma irradiation on the structural properties of plastic bottle sheet are studied. The Plastic sheets were exposed with 1.25MeV {sup 60}Co gamma rays source at various dose levels within the range from 0-670 kGy. The induced modifications were followed by micro-Raman and atomic force microscopy (AFM). The Raman spectrum shows the decrease in Raman intensity and formation of unsaturated bonds with an increase in the gamma dose. AFM image displays rough surface morphology after irradiation. The detailed Raman analysis of plastic bottle sheets is presented here, and the results are correlated with the AFMmore » observations.« less

  9. Highly sensitive protein detection by biospecific AFM-based fishing with pulsed electrical stimulation.

    PubMed

    Pleshakova, Tatyana O; Malsagova, Kristina A; Kaysheva, Anna L; Kopylov, Arthur T; Tatur, Vadim Yu; Ziborov, Vadim S; Kanashenko, Sergey L; Galiullin, Rafael A; Ivanov, Yuri D

    2017-08-01

    We report here the highly sensitive detection of protein in solution at concentrations from 10 -15 to 10 -18 m using the combination of atomic force microscopy (AFM) and mass spectrometry. Biospecific detection of biotinylated bovine serum albumin was carried out by fishing out the protein onto the surface of AFM chips with immobilized avidin, which determined the specificity of the analysis. Electrical stimulation was applied to enhance the fishing efficiency. A high sensitivity of detection was achieved by application of nanosecond electric pulses to highly oriented pyrolytic graphite placed under the AFM chip. A peristaltic pump-based flow system, which is widely used in routine bioanalytical assays, was employed throughout the analysis. These results hold promise for the development of highly sensitive protein detection methods using nanosensor devices.

  10. Large-moment antiferromagnetic order in overdoped high-Tc superconductor 154SmFeAsO1-x D x .

    PubMed

    Iimura, Soshi; Okanishi, Hiroshi; Matsuishi, Satoru; Hiraka, Haruhiro; Honda, Takashi; Ikeda, Kazutaka; Hansen, Thomas C; Otomo, Toshiya; Hosono, Hideo

    2017-05-30

    In iron-based superconductors, high critical temperature ( T c ) superconductivity over 50 K has only been accomplished in electron-doped hRE FeAsO ( hRE is heavy rare earth ( RE ) element). Although hRE FeAsO has the highest bulk T c (58 K), progress in understanding its physical properties has been relatively slow due to difficulties in achieving high-concentration electron doping and carrying out neutron experiments. Here, we present a systematic neutron powder diffraction study of 154 SmFeAsO 1- x D x , and the discovery of a long-range antiferromagnetic ordering with x ≥ 0.56 (AFM2) accompanying a structural transition from tetragonal to orthorhombic. Surprisingly, the Fe magnetic moment in AFM2 reaches a magnitude of 2.73 μ B /Fe, which is the largest in all nondoped iron pnictides and chalcogenides. Theoretical calculations suggest that the AFM2 phase originates in kinetic frustration of the Fe-3 d xy orbital, in which the nearest-neighbor hopping parameter becomes zero. The unique phase diagram, i.e., highest- T c superconducting phase adjacent to the strongly correlated phase in electron-overdoped regime, yields important clues to the unconventional origins of superconductivity.

  11. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM

    PubMed Central

    Guan, Dongshi; Hang, Zhi Hong; Marcet, Zsolt; Liu, Hui; Kravchenko, I. I.; Chan, C. T.; Chan, H. B.; Tong, Penger

    2015-01-01

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. The experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures. PMID:26586455

  12. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    DOE PAGES

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; ...

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength goldmore » disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.« less

  13. Bacterial adhesion to protein-coated surfaces: An AFM and QCM-D study

    NASA Astrophysics Data System (ADS)

    Strauss, Joshua; Liu, Yatao; Camesano, Terri A.

    2009-09-01

    Bacterial adhesion to biomaterials, mineral surfaces, or other industrial surfaces is strongly controlled by the way bacteria interact with protein layers or organic matter and other biomolecules that coat the materials. Despite this knowledge, many studies of bacterial adhesion are performed under clean conditions, instead of in the presence of proteins or organic molecules. We chose fetal bovine serum (FBS) as a model protein, and prepared FBS films on quartz crystals. The thickness of the FBS layer was characterized using atomic force microscopy (AFM) imaging under liquid and quartz crystal microbalance with dissipation (QCM-D). Next, we characterized how the model biomaterial surface would interact with the nocosomial pathogen Staphylococcus epidermidis. An AFM probe was coated with S. epidermidis cells and used to probe a gold slide that had been coated with FBS or another protein, fibronectin (FN). These experiments show that AFM and QCM-D can be used in complementary ways to study the complex interactions between bacteria, proteins, and surfaces.

  14. BOREAS AFM-1 NOAA/ATDD Long-EZ Aircraft Flux data Over the SSA

    NASA Technical Reports Server (NTRS)

    Crawford, Timothy L.; Baldocchi, Dennis; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Gunter, Laureen; Dumas, Ed; Smith, David E. (Technical Monitor)

    2000-01-01

    This data set contains measurements from the Airborne Flux and Meteorology (AFM)-1 National Oceanographic and Atmospheric Administration/Atmospheric Turbulence and Diffusion Division (NOAA/ATDD) Long-EZ Aircraft collected during the 1994 Intensive Field Campaigns (IFCs) at the southern study area (SSA). These measurements were made from various instruments mounted on the aircraft. The data that were collected include aircraft altitude, wind direction, wind speed, air temperature, potential temperature, water mixing ratio, U and V components of wind velocity, static pressure, surface radiative temperature, downwelling and upwelling total radiation, downwelling and upwelling longwave radiation, net radiation, downwelling and upwelling photosynthectically active radiation (PAR), greenness index, CO2 concentration, O3 concentration, and CH4 concentration. There are also various columns that indicate the standard deviation, skewness, kurtosis, and trend of some of these data. The data are stored in tabular ASCII files. The NOAA/ATDD Long-EZ aircraft flux data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  15. Record high magnetic ordering temperature in a lanthanide at extreme pressure

    DOE PAGES

    Lim, J.; Fabbris, G.; Haskel, D.; ...

    2017-11-07

    Today's best permanent magnet materials, SmCo 5 and Nd 2Fe 14B, could likely be made signi fi cantly more powerful were it not necessary to dilute the strong magnetism of the rare earth ions (Sm, Nd) with the 3 d transition elements (Fe, Co). Since the rare-earth metals order magnetically at relatively low temperatures T o <= 292 K, transition elements must be added to bring T o to temperatures well above ambient. Under pressure T o (P) for the neighboring lanthanides Gd, Tb, and Dy follows a notably nonmonotonic, but nearly identical, dependence to similar to 60 GPa. Atmore » higher pressures, however, Tb and Dy exhibit highly anomalous behavior, T o for Dy soaring to temperatures well above ambient. In conclusion, we suggest that this anomalously high magnetic ordering temperature is an heretofore unrecognized feature of the Kondo lattice state.« less

  16. Record high magnetic ordering temperature in a lanthanide at extreme pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, J.; Fabbris, G.; Haskel, D.

    Today's best permanent magnet materials, SmCo 5 and Nd 2Fe 14B, could likely be made signi fi cantly more powerful were it not necessary to dilute the strong magnetism of the rare earth ions (Sm, Nd) with the 3 d transition elements (Fe, Co). Since the rare-earth metals order magnetically at relatively low temperatures T o <= 292 K, transition elements must be added to bring T o to temperatures well above ambient. Under pressure T o (P) for the neighboring lanthanides Gd, Tb, and Dy follows a notably nonmonotonic, but nearly identical, dependence to similar to 60 GPa. Atmore » higher pressures, however, Tb and Dy exhibit highly anomalous behavior, T o for Dy soaring to temperatures well above ambient. In conclusion, we suggest that this anomalously high magnetic ordering temperature is an heretofore unrecognized feature of the Kondo lattice state.« less

  17. 3D Nanofabrication Using AFM-Based Ultrasonic Vibration Assisted Nanomachining

    NASA Astrophysics Data System (ADS)

    Deng, Jia

    Nanolithography and nanofabrication processes have significant impact on the recent development of fundamental research areas such as physics, chemistry and biology, as well as the modern electronic devices that have reached nanoscale domain such as optoelectronic devices. Many advanced nanofabrication techniques have been developed and reported to satisfy different requirements in both research areas and applications such as electron-beam lithography. However, it is expensive to use and maintain the equipment. Atomic Force Microscope (AFM) based nanolithography processes provide an alternative approach to nanopatterning with significantly lower cost. Recently, three dimensional nanostructures have attracted a lot of attention, motivated by many applications in various fields including optics, plasmonics and nanoelectromechanical systems. AFM nanolithography processes are able to create not only two dimensional nanopatterns but also have the great potential to fabricate three dimensional nanostructures. The objectives of this research proposal are to investigate the capability of AFM-based three dimensional nanofabrication processes, to transfer the three dimensional nanostructures from resists to silicon surfaces and to use the three dimensional nanostructures on silicon in applications. Based on the understanding of literature, a novel AFM-based ultrasonic vibration assisted nanomachining system is utilized to develop three dimensional nanofabrication processes. In the system, high-frequency in plane circular xy-vibration was introduced to create a virtual tool, whose diameter is controlled by the amplitude of xy-vibration and is larger than that of a regular AFM tip. Therefore, the feature width of a single trench is tunable. Ultrasonic vibration of sample in z-direction was introduced to control the depth of single trenches, creating a high-rate 3D nanomachining process. Complicated 3D nanostructures on PMMA are fabricated under both the setpoint force and z

  18. 3-Dimensional atomic scale structure of the ionic liquid-graphite interface elucidated by AM-AFM and quantum chemical simulations

    NASA Astrophysics Data System (ADS)

    Page, Alister J.; Elbourne, Aaron; Stefanovic, Ryan; Addicoat, Matthew A.; Warr, Gregory G.; Voïtchovsky, Kislon; Atkin, Rob

    2014-06-01

    In situ amplitude modulated atomic force microscopy (AM-AFM) and quantum chemical simulations are used to resolve the structure of the highly ordered pyrolytic graphite (HOPG)-bulk propylammonium nitrate (PAN) interface with resolution comparable with that achieved for frozen ionic liquid (IL) monolayers using STM. This is the first time that (a) molecular resolution images of bulk IL-solid interfaces have been achieved, (b) the lateral structure of the IL graphite interface has been imaged for any IL, (c) AM-AFM has elucidated molecular level structure immersed in a viscous liquid and (d) it has been demonstrated that the IL structure at solid surfaces is a consequence of both thermodynamic and kinetic effects. The lateral structure of the PAN-graphite interface is highly ordered and consists of remarkably well-defined domains of a rhomboidal superstructure composed of propylammonium cations preferentially aligned along two of the three directions in the underlying graphite lattice. The nanostructure is primarily determined by the cation. Van der Waals interactions between the propylammonium chains and the surface mean that the cation is enriched in the surface layer, and is much less mobile than the anion. The presence of a heterogeneous lateral structure at an ionic liquid-solid interface has wide ranging ramifications for ionic liquid applications, including lubrication, capacitive charge storage and electrodeposition.In situ amplitude modulated atomic force microscopy (AM-AFM) and quantum chemical simulations are used to resolve the structure of the highly ordered pyrolytic graphite (HOPG)-bulk propylammonium nitrate (PAN) interface with resolution comparable with that achieved for frozen ionic liquid (IL) monolayers using STM. This is the first time that (a) molecular resolution images of bulk IL-solid interfaces have been achieved, (b) the lateral structure of the IL graphite interface has been imaged for any IL, (c) AM-AFM has elucidated molecular level

  19. Restoration of high-resolution AFM images captured with broken probes

    NASA Astrophysics Data System (ADS)

    Wang, Y. F.; Corrigan, D.; Forman, C.; Jarvis, S.; Kokaram, A.

    2012-03-01

    A type of artefact is induced by damage of the scanning probe when the Atomic Force Microscope (AFM) captures a material surface structure with nanoscale resolution. This artefact has a dramatic form of distortion rather than the traditional blurring artefacts. Practically, it is not easy to prevent the damage of the scanning probe. However, by using natural image deblurring techniques in image processing domain, a comparatively reliable estimation of the real sample surface structure can be generated. This paper introduces a novel Hough Transform technique as well as a Bayesian deblurring algorithm to remove this type of artefact. The deblurring result is successful at removing blur artefacts in the AFM artefact images. And the details of the fibril surface topography are well preserved.

  20. Effects of temperature and electric field on order parameters in ferroelectric hexagonal manganites

    NASA Astrophysics Data System (ADS)

    Zhang, C. X.; Yang, K. L.; Jia, P.; Lin, H. L.; Li, C. F.; Lin, L.; Yan, Z. B.; Liu, J.-M.

    2018-03-01

    In Landau-Devonshire phase transition theory, the order parameter represents a unique property for a disorder-order transition at the critical temperature. Nevertheless, for a phase transition with more than one order parameter, such behaviors can be quite different and system-dependent in many cases. In this work, we investigate the temperature (T) and electric field (E) dependence of the two order parameters in improper ferroelectric hexagonal manganites, addressing the phase transition from the high-symmetry P63/mmc structure to the polar P63cm structure. It is revealed that the trimerization as the primary order parameter with two components: the trimerization amplitude Q and phase Φ, and the spontaneous polarization P emerging as the secondary order parameter exhibit quite different stability behaviors against various T and E. The critical exponents for the two parameters Q and P are 1/2 and 3/2, respectively. As temperature increases, the window for the electric field E enduring the trimerization state will shrink. An electric field will break the Z2 part of the Z2×Z3 symmetry. The present work may shed light on the complexity of the vortex-antivortex domain structure evolution near the phase transition temperature.

  1. Spin Order and Phase Transitions in Chains of Polariton Condensates.

    PubMed

    Ohadi, H; Ramsay, A J; Sigurdsson, H; Del Valle-Inclan Redondo, Y; Tsintzos, S I; Hatzopoulos, Z; Liew, T C H; Shelykh, I A; Rubo, Y G; Savvidis, P G; Baumberg, J J

    2017-08-11

    We demonstrate that multiply coupled spinor polariton condensates can be optically tuned through a sequence of spin-ordered phases by changing the coupling strength between nearest neighbors. For closed four-condensate chains these phases span from ferromagnetic (FM) to antiferromagnetic (AFM), separated by an unexpected crossover phase. This crossover phase is composed of alternating FM-AFM bonds. For larger eight-condensate chains, we show the critical role of spatial inhomogeneities and demonstrate a scheme to overcome them and prepare any desired spin state. Our observations thus demonstrate a fully controllable nonequilibrium spin lattice.

  2. Analyzes of students’ higher-order thinking skills of heat and temperature concept

    NASA Astrophysics Data System (ADS)

    Slamet Budiarti, Indah; Suparmi, A.; Sarwanto; Harjana

    2017-11-01

    High order thinking skills refer to three highest domains of the revised Bloom Taxonomy. The aims of the research were to analyze the student’s higher-order thinking skills of heat and temperature concept. The samples were taken by purposive random sampling technique consisted of 85 high school students from 3 senior high schools in Jayapura city. The descriptive qualitative method was employed in this study. The data were collected by using tests and interviews regarding the subject matters of heat and temperature. Based on the results of data analysis, it was concluded that 68.24% of the students have a high order thinking skills in the analysis, 3.53% of the students have a high order thinking skills in evaluating, and 0% of the students have a high order thinking skills in creation.

  3. Aflatoxin M1 Concentration in Various Dairy Products: Evidence for Biologically Reduced Amount of AFM1 in Yoghurt

    PubMed Central

    RAHIMIRAD, Amir; MAALEKINEJAD, Hassan; OSTADI, Araz; YEGANEH, Samal; FAHIMI, Samira

    2014-01-01

    Abstract Background Aflatoxin M1 (AFM1), a carcinogenic substance is found in milk and dairy products. The effect of season and type of dairy products on AFMi level in northern Iran was investigated in this study. Methods Three hundred samples (each season 75 samples) including raw and pasteurized milk, yoghurt, cheese, and cream samples were collected from three distinct milk producing farms. The samples were subjected to chemical and solid phase extractions and were analyzed by using HPLC technique. Recovery percentages, limit of detection and limit of quantification values were determined. Results Seventy percent and 98% were the minimum and maximum recoveries for cheese and raw milk, respectively and 0.021 and 0.063 ppb were the limit of detection and limit of quantification values for AFM1. We found that in autumn and winter the highest level (0.121 ppb) of AFM1 in cheese and cream samples and failed to detect any AFM1 in spring samples. Interestingly, our data showed that the yoghurt samples had the lowest level of AFM1 in all seasons. Conclusion There are significant differences between the AFM1 levels in dairy products in various seasons and also various types of products, suggesting spring and summer yoghurt samples as the safest products from AFM1 level point of view. PMID:25927044

  4. The effect of PeakForce tapping mode AFM imaging on the apparent shape of surface nanobubbles.

    PubMed

    Walczyk, Wiktoria; Schön, Peter M; Schönherr, Holger

    2013-05-08

    Until now, TM AFM (tapping mode or intermittent contact mode atomic force microscopy) has been the most often applied direct imaging technique to analyze surface nanobubbles at the solid-aqueous interface. While the presence and number density of nanobubbles can be unequivocally detected and estimated, it remains unclear how much the a priori invasive nature of AFM affects the apparent shapes and dimensions of the nanobubbles. To be able to successfully address the unsolved questions in this field, the accurate knowledge of the nanobubbles' dimensions, radii of curvature etc is necessary. In this contribution we present a comparative study of surface nanobubbles on HOPG (highly oriented pyrolytic graphite) in water acquired with (i) TM AFM and (ii) the recently introduced PFT (PeakForce tapping) mode, in which the force exerted on the nanobubbles rather than the amplitude of the resonating cantilever is used as the AFM feedback parameter during imaging. In particular, we analyzed how the apparent size and shape of nanobubbles depend on the maximum applied force in PFT AFM. Even for forces as small as 73 pN, the nanobubbles appeared smaller than their true size, which was estimated from an extrapolation of the bubble height to zero applied force. In addition, the size underestimation was found to be more pronounced for larger bubbles. The extrapolated true nanoscopic contact angles for nanobubbles on HOPG, measured in PFT AFM, ranged from 145° to 175° and were only slightly underestimated by scanning with non-zero forces. This result was comparable to the nanoscopic contact angles of 160°-175° measured using TM AFM in the same set of experiments. Both values disagree, in accordance with the literature, with the macroscopic contact angle of water on HOPG, measured here to be 63° ± 2°.

  5. Crystallographic order and decomposition of [MnIII 6CrIII]3+ single-molecule magnets deposited in submonolayers and monolayers on HOPG studied by means of molecular resolved atomic force microscopy (AFM) and Kelvin probe force microscopy in UHV

    NASA Astrophysics Data System (ADS)

    Gryzia, Aaron; Volkmann, Timm; Brechling, Armin; Hoeke, Veronika; Schneider, Lilli; Kuepper, Karsten; Glaser, Thorsten; Heinzmann, Ulrich

    2014-02-01

    Monolayers and submonolayers of [Mn III 6 Cr III ] 3+ single-molecule magnets (SMMs) adsorbed on highly oriented pyrolytic graphite (HOPG) using the droplet technique characterized by non-contact atomic force microscopy (nc-AFM) as well as by Kelvin probe force microscopy (KPFM) show island-like structures with heights resembling the height of the molecule. Furthermore, islands were found which revealed ordered 1D as well as 2D structures with periods close to the width of the SMMs. Along this, islands which show half the heights of intact SMMs were observed which are evidences for a decomposing process of the molecules during the preparation. Finally, models for the structure of the ordered SMM adsorbates are proposed to explain the observations.

  6. High-stress study of bioinspired multifunctional PEDOT:PSS/nanoclay nanocomposites using AFM, SEM and numerical simulation.

    PubMed

    Diaz, Alfredo J; Noh, Hanaul; Meier, Tobias; Solares, Santiago D

    2017-01-01

    Bioinspired design has been central in the development of hierarchical nanocomposites. Particularly, the nacre-mimetic brick-and-mortar structure has shown excellent mechanical properties, as well as gas-barrier properties and optical transparency. Along with these intrinsic properties, the layered structure has also been utilized in sensing devices. Here we extend the multifunctionality of nacre-mimetics by designing an optically transparent and electron conductive coating based on PEDOT:PSS and nanoclays Laponite RD and Cloisite Na + . We carry out extensive characterization of the nanocomposite using transmittance spectra (transparency), conductive atomic force microscopy (conductivity), contact-resonance force microscopy (mechanical properties), and SEM combined with a variety of stress-strain AFM experiments and AFM numerical simulations (internal structure). We further study the nanoclay's response to the application of pressure with multifrequency AFM and conductive AFM, whereby increases and decreases in conductivity can occur for the Laponite RD composites. We offer a possible mechanism to explain the changes in conductivity by modeling the coating as a 1-dimensional multibarrier potential for electron transport, and show that conductivity can change when the separation between the barriers changes under the application of pressure, and that the direction of the change depends on the energy of the electrons. We did not observe changes in conductivity under the application of pressure with AFM for the Cloisite Na + nanocomposite, which has a large platelet size compared with the AFM probe diameter. No pressure-induced changes in conductivity were observed in the clay-free polymer either.

  7. The detection of hepatitis c virus core antigen using afm chips with immobolized aptamers.

    PubMed

    Pleshakova, T O; Kaysheva, A L; Bayzyanova, J М; Anashkina, А S; Uchaikin, V F; Ziborov, V S; Konev, V A; Archakov, A I; Ivanov, Y D

    2018-01-01

    In the present study, the possibility of hepatitis C virus core antigen (HCVcoreAg) detection in buffer solution, using atomic force microscope chip (AFM-chip) with immobilized aptamers, has been demonstrated. The target protein was detected in 1mL of solution at concentrations from 10 -10 М to 10 -13 М. The registration of aptamer/antigen complexes on the chip surface was carried out by atomic force microscopy (AFM). The further mass-spectrometric (MS) identification of AFM-registered objects on the chip surface allowed reliable identification of HCVcoreAg target protein in the complexes. Aptamers, which were designed for therapeutic purposes, have been shown to be effective in HCVcoreAg detection as probe molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Metrological AFMs and its application for versatile nano-dimensional metrology tasks

    NASA Astrophysics Data System (ADS)

    Dai, Gaoliang; Dziomba, T.; Pohlenz, F.; Danzebrink, H.-U.; Koenders, L.

    2010-08-01

    Traceable calibrations of various micro and nano measurement devices are crucial tasks for ensuring reliable measurements for micro and nanotechnology. Today metrological AFM are widely used for traceable calibrations of nano dimensional standards. In this paper, we introduced the developments of metrological force microscopes at PTB. Of the three metrological AFMs described here, one is capable of measuring in a volume of 25 mm x 25 mm x 5 mm. All instruments feature interferometers and the three-dimensional position measurements are thus directly traceable to the metre definition. Some calibration examples on, for instance, flatness standards, step height standards, one and two dimensional gratings are demonstrated.

  9. Study of mesoporous CdS-quantum-dot-sensitized TiO2 films by using X-ray photoelectron spectroscopy and AFM

    PubMed Central

    Wojcieszak, Robert; Raj, Gijo

    2014-01-01

    Summary CdS quantum dots were grown on mesoporous TiO2 films by successive ionic layer adsorption and reaction processes in order to obtain CdS particles of various sizes. AFM analysis shows that the growth of the CdS particles is a two-step process. The first step is the formation of new crystallites at each deposition cycle. In the next step the pre-deposited crystallites grow to form larger aggregates. Special attention is paid to the estimation of the CdS particle size by X-ray photoelectron spectroscopy (XPS). Among the classical methods of characterization the XPS model is described in detail. In order to make an attempt to validate the XPS model, the results are compared to those obtained from AFM analysis and to the evolution of the band gap energy of the CdS nanoparticles as obtained by UV–vis spectroscopy. The results showed that XPS technique is a powerful tool in the estimation of the CdS particle size. In conjunction with these results, a very good correlation has been found between the number of deposition cycles and the particle size. PMID:24605274

  10. Predicting the melting temperature of ice-Ih with only electronic structure information as input.

    PubMed

    Pinnick, Eric R; Erramilli, Shyamsunder; Wang, Feng

    2012-07-07

    The melting temperature of ice-Ih was calculated with only electronic structure information as input by creating a problem-specific force field. The force field, Water model by AFM for Ice and Liquid (WAIL), was developed with the adaptive force matching (AFM) method by fitting to post-Hartree-Fock quality forces obtained in quantum mechanics∕molecular mechanics calculations. WAIL predicts the ice-Ih melting temperature to be 270 K. The model also predicts the densities of ice and water, the temperature of maximum density of water, the heat of vaporizations, and the radial distribution functions for both ice and water in good agreement with experimental measurements. The non-dissociative WAIL model is very similar to a flexible version of the popular TIP4P potential and has comparable computational cost. By customizing to problem-specific configurations with the AFM approach, the resulting model is remarkably more accurate than any variants of TIP4P for simulating ice-Ih and water in the temperature range from 253 K and 293 K under ambient pressure.

  11. Crystal structures of Boro-AFm and sBoro-AFt phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Champenois, Jean-Baptiste; Mesbah, Adel; Clermont Universite, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand

    2012-10-15

    Crystal structures of boron-containing AFm (B-AFm) and AFt (B-AFt) phases have been solved ab-initio and refined from X-ray powder diffraction. {sup 11}B NMR and Raman spectroscopies confirm the boron local environment in both compounds: three-fold coordinated in B-AFm corresponding to HBO{sub 3}{sup 2-} species, and four-fold coordinated in B-AFt corresponding to B (OH){sub 4}{sup -} species. B-AFm crystallizes in the rhombohedral R3{sup Macron }c space group and has the 3CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}CaHBO{sub 3}{center_dot}12H{sub 2}O (4CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}1/2B{sub 2}O{sub 3}{center_dot}12.5H{sub 2}O, C{sub 4}AB{sub 1/2}H{sub 12.5}) general formulae with planar trigonal HBO{sub 3}{sup 2-} anions weakly bonded at the centre of themore » interlayer region. One HBO{sub 3}{sup 2-} anion is statistically distributed with two weakly bonded water molecules on the same crystallographic site. B-AFt crystallizes in the trigonal P3cl space group and has the 3CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}Ca(OH){sub 2}{center_dot}2Ca(B (OH){sub 4}){sub 2}{center_dot}24H{sub 2}O (6CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}2B{sub 2}O{sub 3}{center_dot}33H{sub 2}O, C{sub 6}AB{sub 2}H{sub 33}) general formulae with tetrahedral B (OH){sub 4}{sup -} anions located in the channel region of the structure. All tetrahedral anions are oriented in a unique direction, leading to a hexagonal c lattice parameter about half that of ettringite.« less

  12. QCM-D on mica for parallel QCM-D-AFM studies.

    PubMed

    Richter, Ralf P; Brisson, Alain

    2004-05-25

    Quartz crystal microbalance with dissipation monitoring (QCM-D) has developed into a recognized method to study adsorption processes in liquid, such as the formation of supported lipid bilayers and protein adsorption. However, the large intrinsic roughness of currently used gold-coated or silica-coated QCM-D sensors limits parallel structural characterization by atomic force microscopy (AFM). We present a method for coating QCM-D sensors with thin mica sheets operating in liquid with high stability and sensitivity. We define criteria to objectively assess the reliability of the QCM-D measurements and demonstrate that the mica-coated sensors can be used to follow the formation of supported lipid membranes and subsequent protein adsorption. This method allows combining QCM-D and AFM investigations on identical supports, providing detailed physicochemical and structural characterization of model membranes.

  13. Silicon nanowires reliability and robustness investigation using AFM-based techniques

    NASA Astrophysics Data System (ADS)

    Bieniek, Tomasz; Janczyk, Grzegorz; Janus, Paweł; Grabiec, Piotr; Nieprzecki, Marek; Wielgoszewski, Grzegorz; Moczała, Magdalena; Gotszalk, Teodor; Buitrago, Elizabeth; Badia, Montserrat F.; Ionescu, Adrian M.

    2013-07-01

    Silicon nanowires (SiNWs) have undergone intensive research for their application in novel integrated systems such as field effect transistor (FET) biosensors and mass sensing resonators profiting from large surface-to-volume ratios (nano dimensions). Such devices have been shown to have the potential for outstanding performances in terms of high sensitivity, selectivity through surface modification and unprecedented structural characteristics. This paper presents the results of mechanical characterization done for various types of suspended SiNWs arranged in a 3D array. The characterization has been performed using techniques based on atomic force microscopy (AFM). This investigation is a necessary prerequisite for the reliable and robust design of any biosensing system. This paper also describes the applied investigation methodology and reports measurement results aggregated during series of AFM-based tests.

  14. Ultra-large scale AFM of lipid droplet arrays: investigating the ink transfer volume in dip pen nanolithography.

    PubMed

    Förste, Alexander; Pfirrmann, Marco; Sachs, Johannes; Gröger, Roland; Walheim, Stefan; Brinkmann, Falko; Hirtz, Michael; Fuchs, Harald; Schimmel, Thomas

    2015-05-01

    There are only few quantitative studies commenting on the writing process in dip-pen nanolithography with lipids. Lipids are important carrier ink molecules for the delivery of bio-functional patters in bio-nanotechnology. In order to better understand and control the writing process, more information on the transfer of lipid material from the tip to the substrate is needed. The dependence of the transferred ink volume on the dwell time of the tip on the substrate was investigated by topography measurements with an atomic force microscope (AFM) that is characterized by an ultra-large scan range of 800 × 800 μm(2). For this purpose arrays of dots of the phospholipid1,2-dioleoyl-sn-glycero-3-phosphocholine were written onto planar glass substrates and the resulting pattern was imaged by large scan area AFM. Two writing regimes were identified, characterized of either a steady decline or a constant ink volume transfer per dot feature. For the steady state ink transfer, a linear relationship between the dwell time and the dot volume was determined, which is characterized by a flow rate of about 16 femtoliters per second. A dependence of the ink transport from the length of pauses before and in between writing the structures was observed and should be taken into account during pattern design when aiming at best writing homogeneity. The ultra-large scan range of the utilized AFM allowed for a simultaneous study of the entire preparation area of almost 1 mm(2), yielding good statistic results.

  15. Ultra-large scale AFM of lipid droplet arrays: investigating the ink transfer volume in dip pen nanolithography

    NASA Astrophysics Data System (ADS)

    Förste, Alexander; Pfirrmann, Marco; Sachs, Johannes; Gröger, Roland; Walheim, Stefan; Brinkmann, Falko; Hirtz, Michael; Fuchs, Harald; Schimmel, Thomas

    2015-05-01

    There are only few quantitative studies commenting on the writing process in dip-pen nanolithography with lipids. Lipids are important carrier ink molecules for the delivery of bio-functional patters in bio-nanotechnology. In order to better understand and control the writing process, more information on the transfer of lipid material from the tip to the substrate is needed. The dependence of the transferred ink volume on the dwell time of the tip on the substrate was investigated by topography measurements with an atomic force microscope (AFM) that is characterized by an ultra-large scan range of 800 × 800 μm2. For this purpose arrays of dots of the phospholipid1,2-dioleoyl-sn-glycero-3-phosphocholine were written onto planar glass substrates and the resulting pattern was imaged by large scan area AFM. Two writing regimes were identified, characterized of either a steady decline or a constant ink volume transfer per dot feature. For the steady state ink transfer, a linear relationship between the dwell time and the dot volume was determined, which is characterized by a flow rate of about 16 femtoliters per second. A dependence of the ink transport from the length of pauses before and in between writing the structures was observed and should be taken into account during pattern design when aiming at best writing homogeneity. The ultra-large scan range of the utilized AFM allowed for a simultaneous study of the entire preparation area of almost 1 mm2, yielding good statistic results.

  16. Temperature-dependent bifurcation of cooperative interactions in pure and enriched in β-carotene DPPC liposomes.

    PubMed

    Augustyńska, D; Burda, K; Jemioła-Rzemińska, M; Strzałka, K

    2016-08-25

    We examined the influence of temperature on lipid intermolecular interactions and the organization of bilayers within multilamellar dipalmitoylphosphatidylcholine (DPPC) liposomes. We also investigated the effect of 0.5 mol% β-carotene, a non-polar carotenoid, on the adhesive properties of these liposomes. Atomic force microscopy (AFM) and differential scanning calorimetry (DSC) were used to correlate the changes in the physical properties of the liposomal systems with their thermotropic behaviour. Using DSC we detected two transitions in pure DPPC vesicles and in those containing 0.5 mol% β-carotene. In both systems the pretransition occurred at 34.5(1)°C and the main phase transition at 41.4 °C during heating. Upon cooling, the temperatures of the pretransition and the main transition decreased by about 6 °C and 1 °C, respectively. Changes in enthalpy and entropy were also similar in the two investigated systems. Data obtained in parallel AFM force experiments show that the adhesive forces between the liposomal systems and AFM probe strongly depend on the loading rate. Moreover, their characteristic monotonic changes and discontinuities are sensitive to temperature. In the range of temperatures from 27 °C to 31 °C, i.e. below the temperature of phase transition from gel to ripple phase, the adhesive forces measured in a water environment are about an order of magnitude higher in the presence of β-carotene than in pure DPPC liposomes. The observed variable dependence of adhesion on the loading rate suggests that there are changes in the long- and short-range interactions between lipids, and that these may be related to the occurrence of some clustering effects. In addition, the simultaneous existence of different subphases was found in the gel phase of DPPC liposomes. The presence of β-carotene at a level of 0.5 mol% stimulates the structural reorganization of DPPC multilamellar vesicles and enhances the bifurcation phenomenon detected in these

  17. Ultra-high aspect ratio replaceable AFM tips using deformation-suppressed focused ion beam milling.

    PubMed

    Savenko, Alexey; Yildiz, Izzet; Petersen, Dirch Hjorth; Bøggild, Peter; Bartenwerfer, Malte; Krohs, Florian; Oliva, Maria; Harzendorf, Torsten

    2013-11-22

    Fabrication of ultra-high aspect ratio exchangeable and customizable tips for atomic force microscopy (AFM) using lateral focused ion beam (FIB) milling is presented. While on-axis FIB milling does allow high aspect ratio (HAR) AFM tips to be defined, lateral milling gives far better flexibility in terms of defining the shape and size of the tip. Due to beam-induced deformation, it has so far not been possible to define HAR structures using lateral FIB milling. In this work we obtain aspect ratios of up to 45, with tip diameters down to 9 nm, by a deformation-suppressing writing strategy. Several FIB milling strategies for obtaining sharper tips are discussed. Finally, assembly of the HAR tips on a custom-designed probe as well as the first AFM scanning is shown.

  18. In situ nanomanipulators as a tool to separate individual tobermorite crystals for AFM studies.

    PubMed

    Yang, Tianhe; Holzer, Lorenz; Kägi, Ralf; Winnefeld, Frank; Keller, Bruno

    2007-10-01

    Atomic force microscopy (AFM) studies of cementitious materials are limited, mainly due to the lack of appropriate sample preparation techniques. In porous autoclaved aerated concrete (AAC), calcium silicate hydrate (C-S-H) is produced in its crystalline form, tobermorite. The crystals are lath-like with a length of several micrometers. In this work, we demonstrate the application of nanomanipulators to separate an individual tobermorite crystal from the bulk AAC for subsequent AFM investigations. The nanomanipulators are operated directly in an environmental scanning electron microscope (ESEM). We studied the interaction between moisture and the tobermorite surface under controlled relative humidity (RH). The results of topography and adhesion force measurements with AFM suggest that the surface of tobermorite is hydrophobic, which contrasts the macroscopic material properties (e.g. moisture transport in capillary pores).

  19. Study of mechanical behavior of AFM silicon tips under mechanical load

    NASA Astrophysics Data System (ADS)

    Kopycinska-Mueller, M.; Gluch, J.; Köhler, B.

    2016-11-01

    In this paper we address critical issues concerning calibration of AFM based methods used for nanoscale mechanical characterization of materials. It has been shown that calibration approaches based on macroscopic models for contact mechanics may yield excellent results in terms of the indentation modulus of the sample, but fail to provide a comprehensive and actual information concerning the tip-sample contact radius or the mechanical properties of the tip. Explanations for the severely reduced indentation modulus of the tip included the inadequacies of the models used for calculations of the tip-sample contact stiffness, discrepancies in the actual and ideal shape of the tip, presence of the amorphous silicon phase within the silicon tip, as well as negligence of the actual size of the stress field created in the tip during elastic interactions. To clarify these issues, we investigated the influence of the mechanical load applied to four AFM silicon tips on their crystalline state by exposing them to systematically increasing loads, evaluating the character of the tip-sample interactions via the load-unload stiffness curves, and assessing the state of the tips from HR-TEM images. The results presented in this paper were obtained in a series of relatively simple and basic atomic force acoustic microscopy (AFAM) experiments. The novel combination of TEM imaging of the AFM tips with the analysis of the load-unload stiffness curves gave us a detailed insight into their mechanical behavior under load conditions. We were able to identify the limits for the elastic interactions, as well as the hallmarks for phase transformation and dislocation formation and movement. The comparison of the physical dimensions of the AFM tips, geometry parameters determined from the values of the contact stiffness, and the information on the crystalline state of the tips allowed us a better understanding of the nanoscale contact.

  20. High-stress study of bioinspired multifunctional PEDOT:PSS/nanoclay nanocomposites using AFM, SEM and numerical simulation

    PubMed Central

    Diaz, Alfredo J; Noh, Hanaul; Meier, Tobias

    2017-01-01

    Bioinspired design has been central in the development of hierarchical nanocomposites. Particularly, the nacre-mimetic brick-and-mortar structure has shown excellent mechanical properties, as well as gas-barrier properties and optical transparency. Along with these intrinsic properties, the layered structure has also been utilized in sensing devices. Here we extend the multifunctionality of nacre-mimetics by designing an optically transparent and electron conductive coating based on PEDOT:PSS and nanoclays Laponite RD and Cloisite Na+. We carry out extensive characterization of the nanocomposite using transmittance spectra (transparency), conductive atomic force microscopy (conductivity), contact-resonance force microscopy (mechanical properties), and SEM combined with a variety of stress-strain AFM experiments and AFM numerical simulations (internal structure). We further study the nanoclay’s response to the application of pressure with multifrequency AFM and conductive AFM, whereby increases and decreases in conductivity can occur for the Laponite RD composites. We offer a possible mechanism to explain the changes in conductivity by modeling the coating as a 1-dimensional multibarrier potential for electron transport, and show that conductivity can change when the separation between the barriers changes under the application of pressure, and that the direction of the change depends on the energy of the electrons. We did not observe changes in conductivity under the application of pressure with AFM for the Cloisite Na+ nanocomposite, which has a large platelet size compared with the AFM probe diameter. No pressure-induced changes in conductivity were observed in the clay-free polymer either. PMID:29090109

  1. Closer look at the effect of AFM imaging conditions on the apparent dimensions of surface nanobubbles.

    PubMed

    Walczyk, Wiktoria; Schönherr, Holger

    2013-01-15

    To date, TM AFM (tapping mode or intermittent contact mode atomic force microscopy) is the most frequently applied direct imaging technique to visualize surface nanobubbles at the solid-aqueous interface. On one hand, AFM is the only profilometric technique that provides estimates of the bubbles' nanoscopic dimensions. On the other hand, the nanoscopic contact angles of surface nanobubbles estimated from their apparent dimensions that are deduced from AFM "height" images of nanobubbles differ markedly from the macrocopic water contact angles on the identical substrates. Here we show in detail how the apparent bubble height and width of surface nanobubbles on highly oriented pyrolytic graphite (HOPG) depend on the free amplitude of the cantilever oscillations and the amplitude setpoint ratio. (The role of these two AFM imaging parameters and their interdependence has not been studied so far for nanobubbles in a systematic way.) In all experiments, even with optimal scanning parameters, nanobubbles at the HOPG-water interface appeared to be smaller in the AFM images than their true size, which was estimated using a method presented herein. It was also observed that the severity of the underestimate increased with increasing bubble height and radius of curvature. The nanoscopic contact angle of >130° for nanobubbles on HOPG extrapolated to zero interaction force was only slightly overestimated and hence significantly higher than the macroscopic contact angle of water on HOPG (63 ± 2°). Thus, the widely reported contact angle discrepancy cannot be solely attributed to inappropriate AFM imaging conditions.

  2. Quantitative refractive index distribution of single cell by combining phase-shifting interferometry and AFM imaging.

    PubMed

    Zhang, Qinnan; Zhong, Liyun; Tang, Ping; Yuan, Yingjie; Liu, Shengde; Tian, Jindong; Lu, Xiaoxu

    2017-05-31

    Cell refractive index, an intrinsic optical parameter, is closely correlated with the intracellular mass and concentration. By combining optical phase-shifting interferometry (PSI) and atomic force microscope (AFM) imaging, we constructed a label free, non-invasive and quantitative refractive index of single cell measurement system, in which the accurate phase map of single cell was retrieved with PSI technique and the cell morphology with nanoscale resolution was achieved with AFM imaging. Based on the proposed AFM/PSI system, we achieved quantitative refractive index distributions of single red blood cell and Jurkat cell, respectively. Further, the quantitative change of refractive index distribution during Daunorubicin (DNR)-induced Jurkat cell apoptosis was presented, and then the content changes of intracellular biochemical components were achieved. Importantly, these results were consistent with Raman spectral analysis, indicating that the proposed PSI/AFM based refractive index system is likely to become a useful tool for intracellular biochemical components analysis measurement, and this will facilitate its application for revealing cell structure and pathological state from a new perspective.

  3. MDI: integrity index of cytoskeletal fibers observed by AFM

    NASA Astrophysics Data System (ADS)

    Manghi, Massimo; Bruni, Luca; Croci, Simonetta

    2016-06-01

    The Modified Directional Index (MDI) is a form factor of the angular spectrum computed from the 2D Fourier transform of an image marking the prevalence of rectilinear features throughout the picture. We study some properties of the index and we apply it to AFM images of cell cytoskeleton regions featuring patterns of rectilinear nearly parallel actin filaments as in the case of microfilaments grouped in bundles. The analysis of AFM images through MDI calculation quantifies the fiber directionality changes which could be related to fiber damages. This parameter is applied to the images of Hs 578Bst cell line, non-tumoral and not immortalized human epithelial cell line, irradiated with X-rays at doses equivalent to typical radiotherapy treatment fractions. In the reported samples, we could conclude that the damages are mainly born to the membrane and not to the cytoskeleton. It could be interesting to test the parameter also using other kinds of chemical or physical agents.

  4. Direct AFM observation of an opening event of a DNA cuboid constructed via a prism structure.

    PubMed

    Endo, Masayuki; Hidaka, Kumi; Sugiyama, Hiroshi

    2011-04-07

    A cuboid structure was constructed using a DNA origami design based on a square prism structure. The structure was characterized by atomic force microscopy (AFM) and dynamic light scattering. The real-time opening event of the cuboid was directly observed by high-speed AFM.

  5. Magnetic ordering at anomalously high temperatures in Dy at extreme pressures

    DOE PAGES

    Lim, J.; Fabbris, G.; Haskel, D.; ...

    2015-01-15

    In an attempt to destabilize the magnetic state of the heavy lanthanide Dy, extreme pressures were applied in an electrical resistivity measurement to 157 GPa over the temperature range 1.3 - 295 K. The magnetic ordering temperature T o and spin-disorder resistance R sd of Dy, as well as the superconducting pair-breaking effect ΔT c in Y(1 at.% Dy), are found to track each other in a highly non-monotonic fashion as a function of pressure. Above 73 GPa, the critical pressure for a 6% volume collapse in Dy, all three quantities increase sharply (dT o=dP≃5.3 K/GPa), T o appearing tomore » rise above ambient temperature for P > 107 GPa. In contrast, T o and ΔT c for Gd and Y(0.5 at.% Gd), respectively, show no such sharp increase with pressure (dT o=dP≃ 0.73 K/GPa). Altogether, these results suggest that extreme pressure transports Dy into an unconventional magnetic state with an anomalously high magnetic ordering temperature.« less

  6. Brain tumor classification using AFM in combination with data mining techniques.

    PubMed

    Huml, Marlene; Silye, René; Zauner, Gerald; Hutterer, Stephan; Schilcher, Kurt

    2013-01-01

    Although classification of astrocytic tumors is standardized by the WHO grading system, which is mainly based on microscopy-derived, histomorphological features, there is great interobserver variability. The main causes are thought to be the complexity of morphological details varying from tumor to tumor and from patient to patient, variations in the technical histopathological procedures like staining protocols, and finally the individual experience of the diagnosing pathologist. Thus, to raise astrocytoma grading to a more objective standard, this paper proposes a methodology based on atomic force microscopy (AFM) derived images made from histopathological samples in combination with data mining techniques. By comparing AFM images with corresponding light microscopy images of the same area, the progressive formation of cavities due to cell necrosis was identified as a typical morphological marker for a computer-assisted analysis. Using genetic programming as a tool for feature analysis, a best model was created that achieved 94.74% classification accuracy in distinguishing grade II tumors from grade IV ones. While utilizing modern image analysis techniques, AFM may become an important tool in astrocytic tumor diagnosis. By this way patients suffering from grade II tumors are identified unambiguously, having a less risk for malignant transformation. They would benefit from early adjuvant therapies.

  7. Transformation twinning of Ni-Mn-Ga characterized with temperature-controlled atomic force microscopy.

    PubMed

    Reinhold, Matthew; Watson, Chad; Knowlton, William B; Müllner, Peter

    2010-06-01

    The magnetomechanical properties of ferromagnetic shape memory alloy Ni-Mn-Ga single crystals depend strongly on the twin microstructure, which can be modified through thermomagnetomechanical training. Atomic force microscopy (AFM) and magnetic force microscopy (MFM) were used to characterize the evolution of twin microstructures during thermomechanical training of a Ni-Mn-Ga single crystal. Experiments were performed in the martensite phase at 25 degrees C and in the austenite phase at 55 degrees C. Two distinct twinning surface reliefs were observed at room temperature. At elevated temperature (55 degrees C), the surface relief of one twinning mode disappeared while the other relief remained unchanged. When cooled back to 25 degrees C, the twin surface relief recovered. The relief persisting at elevated temperature specifies the positions of twin boundaries that were present when the sample was polished prior to surface characterization. AFM and MFM following thermomechanical treatment provide a nondestructive method to identify the crystallographic orientation of each twin and of each twin boundary plane. Temperature dependent AFM and MFM experiments reveal the twinning history thereby establishing the technique as a unique predictive tool for revealing the path of the martensitic and reverse transformations of magnetic shape memory alloys.

  8. Adsorption mechanisms for fatty acids on DLC and steel studied by AFM and tribological experiments

    NASA Astrophysics Data System (ADS)

    Simič, R.; Kalin, M.

    2013-10-01

    Fatty acids are known to affect the friction and wear of steel contacts via adsorption onto the surface, which is one of the fundamental boundary-lubrication mechanisms. The understanding of the lubrication mechanisms of polar molecules on diamond-like carbon (DLC) is, however, still insufficient. In this work we aimed to find out whether such molecules have a similar effect on DLC coatings as they do on steel. The adsorption of hexadecanoic acid in various concentrations (2-20 mmol/l) on DLC was studied under static conditions using an atomic force microscope (AFM). The amount of surface coverage of the adsorbed fatty-acid molecules was analysed. In addition, tribological tests were performed to correlate the wear and friction behaviours in tribological contacts with the adsorption of molecules on the surface under static conditions. A good correlation between the AFM results and the tribological behaviour was observed. We confirmed that fatty acids can adsorb onto the DLC surfaces and are, therefore, potential boundary-lubrication agents for DLC coatings. The adsorption of the fatty acid onto the DLC surfaces reduces the wear of the coatings, but it is less effective in reducing the friction. Tentative adsorption mechanisms that include an environmental species effect, a temperature effect and a tribochemical effect are proposed for DLC and steel surfaces based on our results and few potential mechanisms found in literature.

  9. Accurate Calibration and Uncertainty Estimation of the Normal Spring Constant of Various AFM Cantilevers

    PubMed Central

    Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing

    2015-01-01

    Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke’s law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%. PMID:25763650

  10. Accurate calibration and uncertainty estimation of the normal spring constant of various AFM cantilevers.

    PubMed

    Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing

    2015-03-10

    Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke's law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%.

  11. Enhanced spin-ordering temperature in ultrathin FeTe films grown on a topological insulator

    NASA Astrophysics Data System (ADS)

    Singh, Udai Raj; Warmuth, Jonas; Kamlapure, Anand; Cornils, Lasse; Bremholm, Martin; Hofmann, Philip; Wiebe, Jens; Wiesendanger, Roland

    2018-04-01

    We studied the temperature dependence of the diagonal double-stripe spin order in 1 and 2 unit cell thick layers of FeTe grown on the topological insulator B i2T e3 via spin-polarized scanning tunneling microscopy. The spin order persists up to temperatures which are higher than the transition temperature reported for bulk F e1 +yTe with lowest possible excess Fe content y . The enhanced spin order stability is assigned to a strongly decreased y with respect to the lowest values achievable in bulk crystal growth, and effects due to the interface between the FeTe and the topological insulator. The result is relevant for understanding the recent observation of a coexistence of superconducting correlations and spin order in this system.

  12. High-speed AFM and the reduction of tip-sample forces

    NASA Astrophysics Data System (ADS)

    Miles, Mervyn; Sharma, Ravi; Picco, Loren

    High-speed DC-mode AFM has been shown to be routinely capable of imaging at video rate, and, if required, at over 1000 frames per second. At sufficiently high tip-sample velocities in ambient conditions, the tip lifts off the sample surface in a superlubricity process which reduces the level of shear forces imposed on the sample by the tip and therefore reduces the potential damage and distortion of the sample being imaged. High-frequency mechanical oscillations, both lateral and vertical, have been reported to reduced the tip-sample frictional forces. We have investigated the effect of combining linear high-speed scanning with these small amplitude high-frequency oscillations with the aim of reducing further the force interaction in high-speed imaging. Examples of this new version of high-speed AFM imaging will be presented for biological samples.

  13. Analysis of effect of nanoporous alumina substrate coated with polypyrrole nanowire on cell morphology based on AFM topography.

    PubMed

    El-Said, Waleed Ahmed; Yea, Cheol-Heon; Jung, Mi; Kim, Hyuncheol; Choi, Jeong-Woo

    2010-05-01

    In this study, in situ electrochemical synthesis of polypyrrole nanowires with nanoporous alumina template was described. The formation of highly ordered porous alumina substrate was demonstrated with Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). In addition, Fourier transform infrared analysis confirmed that polypyrrole (PP) nanowires were synthesized by direct electrochemical oxidation of pyrrole. HeLa cancer cells and HMCF normal cells were immobilized on the polypyrrole nanowires/nanoporous alumina substrates to determine the effects of the substrate on the cell morphology, adhesion and proliferation as well as the biocompatibility of the substrate. Cell adhesion and proliferation were characterized using a standard MTT assay. The effects of the polypyrrole nanowires/nanoporous alumina substrate on the cell morphology were studied by AFM. The nanoporous alumina coated with polypyrrole nanowires was found to exhibit better cell adhesion and proliferation than polystyrene petridish, aluminum foil, 1st anodized and uncoated 2nd anodized alumina substrate. This study showed the potential of the polypyrrole nanowires/nanoporous alumina substrate as biocompatibility electroactive polymer substrate for both healthy and cancer cell cultures applications.

  14. AFM Structural Characterization of Drinking Water Biofilm ...

    EPA Pesticide Factsheets

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodology will allow future in situ investigations to temporally monitor mixed culture drinking water biofilm structural changes during disinfection treatments. Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodo

  15. AFM Structural Characterization of Drinking Water Biofilm under Physiological Conditions

    EPA Science Inventory

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air...

  16. Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM

    PubMed Central

    Ghorbal, Achraf; Grisotto, Federico; Charlier, Julienne; Palacin, Serge; Goyer, Cédric; Demaille, Christophe; Ben Brahim, Ammar

    2013-01-01

    This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM) electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting. PMID:28348337

  17. APOBEC3G Interacts with ssDNA by Two Modes: AFM Studies

    NASA Astrophysics Data System (ADS)

    Shlyakhtenko, Luda S.; Dutta, Samrat; Banga, Jaspreet; Li, Ming; Harris, Reuben S.; Lyubchenko, Yuri L.

