Sample records for afm photoluminescence pl

  1. Low Temperature Photoluminescence (PL) from High Electron Mobility Transistors (HEMTs)

    DTIC Science & Technology

    2015-03-01

    Photoluminescence Form InxAl1-xN Films Deposited by Plasma-Assisted Molecular Beam Epitaxy ,” Submitted to Applied Physics Letters, July 2014. 8 LIST OF...TECHNICAL REPORT RDMR-WD-14-55 LOW TEMPERATURE PHOTOLUMINESCENCE (PL) FROM HIGH ELECTRON MOBILITY TRANSISTORS ( HEMTS ...Mobility Transistors ( HEMTs ) 5. FUNDING NUMBERS 6. AUTHOR(S) Adam T. Roberts and Henry O. Everitt 7. PERFORMING ORGANIZATION NAME(S

  2. Photoluminescence of vapor and solution grown ZnTe single crystals

    NASA Astrophysics Data System (ADS)

    Biao, Y.; Azoulay, M.; George, M. A.; Burger, A.; Collins, W. E.; Silberman, E.; Su, C.-H.; Volz, M. E.; Szofran, F. R.; Gillies, D. C.

    1994-04-01

    ZnTe single crystals grown by horizontal physical vapor transport (PVT) and by vertical traveling heater method (THM) from a Te solution were characterized by photoluminescence (PL) at 10.6 K and by atomic force microscopy (AFM). Copper was identified by PL as a major impurity existing in both crystals, forming a substitutional acceptor, Cu Zn. The THM ZnTe crystals were found to contain more Cu impurity than the PVT ZnTe crystals. The formation of Cu Zn-V Te complexes and the effects of annealing, oxygen contamination and intentional Cu doping were also studied. Finally, the surface morphology analyzed by AFM was correlated to the PL results.

  3. Micro-Photoluminescence (micro-PL) Study of Core-Shell GaAs/GaAsSb Nanowires Grown by Self-Assisted Molecular Beam Epitaxy

    DTIC Science & Technology

    2015-06-18

    public release; distribution is unlimited. Micro-Photoluminescence (micro-PL) Study of Core-Shell GaAs/GaAsSb Nanowires grown by Self-Assisted Molecular...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 GaAsSb, Core Shell Nanowires , Micro Photoluminescence...University 1601 East Market Street Greensboro, NC 27411 -0001 ABSTRACT Micro-Photoluminescence (micro-PL) Study of Core-Shell GaAs/GaAsSb Nanowires grown by

  4. Temperature dependent photoluminescence and micromapping of multiple stacks InAs quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ming, E-mail: ming.xu@lgep.supelec.fr; Jaffré, Alexandre, E-mail: ming.xu@lgep.supelec.fr; Alvarez, José, E-mail: ming.xu@lgep.supelec.fr

    2015-02-27

    We utilized temperature dependent photoluminescence (PL) techniques to investigate 1, 3 and 5 stack InGaAs quantum dots (QDs) grown on cross-hatch patterns. PL mapping can well reproduce the QDs distribution as AFM and position dependency of QD growth. It is possible to observe crystallographic dependent PL. The temperature dependent spectra exhibit the QDs energy distribution which reflects the size and shape. The inter-dot carrier coupling effect is observed and translated as a red shift of 120mV on the [1–10] direction peak is observed at 30K on 1 stack with regards to 3 stacks samples, which is assigned to lateral coupling.

  5. Nanomedicine photoluminescence crystal-inspired brain sensing approach

    NASA Astrophysics Data System (ADS)

    Fang, Yan; Wang, Fangzhen; Wu, Rong

    2018-02-01

    Precision sensing needs to overcome a gap of a single atomic step height standard. In response to the cutting-edge challenge, a heterosingle molecular nanomedicine crystal was developed wherein a nanomedicine crystal height less than 1 nm was designed and selfassembled on a substrate of either a highly ordered and freshly separated graphite or a N-doped silicon with hydrogen bonding by a home-made hybrid system of interacting single bioelectron donor-acceptor and a single biophoton donor-acceptor according to orthogonal mathematical optimization scheme, and an atomic spatial resolution conducting atomic force microscopy (C-AFM) with MHz signal processing by a special transformation of an atomic force microscopy (AFM) and a scanning tunneling microscopy (STM) were employed, wherein a z axis direction UV-VIS laser interferometer and a feedback circuit were used to achieve the minimized uncertainty of a micro-regional structure height and its corresponding local differential conductance quantization (spin state) process was repeatedly measured with a highly time resolution, as well as a pulsed UV-VIS laser micro-photoluminescence (PL) spectrum with a single photon resolution was set up by traceable quantum sensing and metrology relied up a quantum electrical triangle principle. The coupling of a single bioelectron conducting, a single biophoton photoluminescence, a frequency domain temporal spin phase in nanomedicine crystal-inspired sensing methods and sensor technologies were revealed by a combination of C-AFM and PL measurement data-based mathematic analyses1-3, as depicted in Figure 1 and repeated in nanomedicine crystals with a single atomic height. It is concluded that height-current-phase uncertainty correlation pave a way to develop a brain imaging and a single atomic height standard, quantum sensing, national security, worldwide impact1-3 technology and beyond.

  6. Photoluminescence Segmentation within Individual Hexagonal Monolayer Tungsten Disulfide Domains Grown by Chemical Vapor Deposition.

    PubMed

    Sheng, Yuewen; Wang, Xiaochen; Fujisawa, Kazunori; Ying, Siqi; Elias, Ana Laura; Lin, Zhong; Xu, Wenshuo; Zhou, Yingqiu; Korsunsky, Alexander M; Bhaskaran, Harish; Terrones, Mauricio; Warner, Jamie H

    2017-05-03

    We show that hexagonal domains of monolayer tungsten disulfide (WS 2 ) grown by chemical vapor deposition (CVD) with powder precursors can have discrete segmentation in their photoluminescence (PL) emission intensity, forming symmetric patterns with alternating bright and dark regions. Two-dimensional maps of the PL reveal significant reduction within the segments associated with the longest sides of the hexagonal domains. Analysis of the PL spectra shows differences in the exciton to trion ratio, indicating variations in the exciton recombination dynamics. Monolayers of WS 2 hexagonal islands transferred to new substrates still exhibit this PL segmentation, ruling out local strain in the regions as the dominant cause. High-power laser irradiation causes preferential degradation of the bright segments by sulfur removal, indicating the presence of a more defective region that is higher in oxidative reactivity. Atomic force microscopy (AFM) images of topography and amplitude modes show uniform thickness of the WS 2 domains and no signs of segmentation. However, AFM phase maps do show the same segmentation of the domain as the PL maps and indicate that it is caused by some kind of structural difference that we could not clearly identify. These results provide important insights into the spatially varying properties of these CVD-grown transition metal dichalcogenide materials, which may be important for their effective implementation in fast photo sensors and optical switches.

  7. Photoluminescence investigation of type-II GaSb/GaAs quantum dots grown by liquid phase epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Hu, Shuhong; Xie, Hao; Lin, Hongyu; lu, Hongbo; Wang, Chao; Sun, Yan; Dai, Ning

    2018-06-01

    GaSb quantum dots (QDs) with an areal density of ∼1 × 1010 cm-2 are successfully grown by the modified (rapid slider) liquid phase epitaxy technique. The morphology of the QDs has been investigated by scanning electron microscope (SEM) and atom force microscope (AFM). The power-dependence and temperature-dependence photoluminescence (PL) spectra have been studied. The bright room-temperature PL suggests a good luminescence quality of GaSb QDs/GaAs matrix system. The type-II alignment of the GaSb QDs/GaAs matrix system is verified by the blue-shift of the QDs peak with the increase of excitation power. From the temperature-dependence PL spectra, the activation energy of QDs is determined to be 111 meV.

  8. Spin-exciton interaction and related micro-photoluminescence spectra of ZnSe:Mn DMS nanoribbon

    NASA Astrophysics Data System (ADS)

    Hou, Lipeng; Zhou, Weichang; Zou, Bingsuo; Zhang, Yu; Han, Junbo; Yang, Xinxin; Gong, Zhihong; Li, Jingbo; Xie, Sishen; Shi, Li-Jie

    2017-03-01

    For their spintronic applications the magnetic and optical properties of diluted magnetic semiconductors (DMS) have been studied widely. However, the exact relationships between the magnetic interactions and optical emission behaviors in DMS are not well understood yet due to their complicated microstructural and compositional characters from different growth and preparation techniques. Manganese (Mn) doped ZnSe nanoribbons with high quality were obtained by using the chemical vapor deposition (CVD) method. Successful Mn ion doping in a single ZnSe nanoribbon was identified by elemental energy-dispersive x-ray spectroscopy mapping and micro-photoluminescence (PL) mapping of intrinsic d-d optical transition at 580 nm, i.e. the transition of 4 T 1(4 G) → 6 A 1(6 s),. Besides the d-d transition PL peak at 580 nm, two other PL peaks related to Mn ion aggregates in the ZnSe lattice were detected at 664 nm and 530 nm, which were assigned to the d-d transitions from the Mn2+-Mn2+ pairs with ferromagnetic (FM) coupling and antiferromagnetic (AFM) coupling, respectively. Moreover, AFM pair formation goes along with strong coupling with acoustic phonon or structural defects. These arguments were supported by temperature-dependent PL spectra, power-dependent PL lifetimes, and first-principle calculations. Due to the ferromagnetic pair existence, an exciton magnetic polaron (EMP) is formed and emits at 460 nm. Defect existence favors the AFM pair, which also can account for its giant enhancement of spin-orbital coupling and the spin Hall effect observed in PRL 97, 126603(2006) and PRL 96, 196404(2006). These emission results of DMS reflect their relation to local sp-d hybridization, spin-spin magnetic coupling, exciton-spin or phonon interactions covering structural relaxations. This kind of material can be used to study the exciton-spin interaction and may find applications in spin-related photonic devices besides spintronics.

  9. Optical Absorption and Visible Photoluminescence from Thin Films of Silicon Phthalocyanine Derivatives

    PubMed Central

    Rodríguez Gómez, Arturo; Moises Sánchez-Hernández, Carlos; Fleitman-Levin, Ilán; Arenas-Alatorre, Jesús; Carlos Alonso-Huitrón, Juan; Elena Sánchez Vergara, María

    2014-01-01

    The interest of microelectronics industry in new organic compounds for the manufacture of luminescent devices has increased substantially in the last decade. In this paper, we carried out a study of the usage feasibility of three organic bidentate ligands (2,6-dihydroxyanthraquinone, anthraflavic acid and potassium derivative salt of anthraflavic acid) for the synthesis of an organic semiconductor based in silicon phthalocyanines (SiPcs). We report the visible photoluminescence (PL) at room temperature obtained from thermal-evaporated thin films of these new materials. The surface morphology of these films was analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). AFM indicated that the thermal evaporation technique is an excellent resource in order to obtain low thin film roughness when depositing these kinds of compounds. Fourier transform infrared spectroscopy (FTIR) spectroscopy was employed to investigate possible changes in the intra-molecular bonds and to identify any evidence of crystallinity in the powder compounds and in the thin films after their deposition. FTIR showed that there was not any important change in the samples after the thermal deposition. The absorption coefficient (α) in the absorption region reveals non-direct transitions. Furthermore, the PL of all the investigated samples were observed with the naked eye in a bright background and also measured by a spectrofluorometer. The normalized PL spectra showed a Stokes shift ≈ 0.6 eV in two of our three samples, and no PL emission in the last one. Those results indicate that the Vis PL comes from a recombination of charge carriers between conduction band and valence band preceded by a non-radiative relaxation in the conduction band tails. PMID:28788200

  10. Impact of photoluminescence temperature and growth parameter on the exciton localized in BxGa1-xAs/GaAs epilayers grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Hidouri, Tarek; Saidi, Faouzi; Maaref, Hassen; Rodriguez, Philippe; Auvray, Laurent

    2016-10-01

    In this work, BxGa1-xAs/GaAs epilayers with three different boron compositions were elaborated by metal organic chemical vapor deposition (MOCVD) on GaAs (001) substrate. Structural study using High resolution X-ray diffraction (HRXRD) spectroscopy and Atomic Force Microscopy (AFM) have been used to estimate the boron fraction. The luminescence keys were carried out as functions of temperature in the range 10-300 K, by the techniques of photoluminescence (PL). The low PL temperature has shown an abnormal emission appeared at low energy side witch attributed to the recombination through the deep levels. In all samples, the PL peak energy and the full width at half maximum (FWHM), present an anomalous behavior as a result of the competition process between localized and delocalized carriers. We propose the Localized-state Ensemble model to explain the unusual photoluminescence behaviors. Electrical carriers generation, thermal escape, recapture, radiative and non-radiative lifetime are taken into account. The temperature-dependent photoluminescence measurements were found to be in reasonable agreement with the model of localized states. We controlled the evolution of such parameters versus composition by varying the V/III ratio to have a quantitative and qualitative understanding of the recombination mechanisms. At high temperature, the model can be approximated to the band-tail-state emission.

  11. Investigation of temperature-dependent photoluminescence in multi-quantum wells.

    PubMed

    Fang, Yutao; Wang, Lu; Sun, Qingling; Lu, Taiping; Deng, Zhen; Ma, Ziguang; Jiang, Yang; Jia, Haiqiang; Wang, Wenxin; Zhou, Junming; Chen, Hong

    2015-07-31

    Photoluminescence (PL) is a nondestructive and powerful method to investigate carrier recombination and transport characteristics in semiconductor materials. In this study, the temperature dependences of photoluminescence of GaAs-AlxGa1-xAs multi-quantum wells samples with and without p-n junction were measured under both resonant and non-resonant excitation modes. An obvious increase of photoluminescence(PL) intensity as the rising of temperature in low temperature range (T < 50 K), is observed only for GaAs-AlxGa1-xAs quantum wells sample with p-n junction under non-resonant excitation. The origin of the anomalous increase of integrated PL intensity proved to be associated with the enhancement of carrier drifting because of the increase of carrier mobility in the temperature range from 15 K to 100 K. For non-resonant excitation, carriers supplied from the barriers will influence the temperature dependence of integrated PL intensity of quantum wells, which makes the traditional methods to acquire photoluminescence characters from the temperature dependence of integrated PL intensity unavailable. For resonant excitation, carriers are generated only in the wells and the temperature dependence of integrated PL intensity is very suitable to analysis the photoluminescence characters of quantum wells.

  12. Anticorrelation of Photoluminescence from Gold Nanoparticle Dimers with Hot-Spot Intensity.

    PubMed

    Sivun, Dmitry; Vidal, Cynthia; Munkhbat, Battulga; Arnold, Nikita; Klar, Thomas A; Hrelescu, Calin

    2016-11-09

    Bulk gold shows photoluminescence (PL) with a negligible quantum yield of ∼10 -10 , which can be increased by orders of magnitude in the case of gold nanoparticles. This bears huge potential to use noble metal nanoparticles as fluorescent and unbleachable stains in bioimaging or for optical data storage. Commonly, the enhancement of the PL yield is attributed to nanoparticle plasmons, specifically to the enhancements of scattering or absorption cross sections. Tuning the shape or geometry of gold nanostructures (e.g., via reducing the distance between two nanoparticles) allows for redshifting both the scattering and the PL spectra. However, while the scattering cross section increases with a plasmonic redshift, the PL yield decreases, indicating that the common simple picture of a plasmonically boosted gold luminescence needs more detailed consideration. In particular, precise experiments as well as numerical simulations are required. Hence, we systematically varied the distance between the tips of two gold bipyramids on the nanometer scale using AFM manipulation and recorded the PL and the scattering spectra for each separation. We find that the PL intensity decreases as the interparticle coupling increases. This anticorrelation is explained by a theoretical model where both the gold-intrinsic d-band hole recombination probabilities as well as the field strength inside the nanostructure are considered. The scattering cross section or the field strength in the hot-spot between the tips of the bipyramids are not relevant for the PL intensity. Besides, we not only observe PL supported by dipolar plasmon resonances, but also measure and simulate PL supported by higher order plasmonic modes.

  13. Monitoring of photoluminescence decay by alkali and alkaline earth metal cations using a photoluminescent bolaamphiphile self-assembly as an optical probe.

    PubMed

    Kim, Sunhyung; Kwak, Jinyoung; Lee, Sang-Yup

    2014-05-01

    Photoluminescence (PL) decay induced by the displacement of an ionic fluorescence component, Tb(3+), with alkali and alkaline earth metal cations was investigated using photoluminescent spherical self-assemblies as optical probes. The photoluminescent spherical self-assembly was prepared by the self-organization of a tyrosine-containing bolaamphiphile molecule with a photosensitizer and Tb(3+) ion. The lanthanide ion, Tb(3+), electrically bound to the carboxyl group of the bolaamphiphile molecule, was displaced by alkali and alkaline earth metal cations that had stronger electrophilicity. The PL of the self-assembly decayed remarkably due to the substitution of lanthanide ions with alkali and alkaline earth metal cations. The PL decay showed a positive correlation with cation concentration and was sensitive to the cation valency. Generally, the PL decay was enhanced by the electrophilicity of the cations. However, Ca(2+) showed greater PL decay than Mg(2+) because Ca(2+) could create various complexes with the carboxyl groups of the bolaamphiphile molecule. Microscopic and spectroscopic investigations were conducted to study the photon energy transfer and displacement of Tb(3+) by the cation exchange. This study demonstrated that the PL decay by the displacement of the ionic fluorescent compound was applied to the detection of various cations in aqueous media and is applicable to the development of future optical sensors. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Solvothermal tuning of photoluminescent graphene quantum dots: from preparation to photoluminescence mechanism

    NASA Astrophysics Data System (ADS)

    Qi, Bao-Ping; Zhang, Xiaoru; Shang, Bing-Bing; Xiang, Dongshan; Zhang, Shenghui

    2018-02-01

    Solvothermal synthesis was employed to tune the surface states of graphene quantum dots (GQDs). Two series of GQDs with the particle sizes from 2.6 to 4.5 nm were prepared as follows: (I) GQDs with the same size but different oxygen degrees; (II) GQDs with different core sizes but the similar surface chemistry. Both the large sizes and the high surface oxidation degrees led to the redshift photoluminescence (PL) of GQDs. Electrochemiluminescence (ECL) spectra from two series of GQDs were all in accordance with their PL spectra, respectively, which provided good evidence for the conjugated structures in GQDs responsible for PL. [Figure not available: see fulltext.

  15. Temperature-dependent photoluminescence in meso-porous MCM nanotubes

    NASA Astrophysics Data System (ADS)

    Lee, Y. C.; Liu, Y. L.; Lee, W. Z.; Wang, C. K.; Shen, J. L.; Cheng, P. W.; Cheng, C. F.; Lin, T. Y.

    2004-11-01

    Temperature-dependent photoluminescence (PL) was exploited to investigate the mechanism of luminescence of MCM (Mobil Composition of Matter)-41 and MCM-48 nanotubes. The PL intensity has a maximum around 40 K. Localization of the carriers involved in the radiative recombination was deduced from the PL decay profiles at various energies. A model based on competition between radiative recombination of localized carriers and nonradiative recombination is suggested to explain the temperature-dependence of PL intensity.

  16. Photoluminescent properties of electrochemically synthetized ZnO nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gracia Jiménez, J.M.

    ZnO nanotubes were prepared by a sequential combination of electrochemical deposition, chemical attack and regeneration. ZnO nanocolumns were initially electrodeposited on conductive substrates and then converted into nanotubes by a process involving chemical etching and subsequent regrowth. The morphology of these ZnO nanocolumns and derived nanotubes was monitored by Scanning Electron Microscopy and their optical properties was studied by photoluminescence spectroscopy. Photoluminescence were measured as a function of temperature, from 6 to 300 K, for both nanocolumns and nanotubes. In order to study the behaviour of induced intrinsic defect all ZnO films were annealed in air at 400 °C andmore » their photoluminescent properties were also registered before and after annealing. The behaviour of photoluminescence is explained taking into account the contribution of different point defects. A band energy diagram related to intrinsic defects was proposed to describe the behaviour of photoluminescence spectra. - Highlights: •ZnO nanotubes were obtained after etching and regrowth of electrodeposited ZnO films. •Photoluminescence spectra contain two parts involving excitonic and defects transitions. •Annealing produces a blue shift in the PL peaks in both ZnO nanocolumns and nanotubes. •Etching causes a blue shift in PL peaks due to confinement effect in nanotubes walls.« less

  17. Pressure-induced photoluminescence of MgO

    NASA Astrophysics Data System (ADS)

    Li, Xin; Yuan, Ye; Zhang, Jinbo; Kim, Taehyun; Zhang, Dongzhou; Yang, Ke; Lee, Yongjae; Wang, Lin

    2018-05-01

    It is reported in this paper that pressure can promote strong photoluminescence (PL) in MgO. The PL measurements of MgO indicate that it has no obvious luminescence at pressures lower than 13 GPa. PL starts to appear upon further compression and reaches a maximum intensity at about 35 GPa. The center of the emission band shows a red shift at lower pressures and turns to a blue shift as pressure exceeds 25 GPa. The PL is preserved upon complete decompression. The defects and micro-strain due to the plastic deformation of MgO are likely responsible for the origin of the luminescence.

  18. Photoluminescence of Copper-Doped Lithium Niobate Crystals

    NASA Astrophysics Data System (ADS)

    Gorelik, V. S.; Pyatyshev, A. Yu.; Sidorov, N. V.

    2018-05-01

    The photoluminescence (PL) of copper-doped lithium niobate single crystals is studied using different UV-Vis light-emitting diodes and a pulse-periodic laser with a wavelength of 266 nm as excitation radiation sources. With the resonance excitation from a 527-nm light-emitting diode, the intensity of PL increases sharply (by two orders of magnitude). When using a 467-nm light-emitting diode for excitation, the PL spectrum is characterized by the presence of multiphonon lines in the range of 520-620 nm.

  19. Photoluminescent (PL) or electroluminescent (EL) quantum dots for display, lighting, and photomedicine (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dong, Yajie

    2017-02-01

    Quantum dots (QDs) have gone through a long journey before finding their ways into the display field. This talk will briefly touch on the history before trying to answer several key questions related to QDs applications in display: What are QDs? How are they made? What properties do they have and Why? How can these properties be used to improve color and efficiency of display, in either photoluminescence (PL) or electroluminescence (EL) mode? And what are the remaining challenges for QDs wide adoption in display industry? Lastly, some most recent progresses in our UCF lab at both PL and EL fronts will be highlighted. For PL, a cadmium-free perovskite-polymer composite films with exceptionally narrow emission green peaks (FWHM 20 nm) and good water and thermal stability will be reported. Together with red quantum dots or PFS/KSF phosphors as down-converters for blue LEDs, a white-light source with 95% Rec. 2020 color gamut was demonstrated [1]. For EL, red quantum dot light emitting devices (QLEDs) with record luminance of 165,000 Cd/m2 has been obtained at a current density of 1000 mA/cm2 with a low driving voltage of 5.8 V and CIE coordinates of (0.69, 0.31). [2] The potential of using these QLEDs for light sources for integrated sensing platform [3] or high efficiency, high color quality hybrid white OLED [4] will be discussed. [1] Y. N. Wang, J. He, H. Chen, J. S. Chen, R. D. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S. T. Wu, Y. J. Dong. Ultrastable, Highly Luminescent Organic-Inorganic Perovskite - Polymer Composite Films, Advanced Materials, accepted, (2016). [2] Y. J. Dong, J.M. Caruge, Z. Q. Zhou, C. Hamilton, Z. Popovic, J. Ho, M. Stevenson, G. Liu, V. Bulovic, M. Bawendi, P. T. Kazlas, S. Coe-Sullivan, and J. Steckel Ultra-bright, Highly Efficient, Low Roll-off Inverted Quantum-Dot Light Emitting Devices (QLEDs). SID Symp. Dig. Tech. Pap. 46, 270-273 (2015). [3] J. He, H. Chen, S. T. Wu, and Y. J. Dong, Integrated Sensing Platform Based on Quantum

  20. Time-resolved photoluminescence in Mobil Composition of Matter-48

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Lee, W. Z.; Shen, J. L.; Lee, Y. C.; Cheng, P. W.; Cheng, C. F.

    2004-12-01

    Dynamical properties of Mobil Composition of Matter (MCM)-48 were studied by time-resolved photoluminescence (PL). The PL intensity exhibits a clear nonexponential profile, which can be fitted by a stretched exponential function. In the temperature range from 50to300K, the PL decay lifetime becomes thermally activated by a characteristic energy of 25meV, which is suggested to be an indication of the phonon-assisted nonradiative process. A model is proposed to explain the relaxation behavior of the PL in MCM-48.

  1. High-Temperature Photoluminescence of CsPbX 3 (X = Cl, Br, I) Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diroll, Benjamin T.; Nedelcu, Georgian; Kovalenko, Maksym

    2017-03-30

    Recent synthetic developments have generated intense interest in the use of cesium lead halide perovskite nanocrystals for light-emitting applications. This work presents the photoluminescence (PL) of cesium lead halide perovskite nanocrystals with tunable halide composition recorded as function of temperature from 80 to 550 K. CsPbBr 3 nanocrystals show the highest resilience to temperature while chloride-containing samples show relatively poorer preservation of photoluminescence at elevated temperatures. Thermal cycling experiments show that PL loss of CsPbBr 3 is largely reversible at temperatures below 450 K, but shows irreversible degradation at higher temperatures. Time-resolved measurements of CsPbX 3 samples show an increasemore » in the PL lifetime with temperature elevation, consistent with exciton fission to form free carriers, followed by a decrease in the apparent PL lifetime due to trapping. In conclusion, PL persistence measurements and time-resolved spectroscopies implicate thermally assisted trapping, most likely to halogen vacancy traps, as the mechanism of reversible PL loss.« less

  2. [The photoluminescence and absorption properties of Co/AAO nano-array composites].

    PubMed

    Li, Shou-Yi; Wang, Cheng-Wei; Li, Yan; Wang, Jian; Ma, Bao-Hong

    2008-03-01

    Ordered Co/AAO nano-array structures were fabricated by alternating current (AC) electrodeposition method within the cylindrical pores of anodic aluminum oxide (AAO) template prepared in oxalic acid electrolyte. The photoluminescence (PL) emission and photoabsorption of AAO templates and Co/AAO nano-array structures were investigated respectively. The results show that a marked photoluminescence band of AAO membranes occurs in the wavelength range of 350-550 nm and their PL peak position is at 395 nm. And with the increase in the deposition amount of Co nanoparticles, the PL intensity of Co/AAO nano-array structures decreases gradually, and their peak positions of the PL are invariable (395 nm). Meanwhile the absorption edges of Co/AAO show a larger redshift, and the largest shift from the near ultraviolet to the infrared exceeds 380 nm. The above phenomena caused by Co nano-particles in Co/AAO composite were analyzed.

  3. Photoluminescence Brightening of Isolated Single-Walled Carbon Nanotubes

    DOE PAGES

    Hou, Zhentao; Krauss, Todd D.

    2017-09-22

    Addition of dithiothreitol (DTT) to a suspension consisting of either DNA or sodium dodecyl sulfate (SDS) wrapped single-walled carbon nanotubes (SWCNTs) caused significant photoluminescence (PL) brightening from the SWCNTs, while PL quenching to different extents was observed for other surfactant-SWCNT suspensions. PL lifetime studies with high temporal resolution show that addition of DTT mitigates non-radiative decay processes, but also surprisingly increases the radiative decay rate for DNA- and SDS-SWCNTs. There are completely opposite effects on the decay rates found for the other surfactant-SWCNTs and show PL quenching. Here, we propose that the PL brightening results from a surfactant reorganization uponmore » DTT addition. TOC« less

  4. Photoluminescence study of ZnS and ZnS:Pb nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virpal,, E-mail: virpalsharma.sharma@gmail.com; Hastir, Anita; Kaur, Jasmeet

    2015-05-15

    Photoluminescence (PL) study of pure and 5wt. % lead doped ZnS prepared by co-precipitation method was conducted at room temperature. The prepared nanoparticles were characterized by X-ray Diffraction (XRD), UV-Visible (UV-Vis) spectrophotometer, Photoluminescence (PL) and Raman spectroscopy. XRD patterns confirm cubic structure of ZnS and PbS in doped sample. The band gap energy value increased in case of Pb doped ZnS nanoparticles. The PL spectrum of pure ZnS was de-convoluted into two peaks centered at 399nm and 441nm which were attributed to defect states of ZnS. In doped sample, a shoulder peak at 389nm and a broad peak centered atmore » 505nm were observed. This broad green emission peak originated due to Pb activated ZnS states.« less

  5. Time-resolved photoluminescence investigation of (Mg, Zn) O alloy growth on a non-polar plane

    NASA Astrophysics Data System (ADS)

    Mohammed Ali, Mohammed Jassim; Chauveau, J. M.; Bretagnon, T.

    2018-04-01

    Excitons recombination dynamics in ZnMgO alloy have been studied by time-resolved photoluminescence according to temperature. At low temperature, localisation effects of the exciton are found to play a significant role. The photoluminescence (PL) decays are bi-exponential. The short lifetime has a constant value, whereas the long lifetime shows a dependency with temperature. For temperature higher than 100 K the declines show a mono-exponential decay. The PL declines are dominated by non-radiative process at temperatures above 150 K. The PL lifetime dependancy with temperature is analysed using a model including localisation effects and non-radiative recombinations.

  6. Photoluminescence emission spectra of Makrofol® DE 1-1 upon irradiation with ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M.; Aydarous, Abdulkadir

    Photoluminescence (PL) emission spectra of Makrofol® DE 1-1 (bisphenol-A based polycarbonate) upon irradiation with ultraviolet radiation of different wavelengths were investigated. The absorption-and attenuation coefficient measurements revealed that the Makrofol® DE 1-1 is characterized by high absorbance in the energy range 6.53-4.43 eV but for a lower energy than 4.43 eV, it is approximately transparent. Makrofol® DE 1-1 samples were irradiated with ultraviolet radiation of wavelength in the range from 250 (4.28 eV) to 400 (3.10 eV) nm in step of 10 nm and the corresponding photoluminescence (PL) emission spectra were measured with a spectrofluorometer. It is found that the integrated counts and the peak height of the photoluminescence emission (PL) bands are strongly correlated with the ultraviolet radiation wavelength. They are increased at the ultraviolet radiation wavelength 280 nm and have maximum at 290 nm, thereafter they decrease and diminish at 360 nm of ultraviolet wavelength. The position of the PL emission band peak was red shifted starting from 300 nm, which increased with the increase the ultraviolet radiation wavelength. The PL bandwidth increases linearly with the increase of the ultraviolet radiation wavelength. When Makrofol® DE 1-1 is irradiated with ultraviolet radiation of short wavelength (UVC), the photoluminescence emission spectra peaks also occur in the UVC but of a relatively longer wavelength. The current new findings should be considered carefully when using Makrofol® DE 1-1 in medical applications related to ultraviolet radiation.

  7. [Effects of different annealing conditions on the photoluminescence of nanoporous alumina film].

    PubMed

    Xie, Ning; Ma, Kai-Di; Shen, Yi-Fan; Wang, Qian

    2013-12-01

    The nanoporous alumina films were prepared by two-step anodic oxidation in 0.5 mol L-1 oxalic acid electrolyte at 40 V. Photoluminescence (PL) of nanoporous alumina films was investigated under different annealing atmosphere and different temperature. The authors got three results about the PL measurements. In the same annealing atmosphere, when the annealling temperature T< or =600 degreeC, the intensity of the PL peak increases with elevated annealing temperature and reaches a maximum value at 500 degreeC, but the intensity decreases with a further increase in the annealing temperature, and the PL peak intensity of samples increases with the increase in the annealing temperature when the annealling temperature T> or =800 degreeC. In the different annealling atmosphere, the change in the photoluminescence peak position for nanoporous alumina films with the increase in the annealing temperature is different: With the increase in the annealling temperature, the PL peak position for the samples annealed in air atmosphere is blue shifted, while the PL peak position for the samples annealed in vacuum atmosphere will not change. The PL spectra of nanoporous alumina films annealed at 1100 degreeC in air atmosphere can be de-convoluted by three Gaussian components at an excitation wavelength of 350 nm, with bands centered at 387, 410 and 439 nm, respectively. These results suggest that there might be three luminescence centers for the PL of annealed alumina films. At the same annealling temperature, the PL peak intensity of samples annealed in air atmosphere is stronger than that annealed in the vacuum. Based on the experimental results and the X-ray dispersive energy spectrum (EDS) combined with infrared reflect spectra, the luminescence mechanisms of nanoporous alumina films are discussed. There are three luminescence centers in the annealed nanoporous alumina films, which originate from the F center, F+ center and the center associated with the oxalic impurities. The

  8. Photoluminescence of Reduced Graphene Oxide Prepared from Old Coconut Shell with Carbonization Process at Varying Temperatures

    NASA Astrophysics Data System (ADS)

    Jayanti, Dwi Noor; Yogi Nugraheni, Ananda; Kurniasari; Anjelh Baqiya, Malik; Darminto

    2017-05-01

    Reduced graphene oxide (rGO) powder has been prepared from coconut shells by carbonization process at 400°C, 600°C, 800°C and 1000°C for 5 hours at ambient air. In this study the exfoliation rGO was added into distilled water with variation of concentration solution using the sonication process for 3 hours and centrifugation at 4000 rpm for 20 minutes. The characterization were performed by using XRD and photoluminescence (PL) spectroscopy. The photoluminescence or rGO showed the peak of excitation and emission at wavelengths ranging from 340 nm to 800 nm. The PL emission spectra are at wavelength ranging from UV to visible region approaching red. Observation showed that the photoluminescence intensity was significantly increased by the increasing content of rGO in the solution. The influence of the varying temperature on the PL spectra will also be discussed in this study.

  9. Photoluminescence Study of Plasma-Induced Damage of GaInN Single Quantum Well

    NASA Astrophysics Data System (ADS)

    Izumi, Shouichiro; Minami, Masaki; Kamada, Michiru; Tatsumi, Tetsuya; Yamaguchi, Atsushi A.; Ishikawa, Kenji; Hori, Masaru; Tomiya, Shigetaka

    2013-08-01

    Plasma-induced damage (PID) due to Cl2/SiCl4/Ar plasma etching of the GaN capping layer (CAP)/GaInN single quantum well (SQW)/GaN structure was investigated by conventional photoluminescence (PL), transmission electron microscopy (TEM), and time-resolved and temperature-dependent photoluminescence (TRPL). SQW PL intensity remained constant initially, although plasma etching of the CAP layer proceeded, but when the etching thickness reached a certain amount (˜60 nm above the SQW), PL intensity started to decrease sharply. On the other hand, TEM observations show that the physical damage (structural damage) was limited to the topmost surface region. These findings can be explained by the results of TRPL studies, which revealed that there exist two different causes of PID. One is an increase in the number of nonradiative recombination centers, which mainly affects the PL intensity. The other is an increase in the quantum level fluctuation owing mainly to physical damage.

  10. Colloidal Spherical Quantum Wells with Near-Unity Photoluminescence Quantum Yield and Suppressed Blinking.

    PubMed

    Jeong, Byeong Guk; Park, Young-Shin; Chang, Jun Hyuk; Cho, Ikjun; Kim, Jai Kyeong; Kim, Heesuk; Char, Kookheon; Cho, Jinhan; Klimov, Victor I; Park, Philip; Lee, Doh C; Bae, Wan Ki

    2016-10-02

    Thick inorganic shell endows colloidal nanocrystals (NCs) with enhanced photochemical stability and suppression of photoluminescence intermittency (also known as blinking). However, the progress of using thick-shell heterostructure NCs in applications has been limited, due to low photoluminescence quantum yield (PL QY  60%) at room temperature. Here, we demonstrate thick-shell NCs with CdS/CdSe/CdS seed/spherical quantum well/shell (SQW) geometry that exhibit near-unity PL QY at room temperature and suppression of blinking. In SQW NCs, the lattice mismatch is diminished between the emissive CdSe layer and the surrounding CdS layers as a result of coherent strain, which suppresses the formation of misfit defects and consequently permits ~ 100% PL QY for SQW NCs with thick CdS shell (≥ 5 nm). High PL QY of thick-shell SQW NCs are preserved even in concentrated dispersion and in film under thermal stress, which makes them promising candidates for applications in solid-state lightings and luminescent solar concentrators.

  11. Influence of Energetic Disorder on Exciton Lifetime and Photoluminescence Efficiency in Conjugated Polymers.

    PubMed

    Rörich, Irina; Mikhnenko, Oleksandr V; Gehrig, Dominik; Blom, Paul W M; Crăciun, N Irina

    2017-02-16

    Using time-resolved photoluminescence (TRPL) spectroscopy the exciton lifetime in a range of conjugated polymers is investigated. For poly(p-phenylenevinylene) (PPV)-based derivatives and a polyspirobifluorene copolymer (PSBF) we find that the exciton lifetime is correlated with the energetic disorder. Better ordered polymers exhibit a single exponential PL decay with exciton lifetimes of a few hundred picoseconds, whereas polymers with a larger degree of disorder show multiexponential PL decays with exciton lifetimes in the nanosecond regime. These observations are consistent with diffusion-limited exciton quenching at nonradiative recombination centers. The measured PL decay time reflects the time that excitons need to diffuse toward these quenching sites. Conjugated polymers with large energetic disorder and thus longer exciton lifetime also exhibit a higher photoluminescence quantum yield due to the slower exciton diffusion toward nonradiative quenching sites.

  12. High Performance Photoluminescent Carbon Dots for In Vitro and In Vivo Bioimaging: Effect of Nitrogen Doping Ratios.

    PubMed

    Wang, Junqing; Zhang, Pengfei; Huang, Chao; Liu, Gang; Leung, Ken Cham-Fai; Wáng, Yì Xiáng J

    2015-07-28

    Photoluminescent carbon dots (CDs) have received ever-increasing attention in the application of optical bioimaging because of their low toxicity, tunable fluorescent properties, and ultracompact size. We report for the first time on enhanced photoluminescence (PL) performance influenced by structure effects among the various types of nitrogen doped (N-doped) PL CDs. These CDs were facilely synthesized from condensation carbonization of linear polyethylenic amine (PEA) analogues and citric acid (CA) of different ratios. Detailed structural and property studies demonstrated that either the structures or the molar ratio of PEAs altered the PL properties of the CDs. The content of conjugated π-domains with C═N in the carbon backbone was correlated with their PL Quantum Yield (QY) (up to 69%). The hybridization between the surface/molecule state and the carbon backbone synergistically affected the chemical/physical properties. Also, long-chain polyethylenic amine (PEA) molecule-doped CDs exhibit increasing photostability, but at the expense of PL efficiency, proving that the PL emission of high QY CDs arise not only from the sp(2)/sp(3) carbon core and surface passivation of CDs, but also from the molecular fluorophores integrated in the CDs. In vitro and in vivo bioimaging of these N-doped CDs showed strong photoluminescence signals. Good biocompatibility demonstrates their potential feasibility for bioimaging applications. In addition, the overall size profile of the as-prepared CDs is comparable to the average size of capillary pores in normal living tissues (∼5 nm). Our study provides valuable insights into the effects of the PEA doping ratios on photoluminescence efficiency, biocompatibility, cellular uptake, and optical bioimaging of CDs.

  13. Effect of Silica Nanoparticles on the Photoluminescence Properties of BCNO Phosphor

    NASA Astrophysics Data System (ADS)

    Nuryadin, Bebeh W.; Faryuni, Irfana Diah; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal, Khairurrijal

    2011-12-01

    Effect of additional silica nanoparticles on the photoluminescence (PL) performance of boron carbon oxy-nitride (BCNO) phosphor was investigated. As a precursor, boric acid and urea were used as boron and nitrogen sources, respectively. The carbon sources was polyethylene glycol (PEG) with average molecule weight 20000 g/mol.. Precursor solutions were prepared by mixing these raw materials in pure water, followed by stirring to achieve homogeneous solutions. In this precursor, silica nanoparticles were added at various mass ratio from 0 to 7 %wt in the solution. The precursors were then heated at 750 °C for 60 min in a ceramic crucible under atmospheric pressure. The photoluminescence (PL) spectrum that characterized by spectrophotometer showed a single, distinct, and broad emission band varied from blue to near red color, depend on the PEG, boric acid and urea ratio in the precursor. The addition of silica nanoparticles caused the increasing of PL intensity as well as the shifting of peak wavelength of PL spectrum. The peak shifting of PL was affected by the concentration of silica nanoparticles that added into the precursor. We believe that the BCNO-silica composite phosphor becomes a promising material for the phosphor conversion-based white light-emitting diodes.

  14. Intensity and temperature-dependent photoluminescence of tris (8-hydroxyquinoline) aluminum films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajward, A. M.; Wang, X.; Wagner, H. P.

    2013-12-04

    We investigate the recombination of excitons in tris (8-hydroxyquinoline) aluminum films by intensity and temperature dependent time-resolved photoluminescence (PL). At low temperature (15 K) and elevated excitation intensity the radiative emission is quenched by singlet-singlet annihilation processes. With rising temperature the PL quenching is strongly reduced resulting in a PL efficiency maximum at ∼170 K. The reduced exciton annihilation is attributed to thermally activated occupation of non-quenchable trapped exciton states. Above 170 K the PL efficiency decreases due to thermal de-trapping of radiative states and subsequent migration to non-radiative centers.

  15. Energy transfer networks: Quasicontinuum photoluminescence linked to high densities of defects

    DOE PAGES

    Laurence, Ted A.; Ly, Sonny; Bude, Jeff D.; ...

    2017-11-06

    In a series of studies related to laser-induced damage of optical materials and deposition of plastics, we discovered a broadly emitting photoluminescence with fast lifetimes that we termed quasicontinuum photoluminescence (QC-PL). Here in this paper, we suggest that a high density of optically active defects leads to QC-PL, where interactions between defects affect the temporal and spectral characteristics of both excitation and emission. We develop a model that predicts the temporal characteristics of QC-PL, based on energy transfer interactions between high densities of defects. Our model does not explain all spectral broadening and redshifts found in QC-PL, since we domore » not model spectral changes in defects due to proximity to other defects. However, we do provide an example of a well-defined system that exhibits the QC-PL characteristics of a distribution in shortened lifetimes and broadened, redshifted energy levels: an organic chromophore (fluorescein) that has been dried rapidly on a fused silica surface. Recently, we showed that regions of fused silica exposed to up to 1 billion high-fluence laser shots at 351 rm nm at subdamage fluences exhibit significant transmission losses at the surface. Here, we find that these laser-exposed regions also exhibit QC-PL. Increases in the density of induced defects on these laser-exposed surfaces, as measured by the local transmission loss, lead to decreases in the observed lifetime and redshifts in the spectrum of the QC-PL, consistent with our explanation for QC-PL. In conclusion, we have found QC-PL in an increasing variety of situations and materials, and we believe it is a phenomenon commonly found on surfaces and nanostructured materials.« less

  16. Energy transfer networks: Quasicontinuum photoluminescence linked to high densities of defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, Ted A.; Ly, Sonny; Bude, Jeff D.

    In a series of studies related to laser-induced damage of optical materials and deposition of plastics, we discovered a broadly emitting photoluminescence with fast lifetimes that we termed quasicontinuum photoluminescence (QC-PL). Here in this paper, we suggest that a high density of optically active defects leads to QC-PL, where interactions between defects affect the temporal and spectral characteristics of both excitation and emission. We develop a model that predicts the temporal characteristics of QC-PL, based on energy transfer interactions between high densities of defects. Our model does not explain all spectral broadening and redshifts found in QC-PL, since we domore » not model spectral changes in defects due to proximity to other defects. However, we do provide an example of a well-defined system that exhibits the QC-PL characteristics of a distribution in shortened lifetimes and broadened, redshifted energy levels: an organic chromophore (fluorescein) that has been dried rapidly on a fused silica surface. Recently, we showed that regions of fused silica exposed to up to 1 billion high-fluence laser shots at 351 rm nm at subdamage fluences exhibit significant transmission losses at the surface. Here, we find that these laser-exposed regions also exhibit QC-PL. Increases in the density of induced defects on these laser-exposed surfaces, as measured by the local transmission loss, lead to decreases in the observed lifetime and redshifts in the spectrum of the QC-PL, consistent with our explanation for QC-PL. In conclusion, we have found QC-PL in an increasing variety of situations and materials, and we believe it is a phenomenon commonly found on surfaces and nanostructured materials.« less

  17. Energy transfer networks: Quasicontinuum photoluminescence linked to high densities of defects

    NASA Astrophysics Data System (ADS)

    Laurence, Ted A.; Ly, Sonny; Bude, Jeff D.; Baxamusa, Salmaan H.; Lepró, Xavier; Ehrmann, Paul

    2017-11-01

    In a series of studies related to laser-induced damage of optical materials and deposition of plastics, we discovered a broadly emitting photoluminescence with fast lifetimes that we termed quasicontinuum photoluminescence (QC-PL). Here, we suggest that a high density of optically active defects leads to QC-PL, where interactions between defects affect the temporal and spectral characteristics of both excitation and emission. We develop a model that predicts the temporal characteristics of QC-PL, based on energy transfer interactions between high densities of defects. Our model does not explain all spectral broadening and redshifts found in QC-PL, since we do not model spectral changes in defects due to proximity to other defects. However, we do provide an example of a well-defined system that exhibits the QC-PL characteristics of a distribution in shortened lifetimes and broadened, redshifted energy levels: an organic chromophore (fluorescein) that has been dried rapidly on a fused silica surface. Recently, we showed that regions of fused silica exposed to up to 1 billion high-fluence laser shots at 351 rm nm at subdamage fluences exhibit significant transmission losses at the surface. Here, we find that these laser-exposed regions also exhibit QC-PL. Increases in the density of induced defects on these laser-exposed surfaces, as measured by the local transmission loss, lead to decreases in the observed lifetime and redshifts in the spectrum of the QC-PL, consistent with our explanation for QC-PL. We have found QC-PL in an increasing variety of situations and materials, and we believe it is a phenomenon commonly found on surfaces and nanostructured materials.

  18. Effect of spatial restriction on the photoluminescent properties of carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Vostrikova, A. M.; Nikolaeva, A. N.; Bakal, A. A.; Shpuntova, D. V.; Mordovina, E. A.; Sukhorukov, G. B.; Sapelkin, A. V.; Goryacheva, I. Yu.

    2018-04-01

    Photoluminescent (PL) properties of carbon-based nanomaterials obtained on the base of sodium dextran sulfate (DS) were compared. DS water solution, dry powder and co-precipitated inside pores of CaCO3 microparticles solution were thermally treated and clear difference between these materials was found. Effect of spatial restriction of CaCO3 pores showed itself in the identity of PL properties for material, obtained by thermal and hydrothermal treatment; in the absence of CaCO3 microparticles the PL spectra were quite different.

  19. Oxygen defect induced photoluminescence of HfO2 thin films

    NASA Astrophysics Data System (ADS)

    Ni, Jie; Zhou, Qin; Li, Zhengcao; Zhang, Zhengjun

    2008-07-01

    Amorphous HfO2 films prepared by e-beam deposition exhibited room-temperature photoluminescence (PL) in the visible range, i.e., at ˜620 and 700nm, due to oxygen vacancies involved during deposition. This PL can be enhanced by two orders in intensity by crystallizing the amorphous films in flowing argon, where a large amount of oxygen vacancies were introduced, and can be diminished by removal of the oxygen vacancies by annealing HfO2 films in oxygen. This study could help understand the defect-property relationship and provides ways to tune the PL property of HfO2 films.

  20. The emission wavelength dependent photoluminescence lifetime of the N-doped graphene quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Xingxia; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210; University of Chinese Academy of Sciences, Beijing 100049

    2015-12-14

    Aromatic nitrogen doped graphene quantum dots were investigated by steady-state and time-resolved photoluminescence (PL) techniques. The PL lifetime was found to be dependent on the emission wavelength and coincident with the PL spectrum, which is different from most semiconductor quantum dots and fluorescent dyes. This result shows the synergy and competition between the quantum confinement effect and edge functional groups, which may have the potential to guide the synthesis and expand the applications of graphene quantum dots.

  1. Quantum Dots' Photo-luminescence Line Shape Modeling

    NASA Astrophysics Data System (ADS)

    Hua, Muchuan; Decca, Ricardo

    Two usual phenomena observed in quantum dots (QDs) photo-luminescence (PL) spectra are line broadening and energy shift between absorption and emission peaks. They have been attributed to electron-phonon coupling and surface trapping during the PL process. Although many qualitative work describing these phenomena has been carried out, quantitative results are far less common. In this work, a semi-empirical model is introduced to simulate steady state QDs' PL processes at room temperature. It was assumed that the vast majority of radiative recombination happens from surface trapped states. Consequently, the PL line shape should be highly modulated by transition rates between states in the conduction band and between them and surface trapping states. CdSe/ZnS (core/shell) colloidal QD samples with different sizes were used to examine the model. The model was able to successfully reproduce the PL spectra of these samples even when the excitation happens within the emission spectra, giving raise to up-conversion events. This model might help understand and make more precise predictions of QDs' PL spectra and could also aid on the design of QDs' optical devices.

  2. Influence of cysteine doping on photoluminescence intensity from semiconducting single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kurnosov, N. V.; Leontiev, V. S.; Linnik, A. S.; Karachevtsev, V. A.

    2015-03-01

    Photoluminescence (PL) from semiconducting single-walled carbon nanotubes can be applied for detection of cysteine. It is shown that cysteine doping (from 10-8 to 10-3 M) into aqueous suspension of nanotubes with adsorbed DNA leads to increase of PL intensity. The PL intensity was enhanced by 27% at 10-3 M cysteine concentration in suspension. Most likely, the PL intensity increases due to the passivation of p-defects on the nanotube by the cysteine containing reactive thiol group. The effect of doping with other amino acids without this group (methionine, serine, aspartic acid, lysine, proline) on the PL intensity is essentially weaker.

  3. Quality Characterization of Silicon Bricks using Photoluminescence Imaging and Photoconductive Decay: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, S.; Yan, F.; Zaunbrecher, K.

    2012-06-01

    Imaging techniques can be applied to multicrystalline silicon solar cells throughout the production process, which includes as early as when the bricks are cut from the cast ingot. Photoluminescence (PL) imaging of the band-to-band radiative recombination is used to characterize silicon quality and defects regions within the brick. PL images of the brick surfaces are compared to minority-carrier lifetimes measured by resonant-coupled photoconductive decay (RCPCD). Photoluminescence images on silicon bricks can be correlated to lifetime measured by photoconductive decay and could be used for high-resolution characterization of material before wafers are cut. The RCPCD technique has shown the longest lifetimesmore » of any of the lifetime measurement techniques we have applied to the bricks. RCPCD benefits from the low-frequency and long-excitation wavelengths used. In addition, RCPCD is a transient technique that directly monitors the decay rate of photoconductivity and does not rely on models or calculations for lifetime. The measured lifetimes over brick surfaces have shown strong correlations to the PL image intensities; therefore, this correlation could then be used to transform the PL image into a high-resolution lifetime map.« less

  4. Synthesis and photoluminescence properties of ZnS nanobowl arrays via colloidal monolayer template

    PubMed Central

    2014-01-01

    Two-dimensional Zinc sulfide (ZnS) nanobowl arrays were synthesized via self-assembled monolayer polystyrene sphere template floating on precursor solution surface. A facile approach was proposed to investigate the morphology evolution of nanobowl arrays by post-annealing procedure. Photoluminescence (PL) measurement of as-grown nanoarrays shows that the spectrum mainly includes two parts: a purple emission peak at 382 nm and a broad blue emission band centering at 410 nm with a shoulder around 459 nm, and a blue emission band at 440 nm was obtained after the annealing procedure. ZnS nanoarrays with special morphologies and PL emission are benefits to their promising application in novel photoluminescence nanodevice. PMID:25246857

  5. Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joo, Jinmyoung; Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505; Defforge, Thomas

    2016-04-11

    The effect of supercritical drying (SCD) on the preparation of porous silicon (pSi) powders has been investigated in terms of photoluminescence (PL) efficiency. Since the pSi contains closely spaced and possibly interconnected Si nanocrystals (<5 nm), pore collapse and morphological changes within the nanocrystalline structure after common drying processes can affect PL efficiency. We report the highly beneficial effects of using SCD for preparation of photoluminescent pSi powders. Significantly higher surface areas and pore volumes have been realized by utilizing SCD (with CO{sub 2} solvent) instead of air-drying. Correspondingly, the pSi powders better retain the porous structure and the nano-sized siliconmore » grains, thus minimizing the formation of non-radiative defects during liquid evaporation (air drying). The SCD process also minimizes capillary-stress induced contact of neighboring nanocrystals, resulting in lower exciton migration levels within the network. A significant enhancement of the PL quantum yield (>32% at room temperature) has been achieved, prompting the need for further detailed studies to establish the dominant causes of such an improvement.« less

  6. Photoluminescence from Au nanoparticles embedded in Au:oxide composite films

    NASA Astrophysics Data System (ADS)

    Liao, Hongbo; Wen, Weijia; Wong, George K.

    2006-12-01

    Au:oxide composite multilayer films with Au nanoparticles sandwiched by oxide layers (such as SiO2, ZnO, and TiO2) were prepared in a magnetron sputtering system. Their photoluminescence (PL) spectra were investigated by employing a micro-Raman system in which an Argon laser with a wavelength of 514 nm was used as the pumping light. Distinct PL peaks located at a wavelength range between 590 and 680 nm were observed in most of our samples, with Au particle size varying from several to hundreds of nanometers. It was found that the surface plasmon resonance (SPR) in these composites exerted a strong influence on the position of the PL peaks but had little effect on the PL intensity.

  7. Photoluminescence study of MBE grown InGaN with intentional indium segregation

    NASA Astrophysics Data System (ADS)

    Cheung, Maurice C.; Namkoong, Gon; Chen, Fei; Furis, Madalina; Pudavar, Haridas E.; Cartwright, Alexander N.; Doolittle, W. Alan

    2005-05-01

    Proper control of MBE growth conditions has yielded an In0.13Ga0.87N thin film sample with emission consistent with In-segregation. The photoluminescence (PL) from this epilayer showed multiple emission components. Moreover, temperature and power dependent studies of the PL demonstrated that two of the components were excitonic in nature and consistent with indium phase separation. At 15 K, time resolved PL showed a non-exponential PL decay that was well fitted with the stretched exponential solution expected for disordered systems. Consistent with the assumed carrier hopping mechanism of this model, the effective lifetime, , and the stretched exponential parameter, , decrease with increasing emission energy. Finally, room temperature micro-PL using a confocal microscope showed spatial clustering of low energy emission.

  8. Rethinking the theoretical description of photoluminescence in compound semiconductors

    NASA Astrophysics Data System (ADS)

    Valkovskii, V.; Jandieri, K.; Gebhard, F.; Baranovskii, S. D.

    2018-02-01

    Semiconductor compounds, such as Ga(NAsP)/GaP or GaAsBi/GaAs, are in the focus of intensive research due to their unique features for optoelectronic devices. The optical spectra of compound semiconductors are strongly influenced by the random scattering potentials caused by compositional and structural disorder. The disorder potential is responsible for the red-shift (Stokes shift) of the photoluminescence (PL) peak and for the inhomogeneous broadening of the PL spectra. So far, the anomalous broadening of the PL spectra in Ga(NAsP)/GaP has been explained assuming two coexisting length scales of disorder. However, this interpretation appears in contradiction to the recently observed dependence of the PL linewidth on the excitation intensity. We suggest an alternative approach that describes the PL characteristics in the framework of a model with a single length scale of disorder. The price is the assumption of two types of localized states with different, temperature-dependent non-radiative recombination rates.

  9. Defect-Induced Photoluminescence Enhancement and Corresponding Transport Degradation in Individual Suspended Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Shen, Lang; Yang, Sisi; Chen, Jihan; Echternach, Juliana; Dhall, Rohan; Kang, DaeJin; Cronin, Stephen

    2018-05-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. The utilization of defects in carbon nanotubes to improve their photoluminescence efficiency has become a widespread study of the realization of efficient light-emitting devices. Here, we report a detailed comparison of the defects in nanotubes (quantified by Raman spectroscopy) and photoluminescence (PL) intensity of individual suspended carbon nanotubes (CNTs). We also evaluate the impact of these defects on the electron or hole transport in the nanotubes, which is crucial for the ultimate realization of optoelectronic devices. We find that brightly luminescent nanotubes exhibit a pronounced D-band in their Raman spectra, and vice versa, dimly luminescent nanotubes exhibit almost no D-band. Here, defects are advantageous for light emission by trapping excitons, which extend their lifetimes. We quantify this behavior by plotting the PL intensity as a function of the ID /IG -band Raman intensity ratio, which exhibits a Lorentzian distribution peaked at ID /IG=0.17 . For CNTs with a ID /IG ratio >0.25 , the PL intensity decreases, indicating that above some critical density, nonradiative recombination at defect sites dominates over the advantages of exciton trapping. In an attempt to fabricate optoelectronic devices based on these brightly luminescent CNTs, we transfer these suspended CNTs to platinum electrodes and find that the brightly photoluminescent nanotubes exhibit nearly infinite resistance due to these defects, while those without bright photoluminescence exhibit finite resistance. These findings indicate a potential limitation in the use of brightly luminescent CNTs for optoelectronic applications.

  10. Synthesis and Photoluminescence Characteristics of Eu(3+)-Doped Molybdates Nanocrystals.

    PubMed

    Li, Fuhai; Yu, Lixin; Wei, Shuilin; Sun, Jiaju; Chen, Weiqing; Sun, Wei

    2015-12-01

    In this paper, the Eu(3+)-doped molybdate (CaMoO4, ZnMoO4 and BaMoO4) phosphors have been prepared by a hydrothermal method through modulating the pH value of the precursor solution (pH = 8, 10, and 12, respectively). The crystalline phase, morphology, photoluminescent properties of the prepared samples were systematically characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and photoluminescence (PL) spectra. The results indicate that the photoluminescence and morphology can be affected by the precursor solution. And the growth of the ZnMoO4 crystals also can be affected by the pH value of the precursor solution.

  11. Photoluminescence Intermittency and Photo-Bleaching of Single Colloidal Quantum Dot.

    PubMed

    Qin, Haiyan; Meng, Renyang; Wang, Na; Peng, Xiaogang

    2017-04-01

    Photoluminescence (PL) blinking of single colloidal quantum dot (QD)-PL intensity switching between different brightness states under constant excitation-and photo-bleaching are roadblocks for most applications of QDs. This progress report shall treat PL blinking and photo-bleaching both as photochemical events, namely, PL blinking as reversible and photo-bleaching being irreversible ones. Most studies on single-molecule spectroscopy of QDs in literature are related to PL blinking, which invites us to concentrate our discussions on the PL blinking, including its brief history in 20 years, analysis methods, competitive mechanisms and different strategies to battle it. In terms of suppression of the PL blinking, wavefunction confinement-confining photo-generated electron and hole within the core and inner portion of the shell of a core/shell QD-demonstrates significant advantages. This strategy yields nearly non-blinking QDs with their emission peaks covering most part of the visible window. As expected, the resulting QDs from this new strategy also show substantially improved anti-bleaching features. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. SEMICONDUCTOR MATERIALS: White light photoluminescence from ZnS films on porous Si substrates

    NASA Astrophysics Data System (ADS)

    Caifeng, Wang; Qingshan, Li; Bo, Hu; Weibing, Li

    2010-03-01

    ZnS films were deposited on porous Si (PS) substrates using a pulsed laser deposition (PLD) technique. White light emission is observed in photoluminescence (PL) spectra, and the white light is the combination of blue and green emission from ZnS and red emission from PS. The white PL spectra are broad, intense in a visible band ranging from 450 to 700 nm. The effects of the excitation wavelength, growth temperature of ZnS films, PS porosity and annealing temperature on the PL spectra of ZnS/PS were also investigated.

  13. Absorption Coefficient of a Semiconductor Thin Film from Photoluminescence

    NASA Astrophysics Data System (ADS)

    Rey, G.; Spindler, C.; Babbe, F.; Rachad, W.; Siebentritt, S.; Nuys, M.; Carius, R.; Li, S.; Platzer-Björkman, C.

    2018-06-01

    The photoluminescence (PL) of semiconductors can be used to determine their absorption coefficient (α ) using Planck's generalized law. The standard method, suitable only for self-supported thick samples, like wafers, is extended to multilayer thin films by means of the transfer-matrix method to include the effect of the substrate and optional front layers. α values measured on various thin-film solar-cell absorbers by both PL and photothermal deflection spectroscopy (PDS) show good agreement. PL measurements are extremely sensitive to the semiconductor absorption and allow us to advantageously circumvent parasitic absorption from the substrate; thus, α can be accurately determined down to very low values, allowing us to investigate deep band tails with a higher dynamic range than in any other method, including spectrophotometry and PDS.

  14. Using quantum dot photoluminescence for load detection

    NASA Astrophysics Data System (ADS)

    Moebius, M.; Martin, J.; Hartwig, M.; Baumann, R. R.; Otto, T.; Gessner, T.

    2016-08-01

    We propose a novel concept for an integrable and flexible sensor capable to visualize mechanical impacts on lightweight structures by quenching the photoluminescence (PL) of CdSe quantum dots. Considering the requirements such as visibility, storage time and high optical contrast of PL quenching with low power consumption, we have investigated a symmetrical and an asymmetrical layer stack consisting of semiconductor organic N,N,N',N'-Tetrakis(3-methylphenyl)-3,3'-dimethylbenzidine (HMTPD) and CdSe quantum dots with elongated CdS shell. Time-resolved series of PL spectra from layer stacks with applied voltages of different polarity and simultaneous observation of power consumption have shown that a variety of mechanisms such as photo-induced charge separation and charge injection, cause PL quenching. However, mechanisms such as screening of external field as well as Auger-assisted charge ejection is working contrary to that. Investigations regarding the influence of illumination revealed that the positive biased asymmetrical layer stack is the preferred sensor configuration, due to a charge carrier injection at voltages of 10 V without the need of coincident illumination.

  15. Light-emitting device with organic electroluminescent material and photoluminescent materials

    DOEpatents

    McNulty, Thomas Francis; Duggal, Anil Raj; Turner, Larry Gene; Shiang, Joseph John

    2005-06-07

    A light-emitting device comprises a light-emitting member, which comprises two electrodes and an organic electroluminescent material disposed between the electrodes, and at least one organic photoluminescent ("PL") material. The light-emitting member emits light having a first spectrum in response to a voltage applied across the two electrodes. The organic PL material absorbs a portion of the light emitted by the light-emitting member and emits light having second spectrum different than the first spectrum. The light-emitting device can include an inorganic PL material that absorbs another portion of the light emitted from the light-emitting member and emits light having a third spectrum different than both the first and the second spectra.

  16. Picosecond time-resolved photoluminescence using picosecond excitation correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, M. B.; McGill, T. C.; Hunter, A. T.

    1988-03-01

    We present a study of the temporal decay of photoluminescence (PL) as detected by picosecond excitation correlation spectroscopy (PECS). We analyze the correlation signal that is obtained from two simple models; one where radiative recombination dominates, the other where trapping processes dominate. It is found that radiative recombination alone does not lead to a correlation signal. Parallel trapping type processes are found to be required to see a signal. To illustrate this technique, we examine the temporal decay of the PL signal for In-alloyed, semi-insulating GaAs substrates. We find that the PL signal indicates a carrier lifetime of roughly 100 ps, for excitation densities of 1×1016-5×1017 cm-3. PECS is shown to be an easy technique to measure the ultrafast temporal behavior of PL processes because it requires no ultrafast photon detection. It is particularly well suited to measuring carrier lifetimes.

  17. Effect of heat treatment on the structure of incorporated oxalate species and photoluminescent properties of porous alumina films formed in oxalic acid

    NASA Astrophysics Data System (ADS)

    Vrublevsky, I.; Jagminas, A.; Hemeltjen, S.; Goedel, W. A.

    2008-09-01

    The present work focuses on the use of IR spectroscopy and photoluminescence spectral measurements for studying the treatment temperature effect on the compositional and luminescent properties of oxalic acid alumina films. In line with the recent researches we have also found that heat treatment of porous alumina films formed in oxalic acid leads to considerable changes in their photoluminescence properties: upon annealing the intensity of photoluminescence (PL) increases reaching a maximum at the temperature of around 500 °C and then decreases. IR spectra of as-grown and heat-treated films have proved that PL emission in the anodic alumina films is related with the state of 'structural' oxalate species incorporated in the oxide lattice. These results allowed us to conclude that PL behavior of oxalic acid alumina films can be explained through the concept of variations in the bonding molecular orbitals of incorporated oxalate species including σ- and π-bonds.

  18. Intense photoluminescence from dried double-stranded DNA and single-walled carbon nanotube hybrid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, M.; Kobayashi, T.; Ito, Y.

    2014-01-27

    Semiconducting single-walled carbon nanotubes (SWNTs) show near-infrared photoluminescence (PL) when they are individually isolated. This was an obstacle to use photonic properties of SWNTs on a solid surface. We show that SWNTs wrapped with DNA maintain intense PL under the dry conditions. SWNTs are well isolated individually by DNA even when the DNA-SWNT hybrids are agglomerated. This finding opens up application of SWNTs to photonic devices.

  19. Enhancement of visible photoluminescence in the SiNx films by SiO2 buffer and annealing

    NASA Astrophysics Data System (ADS)

    Xu, M.; Xu, S.; Chai, J. W.; Long, J. D.; Ee, Y. C.

    2006-12-01

    The authors report a simple method to significantly enhance the photoluminescence (PL) of SiNx films by incorporating a SiO2 buffer and annealing treatment under N2 protection. Strong visible PL is achieved with annealing temperature above 650°C. Optimal PL is obtained at 800°C. The composition and structure analysis reveal that strong PL is directly related to the content of the Si-O and Si-N bonds in the SiNx films. These bonds provide effective luminescent centers and passivate the interface between Si core and the surrounding oxide.

  20. Photoluminescence characteristics of polariton condensation in a CuBr microcavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, Masaaki, E-mail: nakayama@a-phys.eng.osaka-cu.ac.jp; Murakami, Katsuya; Furukawa, Yoshiaki

    2014-07-14

    We have investigated the photoluminescence (PL) properties of a CuBr microcavity at 10 K, including the temporal profiles, from the viewpoint of cavity-polariton condensation. The excitation energy density dependence of the PL intensity (band width) of the lower polariton branch at an in-plane wave vector of k{sub //} = 0 exhibits a threshold-like increase (decrease). A large blueshift in the PL energy of ∼10 meV caused by the cavity-polariton renormalization is correlated with the excitation energy density dependence of the PL intensity. The estimated density of photogenerated electron-hole pairs at the threshold is two orders lower than the Mott transition density. These results consistentlymore » demonstrate the occurrence of cavity-polariton condensation. In addition, we found that the PL rise and decay times are shortened dramatically by the cavity-polariton condensation, which reflects the bosonic final state stimulation in the relaxation process and the intrinsic cavity-polariton lifetime in the decay process.« less

  1. Ultrafast Time-Resolved Photoluminescence Studies of Gallium-Arsenide

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew Bruce

    This thesis concerns the study of ultrafast phenomena in GaAs using time-resolved photoluminescence (PL). The thesis consists of five chapters. Chapter one is an introduction, which discusses the study of ultrafast phenomena in semiconductors. Chapter two is a description of the colliding-pulse mode-locked (CPM) ring dye laser, which is at the heart of the experimental apparatus used in this thesis. Chapter three presents a detailed experimental and theoretical investigation of photoluminescence excitation correlation spectroscopy (PECS), the novel technique which is used to time-resolve ultrafast PL phenomena. Chapters 4 and 5 discuss two applications of the PECS technique. In Chapter 4 the variation of PL intensity in In-alloyed GaAs substrate material is studied, while Chapter 5 discusses the variation of carrier lifetimes in ion-damaged GaAs used in photo-conductive circuit elements (PCEs). PECS is a pulse-probe technique that measures the cross correlation of photo-excited carrier populations. The theoretical model employed in this thesis is based upon the rate equation for a simple three-level system consisting of valence and conduction bands and a single trap level. In the limit of radiative band-to-band dominated recombination, no PECS signal should be observed; while in the capture -dominated recombination limit, the PECS signal from the band-to-band PL measures the cross correlation of the excited electron and hole populations and thus, the electron and hole lifetimes. PECS is experimentally investigated using a case study of PL in semi-insulating (SI) GaAs and In -alloyed GaAs. At 77 K, the PECS signal is characteristic of a capture-dominated system, yielding an electron-hole lifetime of about 200 ps. However, at 5 K the behavior is more complicated and shows saturation effects due to the C acceptor level, which is un-ionized at 5 K. As a first application, PECS is used to investigate the large band-to-band PL contrast observed near dislocations in In

  2. The correlation of blue shift of photoluminescence and morphology of silicon nanoporous

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Jumaili, Batool E. B., E-mail: batooleneaze@gmail.com; Department of Physics, Anbar University; Talib, Zainal A.

    Porous silicon with diameters ranging from 6.41 to 7.12 nm were synthesized via electrochemical etching by varied anodization current density in ethanoic solutions containing aqueous hydrofluoric acid up to 65 mA/cm{sup 2}.The luminescence properties of the nanoporous at room temperature were analyzed via photoluminescence spectroscopy. Photoluminescence PL spectra exhibit a broad emission band in the range of 360-700 nm photon energy. The PL spectrum has a blue shift in varied anodization current density; the blue shift incremented as the existing of anodization although the intensity decreased. The current blue shift is owning to alteration of silicon nanocrystal structure at themore » superficies. The superficial morphology of the PS layers consists of unified and orderly distribution of nanocrystalline Si structures, have high porosity around (93.75%) and high thickness 39.52 µm.« less

  3. Self-assembly and photoluminescence evolution of hydrophilic and hydrophobic quantum dots in sol–gel processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ping, E-mail: mse_yangp@ujn.edu.cn; Matras-Postolek, Katarzyna; Song, Xueling

    2015-10-15

    Graphical abstract: Highly luminescent quantum dots (QDs) with tunable photoluminescence (PL) wavelength were assembled into various morphologies including chain, hollow spheres, fibers, and ring structures through sol–gel processes. The PL properties during assembly as investigated. - Highlights: • Highly luminescent quantum dots (QDs) were synthesized from several ligands. • The evolution of PL in self-assembly via sol–gel processes was investigated. • CdTe QDs were assembled into a chain by controlling hydrolysis and condensation reactions. • Hollow spheres, fibers, and ring structures were created via CdSe/ZnS QDs in sol–gel processes. - Abstract: Highly luminescent quantum dots (QDs) with tunable photoluminescence (PL)more » wavelength were synthesized from several ligands to investigate the PL evolution in QD self-assembly via sol–gel processes. After ligand exchange, CdTe QDs were assembled into a chain by controlling the hydrolysis and condensation reaction of 3-mercaptopropyl-trimethoxysilane. The chain was then coated with a SiO{sub 2} shell from tetraethyl orthosilicate (TEOS). Hollow spheres, fibers, and ring structures were created from CdSe/ZnS QDs via various sol–gel processes. CdTe QDs revealed red-shifted and narrowed PL spectrum after assembly compared with their initial one. In contrast, the red-shift of PL spectra of CdSe/ZnS QDs is small. By optimizing experimental conditions, SiO{sub 2} spheres with multiple CdSe/ZnS QDs were fabricated using TEOS and MPS. The QDs in these SiO{sub 2} spheres retained their initial PL properties. This result is useful for application because of their high stability and high PL efficiency of 33%.« less

  4. Polythiophene-fullerene based photodetectors: tuning of spectral response and application in photoluminescence based (bio)chemical sensors.

    PubMed

    Nalwa, Kanwar S; Cai, Yuankun; Thoeming, Aaron L; Shinar, Joseph; Shinar, Ruth; Chaudhary, Sumit

    2010-10-01

    A photoluminescence (PL)-based oxygen and glucose sensor utilizing inorganic or organic light emitting diode as the light source, and polythiophene: fullerene type bulk-heterojunction devices as photodetectors, for both intensity and decay-time based monitoring of the sensing element's PL. The sensing element is based on the oxygen-sensitive dye Pt-octaethylporphyrin embedded in a polystyrene matrix.

  5. Photoluminescence due to early stage of oxygen precipitation in multicrystalline Si for solar cells

    NASA Astrophysics Data System (ADS)

    Higuchi, Fumito; Tajima, Michio; Ogura, Atsushi

    2017-07-01

    To analyze the early stage of oxygen precipitation in n-type multicrytalline Si, the spectral change of photoluminescence (PL) induced by thermal treatment at 450-650 °C was investigated in relation to the changes in excess donor and interstitial oxygen concentrations. We observed the characteristic PL bands in the near-band-edge region and sharp lines in the deep-level region in correspondence with the generation of thermal donors and new donors. The observed PL spectral variation is essentially the same as that in Czochralski-grown Si annealed at 450-650 °C.

  6. Synthesis and characterization of a new photoluminescent material, tris-[1-10 phenanthroline] aluminium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rahul, E-mail: id-kumarrahul003@gmail.com; Bhargava, Parag; Dvivedi, Avanish

    A new photoluminescent material namely tris-[1-10 Phenanthroline] Aluminium Al(Phen){sub 3} has been synthesized and characterized. This material was characterized by fourier transform infrared spectroscopy (FTIR),nuclear magnetic resonance (NMR),mass spectroscopy, thermal gravimetric analysis (TGA),ultraviolet-visible spectroscopy(UV) and photoluminescence (PL). This material shows thermal stability up to 300°C. This material showed absorption maxima at 352nm which may be attributed to the moderate energy (π–π{sup *}) transition. Photoluminescence spectra for this material showed the most intense peak at 423 nm and the time resolved photoluminescence spectra showed two life time components. The decay times of the first and second component were 1.4ns and 4.8 ns respectively.

  7. Transparently wrap-gated semiconductor nanowire arrays for studies of gate-controlled photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nylund, Gustav; Storm, Kristian; Torstensson, Henrik

    2013-12-04

    We present a technique to measure gate-controlled photoluminescence (PL) on arrays of semiconductor nanowire (NW) capacitors using a transparent film of Indium-Tin-Oxide (ITO) wrapping around the nanowires as the gate electrode. By tuning the wrap-gate voltage, it is possible to increase the PL peak intensity of an array of undoped InP NWs by more than an order of magnitude. The fine structure of the PL spectrum reveals three subpeaks whose relative peak intensities change with gate voltage. We interpret this as gate-controlled state-filling of luminescing quantum dot segments formed by zincblende stacking faults in the mainly wurtzite NW crystal structure.

  8. Origin of stretched-exponential photoluminescence relaxation in size-separated silicon nanocrystals

    DOE PAGES

    Brown, Samuel L.; Krishnan, Retheesh; Elbaradei, Ahmed; ...

    2017-05-25

    A detailed understanding of the photoluminescence (PL) from silicon nanocrystals (SiNCs) is convoluted by the complexity of the decay mechanism, including a stretched-exponential relaxation and the presence of both nanosecond and microsecond time scales. In this publication, we analyze the microsecond PL decay of size-resolved SiNC fractions in both full-spectrum (FS) and spectrally resolved (SR) configurations, where the stretching exponent and lifetime are used to deduce a probability distribution function (PDF) of decay rates. For the PL decay measured at peak emission, we find a systematic shift and narrowing of the PDF in comparison to the FS measurements. In amore » similar fashion, we resolve the PL lifetime of the ‘blue’, ‘peak’, and ‘red’ regions of the spectrum and map PL decays of different photon energy onto their corresponding location in the PDF. Furthermore, a general trend is observed where higher and lower photon energies are correlated with shorter and longer lifetimes, respectively, which we relate to the PL line width and electron-phonon coupling.« less

  9. Photoluminescence inhomogeneity and excitons in CVD-grown monolayer WS2

    NASA Astrophysics Data System (ADS)

    Ren, Dan-Dan; Qin, Jing-Kai; Li, Yang; Miao, Peng; Sun, Zhao-Yuan; Xu, Ping; Zhen, Liang; Xu, Cheng-Yan

    2018-06-01

    Transition metal dichalcogenides two-dimensional materials are of great importance for future electronic and optoelectronic applications. In this work, triangular WS2 monolayers with size up to 130 μm were prepared via chemical vapor deposition method. WS2 monolayers presented uniform Raman intensity, while quenched photoluminescence (PL) was observed in the center. The PL quenching in the central part of WS2 monolayer flakes was attributed to the gradually increasing sulfur vacancies toward the center. The proportion of negative trion (X-) in PL spectrum increases with increasing sulfur vacancies in WS2. The enhanced binding energy of X- suggests higher Fermi level and n-doping level with larger sulfur vacancy concentration. Our findings may be beneficial to the development of integrated devices, and also explore the defect-induced optical and electrical properties for nanophotonics.

  10. Structural, optical, and photoluminescence characterization of electron beam evaporated ZnS/CdSe nanoparticles thin films

    NASA Astrophysics Data System (ADS)

    Mohamed, S. H.; Ali, H. M.

    2011-01-01

    Structural, optical, and photoluminescence investigations of ZnS capped with CdSe films prepared by electron beam evaporation are presented. X-ray diffraction analysis revealed that the ZnS/CdSe nanoparticles films contain cubic cadmium selenide and hexagonal zinc sulfide crystals and the ZnS grain sizes increased with increasing ZnS thickness. The refractive index was evaluated in terms of envelope method, which has been suggested by Swanepoel in the transparent region. The refractive index values were found to increase with increasing ZnS thickness. However, the optical band gap and the extinction coefficient were decreased with increasing ZnS thickness. Photoluminescence (PL) investigations revealed the presence of two broad emission bands. The ZnS thickness significantly influenced the PL intensities.

  11. Structural Order-Disorder Transformations Monitored by X-Ray Diffraction and Photoluminescence

    ERIC Educational Resources Information Center

    Lima, R. C.; Paris, E. C.; Leite, E. R.; Espinosa, J. W. M.; Souza, A. G.; Longo, E.

    2007-01-01

    A study was conducted to examine the structural order-disorder transformation promoted by controlled heat treatment using X-ray diffraction technique (XRD) and photoluminescence (PL) techniques as tools to monitor the degree of structural order. The experiment was observed to be versatile and easily achieved with low cost which allowed producing…

  12. Femtosecond transient photoluminescence of the substituted poly(diphenylacetulene)s.

    NASA Astrophysics Data System (ADS)

    Piskun, N. V.; Wang, D. K.; Lim, H.; Epstein, A. J.; Vanwoerkom, L. D.; Gustafson, T. L.

    2000-03-01

    We present the results of a femtosecond transient photoluminescence (PL) study of solutions of two derivatives of substituted poly(diphenylacetylene) using an up-conversion technique. n-Butyl (nBu) and p-carbazole (Cz) substituted poly(diphenylacetylene), PDPA-nBu and PDPA-Cz respectively, have band gaps determined by maxima in the slope of absorption vs. energy of 2.75 eV and 2.63 eV. The steady state emission peaks are at 2.4 eV for PDPA-nBu and at 2.3 eV for PDPA-Cz respectively. The PL peak for PDPA-Cz is red shifted in comparison to the PL peak for PDPA-nBu. Roles of phenyl groups, electron donating effect of the carbazole side units and planarity of the backbone are discussed. Exciting at 3.1 eV, the fs PL shows a faster decay for PDPA-Cz than that for PDPA-nBu, in accord with the decrease of PL quantum efficiency of PDPA-Cz. The 200 fs - 80 ps PL(t) agrees with ~1 ns lifetime. The PDPA-Cz has larger red shift in the 0.2-20 ps time frame. The origin of that shift will be discussed. This work is supported in part by ONR.

  13. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers

    DOE PAGES

    Ajayi, Obafunso A.; Ardelean, Jenny V.; Shepard, Gabriella D.; ...

    2017-07-24

    Excitonic states in monolayer transition metal dichalcogenides (TMDCs) have been the subject of extensive recent interest. Their intrinsic properties can, however, be obscured due to the influence of inhomogeneity in the external environment. Here we report methods for fabricating high quality TMDC monolayers with narrow photoluminescence (PL) linewidth approaching the intrinsic limit. We find that encapsulation in hexagonal boron nitride (h-BN) sharply reduces the PL linewidth, and that passivation of the oxide substrate by an alkyl monolayer further decreases the linewidth and also minimizes the charged exciton (trion) peak. The combination of these sample preparation methods results in much reducedmore » spatial variation in the PL emission, with a full-width-at-half-maximum as low as 1.7 meV. Furthermore, analysis of the PL line shape yields a homogeneous width of 1.43 ± 0.08 meV and inhomogeneous broadening of 1.1 ± 0.3 meV.« less

  14. Photoluminescence, chemiluminescence and anodic electrochemiluminescence of hydrazide-modified graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Dong, Yongqiang; Dai, Ruiping; Dong, Tongqing; Chi, Yuwu; Chen, Guonan

    2014-09-01

    Single-layer graphene quantum dots (SGQDs) were refluxed with hydrazine (N2H4) to prepare hydrazide-modified SGQDs (HM-SGQDs). Compared with SGQDs, partial oxygen-containing groups have been removed from HM-SGQDs. At the same time, a lot of hydrazide groups have been introduced into HM-SGQDs. The introduced hydrazide groups provide HM-SGQDs with a new kind of surface state, and give HM-SGQDs unique photoluminescence (PL) properties such as blue-shifted PL emission and a relatively high PL quantum yield. More importantly, the hydrazide-modification made HM-SGQDs have abundant luminol-like units. Accordingly, HM-SGQDs exhibit unique and excellent chemiluminescence (CL) and anodic electrochemiluminescence (ECL). The hydrazide groups of HM-SGQDs can be chemically oxidized by the dissolved oxygen (O2) in alkaline solutions, producing a strong CL signal. The CL intensity is mainly dependent on the pH value and the concentration of O2, implying the potential applications of HM-SGQDs in pH and O2 sensors. The hydrazide groups of HM-SGQDs can also be electrochemically oxidized in alkaline solutions, producing a strong anodic ECL signal. The ECL intensity can be enhanced sensitively by hydrogen peroxide (H2O2). The enhanced ECL intensity is proportional to the concentration of H2O2 in a wide range of 3 μM to 500 μM. The detection limit of H2O2 was calculated to be about 0.7 μM. The results suggest the great potential applications of HM-SGQDs in the sensors of H2O2 and bio-molecules that are able to produce H2O2 in the presence of enzymes.Single-layer graphene quantum dots (SGQDs) were refluxed with hydrazine (N2H4) to prepare hydrazide-modified SGQDs (HM-SGQDs). Compared with SGQDs, partial oxygen-containing groups have been removed from HM-SGQDs. At the same time, a lot of hydrazide groups have been introduced into HM-SGQDs. The introduced hydrazide groups provide HM-SGQDs with a new kind of surface state, and give HM-SGQDs unique photoluminescence (PL) properties such

  15. Slow Organic-to-Inorganic Sub-Lattice Thermalization in Methylammonium Lead Halide Perovskites Observed by Ultrafast Photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Angela Y.; Cho, Yi-Ju; Chen, Kuan-Chen

    2016-05-31

    Carrier dynamics in methylammonium lead halide (CH3NH3PbI3-xClx) perovskite thin films, of differing crystal morphology, are examined as functions of temperature and excitation wavelength. At room temperature, long-lived (> nanosecond) transient absorption signals indicate negligible carrier trapping. However, in measurements of ultrafast photoluminescence excited at 400 nm, a heretofore unexplained, large amplitude (50%-60%), 45 ps decay process is observed. This feature persists for temperatures down to the orthorhombic phase transition. Varying pump photon energy reveals that the fast, band-edge photoluminescence (PL) decay only appears for excitation >= 2.38 eV (520 nm), with larger amplitudes for higher pump energies. Lower photon-energy excitationmore » yields slow dynamics consistent with negligible carrier trapping. Further, sub-bandgap two-photon pumping yields identical PL dynamics as direct absorption, signifying sensitivity to the total deposited energy and insensitivity to interfacial effects. Together with first principles electronic structure and ab initio molecular dynamics calculations, the results suggest the fast PL decay stems from excitation of high energy phonon modes associated with the organic sub-lattice that temporarily enhance wavefunction overlap within the inorganic component owing to atomic displacement, thereby transiently changing the PL radiative rate during thermalization. Hence, the fast PL decay relates a characteristic organic-to-inorganic sub-lattice equilibration timescale at optoelectronic-relevant excitation energies.« less

  16. Evidence for edge state photoluminescence in graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Lingam, Kiran; Podila, Ramakrishna; Qian, Haijun; Serkiz, Steve; Rao, Apparao M.

    2013-03-01

    For a practical realization of graphene-based logic devices, opening of a band gap in graphene is crucial and has proved challenging. To this end, several synthesis techniques including unzipping of carbon nanotubes, chemical vapor deposition and other bottom-up fabrication techniques have been pursued for the bulk production of graphene nanoribbons (GNRs) and graphene quantum dots (GQDs). However, only a limited progress has been made towards a fundamental understanding of the electronic and optical properties of GQDs. In particular, the origin of strong photoluminescence (PL) in GQDs, which has been attributed to the presence of emissive surface traps and/or the edge states in GQD, remains inconclusive to date. Here, we experimentally show that the PL is independent of the functional groups attached to the GQDs. Following a series of annealing experiments, we further show that the PL in GQDs originates from the edge states, and an edge-passivation subsequent to synthesis quenches PL. These results are consistent with comparative studies on other carbon nanostructures such as GNRs and carbon nano-onions.

  17. Shaping the photoluminescence from gold nanoshells by cavity plasmons in dielectric-metal core-shell resonators

    NASA Astrophysics Data System (ADS)

    Sun, Ren; Wan, Mingjie; Wu, Wenyang; Gu, Ping; Chen, Zhuo; Wang, Zhenlin

    2016-08-01

    We report experimental investigation of the photoluminescence (PL) generated from the gold nanoshells of the dielectric-metal core-shell resonators (DMCSR) that support multipolar electric and magnetic based cavity plasmon resonances. Significantly enhanced and modulated PL spectrum is observed. By comparing the experimental results with analytical Mie calculations, we are able to demonstrate that the observed reshaping effects are due to the excitations of those narrow-band cavity plasmon resonances. We also present that the variation on the dielectric core size allows for tuning the cavity plasmon resonance wavelengths and thus the peak positions of the PL spectrum.

  18. Investigation on photoluminescence emission of (reduced) graphene oxide paper

    NASA Astrophysics Data System (ADS)

    Ding, J. J.; Chen, H. X.; Feng, D. Q.; Fu, H. W.

    2018-01-01

    In order to contrastively investigate optical properties of graphene oxide (GO) and reduced graphene oxide (rGO) paper, GO is prepared by improved Hummer method and controlled reduced using hydration hydrazine to obtain good dispersive rGO in organic solvent. Finally, GO and rGO paper are obtained by vacuum filtration method. Samples morphology and optical properties are analyzed by scanning electron microscopy (SEM) images, Raman spectra, absorbance spectra and photoluminescence (PL) spectra. Results indicate that there are large numbers of localized states in both GO and rGO paper, and optical gaps of two samples are 0.62 eV. In PL spectra of GO paper, we observe three emission peaks at 565, 578 and 608 nm, respectively whose intensity decreases evidently after reduced, which is due to the decrease of oxide functionalized groups and expansion of sp2 clusters. PL emission will gradually decrease during GO are reduced.

  19. Anomalous photoluminescence in InP1−xBix

    PubMed Central

    Wu, Xiaoyan; Chen, Xiren; Pan, Wenwu; Wang, Peng; Zhang, Liyao; Li, Yaoyao; Wang, Hailong; Wang, Kai; Shao, Jun; Wang, Shumin

    2016-01-01

    Low temperature photoluminescence (PL) from InP1−xBix thin films with Bi concentrations in the 0–2.49% range reveals anomalous spectral features with strong and very broad (linewidth of 700 nm) PL signals compared to other bismide alloys. Multiple transitions are observed and their energy levels are found much smaller than the band-gap measured from absorption measurements. These transitions are related to deep levels confirmed by deep level transient spectroscopy, which effectively trap free holes and enhance radiative recombination. The broad luminescence feature is beneficial for making super-luminescence diodes, which can theoretically enhance spatial resolution beyond 1 μm in optical coherent tomography (OCT). PMID:27291823

  20. Preparation and characterization of silica-coated ZnSe nanowires with thermal stability and photoluminescence.

    PubMed

    Xiong, Shenglin; Xi, Baojuan; Wang, Weizhi; Zhou, Hongyang; Zhang, Shuyuan; Qian, Yitai

    2007-12-01

    Silica-coated ZnSe nanowires with well-controlled the thickness of sheath in the range of 10-60 nm have been synthesized through a simple sol-gel process. The thickness of silica coating could be controlled through altering reaction parameters such as volume ratio of TEOS and ammonia. XRD, high-resolution TEM, X-ray photoelectron spectroscopy (XPS), Raman spectra, thermogravimetric analysis (TGA), and photoluminescence (PL) spectra were used to characterize the core/sheath nanostructures. Room-temperature PL measurements indicate these silica-coated ZnSe nanowires remarkably improve the PL intensity. Meanwhile, the thermal stability has been enhanced greatly, which is useful for their potential applications in advanced semiconductor devices.

  1. Detection of Human Ig G Using Photoluminescent Porous Silicon Interferometer.

    PubMed

    Cho, Bomin; Kim, Seongwoong; Woo, Hee-Gweon; Kim, Sungsoo; Sohn, Honglae

    2015-02-01

    Photoluminescent porous silicon (PSi) interferometers having dual optical properties, both Fabry-Pérot fringe and photolumincence (PL), have been developed and used as biosensors for detection of Human Immunoglobin G (Ig G). PSi samples were prepared by electrochemical etching of p-type silicon under white light exposure. The surface of PSi was characterized using a cold field emission scanning electron microscope. The sensor system studied consisted of a single layer of porous silicon modified with Protein A. The system was probed with various fragments of aqueous human immunoglobin G (Ig G) analyte. Both reflectivity and PL were simultaneously measured under the exposure of human Ig G. An increase of optical thickness and decrease of PL were obtained under the exposure of human Ig G. Detection limit of 500 fM was observed for the human Ig G.

  2. Defect-mediated photoluminescence up-conversion in cadmium sulfide nanobelts (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Morozov, Yurii; Kuno, Masaru K.

    2017-02-01

    The concept of optical cooling of solids has existed for nearly 90 years ever since Pringsheim proposed a way to cool solids through the annihilation of phonons via phonon-assisted photoluminescence (PL) up-conversion. In this process, energy is removed from the solid by the emission of photons with energies larger than those of incident photons. However, actually realizing optical cooling requires exacting parameters from the condensed phase medium such as near unity external quantum efficiencies as well as existence of a low background absorption. Until recently, laser cooling has only been successfully realized in rare earth doped solids. In semiconductors, optical cooling has very recently been demonstrated in cadmium sulfide (CdS) nanobelts as well as in hybrid lead halide perovskites. For the former, large internal quantum efficiencies, sub-wavelength thicknesses, which decrease light trapping, and low background absorption, all make near unity external quantum yields possible. Net cooling by as much as 40 K has therefore been possible with CdS nanobelts. In this study, we describe a detailed investigation of the nature of efficient anti-Stokes photoluminescence (ASPL) in CdS nanobelts. Temperature-dependent PL up-conversion and optical absorption studies on individual NBs together with frequency-dependent up-converted PL intensity spectroscopies suggest that ASPL in CdS nanobelts is defect-mediated through involvement of defect levels below the band gap.

  3. Emergence of new red-shifted carbon nanotube photoluminescence based on proximal doped-site design

    NASA Astrophysics Data System (ADS)

    Shiraki, Tomohiro; Shiraishi, Tomonari; Juhász, Gergely; Nakashima, Naotoshi

    2016-06-01

    Single-walled carbon nanotubes (SWNTs) show unique photoluminescence (PL) in the near-infrared (NIR) region. Here we propose a concept based on the proximal modification in local covalent functionalization of SWNTs. Quantum mechanical simulations reveal that the SWNT band gap changes specifically based on the proximal doped-site design. Thus, we synthesize newly-designed bisdiazonium molecules and conduct local fucntionalisation of SWNTs. Consequently, new red-shifted PL (E112*) from the bisdiazonium-modified SWNTs with (6, 5) chirality is recognized around 1250 nm with over ~270 nm Stokes shift from the PL of the pristine SWNTs and the PL wavelengths are shifted depending on the methylene spacer lengths of the modifiers. The present study revealed that SWNT PL modulation is enable by close-proximity-local covalent modification, which is highly important for fundamental understanding of intrinsic SWNT PL properties as well as exciton engineering-based applications including photonic devices and (bio)imaging/sensing.

  4. Water-Soluble Polymers with Strong Photoluminescence through an Eco-Friendly and Low-Cost Route.

    PubMed

    Guo, Zhaoyan; Ru, Yue; Song, Wenbo; Liu, Zhenjie; Zhang, Xiaohong; Qiao, Jinliang

    2017-07-01

    Photoluminescence (PL) of nonconjugated polymers brings a favorable opportunity for low-cost and nontoxic luminescent materials, while most of them still exhibit relatively weak emission. Strong PL from poly[(maleic anhydride)-alt-(vinyl acetate)] (PMV) from low-cost monomer has been found in organic solvents, yet the necessity of noxious solvents would hinder its practical applications. Herein, through a novel, eco-friendly, and one-step route, PMV-derived PL polymers can be fabricated with the highest quantum yield of 87% among water-soluble nonconjugated PL polymers ever reported. These PMV-derived polymers emit strong blue emission in both solutions and solids, and can be transformed into red-emission agents easily. These PL polymers exhibit application potentials in light-conversion agricultural films. It is assumed that this work not only puts forward a convenient preparation routine for nonconjugated polymers with high PL, but also provides an industrial application possibility for them. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Emergence of new red-shifted carbon nanotube photoluminescence based on proximal doped-site design

    PubMed Central

    Shiraki, Tomohiro; Shiraishi, Tomonari; Juhász, Gergely; Nakashima, Naotoshi

    2016-01-01

    Single-walled carbon nanotubes (SWNTs) show unique photoluminescence (PL) in the near-infrared (NIR) region. Here we propose a concept based on the proximal modification in local covalent functionalization of SWNTs. Quantum mechanical simulations reveal that the SWNT band gap changes specifically based on the proximal doped-site design. Thus, we synthesize newly-designed bisdiazonium molecules and conduct local fucntionalisation of SWNTs. Consequently, new red-shifted PL (E112*) from the bisdiazonium-modified SWNTs with (6, 5) chirality is recognized around 1250 nm with over ~270 nm Stokes shift from the PL of the pristine SWNTs and the PL wavelengths are shifted depending on the methylene spacer lengths of the modifiers. The present study revealed that SWNT PL modulation is enable by close-proximity-local covalent modification, which is highly important for fundamental understanding of intrinsic SWNT PL properties as well as exciton engineering–based applications including photonic devices and (bio)imaging/sensing. PMID:27345862

  6. Nonradiative recombination centers in GaAs:N δ-doped superlattice revealed by two-wavelength-excited photoluminescence

    NASA Astrophysics Data System (ADS)

    Dulal Haque, Md.; Kamata, Norihiko; Fukuda, Takeshi; Honda, Zentaro; Yagi, Shuhei; Yaguchi, Hiroyuki; Okada, Yoshitaka

    2018-04-01

    We use two-wavelength-excited photoluminescence (PL) to investigate nonradiative recombination (NRR) centers in GaAs:N δ-doped superlattice (SL) structures grown by molecular beam epitaxy. The change in photoluminescence (PL) intensity due to the superposition of below-gap excitation at energies of 0.75, 0.80, 0.92, and 0.95 eV and above-gap excitation at energies of 1.69 or 1.45 eV into the GaAs conduction band and the E- band implies the presence of NRR centers inside the GaAs:N δ-doped SL and/or GaAs layers. The change in PL intensity as a function of the photon number density of below-gap excitation is examined for both bands, which enables us to determine the distribution of NRR centers inside the GaAs:N δ-doped SL and GaAs layers. We propose recombination models to explain the experimental results. Defect-related parameters that give a qualitative insight into the samples are investigated systematically by fitting the rate equations to the experimental data.

  7. Mechanofluorochromic Carbon Nanodots: Controllable Pressure-Triggered Blue- and Red-Shifted Photoluminescence.

    PubMed

    Liu, Cui; Xiao, Guanjun; Yang, Mengli; Zou, Bo; Zhang, Zhi-Ling; Pang, Dai-Wen

    2018-02-12

    Mechanofluorochromic materials, which change their photoluminescence (PL) colors in responding to mechanical stimuli, can be used as mechanosensors, security papers, and photoelectronic devices. However, traditional mechanofluorochromic materials can only be adjusted to a monotone direction upon the external stimuli. Controllable pressure-triggered blue- and red-shifted PL is reported for C-dots. The origin of mechanofluorochromism (MFC) in C-dots is interpreted based on structure-property relationships. The carbonyl group and the π-conjugated system play key roles in the PL change of C-dots under high pressure. As the pressure increases, the enhanced π-π stacking of the π-conjugated system causes the red-shift of PL, while the conversion of carbonyl groups eventually induces a blue-shift. Together with their low toxicity, good hydrophilicity, and small size, the tunable MFC property would boost various potential applications of C-dots. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Correlation between reflectance and photoluminescent properties of al-rich ZnO nano-structures

    NASA Astrophysics Data System (ADS)

    Khan, Firoz; Baek, Seong-Ho; Ahmad, Nafis; Lee, Gun Hee; Seo, Tae Hoon; Suh, Eun-kyung; Kim, Jae Hyun

    2015-05-01

    Al rich zinc oxide nano-structured films were synthesized using spin coating sol-gel technique. The films were annealed in oxygen ambient in the temperature range of 200-700 °C. The structural, optical, and photoluminescence (PL) properties of the films were studied at various annealing temperatures using X-ray diffraction spectroscopy, field emission scanning electron microscopy, photoluminescence emission spectra measurement, and Raman and UV-Vis spectroscopy. The optical band gap was found to decrease with the increase of the annealing temperature following the Gauss Amp function due to the confinement of the exciton. The PL peak intensity in the near band region (INBE) was found to increase with the increase of the annealing temperature up to 600 °C, then to decrease fast to a lower value for the annealing temperature of 700 °C due to crystalline quality. The Raman peak of E2 (low) was red shifted from 118 cm-1 to 126 cm-1 with the increase of the annealing temperature. The intensity of the second order phonon (TA+LO) at 674 cm-1 was found to decrease with the increase of the annealing temperature. The normalized values of the reflectance and the PL intensity in the NBE region were highest for the annealing temperature of 600 °C. A special correlation was found between the reflectance at λ = 1000 nm and the normalized PL intensity in the green region due to scattering due to presence of grains.

  9. Strong Photoluminescence Enhancement of Silicon Oxycarbide through Defect Engineering

    PubMed Central

    Ford, Brian; Tabassum, Natasha; Nikas, Vasileios; Gallis, Spyros

    2017-01-01

    The following study focuses on the photoluminescence (PL) enhancement of chemically synthesized silicon oxycarbide (SiCxOy) thin films and nanowires through defect engineering via post-deposition passivation treatments. SiCxOy materials were deposited via thermal chemical vapor deposition (TCVD), and exhibit strong white light emission at room-temperature. Post-deposition passivation treatments were carried out using oxygen, nitrogen, and forming gas (FG, 5% H2, 95% N2) ambients, modifying the observed white light emission. The observed white luminescence was found to be inversely related to the carbonyl (C=O) bond density present in the films. The peak-to-peak PL was enhanced ~18 and ~17 times for, respectively, the two SiCxOy matrices, oxygen-rich and carbon-rich SiCxOy, via post-deposition passivations. Through a combinational and systematic Fourier transform infrared spectroscopy (FTIR) and PL study, it was revealed that proper tailoring of the passivations reduces the carbonyl bond density by a factor of ~2.2, corresponding to a PL enhancement of ~50 times. Furthermore, the temperature-dependent and temperature-dependent time resolved PL (TDPL and TD-TRPL) behaviors of the nitrogen and forming gas passivated SiCxOy thin films were investigated to acquire further insight into the ramifications of the passivation on the carbonyl/dangling bond density and PL yield. PMID:28772802

  10. Surface modification effects on defect-related photoluminescence in colloidal CdS quantum dots.

    PubMed

    Lee, TaeGi; Shimura, Kunio; Kim, DaeGwi

    2018-05-03

    We investigated the effects of surface modification on the defect-related photoluminescence (PL) band in colloidal CdS quantum dots (QDs). A size-selective photoetching process and a surface modification technique with a Cd(OH)2 layer enabled the preparation of size-controlled CdS QDs with high PL efficiency. The Stokes shift of the defect-related PL band before and after the surface modification was ∼1.0 eV and ∼0.63 eV, respectively. This difference in the Stokes shifts suggests that the origin of the defect-related PL band was changed by the surface modification. Analysis by X-ray photoelectron spectroscopy revealed that the surface of the CdS QDs before and after the surface modification was S rich and Cd rich, respectively. These results suggest that Cd-vacancy acceptors and S-vacancy donors affect PL processes in CdS QDs before and after the surface modification, respectively.

  11. One-step microwave synthesis of photoluminescent carbon nanoparticles from sodium dextran sulfate water solution

    NASA Astrophysics Data System (ADS)

    Kokorina, Alina A.; Goryacheva, Irina Y.; Sapelkin, Andrei V.; Sukhorukov, Gleb B.

    2018-04-01

    Photoluminescent (PL) carbon nanoparticles (CNPs) have been synthesized by one-step microwave irradiation from water solution of sodium dextran sulfate (DSS) as the sole carbon source. Microwave (MW) method is very simple and cheap and it provides fast synthesis of CNPs. We have varied synthesis time for obtaining high luminescent CNPs. The synthesized CNPs exhibit excitation-dependent photoluminescent. Final CNPs water solution has a blue- green luminescence. CNPs have low cytotoxicity, good photostability and can be potentially suitable candidates for bioimaging, analysis or analytical tests.

  12. Aryl-modified graphene quantum dots with enhanced photoluminescence and improved pH tolerance

    NASA Astrophysics Data System (ADS)

    Luo, Peihui; Ji, Zhe; Li, Chun; Shi, Gaoquan

    2013-07-01

    Chemical modification is an important technique to modulate the chemical and optical properties of graphene quantum dots (GQDs). In this paper, we report a versatile diazonium chemistry method to graft aryl groups including phenyl, 4-carboxyphenyl, 4-sulfophenyl and 5-sulfonaphthyl to GQDs via Gomberg-Bachmann reaction. The aryl-modified GQDs are nanocrystals with lateral dimensions in the range of 2-4 nm and an average thickness lower than 1 nm. Upon chemical modification with aryl groups, the photoluminescence (PL) bands of GQDs were tuned in the range of 418 and 447 nm, and their fluorescence quantum yields (QYs) were increased for up to about 6 times. Furthermore, the aryl-modified GQDs exhibited stable PL (both intensity and peak position) in a wide pH window of 1-11. The mechanism of improving the PL properties of GQDs by aryl-modification was also discussed.Chemical modification is an important technique to modulate the chemical and optical properties of graphene quantum dots (GQDs). In this paper, we report a versatile diazonium chemistry method to graft aryl groups including phenyl, 4-carboxyphenyl, 4-sulfophenyl and 5-sulfonaphthyl to GQDs via Gomberg-Bachmann reaction. The aryl-modified GQDs are nanocrystals with lateral dimensions in the range of 2-4 nm and an average thickness lower than 1 nm. Upon chemical modification with aryl groups, the photoluminescence (PL) bands of GQDs were tuned in the range of 418 and 447 nm, and their fluorescence quantum yields (QYs) were increased for up to about 6 times. Furthermore, the aryl-modified GQDs exhibited stable PL (both intensity and peak position) in a wide pH window of 1-11. The mechanism of improving the PL properties of GQDs by aryl-modification was also discussed. Electronic supplementary information (ESI) available: Fluorescence quantum yield measurements, estimation of grafting ratio, TEM images, FTIR spectra, PL spectra and zeta potentials. See DOI: 10.1039/c3nr02156d

  13. Laser-induced Greenish-Blue Photoluminescence of Mesoporous Silicon Nanowires

    PubMed Central

    Choi, Yan-Ru; Zheng, Minrui; Bai, Fan; Liu, Junjun; Tok, Eng-Soon; Huang, Zhifeng; Sow, Chorng-Haur

    2014-01-01

    Solid silicon nanowires and their luminescent properties have been widely studied, but lesser is known about the optical properties of mesoporous silicon nanowires (mp-SiNWs). In this work, we present a facile method to generate greenish-blue photoluminescence (GB-PL) by fast scanning a focused green laser beam (wavelength of 532 nm) on a close-packed array of mp-SiNWs to carry out photo-induced chemical modification. The threshold of laser power is 5 mW to excite the GB-PL, whose intensity increases with laser power in the range of 5–105 mW. The quenching of GB-PL comes to occur beyond 105 mW. The in-vacuum annealing effectively excites the GB-PL in the pristine mp-SiNWs and enhances the GB-PL of the laser-modified mp-SiNWs. A complex model of the laser-induced surface modification is proposed to account for the laser-power and post-annealing effect. Moreover, the fast scanning of focused laser beam enables us to locally tailor mp-SiNWs en route to a wide variety of micropatterns with different optical functionality, and we demonstrate the feasibility in the application of creating hidden images. PMID:24820533

  14. Formation of embedded plasmonic Ga nanoparticle arrays and their influence on GaAs photoluminescence

    NASA Astrophysics Data System (ADS)

    Kang, M.; Jeon, S.; Jen, T.; Lee, J.-E.; Sih, V.; Goldman, R. S.

    2017-07-01

    We introduce a novel approach to the seamless integration of plasmonic nanoparticle (NP) arrays into semiconductor layers and demonstrate their enhanced photoluminescence (PL) efficiency. Our approach utilizes focused ion beam-induced self-assembly of close-packed arrays of Ga NPs with tailorable NP diameters, followed by overgrowth of GaAs layers using molecular beam epitaxy. Using a combination of PL spectroscopy and electromagnetic computations, we identify a regime of Ga NP diameter and overgrown GaAs layer thickness where NP-array-enhanced absorption in GaAs leads to enhanced GaAs near-band-edge (NBE) PL efficiency, surpassing that of high-quality epitaxial GaAs layers. As the NP array depth and size are increased, the reduction in spontaneous emission rate overwhelms the NP-array-enhanced absorption, leading to a reduced NBE PL efficiency. This approach provides an opportunity to enhance the PL efficiency of a wide variety of semiconductor heterostructures.

  15. Synthesis and photoluminescent and nonlinear optical properties of manganese doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Nazerdeylami, Somayeh; Saievar-Iranizad, Esmaiel; Dehghani, Zahra; Molaei, Mehdi

    2011-01-01

    In this work we synthesized ZnS:Mn 2+ nanoparticles by chemical method using PVP (polyvinylpyrrolidone) as a capping agent in aqueous solution. The structure and optical properties of the resultant product were characterized using UV-vis optical spectroscopy, X-ray diffraction (XRD), photoluminescence (PL) and z-scan techniques. UV-vis spectra for all samples showed an excitonic peak at around 292 nm, indicating that concentration of Mn 2+ ions does not alter the band gap of nanoparticles. XRD patterns showed that the ZnS:Mn 2+ nanoparticles have zinc blende structure with the average crystalline sizes of about 2 nm. The room temperature photoluminescence (PL) spectrum of ZnS:Mn 2+ exhibited an orange-red emission at 594 nm due to the 4T 1- 6A 1 transition in Mn 2+. The PL intensity increased with increase in the Mn 2+ ion concentration. The second-order nonlinear optical properties of nanoparticles were studied using a continuous-wave (CW) He-Ne laser by z-scan technique. The nonlinear refractive indices of nanoparticles were in the order of 10 -8 cm 2/W with negative sign and the nonlinear absorption indices of these nanoparticles were obtained to be about 10 -3 cm/W with positive sign.

  16. Chemically modulated graphene quantum dot for tuning the photoluminescence as novel sensory probe

    NASA Astrophysics Data System (ADS)

    Hwang, Eunhee; Hwang, Hee Min; Shin, Yonghun; Yoon, Yeoheung; Lee, Hanleem; Yang, Junghee; Bak, Sora; Lee, Hyoyoung

    2016-12-01

    A band gap tuning of environmental-friendly graphene quantum dot (GQD) becomes a keen interest for novel applications such as photoluminescence (PL) sensor. Here, for tuning the band gap of GQD, a hexafluorohydroxypropanyl benzene (HFHPB) group acted as a receptor of a chemical warfare agent was chemically attached on the GQD via the diazonium coupling reaction of HFHPB diazonium salt, providing new HFHPB-GQD material. With a help of the electron withdrawing HFHPB group, the energy band gap of the HFHPB-GQD was widened and its PL decay life time decreased. As designed, after addition of dimethyl methyl phosphonate (DMMP), the PL intensity of HFHPB-GQD sensor sharply increased up to approximately 200% through a hydrogen bond with DMMP. The fast response and short recovery time was proven by quartz crystal microbalance (QCM) analysis. This HFHPB-GQD sensor shows highly sensitive to DMMP in comparison with GQD sensor without HFHPB and graphene. In addition, the HFHPB-GQD sensor showed high selectivity only to the phosphonate functional group among many other analytes and also stable enough for real device applications. Thus, the tuning of the band gap of the photoluminescent GQDs may open up new promising strategies for the molecular detection of target substrates.

  17. Chemically modulated graphene quantum dot for tuning the photoluminescence as novel sensory probe

    PubMed Central

    Hwang, Eunhee; Hwang, Hee Min; Shin, Yonghun; Yoon, Yeoheung; Lee, Hanleem; Yang, Junghee; Bak, Sora; Lee, Hyoyoung

    2016-01-01

    A band gap tuning of environmental-friendly graphene quantum dot (GQD) becomes a keen interest for novel applications such as photoluminescence (PL) sensor. Here, for tuning the band gap of GQD, a hexafluorohydroxypropanyl benzene (HFHPB) group acted as a receptor of a chemical warfare agent was chemically attached on the GQD via the diazonium coupling reaction of HFHPB diazonium salt, providing new HFHPB-GQD material. With a help of the electron withdrawing HFHPB group, the energy band gap of the HFHPB-GQD was widened and its PL decay life time decreased. As designed, after addition of dimethyl methyl phosphonate (DMMP), the PL intensity of HFHPB-GQD sensor sharply increased up to approximately 200% through a hydrogen bond with DMMP. The fast response and short recovery time was proven by quartz crystal microbalance (QCM) analysis. This HFHPB-GQD sensor shows highly sensitive to DMMP in comparison with GQD sensor without HFHPB and graphene. In addition, the HFHPB-GQD sensor showed high selectivity only to the phosphonate functional group among many other analytes and also stable enough for real device applications. Thus, the tuning of the band gap of the photoluminescent GQDs may open up new promising strategies for the molecular detection of target substrates. PMID:27991584

  18. Negatively charged excitons and photoluminescence in asymmetric quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szlufarska, Izabela; Wojs, Arkadiusz; Quinn, John J.