    2015-10-01

    APOBEC3G (A3G) protein has antiviral activity against HIV and other pathogenic retroviruses. A3G has two domains: a catalytic C-terminal domain (CTD) that deaminates cytidine, and a N-terminal domain (NTD) that binds to ssDNA. Although abundant information exists about the biological activities of A3G protein, the interplay between sequence specific deaminase activity and A3G binding to ssDNA remains controversial. We used the topographic imaging and force spectroscopy modalities of Atomic Force Spectroscopy (AFM) to characterize the interaction of A3G protein with deaminase specific and nonspecific ssDNA substrates. AFM imaging demonstrated that A3G has elevated affinity for deaminase specific ssDNA than for nonspecific ssDNA. AFM force spectroscopy revealed two distinct binding modes by which A3G interacts with ssDNA. One mode requires sequence specificity, as demonstrated by stronger and more stable complexes with deaminase specific ssDNA than with nonspecific ssDNA. Overall these observations enforce prior studies suggesting that both domains of A3G contribute to the sequence specific binding of ssDNA.

  18. APOBEC3G Interacts with ssDNA by Two Modes: AFM Studies.

    PubMed

    Shlyakhtenko, Luda S; Dutta, Samrat; Banga, Jaspreet; Li, Ming; Harris, Reuben S; Lyubchenko, Yuri L

    2015-10-27

    APOBEC3G (A3G) protein has antiviral activity against HIV and other pathogenic retroviruses. A3G has two domains: a catalytic C-terminal domain (CTD) that deaminates cytidine, and a N-terminal domain (NTD) that binds to ssDNA. Although abundant information exists about the biological activities of A3G protein, the interplay between sequence specific deaminase activity and A3G binding to ssDNA remains controversial. We used the topographic imaging and force spectroscopy modalities of Atomic Force Spectroscopy (AFM) to characterize the interaction of A3G protein with deaminase specific and nonspecific ssDNA substrates. AFM imaging demonstrated that A3G has elevated affinity for deaminase specific ssDNA than for nonspecific ssDNA. AFM force spectroscopy revealed two distinct binding modes by which A3G interacts with ssDNA. One mode requires sequence specificity, as demonstrated by stronger and more stable complexes with deaminase specific ssDNA than with nonspecific ssDNA. Overall these observations enforce prior studies suggesting that both domains of A3G contribute to the sequence specific binding of ssDNA.

  19. APOBEC3G Interacts with ssDNA by Two Modes: AFM Studies

    PubMed Central

    Shlyakhtenko, Luda S.; Dutta, Samrat; Banga, Jaspreet; Li, Ming; Harris, Reuben S.; Lyubchenko, Yuri L.

    2015-01-01

    APOBEC3G (A3G) protein has antiviral activity against HIV and other pathogenic retroviruses. A3G has two domains: a catalytic C-terminal domain (CTD) that deaminates cytidine, and a N-terminal domain (NTD) that binds to ssDNA. Although abundant information exists about the biological activities of A3G protein, the interplay between sequence specific deaminase activity and A3G binding to ssDNA remains controversial. We used the topographic imaging and force spectroscopy modalities of Atomic Force Spectroscopy (AFM) to characterize the interaction of A3G protein with deaminase specific and nonspecific ssDNA substrates. AFM imaging demonstrated that A3G has elevated affinity for deaminase specific ssDNA than for nonspecific ssDNA. AFM force spectroscopy revealed two distinct binding modes by which A3G interacts with ssDNA. One mode requires sequence specificity, as demonstrated by stronger and more stable complexes with deaminase specific ssDNA than with nonspecific ssDNA. Overall these observations enforce prior studies suggesting that both domains of A3G contribute to the sequence specific binding of ssDNA. PMID:26503602

  20. Nanospot soldering polystyrene nanoparticles with an optical fiber probe laser irradiating a metallic AFM probe based on the near-field enhancement effect.

    PubMed

    Cui, Jianlei; Yang, Lijun; Wang, Yang; Mei, Xuesong; Wang, Wenjun; Hou, Chaojian

    2015-02-04

    With the development of nanoscience and nanotechnology for the bottom-up nanofabrication of nanostructures formed from polystyrene nanoparticles, joining technology is an essential step in the manufacturing and assembly of nanodevices and nanostructures in order to provide mechanical integration and connection. To study the nanospot welding of polystyrene nanoparticles, we propose a new nanospot-soldering method using the near-field enhancement effect of a metallic atomic force microscope (AFM) probe tip that is irradiated by an optical fiber probe laser. On the basis of our theoretical analysis of the near-field enhancement effect, we set up an experimental system for nanospot soldering; this approach is carried out by using an optical fiber probe laser to irradiate the AFM probe tip to sinter the nanoparticles, providing a promising technical approach for the application of nanosoldering in nanoscience and nanotechnology.

  1. Phenotypic Heterogeneity in Attachment of Marine Bacteria toward Antifouling Copolymers Unraveled by AFM.

    PubMed

    El-Kirat-Chatel, Sofiane; Puymege, Aurore; Duong, The H; Van Overtvelt, Perrine; Bressy, Christine; Belec, Lénaïk; Dufrêne, Yves F; Molmeret, Maëlle

    2017-01-01

    Up to recent years, bacterial adhesion has mostly been evaluated at the population level. Single cell level has improved in the past few years allowing a better comprehension of the implication of individual behaviors as compared to the one of a whole community. A new approach using atomic force microscopy (AFM) to measure adhesion forces between a live bacterium attached via a silica microbead to the AFM tipless cantilever and the surface has been recently developed. The objectives of this study is to examine the bacterial adhesion to a surface dedicated to ship hulls at the population and the cellular level to understand to what extent these two levels could be correlated. Adhesion of marine bacteria on inert surfaces are poorly studied in particular when substrata are dedicated to ship hulls. Studying these interactions in this context are worthwhile as they may involve different adhesion behaviors, taking place in salty conditions, using different surfaces than the ones usually utilized in the literacy. FRC (fouling release coatings)-SPC (self-polishing coatings) hybrids antifouling coatings have been used as substrata and are of particular interest for designing environmentally friendly surfaces, combining progressive surface erosion and low adhesion properties. In this study, a hybrid coating has been synthetized and used to study the adhesion of three marine bacteria, displaying different surface characteristics, using microplate assays associated with confocal scanning laser microscopy (CSLM) and AFM. This study shows that the bacterial strain that appeared to have the weakest adhesion and biofilm formation abilities when evaluated at the population level using microplates assays and CSLM, displayed stronger adhesion forces on the same surfaces at the single cell level using AFM. In addition, one of the strains tested which presented a strong ability to adhere and to form biofilm at the population level, displayed a heterogeneous phenotypic behavior at the

  2. High temperature sensing using higher-order-mode rejected sapphire-crystal fiber gratings

    NASA Astrophysics Data System (ADS)

    Zhan, Chun; Kim, Jae Hun; Lee, Jon; Yin, Stuart; Ruffin, Paul; Luo, Claire

    2007-09-01

    In this paper, we report the fabrication of higher-order-mode rejected fiber Bragg gratings (FBGs) in sapphire crystal fiber using infrared (IR) femtosecond laser illumination. The grating is tested in high temperature furnace up to 1600 degree Celsius. As sapphire fiber is only available as highly multimode fiber, a scheme to filter out higher order modes in favor for the fundamental mode is theoretically evaluated and experimentally demonstrated. The approach is to use an ultra thin sapphire crystal fiber (60 micron in diameter) to decrease the number of modes. The small diameter fiber also enables bending the fiber to certain radius which is carefully chosen to provide low loss for the fundamental mode LP01 and high loss for the other high-order modes. After bending, less-than-2-nm resonant peak bandwidth is achieved. The grating spectrum is improved, and higher resolution sensing measurement can be achieved. This mode filtering method is very easy to implement. Furthermore, the sapphire fiber is sealed with hi-purity alumina ceramic cement inside a flexible high temperature titanium tube, and the highly flexible titanium tube offers a robust packaging to sapphire fiber. Our high temperature sapphire grating sensor is very promising in extremely high temperature sensing application.

  3. Fracture Mechanics Testing of Titanium 6AL-4V in AF-M315E

    NASA Technical Reports Server (NTRS)

    Sampson, J. W.; Martinez, J.; McLean, C.

    2016-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the performance of AF-M315E monopropellant on orbit. Flight certification requires a safe-life analysis of the titanium alloy fuel tank to ensure inherent processing flaws will not cause failure during the design life of the tank. Material property inputs for this analysis require testing to determine the stress intensity factor for environment-assisted cracking (KEAC) of Ti 6Al-4V in combination with the AF-M315E monopropellant. Testing of single-edge notched, or SE(B), specimens representing the bulk tank membrane and weld material were performed in accordance with ASTM E1681. Specimens with fatigue pre-cracks were loaded into test fixtures so that the crack tips were exposed to AF-M315E at 50 C for a duration of 1,000 hours. Specimens that did not fail during exposure were opened to inspect the crack surfaces for evidence of crack growth. The threshold stress intensity value, KEAC, is the highest applied stress intensity that produced neither a failure of the specimen during the exposure nor showed evidence of crack growth. The threshold stress intensity factor for environment-assisted cracking of the Ti 6Al-4V forged tank material was found to be at least 22 ksivin and at least 31 ksivin for the weld material when exposed to AF-M315E monopropellant.

  4. Measurement of distributed strain and temperature based on higher order and higher mode Bragg conditions

    NASA Technical Reports Server (NTRS)

    Sirkis, James S. (Inventor); Sivanesan, Ponniah (Inventor); Venkat, Venki S. (Inventor)

    2001-01-01

    A Bragg grating sensor for measuring distributed strain and temperature at the same time comprises an optical fiber having a single mode operating wavelength region and below a cutoff wavelength of the fiber having a multimode operating wavelength region. A saturated, higher order Bragg grating having first and second order Bragg conditions is fabricated in the optical fiber. The first order of Bragg resonance wavelength of the Bragg grating is within the single mode operating wavelength region of the optical fiber and the second order of Bragg resonance wavelength is below the cutoff wavelength of the fiber within the multimode operating wavelength region. The reflectivities of the saturated Bragg grating at the first and second order Bragg conditions are less than two orders of magnitude of one another. In use, the first and second order Bragg conditions are simultaneously created in the sensor at the respective wavelengths and a signal from the sensor is demodulated with respect to each of the wavelengths corresponding to the first and second order Bragg conditions. Two Bragg conditions have different responsivities to strain and temperature, thus allowing two equations for axial strain and temperature to be found in terms of the measure shifts in the primary and second order Bragg wavelengths. This system of equations can be solved for strain and temperature.

  5. Temperature evolution of the local order parameter in relaxor ferroelectrics (1 - x)PMN-xPZT

    NASA Astrophysics Data System (ADS)

    Gridnev, S. A.; Glazunov, A. A.; Tsotsorin, A. N.

    2005-09-01

    The temperature dependence of the local order parameter and relaxation time distribution function have been determined in (1 - x)PMN-xPZT ceramic samples via dielectric permittivity. Above the Burns temperature, the permittivity was found to follow the Currie-Weiss law, and with temperature decreasing the deviation was observed to increase. A local order parameter was calculated from the dielectric data using a modified Landau-Devonshire approach. These results are compared to the distribution function of relaxation times. It was found that a glasslike freezing of reorientable polar clusters occurs in the temperature range of diffuse relaxor transition. The evolution of the studied system to more ordered state arises from the increased PZT content.

  6. Force-controlled manipulation of single cells: from AFM to FluidFM.

    PubMed

    Guillaume-Gentil, Orane; Potthoff, Eva; Ossola, Dario; Franz, Clemens M; Zambelli, Tomaso; Vorholt, Julia A

    2014-07-01

    The ability to perturb individual cells and to obtain information at the single-cell level is of central importance for addressing numerous biological questions. Atomic force microscopy (AFM) offers great potential for this prospering field. Traditionally used as an imaging tool, more recent developments have extended the variety of cell-manipulation protocols. Fluidic force microscopy (FluidFM) combines AFM with microfluidics via microchanneled cantilevers with nano-sized apertures. The crucial element of the technology is the connection of the hollow cantilevers to a pressure controller, allowing their operation in liquid as force-controlled nanopipettes under optical control. Proof-of-concept studies demonstrated a broad spectrum of single-cell applications including isolation, deposition, adhesion and injection in a range of biological systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Genesis of charge orders in high temperature superconductors

    PubMed Central

    Tu, Wei-Lin; Lee, Ting-Kuo

    2016-01-01

    One of the most puzzling facts about cuprate high-temperature superconductors in the lightly doped regime is the coexistence of uniform superconductivity and/or antiferromagnetism with many low-energy charge-ordered states in a unidirectional charge density wave or a bidirectional checkerboard structure. Recent experiments have discovered that these charge density waves exhibit different symmetries in their intra-unit-cell form factors for different cuprate families. Using a renormalized mean-field theory for a well-known, strongly correlated model of cuprates, we obtain a number of charge-ordered states with nearly degenerate energies without invoking special features of the Fermi surface. All of these self-consistent solutions have a pair density wave intertwined with a charge density wave and sometimes a spin density wave. Most of these states vanish in the underdoped regime, except for one with a large d-form factor that vanishes at approximately 19% doping of the holes, as reported by experiments. Furthermore, these states could be modified to have a global superconducting order, with a nodal-like density of states at low energy. PMID:26732076

  8. Radiation pressure excitation of a low temperature atomic force/magnetic force microscope for imaging in 4-300 K temperature range

    NASA Astrophysics Data System (ADS)

    Ćelik, Ümit; Karcı, Özgür; Uysallı, Yiǧit; Özer, H. Özgür; Oral, Ahmet

    2017-01-01

    We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ˜500 μW, and ˜141.8 nmpp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.

  9. Radiation pressure excitation of a low temperature atomic force/magnetic force microscope for imaging in 4-300 K temperature range.

    PubMed

    Çelik, Ümit; Karcı, Özgür; Uysallı, Yiğit; Özer, H Özgür; Oral, Ahmet

    2017-01-01

    We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ∼500 μW, and ∼141.8 nm pp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.

  10. Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample

    NASA Astrophysics Data System (ADS)

    Guo, Shifeng; Zhu, Xiaoying; Jańczewski, Dominik; Lee, Serina Siew Chen; He, Tao; Teo, Serena Lay Ming; Vancso, G. Julius

    2016-09-01

    Protein charge at various pH and isoelectric point (pI) values is important in understanding protein function. However, often only trace amounts of unknown proteins are available and pI measurements cannot be obtained using conventional methods. Here, we show a method based on the atomic force microscope (AFM) to determine pI using minute quantities of proteins. The protein of interest is immobilized on AFM colloidal probes and the adhesion force of the protein is measured against a positively and a negatively charged substrate made by layer-by-layer deposition of polyelectrolytes. From the AFM force-distance curves, pI values with an estimated accuracy of ±0.25 were obtained for bovine serum albumin, myoglobin, fibrinogen and ribonuclease A over a range of 4.7-9.8. Using this method, we show that the pI of the ‘footprint’ of the temporary adhesive proteins secreted by the barnacle cyprid larvae of Amphibalanus amphitrite is in the range 9.6-9.7.

  11. Corrosion process monitoring by AFM higher harmonic imaging

    NASA Astrophysics Data System (ADS)

    Babicz, S.; Zieliński, A.; Smulko, J.; Darowicki, K.

    2017-11-01

    The atomic force microscope (AFM) was invented in 1986 as an alternative to the scanning tunnelling microscope, which cannot be used in studies of non-conductive materials. Today the AFM is a powerful, versatile and fundamental tool for visualizing and studying the morphology of material surfaces. Moreover, additional information for some materials can be recovered by analysing the AFM’s higher cantilever modes when the cantilever motion is inharmonic and generates frequency components above the excitation frequency, usually close to the resonance frequency of the lowest oscillation mode. This method has been applied and developed to monitor corrosion processes. The higher-harmonic imaging is especially helpful for sharpening boundaries between objects in heterogeneous samples, which can be used to identify variations in steel structures (e.g. corrosion products, steel heterogeneity). The corrosion products have different chemical structures because they are composed of chemicals other than the original metal base (mainly iron oxides). Thus, their physicochemical properties are different from the primary basis. These structures have edges at which higher harmonics should be more intense because of stronger interference between the tip and the specimen structure there. This means that the AFM’s higher-harmonic imaging is an excellent tool for monitoring surficial effects of the corrosion process.

  12. BOREAS AFM-5 Level-2 Upper Air Network Standard Pressure Level Data

    NASA Technical Reports Server (NTRS)

    Barr, Alan; Hrynkiw, Charmaine; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing AES aerological network, both temporally and spatially. This data set includes basic upper-air parameters interpolated at 0.5 kiloPascal increments of atmospheric pressure from data collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  13. Transformation twinning of Ni–Mn–Ga characterized with temperature-controlled atomic force microscopy

    PubMed Central

    Reinhold, Matthew; Watson, Chad; Knowlton, William B.; Müllner, Peter

    2010-01-01

    The magnetomechanical properties of ferromagnetic shape memory alloy Ni–Mn–Ga single crystals depend strongly on the twin microstructure, which can be modified through thermomagnetomechanical training. Atomic force microscopy (AFM) and magnetic force microscopy (MFM) were used to characterize the evolution of twin microstructures during thermomechanical training of a Ni–Mn–Ga single crystal. Experiments were performed in the martensite phase at 25 °C and in the austenite phase at 55 °C. Two distinct twinning surface reliefs were observed at room temperature. At elevated temperature (55 °C), the surface relief of one twinning mode disappeared while the other relief remained unchanged. When cooled back to 25 °C, the twin surface relief recovered. The relief persisting at elevated temperature specifies the positions of twin boundaries that were present when the sample was polished prior to surface characterization. AFM and MFM following thermomechanical treatment provide a nondestructive method to identify the crystallographic orientation of each twin and of each twin boundary plane. Temperature dependent AFM and MFM experiments reveal the twinning history thereby establishing the technique as a unique predictive tool for revealing the path of the martensitic and reverse transformations of magnetic shape memory alloys. PMID:20589105

  14. Simulation of CNT-AFM tip based on finite element analysis for targeted probe of the biological cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yousefi, Amin Termeh, E-mail: at.tyousefi@gmail.com; Miyake, Mikio, E-mail: miyakejaist@gmail.com; Ikeda, Shoichiro, E-mail: sho16.ikeda@gmail.com

    Carbon nanotubes (CNTs) are potentially ideal tips for atomic force microscopy (AFM) due to the robust mechanical properties, nano scale diameter and also their ability to be functionalized by chemical and biological components at the tip ends. This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cell’s. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). This reliable integration of CNT-AFM tip process provides a new class of high performance nanoprobes for single biological cellmore » analysis.« less

  15. Relationship between Magnetic Anisotropy below Pseudogap Temperature and Short-Range Antiferromagnetic Order in High-Temperature Cuprate Superconductor

    NASA Astrophysics Data System (ADS)

    Morinari, Takao

    2018-06-01

    The central issue in high-temperature cuprate superconductors is the pseudogap state appearing below the pseudogap temperature T*, which is well above the superconducting transition temperature. In this study, we theoretically investigate the rapid increase of the magnetic anisotropy below the pseudogap temperature detected by the recent torque-magnetometry measurements on YBa2Cu3Oy [Y. Sato et al., Nat. Phys. 13, 1074 (2017)]. Applying the spin Green's function formalism including the Dzyaloshinskii-Moriya interaction arising from the buckling of the CuO2 plane, we obtain results that are in good agreement with the experiment and find a scaling relationship. Our analysis suggests that the characteristic temperature associated with the magnetic anisotropy, which coincides with T*, is not a phase transition temperature but a crossover temperature associated with the short-range antiferromagnetic order.

  16. Mechanical properties of complex biological systems using AFM-based force spectroscopy

    NASA Astrophysics Data System (ADS)

    Graham, John Stephen

    An atomic force microscope (AFM) was designed and built to study the mechanical properties of small collagen fibrils and the plasma membrane of living cells. Collagen is a major component of bone, skin and connective tissues, and is abundant in the extracellular matrix (ECM). Because of its abundance, an understanding of how disease affects collagen mechanics is crucial in disease prevention efforts. Two levels of type I collagen structure were investigated, subfibrils (on the order of 1 mum in length) and longer fibrils. Comparisons were made between measurements of wild-type (wt) collagen and collagen from the mouse model of osteogenesis imperfecta (OI). Significant differences between OI and wt collagen were observed, primarily that intermolecular bonds in OI collagen fibrils are weaker than in wt, or not ruptured, as in the case of OI subfibrils. As cells interact with collagen in the ECM, the mechanical properties of the plasma membrane are also of great interest. Membrane tethers were extracted from living cells under varied conditions in order to assess the contributions of membrane-associated macromolecules such as the actin cytoskeleton and the glycocalyx, and intracellular signaling. Tether extraction force was found to be sensitive to all of these altered conditions, suggesting that tether extraction may be used to monitor various cellular processes.

  17. Magnetic ordering in intermetallic La1-xTbxMn2Si2 compounds

    NASA Astrophysics Data System (ADS)

    Korotin, Dm. M.; Streltsov, S. V.; Gerasimov, E. G.; Mushnikov, N. V.; Zhidkov, I. S.; Kukharenko, A. I.; Finkelstein, L. D.; Cholakh, S. O.; Kurmaev, E. Z.

    2018-05-01

    The magnetic structures and magnetic phase transitions in intermetallic layered La1-xTbxMn2Si2 compounds (the ThCr2Si2-type structure) are investigated using the first-principles method and XPS measurements. The experimentally observed transition from ferromagnetic (FM) to antiferromagnetic (AFM) ordering of Mn sublattice with increase of terbium concentration is successfully reproduced in calculations for collinear magnetic moments model. The FM →AFM change of interplane magnetic ordering at small x is irrelevant to the number of f-electrons of the rare-earth ion. In contrast it was shown to be related to the Mn-Mn in-plane distance. Calculated Tb critical concentration for this transition x ≈ 0.14 corresponds to the Mn-Mn in-plane distance 0.289 nm, very close to the experimentally observed transition distance 0.287 nm. The crystal cell compression due to substitution increases an overlap between Mndxz,yz and the rare-earth ion d orbitals. Resulting hybridized states manifest themselves as an additional peak in the density of states. We suggest that a corresponding interlayer Mn-R-Mn superexchange interaction stabilizes AFM magnetic ordering in these compounds with Tb doping level x > 0.2 . The results of DFT calculations are in agreement with X-ray photoemission spectra for La1-xTbxMn2Si2 .

  18. On the nonlinear dynamics of trolling-mode AFM: Analytical solution using multiple time scales method

    NASA Astrophysics Data System (ADS)

    Sajjadi, Mohammadreza; Pishkenari, Hossein Nejat; Vossoughi, Gholamreza

    2018-06-01

    Trolling mode atomic force microscopy (TR-AFM) has resolved many imaging problems by a considerable reduction of the liquid-resonator interaction forces in liquid environments. The present study develops a nonlinear model of the meniscus force exerted to the nanoneedle of TR-AFM and presents an analytical solution to the distributed-parameter model of TR-AFM resonator utilizing multiple time scales (MTS) method. Based on the developed analytical solution, the frequency-response curves of the resonator operation in air and liquid (for different penetration length of the nanoneedle) are obtained. The closed-form analytical solution and the frequency-response curves are validated by the comparison with both the finite element solution of the main partial differential equations and the experimental observations. The effect of excitation angle of the resonator on horizontal oscillation of the probe tip and the effect of different parameters on the frequency-response of the system are investigated.

  19. Determination of Mechanical Properties of Spatially Heterogeneous Breast Tissue Specimens Using Contact Mode Atomic Force Microscopy (AFM)

    PubMed Central

    Roy, Rajarshi; Desai, Jaydev P.

    2016-01-01

    This paper outlines a comprehensive parametric approach for quantifying mechanical properties of spatially heterogeneous thin biological specimens such as human breast tissue using contact-mode Atomic Force Microscopy. Using inverse finite element (FE) analysis of spherical nanoindentation, the force response from hyperelastic material models is compared with the predicted force response from existing analytical contact models, and a sensitivity study is carried out to assess uniqueness of the inverse FE solution. Furthermore, an automation strategy is proposed to analyze AFM force curves with varying levels of material nonlinearity with minimal user intervention. Implementation of our approach on an elastic map acquired from raster AFM indentation of breast tissue specimens indicates that a judicious combination of analytical and numerical techniques allow more accurate interpretation of AFM indentation data compared to relying on purely analytical contact models, while keeping the computational cost associated an inverse FE solution with reasonable limits. The results reported in this study have several implications in performing unsupervised data analysis on AFM indentation measurements on a wide variety of heterogeneous biomaterials. PMID:25015130

  20. Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bio-experiments

    NASA Astrophysics Data System (ADS)

    Dague, E.; Jauvert, E.; Laplatine, L.; Viallet, B.; Thibault, C.; Ressier, L.

    2011-09-01

    Immobilization of live micro-organisms on solid substrates is an important prerequisite for atomic force microscopy (AFM) bio-experiments. The method employed must immobilize the cells firmly enough to enable them to withstand the lateral friction forces exerted by the tip during scanning but without denaturing the cell interface. In this work, a generic method for the assembly of living cells on specific areas of substrates is proposed. It consists in assembling the living cells within the patterns of microstructured, functionalized poly-dimethylsiloxane (PDMS) stamps using convective/capillary deposition. This versatile approach is validated by applying it to two systems of foremost importance in biotechnology and medicine: Saccharomyces cerevisiae yeasts and Aspergillus fumigatus fungal spores. We show that this method allows multiplexing AFM nanomechanical measurements by force spectroscopy on S. cerevisiae yeasts and high-resolution AFM imaging of germinated Aspergillus conidia in buffer medium. These two examples clearly demonstrate the immense potential of micro-organism assembly on functionalized, microstructured PDMS stamps by convective/capillary deposition for performing rigorous AFM bio-experiments on living cells.

  1. SU-8 hollow cantilevers for AFM cell adhesion studies

    NASA Astrophysics Data System (ADS)

    Martinez, Vincent; Behr, Pascal; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva; Vörös, Janos; Zambelli, Tomaso

    2016-05-01

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m-1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification.

  2. Neutron Diffraction Study of Parasitic Nd-Moment Order in the Checkerboard-Type Phase Nd 1.3Sr 0.7NiO 4

    DOE PAGES

    Kobayashi, Riki; Yoshizawa, Hideki; Matsuda, Masaaki; ...

    2015-05-25

    In this paper, the Nd-moment order in the layered nickelate Nd 2-xSr xNiO 4 (x = 0.7) has been investigated by performing a neutron diffraction experiment using a single crystal sample. First, the checkerboard (CB)-type charge order was confirmed by observing the temperature dependence of the nuclear superlattice peak at Q=(5,0,0) between 1.9 and 300 K, which indicates that the transition temperature of the CB-type charge order is above 300 K. Magnetic superlattice peaks with the propagation vector k=(1-ε,0,1) appear below 67 K, and the value of ε was determined to be 0.455 in good agreement with previous studies. Themore » intensity of the magnetic superlattice peaks appearing below 67 K shows a sharp increase below ≈20 K. This behavior indicates that the Nd moments freeze under the influence of the Ni ordering. The CB-type antiferromagnetic (AFM) Ni order in the NiO 2 layers is stacked antiferromagnetically in the c-axis direction, while the Nd moments in the Nd/SrO 2 layers are coupled antiferromagnetically with the Ni moments. Finally, the Nd moments are parallel to the c-axis, while the Ni moments are canted towards the c-axis direction from the basal ab-plane at low temperatures where the Nd moments are well ordered.« less

  3. Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves.

    PubMed

    Efremov, Yuri M; Wang, Wen-Horng; Hardy, Shana D; Geahlen, Robert L; Raman, Arvind

    2017-05-08

    Force-displacement (F-Z) curves are the most commonly used Atomic Force Microscopy (AFM) mode to measure the local, nanoscale elastic properties of soft materials like living cells. Yet a theoretical framework has been lacking that allows the post-processing of F-Z data to extract their viscoelastic constitutive parameters. Here, we propose a new method to extract nanoscale viscoelastic properties of soft samples like living cells and hydrogels directly from conventional AFM F-Z experiments, thereby creating a common platform for the analysis of cell elastic and viscoelastic properties with arbitrary linear constitutive relations. The method based on the elastic-viscoelastic correspondence principle was validated using finite element (FE) simulations and by comparison with the existed AFM techniques on living cells and hydrogels. The method also allows a discrimination of which viscoelastic relaxation model, for example, standard linear solid (SLS) or power-law rheology (PLR), best suits the experimental data. The method was used to extract the viscoelastic properties of benign and cancerous cell lines (NIH 3T3 fibroblasts, NMuMG epithelial, MDA-MB-231 and MCF-7 breast cancer cells). Finally, we studied the changes in viscoelastic properties related to tumorigenesis including TGF-β induced epithelial-to-mesenchymal transition on NMuMG cells and Syk expression induced phenotype changes in MDA-MB-231 cells.

  4. Hybrid Metrology and 3D-AFM Enhancement for CD Metrology Dedicated to 28 nm Node and Below Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foucher, J.; Faurie, P.; Dourthe, L.

    2011-11-10

    The measurement accuracy is becoming one of the major components that have to be controlled in order to guarantee sufficient production yield. Already at the R and D level, we have to come up with the accurate measurements of sub-40 nm dense trenches and contact holes coming from 193 immersion lithography or E-Beam lithography. Current production CD (Critical Dimension) metrology techniques such as CD-SEM (CD-Scanning Electron Microscope) and OCD (Optical Critical Dimension) are limited in relative accuracy for various reasons (i.e electron proximity effect, outputs parameters correlation, stack influence, electron interaction with materials...). Therefore, time for R and D ismore » increasing, process windows degrade and finally production yield can decrease because you cannot manufactured correctly if you are unable to measure correctly. A new high volume manufacturing (HVM) CD metrology solution has to be found in order to improve the relative accuracy of production environment otherwise current CD Metrology solution will very soon get out of steam.In this paper, we will present a potential Hybrid CD metrology solution that smartly tuned 3D-AFM (3D-Atomic Force Microscope) and CD-SEM data in order to add accuracy both in R and D and production. The final goal for 'chip makers' is to improve yield and save R and D and production costs through real-time feedback loop implement on CD metrology routines. Such solution can be implemented and extended to any kind of CD metrology solution. In a 2{sup nd} part we will discuss and present results regarding a new AFM3D probes breakthrough with the introduction of full carbon tips made will E-Beam Deposition process. The goal is to overcome the current limitations of conventional flared silicon tips which are definitely not suitable for sub-32 nm nodes production.« less

  5. Surface electrical properties of stainless steel fibres: An AFM-based study

    NASA Astrophysics Data System (ADS)

    Yin, Jun; D'Haese, Cécile; Nysten, Bernard

    2015-03-01

    Atomic force microscopy (AFM) electrical modes were used to study the surface electrical properties of stainless steel fibres. The surface electrical conductivity was studied by current sensing AFM and I-V spectroscopy. Kelvin probe force microscopy was used to measure the surface contact potential. The oxide film, known as passivation layer, covering the fibre surface gives rise to the observation of an apparently semiconducting behaviour. The passivation layer generally exhibits a p-type semiconducting behaviour, which is attributed to the predominant formation of chromium oxide on the surface of the stainless steel fibres. At the nanoscale, different behaviours are observed from points to points, which may be attributed to local variations of the chemical composition and/or thickness of the passivation layer. I-V curves are well fitted with an electron tunnelling model, indicating that electron tunnelling may be the predominant mechanism for electron transport.

  6. Magnetic study of the low temperature anomalies in the underdoped PrBCO compound

    NASA Astrophysics Data System (ADS)

    Lahoubi, Mahieddine

    2018-05-01

    The low temperature anomalous magnetic properties of a non-superconducting PrBCO6+x compound in an underdoped oxygen state of concentration (x = 0.44) are characterized by paraprocess magnetic susceptibility χH(T) measurements carried out as a function of temperature T under different values of a DC magnetic field H up to 110 kOe. The derivatives dχH(T)/dT curves reveal a significant reduction with increasing H in the Néel temperature TN = 9 K of the Pr antiferromagnetic (AFM) ordering for which the transition subsists at 100 kOe. The small anomaly at T2 = 6-7 K is confirmed at 20 kOe and the previous spin reorientation attributed to this transition temperature seems to be suppressed above 60 kOe. The well defined anomaly in the vicinity of the low-critical point Tcr = 4-5 K which occurs simultaneously, is still present when the strength of H is increased up to 100 kOe. Weak field induced phase transitions are observed between T2 and TN at a low transition-field (Ht<11 kOe) in the differential magnetic susceptibility dMT(H)/dH as a function of H deduced from the isothermal magnetizations MT(H) with H up to 21 kOe, whereas a weak ferromagnetic behavior of the Pr sublattice appears below Tcr. The magnetic field effects give rise to more evidence for the Pr-Cu(2) coupling with 'exchange-frustrated AFM' interactions and ascertain the main role of the Pr sublattice whereas the Cu(2) sublattice seems to be less efficient.

  7. Lateral Tip Control Effects in CD-AFM Metrology: The Large Tip Limit.

    PubMed

    Dixson, Ronald G; Orji, Ndubuisi G; Goldband, Ryan S

    2016-01-25

    Sidewall sensing in critical dimension atomic force microscopes (CD-AFMs) usually involves continuous lateral dithering of the tip or the use of a control algorithm and fast response piezo actuator to position the tip in a manner that resembles touch-triggering of coordinate measuring machine (CMM) probes. All methods of tip position control, however, induce an effective tip width that may deviate from the actual geometrical tip width. Understanding the influence and dependence of the effective tip width on the dither settings and lateral stiffness of the tip can improve the measurement accuracy and uncertainty estimation for CD-AFM measurements. Since CD-AFM typically uses tips that range from 15 nm to 850 nm in geometrical width, the behavior of effective tip width throughout this range should be understood. The National Institute of Standards and Technology (NIST) has been investigating the dependence of effective tip width on the dither settings and lateral stiffness of the tip, as well as the possibility of material effects due to sample composition. For tip widths of 130 nm and lower, which also have lower lateral stiffness, the response of the effective tip width to lateral dither is greater than for larger tips. However, we have concluded that these effects will not generally result in a residual bias, provided that the tip calibration and sample measurement are performed under the same conditions. To validate that our prior conclusions about the dependence of effective tip width on lateral stiffness are valid for large CD-tips, we recently performed experiments using a very large non-CD tip with an etched plateau of approximately 2 μm width. The effective lateral stiffness of these tips is at least 20 times greater than typical CD-AFM tips, and these results supported our prior conclusions about the expected behavior for larger tips. The bottom-line importance of these latest observations is that we can now reasonably conclude that a dither slope of 3 nm

  8. Lateral Tip Control Effects in CD-AFM Metrology: The Large Tip Limit

    PubMed Central

    Dixson, Ronald G.; Orji, Ndubuisi G.; Goldband, Ryan S.

    2016-01-01

    Sidewall sensing in critical dimension atomic force microscopes (CD-AFMs) usually involves continuous lateral dithering of the tip or the use of a control algorithm and fast response piezo actuator to position the tip in a manner that resembles touch-triggering of coordinate measuring machine (CMM) probes. All methods of tip position control, however, induce an effective tip width that may deviate from the actual geometrical tip width. Understanding the influence and dependence of the effective tip width on the dither settings and lateral stiffness of the tip can improve the measurement accuracy and uncertainty estimation for CD-AFM measurements. Since CD-AFM typically uses tips that range from 15 nm to 850 nm in geometrical width, the behavior of effective tip width throughout this range should be understood. The National Institute of Standards and Technology (NIST) has been investigating the dependence of effective tip width on the dither settings and lateral stiffness of the tip, as well as the possibility of material effects due to sample composition. For tip widths of 130 nm and lower, which also have lower lateral stiffness, the response of the effective tip width to lateral dither is greater than for larger tips. However, we have concluded that these effects will not generally result in a residual bias, provided that the tip calibration and sample measurement are performed under the same conditions. To validate that our prior conclusions about the dependence of effective tip width on lateral stiffness are valid for large CD-tips, we recently performed experiments using a very large non-CD tip with an etched plateau of approximately 2 μm width. The effective lateral stiffness of these tips is at least 20 times greater than typical CD-AFM tips, and these results supported our prior conclusions about the expected behavior for larger tips. The bottom-line importance of these latest observations is that we can now reasonably conclude that a dither slope of 3 nm

  9. SEM and AFM studies of dip-coated CuO nanofilms.

    PubMed

    Dhanasekaran, V; Mahalingam, T; Ganesan, V

    2013-01-01

    Cupric oxide (CuO) semiconducting thin films were prepared at various copper sulfate concentrations by dip coating. The copper sulfate concentration was varied to yield films of thicknesses in the range of 445-685 nm by surface profilometer. X-ray diffraction patterns revealed that the deposited films were polycrystalline in nature with monoclinic structure of (-111) plane. The surface morphology and topography of monoclinic-phase CuO thin films were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Surface roughness profile was plotted using WSxM software and the estimated surface roughness was about ∼19.4 nm at 30 mM molar concentration. The nanosheets shaped grains were observed by SEM and AFM studies. The stoichiometric compound formation was observed at 30 mM copper sulfate concentration prepared film by EDX. The indirect band gap energy of CuO films was increased from 1.08 to 1.20 eV with the increase of copper sulfate concentrations. Copyright © 2012 Wiley Periodicals, Inc.

  10. Neutron diffraction and electrical transport studies on magnetic ordering in terbium at high pressures and low temperatures

    DOE PAGES

    Thomas, Sarah A.; Montgomery, Jeffrey M.; Tsoi, Georgiy M.; ...

    2013-06-11

    Neutron diffraction and electrical transport measurements have been carried out on the heavy rare earth metal terbium at high pressures and low temperatures in order to elucidate the onset of ferromagnetic order as a function of pressure. The electrical resistance measurements show a change in slope as the temperature is lowered through the ferromagnetic Curie temperature. The temperature of this ferromagnetic transition decreases from approximately 240 K at ambient pressure at a rate of –16.7 K/GPa up to a pressure of 3.6 GPa, at which point the onset of ferromagnetic order is suppressed. Neutron diffraction measurements as a function ofmore » pressure at temperatures ranging from 90 K to 290 K confirm that the change of slope in the resistance is associated with the ferromagnetic ordering, since this occurs at pressures similar to those determined from the resistance results at these temperatures. Furthermore, a change in ferromagnetic ordering as the pressure is increased above 3.6 GPa is correlated with the phase transition from the ambient hexagonal close packed (hcp) structure to an α-Sm type structure at high pressures.« less

  11. Effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells investigated by atomic force microscopy.

    PubMed

    Li, Mi; Liu, LianQing; Xi, Ning; Wang, YueChao; Xiao, XiuBin; Zhang, WeiJing

    2015-09-01

    Cell mechanics plays an important role in cellular physiological activities. Recent studies have shown that cellular mechanical properties are novel biomarkers for indicating the cell states. In this article, temperature-controllable atomic force microscopy (AFM) was applied to quantitatively investigate the effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells. First, AFM indenting experiments were performed on six types of human cells to investigate the changes of cellular Young's modulus at different temperatures and the results showed that the mechanical responses to the changes of temperature were variable for different types of cancer cells. Second, AFM imaging experiments were performed to observe the morphological changes in living cells at different temperatures and the results showed the significant changes of cell morphology caused by the alterations of temperature. Finally, by co-culturing human cancer cells with human immune cells, the mechanical and morphological changes in cancer cells were investigated. The results showed that the co-culture of cancer cells and immune cells could cause the distinct mechanical changes in cancer cells, but no significant morphological differences were observed. The experimental results improved our understanding of the effects of temperature and cellular interactions on the mechanics and morphology of cancer cells.

  12. Evolution from 4f-electron antiferromagnetic to ferromagnetic order in the CeCu(Ge1-xSnx ) alloy series (0 ≤x ≤1 )

    NASA Astrophysics Data System (ADS)

    Altayeb, A.; Sondezi, B. M.; Tchoula Tchokonté, M. B.; Strydom, A. M.; Doyle, T. B.; Kaczorowski, D.

    2017-05-01

    We report the evolution from ferromagnetic (FM) to antiferromagnetic (AFM) state in CeCu(Ge1-xSnx ) investigated by means of magnetic and heat capacity measurements. X-ray diffraction studies for all compositions indicate the ZrBeSi - type hexagonal crystal structure with space group P63/mmc (No. 194). The magnetic susceptibility, χ (T ) at high temperature follows the Curie - Weiss relation with an effective magnetic moment close to the value of 2.54 μB expected for free Ce3+ - ion. At low temperatures, χ (T ) data indicate AFM transition for alloys in the concentration range 0.7 ≤x ≤1 and FM for x ≤0.6 . The magnetization, M (μ0H ) of samples exhibiting AFM behaviour shows metamagnetic transition at low magnetic fields with some irreversibility in the process of increasing and decreasing magnetic field. In turn, M (μ0H ) of samples exhibiting FM behaviour shows saturation in high magnetic fields. Heat capacity, Cp(T) data confirm the AFM and FM transitions observed in magnetic measurements. An additional anomaly below TC and TN is observed in Cp(T)/T, which likely arises from spin reorientation or rearrangement in FM or AFM structure. Below in FM region, Cp(T) can be well described assuming spin-waves excitations with an energy gap ΔC.

  13. Graphene Nanopore Support System for Simultaneous High-Resolution AFM Imaging and Conductance Measurements

    PubMed Central

    2015-01-01

    Accurately defining the nanoporous structure and sensing the ionic flow across nanoscale pores in thin films and membranes has a wide range of applications, including characterization of biological ion channels and receptors, DNA sequencing, molecule separation by nanoparticle films, sensing by block co-polymers films, and catalysis through metal–organic frameworks. Ionic conductance through nanopores is often regulated by their 3D structures, a relationship that can be accurately determined only by their simultaneous measurements. However, defining their structure–function relationships directly by any existing techniques is still not possible. Atomic force microscopy (AFM) can image the structures of these pores at high resolution in an aqueous environment, and electrophysiological techniques can measure ion flow through individual nanoscale pores. Combining these techniques is limited by the lack of nanoscale interfaces. We have designed a graphene-based single-nanopore support (∼5 nm thick with ∼20 nm pore diameter) and have integrated AFM imaging and ionic conductance recording using our newly designed double-chamber recording system to study an overlaid thin film. The functionality of this integrated system is demonstrated by electrical recording (<10 pS conductance) of suspended lipid bilayers spanning a nanopore and simultaneous AFM imaging of the bilayer. PMID:24581087

  14. Spin dynamics near a putative antiferromagnetic quantum critical point in Cu-substituted BaFe 2 As 2 and its relation to high-temperature superconductivity

    DOE PAGES

    Kim, M. G.; Wang, M.; Tucker, G. S.; ...

    2015-12-02

    We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba(Fe 0.957Cu 0.043) 2As 2, a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe 2As 2 and superconducting Ba(Fe 1–xNi x) 2As 2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba(Fe 0.957Cu 0.043) 2As 2, which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouplesmore » the interaction between quasiparticles and the spin fluctuations. In addition, we show that the spin-spin correlation length ξ(T) increases rapidly as the temperature is lowered and find ω/T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.« less

  15. Association between Urinary Aflatoxin (AFM1) and Dietary Intake among Adults in Hulu Langat District, Selangor, Malaysia

    PubMed Central

    Sulaiman, Siti Husna

    2018-01-01

    Aflatoxin is a food contaminant and its exposure through the diet is frequent and ubiquitous. A long-term dietary aflatoxin exposure has been linked to the development of liver cancer in populations with high prevalence of aflatoxin contamination in foods. Therefore, this study was conducted to identify the association between urinary aflatoxin M1 (AFM1), a biomarker of aflatoxin exposure, with the dietary intake among adults in Hulu Langat district, Selangor, Malaysia. Certain food products have higher potential for aflatoxin contamination and these were listed in a Food Frequency Questionnaire, which was given to all study participants. This allowed us to record consumption rates for each food product listed. Concomitantly, urine samples were collected, from adults in selected areas in Hulu Langat district, for the measurement of AFM1 levels using an ELISA kit. Of the 444 urine samples collected and tested, 199 were positive for AFM1, with 37 of them exceeding the limit of detection (LOD) of 0.64 ng/mL. Cereal products showed the highest consumption level among all food groups, with an average intake of 512.54 g per day. Chi-square analysis showed that consumption of eggs (X2 = 4.77, p = 0.03) and dairy products (X2 = 19.36, p < 0.01) had significant associations with urinary AFM1 but both food groups were having a phi and Cramer’s V value that less than 0.3, which indicated that the association between these food groups’ consumption and AFM1 level in urine was weak. PMID:29642443

  16. Near-zero thermal expansion in magnetically ordered state in dysprosium at high pressures and low temperatures

    NASA Astrophysics Data System (ADS)

    Hope, Kevin M.; Samudrala, Gopi K.; Vohra, Yogesh K.

    2017-01-01

    The atomic volume of rare earth metal dysprosium (Dy) has been measured up to high pressures of 35 GPa and low temperatures between 200 and 7 K in a diamond anvil cell using angle dispersive X-ray diffraction at a synchrotron source. The hexagonal close-packed (hcp), alpha-Samarium (α-Sm), and double hexagonal close-packed (dhcp) phases are observed to be stable in Dy under high-pressure and low-temperature conditions achieved in our experiments. Dy is known to undergo magnetic ordering below 176 K at ambient pressure with magnetic ordering Néel temperature (TN) that changes rapidly with increasing pressure. Our experimental measurement shows that Dy has near-zero thermal expansion in the magnetically ordered state and normal thermal expansion in the paramagnetic state for all the three known high pressure phases (hcp, α-Sm, and dhcp) to 35 GPa. This near-zero thermal expansion behavior in Dy is observed below the magnetic ordering temperature TN at all pressures up to 35 GPa.

  17. 3D assembly of upconverting NaYF4 nanocrystals by AFM nanoxerography: creation of anti-counterfeiting microtags

    NASA Astrophysics Data System (ADS)

    Sangeetha, Neralagatta M.; Moutet, Pierre; Lagarde, Delphine; Sallen, Gregory; Urbaszek, Bernhard; Marie, Xavier; Viau, Guillaume; Ressier, Laurence

    2013-09-01

    Formation of 3D close-packed assemblies of upconverting NaYF4 colloidal nanocrystals (NCs) on surfaces, by Atomic Force Microscopy (AFM) nanoxerography is presented. The surface potential of the charge patterns, the NC concentration, the polarizability of the NCs and the polarity of the dispersing solvent are identified as the key parameters controlling the assembly of NaYF4 NCs into micropatterns of the desired 3D architecture. This insight allowed us to fabricate micrometer sized Quick Response (QR) codes encoded in terms of upconversion luminescence intensity or color. Topographically hidden messages could also be readily incorporated within these microtags. This work demonstrates that AFM nanoxerography has enormous potential for generating high-security anti-counterfeiting microtags.Formation of 3D close-packed assemblies of upconverting NaYF4 colloidal nanocrystals (NCs) on surfaces, by Atomic Force Microscopy (AFM) nanoxerography is presented. The surface potential of the charge patterns, the NC concentration, the polarizability of the NCs and the polarity of the dispersing solvent are identified as the key parameters controlling the assembly of NaYF4 NCs into micropatterns of the desired 3D architecture. This insight allowed us to fabricate micrometer sized Quick Response (QR) codes encoded in terms of upconversion luminescence intensity or color. Topographically hidden messages could also be readily incorporated within these microtags. This work demonstrates that AFM nanoxerography has enormous potential for generating high-security anti-counterfeiting microtags. Electronic supplementary information (ESI) available: Detailed experimental procedures for the synthesis of upconverting NaYF4 nanocrystals and their transmission electron microscopy images. KFM and AFM images corresponding to the assembly of positively charged β-NaYF4:Er3+,Yb3+ nanocrystals from water suspensions by AFM nanoxerography. Photoluminescence spectra of β-NaYF4:Er3+,Yb3+ nanocrystals

  18. Multi-frequency data analysis in AFM by wavelet transform

    NASA Astrophysics Data System (ADS)

    Pukhova, V.; Ferrini, G.

    2017-10-01

    Interacting cantilevers in AFM experiments generate non-stationary, multi-frequency signals consisting of numerous excited flexural and torsional modes and their harmonics. The analysis of such signals is challenging, requiring special methodological approaches and a powerful mathematical apparatus. The most common approach to the signal analysis is to apply Fourier transform analysis. However, FT gives accurate spectra for stationary signals, and for signals changing their spectral content over time, FT provides only an averaged spectrum. Hence, for non-stationary and rapidly varying signals, such as those from interacting cantilevers, a method that shows the spectral evolution in time is needed. One of the most powerful techniques, allowing detailed time-frequency representation of signals, is the wavelet transform. It is a method of analysis that allows representation of energy associated to the signal at a particular frequency and time, providing correlation between the spectral and temporal features of the signal, unlike FT. This is particularly important in AFM experiments because signals nonlinearities contains valuable information about tip-sample interactions and consequently surfaces properties. The present work is aimed to show the advantages of wavelet transform in comparison with FT using as an example the force curve analysis in dynamic force spectroscopy.

  19. Effects of Cr substitution on negative thermal expansion and magnetic properties of antiperovskite Ga1-xCrxN0.83Mn3 compounds

    NASA Astrophysics Data System (ADS)

    Guo, Xinge; Tong, Peng; Lin, Jianchao; Yang, Cheng; Zhang, Kui; Lin, Shuai; Song, Wenhai; Sun, Yuping

    2018-03-01

    Negative thermal expansion (NTE) and magnetic properties were investigated for antiperovskite Ga1-xCrxN0.83Mn3 compounds. As x increases, the temperature span (ΔT) of NTE related with Γ5g antiferromagnetic (AFM) order is expanded and shifted to lower temperatures. At x = 0.1, NTE happens between 256 K and 318 K (ΔT = 62 K) with an average linear coefficient of thermal expansion, αL = -46 ppm/K. The ΔT is expanded to 81 K (151 K- 232 K) in x = 0.2 with αL = -22.6 ppm/K. Finally, NTE is no longer visible for x ≥ 0.3. Ferromagnetic order is introduced by Cr doping and continuously strengthened with increasing x, which may impede the AFM ordering and thus account for the broadening of NTE temperature window. Moreover, our specific heat measurement suggests the electronic density of states at the Fermi level is enhanced upon Cr doping, which favors the FM order rather than the AFM one.

  20. Temperature-Dependent Magnetic Response of Antiferromagnetic Doping in Cobalt Ferrite Nanostructures.

    PubMed

    Nairan, Adeela; Khan, Maaz; Khan, Usman; Iqbal, Munawar; Riaz, Saira; Naseem, Shahzad

    2016-04-18

    In this work Mn x Co 1- x Fe₂O₄ nanoparticles (NPs) were synthesized using a chemical co-precipitation method. Phase purity and structural analyses of synthesized NPs were performed by X-ray diffractometer (XRD). Transmission electron microscopy (TEM) reveals the presence of highly crystalline and narrowly-dispersed NPs with average diameter of 14 nm. The Fourier transform infrared (FTIR) spectrum was measured in the range of 400-4000 cm -1 which confirmed the formation of vibrational frequency bands associated with the entire spinel structure. Temperature-dependent magnetic properties in anti-ferromagnet (AFM) and ferromagnet (FM) structure were investigated with the aid of a physical property measurement system (PPMS). It was observed that magnetic interactions between the AFM (Mn) and FM (CoFe₂O₄) material arise below the Neel temperature of the dopant. Furthermore, hysteresis response was clearly pronounced for the enhancement in magnetic parameters by varying temperature towards absolute zero. It is shown that magnetic properties have been tuned as a function of temperature and an externally-applied field.

  1. Possible higher order phase transition in large-N gauge theory at finite temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Hiromichi

    2017-08-07

    We analyze the phase structure of SU(¥) gauge theory at finite temperature using matrix models. Our basic assumption is that the effective potential is dominated by double-trace terms for the Polyakov loops. As a function of the temperature, a background field for the Polyakov loop, and a quartic coupling, it exhibits a universal structure: in the large portion of the parameter space, there is a continuous phase transition analogous to the third-order phase transition of Gross,Witten and Wadia, but the order of phase transition can be higher than third. We show that different confining potentials give rise to drastically differentmore » behavior of the eigenvalue density and the free energy. Therefore lattice simulations at large N could probe the order of phase transition and test our results. Critical« less

  2. KPFM/AFM imaging on TiO2(110) surface in O2 gas

    NASA Astrophysics Data System (ADS)

    Arima, Eiji; Wen, Huan Fei; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro

    2018-03-01

    We have carried out high-speed imaging of the topography and local contact potential difference (LCPD) on rutile TiO2(110) in O2 gas by atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We succeeded in KPFM/AFM imaging with atomic resolution at 1 frame min-1 and observed the adsorbate on a hydroxylated TiO2(110) surface. The observed adsorbate is considered to be oxygen adatoms (Oa), hydroperoxyls (HO2), or terminal hydroxyls (OHt). After adsorption, changes in the topography and the LCPD of the adsorbate were observed. This phenomenon is thought to be caused by the charge transfer of the adsorbate. This technique has the potential to observe catalytic behavior with atomic resolution.

  3. Interstitial effects of B and Li on the magnetic phase transition and magnetocaloric effects in Gd2In alloy

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Xie, Yigao; Zhou, Xiaoqian; Zhong, Hui; Jiang, Qingzheng; Ma, Shengcan; Zhong, Zhenchen; Cui, Weibin; Wang, Qiang

    2018-05-01

    Interstitial effects of B and Li on the phase transition and magnetocaloric effect in Gd2In alloys had been studied. The antiferromagnetic (AFM) - ferromagnetic (FM) phase transition was found to be of first-order nature while ferromagnetic - paramagnetic (PM) phase transition was of second-order nature in B- or Li-doped Gd2In alloys. AFM-FM phase transition temperature was increased while FM-PM phase transition was decreased with more doping concentrations. During AFM-FM phase transition, the slope of temperature-dependent critical field (μ0Hcr) was increased by increased doping amounts. The magnetic entropy changes under small field change were enhanced by B and Li addition, which showed the beneficial effects of B and Li additions.

  4. Order-picking in deep cold--physiological responses of younger and older females. Part 2: body core temperature and skin surface temperature.

    PubMed

    Baldus, Sandra; Kluth, Karsten; Strasser, Helmut

    2012-01-01

    So far, it was unclear to what extent working in deep cold-storage depots has an influence on female order-pickers body core temperature and skin surface temperature considering different age groups. Physiological effects of order-picking in a chill room (+3°C) and cold store (-24°C) were examined on 30 female subjects (Ss), classified in two age groups (20- to 35- year-olds and 40- to 65-year-olds). The body core temperature was taken every 15 min at the tympanum and the skin surface temperature was recorded continuously at seven different positions. Working in the chill room induced a decrease of the body core temperature up to 0.5K in comparison to the value at the outset for both age groups which could be compensated by all Ss during the breaks. Working in the cold store caused a decline up to 1.1K for the younger Ss and 1.3K for the older Ss. A complete warming-up during the breaks was often not possible. Regarding the skin surface temperature, working in the chill room can be considered as unproblematic, whereas significantly lower temperatures at nose, fingers and toes, associated with substantial negative subjective sensations, were recorded while working in the cold store.

  5. Controlled Atmosphere High Temperature SPM for electrochemical measurements

    NASA Astrophysics Data System (ADS)

    Vels Hansen, K.; Sander, C.; Koch, S.; Mogensen, M.

    2007-03-01

    A new controlled atmosphere high temperature SPM has been designed and build for the purpose of performing electrochemical measurements on solid oxide fuel cell materials. The first tests show that images can be obtained at a surface temperature of 465°C in air with a standard AFM AC probe. The aim is to produce images at a surface temperature of 800°C with electrically conducting ceramic probes as working electrodes that can be positioned at desired locations at the surface for electrochemical measurements.

  6. Tip in–light on: Advantages, challenges, and applications of combining AFM and Raman microscopy on biological samples

    PubMed Central

    Gierlinger, Notburga

    2016-01-01

    Abstract Scanning probe microscopies and spectroscopies, especially AFM and Confocal Raman microscopy are powerful tools to characterize biological materials. They are both non‐destructive methods and reveal mechanical and chemical properties on the micro and nano‐scale. In the last years the interest for increasing the lateral resolution of optical and spectral images has driven the development of new technologies that overcome the diffraction limit of light. The combination of AFM and Raman reaches resolutions of about 50–150 nm in near‐field Raman and 1.7–50 nm in tip enhanced Raman spectroscopy (TERS) and both give a molecular information of the sample and the topography of the scanned surface. In this review, the mentioned approaches are introduced, the main advantages and problems for application on biological samples discussed and some examples for successful experiments given. Finally the potential of colocated AFM and Raman measurements is shown on a case study of cellulose‐lignin films: the topography structures revealed by AFM can be related to a certain chemistry by the colocated Raman scan and additionally the mechanical properties be revealed by using the digital pulsed force mode. Microsc. Res. Tech. 80:30–40, 2017. © 2016 Wiley Periodicals, Inc. PMID:27514318

  7. Near-zero thermal expansion in magnetically ordered state in dysprosium at high pressures and low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hope, Kevin M.; Samudrala, Gopi K.; Vohra, Yogesh K.

    The atomic volume of rare earth metal Dysprosium (Dy) has been measured up to high pressures of 35 GPa and low temperatures between 200 K and 7 K in a diamond anvil cell using angle dispersive x-ray diffraction at a synchrotron source. The hexagonal close-packed (hcp), alpha-Samarium (α-Sm), and double hexagonal close packed (dhcp) phases are observed to be stable in Dy under high-pressure and low-temperature conditions achieved in our experiments. Dy is known to undergo magnetic ordering below 176 K at ambient pressure with magnetic ordering Néel temperature (T N) that changes rapidly with increasing pressure. Our experimental measurementmore » shows that Dy has near-zero thermal expansion in the magnetically ordered state and normal thermal expansion in the paramagnetic state for all the three known high pressure phases (hcp, α-Sm, and dhcp) to 35 GPa. This near-zero thermal expansion behavior in Dy is observed below the magnetic ordering temperature T N at all pressures up to 35 GPa.« less

  8. Near-zero thermal expansion in magnetically ordered state in dysprosium at high pressures and low temperatures

    DOE PAGES

    Hope, Kevin M.; Samudrala, Gopi K.; Vohra, Yogesh K.

    2017-01-01

    The atomic volume of rare earth metal Dysprosium (Dy) has been measured up to high pressures of 35 GPa and low temperatures between 200 K and 7 K in a diamond anvil cell using angle dispersive x-ray diffraction at a synchrotron source. The hexagonal close-packed (hcp), alpha-Samarium (α-Sm), and double hexagonal close packed (dhcp) phases are observed to be stable in Dy under high-pressure and low-temperature conditions achieved in our experiments. Dy is known to undergo magnetic ordering below 176 K at ambient pressure with magnetic ordering Néel temperature (T N) that changes rapidly with increasing pressure. Our experimental measurementmore » shows that Dy has near-zero thermal expansion in the magnetically ordered state and normal thermal expansion in the paramagnetic state for all the three known high pressure phases (hcp, α-Sm, and dhcp) to 35 GPa. This near-zero thermal expansion behavior in Dy is observed below the magnetic ordering temperature T N at all pressures up to 35 GPa.« less

  9. Hematite/silica nanoparticle bilayers on mica: AFM and electrokinetic characterization.

    PubMed

    Morga, Maria; Adamczyk, Zbigniew; Kosior, Dominik; Oćwieja, Magdalena

    2018-06-06

    Quantitative studies on self-assembled hematite/silica nanoparticle (NP) bilayers on mica were performed by applying scanning electron microscopy (SEM), atomic force microscopy (AFM), and streaming potential measurements. The coverage of the supporting hematite layers was adjusted by changing the bulk concentration of the suspension and the deposition time. The coverage was determined by direct enumeration of deposited particles from AFM images and SEM micrographs. Afterward, silica nanoparticle monolayers were assembled under diffusion-controlled transport. A unique functional relationship was derived connecting the silica coverage with the hematite precursor layer coverage. The formation of the hematite monolayer and the hematite/silica bilayer was also monitored in situ by streaming potential measurements. It was confirmed that the zeta potential of the bilayers was independent of the supporting layer coverage, exceeding 0.15. These measurements were theoretically interpreted in terms of the general electrokinetic model that allowed for deriving a formula for calculating nanoparticle coverage in the bilayers. Additionally, from desorption experiments, the interactions among hematite/silica particles in the bilayers were determined using DLVO theory. These results facilitate the development of a robust method of preparing nanoparticle bilayers with controlled properties, with potential applications in catalytic processes.

  10. Neural network approximation of tip-abrasion effects in AFM imaging

    NASA Astrophysics Data System (ADS)

    Bakucz, Peter; Yacoot, Andrew; Dziomba, Thorsten; Koenders, Ludger; Krüger-Sehm, Rolf

    2008-06-01

    The abrasion (wear) of tips used in scanning force microscopy (SFM) directly influences SFM image quality and is therefore of great relevance to quantitative SFM measurements. The increasing implementation of automated SFM measurement schemes has become a strong driving force for increasing efforts towards the prediction of tip wear, as it needs to be ensured that the probe is exchanged before a level of tip wear is reached that adversely affects the measurement quality. In this paper, we describe the identification of tip abrasion in a system of SFM measurements. We attempt to model the tip-abrasion process as a concatenation of a mapping from the measured AFM data to a regression vector and a nonlinear mapping from the regressor space to the output space. The mapping is formed as a basis function expansion. Feedforward neural networks are used to approximate this mapping. The one-hidden layer network gave a good quality of fit for the training and test sets for the tip-abrasion system. We illustrate our method with AFM measurements of both fine periodic structures and randomly oriented sharp features and compare our neural network results with those obtained using other methods.

  11. The association between acute flaccid myelitis (AFM) and Enterovirus D68 (EV-D68) - what is the evidence for causation?

    PubMed

    Dyda, Amalie; Stelzer-Braid, Sacha; Adam, Dillon; Chughtai, Abrar A; MacIntyre, C Raina

    2018-01-01

    BackgroundEnterovirus D68 (EV-D68) has historically been a sporadic disease, causing occasional small outbreaks of generally mild infection. In recent years, there has been evidence of an increase in EV-D68 infections globally. Large outbreaks of EV-D68, with thousands of cases, occurred in the United States, Canada and Europe in 2014. The outbreaks were associated temporally and geographically with an increase in clusters of acute flaccid myelitis (AFM).
 Aims: We aimed to evaluate a causal association between EV-D68 and AFM. 
 Methods: Using data from the published and grey literature, we applied the Bradford Hill criteria, a set of nine principles applied to examine causality, to evaluate the relationship between EV-D68 and AFM. Based on available evidence, we defined the Bradford Hill Criteria as being not met, or met minimally, partially or fully. 
 Results: Available evidence applied to EV-D68 and AFM showed that six of the Bradford Hill criteria were fully met and two were partially met. The criterion of biological gradient was minimally met. The incidence of EV-D68 infections is increasing world-wide. Phylogenetic epidemiology showed diversification from the original Fermon and Rhyne strains since the year 2000, with evolution of a genetically distinct outbreak strain, clade B1. Clade B1, but not older strains, is associated with AFM and is neuropathic in animal models. 
 Conclusion: While more research is needed on dose-response relationship, application of the Bradford Hill criteria supported a causal relationship between EV-D68 and AFM.

  12. Probing of miniPEGγ-PNA-DNA Hybrid Duplex Stability with AFM Force Spectroscopy.

    PubMed

    Dutta, Samrat; Armitage, Bruce A; Lyubchenko, Yuri L

    2016-03-15

    Peptide nucleic acids (PNA) are synthetic polymers, the neutral peptide backbone of which provides elevated stability to PNA-PNA and PNA-DNA hybrid duplexes. It was demonstrated that incorporation of diethylene glycol (miniPEG) at the γ position of the peptide backbone increased the thermal stability of the hybrid duplexes (Sahu, B. et al. J. Org. Chem. 2011, 76, 5614-5627). Here, we applied atomic force microscopy (AFM) based single molecule force spectroscopy and dynamic force spectroscopy (DFS) to test the strength and stability of the hybrid 10 bp duplex. This hybrid duplex consisted of miniPEGγ-PNA and DNA of the same length (γ(MP)PNA-DNA), which we compared to a DNA duplex with a homologous sequence. AFM force spectroscopy data obtained at the same conditions showed that the γ(MP)PNA-DNA hybrid is more stable than the DNA counterpart, 65 ± 15 pN vs 47 ± 15 pN, respectively. The DFS measurements performed in a range of pulling speeds analyzed in the framework of the Bell-Evans approach yielded a dissociation constant, koff ≈ 0.030 ± 0.01 s⁻¹ for γ(MP)PNA-DNA hybrid duplex vs 0.375 ± 0.18 s⁻¹ for the DNA-DNA duplex suggesting that the hybrid duplex is much more stable. Correlating the high affinity of γ(MP)PNA-DNA to slow dissociation kinetics is consistent with prior bulk characterization by surface plasmon resonance. Given the growing interest in γ(MP)PNA as well as other synthetic DNA analogues, the use of single molecule experiments along with computational analysis of force spectroscopy data will provide direct characterization of various modifications as well as higher order structures such as triplexes and quadruplexes.

  13. Surface Nanobubbles Studied by Time-Resolved Fluorescence Microscopy Methods Combined with AFM: The Impact of Surface Treatment on Nanobubble Nucleation.

    PubMed

    Hain, Nicole; Wesner, Daniel; Druzhinin, Sergey I; Schönherr, Holger

    2016-11-01

    The impact of surface treatment and modification on surface nanobubble nucleation in water has been addressed by a new combination of fluorescence lifetime imaging microscopy (FLIM) and atomic force microscopy (AFM). In this study, rhodamine 6G (Rh6G)-labeled surface nanobubbles nucleated by the ethanol-water exchange were studied on differently cleaned borosilicate glass, silanized glass as well as self-assembled monolayers on transparent gold by combined AFM-FLIM. While the AFM data confirmed earlier reports on surface nanobubble nucleation, size, and apparent contact angles in dependence of the underlying substrate, the colocalization of these elevated features with highly fluorescent features observed in confocal intensity images added new information. By analyzing the characteristic contributions to the excited state lifetime of Rh6G in decay curves obtained from time-correlated single photon counting (TCSPC) experiments, the characteristic short-lived (<600 ps) component of could be associated with an emission at the gas-water interface. Its colocalization with nanobubble-like features in the AFM height images provides evidence for the observation of gas-filled surface nanobubbles. While piranha-cleaned glass supported nanobubbles, milder UV-ozone or oxygen plasma treatment afforded glass-water interfaces, where no nanobubbles were observed by combined AFM-FLIM. Finally, the number density of nanobubbles scaled inversely with increasing surface hydrophobicity.

  14. Collapse of ferromagnetism in itinerant-electron system: A magnetic, transport properties, and high pressure study of (Hf,Ta)Fe2 compounds

    NASA Astrophysics Data System (ADS)

    Diop, L. V. B.; Kastil, J.; Isnard, O.; Arnold, Z.; Kamarad, J.

    2014-10-01

    The magnetism and transport properties were studied for Laves (Hf,Ta)Fe2 itinerant-electron compounds, which exhibit a temperature-induced first-order transition from the ferromagnetic (FM) to the antiferromagnetic (AFM) state upon heating. At finite temperatures, the field-induced metamagnetic phase transition between the AFM and FM has considerable effects on the transport properties of these model metamagnetic compounds. A large negative magnetoresistance of about 14% is observed in accordance with the metamagnetic transition. The magnetic phase diagram is determined for the Laves Hf1-xTaxFe2 series and its Ta concentration dependence discussed. An unusual behavior is revealed in the paramagnetic state of intermediate compositions, it gives rise to the rapid increase and saturation of the local spin fluctuations of the 3d electrons. This new result is analysed in the frame of the theory of Moriya. For a chosen composition Hf0.825Ta0.175Fe2, exhibiting such remarkable features, a detailed investigation is carried out under hydrostatic pressure up to 1 GPa in order to investigate the volume effect on the magnetic properties. With increasing pressure, the magnetic transition temperature TFM-AFM from ferromagnetic to antiferromagnetic order decreases strongly non-linearly and disappears at a critical pressure of 0.75 GPa. In the pressure-induced AFM state, the field-induced first-order AFM-FM transition appears and the complex temperature dependence of the AFM-FM transition field is explained by the contribution from both the magnetic and elastic energies caused by the significant temperature variation of the amplitude of the local Fe magnetic moment. The application of an external pressure leads also to the progressive decrease of the Néel temperature TN. In addition, a large pressure effect on the spontaneous magnetization MS for pressures below 0.45 GPa, dln(Ms)/dP = -6.3 × 10-2 GPa-1 was discovered. The presented results are consistent with Moriya

  15. AFM surface imaging of AISI D2 tool steel machined by the EDM process

    NASA Astrophysics Data System (ADS)

    Guu, Y. H.

    2005-04-01

    The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM.

  16. Characterization of the Polycaprolactone Melt Crystallization: Complementary Optical Microscopy, DSC, and AFM Studies

    PubMed Central

    Speranza, V.; Sorrentino, A.; De Santis, F.; Pantani, R.

    2014-01-01

    The first stages of the crystallization of polycaprolactone (PCL) were studied using several techniques. The crystallization exotherms measured by differential scanning calorimetry (DSC) were analyzed and compared with results obtained by polarized optical microscopy (POM), rheology, and atomic force microscope (AFM). The experimental results suggest a strong influence of the observation scale. In particular, the AFM, even if limited on time scale, appears to be the most sensitive technique to detect the first stages of crystallization. On the contrary, at least in the case analysed in this work, rheology appears to be the least sensitive technique. DSC and POM provide closer results. This suggests that the definition of induction time in the polymer crystallization is a vague concept that, in any case, requires the definition of the technique used for its characterization. PMID:24523644

  17. Characterization of the polycaprolactone melt crystallization: complementary optical microscopy, DSC, and AFM studies.

    PubMed

    Speranza, V; Sorrentino, A; De Santis, F; Pantani, R

    2014-01-01

    The first stages of the crystallization of polycaprolactone (PCL) were studied using several techniques. The crystallization exotherms measured by differential scanning calorimetry (DSC) were analyzed and compared with results obtained by polarized optical microscopy (POM), rheology, and atomic force microscope (AFM). The experimental results suggest a strong influence of the observation scale. In particular, the AFM, even if limited on time scale, appears to be the most sensitive technique to detect the first stages of crystallization. On the contrary, at least in the case analysed in this work, rheology appears to be the least sensitive technique. DSC and POM provide closer results. This suggests that the definition of induction time in the polymer crystallization is a vague concept that, in any case, requires the definition of the technique used for its characterization.

  18. Temperature-assisted morphological transition in CuPc thin films

    NASA Astrophysics Data System (ADS)

    Bae, Yu Jeong; Pham, Thi Kim Hang; Kim, Tae Hee

    2016-05-01

    Ex-situ and in-situ morphological analyses were performed for Cu-phthalocyanine (CuPc) organic semiconductor films by using atomic force microscopy (AFM) and reflection high-energy electron diffraction (RHEED). The focus was the effects of post-annealing on the structural characteristics of CuPc films grown on MgO(001) layers by using an ultra-high-vacuum thermal evaporator. Sphere-to-nanofibril and 2-D to 3-D morphological transitions were observed with increasing CuPc thickness beyond 3 nm. The surface morphology and the crystallinity were drastically improved after an additional cooling of the post-annealed CuPc films thinner than 3 nm. Our results highlight that molecular orientation and structural ordering can be effectively controlled by using different temperature treatments and a proper combination of material, film thickness, and substrate.

  19. BOREAS AFM-6 Boundary Layer Height Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) site. This data set provides boundary layer height information over the site. The data were collected from 21 May 1994 to 20 Sep 1994 and are stored in tabular ASCII files. The boundary layer height data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  20. Emergence of superconductivity and magnetic ordering tuned by Fe-vacancy in alkali-metal Fe chalcogenides RbxFe2-ySe2

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yoshiaki; Kototani, Shouhei; Itoh, Masayuki; Sato, Masatoshi

    2014-12-01

    Samples of RbxFe2-ySe2 exhibiting superconductivity [superconducting (SC) samples] undergo a phase-separation into two phases, a Fe-vacancy ordered phase with antiferromagnetic (AFM) transition at TN1~500 K (AFM1 phase) and a phase with little Fe- vacancy and SC transition at Tc~30 K (SC phase). The samples of RbxFe2-ySe2 exhibiting no SC behaviour (non-SC samples) are phase-separated into three phases, the AFM1 phase, another AFM phase with TN2 ~150 K (AFM2 phase), and a paramagnetic phase with no SC transitions (paramagnetic non-SC phase). In this paper, we present the experimental results of magnetic susceptibility, electrical resistivity, and NMR measurements on single crystals of RbxFe2-ySe2 to reveal physical properties of these co-existing phases in the SC and non-SC samples. The 87Rb and 77Se NMR spectra show that the Fe vacancy concentration is very small in the Fe planes of the SC phase, whereas the AFM2 and paramagnetic non-SC phases in non-SC samples have larger amount of Fe vacancies. The randomness induced by the Fe vacancy in the non-SC samples makes the AFM2 and paramagnetic non-SC phases insulating/semiconducting and magnetically active, resulting in the absence of the superconductivity in RbxFe2-ySe2.

  1. Surface study of irradiated sapphires from Phrae Province, Thailand using AFM

    NASA Astrophysics Data System (ADS)

    Monarumit, N.; Jivanantaka, P.; Mogmued, J.; Lhuaamporn, T.; Satitkune, S.

    2017-09-01

    The irradiation is one of the gemstone enhancements for improving the gem quality. Typically, there are many varieties of irradiated gemstones in the gem market such as diamond, topaz, and sapphire. However, it is hard to identify the gemstones before and after irradiation. The aim of this study is to analyze the surface morphology for classifying the pristine and irradiated sapphires using atomic force microscope (AFM). In this study, the sapphire samples were collected from Phrae Province, Thailand. The samples were irradiated by high energy electron beam for a dose of ionizing radiation at 40,000 kGy. As the results, the surface morphology of pristine sapphires shows regular atomic arrangement, whereas, the surface morphology of irradiated sapphires shows the nano-channel observed by the 2D and 3D AFM images. The atomic step height and root mean square roughness have changed after irradiation due to the micro-structural defect on the sapphire surface. Therefore, this study is a frontier application for sapphire identification before and after irradiation.

  2. Robust antiferromagnetism preventing superconductivity in pressurized (Ba 0.61K 0.39)Mn 2Bi 2

    DOE PAGES

    Gu, Dachun; Dai, Xia; Le, Congcong; ...

    2014-12-05

    BaMn 2Bi 2 possesses an iso-structure of iron pnictide superconductors and similar antiferromagnetic (AFM) ground state to that of cuprates, therefore, it receives much more attention on its properties and is expected to be the parent compound of a new family of superconductors. When doped with potassium (K), BaMn 2Bi 2 undergoes a transition from an AFM insulator to an AFM metal. Consequently, it is of great interest to suppress the AFM order in the K-doped BaMn 2Bi 2 with the aim of exploring the potential superconductivity. Here, we report that external pressure up to 35.6 GPa cannot suppress themore » AFM order in the K-doped BaMn 2Bi 2 to develop superconductivity in the temperature range of 300 K–1.5 K, but induces a tetragonal (T) to an orthorhombic (OR) phase transition at ~20 GPa. Theoretical calculations for the T and OR phases, on basis of our high-pressure XRD data, indicate that the AFM order is robust in the pressurized Ba 0.61K 0.39Mn 2Bi 2. Utlimately, both of our experimental and theoretical results suggest that the robust AFM order essentially prevents the emergence of superconductivity.« less

  3. Visualizing molecular polar order in tissues via electromechanical coupling

    PubMed Central

    Denning, Denise; Alilat, Sofiane; Habelitz, Stefan; Fertala, Andrzej; Rodriguez, Brian J.

    2015-01-01

    Electron microscopy (EM) and atomic force microscopy (AFM) techniques have long been used to characterize collagen fibril ordering and alignment in connective tissues. These techniques, however, are unable to map collagen fibril polarity, i.e., the polar orientation that is directed from the amine to the carboxyl termini. Using a voltage modulated AFM-based technique called piezoresponse force microscopy (PFM), we show it is possible to visualize both the alignment of collagen fibrils within a tissue and the polar orientation of the fibrils with minimal sample preparation. We demonstrate the technique on rat tail tendon and porcine eye tissues in ambient conditions. In each sample, fibrils are arranged into domains whereby neighboring domains exhibit opposite polarizations, which in some cases extend to the individual fibrillar level. Uniform polarity has not been observed in any of the tissues studied. Evidence of anti-parallel ordering of the amine to carboxyl polarity in bundles of fibrils or in individual fibrils is found in all tissues, which has relevance for understanding mechanical and biofunctional properties and the formation of connective tissues. The technique can be applied to any biological material containing piezoelectric biopolymers or polysaccharides. PMID:22985991

  4. Influence of uniaxial single-ion anisotropy on the magnetic and thermal properties of Heisenberg antiferromagnets within unified molecular field theory

    NASA Astrophysics Data System (ADS)

    Johnston, David C.

    2017-03-01

    The influence of uniaxial single-ion anisotropy -D Sz2 on the magnetic and thermal properties of Heisenberg antiferromagnets (AFMs) is investigated. The uniaxial anisotropy is treated exactly and the Heisenberg interactions are treated within unified molecular field theory (MFT) [Phys. Rev. B 91, 064427 (2015), 10.1103/PhysRevB.91.064427], where thermodynamic variables are expressed in terms of directly measurable parameters. The properties of collinear AFMs with ordering along the z axis (D >0 ) in applied field Hz=0 are calculated versus D and temperature T , including the ordered moment μ , the Néel temperature TN, the magnetic entropy, internal energy, heat capacity, and the anisotropic magnetic susceptibilities χ∥ and χ⊥ in the paramagnetic (PM) and AFM states. The high-field average magnetization per spin μz(Hz,D ,T ) is found, and the critical field Hc(D ,T ) is derived at which the second-order AFM to PM phase transition occurs. The magnetic properties of the spin-flop (SF) phase are calculated, including the zero-field properties TN(D ) and μ (D ,T ) . The high-field μz(Hz,D ,T ) is determined, together with the associated spin-flop field HSF(D ,T ) at which a second-order SF to PM phase transition occurs. The free energies of the AFM, SF, and PM phases are derived from which Hz-T phase diagrams are constructed. For fJ=-1 and -0.75 , where fJ=θp J/TN J and θp J and TN J are the Weiss temperature in the Curie-Weiss law and the Néel temperature due to exchange interactions alone, respectively, phase diagrams in the Hz-T plane similar to previous results are obtained. However, for fJ=0 we find a topologically different phase diagram where a spin-flop bubble with PM and AFM boundaries occurs at finite Hz and T . Also calculated are properties arising from a perpendicular magnetic field, including the perpendicular susceptibility χ⊥(D ,T ) , the associated effective torque at low fields arising from the -D Sz2 term in the Hamiltonian, the high

  5. Influence of uniaxial single-ion anisotropy on the magnetic and thermal properties of Heisenberg antiferromagnets within unified molecular field theory

    DOE PAGES

    Johnston, David C.

    2017-03-17

    Here, the influence of uniaxial single-ion anisotropy –DS 2 z on the magnetic and thermal properties of Heisenberg antiferromagnets (AFMs) is investigated. The uniaxial anisotropy is treated exactly and the Heisenberg interactions are treated within unified molecular field theory (MFT), where thermodynamic variables are expressed in terms of directly measurable parameters. The properties of collinear AFMs with ordering along the z axis (D>0) in applied field H z = 0 are calculated versus D and temperature T, including the ordered moment μ, the Néel temperature T N, the magnetic entropy, internal energy, heat capacity, and the anisotropic magnetic susceptibilities χmore » ∥ and χ ⊥ in the paramagnetic (PM) and AFM states. The high-field average magnetization per spin μ z(H z,D,T) is found, and the critical field H c(D,T) is derived at which the second-order AFM to PM phase transition occurs. The magnetic properties of the spin-flop (SF) phase are calculated, including the zero-field properties T N(D) and μ(D,T). The high-field μ z(H z,D,T) is determined, together with the associated spin-flop field H SF(D,T) at which a second-order SF to PM phase transition occurs. The free energies of the AFM, SF, and PM phases are derived from which H z–T phase diagrams are constructed. For f J =–1 and –0.75, where f J = θ pJ/T NJ and θ pJ and T NJ are the Weiss temperature in the Curie-Weiss law and the Néel temperature due to exchange interactions alone, respectively, phase diagrams in the H z–T plane similar to previous results are obtained. However, for f J = 0 we find a topologically different phase diagram where a spin-flop bubble with PM and AFM boundaries occurs at finite H z and T. Also calculated are properties arising from a perpendicular magnetic field, including the perpendicular susceptibility χ ⊥(D,T), the associated effective torque at low fields arising from the –DS 2 z term in the Hamiltonian, the high-field perpendicular

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, David C.

    Here, the influence of uniaxial single-ion anisotropy –DS 2 z on the magnetic and thermal properties of Heisenberg antiferromagnets (AFMs) is investigated. The uniaxial anisotropy is treated exactly and the Heisenberg interactions are treated within unified molecular field theory (MFT), where thermodynamic variables are expressed in terms of directly measurable parameters. The properties of collinear AFMs with ordering along the z axis (D>0) in applied field H z = 0 are calculated versus D and temperature T, including the ordered moment μ, the Néel temperature T N, the magnetic entropy, internal energy, heat capacity, and the anisotropic magnetic susceptibilities χmore » ∥ and χ ⊥ in the paramagnetic (PM) and AFM states. The high-field average magnetization per spin μ z(H z,D,T) is found, and the critical field H c(D,T) is derived at which the second-order AFM to PM phase transition occurs. The magnetic properties of the spin-flop (SF) phase are calculated, including the zero-field properties T N(D) and μ(D,T). The high-field μ z(H z,D,T) is determined, together with the associated spin-flop field H SF(D,T) at which a second-order SF to PM phase transition occurs. The free energies of the AFM, SF, and PM phases are derived from which H z–T phase diagrams are constructed. For f J =–1 and –0.75, where f J = θ pJ/T NJ and θ pJ and T NJ are the Weiss temperature in the Curie-Weiss law and the Néel temperature due to exchange interactions alone, respectively, phase diagrams in the H z–T plane similar to previous results are obtained. However, for f J = 0 we find a topologically different phase diagram where a spin-flop bubble with PM and AFM boundaries occurs at finite H z and T. Also calculated are properties arising from a perpendicular magnetic field, including the perpendicular susceptibility χ ⊥(D,T), the associated effective torque at low fields arising from the –DS 2 z term in the Hamiltonian, the high-field perpendicular

  7. Low Temperature Magnetic Ordering of the Magnetic Ionic Plastic Crystal, Choline[FeCl4

    NASA Astrophysics Data System (ADS)

    de Pedro, I.; García-Saiz, A.; Andreica, D.; Fernández Barquín, L.; Fernández-Díaz, M. T.; Blanco, J. A.; Amato, A.; Rodríguez Fernández, J.

    2015-11-01

    We report on the nature of the low temperature magnetic ordering of a magnetic ionic plastic crystal, Choline[FeCl4]. This investigation was carried out using heat capacity measurements, neutron diffraction experiments and muon spin relaxation (μSR) spectroscopy. The calorimetric measurements show the onset of an unusual magnetic ordering below 4 K with a possible second magnetic phase transition below 2 K. Low temperature neutron diffraction data reveal a three dimensional antiferromagnetic ordering at 2 K compatible with the previous magnetometry results. The analysis of μSR spectra indicates a magnetic phase transition below 2.2 K. At 1.6 K, the analysis of the shape of the μSR spectra suggests the existence of an additional magnetic phase with features of a possible incommensurate magnetic structure.

  8. Low temperature thermopower and magnetoresistance of Sc-rich CeSc1-xTixGe

    NASA Astrophysics Data System (ADS)

    Encina, S.; Pedrazzini, P.; Sereni, J. G.; Geibel, C.

    2018-05-01

    In CeSc1-xTixGe, Ti-alloying reduces the record-high antiferromagnetic (AFM) ordering temperature found in CeScGe at TN = 46 K and induces ferromagnetism for x ≥ 0.5 . In this work we focus on the AFM side, i.e. Sc-rich samples, and study their thermopower S (T) and magnetoresistance ρ (H , T) . The measured S (T) is small in comparison with the thermopower of other Ce-systems and shows some features that are compatible with a weak hybridization between the 4 f and band states. This is a further hint pointing to the local character of magnetism in this alloy. Magnetic fields up to 16 T have a minor effect on the electrical resistivity of stoichiometric CeScGe. On the other hand, for x = 0.65 , we find that fields above 4 T suppress the hump in ρ (T) . Furthermore, the 4.2 K magnetoresistance displays a strong decrease in the same field range, also in coincidence with magnetization results from the literature. Our results indicate that ρ (T , H) is a proper tool to assess the H - T phase diagram of this system.

  9. A novel AFM-based 5-axis nanoscale machine tool for fabrication of nanostructures on a micro ball

    NASA Astrophysics Data System (ADS)

    Geng, Yanquan; Wang, Yuzhang; Yan, Yongda; Zhao, Xuesen

    2017-11-01

    This paper presents a novel atomic force microscopy (AFM)-based 5-axis nanoscale machine tool developed to fabricate nanostructures on different annuli of the micro ball. Different nanostructures can be obtained by combining the scratching trajectory of the AFM tip with the movement of the high precision air-bearing spindle. The center of the micro ball is aligned to be coincided with the gyration center of the high precision to guarantee the machining process during the rotating of the air-bearing spindle. Processing on different annuli of the micro ball is achieved by controlling the distance between the center of the micro ball and the rotation center of the AFM head. Nanostructures including square cavities, circular cavities, triangular cavities, and an annular nanochannel are machined successfully on the three different circumferences of a micro ball with a diameter of 1500 μm. Moreover, the influences of the error motions of the high precision air-bearing spindle and the eccentric between the micro ball and the gyration center of the high precision air-bearing spindle on the processing position error on the micro ball are also investigated. This proposed machining method has the potential to prepare the inertial confinement fusion target with the expected dimension defects, which would advance the application of the AFM tip-based nanomachining approach.

  10. Layer and doping tunable ferromagnetic order in two-dimensional Cr S2 layers

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Zhou, Xieyu; Pan, Yuhao; Qiao, Jingsi; Kong, Xianghua; Kaun, Chao-Cheng; Ji, Wei

    2018-06-01

    Interlayer coupling is of vital importance for manipulating physical properties, e.g., electronic band gap, in two-dimensional materials. However, tuning magnetic properties in these materials is yet to be addressed. Here, we found the in-plane magnetic orders of Cr S2 mono and few layers are tunable between striped antiferromagnetic (sAFM) and ferromagnetic (FM) orders by manipulating charge transfer between Cr t2 g and eg orbitals. Such charge transfer is realizable through interlayer coupling, direct charge doping, or substituting S with Cl atoms. In particular, the transferred charge effectively reduces a portion of Cr4 + to Cr3 +, which, together with delocalized S p orbitals and their resulting direct S-S interlayer hopping, enhances the double-exchange mechanism favoring the FM rather than sAFM order. An exceptional interlayer spin-exchange parameter was revealed over -10 meV , an order of magnitude stronger than available results of interlayer magnetic coupling. It addition, the charge doping could tune Cr S2 between p - and n -doped magnetic semiconductors. Given these results, several prototype devices were proposed for manipulating magnetic orders using external electric fields or mechanical motion. These results manifest the role of interlayer coupling in modifying magnetic properties of layered materials and shed considerable light on manipulating magnetism in these materials.

  11. Fractional Order Two-Temperature Dual-Phase-Lag Thermoelasticity with Variable Thermal Conductivity

    PubMed Central

    Mallik, Sadek Hossain; Kanoria, M.

    2014-01-01

    A new theory of two-temperature generalized thermoelasticity is constructed in the context of a new consideration of dual-phase-lag heat conduction with fractional orders. The theory is then adopted to study thermoelastic interaction in an isotropic homogenous semi-infinite generalized thermoelastic solids with variable thermal conductivity whose boundary is subjected to thermal and mechanical loading. The basic equations of the problem have been written in the form of a vector-matrix differential equation in the Laplace transform domain, which is then solved by using a state space approach. The inversion of Laplace transforms is computed numerically using the method of Fourier series expansion technique. The numerical estimates of the quantities of physical interest are obtained and depicted graphically. Some comparisons of the thermophysical quantities are shown in figures to study the effects of the variable thermal conductivity, temperature discrepancy, and the fractional order parameter. PMID:27419210

  12. Nonlinear optical parameters of nanocrystalline AZO thin film measured at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Jilani, Asim; Abdel-wahab, M. Sh; Al-ghamdi, Attieh A.; Dahlan, Ammar sadik; Yahia, I. S.

    2016-01-01

    The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ(3) was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.

  13. Complex magnetic phase diagram with multistep spin-flop transitions in L a0.25P r0.75C o2P2

    NASA Astrophysics Data System (ADS)

    Tan, Xiaoyan; Garlea, V. Ovidiu; Kovnir, Kirill; Thompson, Corey M.; Xu, Tongshuai; Cao, Huibo; Chai, Ping; Tener, Zachary P.; Yan, Shishen; Xiong, Peng; Shatruk, Michael

    2017-01-01

    L a0.25P r0.75C o2P2 crystallizes in the tetragonal ThC r2S i2 structure type and shows multiple magnetic phase transitions driven by changes in temperature and magnetic field. The nature of these transitions was investigated by a combination of magnetic and magnetoresistance measurements and both single crystal and powder neutron diffraction. The Co magnetic moments order ferromagnetically (FM) parallel to the c axis at 282 K, followed by antiferromagnetic (AFM) ordering at 225 K. In the AFM structure, the Co magnetic moments align along the c axis with FM [C o2P2] layers arranged in an alternating sequence, ↑↑↓↓ , which leads to the doubling of the c axis in the magnetic unit cell. Another AFM transition is observed at 27 K, due to the ordering of a half of Pr moments in the a b plane. The other half of Pr moments undergoes AFM ordering along the c axis at 11 K, causing simultaneous reorientation of the previously ordered Pr moments into an AFM structure with the moments being canted with respect to the c axis. This AFM transition causes an abrupt decrease in electrical resistivity at 11 K. Under applied magnetic field, two metamagnetic transitions are observed in the Pr sublattice at 0.8 and 5.4 T. They correlate with two anomalies in magnetoresistance measurements at the same critical fields. A comparison of the temperature- and field-dependent magnetic properties of L a0.25P r0.75C o2P2 to the magnetic behavior of PrC o2P2 is provided.

  14. Confocal Raman spectroscopy and AFM for evaluation of sidewalls in type II superlattice FPAs

    NASA Astrophysics Data System (ADS)

    Rotter, T. J.; Busani, T.; Rathi, P.; Jaeckel, F.; Reyes, P. A.; Malloy, K. J.; Ukhanov, A. A.; Plis, E.; Krishna, S.; Jaime-Vasquez, M.; Baril, N. F.; Benson, J. D.; Tenne, D. A.

    2015-06-01

    We propose to utilize confocal Raman spectroscopy combined with high resolution atomic force microscopy (AFM) for nondestructive characterisation of the sidewalls of etched and passivated small pixel (24 μm×24 μm) focal plane arrays (FPA) fabricated using LW/LWIR InAs/GaSb type-II strained layer superlattice (T2SL) detector material. Special high aspect ratio Si and GaAs AFM probes, with tip length of 13 μm and tip aperture less than 7°, allow characterisation of the sidewall morphology. Confocal microscopy enables imaging of the sidewall profile through optical sectioning. Raman spectra measured on etched T2SL FPA single pixels enable us to quantify the non-uniformity of the mesa delineation process.

  15. The association between acute flaccid myelitis (AFM) and Enterovirus D68 (EV-D68) – what is the evidence for causation?

    PubMed Central

    Dyda, Amalie; Stelzer-Braid, Sacha; Adam, Dillon; Chughtai, Abrar A; MacIntyre, C Raina

    2018-01-01

    Background Enterovirus D68 (EV-D68) has historically been a sporadic disease, causing occasional small outbreaks of generally mild infection. In recent years, there has been evidence of an increase in EV-D68 infections globally. Large outbreaks of EV-D68, with thousands of cases, occurred in the United States, Canada and Europe in 2014. The outbreaks were associated temporally and geographically with an increase in clusters of acute flaccid myelitis (AFM).
Aims: We aimed to evaluate a causal association between EV-D68 and AFM. 
Methods: Using data from the published and grey literature, we applied the Bradford Hill criteria, a set of nine principles applied to examine causality, to evaluate the relationship between EV-D68 and AFM. Based on available evidence, we defined the Bradford Hill Criteria as being not met, or met minimally, partially or fully. 
Results: Available evidence applied to EV-D68 and AFM showed that six of the Bradford Hill criteria were fully met and two were partially met. The criterion of biological gradient was minimally met. The incidence of EV-D68 infections is increasing world-wide. Phylogenetic epidemiology showed diversification from the original Fermon and Rhyne strains since the year 2000, with evolution of a genetically distinct outbreak strain, clade B1. Clade B1, but not older strains, is associated with AFM and is neuropathic in animal models. 
Conclusion: While more research is needed on dose–response relationship, application of the Bradford Hill criteria supported a causal relationship between EV-D68 and AFM. PMID:29386095

  16. Magnetically driven negative thermal expansion in antiperovskite Ga1-xMnxN0.8Mn3 (0.1 ≤ x ≤ 0.3)

    NASA Astrophysics Data System (ADS)

    Guo, X. G.; Lin, J. C.; Tong, P.; Wang, M.; Wu, Y.; Yang, C.; Song, B.; Lin, S.; Song, W. H.; Sun, Y. P.

    2015-11-01

    Negative thermal expansion (NTE) was investigated for Ga1-xMnxN0.8Mn3 (0.1 ≤ x ≤ 0.3). As x increases, the temperature range where lattice contracts upon heating becomes broad and shifts to lower temperatures. The coefficient of linear thermal expansion beyond -40 ppm/K with a temperature interval of ˜50 K was obtained around room temperature in x = 0.2 and 0.25. Local lattice distortion which was thought to be intimately related to NTE is invisible in the X-ray pair distribution function of x = 0.3. Furthermore, a zero-field-cooling exchange bias was observed as a result of competing ferromagnetic (FM) and antiferromagnetic (AFM) orders. The concomitant FM order serves as an impediment to the growth of the AFM order, and thus broadens the temperature range of NTE. Our result suggests that NTE can be achieved in antiperovskite manganese nitrides by manipulating the magnetic orders without distorting the local structure.

  17. Versatile variable temperature and magnetic field scanning probe microscope for advanced material research

    NASA Astrophysics Data System (ADS)

    Jung, Jin-Oh; Choi, Seokhwan; Lee, Yeonghoon; Kim, Jinwoo; Son, Donghyeon; Lee, Jhinhwan

    2017-10-01

    We have built a variable temperature scanning probe microscope (SPM) that covers 4.6 K-180 K and up to 7 T whose SPM head fits in a 52 mm bore magnet. It features a temperature-controlled sample stage thermally well isolated from the SPM body in good thermal contact with the liquid helium bath. It has a 7-sample-holder storage carousel at liquid helium temperature for systematic studies using multiple samples and field emission targets intended for spin-polarized spectroscopic-imaging scanning tunneling microscopy (STM) study on samples with various compositions and doping conditions. The system is equipped with a UHV sample preparation chamber and mounted on a two-stage vibration isolation system made of a heavy concrete block and a granite table on pneumatic vibration isolators. A quartz resonator (qPlus)-based non-contact atomic force microscope (AFM) sensor is used for simultaneous STM/AFM operation for research on samples with highly insulating properties such as strongly underdoped cuprates and strongly correlated electron systems.

  18. PREFACE: NC-AFM 2006: Proceedings of the 9th International Conference on Non-contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Tomitori, Masahiko; Onishi, Hiroshi

    2007-02-01

    The advent of scanning probe microscopy (SPM) in the 1980s has significantly promoted nanoscience and nanotechnology. In particular, non-contact atomic force microscopy (NC-AFM), one of the SPM family, has unique capabilities with high spatial resolution for nanoscale measurements in vacuum, air and liquids. In the last decade we have witnessed the rapid progress of NC-AFM with improved performance and increasing applications. A series of NC-AFM international conferences have greatly contributed to this field. Initiated in Osaka in 1998, the NC-AFM meeting has been followed by annual conferences at Pontresina, Hamburg, Kyoto, Montreal, Dingle, Seattle and Bad Essen. The 9th conference was held in Kobe, Japan, 16-20 July 2006. This special issue of Nanotechnology contains the outstanding contributions of the conference. During the meeting delegates learnt about a number of significant advances. Topics covered atomic resolution imaging of metals, semiconductors, insulators, ionic crystals, oxides, molecular systems, imaging of biological materials in various environments and novel instrumentation. Work also included the characterization of electronic and magnetic properties, tip and cantilever fabrication and characterization, atomic distinction based on analysis of tip-sample interaction, atomic scale manipulation, fabrication of nanostructures using NC-AFM, and related theories and simulations. We are greatly impressed by the increasing number of applications, and convinced that NC-AFM and related techniques are building a bridge to a future nano world, where quantum phenomena will dominate and nano devices will be realized. In addition, a special session on SPM road maps was held as a first trial in the field, where the future prospects of SPM were discussed enthusiastically. The overall success of the NC-AFM 2006 conference was due to the efforts of many individuals and groups with respect to scientific and technological progress, as well as the international

  19. Writing with Fluid: Structuring Hydrogels with Micrometer Precision by AFM in Combination with Nanofluidics.

    PubMed

    Helfricht, Nicolas; Mark, Andreas; Behr, Marina; Bernet, Andreas; Schmidt, Hans-Werner; Papastavrou, Georg

    2017-08-01

    Hydrogels have many applications in biomedical surface modification and tissue engineering. However, the structuring of hydrogels after their formation represents still a major challenge, in particular due to their softness. Here, a novel approach is presented that is based on the combination of atomic force microscopy (AFM) and nanofluidics, also referred to as FluidFM technology. Its applicability is demonstrated for supramolecular hydrogel films that are prepared from low-molecular weight hydrogelators, such as derivates of 1,3,5-benzene tricarboxamides (BTAs). BTA films can be dissolved selectively by ejecting alkaline solution through the aperture of a hollow AFM-cantilever connected to a nanofluidic controller. The AFM-based force control is essential in preventing mechanical destruction of the hydrogels. The resulting "chemical writing" process is studied in detail and the influence of various parameters, such as applied pressure and time, is validated. It is demonstrated that the achievable structuring precision is primarily limited by diffusion and the aperture dimensions. Recently, various additive techniques have been presented to pattern hydrogels. The here-presented subtractive approach can not only be applied to structure hydrogels from the large class of reversibly formed gels with superior resolution but would also allow for the selective loading of the hydrogels with active substances or nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Infrared nanoscopy down to liquid helium temperatures

    NASA Astrophysics Data System (ADS)

    Lang, Denny; Döring, Jonathan; Nörenberg, Tobias; Butykai, Ádám; Kézsmárki, István; Schneider, Harald; Winnerl, Stephan; Helm, Manfred; Kehr, Susanne C.; Eng, Lukas M.

    2018-03-01

    We introduce a scattering-type scanning near-field infrared microscope (s-SNIM) for the local scale near-field sample analysis and spectroscopy from room temperature down to liquid helium (LHe) temperature. The extension of s-SNIM down to T = 5 K is in particular crucial for low-temperature phase transitions, e.g., for the examination of superconductors, as well as low energy excitations. The low temperature (LT) s-SNIM performance is tested with CO2-IR excitation at T = 7 K using a bare Au reference and a structured Si/SiO2-sample. Furthermore, we quantify the impact of local laser heating under the s-SNIM tip apex by monitoring the light-induced ferroelectric-to-paraelectric phase transition of the skyrmion-hosting multiferroic material GaV4S8 at Tc = 42 K. We apply LT s-SNIM to study the spectral response of GaV4S8 and its lateral domain structure in the ferroelectric phase by the mid-IR to THz free-electron laser-light source FELBE at the Helmholtz-Zentrum Dresden-Rossendorf, Germany. Notably, our s-SNIM is based on a non-contact atomic force microscope (AFM) and thus can be complemented in situ by various other AFM techniques, such as topography profiling, piezo-response force microscopy (PFM), and/or Kelvin-probe force microscopy (KPFM). The combination of these methods supports the comprehensive study of the mutual interplay in the topographic, electronic, and optical properties of surfaces from room temperature down to 5 K.

  1. AFM AND XPS Characterization of Zinc-Aluminum Alloy Coatings with Attention to Surface Dross and Flow Lines

    NASA Astrophysics Data System (ADS)

    Harding, Felipe A.; Alarcon, Nelson A.; Toledo, Pedro G.

    Surfaces of various zinc-aluminum alloy (Zn-Al) coated steel samples are studied with attention to foreign surface dross by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS/ESCA). AFM topographic maps of zinc-aluminum alloy surfaces free of dross reveal the perfect nanoscale details of two kinds of dendrites: branched and globular. In all magnifications the dendrites appear smooth and, in general, very clean. XPS analysis of the extreme surface of a Zn-Al sample reveals Al, Zn, Si and O as the main components. The XPS results show no segregation or separation of phases other than those indicated by the ternary Al-Zn-Si diagram. For surfaces of Zn-Al plagued with impurities, high resolution AFM topographic maps reveal three situations: (1) areas with well-defined dendrites, relatively free of dross; (2) areas with small, millimeter-sized black spots known as dross; and (3) areas with large black stains, known as flow lines. Dendrite deformation and dross accumulation increase notably in the neighborhood, apparently clean to the naked eye, of dross or flow lines. XPS results of areas with dross and flow lines indicate unacceptable high concentration of Si and important Si phase separation. These results, in the light of AFM work, reveal that dross and flow lines are a consequence of a high local concentration of Si from high melting point silica and silicate impurities in the Zn-Al alloy source.

  2. Ferromagnetism and superconductivity in CeFeAs1-xPxO (0⩽x⩽40)

    NASA Astrophysics Data System (ADS)

    Jesche, A.; Förster, T.; Spehling, J.; Nicklas, M.; de Souza, M.; Gumeniuk, R.; Luetkens, H.; Goltz, T.; Krellner, C.; Lang, M.; Sichelschmidt, J.; Klauss, H.-H.; Geibel, C.

    2012-07-01

    We report on superconductivity in CeFeAs1-xPxO and the possible coexistence with Ce ferromagnetism (FM) in a small homogeneity range around x=30% with ordering temperatures of TSC≅TC≅4 K. The antiferromagnetic (AFM) ordering temperature of Fe at this critical concentration is suppressed to TNFe≈40 K and does not shift to lower temperatures with a further increase of the P concentration. Therefore, a quantum-critical-point scenario with TNFe→0 K which is widely discussed for the iron based superconductors can be excluded for this alloy series. Surprisingly, thermal expansion and x-ray powder diffraction indicate the absence of an orthorhombic distortion despite clear evidence for short-range AFM Fe ordering from muon-spin-rotation measurements. Furthermore, we discovered the formation of a sharp electron spin resonance signal unambiguously connected with the emergence of FM ordering.

  3. Phase coexistence and exchange-bias effect in LiM n2O4 nanorods

    NASA Astrophysics Data System (ADS)

    Zhang, X. K.; Yuan, J. J.; Xie, Y. M.; Yu, Y.; Kuang, F. G.; Yu, H. J.; Zhu, X. R.; Shen, H.

    2018-03-01

    In this paper, the magnetic properties of LiM n2O4 nanorods with an average diameter of ˜100 nm and length of ˜1 μ m are investigated. The temperature dependences of dc and ac susceptibility measurements show that LiM n2O4 nanorods experience multiple magnetic phase transitions upon cooling, i.e., paramagnetic (PM), antiferromagnetic (AFM), canted antiferromagnetic (CAFM), and cluster spin glass (SG). The coexistence between a long-range ordered AFM phase due to a M n4 +-M n4 + interaction and a cluster SG phase originating from frozen AFM clusters at low temperature in LiM n2O4 nanorods is elucidated. Field-cooled hysteresis loops (FC loops) and magnetic training effect (TE) measurements confirm the presence of an exchange-bias (EB) effect in LiM n2O4 nanorods below the Néel temperature (TN˜60 K ) . Furthermore, by analyzing the TE, we conclude that the observed EB effect originates completely from an exchange coupling interaction at the interface between the AFM and cluster SG states. A phenomenological model based on phase coexistence is proposed to interpret the origin of the EB effect below 60 K in the present compound. In turn, the appearance of the EB effect further supports the coexistence of AFM order along with a cluster SG state in LiM n2O4 nanorods.

  4. Nanomechanics of multidomain neuronal cell adhesion protein contactin revealed by single molecule AFM and SMD.

    PubMed

    Mikulska-Ruminska, Karolina; Kulik, Andrej J; Benadiba, Carine; Bahar, Ivet; Dietler, Giovanni; Nowak, Wieslaw

    2017-08-18

    Contactin-4 (CNTN4) is a complex cell adhesion molecule (CAM) localized at neuronal membranes, playing a key role in maintaining the mechanical integrity and signaling properties of the synapse. CNTN4 consists of six immunoglobulin C2 type (IgC2) domains and four fibronectin type III (FnIII) domains that are shared with many other CAMs. Mutations in CNTN4 gene have been linked to various psychiatric disorders. Toward elucidating the response of this modular protein to mechanical stress, we studied its force-induced unfolding using single molecule atomic force microscopy (smAFM) and steered molecular dynamics (SMD) simulations. Extensive smAFM and SMD data both indicate the distinctive mechanical behavior of the two types of modules distinguished by unique force-extension signatures. The data also reveal the heterogeneity of the response of the individual FNIII and IgC2 modules, which presumably plays a role in the adaptability of CNTN4 to maintaining cell-cell communication and adhesion properties under different conditions. Results show that extensive sampling of force spectra, facilitated by robot-enhanced AFM, can help reveal the existence of weak stabilizing interactions between the domains of multidomain proteins, and provide insights into the nanomechanics of such multidomain or heteromeric proteins.