    2001-02-15

    We study photoluminescence (PL) of charged excitons (X{sup -}) in narrow asymmetric quantum wells in high magnetic fields B. The binding of all X{sup -} states strongly depends on the separation {delta} of electron and hole layers. The most sensitive is the ''bright'' singlet, whose binding energy decreases quickly with increasing {delta} even at relatively small B. As a result, the value of B at which the singlet-triplet crossing occurs in the X{sup -} spectrum also depends on {delta}, and decreases from 35 T in a symmetric 10 nm GaAs well to 16 T for {delta}=0.5 nm. Since the criticalmore » values of {delta} at which different X{sup -} states unbind are surprisingly small compared to the well width, the observation of strongly bound X{sup -} states in an experimental PL spectrum implies virtually no layer displacement in the sample. This casts doubt on the interpretation of PL spectra of heterojunctions in terms of X{sup -} recombination.« less

  19. From photoluminescence to thermal emission: Thermally-enhanced PL (TEPL) for efficient PV (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Manor, Assaf; Kruger, Nimrod; Martin, Leopoldo L.; Rotschild, Carmel

    2016-09-01

    The Shockley-Queisser efficiency limit of 40% for single-junction photovoltaic (PV) cells is mainly caused by the heat dissipation accompanying the process of electro-chemical potential generation. Concepts such as solar thermo-photovoltaics (STPV) aim to harvest this heat loss by the use of a primary absorber which acts as a mediator between the sun and the PV, spectrally shaping the light impinging on the cell. However, this approach is challenging to realize due to the high operating temperatures of above 2000K required in order to generate high thermal emission fluxes. After over thirty years of STPV research, the record conversion efficiency for STPV device stands at 3.2% for 1285K operating temperature. In contrast, we recently demonstrated how thermally-enhanced photoluminescence (TEPL) is an optical heat-pump, in which photoluminescence is thermally blue-shifted upon heating while the number of emitted photons is conserved. This process generates energetic photon-rates which are comparable to thermal emission in significantly reduced temperatures, opening the way for a TEPL based energy converter. In such a device, a photoluminescent low bandgap absorber replaces the STPV thermal absorber. The thermalization heat induces a temperature rise and a blue-shifted emission, which is efficiently harvested by a higher bandgap PV. We show that such an approach can yield ideal efficiencies of 70% at 1140K, and realistic efficiencies of almost 50% at moderate concentration levels. As an experimental proof-of-concept, we demonstrate 1.4% efficient TEPL energy conversion of an Nd3+ system coupled to a GaAs cell, at 600K.

  20. Photoluminescence of ZnTe/ZnMgTe multiple quantum well structures grown on ZnTe substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tanaka, Tooru; Ohshita, Hiroshi; Saito, Katsuhiko; Guo, Qixin

    2018-02-01

    Photoluminescence (PL) properties of ZnTe/ZnMgTe quantum well (QW) structures grown by molecular beam epitaxy (MBE) were investigated systematically with respect to well widths and Mg contents. Observed PL peak energies were consistent well with the calculated emission energies of the QWs considering a lattice distortion in the ZnTe well. From the temperature dependence of PL intensity, it was found that a suppression of a carrier escape from QW is crucial to obtain a PL at higher temperature in the ZnTe/ZnMgTe QW. Based on the results, multiple quantum well structures were designed and fabricated, which exhibited a green PL at room temperature.

  1. Adjustable YAG : Ce3+ photoluminescence from photonic crystal microcavity

    NASA Astrophysics Data System (ADS)

    Li, Yigang; Almeida, Rui M.

    2013-04-01

    Four different photonic bandgap (PBG) structures embedding a YAG : Ce3+ layer inside two three-period Bragg mirrors were prepared by sol-gel processing, forming Fabry-Perot microcavities whose defect peaks moved from red to green. Under irradiation of blue Ar+ laser light, the typical broad YAG : Ce3+ photoluminescence (PL) emission band was highly narrowed in these four samples, with the new position of the modified PL peaks corresponding to the resonance wavelength of each microcavity sample, while the simultaneous colour changes could be easily observed by the human eye. The adjustable range demonstrated here was wide enough to generate white light with colour temperatures from warm white (˜2700 K) to daylight white (˜5600 K), by mixing the modified PL with light from any usual blue LED excitation source. This result provides a novel technique to solve the red-deficiency problem in the white LED industry: instead of relying on the development of new phosphors, the well-known PL of YAG : Ce3+ can be conveniently adjusted by 1D PBG structures.

  2. Red photoluminescence BCNO synthesized from graphene oxide nanosheets

    NASA Astrophysics Data System (ADS)

    Kang, Yue; Chu, Zeng-yong; Ma, Tian; Li, Wei-ping; Zhang, Dong-jiu; Tang, Xiao-yu

    2016-01-01

    In this paper, we demonstrate the conversion of graphene oxide (GO) into boron carbon oxynitride (BCNO) hybrid nanosheets via a reaction with boric acid and urea, during which the boron and nitrogen atoms are incorporated into graphene nanosheets. The experimental results reveal that GO is important for the photoluminescence (PL) BCNO phosphor particles. More importantly, in this system, the prepared BCNO phosphors can be used to prepare the materials needed for red light emitting diodes (LEDs).

  3. Structural, morphological and optical studies of ripple-structured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Navin, Kumar; Kurchania, Rajnish

    2015-11-01

    Ripple-structured ZnO thin films were prepared on Si (100) substrate by sol-gel spin-coating method with different heating rates during preheating process and finally sintered at 500 °C for 2 h in ambient condition. The structural, morphological and photoluminescence (PL) properties of the nanostructured films were analyzed by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and PL spectroscopy. XRD analysis revealed that films have hexagonal wurtzite structure and texture coefficient increases along (002) plane with preheating rate. The faster heating rate produced higher crystallization and larger average crystallite size. The AFM and SEM images indicate that all the films have uniformly distributed ripple structure with skeletal branches. The number of ripples increases, while the rms roughness, amplitude and correlation length of the ripple structure decrease with preheating rates. The PL spectra show the presence of different defects in the structure. The ultraviolet emission improved with the heating rate which indicates its better crystallinity.

  4. Photoluminescence of Sequential Infiltration Synthesized ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Ocola, Leonidas; Gosztola, David; Yanguas-Gil, Angel; Connolly, Aine

    We have investigated a variation of atomic layer deposition (ALD), called sequential infiltration synthesis (SiS), as an alternate method to incorporate ZnO and other oxides inside polymethylmethacrylate (PMMA) and other polymers. Energy dispersive spectroscopy (EDS) results show that we synthesize ZnO up to 300 nm inside a PMMA film. Photoluminescence data on a PMMA film shows that we achieve a factor of 400X increase in photoluminescence (PL) intensity when comparing a blank Si sample and a 270 nm thick PMMA film, where both were treated with the same 12 alternating cycles of H2O and diethyl zinc (DEZ). PMMA is a well-known ebeam resist. We can expose and develop patterns useful for photonics or sensing applications first, and then convert them afterwards into a hybrid polymer-oxide material. We show that patterning does indeed affect the photoluminescence signature of native ZnO. We demonstrate we can track the growth of the ZnO inside the PMMA polymer using both photoluminescence and Raman spectroscopy and determine the point in the process where ZnO is first photoluminescent and also at which point ZnO first exhibits long range order in the polymer. This work was supported by the Department of Energy under Contract No. DE-AC02-06CH11357. Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  5. Nano-XRF Analysis of Metal Impurities Distribution at PL Active Grain Boundaries During mc-Silicon Solar Cell Processing

    DOE PAGES

    Bernardini, Simone; Johnston, Steve; West, Bradley; ...

    2016-11-14

    Metal impurities are known to hinder the performance of commercial Si-based solar cells by inducing bulk recombination, increasing leakage current, and causing direct shunting. Recently, a set of photoluminescence (PL) images of neighboring multicrystalline silicon wafers taken from a cell production line at different processing stages has been acquired. Both band-to-band PL and sub-bandgap PL (subPL) images showed various regions with different PL signal intensity. Interestingly, in several of these regions a reversal of the subPL intensity was observed right after the deposition of the antireflective coating. In this paper, we present the results of the synchrotron-based nano-X-ray fluorescence imagingmore » performed in areas characterized by the subPL reversal to evaluate the possible role of metal decoration in this uncommon behavior. Furthermore, the acquisition of a statistically meaningful set of data for samples taken at different stages of the solar cell manufacturing allows us to shine a light on the precipitation and rediffusion mechanisms of metal impurities at these grain boundaries.« less

  6. Coherent photoluminescence excitation spectroscopy of semicrystalline polymeric semiconductors

    NASA Astrophysics Data System (ADS)

    Silva, Carlos; Grégoire, Pascal; Thouin, Félix

    In polymeric semiconductors, the competition between through-bond (intrachain) and through-space (interchain) electronic coupling determines two-dimensional spatial coherence of excitons. The balance of intra- and interchain excitonic coupling depends very sensitively on solid-state microstructure of the polymer film (polycrystalline, semicrystalline with amorphous domains, etc.). Regioregular poly(3-hexylthiophene) has emerged as a model material because its photoluminescence (PL) spectral lineshape reveals intricate information on the magnitude of excitonic coupling, the extent of energetic disorder, and on the extent to which the disordered energy landscape is correlated. I discuss implementation of coherent two-dimensional electronic spectroscopy. We identify cross peaks between 0-0 and 0-1 excitation peaks, and we measure their time evolution, which we interpret within the context of a hybrid HJ aggregate model. By measurement of the homogeneous linewidth in diverse polymer microstructures, we address the nature of optical transitions within such hynbrid aggregate model. These depend strongly on sample processing, and I discuss the relationship between microstructure, steady-state absorption and PL spectral lineshape, and 2D coherent PL excitation spectral lineshapes.

  7. Investigation of Photoluminescence and Photocurrent in InGaAsP/InP Strained Multiple Quantum Well Heterostructures

    NASA Technical Reports Server (NTRS)

    Raisky, O. Y.; Wang, W. B.; Alfano, R. R.; Reynolds, C. L., Jr.; Swaminathan, V.

    1997-01-01

    Multiple quantum well InGaAsP/InP p-i-n laser heterostructures with different barrier thicknesses have been investigated using photoluminescence (PL) and photocurrent (PC) measurements. The observed PL spectrum and peak positions are in good agreement with those obtained from transfer matrix calculations. Comparing the measured quantum well PC with calculated carrier escape rates, the photocurrent changes are found to be governed by the temperature dependence of the electron escape time.

  8. Fabrication of Si nanopowder and application to hydrogen generation and photoluminescent material

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuki; Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru

    2017-12-01

    Si nanopowder is fabricated using the simple beads milling method. Fabricated Si nanopowder reacts with water in the neutral pH region between 7 and 9 to generate hydrogen. The hydrogen generation rate greatly increases with pH, while pH does not change after the hydrogen generation reaction. In the case of the reactions of Si nanopowder with strong alkaline solutions (eg pH13.9), 1600 mL hydrogen is generated from 1 g Si nanopowder in a short time (eg 15 min). When Si nanopowder is etched with HF solutions and immersed in ethanol, green photoluminescence (PL) is observed, and it is attributed to band-to-band transition of Si nanopowder. The Si nanopowder without HF etching in hexane shows blue PL. The PL spectra possess peaked structure, and it is attributed to vibronic bands of 9,10-dimethylantracene (DMA) in hexane solutions. The PL intensity is increased by more than 3,000 times by adsorption of DMA on Si nanopowder.

  9. Nanostructuring-induced modification of optical properties of p-GaAs (1 0 0)

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Saloum, S.

    2009-10-01

    A pulsed anodic etching method has been utilized for nanostructuring of p-type GaAs (1 0 0) surface, using HCl-based solution as electrolyte. The resulting porous GaAs layer is characterized by atomic force microscopy (AFM), room temperature photoluminescence (PL), Raman spectroscopy and optical reflectance measurements. AFM imaging reveals that the porous GaAs layer is consisted of a pillar-like of few nm in width distributed between more-reduced size nanostructures. In addition to the “infrared” PL band of un-etched GaAs, a strong “green” PL band is observed in the etched sample. The broad visible PL band of a high-energy (3.82 eV) excitation is found to compose of two PL band attributed to excitons confinement in two different sizes distribution of GaAs nanocrystals. The quantum confinement effects in GaAs nanocrystallites is also evidenced from Raman spectroscopy through the pronounced appearance of the transverse optical (TO) phonon line in the spectra of the porous sample. Porosity-induced a significant reduction of the specular reflection, in the spectral range (400-800 nm), is also demonstrated.

  10. Photoluminescence of Er-doped silicon-rich oxide thin films with high Al concentrations

    NASA Astrophysics Data System (ADS)

    Rozo, Carlos; Fonseca, Luis F.; Jaque, Daniel; García Solé, José

    Er-doped silicon-rich oxide (SRO) thin films co-doped with Al in high concentrations were prepared by sputtering. Some films were deposited using a substrate heater (150 °Cphotoluminescence (PL) of most of the former films was greater than the PL of the latter films. Excitation wavelength dependence (EWD) of Er ion emission presents variations as the O content decreases and the Al content increases. The dependence of the Er ion 980 nm peak PL with respect to the Er ion 1525 nm peak PL indicates that the first emission depends less on energy transfer upconversion (ETU) processes as the O content decreases and the Al content increases. Broadband excitable Er3+ infrared (IR) emission with less loss due to ETU processes is important for applications in photonics.

  11. Colloidal InP/ZnS core shell nanocrystals studied by linearly and circularly polarized photoluminescence

    NASA Astrophysics Data System (ADS)

    Langof, L.; Fradkin, L.; Ehrenfreund, E.; Lifshitz, E.; Micic, O. I.; Nozik, A. J.

    2004-02-01

    The magneto-optical properties of InP/ZnS core-shell nanocrystals (NCs) were investigated by measuring the degree of linear and circular polarization of photoluminescence (PL) spectra, in the presence of an external magnetic field under resonant or non-resonant excitation. The linearly polarized PL data strongly indicate that InP/ZnS NCs have a prolongated shape. The resonant-excited circularly polarized PL decay curves indicate that the spin relaxation time of the studied samples is shorter than the radiative lifetime of their exciton. Furthermore, the magnetic field-induced circularly polarized PL process reveals an exciton g factor ( gex) of 0.55. Thus, such studies may serve as a tool to directly estimate the NC's shape anisotropy and to determine the g-factor of charge carriers and excitons in those NCs.

  12. Strain effect on the photoluminescence property of gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Saravanan, K.; David, C.; Jayalakshmi, G.; Panigrahi, B. K.; Avasthi, D. K.

    2018-02-01

    Herein, we report the temperature-dependent photoluminescence (PL) properties of Au nanoclusters (NCs) embedded in a Si matrix. Gold NCs have been synthesized in Si by a multistep procedure that involves ion implantation and gold decoration by drive in annealing. Transmission electron microscopic studies reveal profuse nucleation of Au NCs, with mean sizes of ˜8 nm in the near-surface region. PL measurements in the range of 2 eV to 3.65 eV were carried out in the temperature range of 5 K to 300 K. The Au NCs exhibit PL emissions at 3 eV and 2.5 eV; these are attributed to the recombination of sp-band electrons with the holes of a deep lying d-band below the Fermi level in the vicinity of the L symmetry point of the Brillouin zone and the recombination of sp band electrons with the holes of the first d band below the Fermi level in the vicinity of the X symmetry point of the Brillouin zone, respectively. Temperature-dependent PL measurements show that the PL intensity of Au NCs initially decreases with the increase of temperature up to 50 K, and, thereafter, the intensity starts to increase and reaches a maximum at 150 K. A further increase in temperature causes the intensity to decrease. However, the PL intensity of Au NCs embedded in a sapphire matrix monotonically decreases with the increase of temperature. The present work discusses the plausible mechanism behind this unusual PL behaviour by invoking the role of strain at the NC-matrix interface.

  13. Unique photoluminescence degradation/recovery phenomena in trivalent ion-activated phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, Kenji; Adachi, Sadao, E-mail: adachi@el.gunma-u.ac.jp

    Photo-induced luminescence intensity degradation in red-emitting Tb{sub 3}Ga{sub 5}O{sub 12}:Eu{sup 3+} (TGG:Eu{sup 3+}) phosphor is observed and studied using x-ray diffraction measurement, photoluminescence (PL) analysis, PL excitation spectroscopy, and PL decay analysis. The red-emitting TGG:Eu{sup 3+} phosphor exhibits remarkable degradation in the PL intensity under weak UV light (λ < 350 nm) exposure in the seconds time scale. The PL degradation characteristics can be well expressed by the exponential formulation with respect to exposure time. Interestingly, the PL intensity recovers after a few minutes when the phosphor is stored in a dark room or exposed to the long-wavelength (λ > 350 nm) light. The luminescence decaymore » dynamics measured by excitation at λ{sub ex} = 355 and 266 nm suggest that the present degradation/recovery processes are caused by the electron traps formed in the TGG:Eu{sup 3+} phosphor. The Tb{sup 3+} emission in TGG shows the essentially same degradation characteristics as those observed in the TGG:Eu{sup 3+} phosphor. The present luminescence degradation/recovery phenomena of the trivalent ions (4f → 4f transitions) may universally occur in various oxide phosphors such as TGG (Tb{sup 3+} emission) and CaTiO{sub 3}:Eu{sup 3+}.« less

  14. Photoluminescence Dynamics of Aryl sp 3 Defect States in Single-Walled Carbon Nanotubes

    DOE PAGES

    Hartmann, Nicolai F.; Velizhanin, Kirill A.; Haroz, Erik H.; ...

    2016-08-16

    Photoluminescent defect states introduced by sp 3 functionalization of semiconducting carbon nanotubes are rapidly emerging as important routes for boosting emission quantum yields and introducing new functionality. Knowledge of the relaxation dynamics of these states is required for understanding how functionalizing agents (molecular dopants) may be designed to access specific behaviors. We measure photoluminescence (PL) decay dynamics of sp 3 defect states introduced by aryl functionalization of the carbon nanotube surface. Results are given for five different nanotube chiralities, each doped with a range of aryl functionality. We find the PL decays of these sp 3 defect states are biexponential,more » with both components relaxing on timescales of ~ 100 ps. Exciton trapping at defects is found to increases PL lifetimes by a factor of 5-10, in comparison to those for the free exciton. A significant chirality dependence is observed in the decay times, ranging from 77 ps for (7,5) nanotubes to > 600 ps for (5,4) structures. The strong correlation of time constants with emission energy indicates relaxation occurs via multiphonon decay processes, with close agreement to theoretical expectations. Variation of the aryl dopant further modulates decay times by 10-15%. The aryl defects also affect PL lifetimes of the free E 11 exciton. Shortening of the E 11 bright state lifetime as defect density increases provides further confirmation that defects act as exciton traps. A similar shortening of the E11 dark exciton lifetime is found as defect density increases, providing strong experimental evidence that dark excitons are also trapped at such defect sites.« less

  15. Photoluminescence Dynamics of Aryl sp 3 Defect States in Single-Walled Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, Nicolai F.; Velizhanin, Kirill A.; Haroz, Erik H.

    Photoluminescent defect states introduced by sp 3 functionalization of semiconducting carbon nanotubes are rapidly emerging as important routes for boosting emission quantum yields and introducing new functionality. Knowledge of the relaxation dynamics of these states is required for understanding how functionalizing agents (molecular dopants) may be designed to access specific behaviors. We measure photoluminescence (PL) decay dynamics of sp 3 defect states introduced by aryl functionalization of the carbon nanotube surface. Results are given for five different nanotube chiralities, each doped with a range of aryl functionality. We find the PL decays of these sp 3 defect states are biexponential,more » with both components relaxing on timescales of ~ 100 ps. Exciton trapping at defects is found to increases PL lifetimes by a factor of 5-10, in comparison to those for the free exciton. A significant chirality dependence is observed in the decay times, ranging from 77 ps for (7,5) nanotubes to > 600 ps for (5,4) structures. The strong correlation of time constants with emission energy indicates relaxation occurs via multiphonon decay processes, with close agreement to theoretical expectations. Variation of the aryl dopant further modulates decay times by 10-15%. The aryl defects also affect PL lifetimes of the free E 11 exciton. Shortening of the E 11 bright state lifetime as defect density increases provides further confirmation that defects act as exciton traps. A similar shortening of the E11 dark exciton lifetime is found as defect density increases, providing strong experimental evidence that dark excitons are also trapped at such defect sites.« less

  16. Stable CdS QDs with intense broadband photoluminescence and high quantum yields

    NASA Astrophysics Data System (ADS)

    Mandal, Abhijit; Saha, Jony; De, Goutam

    2011-11-01

    Aqueous synthesis of CdS quantum dots (QDs) using thiolactic acid (TLA) as a capping agent was reported. These QDs exhibited excellent colloidal and photostability over a span of 2 years and showed intense broadband and almost white photoluminescence suitable for solid state lighting devices. The photoluminescence (PL) property of the aqueous CdS QDs is optimized by adjusting various processing parameters. The highest quantum yield (QY) achieved for TLA capped CdS QDs of average size 3.5 nm was ˜50%. Luminescence lifetime measurements of CdS-TLA QDs indicated longer lifetimes and a larger contribution of the surface-related emission, indicating removal of quenching defects.

  17. Strong photoluminescence characteristics of sulforhodamine B attached on photonic crystal

    NASA Astrophysics Data System (ADS)

    Kim, Byoung-Ju; Kang, Kwang-Sun

    2014-10-01

    The optical properties of sulforhodamine B (SRH) impregnated in photonic crystal by two step synthetic processes including a urethane bond formation between a 3-isocyanatopropyl triethoxysilane (ICPTES, -N=C=O) and a SRH with elevated temperature in pyridine and hydrolysis-condensation reactions between synthesized ICPTES/SRH (ICPSRH) and tetraethoxyorthosilicate (TEOS) in NH4OH. The monodisperse silica spheres impregnated the ICPSRH (ICPSRHS) are fabricated. The reduction of the absorption peak at 2270 cm-1 representing asymmetric stretching vibration of -N=C=O indicates the progress of the reaction and new absorption peak at 1712 cm-1 characterizing -C=O stretching vibration indicates the formation of urethane bond. The UV-visible absorption spectra show the broadened spectral line width by intermolecular interaction. The photoluminescence (PL) peak of the SRH in methanol shows a hypsochromic shift with the increase the excitation wavelength. However, the PL peak for the ICPSRH exhibits a bathochromic shift as the excitation wavelength increases. The PL peak for the ICPSRH shows no hypsochromic or bathochromic shift. The PL peaks for SRH in methanol, ICPSRH and ICPSRHS are at 568, 598 and 572 nm, respectively. The main cause of the PL peak shift is due to the intermolecular interaction.

  18. Influence of thiol capping on the photoluminescence properties of L-cysteine-, mercaptoethanol- and mercaptopropionic acid-capped ZnS nanoparticles.

    PubMed

    Tiwari, A; Dhoble, S J; Kher, R S

    2015-11-01

    Mercaptoethanol (ME), mercaptopropionic acid (MPA) and L-cysteine (L-Cys) having -SH functional groups were used as surface passivating agents for the wet chemical synthesis of ZnS nanoparticles. The effect of the thiol group on the optical and photoluminescence (PL) properties of ZnS nanoparticles was studied. L-Cysteine-capped ZnS nanoparticles showed the highest PL intensity among the studied capping agents, with a PL emission peak at 455 nm. The PL intensity was found to be dependent on the concentration of Zn(2+) and S(2-) precursors. The effect of buffer on the PL intensity of L-Cys-capped ZnS nanoparticles was also studied. UV/Vis spectra showed blue shifting of the absorption edge. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Synthesis, Optical and Photoluminescence Properties of Cu-Doped Zno Nano-Fibers Thin Films: Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Salem, G. F.; Yahia, I. S.; Yakuphanoglu, F.

    2018-03-01

    Different concentrations of copper-doped zinc oxide thin films were coated on a glass substrate by sol-gel/spin-coating technique. The structural properties of pure and Cu-doped ZnO films were characterized by different techniques, i.e., atomic force microscopy (AFM), photoluminescence and UV-Vis-NIR spectroscopy. The AFM study revealed that pure and doped ZnO films are formed as nano-fibers with a granular structure. The photoluminescence spectra of these films showed a strong ultraviolet emission peak centered at 392 nm and a strong blue emission peak cantered at 450 nm. The optical band gap of the pure and copper-doped ZnO thin films calculated from optical transmission spectra (3.29-3.23 eV) were found to be increasing with increasing copper doping concentration. The refractive index dispersion curve of pure and Cu-doped ZnO film obeyed the single-oscillator model. The optical dispersion parameters such as E o , E d , and n_{∞}2 were calculated. Further, the nonlinear refractive index and nonlinear optical susceptibility were also calculated and interpreted.

  20. Excitation-Power Dependence of the Near Band-Edge PL Spectra of CdMnTe with High Mn Concentrations

    NASA Astrophysics Data System (ADS)

    Hwang, Younghun; Um, Youngho; Park, Hyoyeol

    2011-12-01

    Temperature and excitation power dependences of photoluminescence (PL) measurements were studied for the CdMnTe crystal grown by the vertical Bridgman method. The near band-edge and intra-Mn2+ emissions were investigated as a function of temperature. The observed band-edge peak of the PL spectrum showed a clear blue-shift with decreasing temperature. However, the peak energy of the intra-Mn2+ transition did not decrease monotonically with changing temperature, as can be seen above 70 K. With increasing the excitation power, the intensity of the emission peak was increased.

  1. Photoluminescence and lasing properties of MAPbBr3 single crystals grown from solution

    NASA Astrophysics Data System (ADS)

    Aryal, Sandip; Lafalce, Evan; Zhang, Chuang; Zhai, Yaxin; Vardeny, Z. Valy

    Recent studies of solution-grown single crystals of inorganic-organic hybrid lead-trihalide perovskites have suggested that surface traps may play a significant role in their photophysics. We study electron-hole recombination in single crystal MAPbBr3 through such trap states using cw photoluminescence (PL) and ps transient photoinduced absorption (PA) spectroscopies. By varying the depth of the collecting optics we examined the contributions from surface and bulk radiative recombination. We found a surface dominated PL band at the band-edge that is similar to that observed from polycrystalline thin films, as well as a weaker red-shifted emission band that originates from the bulk crystal. The two PL bands are distinguished in their temperature, excitation intensity and polarization dependencies, as well as their ps dynamics. Additionally, amplified spontaneous emission and crystal-related cavity lasing modes were observed in the same spectral range as the PL band assigned to the surface recombination. This work was funded by AFOSR through MURI Grant RA 9550-14-1-0037.

  2. Anisotropic visible photoluminescence from thermally annealed few-layer black phosphorus.

    PubMed

    Zhao, Chuan; Sekhar, M Chandra; Lu, Wei; Zhang, Chenglong; Lai, Jiawei; Jia, Shuang; Sun, Dong

    2018-06-15

    Black phosphorus, a two-dimensional material, with high carrier mobility, tunable direct bandgap and anisotropic electronic properties has attracted enormous research interest towards potential application in electronic, optoelectronic and optomechanical devices. The bandgap of BP is thickness dependent, ranging from 0.3 eV for bulk to 1.3 eV for monolayer, while lacking in the visible region, a widely used optical regime for practical optoelectronic applications. In this work, photoluminescence (PL) centered at 605 nm is observed from the thermally annealed BP with thickness ≤20 nm. This higher energy PL is most likely the consequence of the formation of higher bandgap phosphorene oxides and suboxides on the surface BP layers as a result of the enhanced rate of oxidation. Moreover, the polarization-resolved PL measurements show that the emitted light is anisotropic when the excitation polarization is along the armchair direction. However, if excited along zigzag direction, the PL is nearly isotropic. Our findings suggest that the thermal annealing of BP can be used as a convenient route to fill the visible gap of the BP-based optoelectronic and optomechanical devices.

  3. Anisotropic visible photoluminescence from thermally annealed few-layer black phosphorus

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan; Sekhar, M. Chandra; Lu, Wei; Zhang, Chenglong; Lai, Jiawei; Jia, Shuang; Sun, Dong

    2018-06-01

    Black phosphorus, a two-dimensional material, with high carrier mobility, tunable direct bandgap and anisotropic electronic properties has attracted enormous research interest towards potential application in electronic, optoelectronic and optomechanical devices. The bandgap of BP is thickness dependent, ranging from 0.3 eV for bulk to 1.3 eV for monolayer, while lacking in the visible region, a widely used optical regime for practical optoelectronic applications. In this work, photoluminescence (PL) centered at 605 nm is observed from the thermally annealed BP with thickness ≤20 nm. This higher energy PL is most likely the consequence of the formation of higher bandgap phosphorene oxides and suboxides on the surface BP layers as a result of the enhanced rate of oxidation. Moreover, the polarization-resolved PL measurements show that the emitted light is anisotropic when the excitation polarization is along the armchair direction. However, if excited along zigzag direction, the PL is nearly isotropic. Our findings suggest that the thermal annealing of BP can be used as a convenient route to fill the visible gap of the BP-based optoelectronic and optomechanical devices.

  4. Enhancement of photoluminescence from nanocrystal β-FeSi2/SiO2 composite and relaxation of thermal quenching

    NASA Astrophysics Data System (ADS)

    Maeda, Yoshihito

    2017-05-01

    We have investigated the thermal quenching behavior of photoluminescence (PL) from β-FeSi2 (β-NC) embedded in Si (β-NC/Si) and SiO2 (β-NC/SiO2). The β-NC/SiO2 composite was prepared directly from the β-NC/Si composite by selective oxidation. In the β-NC/SiO2 composite, we found an increase in the critical temperature, which indicates the relaxation of thermal quenching for PL intensity. Furthermore, we observed a clear PL spectrum including the intrinsic A band PL at 300 K; however, the PL intensity was extremely low. Rutherford backscattering spectrometry (RBS) and photocarrier injection PL (PCI-PL) measurements revealed the reason why the β-NC/Si composites were maintained after oxidation. We discussed the thermal quenching behavior of both samples on the basis of a thermal activation model of holes from valence band wells at the heterointerface and confirmed that this model was appropriate for understanding the thermal quenching of these composites.

  5. Porosity and thickness effect of porous silicon layer on photoluminescence spectra

    NASA Astrophysics Data System (ADS)

    Husairi, F. S.; Eswar, K. A.; Guliling, Muliyadi; Khusaimi, Z.; Rusop, M.; Abdullah, S.

    2018-05-01

    The porous silicon nanostructures was prepared by electrochemical etching of p-type silicon wafer. Porous silicon prepared by using different current density and fix etching time with assistance of halogen lamp. The physical structure of porous silicon measured by the parameters used which know as experimental factor. In this work, we select one of those factors to correlate which optical properties of porous silicon. We investigated the surface morphology by using Surface Profiler (SP) and photoluminescence using Photoluminescence (PL) spectrometer. Different physical characteristics of porous silicon produced when current density varied. Surface profiler used to measure the thickness of porous and the porosity calculated using mass different of silicon. Photoluminescence characteristics of porous silicon depend on their morphology because the size and distribution of pore its self will effect to their exciton energy level. At J=30 mA/cm2 the shorter wavelength produced and it followed the trend of porosity with current density applied.

  6. Time-resolved photoluminescence characterization of oxygen-related defect centers in AlN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genji, Kumihiro; Uchino, Takashi, E-mail: uchino@kobe-u.ac.jp

    2016-07-11

    Time-resolved photoluminescence (PL) spectroscopy has been employed to investigate the emission characteristics of oxygen-related defects in AlN in the temperature region from 77 to 500 K. Two PL components with different decay constants are observed in the near-ultraviolet to visible regions. One is the PL component with decay time of <10 ns and its peak position shifts to longer wavelengths from ∼350 to ∼500 nm with increasing temperature up to 500 K. This PL component is attributed to the radiative relaxation of photoexcited electrons from the band-edge states to the ground state of the oxygen-related emission centers. In the time region from tens tomore » hundreds of nanoseconds, the second PL component emerges in the wavelength region from 300 to 400 nm. The spectral shape and the decay profiles are hardly dependent on temperature. This temperature-independent PL component most likely results from the transfer of photoexcited electrons from the band-edge states to the localized excited state of the oxygen-related emission centers. These results provide a detailed insight into the radiative relaxation processes of the oxygen-related defect centers in AlN immediately after the photoexcitation process.« less

  7. Photoluminescence from oxygen-doped single-walled carbon nanotubes modified by dielectric metasurfaces

    NASA Astrophysics Data System (ADS)

    Ma, Xuedan; Doorn, Stephen; Htoon, Han; Brener, Igal

    Oxygen dopants in single-walled carbon nanotubes (SWCNTs) have recently been discovered as a novel single photon source enabling single photon generation up to room temperature in the telecom wavelength range. While they are promising for quantum information processing, it is fundamentally important to be able to manipulate their photoluminescence (PL) properties. All-dielectric metasurfaces made from arrays of high index nanoparticles have emerged as an attractive alternative to plasmonic metasurfaces due to their support of both electric and magnetic modes. Their low intrinsic losses at optical frequencies compared to that of plasmonic nanostructures provide a novel setting for tailoring emission from quantum emitters. We couple PL from single oxygen dopants in SWCNTs to the magnetic mode of silicon metasurfaces. Aside from the observation of a PL enhancement due to the Purcell effect, more interestingly, we find that the presence of the silicon metasurfaces significantly modifies the PL polarization of the dopants, which we attribute to near-field polarization modification caused by the silicon metasurfaces. Our finding presents dielectric metasurfaces as potential building blocks of photonic circuits for controlling PL intensity and polarization of single photon sources.

  8. The down-conversion and up-conversion photoluminescence properties of Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}:Yb{sup 3+}/Pr{sup 3+} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yinpeng; Luo, Laihui, E-mail: luolaihui@nbu.edu.cn; Wang, Jia

    2015-07-28

    Na{sub 0.5}Bi{sub 0.5−x−y}Yb{sub x}Pr{sub y}TiO{sub 3} (NBT:xYb/yPr) ceramics with different Yb and Pr contents are prepared. Both the down-conversion (DC) and up-conversion (UC) photoluminescence (PL) of the ceramics via 453 and 980 nm excitation, respectively, are investigated. The effect of Yb{sup 3+} and Pr{sup 3+} doping contents on the DC and UC PL is significantly different from each other. Furthermore, the UC PL of the ceramics as a function of temperatures is measured to investigate the UC process in detail. Based on energy level diagram of Pr{sup 3+} and Yb{sup 3+} ions and the DC and UC PL spectra, the DCmore » and UC PL mechanisms of Pr{sup 3+} and Yb{sup 3+} ions are discussed. Especially, the UC PL mechanism is clarified, which is different from the previously reported literature. Also, the temperature sensing properties of the ceramics are studied based on the photoluminescence ratio technique, using the thermal coupling energy levels of Pr{sup 3+}.« less

  9. FastFLIM, the all-in-one engine for measuring photoluminescence lifetime of 100 picoseconds to 100 milliseconds

    NASA Astrophysics Data System (ADS)

    Sun, Yuansheng; Coskun, Ulas; Liao, Shih-Chu Jeff; Barbieri, Beniamino

    2018-02-01

    Photoluminescence (PL) refers to light emission initiated by any form of photon excitation. PL spectroscopy and microscopy imaging has been widely applied in material, chemical and life sciences. Measuring its lifetime yields a new dimension of the PL imaging and opens new opportunities for many PL applications. In solar cell research, quantification of the PL lifetime has become an important evaluation for the characteristics of the Perovskite thin film. Depending upon the PL process (fluorescence, phosphorescence, photon upconversion, etc.), the PL lifetimes to be measured can vary in a wide timescale range (e.g. from sub-nanoseconds to microseconds or even milliseconds) - it is challenging to cover this wide range of lifetime measurements by a single technique efficiently. Here, we present a novel digital frequency domain (DFD) technique named FastFLIM, capable of measuring the PL lifetime from 100 ps to 100 ms at the high data collection efficiency (up to 140-million counts per second). Other than the traditional nonlinear leastsquare fitting analysis, the raw data acquired by FastFLIM can be directly processed by the model-free phasor plots approach for instant and unbiased lifetime results, providing the ideal routine for the PL lifetime microscopy imaging.

  10. Photoluminescence of etched SiC nanowires

    NASA Astrophysics Data System (ADS)

    Stewart, Polite D., Jr.; Rich, Ryan; Zerda, T. W.

    2010-10-01

    SiC nanowires were produced from carbon nanotubes and nanosize silicon powder in a tube furnace at temperatures between 1100^oC and 1350^oC. SiC nanowires had average diameter of 30 nm and very narrow size distribution. The compound possesses a high melting point, high thermal conductivity, and excellent wear resistance. The surface of the SiC nanowires after formation is covered by an amorphous layer. The composition of that layer is not fully understood, but it is believed that in addition to amorphous SiC it contains various carbon and silicon compounds, and SiO2. The objective of the research was to modify the surface structure of these SiC nanowires. Modification of the surface was done using the wet etching method. The etched nanowires were then analyzed using Fourier Transform Infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and photoluminescence (PL). FTIR and TEM analysis provided valid proof that the SiC nanowires were successfully etched. Also, the PL results showed that the SiC nanowire core did possess a fluorescent signal.

  11. Sintering time optimization on red photoluminescence properties of manganese-doped boron carbon oxynitride (BCNO:Mn) phosphor

    NASA Astrophysics Data System (ADS)

    Wahid Nuryadin, Bebeh; Suryani, Yayu; Yuliani, Yuli; Setiadji, Soni; Yeti Nuryantini, Ade; Iskandar, Ferry

    2018-04-01

    The effect of sintering time to the transient nature and optimization of red photoluminescence manganese-doped boron carbon oxynitride (BCNO:Mn) phosphor was investigated. The BCNO:Mn samples were synthesized using a facile urea-assisted combustion route involving boric acid, citric acid, manganese salt and urea. The optimized intensity of the dual peak emission at 420 nm (blue emission) and 630 nm (red emission) in the photoluminescence (PL) spectrum could be achieved by controlling the sintering time of the BCNO:Mn. The BCNO:Mn samples in high-crystalline form was found to be in a cubic and hexagonal structure. Based on the PL analysis, it is suggested that the BCNO:Mn symmetric band at 630 nm can be attributed to the 4T1(4G)—6A1(6S) transition absorption of Mn2+ ions into the hexagonal structure. Microstructure analysis showed an irregular and agglomerated shape of the BCNO:Mn sample.

  12. Nanophosphor CaSO4:Eu2+ for photoluminescence liquid crystal display (PLLCD)

    NASA Astrophysics Data System (ADS)

    Patle, Anita; Patil, R. R.; Moharil, S. V.

    2018-05-01

    In this work PL enhancement of CaSO4:Eu2+ nanophosphor which was synthesized with 0.01M molarity by co-precipitation method is presented. Synthesized phosphor was characterized by XRD, SEM, TEM and PL measurements. Average particle size is found to be in the range 80-100nm with Hexagonal morphology and PL studies showed emission peaks at 380nm, when samples were excited by 254nm. The observed PL emission is characteristic emission of Eu2+ similar to that observed in bulk CaSO4:Eu2. However under identical condition it is observed that intensity of emission get enhanced for 0.01M size which is doubled to that of 0.1M with similar emission at 380nm. A phosphor with narrow emission band around 390 nm is desirable, since at this wavelength the transmission of standard glass, polarizing plastic, other coating and LCD material is at acceptable level. Strong Eu2+ emission is observed in CaSO4:Eu nanophosphor which finds applications for PLLCD (photoluminescent liquid crystal display).

  13. Enhanced photoluminescence of multilayer Ge quantum dots on Si(001) substrates by increased overgrowth temperature.

    PubMed

    Liu, Zhi; Cheng, Buwen; Hu, Weixuan; Su, Shaojian; Li, Chuanbo; Wang, Qiming

    2012-07-11

    Four-bilayer Ge quantum dots (QDs) with Si spacers were grown on Si(001) substrates by ultrahigh vacuum chemical vapor deposition. In three samples, all Ge QDs were grown at 520 °C, while Si spacers were grown at various temperatures (520 °C, 550 °C, and 580 °C). Enhancement and redshift of room temperature photoluminescence (PL) were observed from the samples in which Si spacers were grown at a higher temperature. The enhancement of PL is explained by higher effective electrons capturing in the larger size Ge QDs. Quantum confinement of the Ge QDs is responsible for the redshift of PL spectra. The Ge QDs' size and content were investigated by atomic force microscopy and Raman scattering measurements.

  14. EPR and photoluminescence study of irradiated anion-defective alumina single crystals

    NASA Astrophysics Data System (ADS)

    Kortov, V. S.; Ananchenko, D. V.; Konev, S. F.; Pustovarov, V. A.

    2017-09-01

    Electron paramagnetic resonance (EPR) and photoluminescence (PL) spectra of anion-defective alumina single crystals were measured. Exposure to a dose 10 Gy-1 kGy causes isotropic EPR signal of a complex form, this signal contains narrow and broad components. At the same time, in the PL spectrum alongside with a band of F+-centers (3.8 eV) an additional emission band with the maximum of 2.25 eV is registered. This band corresponds to aggregate F22+-centers which were create under irradiation. By comparing measurements in EPR and PL spectra with further stepped annealing in the temperature range of 773-1473 K of the samples exposed to the same doses, we were able to conclude that a narrow component of isotropic EPR signal is associated with the formation of paramagnetic F22+-centers under irradiation. A wide component can be caused by deep hole traps which are created by a complex defect (VAl2- - F+) with a localized hole.

  15. Nanoscale characterization of GaN/InGaN multiple quantum wells on GaN nanorods by photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Weijian; Wen, Xiaoming; Latzel, Michael; Yang, Jianfeng; Huang, Shujuan; Shrestha, Santosh; Patterson, Robert; Christiansen, Silke; Conibeer, Gavin

    2017-02-01

    GaN/InGaN multiple quantum wells (MQW) and GaN nanorods have been widely studied as a candidate material for high-performance light emitting diodes. In this study, GaN/InGaN MQW on top of GaN nanorods are characterized in nanoscale using confocal microscopy associated with photoluminescence spectroscopy, including steady-state PL, timeresolved PL and fluorescence lifetime imaging (FLIM). Nanorods are fabricated by etching planar GaN/InGaN MQWs on top of a GaN layer on a c-plane sapphire substrate. Photoluminescence efficiency from the GaN/InGaN nanorods is evidently higher than that of the planar structure, indicating the emission improvement. Time-resolved photoluminescence (TRPL) prove that surface defects on GaN nanorod sidewalls have a strong influence on the luminescence property of the GaN/InGaN MWQs. Such surface defects can be eliminated by proper surface passivation. Moreover, densely packed nanorod array and sparsely standing nanorods have been studied for better understanding the individual property and collective effects from adjacent nanorods. The combination of the optical characterization techniques guides optoelectronic materials and device fabrication.

  16. Photoluminescent carbon dots synthesized by microwave treatment for selective image of cancer cells.

    PubMed

    Yang, Xudong; Yang, Xue; Li, Zhenyu; Li, Shouying; Han, Yexuan; Chen, Yang; Bu, Xinyuan; Su, Chunyan; Xu, Hong; Jiang, Yingnan; Lin, Quan

    2015-10-15

    In this work, a simple, low-cost and one-step microwave approach has been demonstrated for the synthesis of water-soluble carbon dots (C-dots). The average size of the resulting C-dots is about 4 nm. From the photoluminescence (PL) measurements, the C-dots exhibit excellent biocompatibility and intense PL with the high quantum yield (QY) at Ca. 25%. Significantly, the C-dots have excellent biocompatibility and the capacity to specifically target the cells overexpressing the folate receptor (FR). These exciting results indicate the as-prepared C-dots are promising biocompatible probe for cancer diagnosis and treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Role of C–N Configurations in the Photoluminescence of Graphene Quantum Dots Synthesized by a Hydrothermal Route

    PubMed Central

    Permatasari, Fitri Aulia; Aimon, Akfiny Hasdi; Iskandar, Ferry; Ogi, Takashi; Okuyama, Kikuo

    2016-01-01

    Graphene quantum dots (GQDs) containing N atoms were successfully synthesized using a facile, inexpensive, and environmentally friendly hydrothermal reaction of urea and citric acid, and the effect of the GQDs’ C–N configurations on their photoluminescence (PL) properties were investigated. High-resolution transmission electron microscopy (HR-TEM) images confirmed that the dots were spherical, with an average diameter of 2.17 nm. X-ray photoelectron spectroscopy (XPS) analysis indicated that the C–N configurations of the GQDs substantially affected their PL intensity. Increased PL intensity was obtained in areas with greater percentages of pyridinic-N and lower percentages of pyrrolic-N. This enhanced PL was attributed to delocalized π electrons from pyridinic-N contributing to the C system of the GQDs. On the basis of energy electron loss spectroscopy (EELS) and UV-Vis spectroscopy analyses, we propose a PL mechanism for hydrothermally synthesized GQDs. PMID:26876153

  18. Redshifted and blueshifted photoluminescence emission of InAs/InP quantum dots upon amorphization of phase change material.

    PubMed

    Humam, Nurrul Syafawati Binti; Sato, Yu; Takahashi, Motoki; Kanazawa, Shohei; Tsumori, Nobuhiro; Regreny, Philippe; Gendry, Michel; Saiki, Toshiharu

    2014-06-16

    We present the mechanisms underlying the redshifted and blueshifted photoluminescence (PL) of quantum dots (QDs) upon amorphization of phase change material (PCM). We calculated the stress and energy shift distribution induced by volume expansion using finite element method. Simulation result reveals that redshift is obtained beneath the flat part of amorphous mark, while blueshift is obtained beneath the edge region of amorphous mark. Simulation result is accompanied by two experimental studies; two-dimensional PL intensity mapping of InAs/InP QD sample deposited by a layer of PCM, and an analysis on the relationship between PL intensity ratio and energy shift were performed.

  19. Enhanced photoluminescence of Si nanocrystals-doped cellulose nanofibers by plasmonic light scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugimoto, Hiroshi; Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501; Zhang, Ran

    2015-07-27

    We report the development of bio-compatible cellulose nanofibers doped with light emitting silicon nanocrystals and Au nanoparticles via facile electrospinning. By performing photoluminescence (PL) spectroscopy as a function of excitation wavelength, we demonstrate plasmon-enhanced PL by a factor of 2.2 with negligible non-radiative quenching due to plasmon-enhanced scattering of excitation light from Au nanoparticles to silicon nanocrystals inside the nanofibers. These findings provide an alternative approach for the development of plasmon-enhanced active systems integrated within the compact nanofiber geometry. Furthermore, bio-compatible light-emitting nanofibers prepared by a cost-effective solution-based processing are very promising platforms for biophotonic applications such as fluorescence sensingmore » and imaging.« less

  20. Hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot structure with enhanced photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Hai-Ming; Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083; Liang, Baolai, E-mail: bliang@cnsi.ucla.edu

    2015-03-09

    We investigate the photoluminescence (PL) properties of a hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot (QD) structure grown in a GaAs matrix by molecular beam epitaxy. This hybrid QD structure exhibits more intense PL with a broader spectral range, compared with control samples that contain only InAs or GaSb QDs. This enhanced PL performance is attributed to additional electron and hole injection from the type-I InAs QDs into the adjacent type-II GaSb QDs. We confirm this mechanism using time-resolved and power-dependent PL. These hybrid QD structures show potential for high efficiency QD solar cell applications.

  1. Effect of Ligand Exchange on the Photoluminescence Properties of Cu-Doped Zn-In-Se Quantum Dots

    NASA Astrophysics Data System (ADS)

    Dong, Xiaofei; Xu, Jianping; Yang, Hui; Zhang, Xiaosong; Mo, Zhaojun; Shi, Shaobo; Li, Lan; Yin, Shougen

    2018-04-01

    The surface-bound ligands of a semiconductor nanocrystal can affect its electron transition behavior. We investigate the photoluminescence (PL) properties of Cu-doped Zn-In-Se quantum dots (QDs) through the exchange of oleylamine with 6-mercaptohexanol (MCH). Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies, and mass spectrometry reveal that the short-chain MCH molecules are bound to the QD surface. The emission peaks remain unchanged after ligand exchange, and the PL quantum yield is reduced from 49% to 38%. The effects of particle size and defect type on the change in PL behavior upon ligand substitution are excluded through high-resolution transmission electron microscopy, UV-Vis absorption, and PL spectroscopies. The origin of the decreased PL intensity is associated with increased ligand density and the stronger ligand electron-donating abilities of MCH-capped QDs that induce an increase in the nonradiative transition probability. A lower PL quenching transition temperature is observed for MCH-capped QDs and is associated with increasing electron-acoustic phonon coupling due to the lower melting temperature of MCH.

  2. Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozov, S. V.; Rumyantsev, V. V., E-mail: rumyantsev@ipmras.ru; Antonov, A. V.

    2014-02-17

    Photoluminescence (PL) and photoconductivity (PC) studies of Hg{sub 1−x}Cd{sub x}Te (0.19 ≤ x ≤ 0.23) epitaxial films are presented. Interband PL is observed at wavelengths from 26 to 6 μm and in the temperature range 18 K–200 K. The PL line full width at half maximum is about 6 meV (4kT) at 18 K and approaches its theoretical limit of 1.8kT at higher temperatures. Carrier recombination process is also investigated by time resolved studies of PL and PC at pulsed excitation. Radiative transitions are shown to be the dominating mechanism of carrier recombination at high excitation levels.

  3. Temperature dependence of photoluminescence peaks of porous silicon structures

    NASA Astrophysics Data System (ADS)

    Brunner, Róbert; Pinčík, Emil; Kučera, Michal; Greguš, Ján; Vojtek, Pavel; Zábudlá, Zuzana

    2017-12-01

    Evaluation of photoluminescence spectra of porous silicon (PS) samples prepared by electrochemical etching is presented. The samples were measured at temperatures 30, 70 and 150 K. Peak parameters (energy, intensity and width) were calculated. The PL spectrum was approximated by a set of Gaussian peaks. Their parameters were fixed using fitting a procedure in which the optimal number of peeks included into the model was estimated using the residuum of the approximation. The weak thermal dependence of the spectra indicates the strong influence of active defects.

  4. A Label-Free Photoluminescence Genosensor Using Nanostructured Magnesium Oxide for Cholera Detection

    NASA Astrophysics Data System (ADS)

    Patel, Manoj Kumar; Ali, Md. Azahar; Krishnan, Sadagopan; Agrawal, Ved Varun; Al Kheraif, Abdulaziz A.; Fouad, H.; Ansari, Z. A.; Ansari, S. G.; Malhotra, Bansi D.

    2015-11-01

    Nanomaterial-based photoluminescence (PL) diagnostic devices offer fast and highly sensitive detection of pesticides, DNA, and toxic agents. Here we report a label-free PL genosensor for sensitive detection of Vibrio cholerae that is based on a DNA hybridization strategy utilizing nanostructured magnesium oxide (nMgO; size >30 nm) particles. The morphology and size of the synthesized nMgO were determined by transmission electron microscopic (TEM) studies. The probe DNA (pDNA) was conjugated with nMgO and characterized by X-ray photoelectron and Fourier transform infrared spectroscopic techniques. The target complementary genomic DNA (cDNA) isolated from clinical samples of V. cholerae was subjected to DNA hybridization studies using the pDNA-nMgO complex and detection of the cDNA was accomplished by measuring changes in PL intensity. The PL peak intensity measured at 700 nm (red emission) increases with the increase in cDNA concentration. A linear range of response in the developed PL genosensor was observed from 100 to 500 ng/μL with a sensitivity of 1.306 emi/ng, detection limit of 3.133 ng/μL and a regression coefficient (R2) of 0.987. These results show that this ultrasensitive PL genosensor has the potential for applications in the clinical diagnosis of cholera.

  5. Photoluminescence of phosphorus atomic layer doped Ge grown on Si

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yuji; Nien, Li-Wei; Capellini, Giovanni; Virgilio, Michele; Costina, Ioan; Schubert, Markus Andreas; Seifert, Winfried; Srinivasan, Ashwyn; Loo, Roger; Scappucci, Giordano; Sabbagh, Diego; Hesse, Anne; Murota, Junichi; Schroeder, Thomas; Tillack, Bernd

    2017-10-01

    Improvement of the photoluminescence (PL) of Phosphorus (P) doped Ge by P atomic layer doping (ALD) is investigated. Fifty P delta layers of 8 × 1013 cm-2 separated by 4 nm Ge spacer are selectively deposited at 300 °C on a 700 nm thick P-doped Ge buffer layer of 1.4 × 1019 cm-3 on SiO2 structured Si (100) substrate. A high P concentration region of 1.6 × 1020 cm-3 with abrupt P delta profiles is formed by the P-ALD process. Compared to the P-doped Ge buffer layer, a reduced PL intensity is observed, which might be caused by a higher density of point defects in the P delta doped Ge layer. The peak position is shifted by ˜0.1 eV towards lower energy, indicating an increased active carrier concentration in the P-delta doped Ge layer. By introducing annealing at 400 °C to 500 °C after each Ge spacer deposition, P desorption and diffusion is observed resulting in relatively uniform P profiles of ˜2 × 1019 cm-3. Increased PL intensity and red shift of the PL peak are observed due to improved crystallinity and higher active P concentration.

  6. Thermal Quenching of Photoluminescence in ZnO and GaN

    NASA Astrophysics Data System (ADS)

    Albarakati, Nahla Mubarak

    Investigation of the thermal quenching of photoluminescence (PL) in semiconductors provides valuable information on identity and characteristics of point defects in these materials, which helps to better understand and improve the properties of semiconductor materials and devices. Abrupt and tunable thermal quenching (ATQ) of PL is a relatively new phenomenon with an unusual behavior of PL. This mechanism was able to explain what a traditional model failed to explain. Usually, in traditional model used to explain "normal" quenching, the slope of PL quenching in the Arrhenius plot determines the ionization energy of the defect causing the PL band. However, in abrupt quenching when the intensity of PL decreases by several orders of magnitude within a small range of temperature, the slope in the Arrhenius plot has no relation to the ionization energy of any defect. It is not known a priori if the thermal quenching of a particular PL band is normal or abrupt and tunable. Studying new cases of unusual thermal quenching, classifying and explaining them helps to predict new cases and understand deeper the ATQ mechanism of PL thermal quenching. Very few examples of abrupt and tunable quenching of PL in semiconductors can be found in literature. The abrupt and tunable thermal quenching, reported here for the first time for high-resistivity ZnO, provides an evidence to settle the dispute concerning the energy position of the Li Zn acceptor. In high-resistivity GaN samples, the common PL bands related to defects are the yellow luminescence (YL) band and a broad band in the blue spectral region (BL2). In this work, we report for the first time the observation of abrupt and tunable thermal quenching of the YL band in GaN. The activation energies for the YL and BL2 bands calculated through the new mechanism show agreement with the reported values. From this study we predict that the ATQ phenomenon is quite common for high-resistivity semiconductors.