  5. In situ Electrochemical-AFM Study of LiFePO4 Thin Film in Aqueous Electrolyte.

    PubMed

    Wu, Jiaxiong; Cai, Wei; Shang, Guangyi

    2016-12-01

    Lithium-ion (Li-ion) batteries have been widely used in various kinds of electronic devices in our daily life. The use of aqueous electrolyte in Li-ion battery would be an alternative way to develop low cost and environmentally friendly batteries. In this paper, the lithium iron phosphate (LiFePO4) thin film cathode for the aqueous rechargeable Li-ion battery is prepared by radio frequency magnetron sputtering deposition method. The XRD, SEM, and AFM results show that the film is composed of LiFePO4 grains with olivine structure and the average size of 100 nm. Charge-discharge measurements at current density of 10 μAh cm(-2) between 0 and 1 V show that the LiFePO4 thin film electrode is able to deliver an initial discharge capacity of 113 mAh g(-1). Specially, the morphological changes of the LiFePO4 film electrode during charge and discharge processes were investigated in aqueous environment by in situ EC-AFM, which is combined AFM with chronopotentiometry method. The changes in grain area are measured, and the results show that the size of the grains decreases and increases during the charge and discharge, respectively; the relevant mechanism is discussed.

  6. A quantitative AFM analysis of nano-scale surface roughness in various orthodontic brackets.

    PubMed

    Lee, Gi-Ja; Park, Ki-Ho; Park, Young-Guk; Park, Hun-Kuk

    2010-10-01

    In orthodontics, the surface roughnesses of orthodontic archwire and brackets affect the effectiveness of arch-guided tooth movement, corrosion behavior, and the aesthetics of orthodontic components. Atomic force microscopy (AFM) measurements were used to provide quantitative information on the surface roughness of the orthodontic material. In this study, the changes in surface roughness of various orthodontic bracket slots before and after sliding movement of archwire in vitro and in vivo were observed through the utilization of AFM. Firstly, we characterized the surface of four types of brackets slots as follows: conventional stainless steel (Succes), conventional ceramic (Perfect), self-ligating stainless steel (Damon) and self-ligating ceramic (Clippy-C) brackets. Succes) and Damon brackets showed relatively smooth surfaces, while Perfect had the roughest surface among the four types of brackets used. Secondly, after in vitro sliding test with beta titanium wire in two conventional brackets (Succes and Perfect), there were significant increases in only stainless steel bracket, Succes. Thirdly, after clinical orthodontic treatment for a maximum of 2 years, the self-ligating stainless steel bracket, Damon, showed a significant increase in surface roughness. But self-ligating ceramic brackets, Clippy-C, represented less significant changes in roughness parameters than self-ligating stainless steel ones. Based on the results of the AFM measurements, it is suggested that the self-ligating ceramic bracket has great possibility to exhibit less friction and better biocompatibility than the other tested brackets. This implies that these bracket slots will aid in the effectiveness of arch-guided tooth movement.

  7. Pressure induced enhancement of the magnetic ordering temperature in rhenium(IV) monomers

    NASA Astrophysics Data System (ADS)

    Woodall, Christopher H.; Craig, Gavin A.; Prescimone, Alessandro; Misek, Martin; Cano, Joan; Faus, Juan; Probert, Michael R.; Parsons, Simon; Moggach, Stephen; Martínez-Lillo, José; Murrie, Mark; Kamenev, Konstantin V.; Brechin, Euan K.

    2016-12-01

    Materials that demonstrate long-range magnetic order are synonymous with information storage and the electronics industry, with the phenomenon commonly associated with metals, metal alloys or metal oxides and sulfides. A lesser known family of magnetically ordered complexes are the monometallic compounds of highly anisotropic d-block transition metals; the `transformation' from isolated zero-dimensional molecule to ordered, spin-canted, three-dimensional lattice being the result of through-space interactions arising from the combination of large magnetic anisotropy and spin-delocalization from metal to ligand which induces important intermolecular contacts. Here we report the effect of pressure on two such mononuclear rhenium(IV) compounds that exhibit long-range magnetic order under ambient conditions via a spin canting mechanism, with Tc controlled by the strength of the intermolecular interactions. As these are determined by intermolecular distance, `squeezing' the molecules closer together generates remarkable enhancements in ordering temperatures, with a linear dependence of Tc with pressure.

  8. Pressure induced enhancement of the magnetic ordering temperature in rhenium(IV) monomers

    PubMed Central

    Woodall, Christopher H.; Craig, Gavin A.; Prescimone, Alessandro; Misek, Martin; Cano, Joan; Faus, Juan; Probert, Michael R.; Parsons, Simon; Moggach, Stephen; Martínez-Lillo, José; Murrie, Mark; Kamenev, Konstantin V.; Brechin, Euan K.

    2016-01-01

    Materials that demonstrate long-range magnetic order are synonymous with information storage and the electronics industry, with the phenomenon commonly associated with metals, metal alloys or metal oxides and sulfides. A lesser known family of magnetically ordered complexes are the monometallic compounds of highly anisotropic d-block transition metals; the ‘transformation' from isolated zero-dimensional molecule to ordered, spin-canted, three-dimensional lattice being the result of through-space interactions arising from the combination of large magnetic anisotropy and spin-delocalization from metal to ligand which induces important intermolecular contacts. Here we report the effect of pressure on two such mononuclear rhenium(IV) compounds that exhibit long-range magnetic order under ambient conditions via a spin canting mechanism, with Tc controlled by the strength of the intermolecular interactions. As these are determined by intermolecular distance, ‘squeezing' the molecules closer together generates remarkable enhancements in ordering temperatures, with a linear dependence of Tc with pressure. PMID:28000676

  9. Formation of SIMOX-SOI structure by high-temperature oxygen implantation

    NASA Astrophysics Data System (ADS)

    Hoshino, Yasushi; Kamikawa, Tomohiro; Nakata, Jyoji

    2015-12-01

    We have performed oxygen ion implantation in silicon at very high substrate-temperatures (⩽1000 °C) for the purpose of forming silicon-on-insulator (SOI) structure. We have expected that the high-temperature implantation can effectively avoids ion-beam-induced damages in the SOI layer and simultaneously stabilizes the buried oxide (BOX) and SOI-Si layer. Such a high-temperature implantation makes it possible to reduce the post-implantation annealing temperature. In the present study, oxygen ions with 180 keV are incident on Si(0 0 1) substrates at various temperatures from room temperature (RT) up to 1000 °C. The ion-fluencies are in order of 1017-1018 ions/cm2. Samples have been analyzed by atomic force microscope, Rutherford backscattering, and micro-Raman spectroscopy. It is found in the AFM analysis that the surface roughness of the samples implanted at 500 °C or below are significantly small with mean roughness of less than 1 nm, and gradually increased for the 800 °C-implanted sample. On the other hand, a lot of dents are observed for the 1000 °C-implanted sample. RBS analysis has revealed that stoichiometric SOI-Si and BOX-SiO2 layers are formed by oxygen implantation at the substrate temperatures of RT, 500, and 800 °C. However, SiO2-BOX layer has been desorbed during the implantation. Raman spectra shows that the ion-beam-induced damages are fairly suppressed by such a high-temperatures implantation.

  10. Different Variations of Néel Temperature TN and Kondo Temperature TK in the Alloy System Ce(Ru1-xOsx)2Al10 under Uniaxial Pressure

    NASA Astrophysics Data System (ADS)

    Takeuchi, Takashi; Hayashi, Kyosuke; Umeo, Kazunori; Takabatake, Toshiro

    2018-05-01

    We report magnetic, transport, and specific-heat measurements for single crystals of the antiferromagnetic (AFM) Kondo semiconductor alloy series Ce(Ru1-xOsx)2Al10 (0 ≤ x ≤ 1), which crystallize into an orthorhombic structure. The specific-heat and resistivity data show that the isoelectronic substitution does not damage the hybridization gap or the AFM transition. The Kondo temperature TK increases linearly with x, whereas the Néel temperature TN exhibits a maximum value of 29.2 K for x = 0.71. Under increasing uniaxial pressure P || a, TN increases for x = 0 but decreases for x = 1, while TK increases in the entire range of x. Under P || b, in contrast, TN increases steadily in the whole range of x while TK remains unchanged for each x. The strongly anisotropic change in TN indicates the presence of another mechanism to enhance TN in this system in addition to the anisotropic hybridization of the 4f state with conduction bands.

  11. Unshocked Equilibrated H Chondrites: A Common Low-Temperature Record from Fe-Mg Ordering in Orthopyroxene

    NASA Astrophysics Data System (ADS)

    Folco, L.; Mellini, M.; Pillinger, C. T.

    1995-09-01

    The study of the thermal metamorphism of ordinary chondrites through geothermometers can provide significant constraints on the parent body thermal models which remain controversial. We report here results from Fe-Mg ordering closure temperatures (Tc) of orthopyroxenes from eight unshocked equilibrated H-chondrites obtained by means of single crystal X-ray diffraction. The method is based on the fact that cation partitioning in orthopyroxene is sensitive to temperature [1], and makes use of the experimental calibration by Molin et al. [2]. The goal of the investigation is to check how petrographic types relate to cation ordering thermal records. Results: The orthopyroxenes show a very similar degree of Fe-Mg ordering (see Table 1.). The Tc's cluster within the 384+/-48 to 480+/-28 degrees C interval, and show no correlation with petrographic type. The lack of a correlation does not mean that the distribution is random, rather, it appears to be controlled in individual samples by the degree of equilibration. In fact, the higher the petrographic type, the more coherent the results of the grains from individual chondrites. The spread of Tc's in the least equilibrated chondrites could be either a memory of heterogeneous pre-metamorphic records related to individual chondrule histories, or an artefact due to crystal defects. Therefore (1) the thermal records, inferred from the Fe-Mg ordering, are nearly the same for all the equilibrated H-chondrites; (2) the most equilibrated chondrites record distinct Tc values within the larger common Tc range; (3) the spread of Tc in H4's maybe indicative of disequilibrium and merits further study. The closure temperature conveys information on the cooling rate close to its value, regardless of the temperature regimes when the ordering process started. Extrapolation to high temperatures can be made only if the cooling path is constrained. Since we have no data to establish the temperature when ordering began and to decide whether the

  12. BOREAS AFM-06 Mean Wind Profile Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Administration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides wind profiles at 38 heights, containing the variables of wind speed; wind direction; and the u-, v-, and w-components of the total wind. The data are stored in tabular ASCII files. The mean wind profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  13. Magnetic dipole interactions in crystals

    NASA Astrophysics Data System (ADS)

    Johnston, David C.

    2016-01-01

    temperature Tm and the ordered moment, magnetic heat capacity, and anisotropic magnetic susceptibility χ versus temperature T . The anisotropic Weiss temperature θp in the Curie-Weiss law for T >Tm is calculated. A quantitative study of the competition between FM and AFM ordering on cubic Bravais lattices versus the demagnetization factor in the absence of FM domain effects is presented. The contributions of Heisenberg exchange interactions and of the MDIs to Tm and to θp are found to be additive, which simplifies analysis of experimental data. Some properties in the magnetically-ordered state versus T are presented, including the ordered moment and magnetic heat capacity and, for AFMs, the dipolar anisotropy of the free energy and the perpendicular critical field. The anisotropic χ for dipolar AFMs is calculated both above and below the Néel temperature TN and the results are illustrated for a simple tetragonal lattice with c /a >1 , c /a =1 (cubic), and c /a <1 , where a change in sign of the χ anisotropy is found at c /a =1 . Finally, following the early work of Keffer [Phys. Rev. 87, 608 (1952), 10.1103/PhysRev.87.608], the dipolar anisotropy of χ above TN=69 K of the prototype collinear Heisenberg-exchange-coupled tetragonal compound MnF2 is calculated and found to be in excellent agreement with experimental single-crystal literature data above 130 K, where the smoothly increasing deviation of the experimental data from the theory on cooling from 130 K to TN is deduced to arise from dynamic short-range collinear c -axis AFM ordering in this temperature range driven by the exchange interactions.

  14. Magnetic dipole interactions in crystals

    DOE PAGES

    Johnston, David

    2016-01-13

    transition temperature T m and the ordered moment, magnetic heat capacity, and anisotropic magnetic susceptibility χ versus temperature T . The anisotropic Weiss temperature θ p in the Curie-Weiss law for T>T m is calculated. A quantitative study of the competition between FM and AFM ordering on cubic Bravais lattices versus the demagnetization factor in the absence of FM domain effects is presented. The contributions of Heisenberg exchange interactions and of the MDIs to T m and to θ p are found to be additive, which simplifies analysis of experimental data. Some properties in the magnetically-ordered state versus T are presented, including the ordered moment and magnetic heat capacity and, for AFMs, the dipolar anisotropy of the free energy and the perpendicular critical field. The anisotropic χ for dipolar AFMs is calculated both above and below the Néel temperature T N and the results are illustrated for a simple tetragonal lattice with c/a>1, c/a=1 (cubic), and c/a<1 , where a change in sign of the χ anisotropy is found at c/a=1 . Finally, following the early work of Keffer [Phys. Rev. 87, 608 (1952)], the dipolar anisotropy of χ above T N =69 K of the prototype collinear Heisenberg-exchange-coupled tetragonal compound MnF 2 is calculated and found to be in excellent agreement with experimental single-crystal literature data above 130 K, where the smoothly increasing deviation of the experimental data from the theory on cooling from 130 K to T N is deduced to arise from dynamic short-range collinear c -axis AFM ordering in this temperature range driven by the exchange interactions.« less

  15. A new method to generate large order low temperature expansions for discrete spin models

    NASA Astrophysics Data System (ADS)

    Bhanot, Gyan

    1993-03-01

    I describe work done in collaboration with Michael Creutz at BNL and Jan Lacki at IAS Princeton. We have developed a method to generate very high order low temperature (weak coupling) expansions for discrete spin systems. For the 3-d and 4-d Ising model, we give results for the low temperature expansion of the average free energy to 50 and 44 excited bonds respectively.

  16. Fracture Growth Testing of Titanium 6AL-4V in AF-M315E

    NASA Technical Reports Server (NTRS)

    Sampson, Jeffrey W.; Martinez, Jonathan; McLean, Christopher

    2015-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the performance of AF-M315E monopropellant in orbit. Flight certification requires a safe-life analysis of the titanium alloy fuel tank to ensure inherent flaws will not cause failure during the design life. Material property inputs for this analysis require testing to determine the stress intensity factor for environmentally-assisted cracking (K (sub EAC)) of Ti 6Al-4V in combination with the AF-M315E monopropellant. Testing of single-edge notched specimens SE(B) representing the bulk tank membrane and weld material were performed in accordance with ASTM E1681. Specimens with fatigue pre-cracks were loaded into test fixtures so that the crack tips were exposed to the monopropellant at 50 degrees Centigrade for a duration of 1,000 hours. Specimens that did not fail during exposure were opened to inspect the crack surfaces for evidence of crack growth. The threshold stress intensity value, KEAC, is the highest applied stress intensity that produced neither a failure of the specimen during the exposure nor showed evidence of crack growth. The threshold stress intensity factor of the Ti 6Al-4V forged tank material when exposed to AF-M315E monopropellant was found to be at least 22.0 kilopounds per square inch. The stress intensity factor of the weld material was at least 31.3 kilopounds per square inch.

  17. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging

    PubMed Central

    Dukic, Maja; Adams, Jonathan D.; Fantner, Georg E.

    2015-01-01

    Optical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD. In this paper, we show both theoretically and experimentally that by using small-sized piezoresistive cantilevers, the AFM imaging noise equal or lower than the OBD readout noise is feasible, at standard scanning speeds and power dissipation. We demonstrate that with both readouts we achieve a system noise of ≈0.3 Å at 20 kHz measurement bandwidth. Finally, we show that small-sized piezoresistive cantilevers are well suited for piezoresistive nanoscale imaging of biological and solid state samples in air. PMID:26574164

  18. Atomic Force Microscope (AFM) measurements and analysis on Sagem 05R0025 secondary substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufli, R; Baker, S L; Robinson, J C

    2006-02-22

    The summary of Atomic Force Microscope (AFM) on Sagem 05R0025 secondary substrate: (1) 2 x 2 {micro}m{sup 2} and 10 x 10 {micro}m{sup 2} AFM measurements and analysis on Sagem 05R0025 secondary substrate at LLNL indicate rather uniform and extremely isotropic finish across the surface, with high-spatial frequency roughness {sigma} in the range 5.1-5.5 {angstrom} rms; (2) the marked absence of pronounced long-range polishing marks in any direction, combined with increased roughness in the very high spatial frequencies, are consistent with ion-beam polishing treatment on the surface. These observations are consistent with all earlier mirrors they measured from the samemore » vendor; and (3) all data were obtained with a Digital Instruments Dimension 5000{trademark} atomic force microscope.« less

  19. Influence of classical anisotropy fields on the properties of Heisenberg antiferromagnets within unified molecular field theory

    DOE PAGES

    Johnston, David C.

    2017-12-26

    Here, a comprehensive study of the influence of classical anisotropy fields on the magnetic properties of Heisenberg antiferromagnets within unified molecular field theory versus temperature T, magnetic field H, and anisotropy field parameter h A1 is presented for systems comprised of identical crystallographically-equivalent local moments. The anisotropy field for collinear z-axis antiferromagnetic (AFM) ordering is constructed so that it is aligned in the direction of each ordered and/or field-induced thermal-average moment with a magnitude proportional to the moment, whereas that for XY anisotropy is defined to be in the direction of the projection of the moment onto the xy plane,more » again with a magnitude proportional to the moment. Properties studied include the zero-field Néel temperature T N, ordered moment, heat capacity, and anisotropic magnetic susceptibility of the AFM phase versus T with moments aligned either along the z axis or in the xy plane. Also determined are the high-field magnetization perpendicular to the axis or plane of collinear or planar noncollinear AFM ordering, the high-field magnetization along the z axis of a collinear z-axis AFM, spin-flop (SF), and paramagnetic (PM) phases, and the free energies of these phases versus T, H, and h A1. Phase diagrams at T=0 in the H z– h A1 plane and at T > 0 in the H z– T plane are constructed for spins S=1/2. For h A1=0, the SF phase is stable at low field and the PM phase at high field with no AFM phase present. As h A1 increases, the phase diagram contains the AFM, SF, and PM phases. Further increases in h A1 lead to the disappearance of the SF phase and the appearance of a tricritical point on the AFM-PM transition curve. Furthermore, applications of the theory to extract h A1 from experimental low-field magnetic susceptibility data and high-field magnetization versus field isotherms for single crystals of AFMs are discussed.« less

  20. Influence of classical anisotropy fields on the properties of Heisenberg antiferromagnets within unified molecular field theory

    NASA Astrophysics Data System (ADS)

    Johnston, David C.

    2017-12-01

    A comprehensive study of the influence of classical anisotropy fields on the magnetic properties of Heisenberg antiferromagnets within unified molecular field theory versus temperature T , magnetic field H , and anisotropy field parameter hA 1 is presented for systems comprised of identical crystallographically-equivalent local moments. The anisotropy field for collinear z -axis antiferromagnetic (AFM) ordering is constructed so that it is aligned in the direction of each ordered and/or field-induced thermal-average moment with a magnitude proportional to the moment, whereas that for XY anisotropy is defined to be in the direction of the projection of the moment onto the x y plane, again with a magnitude proportional to the moment. Properties studied include the zero-field Néel temperature TN, ordered moment, heat capacity, and anisotropic magnetic susceptibility of the AFM phase versus T with moments aligned either along the z axis or in the x y plane. Also determined are the high-field magnetization perpendicular to the axis or plane of collinear or planar noncollinear AFM ordering, the high-field magnetization along the z axis of a collinear z -axis AFM, spin-flop (SF), and paramagnetic (PM) phases, and the free energies of these phases versus T ,H , and hA 1. Phase diagrams at T =0 in the Hz-hA 1 plane and at T >0 in the Hz-T plane are constructed for spins S =1 /2 . For hA 1=0 , the SF phase is stable at low field and the PM phase at high field with no AFM phase present. As hA 1 increases, the phase diagram contains the AFM, SF, and PM phases. Further increases in hA 1 lead to the disappearance of the SF phase and the appearance of a tricritical point on the AFM-PM transition curve. Applications of the theory to extract hA 1 from experimental low-field magnetic susceptibility data and high-field magnetization versus field isotherms for single crystals of AFMs are discussed.

  1. Influence of classical anisotropy fields on the properties of Heisenberg antiferromagnets within unified molecular field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, David C.

    Here, a comprehensive study of the influence of classical anisotropy fields on the magnetic properties of Heisenberg antiferromagnets within unified molecular field theory versus temperature T, magnetic field H, and anisotropy field parameter h A1 is presented for systems comprised of identical crystallographically-equivalent local moments. The anisotropy field for collinear z-axis antiferromagnetic (AFM) ordering is constructed so that it is aligned in the direction of each ordered and/or field-induced thermal-average moment with a magnitude proportional to the moment, whereas that for XY anisotropy is defined to be in the direction of the projection of the moment onto the xy plane,more » again with a magnitude proportional to the moment. Properties studied include the zero-field Néel temperature T N, ordered moment, heat capacity, and anisotropic magnetic susceptibility of the AFM phase versus T with moments aligned either along the z axis or in the xy plane. Also determined are the high-field magnetization perpendicular to the axis or plane of collinear or planar noncollinear AFM ordering, the high-field magnetization along the z axis of a collinear z-axis AFM, spin-flop (SF), and paramagnetic (PM) phases, and the free energies of these phases versus T, H, and h A1. Phase diagrams at T=0 in the H z– h A1 plane and at T > 0 in the H z– T plane are constructed for spins S=1/2. For h A1=0, the SF phase is stable at low field and the PM phase at high field with no AFM phase present. As h A1 increases, the phase diagram contains the AFM, SF, and PM phases. Further increases in h A1 lead to the disappearance of the SF phase and the appearance of a tricritical point on the AFM-PM transition curve. Furthermore, applications of the theory to extract h A1 from experimental low-field magnetic susceptibility data and high-field magnetization versus field isotherms for single crystals of AFMs are discussed.« less

  2. Joint Research on Scatterometry and AFM Wafer Metrology

    NASA Astrophysics Data System (ADS)

    Bodermann, Bernd; Buhr, Egbert; Danzebrink, Hans-Ulrich; Bär, Markus; Scholze, Frank; Krumrey, Michael; Wurm, Matthias; Klapetek, Petr; Hansen, Poul-Erik; Korpelainen, Virpi; van Veghel, Marijn; Yacoot, Andrew; Siitonen, Samuli; El Gawhary, Omar; Burger, Sven; Saastamoinen, Toni

    2011-11-01

    Supported by the European Commission and EURAMET, a consortium of 10 participants from national metrology institutes, universities and companies has started a joint research project with the aim of overcoming current challenges in optical scatterometry for traceable linewidth metrology. Both experimental and modelling methods will be enhanced and different methods will be compared with each other and with specially adapted atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurement systems in measurement comparisons. Additionally novel methods for sophisticated data analysis will be developed and investigated to reach significant reductions of the measurement uncertainties in critical dimension (CD) metrology. One final goal will be the realisation of a wafer based reference standard material for calibration of scatterometers.

  3. In situ AFM investigation of slow crack propagation mechanisms in a glassy polymer

    NASA Astrophysics Data System (ADS)

    George, M.; Nziakou, Y.; Goerke, S.; Genix, A.-C.; Bresson, B.; Roux, S.; Delacroix, H.; Halary, J.-L.; Ciccotti, M.

    2018-03-01

    A novel experimental technique based on in situ AFM monitoring of the mechanisms of damage and the strain fields associated to the slow steady-state propagation of a fracture in glassy polymers is presented. This micron-scale investigation is complemented by optical measurements of the sample deformation up to the millimetric macroscopic scale of the sample in order to assess the proper crack driving conditions. These multi-scale observations provide important insights towards the modeling of the fracture toughness of glassy polymers and its relationship with the macromolecular structure and non-linear rheological properties. This novel technique is first tested on a standard PMMA thermoplastic in order to both evaluate its performance and the richness of this new kind of observations. Although the fracture propagation in PMMA is well known to proceed through crazing in the bulk of the samples, our observations provide a clear description and quantitative evaluation of a change of fracture mechanism towards shear yielding fracture accompanied by local necking close to the free surface of the sample, which can be explained by the local change of stress triaxiality. Moreover, this primary surface necking mechanism is shown to be accompanied by a network of secondary grooves that can be related to surface crazes propagating towards the interior of the sample. This overall scenario is validated by post-mortem fractographic investigations by scanning electron microscopy.

  4. Theoretical modelling of AFM for bimetallic tip-substrate interactions

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1991-01-01

    Recently, a new technique for calculating the defect energetics of alloys based on Equivalent Crystal Theory was developed. This new technique successfully predicts the bulk properties for binary alloys as well as segregation energies in the dilute limit. The authors apply this limit for the calculation of energy and force as a function of separation of an atomic force microscope (AFM) tip and substrate. The study was done for different combinations of tip and sample materials. The validity of the universality discovered for the same metal interfaces is examined for the case of different metal interactions.

  5. The Advancing State of AF-M315E Technology

    NASA Technical Reports Server (NTRS)

    Masse, Robert; Spores, Ronald A.; McLean, Chris

    2014-01-01

    The culmination of twenty years of applied research in hydroxyl ammonium nitrate (HAN)-based monopropellants, the NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) will achieve the first on-orbit demonstration of an operational AF-M315E green propellant propulsion system by the end of 2015. Following an contextual overview of the completed flight design of the GPIM propellant storage and feed system, results of first operation of a flight-representative heavyweight 20-N engineering model thruster (to be conducted in mid-2014) are presented with performance comparisons to prior lab model (heavyweight) test articles.

  6. Ultrasonically synthesized organic liquid-filled chitosan microcapsules: part 2: characterization using AFM (atomic force microscopy) and combined AFM-confocal laser scanning fluorescence microscopy.

    PubMed

    Mettu, Srinivas; Ye, Qianyu; Zhou, Meifang; Dagastine, Raymond; Ashokkumar, Muthupandian

    2018-04-25

    Atomic Force Microscopy (AFM) is used to measure the stiffness and Young's modulus of individual microcapsules that have a chitosan cross-linked shell encapsulating tetradecane. The oil filled microcapsules were prepared using a one pot synthesis via ultrasonic emulsification of tetradecane and crosslinking of the chitosan shell in aqueous solutions of acetic acid. The concentration of acetic acid in aqueous solutions of chitosan was varied from 0.2% to 25% v/v. The effect of acetic acid concentration and size of the individual microcapsules on the strength was probed. The deformations and forces required to rupture the microcapsules were also measured. Three dimensional deformations of microcapsules under large applied loads were obtained by the combination of Laser Scanning Confocal Microscopy (LSCM) with Atomic Force Microscopy (AFM). The stiffness, and hence the modulus, of the microcapsules was found to decrease with an increase in size with the average stiffness ranging from 82 to 111 mN m-1 and average Young's modulus ranging from 0.4 to 6.5 MPa. The forces required to rupture the microcapsules varied from 150 to 250 nN with deformations of the microcapsules up to 62 to 110% relative to their radius, respectively. Three dimensional images obtained using laser scanning confocal microscopy showed that the microcapsules retained their structure and shape after being subjected to large deformations and subsequent removal of the loads. Based on the above observations, the oil filled chitosan crosslinked microcapsules are an ideal choice for use in the food and pharmaceutical industries as they would be able to withstand the process conditions encountered.

  7. A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer-Nolte, E.; Wrachtrup, J.; 3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart

    2014-01-15

    We present the design and performance of an ultra-high vacuum (UHV) low temperature scanning probe microscope employing the nitrogen-vacancy color center in diamond as an ultrasensitive magnetic field sensor. Using this center as an atomic-size scanning probe has enabled imaging of nanoscale magnetic fields and single spins under ambient conditions. In this article we describe an experimental setup to operate this sensor in a cryogenic UHV environment. This will extend the applicability to a variety of molecular systems due to the enhanced target spin lifetimes at low temperature and the controlled sample preparation under UHV conditions. The instrument combines amore » tuning-fork based atomic force microscope (AFM) with a high numeric aperture confocal microscope and the facilities for application of radio-frequency (RF) fields for spin manipulation. We verify a sample temperature of <50 K even for strong laser and RF excitation and demonstrate magnetic resonance imaging with a magnetic AFM tip.« less

  8. Capillary force on a tilted cylinder: Atomic Force Microscope (AFM) measurements.

    PubMed

    Kosgodagan Acharige, Sébastien; Laurent, Justine; Steinberger, Audrey

    2017-11-01

    The capillary force in situations where the liquid meniscus is asymmetric, such as the one around a tilted object, has been hitherto barely investigated even though these situations are very common in practice. In particular, the capillary force exerted on a tilted object may depend on the dipping angle i. We investigate experimentally the capillary force that applies on a tilted cylinder as a function of its dipping angle i, using a home-built tilting Atomic Force Microscope (AFM) with custom made probes. A micrometric-size rod is glued at the end of an AFM cantilever of known stiffness, whose deflection is measured when the cylindrical probe is dipped in and retracted from reference liquids. We show that a torque correction is necessary to understand the measured deflection. We give the explicit expression of this correction as a function of the probes' geometrical parameters, so that its magnitude can be readily evaluated. The results are compatible with a vertical capillary force varying as 1/cosi, in agreement with a recent theoretical prediction. Finally, we discuss the accuracy of the method for measuring the surface tension times the cosine of the contact angle of the liquid on the probe. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. NMR studies of the incommensurate helical antiferromagnet EuCo 2 P 2 : Determination of antiferromagnetic propagation vector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higa, Nonoka; Ding, Qing -Ping; Yogi, Mamoru

    Recently, Q.-P. Ding et al. reported that their nuclear magnetic resonance (NMR) study on EuCo 2As 2 successfully characterized the antiferromagnetic (AFM) propagation vector of the incommensurate helix AFM state, showing that NMR is a unique tool for determination of the spin structures in incommensurate helical AFMs. Motivated by this work, we have carried out 153Eu, 31P, and 59Co NMR measurements on the helical antiferromagnet EuCo 2P 2 with an AFM ordering temperature T N = 66.5 K. An incommensurate helical AFM structure was clearly confirmed by 153Eu and 31P NMR spectra on single-crystalline EuCo 2P 2 in zero magneticmore » field at 1.6 K and its external magnetic field dependence. Furthermore, based on 59Co NMR data in both the paramagnetic and incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k = (0,0,0.73±0.09)2π/c, where c is the c-axis lattice parameter. As a result, the temperature dependence of k is also discussed.« less

  10. NMR studies of the incommensurate helical antiferromagnet EuCo 2 P 2 : Determination of antiferromagnetic propagation vector

    DOE PAGES

    Higa, Nonoka; Ding, Qing -Ping; Yogi, Mamoru; ...

    2017-07-06

    Recently, Q.-P. Ding et al. reported that their nuclear magnetic resonance (NMR) study on EuCo 2As 2 successfully characterized the antiferromagnetic (AFM) propagation vector of the incommensurate helix AFM state, showing that NMR is a unique tool for determination of the spin structures in incommensurate helical AFMs. Motivated by this work, we have carried out 153Eu, 31P, and 59Co NMR measurements on the helical antiferromagnet EuCo 2P 2 with an AFM ordering temperature T N = 66.5 K. An incommensurate helical AFM structure was clearly confirmed by 153Eu and 31P NMR spectra on single-crystalline EuCo 2P 2 in zero magneticmore » field at 1.6 K and its external magnetic field dependence. Furthermore, based on 59Co NMR data in both the paramagnetic and incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k = (0,0,0.73±0.09)2π/c, where c is the c-axis lattice parameter. As a result, the temperature dependence of k is also discussed.« less

  11. Computational simulation of subatomic-resolution AFM and STM images for graphene/hexagonal boron nitride heterostructures with intercalated defects

    NASA Astrophysics Data System (ADS)

    Lee, Junsu; Kim, Minjung; Chelikowsky, James R.; Kim, Gunn

    2016-07-01

    Using ab initio density functional calculations, we predict subatomic-resolution atomic force microscopy (AFM) and scanning tunneling microscopy (STM) images of vertical heterostructures of graphene/hexagonal boron nitride (h-BN) with an intercalated metal atom (Li, K, Cr, Mn, Co, or Cu), and study the effects of the extrinsic metal defect on the interfacial coupling. We find that the structural deformation of the graphene/h-BN layer caused by the metal defect strongly affects the AFM images, whereas orbital hybridization between the metal defect and the graphene/h-BN layer characterizes the STM images.

  12. Third-order nonlinear optical properties of thin sputtered gold films

    NASA Astrophysics Data System (ADS)

    Xenogiannopoulou, E.; Aloukos, P.; Couris, S.; Kaminska, E.; Piotrowska, A.; Dynowska, E.

    2007-07-01

    Au films of thickness ranging between 5 and 52 nm were prepared by sputtering on quartz substrates and their third-order nonlinear optical response was investigated by Optical Kerr effect (OKE) and Z-scan techniques using 532 nm, 35 ps laser pulses. All prepared films were characterized by XRD, AFM and UV-VIS-NIR spectrophotometry while their third-order susceptibility χ(3) was measured and found to be of the order of 10 -9 esu. The real and imaginary parts of the third-order susceptibility were found in very good agreement with experimental results and theoretical predictions reported by Smith et al. [D.D. Smith, Y. Yoon, R.W. Boyd, Y.K. Cambell, L.A. Baker, R.M. Crooks, M. George, J. Appl. Phys. 86 (1999) 6200].

  13. PREFACE: NC-AFM 2005: Proceedings of the 8th International Conference on Non-Contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Reichling, M.; Mikosch, W.

    2006-04-01

    The 8th International Conference on Non-Contact Atomic Force Microscopy, held in Bad Essen, Germany, from 15 18th August 2005, attracted a record breaking number of participants presenting excellent contributions from a variety of scientific fields. This clearly demonstrated the high level of activity and innovation present in the community of NC-AFM researchers and the continuous growth of the field. The strongest ever participation of companies for a NC-AFM meeting is a sign for the emergence of new markets for the growing NC-AFM community; and the high standard of the products presented at the exhibition, many of them brand-new developments, reflected the unbroken progress in technology. The development of novel technologies and the sophistication of known techniques in research laboratories and their subsequent commercialization is still a major driving force for progress in this area of nanoscience. The conference was a perfect demonstration of how progress in the development of enabling technologies can readily be transcribed into basic research yielding fundamental insight with an impact across disciplines. The NC-AFM 2005 scientific programme was based on five cornerstones, each representing an area of vivid research and scientific progress. Atomic resolution imaging on oxide surfaces, which has long been a vision for the catalysis community, appears to be routine in several laboratories and after a period of demonstrative experiments NC-AFM now makes unique contributions to the understanding of processes in surface chemistry. These capabilities also open up new routes for the analysis of clusters and molecules deposited on dielectric surfaces where resolution limits are pushed towards the single atom level. Atomic precision manipulation with the dynamic AFM left the cradle of its infancy and flourishes in the family of bottom-up fabrication nanotechnologies. The systematic development of established and the introduction of new concepts of contrast

  14. Temperature-dependent vibrational spectroscopy to study order-disorder transitions in charge transfer complexes

    NASA Astrophysics Data System (ADS)

    Isaac, Rohan; Goetz, Katelyn P.; Roberts, Drew; Jurchescu, Oana D.; McNeil, L. E.

    2018-02-01

    Charge-transfer (CT) complexes are a promising class of materials for the semiconductor industry because of their versatile properties. This class of compounds shows a variety of phase transitions, which are of interest because of their potential impact on the electronic characteristics. Here temperature-dependent vibrational spectroscopy is used to study structural phase transitions in a set of organic CT complexes. Splitting and broadening of infrared-active phonons in the complex formed between pyrene and pyromellitic dianhydride (PMDA) confirm the structural transition is of the order-disorder type and complement previous x-ray diffraction (XRD) results. We show that this technique is a powerful tool to characterize transitions, and apply it to a range of binary CT complexes composed of polyaromatic hyrdocarbons (anthracene, perylene, phenanthrene, pyrene, and stilbene) and PMDA. We extend the understanding of transitions in perylene-PMDA and pyrene-PMDA, and show that there are no order-disorder transitions present in anthracene-PMDA, stilbene-PMDA and phenanthrene-PMDA in the temperature range investigated here.

  15. Improved photoluminescence characteristics of order-disorder AlGaInP quantum wells at room and elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Kunal; Fitzgerald, Eugene A.; Deotare, Parag B.

    2015-04-06

    A set of nominally undoped CuPt-B type ordered (Al{sub x}Ga{sub 1−x}){sub 0.5}In{sub 0.5}P quantum-wells with disordered (Al{sub 0.7}Ga{sub 0.3}){sub 0.5}In{sub 0.5}P barriers were grown and characterized using transmission electron microscopy and photoluminescence spectroscopy. Such structures are potentially beneficial for light emitting devices due to the possibility of greater carrier confinement, reduced scattering into the indirect valleys, and band-offset adjustment beyond what is possible with strain and composition. Furthermore, the possibility of independently tuning the composition and the order-parameter of the quantum-well allows for the decoupling of the carrier confinement and the aluminum content and aids in the identification of carriermore » loss mechanisms. In this study, sharp order-disorder interfaces were achieved via the control of growth temperature between 650 °C and 750 °C using growth pauses. Improved high-temperature (400 K) photoluminescence intensity was obtained from quantum-wells with ordered Ga{sub 0.5}In{sub 0.5}P as compared to disordered Ga{sub 0.5}In{sub 0.5}P due to greater confinement. Additionally, in the ordered samples with a higher Al/Ga ratio to counter the band-gap reduction, the photoluminescence intensity at high temperature was as bright as that from conventional disordered heterostructures and had slightly improved wavelength stability. Room-temperature time-resolved luminescence measurements indicated a longer radiative lifetime in the ordered quantum-well with reduced scattering into the barrier. These results show that in samples of good material quality, the property controlling the luminescence intensity is the carrier confinement and not the presence of ordering or the aluminum content.« less

  16. Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe.

    PubMed

    Sun, J P; Matsuura, K; Ye, G Z; Mizukami, Y; Shimozawa, M; Matsubayashi, K; Yamashita, M; Watashige, T; Kasahara, S; Matsuda, Y; Yan, J-Q; Sales, B C; Uwatoko, Y; Cheng, J-G; Shibauchi, T

    2016-07-19

    The coexistence and competition between superconductivity and electronic orders, such as spin or charge density waves, have been a central issue in high transition-temperature (Tc) superconductors. Unlike other iron-based superconductors, FeSe exhibits nematic ordering without magnetism whose relationship with its superconductivity remains unclear. Moreover, a pressure-induced fourfold increase of Tc has been reported, which poses a profound mystery. Here we report high-pressure magnetotransport measurements in FeSe up to ∼15 GPa, which uncover the dome shape of magnetic phase superseding the nematic order. Above ∼6 GPa the sudden enhancement of superconductivity (Tc≤38.3 K) accompanies a suppression of magnetic order, demonstrating their competing nature with very similar energy scales. Above the magnetic dome, we find anomalous transport properties suggesting a possible pseudogap formation, whereas linear-in-temperature resistivity is observed in the normal states of the high-Tc phase above 6 GPa. The obtained phase diagram highlights unique features of FeSe among iron-based superconductors, but bears some resemblance to that of high-Tc cuprates.

  17. Interplay between superconductivity and magnetism in Fe(1-x)Pd(x)Te.

    PubMed

    Karki, Amar B; Garlea, V Ovidiu; Custelcean, Radu; Stadler, Shane; Plummer, E W; Jin, Rongying

    2013-06-04

    The attractive/repulsive relationship between superconductivity and magnetic ordering has fascinated the condensed matter physics community for a century. In the early days, magnetic impurities doped into a superconductor were found to quickly suppress superconductivity. Later, a variety of systems, such as cuprates, heavy fermions, and Fe pnictides, showed superconductivity in a narrow region near the border to antiferromagnetism (AFM) as a function of pressure or doping. However, the coexistence of superconductivity and ferromagnetic (FM) or AFM ordering is found in a few compounds [RRh4B4 (R = Nd, Sm, Tm, Er), R'Mo6X8 (R' = Tb, Dy, Er, Ho, and X = S, Se), UMGe (M = Ge, Rh, Co), CeCoIn5, EuFe2(As(1-x)P(x))2, etc.], providing evidence for their compatibility. Here, we present a third situation, where superconductivity coexists with FM and near the border of AFM in Fe(1-x)Pd(x)Te. The doping of Pd for Fe gradually suppresses the first-order AFM ordering at temperature T(N/S), and turns into short-range AFM correlation with a characteristic peak in magnetic susceptibility at T'(N). Superconductivity sets in when T'(N) reaches zero. However, there is a gigantic ferromagnetic dome imposed in the superconducting-AFM (short-range) cross-over regime. Such a system is ideal for studying the interplay between superconductivity and two types of magnetic (FM and AFM) interactions.

  18. Interplay between superconductivity and magnetism in Fe1−xPdxTe

    PubMed Central

    Karki, Amar B.; Garlea, V. Ovidiu; Custelcean, Radu; Stadler, Shane; Plummer, E. W.; Jin, Rongying

    2013-01-01

    The attractive/repulsive relationship between superconductivity and magnetic ordering has fascinated the condensed matter physics community for a century. In the early days, magnetic impurities doped into a superconductor were found to quickly suppress superconductivity. Later, a variety of systems, such as cuprates, heavy fermions, and Fe pnictides, showed superconductivity in a narrow region near the border to antiferromagnetism (AFM) as a function of pressure or doping. However, the coexistence of superconductivity and ferromagnetic (FM) or AFM ordering is found in a few compounds [RRh4B4 (R = Nd, Sm, Tm, Er), R′Mo6X8 (R′ = Tb, Dy, Er, Ho, and X = S, Se), UMGe (M = Ge, Rh, Co), CeCoIn5, EuFe2(As1−xPx)2, etc.], providing evidence for their compatibility. Here, we present a third situation, where superconductivity coexists with FM and near the border of AFM in Fe1−xPdxTe. The doping of Pd for Fe gradually suppresses the first-order AFM ordering at temperature TN/S, and turns into short-range AFM correlation with a characteristic peak in magnetic susceptibility at T′N. Superconductivity sets in when T′N reaches zero. However, there is a gigantic ferromagnetic dome imposed in the superconducting-AFM (short-range) cross-over regime. Such a system is ideal for studying the interplay between superconductivity and two types of magnetic (FM and AFM) interactions. PMID:23690601

  19. Interplay between Superconductivity and Magnetism in Fe1-xPdxTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karki, A B; Garlea, Vasile O; Custelcean, Radu

    The love/hate relationship between superconductivity and magnetic ordering has fascinated the condensed matter physics community for a century. In the early days, magnetic impurities doped into a superconductor were found to quickly suppress superconductivity. Later, a variety of systems, such as cuprates, heavy fermions and Fe pnictides, show superconductivity in a narrow region near the border to antiferromagnetism (AFM) as a function of pressure or doping. On the other hand, the coexistence of superconductivity and ferromagnetic (FM) or AFM ordering is found in a few compounds (RRh4B4 (R = Nd, Sm, Tm, Er), R'Mo6X8 (R' = Tb, Dy, Er, Ho,more » and X = S, Se), UMGe (M = Ge, Rh, Co), CeCoIn5, EuFe2(As1-xPx)2 etc.), providing evidence for their compatibility. Here, we present a third situation, where superconductivity coexists with FM and near the border of AFM in Fe1-xPdxTe. The doping of Pd for Fe gradually suppresses the first-order AFM ordering at temperature TN/S, and turns into short-range (SR) AFM correlation with a characteristic peak in magnetic susceptibility at T'N. Superconductivity sets in when T'N reaches zero. However, there is a gigantic ferromagnetic dome imposed in the superconducting-AFM (SR) crossover regime. Such a system is ideal for studying the interplay between superconductivity and two types of magnetic interactions (FM and AFM).« less

  20. Polarization induced conductive AFM on cobalt doped ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Sahoo, Pradosh Kumar; Mangamma, G.; Rajesh, A.; Kamruddin, M.; Dash, S.

    2017-05-01

    In the present work cobalt doped ZnO (CZO) nanostructures (NS) have been synthesized by of sol-gel and spin coating process. After the crystal phase confirmation by GIXRD and Raman spectroscopy, Conductive Atomic Force Microscopy (C-AFM) measurement was performed on CZO NS which shows the random distribution of electrically conducting zones on the surface of the material exhibiting current in the range 4-170 pA. We provide the possible mechanisms for variation in current distribution essential for quantitative understanding of transport properties of ZnO NS in doped and undoped forms.

  1. PREFACE: NC-AFM 2004: Proceedings of the 7th International Conference on Non-contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Schwarz, Udo

    2005-03-01

    With the ongoing miniaturization of devices and controlled nanostructuring of materials, the importance of atomic-scale information on surfaces and surface properties is growing continuously. The astonishing progress in nanoscience and nanotechnology that took place during the last two decades was in many ways related to recent progress in high-resolution imaging techniques such as scanning tunnelling microscopy and transmission electron microscopy. Since the mid-1990s, non-contact atomic force microscopy (NC-AFM) performed in ultrahigh vacuum has evolved as an alternative technique that achieves atomic resolution, but without the restriction to conducting surfaces of the previously established techniques. Advances of the rapidly developing field of NC-AFM are discussed at annual conferences as part of a series that started in 1998 in Osaka, Japan. This special issue of Nanotechnology is a compilation of original work presented at the 7th International Conference on Non-contact Atomic Force Microscopy that took place in Seattle, USA, 12-15 September 2004. Over the years, the conference grew in size and scope. Atomic resolution imaging of oxides and semiconductors remains an issue. Noticeable new developments have been presented in this regard such as, e.g., the demonstrated ability to manipulate individual atoms. Additionally, the investigation of individual molecules, clusters, and organic materials gains more and more attention. In this context, considerable effort is undertaken to transfer the NC-AFM principle based on frequency modulation to applications in air and liquids with the goal of enabling high-resolution surface studies of biological material in native environments, as well as to reduce the experimental complexity, which so far involves the availability of (costly) vacuum systems. Force spectroscopy methods continue to be improved and are applied to topics such as the imaging of the three-dimensional force field as a function of the distance with

  2. Tribological behavior of micro/nano-patterned surfaces in contact with AFM colloidal probe

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoliang; Wang, Xiu; Kong, Wen; Yi, Gewen; Jia, Junhong

    2011-10-01

    In effort to investigate the influence of the micro/nano-patterning or surface texturing on the nanotribological properties of patterned surfaces, the patterned polydimethylsiloxane (PDMS) surfaces with pillars were fabricated by replica molding technique. The surface morphologies of patterned PDMS surfaces with varying pillar sizes and spacing between pillars were characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The AFM/FFM was used to acquire the friction force images of micro/nano-patterned surfaces using a colloidal probe. A difference in friction force produced a contrast on the friction force images when the colloidal probe slid over different regions of the patterned polymer surfaces. The average friction force of patterned surface was related to the spacing between the pillars and their size. It decreased with the decreasing of spacing between the pillars and the increasing of pillar size. A reduction in friction force was attributed to the reduced area of contact between patterned surface and colloidal probe. Additionally, the average friction force increased with increasing applied load and sliding velocity.

  3. Sensing inhomogeneous mechanical properties of human corneal Descemet's membrane with AFM nano-indentation.

    PubMed

    Di Mundo, Rosa; Recchia, Giuseppina; Parekh, Mohit; Ruzza, Alessandro; Ferrari, Stefano; Carbone, Giuseppe

    2017-10-01

    The paper describes a highly space-resolved characterization of the surface mechanical properties of the posterior human corneal layer (Descemet's membrane). This has been accomplished with Atomic Force Microscopy (AFM) nano-indentation by using a probe with a sharp tip geometry. Results indicate that the contact with this biological tissue in liquid occurs with no (or very low) adhesion. More importantly, under the same operating conditions, a broad distribution of penetration depth can be measured on different x-y positions of the tissue surface, indicating a high inhomogeneity of surface stiffness, not yet clearly reported in the literature. An important contribution to such inhomogeneity should be ascribed to the discontinuous nature of the collagen/proteoglycans fibers matrix tissue, as can be imaged by AFM when the tissue is semi-dry. Using classical contact mechanics calculations adapted to the specific geometry of the tetrahedral tip it has been found that the elastic modulus E of the material in the very proximity of the surface ranges from 0.23 to 2.6 kPa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Low temperature time resolved photoluminescence in ordered and disordered Cu2ZnSnS4 single crystals

    NASA Astrophysics Data System (ADS)

    Raadik, Taavi; Krustok, Jüri; Kauk-Kuusik, M.; Timmo, K.; Grossberg, M.; Ernits, K.; Bleuse, J.

    2017-03-01

    In this work we performed time-resolved micro-photoluminescence (TRPL) studies of Cu2ZnSnS4 (CZTS) single crystals grown in molten KI salt. The order/disorder degree of CZTS was varied by the thermal post treatment temperature. Photoluminescence spectra measured at T=8 K showed an asymmetric band with a peak position of 1.33 eV and 1.27 eV for partially ordered and disordered structures, respectively. Thermal activation energies were found to be ET (PO) =65±9 meV for partially ordered and ET (PD) =27±4 meV for partially disordered. These low activation energy values indicating to the defect cluster recombination model for both partially ordered and disordered structures. TRPL was measured for both crystals and their decay curves were fitted with a stretched exponential function, in order to describe the charge carriers' recombination dynamics at low temperature.

  5. Antiferromagnetism in EuCu 2As 2 and EuCu 1.82Sb 2 single crystals

    DOE PAGES

    Anand, V. K.; Johnston, D. C.

    2015-05-07

    Single crystals of EuCu 2As 2 and EuCu 2Sb 2 were grown from CuAs and CuSb self-flux, respectively. The crystallographic, magnetic, thermal, and electronic transport properties of the single crystals were investigated by room-temperature x-ray diffraction (XRD), magnetic susceptibility χ versus temperature T, isothermal magnetization M versus magnetic field H, specific heat C p(T), and electrical resistivity ρ(T) measurements. EuCu 2As 2 crystallizes in the body-centered tetragonal ThCr 2Si 2-type structure (space group I4/mmm), whereas EuCu 2Sb 2 crystallizes in the related primitive tetragonal CaBe 2Ge 2-type structure (space group P4/nmm). The energy-dispersive x-ray spectroscopy and XRD data for themore » EuCu 2Sb 2 crystals showed the presence of vacancies on the Cu sites, yielding the actual composition EuCu 1.82Sb 2. The ρ(T) and C p(T) data reveal metallic character for both EuCu 2As 2 and EuCu 1.82Sb 2. Antiferromagnetic (AFM) ordering is indicated from the χ(T),C p(T), and ρ(T) data for both EuCu 2As 2 (T N = 17.5 K) and EuCu 1.82Sb 2 (T N = 5.1 K). In EuCu 1.82Sb 2, the ordered-state χ(T) and M(H) data suggest either a collinear A-type AFM ordering of Eu +2 spins S = 7/2 or a planar noncollinear AFM structure, with the ordered moments oriented in the tetragonal ab plane in either case. This ordered-moment orientation for the A-type AFM is consistent with calculations with magnetic dipole interactions. As a result, the anisotropic χ(T) and isothermal M(H) data for EuCu 2As 2, also containing Eu +2 spins S = 7/2, strongly deviate from the predictions of molecular field theory for collinear AFM ordering and the AFM structure appears to be both noncollinear and noncoplanar.« less

  6. AFM force measurements of the gp120-sCD4 and gp120 or CD4 antigen-antibody interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yong, E-mail: dr_yongchen@hotmail.com; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612; Zeng, Gucheng

    2011-04-08

    Highlights: {yields} The unbinding force of sCD4-gp120 interaction was 25.45 {+-} 20.46 pN. {yields} The unbinding force of CD4 antigen-antibody interaction was 51.22 {+-} 34.64 pN. {yields} The unbinding force of gp120 antigen-antibody interaction was 89.87 {+-} 44.63 pN. {yields} The interaction forces between various HIV inhibitors and the target molecules are significantly different. {yields} Functionalizing on AFM tip or substrate of an interaction pair caused different results. -- Abstract: Soluble CD4 (sCD4), anti-CD4 antibody, and anti-gp120 antibody have long been regarded as entry inhibitors in human immunodeficiency virus (HIV) therapy. However, the interactions between these HIV entry inhibitors andmore » corresponding target molecules are still poorly understood. In this study, atomic force microscopy (AFM) was utilized to investigate the interaction forces among them. We found that the unbinding forces of sCD4-gp120 interaction, CD4 antigen-antibody interaction, and gp120 antigen-antibody interaction were 25.45 {+-} 20.46, 51.22 {+-} 34.64, and 89.87 {+-} 44.63 pN, respectively, which may provide important mechanical information for understanding the effects of viral entry inhibitors on HIV infection. Moreover, we found that the functionalization of an interaction pair on AFM tip or substrate significantly influenced the results, implying that we must perform AFM force measurement and analyze the data with more caution.« less

  7. Multi-pole orders and Kondo screening: Implications for quantum phase transitions in multipolar heavy-fermion systems

    NASA Astrophysics Data System (ADS)

    Lai, Hsin-Hua; Nica, Emilian; Si, Qimiao

    Motivated by the properties of the heavy-fermion Ce3Pd20Si6 compound which exhibits both antiferro-magnetic (AFM) and antiferro-quadrupolar (AFQ) orders, we study a simplified quantum non-linear sigma model for spin-1 systems, with generalized multi-pole Kondo couplings to conduction electrons. We first consider the case when an SU(3) symmetry relates the spin and quadrupolar channels. We then analyze the effect of breaking the SU(3) symmetry, so that the interaction parameters in the spin and quadrupolar sectors are no longer equivalent, and different stages of Kondo screenings are allowed. A renormalization group analysis is used to analyze the interplay between the Kondo effect and the AFM/AFQ orders. Our work paves the way for understanding the global phase diagram in settings beyond the prototypical spin-1/2 cases. We also discuss similar considerations in the non-Kramers systems such as the heavy fermion compound PrV2Al20

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jesche, A.; Förster, T.; Spehling, J.

    We report on superconductivity in CeFeAs 1-xP xO and the possible coexistence with Ce ferromagnetism (FM) in a small homogeneity range around x=30% with ordering temperatures of T SC≅T C≅4 K. The antiferromagnetic (AFM) ordering temperature of Fe at this critical concentration is suppressed to Tmore » $$Fe\\atop{N}$$≈40 K and does not shift to lower temperatures with a further increase of the P concentration. Therefore, a quantum-critical-point scenario with T$$Fe\\atop{N}$$→0 K which is widely discussed for the iron based superconductors can be excluded for this alloy series. Surprisingly, thermal expansion and x-ray powder diffraction indicate the absence of an orthorhombic distortion despite clear evidence for short-range AFM Fe ordering from muon-spin-rotation measurements. Furthermore, we discovered the formation of a sharp electron spin resonance signal unambiguously connected with the emergence of FM ordering.« less

  9. AFM and SEM study of the effects of etching on IPS-Empress 2 TM dental ceramic

    NASA Astrophysics Data System (ADS)

    Luo, X.-P.; Silikas, N.; Allaf, M.; Wilson, N. H. F.; Watts, D. C.

    2001-10-01

    The aim of this study was to investigate the effects of increasing etching time on the surface of the new dental material, IPS-Empress 2 TM glass ceramic. Twenty one IPS-Empress 2 TM glass ceramic samples were made from IPS-Empress 2 TM ingots through lost-wax, hot-pressed ceramic fabrication technology. All samples were highly polished and cleaned ultrasonically for 5 min in acetone before and after etching with 9.6% hydrofluoric acid gel. The etching times were 0, 10, 20, 30, 60, 90 and 120 s respectively. Microstructure was analysed by scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to evaluate the surface roughness and topography. Observations with SEM showed that etching with hydrofluoric acid resulted in preferential dissolution of glass matrix, and that partially supported crystals within the glass matrix were lost with increasing etching time. AFM measurements indicated that etching increased the surface roughness of the glass-ceramic. A simple least-squares linear regression was used to establish a relationship between surface roughness parameters ( Ra, RMS), and etching time, for which r2>0.94. This study demonstrates the benefits of combining two microscopic methods for a better understanding of the surface. SEM showed the mode of action of hydrofluoric acid on the ceramic and AFM provided valuable data regarding the extent of surface degradation relative to etching time.

  10. Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe

    DOE PAGES

    Sun, J. P.; Matsuura, K.; Ye, G. Z.; ...

    2016-07-19

    The coexistence and competition between superconductivity and electronic orders, such as spin or charge density waves, have been a central issue in high transition-temperature (T c) superconductors. Unlike other iron-based superconductors, FeSe exhibits nematic ordering without magnetism whose relationship with its superconductivity remains unclear. Moreover, a pressure-induced fourfold increase of T c has been reported, which poses a profound mystery. Here we report high-pressure magnetotransport measurements in FeSe up to ~15 GPa, which uncover the dome shape of magnetic phase superseding the nematic order. Above ~6 GPa the sudden enhancement of superconductivity (T c ≤ 38.3 K) accompanies a suppressionmore » of magnetic order, demonstrating their competing nature with very similar energy scales. Above the magnetic dome, we find anomalous transport properties suggesting a possible pseudogap formation, whereas linear-in-temperature resistivity is observed in the normal states of the high-T c phase above 6 GPa. In conclusion, the obtained phase diagram highlights unique features of FeSe among iron-based superconductors, but bears some resemblance to that of high-T c cuprates.« less

  11. Surface topography and ordering-variant segregation in GaInP[sub 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, D.J.; Zhu, J.G.; Kibbler, A.E.

    1993-09-27

    Using transmission electron diffraction dark-field imaging, atomic force microscopy (AFM), and Nomarski microscopy, we demonstrate a direct connection between surface topography and cation site ordering in GaInP[sub 2]. We study epilayers grown by organometallic vapor-phase epitaxy on GaAs substrates oriented 2[degree] off (100) towards (110). Nomarski microscopy shows that, as growth proceeds, the surface of ordered material forms faceted structures aligned roughly along [011]. A comparison with the dark-field demonstrates that the [1[bar 1]1] and [11[bar 1

  12. AFM probing in aqueous environment of Staphylococcus epidermidis cells naturally immobilised on glass: physico-chemistry behind the successful immobilisation.

    PubMed

    Méndez-Vilas, A; Gallardo-Moreno, A M; Calzado-Montero, R; González-Martín, M L

    2008-05-01

    AFM probing of microbial cells in liquid environments usually requires them to be physically or chemically attached to a solid surface. The fixation mechanisms may influence the nanomechanical characterization done by force curve mapping using an AFM. To study the response of a microbial cell surface to this kind of local measurement this study attempts to overcome the problem associated to the uncertainties introduced by the different fixation treatments by analysing the surface of Staphylococcus epidermidis cells naturally (non-artificially mediated) immobilised on a glass support surface. The particularities of this natural bacterial fixation process for AFM surface analysis are discussed in terms of theoretical predictions of the XDLVO model applied to the systems bacteria/support substratum and bacteria/AFM tip immersed in water. In this sense, in the first part of this study the conditions for adequate natural fixation of three S. epidermidis strains have been analyzed by taking into account the geometries of the bacterium, substrate and tip. In the second part, bacteria are probed without the risk of any possible artefacts due to the mechanical or chemical fixation procedures. Forces measured over the successfully adhered cells have (directly) shown that the untreated bacterial surface suffers from a combination of both reversible and non-reversible deformations during acquisition of force curves all taken under the same operational conditions. This is revealed directly through high-resolution tapping-mode imaging of the bacterial surface immediately following force curve mapping. The results agree with the two different types of force curves that were repeatedly obtained. Interestingly, one type of these force curves suggests that the AFM tip is breaking (rather than pushing) the cell surface during acquisition of the force curve. In this case, adhesive peaks were always observed, suggesting a mechanical origin of the measured pull-off forces. The other

  13. Order-disorder phenomena in the low-temperature phase of BaTiO3

    NASA Astrophysics Data System (ADS)

    Völkel, G.; Müller, K. A.

    2007-09-01

    X - and Q -band electron paramagnetic resonance measurements are reported on Mn4+ -doped BaTiO3 single crystals in the rhombohedral low-temperature phase. The Mn4+ probe ion is statistically substitute for the isovalent Ti4+ ion. The critical line broadening observed when approaching the phase transition to the orthorhombic phase demonstrates the presence of order-disorder processes within the off-center Ti subsystem and the formation of dynamic precursor clusters with a structure compatible with one of the orthorhombic phase. From the data it is concluded that BaTiO3 shows a special type of phase transition where displacive and order-disorder character are not only present at the cubic-tetragonal transition, but also at the orthorhombic-rhombohedral transition at low temperatures. The disappearance of the Mn4+ spectrum in the orthorhombic, tetragonal, and cubic phases can be interpreted as the consequence of the strong line broadening caused by changes of the instantaneous off-center positions in time around the averaged off-center position along a body diagonal.

  14. Increased imaging speed and force sensitivity for bio-applications with small cantilevers using a conventional AFM setup

    PubMed Central

    Leitner, Michael; Fantner, Georg E.; Fantner, Ernest J.; Ivanova, Katerina; Ivanov, Tzvetan; Rangelow, Ivo; Ebner, Andreas; Rangl, Martina; Tang, Jilin; Hinterdorfer, Peter

    2012-01-01

    In this study, we demonstrate the increased performance in speed and sensitivity achieved by the use of small AFM cantilevers on a standard AFM system. For this, small rectangular silicon oxynitride cantilevers were utilized to arrive at faster atomic force microscopy (AFM) imaging times and more sensitive molecular recognition force spectroscopy (MRFS) experiments. The cantilevers we used had lengths between 13 and 46 μm, a width of about 11 μm, and a thickness between 150 and 600 nm. They were coated with chromium and gold on the backside for a better laser reflection. We characterized these small cantilevers through their frequency spectrum and with electron microscopy. Due to their small size and high resonance frequency we were able to increase the imaging speed by a factor of 10 without any loss in resolution for images from several μm scansize down to the nanometer scale. This was shown on bacterial surface layers (s-layer) with tapping mode under aqueous, near physiological conditions and on nuclear membranes in contact mode in ambient environment. In addition, we showed that single molecular forces can be measured with an up to 5 times higher force sensitivity in comparison to conventional cantilevers with similar spring constants. PMID:22721963

  15. AFM-Based Single Molecule Techniques: Unraveling the Amyloid Pathogenic Species

    PubMed Central

    Ruggeri, Francesco Simone; Habchi, Johnny; Cerreta, Andrea; Dietler, Giovanni

    2016-01-01

    Background A wide class of human diseases and neurodegenerative disorders, such as Alzheimer’s disease, is due to the failure of a specific peptide or protein to keep its native functional conformational state and to undergo a conformational change into a misfolded state, triggering the formation of fibrillar cross-β sheet amyloid aggregates. During the fibrillization, several coexisting species are formed, giving rise to a highly heterogeneous mixture. Despite its fundamental role in biological function and malfunction, the mechanism of protein self-assembly and the fundamental origins of the connection between aggregation, cellular toxicity and the biochemistry of neurodegeneration remains challenging to elucidate in molecular detail. In particular, the nature of the specific state of proteins that is most prone to cause cytotoxicity is not established. Methods: In the present review, we present the latest advances obtained by Atomic Force Microscopy (AFM) based techniques to unravel the biophysical properties of amyloid aggregates at the nanoscale. Unraveling amyloid single species biophysical properties still represents a formidable experimental challenge, mainly because of their nanoscale dimensions and heterogeneous nature. Bulk techniques, such as circular dichroism or infrared spectroscopy, are not able to characterize the heterogeneity and inner properties of amyloid aggregates at the single species level, preventing a profound investigation of the correlation between the biophysical properties and toxicity of the individual species. Conclusion: The information delivered by AFM based techniques could be central to study the aggregation pathway of proteins and to design molecules that could interfere with amyloid aggregation delaying the onset of misfolding diseases. PMID:27189600

  16. Use of atomic force microscopy in the forensic application of chronological order of toners and stamping inks in questioned documents.

    PubMed

    Kang, Tae-Yi; Lee, Joong; Park, Byung-Wook

    2016-04-01

    This paper describes the application of the atomic force microscopy (AFM) as a nano-indentation method and introduces a new method of identifying the chronological order of the application of the toner and stamping ink on the surface of documents by removing either of them. Various toners were used as samples for the AFM nano-indentation method. The chronological order of the application of the toner and stamping ink with either the toner placed over the stamping ink or the stamping ink placed over the toner, could be identified, regardless of the kinds of toners made by various companies. This paper provides the new approach for physically removing the toner and checking the material below it to identify questioned documents, which allows the method to be used to appraise documents forensically. Blind testing has shown that the method to analyze the chronological order of toner-printed documents and the seal stamping on them could accurately identify the order in all samples, while minimizing damage to the samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. BOREAS AFM-07 SRC Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Osborne, Heather; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Young, Kim; Wittrock, Virginia; Shewchuck, Stan; Smith, David E. (Technical Monitor)

    2000-01-01

    The Saskatchewan Research Council (SRC) collected surface meteorological and radiation data from December 1993 until December 1996. The data set comprises Suite A (meteorological and energy balance measurements) and Suite B (diffuse solar and longwave measurements) components. Suite A measurements were taken at each of ten sites, and Suite B measurements were made at five of the Suite A sites. The data cover an approximate area of 500 km (North-South) by 1000 km (East-West) (a large portion of northern Manitoba and northern Saskatchewan). The measurement network was designed to provide researchers with a sufficient record of near-surface meteorological and radiation measurements. The data are provided in tabular ASCII files, and were collected by Aircraft Flux and Meteorology (AFM)-7. The surface meteorological and radiation data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  18. Room temperature ordering of dipalmitoyl phosphatidylserine bilayers induced by short chain alcohols.

    PubMed

    Wachtel, E; Bach, D; Miller, I R

    2013-01-01

    Using differential scanning calorimetry and small and wide angle X-ray diffraction, we show that, following extended incubation at room temperature, methanol, propanol, and three of the isomers of butanol can induce ordering in dipalmitoyl phosphatidylserine (DPPS) gel phase bilayers. The organization of the bilayers in the presence of ethanol, described previously, is now observed to be a general effect of short chain alcohols. Evidence is presented for tilting of the acyl chains with respect to the bilayer normal in the presence of ethanol or propanol. However, the different chain lengths of the alcohols, and isomeric form, influence the thermal stability of the ordered gel to different extents. This behavior is unlike that of the gel state phosphatidylcholine analog which, in the presence of short chain alcohols, undergoes hydrocarbon chain interdigitation. Dipalmitoyl phosphatidylcholine added to DPPS in the presence of 20 vol% ethanol, acts to suppress the ordered gel phase. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Adaptive AFM scan speed control for high aspect ratio fast structure tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Ahmad; Schuh, Andreas; Rangelow, Ivo W.

    2014-10-15

    Improved imaging rates in Atomic Force Microscopes (AFM) are of high interest for disciplines such as life sciences and failure analysis of semiconductor wafers, where the sample topology shows high aspect ratios. Also, fast imaging is necessary to cover a large surface under investigation in reasonable times. Since AFMs are composed of mechanical components, they are associated with comparably low resonance frequencies that undermine the effort to increase the acquisition rates. In particular, high and steep structures are difficult to follow, which causes the cantilever to temporarily loose contact to or crash into the sample. Here, we report on amore » novel approach that does not affect the scanner dynamics, but adapts the lateral scanning speed of the scanner. The controller monitors the control error signal and, only when necessary, decreases the scan speed to allow the z-piezo more time to react to changes in the sample's topography. In this case, the overall imaging rate can be significantly increased, because a general scan speed trade-off decision is not needed and smooth areas are scanned fast. In contrast to methods trying to increase the z-piezo bandwidth, our method is a comparably simple approach that can be easily adapted to standard systems.« less

  20. Automatic hammering of nano-patterns on special polymer film by using a vibrating AFM tip

    PubMed Central

    2012-01-01

    Complicated nano-patterns with linewidth less than 18 nm can be automatically hammered by using atomic force microscopy (AFM) tip in tapping mode with high speed. In this study, the special sample was thin poly(styrene-ethylene/butylenes-styrene) (SEBS) block copolymer film with hexagonal spherical microstructures. An ordinary silicon tip was used as a nano-hammer, and the entire hammering process is controlled by a computer program. Experimental results demonstrate that such structure-tailored thin films enable AFM tip hammering to be performed on their surfaces. Both imprinted and embossed nano-patterns can be generated by using a vibrating tip with a larger tapping load and by using a predefined program to control the route of tip movement as it passes over the sample’s surface. Specific details for the fabrication of structure-tailored SEBS film and the theory for auto-hammering patterns were presented in detail. PMID:22889045

  1. Bubble colloidal AFM probes formed from ultrasonically generated bubbles.

    PubMed

    Vakarelski, Ivan U; Lee, Judy; Dagastine, Raymond R; Chan, Derek Y C; Stevens, Geoffrey W; Grieser, Franz

    2008-02-05

    Here we introduce a simple and effective experimental approach to measuring the interaction forces between two small bubbles (approximately 80-140 microm) in aqueous solution during controlled collisions on the scale of micrometers to nanometers. The colloidal probe technique using atomic force microscopy (AFM) was extended to measure interaction forces between a cantilever-attached bubble and surface-attached bubbles of various sizes. By using an ultrasonic source, we generated numerous small bubbles on a mildly hydrophobic surface of a glass slide. A single bubble picked up with a strongly hydrophobized V-shaped cantilever was used as the colloidal probe. Sample force measurements were used to evaluate the pure water bubble cleanliness and the general consistency of the measurements.

  2. Titanomagnetite Curie temperatures: Effects of vacancies, chemical/cation ordering and thermal history

    NASA Astrophysics Data System (ADS)

    Jackson, M. J.; Bowles, J. A.; Lappe, S. C. L. L.; Solheid, P.

    2016-12-01

    Recent experimental work [Bowles et al, 2013, Nat. Commun.; Jackson and Bowles, 2014, G-cubed] has shown that the Curie temperatures (Tc) of intermediate-composition titanomagnetites (TM30-TM50) depend strongly on thermal history, with Tc increases of ≥100°C produced by moderate-temperature (300°-400° C) annealing in the lab or in slow natural cooling. Equally large decreases are produced by rapid cooling ("quenching") from higher temperatures. The phenomenon is robustly defined and repeatable, but the underlying mechanism remains enigmatic, presumably involving rearrangement of metal cations within the spinel lattice without any change in bulk composition. Previous studies [e.g., Moskowitz and Wanamaker, 1994, GRL; Lattard et al, 2006, JGR] have shown that cation deficiency controls Tc both directly, by changing the ferrous/ferric ratio, and indirectly, by affecting the cation ordering. Our new experiments examined the effects of oxidation state and nonstoichiometry on the magnitude of Tc changes produced by quenching/annealing. In our synthetic TMs these changes are generally relatively small (ΔTc<35°), but when the samples are oxidized by heating in air (150°-250°C for 23-110 h) prior to annealing (300°-400° C for 10-1000 h in vacuum), ΔTc reaches 100°C or more, similar to the changes observed in our natural TMs. Conversely, in our natural samples annealing and quenching can cause quite large changes (ΔTc>100°), but when the samples are embedded in a reducing material (containing graphite), ΔTc becomes insignificant. These results strongly suggest that cation vacancies play an essential role in the cation rearrangements responsible for the observed changes in Tc. XMCD and low-temperature Mossbauer and magnetization measurements show no evidence of corresponding changes in ferrous/ferric site occupancy, and some form of octahedral-site chemical clustering or short-range ordering appears to be the best way to explain the large observed changes in

  3. Leveraging Air Force Medical Service (AFMS) Senior Leadership Corps Diversity to Improve Efficiency

    DTIC Science & Technology

    2013-04-01

    licensing , and board certification requirements . A few of these specialties include physician assistant, physical therapist, optometrist, podiatrist...the Deputy Surgeon General (MC), the AFMS Family Practice consultant (MC), 5 Family Practice physicians (MC), 2 nurses (NC), 2 medical technicians...specifically require clinicians, instead of taking advantage of their valuable clinical training in the MTFs. To illustrate, moving one family practice

  4. Controlling morphology, mesoporosity, crystallinity, and photocatalytic activity of ordered mesoporous TiO2 films prepared at low temperature

    NASA Astrophysics Data System (ADS)

    Elgh, Björn; Yuan, Ning; Cho, Hae Sung; Magerl, David; Philipp, Martine; Roth, Stephan V.; Yoon, Kyung Byung; Müller-Buschbaum, Peter; Terasaki, Osamu; Palmqvist, Anders E. C.

    2014-11-01

    Partly ordered mesoporous titania films with anatase crystallites incorporated into the pore walls were prepared at low temperature by spin-coating a microemulsion-based reaction solution. The effect of relative humidity employed during aging of the prepared films was studied using SEM, TEM, and grazing incidence small angle X-ray scattering to evaluate the mesoscopic order, porosity, and crystallinity of the films. The study shows unambiguously that crystal growth occurs mainly during storage of the films and proceeds at room temperature largely depending on relative humidity. Porosity, pore size, mesoscopic order, crystallinity, and photocatalytic activity of the films increased with relative humidity up to an optimum around 75%.

  5. Magnetoelectric versus thermal actuation characteristics of shear force AFM probes with piezoresistive detection

    NASA Astrophysics Data System (ADS)

    Sierakowski, Andrzej; Kopiec, Daniel; Majstrzyk, Wojciech; Kunicki, Piotr; Janus, Paweł; Dobrowolski, Rafał; Grabiec, Piotr; Rangelow, Ivo W.; Gotszalk, Teodor

    2017-03-01

    In this paper the authors compare methods used for piezoresistive microcantilevers actuation for the atomic force microscopy (AFM) imaging in the dynamic shear force mode. The piezoresistive detection is an attractive technique comparing the optical beam detection of deflection. The principal advantage is that no external alignment of optical source and detector are needed. When the microcantilever is deflected, the stress is transferred into a change of resistivity of piezoresistors. The integration of piezoresistive read-out provides a promising solution in realizing a compact non-contact AFM. Resolution of piezoresistive read-out is limited by three main noise sources: Johnson, 1/f and thermomechanical noise. In the dynamic shear force mode measurement the method used for cantilever actuation will also affect the recorded noise in the piezoresistive detection circuit. This is the result of a crosstalk between an aluminium path (current loop used for actuation) and piezoresistors located near the base of the beam. In this paper authors described an elaborated in ITE (Institute of Electron Technology) technology of fabrication cantilevers with piezoresistive detection of deflection and compared efficiency of two methods used for cantilever actuation.

  6. Low temperature specific heat of charge ordered Pr_1-xCa_xMnO_3

    NASA Astrophysics Data System (ADS)

    Smolyaninova, V. N.; Biswas, Amlan; Zhang, X.; Greene, R. L.

    2000-03-01

    Mixed-valent perovskite manganese oxides at certain doping levels develope a real space ordering of Mn^3+ and Mn^4+ at low temperatures^1, which can be destroyed (``melted'') by the application of a modest magnetic field.^2 To better understand the low-temperature ground state and the physics of the ``melted'' charge-ordered state, the specific heat, resistivity and magnetization of charge-ordered Pr_1-xCa_xMnO3 were measured with and without magnetic field for single crystal and ceramic samples of different x. A large excess specific heat of nonmagnetic origin was found, similar to that found in La_0.5Ca_0.5MnO3 ^3. Significant changes in the specific heat associated with the ``melting'' of the charge ordering were observed in applied magnetic fields up to 9 T. Possible explanations for this anomalous specific heat and its magnetic field dependence will be discussed . ^*This work is supported in part by NSF MRSEC Grant at the University of Maryland. ^1S. Mori, C. H. Chen and S-W. Cheong, Nature 392, 473 (1998). ^2Y. Tomioka et al., Phys. Rev. Lett. 74, 5108 (1995). ^3V. N. Smolyaninova, K. Ghosh and R. L. Greene, Phys. Rev. B 58, R14 725 (1998).

  7. Study of the highly ordered TiO2 nanotubes physical properties prepared with two-step anodization

    NASA Astrophysics Data System (ADS)

    Pishkar, Negin; Ghoranneviss, Mahmood; Ghorannevis, Zohreh; Akbari, Hossein

    2018-06-01

    Highly ordered hexagonal closely packed titanium dioxide nanotubes (TiO2 NTs) were successfully grown by a two-step anodization process. The TiO2 NTs were synthesized by electrochemical anodization of titanium foils in an ethylene glycol based electrolyte solution containing 0.3 wt% NH4F and 2 vol% deionized (DI) water at constant potential (50 V) for 1 h at room temperature. Physical properties of the TiO2 NTs, which were prepared via one and two-step anodization, were investigated. Atomic Force Microscopy (AFM) analysis revealed that anodization and subsequently peeled off the TiO2 NTs caused to the periodic pattern on the Ti surface. In order To study the nanotubes morphology, Field Emission Scanning Electron Microscopy (FESEM) was used, which was revealed that the two-step anodization resulted highly ordered hexagonal TiO2 NTs. Crystal structures of the TiO2 NTs were mainly anatase, determined by X-ray diffraction analysis. Optical studies were performed by Diffuse Reflection Spectra (DRS) and Photoluminescence (PL) analysis showed that the band gap of TiO2 NTs prepared via two-step anodization was lower than the band gap of samples prepared by one-step anodization process.

  8. Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Lai, Jianjun; Li, Hui; Hu, Haoming; Chen, Sihai

    2013-03-01

    In order to obtain high quality of thermal sensitive material, VOx thin film of high temperature coefficient of resistance (TCR) of 6.5%/K at room temperature has been deposited by reactive ion beam sputtering and post annealing method. AFM and XRD measurements indicate that the VOx thin film with nanostructured crystalline is composed of VO2 and V2O3. The nanostructured VOx microbolometer has been designed and fabricated. The measurement of the film system with TiN absorbing layer indicates that it has about 92% infrared absorption in the range of 8-14 μm. The performance of this bolometer, comparing with that of bolometer with common VOx, has a better result. At 20 Hz frequency and 10 μA bias current, the bolometer with high TCR has reached detectivity of 1.0 × 109 cm Hz1/2/W. It also indicates that this nanostructured VOx thin film has not only a higher TCR but also a lower noise than common VOx thin film without annealing.

  9. Effect of incubation temperature on the self-assembly of regenerated silk fibroin: a study using AFM.

    PubMed

    Zhong, Jian; Liu, Xunwei; Wei, Daixu; Yan, Juan; Wang, Ping; Sun, Gang; He, Dannong

    2015-05-01

    Understanding effect of temperature on the molecular self-assembly process will be helpful to unravel the structure-function relationship of biomolecule and to provide important information for the bottom-up approach to nanotechnology. In this work, the effect of incubation temperature on the secondary structures and morphological structures of regenerated silk fibroin (RSF) was systematically studied using atomic force microscopy and Fourier Transform infrared spectroscopy. The effect of incubation temperature on RSF self-assembly was dependent on RSF concentration. For the RSF solution with relatively low concentrations (15 μg/mL and 60 μg/mL), the increase of the incubation temperature mainly accelerated the formation and aggregation of antiparallel β-sheet protofibrils and decreased the formation of random coil protofilaments/globule-like molecules. For the RSF solution with relatively high concentrations (300 μg/mL and 1.5mg/mL), the increase of the incubation temperature mainly accelerated the formation and aggregation of antiparallel β-sheet RSF features (protofibrils and globule-like features) and decreased the formation of random coil bead-like features. This work implies that the morphology and conformation of biomacromolecules could be tuned by controlling the incubation temperature. Further, it will be beneficial to basic understanding of the nanoscale structure formation in different silk-based biomaterials. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings

    NASA Astrophysics Data System (ADS)

    Vladescu, A.; Braic, M.; Azem, F. Ak; Titorencu, I.; Braic, V.; Pruna, V.; Kiss, A.; Parau, A. C.; Birlik, I.

    2015-11-01

    Hydroxyapatite (HAP) ceramics belong to a class of calcium phosphate-based materials, which have been widely used as coatings on titanium medical implants in order to improve bone fixation and thus to increase the lifetime of the implant. In this study, HAP coatings were deposited from pure HAP targets on Ti6Al4V substrates using the radio-frequency magnetron sputtering technique at substrate temperatures ranging from 400 to 800 °C. The surface morphology and the crystallographic structure of the films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion resistance of the coatings in saliva solution at 37 °C was evaluated by potentiodynamic polarization. Additionally, the human osteosarcoma cell line (MG-63) was used to test the biocompatibility of the coatings. The results showed that all of the coatings grown uniformly and that the increasing substrate temperature induced an increase in their crystallinity. Corrosion performance of the coatings was improved with the increase of the substrate temperature from 400 °C to 800 °C. Furthermore, all the coatings support the attachment and growth of the osteosarcoma cells with regard to the in vitro test findings.

  11. Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, Udo; Albers, Boris J.; Liebmann, Marcus

    2008-02-27

    The authors present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaroundmore » times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance.« less

  12. U.S. Army Training and Testing Area Carrying Capacity (ATTACC) for Munitions (AFM)

    DTIC Science & Technology

    2006-11-01

    Army Training Support Center USDA United States Department of Agriculture USGS United States Geological Survey USLE Universal Soil Loss Equation...Range condition is a function of climate, soil , and hydrology. The munitions impact, constituent load, and range condition are modeled using AFM...For ArcGIS v2 to attain expected concentrations of munitions constituents and corresponding risk due to exposure through soil - and water-related

  13. The tight binding model study of the role of anisotropic AFM spin ordering in the charge ordered CMR manganites

    NASA Astrophysics Data System (ADS)

    Kar, J. K.; Panda, Saswati; Rout, G. C.

    2017-05-01

    We propose here a tight binding model study of the interplay between charge and spin orderings in the CMR manganites taking anisotropic effect due to electron hoppings and spin exchanges. The Hamiltonian consists of the kinetic energies of eg and t2g electrons of manganese ion. It further includes double exchange and Heisenberg interactions. The charge density wave interaction (CDW) describes an extra mechanism for the insulating character of the system. The CDW gap and spin parameters are calculated using Zubarev's Green's function technique and computed self-consistently. The results are reported in this communication.

  14. High temperature spin dynamics in linear magnetic chains, molecular rings, and segments by nuclear magnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adelnia, Fatemeh; Lascialfari, Alessandro; Dipartimento di Fisica, Università degli Studi di Pavia and INSTM, Pavia

    2015-05-07

    We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ringmore » and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.« less

  15. Simulated structure and imaging of NTCDI on Si(1 1 1)-7 × 7 : a combined STM, NC-AFM and DFT study

    NASA Astrophysics Data System (ADS)

    Jarvis, S. P.; Sweetman, A. M.; Lekkas, I.; Champness, N. R.; Kantorovich, L.; Moriarty, P.

    2015-02-01

    The adsorption of naphthalene tetracarboxylic diimide (NTCDI) on Si(1 1 1)-7 × 7 is investigated through a combination of scanning tunnelling microscopy (STM), noncontact atomic force microscopy (NC-AFM) and density functional theory (DFT) calculations. We show that NTCDI adopts multiple planar adsorption geometries on the Si(1 1 1)-7 × 7 surface which can be imaged with intramolecular bond resolution using NC-AFM. DFT calculations reveal adsorption is dominated by covalent bond formation between the molecular oxygen atoms and the surface silicon adatoms. The chemisorption of the molecule is found to induce subtle distortions to the molecular structure, which are observed in NC-AFM images.

  16. Phase-Imaging with a Sharpened Multi-Walled Carbon Nanotube AFM Tip: Investigation of Low-k Dielectric Polymer Hybrids

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V.; Stevens, Ramsey M.; Meyyappan, M.; Volksen, Willi; Miller, Robert D.

    2005-01-01

    Phase shift tapping mode scanning force microscopy (TMSFM) has evolved into a very powerful technique for the nanoscale surface characterization of compositional variations in heterogeneous samples. Phase shift signal measures the difference between the phase angle of the excitation signal and the phase angle of the cantilever response. The signal correlates to the tip-sample inelastic interactions, identifying the different chemical and/or physical property of surfaces. In general, the resolution and quality of scanning probe microscopic images are highly dependent on the size of the scanning probe tip. In improving AFM tip technology, we recently developed a technique for sharpening the tip of a multi-walled carbon nanotube (CNT) AFM tip, reducing the radius of curvature of the CNT tip to less than 5 nm while still maintaining the inherent stability of multi-walled CNT tips. Herein we report the use of sharpened (CNT) AFM tips for phase-imaging of polymer hybrids, a precursor for generating nanoporous low-k dielectrics for on-chip interconnect applications. Using sharpened CNT tips, we obtained phase-contrast images having domains less than 10 nm. In contrast, conventional Si tips and unsharpened CNT tips (radius greater than 15 nm) were not able to resolve the nanoscale domains in the polymer hybrid films. C1early, the size of the CNT tip contributes significantly to the resolution of phase-contrast imaging. In addition, a study on the nonlinear tapping dynamics of the multi-walled CNT tip indicates that the multi-walled CNT tip is immune to conventional imaging instabilities related to the coexistence of attractive and repulsive tapping regimes. This factor may also contribute to the phase-contrast image quality of multi-walled CNT AFM tips. This presentation will also offer data in support of the stability of the CNT tip for phase shift TMSFM.

  17. AFM PeakForce QNM mode: Evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites.

    PubMed

    Smolyakov, G; Pruvost, S; Cardoso, L; Alonso, B; Belamie, E; Duchet-Rumeau, J

    2016-10-20

    PeakForce Quantitative Nanomechanical Mapping (QNM) AFM mode was used to explore the mechanical properties of textured chitin-silica hybrid films at the nanoscale. The influence of the force applied by the tip on the sample surface was studied for standard homogeneous samples, for chitin nanorods and for chitin-silica hybrid nanocomposites. Thick films of superimposed chitin nanorods showed a monotonous increase of DMT modulus (based on the Derjaguin-Muller-Toporov model) owing to an increase in modulus at the interface between nanorods due to geometrical constraints of the AFM acquisition. A similar variation of DMT modulus was obtained for chitin-silica hybrid thick films related to mechanical strengthening induced by the presence of silica. This work revealed the role of the organic-inorganic interface, at the nanoscale, in the mechanical behaviour of textured materials using PeakForce QNM mode, with optimized analysis conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Room temperature magnetism and metal to semiconducting transition in dilute Fe doped Sb1-xSex semiconducting alloy thin films

    NASA Astrophysics Data System (ADS)

    Agrawal, Naveen; Sarkar, Mitesh; Chawda, Mukesh; Ganesan, V.; Bodas, Dhananjay

    2015-02-01

    The magnetism was observed in very dilute Fe doped alloy thin film Fe0.008Sb1-xSex, for x = 0.01 to 0.10. These thin films were grown on silicon substrate using thermal evaporation technique. Structural, electrical, optical, charge carrier concentration measurement, surface morphology and magnetic properties were observed using glancing incidence x-ray diffraction (GIXRD), four probe resistivity, photoluminescence, Hall measurement, atomic force microscopy (AFM) and magnetic force microscopy (MFM) techniques, respectively. No peaks of iron were seen in GIXRD. The resistivity results show that activation energy increases with increase in selenium (Se) concentration. The Arrhenius plot reveals metallic behavior below room temperature. The low temperature conduction is explained by variable range-hopping mechanism, which fits very well in the temperature range 150-300 K. The decrease in density of states has been observed with increasing selenium concentration (x = 0.01 to 0.10). There is a metal-to-semiconductor phase transition observed above room temperature. This transition temperature is Se concentration dependent. The particle size distribution ˜47-61 nm is evaluated using AFM images. These thin films exhibit ferromagnetic interactions at room temperature.

  19. Fast and accurate: high-speed metrological large-range AFM for surface and nanometrology

    NASA Astrophysics Data System (ADS)

    Dai, Gaoliang; Koenders, Ludger; Fluegge, Jens; Hemmleb, Matthias

    2018-05-01

    Low measurement speed remains a major shortcoming of the scanning probe microscopic technique. It not only leads to a low measurement throughput, but a significant measurement drift over the long measurement time needed (up to hours or even days). To overcome this challenge, PTB, the national metrology institute of Germany, has developed a high-speed metrological large-range atomic force microscope (HS Met. LR-AFM) capable of measuring speeds up to 1 mm s‑1. This paper has introduced the design concept in detail. After modelling scanning probe microscopic measurements, our results suggest that the signal spectrum of the surface to be measured is the spatial spectrum of the surface scaled by the scanning speed. The higher the scanning speed , the broader the spectrum to be measured. To realise an accurate HS Met. LR-AFM, our solution is to combine different stages/sensors synchronously in measurements, which provide a much larger spectrum area for high-speed measurement capability. Two application examples have been demonstrated. The first is a new concept called reference areal surface metrology. Using the developed HS Met. LR-AFM, surfaces are measured accurately and traceably at a speed of 500 µm s‑1 and the results are applied as a reference 3D data map of the surfaces. By correlating the reference 3D data sets and 3D data sets of tools under calibration, which are measured at the same surface, it has the potential to comprehensively characterise the tools, for instance, the spectrum properties of the tools. The investigation results of two commercial confocal microscopes are demonstrated, indicating very promising results. The second example is the calibration of a kind of 3D nano standard, which has spatially distributed landmarks, i.e. special unique features defined by 3D-coordinates. Experimental investigations confirmed that the calibration accuracy is maintained at a measurement speed of 100 µm s‑1, which improves the calibration efficiency by a

  20. Pressure-temperature phase diagram of a charge-ordered organic conductor studied by C13 NMR

    NASA Astrophysics Data System (ADS)

    Itou, T.; Miyagawa, K.; Nakamura, J.; Kanoda, K.; Hiraki, K.; Takahashi, T.

    2014-07-01

    We performed C13 NMR measurements on the quasi-one-dimensional (Q1D) charge-ordered system (DI-DCNQI)2Ag under ambient and applied pressure to clarify the pressure-temperature phase diagram. For pressures up to 15 kbar, the NMR spectra exhibit complicated splitting at low temperatures, indicating a "generalized 3D Wigner crystal" state. In this pressure region, we find that increased pressure causes a decrease in the charge disproportionation ratio, along with a decrease in the transition temperature of the generalized 3D Wigner crystal. In the high-pressure region, near 20 kbar, where a 1D confined liquid crosses over to a 3D Fermi liquid at high temperatures, the ground state is replaced by a nonmagnetic insulating state that is qualitatively different from the generalized 3D Wigner crystal.

  1. Characterization of sputtering deposited NiTi shape memory thin films using a temperature controllable atomic force microscope

    NASA Astrophysics Data System (ADS)

    He, Q.; Huang, W. M.; Hong, M. H.; Wu, M. J.; Fu, Y. Q.; Chong, T. C.; Chellet, F.; Du, H. J.

    2004-10-01

    NiTi shape memory thin films are potentially desirable for micro-electro-mechanical system (MEMS) actuators, because they have a much higher work output per volume and also a significantly improved response speed due to a larger surface-to-volume ratio. A new technique using a temperature controllable atomic force microscope (AFM) is presented in order to find the transformation temperatures of NiTi shape memory thin films of micrometer size, since traditional techniques, such as differential scanning calorimetry (DSC) and the curvature method, have difficulty in dealing with samples of such a scale as this. This technique is based on the surface relief phenomenon in shape memory alloys upon thermal cycling. The reliability of this technique is investigated and compared with the DSC result in terms of the transformation fraction (xgr). It appears that the new technique is nondestructive, in situ and capable of characterizing sputtering deposited very small NiTi shape memory thin films.

  2. Controlling competing orders via nonequilibrium acoustic phonons: Emergence of anisotropic effective electronic temperature

    NASA Astrophysics Data System (ADS)

    Schütt, Michael; Orth, Peter P.; Levchenko, Alex; Fernandes, Rafael M.

    2018-01-01

    Ultrafast perturbations offer a unique tool to manipulate correlated systems due to their ability to promote transient behaviors with no equilibrium counterpart. A widely employed strategy is the excitation of coherent optical phonons, as they can cause significant changes in the electronic structure and interactions on short time scales. One of the issues, however, is the inevitable heating that accompanies these resonant excitations. Here, we explore a promising alternative route: the nonequilibrium excitation of acoustic phonons, which, due to their low excitation energies, generally lead to less heating. We demonstrate that driving acoustic phonons leads to the remarkable phenomenon of a momentum-dependent effective temperature, by which electronic states at different regions of the Fermi surface are subject to distinct local temperatures. Such an anisotropic effective electronic temperature can have a profound effect on the delicate balance between competing ordered states in unconventional superconductors, opening a so far unexplored avenue to control correlated phases.

  3. Numerical calculations of temperature dependence of dielectric constant for an ordered assembly of BaTiO3 nanocubes with small tilt angles

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi; Mimura, Ken-ichi; Izu, Noriya; Kato, Kazumi

    2018-03-01

    The dielectric constant of an ordered assembly of BaTiO3 nanocubes is numerically calculated as a function of temperature assuming a distribution of tilt angles of attached nanocubes. As the phase transition temperature from the tetragonal crystal structure to the cubic crystal structure of a BaTiO3 nanocube decreases as the tilt angle increases, the temperature at the peak of the dielectric constant of an ordered assembly is considerably lower than the Curie temperature of a free-standing BaTiO3 crystal. The peak of the dielectric constant as a function of temperature for an ordered assembly becomes considerably broader than that for a single crystal owing to the contribution of nanocubes with various tilt angles.

  4. The structure of high-methoxyl sugar acid gels of citrus pectin as determined by AFM

    USDA-ARS?s Scientific Manuscript database

    Images of native high methoxyl sugar acid gels (HMSAG) were obtained by atomic force microscopy (AFM) in the Tapping ModeTM. Electronic thinning of the pectin strands to one pixel wide allowed the pectin network to be viewed in the absence of variable strand widths related to preferentially solvate...

  5. Unspecific membrane protein-lipid recognition: combination of AFM imaging, force spectroscopy, DSC and FRET measurements.

    PubMed

    Borrell, Jordi H; Montero, M Teresa; Morros, Antoni; Domènech, Òscar

    2015-11-01

    In this work, we will describe in quantitative terms the unspecific recognition between lactose permease (LacY) of Escherichia coli, a polytopic model membrane protein, and one of the main components of the inner membrane of this bacterium. Supported lipid bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) (3:1, mol/mol) in the presence of Ca(2+) display lateral phase segregation that can be distinguished by atomic force microscopy (AFM) as well as force spectroscopy. LacY shows preference for fluid (Lα) phases when it is reconstituted in POPE : POPG (3:1, mol/mol) proteoliposomes at a lipid-to-protein ratio of 40. When the lipid-to-protein ratio is decreased down to 0.5, two domains can be distinguished by AFM. While the upper domain is formed by self-segregated units of LacY, the lower domain is constituted only by phospholipids in gel (Lβ) phase. On the one hand, classical differential scanning calorimetry (DSC) measurements evidenced the segregation of a population of phospholipids and point to the existence of a boundary region at the lipid-protein interface. On the other hand, Förster Resonance Energy Transfer (FRET) measurements in solution evidenced that POPE is selectively recognized by LacY. A binary pseudophase diagram of POPE : POPG built from AFM observations enables to calculate the composition of the fluid phase where LacY is inserted. These results are consistent with a model where POPE constitutes the main component of the lipid-LacY interface segregated from the fluid bulk phase where POPG predominates. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Proceedings of the 2011 AFMS Medical Research Symposium. Volume 4. Healthcare Informatics Track

    DTIC Science & Technology

    2011-08-02

    pretest and posttest , a survey of 10 five-point Likert scale questions on managing critical children before and after, and 2 videotaped pediatric...critical care simulations with debriefings after each scenario. Results: Fund of knowledge improved from a pretest score of 60% to a posttest score of...02--2012 Proceedings 02-08-2011 to 04-08-2011 Proceedings of the 2011 AFMS Medical Research Symposium. Volume 4. Healthcare Informatics Track Major

  7. Pressure-induced amorphization of charge ordered spinel AlV{sub 2}O{sub 4} at low temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malavi, Pallavi S., E-mail: malavips@barc.gov.in; Karmakar, S., E-mail: malavips@barc.gov.in; Sharma, S. M.

    2014-04-24

    Structural properties of charge ordered spinel AlV{sub 2}O{sub 4} have been investigated under high pressure at low temperature (80K) by synchrotron based x-ray diffraction measurements. It is observed that upon increasing pressure the structure becomes progressively disordered due to the distortion of the AlO{sub 4} tetrahedral unit and undergoes amorphization above ∼12 GPa. While releasing pressure, the rhombohedral phase is only partially recovered at a much lower pressure (below 5 GPa). Within the stability of the rhombohedral phase, the distortion in the vanadium heptamer increases monotonically with pressure, suggesting enhanced charge ordering. This result is in sharp contrast with themore » recent observation of pressure-induced frustration in the charge ordered state leading to structural transition to the cubic phase at room temperature [JPCM 25, 292201, 2013].« less

  8. AFM and x-ray studies of buffing and uv light induced alignment of liquid crystals on SE610 polyimide films

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hoon; Shi, Yushan; Ha, Kiryong; West, John L.; Kumar, Satyendra

    1997-03-01

    We have studied the competition between the effects of mechanical buffing of and photo-induced chemical reaction in Nissan SE610 polyimide film on the director orientation of liquid crystals using atomic force microscopy (AFM) and textural study under polarizing miscroscope. It was found that the uv light exposure after buffing significantly alters the degree and the direction of alignment achieved by buffing. Results of our study show that the two techniques can be used to control and fine-tune liquid crystal alignment. A description of the microscopic changes as inferred from AFM and x-ray studies will be presented.

  9. First-Order SPICE Modeling of Extreme-Temperature 4H-SiC JFET Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Spry, David J.; Chen, Liang-Yu

    2016-01-01

    A separate submission to this conference reports that 4H-SiC Junction Field Effect Transistor (JFET) digital and analog Integrated Circuits (ICs) with two levels of metal interconnect have reproducibly demonstrated electrical operation at 500 C in excess of 1000 hours. While this progress expands the complexity and durability envelope of high temperature ICs, one important area for further technology maturation is the development of reasonably accurate and accessible computer-aided modeling and simulation tools for circuit design of these ICs. Towards this end, we report on development and verification of 25 C to 500 C SPICE simulation models of first order accuracy for this extreme-temperature durable 4H-SiC JFET IC technology. For maximum availability, the JFET IC modeling is implemented using the baseline-version SPICE NMOS LEVEL 1 model that is common to other variations of SPICE software and importantly includes the body-bias effect. The first-order accuracy of these device models is verified by direct comparison with measured experimental device characteristics.

  10. Probing α -RuCl3 Beyond Magnetic Order: Effects of Temperature and Magnetic Field

    NASA Astrophysics Data System (ADS)

    Winter, Stephen M.; Riedl, Kira; Kaib, David; Coldea, Radu; Valentí, Roser

    2018-02-01

    Recent studies have brought α -RuCl3 to the forefront of experimental searches for materials realizing Kitaev spin-liquid physics. This material exhibits strongly anisotropic exchange interactions afforded by the spin-orbit coupling of the 4 d Ru centers. We investigate the dynamical response at finite temperature and magnetic field for a realistic model of the magnetic interactions in α -RuCl3 . These regimes are thought to host unconventional paramagnetic states that emerge from the suppression of magnetic order. Using exact diagonalization calculations of the quantum model complemented by semiclassical analysis, we find a very rich evolution of the spin dynamics as the applied field suppresses the zigzag order and stabilizes a quantum paramagnetic state that is adiabatically connected to the fully polarized state at high fields. At finite temperature, we observe large redistributions of spectral weight that can be attributed to the anisotropic frustration of the model. These results are compared to recent experiments and provide a road map for further studies of these regimes.

  11. Axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order heat conduction

    NASA Astrophysics Data System (ADS)

    Deswal, Sunita; Kalkal, Kapil Kumar; Sheoran, Sandeep Singh

    2016-09-01

    A mathematical model of fractional order two-temperature generalized thermoelasticity with diffusion and initial stress is proposed to analyze the transient wave phenomenon in an infinite thermoelastic half-space. The governing equations are derived in cylindrical coordinates for a two dimensional axi-symmetric problem. The analytical solution is procured by employing the Laplace and Hankel transforms for time and space variables respectively. The solutions are investigated in detail for a time dependent heat source. By using numerical inversion method of integral transforms, we obtain the solutions for displacement, stress, temperature and diffusion fields in physical domain. Computations are carried out for copper material and displayed graphically. The effect of fractional order parameter, two-temperature parameter, diffusion, initial stress and time on the different thermoelastic and diffusion fields is analyzed on the basis of analytical and numerical results. Some special cases have also been deduced from the present investigation.

  12. Enhancement of magnetic ordering temperature in iron substituted ytterbium manganate (YbMn{sub 1-x}Fe{sub x}O{sub 3})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samal, S.L.; Magdaleno, T.; Ramanujachary, K.V.

    Oxides of the type YbMn{sub 1-x}Fe{sub x}O{sub 3}; x<=0.3 showing multiferroic behavior have been synthesized by the solid state route. These oxides crystallize in the hexagonal structure known for the parent YbMnO{sub 3} with the c/a ratio increasing with Fe substitution. The distortion of the MnO{sub 5} polyhedra (tbp) decreases and the Mn-O-Mn bonds in the a-b plane become shorter with Fe-substitution. Magnetic ordering is observed from the low temperature neutron diffraction study. The compounds were found to be antiferromagnetic and the ordering temperature T{sub N} increased from 82 K for pure YbMnO{sub 3} to 95 K for YbMn{sub 0.7}Fe{submore » 0.3}O{sub 3}. Variable temperature dielectric measurements (15-110 K) show an anomaly in the dielectric constant at temperatures close to the antiferromagnetic ordering temperature for all the compositions, showing a unique correlation between the magnetic and electric field. The increase in the ordering temperature in YbMn{sub 1-x}Fe{sub x}O{sub 3} is explained on the basis of increase in covalence of Mn/Fe-O-Mn/Fe bonds (shorter) with iron substitution. - Graphical abstract: Hexagonal manganites of the type YbMn{sub 1-x}Fe{sub x}O{sub 3}; x<=0.3 have been synthesized by the solid state route. The distortion of the MnO{sub 5} polyhedra (tbp) decreases and the Mn-O-Mn bonds in the a-b plane become shorter with Fe-substitution. The compounds were found to be antiferromagnetic and the ordering temperature T{sub N} increased from 82 K for pure YbMnO{sub 3} to 95 K for YbMn{sub 0.7}Fe{sub 0.3}O{sub 3}. The increase in the ordering temperature in YbMn{sub 1-x}Fe{sub x}O{sub 3} is explained on the basis of increase in covalence of Mn/Fe-O-Mn/Fe bonds with iron substitution. Low temperature dielectric measurements show a unique correlation between the magnetic and electric fields for all compositions.« less

  13. Real-time TIRF observation of vinculin recruitment to stretched α-catenin by AFM.

    PubMed

    Maki, Koichiro; Han, Sung-Woong; Hirano, Yoshinori; Yonemura, Shigenobu; Hakoshima, Toshio; Adachi, Taiji

    2018-01-25

    Adherens junctions (AJs) adaptively change their intensities in response to intercellular tension; therefore, they integrate tension generated by individual cells to drive multicellular dynamics, such as morphogenetic change in embryos. Under intercellular tension, α-catenin, which is a component protein of AJs, acts as a mechano-chemical transducer to recruit vinculin to promote actin remodeling. Although in vivo and in vitro studies have suggested that α-catenin-mediated mechanotransduction is a dynamic molecular process, which involves a conformational change of α-catenin under tension to expose a cryptic vinculin binding site, there are no suitable experimental methods to directly explore the process. Therefore, in this study, we developed a novel system by combining atomic force microscopy (AFM) and total internal reflection fluorescence (TIRF). In this system, α-catenin molecules (residues 276-634; the mechano-sensitive M 1 -M 3 domain), modified on coverslips, were stretched by AFM and their recruitment of Alexa-labeled full-length vinculin molecules, dissolved in solution, were observed simultaneously, in real time, using TIRF. We applied a physiologically possible range of tensions and extensions to α-catenin and directly observed its vinculin recruitment. Our new system could be used in the fields of mechanobiology and biophysics to explore functions of proteins under tension by coupling biomechanical and biochemical information.