  7. Fabrication and photoluminescence properties of graphite fiber/ZnO nanorod core-shell structures.

    PubMed

    Liu, Xianbin; Du, Hejun; Liu, Bo; Wang, Jianxiong; Sun, Xiao Wei; Sun, Handong

    2011-08-01

    Graphite fiber/ZnO nanorod core-shell structures were synthesized by thermal evaporation process. The core-shell hybrid architectures were comprised of ZnO nanorods grown on the surface of graphite fiber. In addition, Hollow ZnO hierarchical structure can be obtained by oxidizing the graphite fiber. Room temperature photoluminescence (PL) of the as-made graphite fiber/ZnO nanorod structures shows two UV peaks at around 3.274 eV and 3.181 eV. The temperature-dependent photoluminescence spectra demonstrate the two UV emissions are attributed to the intrinsic optical transitions and extrinsic defect-related emissions in ZnO. These hybrid structures may be used as the building block for fabrication of nanodevices.

  8. Giant photoluminescence emission in crystalline faceted Si grains

    PubMed Central

    Faraci, Giuseppe; Pennisi, Agata R.; Alberti, Alessandra; Ruggeri, Rosa; Mannino, Giovanni

    2013-01-01

    Empowering an indirect band-gap material like Si with optical functionalities, firstly light emission, represents a huge advancement constantly pursued in the realization of any integrated photonic device. We report the demonstration of giant photoluminescence (PL) emission by a newly synthesized material consisting of crystalline faceted Si grains (fg-Si), a hundred nanometer in size, assembled in a porous and columnar configuration, without any post processing. A laser beam with wavelength 632.8 nm locally produce such a high temperature, determined on layers of a given thickness by Raman spectra, to induce giant PL radiation emission. The optical gain reaches the highest value ever, 0.14 cm/W, representing an increase of 3 orders of magnitude with respect to comparable data recently obtained in nanocrystals. Giant emission has been obtained from fg-Si deposited either on glass or on flexible, low cost, polymeric substrate opening the possibility to fabricate new devices. PMID:24056300

  9. Photoassisted photoluminescence fine-tuning of gold nanodots through free radical-mediated ligand-assembly

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Ting; Cherng, Rochelle; Harroun, Scott G.; Yuan, Zhiqin; Lin, Tai-Yuan; Wu, Chien-Wei; Chang, Huan-Tsung; Huang, Chih-Ching

    2016-05-01

    In this study, we have developed a simple photoassisted ligand assembly to fine-tune the photoluminescence (PL) of (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide-capped gold nanodots (11-MUTAB-Au NDs). The 11-MUTAB-Au NDs (size: ca. 1.8 nm), obtained from the reaction of gold nanoparticles (ca. 3 nm) and 11-MUTAB, exhibited weak, near-infrared (NIR) PL at 700 nm with a quantum yield (QY) of 0.37% upon excitation at 365 nm. The PL QY of the Au NDs increased to 11.43% after reaction with 11-mercaptoundecanoic acid (11-MUA) for 30 min under ultraviolet (UV) light, which was accompanied by a PL wavelength shift to the green region (~520 nm). UV-light irradiation accelerates 11-MUA assembly on the 11-MUTABAu NDs (11-MUA/11-MUTAB-Au NDs) through a radical-mediated reaction. Furthermore, the PL wavelength of the 11-MUA/11-MUTAB-Au NDs can be switched to 640 nm via cysteamine under UV-light irradiation. We propose that the PL of the Au NDs with NIR and visible emissions was originally from the surface thiol-Au complexes and the Au core, respectively. These dramatically different optical properties of the Au NDs were due to variation in the surface ligands, as well as the densities and surface oxidant states of the surface Au atoms/ions. These effects can be controlled by assembling surface thiol ligands and accelerated by UV irradiation.In this study, we have developed a simple photoassisted ligand assembly to fine-tune the photoluminescence (PL) of (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide-capped gold nanodots (11-MUTAB-Au NDs). The 11-MUTAB-Au NDs (size: ca. 1.8 nm), obtained from the reaction of gold nanoparticles (ca. 3 nm) and 11-MUTAB, exhibited weak, near-infrared (NIR) PL at 700 nm with a quantum yield (QY) of 0.37% upon excitation at 365 nm. The PL QY of the Au NDs increased to 11.43% after reaction with 11-mercaptoundecanoic acid (11-MUA) for 30 min under ultraviolet (UV) light, which was accompanied by a PL wavelength shift to the green region

  10. Synthesis and Photoluminescence of Single-Crystalline Fe(III)-Doped CdS Nanobelts.

    PubMed

    Kamran, Muhammad Arshad; Zou, Bingsuo; Majid, A; Alharbil, Thamer; Saeed, M A; Abdullah, Ali; Javed, Qurat-ul-ain

    2016-04-01

    In this paper, we report the synthesis and optical properties of Fe(III) doped CdS nanobelts (NBs) via simple Chemical Vapor Deposition (CVD) technique to explore their potential in nano-optics. The energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analysis manifested the presence of Fe(III) ions in the NBs subsequently confirmed by the peak shifting to lower phonon energies as recorded by Raman spectra and shorter lifetime in ns. Photoluminescence (PL) spectrum investigations of the single Fe(III)-doped CdS NBs depicted an additional PL peak centered at 573 nm (orange emission) in addition to the bandedge(BE) emission. The redshift and decrease in the BE intensity of the PL peaks, as compared to the bulk CdS, confirmed the quenching of spectra upon Fe doping. The synthesis and orange emission for Fe-doped CdS NBs have been observed for the first time and point out their potential in nanoscale devices.

  11. Relationship between microstructure and optical properties of a novel perovskite C12PbI4 embedded in matrix of porous alumina

    NASA Astrophysics Data System (ADS)

    Zaghdoudi, W.; Bardaoui, A.; Khalifa, N.; Chtourou, R.

    2013-01-01

    In this study, organic-inorganic hybrid perovskite multiple quantum wells (PbI QWs) embedded in porous anodic alumina (PAA) thin films on glass and aluminum substrates are investigated in detail. The pore height and diameter of the nanoscale structure of porous anodic alumina (PAA) film produced by the anodization technique are controllable. The synthesized films are characterized morphologically using the atomic force microscopy (AFM). Scanning electron microscopy (SEM) study showed granular surface. The structural and optical properties were investigated by X-ray diffraction (XRD), photoluminescence (PL) and UV-Vis-NIR spectrophotometer. The effect of the two different substrates on the impregnation of the PbI QW in the PAA is presented. Both PL and AFM studies show a better penetration of the PbI QW in the case of the Al substrate providing a wider pore diameter. Remarkable enhancement of quantum confinement is demonstrated.

  12. Room temperature visible photoluminescence of silicon nanocrystallites embedded in amorphous silicon carbide matrix

    NASA Astrophysics Data System (ADS)

    Coscia, U.; Ambrosone, G.; Basa, D. K.

    2008-03-01

    The nanocrystalline silicon embedded in amorphous silicon carbide matrix was prepared by varying rf power in high vacuum plasma enhanced chemical vapor deposition system using silane methane gas mixture highly diluted in hydrogen. In this paper, we have studied the evolution of the structural, optical, and electrical properties of this material as a function of rf power. We have observed visible photoluminescence at room temperature and also have discussed the role played by the Si nanocrystallites and the amorphous silicon carbide matrix. The decrease of the nanocrystalline size, responsible for quantum confinement effect, facilitated by the amorphous silicon carbide matrix, is shown to be the primary cause for the increase in the PL intensity, blueshift of the PL peak position, decrease of the PL width (full width at half maximum) as well as the increase of the optical band gap and the decrease of the dark conductivity.

  13. Pressure and PL study of dilute-N GaInNAs films for applications in photovoltaics

    NASA Astrophysics Data System (ADS)

    Lindberg, George; Fukuda, Miwa; Al Khalfioui, M.; Hossain, Khalid; Sellers, Ian; Weinstein, Bernard

    2013-03-01

    Multi-junction photovoltaic devices employing dilute-N GaInNAs alloys are currently of high interest for efficient solar energy conversion. The negative band-bowing produced by introducing a few percent N into GaInAs provides a convenient way to match the 1eV component of the solar spectrum, providing recombination losses in localized states can be reduced while maintaining favorable carrier extraction. High pressure photoluminescence (PL) experiments exploring the localization of band-edge excitons in dilute-N GaInNAs films grown by plasma assisted MBE will be discussed. The effects of post-growth annealing and hydrogen incorporation on the PL spectra of the films are considered. Research supported by Amethyst Research Inc. through the State of Oklahoma, ONAP program.

  14. Negative thermal quenching of photoluminescence in zinc oxide nanowire-core/graphene-shell complexes.

    PubMed

    Lin, S S; Chen, B G; Xiong, W; Yang, Y; He, H P; Luo, J

    2012-09-10

    Graphene is an atomic thin two-dimensional semimetal whereas ZnO is a direct wide band gap semiconductor with a strong light-emitting ability. In this paper, we report on photoluminescence (PL) of ZnO-nanowires (NWs)-core/Graphene-shell heterostructures, which shows a negative thermal quenching (NTQ) behavior both for the near band-edge and deep level emission. The abnormal PL behavior was understood through the charging and discharging processes between ZnO NWs and graphene. The NTQ properties are most possibly induced by the unique rapidly increasing density of states of graphene as a function of Fermi level, which promises a higher quantum tunneling probability between graphene and ZnO at a raised temperature.

  15. Near infrared photoluminescence properties of porous silicon prepared under the influence of light illumination

    NASA Astrophysics Data System (ADS)

    Hamadeh, H.; Naddaf, M.; Jazmati, A.

    2008-12-01

    Porous silicon (PS) has been prepared by anodic etching of boron doped silicon under the influence of monochromatic light illumination. The optical properties of the PS samples have been investigated using temperature dependent photoluminescence (PL) spectroscopy. An overall enhancement of the infrared luminescence yield is caused by the light illumination. In the visible spectral range, changes at the low energy side of the broad PL band were observed. In the near infrared spectral range, a new PL band at 850 nm, which is strongly correlated with light illumination, was detected. The new PL band disappears once blue light is used, whereas an increase in its intensity is observed, when the etching is performed under the illumination of light with wavelengths close to the band gap. By increasing the temperature, the 850 nm transition band grows at the expense of the main near infrared transition at 1100 nm. The recombination characteristics of this PL band are indicative of its extrinsic nature. The macroscopic morphology shows strong dependence on the wavelength of the illumination light. Photoassisted preparation could provide a tool for the control of the optical and structural properties of PS.

  16. Origin of Analyte-Induced Porous Silicon Photoluminescence Quenching.

    PubMed

    Reynard, Justin M; Van Gorder, Nathan S; Bright, Frank V

    2017-09-01

    We report on gaseous analyte-induced photoluminescence (PL) quenching of porous silicon, as-prepared (ap-pSi) and oxidized (ox-pSi). By using steady-state and emission wavelength-dependent time-resolved intensity luminescence measurements in concert with a global analysis scheme, we find that the analyte-induced quenching is best described by a three-component static quenching model. In the model, there are blue, green, and red emitters (associated with the nanocrystallite core and surface trap states) that each exhibit unique analyte-emitter association constants and these association constants are a consequence of differences in the pSi surface chemistries.

  17. Photoluminescence and contactless electroreflectance characterization of BexCd1-xSe alloys

    NASA Astrophysics Data System (ADS)

    Huang, P. J.; Huang, Y. S.; Firszt, F.; Meczynska, H.; Maksimov, O.; Tamargo, M. C.; Tiong, K. K.

    2007-01-01

    A detailed optical characterization of a Bridgman-grown wurtzite- (WZ-) type Be0.075Cd0.925Se mixed crystal and three zinc-blende (ZB) BexCd1-xSe epilayers grown by MBE on InP substrates has been carried out via photoluminescence (PL) and contactless electroreflectance (CER) in the temperature range of 15-400 K. The PL spectrum of the WZ-BeCdSe at low temperature consists of an exciton line, an edge emission feature due to recombination of donor-acceptor pairs, and a broad band related to recombination through deep-level defects, while the PL emission peaks of the ZB-BeCdSe epilayers show an asymmetric shape with a tail on the low-energy side. Various interband transitions, originating from the band edge and spin-orbit splitting critical points, of the samples have been observed in the CER spectra. The peak positions of the exciton emission lines in the PL spectra correspond quite well to the energies of the fundamental transitions determined from electromodulation data. The parameters that describe the temperature dependence of the fundamental and spin split-off bandgaps and the broadening function of the band-edge exciton are evaluated and discussed.

  18. Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems.

    PubMed

    Ou, Jian Zhen; Chrimes, Adam F; Wang, Yichao; Tang, Shi-yang; Strano, Michael S; Kalantar-zadeh, Kourosh

    2014-02-12

    Quasi-two-dimensional (quasi-2D) molybdenum disulfide (MoS2) is a photoluminescence (PL) material with unique properties. The recent demonstration of its PL, controlled by the intercalation of positive ions, can lead to many opportunities for employing this quasi-2D material in ion-related biological applications. Here, we present two representative models of biological systems that incorporate the ion-controlled PL of quasi-2D MoS2 nanoflakes. The ion exchange behaviors of these two models are investigated to reveal enzymatic activities and cell viabilities. While the ion intercalation of MoS2 in enzymatic activities is enabled via an external applied voltage, the intercalation of ions in cell viability investigations occurs in the presence of the intrinsic cell membrane potential.

  19. Controlled synthesis, characterization and photoluminescence property of olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Youjin, E-mail: zyj@ustc.edu.cn; Zheng, Ao; Yang, Xiaozhi

    2012-09-15

    Highlights: ► The olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3} was gained with EDTA assisted hydrothermal method. ► The product was characterized by XRD, XPS, FTIR, FESEM, and PL. ► The possible formation mechanism for olive-like α-Nd{sub 2}(MoO{sub 4}){sub 3} was proposed. ► The PL in visible region of the olive-like α-Nd{sub 2}(MoO{sub 4}){sub 3} was studied. -- Abstract: The olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3} was obtained by a convenient and facile complex agent assisted hydrothermal method. The product was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FESEM) andmore » photoluminescence (PL). The possible formation mechanism of the olive-like α-Nd{sub 2}(MoO{sub 4}){sub 3} was proposed. The photoluminescence property in visible region of the olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3} was studied.« less

  20. Temperature-dependent photoluminescence of CuAlO2 single crystals fabricated by using a flux self-removal method

    NASA Astrophysics Data System (ADS)

    Nam, Y. S.; Yoon, J. S.; Ju, H. L.; Chang, S. K.; Baek, K. S.

    2014-10-01

    The temperature-dependent behavior of p-type transparent semiconducting oxide CuAlO2 single crystals prepared by using a flux self-removal method in alumina crucibles was investigated through transmittance and photoluminescence (PL) measurements at temperatures from 12 K to room temperature. The low-temperature (12 K) PL spectrum shows two weak, broad emission peaks, one at 3.52 eV and the other at 3.08 eV, which we assign to excitonic emission and to defectrelated emission originating from copper vacancies. The positions of the PL peaks as functions of temperature exhibit a normal behavior satisfying the standard Varshini law, and the Debye temperature is found to be θ D = 610 ± 80 K. The exciton-binding energy of the CuAlO2 single crystal is estimated to be 49 meV from the PL intensity change with temperature.

  1. Abnormal Pressure-Induced Photoluminescence Enhancement and Phase Decomposition in Pyrochlore La2 Sn2 O7.

    PubMed

    Zhao, Yongsheng; Li, Nana; Xu, Cong; Li, Yan; Zhu, Hongyu; Zhu, Pinwen; Wang, Xin; Yang, Wenge

    2017-09-01

    La 2 Sn 2 O 7 is a transparent conducting oxide (TCO) material and shows a strong near-infrared fluorescent at ambient pressure and room temperature. By in situ high-pressure research, pressure-induced visible photoluminescence (PL) above 2 GPa near 2 eV is observed. The emergence of unusual visible PL behavior is associated with the seriously trigonal lattice distortion of the SnO 6 octehedra, under which the Sn-O1-Sn exchange angle θ is decreased below 22.1 GPa, thus enhancing the PL quantum yield leading to Sn 3 P 1 → 1 S 0 photons transition. Besides, bandgap closing followed by bandgap opening and the visible PL appearing at the point of the gap reversal, which is consistent with high-pressure phase decomposition, are discovered. The high-pressure PL results demonstrate a well-defined pressure window (7-17 GPa) with flat maximum PL yielding and sharp edges at both ends, which may provide a great calibration tool for pressure sensors for operation in the deep sea or at extreme conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Photoluminescence and reflectivity of polymethylmethacrylate implanted by low-energy carbon ions at high fluences

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Zhu, Fei; Zhang, Bei; Liu, Huixian; Jia, Guangyi; Liu, Changlong

    2012-11-01

    Polymethylmethacrylate (PMMA) specimens were implanted with 30 keV carbon ions in a fluence range of 1 × 1016 to 2 × 1017 cm-2, and photoluminescence (PL) and reflectivity of the implanted samples were examined. A luminescent band with one peak was found in PL spectra excited by 480 nm line, but its intensity did not vary in parallel with ion fluence. The strongest PL occurred at the fluence of 5 × 1016 cm-2. Results from visible-light-excited micro-Raman spectra indicated that the formation of hydrogenated amorphous carbon structures in subsurface layer and their evolutions with ion fluence could be responsible for the observed PL responses. Measurements of the small-angle reflectance spectra from both the implanted and rear surfaces of samples in the ultraviolet-visible (UV-vis) range demonstrated a kind of both fluence-dependent and wavelength-related reflectivity variations, which were attributed to the structural changes induced by ion implantation. A noticeable reflectivity modification, which may be practically used, could be found at the fluence of 1 × 1016 cm-2.

  3. Quasi-continuum photoluminescence: Unusual broad spectral and temporal characteristics found in defective surfaces of silica and other materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, Ted A., E-mail: laurence2@llnl.gov; Bude, Jeff D.; Shen, Nan

    2014-02-28

    We previously reported a novel photoluminescence (PL) with a distribution of fast decay times in fused silica surface flaws that is correlated with damage propensity by high fluence lasers. The source of the PL was not attributable to any known silica point defect. Due to its broad spectral and temporal features, we here give this PL the name quasi-continuum PL (QC-PL) and describe the features of QC-PL in more detail. The primary features of QC-PL include broad excitation and emission spectra, a broad distribution of PL lifetimes from 20 ps to 5 ns, continuous shifts in PL lifetime distributions with respectmore » to emission wavelength, and a propensity to photo-bleach and photo-brighten. We found similar PL characteristics in surface flaws of other optical materials, including CaF{sub 2}, DKDP, and quartz. Based on the commonality of the features in different optical materials and the proximity of QC-PL to surfaces, we suggest that these properties arise from interactions associated with high densities of defects, rather than a distribution over a large number of types of defects and is likely found in a wide variety of structures from nano-scale composites to bulk structures as well as in both broad and narrow band materials from dielectrics to semiconductors.« less

  4. Photoluminescence and reflectivity studies of high energy light ions irradiated polymethyl methacrylate films

    NASA Astrophysics Data System (ADS)

    Bharti, Madhu Lata; Singh, Fouran; Ramola, R. C.; Joshi, Veena

    2017-11-01

    The self-standing films of non-conducting polymethyl methacrylate (PMMA) were irradiated in vacuum using high energy light ions (HELIs) of 50 MeV Lithium (Li+3) and 80 MeV Carbon (C+5) at various ion dose to induce the optical changes in the films. Upon HELI irradiation, films exhibit a significant enhancement in optical reflectivity at the highest dose. Interestingly, the photoluminescence (PL) emission band with green light at (514.5 nm) shows a noticeable increase in the intensity with increasing ion dose for both ions. However, the rate of increase in PL intensity is different for both HELI and can be correlated with the linear energy transfer by these ions in the films. Origin of PL is attributed to the formation of carbon cluster and hydrogenated amorphous carbon in the polymer films. HAC clusters act as PL active centres with optical reflectivity. Most of the harmful radiation like UV are absorbed by the material and is becoming opaque after irradiation and this PL active material are useful in fabrication of optoelectronic devices, UV-filter, back-lit components in liquid crystal display systems, micro-components for integrate optical circuits, diffractive elements, advanced materials and are also applicable to the post irradiation laser treatment by means of ion irradiation.

  5. Photoluminescence properties of anodic aluminum oxide formed in a mixture of ammonium fluoride and oxalic acid

    NASA Astrophysics Data System (ADS)

    Li, Shou-Yi; Wang, Jian; Li, Yan

    2017-06-01

    Highly ordered anodic aluminum oxide (AAO) membranes are fabricated electrochemically in an electrolyte mixture with various concentrations of C2H2O4 or NH4F. Photoluminescence (PL) properties of AAO membranes have been investigated before and after annealing in the range from 300°C to 650°C. X-ray diffraction reveals the amorphous nature of AAO membranes. Energy dispersive spectroscopy indicates the presence of fluorine species incorporated in oxide membranes during the anodizing. PL measurements show a strong PL band in the wavelength range of 350 to 550 nm. With the increase of the concentration of the NH4F or C2H2O4 in the electrolyte mixture, the peak positions of the PL bands have a blueshift or redshift and the intensities have a maximum value. As indicated by the PL excitation spectra, there are two excitation peaks of 285 and 330 nm, which can account for the PL emission band. We have proposed that the PL originates from optical transitions in two kinds of centers that are related to oxygen vacancies, F+ (285 nm) and F (330 nm). This work is not only beneficial to further understanding of the light-emitting property of AAO membranes but also enlarges the application scope.

  6. Humidity-Induced Photoluminescence Hysteresis in Variable Cs/Br Ratio Hybrid Perovskites.

    PubMed

    Howard, John M; Tennyson, Elizabeth M; Barik, Sabyasachi; Szostak, Rodrigo; Waks, Edo; Toney, Michael F; Nogueira, Ana F; Neves, Bernardo R A; Leite, Marina S

    2018-06-21

    Hybrid organic-inorganic perovskites containing Cs are a promising new material for light-absorbing and light-emitting optoelectronics. However, the impact of environmental conditions on their optical properties is not fully understood. Here, we elucidate and quantify the influence of distinct humidity levels on the charge carrier recombination in Cs x FA 1- x Pb(I y Br 1- y ) 3 perovskites. Using in situ environmental photoluminescence (PL), we temporally and spectrally resolve light emission within a loop of critical relative humidity (rH) levels. Our measurements show that exposure up to 35% rH increases the PL emission for all Cs (10-17%) and Br (17-38%) concentrations investigated here. Spectrally, samples with larger Br concentrations exhibit PL redshift at higher humidity levels, revealing water-driven halide segregation. The compositions considered present hysteresis in their PL intensity upon returning to a low-moisture environment due to partially reversible hydration of the perovskites. Our findings demonstrate that the Cs/Br ratio strongly influences both the spectral stability and extent of light emission hysteresis. We expect our method to become standard when testing the stability of emerging perovskites, including lead-free options, and to be combined with other parameters known for affecting material degradation, e.g., oxygen and temperature.

  7. Carrier concentration dependent photoluminescence properties of Si-doped InAs nanowires

    NASA Astrophysics Data System (ADS)

    Sonner, M.; Treu, J.; Saller, K.; Riedl, H.; Finley, J. J.; Koblmüller, G.

    2018-02-01

    We report the effects of intentional n-type doping on the photoluminescence (PL) properties of InAs nanowires (NWs). Employing silicon (Si) as a dopant in molecular beam epitaxy grown NWs, the n-type carrier concentration is tuned between 1 × 1017 cm-3 and 3 × 1018 cm-3 as evaluated from Fermi-tail fits of the high-energy spectral region. With the increasing carrier concentration, the PL spectra exhibit a distinct blueshift (up to ˜50 meV), ˜2-3-fold peak broadening, and a redshift of the low-energy tail, indicating both the Burstein-Moss shift and bandgap narrowing. The low-temperature bandgap energy (EG) decreases from ˜0.44 eV (n ˜ 1017 cm-3) to ˜0.41 eV (n ˜ 1018 cm-3), following a ΔEG ˜ n1/3 dependence. Simultaneously, the PL emission is quenched nearly 10-fold, while the pump-power dependent analysis of the integrated PL intensity evidences a typical 2/3-power-law scaling, indicative of non-radiative Auger recombination at high carrier concentrations. Carrier localization and activation at stacking defects are further observed in undoped InAs NWs by temperature-dependent measurements but are absent in Si-doped InAs NWs due to the increased Fermi energy.

  8. Practical considerations for solar energy thermally enhanced photo-luminescence (TEPL) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kruger, Nimrod; Manor, Assaf; Kurtulik, Matej; Sabapathy, Tamilarasan; Rotschild, Carmel

    2017-04-01

    While single-junction photovoltaics (PV's) are considered limited in conversion efficiency according to the Shockley-Queisser limit, concepts such as solar thermo-photovoltaics aim to harness lost heat and overcome this barrier. We claim the novel concept of Thermally Enhanced Photoluminescence (TEPL) as an easier route to achieve this goal. Here we present a practical TEPL device where a thermally insulated photo-luminescent (PL) absorber, acts as a mediator between a photovoltaic cell and the sun. This high temperature absorber emits blue-shifted PL at constant flux, then coupled to a high band gap PV cell. This scheme promotes PV conversion efficiencies, under ideal conditions, higher than 62% at temperatures lower than 1300K. Moreover, for a PV and absorber band-gaps of 1.45eV (GaAs PV's) and 1.1eV respectively, under practical conditions, solar concentration of 1000 suns, and moderate thermal insulation; the conversion efficiencies potentially exceed 46%. Some of these practical conditions belong to the realm of optical design; including high photon recycling (PR) and absorber external quantum efficiency (EQE). High EQE values, a product of the internal QE of the active PL materials and the extraction efficiency of each photon (determined by the absorber geometry and interfaces), have successfully been reached by experts in laser cooling technology. PR is the part of emitted low energy photons (in relation to the PV band-gap) that are reabsorbed and consequently reemitted with above band-gap energies. PV back-reflector reflectivity, also successfully achieved by those who design the cutting edge high efficiency PV cells, plays a major role here.

  9. Blueish green photoluminescence from nitrided GaAs(100) surfaces

    NASA Astrophysics Data System (ADS)

    Shimaoka, Goro; Udagawa, Takashi

    1999-04-01

    Optical and structural studies were made on the Si-doped (100)GaAs surfaces nitrided at a temperature between 650° and 750°C for 15 min in the flowing NH 3 gas. The wavelength of photoluminescence (PL) spectra were observed to be shortened from 820 nm of the GaAs nitrided at 650°C with increasing nitridation temperature. Blueish green PL with wavelengths of approx. 490 nm and 470 nm were emitted from the nitrided surfaces at 700° and 750°C, respectively. Results of AES and SIMS indicated that the surfaces are nitrided as GaAs 1- xN x, (0< x≤1) alloy layer, and the nitrided region also tended to increase as the temperature raised. High-resolution transmission electron microscopic (HRTEM), transmission electron diffraction (TED) and energy dispersive X-ray (EDX) results showed that films peeled off from the nitrided surfaces consisted mainly of hexagonal, wurtzite-type gallium nitride (GaN) with stacking faults and microtwins.

  10. Excitation power dependence of photoluminescence spectra of GaSb type-II quantum dots in GaAs grown by droplet epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawazu, T., E-mail: KAWAZU.Takuya@nims.go.jp; Noda, T.; Sakuma, Y.

    2016-04-15

    We investigated the excitation power P dependence of photoluminescence (PL) spectra of GaSb type-II quantum dots (QDs) in GaAs grown by droplet epitaxy. We prepared two QD samples annealed at slightly different temperatures (380 {sup o}C and 400 {sup o}C) and carried out PL measurements. The 20 {sup o}C increase of the annealing temperature leads to (1) about 140 and 60 times stronger wetting layer (WL) luminescence at low and high P, (2) about 45% large energy shift of QD luminescence with P, and (3) the different P dependence of the PL intensity ratio between the QD and the WL. These differences ofmore » the PL characteristics are explained by the effects of the WL.« less

  11. Room-temperature synthesis and photoluminescence of hexagonal CePO4 nanorods

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Zhang, K.; Zhao, H. Y.

    2018-01-01

    Hexagonal CePO4 nanorods were synthesized via a simple chemical precipitation route at room-temperature without the presence of surfactants and then characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectroscopy. Hexagonal CePO4 nanorods exhibit strong ultraviolet absorption and ultraviolet luminescence, which correspond to the electronic transitions between 4f and 5d state of Ce3+ ions.

  12. Photoluminescence of Co: ZnNiO and Zr: ZnNiO nanocomposites capped with biodegradable polymer poly (2-ethyl-2-oxazoline)

    NASA Astrophysics Data System (ADS)

    John, Sam; George, James Baben; Joseph, Abraham

    2018-05-01

    The optical properties of the semiconducting nanomaterials has a wide variety of applications in the biological and industrial fields, which include the synthesis of UV laser, light emitting diodes, solar cells, gas sensors, piezoelectric transducers etc. Among the various types of optical properties, luminescence especially photoluminescence (PL) of metal oxides are more prominently studied. This is because PL spectrum is an effective way to investigate the electronic structure, optical and photochemical properties of semiconductor materials which deciphers information such as surface oxygen vacancies, defects, efficiency of charge carrier trapping, immigration, transfer etc. To overcome the drawbacks in luminescence studies of metal oxide nanomaterials, polymer technology has also been incorporated. The scientists found that the doping of some elements into the polymer capped ZnO nanocomposites enhanced the luminescence properties of the compound. In the current study, we are investigating the photoluminescence properties of ZnO nanocomposites capped with a biodegradable polymer poly (2-ethyl 2-oxazoline) and doped with the elements Cobalt and Zirconium. We obtained many strong fluorescence peaks in the visible and UV regions in the PL spectrum and UV absorption spectroscopy.

  13. Photoluminescence enhancement of monolayer tungsten disulfide in complicated plasmonic microstructures

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Hu, Xiaoyong; Gao, Wei; Song, Hanfa; Chu, Saisai; Yang, Hong; Gong, Qihuang

    2018-06-01

    Two-dimensional van der Waals materials are interesting for fundamental physics exploration and device applications because of their attractive physical properties. Here, we report a strategy to realize photoluminescence (PL) enhancement of two-dimensional transition-metal dichalcogenides (TMDCs) in the visible range using a plasmonic microstructure with patterned gold nanoantennas and a metal-insulator-semiconductor-insulator-metal structure. The PL intensity was enhanced by a factor of two under Y-polarization due to the increased radiative decay rate by the surface plasmon radiation channel in the gold nanoantennas and the decreased nonradiative decay rate by suppressing exciton quenching in the SiO2 isolation layer. The fluorescence lifetime of monolayer tungsten disulfide in this structure was shorter than that of a sample without patterned gold nanoantennas. Tailoring the light-matter interactions between two-dimensional TMDCs and plasmonic nanostructures may provide highly efficient optoelectronic devices such as TMDC-based light emitters.

  14. Porous silicon photoluminescence biosensor for rapid and sensitive detection of toxins

    NASA Astrophysics Data System (ADS)

    Melnyk, Yulia; Pavlova, Karyna; Myndrul, Valerii; Viter, Roman; Smyntyna, Valentyn; Iatsunskyi, Igor

    2017-08-01

    A rapid and low cost photoluminescence (PL) immunosensor for the determination of low concentrations of Ochratoxin A(OTA) and Aflatoxine B1 (AfB1) has been developed. This biosensor was based on porous silicon (PSi) fabricated by metal-assisted chemical etching (MACE) and modified by antibodies against OTA/AfB1 (anti-OTA/anti-AfB1). Biofunctionalization method of the PSi surface by anti-OTA/ anti-AfB1 was developed. The changes of the PL intensity after interaction of the immobilized anti-OTA/anti-AfB1with OTA/AfB1 antigens were used as biosensor signal, allowing sensitive and selective detection of OTA/AfB1 antigens in BSA solution. The sensitivity of the reported optical biosensor towards OTA/AfB1 antigens is in the range from 10-3 to 102 ng/ml.

  15. Visible photoluminescence of porous Si(1-x)Ge(x) obtained by stain etching

    NASA Technical Reports Server (NTRS)

    Ksendzov, A.; Fathauer, R. W.; George, T.; Pike, W. T.; Vasquez, R. P.; Taylor, A. P.

    1993-01-01

    We have investigated visible photoluminescence (PL) from thin porous Si(1-x)Ge(x) alloy layers prepared by stain etching of molecular-beam-epitaxy-grown material. Seven samples with nominal Ge fraction x varying from 0.04 to 0.41 were studied at room temperature and 80 K. Samples of bulk stain etched Si and Ge were also investigated. The composition of the porous material was determined using X-ray photoemission spectroscopy and Rutherford backscattering techniques to be considerably more Ge-rich than the starting epitaxial layers. While the luminescence intensity drops significantly with the increasing Ge fraction, we observe no significant variation in the PL wavelength at room temperature. This is clearly in contradiction to the popular model based on quantum confinement in crystalline silicon which predicts that the PL energy should follow the bandgap variation of the starting material. However, our data are consistent with small active units containing only a few Si atoms that are responsible for the light emission. Such units are present in many compounds proposed in the literature as the cause of the visible PL in porous Si.

  16. Thermal annealing effect on the Mg-doped AlGaN/GaN superlattice

    NASA Astrophysics Data System (ADS)

    Wang, Baozhu; An, Shengbiao; Wen, Huanming; Wu, Ruihong; Wang, Xiaojun; Wang, Xiaoliang

    2009-11-01

    Mg-doped AlGaN/GaN superlattice has been grown by metalorganic chemical vapor deposition (MOCVD). Rapid thermal annealing (RTA) treament are carryied out on the samples under nitrogen as protect gas. Hall, photoluminescence (PL), high resolution x-ray diffraction (HRXRD) and atomic-force microscopy (AFM) are used to characterize the electrical, optical and structural properties of the as-grown and annealed samples, respectively. After annealing, the Hall results indicate more Mg acceptors are activated, which leads to higher hole concentration and lower p-type resistivity. The PL intensity of Mg related defect band shows a strong decrease after annealing. The annealing of the superlattice degrade the interface quality of the AlGaN/GaN from the HRXRD results. Many nanometer-grains can be observed on the surface of AlGaN/GaN superlattice from the AFM image. This maybe related with the decomposing of GaN or the separating of Mg from the AlGaN/GaN superlattice.

  17. Pressure-induced photoluminescence in Mn2+-doped BaF2 and SrF2 fluorites

    NASA Astrophysics Data System (ADS)

    Hernández, Ignacio; Rodríguez, Fernando

    2003-01-01

    This work reports an effective way for inducing room temperature photoluminescence (PL) in Mn2+-doped BaF2 and SrF2 using high-pressure techniques. The aim is to understand the surprising PL behavior exhibited by Mn2+ at the cubal site of the fluorite structure. While Mn2+-doped CaF2 shows a green PL with quantum yield close to 1 at room temperature, Mn2+-doped MF2 (M=Ba,Sr) is not PL either at room temperature (SrF2) or at any temperature (BaF2) at ambient pressure. We associate the loss of Mn2+ PL on passing from CaF2 to SrF2 or BaF2 with nonradiative multiphonon relaxation whose thermal activation energy decreases along the series CaF2→SrF2→BaF2. A salient feature of this work deals with the increase of activation energy induced by pressure. It leads to a quantum yield enhancement, which favors PL recovery. Furthermore, the activation energy mainly depends on the crystal volume per molecule irrespective of the crystal structure or the local symmetry around the impurity. In this way, the relevance of the fluorite-to-cotunnite phase transition is analyzed in connection with the PL properties of the investigated compounds. The PL spectrum and the corresponding lifetime are reported for both structural phases as a function of pressure.

  18. Facile synthesis of S, N co-doped carbon dots and investigation of their photoluminescence properties.

    PubMed

    Zhang, Yue; He, Junhui

    2015-08-21

    A facile one-pot approach to prepare photoluminescent carbon dots (CDs) was developed through hydrothermal treatment of cysteine and citric acid. The obtained CDs show stable and bright blue emission with a quantum yield of 54% and an average lifetime of 11.61 ns. Moreover, the two-photon induced upconversion fluorescence of the CDs was observed and demonstrated. Interestingly, both down and up conversion fluorescence of the CDs show excitation-independent emission, which is quite different from most of the previously reported CDs. Ultrafast spectroscopy was also employed here to study the photoluminescence (PL) properties of the CDs. After characterization using various spectroscopic techniques, a unique PL mechanism for the as-prepared CDs' fluorescence was proposed accordingly. In addition, the influence of various metal ions on the CD fluorescence was examined and no quenching phenomena were observed. Meanwhile, gold nanoparticles (Au NPs) were found to be good quenchers of CD fluorescence and their quenching behavior was fitted to the Stern-Volmer equation. This provides new opportunities for fluorescence sensor designs and light energy conversion applications. Finally, the as-prepared CDs were inkjet-printed to form a desirable pattern, which is useful for fluorescent patterns, and anti-counterfeiting labeling.

  19. Negative thermal quenching of the defects in GaInP top cell with temperature-dependent photoluminescence analysis

    NASA Astrophysics Data System (ADS)

    Junling, Wang; Rui, Wu; Tiancheng, Yi; Yong, Zheng; Rong, Wang

    2018-01-01

    Temperature-dependent photoluminescence (PL) measurements were carried out to investigate the irradiation effects of 1.0 MeV electrons on the n+- p GaInP top cell of GaInP/GaAs/Ge triple-junction solar cells in the 10-300 K temperature range. The PL intensities plotted against inverse temperature in an Arrhenius plot shows a thermal quenching behavior from 10 K to 140 K and an unusual negative thermal quenching (NTQ) behavior from 150 K to 300 K. The appearance of the PL thermal quenching with increasing temperature confirms that there is a nonradiative recombination center, i.e., the H2 hole trap located at Ev + 0.55 eV, in the cell after electron irradiation. The PL negative thermal quenching behavior may tentatively be attributed to the intermediate states at an energy level of 0.05 eV within the band gap in GaInP top cell.

  20. Comparison of Photoluminescence Imaging on Starting Multi-Crystalline Silicon Wafers to Finished Cell Performance: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, S.; Yan, F.; Dorn, D.

    2012-06-01

    Photoluminescence (PL) imaging techniques can be applied to multicrystalline silicon wafers throughout the manufacturing process. Both band-to-band PL and defect-band emissions, which are longer-wavelength emissions from sub-bandgap transitions, are used to characterize wafer quality and defect content on starting multicrystalline silicon wafers and neighboring wafers processed at each step through completion of finished cells. Both PL imaging techniques spatially highlight defect regions that represent dislocations and defect clusters. The relative intensities of these imaged defect regions change with processing. Band-to-band PL on wafers in the later steps of processing shows good correlation to cell quality and performance. The defect bandmore » images show regions that change relative intensity through processing, and better correlation to cell efficiency and reverse-bias breakdown is more evident at the starting wafer stage as opposed to later process steps. We show that thermal processing in the 200 degrees - 400 degrees C range causes impurities to diffuse to different defect regions, changing their relative defect band emissions.« less

  1. Energy transfer in aggregated CuInS2/ZnS core-shell quantum dots deposited as solid films

    NASA Astrophysics Data System (ADS)

    Gardelis, S.; Fakis, M.; Droseros, N.; Georgiadou, D.; Travlos, A.; Nassiopoulou, A. G.

    2017-01-01

    We report on the morphology and optical properties of CuInS2/ZnS core-shell quantum dots in solid films by means of AFM, SEM, HRTEM, steady state and time-resolved photoluminescence (PL) spectroscopy. The amount of aggregation of the CuInS2/ZnS QDs was controlled by changing the preparation conditions of the films. A red-shift of the PL spectrum of CuInS2/ZnS core-shell quantum dots, deposited as solid films on silicon substrates, is observed upon increasing the amount of aggregation. The presence of larger aggregates was found to lead to a larger PL red-shift. Besides, as the degree of aggregation increased, the PL decay became slower. We attribute the observed PL red-shift to energy transfer from the smaller to the larger dots within the aggregates, with the emission being realized via a long decay recombination mechanism (100-200 ns), the origin of which is discussed.

  2. The use of a microreactor for rapid screening of the reaction conditions and investigation of the photoluminescence mechanism of carbon dots.

    PubMed

    Lu, Yue; Zhang, Ling; Lin, Hengwei

    2014-04-07

    A microreactor is applied and reported, for the first time, in the field of research of carbon dots (CDs), including rapid screening of the reaction conditions and investigation of the photoluminescence (PL) mechanism. Various carbonaceous precursors and solvents were selected and hundreds of reaction conditions were screened (ca. 15 min on average per condition). Through analyzing the screened conditions, tunable PL emission maxima, from about 330 to 550 nm with respectable PL quantum yields, were achieved. Moreover, the relationship between different developmental stages of the CDs and the PL properties was explored by using the microreactor. The PL emission was observed to be independent of the composition, carbonization extent, and morphology/size of the CDs. This study unambiguously presents that a microreactor could serve as a promising tool for the research of CDs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods.

    PubMed

    Chen, Feng; Huang, Peng; Zhu, Ying-Jie; Wu, Jin; Zhang, Chun-Lei; Cui, Da-Xiang

    2011-12-01

    The design and synthesis of multifunctional systems with high biocompatibility are very significant for the future of clinical applications. Herein, we report a microwave-assisted rapid synthesis of multifunctional Eu(3+)/Gd(3+) dual-doped hydroxyapatite (HAp) nanorods, and the photoluminescence (PL), drug delivery and in vivo imaging of as-prepared Eu(3+)/Gd(3+) doped HAp nanorods. The photoluminescent and magnetic multifunctions of HAp nanorods are realized by the dual-doping with Eu(3+) and Gd(3+). The PL intensity of doped HAp nanorods can be adjusted by varying Eu(3+) and Gd(3+) concentrations. The magnetization of doped HAp nanorods increases with the concentration of doped Gd(3+). The as-prepared Eu(3+)/Gd(3+)-doped HAp nanorods exhibit inappreciable toxicity to the cells in vitro. More importantly, the Eu(3+)/Gd(3+)-doped HAp nanorods show a high drug adsorption capacity and sustained drug release using ibuprofen as a model drug, and the drug release is governed by a diffusion process. Furthermore, the noninvasive visualization of nude mice with subcutaneous injection indicates that the Eu(3+)/Gd(3+)-doped HAp nanorods with the photoluminescent function are suitable for in vivo imaging. In vitro and in vivo imaging tests indicate that Eu(3+)/Gd(3+)-doped HAp nanorods have a potential in applications such as a multiple-model imaging agent for magnetic resonance (MR) imaging, photoluminescence imaging and computed tomography (CT) imaging. The Eu(3+)/Gd(3+) dual-doped HAp nanorods are promising for applications in the biomedical fields such as multifunctional drug delivery systems with imaging guidance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Enhanced photoluminescence of corrugated Al2O3 film assisted by colloidal CdSe quantum dots.

    PubMed

    Bai, Zhongchen; Hao, Licai; Zhang, Zhengping; Huang, Zhaoling; Qin, Shuijie

    2017-05-19

    We present the enhanced photoluminescence (PL) of a corrugated Al 2 O 3 film enabled by colloidal CdSe quantum dots. The colloidal CdSe quantum dots are fabricated directly on a corrugated Al 2 O 3 substrate using an electrochemical deposition (ECD) method in a microfluidic system. The photoluminescence is excited by using a 150 nm diameter ultraviolet laser spot of a scanning near-field optical microscope. Owing to the electron transfer from the conduction band of the CdSe quantum dots to that of Al 2 O 3 , the enhanced photoluminescence effect is observed, which results from the increase in the recombination rate of electrons and holes on the Al 2 O 3 surface and the reduction in the fluorescence of the CdSe quantum dots. A periodically-fluctuating fluorescent spectrum was exhibited because of the periodical wire-like corrugated Al 2 O 3 surface serving as an optical grating. The spectral topographic map around the fluorescence peak from the Al 2 O 3 areas covered with CdSe quantum dots was unique and attributed to the uniform deposition of CdSe QDs on the corrugated Al 2 O 3 surface. We believe that the microfluidic ECD system and the surface enhanced fluorescence method described in this paper have potential applications in forming uniform optoelectronic films of colloidal quantum dots with controllable QD spacing and in boosting the fluorescent efficiency of weak PL devices.

  5. Kinetic energy dependence of carrier diffusion in a GaAs epilayer studied by wavelength selective PL imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.; Su, L. Q.; Kon, J.

    Photoluminescence (PL) imaging has been shown to be an efficient technique for investigating carrier diffusion in semiconductors. In the past, the measurement was typically carried out by measuring at one wavelength (e.g., at the band gap) or simply the whole emission band. At room temperature in a semiconductor like GaAs, the band-to-band PL emission may occur in a spectral range over 200 meV, vastly exceeding the average thermal energy of about 26 meV. To investigate the potential dependence of the carrier diffusion on the carrier kinetic energy, we performed wavelength selective PL imaging on a GaAs double hetero-structure in amore » spectral range from about 70 meV above to 50 meV below the bandgap, extracting the carrier diffusion lengths at different PL wavelengths by fitting the imaging data to a theoretical model. The results clearly show that the locally generated carriers of different kinetic energies mostly diffuse together, maintaining the same thermal distribution throughout the diffusion process. Potential effects related to carrier density, self-absorption, lateral wave-guiding, and local heating are also discussed.« less

  6. Oxygen and relative humidity monitoring with films tailored for enhanced photoluminescence

    DOE PAGES

    Cui, Weipan; Liu, Rui; Manna, Eeshita; ...

    2014-10-31

    In this study, approaches to generate porous or doped sensing films, which significantly enhance the photoluminescence (PL) of oxygen optical sensors, and thus improve the signal-to-noise (S/N) ratio, are presented. Tailored films, which enable monitoring the relative humidity (RH) as well, are also presented. Effective porous structures, in which the O 2-sensitive dye Pt octaethylporphyrin (PtOEP) or the Pd analog PdOEP was embedded, were realized by first generating blend films of polyethylene glycol (PEG) with polystyrene (PS) or with ethyl cellulose (EC), and then immersing the dried films in water to remove the water-soluble PEG. This approach creates pores (voids)more » in the sensing films. The dielectric contrast between the films’ constituents and the voids increases photon scattering, which in turn increases the optical path of the excitation light within the film, and hence light absorption by the dye, and its PL. Optimized sensing films with a PEG:PS ratio of 1:4 (PEG’s molecular weight M w ~8000) led to ~4.4× enhancement in the PL (in comparison to PS films). Lower M w ~200 PEG with a PEG:EC ratio of 1:1 led to a PL enhancement of ~4.7×. Film-dependent PL enhancements were observed at all oxygen concentrations. The strong PL enhancement enables (i) using lower dye (luminophore) concentrations, (ii) reducing power consumption and enhancing the sensor’s operational lifetime when using organic light emitting diodes (OLEDs) as excitation sources, (iii) improving performance when using compact photodetectors with no internal gain, and (iv) reliably extending the dynamic range.« less

  7. Enhanced photoluminescence of Gd2O3:Eu3+ nanophosphors with alkali (M=Li+, Na+, K+) metal ion co-doping.

    PubMed

    Dhananjaya, N; Nagabhushana, H; Nagabhushana, B M; Rudraswamy, B; Shivakumara, C; Narahari, K; Chakradhar, R P S

    2012-02-01

    Gd(1.95)Eu(0.04)M(0.01)O(3) (M=Li(+), Na(+), K(+)) nanophosphors have been synthesized by a low temperature solution combustion (LSC) method. Powder X-ray diffraction pattern (PXRD), scanning electron microscopy (SEM), UV-vis and photoluminescence (PL) measurements were carried out to characterize their structural and luminescent properties. The excitation and emission spectra indicated that the phosphor could be well excited by UV light (243 nm) and emit red light about 612 nm. The effect of alkali co-dopant on PL properties has been examined. The results showed that incorporation of Li(+), Na(+) and K(+) in to Gd(2)O(3):Eu(3+) phosphor would lead to a remarkable increase of photoluminescence. The PL intensity of Gd(2)O(3):Eu(3+) phosphor was improved evidently by co-doping with Li(+) ions whose radius is less than that of Gd(3+) and hardly with Na(+), K(+) whose radius is larger than that of Gd(3+). The effect of co-dopants on enhanced luminescence was mainly regarded as the result of a suitable local distortion of crystal field surrounding the Eu(3+) activator. These results will play an important role in seeking some more effective co-dopants. Copyright © 2011. Published by Elsevier B.V.

  8. Photoluminescence and capacitance voltage characterization of GaAs surface passivated by an ultrathin GaN interface control layer

    NASA Astrophysics Data System (ADS)

    Anantathanasarn, Sanguan; Hasegawa, Hideki

    2002-05-01

    A novel surface passivation technique for GaAs using an ultrathin GaN interface control layer (GaN ICL) formed by surface nitridation was characterized by ultrahigh vacuum (UHV) photoluminescence (PL) and capacitance-voltage ( C- V) measurements. The PL quantum efficiency was dramatically enhanced after being passivated by the GaN ICL structure, reaching as high as 30 times of the initial clean GaAs surface. Further analysis of PL data was done by the PL surface state spectroscopy (PLS 3) simulation technique. PL and C- V results are in good agreement indicating that ultrathin GaN ICL reduces the gap states and unpins the Fermi level, realizing a wide movement of Fermi level within the midgap region and reduction of the effective surface recombination velocity by a factor of 1/60. GaN layer also introduced a large negative surface fixed charge of about 10 12 cm -2. A further improvement took place by depositing a Si 3N 4 layer on GaN ICL/GaAs structure.

  9. The preparation of high quality alumina defective photonic crystals and their application of photoluminescence enhancement

    NASA Astrophysics Data System (ADS)

    An, Yu-Ying; Wang, Jian; Zhou, Wen-Ming; Jin, Hong-Xia; Li, Jian-Feng; Wang, Cheng-Wei

    2018-07-01

    The high quality anodic aluminum oxide (AAO) defective photonic crystals (DPCs) have been successfully prepared by using a modified periodic pulse anodization technique including an effective voltage compensating strategy. The test results confirmed that the AAO DPCs were with a perfect regular layered-structure and had a narrow defective photonic band gap (DPBG) with a high quality defective mode. When the rhodamine B (rhB) was absorbed onto the pore walls of the AAO DPCs, it was found that the DPBG blue edge and localized defective mode inside could significantly enhance the photoluminescence (PL) intensity of rhodamine B (rhB), while they were carefully regulated to match with the emission peak position of rhB respectively. Even more intriguing was that the localized defective peak in DPBG had more notable effect on rhB's photoluminescence, 3.1 times higher than that of the control samples under the same conditions. The corresponding mechanism for photoluminescence enhancement was also discussed in detail.

  10. Coherently Coupled ZnO and VO2 Interface studied by Photoluminescence and electrical transport across a phase transition

    NASA Astrophysics Data System (ADS)

    Srivastava, Amar; Saha, S.; Annadi, A.; Zhao, Y. L.; Gopinadhan, K.; Wang, X.; Naomi, N.; Liu, Z. Q.; Dhar, S.; Herng, T. S.; Nina, Bao; Ariando, -; Ding, Jun; Venkatesan, T.

    2012-02-01

    In this work we report a study of a coherently coupled interface consisting of a ZnO layer grown on top of an oriented VO2 layer on sapphire by photoluminescence and electrical transport measurements across the VO2 metal insulator phase transition (MIT). The photoluminescence of the ZnO layer showed a broad hysteresis induced by the phase transition of VO2 while the width of the electrical hysteresis was narrow and unaffected by the over layer. The enhanced width of the PL hysteresis was due to the formation of defects during the MIT as evidenced by a broad hysteresis in the opposite direction to that of the band edge PL in the defect luminescense. Unlike VO2 the defects in ZnO did not fully recover across the phase transition. From the defect luminescence data, oxygen interstitials were found to be the predominant defects in ZnO mediated by the strain from the VO2 phase transition. Such coherently coupled interfaces could be of use in characterizing the stability of a variety of interfaces and also for novel device application.

  11. Nano-sized graphene flakes: insights from experimental synthesis and first principles calculations.

    PubMed

    Lin, Pin-Chun; Chen, Yi-Rui; Hsu, Kuei-Ting; Lin, Tzu-Neng; Tung, Kuo-Lun; Shen, Ji-Lin; Liu, Wei-Ren

    2017-03-01

    In this study, we proposed a cost-effective method for preparing graphene nano-flakes (GNFs) derived from carbon nanotubes (CNTs) via three steps (pressing, homogenization and sonication exfoliation processes). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), laser scattering, as well as ultraviolet-visible and photoluminescence (PL) measurements were carried out. The results indicated that the size of as-synthesized GNFs was approximately 40-50 nm. Furthermore, we also used first principles calculations to understand the transformation from CNTs to GNFs from the viewpoints of the edge formation energies of GNFs in different shapes and sizes. The corresponding photoluminescence measurements of GNFs were carried out in this work.

  12. Photoluminescence Lifetimes Exceeding 8 μs and Quantum Yields Exceeding 30% in Hybrid Perovskite Thin Films by Ligand Passivation

    DOE PAGES

    deQuilettes, Dane W.; Koch, Susanne; Burke, Sven; ...

    2016-07-26

    We study the effects of a series of post-deposition ligand treatments on the photoluminescence (PL) of polycrystalline methylammonium lead triiodide perovskite thin films. We show that a variety of Lewis bases can improve the bulk PL quantum efficiency (PLQE) and extend the average PL lifetime, , with large enhancements concentrated at grain boundaries. Notably, we demonstrate thin-film PLQE as high as 35 ± 1% and as long as 8.82 ± 0.03 μs at solar equivalent carrier densities using tri-n-octylphosphine oxide-treated films. Using glow discharge optical emission spectroscopy and nuclear magnetic resonance spectroscopy, we show that the ligands are incorporated primarilymore » at the film surface and are acting as electron donors. These results indicate it is possible to obtain thin-film PL lifetime and PLQE values that are comparable to those from single crystals by control over surface chemistry.« less

  13. Carrier-density dependence of photoluminescence from localized states in InGaN/GaN quantum wells in nanocolumns and a thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimosako, N., E-mail: n-shimosako@sophia.jp; Inose, Y.; Satoh, H.

    2015-11-07

    We have measured and analyzed the carrier-density dependence of photoluminescence (PL) spectra and the PL efficiency of InGaN/GaN multiple quantum wells in nanocolumns and in a thin film over a wide excitation range. The localized states parameters, such as the tailing parameter, density and size of the localized states, and the mobility edge density are estimated. The spectral change and reduction of PL efficiency are explained by filling of the localized states and population into the extended states around the mobility edge density. We have also found that the nanocolumns have a narrower distribution of the localized states and amore » higher PL efficiency than those of the film sample although the In composition of the nanocolumns is higher than that of the film.« less

  14. Characterization of iron in silicon by low-temperature photoluminescence and deep-level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, Minoru; Murakami, Susumu; Udono, Haruhiko

    2018-03-01

    We investigate the relationship between the intensity of band-edge (BDE) photoluminescence (PL) from 10 to 70 K and the concentration of iron diffused in boron-doped p-type silicon. Because of the nonradiative recombination activity of the interstitial iron-boron complex (FeiB center), the BDE-PL intensity at each temperature varies distinctively and systematically with the iron concentration, which means that this method has the potential to make the accurate measurements of a wide range of interstitial iron concentrations in silicon. The iron precipitates formed in the bulk and/or at the surface are found to exert much weaker recombination activity for excess carriers than FeiB center by exploiting both PL and deep-level transient spectroscopy (DLTS) measurements. The unexpected enhancement in BDE-PL intensity from iron-diffused silicon between 20 and 50 K is attributed to the passivation of the Si-oxide/Si interface by iron. For the samples diffused with trace amounts of iron, the iron concentration within 20 μm of the surface is significantly greater than that in the bulk, as measured by DLTS. This result is tentatively attributed to the affinity of iron with the Si-oxide.

  15. A novel approach to obtain highly intense self-activated photoluminescence emissions in hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Machado, Thales R.; Sczancoski, Júlio C.; Beltrán-Mir, Héctor; Nogueira, Içamira C.; Li, Máximo S.; Andrés, Juan; Cordoncillo, Eloisa; Longo, Elson

    2017-05-01

    Defect-related photoluminescence (PL) in materials have attracted interest for applications including near ultraviolet (NUV) excitable light-emitting diodes and in biomedical field. In this paper, hydroxyapatite [Ca10(PO4)6(OH)2] nanorods with intense PL bands (bluish- and yellowish-white emissions) were obtained when excited under NUV radiation at room temperature. These nanoparticles were synthesized via chemical precipitation at 90 °C followed by distinct heat treatments temperatures (200-800 °C). Intense and broad emission profiles were achieved at 350 °C (380-750 nm) and 400 °C (380-800 nm). UV-Vis spectroscopy revealed band gap energies (5.58-5.78 eV) higher than the excitation energies ( 3.54 and 2.98 eV at 350 and 415 nm, respectively), confirming the contribution of defect energy levels within the forbidden zone for PL emissions. The structural features were characterized by X-ray diffraction, Rietveld refinement, thermogravimetric analysis, and Fourier transform infrared spectroscopy. By means of these techniques, the relation between structural order-disorder induced by defects, chemical reactions at both lattice and surface of the materials as well as the PL, without activator centers, was discussed in details.

  16. Environment dependent enhanced photoluminescence and Boolean logic gates like behavior of Bi2O3 and Ag:Bi2O3 nanostructures

    NASA Astrophysics Data System (ADS)

    Hariharan, S.; Karthikeyan, B.

    2018-03-01

    In the evolution of nanotechnology research for smart and precise sensor fabrication, here we report the implementation of simple logic gate operations performing by luminescent nanostructures in biomolecule environment based on photoluminescence (PL) technique. This present work deals with the luminescence property of α-Bi2O3 and Ag modified α-Bi2O3 nanostructures for D-glucose and Bovine serum albumin (BSA) sensing applications. These nanostructures are prepared by simple co-precipitation method and their morphology are examined using transmission electron microscope (TEM). We explore the PL characteristics of the prepared nanostructures and observe their change in PL intensity in the presence of D-glucose and BSA molecules. Enhancement in PL intensity is observed in the presence of D-glucose and BSA. Based on the PL response of prepared nanostructures in the biomolecule environment, we demonstrate biophotonic logic gates including YES, PASS 0, OR and INHIBIT gates.

  17. Linearly polarized photoluminescence of anisotropically strained c-plane GaN layers on stripe-shaped cavity-engineered sapphire substrate

    NASA Astrophysics Data System (ADS)

    Kim, Jongmyeong; Moon, Daeyoung; Lee, Seungmin; Lee, Donghyun; Yang, Duyoung; Jang, Jeonghwan; Park, Yongjo; Yoon, Euijoon

    2018-05-01

    Anisotropic in-plane strain and resultant linearly polarized photoluminescence (PL) of c-plane GaN layers were realized by using a stripe-shaped cavity-engineered sapphire substrate (SCES). High resolution X-ray reciprocal space mapping measurements revealed that the GaN layers on the SCES were under significant anisotropic in-plane strain of -0.0140% and -0.1351% along the directions perpendicular and parallel to the stripe pattern, respectively. The anisotropic in-plane strain in the GaN layers was attributed to the anisotropic strain relaxation due to the anisotropic arrangement of cavity-incorporated membranes. Linearly polarized PL behavior such as the observed angle-dependent shift in PL peak position and intensity comparable with the calculated value based on k.p perturbation theory. It was found that the polarized PL behavior was attributed to the modification of valence band structures induced by anisotropic in-plane strain in the GaN layers on the SCES.

  18. Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods

    DOE PAGES

    McCreary, Amber; Berkdemir, Ayse; Wang, Junjie; ...

    2016-03-08

    We report that transition metal dichalcogenides (TMDs) such as WS 2 show exciting promise in electronic and optoelectronic applications. Significant variations in the transport, Raman, and photoluminescence (PL) can be found in the literature, yet it is rarely addressed why this is. In this report, Raman and PL of monolayered WS 2 produced via different methods are studied and distinct features that indicate the degree of crystallinity of the material are observed. While the intensity of the LA(M) Raman mode is found to be a useful indicator to assess the crystallinity, PL is drastically more sensitive to the quality ofmore » the material than Raman spectroscopy. We also show that even exfoliated crystals, which are usually regarded as the most pristine material, can contain large amounts of defects that would not be apparent without Raman and PL measurements. Ultimately, these findings can be applied to the understanding of other two-dimensional heterostructured systems.« less

  19. Shallow Carrier Trap Levels in GaAsN Investigated by Photoluminescence

    NASA Astrophysics Data System (ADS)

    Inagaki, Makoto; Suzuki, Hidetoshi; Suzuki, Akio; Mutaguchi, Kazumasa; Fukuyama, Atsuhiko; Kojima, Nobuaki; Ohshita, Yoshio; Yamagichi, Masafumi

    2011-04-01

    Shallow carrier trap levels in GaAs1-xNx (0.0010≤x≤0.0038) were investigated by photoluminescence (PL) and photoreflectance (PR) ranging from 4.2 to 300 K. The band gap energies of the GaAsN were clearly determined in the whole temperature range by the PR fitting analysis. It is clarified by peak decomposing that there were three emission peaks in the near-band-edge PL spectra of GaAsN. One of them was originated from band-to-band transition. The energies of two emission peaks were located at approximately 6 and 17 meV below the band edge. The existence of these peaks is evidence of carrier localization at the near-band-edge. The intensity ratio of the peak at the low energy side to other peaks increases with increasing N composition. This behavior is similar to the degradation of electrical properties.

  20. Photoluminescence-detected magnetic-resonance study of fullerene-doped π-conjugated polymers

    NASA Astrophysics Data System (ADS)

    Lane, P. A.; Shinar, J.; Yoshino, K.

    1996-10-01

    X-band photoluminescence (PL)-detected magnetic resonance (PLDMR) spectra of C60- and C70-doped 2,5-dihexoxy poly(p-phenylenevinylene) (DHO-PPV), 2,5-dibutoxy poly(p-phenylene ethynylene) (DBO-PPE), and poly(3-dodecylthiophene) (P3DT) are described and discussed. While light doping of DHO-PPV by both fullerenes quenches the PL, both the polaron and triplet exciton resonances are dramatically enhanced. This is attributed to the creation of conformational defects which enhance the fission of 11Bu singlet excitons to polaron pairs and intersystem crossing to 13Bu triplet excitons. The triplet resonance in all polymers is quenched at relatively low doping levels of C60 and C70, which is attributed to quenching of triplets by positive polarons injected onto the polymer chain. Increased doping by C60, but not C70, quenches the polaron resonance, also due to photoinduced charge transfer.

  1. Temperature-dependent photoluminescence analysis of ZnO nanowire array annealed in air

    NASA Astrophysics Data System (ADS)

    Sun, Yanan; Gu, Xiuquan; Zhao, Yulong; Wang, Linmeng; Qiang, Yinghuai

    2018-05-01

    ZnO nanowire arrays (NWAs) were prepared on transparent conducting fluorine doped tin oxide (FTO) substrates through a facile hydrothermal method, followed by a 500 °C annealing to improve their crystalline qualities and photoelectrochemical (PEC) activities. It was found that the annealing didn't change the morphology, but resulted in a significant reduction of the donor concentration. Temperature-dependent photoluminescence (PL) was carried out for a comprehensive analysis of the effect from annealing. Noteworthy, four dominant peaks were identified from the 10 K spectrum of a 500 °C annealed sample, and they were assigned to FX, D0X, (e, D0) and (e, D0) -1LO, respectively. Of them, the FX emission was only existed below 130 K, while the room-temperature (RT) PL spectrum was dominated by the D0X emission.

  2. Origin of photoluminescence in β -G a2O3

    NASA Astrophysics Data System (ADS)

    Ho, Quoc Duy; Frauenheim, Thomas; Deák, Peter

    2018-03-01

    β -G a2O3 , a candidate material for power electronics and UV optoelectronics, shows strong room-temperature photoluminescence (PL). In addition to the three well-known bands of as-grown samples in the UV, blue, and green, also red PL was observed upon nitrogen doping. This raises the possibility of applying β -G a2O3 nanostructures as white phosphors. Using an optimized, Koopmans-compliant hybrid functional, we show that most intrinsic point defects, as well as substitutional nitrogen, act as deep acceptors, and each of the observed PL bands can be explained by electron recombination with a hole trapped in one of them. We suggest this mechanism to be general in wide-band-gap semiconductors which can only be doped n -type. Calculations on the nitrogen acceptor reproduce the observed red luminescence accurately. Earlier we have shown that not only the energy, but the polarization properties of the UV band can be explained by self-trapped hole states. Here we find that the blue band has its origin mainly in singly negative Ga-O divacancies, and the green band is caused dominantly by interstitial O atoms (with minor contribution of Ga vacancies to both). These assignments can explain the experimentally observed dependence of the PL bands on free-electron concentration and stoichiometry. The information provided here paves the way for the conscious tuning of light emission from β -G a2O3 .

  3. Substrate effects on photoluminescence and low temperature phase transition of methylammonium lead iodide hybrid perovskite thin films

    NASA Astrophysics Data System (ADS)

    Shojaee, S. A.; Harriman, T. A.; Han, G. S.; Lee, J.-K.; Lucca, D. A.

    2017-07-01

    We examine the effects of substrates on the low temperature photoluminescence (PL) spectra and phase transition in methylammonium lead iodide hybrid perovskite (CH3NH3PbI3) thin films. Structural characterization at room temperature with X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy indicated that while the chemical structure of films deposited on glass and quartz was similar, the glass substrate induced strain in the perovskite films and suppressed the grain growth. The luminescence response and phase transition of the perovskite thin films were studied by PL spectroscopy. The induced strain was found to affect both the room temperature and low temperature PL spectra of the hybrid perovskite films. In addition, it was found that the effects of the glass substrate inhibited a tetragonal to orthorhombic phase transition such that it occurred at lower temperatures.

  4. Increasing the quantum efficiency of GaAs solar cells by embedding InAs quantum dots

    NASA Astrophysics Data System (ADS)

    Salii, R. A.; Mintairov, S. A.; Nadtochiy, A. M.; Payusov, A. S.; Brunkov, P. N.; Shvarts, M. Z.; Kalyuzhnyy, N. A.

    2016-11-01

    Development of Metalorganic Vapor Phase Epitaxy (MOVPE) technology of InAs quantum dots (QDs) in GaAs for photovoltaic applications is presented. The growth peculiarities in InAs-GaAs lattice-mismatched system were considered. The photoluminescence (PL) intensity dependences on different growth parameters were obtained. The multimodal distribution of QDs by sizes was found using AFM and PL methods. GaAs solar cell nanoheterostructures with imbedded QD arrays were designed and obtained. Ones have been demonstrated a significant increase of quantum efficiency and photogenerated current of QD solar cells due to photo effect in InAs QD array (0.59 mA/cm2 for AM1.5D and 82 mA/cm2 for AM0).

  5. Shift in room-temperature photoluminescence of low-fluence Si+-implanted SiO2 films subjected to rapid thermal annealing.

    PubMed

    Fu, Ming-Yue; Tsai, Jen-Hwan; Yang, Cheng-Fu; Liao, Chih-Hsiung

    2008-12-01

    We experimentally demonstrate the effect of the rapid thermal annealing (RTA) in nitrogen flow on photoluminescence (PL) of SiO 2 films implanted by different doses of Si + ions. Room-temperature PL from 400-nm-thick SiO 2 films implanted to a dose of 3×10 16 cm -2 shifted from 2.1 to 1.7 eV upon increasing RTA temperature (950-1150 °C) and duration (5-20 s). The reported approach of implanting silicon into SiO 2 films followed by RTA may be effective for tuning Si-based photonic devices.

  6. Shift in room-temperature photoluminescence of low-fluence Si+-implanted SiO2 films subjected to rapid thermal annealing

    PubMed Central

    Fu, Ming-Yue; Tsai, Jen-Hwan; Yang, Cheng-Fu; Liao, Chih-Hsiung

    2008-01-01

    We experimentally demonstrate the effect of the rapid thermal annealing (RTA) in nitrogen flow on photoluminescence (PL) of SiO2 films implanted by different doses of Si+ ions. Room-temperature PL from 400-nm-thick SiO2 films implanted to a dose of 3×1016 cm−2 shifted from 2.1 to 1.7 eV upon increasing RTA temperature (950–1150 °C) and duration (5–20 s). The reported approach of implanting silicon into SiO2 films followed by RTA may be effective for tuning Si-based photonic devices. PMID:27878029

  7. Influence of C or In buffer layer on photoluminescence behaviour of ultrathin ZnO film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saravanan, K., E-mail: saravanan@igcar.gov.in; Jayalakshmi, G.; Krishnan, R.

    We study the effect of the indium or carbon buffer layer on the photoluminescence (PL) property of ZnO ultrathin films deposited on a Si(100) substrate. The surface morphology of the films obtained using scanning tunnelling microscopy shows spherical shaped ZnO nanoparticles of size ∼8 nm in ZnO/C/Si and ∼22 nm in ZnO/Si samples, while the ZnO/In/Si sample shows elliptical shaped ZnO particles. Further, the ZnO/C/Si sample shows densely packed ZnO nanoparticles in comparison with other samples. Strong band edge emission has been observed in the presence of In or C buffer layer, whereas the ZnO/Si sample exhibits poor PL emission. The influencemore » of C and In buffer layers on the PL behaviour of ZnO films is studied in detail using temperature dependent PL measurements in the range of 4 K–300 K. The ZnO/C/Si sample exhibits a multi-fold enhancement in the PL emission intensity with well-resolved free and bound exciton emission lines. Our experimental results imply that the ZnO films deposited on the C buffer layer showed higher particle density and better exciton emission desired for optoelectronic applications.« less

  8. Photoluminescence transient study of surface defects in ZnO nanorods grown by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Barbagiovanni, E. G.; Strano, V.; Franzò, G.; Crupi, I.; Mirabella, S.

    2015-03-01

    Two deep level defects (2.25 and 2.03 eV) associated with oxygen vacancies (Vo) were identified in ZnO nanorods (NRs) grown by low cost chemical bath deposition. A transient behaviour in the photoluminescence (PL) intensity of the two Vo states was found to be sensitive to the ambient environment and to NR post-growth treatment. The largest transient was found in samples dried on a hot plate with a PL intensity decay time, in air only, of 23 and 80 s for the 2.25 and 2.03 eV peaks, respectively. Resistance measurements under UV exposure exhibited a transient behaviour in full agreement with the PL transient, indicating a clear role of atmospheric O2 on the surface defect states. A model for surface defect transient behaviour due to band bending with respect to the Fermi level is proposed. The results have implications for a variety of sensing and photovoltaic applications of ZnO NRs.

  9. Photoluminescence and time-resolved carrier dynamics in thiol-capped CdTe nanocrystals under high pressure

    NASA Astrophysics Data System (ADS)

    Lin, Yan-Cheng; Chou, Wu-Ching; Susha, Andrei S.; Kershaw, Stephen V.; Rogach, Andrey L.

    2013-03-01

    The application of static high pressure provides a method for precisely controlling and investigating many fundamental and unique properties of semiconductor nanocrystals (NCs). This study systematically investigates the high-pressure photoluminescence (PL) and time-resolved carrier dynamics of thiol-capped CdTe NCs of different sizes, at different concentrations, and in various stress environments. The zincblende-to-rocksalt phase transition in thiol-capped CdTe NCs is observed at a pressure far in excess of the bulk phase transition pressure. Additionally, the process of transformation depends strongly on NC size, and the phase transition pressure increases with NC size. These peculiar phenomena are attributed to the distinctive bonding of thiols to the NC surface. In a nonhydrostatic environment, considerable flattening of the PL energy of CdTe NC powder is observed above 3.0 GPa. Furthermore, asymmetric and double-peak PL emissions are obtained from a concentrated solution of CdTe NCs under hydrostatic pressure, implying the feasibility of pressure-induced interparticle coupling.

  10. Photoluminescence properties of white light emitting La2O3:Dy3+ nanocrystals

    NASA Astrophysics Data System (ADS)

    Reenabati Devi, Konsam; Dorendrajit Singh, Shougaijam; David Singh, Th.

    2018-06-01

    White light emitting nanocrystalline La2O3:Dy3+ phosphors with different concentration (0.5-2 at.%) were synthesized by simple precipitation method. X-ray diffraction (XRD) pattern indicates all the samples crystallizes in the hexagonal phase. Average crystallite sizes of the samples calculated from XRD data were found to be in the range of 20-55 nm. Transmission electron microscopy, selected area electron diffraction, energy dispersive analysis of X-ray and photoluminescence (PL) of the samples are also reported. Strong PL excitation peak due to charge transfer band was observed at 230 nm. Photoluminescence emission peaks observed at 486 and 575 nm were probably attributed to 4F9/2-6H15/2 and 4F9/2-6H13/2 of Dy3+ ions respectively. Optimum luminescence intensity is found at 1 at.% Dy3+ doped La2O3 sample. Further, Commission Internationale de l'é clairage (CIE, 1931) co-ordinates and correlated color temperature (CCT) of the doped sample were calculated to investigate the phosphors' performance and technical applicability of the emitted light respectively. CCT of the 0.5 and 1 at.% samples is 5894 K (white light), within the range of vertical daylight, which makes the synthesised samples promising nanophosphor and may find application in simulating vertical daylight of the Sun.

  11. Photoluminescence properties of white light emitting La2O3:Dy3+ nanocrystals

    NASA Astrophysics Data System (ADS)

    Reenabati Devi, Konsam; Dorendrajit Singh, Shougaijam; David Singh, Th.

    2018-01-01

    White light emitting nanocrystalline La2O3:Dy3+ phosphors with different concentration (0.5-2 at.%) were synthesized by simple precipitation method. X-ray diffraction (XRD) pattern indicates all the samples crystallizes in the hexagonal phase. Average crystallite sizes of the samples calculated from XRD data were found to be in the range of 20-55 nm. Transmission electron microscopy, selected area electron diffraction, energy dispersive analysis of X-ray and photoluminescence (PL) of the samples are also reported. Strong PL excitation peak due to charge transfer band was observed at 230 nm. Photoluminescence emission peaks observed at 486 and 575 nm were probably attributed to 4F9/2-6H15/2 and 4F9/2-6H13/2 of Dy3+ ions respectively. Optimum luminescence intensity is found at 1 at.% Dy3+ doped La2O3 sample. Further, Commission Internationale de l'é clairage (CIE, 1931) co-ordinates and correlated color temperature (CCT) of the doped sample were calculated to investigate the phosphors' performance and technical applicability of the emitted light respectively. CCT of the 0.5 and 1 at.% samples is 5894 K (white light), within the range of vertical daylight, which makes the synthesised samples promising nanophosphor and may find application in simulating vertical daylight of the Sun.

  12. Photoluminescence of double core/shell infrared (CdSeTe)/ZnS quantum dots conjugated to Pseudo rabies virus antibodies

    NASA Astrophysics Data System (ADS)

    Torchynska, T. V.; Casas Espinola, J. L.; Jaramillo Gómez, J. A.; Douda, J.; Gazarian, K.

    2013-06-01

    Double core CdSeTe/ZnS quantum dots (QDs) with emission at 800 nm (1.60 eV) have been studied by photoluminescence (PL) and Raman scattering methods in the non-conjugated state and after the conjugation to the Pseudo rabies virus (PRV) antibodies. The transformation of PL spectra, stimulated by the electric charge of antibodies, has been detected for the bioconjugated QDs. Raman scattering spectra are investigated with the aim to reveal the CdSeTe core compositions. The double core QD energy diagrams were designed that help to analyze the PL spectra and their transformation at the bioconjugation. It is revealed that the interface in double core QDs has the type II quantum well character that permits to explain the near IR optical transition (1.60 eV) in the double core QDs. It is shown that the essential transformation of PL spectra is useful for the study of QD bioconjugation with specific antibodies and can be a powerful technique in early medical diagnostics.

  13. Evolution of Photoluminescence, Raman, and Structure of CH3NH3PbI3 Perovskite Microwires Under Humidity Exposure

    NASA Astrophysics Data System (ADS)

    Segovia, Rubén; Qu, Geyang; Peng, Miao; Sun, Xiudong; Shi, Hongyan; Gao, Bo

    2018-03-01

    Self-assembled organic-inorganic CH3NH3PbI3 perovskite microwires (MWs) upon humidity exposure along several weeks were investigated by photoluminescence (PL) spectroscopy, Raman spectroscopy, and X-ray diffraction (XRD). We show that, in addition to the common perovskite decomposition into PbI2 and the formation of a hydrated phase, humidity induced a gradual PL redshift at the initial weeks that is stabilized for longer exposure ( 21 nm over the degradation process) and an intensity enhancement. Original perovskite Raman band and XRD reflections slightly shifted upon humidity, indicating defects formation and structure distortion of the MWs crystal lattice. By correlating the PL, Raman, and XRD results, it is believed that the redshift of the MWs PL emission was originated from the structural disorder caused by the incorporation of H2O molecules in the crystal lattice and radiative recombination through moisture-induced subgap trap states. Our study provides insights into the optical and structural response of organic-inorganic perovskite materials upon humidity exposure.

  14. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups.

    PubMed

    Jin, Sung Hwan; Kim, Da Hye; Jun, Gwang Hoon; Hong, Soon Hyung; Jeon, Seokwoo

    2013-02-26

    The band gap properties of graphene quantum dots (GQDs) arise from quantum confinement effects and differ from those in semimetallic graphene sheets. Tailoring the size of the band gap and understanding the band gap tuning mechanism are essential for the applications of GQDs in opto-electronics. In this study, we observe that the photoluminescence (PL) of the GQDs shifts due to charge transfers between functional groups and GQDs. GQDs that are functionalized with amine groups and are 1-3 layers thick and less than 5 nm in diameter were successfully fabricated using a two-step cutting process from graphene oxides (GOs). The functionalized GQDs exhibit a redshift of PL emission (ca. 30 nm) compared to the unfunctionalized GQDs. Furthermore, the PL emissions of the GQDs and the amine-functionalized GQDs were also shifted by changes in the pH due to the protonation or deprotonation of the functional groups. The PL shifts resulted from charge transfers between the functional groups and GQDs, which can tune the band gap of the GQDs. Calculations from density functional theory (DFT) are in good agreement with our proposed mechanism for band gap tuning in the GQDs through the use of functionalization.

  15. A dioxaborine cyanine dye as a photoluminescence probe for sensing carbon nanotubes.

    PubMed

    Al Araimi, Mohammed; Lutsyk, Petro; Verbitsky, Anatoly; Piryatinski, Yuri; Shandura, Mykola; Rozhin, Aleksey

    2016-01-01

    The unique properties of carbon nanotubes have made them the material of choice for many current and future industrial applications. As a consequence of the increasing development of nanotechnology, carbon nanotubes show potential threat to health and environment. Therefore, development of efficient method for detection of carbon nanotubes is required. In this work, we have studied the interaction of indopentamethinedioxaborine dye (DOB-719) and single-walled carbon nanotubes (SWNTs) using absorption and photoluminescence (PL) spectroscopy. In the mixture of the dye and the SWNTs we have revealed new optical features in the spectral range of the intrinsic excitation of the dye due to resonance energy transfer from DOB-719 to SWNTs. Specifically, we have observed an emergence of new PL peaks at the excitation wavelength of 735 nm and a redshift of the intrinsic PL peaks of SWNT emission (up to 40 nm) in the near-infrared range. The possible mechanism of the interaction between DOB-719 and SWNTs has been proposed. Thus, it can be concluded that DOB-719 dye has promising applications for designing efficient and tailorable optical probes for the detection of SWNTs.

  16. Magnesium acceptor in gallium nitride. I. Photoluminescence from Mg-doped GaN

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Ghimire, P.; Demchenko, D. O.

    2018-05-01

    Defect-related photoluminescence (PL) is analyzed in detail for n -type, p -type, and semi-insulating Mg-doped GaN grown by different techniques. The ultraviolet luminescence (UVL) band is the dominant PL band in conductive n -type and p -type GaN:Mg samples grown by hydride vapor phase epitaxy (HVPE) and molecular beam epitaxy. The UVL band in undoped and Mg-doped GaN samples is attributed to the shallow M gGa acceptor with the ionization energy of 223 meV. In semi-insulating GaN:Mg samples, very large shifts of the UVL band (up to 0.6 eV) are observed with variation of temperature or excitation intensity. The shifts are attributed to diagonal transitions, likely due to potential fluctuations or near-surface band bending. The blue luminescence (B LMg ) band is observed only in GaN:Mg samples grown by HVPE or metalorganic chemical vapor deposition when the concentration of Mg exceeds 1019c m-3 . The B LMg band is attributed to electron transitions from an unknown deep donor to the shallow M gGa acceptor. Basic properties of the observed PL are explained with a phenomenological model.

  17. Tailoring the morphology of electrodeposited ZnO and its photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Cui, H.; Mollar, M.; Marí, B.

    2011-01-01

    High density ZnO columnar films with well-aligned and well-perpendicular to the surface of film were electrodeposited on ITO substrates by using an electrolyte consisting of a mix of water and organic solvent namely dimethylsulfoxide (DMSO). The effect of mixing ratio of water and DMSO on the growth of film has been examined critically. SEM images have shown that well-oriented ZnO quasi-nano columns were formed perpendicular to the substrate. At the same time we found there are three kinds of competitions for growth of ZnO crystalmorphology i.e. column, rod and needle like. The needle like morphology has high density with well-aligned structure. The reasons for the growth of films of different morphology and their photoluminescence (PL) properties have been presented and discussed. It has been found that the three-dimensional (3D) ordered ZnO structure exhibits high intensity PL band which may shift their position and intensity with the varying conditions of depositions.

  18. Surface-plasmon-enhanced photoluminescence of quantum dots based on open-ring nanostructure array

    NASA Astrophysics Data System (ADS)

    Kannegulla, Akash; Liu, Ye; Cheng, Li-Jing

    2016-03-01

    Enhanced photoluminescence (PL) of quantum dots (QD) in visible range using plasmonic nanostructures has potential to advance several photonic applications. The enhancement effect is, however, limited by the light coupling efficiency to the nanostructures. Here we demonstrate experimentally a new open-ring nanostructure (ORN) array 100 nm engraved into a 200 nm thick silver thin film to maximize light absorption and, hence, PL enhancement at a broadband spectral range. The structure is different from the traditional isolated or through-hole split-ring structures. Theoretical calculations based on FDTD method show that the absorption peak wavelength can be adjusted by their period and dimension. A broadband absorption of about 60% was measured at the peak wavelength of 550 nm. The emission spectrum of CdSe/ZnS core-shell quantum dots was chosen to match the absorption band of the ORN array to enhance its PL. The engraved silver ORN array was fabricated on a silver thin film deposited on a silicon substrate using focus ion beam (FIB) patterning. The device was characterized by using a thin layer of QD water dispersion formed between the ORN substrate and a cover glass. The experimental results show the enhanced PL for the QD with emission spectrum overlapping the absorption band of ORN substrate and quantum efficiency increases from 50% to 70%. The ORN silver substrate with high absorption over a broadband spectrum enables the PL enhancement and will benefit applications in biosensing, wavelength tunable filters, and imaging.

  19. [The photoluminescence characteristics of organic multilayer quantum wells].

    PubMed

    Zhao, De-Wei; Song, Shu-Fang; Zhao, Su-Ling; Xu, Zheng; Wang, Yong-Sheng; Xu, Xu-Rong

    2007-04-01

    By the use of multi-source high-vaccum organic beam deposition system, the authors prepared organic multilayer quantum well structures, which consist of alternate organic small molecule materials PBD and Alq3. Based on 4-period organic quantum wells, different samples with different thickness barriers and wells were prepared. The authors measured the lowest unoccupied molecular orbit (LUMO) and the highest occupied molecular orbit (HOMO) by electrochemistry cyclic voltammetry and optical absorption. From the energy diagrams, it seems like type-I quantum well structures of the inorganic semiconductor, in which PBD is used as a barrier layer and Alq3 as a well layer and emitter. From small angle X-ray diffraction measurements, the results indicate that these structures have high interface quality and uniformity. The photoluminescence characteristics of organic multilayer quantum wells were investigated. The PL peak has a blue-shift with the decrease of the well layer thickness. Meanwhile as the barrier thickness decreases the PL peaks of PBD disappear gradually. And the energy may be effectively transferred from PBD to Alq3, inducing an enhancement of the luminescence of Alq3.

  20. Use of micro-photoluminescence as a contactless measure of the 2D electron density in a GaAs quantum well

    NASA Astrophysics Data System (ADS)

    Kamburov, D.; Baldwin, K. W.; West, K. W.; Lyon, S.; Pfeiffer, L. N.; Pinczuk, A.

    2017-06-01

    We compare micro-photoluminescencePL) as a measure of the electron density in a clean, two-dimensional (2D) system confined in a GaAs quantum well (QW) to the standard magneto-transport technique. Our study explores the PL shape evolution across a number of molecular beam epitaxy-grown samples with different QW widths and 2D electron densities and notes its correspondence with the density obtained in magneto-transport measurements on these samples. We also measure the 2D density in a top-gated quantum well sample using both PL and transport and find that the two techniques agree to within a few percent over a wide range of gate voltages. We find that the PL measurements are sensitive to gate-induced 2D density changes on the order of 109 electrons/cm2. The spatial resolution of the PL density measurement in our experiments is 40 μm, which is already substantially better than the millimeter-scale resolution now possible in spatial density mapping using magneto-transport. Our results establish that μPL can be used as a reliable high spatial resolution technique for future contactless measurements of density variations in a 2D electron system.

  1. Role of quantum-confined stark effect on bias dependent photoluminescence of N-polar GaN/InGaN multi-quantum disk amber light emitting diodes

    NASA Astrophysics Data System (ADS)

    Tangi, Malleswararao; Mishra, Pawan; Janjua, Bilal; Prabaswara, Aditya; Zhao, Chao; Priante, Davide; Min, Jung-Wook; Ng, Tien Khee; Ooi, Boon S.

    2018-03-01

    We study the impact of quantum-confined stark effect (QCSE) on bias dependent micro-photoluminescence emission of the quantum disk (Q-disk) based nanowires light emitting diodes (NWs-LED) exhibiting the amber colored emission. The NWs are found to be nitrogen polar (N-polar) verified using KOH wet chemical etching and valence band spectrum analysis of high-resolution X-ray photoelectron spectroscopy. The crystal structure and quality of the NWs were investigated by high-angle annular dark field - scanning transmission electron microscopy. The LEDs were fabricated to acquire the bias dependent micro-photoluminescence spectra. We observe a redshift and a blueshift of the μPL peak in the forward and reverse bias conditions, respectively, with reference to zero bias, which is in contrast to the metal-polar InGaN well-based LEDs in the literature. Such opposite shifts of μPL peak emission observed for N-polar NWs-LEDs, in our study, are due to the change in the direction of the internal piezoelectric field. The quenching of PL intensity, under the reverse bias conditions, is ascribed to the reduction of electron-hole overlap. Furthermore, the blueshift of μPL emission with increasing excitation power reveals the suppression of QCSE resulting from the photo-generated carriers. Thereby, our study confirms the presence of QCSE for NWs-LEDs from both bias and power dependent μPL measurements. Thus, this study serves to understand the QCSE in N-polar InGaN Q-disk NWs-LEDs and other related wide-bandgap nitride nanowires, in general.

  2. Visible photoluminescence from plasma-polymerized-organosilicone thin films deposited from HMDSO/O2 induced remote plasma: effect of oxygen fraction

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Saloum, S.

    2008-09-01

    Visible photoluminescence (PL) from thin films deposited on silicon wafers by remote plasma polymerization of the hexamethyledisiloxane (HMDSO)/O2 mixture in a radio-frequency hollow cathode discharge reactor has been investigated as a function of different oxygen fractions ( \\chi _{O_2 } =0 , 0.38, 0.61, 0.76 and 0.9). At room temperature, the film deposited at \\chi _{O_2 } =0 exhibits a strong, broad PL band peak centred at around 537.6 nm. A blue shift and a considerable decrease (~one order) in the intensity of the PL peak are observed after the addition of oxygen. Furthermore, in contrast to the film deposited from pure HMDSO, the low temperature (15 K) PL spectra of the film deposited from different HMDSO/O2 mixtures exhibit two separated 'green-blue' and 'yellow-green' PL peaks. The PL behaviour of the deposited films is correlated with their structural and morphological properties, investigated by using Fourier transform infrared, atomic force microscope and contact angle techniques. In addition, it is found from spectrophotometry measurements that the deposited films have relatively low absorption coefficients (in the range 100-500 cm-1) in the spectral range of their PL emission, attractive for possible integrated optics devices.

  3. Red-ultraviolet photoluminescence tuning by Ni nanocrystals in epitaxial SrTiO3 matrix

    NASA Astrophysics Data System (ADS)

    Xiong, Z. W.; Cao, L. H.

    2018-07-01

    In this work, the self-organized Ni nanocrystals (NCs) were embedded in the epitaxial SrTiO3 matrix using pulsed laser deposition method. With the in-situ monitoring of reflection high-energy electron diffraction, both matrix and NCs could be precisely engineered with desired qualities by regulating the growth conditions according to the full release of stress energy at the interfaces of Ni NCs and SrTiO3. We achieved a controllable strained system according to the transformation of growth modes from three dimensional (3D) islands of Ni NCs to 2D layer-by-layer of SrTiO3, corresponding to the (1 1 1) and (0 0 l) orientation for Ni and SrTiO3, respectively. With the increase of Ni NCs concentration, the absorption intensity is increasing in the regions of 190-300 nm, and the band gap is gradually decreased. Besides, photoluminescence (PL) spectra reveal that the energy levels of Ni 3d bands contribute to the different PL colors, further inducing the enhancement of PL intensity and red-shift of emission peaks. Compared with the pure SrTiO3 published in the literature, much wider ranges of PL emission from red to ultraviolet can be tuned by the Ni NCs.

  4. The microstructure and photoluminescence of ZnO-MoS2 core shell nano-materials

    NASA Astrophysics Data System (ADS)

    Yu, H.; Liu, C. M.; Huang, X. Y.; Lei, M. Y.

    2017-01-01

    In this paper, ZnO-MoS2-FT (FT is the fabrication temperature of MoS2) core shell nano-material samples (with ZnO as a core and MoS2 as a shell material) were fabricated on ITO substrate using hydrothermal method. The crystal structure, morphology, optical absorption and photoluminescence (PL) of samples were investigated. Compared with that of pure ZnO nanorods, ZnO-MoS2-FT samples show an enhanced light absorption. In addition, ultraviolet (UV) and visible (Vis) PL intensity of ZnO-MoS2-FT samples excited by 325 nm laser are greatly weakened. The UV PL peak position is not changed obviously. However, the Vis PL peak position is changed visibly. The Vis PL of ZnO-MoS2-FT samples under UV excitation indicates that the ratio of oxygen interstitial to oxygen vacancy is decreased. The suppression of UV PL of ZnO-MoS2-FT samples may be related to the weakening of crystal quality of ZnO, easier separation of electron-hole pairs, enhancement of light absorption, and newly introduced defects in the interface between ZnO and MoS2. Under 514 nm laser excitation, the PL peak position of ZnO-MoS2-FT samples has a red shift with FT being increased from 80 to 160 °C. The influence of excitation power (EP) on the PL of ZnO-MoS2-FT samples was also investigated. The PL of ZnO-MoS2-FT samples have a red shift with EP being increased. This may be due to the sample temperature is increased with EP, resulting an enhancement of electron-phonon interaction. A schematic diagram of charge generation and transfer is presented to understand the mechanism of PL of ZnO-MoS2 under UV and Vis excitation.

  5. Oxygen vacancy effect on photoluminescence of KNb3O8 nanosheets

    NASA Astrophysics Data System (ADS)

    Li, Rui; Liu, Liying; Ming, Bangming; Ji, Yuhang; Wang, Ruzhi

    2018-05-01

    Fungus-like potassium niobate (KNb3O8) nanosheets have been synthesized on indium-doped tin oxide (ITO) glass substrates by a simple and environmental friendly two-step hydrothermal process. The prepared samples have been characterized by using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), High Resolution Transmission Electron Microscope (HRTEM), Fourier Transform Infra-Red Spectroscopy (FTIR), Raman Spectroscopy and X-ray Photoelectron Spectroscopy (XPS). Furthermore, the photoluminescence (PL) of KNb3O8 nanosheets have been systematically studied. The results showed that the PL spectrum is between 300 and 645 nm with a 325 nm light excitation, which is divided into some sub-peaks. It is different from the perfect KNb3O8 nanosheets whose PL emission peaks located at near 433 nm. It should be originated from the effect of the oxygen (O) vacancies in the KNb3O8 nanosheets, which the PLs peaks can be found at about 490 nm and 530 nm by different position of O vacancy. The experimental results are in accordance with the first-principles calculations. Our results may present a feasible clue to estimate the defect position in KNb3O8 by the shape analysis of its spectrum of PLs.

  6. Strong Influence of Temperature and Vacuum on the Photoluminescence of In0.3Ga0.7As Buried and Surface Quantum Dots

    NASA Astrophysics Data System (ADS)

    Wang, Guodong; Ji, Huiqiang; Shen, Junling; Xu, Yonghao; Liu, Xiaolian; Fu, Ziyi

    2018-04-01

    The strong influences of temperature and vacuum on the optical properties of In0.3Ga0.7As surface quantum dots (SQDs) are systematically investigated by photoluminescence (PL) measurements. For comparison, optical properties of buried quantum dots (BQDs) are also measured. The line-width, peak wavelength, and lifetime of SQDs are significantly different from the BQDs with the temperature and vacuum varied. The differences in PL response when temperature varies are attributed to carrier transfer from the SQDs to the surface trap states. The obvious distinctions in PL response when vacuum varies are attributed to the SQDs intrinsic surface trap states inhibited by the water molecules. This research provides necessary information for device application of SQDs as surface-sensitivity sensors.

  7. Determination of the electron-capture coefficients and the concentration of free electrons in GaN from time-resolved photoluminescence

    PubMed Central

    Reshchikov, M. A.; McNamara, J. D.; Toporkov, M.; Avrutin, V.; Morkoç, H.; Usikov, A.; Helava, H.; Makarov, Yu.

    2016-01-01

    Point defects in high-purity GaN layers grown by hydride vapor phase epitaxy are studied by steady-state and time-resolved photoluminescence (PL). The electron-capture coefficients for defects responsible for the dominant defect-related PL bands in this material are found. The capture coefficients for all the defects, except for the green luminescence (GL1) band, are independent of temperature. The electron-capture coefficient for the GL1 band significantly changes with temperature because the GL1 band is caused by an internal transition in the related defect, involving an excited state acting as a giant trap for electrons. By using the determined electron-capture coefficients, the concentration of free electrons can be found at different temperatures by a contactless method. A new classification system is suggested for defect-related PL bands in undoped GaN. PMID:27901025

  8. Structural and photoluminescence properties of Ce, Dy, Er-doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayachandraiah, C.; Kumar, K. Siva; Krishnaiah, G., E-mail: ginnerik@gmail.com

    2015-06-24

    Undoped ZnO and rare earth elements (Ce, Dy and Er with 2 at. %) doped nanoparticles were synthesized by wet chemical co-precipitation method at 90°C with Polyvinylpyrrolidone (PVP) as capping agent. The structural, morphological, compositional and photoluminescence studies were performed with X-ray diffraction (XRD), Transmission electron microscopy (TEM), Energy dispersive spectroscopy (EDS), FTIR spectroscopy and Photoluminescence (PL) respectively. XRD results revealed hexagonal wurtzite structure with average particle size around 18 nm - 14 nm and are compatible with TEM results. EDS confirm the incorporation of Ce, Dy and Er elements into the host ZnO matrix and is validated by FTIR analysis. PLmore » studies showed a broad intensive emission peak at 558 nm in all the samples. The intensity for Er- doped ZnO found maximum with additional Er shoulder peaks at 516nm and 538 nm. No Ce, Dy emission centers were found in spectra.« less

  9. Influence of annealing temperature on Raman and photoluminescence spectra of electron beam evaporated TiO₂ thin films.

    PubMed

    Vishwas, M; Narasimha Rao, K; Chakradhar, R P S

    2012-12-01

    Titanium dioxide (TiO(2)) thin films were deposited on fused quartz substrates by electron beam evaporation method at room temperature. The films were annealed at different temperatures in ambient air. The surface morphology/roughness at different annealing temperatures were analyzed by atomic force microscopy (AFM). The crystallinity of the film has improved with the increase of annealing temperature. The effect of annealing temperature on optical, photoluminescence and Raman spectra of TiO(2) films were investigated. The refractive index of TiO(2) films were studied by envelope method and reflectance spectra and it is observed that the refractive index of the films was high. The photoluminescence intensity corresponding to green emission was enhanced with increase of annealing temperature. The peaks in Raman spectra depicts that the TiO(2) film is of anatase phase after annealing at 300°C and higher. The films show high refractive index, good optical quality and photoluminescence characteristics suggest that possible usage in opto-electronic and optical coating applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Modulation of porphyrin photoluminescence by nanoscale spacers on silicon substrates

    NASA Astrophysics Data System (ADS)

    Fang, Y. C.; Zhang, Y.; Gao, H. Y.; Chen, L. G.; Gao, B.; He, W. Z.; Meng, Q. S.; Zhang, C.; Dong, Z. C.

    2013-11-01

    We investigate photoluminescence (PL) properties of quasi-monolayered tetraphenyl porphyrin (TPP) molecules on silicon substrates modulated by three different nanoscale spacers: native oxide layer (NOL), hydrogen (H)-passivated layer, and Ag nanoparticle (AgNP) thin film, respectively. In comparison with the PL intensity from the TPP molecules on the NOL-covered silicon, the fluorescence intensity from the molecules on the AgNP-covered surface was greatly enhanced while that for the H-passivated surface was found dramatically suppressed. Time-resolved fluorescence spectra indicated shortened lifetimes for TPP molecules in both cases, but the decay kinetics is believed to be different. The suppressed emission for the H-passivated sample was attributed to the weaker decoupling effect of the monolayer of hydrogen atoms as compared to the NOL, leading to increased nonradiative decay rate; whereas the enhanced fluorescence with shortened lifetime for the AgNP-covered sample is attributed not only to the resonant excitation by local surface plasmons, but also to the increased radiative decay rate originating from the emission enhancement in plasmonic "hot-spots".

  11. Photoluminescence detection of 2,4,6-trinitrotoluene (TNT) binding on diatom frustule biosilica functionalized with an anti-TNT monoclonal antibody fragment.

    PubMed

    Zhen, Le; Ford, Nicole; Gale, Debra K; Roesijadi, Guritno; Rorrer, Gregory L

    2016-05-15

    A selective and label-free biosensor for detection of the explosive compound 2,4,6-trinitrotoluene (TNT) in aqueous solution was developed based on the principle of photoluminescence quenching of upon immunocomplex formation with antibody-functionalized diatom frustule biosilica. The diatom frustule is an intricately nanostructured, highly porous biogenic silica material derived from the shells of microscopic algae called diatoms. This material emits strong visible blue photoluminescence (PL) upon UV excitation. PL-active frustule biosilica was isolated from cultured cells of the marine diatom Pinnularia sp. and functionalized with a single chain variable fragment (scFv) derived from an anti-TNT monoclonal antibody. When TNT was bound to the anti-TNT scFv-functionalized diatom frustule biosilica, the PL emission from the biosilica was partially quenched due to the electrophilic nature of the nitro (-NO2) groups on the TNT molecule. The dose-response curve for immunocomplex formation of TNT on the scFv-functionalized diatom frustule biosilica had a half-saturation binding constant of 6.4 ± 2.4·10(-8)M and statistically-significant measured detection limit of 3.5·10(-8)M. The binding and detection were selective for TNT and TNB (trinitrobenzene) but not RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) or 2,6-DNT (2,6-dinitrotoluene). Copyright © 2016. Published by Elsevier B.V.

  12. Diameter Control and Photoluminescence of ZnO Nanorods from Trialkylamines

    DOE PAGES

    Andelman, Tamar; Gong, Yinyan; Neumark, Gertrude; ...

    2007-01-01

    A novel solution method to control the diameter of ZnO nanorods is reported. Small diameter (2-3 nm) nanorods were synthesized from trihexylamine, and large diameter (50–80 nm) nanorods were synthesized by increasing the alkyl chain length to tridodecylamine. The defect (green) emission of the photoluminescence (PL) spectra of the nanorods varies with diameter, and can thus be controlled by the diameter control. The small ZnO nanorods have strong green emission, while the large diameter nanorods exhibit a remarkably suppressed green band. We show that this observation supports surface oxygen vacancies as the defect that gives rise to the green emission.

  13. Temperature-dependent time-resolved photoluminescence measurements of (1-101)-oriented semi-polar AlGaN/GaN MQWs

    NASA Astrophysics Data System (ADS)

    Rosales, Daniel; Gil, Bernard; Monavarian, Morteza; Zhang, Fan; Okur, Serdal; Izyumskaya, Natalia; Avrutin, Vitaliy; Özgür, Ümit; Morkoç, Hadis

    2015-03-01

    We studied the temperature dependence and the recombination dynamics of the photoluminescence of (1-101)-oriented semi-polar Al0.2Ga0.8N/GaN multiple quantum wells (MQW). The polarized low-temperature PL measurements reveal that radiative recombination exhibit an anisotropic behavior. The PL intensity at room temperature is reduced by one order of magnitude with respect to low temperature. The radiative decay time exhibits a mixed behavior: it is roughly constant between 8K to ranging near 140-150K and then rapidly increases with a slope of 10 ps.K-1. This behavior is indicative of coexistence of localized excitons and free excitons which relative proportion are statistically computed.

  14. Color-tunable mixed photoluminescence emission from Alq3 organic layer in metal-Alq3-metal surface plasmon structure.

    PubMed

    Chen, Nai-Chuan; Liao, Chung-Chi; Chen, Cheng-Chang; Fan, Wan-Ting; Wu, Jin-Han; Li, Jung-Yu; Chen, Shih-Pu; Huang, Bohr-Ran; Lee, Li-Ling

    2014-01-01

    This work reports the color-tunable mixed photoluminescence (PL) emission from an Alq3 organic layer in an Au-Alq3-Au plasmonic structure through the combination of organic fluorescence emission and another form of emission that is enabled by the surface plasmons in the plasmonic structure. The emission wavelength of the latter depends on the Alq3 thickness and can be tuned within the Alq3 fluorescent spectra. Therefore, a two-color broadband, color-tunable mixed PL structure was obtained. Obvious changes in the Commission Internationale d'Eclairage (CIE) coordinates and the corresponding emission colors of Au-Alq3-Au samples clearly varied with the Alq3 thickness (90, 130, and 156 nm).

  15. Color-tunable mixed photoluminescence emission from Alq3 organic layer in metal-Alq3-metal surface plasmon structure

    PubMed Central

    2014-01-01

    This work reports the color-tunable mixed photoluminescence (PL) emission from an Alq3 organic layer in an Au-Alq3-Au plasmonic structure through the combination of organic fluorescence emission and another form of emission that is enabled by the surface plasmons in the plasmonic structure. The emission wavelength of the latter depends on the Alq3 thickness and can be tuned within the Alq3 fluorescent spectra. Therefore, a two-color broadband, color-tunable mixed PL structure was obtained. Obvious changes in the Commission Internationale d’Eclairage (CIE) coordinates and the corresponding emission colors of Au-Alq3-Au samples clearly varied with the Alq3 thickness (90, 130, and 156 nm). PMID:25328506

  16. Photoluminescence and structural properties of unintentional single and double InGaSb/GaSb quantum wells grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Ahia, Chinedu Christian; Tile, Ngcali; Botha, Johannes R.; Olivier, E. J.

    2018-04-01

    The structural and photoluminescence (PL) characterization of InGaSb quantum well (QW) structures grown on GaSb substrate (100) using atmospheric pressure Metalorganic Vapor Phase Epitaxy (MOVPE) is presented. Both structures (single and double-InGaSb QWs) were inadvertently formed during an attempt to grow capped InSb/GaSb quantum dots (QDs). In this work, 10 K PL peak energies at 735 meV and 740 meV are suggested to be emissions from the single and double QWs, respectively. These lines exhibit red shifts, accompanied by a reduction in their full-widths at half-maximum (FWHM) as the excitation power decreases. The presence of a GaSb spacer in the double QW was found to increase the strength of the PL emission, which consequently gives rise to a reduced blue-shift and broadening of the PL emission line observed for the double QW with an increase in laser power, while the low thermal activation energy for the quenching of the PL from the double QW is attributed to the existence of threading dislocations, as seen in the bright field TEM image for this sample.

  17. Preparation of Fe(3)O(4)@C@CNC multifunctional magnetic core/shell nanoparticles and their application in a signal-type flow-injection photoluminescence immunosensor.

    PubMed

    Chu, Chengchao; Li, Meng; Li, Long; Ge, Shenguang; Ge, Lei; Yu, Jinghua; Yan, Mei; Song, Xianrang

    2013-11-01

    We describe here the preparation of carbon-coated Fe3O4 magnetic nanoparticles that were further fabricated into multifunctional core/shell nanoparticles (Fe3O4@C@CNCs) through a layer-by-layer self-assembly process of carbon nanocrystals (CNCs). The nanoparticles were applied in a photoluminescence (PL) immunosensor to detect the carcinoembryonic antigen (CEA), and CEA primary antibody was immobilized onto the surface of the nanoparticles. In addition, CEA secondary antibody and glucose oxidase were covalently bonded to silica nanoparticles. After stepwise immunoreactions, the immunoreagent was injected into the PL cell using a flow-injection PL system. When glucose was injected, hydrogen peroxide was obtained because of glucose oxidase catalysis and quenched the PL of the Fe3O4@C@CNC nanoparticles. The here proposed PL immunosensor allowed us to determine CEA concentrations in the 0.005–50 ng·mL-1 concentration range, with a detection limit of 1.8 pg·mL-1.

  18. Near-infrared photoluminescence biosensing platform with gold nanorods-over-gallium arsenide nanohorn array.

    PubMed

    Zhang, Yiming; Jiang, Tao; Tang, Longhua

    2017-11-15

    The near-infrared (NIR) optical detection of biomolecules with high sensitivity and reliability have been expected, however, it is still a challenge. In this work, we present a gold nanorods (AuNRs)-over-gallium arsenide nanohorn-like array (GaAs NHA) system that can be used for the ultrasensitive and specific NIR photoluminescence (PL) detection of DNA and proteins. The fabrication of GaAs NHA involved the technique of colloidal lithography and inductively coupled plasma dry etching, yielding large-area and well-defined nanostructural array, and exhibiting an improved PL emission compared to the planar GaAs substrate. Importantly, we found that the DNA-bridged AuNRs attachment on NHA could further improve the PL intensity from GaAs, and thereby provide the basis for the NIR optical sensing of biological analytes. We demonstrated that DNA and thrombin could be sensitively and specifically detected, with the detection limit of 1 pM for target DNA and 10 pM for thrombin. Such ultrasensitive NIR optical platform can extend to the detection of other biomarkers and is promising for clinical diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Interfacial Charge-Carrier Trapping in CH3NH3PbI3-Based Heterolayered Structures Revealed by Time-Resolved Photoluminescence Spectroscopy.

    PubMed

    Yamada, Yasuhiro; Yamada, Takumi; Shimazaki, Ai; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2016-06-02

    The fast-decaying component of photoluminescence (PL) under very weak pulse photoexcitation is dominated by the rapid relaxation of the photoexcited carriers into a small number of carrier-trapping defect states. Here, we report the subnanosecond decay of the PL under excitation weaker than 1 nJ/cm(2) both in CH3NH3PbI3-based heterostructures and bare thin films. The trap-site density at the interface was evaluated on the basis of the fluence-dependent PL decay profiles. It was found that high-density defects determining the PL decay dynamics are formed near the interface between CH3NH3PbI3 and the hole-transporting Spiro-OMeTAD but not at the CH3NH3PbI3/TiO2 interface and the interior regions of CH3NH3PbI3 films. This finding can aid the fabrication of high-quality heterointerfaces, which are required improving the photoconversion efficiency of perovskite-based solar cells.

  20. Preparation and characterization of new photoluminescent nano-powder based on Eu3+:La2Ti2O7 and dispersed into silica matrix for latent fingerprint detection

    NASA Astrophysics Data System (ADS)

    Saif, M.; Alsayed, N.; Mbarek, A.; El-Kemary, M.; Abdel-Mottaleb, M. S. A.

    2016-12-01

    Pure lanthanum titanate doped with europium metal ions (La2Ti2O7:Eu3+) and dispersed in silica matrix phosphor powder was prepared by sol-gel process followed by thermal treatment. The prepared nanophosphors were characterized by powder X-ray Diffraction (XRD), Fourier Transform Infrared (FT-IR), Transmission Electron Microscope (TEM), Energy Dispersive Spectroscopy (EDX), and Photoluminescence Spectroscopy (PL). The effects of silica, thermal treatment, Eu3+ ion, and surfactant (CTAB) concentrations on the crystal, morphology, and photoluminescence properties were investigated. The present work found that dispersion of La2Ti2O7:Eu3+ into silica matrix significantly altered the morphology of La2Ti2O7:Eu3+ from high crystalline micro-plate like shape into amorphous aggregated Nano-spherical shape. The high separated spherical shape with intense red PL emission and long lifetime was obtained from 10 mol% Eu3+:La2Ti2O7:Eu3+, dispersed into silica matrix, and prepared in the presence of CTAB. The high PL Nano-phosphor has been successfully used in developing latent fingerprint from various forensic relevant materials.

  1. Temperature-Dependent Photoluminescence Imaging and Characterization of a Multi-Crystalline Silicon Solar Cell Defect Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, S.; Yan, F.; Li, J.

    2011-01-01

    Photoluminescence (PL) imaging is used to detect areas in multi-crystalline silicon that appear dark in band-to-band imaging due to high recombination. Steady-state PL intensity can be correlated to effective minority-carrier lifetime, and its temperature dependence can provide additional lifetime-limiting defect information. An area of high defect density has been laser cut from a multi-crystalline silicon solar cell. Both band-to-band and defect-band PL imaging have been collected as a function of temperature from {approx}85 to 350 K. Band-to-band luminescence is collected by an InGaAs camera using a 1200-nm short-pass filter, while defect band luminescence is collected using a 1350-nm long passmore » filter. The defect band luminescence is characterized by cathodoluminescence. Small pieces from adjacent areas within the same wafer are measured by deep-level transient spectroscopy (DLTS). DLTS detects a minority-carrier electron trap level with an activation energy of 0.45 eV on the sample that contained defects as seen by imaging.« less

  2. Origin of blue photoluminescence from colloidal silicon nanocrystals fabricated by femtosecond laser ablation in solution.