  14. Non-contact AFM measurement of the Hamaker constants of solids: Calibrating cantilever geometries.

    PubMed

    Fronczak, Sean G; Browne, Christopher A; Krenek, Elizabeth C; Beaudoin, Stephen P; Corti, David S

    2018-05-01

    Surface effects arising from roughness and deformation can negatively affect the results of AFM contact experiments. Using the non-contact portion of an AFM deflection curve is therefore desirable for estimating the Hamaker constant, A, of a solid material. A previously validated non-contact quasi-dynamic method for estimating A is revisited, in which the cantilever tip is now always represented by an "effective sphere". In addition to simplifying this previous method, accurate estimates of A can still be obtained even though precise knowledge of the nanoscale geometric features of the cantilever tip are no longer required. The tip's "effective" radius of curvature, R eff , is determined from a "calibration" step, in which the tip's deflection at first contact with the surface is measured for a substrate with a known Hamaker constant. After R eff is known for a given tip, estimates of A for other surfaces of interest are then determined. An experimental study was conducted to validate the new method and the obtained results are in good agreement with predictions from the Lifshitz approximation, when available. Since R eff accounts for all geometric uncertainties of the tip through a single fitted parameter, no visual fitting of the tip shape was required. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Tailoring of magnetic orderings in Fe substituted GdMnO3 bulk samples towards room temperature

    NASA Astrophysics Data System (ADS)

    Pal, A.; Dhana Sekhar, C.; Venimadhav, A.; Murugavel, P.

    2017-10-01

    The evolution of various magnetic ordering has been studied for the orthorhombic perovskite GdMn1-x Fe x O3 (0  ⩽  x  ⩽  0.7) system to obtain its comprehensive magnetic phase diagram. We observed that the substitution of Fe in GdMnO3 increases the antiferromagnetic Neel temperature (T N) from 40 K to above 400 K and importantly induces a spin-reorientation transition (T SR) for x  ⩾  0.4. These transitions are close to room temperature at x  =  0.5 and then gradually separated at a higher x value. The static orbital ordering induced by the Jahn-Teller distortion seems to play an important role in changing the T N. The variations of spin-reorientation ordering along with the competition between the magnetic orderings as a function of the composition were discussed with respect to antisymmetric exchange interactions and Mn3+ single-ion anisotropy in detail. In addition, the correlation between structural and magnetic properties suggests that the subtle structural change at composition x  =  0.4 may affect the magnetic ordering. The observed tunable T SR and T N in GdMn1-x Fe x O3 could add a practical value for these compositions in fields like spintronics and sensors.

  16. Nanophotonic Atomic Force Microscope Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale [Nanophotonic AFM Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale

    DOE PAGES

    Chae, Jungseok; An, Sangmin; Ramer, Georg; ...

    2017-08-03

    The atomic force microscope (AFM) offers a rich observation window on the nanoscale, yet many dynamic phenomena are too fast and too weak for direct AFM detection. Integrated cavity-optomechanics is revolutionizing micromechanical sensing; however, it has not yet impacted AFM. Here, we make a groundbreaking advance by fabricating picogram-scale probes integrated with photonic resonators to realize functional AFM detection that achieve high temporal resolution (<10 ns) and picometer vertical displacement uncertainty simultaneously. The ability to capture fast events with high precision is leveraged to measure the thermal conductivity (η), for the first time, concurrently with chemical composition at the nanoscalemore » in photothermal induced resonance experiments. The intrinsic η of metal–organic-framework individual microcrystals, not measurable by macroscale techniques, is obtained with a small measurement uncertainty (8%). The improved sensitivity (50×) increases the measurement throughput 2500-fold and enables chemical composition measurement of molecular monolayer-thin samples. In conclusion, our paradigm-shifting photonic readout for small probes breaks the common trade-off between AFM measurement precision and ability to capture transient events, thus transforming the ability to observe nanoscale dynamics in materials.« less

  17. Nanophotonic Atomic Force Microscope Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale [Nanophotonic AFM Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, Jungseok; An, Sangmin; Ramer, Georg

    The atomic force microscope (AFM) offers a rich observation window on the nanoscale, yet many dynamic phenomena are too fast and too weak for direct AFM detection. Integrated cavity-optomechanics is revolutionizing micromechanical sensing; however, it has not yet impacted AFM. Here, we make a groundbreaking advance by fabricating picogram-scale probes integrated with photonic resonators to realize functional AFM detection that achieve high temporal resolution (<10 ns) and picometer vertical displacement uncertainty simultaneously. The ability to capture fast events with high precision is leveraged to measure the thermal conductivity (η), for the first time, concurrently with chemical composition at the nanoscalemore » in photothermal induced resonance experiments. The intrinsic η of metal–organic-framework individual microcrystals, not measurable by macroscale techniques, is obtained with a small measurement uncertainty (8%). The improved sensitivity (50×) increases the measurement throughput 2500-fold and enables chemical composition measurement of molecular monolayer-thin samples. In conclusion, our paradigm-shifting photonic readout for small probes breaks the common trade-off between AFM measurement precision and ability to capture transient events, thus transforming the ability to observe nanoscale dynamics in materials.« less

  18. AFM study of the plastic deformation behavior of poly-synthetically-twinned (PST) titanium aluminide crystals

    NASA Astrophysics Data System (ADS)

    Chen, Yali

    The plastic deformation behavior of PST TiAl crystals was investigated using AFM techniques to reveal the effects of lamellar structure on the deform mechanisms of two-phase TiAl materials. PST crystals with a nominal composition of Ti52Al48 (atomic percent) were grown by the floating zone method and at various orientations deformed in compression at room temperature. Atomic Force Microscopy (AFM) was employed to investigate the deformation structure on the free surfaces. The deformation of the PST crystals is highly anisotropic and the deformation mechanism changes dramatically with sample orientation. When the angle between the loading axis and the lamellar interfaces is below 20°, the gamma lamellae deform by dislocation slip and twinning on planes oblique to the lamellar interfaces, but the Burgers vectors or the resultant shear vectors are parallel to the lamellar interfaces inside each lamella. When the angle is between 20° and 80° the gamma phase deforms by shear on planes parallel to the lamellar interfaces. Some domains deform by a combination of ordinary dislocation slip and twinning. In the domains where twinning cannot be activated, slip occurs by ordinary dislocations or superdislocations. When the loading axis is nearly perpendicular to the lamellar interfaces ordinary dislocation slip and twinning on slip planes inclined with the lamellar interfaces are dominant and the shear is trans-lamellar. The three deformation modes are termed as A, B and N type deformation modes respectively. In the A type mode the alpha2 lamellae concomitantly deform by prismatic slip. In the other two modes, the alpha2 phase does not deform and acts as strong obstacles to the transfer of deformation. Abundant misfit dislocations are emitted from the lamellar interfaces which is beneficial for the plastic deformation. On the other hand, the lamellar interfaces strongly impede trans-lamellar deformation and channel the deformation inside each lamella. The inhomogeneous

  19. Methodological development of topographic correction in 2D/3D ToF-SIMS images using AFM images

    NASA Astrophysics Data System (ADS)

    Jung, Seokwon; Lee, Nodo; Choi, Myungshin; Lee, Jungmin; Cho, Eunkyunng; Joo, Minho

    2018-02-01

    Time-of-flight secondary-ion mass spectrometry (ToF-SIMS) is an emerging technique that provides chemical information directly from the surface of electronic materials, e.g. OLED and solar cell. It is very versatile and highly sensitive mass spectrometric technique that provides surface molecular information with their lateral distribution as a two-dimensional (2D) molecular image. Extending the usefulness of ToF-SIMS, a 3D molecular image can be generated by acquiring multiple 2D images in a stack. These imaging techniques by ToF-SIMS provide an insight into understanding the complex structures of unknown composition in electronic material. However, one drawback in ToF-SIMS is not able to represent topographical information in 2D and 3D mapping images. To overcome this technical limitation, topographic information by ex-situ technique such as atomic force microscopy (AFM) has been combined with chemical information from SIMS that provides both chemical and physical information in one image. The key to combine two different images obtained from ToF-SIMS and AFM techniques is to develop the image processing algorithm, which performs resize and alignment by comparing the specific pixel information of each image. In this work, we present methodological development of the semiautomatic alignment and the 3D structure interpolation system for the combination of 2D/3D images obtained by ToF-SIMS and AFM measurements, which allows providing useful analytical information in a single representation.

  20. Using Polarized Spectroscopy to Investigate Order in Thin-Films of Ionic Self-Assembled Materials Based on Azo-Dyes

    PubMed Central

    Ahmad, Mariam; Andersen, Frederik; Brend Bech, Ári; Bendixen, H. Krestian L.; Nawrocki, Patrick R.; Bloch, Anders J.; Bora, Ilkay; Bukhari, Tahreem A.; Bærentsen, Nicolai V.; Carstensen, Jens; Chima, Smeeah; Colberg, Helene; Dahm, Rasmus T.; Daniels, Joshua A.; Dinckan, Nermin; El Idrissi, Mohamed; Erlandsen, Ricci; Førster, Marc; Ghauri, Yasmin; Gold, Mikkel; Hansen, Andreas; Hansen, Kenn; Helmsøe-Zinck, Mathias; Henriksen, Mathias; Hoffmann, Sophus V.; Hyllested, Louise O. H.; Jensen, Casper; Kallenbach, Amalie S.; Kaur, Kirandip; Khan, Suheb R.; Kjær, Emil T. S.; Kristiansen, Bjørn; Langvad, Sylvester; Lund, Philip M.; Munk, Chastine F.; Møller, Theis; Nehme, Ola M. Z.; Nejrup, Mathilde Rove; Nexø, Louise; Nielsen, Simon Skødt Holm; Niemeier, Nicolai; Nikolajsen, Lasse V.; Nøhr, Peter C. T.; Skaarup Ovesen, Jacob; Paustian, Lucas; Pedersen, Adam S.; Petersen, Mathias K.; Poulsen, Camilla M.; Praeger-Jahnsen, Louis; Qureshi, L. Sonia; Schiermacher, Louise S.; Simris, Martin B.; Smith, Gorm; Smith, Heidi N.; Sonne, Alexander K.; Zenulovic, Marko R.; Winther Sørensen, Alma; Vogt, Emil; Væring, Andreas; Westermann, Jonas; Özcan, Sevin B.

    2018-01-01

    Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained. PMID:29462883

  1. Using Polarized Spectroscopy to Investigate Order in Thin-Films of Ionic Self-Assembled Materials Based on Azo-Dyes.

    PubMed

    Kühnel, Miguel R Carro-Temboury Martin; Ahmad, Mariam; Andersen, Frederik; Bech, Ári Brend; Bendixen, H Krestian L; Nawrocki, Patrick R; Bloch, Anders J; Bora, Ilkay; Bukhari, Tahreem A; Bærentsen, Nicolai V; Carstensen, Jens; Chima, Smeeah; Colberg, Helene; Dahm, Rasmus T; Daniels, Joshua A; Dinckan, Nermin; Idrissi, Mohamed El; Erlandsen, Ricci; Førster, Marc; Ghauri, Yasmin; Gold, Mikkel; Hansen, Andreas; Hansen, Kenn; Helmsøe-Zinck, Mathias; Henriksen, Mathias; Hoffmann, Sophus V; Hyllested, Louise O H; Jensen, Casper; Kallenbach, Amalie S; Kaur, Kirandip; Khan, Suheb R; Kjær, Emil T S; Kristiansen, Bjørn; Langvad, Sylvester; Lund, Philip M; Munk, Chastine F; Møller, Theis; Nehme, Ola M Z; Nejrup, Mathilde Rove; Nexø, Louise; Nielsen, Simon Skødt Holm; Niemeier, Nicolai; Nikolajsen, Lasse V; Nøhr, Peter C T; Orlowski, Dominik B; Overgaard, Marc; Ovesen, Jacob Skaarup; Paustian, Lucas; Pedersen, Adam S; Petersen, Mathias K; Poulsen, Camilla M; Praeger-Jahnsen, Louis; Qureshi, L Sonia; Ree, Nicolai; Schiermacher, Louise S; Simris, Martin B; Smith, Gorm; Smith, Heidi N; Sonne, Alexander K; Zenulovic, Marko R; Sørensen, Alma Winther; Sørensen, Karina; Vogt, Emil; Væring, Andreas; Westermann, Jonas; Özcan, Sevin B; Sørensen, Thomas Just

    2018-02-15

    Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained.

  2. Effect of annealing temperature on the properties of copper oxide films prepared by dip coating technique

    NASA Astrophysics Data System (ADS)

    Raship, N. A.; Sahdan, M. Z.; Adriyanto, F.; Nurfazliana, M. F.; Bakri, A. S.

    2017-01-01

    Copper oxide films were grown on silicon substrates by sol-gel dip coating method. In order to study the effects of annealing temperature on the properties of copper oxide films, the temperature was varied from 200 °C to 450 °C. In the process of dip coating, the substrate is withdrawn from the precursor solution with uniform velocity to obtain a uniform coating before undergoing an annealing process to make the copper oxide film polycrystalline. The physical properties of the copper oxide films were measured by an X-ray diffraction (XRD), a field emission scanning electron microscope (FESEM), an atomic force microscopy (AFM) and a four point probe instrument. From the XRD results, we found that pure cuprite (Cu2O) phase can be obtained by annealing the films annealed at 200 °C. Films annealed at 300 °C had a combination phase which consists of tenorite (CuO) and cuprite (Cu2O) phase while pure tenorite (CuO) phase can be obtained at 450 °C annealing temperature. The surface microstructure showed that the grains size is increased whereas the surface roughness is increased and then decreases by increasing in annealing temperature. The films showed that the resistivity decreased with increasing annealing temperature. Consequently, it was observed that annealing temperature has strong effects on the structural, morphological and electrical properties of copper oxide films.

  3. Comparison of the Identation and Elasticity of E.coli and its Spheroplasts by AFM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Claretta J; Venkataraman, Sankar; Retterer, Scott T

    2007-01-01

    Atomic force microscopy (AFM) provides a unique opportunity to study live individual bacteria at the nanometer scale. In addition to providing accurate morphological information, AFM can be exploited to investigate membrane protein localization and molecular interactions on the surface of living cells. A prerequisite for these studies is the development of robust procedures for sample preparation. While such procedures are established for intact bacteria, they are only beginning to emerge for bacterial spheroplasts. Spheroplasts are useful research models for studying mechanosensitive ion channels, membrane transport, lipopolysaccharide translocation, solute uptake, and the effects of antimicrobial agents on membranes. Furthermore, given themore » similarities between spheroplasts and cell wall-deficient (CWD) forms of pathogenic bacteria, spheroplast research could be relevant in biomedical research. In this paper, a new technique for immobilizing spheroplasts on mica pretreated with aminopropyltriethoxysilane (APTES) and glutaraldehyde is described. Using this mounting technique, the indentation and cell elasticity of glutaraldehyde-fixed and untreated spheroplasts of E. coli in liquid were measured. These values are compared to those of intact E. coli. Untreated spheroplasts were found to be much softer than the intact cells and the silicon nitride cantilevers used in this study.« less

  4. Magnetization, resistivity, specific heat and ab initio calculations of Gd5Sb3.

    PubMed

    Samatham, S Shanmukharao; Patel, Akhilesh Kumar; Lukoyanov, Alexey V; Suresh, K G

    2018-06-07

    We report on the combined results of structural, magnetic, transport and calorimetric properties of Mn<sub>5</sub>Si<sub>3</sub>-type hexagonal Gd<sub>5</sub>Sb<sub>3</sub>, together with <i>ab-initio</i> calculations. It exhibits a ferromagnetic (FM)-like transition at 265 K, antiferromagnetic (AFM) Néel transition at 95.5 K followed by a spin-orientation transition at 62 K. The system is found to be in AFM state down to 2 K in a field of 70 kOe. The FM-AFM phase coexistence is not noticeable despite large positive Curie-Weiss temperature (θ<sub>CW</sub> = 223.5 ± 0.2 K). Instead, low-temperature AFM and high-temperature FM-like phases are separated in large temperatures. Temperature-magnetic field (<i>H</i>-<i>T</i>) phase diagram reveals field-driven complex magnetic phases. Within the AFM phase, the system is observed to undergo field-driven spin-orientation transitions. Field-induced tricritical and quantum critical points appear to be absent due to strong AFM nature and by the intervention of FM-like state between paramagnetic and AFM states, respectively. The metallic behavior of the compound is inferred from resistivity along with large Sommerfeld parameter. However, no sign of strong electron-correlations is reasoned from the Kadowaki-Wood's ratio <i>A</i>/γ<sup>2</sup> ∼ 1.9×10<sup>-6</sup> μΩ.cm.(mol.K)<sup>2</sup>(mJ)<sup>-2</sup>, despite heavy γ. Essentially, <i>ab initio</i> calculations accounting for electronic correlations confirm AFM nature of low-temperature magnetic state in Gd<sub>5</sub>Sb<sub>3</sub> and attainable FM ordering in agreement with experimental data. © 2018 IOP Publishing Ltd.

  5. Insulated Conducting Cantilevered Nanotips and Two-Chamber Recording System for High Resolution Ion Sensing AFM

    PubMed Central

    Meckes, Brian; Arce, Fernando Teran; Connelly, Laura S.; Lal, Ratnesh

    2014-01-01

    Biological membranes contain ion channels, which are nanoscale pores allowing controlled ionic transport and mediating key biological functions underlying normal/abnormal living. Synthetic membranes with defined pores are being developed to control various processes, including filtration of pollutants, charge transport for energy storage, and separation of fluids and molecules. Although ionic transport (currents) can be measured with single channel resolution, imaging their structure and ionic currents simultaneously is difficult. Atomic force microscopy enables high resolution imaging of nanoscale structures and can be modified to measure ionic currents simultaneously. Moreover, the ionic currents can also be used to image structures. A simple method for fabricating conducting AFM cantilevers to image pore structures at high resolution is reported. Tungsten microwires with nanoscale tips are insulated except at the apex. This allows simultaneous imaging via cantilever deflections in normal AFM force feedback mode as well as measuring localized ionic currents. These novel probes measure ionic currents as small as picoampere while providing nanoscale spatial resolution surface topography and is suitable for measuring ionic currents and conductance of biological ion channels. PMID:24663394

  6. Electronic structure and magnetic ordering in manganese hydride

    NASA Astrophysics Data System (ADS)

    Magnitskaya, M. V.; Kulikov, N. I.

    1991-03-01

    The self-consistent electron energy bands of antiferromagnetic (AFM) and non-magnetic manganese hydride are calculated using the linear muffintin orbital method (LMTO). The calculated values of equilibrium volume and of magnetic moment on the manganese site are in good agreement with experiment. The Fermi surface of paramagnetic MnH contains two nesting parts, and their superposition gives rise to AFM gap.

  7. NMR determination of an incommensurate helical antiferromagnetic structure in EuCo 2 As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Q. -P.; Higa, N.; Sangeetha, N. S.

    In this paper, we report 153Eu, 75As, and 59Co nuclear magnetic resonance (NMR) results on EuCo 2As 2 single crystal. Observations of 153Eu and 75As NMR spectra in zero magnetic field at 4.3 K below an antiferromagnetic (AFM) ordering temperature T N = 45 K and its external magnetic field dependence clearly evidence an incommensurate helical AFM structure in EuCo 2As 2. Furthermore, based on 59Co NMR data in both the paramagnetic and the incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k = (0,0,0.73 ± 0.07)2π/c, where c is the c lattice parameter.more » Finally, the incommensurate helical AFM state was characterized by only NMR data with model-independent analyses, showing NMR to be a unique tool for determination of the spin structure in incommensurate helical AFMs.« less

  8. NMR determination of an incommensurate helical antiferromagnetic structure in EuCo 2 As 2

    DOE PAGES

    Ding, Q. -P.; Higa, N.; Sangeetha, N. S.; ...

    2017-05-05

    In this paper, we report 153Eu, 75As, and 59Co nuclear magnetic resonance (NMR) results on EuCo 2As 2 single crystal. Observations of 153Eu and 75As NMR spectra in zero magnetic field at 4.3 K below an antiferromagnetic (AFM) ordering temperature T N = 45 K and its external magnetic field dependence clearly evidence an incommensurate helical AFM structure in EuCo 2As 2. Furthermore, based on 59Co NMR data in both the paramagnetic and the incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k = (0,0,0.73 ± 0.07)2π/c, where c is the c lattice parameter.more » Finally, the incommensurate helical AFM state was characterized by only NMR data with model-independent analyses, showing NMR to be a unique tool for determination of the spin structure in incommensurate helical AFMs.« less

  9. Phenotypic and genotypic characterization of biofilm formation among Staphylococcus aureus isolates from clinical specimens, an Atomic Force Microscopic (AFM) study.

    PubMed

    Bazari, Pelin Aslani Menareh; Honarmand Jahromy, Sahar; Zare Karizi, Shohreh

    2017-09-01

    Staphylococcus aureus is a major cause of nosocomial infections. Biofilm formation is an important factor for bacterial pathogenesis. Its mechanisms are complex and include of many genes depends on expression of icaADBC operon involved in the synthesis of a polysaccharide intercellular adhesion. The aim of study was to investigate biofilm forming ability of Staphylococcus aureus strains by phenotypic and genotypic methods. Also Atomic Force microscope (AFM) was used to visualize biofilm formation. 140 Isolates were collected from clinical specimens of patients in Milad Hospital, Tehran and diagnosed by biochemical tests. The ability of strains to produce slime was evaluated by CRA method. For diagnosing of bacterial EPS, Indian ink staining were used and finally biofilm surface of 3 isolates observed by AFM. The prevalence of icaA and icaD genes was determined by PCR. By CRA method 15% of samples considered as positive slime producers, 44.28% as intermediate and 40.71% indicative as negative slime producers. 118 staphylococcus aureus strains showed a distinct halo transparent zone but 22 strains showed no halo zone. AFM analysis of Slime positive isolates showed a distinct and complete biofilm formation. In slime negative strain, there was not observed biofilm. The prevalence of icaA, icaD genes was 44.2% and 10% of the isolates had both genes simultaneously. There is a relationship between exopolysaccharide layer and biofilm formation of Staphylococcus aureus isolates. The presence of icaAD genes among isolates is not associated with in vitro formation of biofilm. AFM is a useful tool for observation of bacterial biofilm formation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Anomalous Composition-Induced Crossover in the Magnetic Properties of the Itinerant-Electron Antiferromagnet Ca 1 - x Sr x Co 2 - y As 2

    DOE PAGES

    Sangeetha, N. S.; Smetana, V.; Mudring, A. -V.; ...

    2017-12-20

    We report the inference of Ying et al. [Europhys. Lett. 104, 67005 (2013)] of a composition-induced change from c-axis ordered-moment alignment in a collinear A-type antiferromagnetic (AFM) structure at small x to ab-plane alignment in an unknown AFM structure at larger x in Ca 1-xSr xCo 2-yAs 2 with the body-centered tetragonal ThCr 2Si 2 structure is confirmed. Our major finding is an anomalous magnetic behavior in the crossover region 0.2 ≲ x ≲ 0.3 between these two phases. Also, in this region the magnetic susceptibility vs temperature χ ab(T) measured with magnetic fields H applied in the ab planemore » exhibit typical AFM behaviors with cusps at the Néel temperatures of ~ 65 K, whereas χ c(T) and the low-temperature isothermal magnetization M c(H) with H aligned along the c axis exhibit extremely soft ferromagneticlike behaviors.« less

  11. Anomalous Composition-Induced Crossover in the Magnetic Properties of the Itinerant-Electron Antiferromagnet Ca 1 - x Sr x Co 2 - y As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangeetha, N. S.; Smetana, V.; Mudring, A. -V.

    We report the inference of Ying et al. [Europhys. Lett. 104, 67005 (2013)] of a composition-induced change from c-axis ordered-moment alignment in a collinear A-type antiferromagnetic (AFM) structure at small x to ab-plane alignment in an unknown AFM structure at larger x in Ca 1-xSr xCo 2-yAs 2 with the body-centered tetragonal ThCr 2Si 2 structure is confirmed. Our major finding is an anomalous magnetic behavior in the crossover region 0.2 ≲ x ≲ 0.3 between these two phases. Also, in this region the magnetic susceptibility vs temperature χ ab(T) measured with magnetic fields H applied in the ab planemore » exhibit typical AFM behaviors with cusps at the Néel temperatures of ~ 65 K, whereas χ c(T) and the low-temperature isothermal magnetization M c(H) with H aligned along the c axis exhibit extremely soft ferromagneticlike behaviors.« less

  12. Breakdown of antiferromagnet order in polycrystalline NiFe/NiO bilayers probed with acoustic emission

    NASA Astrophysics Data System (ADS)

    Lebyodkin, M. A.; Lebedkina, T. A.; Shashkov, I. V.; Gornakov, V. S.

    2017-07-01

    Magnetization reversal of polycrystalline NiFe/NiO bilayers was investigated using magneto-optical indicator film imaging and acoustic emission techniques. Sporadic acoustic signals were detected in a constant magnetic field after the magnetization reversal. It is suggested that they are related to elastic waves excited by sharp shocks in the NiO layer with strong magnetostriction. Their probability depends on the history and number of repetitions of the field cycling, thus testifying the thermal-activation nature of the long-time relaxation of an antiferromagnetic order. These results provide evidence of spontaneous thermally activated switching of the antiferromagnetic order in NiO grains during magnetization reversal in ferromagnet/antiferromagnet (FM/AFM) heterostructures. The respective deformation modes are discussed in terms of the thermal fluctuation aftereffect in the Fulcomer and Charap model which predicts that irreversible breakdown of the original spin orientation can take place in some antiferromagnetic grains with disordered anisotropy axes during magnetization reversal of exchange-coupled FM/AFM structures. The spin reorientation in the saturated state may induce abrupt distortion of isolated metastable grains because of the NiO magnetostriction, leading to excitation of shock waves and formation of plate (or Lamb) waves.

  13. Temperature-Dependent Effect of Boric Acid Additive on Surface Roughness and Wear Rate

    NASA Astrophysics Data System (ADS)

    Ekinci, Şerafettin

    Wear and friction hold an important place in engineering. Currently, scientific societies are struggling to control wear by means of studies on lubricants. Boric acid constitutes an important alternative with its good tribological properties similar to MO2S and graphite alongside with low environmental impacts. Boric acid can be used as a solid lubricant itself whereas it can be added or blended into mineral oils in order to yield better mechanical and tribological properties such as low shear stress due to the lamellar structure and low friction, wear and surface roughness rates. In this study, distinguishing from the literature, boric acid addition effect considering the temperature was investigated for the conventional ranges of internal combustion engines. Surface roughness, wear and friction coefficient values were used in order to determine tribological properties of boric acid as an environmentally friendly additive and mineral oil mixture in the present study. Wear experiments were conducted with a ball on disc experimental setup immersed in an oil reservoir at room temperature, 50∘C and 80∘C. The evolution of both the friction coefficient and wear behavior was determined under 10N load, at 2m/s sliding velocity and a total sliding distance of 9000m. Surface roughness was determined using atomic-force microscopy (AFM). Wear rate was calculated utilizing scanning electron microscope (SEM) visuals and data. The test results showed that wear resistance increased as the temperature increased, and friction coefficient decreased due to the presence of boric acid additive.

  14. Manufacturing process of nanofluidics using afm probe

    NASA Astrophysics Data System (ADS)

    Karingula, Varun Kumar

    A new process for fabricating a nano fluidic device that can be used in medical application is developed and demonstrated. Nano channels are fabricated using a nano tip in indentation mode on AFM (Atomic Force Microscopy). The nano channels are integrated between the micro channels and act as a filter to separate biomolecules. Nano channels of 4 to7 m in length, 80nm in width, and at varying depths from 100nm to 850 nm allow the resulting device to separate selected groups of lysosomes and other viruses. Sharply developed vertical micro channels are produced from a deep reaction ion etching followed by deposition of different materials, such as gold and polymers, on the top surface, allowing the study of alternative ways of manufacturing a nanofluidic device. PDMS (Polydimethylsiloxane) bonding is performed to close the top surface of the device. An experimental setup is used to test and validate the device by pouring fluid through the channels. A detailed cost evaluation is conducted to compare the economical merits of the proposed process. It is shown that there is a 47:7% manufacturing time savings and a 60:6% manufacturing cost savings.

  15. In situ AFM imaging of apolipoprotein A-I directly derived from plasma HDL.

    PubMed

    Gan, Chaoye; Wang, Zhexuan; Chen, Yong

    2017-04-01

    The major apolipoproteins of plasma lipoproteins play vital roles in the structural integrity and physiological functions of lipoproteins. More than ten structural models of apolipoprotein A-I (apoA-I), the major apolipoprotein of high-density lipoprotein (HDL), have been developed successively. In these models, apoA-I was supposed to organize in a ring-shaped form. To date, however, there is no direct evidence under physiological condition. Here, atomic force microscopy (AFM) was used to in situ visualize the organization of apoA-I, which was exposed via depletion of the lipid component of plasma HDL pre-immobilized on functionalized mica sheets. For the first time, the ring-shaped coarse structure and three detailed structures (crescent-shaped, gapped "O"-shaped, and parentheses-shaped structures, respectively) of apoA-I in plasma HDL, which have the ability of binding scavenger receptors, were directly observed and quantitatively measured by AFM. The three detailed structures probably represent the different extents to which the lipid component of HDL was depleted. Data on lipid depletion of HDL may provide clues to understand lipid insertion of HDL. These data provide important information for the understanding of the structure/maturation of plasma HDL. Moreover, they suggest a powerful method for directly visualizing the major apolipoproteins of plasma lipoproteins or the protein component of lipoprotein-like lipid-protein complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. AFM combined to ATR-FTIR reveals Candida cell wall changes under caspofungin treatment.

    PubMed

    Quilès, Fabienne; Accoceberry, Isabelle; Couzigou, Célia; Francius, Grégory; Noël, Thierry; El-Kirat-Chatel, Sofiane

    2017-09-21

    Fungal pathogens from Candida genus are responsible for severe life-threatening infections and the antifungal arsenal is still limited. Caspofungin, an antifungal drug used for human therapy, acts as a blocking agent of the cell wall synthesis by inhibiting the β-1,3-glucan-synthase encoded by FKS genes. Despite its efficiency, the number of genetic mutants that are resistant to caspofungin is increasing. An important challenge to improve antifungal therapy is to understand cellular phenomenon that are associated with drug resistance. Here we used atomic force microscopy (AFM) combined to Fourier transform infrared spectroscopy in attenuated total reflection mode (ATR-FTIR) to decipher the effect of low and high drug concentration on the morphology, mechanics and cell wall composition of two Candida strains, one susceptible and one resistant to caspofungin. Our results confirm that caspofungin induces a dramatic cell wall remodelling via activation of stress responses, even at high drug concentration. Additionally, we highlighted unexpected changes related to drug resistance, suggesting that caspofungin resistance associated with FKS gene mutations comes from a combination of effects: (i) an overall remodelling of yeast cell wall composition; and (ii) cell wall stiffening through chitin synthesis. This work demonstrates that AFM combined to ATR-FTIR is a valuable approach to understand at the molecular scale the biological mechanisms associated with drug resistance.

  17. Unexpected Competition between Antiferromagnetic and Ferromagnetic States in Hf2MnRu5B2: Predicted and Realized.

    PubMed

    Shankhari, Pritam; Zhang, Yuemei; Stekovic, Dejan; Itkis, Mikhail E; Fokwa, Boniface P T

    2017-11-06

    Materials "design" is increasingly gaining importance in the solid-state materials community in general and in the field of magnetic materials in particular. Density functional theory (DFT) predicted the competition between ferromagnetic (FM) and antiferromagnetic (AFM) ground states in a ruthenium-rich Ti 3 Co 5 B 2 -type boride (Hf 2 MnRu 5 B 2 ) for the first time. Vienna ab initio simulation package (VASP) total energy calculations indicated that the FM model was marginally more stable than one of the AFM models (AFM1), indicating very weak interactions between magnetic 1D Mn chains that can be easily perturbated by external means (magnetic field or composition). The predicted phase was then synthesized by arc-melting and characterized as Hf 2 Mn 1-x Ru 5+x B 2 (x = 0.27). Vibrating-scanning magnetometry shows an AFM ground state with T N ≈ 20 K under low magnetic field (0.005 T). At moderate-to-higher fields, AFM ordering vanishes while FM ordering emerges with a Curie temperature of 115 K. These experimental outcomes confirm the weak nature of the interchain interactions, as predicted by DFT calculations.

  18. Search for the First-Order Liquid-to-Liquid Phase Transition in Low-Temperature Confined Water by Neutron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Sow-Hsin; Wang, Zhe; Kolesnikov, Alexander I

    2013-01-01

    It has been conjectured that a 1st order liquid-to-liquid (L-L) phase transition (LLPT) between high density liquid (HDL) and low density liquid (LDL) in supercooled water may exist, as a thermodynamic extension to the liquid phase of the 1st order transition established between the two bulk solid phases of amorphous ice, the high density amorphous ice (HDA) and the low density amorphous ice (LDA). In this paper, we first recall our previous attempts to establish the existence of the 1st order L-L phase transition through the use of two neutron scattering techniques: a constant Q elastic diffraction study of isobaricmore » temperature scan of the D2O density, namely, the equation of state (EOS) measurements. A pronounced density hysteresis phenomenon in the temperature scan of the density above P = 1500 bar is observed which gives a plausible evidence of crossing the 1st order L-L phase transition line above this pressure; an incoherent quasi-elastic scattering measurements of temperature-dependence of the alpha-relaxation time of H2O at a series of pressures, namely, the study of the Fragile-to-Strong dynamic crossover (FSC) phenomenon as a function of pressure which we interpreted as the results of crossing the Widom line in the one-phase region. In this new experiment, we used incoherent inelastic neutron scattering (INS) to measure the density of states (DOS) of H atoms in H2O molecules in confined water as function of temperature and pressure, through which we may be able to follow the emergence of the LDL and HDL phases at supercooled temperature and high pressures. We here report for the first time the differences of librational and translational DOSs between the hypothetical HDL and LDL phases, which are similar to the corresponding differences between the well-established HDA and LDA ices. This is plausible evidence that the HDL and LDL phases are the thermodynamic extensions of the corresponding amorphous solid water HDA and LDA ices.« less

  19. Search for the first-order liquid-to-liquid phase transition in low-temperature confined water by neutron scattering

    NASA Astrophysics Data System (ADS)

    Chen, Sow-Hsin; Wang, Zhe; Kolesnikov, Alexander I.; Zhang, Yang; Liu, Kao-Hsiang

    2013-02-01

    It has been conjectured that a 1st order liquid-to-liquid (L-L) phase transition (LLPT) between high density liquid (HDL) and low density liquid (LDL) in supercooled water may exist, as a thermodynamic extension to the liquid phase of the 1st order transition established between the two bulk solid phases of amorphous ice, the high density amorphous ice (HDA) and the low density amorphous ice (LDA). In this paper, we first recall our previous attempts to establish the existence of the 1st order L-L phase transition through the use of two neutron scattering techniques: a constant Q elastic diffraction study of isobaric temperature scan of the D2O density, namely, the equation of state (EOS) measurements. A pronounced density hysteresis phenomenon in the temperature scan of the density above P = 1500 bar is observed which gives a plausible evidence of crossing the 1st order L-L phase transition line above this pressure; an incoherent quasi-elastic scattering measurements of temperature-dependence of the α-relaxation time of H2O at a series of pressures, namely, the study of the Fragile-to-Strong dynamic crossover (FSC) phenomenon as a function of pressure which we interpreted as the results of crossing the Widom line in the one-phase region. In this new experiment, we used incoherent inelastic neutron scattering (INS) to measure the density of states (DOS) of H atoms in H2O molecules in confined water as function of temperature and pressure, through which we may be able to follow the emergence of the LDL and HDL phases at supercooled temperature and high pressures. We here report for the first time the differences of librational and translational DOSs between the hypothetical HDL and LDL phases, which are similar to the corresponding differences between the well-established HDA and LDA ices. This is plausible evidence that the HDL and LDL phases are the thermodynamic extensions of the corresponding amorphous solid water HDA and LDA ices.

  20. Control of charge order melting through local memristive migration of oxygen vacancies

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Hong; Zhang, Q. H.; Gregori, G.; Cristiani, G.; Yang, Y.; Li, X.; Gu, L.; Sun, J. R.; Shen, B.-G.; Habermeier, H.-U.

    2018-05-01

    The colossal magnetoresistance (CMR) in perovskite manganites and the resistive switching (RS) effect in metal-oxide heterostructures have both attracted intensive attention in the past decades. Up to date, however, there has been surprisingly little effort to study the CMR phenomena by employing a memristive switch or by integrating the CMR and memristive properties in a single RS device. Here, we report a memristive control of the melting of the antiferromagnetic charge ordered (AFM-CO) state in La0.5Ca0.5MnO3 -δ epitaxial films. We show that an in situ electrotailoring of the boundary condition, which results in layers of oxygen vacancies at the metal-oxide interface, can not only suppress the critical magnetic field for the AFM-CO state melting in the interfacial memristive domain, but also promote the one in the common pristine domain of the RS device in the high and low resistive states. Our study thereby highlights the pivotal roles of functional oxygen vacancies and their dynamics in strong correlation physics and electronics.

  1. Influence of the surface chemistry on TiO2 - TiO2 nanocontact forces as measured by an UHV-AFM

    NASA Astrophysics Data System (ADS)

    Kunze, Christian; Giner, Ignacio; Torun, Boray; Grundmeier, Guido

    2014-03-01

    Particle-wall contact forces between a TiO2 film coated AFM tip and TiO2(1 1 0) single crystal surfaces were analyzed by means of UHV-AFM. As a reference system an octadecylphosphonic acid monolayer covered TiO2(1 1 0) surface was studied. The defect chemistry of the TiO2 substrate was modified by Ar ion bombardment, water dosing at 3 × 10-6 Pa and an annealing step at 473 K which resulted in a varying density of Ti(III) states. The observed contact forces are correlated to the surface defect density and are discussed in terms of the change in the electronic structure and its influence on the Hamaker constant.

  2. Evidence for strong enhancement of the magnetic ordering temperature of trivalent Nd metal under extreme pressure [Anomalous enhancement of the magnetic ordering temperature of trivalent Nd metal under extreme pressure: Possible Kondo lattice behavior

    DOE PAGES

    Song, J.; Bi, W.; Haskel, D.; ...

    2017-05-15

    Four-point electrical resistivity measurements were carried out on Nd metal and dilute magnetic alloys containing up to 1 at.% Nd in superconducting Y for temperatures 1.5–295 K under pressures to 210 GPa. The magnetic ordering temperature T o of Nd appears to rise steeply under pressure, increasing ninefold to 180 K at 70 GPa before falling rapidly. Y(Nd) alloys display both a resistivity minimum and superconducting pair breaking ΔT c as large as 38 K/at.% Nd. The present results give evidence that for pressures above 30–40 GPa, the exchange coupling J between Nd ions and conduction electrons becomes negative, thusmore » activating Kondo physics in this highly correlated electron system. Furthermore, the rise and fall of T o and ΔT c with pressure can be accounted for in terms of an increase in the Kondo temperature.« less

  3. Evidence for strong enhancement of the magnetic ordering temperature of trivalent Nd metal under extreme pressure [Anomalous enhancement of the magnetic ordering temperature of trivalent Nd metal under extreme pressure: Possible Kondo lattice behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, J.; Bi, W.; Haskel, D.

    Four-point electrical resistivity measurements were carried out on Nd metal and dilute magnetic alloys containing up to 1 at.% Nd in superconducting Y for temperatures 1.5–295 K under pressures to 210 GPa. The magnetic ordering temperature T o of Nd appears to rise steeply under pressure, increasing ninefold to 180 K at 70 GPa before falling rapidly. Y(Nd) alloys display both a resistivity minimum and superconducting pair breaking ΔT c as large as 38 K/at.% Nd. The present results give evidence that for pressures above 30–40 GPa, the exchange coupling J between Nd ions and conduction electrons becomes negative, thusmore » activating Kondo physics in this highly correlated electron system. Furthermore, the rise and fall of T o and ΔT c with pressure can be accounted for in terms of an increase in the Kondo temperature.« less

  4. Removal of industrial dyes and heavy metals by Beauveria bassiana: FTIR, SEM, TEM and AFM investigations with Pb(II).

    PubMed

    Gola, Deepak; Malik, Anushree; Namburath, Maneesh; Ahammad, Shaikh Ziauddin

    2017-10-01

    Presence of industrial dyes and heavy metal as a contaminant in environment poses a great risk to human health. In order to develop a potential technology for remediation of dyes (Reactive remazol red, Yellow 3RS, Indanthrene blue and Vat novatic grey) and heavy metal [Cu(II), Ni(II), Cd(II), Zn(II), Cr(VI) and Pb(II)] contamination, present study was performed with entomopathogenic fungi, Beauveria bassiana (MTCC no. 4580). High dye removal (88-97%) was observed during the growth of B. bassiana while removal percentage for heavy metals ranged from 58 to 75%. Further, detailed investigations were performed with Pb(II) in terms of growth kinetics, effect of process parameters and mechanism of removal. Growth rate decreased from 0.118 h -1 (control) to 0.031 h -1 , showing 28% reduction in biomass at 30 mg L -1 Pb(II) with 58.4% metal removal. Maximum Pb(II) removal was observed at 30 °C, neutral pH and 30 mg L -1 initial metal concentration. FTIR analysis indicated the changes induced by Pb(II) in functional groups on biomass surface. Further, microscopic analysis (SEM and atomic force microscopy (AFM)) was performed to understand the changes in cell surface morphology of the fungal cell. SEM micrograph showed a clear deformation of fungal hyphae, whereas AFM studies proved the increase in surface roughness (RSM) in comparison to control cell. Homogenous bioaccumulation of Pb(II) inside the fungal cell was clearly depicted by TEM-high-angle annular dark field coupled with EDX. Present study provides an insight into the mechanism of Pb(II) bioremediation and strengthens the significance of using entomopathogenic fungus such as B. bassiana for metal and dye removal.

  5. Stiffness and evolution of interfacial micropancakes revealed by AFM quantitative nanomechanical imaging.

    PubMed

    Zhao, Binyu; Wang, Xingya; Song, Yang; Hu, Jun; Lü, Junhong; Zhou, Xingfei; Tai, Renzhong; Zhang, Xuehua; Zhang, Lijuan

    2015-05-28

    Micropancakes are quasi-two-dimensional micron-sized domains on crystalline substrates (e.g. highly oriented pyrolytic graphite (HOPG)) immersed in water. They are only a few nanometers thick, and are suspected to come from the accumulation of dissolved air at the solid-water interface. However, the exact chemical nature and basic physical properties of micropancakes have been under debate ever since their first observation, primarily due to the lack of a suitable characterization technique. In this study, the stiffness of micropancakes at the interface between HOPG and ethanol-water solutions was investigated by using PeakForce Quantitative NanoMechanics (PF-QNM) mode Atomic Force Microscopy (AFM). Our measurements showed that micropancakes were stiffer than nanobubbles, and for bilayer micropancakes, the bottom layer in contact with the substrate was stiffer than the top one. Interestingly, the micropancakes became smaller and softer with an increase in the ethanol concentration in the solution, and were undetectable by AFM above a critical concentration of ethanol. But they re-appeared after the ethanol concentration in the solution was reduced. Clearly the evolution and stiffness of the micropancakes were dependent on the chemical composition in the solution, which could be attributed to the correlation of the mechanical properties of the micropancakes with the surface tension of the liquid phase. Based on the "go-and-come" behaviors of micropancakes with the ethanol concentration, we found that the micropancakes could actually tolerate the ethanol concentration much higher than 5%, a value reported in the literature. The results from this work may be helpful in alluding the chemical nature of micropancakes.

  6. AFM Study of Charge Transfer Between Metals Due to the Oxygen Redox Couple in Water

    NASA Astrophysics Data System (ADS)

    Trombley, Jeremy; Panthani, Tessie; Sankaran, Mohan; Angus, John; Kash, Kathleen

    2010-03-01

    The oxygen redox couple in an adsorbed water film can pin the Fermi level at the surfaces of diamond, GaN and ZnO.footnotetextV. Chakrapani, C. Pendyala, K. Kash, A. B. Anderson, M. K. Sunkara and J. C. Angus, J. Am. Chem. Soc. 130 (2008) 12944-12952, and ref. 6 therein. We report here preliminary observations of the same phenomenon at metal surfaces. A Pt-coated atomic force microscope (AFM) tip was used to take force-distance measurements on Au, Ag, and Pt surfaces placed in pH-controlled water. The work functions of these surfaces vary over ˜2eV and span the electrochemical potential range of the oxygen redox couple, which varies with pH according to the Nernst equation. Adjusting the pH of the water from 4 to 12 allowed us to change the redox potential energy from -5.42eV to -4.95eV, changing the surface charge and the associated screening charge and modulating the pull-off force. This work has relevance to AFM of many materials in air, and to contact electrification, mechanical friction, and nanoscale corona discharges.

  7. Controlling the electric charge of gold nanoplatelets on an insulator by field emission nc-AFM

    NASA Astrophysics Data System (ADS)

    Baris, Bulent; Alchaar, Mohanad; Prasad, Janak; Gauthier, Sébastien; Dujardin, Erik; Martrou, David

    2018-03-01

    Charging of 2D Au nanoplatelets deposited on an insulating SiO2 substrate to or from the tip of a non-contact atomic force microscope (nc-AFM) is demonstrated. Charge transfer is controlled by monitoring the resonance frequency shift Δf(V) during the bias voltage ramp V applied to the tip-back electrode junction. The onset of charge transfer is revealed by a transition from a capacitive parabolic behavior to a constant Δf(V) region for both polarities. An analytical model, based on charging by electron field emission, shows that the field-emitted current saturates shortly after the onset of the charging, due to the limiting effect of the charge-induced rise of the Au platelet potential. The value of this current plateau depends only on the rate of the bias voltage ramp and on the value of the platelet/SiO2/back electrode capacitance. This analysis is confirmed by numerical simulations based on a virtual nc-AFM model that faithfully matches the experimental data. Our charging protocol could be used to tune the potential of the platelets at the single charge level.

  8. Effects of deposition temperatures on structure and physical properties of Cd 1-xZn xTe films prepared by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zeng, Dongmei; Jie, Wanqi; Zhou, Hai; Yang, Yingge

    2010-02-01

    Cd 1-xZn xTe films were deposited by RF magnetron sputtering from Cd 0.9Zn 0.1Te crystals target at different substrate temperatures (100-400 °C). The effects of the deposition temperature on structure and physical properties of Cd 1-xZn xTe films have been studied using X-ray diffraction (XRD), step profilometer, atomic force microscopy (AFM), ultraviolet spectrophotometer and Hall effect measurements. X-ray studies suggest that the deposited films were polycrystalline with preferential (1 1 1) orientation. AFM micrographs show that the grain size was changed from 50 to 250 nm with the increase of deposition temperatures, the increased grain size may result from kinetic factors during sputtering growth. The optical transmission data indicate that shallow absorption edge occurs in the range of 744-835 nm and that the optical absorption coefficient is varied with the increase of deposition temperatures. In Hall Effect measurements, the sheet resistivities of the deposited films are 3.2×10 8, 3.0×10 8, 1.9×10 8 and 1.1×10 8 Ohm/sq, which were decreased with the increase of substrate temperatures. Analysis of the resistivity of films depended on the substrate temperatures is discussed.

  9. Three-channel false colour AFM images for improved interpretation of complex surfaces: a study of filamentous cyanobacteria.

    PubMed

    Kurk, Toby; Adams, David G; Connell, Simon D; Thomson, Neil H

    2010-05-01

    Imaging signals derived from the atomic force microscope (AFM) are typically presented as separate adjacent images with greyscale or pseudo-colour palettes. We propose that information-rich false-colour composites are a useful means of presenting three-channel AFM image data. This method can aid the interpretation of complex surfaces and facilitate the perception of information that is convoluted across data channels. We illustrate this approach with images of filamentous cyanobacteria imaged in air and under aqueous buffer, using both deflection-modulation (contact) mode and amplitude-modulation (tapping) mode. Topography-dependent contrast in the error and tertiary signals aids the interpretation of the topography signal by contributing additional data, resulting in a more detailed image, and by showing variations in the probe-surface interaction. Moreover, topography-independent contrast and topography-dependent contrast in the tertiary data image (phase or friction) can be distinguished more easily as a consequence of the three dimensional colour-space.

  10. AFM characterization of model nuclear fuel oxide multilayer structures modified by heavy ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Hawley, M. E.; Devlin, D. J.; Reichhardt, C. J.; Sickafus, K. E.; Usov, I. O.; Valdez, J. A.; Wang, Y. Q.

    2010-10-01

    This work explored a potential new model dispersion fuel form consisting of an actinide material embedded in a radiation tolerant matrix that captures fission products (FPs) and is easily separated chemically as waste from the fuel material. To understand the stability of this proposed dispersion fuel form design, an idealized model system composed of a multilayer film was studied. This system consisted of a tri-layer structure of an MgO layer sandwiched between two HfO 2 layers. HfO 2 served as a surrogate fissile material for UO 2 while MgO represented a stable, fissile product (FP) getter that is easily separated from the fissile material. This type of multilayer film structure allowed us to control the size of and spacing between each layer. The films were grown at room temperature by e-beam deposition on a Si(1 1 1) substrate and post-annealed annealing at a range of temperatures to crystallize the HfO 2 layers. The 550 °C annealed sample was subsequently irradiated with 10 MeV Au 3+ ions at a range of fluences from 5 × 10 13 to 3.74 × 10 16 ions/cm 2. Separate single layer constituent films and the substrate were also irradiated at 5 × 10 15 and 8 × 10 14 and 2 × 10 16, respectively. After annealing and irradiation, the samples were characterized using atomic force imaging techniques to determine local changes in microstructure and mechanical properties. All samples annealed above 550 °C cracked. From the AFM results we observed both crack healing and significant modification of the surface at higher fluences.

  11. Freezing Temperatures, Ice Nanotubes Structures, and Proton Ordering of TIP4P/ICE Water inside Single Wall Carbon Nanotubes.

    PubMed

    Pugliese, P; Conde, M M; Rovere, M; Gallo, P

    2017-11-16

    A very recent experimental paper importantly and unexpectedly showed that water in carbon nanotubes is already in the solid ordered phase at the temperature where bulk water boils. The water models used so far in literature for molecular dynamics simulations in carbon nanotubes show freezing temperatures lower than the experiments. We present here results from molecular dynamics simulations of water inside single walled carbon nanotubes using an extremely realistic model for both liquid and icy water, the TIP4P/ICE. The water behavior inside nanotubes of different diameters has been studied upon cooling along the isobars at ambient pressure starting from temperatures where water is in a liquid state. We studied the liquid/solid transition, and we observed freezing temperatures higher than in bulk water and that depend on the diameter of the nanotube. The maximum freezing temperature found is 390 K, which is in remarkable agreement with the recent experimental measurements. We have also analyzed the ice structure called "ice nanotube" that water forms inside the single walled carbon nanotubes when it freezes. The ice forms observed are in agreement with previous results obtained with different water models. A novel finding, a partial proton ordering, is evidenced in our ice nanotubes at finite temperature.

  12. Gum tragacanth stabilized green gold nanoparticles as cargos for Naringin loading: A morphological investigation through AFM.

    PubMed

    Rao, Komal; Imran, Muhammad; Jabri, Tooba; Ali, Imdad; Perveen, Samina; Shafiullah; Ahmed, Shakil; Shah, Muhammad Raza

    2017-10-15

    Gold nanoparticles (AuNPs) have attracted greater scientific interests for the construction of drugs loading cargos due to their biocompatibility, safety and facile surface modifications. This study deals with the fabrication of gum tragacanth (GT) green AuNPs as carrier for Naringin, a less water soluble therapeutic molecule. The optimized AuNPs were characterized through UV-vis spectroscopy, FT-IR and atomic force microscope (AFM). Naringin loaded nanoparticles were investigated for their bactericidal potentials using Tetrazolium Microplate assay. Morphological studies conducted via AFM revealed spherical shape for AuNPs with nano-range size and stabilized by GT multi-functional groups. The AuNPs acted as carrier for increased amount of Naringin. Upon loading in AuNPs, Naringin An increased in the bactericidal potentials of Naringin was observed after loading on AuNPs against various tested bacterial strains. This was further authenticated by the surface morphological analysis, showing enhanced membrane destabilizing effects of loaded Naringin. The results suggest that GT stabilized green AuNPs can act as effective delivery vehicles for enhancing bactericidal potentials of Naringin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Mechanical properties of in situ demineralised human enamel measured by AFM nanoindentation

    NASA Astrophysics Data System (ADS)

    Finke, Manuela; Hughes, Julie A.; Parker, David M.; Jandt, Klaus D.