    PubMed

    Hao, H L; Wu, W S; Zhang, Y; Wu, L K; Shen, W Z

    2016-08-12

    We present a detailed investigation into the origin of blue emission from colloidal silicon (Si) nanocrystals (NCs) fabricated by femtosecond laser ablation of Si powder in 1-hexene. High resolution transmission electron microscopy and Raman spectroscopy observations confirm that Si NCs with average size 2.7 nm are produced and well dispersed in 1-hexene. Fourier transform infrared spectrum and x-ray photoelectron spectra have been employed to reveal the passivation of Si NCs surfaces with organic molecules. On the basis of the structural characterization, UV-visible absorption, temperature-dependent photoluminescence (PL), time-resolved PL, and PL excitation spectra investigations, we deduce that room-temperature blue luminescence from colloidal Si NCs originates from the following two processes: (i) under illumination, excitons first form within colloidal Si NCs by direct transition at the X or Γ (Γ25 → Γ'2) point; (ii) and then some trapped excitons migrate to the surfaces of colloidal Si NCs and further recombine via the surface states associated with the Si-C or Si-C-H2 bonds.

  3. Using liquid and solid state NMR and photoluminescence to study the synthesis and solubility properties of amine capped silicon nanoparticles.

    PubMed

    Giuliani, J R; Harley, S J; Carter, R S; Power, P P; Augustine, M P

    2007-08-01

    Water soluble silicon nanoparticles were prepared by the reaction of bromine terminated silicon nanoparticles with 3-(dimethylamino)propyl lithium and characterized with liquid and solid state nuclear magnetic resonance (NMR) and photoluminescence (PL) spectroscopies. The surface site dependent 29Si chemical shifts and the nuclear spin relaxation rates from an assortment of 1H-29Si heteronuclear solid state NMR experiments for the amine coated reaction product are consistent with both the 1H and 13C liquid state NMR results and routine transmission electron microscopy, ultra-violet/visible, and Fourier transform infrared measurements. PL was used to demonstrate the pH dependent solubility properties of the amine passivated silicon nanoparticles.

  4. Structural and photoluminescence investigations of Sm{sup 3+} doped BaY{sub 2}ZnO{sub 5} nanophosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chahar, Sangeeta; Taxak, V.B.; Dalal, Mandeep

    2016-05-15

    Highlights: • BaY{sub 2(1−x)}Sm{sub 2x}ZnO{sub 5} nanophosphors have been synthesized via solution combustion. • The nanophosphors have been characterized by XRD, TEM and PL spectroscopy. • The crystal structure reveals influence of doping on lattice parameters. • This nanophosphor executes orange–red emission under near UV excitation. - Abstract: BaY{sub 2}ZnO{sub 5}:Sm{sup 3+} nanophosphor was successfully synthesized using solution combustion process. XRD and photoluminescence (PL) techniques were used to analyze the structural and photoluminescence properties. Morphological study of the thermally stable powder was carried out using transmission electron microscope (TEM). Rietveld refinement technique has been used to analyze the samples qualitativelymore » as well as quantitatively. X-Ray diffraction analysis confirms that the highly crystalline single phased Sm{sup 3+} doped BaY{sub 2}ZnO{sub 5} nanophosphor crystallizes in orthorhombic lattice with Pbnm space group. The average particle size lies in the range 80–90 nm with spherical morphology. The photoluminescence excitation at 411 nm yields an intense orange–red emission centered at 610 nm due to {sup 4}G{sub 5/2}–{sup 6}H{sub 7/2} transition. The concentration dependent luminescent behavior of BaY{sub 2(1−x)}Sm{sub 2x}ZnO{sub 5} nanophosphor shows that the optimum concentration for best luminescence is 3 mol%. These results indicate that these nanophosphors find potential applications in the field of phosphor-converted white LED systems.« less

  5. 3D assembly of upconverting NaYF4 nanocrystals by AFM nanoxerography: creation of anti-counterfeiting microtags

    NASA Astrophysics Data System (ADS)

    Sangeetha, Neralagatta M.; Moutet, Pierre; Lagarde, Delphine; Sallen, Gregory; Urbaszek, Bernhard; Marie, Xavier; Viau, Guillaume; Ressier, Laurence

    2013-09-01

    Formation of 3D close-packed assemblies of upconverting NaYF4 colloidal nanocrystals (NCs) on surfaces, by Atomic Force Microscopy (AFM) nanoxerography is presented. The surface potential of the charge patterns, the NC concentration, the polarizability of the NCs and the polarity of the dispersing solvent are identified as the key parameters controlling the assembly of NaYF4 NCs into micropatterns of the desired 3D architecture. This insight allowed us to fabricate micrometer sized Quick Response (QR) codes encoded in terms of upconversion luminescence intensity or color. Topographically hidden messages could also be readily incorporated within these microtags. This work demonstrates that AFM nanoxerography has enormous potential for generating high-security anti-counterfeiting microtags.Formation of 3D close-packed assemblies of upconverting NaYF4 colloidal nanocrystals (NCs) on surfaces, by Atomic Force Microscopy (AFM) nanoxerography is presented. The surface potential of the charge patterns, the NC concentration, the polarizability of the NCs and the polarity of the dispersing solvent are identified as the key parameters controlling the assembly of NaYF4 NCs into micropatterns of the desired 3D architecture. This insight allowed us to fabricate micrometer sized Quick Response (QR) codes encoded in terms of upconversion luminescence intensity or color. Topographically hidden messages could also be readily incorporated within these microtags. This work demonstrates that AFM nanoxerography has enormous potential for generating high-security anti-counterfeiting microtags. Electronic supplementary information (ESI) available: Detailed experimental procedures for the synthesis of upconverting NaYF4 nanocrystals and their transmission electron microscopy images. KFM and AFM images corresponding to the assembly of positively charged β-NaYF4:Er3+,Yb3+ nanocrystals from water suspensions by AFM nanoxerography. Photoluminescence spectra of β-NaYF4:Er3+,Yb3+ nanocrystals

  6. Substituent effects on the redox states of locally functionalized single-walled carbon nanotubes revealed by in situ photoluminescence spectroelectrochemistry.

    PubMed

    Shiraishi, Tomonari; Shiraki, Tomohiro; Nakashima, Naotoshi

    2017-11-09

    Single-walled carbon nanotubes (SWNTs) with local chemical modification have been recognized as a novel near infrared (NIR) photoluminescent nanomaterial due to the emergence of a new red-shifted photoluminescence (PL) with enhanced quantum yields. As a characteristic feature of the locally functionalized SWNTs (lf-SWNTs), PL wavelength changes occur with the structural dependence of the substituent structures in the modified aryl groups, showing up to a 60 nm peak shift according to an electronic property difference of the aryl groups. Up to now, however, the structural effect on the electronic states of the lf-SWNTs has been discussed only on the basis of theoretical calculations due to the very limited amount of modifications. Herein, we describe the successfully-determined electronic states of the aryl-modified lf-SWNTs with different substituents (Ar-X SWNTs) using an in situ PL spectroelectrochemical method based on electrochemical quenching of the PL intensities analyzed by the Nernst equation. In particular, we reveal that the local functionalization of (6,5)SWNTs induced potential changes in the energy levels of the HOMO and the LUMO by -23 to -38 meV and +20 to +22 meV, respectively, compared to those of the pristine SWNTs, which generates exciton trapping sites with narrower band gaps. Moreover, the HOMO levels of the Ar-X SWNTs specifically shift in a negative potential direction by 15 meV according to an enhancement of the electron-accepting property of the substituents in the aryl groups that corresponds to an increase in the Hammet substituent constants, suggesting the importance of the dipole effect from the aryl groups on the lf-SWNTs to the level shift of the frontier orbitals. Our method is a promising way to characterize the electronic features of the lf-SWNTs.

  7. Photoluminescence of Ta2O5 films formed by the molecular layer deposition method

    NASA Astrophysics Data System (ADS)

    Baraban, A. P.; Dmitriev, V. A.; Prokof'ev, V. A.; Drozd, V. E.; Filatova, E. O.

    2016-04-01

    Ta2O5 films of different thicknesses (20-100 nm) synthesized by the molecular layer deposition method on p-type silicon substrates and thermally oxidized silicon substrates have been studied by the methods of high-frequency capacitance-voltage characteristics and photoluminescence. A hole-conduction channel is found to form in the Si-Ta2O5-field electrode system. A model of the electronic structure of Ta2O5 films is proposed based on an analysis of the measured PL spectra and performed electrical investigations.

  8. Onset of the Efficiency Droop in GaInN Quantum Well Light-Emitting Diodes under Photoluminescence and Electroluminescence Excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guan-Bo; Schubert, E. Fred; Cho, Jaehee

    2015-08-19

    The efficiency of Ga0.87In0.13N/GaN single and multiple quantum well (QW) light-emitting diodes is investigated under photoluminescence (PL) and electroluminescence (EL) excitation. By measuring the laser spot area (knife-edge method) and the absorbance of the GaInN QW (transmittance/reflectance measurements), the PL excitation density can be converted to an equivalent EL excitation density. The EL efficiency droop-onset occurs at an excitation density of 2.08 × 1026 cm–3 s–1 (J = 10 A/cm2), whereas no PL efficiency droop is found for excitation densities as high as 3.11 × 1027 cm–3 s–1 (J = 149 A/cm2). Considering Shockley–Read–Hall, radiative, and Auger recombination and includingmore » carrier leakage shows that the EL efficiency droop is consistent with a reduction of injection efficiency.« less

  9. pH- and Temperature-Sensitive Hydrogel Nanoparticles with Dual Photoluminescence for Bioprobes.

    PubMed

    Zhao, Yue; Shi, Ce; Yang, Xudong; Shen, Bowen; Sun, Yuanqing; Chen, Yang; Xu, Xiaowei; Sun, Hongchen; Yu, Kui; Yang, Bai; Lin, Quan

    2016-06-28

    This study demonstrates high contrast and sensitivity by designing a dual-emissive hydrogel particle system, whose two emissions respond to pH and temperature strongly and independently. It describes the photoluminescence (PL) response of poly(N-isopropylacrylamide) (PNIPAM)-based core/shell hydrogel nanoparticles with dual emission, which is obtained by emulsion polymerization with potassium persulfate, consisting of the thermo- and pH-responsive copolymers of PNIPAM and poly(acrylic acid) (PAA). A red-emission rare-earth complex and a blue-emission quaternary ammonium tetraphenylethylene derivative (d-TPE) with similar excitation wavelengths are inserted into the core and shell of the hydrogel nanoparticles, respectively. The PL intensities of the nanoparticles exhibit a linear temperature response in the range from 10 to 80 °C with a change as large as a factor of 5. In addition, the blue emission from the shell exhibits a linear pH response between pH 6.5 and 7.6 with a resolution of 0.1 unit, while the red emission from the core is pH-independent. These stimuli-responsive PL nanoparticles have potential applications in biology and chemistry, including bio- and chemosensors, biological imaging, cancer diagnosis, and externally activated release of anticancer drugs.

  10. Structure and luminescence properties of Tb3+-doped Lu3Al5O12 films prepared by Pechini sol-gel method

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Shen, Siqing; Xie, Jianjun; Shi, Ying; Ai, Fei

    2011-02-01

    Tb3+-doped Lu3Al5O12(hereinafter referred to as LuAG:Tb) films were successfully prepared by Pechini sol-gel process and spin-coating technique on carefully cleaned (111) silicon wafer. The microstructure and optical properties of the LuAG:Tb films were studied by X-ray diffraction (XRD), atomic force microscopy(AFM), as well as photoluminescence (PL) spectra. The XRD results showed that the precursor films started to crystallize at about 900°C. All as-calcined LuAG:Tb films showed the Tb3+ characteristic emission bands.

  11. Structure and luminescence properties of Tb3+-doped Lu3Al5O12 films prepared by Pechini sol-gel method

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Shen, Siqing; Xie, Jianjun; Shi, Ying; Ai, Fei

    2010-10-01

    Tb3+-doped Lu3Al5O12(hereinafter referred to as LuAG:Tb) films were successfully prepared by Pechini sol-gel process and spin-coating technique on carefully cleaned (111) silicon wafer. The microstructure and optical properties of the LuAG:Tb films were studied by X-ray diffraction (XRD), atomic force microscopy(AFM), as well as photoluminescence (PL) spectra. The XRD results showed that the precursor films started to crystallize at about 900°C. All as-calcined LuAG:Tb films showed the Tb3+ characteristic emission bands.

  12. Formation of size controlled Ge nanocrystals in Er-doped ZnO matrix and their enhancement effect in 1.54 μm photoluminescence

    NASA Astrophysics Data System (ADS)

    Fan, Ranran; Lu, Fei; Li, Kaikai; Liu, Kaijing

    2018-06-01

    This paper investigated the controllable growth of Ge nanocrystal (nc-Ge) in (Ge, Er) co-doped ZnO film, and the relationship between the size of nc-Ge and the enhancement of Er3+ related 1.54 μm photoluminescence (PL). It was found that nc-Ge with size of ∼5 nm was formed by annealing treatment at 600 °C. The intensity of 1.54 μm was significantly enhanced due to the existence of nc-Ge and showed an obvious dependence on nanocrystal size. The size of nc-Ge increased with the increase of the annealing temperature, and the nanocrystal with size of ∼5 nm made the most obvious contribution to PL enhancement. Prolonging annealing time could improve the crystalline structure of ZnO matrix but had no effect on PL intensity. The experimental results showed that the PL enhancement was mainly achieved by transferring the energy to Er through the resonance absorption of nc-Ge.

  13. Photoluminescence studies on holmium (III) and praseodymium (III) doped calcium borophosphate (CBP) phosphors

    NASA Astrophysics Data System (ADS)

    Reddy Prasad, V.; Damodaraiah, S.; Devara, S. N.; Ratnakaram, Y. C.

    2018-05-01

    Using solid state reaction method, Ho3+ and Pr3+ doped calcium borophosphate (CBP) phosphors were prepared. These phosphors were characterized using XRD, SEM, FT-IR, 31P solid state NMR, photoluminescence (PL) and decay profiles. Structural details were discussed from XRD and FT-IR spectra. From 31P NMR spectra of these phosphors, mono-phosphate complexes Q0-(PO43-) were observed. Photoluminescence spectra were measured for both Ho3+ and Pr3+ doped calcium borophosphate phosphors and the spectra were studied for different concentrations. Decay curves were obtained for the excited level, 5F4+5S2 of Ho3+ and 1D2 level of Pr3+ in these calcium borophosphate phosphors and lifetimes were measured. CIE color chromaticity diagrams are drawn for these two rare earth ions in calcium borophosphate phosphors. Results show that Ho3+ and Pr3+ doped CBP phosphors might be served as green and red luminescence materials.

  14. Effect of ambient oxygen on the photoluminescence of sol-gel-derived nanocrystalline ZrO2:Eu,Nb

    NASA Astrophysics Data System (ADS)

    Puust, Laurits; Kiisk, Valter; Eltermann, Marko; Mändar, Hugo; Saar, Rando; Lange, Sven; Sildos, Ilmo; Dolgov, Leonid; Matisen, Leonard; Jaaniso, Raivo

    2017-06-01

    The development of inorganic nanophosphors is an active research field due to many applications, including optical gas sensing materials. We found a systematic dependence of the photoluminescence (PL) of europium (Eu3+) impurity ions in zirconia (ZrO2) nanocrystals on the ambient oxygen concentration in a O2/N2 mixture at normal pressure. Europium-doped ZrO2 powders were synthesized via a sol-gel route. Heat-treatment at 1200 °C resulted in a well-developed monoclinic phase (XRD crystallite size of ~50 nm) and an intense PL of Eu3+ ions residing in the dominant phase (Eu3+ was excited directly at 395 or 464 nm). Co-doping with niobium resulted in a narrowing of the PL emission lines. Only Nb5+ was detected by XPS and is believed to charge-compensate Eu3+ activators throughout the material leading to a more regular crystal lattice. At room temperature, the exposure to oxygen suppressed the Eu3+ fluorescence, whereas, at elevated temperatures (300 °C), the effect was reversed. At 300 °C and under a focused continuous laser beam, a substantial PL response (>50%) was achieved when switching 100% of N2 for 100% of O2. PL decay kinetics clearly showed that at 300 °C fluorescence quenching centers were induced within the material by oxygen desorption. The relatively fast (<5 min) and sub-linear PL response to the changes of oxygen concentration shows that ZrO2:Eu,Nb is a promising PL-based oxygen sensing material over a wide-range of oxygen pressures.

  15. Visualizing Carrier Transport in Metal Halide Perovskite Nanoplates via Electric Field Modulated Photoluminescence Imaging.

    PubMed

    Hu, Xuelu; Wang, Xiao; Fan, Peng; Li, Yunyun; Zhang, Xuehong; Liu, Qingbo; Zheng, Weihao; Xu, Gengzhao; Wang, Xiaoxia; Zhu, Xiaoli; Pan, Anlian

    2018-05-09

    Metal halide perovskite nanostructures have recently been the focus of intense research due to their exceptional optoelectronic properties and potential applications in integrated photonics devices. Charge transport in perovskite nanostructure is a crucial process that defines efficiency of optoelectronic devices but still requires a deep understanding. Herein, we report the study of the charge transport, particularly the drift of minority carrier in both all-inorganic CsPbBr 3 and organic-inorganic hybrid CH 3 NH 3 PbBr 3 perovskite nanoplates by electric field modulated photoluminescence (PL) imaging. Bias voltage dependent elongated PL emission patterns were observed due to the carrier drift at external electric fields. By fitting the drift length as a function of electric field, we obtained the carrier mobility of about 28 cm 2 V -1 S -1 in the CsPbBr 3 perovskite nanoplate. The result is consistent with the spatially resolved PL dynamics measurement, confirming the feasibility of the method. Furthermore, the electric field modulated PL imaging is successfully applied to the study of temperature-dependent carrier mobility in CsPbBr 3 nanoplates. This work not only offers insights for the mobile carrier in metal halide perovskite nanostructures, which is essential for optimizing device design and performance prediction, but also provides a novel and simple method to investigate charge transport in many other optoelectronic materials.

  16. Effect of annealing temperature on the photoluminescence and scintillation properties of ZnO nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurudirek, Sinem V.; Menkara, H.; Klein, Benjamin D. B.

    2018-01-01

    The effect of the annealing to enhance the photoluminescence (PL) and scintillation properties, as determined by pulse height distribution of alpha particle irradiation, has been investigated for solution grown ZnO nanorods For this investigation the ZnO nanorod arrays were grown on glass for 22 h at 95 ◦ C as a substrate using a solution based hydrothermal technique. The samples were first annealed for different times (30, 60, 90 and 120 min) at 300 ◦ C and then at different temperatures (100 ◦ C–600 ◦ C) in order to determine the optimum annealing time and temperature, respectively. Before annealing, themore » ZnO nanorod arrays showed a broad yellow–orange visible and near-band gap UV emission peaks. After annealing in a forming gas atmosphere, the intensity of the sub-band gap PL was significantly reduced and the near-band gap PL emission intensity correspondingly increased (especially at temperatures higher than 100 ◦ C). Based on the ratio of the peak intensity ratio before and after annealing, it was concluded that samples at 350 ◦ C for 90 min resulted in the best near-band gap PL emission. Similarly, the analysis of the pulse height spectrum resulting from alpha particles revealed that ZnO nanorod arrays similarly annealed at 350 ◦ C for 90 min exhibited the highest scintillation response.« less

  17. Synthesis and characterization of colloidal CdTe nanocrystals

    NASA Astrophysics Data System (ADS)

    Semendy, Fred; Jaganathan, Gomatam; Dhar, Nibir; Trivedi, Sudhir; Bhat, Ishwara; Chen, Yuanping

    2008-08-01

    We synthesized CdTe nano crystals (NCs) in uniform sizes and in good quality as characterized by photoluminescence (PL), AFM, and X-ray diffraction. In this growth procedure, CdTe nano-crystal band gap is strongly dependent on the growth time and not on the injection temperature or organic ligand concentration. This is very attractive because of nano-crystal size can be easily controlled by the growth time only and is very attractive for large scale synthesis. The color of the solution changes from greenish yellow to light orange then to deep orange and finally grayish black to black over a period of one hour. This is a clear indication of the gradual growth of different size (and different band gap) of CdTe nano-crystals as a function of the growth time. In other words, the size of the nano-crystal and its band gap can be controlled by adjusting the growth time after injection of the tellurium. The prepared CdTe NCs were characterized by absorption spectra, photoluminescence (PL), AFM and X-ray diffraction. Measured absorption maxima are at 521, 560, 600 and 603 nm corresponding to band gaps of 2.38, 2.21,2,07 and 2.04 eV respectively for growth times of 15, 30, 45 and 60 minutes. From the absorption data nano-crystal growth size saturates out after 45 minutes. AFM scanning of these materials indicate that the size of these particles is between 4 - 10 nm in diameter for growth time of 45 minutes. XD-ray diffraction indicates that these nano crystals are of cubic zinc blende phase. This paper will present growth and characterization data on CdTe nano crystals for various growth times.

  18. Presence of photoluminescent carbon dots in Nescafe® original instant coffee: applications to bioimaging.

    PubMed

    Jiang, Chengkun; Wu, Hao; Song, Xiaojie; Ma, Xiaojun; Wang, Jihui; Tan, Mingqian

    2014-09-01

    The presence of the carbon dots (C-dots) in food is a hotly debated topic and our knowledge about the presence and the use of carbon dots (C-dots) in food is still in its infancy. We report the finding of the presence of photoluminescent (PL) C-dots in commercial Nescafe instant coffee. TEM analysis reveals that the extracted C-dots have an average size of 4.4 nm. They were well-dispersed in water and strongly photoluminescent under the excitation of ultra-violet light with a quantum yield (QY) about 5.5%, which were also found to possess clear upconversion PL properties. X-ray photoelectron spectroscopy characterization demonstrates that the C-dots contain C, O and N three elements with the relative contents ca. 30.1, 62.2 and 7.8%. The X-ray diffraction (XRD) analysis indicates that the C-dots are amorphous. Fourier-transform infrared (FTIR) spectra were employed to characterize the surface groups of the C-dots. The C-dots show a pH independent behavior by varying the pH value from 2 to 11. The cytotoxicity study revealed that the C-dots did not cause any toxicity to cells at a concentration as high as 20 mg/mL. The C-dots have been directly applied in cells and fish imaging, which suggested that the C-dots present in commercial coffee may have more potential biological applications. Copyright © 2014. Published by Elsevier B.V.

  19. Temperature-Dependent Photoluminescence Imaging and Characterization of a Multi-Crystalline Silicon Solar Cell Defect Area: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, S.; Yan, F.; Li, J.

    2011-07-01

    Photoluminescence (PL) imaging is used to detect areas in multi-crystalline silicon that appear dark in band-to-band imaging due to high recombination. Steady-state PL intensity can be correlated to effective minority-carrier lifetime, and its temperature dependence can provide additional lifetime-limiting defect information. An area of high defect density has been laser cut from a multi-crystalline silicon solar cell. Both band-to-band and defect-band PL imaging have been collected as a function of temperature from ~85 to 350 K. Band-to-band luminescence is collected by an InGaAs camera using a 1200-nm short-pass filter, while defect band luminescence is collected using a 1350-nm long passmore » filter. The defect band luminescence is characterized by cathodo-luminescence. Small pieces from adjacent areas within the same wafer are measured by deep-level transient spectroscopy (DLTS). DLTS detects a minority-carrier electron trap level with an activation energy of 0.45 eV on the sample that contained defects as seen by imaging.« less

  20. Enhancement of photoluminescence from GaInNAsSb quantum wells upon annealing: improvement of material quality and carrier collection by the quantum well.

    PubMed

    Baranowski, M; Kudrawiec, R; Latkowska, M; Syperek, M; Misiewicz, J; Sarmiento, T; Harris, J S

    2013-02-13

    In this study we apply time resolved photoluminescence and contactless electroreflectance to study the carrier collection efficiency of a GaInNAsSb/GaAs quantum well (QW). We show that the enhancement of photoluminescence from GaInNAsSb quantum wells annealed at different temperatures originates not only from (i) the improvement of the optical quality of the GaInNAsSb material (i.e., removal of point defects, which are the source of nonradiative recombination) but it is also affected by (ii) the improvement of carrier collection by the QW region. The total PL efficiency is the product of these two factors, for which the optimal annealing temperatures are found to be ~700 °C and ~760 °C, respectively, whereas the optimal annealing temperature for the integrated PL intensity is found to be between the two temperatures and equals ~720 °C. We connect the variation of the carrier collection efficiency with the modification of the band bending conditions in the investigated structure due to the Fermi level shift in the GaInNAsSb layer after annealing.

  1. Thermoluminescence and photoluminescence of cerium doped CaSO 4 nanosheets

    NASA Astrophysics Data System (ADS)

    Zahedifar, M.; Mehrabi, M.

    2010-12-01

    Thermoluminescence (TL) and photoluminescence (PL) characteristics of CaSO 4:Ce nanocrystalline prepared by hydrothermal method has been studied. Its TL glow curve contains three overlapping glow peaks at around 490, 505 and 521 K. Emission spectra band at 303 and 324 nm were observed for the orthorhombic phase of nanosheets. TL response of the prepared nanocrystalline to β and γ radiation was studied and the sensitivity of the nanosheets was found much more than that of analogous microcrystalline and is around 10 times higher than the well known high sensitive TL dosimeter LiF:Mg, Cu, P (GR-200) hot-pressed chips. TL kinetic parameters of this nanocrystalline are also presented.

  2. Low-temperature growth and photoluminescence property of ZnS nanoribbons.

    PubMed

    Zhang, Zengxing; Wang, Jianxiong; Yuan, Huajun; Gao, Yan; Liu, Dongfang; Song, Li; Xiang, Yanjuan; Zhao, Xiaowei; Liu, Lifeng; Luo, Shudong; Dou, Xinyuan; Mou, Shicheng; Zhou, Weiya; Xie, Sishen

    2005-10-06

    At a low temperature of 450 degrees C, ZnS nanoribbons have been synthesized on Si and KCl substrates by a simple chemical vapor deposition (CVD) method with a two-temperature-zone furnace. Zinc and sulfur powders are used as sources in the different temperature zones. X-ray diffraction (XRD), selected area electron diffraction (SEAD), and transmission electron microscopy (TEM) analysis show that the ZnS nanoribbons are the wurtzite structure, and there are two types-single-crystal and bicrystal nanoribbons. Photoluminescence (PL) spectrum shows that the spectrum mainly includes two parts: a purple emission band centering at about 390 nm and a blue emission band centering at about 445 nm with a weak green shoulder around 510 nm.

  3. Order of magnitude enhancement of monolayer MoS 2 photoluminescence due to near-field energy influx from nanocrystal films

    DOE PAGES

    Guo, Tianle; Sampat, Siddharth; Zhang, Kehao; ...

    2017-02-03

    Two-dimensional transition metal dichalcogenides (TMDCs) like MoS 2 are promising candidates for various optoelectronic applications. The typical photoluminescence (PL) of monolayer MoS 2 is however known to suffer very low quantum yields. We demonstrate a 10-fold increase of MoS 2 excitonic PL enabled by nonradiative energy transfer (NRET) from adjacent nanocrystal quantum dot (NQD) films. The understanding of this effect is facilitated by our application of transient absorption (TA) spectroscopy to monitor the energy influx into the monolayer MoS 2 in the process of ET from photoexcited CdSe/ZnS nanocrystals. In contrast to PL spectroscopy, TA can detect even non-emissive excitons,more » and we register an order of magnitude enhancement of the MoS 2 excitonic TA signatures in hybrids with NQDs. The appearance of ET-induced nanosecond-scale kinetics in TA features is consistent with PL dynamics of energy-accepting MoS 2 and PL quenching data of the energy-donating NQDs. The observed enhancement is attributed to the reduction of recombination losses for excitons gradually transferred into MoS 2 under quasi-resonant conditions as compared with their direct photoproduction. Furthermore, the TA and PL data clearly illustrate the efficacy of MoS 2 and likely other TMDC materials as energy acceptors and the possibility of their practical utilization in NRET-coupled hybrid nanostructures.« less

  4. In situ and nonvolatile photoluminescence tuning and nanodomain writing demonstrated by all-solid-state devices based on graphene oxide.

    PubMed

    Tsuchiya, Takashi; Tsuruoka, Tohru; Terabe, Kazuya; Aono, Masakazu

    2015-02-24

    In situ and nonvolatile tuning of photoluminescence (PL) has been achieved based on graphene oxide (GO), the PL of which is receiving much attention because of various potential applications of the oxide (e.g., display, lighting, and nano-biosensor). The technique is based on in situ and nonvolatile tuning of the sp(2) domain fraction to the sp(3) domain fraction (sp(2)/sp(3) fraction) in GO through an electrochemical redox reaction achieved by solid electrolyte thin films. The all-solid-state variable PL device was fabricated by GO and proton-conducting mesoporous SiO2 thin films, which showed an extremely low PL background. The device successfully tuned the PL peak wavelength in a very wide range from 393 to 712 nm, covering that for chemically tuned GO, by adjusting the applied DC voltage within several hundred seconds. We also demonstrate the sp(2)/sp(3) fraction tuning using a conductive atomic force microscope. The device achieved not only writing, but also erasing of the sp(2)/sp(3)-fraction-tuned nanodomain (both directions operation). The combination of these techniques is applicable to a wide range of nano-optoelectronic devices including nonvolatile PL memory devices and on-demand rewritable biosensors that can be integrated into nano- and microtips which are transparent, ultrathin, flexible, and inexpensive.

  5. Photoluminescence Spectroscopy of Rhodamine 800 Aqueous Solution and Dye-Doped Polymer Thin-Film: Concentration and Solvent Effects

    NASA Astrophysics Data System (ADS)

    Le, Khai Q.; Dang, Ngo Hai

    2018-05-01

    This paper investigates solvent and concentration effects on photoluminescence (PL) or fluorescence properties of Rhodamine 800 (Rho800) dyes formed in aqueous solution and polymer thin-film. Various commonly used organic solvents including ethanol, methanol and cyclopentanol were studied at a constant dye concentration. There were small changes in the PL spectra for the different solvents in terms of PL intensity and peak wavelength. The highest PL intensity was observed for cyclopentanol and the lowest for ethanol. The longest peak wavelength was found in cyclopentanol (716 nm) and the shortest in methanol (708 nm). Dissolving the dye powder in the methanol solvent and varying the dye concentration in aqueous solution from the high concentrated solution to highly dilute states, the wavelength tunability was observed between about 700 nm in the dilute state and 730 nm at high concentration. Such a large shift may be attributed to the formation of dye aggregates. Rho800 dye-doped polyvinyl alcohol (PVA) polymer thin-film was further investigated. The PL intensity of the dye in the form of thin-film is lower than that of the aqueous solution form whereas the peak wavelength is redshifted due to the presence of PVA. This paper, to our best knowledge, reports the first study of spectroscopic properties of Rho800 dyes in various forms and provides useful guidelines for production of controllable organic luminescence sources.

  6. Direct Measurements of Magnetic Polarons in Cd 1–xMn x Se Nanocrystals from Resonant Photoluminescence

    DOE PAGES

    Rice, W. D.; Liu, W.; Pinchetti, V.; ...

    2017-04-07

    In semiconductors, quantum confinement can greatly enhance the interaction between band carriers (electrons and holes) and dopant atoms. One manifestation of this enhancement is the increased stability of exciton magnetic polarons in magnetically doped nanostructures. In the limit of very strong 0D confinement that is realized in colloidal semiconductor nanocrystals, a single exciton can exert an effective exchange field B ex on the embedded magnetic dopants that exceeds several tesla. Here we use the very sensitive method of resonant photoluminescence (PL) to directly measure the presence and properties of exciton magnetic polarons in colloidal Cd 1–xMn xSe nanocrystals. Despite smallmore » Mn 2+ concentrations (x = 0.4–1.6%), large polaron binding energies up to ~26 meV are observed at low temperatures via the substantial Stokes shift between the pump laser and the resonant PL maximum, indicating nearly complete alignment of all Mn 2+ spins by B exex ≈ 10 T in these nanocrystals, in good agreement with theoretical estimates. Further, the emission line widths provide direct insight into the statistical fluctuations of the Mn 2+ spins. In conclusion, these resonant PL studies provide detailed insight into collective magnetic phenomena, especially in lightly doped nanocrystals where conventional techniques such as nonresonant PL or time-resolved PL provide ambiguous results.« less

  7. Highly Efficient Nondoped Green Organic Light-Emitting Diodes with Combination of High Photoluminescence and High Exciton Utilization.

    PubMed

    Wang, Chu; Li, Xianglong; Pan, Yuyu; Zhang, Shitong; Yao, Liang; Bai, Qing; Li, Weijun; Lu, Ping; Yang, Bing; Su, Shijian; Ma, Yuguang

    2016-02-10

    Photoluminescence (PL) efficiency and exciton utilization efficiency are two key parameters to harvest high-efficiency electroluminescence (EL) in organic light-emitting diodes (OLEDs). But it is not easy to simultaneously combine these two characteristics (high PL efficiency and high exciton utilization) into a fluorescent material. In this work, an efficient combination was achieved through two concepts of hybridized local and charge-transfer (CT) state (HLCT) and "hot exciton", in which the former is responsible for high PL efficiency while the latter contributes to high exciton utilization. On the basis of a tiny chemical modification in TPA-BZP, a green-light donor-acceptor molecule, we designed and synthesized CzP-BZP with this efficeient combination of high PL efficiency of η(PL) = 75% in the solid state and maximal exciton utilization efficiency up to 48% (especially, the internal quantum efficiency of η(IQE) = 35% substantially exceed 25% of spin statistics limit) in OLED. The nondoped OLED of CzP-BZP exhibited an excellent performance: a green emission with a CIE coordinate of (0.34, 0.60), a maximum current efficiency of 23.99 cd A(-1), and a maximum external quantum efficiency (EQE, η(EQE)) of 6.95%. This combined HLCT state and "hot exciton" strategy should be a practical way to design next-generation, low-cost, high-efficiency fluorescent OLED materials.

  8. Direct Measurements of Magnetic Polarons in Cd 1–xMn x Se Nanocrystals from Resonant Photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, W. D.; Liu, W.; Pinchetti, V.

    In semiconductors, quantum confinement can greatly enhance the interaction between band carriers (electrons and holes) and dopant atoms. One manifestation of this enhancement is the increased stability of exciton magnetic polarons in magnetically doped nanostructures. In the limit of very strong 0D confinement that is realized in colloidal semiconductor nanocrystals, a single exciton can exert an effective exchange field B ex on the embedded magnetic dopants that exceeds several tesla. Here we use the very sensitive method of resonant photoluminescence (PL) to directly measure the presence and properties of exciton magnetic polarons in colloidal Cd 1–xMn xSe nanocrystals. Despite smallmore » Mn 2+ concentrations (x = 0.4–1.6%), large polaron binding energies up to ~26 meV are observed at low temperatures via the substantial Stokes shift between the pump laser and the resonant PL maximum, indicating nearly complete alignment of all Mn 2+ spins by B exex ≈ 10 T in these nanocrystals, in good agreement with theoretical estimates. Further, the emission line widths provide direct insight into the statistical fluctuations of the Mn 2+ spins. In conclusion, these resonant PL studies provide detailed insight into collective magnetic phenomena, especially in lightly doped nanocrystals where conventional techniques such as nonresonant PL or time-resolved PL provide ambiguous results.« less

  9. Hydrothermal green synthesis of magnetic Fe3O4-carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria.

    PubMed

    Ahmadian-Fard-Fini, Shahla; Salavati-Niasari, Masoud; Ghanbari, Davood

    2018-10-05

    The aim of this work is preparing of a photoluminescence nanostructures for rapid detection of bacterial pathogens. Firstly, carbon dots (CDs) were synthesized by grape fruit, lemon, turmeric extracts and hydrothermal method. Then Fe 3 O 4 (magnetite) nanoparticles was achieved using these bio-compatible capping agents. Finally, magnetite-carbon dots were synthesized as a novel magnetic and photoluminescence nanocomposite. X-ray diffraction (XRD) confirms the crystallinity and phase of the products, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigate the morphology, shape and size of the magnetite, carbon dot and nanocomposites. Fourier transform infrared (FT-IR) spectroscopy shows the purity of the nanostructures. Ultraviolet-visible (UV-Vis) absorption and photo-luminescence (PL) spectroscopy show suitable photo-luminescence under ultraviolet irradiation. Vibrating sample magnetometer (VSM) shows super paramagnetic property of the product. Interestingly carbon dots were used as a non-toxic photoluminescence sensor for detecting of Escherichia coli (E. coli) bacteria. Results show quenching of photoluminescence of the CDs nanocomposite by increasing amount of E. coli bacteria. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. The Photoluminescence Efficiency of Extended Red Emission as a Constraint for Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Smith, T. L.; Witt, A. N.

    1999-12-01

    The broad, 60 < FWHM < 100 nm, featureless luminescence band known as extended red emission (ERE) is seen in such diverse dusty astrophysical environments as reflection nebulae 17, planetary nebulae 3, HII regions (Orion) 12, a Nova 11, Galactic cirrus 14, a dark nebula 7, Galaxies 8,6 and the diffuse interstellar medium (ISM) 4. The band is confined between 540-950 nm, but the wavelength of peak emission varies from environment to environment, even within a given object. We have concluded that available data indicate that the wavelength of peak emission is longer and the efficiency of the luminescence is lower, the harder and denser the illuminating radiation field is 13. These general characteristics of ERE constrain the photoluminescence (PL) band and efficiency for laboratory analysis of dust analog materials. We have studied and present the PL band characteristics and efficiencies for a wide variety of dust analogs including hydrogenated amorphous carbon (HAC), Si-HAC alloys, nanodiamonds, silicon carbide nanoparticles, carbon nanoparticles and silicon nanoparticles. The PL efficiencies measured for HAC and Si-HAC alloys are consistent with dust estimates for reflection nebulae and planetary nebulae, but exhibit substantial photoluminescence below 540 nm which is not observed in astrophysical environments. Furthermore, all interstellar grains would need to consist of or be coated with these materials to match the ERE in terms of its quantum efficiency. Only the experimentally confirmed photoluminescence properties of silicon nanoparticles 1,2,5,9,10,15,16 match the ERE photoluminescence band constraints and fulfill the minimum photoluminescence efficiency predicted by Gordon et al. (1998) 4 without introducing unexpected spectral features in the diffuse ISM and without violating the abundance constraints on depleted interstellar silicon 18. This work has been supported by grants from NASA which we acknowledge with gratitude. 1. Credo, G.M., Mason, M

  11. Emission mechanisms in Al-rich AlGaN/AlN quantum wells assessed by excitation power dependent photoluminescence spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwata, Yoshiya; Banal, Ryan G.; Ichikawa, Shuhei

    2015-02-21

    The optical properties of Al-rich AlGaN/AlN quantum wells are assessed by excitation-power-dependent time-integrated (TI) and time-resolved (TR) photoluminescence (PL) measurements. Two excitation sources, an optical parametric oscillator and the 4th harmonics of a Ti:sapphire laser, realize a wide range of excited carrier densities between 10{sup 12} and 10{sup 21 }cm{sup −3}. The emission mechanisms change from an exciton to an electron-hole plasma as the excitation power increases. Accordingly, the PL decay time is drastically reduced, and the integrated PL intensities increase in the following order: linearly, super-linearly, linearly again, and sub-linearly. The observed results are well accounted for by rate equationsmore » that consider the saturation effect of non-radiative recombination processes. Using both TIPL and TRPL measurements allows the density of non-radiative recombination centers, the internal quantum efficiency, and the radiative recombination coefficient to be reliably extracted.« less

  12. Polarized optical absorption and photoluminescence measurements in single-crystal thin films of 4'-dimethylamino-N-methyl-4-stilbazolium tosylate

    NASA Astrophysics Data System (ADS)

    Bhowmik, Achintya K.; Xu, Jianjun; Thakur, Mrinal

    1999-11-01

    Single-crystal thin films of the anhydrous (red) and the hydrated (orange) phases of the organic salt 4'-dimethylamino-N-methyl-4-stilbazolium tosylate were grown by a modification of the shear method. The optical absorption coefficients of the films were measured with light polarized along and normal to the dipole/molecular axis at both resonant and off-resonant wavelengths, and a strong dichroism was observed at the resonant wavelengths. The absorption measurements are important considering potential applications of these films (red phase) in high-speed single-pass thin-film electro-optic modulators [M. Thakur, J. Xu, A. Bhowmik, and L. Zhou, Appl. Phys. Lett. 74, 635 (1999)] and other photonic devices. Highly polarized photoluminescence (PL) has been observed in these films. The PL efficiencies of the red- and orange-phase single-crystal films were measured to be about 12% and 14%, respectively, which are significantly higher than the maximum PL efficiency measured in solution (3%).

  13. Photoluminescent enhancement of CdSe/Cd(1-x) Zn(x)S quantum dots by hexadecylamine at room temperature.

    PubMed

    Yang, Jie; Yang, Ping

    2012-09-01

    CdSe/Cd(1-x) Zn(x)S core/shell quantum dots (QDs) were fabricated in 1-octadecene via a two step synthesis. CdSe cores were first prepared using CdO, trioctylphosphine (TOP) selenium, and stearic acid. Subsquently, a Cd(1-x) Zn(x)S shell coating was carried out using zinc acetate dihydrate, cadmium acetate dihydrate, TOPS, and hexadecylamine (HDA) starting materials in the friendly organic system under relatively low temperature. The absorption and photoluminescence (PL) spectra have a significant red shift after the coverage of Cd(1-x)Zn(x)S shell on CdSe cores. The X-ray diffraction analysis of samples confirmed the formation of core/shell structure. The PL quantum yields (QYs) of CdSe/Cd(1-x)Zn(x)S QDs were improved gradually with time at room temperature. This is ascribed to the surface passivation of HDA to the QDs during store. This phenomenon was confirmed by the Fourier transform infrared spectrum of samples. Namely, HDA does not capped on the surface of as-prepared QDs, in which a low PL QYs was observed (less than 10%). Being storing for certain time, HDA attached to the surface of the QDs, in which the PL QYs increased (up to 31%) and the full width at half maximum of PL spectra decreased. Moreover, the fluorescence decay curve of the core/shell QDs is closer to a biexponential decay profile and has a longer average PL lifetime. The variation of average PL lifetime also indicated the influence of HDA during store.

  14. Effect of annealing on morphology and photoluminescence of beta-Ga2O3 nanostructures.

    PubMed

    Zhang, Shiying; Zhuang, Huizhao; Xue, Chengshan; Li, Baoli

    2008-07-01

    A novel method was applied to prepare one-dimensional beta-Ga2O3 nanostructure films. In this method, beta-Ga2O3 nanostructures have been successfully synthesized on Si(111) substrates through annealing sputtered Ga22O3/Mo films for differernt time under flowing ammonia. The as-synthesized beta-Ga2O3 nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectrum. The results show that the formed nanostructures are single-crystalline Ga2O3 with monoclinic structure. The annealing time of the samples has an evident influence on the morphology and optical property of the nanostructured beta-Ga2O3 synthesized. The representative photoluminescence spectrum at room temperature exhibits a strong and broad emission band centered at 411.5 nm and a relatively weak emission peak located at 437.6 nm. The growth mechanism of the beta-Ga2O3 nanostructured materials is also discussed briefly.

  15. Quasi-Fermi level splitting and sub-bandgap absorptivity from semiconductor photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katahara, John K.; Hillhouse, Hugh W., E-mail: h2@uw.edu

    A unified model for the direct gap absorption coefficient (band-edge and sub-bandgap) is developed that encompasses the functional forms of the Urbach, Thomas-Fermi, screened Thomas-Fermi, and Franz-Keldysh models of sub-bandgap absorption as specific cases. We combine this model of absorption with an occupation-corrected non-equilibrium Planck law for the spontaneous emission of photons to yield a model of photoluminescence (PL) with broad applicability to band-band photoluminescence from intrinsic, heavily doped, and strongly compensated semiconductors. The utility of the model is that it is amenable to full-spectrum fitting of absolute intensity PL data and yields: (1) the quasi-Fermi level splitting, (2) themore » local lattice temperature, (3) the direct bandgap, (4) the functional form of the sub-bandgap absorption, and (5) the energy broadening parameter (Urbach energy, magnitude of potential fluctuations, etc.). The accuracy of the model is demonstrated by fitting the room temperature PL spectrum of GaAs. It is then applied to Cu(In,Ga)(S,Se){sub 2} (CIGSSe) and Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) to reveal the nature of their tail states. For GaAs, the model fit is excellent, and fitted parameters match literature values for the bandgap (1.42 eV), functional form of the sub-bandgap states (purely Urbach in nature), and energy broadening parameter (Urbach energy of 9.4 meV). For CIGSSe and CZTSSe, the model fits yield quasi-Fermi leveling splittings that match well with the open circuit voltages measured on devices made from the same materials and bandgaps that match well with those extracted from EQE measurements on the devices. The power of the exponential decay of the absorption coefficient into the bandgap is found to be in the range of 1.2 to 1.6, suggesting that tunneling in the presence of local electrostatic potential fluctuations is a dominant factor contributing to the sub-bandgap absorption by either purely electrostatic (screened Thomas

  16. Influence of thermally induced structural and morphological changes, and UV irradiation on photoluminescence and optical absorption behavior of CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Osman, M. A.; El-Said, Waleed A.; Othman, A. A.; Abd-Elrahim, A. G.

    2016-04-01

    Polycrystalline cubic CdS nanoparticles (NPs) with a crystallite size ({{D}\\text{Sch}} ) ~3 nm were synthesized by chemical precipitation method at room temperature. Thermal induced structural and morphological changes have been investigated using x-ray diffraction, high-resolution transmission electron microscope, x-ray fluorescence, Fourier transform infrared and Raman spectroscopy. The influence of these changes on optical absorption and photoluminescence (PL) characteristics have been studied. It was found that increasing annealing temperature (T a), results in structural phase transitions at 300 and 700 °C, increasing {{D}\\text{Sch}} and red shift of the optical band gap (E\\text{g}\\text{opt} ) due to the improvement in crystallinity. The photoluminescence emission spectrum of nonstoichiometric CdS (Cd-rich) nanopowder reveals emission bands at 365, 397, and 434 nm. Furthermore, PL spectrum of colloidal solution exhibits additional green and red emission bands at 535, 570 and 622 nm. To explain the mechanism of PL emission in CdS NPs, trapping and radiative recombination levels have been identified and the corresponding energy band diagrams are suggested. Annealing process results in an overall enhancement in PL intensity due to the improvement in crystallinity associated with the reduction of nonradiative surface state defects. Irradiation of CdS NPs colloidal solution at UV irradiation dose  <13 J cm-2 leads to the enhancement of PL quantum efficiency and blue shift of E\\text{g}\\text{opt} (i.e. photo-brightening) due to the decrease in the particle size deduced from Brus equation ≤ft({{D}\\text{Brus}}\\right) , This behavior is due to UV irradiation effects such as photopolymerization, the formation of CdSO4 passivation layers due to photooxidation and the reduction in {{D}\\text{Brus}} by photocorrosion process. At UV irradiation dose  <13 J cm-2, PL emission intensity continuously enhances without any change in both E

  17. Study of crystal structure and unique photoluminescence properties of Eu2-xFexO3 (x = 0 - 0.5) orthoferrites

    NASA Astrophysics Data System (ADS)

    Dhilip, M.; Anbarasu, V.; Kumar, K. Saravana; Sivakumar, K.

    2018-04-01

    A series of Europium orthoferrites, Eu2-xFexO3 (x = 0 - 0.5) are successfully prepared by employing solid state reaction technique. The structural analysis through powder X-Ray diffraction technique reveals the multiphase formation of all the prepared compounds. Further, the unit cell visualization of all the prepared compounds confirms the change of crystal structure from cubic to orthorhombic phase. The crystal structure analysis confirms the typical framework of Eu - Fe - O chains with unprecedented ratio of Eu3+ and Fe3+ ions. The optical properties of prepared compounds are investigated using photoluminescence (PL) analysis. Upon excitation at 495 nm wavelength, the emission spectrum of prepared compounds exhibits a broad band in the range of 500-700nm with maximum intensity peak at 548 nm (Blue - 2.26eV). Hence, the substitution of Fe3+ ion yields with intrinsic blue photoluminescence (5D0 → 7F0) of Eu3+ and is easily shielded by the substitution of Fe3+ which may be due to the closer conduction band gap of Eu3+ (2.26 eV) with Fe3+ (2.67 eV). The schematic energy level diagram for Fe3+ in the Eu3+ host matrix has been proposed for the better understanding of photoluminescence processes. The variation of intensity of PL peak between 500 and 700 nm for the substitution of Fe in the range of x = 0 - 0.5 yields with interesting optical properties for exploring new phosphor materials for optoelectronic device fabrications.

  18. Temperature dependence of Er³⁺ ionoluminescence and photoluminescence in Gd₂O₃:Bi nanopowder.

    PubMed

    Boruc, Zuzanna; Gawlik, Grzegorz; Fetliński, Bartosz; Kaczkan, Marcin; Malinowski, Michał

    2014-06-01

    Ionoluminescence (IL) and photoluminescence (PL) of trivalent erbium ions (Er(3+)) in Gd2O3 nanopowder host activated with Bi(3+) ions has been studied in order to establish the link between changes in luminescent spectra and temperature of the sample material. IL measurements have been performed with H2 (+) 100 keV ion beam bombarding the target material for a few seconds, while PL spectra have been collected for temperatures ranging from 20 °C to 700 °C. The PL data was used as a reference in determining the temperature corresponding to IL spectra. The collected data enabled the definition of empirical formula based on the Boltzmann distribution, which allows the temperature to be determined with a maximum sensitivity of 9.7 × 10(-3) °C(-1). The analysis of the Er(3+) energy level structure in terms of tendency of the system to stay in thermal equilibrium, explained different behaviors of the line intensities. This work led to the conclusion that temperature changes during ion excitation can be easily defined with separately collected PL spectra. The final result, which is empirical formula describing dependence of fluorescence intensity ratio on temperature, raises the idea of an application of method in temperature control, during processes like ion implantation and some nuclear applications.

  19. Photoluminescence enhancement of silicon quantum dot monolayer by plasmonic substrate fabricated by nano-imprint lithography

    NASA Astrophysics Data System (ADS)

    Yanagawa, Hiroto; Inoue, Asuka; Sugimoto, Hiroshi; Shioi, Masahiko; Fujii, Minoru

    2017-12-01

    Near-field coupling between a silicon quantum dot (Si-QD) monolayer and a plasmonic substrate fabricated by nano-imprint lithography and having broad multiple resonances in the near-infrared (NIR) window of biological substances was studied by precisely controlling the QDs-substrate distance. A strong enhancement of the NIR photoluminescence (PL) of Si-QDs was observed. Detailed analyses of the PL and PL excitation spectra, the PL decay dynamics, and the reflectance spectra revealed that both the excitation cross-sections and the emission rates are enhanced by the surface plasmon resonances, thanks to the broad multiple resonances of the plasmonic substrate, and that the relative contribution of the two enhancement processes depends strongly on the excitation wavelength. Under excitation by short wavelength photons (405 nm), where enhancement of the excitation cross-section is not expected, the maximum enhancement was obtained when the QDs-substrate distance was around 30 nm. On the other hand, under long wavelength excitation (641 nm), where strong excitation cross-section enhancement is expected, the largest enhancement was obtained when the distance was minimum (around 1 nm). The achievement of efficient excitation of NIR luminescence of Si-QDs by long wavelength photons paves the way for the development of Si-QD-based fluorescence bio-sensing devices with a high bound-to-free ratio.

  20. Photoluminescence properties of Eu3+ doped HfO2 coatings formed by plasma electrolytic oxidation of hafnium

    NASA Astrophysics Data System (ADS)

    Stojadinović, Stevan; Tadić, Nenad; Ćirić, Aleksandar; Vasilić, Rastko

    2018-03-01

    Plasma electrolytic oxidation was used for synthesis of Eu3+ doped monoclinic HfO2 coatings on hafnium substrate. Results of photoluminescence (PL) measurements show the existence of two distinct regions: one that is related to the blue emission originating from oxygen vacancy defects in HfO2 and the other one characterized with a series of sharp orange-red emission peaks related to f-f transitions of Eu3+ from excited level 5D0 to lower levels 7FJ (J = 0, 1, 2, 3, and 4). PL peaks appearing in excitation spectra of obtained coatings are attributed either to charge transfer state of Eu3+ or to direct excitation of the Eu3+ ground state 7F0 into higher levels of the 4f-manifold. PL of formed coatings increases with PEO time due to an increase of oxygen vacancy defects and the content of Eu3+. Acquired experimental data suggest that hypersensitive electrical dipole transition is much more intense than the magnetic dipole transition, indicating that Eu3+ ions occupy a non-inversion symmetry sites.

  1. Raman and photoluminescence spectroscopy of SiGe layer evolution on Si(100) induced by dewetting

    NASA Astrophysics Data System (ADS)

    Shklyaev, A. A.; Volodin, V. A.; Stoffel, M.; Rinnert, H.; Vergnat, M.

    2018-01-01

    High temperature annealing of thick (40-100 nm) Ge layers deposited on Si(100) at ˜400 °C leads to the formation of continuous films prior to their transformation into porous-like films due to dewetting. The evolution of Si-Ge composition, lattice strain, and surface morphology caused by dewetting is analyzed using scanning electron microscopy, Raman, and photoluminescence (PL) spectroscopies. The Raman data reveal that the transformation from the continuous to porous film proceeds through strong Si-Ge interdiffusion, reducing the Ge content from 60% to about 20%, and changing the stress from compressive to tensile. We expect that Ge atoms migrate into the Si substrate occupying interstitial sites and providing thereby the compensation of the lattice mismatch. Annealing generates only one type of radiative recombination centers in SiGe resulting in a PL peak located at about 0.7 and 0.8 eV for continuous and porous film areas, respectively. Since annealing leads to the propagation of threading dislocations through the SiGe/Si interface, we can tentatively associate the observed PL peak to the well-known dislocation-related D1 band.