    2001-10-01

    Diet-induced demineralisation is one of the key factors in surface changes of tooth enamel, with soft drinks being a significant etiological agent. The first step in this dissolution process is characterised by a change in the mechanical properties of the enamel and a roughening of the surface. The objective of this pilot study was to measure early stages of in situ induced hardness changes of polished human enamel surfaces with high accuracy using a nanoindenter attached to an atomic force microscope (AFM). Human unerupted third molars were cleaned, sterilised with sodium hypochlorite, sectioned and embedded in epoxy resin. The outer enamel surface was polished and the samples partly covered with a tape, allowing a 2-mm-wide zone to be exposed to the oral environment. Samples were fitted in an intra-oral appliance, which was worn from 9 a.m. to 5 p.m. for one day. During this time the volunteer sipped 250 ml of a drink over 10 min periods at 9.00, 11.00, 13.00 and 15.00 h. Three different drinks, mineral water, orange juice and the prototype of a blackcurrant drink with low demineralisation potential were used in this study. At the end of the experiment the samples were detached from the appliance, the tape removed and the surfaces chemically cleaned. The surface hardness and reduced Young's modulus of the exposed and unexposed areas of each sample were determined. In addition, high resolution topographical AFM images were obtained. This study shows that by determining the hardness and reduced Young's modulus, the difference in demineralisation caused by the drinks can be detected and quantified before statistically significant changes in surface topography could be observed with the AFM. The maximum decrease in surface hardness and Young's modulus occurred in the samples exposed to orange juice, followed by those exposed to the blackcurrant drink, while exposure to water led to the same values as unexposed areas. A one-way ANOVA showed a statistically significant

  14. High-temperature site preference and atomic short-range ordering characteristics of ternary alloying elements in γ'-Ni3Al intermetallics

    NASA Astrophysics Data System (ADS)

    Eriş, Rasim; Mekhrabov, Amdulla O.; Akdeniz, M. Vedat

    2017-10-01

    Remarkable high-temperature mechanical properties of nickel-based superalloys are correlated with the arrangement of ternary alloying elements in L12-type-ordered γ‧-Ni3Al intermetallics. In the current study, therefore, high-temperature site occupancy preference and energetic-structural characteristics of atomic short-range ordering (SRO) of ternary alloying X elements (X = Mo, W, Ta, Hf, Re, Ru, Pt or Co) in Ni75Al21.875X3.125 alloy systems have been studied by combining the statistico-thermodynamical theory of ordering and electronic theory of alloys in the pseudopotential approximation. Temperature dependence of site occupancy tendencies of alloying X element atoms has been predicted by calculating partial ordering energies and SRO parameters of Ni-Al, Ni-X and Al-X atomic pairs. It is shown that, all ternary alloying element atoms (except Pt) tend to occupy Al, whereas Pt atoms prefer to substitute for Ni sub-lattice sites of Ni3Al intermetallics. However, in contrast to other X elements, sub-lattice site occupancy characteristics of Re atoms appear to be both temperature- and composition-dependent. Theoretical calculations reveal that site occupancy preference of Re atoms switches from Al to both Ni and Al sites at critical temperatures, Tc, for Re > 2.35 at%. Distribution of Re atoms at both Ni and Al sub-lattice sites above Tc may lead to localised supersaturation of the parent Ni3Al phase and makes possible the formation of topologically close-packed (TCP) phases. The results of the current theoretical and simulation study are consistent with other theoretical and experimental investigations published in the literature.

  15. Temperature dependence of the magneto-controllable first-order phase transition in dilute magnetic fluids

    NASA Astrophysics Data System (ADS)

    Ivanov, A. S.

    2017-11-01

    Experimental study was carried out to investigate the influence of particle size distribution function on the temperature dependent magneto-controllable first-order phase transition of the "gas-liquid" type in magnetic fluids. The study resolves one crisis situation in ferrohydrodynamic experiment made by several research groups in the 1980-1990s. It is shown that due to polydispersity magnetic fluids exhibit phase diagrams which are divided into three regions by vaporus and liquidus curves. Granulometric data states the primary role of the width of the particle size distribution function in the process of spinodal decomposition. New modified Langevin parameter is introduced for unification of liquidus curves of different ferrofluids despite the significant difference between the curves (one order of magnitude) in (H, T) coordinates.

  16. Influence of interstitial Fe to the phase diagram of Fe1+yTe1-xSex single crystals

    NASA Astrophysics Data System (ADS)

    Sun, Yue; Yamada, Tatsuhiro; Pyon, Sunseng; Tamegai, Tsuyoshi

    2016-08-01

    Superconductivity (SC) with the suppression of long-range antiferromagnetic (AFM) order is observed in the parent compounds of both iron-based and cuprate superconductors. The AFM wave vectors are bicollinear (π, 0) in the parent compound FeTe different from the collinear AFM order (π, π) in most iron pnictides. Study of the phase diagram of Fe1+yTe1-xSex is the most direct way to investigate the competition between bicollinear AFM and SC. However, presence of interstitial Fe affects both magnetism and SC of Fe1+yTe1-xSex, which hinders the establishment of the real phase diagram. Here, we report the comparison of doping-temperature (x-T) phase diagrams for Fe1+yTe1-xSex (0 ≤ x ≤ 0.43) single crystals before and after removing interstitial Fe. Without interstitial Fe, the AFM state survives only for x < 0.05, and bulk SC emerges from x = 0.05, and does not coexist with the AFM state. The previously reported spin glass state, and the coexistence of AFM and SC may be originated from the effect of the interstitial Fe. The phase diagram of Fe1+yTe1-xSex is found to be similar to the case of the “1111” system such as LaFeAsO1-xFx, and is different from that of the “122” system.

  17. Increased Curie Temperature Induced by Orbital Ordering in La0.67Sr0.33MnO3/BaTiO3 Superlattices.

    PubMed

    Zhang, Fei; Wu, Biao; Zhou, Guowei; Quan, Zhi-Yong; Xu, Xiao-Hong

    2018-01-17

    Recent theoretical studies indicated that the Curie temperature of perovskite manganite thin films can be increased by more than an order of magnitude by applying appropriate interfacial strain to control orbital ordering. In this work, we demonstrate that the regular intercalation of BaTiO 3 layers between La 0.67 Sr 0.33 MnO 3 layers effectively enhances ferromagnetic order and increases the Curie temperature of La 0.67 Sr 0.33 MnO 3 /BaTiO 3 superlattices. The preferential orbital occupancy of e g (x 2 -y 2 ) in La 0.67 Sr 0.33 MnO 3 layers induced by the tensile strain of BaTiO 3 layers is identified by X-ray linear dichroism measurements. Our results reveal that controlling orbital ordering can effectively improve the Curie temperature of La 0.67 Sr 0.33 MnO 3 films and that in-plane orbital occupancy is beneficial to the double exchange ferromagnetic coupling of thin-film samples. These findings create new opportunities for the design and control of magnetism in artificial structures and pave the way to a variety of novel magnetoelectronic applications that operate far above room temperature.

  18. The performance of a reduced-order adaptive controller when used in multi-antenna hyperthermia treatments with nonlinear temperature-dependent perfusion.

    PubMed

    Cheng, Kung-Shan; Yuan, Yu; Li, Zhen; Stauffer, Paul R; Maccarini, Paolo; Joines, William T; Dewhirst, Mark W; Das, Shiva K

    2009-04-07

    In large multi-antenna systems, adaptive controllers can aid in steering the heat focus toward the tumor. However, the large number of sources can greatly increase the steering time. Additionally, controller performance can be degraded due to changes in tissue perfusion which vary non-linearly with temperature, as well as with time and spatial position. The current work investigates whether a reduced-order controller with the assumption of piecewise constant perfusion is robust to temperature-dependent perfusion and achieves steering in a shorter time than required by a full-order controller. The reduced-order controller assumes that the optimal heating setting lies in a subspace spanned by the best heating vectors (virtual sources) of an initial, approximate, patient model. An initial, approximate, reduced-order model is iteratively updated by the controller, using feedback thermal images, until convergence of the heat focus to the tumor. Numerical tests were conducted in a patient model with a right lower leg sarcoma, heated in a 10-antenna cylindrical mini-annual phased array applicator operating at 150 MHz. A half-Gaussian model was used to simulate temperature-dependent perfusion. Simulated magnetic resonance temperature images were used as feedback at each iteration step. Robustness was validated for the controller, starting from four approximate initial models: (1) a 'standard' constant perfusion lower leg model ('standard' implies a model that exactly models the patient with the exception that perfusion is considered constant, i.e., not temperature dependent), (2) a model with electrical and thermal tissue properties varied from 50% higher to 50% lower than the standard model, (3) a simplified constant perfusion pure-muscle lower leg model with +/-50% deviated properties and (4) a standard model with the tumor position in the leg shifted by 1.5 cm. Convergence to the desired focus of heating in the tumor was achieved for all four simulated models. The

  19. Electronic Transport through Self Assembled Thiol Molecules: Effect of Monolayer Order, Dynamics and Temperature

    NASA Technical Reports Server (NTRS)

    Dholakia, Geetha; Fan, Wendy; Meyyappan, M.

    2005-01-01

    We present the charge transport and tunneling conductance of self assembled organic thiol molecules and discuss the influence of order and dynamics in the monolayer on the transport behavior and the effect of temperature. Conjugated thiol molecular wires and organometals such as terpyridine metal complexes provide a new platform for molecular electronic devices and we study their self assembly on Au(111) substrates by the scanning tunneling microscope. Determining the organization of the molecule and the ability to control the nature of its interface with the substrate is important for reliable performance of the molecular electronic devices. By concurrent scanning tunneling microscopy and spectroscopy studies on SAMs formed from oligo (phenelyne ethynelyne) monolayers with and without molecular order, we show that packing and order determine the response of a self assembled monolayer (SAM) to competing interactions. Molecular resolution STM imaging in vacuum shows that the OPES adopt an imcommensurate SAM structure on Au(111) with a rectangular unit cell. Tunneling spectroscopic measurements were performed on the SAM as a function of junction resistance. STS results show that the I-Vs are non linear and asymmetric due to the inherent asymmetry in the molecular structure, with larger currents at negative sample biases. The asymmetry increases with increasing junction resistance due to the asymmetry in the coupling to the leads. This is brought out clearly in the differential conductance, which also shows a gap at the Fermi level. We also studied the effect of order and dynamics in the monolayer on the charge transport and found that competing forces between the electric field, intermolecular interactions, tip-molecule physisorption and substrate-molecule chemisorption impact the transport measurements and its reliability and that the presence of molecular order is very important for reproducible transport measurements. Thus while developing new electronic platforms

  20. Comparisons of the topographic characteristics and electrical charge distributions among Babesia-infected erythrocytes and extraerythrocytic merozoites using AFM

    USDA-ARS?s Scientific Manuscript database

    Tick-borne Babesia parasites are responsible for costly diseases worldwide. Improved control and prevention tools are urgently needed, but development of such tools is limited by numerous gaps in knowledge of the parasite-host relationships. We hereby used atomic force microscopy (AFM) and Kelvin pr...

  1. Anomalous temperature dependence of training effect in specular spin valve using ultrathin Cr2O3-nano-oxide layer with magnetoelectric effect

    NASA Astrophysics Data System (ADS)

    Sawada, Kazuya; Shimomura, Naoki; Doi, Masaaki; Sahashi, Masashi

    2010-05-01

    Exchange bias from antiferromagnetic (AFM) oxides with a magnetoelectric (ME) effect has been studied for controlling ferromagnetic (FM) magnetizations by an applying electric field. However, thick ME oxides are needed for realizing the electrically controlled exchange biasing. Therefore, in this study the temperature dependencies of the training effect for the Cr2O3-nano-oxide-layer (NOL) are investigated for confirming the ME effect of the Cr2O3-NOL. The anomalous temperature tendencies of system dependent constant for exchange bias and magnetoresistance (MR), κHex and κMR, were observed, which are probably originated from the ME effect of the Cr2O3-NOL because (1) these anomalous temperature tendencies could not be obtained in the CoO-NOL spin valve and (2) the κHex and κMR are defined as the strength of the coupling between FM and AFM spins. It is remarkable result for us to confirm the possibility of the ME effect from the ultrathin Cr2O3 layer (less than 1 nm) because the ME effect was observed in only thick ME materials.

  2. Advanced Compatibility Characterization Of AF-M315E With Spacecraft Propulsion System Materials Project

    NASA Technical Reports Server (NTRS)

    McClure, Mark B.; Greene, Benjamin

    2014-01-01

    All spacecraft require propulsion systems for thrust and maneuvering. Propulsion systems can be chemical, nuclear, electrical, cold gas or combinations thereof. Chemical propulsion has proven to be the most reliable technology since the deployment of launch vehicles. Performance, storability, and handling are three important aspects of liquid chemical propulsion. Bipropellant systems require a fuel and an oxidizer for propulsion, but monopropellants only require a fuel and a catalyst for propulsion and are therefore simpler and lighter. Hydrazine is the state of the art propellant for monopropellant systems, but has drawbacks because it is highly hazardous to human health, which requires extensive care in handling, complex ground ops due to safety and environmental considerations, and lengthy turnaround times for reusable spacecraft. All users of hydrazine monopropellant must contend with these issues and their associated costs. The development of a new monopropellant, intended to replace hydrazine, has been in progress for years. This project will apply advanced techniques to characterize the engineering properties of materials used in AF-M315E propulsion systems after propellant exposure. AF-M315E monopropellant has been selected HQ's Green Propellant Infusion Mission (GPIM) to replace toxic hydrazine for improved performance and reduce safety and health issues that will shorten reusable spacecraft turn-around time. In addition, this project will fundamentally strengthen JSC's core competency to evaluate, use and infuse liquid propellant systems.

  3. In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes.

    PubMed

    Yu, W Q; Zhang, Y L; Jiang, X Q; Zhang, F Q

    2010-10-01

    Titanium oxide nanotube layers by anodization have excellent potential for dental implants because of good bone cell promotion. It is necessary to evaluate osteoblast behavior on different annealing temperature titania nanotubes for actual implant designs.  Scanning Electron Microscopy, X-Ray polycrystalline Diffractometer (XRD), X-ray photoelectron Spectroscope, and Atomic Force Microscopy (AFM) were used to characterize the different annealing temperature titania nanotubes. Confocal laser scanning microscopy, MTT, and Alizarin Red-S staining were used to evaluate the MC3T3-E1 preosteoblast behavior on different annealing temperature nanotubes.  The tubular morphology was constant when annealed at 450°C and 550°C, but collapsed when annealed at 650°C. XRD exhibited the crystal form of nanotubes after formation (amorphous), after annealing at 450°C (anatase), and after annealing at 550°C (anatase/rutile). Annealing led to the complete loss of fluorine on nanotubes at 550°C. Average surface roughness of different annealing temperature nanotubes showed no difference by AFM analysis. The proliferation and mineralization of preostoblasts cultured on anatase or anatase/rutile nanotube layers were shown to be significantly higher than smooth, amorphous nanotube layers.  Annealing can change the crystal form and composition of nanotubes. The nanotubes after annealing can promote osteoblast proliferation and mineralization in vitro. © 2010 John Wiley & Sons A/S.

  4. Using AFM to probe the complexation of DNA with anionic lipids mediated by Ca(2+): the role of surface pressure.

    PubMed

    Luque-Caballero, Germán; Martín-Molina, Alberto; Sánchez-Treviño, Alda Yadira; Rodríguez-Valverde, Miguel A; Cabrerizo-Vílchez, Miguel A; Maldonado-Valderrama, Julia

    2014-04-28

    Complexation of DNA with lipids is currently being developed as an alternative to classical vectors based on viruses. Most of the research to date focuses on cationic lipids owing to their spontaneous complexation with DNA. Nonetheless, recent investigations have revealed that cationic lipids induce a large number of adverse effects on DNA delivery. Precisely, the lower cytotoxicity of anionic lipids accounts for their use as a promising alternative. However, the complexation of DNA with anionic lipids (mediated by cations) is still in early stages and is not yet well understood. In order to explore the molecular mechanisms underlying the complexation of anionic lipids and DNA we proposed a combined methodology based on the surface pressure-area isotherms, Gibbs elasticity and Atomic Force Microscopy (AFM). These techniques allow elucidation of the role of the surface pressure in the complexation and visualization of the interfacial aggregates for the first time. We demonstrate that the DNA complexes with negatively charged model monolayers (DPPC/DPPS 4 : 1) only in the presence of Ca(2+), but is expelled at very high surface pressures. Also, according to the Gibbs elasticity plot, the complexation of lipids and DNA implies a whole fluidisation of the monolayer and a completely different phase transition map in the presence of DNA and Ca(2+). AFM imaging allows identification for the first time of specific morphologies associated with different packing densities. At low surface coverage, a branched net like structure is observed whereas at high surface pressure fibers formed of interfacial aggregates appear. In summary, Ca(2+) mediates the interaction between DNA and negatively charged lipids and also the conformation of the ternary system depends on the surface pressure. Such observations are important new generic features of the interaction between DNA and anionic lipids.

  5. Anomalous pressure dependence of magnetic ordering temperature in Tb revealed by resistivity measurements to 141 GPa. Comparison with Gd and Dy

    DOE PAGES

    Lim, J.; Fabbris, G.; Haskel, D.; ...

    2015-05-26

    In previous studies the pressure dependence of the magnetic ordering temperature T o of Dy was found to exhibit a sharp increase above its volume collapse pressure of 73 GPa, appearing to reach temperatures well above ambient at 157 GPa. In a search for a second such lanthanide, electrical resistivity measurements were carried out on neighboring Tb to 141 GPa over the temperature range 3.8 - 295 K. Below Tb’s volume collapse pressure of 53 GPa, the pressure dependence T o(P) mirrors that of both Dy and Gd. However, at higher pressures T o(P) for Tb becomes highly anomalous. Thismore » result, together with the very strong suppression of superconductivity by dilute Tb ions in Y, suggests that extreme pressure transports Tb into an unconventional magnetic state with an anomalously high magnetic ordering temperature.« less

  6. Improvement of the Correlative AFM and ToF-SIMS Approach Using an Empirical Sputter Model for 3D Chemical Characterization.

    PubMed

    Terlier, T; Lee, J; Lee, K; Lee, Y

    2018-02-06

    Technological progress has spurred the development of increasingly sophisticated analytical devices. The full characterization of structures in terms of sample volume and composition is now highly complex. Here, a highly improved solution for 3D characterization of samples, based on an advanced method for 3D data correction, is proposed. Traditionally, secondary ion mass spectrometry (SIMS) provides the chemical distribution of sample surfaces. Combining successive sputtering with 2D surface projections enables a 3D volume rendering to be generated. However, surface topography can distort the volume rendering by necessitating the projection of a nonflat surface onto a planar image. Moreover, the sputtering is highly dependent on the probed material. Local variation of composition affects the sputter yield and the beam-induced roughness, which in turn alters the 3D render. To circumvent these drawbacks, the correlation of atomic force microscopy (AFM) with SIMS has been proposed in previous studies as a solution for the 3D chemical characterization. To extend the applicability of this approach, we have developed a methodology using AFM-time-of-flight (ToF)-SIMS combined with an empirical sputter model, "dynamic-model-based volume correction", to universally correct 3D structures. First, the simulation of 3D structures highlighted the great advantages of this new approach compared with classical methods. Then, we explored the applicability of this new correction to two types of samples, a patterned metallic multilayer and a diblock copolymer film presenting surface asperities. In both cases, the dynamic-model-based volume correction produced an accurate 3D reconstruction of the sample volume and composition. The combination of AFM-SIMS with the dynamic-model-based volume correction improves the understanding of the surface characteristics. Beyond the useful 3D chemical information provided by dynamic-model-based volume correction, the approach permits us to enhance

  7. Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM

    NASA Astrophysics Data System (ADS)

    Alsteens, David; Dupres, Vincent; McEvoy, Kevin; Wildling, Linda; Gruber, Hermann J.; Dufrêne, Yves F.

    2008-09-01

    Although the chemical composition of yeast cell walls is known, the organization, assembly, and interactions of the various macromolecules remain poorly understood. Here, we used in situ atomic force microscopy (AFM) in three different modes to probe the ultrastructure, cell wall elasticity and polymer properties of two brewing yeast strains, i.e. Saccharomyces carlsbergensis and S. cerevisiae. Topographic images of the two strains revealed smooth and homogeneous cell surfaces, and the presence of circular bud scars on dividing cells. Nanomechanical measurements demonstrated that the cell wall elasticity of S. carlsbergensis is homogeneous. By contrast, the bud scar of S. cerevisiae was found to be stiffer than the cell wall, presumably due to the accumulation of chitin. Notably, single molecule force spectroscopy with lectin-modified tips revealed major differences in polysaccharide properties of the two strains. Polysaccharides were clearly more extended on S. cerevisiae, suggesting that not only oligosaccharides, but also polypeptide chains of the mannoproteins were stretched. Consistent with earlier cell surface analyses, these findings may explain the very different aggregation properties of the two organisms. This study demonstrates the power of using multiple complementary AFM modalities for probing the organization and interactions of the various macromolecules of microbial cell walls.

  8. Point defects in Cu 2ZnSnSe 4(CZTSe): Resonant X-ray diffraction study of the low-temperature order/disorder transition

    DOE PAGES

    Schelhas, L. T.; Stone, K. H.; Harvey, S. P.; ...

    2017-07-25

    We report that the interest in Cu 2ZnSn(S,Se) 4 (CZTS) for photovoltaic applications is motivated by similarities to Cu(In,Ga)Se 2 while being comprised of non-toxic and earth abundant elements. However, CZTS suffers from a V oc deficit, where the V oc is much lower than expected based on the band gap, which may be the result of a high concentration of point-defects in the CZTS lattice. Recently, reports have observed a low-temperature order/disorder transition by Raman and optical spectroscopies in CZTS films and is reported to describe the ordering of Cu and Zn atoms in the CZTS crystal structure. Tomore » directly determine the level of Cu/Zn ordering, we have used resonant-XRD, a site, and element specific probe of long range order. We used CZTSe films annealed just below and quenched from just above the transition temperature; based on previous work, the Cu and Zn should be ordered and highly disordered, respectively. Our data show that there is some Cu/Zn ordering near the low temperature transition but significantly less than high chemical order expected from Raman. Finally, to understand both our resonant-XRD results and the Raman results, we present a structural model that involves antiphase domain boundaries and accommodates the excess Zn within the CZTS lattice.« less

  9. Quantitative measurements of intercellular adhesion between a macrophage and cancer cells using a cup-attached AFM chip.

    PubMed

    Kim, Hyonchol; Yamagishi, Ayana; Imaizumi, Miku; Onomura, Yui; Nagasaki, Akira; Miyagi, Yohei; Okada, Tomoko; Nakamura, Chikashi

    2017-07-01

    Intercellular adhesion between a macrophage and cancer cells was quantitatively measured using atomic force microscopy (AFM). Cup-shaped metal hemispheres were fabricated using polystyrene particles as a template, and a cup was attached to the apex of the AFM cantilever. The cup-attached AFM chip (cup-chip) approached a murine macrophage cell (J774.2), the cell was captured on the inner concave of the cup, and picked up by withdrawing the cup-chip from the substrate. The cell-attached chip was advanced towards a murine breast cancer cell (FP10SC2), and intercellular adhesion between the two cells was quantitatively measured. To compare cell adhesion strength, the work required to separate two adhered cells (separation work) was used as a parameter. Separation work was almost 2-fold larger between a J774.2 cell and FP10SC2 cell than between J774.2 cell and three additional different cancer cells (4T1E, MAT-LyLu, and U-2OS), two FP10SC2 cells, or two J774.2 cells. FP10SC2 was established from 4T1E as a highly metastatic cell line, indicates separation work increased as the malignancy of cancer cells became higher. One possible explanation of the strong adhesion of macrophages to cancer cells observed in this study is that the measurement condition mimicked the microenvironment of tumor-associated macrophages (TAMs) in vivo, and J774.2 cells strongly expressed CD204, which is a marker of TAMs. The results of the present study, which were obtained by measuring cell adhesion strength quantitatively, indicate that the fabricated cup-chip is a useful tool for measuring intercellular adhesion easily and quantitatively. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Single cell adhesion force measurement for cell viability identification using an AFM cantilever-based micro putter

    NASA Astrophysics Data System (ADS)

    Shen, Yajing; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Kojima, Masaru; Fukuda, Toshio

    2011-11-01

    Fast and sensitive cell viability identification is a key point for single cell analysis. To address this issue, this paper reports a novel single cell viability identification method based on the measurement of single cell shear adhesion force using an atomic force microscopy (AFM) cantilever-based micro putter. Viable and nonviable yeast cells are prepared and put onto three kinds of substrate surfaces, i.e. tungsten probe, gold and ITO substrate surfaces. A micro putter is fabricated from the AFM cantilever by focused ion beam etching technique. The spring constant of the micro putter is calibrated using the nanomanipulation approach. The shear adhesion force between the single viable or nonviable cell and each substrate is measured using the micro putter based on the nanorobotic manipulation system inside an environmental scanning electron microscope. The adhesion force is calculated based on the deflection of the micro putter beam. The results show that the adhesion force of the viable cell to the substrate is much larger than that of the nonviable cell. This identification method is label free, fast, sensitive and can give quantitative results at the single cell level.

  11. Observation of giant exchange bias in bulk Mn50Ni42Sn8 Heusler alloy

    NASA Astrophysics Data System (ADS)

    Sharma, Jyoti; Suresh, K. G.

    2015-02-01

    We report a giant exchange bias (EB) field of 3520 Oe in bulk Mn50Ni42Sn8 Heusler alloy. The low temperature magnetic state of the martensite phase has been studied by DC magnetization and AC susceptibility measurements. Frequency dependence of spin freezing temperature (Tf) on critical slowing down relation and observation of memory effect in zero field cooling mode confirms the super spin glass (SSG) phase at low temperatures. Large EB is attributed to the strong exchange coupling between the SSG clusters formed by small regions of ferromagnetic order embedded in an antiferromagnetic (AFM) matrix. The temperature and cooling field dependence of EB have been studied and related to the change in unidirectional anisotropy at SSG/AFM interface. The training effect also corroborates with the presence of frozen (SSG) moments at the interface and their role in EB.

  12. Influence of growth temperature on laser molecular beam epitaxy and properties of GaN layers grown on c-plane sapphire

    NASA Astrophysics Data System (ADS)

    Dixit, Ripudaman; Tyagi, Prashant; Kushvaha, Sunil Singh; Chockalingam, Sreekumar; Yadav, Brajesh Singh; Sharma, Nita Dilawar; Kumar, M. Senthil

    2017-04-01

    We have investigated the influence of growth temperature on the in-plane strain, structural, optical and mechanical properties of heteroepitaxially grown GaN layers on sapphire (0001) substrate by laser molecular beam epitaxy (LMBE) technique in the temperature range 500-700 °C. The GaN epitaxial layers are found to have a large in-plane compressive stress of about 1 GPa for low growth temperatures but the strain drastically reduced in the layer grown at 700 °C. The nature of the in-plane strain has been analyzed using high resolution x-ray diffraction, atomic force microscopy (AFM), Raman spectroscopy and photoluminescence (PL) measurements. From AFM, a change in GaN growth mode from grain to island is observed at the high growth temperature above 600 °C. A blue shift of 20-30 meV in near band edge PL emission line has been noticed for the GaN layers containing the large in-plane strain. These observations indicate that the in-plane strain in the GaN layers is dominated by a biaxial strain. Using nanoindentation, it is found that the indentation hardness and Young's modulus of the GaN layers increases with increasing growth temperature. The results disclose the critical role of growth mode in determining the in-plane strain and mechanical properties of the GaN layers grown by LMBE technique.

  13. Improving the lateral resolution of quartz tuning fork-based sensors in liquid by integrating commercial AFM tips into the fiber end.

    PubMed

    Gonzalez, Laura; Martínez-Martín, David; Otero, Jorge; de Pablo, Pedro José; Puig-Vidal, Manel; Gómez-Herrero, Julio

    2015-01-14

    The use of quartz tuning fork sensors as probes for scanning probe microscopy is growing in popularity. Working in shear mode, some methods achieve a lateral resolution comparable with that obtained with standard cantilevered probes, but only in experiments conducted in air or vacuum. Here, we report a method to produce and use commercial AFM tips in electrically driven quartz tuning fork sensors operating in shear mode in a liquid environment. The process is based on attaching a standard AFM tip to the end of a fiber probe which has previously been sharpened. Only the end of the probe is immersed in the buffer solution during imaging. The lateral resolution achieved is about 6 times higher than that of the etched microfiber on its own.

  14. Applying AFM-based nanofabrication for measuring the thickness of nanopatterns: the role of head groups in the vertical self-assembly of omega-functionalized n-alkanethiols.

    PubMed

    Kelley, Algernon T; Ngunjiri, Johnpeter N; Serem, Wilson K; Lawrence, Steve O; Yu, Jing-Jiang; Crowe, William E; Garno, Jayne C

    2010-03-02

    Molecules of n-alkanethiols with methyl head groups typically form well-ordered monolayers during solution self-assembly for a wide range of experimental conditions. However, we have consistently observed that, for either carboxylic acid or thiol-terminated n-alkanethiols, under certain conditions nanografted patterns are generated with a thickness corresponding precisely to a double layer. To investigate the role of head groups for solution self-assembly, designed patterns of omega-functionalized n-alkanethiols were nanografted with systematic changes in concentration. Nanografting is an in situ approach for writing patterns of thiolated molecules on gold surfaces by scanning with an AFM tip under high force, accomplished in dilute solutions of desired ink molecules. As the tip is scanned across the surface of a self-assembled monolayer under force, the matrix molecules are displaced from the surface and are immediately replaced with fresh molecules from solution to generate nanopatterns. In this report, side-by-side comparison of nanografted patterns is achieved for different matrix molecules using AFM images. The chain length and head groups (i.e., carboxyl, hydroxyl, methyl, thiol) were varied for the nanopatterns and matrix monolayers. Interactions such as head-to-head dimerization affect the vertical self-assembly of omega-functionalized n-alkanethiol molecules within nanografted patterns. At certain threshold concentrations, double layers were observed to form when nanografting with head groups of carboxylic acid and dithiols, whereas single layers were generated exclusively for nanografted patterns with methyl and hydroxyl groups, regardless of changes in concentration.

  15. Temperature dependent photoluminescence and micromapping of multiple stacks InAs quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ming, E-mail: ming.xu@lgep.supelec.fr; Jaffré, Alexandre, E-mail: ming.xu@lgep.supelec.fr; Alvarez, José, E-mail: ming.xu@lgep.supelec.fr

    2015-02-27

    We utilized temperature dependent photoluminescence (PL) techniques to investigate 1, 3 and 5 stack InGaAs quantum dots (QDs) grown on cross-hatch patterns. PL mapping can well reproduce the QDs distribution as AFM and position dependency of QD growth. It is possible to observe crystallographic dependent PL. The temperature dependent spectra exhibit the QDs energy distribution which reflects the size and shape. The inter-dot carrier coupling effect is observed and translated as a red shift of 120mV on the [1–10] direction peak is observed at 30K on 1 stack with regards to 3 stacks samples, which is assigned to lateral coupling.

  16. In situ AFM investigation of electrochemically induced surface-initiated atom-transfer radical polymerization.

    PubMed

    Li, Bin; Yu, Bo; Zhou, Feng

    2013-02-12

    Electrochemically induced surface-initiated atom-transfer radical polymerization is traced by in situ AFM technology for the first time, which allows visualization of the polymer growth process. It affords a fundamental insight into the surface morphology and growth mechanism simultaneously. Using this technique, the polymerization kinetics of two model monomers were studied, namely the anionic 3-sulfopropyl methacrylate potassium salt (SPMA) and the cationic 2-(metharyloyloxy)ethyltrimethylammonium chloride (METAC). The growth of METAC is significantly improved by screening the ammonium cations by the addition of ionic liquid electrolyte in aqueous solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Optical imaging beyond the diffraction limit by SNEM: effects of AFM tip modifications with thiol monolayers on imaging quality.

    PubMed

    Cumurcu, Aysegul; Diaz, Jordi; Lindsay, Ian D; de Beer, Sissi; Duvigneau, Joost; Schön, Peter; Julius Vancso, G

    2015-03-01

    Tip-enhanced nanoscale optical imaging techniques such as apertureless scanning near-field optical microscopy (a-SNOM) and scanning near-field ellipsometric microscopy (SNEM) applications can suffer from a steady degradation in performance due to adhesion of atmospheric contaminants to the metal coated tip. Here, we demonstrate that a self-assembled monolayer (SAM) of ethanethiol (EtSH) is an effective means of protecting gold-coated atomic force microscopy (AFM) probe tips from accumulation of surface contaminants during prolonged exposure to ambient air. The period over which they yield consistent and reproducible results for scanning near-field ellipsometric microscopy (SNEM) imaging is thus extended. SNEM optical images of a microphase separated polystyrene-block-poly (methylmethacrylate) (PS-b-PMMA) diblock copolymer film, which were captured with bare and SAM-protected gold-coated AFM probes, both immediately after coating and following five days of storage in ambient air, were compared. During this period the intensity of the optical signals from the untreated gold tip fell by 66%, while those from the SAM protected tip fell by 14%. Additionally, gold coated AFM probe tips were modified with various lengths of alkanethiols to measure the change in intensity variation in the optical images with SAM layer thickness. The experimental results were compared to point dipole model calculations. While a SAM of 1-dodecanethiol (DoSH) was found to strongly suppress field enhancement we find that it can be locally removed from the tip apex by deforming the molecules under load, restoring SNEM image contrast. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Changes in surface characteristics of two different resin composites after 1 year water storage: An SEM and AFM study.

    PubMed

    Tekçe, Neslihan; Pala, Kansad; Demirci, Mustafa; Tuncer, Safa

    2016-11-01

    To evaluate changes in surface characteristics of two different resin composites after 1 year of water storage using a profilometer, Vickers hardness, scanning electron microscopy (SEM), and atomic force microscopy (AFM). A total of 46 composite disk specimens (10 mm in diameter and 2 mm thick) were fabricated using Clearfil Majesty Esthetic and Clearfil Majesty Posterior (Kuraray Medical Co, Tokyo, Japan). Ten specimens from each composite were used for surface roughness and microhardness tests (n = 10). For each composite, scanning electron microscope (SEM, n = 2) and atomic force microscope (AFM, n = 1) images were obtained after 24 h and 1 year of water storage. The data were analyzed using two-way analysis of variance and a post-hoc Bonferroni test. Microhardness values of Clearfil Majesty Esthetic decreased significantly (78.15-63.74, p = 0.015) and surface roughness values did not change after 1 year of water storage (0.36-0.39, p = 0.464). Clearfil Majesty Posterior microhardness values were quite stable (138.74-137.25, p = 0.784), and surface roughness values increased significantly (0.39-0.48, p = 0.028) over 1 year. One year of water storage caused microhardness values for Clearfil Majesty Esthetic to decrease and the surface roughness of Clearfil Majesty Posterior increased. AFM and SEM images demonstrated surface detoration of the materials after 1 year and ensured similar results with the quantitative test methods. SCANNING 38:694-700, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  19. Evidence for strong enhancement of the magnetic ordering temperature of trivalent Nd metal under extreme pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, J.; Bi, W.; Haskel, D.

    Four-point electrical resistivity measurements were carried out on Nd metal and dilute magnetic alloys containing up to 1 at.% Nd in superconducting Y for temperatures 1.5-295 K under pressures to 210 GPa. The magnetic ordering temperature To of Nd appears to rise steeply under pressure, increasing ninefold to 180 K at 70 GPa before falling rapidly. Y( Nd) alloys display both a resistivity minimum and superconducting pair breaking Delta T-c as large as 38 K/at.% Nd. The present results give evidence that for pressures above 30-40 GPa, the exchange coupling J between Nd ions and conduction electrons becomes negative, thusmore » activating Kondo physics in this highly correlated electron system. The rise and fall of T-o and Delta T-c with pressure can be accounted for in terms of an increase in the Kondo temperature.« less

  20. Study of thermal-field emission properties and investigation of temperature dependent noise in the field emission current from vertical carbon nanotube emitters

    NASA Astrophysics Data System (ADS)

    Kolekar, Sadhu; Patole, S. P.; Patil, Sumati; Yoo, J. B.; Dharmadhikari, C. V.

    2017-10-01

    We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well-defined cathode surface is given by Millikan and Lauritsen [1] for the combination of temperature and electric field effect. The same expression has been used to explain the electron emission characteristics from vertical CNT emitters. Furthermore, this has been applied to explain the electron emission for different temperatures ranging from room temperature to 1500 K. The real-time field electron emission images at room temperature and 1500 K are recorded by using Charge Coupled Device (CCD) in order to understand the effect of temperature on distribution of electron emission spots and ring like structures in Field Emission Microscope (FEM) image. The FEM images could be used to calculate the total number of emitters per cm2 for electron emission. The calculated number of emitters per cm2 from FEM image is typically, 4.5 × 107 and the actual number emitters per cm2 present as per Atomic Force Microscopy (AFM) data is 1.2 × 1012. The measured Current-Voltage (I-V) characteristics exhibit non linear Folwer-Nordheim (F-N) type behavior. The fluctuations in the emission current were recorded at different temperatures and Fast Fourier transformed into temperature dependent power spectral density. The latter was found to obey power law relation S(f) = A(Iδ/fξ), where δ and ξ are temperature dependent current and frequency exponents respectively.

  1. High-order scheme for the source-sink term in a one-dimensional water temperature model

    PubMed Central

    Jing, Zheng; Kang, Ling

    2017-01-01

    The source-sink term in water temperature models represents the net heat absorbed or released by a water system. This term is very important because it accounts for solar radiation that can significantly affect water temperature, especially in lakes. However, existing numerical methods for discretizing the source-sink term are very simplistic, causing significant deviations between simulation results and measured data. To address this problem, we present a numerical method specific to the source-sink term. A vertical one-dimensional heat conduction equation was chosen to describe water temperature changes. A two-step operator-splitting method was adopted as the numerical solution. In the first step, using the undetermined coefficient method, a high-order scheme was adopted for discretizing the source-sink term. In the second step, the diffusion term was discretized using the Crank-Nicolson scheme. The effectiveness and capability of the numerical method was assessed by performing numerical tests. Then, the proposed numerical method was applied to a simulation of Guozheng Lake (located in central China). The modeling results were in an excellent agreement with measured data. PMID:28264005

  2. High-order scheme for the source-sink term in a one-dimensional water temperature model.

    PubMed

    Jing, Zheng; Kang, Ling

    2017-01-01

    The source-sink term in water temperature models represents the net heat absorbed or released by a water system. This term is very important because it accounts for solar radiation that can significantly affect water temperature, especially in lakes. However, existing numerical methods for discretizing the source-sink term are very simplistic, causing significant deviations between simulation results and measured data. To address this problem, we present a numerical method specific to the source-sink term. A vertical one-dimensional heat conduction equation was chosen to describe water temperature changes. A two-step operator-splitting method was adopted as the numerical solution. In the first step, using the undetermined coefficient method, a high-order scheme was adopted for discretizing the source-sink term. In the second step, the diffusion term was discretized using the Crank-Nicolson scheme. The effectiveness and capability of the numerical method was assessed by performing numerical tests. Then, the proposed numerical method was applied to a simulation of Guozheng Lake (located in central China). The modeling results were in an excellent agreement with measured data.

  3. Elastic modulus of nanomaterials: resonant contact-AFM measurement and reduced-size effects (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Nysten, Bernard; Fretigny, Christian; Cuenot, Stephane

    2005-05-01

    Resonant contact atomic force microscopy (resonant C-AFM) is used to quantitatively measure the elastic modulus of polymer nanotubes and metallic nanowires. To achieve this, an oscillating electric field is applied between the sample holder and the microscope head to excite the oscillation of the cantilever in contact with the nanostructures suspended over the pores of a membrane. The resonance frequency of the cantilever with the tip in contact with a nanostructure is shifted to higher values with respect to the resonance frequency of the free cantilever. It is demonstrated that the system can simply be modeled by a cantilever with the tip in contact with two springs. The measurement of the frequency shift enables the direct determination of the spring stiffness, i.e. the nanowires or nanotube stiffness. The method also enables the determination of the boundary conditions of the nanobeam on the membrane. The tensile elastic modulus is then simply determined using the classical theory of beam deflection. The obtained results for the larger nanostructures fairly agree to the values reported in the literature for the macroscopic elastic modulus of the corresponding materials. The measured modulus of the nanomaterials with smaller diameters is significantly higher than that of the larger ones. The increase of the apparent elastic modulus for the smaller diameters is attributed to the surface tension effects. It is thus demonstrated that resonant C-AFM enables the measurement of the elastic modulus and of the surface tension of nanomaterials.

  4. Distinguishing Nanobubbles from Nanodroplets with AFM: The Influence of Vertical and Lateral Imaging Forces.

    PubMed

    An, Hongjie; Tan, Beng Hau; Ohl, Claus-Dieter

    2016-12-06

    The widespread application of surface-attached nanobubbles and nanodroplets in biomedical engineering and nanotechnology is limited by numerous experimental challenges, in particular, the possibility of contamination in nucleation experiments. These challenges are complicated by recent reports that it can be difficult to distinguish between nanoscale drops and bubbles. Here we identify clear differences in the mechanical responses of nanobubbles and nanodroplets under various modes of AFM imaging that subject the objects to predominantly vertical or lateral forces. This allows us to distinguish among nanodroplets, nanobubbles, and oil-covered nanobubbles in water.

  5. The coupled effects of environmental composition, temperature and contact size-scale on the tribology of molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Khare, Harmandeep S.

    combination of both surface adsorption and diffusion into the coating subsurface. Thermally activated desiccation effectively dries the bulk of the coating, yielding low values of friction coefficient even at ambient humidity and temperature. Friction of MoS2 decreases with increasing temperature between 25°C and 100°C in the presence of environmental water and increases in the presence of oxygen alone. At temperatures greater than 100°C, friction generally increases with temperature only in the presence of environmental oxygen; at these elevated temperatures, friction decreases with increasing humidity. The transition from room-temperature increase to elevated-temperature decrease in friction with increasing humidity is found to be a strong function of the contact history as well as coating microstructure. Lastly, the contribution of nanoscale tribofilms to macroscale friction was studied through nanotribometry. Friction measured on the worn MoS2 coating with a nano-scale AFM probe showed direct and quantifiable evidence of sliding-induced surface modification of MoS2; friction measured on the perfectly ordered single crystal MoS2 was nearly an order of magnitude lower than friction on worn MoS2. Although friction coefficients measured with a nanoscale probe showed high surface sensitivity, micron-sized AFM probes gave friction coefficients similar to those obtained in the macroscale, suggesting the formation of surface films in-situ during sliding with the colloidal probe. A reduction in friction is observed after annealing for both the nanoscale and microscale probes, suggesting a strong overriding effect of the desiccated bulk over surface adsorption in driving the friction response at these length-scales.

  6. On-board monitoring of 2-D spatially-resolved temperatures in cylindrical lithium-ion batteries: Part I. Low-order thermal modelling

    NASA Astrophysics Data System (ADS)

    Richardson, Robert R.; Zhao, Shi; Howey, David A.

    2016-09-01

    Estimating the temperature distribution within Li-ion batteries during operation is critical for safety and control purposes. Although existing control-oriented thermal models - such as thermal equivalent circuits (TEC) - are computationally efficient, they only predict average temperatures, and are unable to predict the spatially resolved temperature distribution throughout the cell. We present a low-order 2D thermal model of a cylindrical battery based on a Chebyshev spectral-Galerkin (SG) method, capable of predicting the full temperature distribution with a similar efficiency to a TEC. The model accounts for transient heat generation, anisotropic heat conduction, and non-homogeneous convection boundary conditions. The accuracy of the model is validated through comparison with finite element simulations, which show that the 2-D temperature field (r, z) of a large format (64 mm diameter) cell can be accurately modelled with as few as 4 states. Furthermore, the performance of the model for a range of Biot numbers is investigated via frequency analysis. For larger cells or highly transient thermal dynamics, the model order can be increased for improved accuracy. The incorporation of this model in a state estimation scheme with experimental validation against thermocouple measurements is presented in the companion contribution (http://www.sciencedirect.com/science/article/pii/S0378775316308163)

  7. Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helm, T.; Bachmann, M.; Moll, P.J.W.

    2017-03-23

    Electronic nematicity appears in proximity to unconventional high-temperature superconductivity in the cuprates and iron-arsenides, yet whether they cooperate or compete is widely discussed. While many parallels are drawn between high-T c and heavy fermion superconductors, electronic nematicity was not believed to be an important aspect in their superconductivity. We have found evidence for a field-induced strong electronic in-plane symmetry breaking in the tetragonal heavy fermion superconductor CeRhIn 5. At ambient pressure and zero field, it hosts an anti-ferromagnetic order (AFM) of nominally localized 4f electrons at TN=3.8K(1). Moderate pressure of 17kBar suppresses the AFM order and a dome of superconductivitymore » appears around the quantum critical point. Similarly, a density-wave-like correlated phase appears centered around the field-induced AFM quantum critical point. In this phase, we have now observed electronic nematic behavior.« less

  8. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor

    DOE PAGES

    Gaczynska, Maria; Karpowicz, Przemyslaw; Stuart, Christine E.; ...

    2016-03-23

    α 1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based onmore » biochemical data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found inWT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo

  9. NMR studies of the helical antiferromagnetic compound EuCo2P2

    NASA Astrophysics Data System (ADS)

    Higa, N.; Ding, Q.-P.; Kubota, F.; Uehara, H.; Yogi, M.; Furukawa, Y.; Sangeetha, N. S.; Johnston, D. C.; Nakamura, A.; Hedo, M.; Nakama, T.; Ōnuki, Y.

    2018-05-01

    In EuCo2P2, 4f electron spins of Eu2+ ions order antiferromagnetically below a Néel temperature TN = 66.5 K . The magnetic structure below TN was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo2P2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicate homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. We have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.

  10. AFM and SFG studies of pHEMA-based hydrogel contact lens surfaces in saline solution: adhesion, friction, and the presence of non-crosslinked polymer chains at the surface.

    PubMed

    Kim, Seong Han; Opdahl, Aric; Marmo, Chris; Somorjai, Gabor A

    2002-04-01

    The surfaces of two types of soft contact lenses neutral and ionic hydrogels--were characterized by atomic force microscopy (AFM) and sum-frequency-generation (SFG) vibrational spectroscopy. AFM measurements in saline solution showed that the presence of ionic functional groups at the surface lowered the friction and adhesion to a hydrophobic polystyrene tip. This was attributed to the specific interactions of water and the molecular orientation of hydrogel chains at the surface. Friction and adhesion behavior also revealed the presence of domains of non-crosslinked polymer chains at the lens surface. SFG showed that the lens surface became partially dehydrated upon exposure to air. On this partially dehydrated lens surface, the non-crosslinked domains exhibited low friction and adhesion in AFM. Fully hydrated in saline solution, the non-crosslinked domains extended more than tens of nanometers into solution and were mobile.

  11. Spin density wave instability in a ferromagnet.

    PubMed

    Wu, Yan; Ning, Zhenhua; Cao, Huibo; Cao, Guixin; Benavides, Katherine A; Karna, S; McCandless, Gregory T; Jin, R; Chan, Julia Y; Shelton, W A; DiTusa, J F

    2018-03-27

    Due to its cooperative nature, magnetic ordering involves a complex interplay between spin, charge, and lattice degrees of freedom, which can lead to strong competition between magnetic states. Binary Fe 3 Ga 4 is one such material that exhibits competing orders having a ferromagnetic (FM) ground state, an antiferromagnetic (AFM) behavior at intermediate temperatures, and a conspicuous re-entrance of the FM state at high temperature. Through a combination of neutron diffraction experiments and simulations, we have discovered that the AFM state is an incommensurate spin-density wave (ISDW) ordering generated by nesting in the spin polarized Fermi surface. These two magnetic states, FM and ISDW, are seldom observed in the same material without application of a polarizing magnetic field. To date, this unusual mechanism has never been observed and its elemental origins could have far reaching implications in many other magnetic systems that contain strong competition between these types of magnetic order. Furthermore, the competition between magnetic states results in a susceptibility to external perturbations allowing the magnetic transitions in Fe 3 Ga 4 to be controlled via temperature, magnetic field, disorder, and pressure. Thus, Fe 3 Ga 4 has potential for application in novel magnetic memory devices, such as the magnetic components of tunneling magnetoresistance spintronics devices.

  12. Carrier induced magnetic coupling transitions in phthalocyanine-based organometallic sheet.

    PubMed

    Zhou, Jian; Sun, Qiang

    2014-01-07

    A two-dimensional sheet with long range ferromagnetic (FM) order has been hotly pursued currently. The recent success in synthesizing polymerized Fe-phthalocyanine (poly-FePc) porous sheets paves a possible way to achieve this goal. However, the poly-FePc and its analog poly-CrPc structure are intrinsically antiferromagnetic (AFM). Using first principles combined with Monte-Carlo simulations, we study systematically the carrier-induced magnetic coupling transitions in poly-CrPc and poly-FePc sheets. We show that electron doping can induce stable FM states with Curie temperatures of 130-140 K, while hole doping will enhance the stability of the AFM states. Such changes in magnetic couplings depend on the balance of AFM superexchange and FM p-d exchange.

  13. Physical-mechanical image of the cell surface on the base of AFM data in contact mode

    NASA Astrophysics Data System (ADS)

    Starodubtseva, M. N.; Starodubtsev, I. E.; Yegorenkov, N. I.; Kuzhel, N. S.; Konstantinova, E. E.; Chizhik, S. A.

    2017-10-01

    Physical and mechanical properties of the cell surface are well-known markers of a cell state. The complex of the parameters characterizing the cell surface properties, such as the elastic modulus (E), the parameters of adhesive (Fa), and friction (Ff) forces can be measured using atomic force microscope (AFM) in a contact mode and form namely the physical-mechanical image of the cell surface that is a fundamental element of the cell mechanical phenotype. The paper aims at forming the physical-mechanical images of the surface of two types of glutaraldehyde-fixed cancerous cells (human epithelial cells of larynx carcinoma, HEp-2c cells, and breast adenocarcinoma, MCF-7 cells) based on the data obtained by AFM in air and revealing the basic difference between them. The average values of friction, elastic and adhesive forces, and the roughness of lateral force maps, as well as dependence of the fractal dimension of lateral force maps on Z-scale factor have been studied. We have revealed that the response of microscale areas of the HEp-2c cell surface having numerous microvilli to external mechanical forces is less expressed and more homogeneous in comparison with the response of MCF-7 cell surface.

  14. Structure and Nanomechanics of Model Membranes by Atomic Force Microscopy and Spectroscopy: Insights into the Role of Cholesterol and Sphingolipids.

    PubMed

    Gumí-Audenis, Berta; Costa, Luca; Carlá, Francesco; Comin, Fabio; Sanz, Fausto; Giannotti, Marina I

    2016-12-19

    Biological membranes mediate several biological processes that are directly associated with their physical properties but sometimes difficult to evaluate. Supported lipid bilayers (SLBs) are model systems widely used to characterize the structure of biological membranes. Cholesterol (Chol) plays an essential role in the modulation of membrane physical properties. It directly influences the order and mechanical stability of the lipid bilayers, and it is known to laterally segregate in rafts in the outer leaflet of the membrane together with sphingolipids (SLs). Atomic force microscope (AFM) is a powerful tool as it is capable to sense and apply forces with high accuracy, with distance and force resolution at the nanoscale, and in a controlled environment. AFM-based force spectroscopy (AFM-FS) has become a crucial technique to study the nanomechanical stability of SLBs by controlling the liquid media and the temperature variations. In this contribution, we review recent AFM and AFM-FS studies on the effect of Chol on the morphology and mechanical properties of model SLBs, including complex bilayers containing SLs. We also introduce a promising combination of AFM and X-ray (XR) techniques that allows for in situ characterization of dynamic processes, providing structural, morphological, and nanomechanical information.

  15. Hydrocarbons in phlogopite from Kasenyi kamafugitic rocks (SW Uganda): cross-correlated AFM, confocal microscopy and Raman imaging

    PubMed Central

    Moro, Daniele; Valdrè, Giovanni; Mesto, Ernesto; Scordari, Fernando; Lacalamita, Maria; Ventura, Giancarlo Della; Bellatreccia, Fabio; Scirè, Salvatore; Schingaro, Emanuela

    2017-01-01

    This study presents a cross-correlated surface and near surface investigation of two phlogopite polytypes from Kasenyi kamafugitic rocks (SW Uganda) by means of advanced Atomic Force Microscopy (AFM), confocal microscopy and Raman micro-spectroscopy. AFM revealed comparable nanomorphology and electrostatic surface potential for the two mica polytypes. A widespread presence of nano-protrusions located on the mica flake surface was also observed, with an aspect ratio (maximum height/maximum width) from 0.01 to 0.09. Confocal microscopy showed these features to range from few nm to several μm in dimension, and shapes from perfectly circular to ellipsoidic and strongly elongated. Raman spectra collected across the bubbles showed an intense and convolute absorption in the range 3000–2800 cm−1, associated with weaker bands at 1655, 1438 and 1297 cm−1, indicating the presence of fluid inclusions consisting of aliphatic hydrocarbons, alkanes and cycloalkanes, with minor amounts of oxygenated compounds, such as carboxylic acids. High-resolution Raman images provided evidence that these hydrocarbons are confined within the bubbles. This work represents the first direct evidence that phlogopite, a common rock-forming mineral, may be a possible reservoir for hydrocarbons. PMID:28098185

  16. Interaction of dipalmitoyl phosphatidylserine with ethanol: induction of an ordered gel phase at room temperature.

    PubMed

    Wachtel, E; Bach, D; Miller, I R; Borochov, N

    2007-05-01

    Using differential scanning calorimetry and small and wide-angle X-ray diffraction, we show that, unlike the saturated phosphatidylcholines, for which ethanol induces chain interdigitation in the gel state, and unlike natural phosphatidylserine in which the gel state is almost unaffected by the addition of ethanol, dipalmitoyl phosphatidylserine (DPPS) assumes an ordered structure after incubation at room temperature in the presence of as little as 5% (v/v) ethanol. In the liquid crystalline state, a progressive decrease in the interbilayer spacing is observed as a function of ethanol concentration, similar to what is found for natural phosphatidylserine (PS) and 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS). The 0.37 molar fraction of cholesterol in the DPPS dispersion in the presence of 10% (v/v) ethanol, does not prevent the formation of the ordered gel.

  17. The impact of chemical doping on the magnetic state of the Sr{sub 2}YRuO{sub 6} double perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayser, Paula; Ranjbar, Ben; Kennedy, Brendan J.

    The impact of chemical doping of the type Sr{sub 2−x}A{sub x}YRuO{sub 6} (A=Ca, Ba) on the low temperature magnetic properties of Sr{sub 2}YRuO{sub 6}, probed using variable temperature magnetic susceptibility, neutron diffraction and heat capacity measurements, are described. Specific-heat measurements of un-doped Sr{sub 2}YRuO{sub 6} reveal two features at ∼26 and ∼30 K. Neutron scattering measurements at these temperatures are consistent with a change from a 2D ordered state to the 3D type 1 AFM state. Magnetic and structural studies of a number of doped oxides are described that highlight the unique low temperature behavior of Sr{sub 2}YRuO{sub 6} andmore » demonstrate that doping destabilizes the intermediate 2D ordered state. - Graphical abstract: Neutron diffraction measurements of the ordered double perovskite Sr{sub 2}YRuO{sub 6}reveal a with a change from a 2D ordered state to the 3D type 1 AFM state upon cooling. The impact of chemical doping Sr{sub 2−x}A{sub x}YRuO{sub 6} (A=Ca, Ba) on the low temperature magnetic properties have also been investigated and these highlight the unique low temperature behavior of Sr{sub 2}YRuO{sub 6} with doping destabilizing the intermediate 2D ordered state. - Highlights: • Crystal and Magnetic Structure of Sr{sub 2}YRuO{sub 3} was studied using Neutron Diffraction. • Effect of doping on the magnetic ground state established. • Origin of two low temperature transitions discussed.« less

  18. AFM Investigation of Liquid-Filled Polymer Microcapsules Elasticity.

    PubMed

    Sarrazin, Baptiste; Tsapis, Nicolas; Mousnier, Ludivine; Taulier, Nicolas; Urbach, Wladimir; Guenoun, Patrick

    2016-05-10

    Elasticity of polymer microcapsules (MCs) filled with a liquid fluorinated core is studied by atomic force microscopy (AFM). Accurately characterized spherical tips are employed to obtain the Young's moduli of MCs having four different shell thicknesses. We show that those moduli are effective ones because the samples are composites. The strong decrease of the effective MC elasticity (from 3.0 to 0.1 GPa) as the shell thickness decreases (from 200 to 10 nm) is analyzed using a novel numerical approach. This model describes the evolution of the elasticity of a coated half-space according to the contact radius, the thickness of the film, and the elastic moduli of bulk materials. This numerical model is consistent with the experimental data and allows simulating the elastic behavior of MCs at high frequencies (5 MHz). While the quasi-static elasticity of the MCs is found to be very dependent on the shell thickness, the high frequency (5 MHz) elastic behavior of the core leads to a stable behavior of the MCs (from 2.5 to 3 GPa according to the shell thickness). Finally, the effect of thermal annealing on the MCs elasticity is investigated. The Young's modulus is found to decrease because of the reduction of the shell thickness due to the loss of the polymer.

  19. Towards early detection of cervical cancer: Fractal dimension of AFM images of human cervical epithelial cells at different stages of progression to cancer.

    PubMed

    Guz, Nataliia V; Dokukin, Maxim E; Woodworth, Craig D; Cardin, Andrew; Sokolov, Igor

    2015-10-01

    We used AFM HarmoniX modality to analyse the surface of individual human cervical epithelial cells at three stages of progression to cancer, normal, immortal (pre-malignant) and carcinoma cells. Primary cells from 6 normal strains, 6 cancer, and 6 immortalized lines (derived by plasmid DNA-HPV-16 transfection of cells from 6 healthy individuals) were tested. This cell model allowed for good control of the cell phenotype down to the single cell level, which is impractical to attain in clinical screening tests (ex-vivo). AFM maps of physical (nonspecific) adhesion are collected on fixed dried cells. We show that a surface parameter called fractal dimension can be used to segregate normal from both immortal pre-malignant and malignant cells with sensitivity and specificity of more than 99%. The reported method of analysis can be directly applied to cells collected in liquid cytology screening tests and identified as abnormal with regular optical methods to increase sensitivity. Despite cervical smear screening, sometimes it is very difficult to differentiate cancers cells from pre-malignant cells. By using AFM to analyze the surface properties of human cervical epithelial cells, the authors were able to accurately identify normal from abnormal cells. This method could augment existing protocols to increase diagnostic accuracy. Copyright © 2015. Published by Elsevier Inc.

  20. Nanoscale Trapping and Squeeze-Out of Confined Alkane Monolayers.

    PubMed

    Gosvami, N N; O'Shea, S J

    2015-12-01

    We present combined force curve and conduction atomic force microscopy (AFM) data for the linear alkanes CnH2n+2 (n = 10, 12, 14, 16) confined between a gold-coated AFM tip and a graphite surface. Solvation layering is observed in the force curves for all liquids, and conduction AFM is used to study in detail the removal of the confined (mono)layer closest to the graphite surface. The squeeze-out behavior of the monolayer can be very different depending upon the temperature. Below the monolayer melting transition temperatures the molecules are in an ordered state on the graphite surface, and fast and complete removal of the confined molecules is observed. However, above the melting transition temperature the molecules are in a disordered state, and even at large applied pressure a few liquid molecules are trapped within the tip-sample contact zone. These findings are similar to a previous study for branched alkanes [ Gosvami Phys. Rev. Lett. 2008, 100, 076101 ], but the observation for the linear alkane homologue series demonstrates clearly the dependence of the squeeze-out and trapping on the state of the confined material.

  1. Kinetic arrest of field-temperature induced first order phase transition in quasi-one dimensional spin system Ca{sub 3}Co{sub 2}O{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De, Santanu, E-mail: santanujuphys91@gmail.com; Kumar, Kranti; Banerjee, A.

    We have found that the geometrically frustrated spin chain compound Ca{sub 3}Co{sub 2}O{sub 6} belonging to Ising like universality class with uniaxial anisotropy shows kinetic arrest of first order intermediate phase (IP) to ferrimagnetic (FIM) transition. In this system, dc magnetization measurements followed by different protocols suggest the coexistence of high temperature IP with equilibrium FIM phase in low temperature. Formation of metastable state due to hindered first order transition has also been probed through cooling and heating in unequal field (CHUF) protocol. Kinetically arrested high temperature IP appears to persist down to almost the spin freezing temperature in thismore » system.« less

  2. Quantifying hyporheic exchange at high spatial resolution using natural temperature variations along a first-order stream

    NASA Astrophysics Data System (ADS)

    Westhoff, M. C.; Gooseff, M. N.; Bogaard, T. A.; Savenije, H. H. G.

    2011-10-01

    Hyporheic exchange is an important process that underpins stream ecosystem function, and there have been numerous ways to characterize and quantify exchange flow rates and hyporheic zone size. The most common approach, using conservative stream tracer experiments and 1-D solute transport modeling, results in oversimplified representations of the system. Here we present a new approach to quantify hyporheic exchange and the size of the hyporheic zone (HZ) using high-resolution temperature measurements and a coupled 1-D transient storage and energy balance model to simulate in-stream water temperatures. Distributed temperature sensing was used to observe in-stream water temperatures with a spatial and temporal resolution of 2 and 3 min, respectively. The hyporheic exchange coefficient (which describes the rate of exchange) and the volume of the HZ were determined to range between 0 and 2.7 × 10-3 s-1 and 0 and 0.032 m3 m-1, respectively, at a spatial resolution of 1-10 m, by simulating a time series of in-stream water temperatures along a 565 m long stretch of a small first-order stream in central Luxembourg. As opposed to conventional stream tracer tests, two advantages of this approach are that exchange parameters can be determined for any stream segment over which data have been collected and that the depth of the HZ can be estimated as well. Although the presented method was tested on a small stream, it has potential for any stream where rapid (in regard to time) temperature change of a few degrees can be obtained.

  3. BOREAS AFM-12 1-km AVHRR Seasonal Land Cover Classification

    NASA Technical Reports Server (NTRS)

    Steyaert, Lou; Hall, Forrest G.; Newcomer, Jeffrey A. (Editor); Knapp, David E. (Editor); Loveland, Thomas R.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-12 team's efforts focused on regional scale Surface Vegetation and Atmosphere (SVAT) modeling to improve parameterization of the heterogeneous BOREAS landscape for use in larger scale Global Circulation Models (GCMs). This regional land cover data set was developed as part of a multitemporal one-kilometer Advanced Very High Resolution Radiometer (AVHRR) land cover analysis approach that was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. This land cover classification was derived by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly Normalized Difference Vegetation Index (NDVI) image composites (April-September 1992). This regional data set was developed for use by BOREAS investigators, especially those involved in simulation modeling, remote sensing algorithm development, and aircraft flux studies. Based on regional field data verification, this multitemporal one-kilometer AVHRR land cover mapping approach was effective in characterizing the biome-level land cover structure, embedded spatially heterogeneous landscape patterns, and other types of key land cover information of interest to BOREAS modelers.The land cover mosaics in this classification include: (1) wet conifer mosaic (low, medium, and high tree stand density), (2) mixed coniferous-deciduous forest (80% coniferous, codominant, and 80% deciduous), (3) recent visible bum, vegetation regeneration, or rock outcrops-bare ground-sparsely vegetated slow regeneration bum (four classes), (4) open water and grassland marshes, and (5) general agricultural land use/ grasslands (three classes). This land cover mapping approach did not detect small subpixel-scale landscape

  4. Effect of tetramethylammonium hydroxide/isopropyl alcohol wet etching on geometry and surface roughness of silicon nanowires fabricated by AFM lithography

    PubMed Central

    Yusoh, Siti Noorhaniah

    2016-01-01

    Summary The optimization of etchant parameters in wet etching plays an important role in the fabrication of semiconductor devices. Wet etching of tetramethylammonium hydroxide (TMAH)/isopropyl alcohol (IPA) on silicon nanowires fabricated by AFM lithography is studied herein. TMAH (25 wt %) with different IPA concentrations (0, 10, 20, and 30 vol %) and etching time durations (30, 40, and 50 s) were investigated. The relationships between etching depth and width, and etching rate and surface roughness of silicon nanowires were characterized in detail using atomic force microscopy (AFM). The obtained results indicate that increased IPA concentration in TMAH produced greater width of the silicon nanowires with a smooth surface. It was also observed that the use of a longer etching time causes more unmasked silicon layers to be removed. Importantly, throughout this study, wet etching with optimized parameters can be applied in the design of the devices with excellent performance for many applications. PMID:27826521

  5. Simultaneous Measurement of Multiple Mechanical Properties of Single Cells Using AFM by Indentation and Vibration.

    PubMed

    Zhang, Chuang; Shi, Jialin; Wang, Wenxue; Xi, Ning; Wang, Yuechao; Liu, Lianqing

    2017-12-01

    The mechanical properties of cells, which are the main characteristics determining their physical performance and physiological functions, have been actively studied in the fields of cytobiology and biomedical engineering and for the development of medicines. In this study, an indentation-vibration-based method is proposed to simultaneously measure the mechanical properties of cells in situ, including cellular mass (m), elasticity (k), and viscosity (c). The proposed measurement method is implemented based on the principle of forced vibration stimulated by simple harmonic force using an atomic force microscope (AFM) system integrated with a piezoelectric transducer as the substrate vibrator. The corresponding theoretical model containing the three mechanical properties is derived and used to perform simulations and calculations. Living and fixed human embryonic kidney 293 (HEK 293) cells were subjected to indentation and vibration to measure and compare their mechanical parameters and verify the proposed approach. The results that the fixed sample cells are more viscous and elastic than the living sample cells and the measured mechanical properties of cell are consistent within, but not outside of the central region of the cell, are in accordance with the previous studies. This work provides an approach to simultaneous measurement of the multiple mechanical properties of single cells using an integrated AFM system based on the principle force vibration and thickness-corrected Hertz model. This study should contribute to progress in biomedical engineering, cytobiology, medicine, early diagnosis, specific therapy and cell-powered robots.

  6. AFM Studies of Salt Concentration Effects on the (110) Surface Structure of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Pusey, Marc Lee; Gorti, Sridhar; Forsythe, Elizabeth; Konnert, John

    2002-01-01

    Previous high resolution AFM studies of the (110) surface of tetragonal chicken egg white lysozyme crystals had shown that only one of two possible molecular surfaces is present, those constituting the completed 43 helices. These suggested that the crystal growth process was by the solution-phase assembly of the growth units, which then attach to the surface. However, the best fit for the imaged surfaces, vs. those predicted based upon the bulk crystallographic coordinates, were obtained when the packing about the 43 helices was "tightened up", while maintaining the underlying crystallographic unit cell spacing. This results in a widening of the gap between adjacent helices, and the top- most layer(s) may no longer be in contact. We postulated that the tightened packing about the helices is a result of the high salt concentrations in the bulk solution, used to crystallize the protein, driving hydrophobic interactions. Once the crystal surface is sufficiently buried by subsequent growth layers the ratio of salt to protein molecules decreases and the helices relax to their bulk crystallographic coordinates. The crystal surface helix structure is thus a reflection of the solution structure, and the tightness of the packing about the 43 helices would be a function of the bulk salt concentration. AFM images of the (110) surface of tetragonal lysozyme crystals grown under low (2%) and high (5%) NaCl concentrations reveal differences in the packing about the 43 helices consistent with the above proposal.

  7. Negative Thermal Expansion over a Wide Temperature Range in Fe-doped MnNiGe Composites

    NASA Astrophysics Data System (ADS)

    Zhao, Wenjun; Sun, Ying; Liu, Yufei; Shi, Kewen; Lu, Huiqing; Song, Ping; Wang, Lei; Han, Huimin; Yuan, Xiuliang; Wang, Cong

    2018-02-01

    Fe-doped MnNiGe alloys were successfully synthesized by solid-state reaction. Giant negative thermal expansion (NTE) behaviors with the coefficients of thermal expansion (CTE) of -285.23×10-6 K-1 (192-305 K) and -1167.09×10-6 K-1 (246-305 K) have been obtained in Mn0.90Fe0.10NiGe and MnNi0.90Fe0.10Ge, respectively. Furthermore, these materials were combined with Cu in order to control the NTE properties. The results indicate that the absolute value of CTE gradually decreases with increasing Cu contents. In Mn0.92Fe0.08NiGe/x%Cu, the CTE gradually changes from -64.92×10-6 K-1 (125-274 K) to -4.73×10-6 K-1 (173-229 K) with increasing value of x from 15 to 70. The magnetic measurements reveal that the NTE behaviors in this work are strongly correlated with the process of the magnetic phase transition and the introduction of Fe atoms could also change the spiral anti-ferromagnetic (s-AFM) state into ferromagnetic (FM) state at low temperature. Our study launches a new candidate for controlling thermal expansion properties of metal matrix materials which could have potential application in variable temperature environment.

  8. Thermally oxidized Inconel 600 and 690 nickel-based alloys characterizations by combination of global photoelectrochemistry and local near-field microscopy techniques (STM, STS, AFM, SKPFM)

    NASA Astrophysics Data System (ADS)

    Mechehoud, F.; Benaioun, N. E.; Hakiki, N. E.; Khelil, A.; Simon, L.; Bubendorff, J. L.

    2018-03-01

    Thermally oxidized nickel-based alloys are studied by scanning tunnelling microscopy (STM), scanning tunnelling spectroscopy (STS), atomic force microscopy (AFM), scanning kelvin probe force microscopy (SKPFM) and photoelectro-chemical techniques as a function of oxidation time at a fixed temperature of 623 K. By photoelectrochemistry measurements we identify the formation of three oxides NiO, Fe2O3, Cr2O3 and determine the corresponding gap values. We use these values as parameter for imaging the surface at high bias voltage by STM allowing the spatial localization and identification of both NiO, Fe2O3 oxide phases using STS measurements. Associated to Kelvin probe measurements we show also that STS allow to distinguished NiO from Cr2O3 and confirm that the Cr2O3 is not visible at the surface and localized at the oxide/steel interface.

  9. Friction measurements on InAs NWs by AFM manipulation

    NASA Astrophysics Data System (ADS)

    Pettersson, Hakan; Conache, Gabriela; Gray, Struan; Bordag, Michael; Ribayrol, Aline; Froberg, Linus; Samuelson, Lars; Montelius, Lars

    2008-03-01

    We discuss a new approach to measure the friction force between elastically deformed nanowires and a surface. The wires are bent, using an AFM, into an equilibrium shape determined by elastic restoring forces within the wire and friction between the wire and the surface. From measurements of the radius of curvature of the bent wires, elasticity theory allows the friction force per unit length to be calculated. We have studied friction properties of InAs nanowires deposited on SiO2, silanized SiO2 and Si3N4 substrates. The wires were typically from 0.5 to a few microns long, with diameters varying between 20 and 80 nm. Manipulation is done in a `Retrace Lift' mode, where feedback is turned off for the reverse scan and the tip follows a nominal path. The effective manipulation force during the reverse scan can be changed by varying an offset in the height of the tip over the surface. We will report on interesting static- and sliding friction experiments with nanowires on the different substrates, including how the friction force per unit length varies with the diameter of the wires.

  10. Material property analytical relations for the case of an AFM probe tapping a viscoelastic surface containing multiple characteristic times

    PubMed Central

    López-Guerra, Enrique A

    2017-01-01

    We explore the contact problem of a flat-end indenter penetrating intermittently a generalized viscoelastic surface, containing multiple characteristic times. This problem is especially relevant for nanoprobing of viscoelastic surfaces with the highly popular tapping-mode AFM imaging technique. By focusing on the material perspective and employing a rigorous rheological approach, we deliver analytical closed-form solutions that provide physical insight into the viscoelastic sources of repulsive forces, tip–sample dissipation and virial of the interaction. We also offer a systematic comparison to the well-established standard harmonic excitation, which is the case relevant for dynamic mechanical analysis (DMA) and for AFM techniques where tip–sample sinusoidal interaction is permanent. This comparison highlights the substantial complexity added by the intermittent-contact nature of the interaction, which precludes the derivation of straightforward equations as is the case for the well-known harmonic excitations. The derivations offered have been thoroughly validated through numerical simulations. Despite the complexities inherent to the intermittent-contact nature of the technique, the analytical findings highlight the potential feasibility of extracting meaningful viscoelastic properties with this imaging method. PMID:29114450

  11. Determination of the attractive force, adhesive force, adhesion energy and Hamaker constant of soot particles generated from a premixed methane/oxygen flame by AFM

    NASA Astrophysics Data System (ADS)

    Liu, Ye; Song, Chonglin; Lv, Gang; Chen, Nan; Zhou, Hua; Jing, Xiaojun

    2018-03-01

    Atomic force microscopy (AFM) was used to characterize the attractive force, adhesive force and adhesion energy between an AFM probe tip and nanometric soot particle generated by a premixed methane/oxygen flame. Different attractive force distributions were found when increasing the height above burner (HAB), with forces ranging from 1.1-3.5 nN. As the HAB was increased, the average attractive force initially increased, briefly decreased, and then underwent a gradual increase, with a maximum of 2.54 nN observed at HAB = 25 mm. The mean adhesive force was 6.5-7.5 times greater than the mean attractive force at the same HAB, and values were in the range of 13.5-24.5 nN. The adhesion energy was in the range of 2.0-5.6 × 10-17 J. The variations observed in the average adhesion energy with increasing HAB were different from those of the average adhesion force, implying that the stretched length of soot particles is an important factor affecting the average adhesion energy. The Hamaker constants of the soot particles generated at different HABs were determined from AFM force-separation curves. The average Hamaker constant exhibited a clear correlation with the graphitization degree of soot particles as obtained from Raman spectroscopy.

  12. Low-temperature elastic properties of YbSbPt probed by ultrasound measurements

    NASA Astrophysics Data System (ADS)

    Nakanishi, Y.; Takahashi, S.; Ohyama, R.; Hasegawa, J.; Nakamura, M.; Suzuki, H.; Yoshizawa, M.

    2018-03-01

    The elastic properties of a single crystal of the half-Heusler compound YbSbPt have been investigated by means of the ultrasonic measurement. In particular, careful measurements of the temperature (T) dependent elastic constant C 11(T) was performed in the vicinity of its phase transition point near T N of 0.5 K. A clear step-like anomaly accompanied by spin-density-wave type antiferromagnetic (AFM) phase transition was found in the C 11(T) curve. The low-temperature magnetic phase diagram is proposed on the basis of the results. The phase diagram consists of, at least two main distinct phases: a low-field and high-field regime with a transition field of approximately 0.6 T at zero field. We discuss the low-temperature elastic property based on analysis of Landau-type free energy.

  13. Temperature characteristics and magnetization mechanism of Fe1.2Co films

    NASA Astrophysics Data System (ADS)

    Dong, Dashun; Fang, Qingqing; Wang, Wenwen; Yang, Jingjing

    2017-11-01

    Fe1.2Co films with various thicknesses were prepared on glass substrates by pulsed laser deposition (PLD). The Fe1.2Co crystal structure exhibited a preferred orientation in the <1 1 0> direction. Also, we found that changing the film thickness affected its magnetic properties and the formation of its reversed nucleus. By measuring magnetism-temperature (M-T) curves under applied field cooling (FC) and zero-field cooling (ZFC), we found that the mechanism of the formation and growth of the reversed nucleus played a main role in blocking the motion of domain walls: the mechanism was competition between a ferromagnetic phase (FM) and an anti-ferromagnetic phase (AFM) at 10-300 K. Moreover, we found that the reversed nucleus blocked the motion of magnetic domains more at 10 K than at 300 K. We suggest that the reversed nucleus affects the magnetism more at low temperatures, which causes the coercivity to be higher at low temperature than at room temperature. These results will help us to understand the magnetic properties and temperature characteristics of FeCo thin films.

  14. AFM-based detection of glycocalyx degradation and endothelial stiffening in the db/db mouse model of diabetes.

    PubMed

    Targosz-Korecka, Marta; Jaglarz, Magdalena; Malek-Zietek, Katarzyna E; Gregorius, Aleksandra; Zakrzewska, Agnieszka; Sitek, Barbara; Rajfur, Zenon; Chlopicki, Stefan; Szymonski, Marek

    2017-11-21

    Degradation of the glycocalyx and stiffening of endothelium are important pathophysiological components of endothelial dysfunction. However, to our knowledge, these events have not been investigated in tandem in experimental diabetes. Here, the mechanical properties of the glycocalyx and endothelium in ex vivo mouse aorta were determined simultaneously in indentation experiments with an atomic force microscope (AFM) for diabetic db/db and control db/+ mice at ages of 11-19 weeks. To analyze highly heterogeneous aorta samples, we developed a tailored classification procedure of indentation data based on a bi-layer brush model supplemented with Hertz model for quantification of nanomechanics of endothelial regions with and without the glycocalyx surface. In db/db mice, marked endothelial stiffening and reduced glycocalyx coverage were present already in 11-week-old mice and persisted in older animals. In contrast, reduction of the effective glycocalyx length was progressive and was most pronounced in 19-week-old db/db mice. The reduction of the glycocalyx length correlated with an increasing level of glycated haemoglobin and decreased endothelial NO production. In conclusion, AFM nanoindentation analysis revealed that stiffening of endothelial cells and diminished glycocalyx coverage occurred in early diabetes and were followed by the reduction of the glycocalyx length that correlated with diabetes progression.

  15. Temperature-assisted photochemical construction of CdS-based ordered porous films with photocatalytic activities on solution surfaces.

    PubMed

    Huang, Zhenxun; Sun, Fengqiang; Zhang, Yu; Gu, Kaiyuan; Zou, Xueqiong; Huang, Yuying; Wu, Qingsong; Zhang, Zihe

    2011-04-15

    Taking a colloidal monolayer floating on the surface of a precursor solution as template, free-standing CdS/Cd composites and pure CdS (CdS-based) ordered porous films had been prepared by a temperature-assisted photochemical strategy. After irradiation with UV-light and heat treatment, the films formed hemi-spherical pores due to the preferable deposition of CdS and Cd onto the PS spheres during the photochemical and interfacial reactions. When the temperature increased from 15 to 60°C, the air/water interface gradually changed into a vapor/water interface on the surface of the solution, resulting in variations of the final compositions. The optical properties of the films were hence changed. Because of the free-standing characteristic, the ordered porous films were first transferred on surface of polluted solutions as photocatalysts, which was a new mode in application of photocatalysts. The photocatalytic activities of films showed regular variations with the compositions in photodegradation of Rhodamine B. This method provides a simple route for tuning the properties of porous films through control of its composition and a flexible application of films on any surface. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Observation of giant exchange bias in bulk Mn{sub 50}Ni{sub 42}Sn{sub 8} Heusler alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Jyoti; Suresh, K. G., E-mail: suresh@iitb.ac.in

    2015-02-16

    We report a giant exchange bias (EB) field of 3520 Oe in bulk Mn{sub 50}Ni{sub 42}Sn{sub 8} Heusler alloy. The low temperature magnetic state of the martensite phase has been studied by DC magnetization and AC susceptibility measurements. Frequency dependence of spin freezing temperature (T{sub f}) on critical slowing down relation and observation of memory effect in zero field cooling mode confirms the super spin glass (SSG) phase at low temperatures. Large EB is attributed to the strong exchange coupling between the SSG clusters formed by small regions of ferromagnetic order embedded in an antiferromagnetic (AFM) matrix. The temperature and coolingmore » field dependence of EB have been studied and related to the change in unidirectional anisotropy at SSG/AFM interface. The training effect also corroborates with the presence of frozen (SSG) moments at the interface and their role in EB.« less

  17. Magnetic and thermoelectric properties of electron doped Ca0.85Pr0.15MnO3

    NASA Astrophysics Data System (ADS)

    Hossain Khan, Momin; Pal, Sudipta; Bose, Esa

    2015-10-01

    We have investigated temperature-dependent magnetization (M), magnetic susceptibility (χ) and thermoelectric (S) properties of the electron-doped Ca0.85Pr0.15MnO3. With decrease of temperature, paramagnetic (PM) to antiferromagnetic (AFM) phase transition occurs with a well-defined Néel temperature (TN=122 K). Magnetic susceptibility measurements reveal that the paramagnetic state involves modified Curie-Weiss paramagnetism. Field cooled and zero field cooled magnetization measurements indicate a signature of magnetic frustration. Ferromagnetic (FM) double-exchange interactions associated with doped eg electrons are favored over competing AFM interactions below Tirr=112 K. Magnetization data also shows a second-order phase transition. The sign reversal in S(T) has been interpreted in terms of the change in the electronic structure relating to the orbital degrees of freedom of the doped eg electron. Low temperature (5-140 K) thermoelectric power, S (T) signifies the importance of electron-magnon scattering process.

  18. Attractive forces between hydrophobic solid surfaces measured by AFM on the first approach in salt solutions and in the presence of dissolved gases.

    PubMed

    Azadi, Mehdi; Nguyen, Anh V; Yakubov, Gleb E

    2015-02-17

    Interfacial gas enrichment of dissolved gases (IGE) has been shown to cover hydrophobic solid surfaces in water. The atomic force microscopy (AFM) data has recently been supported by molecular dynamics simulation. It was demonstrated that IGE is responsible for the unexpected stability and large contact angle of gaseous nanobubbles at the hydrophobic solid-water interface. Here we provide further evidence of the significant effect of IGE on an attractive force between hydrophobic solid surfaces in water. The force in the presence of dissolved gas, i.e., in aerated and nonaerated NaCl solutions (up to 4 M), was measured by the AFM colloidal probe technique. The effect of nanobubble bridging on the attractive force was minimized or eliminated by measuring forces on the first approach of the AFM probe toward the flat hydrophobic surface and by using high salt concentrations to reduce gas solubility. Our results confirm the presence of three types of forces, two of which are long-range attractive forces of capillary bridging origin as caused by either surface nanobubbles or gap-induced cavitation. The third type is a short-range attractive force observed in the absence of interfacial nanobubbles that is attributed to the IGE in the form of a dense gas layer (DGL) at hydrophobic surfaces. Such a force was found to increase with increasing gas saturation and to decrease with decreasing gas solubility.

  19. AFM study of adsorption of protein A on a poly(dimethylsiloxane) surface

    NASA Astrophysics Data System (ADS)

    Yu, Ling; Lu, Zhisong; Gan, Ye; Liu, Yingshuai; Li, Chang Ming

    2009-07-01

    In this paper, the morphology and kinetics of adsorption of protein A on a PDMS surface is studied by AFM. The results of effects of pH, protein concentration and contact time of the adsorption reveal that the morphology of adsorbed protein A is significantly affected by pH and adsorbed surface concentration, in which the pH away from the isoelectric point (IEP) of protein A could produce electrical repulsion to change the protein conformation, while the high adsorbed surface protein volume results in molecular networks. Protein A can form an adsorbed protein film on PDMS with a maximum volume of 2.45 × 10-3 µm3. This work enhances our fundamental understanding of protein A adsorption on PDMS, a frequently used substrate component in miniaturized immunoassay devices.

  20. Probing fibronectin–antibody interactions using AFM force spectroscopy and lateral force microscopy

    PubMed Central

    Kulik, Andrzej J; Lee, Kyumin; Pyka-Fościak, Grazyna; Nowak, Wieslaw

    2015-01-01

    Summary The first experiment showing the effects of specific interaction forces using lateral force microscopy (LFM) was demonstrated for lectin–carbohydrate interactions some years ago. Such measurements are possible under the assumption that specific forces strongly dominate over the non-specific ones. However, obtaining quantitative results requires the complex and tedious calibration of a torsional force. Here, a new and relatively simple method for the calibration of the torsional force is presented. The proposed calibration method is validated through the measurement of the interaction forces between human fibronectin and its monoclonal antibody. The results obtained using LFM and AFM-based classical force spectroscopies showed similar unbinding forces recorded at similar loading rates. Our studies verify that the proposed lateral force calibration method can be applied to study single molecule interactions. PMID:26114080

  1. Low-temperature magnetoelectric effect in multiferroic h-Yb1-xHoxMnO3

    NASA Astrophysics Data System (ADS)

    Zhang, Jincang; Gang, Qiang; Fang, Yifei

    In this work, we study the low-temperature ferroelectricity, magnetic property and ME effect in Yb1-xHoxMnO3. In YbMnO3, ferroelectric polarization (P) is closely related with the structure change derived from spin-reorientation process. The initial symmetric relationship of P between the upper and lower half of magnetic sublattice will be broken, which gives rise to the detectable polarization. Additionally, the asymmetry of the P - T curves revealed the pinning effect of the defects in the material. In Ho-doped samples 2D antiferromagnetic perturbation as well as the second AFM ordering have been observed. Substitution of Yb by Ho atoms shows great influences on electric properties and the lowdoping concentration tend to be more favorable for the enhancement of P. The maximum polarization has been promoted hugely in Yb0.8Ho0.2MnO3. We suggested the variation of P is closely related with the stronger exchange interaction in Mn-O-Ho as well as the establishment of new Ho layers with the increase of Ho.

  2. Finite-temperature phase transitions of third and higher order in gauge theories at large N

    DOE PAGES

    Nishimura, Hiromichi; Pisarski, Robert D.; Skokov, Vladimir V.

    2018-02-15

    We study phase transitions in SU(∞) gauge theories at nonzero temperature using matrix models. Our basic assumption is that the effective potential is dominated by double trace terms for the Polyakov loops. As a function of the various parameters, related to terms linear, quadratic, and quartic in the Polyakov loop, the phase diagram exhibits a universal structure. In a large region of this parameter space, there is a continuous phase transition whose order is larger than second. This is a generalization of the phase transition of Gross, Witten, and Wadia (GWW). Depending upon the detailed form of the matrix model,more » the eigenvalue density and the behavior of the specific heat near the transition differ drastically. Here, we speculate that in the pure gauge theory, that although the deconfining transition is thermodynamically of first order, it can be nevertheless conformally symmetric at infnite N.« less

  3. Finite-temperature phase transitions of third and higher order in gauge theories at large N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Hiromichi; Pisarski, Robert D.; Skokov, Vladimir V.

    We study phase transitions in SU(∞) gauge theories at nonzero temperature using matrix models. Our basic assumption is that the effective potential is dominated by double trace terms for the Polyakov loops. As a function of the various parameters, related to terms linear, quadratic, and quartic in the Polyakov loop, the phase diagram exhibits a universal structure. In a large region of this parameter space, there is a continuous phase transition whose order is larger than second. This is a generalization of the phase transition of Gross, Witten, and Wadia (GWW). Depending upon the detailed form of the matrix model,more » the eigenvalue density and the behavior of the specific heat near the transition differ drastically. Here, we speculate that in the pure gauge theory, that although the deconfining transition is thermodynamically of first order, it can be nevertheless conformally symmetric at infnite N.« less

  4. Design and Control of a Micro/Nano Load Stage for In-Situ AFM Observation and Nanoscale Structural and Mechanical Characterization of MWCNT-Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Leininger, Wyatt Christopher

    Nanomaterial composites hold improvement potential for many materials. Improvements arise through known material behaviors and unique nanoscale effects to improve performance in areas including elastic modulus and damping as well as various processes, and products. Review of research spurred development of a load-stage. The load stage could be used independently, or in conjunction with an AFM to investigate bulk and nanoscale material mechanics. The effect of MWCNT content on structural damping, elastic modulus, toughness, loss modulus, and glass transition temperature was investigated using the load stage, AMF, and DMA. Initial investigation showed elastic modulus increased 23% with 1wt.% MWCNT versus pure epoxy and in-situ imaging observed micro/nanoscale deformation. Dynamic capabilities of the load stage were investigated as a method to achieve higher stress than available through DMA. The system showed energy dissipation across all reinforce levels, with 480% peak for the 1wt.% MWCNT material vs. the neat epoxy at 1Hz.

  5. Studies of chain substitution caused sub-fibril level differences in stiffness and ultrastructure of wildtype and oim/oim collagen fibers using multifrequency-AFM and molecular modeling.

    PubMed

    Li, Tao; Chang, Shu-Wei; Rodriguez-Florez, Naiara; Buehler, Markus J; Shefelbine, Sandra; Dao, Ming; Zeng, Kaiyang

    2016-11-01

    Molecular alteration in type I collagen, i.e., substituting the α2 chain with α1 chain in tropocollagen molecule, can cause osteogenesis imperfecta (OI), a brittle bone disease, which can be represented by a mouse model (oim/oim). In this work, we use dual-frequency Atomic Force Microscopy (AFM) and incorporated with molecular modeling to quantify the ultrastructure and stiffness of the individual native collagen fibers from wildtype (+/+) and oim/oim diseased mice humeri. Our work presents direct experimental evidences that the +/+ fibers have highly organized and compact ultrastructure and corresponding ordered stiffness distribution. In contrast, oim/oim fibers have ordered but loosely packed ultrastructure with uncorrelated stiffness distribution, as well as local defects. The molecular model also demonstrates the structural and molecular packing differences between +/+ and oim/oim collagens. The molecular mutation significantly altered sub-fibril structure and mechanical property of collagen fibers. This study can give the new insight for the mechanisms and treatment of the brittle bone disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Topological order, entanglement, and quantum memory at finite temperature

    NASA Astrophysics Data System (ADS)

    Mazáč, Dalimil; Hamma, Alioscia

    2012-09-01

    We compute the topological entropy of the toric code models in arbitrary dimension at finite temperature. We find that the critical temperatures for the existence of full quantum (classical) topological entropy correspond to the confinement-deconfinement transitions in the corresponding Z2 gauge theories. This implies that the thermal stability of topological entropy corresponds to the stability of quantum (classical) memory. The implications for the understanding of ergodicity breaking in topological phases are discussed.

  7. Ordering transition in salt-doped diblock copolymers

    DOE PAGES

    Qin, Jian; de Pablo, Juan J.

    2016-04-26

    Lithium salt-doped block copolymers offer promise for applications as solid electrolytes in lithium ion batteries. Control of the conductivity and mechanical properties of these materials, for membrane applications relies critically on the ability to predict and manipulate their microphase separation temperature. Past attempts to predict the so-called "order-disorder transition temperature" of copolymer electrolytes have relied on approximate treatments of electrostatic interactions. In this work, we introduce a coarse-grained simulation model that treats Coulomb interactions explicitly, and we use it to investigate the ordering transition of charged block copolymers. The order-disorder transition temperature is determined from the ordering free energy, whichmore » we calculate with a high level of precision using a density-of-states approach. Our calculations allow us to discern a delicate competition between two physical effects: ion association, which raises the transition temperature, and solvent dilution, which lowers the transition temperature. Lastly, in the intermediate salt concentration regime, our results predict that the order-disorder transition temperature increases with salt content, in agreement with available experimental data.« less

  8. Crystal Structure of the Caged Magnetic Compound DyFe2Zn20 at Low Temperature Magnetic Ordering State

    NASA Astrophysics Data System (ADS)

    Kishii, Nobuya; Tateno, Shota; Ohashi, Masashi; Isikawa, Yosikazu

    We have carried out X-ray powder diffraction and thermal expansion measurements of the caged magnetic compound DyFe2Zn20. Even though a strong magnetic anisotropy exists in the magnetization and magnetic susceptibility due to strong exchange interaction between Fe and Dy, almost all X-ray powder diffraction peaks at 14 K correspond to Bragg reflections of the cubic structural models not only at room temperature paramagnetic state but also at low temperature magnetic ordering state. Although the temperature change of the lattice constant is isotropic, an anomalous behavior was observed in the thermal expansion coefficient around 15 K, while the anomaly around TC = 53 K is not clear. The results indicate that the volume change is not caused by the ferromagnetic interaction between Fe and Dy but by the exchange interaction between two Dy ions.

  9. Investigation of the resistive switching in AgxAsS2 layer by conductive AFM

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Kutalek, Petr; Knotek, Petr; Hromadko, Ludek; Macak, Jan M.; Wagner, Tomas

    2016-09-01

    In this paper, a study of resistive switching in AgxAsS2 layer, based on a utilization of conductive atomic force microscope (AFM), is reported. As the result of biasing, two distinct regions were created on the surface (the conductive region and non-conductive region). Both were analysed from the spread current maps. The volume change, corresponding to the growth of Ag particles, was derived from the topological maps, recorded simultaneously with the current maps. Based on the results, a model explaining the mechanism of the Ag particle and Ag filament formation was proposed from the distribution of charge carriers and Ag ions.

  10. Charge injection in thin dielectric layers by atomic force microscopy: influence of geometry and material work function of the AFM tip on the injection process

    NASA Astrophysics Data System (ADS)

    Villeneuve-Faure, C.; Makasheva, K.; Boudou, L.; Teyssedre, G.

    2016-06-01

    Charge injection and retention in thin dielectric layers remain critical issues for the reliability of many electronic devices because of their association with a large number of failure mechanisms. To overcome this drawback, a deep understanding of the mechanisms leading to charge injection close to the injection area is needed. Even though the charge injection is extensively studied and reported in the literature to characterize the charge storage capability of dielectric materials, questions about charge injection mechanisms when using atomic force microscopy (AFM) remain open. In this paper, a thorough study of charge injection by using AFM in thin plasma-processed amorphous silicon oxynitride layers with properties close to that of thermal silica layers is presented. The study considers the impact of applied voltage polarity, work function of the AFM tip coating and tip curvature radius. A simple theoretical model was developed and used to analyze the obtained experimental results. The electric field distribution is computed as a function of tip geometry. The obtained experimental results highlight that after injection in the dielectric layer the charge lateral spreading is mainly controlled by the radial electric field component independently of the carrier polarity. The injected charge density is influenced by the nature of electrode metal coating (work function) and its geometry (tip curvature radius). The electron injection is mainly ruled by the Schottky injection barrier through the field electron emission mechanism enhanced by thermionic electron emission. The hole injection mechanism seems to differ from the electron one depending on the work function of the metal coating. Based on the performed analysis, it is suggested that for hole injection by AFM, pinning of the metal Fermi level with the metal-induced gap states in the studied silicon oxynitride layers starts playing a role in the injection mechanisms.

  11. Structure and Nanomechanics of Model Membranes by Atomic Force Microscopy and Spectroscopy: Insights into the Role of Cholesterol and Sphingolipids

    PubMed Central

    Gumí-Audenis, Berta; Costa, Luca; Carlá, Francesco; Comin, Fabio; Sanz, Fausto; Giannotti, Marina I.

    2016-01-01

    Biological membranes mediate several biological processes that are directly associated with their physical properties but sometimes difficult to evaluate. Supported lipid bilayers (SLBs) are model systems widely used to characterize the structure of biological membranes. Cholesterol (Chol) plays an essential role in the modulation of membrane physical properties. It directly influences the order and mechanical stability of the lipid bilayers, and it is known to laterally segregate in rafts in the outer leaflet of the membrane together with sphingolipids (SLs). Atomic force microscope (AFM) is a powerful tool as it is capable to sense and apply forces with high accuracy, with distance and force resolution at the nanoscale, and in a controlled environment. AFM-based force spectroscopy (AFM-FS) has become a crucial technique to study the nanomechanical stability of SLBs by controlling the liquid media and the temperature variations. In this contribution, we review recent AFM and AFM-FS studies on the effect of Chol on the morphology and mechanical properties of model SLBs, including complex bilayers containing SLs. We also introduce a promising combination of AFM and X-ray (XR) techniques that allows for in situ characterization of dynamic processes, providing structural, morphological, and nanomechanical information. PMID:27999368

  12. Development of in-situ high-voltage and high-temperature stressing capability on atomic force microscopy platform

    DOE PAGES

    Xiao, Chuanxiao; Jiang, Chun-Sheng; Johnston, Steve; ...

    2017-10-18

    Reliability has become an increasingly important issue as photovoltaic technologies mature. However, researching reliability at the nanometer scale is in its infancy; in particular, in-situ studies have not been reported to date. Here, to investigate potential-induced degradation (PID) of solar cell modules, we have developed an in-situ stressing capability with applied high voltage (HV) and high temperature (HT) on an atomic force microscopy (AFM) platform. We designed a sample holder to simultaneously accommodate 1000-V HV and 200 degrees C HT stressing. Three technical challenges have been overcome along with the development: thermal drift at HT, HV interference with measurement, andmore » arc discharge caused by HV. We demonstrated no observable measurement artifact under the stress conditions. Based on our in-situ stressing AFM, Kelvin probe force microscopy potential imaging revealed the evolution of electrical potential across the junction along with the PID stressing time, which provides vital information to further study the PID mechanism.« less

  13. Development of in-situ high-voltage and high-temperature stressing capability on atomic force microscopy platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Chuanxiao; Jiang, Chun-Sheng; Johnston, Steve

    Reliability has become an increasingly important issue as photovoltaic technologies mature. However, researching reliability at the nanometer scale is in its infancy; in particular, in-situ studies have not been reported to date. Here, to investigate potential-induced degradation (PID) of solar cell modules, we have developed an in-situ stressing capability with applied high voltage (HV) and high temperature (HT) on an atomic force microscopy (AFM) platform. We designed a sample holder to simultaneously accommodate 1000-V HV and 200 degrees C HT stressing. Three technical challenges have been overcome along with the development: thermal drift at HT, HV interference with measurement, andmore » arc discharge caused by HV. We demonstrated no observable measurement artifact under the stress conditions. Based on our in-situ stressing AFM, Kelvin probe force microscopy potential imaging revealed the evolution of electrical potential across the junction along with the PID stressing time, which provides vital information to further study the PID mechanism.« less

  14. NMR studies of the helical antiferromagnetic compound EuCo 2P 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higa, N.; Ding, Q. -P.; Johnston, D. C.

    In EuCo 2P 2, 4 f electron spins of Eu 2+ ions order antiferromagnetically below a Neel temperature T N = 66.5K. The magnetic structure below T N was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo 2P 2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicatemore » homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. In conclusion, we have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.« less

  15. NMR studies of the helical antiferromagnetic compound EuCo 2P 2

    DOE PAGES

    Higa, N.; Ding, Q. -P.; Johnston, D. C.; ...

    2017-09-18

    In EuCo 2P 2, 4 f electron spins of Eu 2+ ions order antiferromagnetically below a Neel temperature T N = 66.5K. The magnetic structure below T N was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo 2P 2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicatemore » homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. In conclusion, we have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.« less

  16. Magnetic properties of Mn{sub 1.9}Cu{sub 0.1}Sb under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Yoshihiro; Hiroi, Masahiko; Mitsui, Yoshifuru

    2016-08-26

    Magnetization measurements were carried out for polycrystalline Mn{sub 1.9}Cu{sub 0.1}Sb in magnetic fields up to 5 T in the 10-300 K temperature range under high pressures up to 1 GPa in order to investigate the magnetic properties and the thermal transformation arrest (TTA) phenomenon under high pressures. The spin-reorientation temperature increased from 202 K for 0.1 MPa to 244 K for 1 GPa, whereas the transition temperature from the ferrimagnetic (FRI) to antiferromagnetic (AFM) state did not drastically change at ∼116 K. The magnetic relaxation behavior from the FRI to AFM state was observed in 10 < T ≤ 70more » K, which was analyzed using the Kohlrausch-Williams-Watts model. Obtained results indicated that the TTA phenomenon of Mn{sub 1.9}Cu{sub 0.1}Sb was suppressed by the application of high pressures.« less

  17. Supercapacitors based on ordered mesoporous carbon derived from furfuryl alcohol: effect of the carbonized temperature.

    PubMed

    Li, Na; Xu, Jianxiong; Chen, Han; Wang, Xianyou

    2014-07-01

    Supercapacitors are successfully prepared from ordered mesoporous carbon (OMC) synthesized by employing the mesoporous silica, SBA-15 as template and furfuryl alcohol as carbon source. It is found that the carbonized temperature greatly influences the physical properties of the synthesized mesoporous carbon materials. The optimal carbonized temperature is measured to be 600 degrees C under which OMC with the specific surface area of 1219 m2/g and pore volume of 1.31 cm3/g and average pore diameter of - 3 nm are synthesized. The OMC materials synthesized under different carbonized temperature are used as electrode material of supercapacitors and the electrochemical properties of the OMC materials are compared by using cyclic voltammetry, electrochemical impedance spectroscopy, galvanostatic charge-discharge and self-discharge tests. The results show that the electrochemical properties of the OMC materials are directly related to the specific surface area and pore volume of the mesoporous carbon and the electrode prepared from the OMC synthesized under the carbonized temperature of 600 degrees C (OMC-600) exhibits the most excellent electrochemical performance with the specific capacitance of 207.08 F/g obtained from cyclic voltammetry at the scan rate of 1 mV/s, small resistance and low self-discharge rate. Moreover, the supercapacitor based on the OMC-600 material exhibits good capacitance properties and stable cycle behavior with the specific capacitance of 105 F/g at the current density of 700 mA/g, and keeps a specific capacitance of 98 F/g after 20000 consecutive charge/discharge cycles.

  18. Interplay between crystal and magnetic structures in YFe{sub 2}(H{sub α}D{sub 1−α}){sub 4.2} compounds studied by neutron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul-Boncour, V., E-mail: paulbon@icmpe.cnrs.fr; Guillot, M.; Isnard, O.

    We report a detailed magnetic structure investigation of YFe{sub 2}(H{sub α}D{sub 1−α}){sub 4.2} (α=0, 0.64, 1) compounds presenting a strong (H,D) isotope effect by neutron diffraction and Mössbauer spectroscopy analysis. They crystallize in the same monoclinic structure (Pc space group) with 8 inequivalent Fe sites having different H(D) environment. At low temperature, the compounds are ferromagnetic (FM) and show an easy magnetization axis perpendicular to the b axis and only slightly tilted away from the c axis. Upon heating, they display a first order transition from a ferromagnetic towards an antiferromagnetic (AFM) structure at T{sub M0} which is sensitive tomore » the H/D isotope nature. The AFM cell is described by doubling the crystal cell along the monoclinic b axis. It presents an unusual coexistence of non magnetic Fe layer sandwiched by two thicker ferromagnetic Fe layers which are antiparallel to each other. This FM-AFM transition is driven by the loss of ordered moment on one Fe site (Fe7) through an itinerant electron metamagnetic (IEM) behaviour. The key role of the Fe7 position is assigned to both its hydrogen rich atomic environment and its geometric position. Above T{sub M0} a field induced metamagnetic transition is observed from the AFM towards the FM structure accompanied by a cell volume increase. Both thermal and magnetic field dependence of the magnetic structure are found strongly related to the anisotropic cell distortion induced by (H,D) order in interstitial sites. - Graphical abstract: Representation of the FM-AFM magnetic structures of YFe{sub 2}D{sub 4.2} deuteride. - Highlights: • YFe{sub 2}(H,D){sub 4.2} compounds undergoes a isotope sensitive FM-AFM transition at T{sub M0}. • The FM structure is formed of Fe moments perpendicular to the monoclinic b axis. • AFM structure is formed by antiparallel Fe layers separated by non-magnetic Fe layer. • One Fe site among eight loses its moment at T{sub M0} due to larger

  19. Autonomous assembly of ordered metastable DNA nanoarchitecture and in situ visualizing of intracellular microRNAs.

    PubMed

    Xu, Jianguo; Wu, Zai-Sheng; Wang, Zhenmeng; Le, Jingqing; Zheng, Tingting; Jia, Lee

    2017-03-01

    Facile assembly of intelligent DNA nanoobjects with the ability to exert in situ visualization of intracellular microRNAs (miRNAs) has long been concerned in the fields of DNA nanotechnology and basic medical study. Here, we present a driving primer (DP)-triggered polymerization-mediated metastable assembly (PMA) strategy to prepare a well-ordered metastable DNA nanoarchitecture composed of only two hairpin probes (HAPs), which has never been explored by assembly methods. Its structural features and functions are characterized by atomic force microscope (AFM) and gel electrophoresis. Even if with a metastable molecular structure, this nanoarchitecture is relatively stable at physiological temperature. The assembly strategy can be expanded to execute microRNA-21 (miRNA-21) in situ imaging inside cancer cells by labelling one of the HAPs with fluorophore and quencher. Compared with the conventional fluorescence probe-based in situ hybridization (FISH) technique, confocal images revealed that the proposed DNA nanoassembly can not only achieve greatly enhanced imaging effect within cancer cells, but also reflect the miRNA-21 expression level sensitively. We believe that the easily constructed DNA nanoarchitecture and in situ profiling strategy are significant progresses in DNA assembly and molecule imaging in cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Calculation of Half-Metal, Debye and Curie Temperatures of Co2VAl Compound: First Principles Study

    NASA Astrophysics Data System (ADS)

    Arash, Boochani; Heidar, Khosravi; Jabbar, Khodadadi; Shahram, Solaymani; Masoud Majidiyan, Sarmazdeh; Rohollah Taghavi, Mendi; Sayed, Mohammad Elahi

    2015-05-01

    By FP-LAPW calculations, the structural, elastic, Debye and Curie temperatures, electronic and magnetic properties of Co2 VAl are investigated. The results indicate that Ferromagnetic (FM) phase is more stable than Anti-Ferromagnetic (AFM) and Non-magnetic (NM) ones. In addition, C11-C12 > 0, C44 > 0, and B > 0 so Co2VAl is an elastically stable material with high Debye temperature. Also, the B/G ratio exhibits a ductility behavior. The relatively high Curie temperature provides it as a favorable material for spintronic application. It's electronic and magnetic properties are studied by GGA+U approach leading to a 100% spin polarization at Fermi level. Supported by the simulation of Nano Physics Lab center of Kermanshah Branch, Islamic Azad University