  2. Photoluminescence probing of interface evolution with annealing in InGa(N)As/GaAs single quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Jun, E-mail: jshao@mail.sitp.ac.cn; Qi, Zhen; Zhu, Liang

    The effects of thermal annealing on the interfaces of InGa(N)As/GaAs single quantum wells (SQWs) are investigated by excitation-, temperature-, and magnetic field-dependent photoluminescence (PL). The annealing at 750 °C results in more significant blueshift and narrowing to the PL peak than that at 600 °C. Each of the PL spectra can be reproduced with two PL components: (i) the low-energy component (LE) keeps energetically unchanged, while the high-energy component (HE) moves up with excitation and shows at higher energy for the In{sub 0.375}Ga{sub 0.625}As/GaAs but crosses over with the LE at a medium excitation power for the In{sub 0.375}Ga{sub 0.625}N{sub 0.012}As{sub 0.988}/GaAsmore » SQWs. The HE is broader than the corresponding LE, the annealing at 750 °C narrows the LE and HE and shrinks their energetic separation; (ii) the PL components are excitonic, and the InGaNAs shows slightly enhanced excitonic effects relative to the InGaAs SQW; (iii) no typical S-shape evolution of PL energy with temperature is detectable, and similar blueshift and narrowing are identified for the same annealing. The phenomena are mainly from the interfacial processes. Annealing improves the intralayer quality, enhances the interfacial In-Ga interdiffusion, and reduces the interfacial fluctuation. The interfacial interdiffusion does not change obviously by the small N content and hence similar PL-component narrowing and blueshift are observed for the SQWs after a nominally identical annealing. Comparison with previous studies is made and the PL measurements under different conditions are shown to be effective for probing the interfacial evolution in QWs.« less

  3. Measuring bacterial cells size with AFM

    PubMed Central

    Osiro, Denise; Filho, Rubens Bernardes; Assis, Odilio Benedito Garrido; Jorge, Lúcio André de Castro; Colnago, Luiz Alberto

    2012-01-01

    Atomic Force Microscopy (AFM) can be used to obtain high-resolution topographical images of bacteria revealing surface details and cell integrity. During scanning however, the interactions between the AFM probe and the membrane results in distortion of the images. Such distortions or artifacts are the result of geometrical effects related to bacterial cell height, specimen curvature and the AFM probe geometry. The most common artifact in imaging is surface broadening, what can lead to errors in bacterial sizing. Several methods of correction have been proposed to compensate for these artifacts and in this study we describe a simple geometric model for the interaction between the tip (a pyramidal shaped AFM probe) and the bacterium (Escherichia coli JM-109 strain) to minimize the enlarging effect. Approaches to bacteria immobilization and examples of AFM images analysis are also described. PMID:24031837

  4. Photoluminescence from PP-HMDSO thin films deposited using a remote plasma of 13.56 MHz hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Saloum, S.; Hamadeh, H.

    2007-07-01

    Room temperature photoluminescence (PL) from plasma-polymerized hexamethyldisiloxane (PP-HMDSO) thin films deposited on silicon wafers has been investigated as a function of both the applied RF power and the monomer flow rate. Films were deposited in a low pressure-low temperature remote plasma ignited in a 13.56 MHz hollow cathode discharge reactor, using pure HMDSO as a monomer and Ar as a feed gas. The substrate temperature during the deposition was as low as 40 °C and the total pressure was about 0.03 mbar. Optical emission spectroscopy (OES) has been used as in situ tool for monitoring the different chemical species present in the plasma during deposition processes. The deposited PP-HMDSO films showed a strong, broad 'green/yellow' PL band. The RF power and the flow rate of the HMDSO monomer are found to have a significant impact on the PL intensity of the deposited film. The changes in the chemical bonding of the film as a function of deposition parameters have been investigated by using the Fourier transform infrared (FTIR) spectroscopic analysis and are related to PL and OES results. The 'green/yellow' PL band is ascribed to chemical groups and bonds of silicon, hydrogen and/or oxygen constituting the films, in particular, SiH, SiO bonds and silanol Si-O-H groups.

  5. The influence of amphiphilic additional agents on the morphology and photoluminescence properties of calcium carbonate phosphor

    NASA Astrophysics Data System (ADS)

    Mou, Yongren; Kang, Ming; Liu, Min; Wang, Feng; Chen, Kexu; Sun, Rong

    2017-06-01

    In order to investigate the effect of amphiphilic additional agents on the morphology (particle shape, particle size and particle size distribution) and photoluminescence performance of calcium carbonate phosphor, the phosphors AA-CaCO3:Eu3+ (AA = glycerol or sodium dodecyl sulfate) were synthesized by the microwave-assisted co-precipitation method using glycerol (Gly) and sodium dodecyl sulfate (SDS) as amphiphilic additional agents (AA), respectively. The phase structure, morphology and luminescent properties of the as-synthesized samples were characterized by X-ray diffraction, scanning electron microscope, laser diffraction particle size analyzer and Fluorescence spectrophotometer, respectively. The results showed that the phase structure and morphology of AA-CaCO3:Eu3+ changed along with different types and amount of amphiphilic additional agents evidently. The particle size of Gly-CaCO3 decreased to 1.383 µm when the volume ratio reached 8:2 (Gly:H2O). Photoluminescence (PL) spectra show that all the AA-CaCO3:Eu3+ phosphors exhibit strong red emission peak originating from electric-dipole transition 5D0 → 7F2 (614 nm) of Eu3+ ions and the amphiphilic molecules (Gly and SDS) had a huge influence on photoluminescence intensity.

  6. Characterization of photoluminescence spectra from poly allyl diglycol carbonate (CR-39) upon excitation with the ultraviolet radiation of various wavelengths

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M.; Al-Thomali, Talal A.

    2013-04-01

    The induced photoluminescence (PL) from the π-conjugated polymer poly allyl diglycol carbonate (PADC) (CR-39) upon excitation with the ultraviolet radiation of different wavelengths was investigated. The absorption and attenuation coefficients of PADC (CR-39) were recorded using a UV-visible spectrometer. It was found that the absorption and attenuation coefficients of the PADC (CR-39) exhibit a strong dependence on the wavelength of ultraviolet radiation. The PL spectra were measured with a Flormax-4 spectrofluorometer (Horiba). PADC (CR-39) samples were excited by ultraviolet radiation with wavelengths in the range from 260 to 420 nm and the corresponding PL emission bands were recorded. The obtained results show a strong correlation between the PL and the excitation wavelength of ultraviolet radiation. The position of the fluorescence emission band peak was red shifted starting from 300 nm, which was increased with the increase in the excitation wavelength. The PL yield and its band peak height were increased with the increase in the excitation wavelength till 290 nm, thereafter they decreased exponentially with the increase in the ultraviolet radiation wavelength. These new findings should be considered carefully during the use of the PADC (CR-39) in the scientific applications and in using PADC (CR-39) in eyeglasses.

  7. Syntheses of Eu-Activated Alkaline Earth Fluoride MF2 (M=Ca, Sr) Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hong, Byung-Chul; Kawano, Katsuyasu

    2007-09-01

    The Eu2+ ion-activated CaF2 and SrF2 nanoparticles were prepared by the sol-gel technique assisted with the trifluoro-acetic acid (TFA), and were evaluated by X-ray diffraction (XRD), photoluminescence (PL), photoluminescence excitation (PLE) measurements and atomic force microscopy (AFM) observation. A modified reducing method based on the thermal-carbon reducing atmosphere (TCRA) treatment using activated carbon was proposed to realize the effective reduction from Eu3+ to Eu2+ ions, in which the nanoparticles showed a strong and broad luminescence due to the parity allowed 4f7-4f65d1 transition. From the XRD results, it was found that the average particle size proportionally increased in the range of 15 to 120 nm and 10 to 100 nm for CaF2 and SrF2, respectively, with increasing sintering temperatures 300-700 °C. The surface images of nanoparticles obtained by the AFM revealed that the grains with high uniformity grew with increasing TCRA temperatures. It was confirmed that the reduced Eu2+ ions were homogeneously dispersed with the critical distance 16-17 Å in the fluoride nanoparticles from the concentration quenching results.

  8. Photoluminescence Study of Gallium Nitride Thin Films Obtained by Infrared Close Space Vapor Transport.

    PubMed

    Santana, Guillermo; de Melo, Osvaldo; Aguilar-Hernández, Jorge; Mendoza-Pérez, Rogelio; Monroy, B Marel; Escamilla-Esquivel, Adolfo; López-López, Máximo; de Moure, Francisco; Hernández, Luis A; Contreras-Puente, Gerardo

    2013-03-15

    Photoluminescence (PL) studies in GaN thin films grown by infrared close space vapor transport (CSVT-IR) in vacuum are presented in this work. The growth of GaN thin films was done on a variety of substrates like silicon, sapphire and fused silica. Room temperature PL spectra of all the GaN films show near band-edge emission (NBE) and a broad blue and green luminescence (BL, GL), which can be seen with the naked eye in a bright room. The sample grown by infrared CSVT on the silicon substrate shows several emission peaks from 2.4 to 3.22 eV with a pronounced red shift with respect to the band gap energy. The sample grown on sapphire shows strong and broad ultraviolet emission peaks (UVL) centered at 3.19 eV and it exhibits a red shift of NBE. The PL spectrum of GaN films deposited on fused silica exhibited a unique and strong blue-green emission peak centered at 2.38 eV. The presence of yellow and green luminescence in all samples is related to native defects in the structure such as dislocations in GaN and/or the presence of amorphous phases. We analyze the material quality that can be obtained by CSVT-IR in vacuum, which is a high yield technique with simple equipment set-up, in terms of the PL results obtained in each case.

  9. Photoluminescence Study of Gallium Nitride Thin Films Obtained by Infrared Close Space Vapor Transport

    PubMed Central

    Santana, Guillermo; de Melo, Osvaldo; Aguilar-Hernández, Jorge; Mendoza-Pérez, Rogelio; Monroy, B. Marel; Escamilla-Esquivel, Adolfo; López-López, Máximo; de Moure, Francisco; Hernández, Luis A.; Contreras-Puente, Gerardo

    2013-01-01

    Photoluminescence (PL) studies in GaN thin films grown by infrared close space vapor transport (CSVT-IR) in vacuum are presented in this work. The growth of GaN thin films was done on a variety of substrates like silicon, sapphire and fused silica. Room temperature PL spectra of all the GaN films show near band-edge emission (NBE) and a broad blue and green luminescence (BL, GL), which can be seen with the naked eye in a bright room. The sample grown by infrared CSVT on the silicon substrate shows several emission peaks from 2.4 to 3.22 eV with a pronounced red shift with respect to the band gap energy. The sample grown on sapphire shows strong and broad ultraviolet emission peaks (UVL) centered at 3.19 eV and it exhibits a red shift of NBE. The PL spectrum of GaN films deposited on fused silica exhibited a unique and strong blue-green emission peak centered at 2.38 eV. The presence of yellow and green luminescence in all samples is related to native defects in the structure such as dislocations in GaN and/or the presence of amorphous phases. We analyze the material quality that can be obtained by CSVT-IR in vacuum, which is a high yield technique with simple equipment set-up, in terms of the PL results obtained in each case. PMID:28809356

  10. Core/Shell NaGdF4:Nd3+/NaGdF4 Nanocrystals with Efficient Near-Infrared to Near-Infrared Downconversion Photoluminescence for Bioimaging Applications

    PubMed Central

    Chen, Guanying; Ohulchanskyy, Tymish Y.; Liu, Sha; Law, Wing-Cheung; Wu, Fang; Swihart, Mark T.; Ågren, Hans; Prasad, Paras N.

    2012-01-01

    We have synthesized core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with an average size of 15 nm and exceptionally high photoluminescence (PL) quantum yield. When excited at 740 nm, the nanocrystals manifest spectrally distinguished, near infrared to near infrared (NIR-to-NIR) downconversion PL peaked at ~900, ~1050, and ~1300 nm. The absolute quantum yield of NIR-to-NIR PL reached 40% for core-shell nanoparticles dispersed in hexane. Time-resolved PL measurements revealed that this high quantum yield was achieved through suppression of nonradiative recombination originating from surface states and cross relaxations between dopants. NaGdF4:Nd3+/NaGdF4 nanocrystals, synthesized in organic media, were further converted to be water-dispersible by eliminating the capping ligand of oleic acid. NIR-to-NIR PL bioimaging was demonstrated both in vitro and in vivo through visualization of the NIR-to-NIR PL at ~900 nm under incoherent lamp light excitation. The fact that both excitation and the PL of these nanocrystals are in the biological window of optical transparency, combined with their high quantum efficiency, spectral sharpness and photostability, makes these nanocrystals extremely promising as optical biomaging probes. PMID:22401578

  11. Dual-wavelength excited photoluminescence spectroscopy of deep-level hole traps in Ga(In)NP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagnelund, D.; Huang, Y. Q.; Buyanova, I. A.

    2015-01-07

    By employing photoluminescence (PL) spectroscopy under dual-wavelength optical excitation, we uncover the presence of deep-level hole traps in Ga(In)NP alloys grown by molecular beam epitaxy (MBE). The energy level positions of the traps are determined to be at 0.56 eV and 0.78 eV above the top of the valance band. We show that photo-excitation of the holes from the traps, by a secondary light source with a photon energy below the bandgap energy, can lead to a strong enhancement (up to 25%) of the PL emissions from the alloys under a primary optical excitation above the bandgap energy. We further demonstrate thatmore » the same hole traps can be found in various MBE-grown Ga(In)NP alloys, regardless of their growth temperatures, chemical compositions, and strain. The extent of the PL enhancement induced by the hole de-trapping is shown to vary between different alloys, however, likely reflecting their different trap concentrations. The absence of theses traps in the GaNP alloy grown by vapor phase epitaxy suggests that their incorporation could be associated with a contaminant accompanied by the N plasma source employed in the MBE growth, possibly a Cu impurity.« less

  12. Electromechanical and Photoluminescence Properties of Al-doped ZnO Nanorods Applied in Piezoelectric Nanogenerators

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Yang; Fang, Te-Hua; Tsai, Ju-Hsuan

    2015-02-01

    A piezoelectric nanogenerator based on Al-doped ZnO (AZO) nanorods with a V-zigzag layer is investigated at a low temperature. The growth temperature, growth time, growth concentration, photoluminescence (PL) spectrum, and AZO epitaxial growth on the ITO glass substrate using aqueous solution are reported and the associated electromechanical and PL properties are discussed. In general, the properties of piezoelectric nanogenerators and their functionality at ultralow temperatures (near liquid helium temperature) are important for applications in extreme environments. A V-zigzag layer is used to enhance the bending and compression deformation of the piezoelectric nanogenerator. The electromechanical properties of AZO nanorods are tested using an ultrasonic wave generator. Results show that the percent transmittance decreases with increasing growth time and growth temperature. The intensities of the PL spectrum and the (002) peak orientation increases with increasing growth temperature. AZO at a low growth temperature of 90 C has good piezoelectric harvesting efficiency when the piezoelectric nanogenerator has a zigzag structure. The average current, voltage, and power density of the piezoelectric harvesting are 0.76 A, 1.35 mV, and 1.026 nW/mm, respectively. These results confirm the feasibility of growing AZO at low temperature. AZO nanorods have potential for energy harvester applications.

  13. Integrated smartphone imaging of quantum dot photoluminescence and Förster resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Petryayeva, Eleonora; Algar, W. Russ

    2015-06-01

    Smartphones and other mobile devices are emerging as promising analytical platforms for point-of-care diagnostics, particularly when combined with nanotechnology. For example, we have shown that the optical properties of semiconductor quantum dots (QDs) are well suited to photoluminescence (PL) detection with a smartphone camera. However, this previous work has utilized an external excitation source for interrogation of QD PL. In this proceeding, we demonstrate that the white-light LED photographic flashes built into smartphones can be optically filtered to yield blue light suitable for excitation of QD PL. Measurements were made by recording video with filtered flash illumination and averaging the frames of the video to obtain images with good signal-to-background ratios. These images permitted detection of green-emitting and red-emitting QDs at levels comparable to those possible with excitation using an external long-wave UV lamp. The optical properties of QDs proved to be uniquely suited to smartphone PL imaging, exhibiting emission that was 1-2 orders magnitude brighter than that of common fluorescent dyes under the same conditions. Excitation with the smartphone flash was also suitable for imaging of FRET between green-emitting QD donors and Alexa Fluor 555 (A555) fluorescent dye acceptors. No significant difference in FRET imaging capability was observed between excitation with the smartphone flash and a long-wave UV lamp. Although the smartphone flash did have some disadvantages compared to an external UV lamp, these disadvantages are potentially offset by the benefit of having excitation and detection integrated into the smartphone.

  14. Synthesis, characterization and photoluminescence properties of Bi³⁺ co-doped CaSiO₃:Eu³⁺ nanophosphor.

    PubMed

    Kumar, M Madesh; Krishna, R Hari; Nagabhushana, B M; Shivakumara, C

    2015-03-15

    Ceramic luminescent powders with the composition Ca(0.96-x)Eu0.04Bi(x)SiO3 (x=0.01-0.05) were prepared by solution combustion method. The nanopowders are characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and photoluminescence (PL) techniques. PXRD patterns of calcined (950°C for 3h) Ca(0.96-x)Eu0.04Bi(x)SiO3 powders exhibit monoclinic phase with mean crystallite sizes ranging from 28 to 48 nm. SEM micrographs show the products are foamy, agglomerated and fluffy in nature due to the large amount of gases liberated during combustion reaction. TEM micrograph shows the crystalline characteristics of the nanoparticles. Upon 280 nm excitation, the photoluminescence of the Ca(0.96-x)Eu0.04Bi(x)SiO3 particles show red emission at 611 nm corresponding to 5D0→7F2 transition. It is observed that PL intensity increases with Bi(3+) concentration. Our work demonstrates very interesting energy transfer from Bi(3+) to Eu(3+) in CaSiO3 host. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A job for quantum dots: use of a smartphone and 3D-printed accessory for all-in-one excitation and imaging of photoluminescence.

    PubMed

    Petryayeva, Eleonora; Algar, W Russ

    2016-04-01

    Point-of-care (POC) diagnostic technologies are needed to improve global health and smartphones are a prospective platform for these technologies. While many fluorescence or photoluminescence-based smartphone assays have been reported in the literature, common shortcomings are the requirement of an excitation light source external to the smartphone and complicated integration of that excitation source with the smartphone. Here, we show that the photographic flash associated with the smartphone camera can be utilized to enable all-in-one excitation and imaging of photoluminescence (PL), thus eliminating the need for an excitation light source external to the smartphone. A simple and low-cost 3D-printed accessory was designed to create a dark environment and direct excitation light from the smartphone flash onto a sample. Multiple colors and compositions of semiconductor quantum dot (QD) were evaluated as photoluminescent materials for all-in-one smartphone excitation and imaging of PL, and these were compared with fluorescein and R-phycoerythrin (R-PE), which are widely utilized molecular and protein materials for fluorescence-based bioanalysis. The QDs were found to exhibit much better brightness and have the best potential for two-color detection. A model protein binding assay with a sub-microgram per milliliter detection limit and a Förster resonance energy transfer (FRET) assay for proteolytic activity were demonstrated, including imaging with serum as a sample matrix. In addition, FRET within tandem conjugates of a QD donor and fluorescent dye acceptor enabled smartphone detection of dye fluorescence that was otherwise unobservable without the QD to enhance its brightness. The ideal properties of photoluminescent materials for all-in-one smartphone excitation and imaging are discussed in the context of several different materials, where QDs appear to be the best overall material for this application.

  16. Improved photoluminescence efficiency in UV nanopillar light emitting diode structures by recovery of dry etching damage.

    PubMed

    Jeon, Dae-Woo; Jang, Lee-Woon; Jeon, Ju-Won; Park, Jae-Woo; Song, Young Ho; Jeon, Seong-Ran; Ju, Jin-Woo; Baek, Jong Hyeob; Lee, In-Hwan

    2013-05-01

    In this study, we have fabricated 375-nm-wavelength InGaN/AlInGaN nanopillar light emitting diodes (LED) structures on c-plane sapphire. A uniform and highly vertical nanopillar structure was fabricated using self-organized Ni/SiO2 nano-size mask by dry etching method. To minimize the dry etching damage, the samples were subjected to high temperature annealing with subsequent chemical passivation in KOH solution. Prior to annealing and passivation the UV nanopillar LEDs showed the photoluminescence (PL) efficiency about 2.5 times higher than conventional UV LED structures which is attributed to better light extraction efficiency and possibly some improvement of internal quantum efficiency due to partially relieved strain. Annealing alone further increased the PL efficiency by about 4.5 times compared to the conventional UV LEDs, while KOH passivation led to the overall PL efficiency improvement by more than 7 times. Combined results of Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) suggest that annealing decreases the number of lattice defects and relieves the strain in the surface region of the nanopillars whereas KOH treatment removes the surface oxide from nanopillar surface.

  17. Micropatterned 2D Hybrid Perovskite Thin Films with Enhanced Photoluminescence Lifetimes

    PubMed Central

    2018-01-01

    The application of luminescent materials in display screens and devices requires micropatterned structures. In this work, we have successfully printed microstructures of a two-dimensional (2D), orange-colored organic/inorganic hybrid perovskite ((C6H5CH2NH3)2PbI4) using two different soft lithography techniques. Notably, both techniques yield microstructures with very high aspect ratios in the range of 1.5–1.8. X-ray diffraction reveals a strong preferential orientation of the crystallites along the c-axis in both patterned structures, when compared to nonpatterned, drop-casted thin films. Furthermore, (time-resolved) photoluminescence (PL) measurements reveal that the optical properties of (C6H5CH2NH3)2PbI4 are conserved upon patterning. We find that the larger grain sizes of the patterned films with respect to the nonpatterned film give rise to an enhanced PL lifetime. Thus, our results demonstrate easy and cost-effective ways to manufacture patterns of 2D organic/inorganic hybrid perovskites, while even improving their optical properties. This demonstrates the potential use of color-tunable 2D hybrids in optoelectronic devices. PMID:29578335

  18. Micropatterned 2D Hybrid Perovskite Thin Films with Enhanced Photoluminescence Lifetimes.

    PubMed

    Kamminga, Machteld E; Fang, Hong-Hua; Loi, Maria Antonietta; Ten Brink, Gert H; Blake, Graeme R; Palstra, Thomas T M; Ten Elshof, Johan E

    2018-04-18

    The application of luminescent materials in display screens and devices requires micropatterned structures. In this work, we have successfully printed microstructures of a two-dimensional (2D), orange-colored organic/inorganic hybrid perovskite ((C 6 H 5 CH 2 NH 3 ) 2 PbI 4 ) using two different soft lithography techniques. Notably, both techniques yield microstructures with very high aspect ratios in the range of 1.5-1.8. X-ray diffraction reveals a strong preferential orientation of the crystallites along the c-axis in both patterned structures, when compared to nonpatterned, drop-casted thin films. Furthermore, (time-resolved) photoluminescence (PL) measurements reveal that the optical properties of (C 6 H 5 CH 2 NH 3 ) 2 PbI 4 are conserved upon patterning. We find that the larger grain sizes of the patterned films with respect to the nonpatterned film give rise to an enhanced PL lifetime. Thus, our results demonstrate easy and cost-effective ways to manufacture patterns of 2D organic/inorganic hybrid perovskites, while even improving their optical properties. This demonstrates the potential use of color-tunable 2D hybrids in optoelectronic devices.

  19. Photoluminescence Studies of P-type Modulation Doped GaAs/AlGaAs Quantum Wells in the High Doping Regime

    NASA Astrophysics Data System (ADS)

    Wongmanerod, S.; Holtz, P. O.; Reginski, K.; Bugaiski, M.; Monemar, B.

    The influence of high Be-acceptor doping on the modulation-doped GaAs/Al0.3Ga0.7As quantum wells structures has been optically studied by using the low-temperature photoluminescence (PL) and photoluminescence excitation (PLE) techniques.The modulation doped samples were grown by the molecular-beam epitaxy technique with a varying Be acceptor concentration ranging from 1×1018 to 8×1018cm-3. Several novels physical effects were observed. The main effect is a significant shift of the main emission towards lower energies as the doping concentrations increase. There are two contradictory mechanisms, which determine the peak energy of the main emission; the shrinkage of the effective bandgap due to many body effects and the reduction of the exciton binding energy due to the carrier screening effect. We conclude that the first one is the dominating effect. At a sufficiently high doping concentration (roughly 2×1018cm-3), the lineshape of the main PL emission is modified, and a new feature, the so called Fermi-edge singularity (FES), appears on the high energy side of the PL emission and exhibits a blue-shift as a function of doping concentration. This feature has been found to be very sensitive to a temperature change, already in the range of 4.4-50K. In addition, PLE spectra with a suitable detection energy show that the absorption edge is blue-shifted with respect to the PL main emission. The resulting Stoke shift is due to phase-space-filling of the carriers, in agreement with the FES interpretation. Finally, we have found from the PLE spectra that the exciton quenching is initiated in the same doping regime. Compared to the exciton quenching in other p-type structures, the critical acceptor concentration required to quench the excitons is significantly lower than in the case of 2D structures with acceptor doping within the well, but larger than in the case of 3D bulk.

  20. Origin of visible and near-infrared photoluminescence from chemically etched Si nanowires decorated with arbitrarily shaped Si nanocrystals.

    PubMed

    Ghosh, Ramesh; Giri, P K; Imakita, Kenji; Fujii, Minoru

    2014-01-31

    Arrays of vertically aligned single crystalline Si nanowires (NWs) decorated with arbitrarily shaped Si nanocrystals (NCs) have been fabricated by a silver assisted wet chemical etching method. Scanning electron microscopy and transmission electron microscopy are performed to measure the dimensions of the Si NWs as well as the Si NCs. A strong broad band and tunable visible (2.2 eV) to near-infrared (1.5 eV) photoluminescence (PL) is observed from these Si NWs at room temperature (RT). Our studies reveal that the Si NCs are primarily responsible for the 1.5-2.2 eV emission depending on the cross-sectional area of the Si NCs, while the large diameter Si/SiOx NWs yield distinct NIR PL consisting of peaks at 1.07, 1.10 and 1.12 eV. The latter NIR peaks are attributed to TO/LO phonon assisted radiative recombination of free carriers condensed in the electron-hole plasma in etched Si NWs observed at RT for the first time. Since the shape of the Si NCs is arbitrary, an analytical model is proposed to correlate the measured PL peak position with the cross-sectional area (A) of the Si NCs, and the bandgap (E(g)) of nanostructured Si varies as E(g) = E(g) (bulk) + 3.58 A(-0.52). Low temperature PL studies reveal the contribution of non-radiative defects in the evolution of PL spectra at different temperatures. The enhancement of PL intensity and red-shift of the PL peak at low temperatures are explained based on the interplay of radiative and non-radiative recombinations at the Si NCs and Si/SiO(x) interface. Time resolved PL studies reveal bi-exponential decay with size correlated lifetimes in the range of a few microseconds. Our results help to resolve a long standing debate on the origin of visible-NIR PL from Si NWs and allow quantitative analysis of PL from arbitrarily shaped Si NCs.

  1. Effects of post-annealing treatment on the structure and photoluminescence properties of CdS/PS nanocomposites prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-yan

    2016-03-01

    CdS nanocrystals have been successfully grown on porous silicon (PS) by sol-gel method. The plan-view field emission scanning electron microscopy (FESEM) shows that the pore size of PS is smaller than 5 μm in diameter and the agglomerates of CdS are broadly distributed on the surface of PS substrate. With the increase of annealing time, the CdS nanoparticles grow in both length and diameter along the preferred orientation. The cross-sectional FESEM images of ZnO/PS show that CdS nanocrystals are uniformly penetrated into all PS layers and adhere to them very well. photoluminescence (PL) spectra demonstrate that the intensity of PL peak located at about 425 nm has almost no change after the annealing time increases. The range of emission wavelength of CdS/PS is from 425 nm to 455 nm and the PL intensity is decreasing with the annealing temperature increasing from 100 °C to 200 °C.

  2. Thermally enhanced photoluminescence for energy harvesting: from fundamentals to engineering optimization

    NASA Astrophysics Data System (ADS)

    Kruger, N.; Kurtulik, M.; Revivo, N.; Manor, A.; Sabapathy, T.; Rotschild, C.

    2018-05-01

    The radiance of thermal emission, as described by Planck’s law, depends only on the emissivity and temperature of a body, and increases monotonically with the temperature rise at any emitted wavelength. Non-thermal radiation, such as photoluminescence (PL), is a fundamental light–matter interaction that conventionally involves the absorption of an energetic photon, thermalization, and the emission of a redshifted photon. Such a quantum process is governed by rate conservation, which is contingent on the quantum efficiency. In the past, the role of rate conservation for significant thermal excitation had not been studied. Recently, we presented the theory and an experimental demonstration that showed, in contrast to thermal emission, that the PL rate is conserved when the temperature increases while each photon is blueshifted. A further rise in temperature leads to an abrupt transition to thermal emission where the photon rate increases sharply. We also demonstrated how such thermally enhanced PL (TEPL) generates orders of magnitude more energetic photons than thermal emission at similar temperatures. These findings show that TEPL is an ideal optical heat pump that can harvest thermal losses in photovoltaics with a maximal theoretical efficiency of 70%, and practical concepts potentially reaching 45% efficiency. Here we move the TEPL concept onto the engineering level and present Cr:Nd:YAG as device grade PL material, absorbing solar radiation up to 1 μm wavelength and heated by thermalization of energetic photons. Its blueshifted emission, which can match GaAs cells, is 20% of the absorbed power. Based on a detailed balance simulation, such a material coupled with proper photonic management can reach 34% power conversion efficiency. These results raise confidence in the potential of TEPL becoming a disruptive technology in photovoltaics.

  3. Structure and Photoluminescence Properties of β-Ga2O3 Nanofibres Synthesized via Electrospinning Method

    NASA Astrophysics Data System (ADS)

    Sun, Chao; Deng, Jinxiang; Kong, Le; Chen, Liang; Shen, Zhen; Cao, Yisen; Zhang, Hao; Wang, Xiaoran

    2017-12-01

    This paper reported the β-Ga2O3 nanofibres which fabricated by electrospinning, and then calcining in oxygen at 750, 850, 950 and 1050°C. The structure and properties of β-Ga2O3 nanofibers have been studied though kinds of methods such as XRD, Photoluminescence (PL) spectrum, Raman spectrum, Scanning electron microscope (SEM) and FT-IR. The diameters of these nanofibres are from 60 to 130nm and the lengths of these nanofibres are about couple millimetres. The spectrum of PL which excitation at 365nm gave us the information that the emission peak of these β-Ga2O3 nanofibres is about 470nm, it may be coursed by the various defects including the vacancies of gallium and oxygen and the gallium-oxygen vacancy pairs as well, and observed that with the increasing of the annealing temperature, the emission peaks have a small bule swifting, and the crystallinity become better at the same time.

  4. Photoluminescence and Band Alignment of Strained GaAsSb/GaAs QW Structures Grown by MBE on GaAs

    PubMed Central

    Sadofyev, Yuri G.; Samal, Nigamananda

    2010-01-01

    An in-depth optimization of growth conditions and investigation of optical properties including discussions on band alignment of GaAsSb/GaAs quantum well (QW) on GaAs by molecular beam epitaxy (MBE) are reported. Optimal MBE growth temperature of GaAsSb QW is found to be 470 ± 10 °C. GaAsSb/GaAs QW with Sb content ~0.36 has a weak type-II band alignment with valence band offset ratio QV ~1.06. A full width at half maximum (FWHM) of ~60 meV in room temperature (RT) photoluminescence (PL) indicates fluctuation in electrostatic potential to be less than 20 meV. Samples grown under optimal conditions do not exhibit any blue shift of peak in RT PL spectra under varying excitation.

  5. Photoluminescence varied by selective excitation in BiGdWO6:Eu3+ phosphor

    NASA Astrophysics Data System (ADS)

    Pavani, K.; Graça, M. P. F.; Kumar, J. Suresh; Neves, A. J.

    2017-12-01

    Eu3+ doped bismuth gadolinium tungstate (BGW), a simplest member of Aurivillius family of layered perovskites, was synthesized by solid-state reaction method. Structural characterisation has been performed by X-Ray diffraction (XRD), Raman spectroscopy, Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Band gap of the host matrix has been calculated using reflectance and absorption spectra. Three different mechanisms were found to explain the excitation of Eu3+ ions and are described in detail. Photoluminescence (PL) spectra of the BGW phosphor doped with Eu3+ ions consist of major emission lines associated with 5D0 → 7FJ (J = 0, 1, 2, 3 and 4) of Eu3+ ion. Site selective PL excitation and emission indicates that Eu3+ ions doped in BiGdWO6 are sensitive to the excitation wavelength without change in the structure. Change in emission spectra were observed when the excitation wavelength was changed. Judd-Ofelt (J-O) parameters were determined from the indirect method to interpret the interactions between the host and dopant ions along with detailed analysis of lifetime measurements.

  6. In situ temperature measurements of reaction spaces under microwave irradiation using photoluminescent probes.

    PubMed

    Ano, Taishi; Kishimoto, Fuminao; Sasaki, Ryo; Tsubaki, Shuntaro; Maitani, Masato M; Suzuki, Eiichi; Wada, Yuji

    2016-05-11

    We demonstrate two novel methods for the measurement of the temperatures of reaction spaces locally heated by microwaves, which have been applied here to two example systems, i.e., BaTiO3 particles covered with a SiO2 shell (BaTiO3-SiO2) and layered tungstate particles. Photoluminescent (PL) probes showing the temperature-sensitivity in their PL lifetimes are located in the nanospaces of the above systems. In the case of BaTiO3-SiO2 core-shell particles, rhodamine B is loaded into the mesopores of the SiO2 shell covering the BaTiO3 core, which generates the heat through the dielectric loss of microwaves. The inner nanospace temperature of the SiO2 shell is determined to be 28 °C higher than the bulk temperature under microwave irradiation at 24 W. On the other hand, Eu(3+) is immobilized in the interlayer space of layered tungstate as the PL probe, showing that the nanospace temperature of the interlayer is only 4 °C higher than the bulk temperature. This method for temperature-measurement is powerful for controlling microwave heating and elucidates the ambiguous mechanisms of microwave special effects often observed in chemical reactions, contributing greatly to the practical application of microwaves in chemistry and materials sciences.

  7. LETTER TO THE EDITOR: Surface passivation of (100) InP by organic thiols and polyimide as characterized by steady-state photoluminescence

    NASA Astrophysics Data System (ADS)

    Schvartzman, M.; Sidorov, V.; Ritter, D.; Paz, Y.

    2001-10-01

    A method for the passivation of indium phosphide, based on thiolated organic self-assembled monolayers (SAMs) that form highly ordered, close-packed structures on the semiconductor surface, is presented. It is shown that the intensity of steady-state photoluminescence (PL) of n-type InP wafers covered with the thiolated SAMs increases significantly (as much as 14-fold) upon their covering with the monolayers. The ease with which one can tailor the outer functional groups of the SAMs provides a way to connect this new class of passivators with standard encapsulators, such as polyimide. Indeed, the PL intensity of SAM-coated InP wafers was not altered upon their overcoating with polyimide, despite the high curing temperature of the polymer (200 °C).

  8. Determination of Low C Concentration in Czochralski-Grown Si for Solar Cell Applications by Liquid-N-Temperature Photoluminescence After Electron Irradiation

    NASA Astrophysics Data System (ADS)

    Tajima, Michio; Kiuchi, Hirotatsu; Higuchi, Fumito; Ishikawa, Yoichiro; Ogura, Atsushi

    2018-05-01

    The effectiveness of liquid-N-temperature photoluminescence (PL) after electron irradiation for quantification of low-level C has been demonstrated in Czochralski (CZ)-grown Si for solar cell applications. We focused on the intensity ratios of the C- and G-lines to the band-edge emission, which were used as indexes for determining the C concentration in the PL activation method at 4.2 K. Good correlations of the ratio between 4.2 K and 77 K were obtained for samples with similar P and O concentrations after electron irradiation at fluence varying from 1 × 1015 cm-2 to 10 × 1015 cm-2. We applied the present method to quantify the C concentration along the solidified fraction in CZ-Si ingots.

  9. Parallel Synthesis of photoluminescent π-conjugated polymers by polymer reactions of an organotitanium polymer with a titanacyclopentadiene unit.

    PubMed

    Matsumura, Yoshimasa; Fukuda, Katsura; Inagi, Shinsuke; Tomita, Ikuyoshi

    2015-04-01

    A regioregular organometallic polymer with titanacyclopentadiene unit, obtained by the reaction of a 2,7-diethynylfluorene derivative and a low-valent titanium complex, is subjected to the reaction with three kinds of electrophiles (i.e., sulfur monochloride, hydrochloric acid, and dichlorophenylphosphine) to give π-conjugated polymers possessing both fluorene and building blocks originated from the transformation of the titanacycles in the main chain. For example, a phosphole-containing polymer whose number-average molecular weight is estimated as 5000 is obtained in 50% yield. The obtained thiophene, butadiene, and phosphole-containing polymers exhibit efficient photoluminescence (PL) with emission colors of blue, green, and yellow, respectively. For example, the phosphole-containing polymer exhibits yellow PL with an emission maximum (Emax ) of 533 nm and a quantum yield (Φ) of 0.37. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Development and application of a ruthenium(II) complex-based photoluminescent and electrochemiluminescent dual-signaling probe for nitric oxide.

    PubMed

    Zhang, Wenzhu; Zhang, Jingmei; Zhang, Hailei; Cao, Liyan; Zhang, Run; Ye, Zhiqiang; Yuan, Jingli

    2013-11-15

    A ruthenium(II) complex, [Ru(bpy)2(DA-phen)](PF6)2 (bpy: 2,2'-bipyridine; DA-phen: 5,6-diamino-1,10-phenanthroline), has been developed as a photoluminescent (PL) and electrochemiluminescent (ECL) dual-signaling probe for the highly sensitive and selective detection of nitric oxide (NO) in aqueous and biological samples. Due to the presence of electron transfer process from diamino group to the excited-state of the Ru(II) complex, the PL and ECL intensities of the probe are very weak. After the probe was reacted with NO in physiological pH aqueous media under aerobic conditions to afford its triazole derivative, [Ru(bpy)2(TA-phen)](2+) (TA-phen: 5,6-triazole-1,10-phenanthroline), the electron transfer process was inhibited, so that the PL and ECL efficiency of the Ru(II) complex was remarkably increased. The PL and ECL responses of the probe to NO in physiological pH media are highly sensitive with the detection limits at low micromolar concentration level, and highly specific without the interferences of other reactive oxygen/nitrogen species (ROS/RNS) and metal ions. Moreover, the probe has good cell-membrane permeability, and can be rapidly transferred into living cells for trapping the intracellular NO molecules. These features enabled the probe to be successfully used for the monitoring of the endogenous NO production in living biological cell and tissue samples with PL and ECL dual-modes. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Tuning effect of polysaccharide Chitosan on structural, morphological, optical and photoluminescence properties of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Magesh, G.; Bhoopathi, G.; Nithya, N.; Arun, A. P.; Ranjith Kumar, E.

    2018-05-01

    Chitosan/ZnO nanocomposites was synthesized by in-situ chemical precipitation method. The effect of polysaccharide Chitosan concentration (0.1 g, 0.5 g, 1 g and 3 g) was investigated by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) with Energy dispersive spectroscopy (EDX), High Resolution Transmission Electron Microscopy (HRTEM), UV-visible (UV), Fourier Transform Infrared (FTIR) and Photoluminescence Spectroscopy (PL). XRD pattern confirms the hexagonal wurtzite structure of the Chitosan/ZnO nanocomposites. The structural morphology and the elemental composition of the samples were analysed by FESEM and EDX respectively. From TEM analysis, it is observed that the particles in spindle shape morphology with average particle size ranges 10-20 nm. UV-Vis analysis reveals that the Chitosan concentration affect the absorption band edge and shift towards lower wavelength. The oxygen vacancy induced photoluminescence of ZnO nanoparticles was observed and its intensity decreases by tuning the Chitosan concentration.

  12. Nano Mechanical Machining Using AFM Probe

    NASA Astrophysics Data System (ADS)

    Mostofa, Md. Golam

    Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces

  13. Novel photoluminescence enzyme immunoassay based on supramolecular host-guest recognition using L-arginine/6-aza-2-thiothymine-stabilized gold nanocluster.

    PubMed

    Wang, Youmei; Lu, Minghua; Tang, Dianping

    2018-06-30

    A new photoluminescence (PL) enzyme immunoassay was designed for sensitive detection of aflatoxin B 1 (AFB 1 ) via an innovative enzyme substrate, 6-aza-2-thiothymine-stabilized gold nanocluster (AAT-AuNC) with L-arginine. The enzyme substrate with strong PL intensity was formed through supramolecular host-guest assembly between guanidine group of L-arginine and AAT capped on the surface of AuNC. Upon arginase introduction, the captured L-arginine was hydrolyzed into ornithine and urea, thus resulting in the decreasing PL intensity. Based on this principle, a novel competitive-type immunoreaction was first carried out on AFB 1 -bovine serum albumin (AFB 1 -BSA) conjugate-coated microplate, using arginase-labeled anti-AFB 1 antibody as the competitor. Under the optimum conditions, the PL intensity increased with the increment of target AFB 1 , and allowed the detection of the analyte at concentrations as low as 3.2 pg mL -1 (ppt). Moreover, L-arginine-AAT-AuNC-based PL enzyme immunoassay afforded good reproducibility and acceptable specificity. In addition, the accuracy of this methodology, referring to commercial AFB 1 ELISA kit, was evaluated to analyze naturally contaminated or spiked peanut samples, giving well-matched results between two methods, thus representing a useful scheme for practical application in quantitative monitoring of mycotoxins in foodstuff. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Photoluminescence of Molecular Beam Epitaxy-Grown Mercury Cadmium Telluride: Comparison of HgCdTe/GaAs and HgCdTe/Si Technologies

    NASA Astrophysics Data System (ADS)

    Mynbaev, K. D.; Bazhenov, N. L.; Dvoretsky, S. A.; Mikhailov, N. N.; Varavin, V. S.; Marin, D. V.; Yakushev, M. V.

    2018-05-01

    Properties of HgCdTe films grown by molecular beam epitaxy on GaAs and Si substrates have been studied by performing variable-temperature photoluminescence (PL) measurements. A substantial difference in defect structure between films grown on GaAs (013) and Si (013) substrates was revealed. HgCdTe/GaAs films were mostly free of defect-related energy levels within the bandgap, which was confirmed by PL and carrier lifetime measurements. By contrast, the properties of HgCdTe/Si films are affected by uncontrolled point defects. These could not be always associated with typical "intrinsic" HgCdTe defects, such as mercury vacancies, so consideration of other defects, possibly inherent in HgCdTe/Si structures, was required. The post-growth annealing was found to have a positive effect on the defect structure by reducing the full-widths at half-maximum of excitonic PL lines for both types of films and lowering the concentration of defects specific to HgCdTe/Si.

  15. Photoluminescence Enhancement of CuInS 2 Quantum Dots in Solution Coupled to Plasmonic Gold Nanocup Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peer, Akshit; Hu, Zhongjian; Singh, Ajay

    A strong plasmonic enhancement of photoluminescence (PL) decay rate in quantum dots (QDs) coupled to an array of gold-coated nanocups is demonstrated. CuInS2 QDs that emit at a wavelength that overlaps with the extraordinary optical transmission (EOT) of the gold nanocup array are placed in the cups as solutions. Time-resolved PL reveals that the decay rate of the QDs in the plasmonically coupled system can be enhanced by more than an order of magnitude. Using finite-difference time-domain (FDTD) simulations, it is shown that this enhancement in PL decay rate results from an enhancement factor of ≈100 in electric field intensitymore » provided by the plasmonic mode of the nanocup array, which is also responsible for the EOT. The simulated Purcell factor approaches 86 at the bottom of the nanocup and is ≈3–15 averaged over the nanocup cavity height, agreeing with the experimental enhancement result. In conclusion, this demonstration of solution-based coupling between QDs and gold nanocups opens up new possibilities for applications that would benefit from a solution environment such as biosensing.« less

  16. Photoluminescence Enhancement of CuInS 2 Quantum Dots in Solution Coupled to Plasmonic Gold Nanocup Array

    DOE PAGES

    Peer, Akshit; Hu, Zhongjian; Singh, Ajay; ...

    2017-07-05

    A strong plasmonic enhancement of photoluminescence (PL) decay rate in quantum dots (QDs) coupled to an array of gold-coated nanocups is demonstrated. CuInS2 QDs that emit at a wavelength that overlaps with the extraordinary optical transmission (EOT) of the gold nanocup array are placed in the cups as solutions. Time-resolved PL reveals that the decay rate of the QDs in the plasmonically coupled system can be enhanced by more than an order of magnitude. Using finite-difference time-domain (FDTD) simulations, it is shown that this enhancement in PL decay rate results from an enhancement factor of ≈100 in electric field intensitymore » provided by the plasmonic mode of the nanocup array, which is also responsible for the EOT. The simulated Purcell factor approaches 86 at the bottom of the nanocup and is ≈3–15 averaged over the nanocup cavity height, agreeing with the experimental enhancement result. In conclusion, this demonstration of solution-based coupling between QDs and gold nanocups opens up new possibilities for applications that would benefit from a solution environment such as biosensing.« less

  17. Highly Stable Near-Unity Photoluminescence Yield in Monolayer MoS2 by Fluoropolymer Encapsulation and Superacid Treatment.

    PubMed

    Kim, Hyungjin; Lien, Der-Hsien; Amani, Matin; Ager, Joel W; Javey, Ali

    2017-05-23

    Recently, there has been considerable research interest in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) for future optoelectronic applications. It has been shown that surface passivation with the organic nonoxidizing superacid bis(trifluoromethane)sulfonamide (TFSI) produces MoS 2 and WS 2 monolayers whose recombination is at the radiative limit, with a photoluminescence (PL) quantum yield (QY) of ∼100%. While the surface passivation persists under ambient conditions, exposure to conditions such as water, solvents, and low pressure found in typical semiconductor processing degrades the PL QY. Here, an encapsulation/passivation approach is demonstrated that yields near-unity PL QY in MoS 2 and WS 2 monolayers which are highly stable against postprocessing. The approach consists of two simple steps: encapsulation of the monolayers with an amorphous fluoropolymer and a subsequent TFSI treatment. The TFSI molecules are able to diffuse through the encapsulation layer and passivate the defect states of the monolayers. Additionally, we demonstrate that the encapsulation layer can be patterned by lithography and is compatible with subsequent fabrication processes. Therefore, our work presents a feasible route for future fabrication of highly efficient optoelectronic devices based on TMDCs.

  18. Long tailed trions in monolayer MoS2: Temperature dependent asymmetry and resulting red-shift of trion photoluminescence spectra.

    PubMed

    Christopher, Jason W; Goldberg, Bennett B; Swan, Anna K

    2017-10-25

    Monolayer molybdenum disulfide (MoS 2 ) has emerged as a model system for studying many-body physics because the low dimensionality reduces screening leading to tightly bound states stable at room temperature. Further, the many-body states possess a pseudo-spin degree of freedom that corresponds with the two direct-gap valleys of the band structure, which can be optically manipulated. Here we focus on one bound state, the negatively charged trion. Unlike excitons, trions can radiatively decay with non-zero momentum by kicking out an electron, resulting in an asymmetric trion photoluminescence (PL) peak with a long low-energy tail and peak position that differs from the zero momentum trion energy. The asymmetry of the trion PL peak and resulting peak red-shift depends both on the trion size and a temperature-dependent contribution. Ignoring the trion asymmetry will result in over estimating the trion binding energy by nearly 20 meV at room temperature. We analyze the temperature-dependent PL to reveal the effective trion size, consistent with the literature, and the temperature dependence of the band gap and spin-orbit splitting of the valence band. This is the first time the temperature-dependence of the trion PL has been analyzed with such detail in any system.

  19. Thermal degradation of InP in open tube processing: deep-level photoluminescence

    NASA Astrophysics Data System (ADS)

    Banerjee, S.; Srivastava, A. K.; Arora, B. M.

    1990-09-01

    Thermal processing of InP at temperatures above 500 °C is indispensable in the growth and device fabrication of InGaAsP alloy semiconductors for optoelectronic and microwave applications. Incongruous loss of P at these temperatures creates native defects and their complexes. The presence of such defects modifies the electrical and optical properties of the material resulting in poor device performance. In addition, native defects play a significant role in dopant diffusion which is a topic of current interest. We have measured deep-level photoluminescence (PL) on undoped InP after heat treatments at 500 and 550 °C in an open-tube processing system in different protective environments of powder InP, and Sn-InP melt together with an InP cover. In this paper we shall present the PL results which have bearing on the question of defects. We find that (1) the Sn-InP melt provides better protection in preserving the overall luminescence in InP; (2) the deep-level PL related to defects has at least two components in the virgin samples, viz., MnIn, and band C, which is a native defect complex related to VP; (3) a new defect appears in samples heated in a P-deficient environment; and (4) the enhancement in the deep-level luminescence intensity after heat treatment can be attributed to the excess defect concentrations existing under nonequilibrium conditions of an open-tube processing environment.

  20. A label-free silicon quantum dots-based photoluminescence sensor for ultrasensitive detection of pesticides.

    PubMed

    Yi, Yinhui; Zhu, Gangbing; Liu, Chang; Huang, Yan; Zhang, Youyu; Li, Haitao; Zhao, Jiangna; Yao, Shouzhuo

    2013-12-03

    Sensitive, rapid, and simple detection methods for the screening of extensively used organophosphorus pesticides and highly toxic nerve agents are in urgent demand. A novel label-free silicon quantum dots (SiQDs)-based sensor was designed for ultrasensitive detection of pesticides. This sensing strategy involves the reaction of acetylcholine chloride (ACh) with acetylcholinesterase (AChE) to form choline that is in turn catalytically oxidized by choline oxidase (ChOx) to produce betaine and H2O2 which can quench the photoluminescence (PL) of SiQDs. Upon the addition of pesticides, the activity of AChE is inhibited, leading to the decrease of the generated H2O2, and hence the PL of SiQDs increases. By measuring the increase in SiQDs PL, the inhibition efficiency of pesticide to AChE activity was evaluated. It was found that the inhibition efficiency was linearly dependent on the logarithm of the pesticides concentration. Consequently, pesticides, such as carbaryl, parathion, diazinon, and phorate, were determined with the SiQDs PL sensing method. The lowest detectable concentrations for carbaryl, parathion, diazinon, and phorate reached 7.25 × 10(-9), 3.25 × 10(-8), 6.76 × 10(-8), and 1.9 × 10(-7) g/L, respectively, which were much lower than those previously reported. The detecting results of pesticide residues in food samples via this method agree well with those from high-performance liquid chromatography. The simple strategy reported here should be suitable for on-site pesticides detection, especially in combination with other portable platforms.

  1. Highly luminescent material based on Alq3:Ag nanoparticles.

    PubMed

    Salah, Numan; Habib, Sami S; Khan, Zishan H

    2013-09-01

    Tris (8-hydroxyquinoline) aluminum (Alq3) is an organic semiconductor molecule, widely used as an electron transport layer, light emitting layer in organic light-emitting diodes and a host for fluorescent and phosphorescent dyes. In this work thin films of pure and silver (Ag), cupper (Cu), terbium (Tb) doped Alq3 nanoparticles were synthesized using the physical vapor condensation method. They were fabricated on glass substrates and characterized by X-ray diffraction, scanning electron microscope (SEM), energy dispersive spectroscopy, atomic force microscope (AFM), UV-visible absorption spectra and studied for their photoluminescence (PL) properties. SEM and AFM results show spherical nanoparticles with size around 70-80 nm. These nanoparticles have almost equal sizes and a homogeneous size distribution. The maximum absorption of Alq3 nanoparticles is observed at 300 nm, while the surface plasmon resonant band of Ag doped sample appears at 450 nm. The PL emission spectra of Tb, Cu and Ag doped Alq3 nanoparticles show a single broad band at around 515 nm, which is similar to that of the pure one, but with enhanced PL intensity. The sample doped with Ag at a concentration ratio of Alq3:Ag = 1:0.8 is found to have the highest PL intensity, which is around 2 times stronger than that of the pure one. This enhancement could be attributed to the surface plasmon resonance of Ag ions that might have increased the absorption and then the quantum yield. These remarkable result suggest that Alq3 nanoparticles incorporated with Ag ions might be quite useful for future nano-optoelectronic devices.

  2. Defect States in Copper Indium Gallium Selenide Solar Cells from Two-Wavelength Excitation Photoluminescence Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Soren A.; Dippo, Patricia; Mansfield, Lorelle M.

    2016-11-21

    We use two-wavelength excitation photoluminescence spectroscopy to probe defect states in CIGS thin films. Above-Eg excitation is combined with a tunable IR bias light that modulates the population of the defect states. We find that IR illumination in the range of 1400-2000 nm (0.62-0.89 eV) causes a reduction of the PL intensity, the magnitude of which scales linearly with IR power. Further, KF post deposition treatment has only a modest influence on the effect of the IR excitation. Initial data suggest that we have developed an optical characterization tool for band-gap defect states.

  3. Measurement of photoluminescence from a twisted-nematic liquid crystal/dye cell for an application in an energy-harvesting display

    NASA Astrophysics Data System (ADS)

    Ohta, Masamichi; Itaya, Shunsuke; Ozawa, Shintaro; Binti, M. Azmi; Dianah, Nada; Fujieda, Ichiro

    2016-09-01

    One can convert a Luminescent Solar Concentrator (LSC) to an energy-harvesting display by scanning a laser beam on it. By incorporating a guest-host system of liquid crystal (LC) and dye materials in an LSC, the power of photoluminescence (PL) utilized for either display or energy-harvesting can be adjusted to the changes in ambient lighting conditions. We have measured basic characteristics of an LC/dye cell with twisted-nematic (TN) alignment. These are absorption of the laser light, PL radiation pattern, contrast of luminance, spreading of the PL generated by a narrow laser beam, and their dependencies on the bias. The results are similar to those of the LC/dye cell with antiparallel (AP) alignment with the following exceptions. First, absorption by the TN cell depends on the bias for both polarization components of the excitation light, while the AP cell exhibits a bias dependency only for the component polarized along the alignment direction. Second, the PL from the TN cell is mostly polarized along the alignment direction on the exit side of the cell while the PL from the AP cell is mostly polarized along its alignment direction. These observations can be attributed to the fact that the polarization plane of a linearly polarized light rotates as it propagated the TN-LC layer. For both AP and TN cells, low-intensity PL is observed from the whole cell surfaces. This can degrade the contrast of a displayed image. Bias application to the cell suppresses this effect.

  4. [AFM fishing of proteins under impulse electric field].

    PubMed

    Ivanov, Yu D; Pleshakova, T O; Malsagova, K A; Kaysheva, A L; Kopylov, A T; Izotov, A A; Tatur, V Yu; Vesnin, S G; Ivanova, N D; Ziborov, V S; Archakov, A I

    2016-05-01

    A combination of (atomic force microscopy)-based fishing (AFM-fishing) and mass spectrometry allows to capture protein molecules from solutions, concentrate and visualize them on an atomically flat surface of the AFM chip and identify by subsequent mass spectrometric analysis. In order to increase the AFM-fishing efficiency we have applied pulsed voltage with the rise time of the front of about 1 ns to the AFM chip. The AFM-chip was made using a conductive material, highly oriented pyrolytic graphite (HOPG). The increased efficiency of AFM-fishing has been demonstrated using detection of cytochrome b5 protein. Selection of the stimulating pulse with a rise time of 1 ns, corresponding to the GHz frequency range, by the effect of intrinsic emission from water observed in this frequency range during water injection into the cell.

  5. Photoluminescence characterisations of a dynamic aging process of organic-inorganic CH3NH3PbBr3 perovskite

    NASA Astrophysics Data System (ADS)

    Sheng, R.; Wen, X.; Huang, S.; Hao, X.; Chen, S.; Jiang, Y.; Deng, X.; Green, M. A.; Ho-Baillie, A. W. Y.

    2016-01-01

    After unprecedented development of organic-inorganic lead halide perovskite solar cells over the past few years, one of the biggest barriers towards their commercialization is the stability of the perovskite material. It is thus important to understand the interaction between the perovskite material and oxygen and/or humidity and the associated degradation process in order to improve device and encapsulation design for better durability. Here we characterize the dynamic aging process in vapour-assisted deposited (VASP) CH3NH3PbBr3 perovskite thin films using advanced optical techniques, such as time-resolved photoluminescence and fluorescence lifetime imaging microscopy (FLIM). Our investigation reveals that the perovskite grains grow spontaneously and the larger grains are formed at room temperature in the presence of moisture and oxygen. This crystallization process leads to a higher density of defects and a shorter carrier lifetime, specifically in the larger grains. Excitation-intensity-dependent steady-state photoluminescence shows both N2 stored and aged perovskite exhibit a super-linear increase of photoluminescence intensity with increasing excitation intensity; and the larger slope in aged sample suggests a larger density of defects is generated, consistent with time-resolved PL measurements.

  6. [Anti-synthetase syndrome: anti-PL-7, anti-PL-12 and anti-EJ].

    PubMed

    Souza, Fernando Henrique Carlos de; Cruellas, Marcela Gran Pina; Levy-Neto, Mauricio; Shinjo, Samuel Katsuyuki

    2013-08-01

    Due to the scarcity of studies in the literature, we conducted an analysis of a series of patients with the anti-PL-7, PL-12 and EJ types of antisynthetase syndrome (ASS). We conducted a retrospective cohort study of 20 patients with ASS (8 with anti-PL-7, 6 with PL-12, 6 with EJ) monitored in our department between 1982 and 2012. The mean patient age at disease onset was 38.5 ± 12.9 years, and the disease duration was 4.5 ± 6.4 years. Of all the patients, 70% were white and 85% were female. Constitutional symptoms occurred in 90% of cases. All patients presented objective muscle weakness in the limbs; in addition, 30% were bedridden and 65% demonstrated high dysphagia at diagnosis. Joint and pulmonary involvement and Raynaud's phenomenon occurred in 50%, 40% and 65% of cases, respectively, with more than half of the patients presenting incipient pneumopathy, ground-glass opacity and/or pulmonary fibrosis. There were no cases of neurological and/or cardiac involvement. All patients received prednisone or other immunosuppressants depending on tolerance, side effects and/or disease refractoriness. Importantly, patients with the anti-EJ type of ASS demonstrated higher rates of recurrence. Two patients died during follow-up, and 1 patient had breast cancer at the time of diagnosis. ASS (anti-PL-7, PL-12 and EJ) was found to predominantly affect white women. Although the autoantibodies described in the present study are more related to pulmonary than joint involvement, our patients showed a significant percentage of both types of involvement and a high percentage of myopathy. We also observed a low mortality rate.

  7. Time-resolved analysis of the white photoluminescence from chemically synthesized SiC{sub x}O{sub y} thin films and nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabassum, Natasha; Nikas, Vasileios; Ford, Brian

    2016-07-25

    The study reported herein presents results on the room-temperature photoluminescence (PL) dynamics of chemically synthesized SiC{sub x}O{sub y≤1.6} (0.19 < x < 0.6) thin films and corresponding nanowire (NW) arrays. The PL decay transients of the SiC{sub x}O{sub y} films/NWs are characterized by fast luminescence decay lifetimes that span in the range of 350–950 ps, as determined from their deconvoluted PL decay spectra and their stretched-exponential recombination behavior. Complementary steady-state PL emission peak position studies for SiC{sub x}O{sub y} thin films with varying C content showed similar characteristics pertaining to the variation of their emission peak position with respect to the excitation photon energy.more » A nearly monotonic increase in the PL energy emission peak, before reaching an energy plateau, was observed with increasing excitation energy. This behavior suggests that band-tail states, related to C-Si/Si-O-C bonding, play a prominent role in the recombination of photo-generated carriers in SiC{sub x}O{sub y}. Furthermore, the PL lifetime behavior of the SiC{sub x}O{sub y} thin films and their NWs was analyzed with respect to their luminescence emission energy. An emission-energy-dependent lifetime was observed, as a result of the modulation of their band-tail states statistics with varying C content and with the reduced dimensionality of the NWs.« less

  8. Porous silicon based photoluminescence immunosensor for rapid and highly-sensitive detection of Ochratoxin A.

    PubMed

    Myndrul, Valerii; Viter, Roman; Savchuk, Maryna; Shpyrka, Nelya; Erts, Donats; Jevdokimovs, Daniels; Silamiķelis, Viesturs; Smyntyna, Valentyn; Ramanavicius, Arunas; Iatsunskyi, Igor

    2018-04-15

    A rapid and low cost photoluminescence (PL) immunosensor for the determination of low concentrations of Ochratoxin A (OTA) has been developed. This immunosensor was based on porous silicon (PSi) and modified by antibodies against OTA (anti-OTA). PSi layer was fabricated by metal-assisted chemical etching (MACE) procedure. Main structural parameters (pore size, layer thickness, morphology and nanograins size) and composition of PSi were investigated by means of X-Ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy. PL-spectroscopy of PSi was performed at room temperature and showed a wide emission band centered at 680 ± 20nm. Protein A was covalently immobilized on the surface of PSi, which in next steps was modified by anti-OTA and BSA in this way a anti-OTA/Protein-A/PSi structure sensitive towards OTA was designed. The anti-OTA/Protein-A/PSi-based immunosensors were tested in a wide range of OTA concentrations from 0.001 upto 100ng/ml. Interaction of OTA with anti-OTA/Protein-A/PSi surface resulted in the quenching of photoluminescence in comparison to bare PSi. The limit of detection (LOD) and the sensitivity range of anti-OTA/Protein-A/PSi immunosensors were estimated. Association constant and Gibbs free energy for the interaction of anti-OTA/Protein-A/PSi with OTA were calculated and analyzed using the interaction isotherms. Response time of the anti-OTA/Protein-A/PSi-based immunosensor toward OTA was in the range of 500-700s. These findings are very promising for the development of highly sensitive, and potentially portable immunosensors suitable for fast determination of OTA in food and beverages. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Time-Resolved Photoluminescence Studies of Si-doped AlGaN alloys

    NASA Astrophysics Data System (ADS)

    Nam, K. B.; Li, J.; Nakarmi, M. L.; Lin, J. Y.; Jiang, H. X.

    2002-03-01

    Si-doped n-type Al x Ga_1-x N alloys with x between 0.3 and 0.5 were grown by metal-organic chemical vapor deposition (MOCVD) on sapphire substrates. Time-resolved photoluminescence (PL) emission spectroscopy and variable temperature Hall-effect measurements were employed to study the optical and electrical properties of these epilayers. Our electrical data revealed that the conductivity of Si-doped Al x Ga_1-x N alloys (x > 0.4) increases with an increase of the Si doping concentration (N_Si) for a fixed x value and exhibits a sharp increase around N_Si= 1x10 ^18cm-3, suggesting the existence of a critical Si doping concentration needed to convert insulating Al x Ga_1-x N alloys (x > 0.4) to n-type conductivity. Time-resolved PL studies also showed that PL decay lifetime and activation energy decrease sharply when Si-doping concentration increases from N_Si= 0 to 1x10 ^18cm-3and then followed by gradual decreases as N_Si further increases. Our results thus suggest that Si-doping reduces the effect of carrier localization in Al x Ga_1-x N alloys and a sharp drop in carrier localization energy occurs at N_Si= 1x10 ^18cm-3, which is the critical Si-doping concentration needed to fill up the localized states in Al x Ga_1-x N alloys (x > 0.4). The implications of these results to UV optoelectronic devices are also discussed.

  10. Room temperature photoluminescence properties of ZnO nanorods grown by hydrothermal reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwan, S., E-mail: iwan-sugihartono@unj.ac.id; Prodi Ilmu Material, Departemen Fisika, FMIPA, Universitas Indonesia, Kampus UI Depok; Fauzia, Vivi

    Zinc oxide (ZnO) nanorods were fabricated by a hydrothermal reaction on silicon (Si) substrate at 95 °C for 6 hours. The ZnO seed layer was fabricated by depositing ZnO thin films on Si substrates by ultrasonic spray pyrolisis (USP). The annealing effects on crystal structure and optical properties of ZnO nanorods were investigated. The post-annealing treatment was performed at 800 °C with different environments. The annealed of ZnO nanorods were characterized by X-ray diffraction (XRD) and photoluminescence (PL) in order to analyze crystal structure and optical properties, respectively. The results show the orientations of [002], [101], [102], and [103] diffractionmore » peaks were observed and hexagonal wurtzite structure of ZnO nanorods were vertically grown on Si substrates. The room temperature PL spectra show ultra-violet (UV) and visible emissions. The annealed of ZnO nanorods in vacuum condition (3.8 × 10{sup −3} Torr) has dominant UV emission. Meanwhile, non-annealed of ZnO nanorods has dominant visible emission. It was expected that the annealed of ZnO in vacuum condition suppresses the existence of native defects in ZnO nanorods.« less

  11. Comparison of long-term outcome between anti-Jo1- and anti-PL7/PL12 positive patients with antisynthetase syndrome.

    PubMed

    Marie, I; Josse, S; Decaux, O; Dominique, S; Diot, E; Landron, C; Roblot, P; Jouneau, S; Hatron, P Y; Tiev, K P; Vittecoq, O; Noel, D; Mouthon, L; Menard, J-F; Jouen, F

    2012-08-01

    The aims of the present study were to: compare the characteristics between antisynthetase syndrome (ASS) patients with anti-Jo1 antibody and those with anti-PL7/PL12 antibody. The medical records of 95 consecutive patients with ASS were reviewed. Seventy-five of these patients had anti-Jo1 antibody; the other patients had anti-PL7 (n=15) or anti-PL12 (n=5) antibody. At ASS diagnosis, the prevalence of myalgia (p=0.007) and muscle weakness (p=0.02) was significantly lower in the group of anti-PL7/PL12-positive patients than in those with anti-Jo1 antibody; median value of CK (p=0.00003) was also lower in anti-PL7/PL12 patients. Anti-Jo1 positive patients developed more rarely myositis resolution (21.3% vs. 46.2%); in addition, the overall recurrence rate of myositis was higher in anti-Jo1 positive patients than in patients with anti-PL7/PL12 antibody (65.9% vs. 19.4%). Anti-Jo1-positive patients, compared with those with anti-PL7/PL12 antibody, more often experienced: joint involvement (63.3%vs. 40%) and cancer (13.3% vs. 5%). By contrast, anti-PL7/PL12 positive patients, compared with those with anti-Jo1 antibody, more commonly exhibited: ILD (90% vs. 68%); in anti-PL7/PL12 positive patients, ILD was more often symptomatic at diagnosis, and led more rarely to resolution of lung manifestations (5.6% vs. 29.4%). Finally, the group of anti-PL7/PL12 positive patients more commonly experienced gastrointestinal manifestations related to ASS (p=0.02). Taken together, although anti-Jo1 positive patients with ASS share some features with those with anti-PL7/PL12 antibody, they exhibit many differences regarding clinical phenotype and long-term outcome. Our study underscores that the presence of anti-Jo1 antibody results in more severe myositis, joint impairment and increased risk of cancer. On the other hand, the presence of anti-PL7/PL12 antibody is markedly associated with: early and severe ILD, and gastrointestinal complications. Thus, our study interestingly indicates

  12. A novel ascorbic acid sensor based on the Fe3+/Fe2+ modulated photoluminescence of CdTe quantum dots@SiO2 nanobeads.

    PubMed

    Ma, Qiang; Li, Yang; Lin, Zi-Han; Tang, Guangchao; Su, Xing-Guang

    2013-10-21

    In this paper, CdTe quantum dot (QD)@silica nanobeads were used as modulated photoluminescence (PL) sensors for the sensing of ascorbic acid in aqueous solution for the first time. The sensor was developed based on the different quenching effects of Fe(2+) and Fe(3+) on the PL intensity of the CdTe QD@ silica nanobeads. Firstly, the PL intensity of the CdTe QDs was quenched in the presence of Fe(3+). Although both Fe(2+) and Fe(3+) could quench the PL intensity of the CdTe QDs, the quenching efficiency were quite different for Fe(2+) and Fe(3+). The PL intensity of the CdTe QD@silica nanobeads can be quenched by about 15% after the addition of Fe(3+) (60 μmol L(-1)), while the PL intensity of the CdTe QD@silica nanobeads can be quenched about 49% after the addition of Fe(2+) (60 μmol L(-1)). Therefore, the PL intensity of the CdTe QD@silica nanobeads decreased significantly when Fe(3+) was reduced to Fe(2+) by ascorbic acid. To confirm the strategy of PL modulation in this sensing system, trace H2O2 was introduced to oxidize Fe(2+) to Fe(3+). As a result, the PL intensity of the CdTe QD@silica nanobeads was partly recovered. The proposed sensor could be used for ascorbic acid sensing in the concentration range of 3.33-400 μmol L(-1), with a detection limit (3σ) of 1.25 μmol L(-1) The feasibility of the proposed sensor for ascorbic acid determination in tablet samples was also studied, and satisfactory results were obtained.

  13. Soil burial method for plastic degradation performed by Pseudomonas PL-01, Bacillus PL-01, and indigenous bacteria

    NASA Astrophysics Data System (ADS)

    Shovitri, Maya; Nafi'ah, Risyatun; Antika, Titi Rindi; Alami, Nur Hidayatul; Kuswytasari, N. D.; Zulaikha, Enny

    2017-06-01

    Lately, plastic bag is becoming the most important pollutant for environment since it is difficult to be naturally degraded due to it consists of long hydrocarbon polymer chains. Our previous study indicated that our pure isolate Pseudomonas PL-01 and Bacillus PL-01 could degrade about 10% plastic bag. This present study was aimed to find out whether Pseudomonas PL01 and Bacillus PL01 put a positive effect to indigenous bacteria from marginal area in doing plastic degradation with a soil burial method. Beach sand was used as a representative marginal area, and mangrove sediment was used as a comparison. Plastics were submerged into unsterile beach sand with 10% of Pseudomonas PL-01 or Bacillus PL-01 containing liquid minimal salt medium (MSM) separately, while other plastics were submerged into unsterile mangrove sediments. After 4, 8, 12 and 16 weeks, their biofilm formation on their plastic surfaces and plastic degradation were measured. Results indicated that those 2 isolates put positive influent on biofilm formation and plastic degradation for indigenous beach sand bacteria. Bacillus PL-01 put higher influent than Pseudomonas PL-01. Plastic transparent was preferable degraded than black and white plastic bag `kresek'. But anyhow, indigenous mangrove soil bacteria showed the best performance in biofilm formation and plastic degradation, even without Pseudomonas PL-01 or Bacillus PL-01 addition. Fourier Transform Infrared (FTIR) analysis complemented the results; there were attenuated peaks with decreasing peaks transmittances. This FTIR peaks indicated chemical functional group changes happened among the plastic compounds after 16 weeks incubation time.

  14. Biological Applications of FM-AFM in Liquid Environment

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi; Jarvis, Suzanne P.

    Atomic force microscopy (AFM) was noted for its potential to study biological materials shortly after its first development in 1986 due to its ability to image insulators in liquid environments. The subsequent application of AFM to biology has included lateral characterization via imaging, unraveling of molecules under a tensile load and application of a force either to measure mechanical properties under the tip or to instigate a biochemical response in living cells. To date, the application of frequency modulation AFM (FM-AFM) specifically to biological materials has been limited to relatively few research groups when compared to the extensive application of AFM to biological materials. This is probably due to the perceived complexity of the technique both by researchers in the life sciences and those manufacturing liquid AFMs for biological research. In this chapter, we aim to highlight the advantages of applying the technique to biological materials.

  15. Visible photoluminescence of color centers in LiF crystals for absorbed dose evaluation in clinical dosimetry

    NASA Astrophysics Data System (ADS)

    Villarreal-Barajas, J. E.; Piccinini, M.; Vincenti, M. A.; Bonfigli, F.; Khan, R. F.; Montereali, R. M.

    2015-04-01

    Among insulating materials, lithium fluoride (LiF) has been successfully used as ionizing radiation dosemeter for more than 60 years. Thermoluminescence (TL) has been the most commonly used reading technique to evaluate the absorbed dose. Lately, optically stimulated luminescence (OSL) of visible emitting color centers (CCs) has also been explored in pure and doped LiF. This work focuses on the experimental behaviour of nominally pure LiF crystals dosemeters for 6 MV x rays at low doses based on photoluminescence (PL) of radiation induced CCs. Polished LiF crystals were irradiated using 6 MV x rays produced by a clinical linear accelerator. The doses (absorbed dose to water) covered the 1-100 Gy range. Optical absorption spectra show stable formation of primary F defects up to a maximum concentration of 2×1016 cm-3, while no significant M absorption band at around 450 nm was detected. On the other hand, under Argon laser excitation at 458 nm, PL spectra of the irradiated LiF crystals clearly exhibited the characteristic F2 and F+3 visible broad emission bands. Their sum intensity is linearly proportional to the absorbed dose in the investigated range. PL integrated intensity was also measured using a conventional fluorescence optical microscope under blue lamp illumination. The relationship between the absorbed dose and the integrated F2 and F+3 PL intensities, represented by the net average pixel number in the optical fluorescence images, is also fairly linear. Even at the low point defect densities obtained at the investigated doses, these preliminary experimental results are encouraging for further investigation of CCs PL in LiF crystals for clinical dosimetry.

  16. Excitation intensity dependent photoluminescence of annealed two-dimensional MoS2 grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kaplan, D.; Mills, K.; Lee, J.; Torrel, S.; Swaminathan, V.

    2016-06-01

    Here, we present detailed results of Raman and photoluminescence (PL) characterization of monolayers of MoS2 grown by chemical vapor deposition (CVD) on SiO2/Si substrates after thermal annealing at 150 °C, 200 °C, and 250 °C in an argon atmosphere. In comparison to the as-grown monolayers, annealing in the temperature range of 150-250 °C brings about significant changes in the band edge luminescence. It is observed that annealing at 150 °C gives rise to a 100-fold increase in the PL intensity and produces a strong band at 1.852 eV attributed to a free-to-bound transition that dominates over the band edge excitonic luminescence. This band disappears for the higher annealing temperatures. The improvement in PL after the 200 °C anneal is reduced in comparison to that obtained after the 150 °C anneal; this is suggested to arise from a decrease in the non-radiative lifetime caused by the creation of sulfur di-vacancies. Annealing at 250 °C degrades the PL in comparison to the as-grown sample because of the onset of disorder/decomposition of the sample. It is clear that the PL features of the CVD-grown MoS2 monolayer are profoundly affected by thermal annealing in Ar atmosphere. However, further detailed studies are needed to identify, unambiguously, the role of native defects and/or adsorbed species in defining the radiative channels in annealed samples so that the beneficial effect of improvement in the optical efficiency of the MoS2 monolayers can be leveraged for various device applications.

  17. A photoluminescence study of the effects of hydrogen on deep levels in MBE grown GaAlAs:Si

    NASA Astrophysics Data System (ADS)

    Bosacchi, A.; Franchi, S.; Vanzetti, L.; Allegri, P.; Grilli, E.; Guzzi, M.; Zamboni, R.; Pavesi, L.

    1991-04-01

    We present a study on low-temperature photoluminescence (PL) of Si-doped Ga 1- xAl xAs ( n ~ 1 × 10 17 cm -3, 0.2 ⩽ x ⩽ 0.5) grown by MBE in the presence and in the absence of a hydrogen backpressure, and post-growth hydrogenated or not, by exposure to a hydrogen plasma. The PL spectra of GaAlAs grown without hydrogen are dominated by transitions involving relatively deep donors and/or acceptors independently on whether the material is post-growth hydrogenated. On the contrary, the spectra of GaAlAs grown in the presence of hydrogen are characterized by recombinations related to excitons and/or to shallow donors and acceptors. Both the in-situ and the ex-situ processes result in PL efficiency enhancements, which are definitely larger (by a factor of up to 20) when the former treatment is used. All of the above results suggest that the ex-situ and the in-situ treatments may affect deep levels of different origin, such as DX centers (related to the band structure of the semiconductor) and levels associated to Al-O complexes, respectively.

  18. Temperature dependent photoreflectance and photoluminescence characterization of GaInNAs /GaAs single quantum well structures

    NASA Astrophysics Data System (ADS)

    Chen, T. H.; Huang, Y. S.; Lin, D. Y.; Tiong, K. K.

    2004-12-01

    Ga0.69In0.31NxAs1-x/GaAs single quantum well (SQW) structures with three different nitrogen compositions ( x =0%, 0.6%, and 0.9%) have been characterized, as functions of temperature in the range 10-300K, by the techniques of photoreflectance (PR) and photoluminescence (PL). In PR spectra, clear Franz-Keldysh oscillations (FKOs) above the GaAs band edge and the various excitonic transitions originating from the QW region have been observed. The built-in electric field in the SQW has been determined from FKOs and found to increase with N concentration. The PR signal has been found to decrease for nitrogen incorporated samples when the temperature was lowered due to a weakening of the modulation efficiency induced by carrier localization. A careful analysis of PR and PL spectra has led to the identification of various excitonic transitions, mnH(L), between the mth conduction band state and the nth heavy (light)-hole band state. The anomalous temperature dependent 11H transition energy and linewidth observed in the PL spectra have been explained as originating from the localized states as a result of nitrogen incorporation. The temperature dependence analysis yields information on the parameters that describe the temperature variations of the interband transitions.

  19. Experimental and theoretical photoluminescence studies in nucleic acid assembled gold-upconverting nanoparticle clusters.

    PubMed

    He, Liangcan; Mao, Chenchen; Cho, Suehyun; Ma, Ke; Xi, Weixian; Bowman, Christopher N; Park, Wounjhang; Cha, Jennifer N

    2015-11-07

    Combinations of rare earth doped upconverting nanoparticles (UCNPs) and gold nanostructures are sought as nanoscale theranostics due to their ability to convert near infrared (NIR) photons into visible light and heat, respectively. However, because the large NIR absorption cross-section of the gold coupled with their thermo-optical properties can significantly hamper the photoluminescence of UCNPs, methods to optimize the ratio of gold nanostructures to UCNPs must be developed and studied. We demonstrate here nucleic acid assembly methods to conjugate spherical gold nanoparticles (AuNPs) and gold nanostars (AuNSs) to silica-coated UCNPs and probe the effect on photoluminescence. These studies showed that while UCNP fluorescence enhancement was observed from the AuNPs conjugated UCNPs, AuNSs tended to quench fluorescence. However, conjugating lower ratios of AuNSs to UCNPs led to reduced quenching. Simulation studies both confirmed the experimental results and demonstrated that the orientation and distance of the UCNP with respect to the core and arms of the gold nanostructures played a significant role in PL. In addition, the AuNS-UCNP assemblies were able to cause rapid gains in temperature of the surrounding medium enabling their potential use as a photoimaging-photodynamic-photothermal agent.

  20. High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals

    DOE PAGES

    Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, Lynn A.; ...

    2016-01-01

    Here, Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-dopants. We present high-resolution photoluminescence spectroscopy studies of unintentionally doped and Sn doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I10 bound exciton transition which was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. PL linewidths are exceptionally sharp for these samples, enabling clear identification of several donor species. Temperature dependent PL measurements of the I10 line emission energy and intensity dependence reveal a behavior similar tomore » other shallow donors in ZnO. Ionized donor bound exciton and two electron satellite transitions of the I10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule), confirming the shallow nature of this defect center, which we attribute to a SnZn double donor compensated by an unknown single acceptor.« less

  1. Photoluminescence Investigation of p-type GaAs/AlGaAs Quantum Well Infrared Detectors(QWIPs) Designed for Normal Incidence Detection in the 10 micron region.

    NASA Astrophysics Data System (ADS)

    Hegde, S. M.; Brown, Gail J.; Capano, Michael; Eyink, Kurt

    1997-03-01

    We have investigated MBE grown p-type, GaAs/AlGaAs QWIPs by photoluminescence spectroscopy. Excitation intensity, and temperature dependent photoluminescence spectra from 4.5K to 295K were studied. The PL-spectra were fitted with multiple gaussians to extract information on inter-subband (c1-hh1) peak loactions, full width at half maximum(FWHM), intensity and integrated intensity. A detailed analysis of the origin of the observed peaks and their thermal actiavtion energies was carried out. X-ray diffraction measurements were used to confirm the high qualiuty of the grown MQW structures and the Al-composition in the AlGaAs barriers. Temperature dependent photoconductivity measurements were used to measure the relative photoresponse from the hh1-to-continuum states in the valence subband transitions of these detector structures in the 10 micron region. It is found that high photoluminescence efficiency for the intersubband free-to-free transition at higher temperatures correl! ates with good photoresponse at th ose higher temperatures.

  2. Photoluminescence of Alq3 - and Tb-activated aluminium-tris(8-hydroxyquinoline) complex for blue chip-excited OLEDs.

    PubMed

    Yawalkar, P W; Dhoble, S J; Thejo Kalyani, N; Atram, R G; Kokode, N S

    2013-01-01

    The tris(8-hydroxyquinoline)-aluminium complex is the most important and widely studied as electron transporting and green light emitting material. Alq(3) and Tb(x) Al((1-x)) q(3) have been synthesized (where x = 0.1, 0.3, 0.5, 0.7 and 0.9) and blended films of Alq(3) and Tb(x) Al((1-x)) q(3) with PMMA and PS at different percentage weight (wt%) concentrations (e.g., 0.1, 1, 5, 10, 25 and 50 wt%) have been prepared. The synthesized materials and their blended thin films have been characterized by a photoluminescence (PL) technique; the synthesis and PL characterization are reported in this paper. The synthesized metal complex shows bright emission of green light with blue light excitation (440 nm) and the prepared Tb(x) Al((1-x)) q(3) phosphor may be applicable in blue chip-excited OLEDs for the newly developed wallpaper lighting technology. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Investigation of Oxidation Profile in PMR-15 Polyimide using Atomic Microscope (AFM)

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Johnson, Lili L.; Eby, R. K.

    2002-01-01

    Nanoindentation measurements are made on thermosetting materials using cantiever deflection vs. piezoelectric scanner position behavior determined by AFM. The spring model is used to determine mechanical properties of materials. The generalized Sneddon's equation is utilized to calculate Young's moduli for thermosetting materials at ambient conditions. Our investigations show that the force-penetration depth curves during unloading in these materials can be described accurately by a power law relationship. The results show that the accuracy of the measurements can be controlled within 7%. The above method is used to study oxidation profiles in Pl\\1R-15 polyimide. The thermo-mechanical profiles ofPNIR-15 indicate that the elastic modulus at the surface portion of the specimen is different from that at the interior of the material. It is also shown that there are two zones within the oxidized portion of the samples. Results confirm that the surface layer and the core material have substantially different properties.

  4. Achieving highly-enhanced UV photoluminescence and its origin in ZnO nanocrystalline films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thapa, Dinesh; Huso, Jesse; Morrison, John L.

    ZnO is an efficient luminescent material in the UV-range ~3.4 eV with a wide range of applications in optical technologies. Sputtering is a cost-effective and relatively straightforward growth technique for ZnO films; however, most as-grown films are observed to contain intrinsic defects which can significantly diminish the desirable UV-emission. In this research the defect dynamics and optical properties of ZnO sputtered films were studied via post-growth annealing in Ar or O 2 ambient, with X-ray diffraction (XRD), imaging, transmission and Urbach analysis, Raman scattering, and photoluminescence (PL). The imaging, XRD, Raman and Urbach analyses indicate significant improvement in crystal morphologymore » and band-edge characteristics upon annealing, which is nearly independent of the annealing environment. The native defects specific to the as-grown films, which were analyzed via PL, are assigned to Zn i related centers that luminesce at 2.8 eV. Their presence is attributed to the nature of the sputtering growth technique, which supports Zn-rich growth conditions. After annealing, in either environment the 2.8 eV center diminished accompanied by morphology improvement, and the desirable UV-PL significantly increased. The O 2 ambient was found to introduce nominal O i centers while the Ar ambient was found to be the ideal environment for the enhancement of the UV-light emission: an enhancement of ~40 times was achieved. The increase in the UV-PL is attributed to the reduction of Zn i-related defects, the presence of which in ZnO provides a competing route to the UV emission. Also, the effect of the annealing was to decrease the compressive stress in the films. Lastly, the dominant UV-PL at the cold temperature regime is attributed to luminescent centers not associated with the usual excitons of ZnO, but rather to structural defects.« less

  5. Achieving highly-enhanced UV photoluminescence and its origin in ZnO nanocrystalline films

    DOE PAGES

    Thapa, Dinesh; Huso, Jesse; Morrison, John L.; ...

    2016-06-14

    ZnO is an efficient luminescent material in the UV-range ~3.4 eV with a wide range of applications in optical technologies. Sputtering is a cost-effective and relatively straightforward growth technique for ZnO films; however, most as-grown films are observed to contain intrinsic defects which can significantly diminish the desirable UV-emission. In this research the defect dynamics and optical properties of ZnO sputtered films were studied via post-growth annealing in Ar or O 2 ambient, with X-ray diffraction (XRD), imaging, transmission and Urbach analysis, Raman scattering, and photoluminescence (PL). The imaging, XRD, Raman and Urbach analyses indicate significant improvement in crystal morphologymore » and band-edge characteristics upon annealing, which is nearly independent of the annealing environment. The native defects specific to the as-grown films, which were analyzed via PL, are assigned to Zn i related centers that luminesce at 2.8 eV. Their presence is attributed to the nature of the sputtering growth technique, which supports Zn-rich growth conditions. After annealing, in either environment the 2.8 eV center diminished accompanied by morphology improvement, and the desirable UV-PL significantly increased. The O 2 ambient was found to introduce nominal O i centers while the Ar ambient was found to be the ideal environment for the enhancement of the UV-light emission: an enhancement of ~40 times was achieved. The increase in the UV-PL is attributed to the reduction of Zn i-related defects, the presence of which in ZnO provides a competing route to the UV emission. Also, the effect of the annealing was to decrease the compressive stress in the films. Lastly, the dominant UV-PL at the cold temperature regime is attributed to luminescent centers not associated with the usual excitons of ZnO, but rather to structural defects.« less

  6. Photoluminescence properties of Tb3Al5O12:Ce3+ garnet synthesized by the metal organic decomposition method

    NASA Astrophysics Data System (ADS)

    Onishi, Yuya; Nakamura, Toshihiro; Adachi, Sadao

    2017-02-01

    Tb3Al5O12:Ce3+ garnet (TAG:Ce3+) phosphor was synthesized by the metal organic decomposition (MOD) method and subsequent calcination at Tc = 800-1200°C for 1 h in air. The effects of Ce3+ concentration on the phosphor properties were investigated in detail using X-ray diffraction (XRD) analysis, photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, and PL decay measurements. The maximum intensity in the Ce3+ yellow emission was observed at the Ce3+ concentration of ∼0.20%. PLE and PL decay measurements suggested an evidence of the energy transfer from Tb3+ to Ce3+. Calcination temperature dependence of the XRD and PL intensities yielded an energy of ∼1.5 eV both for the TAG formation in the MOD process and for the optical activation of Ce3+ in its lattice sites. Temperature dependences of the PL intensity for the TAG:Ce3+ yellow-emitting and K2SiF6:Mn4+ red-emitting phosphors were also examined for the future solid-state lighting applications at T = 20-500 K in 10-K steps. The data of TAG:Ce3+ were analyzed using a theoretical model with considering a reservoir level of Et ∼9 meV, yielding a quenching energy of Eq ∼0.35 eV, whereas the K2SiF6:Mn4+ red-emitting phosphor data yielded a value of Eq ∼1.0 eV. The schematic energy-level diagrams for Tb3+ and Ce3+ were proposed for the sake of a better understanding of these ions in the TAG host.

  7. Calibration on wide-ranging aluminum doping concentrations by photoluminescence in high-quality uncompensated p-type 4H-SiC

    NASA Astrophysics Data System (ADS)

    Asada, Satoshi; Kimoto, Tsunenobu; Ivanov, Ivan G.

    2017-08-01

    Previous work has shown that the concentration of shallow dopants in a semiconductor can be estimated from the photoluminescence (PL) spectrum by comparing the intensity of the bound-to-the-dopant exciton emission to that of the free exciton. In this work, we study the low-temperature PL of high-quality uncompensated Al-doped p-type 4H-SiC and propose algorithms for determining the Al-doping concentration using the ratio of the Al-bound to free-exciton emission. We use three different cryogenic temperatures (2, 41, and 79 K) in order to cover the Al-doping range from mid 1014 cm-3 up to 1018 cm-3. The Al-bound exciton no-phonon lines and the strongest free-exciton replica are used as a measure of the bound- and free-exciton emissions at a given temperature, and clear linear relationships are obtained between their ratio and the Al-concentration at 2, 41, and 79 K. Since nitrogen is a common unintentional donor dopant in SiC, we also discuss the criteria allowing one to determine from the PL spectra whether a sample can be considered as uncompensated or not. Thus, the low-temperature PL provides a convenient non-destructive tool for the evaluation of the Al concentration in 4H-SiC, which probes the concentration locally and, therefore, can also be used for mapping the doping homogeneity.

  8. X-ray absorption spectroscopy and photoluminescence study of rare earth ions doped strontium sulphide phosphors

    NASA Astrophysics Data System (ADS)

    Vij, Ankush; Gautam, Sanjeev; Kumar, Vinay; Brajpuriya, R.; Kumar, Ravi; Singh, Nafa; Chae, Keun Hwa

    2013-01-01

    We present here the electronic structure and photoluminescence properties of Sm (0.1-1.0 mol%) doped SrS phosphors. The doping in SrS was probed by near-edge X-ray absorption fine structure (NEXAFS) at M5,4-edges of Sm in total electron yield mode. The simulated absorption edges using atomic multiplet calculations were correlated with experimental results, which clearly reveal the presence of trivalent state of Sm in SrS matrix. However, for Sm (1 mol%), very minor traces of Sm2+ were also observed, which have been explained by comparing the NEXAFS spectra in total electron and florescence yield mode. The PL emission of SrS:Sm comprises of three sharp bands at 567, 602 and 650 nm owing to the well-known intra 4f transitions from 4G5/2 to 6HJ (J = 5/2, 7/2, 9/2) levels of Sm3+ ions in SrS host. The effect of Ce co-doping on SrS:Sm phosphors was also investigated, which exhibits characteristic PL emission of independent ions at their respective excitation wavelengths. However, at an excitation wavelength of 393 nm, SrS:Ce,Sm exhibits the simultaneous characteristic PL emission of both ions spanning into blue-green-red region. The CIE chromaticity coordinates also clearly show the influence of excitation wavelengths on the emission colour of SrS:Ce,Sm.

  9. Photoluminescence in the characterization and early detection of biomimetic bone-like apatite formation on the surface of alkaline-treated titanium implant: state of the art.

    PubMed

    Sepahvandi, Azadeh; Moztarzadeh, Fathollah; Mozafari, Masoud; Ghaffari, Maryam; Raee, Nahid

    2011-09-01

    Photoluminescence (PL) property is particularly important in the characterization of materials that contain significant proportions of noncrystalline components, multiple phases, or low concentrations of mineral phases. In this research, the ability of biomimetic bone-like apatite deposition on the surface of titanium alloy (Ti6Al4V) substrates in simulated body fluid (SBF) right after alkaline-treatment and subsequent heat-treatment was studied by the inherent luminescence properties of apatite. For this purpose, the metallic substrates were treated in 5 M NaOH solution at 60 °C. Subsequently, the substrates were heat-treated at 600 °C for 1 h for consolidation of the sodium titanate hydrogel layer. Then, they were soaked in SBF for different periods of time. Finally, the possibility to use of PL monitoring as an effective method and early detection tool is discussed. According to the obtained results, it was concluded that the PL emission peak did not have any significant shift to the shorter or higher wavelengths, and the PL intensity increased as the exposure time increased. This research proved that the observed inherent PL of the newly formed apatite coatings might be of specific interest for histological probing and bone remodelling monitoring. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Decontamination of Escherichia coli O157:H7 on green onions using pulsed light (PL) and PL-surfactant-sanitizer combinations.

    PubMed

    Xu, Wenqing; Chen, Haiqiang; Huang, Yaoxin; Wu, Changqing

    2013-08-16

    Imported green onion has been associated with three large outbreaks in the USA. Contamination has been found on both domestic and imported green onions. The objective of our study was to investigate Escherichia coli O157:H7 inactivation efficacy of pulsed light (PL) as well as its combination with surfactant and/or sanitizers on green onions. Green onions were cut into two segments, stems and leaves, to represent two different matrixes. Stems were more difficult to be decontaminated. Spot and dip inoculation methods were compared and dipped inoculated green onions were found to be more difficult to be decontaminated. Results showed that 5s dry PL (samples were not immersed in water during PL treatment) and 60s wet PL (samples were immersed in water and stirred during PL treatment) treatments provided promising inactivation efficacy (>4log10CFU/g) for spot inoculated stems and leaves. For dip inoculated green onions, 60s wet PL treatment was comparable with 100ppm chlorine washing, demonstrating that PL could be used as an alternative to chlorine. To further increase the degree of microbial inactivation, combined treatments were applied. PL combined with surfactant (SDS) was found to be more effective than single treatments of PL, SDS, chlorine, citric acid, thymol, and hydrogen peroxide, and binary combined treatments of PL with one of those chemicals. Addition of chlorine or hydrogen peroxide to the PL-SDS combination did not further enhanced its microbial inactivation efficacy. The combination of PL and 1000ppm of SDS reduced the E. coli O157:H7 populations dip inoculated on the stems and leaves of green onions by 1.4 and 3.1log10CFU/g, respectively. Our findings suggest that PL could potentially be used for decontamination of E. coli O157:H7 on green onions, with wet PL added with SDS being the most effective PL treatment. © 2013.

  11. Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor.

    PubMed

    Chen, Xu; Sun, Xueke; Xu, Wen; Pan, Gencai; Zhou, Donglei; Zhu, Jinyang; Wang, He; Bai, Xue; Dong, Biao; Song, Hongwei

    2018-01-18

    Intracellular pH sensing is of importance and can be used as an indicator for monitoring the evolution of various diseases and the health of cells. Here, we developed a new class of surface-functionalized MXene quantum dots (QDs), Ti 3 C 2 , by the sonication cutting and hydrothermal approach and further explored their intracellular pH sensing. The functionalized Ti 3 C 2 QDs exhibit bright excitation-dependent blue photoluminescence (PL) originating from the size effect and surface defects. Meanwhile, Ti 3 C 2 QDs demonstrate a high PL response induced by the deprotonation of the surface defects. Furthermore, combining the highly pH sensitive Ti 3 C 2 QDs with the pH insensitive [Ru(dpp) 3 ]Cl 2 , we developed a ratiometric pH sensor to quantitatively monitor the intracellular pH values. These novel MXene quantum dots can serve as a promising platform for developing practical fluorescent nanosensors.

  12. Photoluminescence and energy transfer process in Gd{sub 2}O{sub 3}:Eu{sup 3+}, Tb{sup 3+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvalakshmi, T.; Bose, A. Chandra, E-mail: acbose@nitt.edu

    2016-05-23

    Variation in photoluminescence (PL) properties of Eu{sup 3+} and Tb{sup 3+} as a function of co-dopant (Tb{sup 3+}) concentration are studied for Gd{sub 2-x-y}O{sub 3}: Eu{sup 3+}{sub x} Tb{sup 3+}{sub y} (x = 0.02, y = 0.01, 0.03, 0.05). The crystal structure analysis is carried out by X-ray Diffraction (XRD). Absence of addition peaks corresponding europium or terbium phase confirms the phase purity. Diffuse reflectance spectroscopy (DRS) reveals the absorption peaks corresponding to host matrix, Eu{sup 3+} and Tb{sup 3+}. The bandgap calculated from Kubelka – Munk function is also reported. PL spectra are recorded at the excitation wavelength ofmore » 307 nm and the emission peak corresponding to Eu{sup 3+} confirms the energy transfer from Tb{sup 3+} to Eu{sup 3+}. The agglomeration of particles acts as quenching centres for energy transfer at higher concentrations.« less

  13. Photoluminescence and cathodoluminescence of Mn doped zinc silicate nanophosphors for green and yellow field emissions displays

    NASA Astrophysics Data System (ADS)

    Omri, K.; Alyamani, A.; Mir, L. El

    2018-02-01

    Mn2+-doped Zn2SiO4 (ZSM2+) was synthesized by a facile sol-gel technique. The obtained samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL) and cathodoluminescence (CL) techniques. Under UV excitation, spectra showed that the α-ZSM2+ phosphor exhibited a strong green emission around 525 nm and reached the highest luminescence intensity with the Mn doping concentration of 5 at.%. However, for the β-ZSM2+ phase, an interesting yellow emission band centered at 575 nm of Mn2+ at the Zn2+ tetrahedral sites was observed. In addition, an unusual red shift with increasing Mn2+ content was also found and attributed to an exchange interaction between Mn2+. Both PL and CL spectra exhibit an intense green and yellow emission centered at 525 and 573 nm, respectively, due to the 4T1 (4G)-6A1 (6S) transition of Mn2+. Furthermore, these results indicated that the Mn2+-doped zinc silicate phosphors may have potential applications in green and yellow emissions displays like field emission displays (FEDs).

  14. Quenching of porous silicon photoluminescence by molecular oxygen and dependence of this phenomenon on storing media and method of preparation of pSi photosensitizer

    NASA Astrophysics Data System (ADS)

    Balaguer, María; Matveeva, Eugenia

    2010-10-01

    The quenching of porous silicon photoluminescence (pSi PL) by molecular oxygen has been studied in different storing media in an attempt to clarify the mechanism of the energy transfer from the silicon photosensitizer to the oxygen acceptor. Luminescent materials have been prepared by two methods: electrochemical anodizing and chemical etching. Different structural forms were used: porous layers on silicon wafer and two kinds of differently prepared powder. Dry air and liquid water were employed as storing media; quenching behaviour was under observation until total degradation of quenching properties. Singlet oxygen molecules generation through energy transfer from photoluminescent pSi was the only photosensitizing mechanism observed under dry gas conditions. This PL quenching process was preferentially developed at 760 nm (1.63 eV) that corresponds to the formation of the 1Σ singlet oxygen state. Oxidation of the pSi photosensitizer was the main factor that led to its total deactivation in a time scale of few weeks. Regarding water medium, different photosensitizing behaviour was observed. In watery conditions, two preferred energy levels were found: the one detected in dry gas and another centred at approximately 2.2 eV (550 nm). Formation of reactive oxygen species (ROS) different from singlet oxygen, such as superoxide anion or superoxide radical, can be responsible for the second one. This second quenching process developed gradually after the initial contact of pSi photosensitizer with water and then degraded. The process lasted only several hours. Therefore, functionalization of the pSi photosensitizer is probably required to stabilize its PL and quenching properties in the watery physiological conditions required for biomedical applications.

  15. Photoluminescence from Au ion-implanted nanoporous single-crystal 12CaO•7Al2O3

    NASA Astrophysics Data System (ADS)

    Miyakawa, Masashi; Kamioka, Hayato; Hirano, Masahiro; Kamiya, Toshio; Sushko, Peter V.; Shluger, Alexander L.; Matsunami, Noriaki; Hosono, Hideo

    2006-05-01

    Implantation of Au+ ions into a single crystalline 12CaO•7Al2O3 (C12A7) was performed at high temperatures with fluences from 1×1014 to 3×1016cm-2 . This material is composed of positively charged sub-nanometer-sized cages compensated by extra-framework negatively charged species. The depth profile of concentrations of Au species was analyzed using Rutherford backscattering spectrometry. The measured optical spectra and ab initio embedded cluster calculations show that the implanted Au species are stabilized in the form of negative Au- ions below the fluences of ˜1×1016cm-2 (Au volume concentration of ˜2×1021cm-3 ). These ions are trapped in the cages and exhibit photoluminescence (PL) bands peaking at 3.05 and 2.34eV at temperatures below 150K . At fluences exceeding ˜3×1016cm-2 , the implanted Au atoms form nano-sized clusters. This is manifested in quenching of the PL bands and creation of an optical absorption band at 2.43eV due to the surface plasmon of free carriers in the cluster. The PL bands are attributed to the charge transfer transitions (Au0+e-→Au-) due to recombination of photo-excited electrons (e-) , transiently transferred by ultraviolet excitation into a nearby cages, with Au0 atoms.

  16. Interfacial synthesis of polyethyleneimine-protected copper nanoclusters: Size-dependent tunable photoluminescence, pH sensor and bioimaging.

    PubMed

    Wang, Chan; Yao, Yagang; Song, Qijun

    2016-04-01

    The copper nanoclusters (CuNCs) offer excellent potential as functional biological probes due to their unique photoluminescence (PL) properties. Herein, CuNCs capped with hyperbranched polyethylenimine (PEI) were prepared by the interfacial etching approach. The resultant PEI-CuNCs exhibited good dispersion and strong fluorescence with high quantum yields (QYs, up to 7.5%), which would be endowed for bioimaging system. By changing the reaction temperatures from 25 to 150 °C, the size of PEI-CuNCs changed from 1.8 to 3.5 nm, and thus tunable PL were achieved, which was confirmed by transmission electron microscopy (TEM) imagings and PL spectra. Besides, PEI-CuNCs had smart absorption characteristics that the color changes from colorless to blue with changing the pH value from 2.0 to 13.2, and thus they could be used as color indicator for pH detection. In addition, the PEI-CuNCs exhibited good biocompatibility and low cytotoxicity to 293T cells through MTT assay. Owing to the positively charged of PEI-CuNCs surface, they had the ability to capture DNA, and the PEI-CuNCs/DNA complexes could get access to cells for efficient gene expression. Armed with these attractive properties, the synthesized PEI-CuNCs are quite promising in biological applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Enhancement of porous silicon photoluminescence property by lithium chloride treatment

    NASA Astrophysics Data System (ADS)

    Azaiez, Khawla; Zaghouani, Rabia Benabderrahmane; Khamlich, Saleh; Meddeb, Hosny; Dimassi, Wissem

    2018-05-01

    Porous silicon (PS) decorated by several nanostructured metal elements has still aroused interests as promising composites in many industrial applications. With the focus mainly on the synthesis, the aspect of stability against optical irradiation of such materials has so far not been thoroughly addressed. This work focuses primarily on the influence of lithium chloride solution (LiCl) treatment on the physical properties of PS. Variations in the structural and optoelectronic properties of PS were observed after immersion in (LiCl), as revealed by the obtained analyses. Moreover, enhanced photoluminescence (PL) property of the PS after passivation by lithium particles was clearly shown, and their presence on the surface of the microporous silicon was confirmed by FTIR spectroscopy and atomic force microscopy. An improvement of the minority carrier lifetime was also obtained, which was attributed to the decrease of the surface recombination velocity after LiCl treatment.

  18. β-Hydroxy-β-methylbutyrate (HMB) supplementation and resistance exercise significantly reduce abdominal adiposity in healthy elderly men.

    PubMed

    Stout, Jeffrey R; Fukuda, David H; Kendall, Kristina L; Smith-Ryan, Abbie E; Moon, Jordan R; Hoffman, Jay R

    2015-04-01

    The effects of 12-weeks of HMB ingestion and resistance training (RT) on abdominal adiposity were examined in 48 men (66-78 yrs). All participants were randomly assigned to 1 of 4 groups: no-training placebo (NT-PL), HMB only (NT-HMB), RT with PL (RT-PL), or HMB with RT (RT-HMB). DXA was used to estimate abdominal fat mass (AFM) by placing the region of interest over the L1-L4 region of the spine. Outcomes were assessed by ANCOVA, with Bonferroni-corrected pairwise comparisons. Baseline AFM values were used as the covariate. The ANCOVA indicated a significant difference (p = 0.013) between group means for the adjusted posttest AFM values (mean (kg) ± SE: NT-PL = 2.59 ± 0.06; NT-HMB = 2.59 ± 0.61; RT-PL = 2.59 ± 0.62; RT-HMB = 2.34 ± 0.61). The pairwise comparisons indicated that AFM following the intervention period in the RT-HMB group was significantly less than NT-PL (p = 0.013), NT-HMB (p = 0.011), and RT-PL (p = 0.010). These data suggested that HMB in combination with 12 weeks of RT decreased AFM in elderly men. Copyright © 2015. Published by Elsevier Inc.

  19. Improved AFM Mapping of ICF Target Surfaces

    NASA Astrophysics Data System (ADS)

    Olson, D. K.; Drake, T.; Frey, D.; Huang, H.; Stephens, R. B.

    2003-10-01

    Targets for Inertial Confinement Fusion (ICF) research are made from spherical shells with very strict requirements on surface smoothness. Hydrodynamic instabilities are amplified by the presence of surface defects, greatly reducing the gain of ICF targets. Sub-micron variations in the surface can be examined using an Atomic Force Microscope. The current sphere mapping assembly at General Atomics is designed to trace near the equator of a rotating sphere under the AFM head. Spheres are traced on three mutually orthogonal planes. The ˜10 mm piezo-electric actuator range limits how far off the equator we can scan spheres of millimeter diameter. Because only a small fraction of the target's surface can be covered, localized high-mode defects are difficult to detect. In order to meet the needs of ICF research, we need to scan more surface area of the sphere with the AFM. By integrating an additional stepping motor to the sphere mapping assembly, we will be able to recenter the piezo driver of the AFM while mapping. This additional ability allows us to increase the amount of the sphere's surface we are able to scan with the AFM by extending the range of the AFM from the sphere's equator.

  20. Excitation intensity dependent photoluminescence of annealed two-dimensional MoS{sub 2} grown by chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, D.; Swaminathan, V.; Mills, K.

    2016-06-07

    Here, we present detailed results of Raman and photoluminescence (PL) characterization of monolayers of MoS{sub 2} grown by chemical vapor deposition (CVD) on SiO{sub 2}/Si substrates after thermal annealing at 150 °C, 200 °C, and 250 °C in an argon atmosphere. In comparison to the as-grown monolayers, annealing in the temperature range of 150–250 °C brings about significant changes in the band edge luminescence. It is observed that annealing at 150 °C gives rise to a 100-fold increase in the PL intensity and produces a strong band at 1.852 eV attributed to a free-to-bound transition that dominates over the band edge excitonic luminescence. This band disappearsmore » for the higher annealing temperatures. The improvement in PL after the 200 °C anneal is reduced in comparison to that obtained after the 150 °C anneal; this is suggested to arise from a decrease in the non-radiative lifetime caused by the creation of sulfur di-vacancies. Annealing at 250 °C degrades the PL in comparison to the as-grown sample because of the onset of disorder/decomposition of the sample. It is clear that the PL features of the CVD-grown MoS{sub 2} monolayer are profoundly affected by thermal annealing in Ar atmosphere. However, further detailed studies are needed to identify, unambiguously, the role of native defects and/or adsorbed species in defining the radiative channels in annealed samples so that the beneficial effect of improvement in the optical efficiency of the MoS{sub 2} monolayers can be leveraged for various device applications.« less

  1. Real-Time Observation of Order-Disorder Transformation of Organic Cations Induced Phase Transition and Anomalous Photoluminescence in Hybrid Perovskites.

    PubMed

    Yang, Bin; Ming, Wenmei; Du, Mao-Hua; Keum, Jong K; Puretzky, Alexander A; Rouleau, Christopher M; Huang, Jinsong; Geohegan, David B; Wang, Xiaoping; Xiao, Kai

    2018-05-01

    A fundamental understanding of the interplay between the microscopic structure and macroscopic optoelectronic properties of organic-inorganic hybrid perovskite materials is essential to design new materials and improve device performance. However, how exactly the organic cations affect the structural phase transition and optoelectronic properties of the materials is not well understood. Here, real-time, in situ temperature-dependent neutron/X-ray diffraction and photoluminescence (PL) measurements reveal a transformation of the organic cation CH 3 NH 3 + from order to disorder with increasing temperature in CH 3 NH 3 PbBr 3 perovskites. The molecular-level order-to-disorder transformation of CH 3 NH 3 + not only leads to an anomalous increase in PL intensity, but also results in a multidomain to single-domain structural transition. This discovery establishes the important role that organic cation ordering has in dictating structural order and anomalous optoelectronic phenomenon in hybrid perovskites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Formation and photoluminescence of GaAs1-xNx dilute nitride achieved by N-implantation and flash lamp annealing

    NASA Astrophysics Data System (ADS)

    Gao, Kun; Prucnal, S.; Skorupa, W.; Helm, M.; Zhou, Shengqiang

    2014-07-01

    In this paper, we present the fabrication of dilute nitride semiconductor GaAs1-xNx by nitrogen-ion-implantation and flash lamp annealing (FLA). N was implanted into the GaAs wafers with atomic concentration of about ximp1 = 0.38% and ximp2 = 0.76%. The GaAs1-xNx layer is regrown on GaAs during FLA treatment in a solid phase epitaxy process. Room temperature near band-edge photoluminescence (PL) has been observed from the FLA treated GaAs1-xNx samples. According to the redshift of the near band-edge PL peak, up to 80% and 44% of the implanted N atoms have been incorporated into the lattice by FLA for ximp1 = 0.38% and ximp2 = 0.76%, respectively. Our investigation shows that ion implantation followed by ultrashort flash lamp treatment, which allows for large scale production, exhibits a promising prospect on bandgap engineering of GaAs based semiconductors.

  3. Radioluminescence and photoluminescence properties of Dy-doped 12CaO • 7Al2O3 single crystals synthesized by the floating zone method

    NASA Astrophysics Data System (ADS)

    Kumamoto, Narumi; Nakauchi, Daisuke; Kato, Takumi; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-02-01

    We have synthesized Dy-doped 12CaO • 7Al2O3 (Dy:C12A7) single crystals with various Dy concentrations by the floating zone (FZ) method and investigated the photoluminescence (PL) and X-ray induced radioluminescence (RL) properties. The PL emissions are observed around 480-490, 570-590, 650-690, and 750 nm due to the 4f-4f transitions of Dy3+ under excitation around 350-400 and 450 nm. The decay time constant (580 nm emission under 340-390 nm excitation) was approximately 0.54-0.58 ms. The RL also showed line emissions at 487, 580, 668, and 757 nm due to the 4f-4f transitions of Dy3+ while the decay time was approximately 0.49-0.53 ms.

  4. Theoretical optimization of multi-layer InAs/GaAs quantum dots subject to post-growth thermal annealing for tailoring the photoluminescence emission beyond 1.3 μm

    NASA Astrophysics Data System (ADS)

    Ghosh, K.; Naresh, Y.; Srichakradhar Reddy, N.

    2012-07-01

    In this paper, we present theoretical analysis and computation for tuning the ground state (GS) photoluminescence (PL) emission of InAs/GaAs quantum dots (QDs) at telecommunication window of 1.3-1.55 μm by optimizing its height and base dimensions through quantum mechanical concepts. For this purpose, numerical modelling is carried out to calculate the quantized energy states of finite dimensional QDs so as to obtain the GS PL emission at or beyond 1.3 μm. Here, we also explored strain field altering the QD size distribution in multilayer heterostructure along with the changes in the PL spectra, simulation on post growth thermal annealing process which blueshifts the operating wavelength away from the vicinity of 1.3 μm and improvement of optical properties by varying the thickness of GaAs spacing. The results are discussed in detail which will serve as an important information tool for device scientist fabricating high quality semiconductor quantum structures with reduced defects at telecommunication wavelengths.

  5. Multifrequency AFM: from origins to convergence.

    PubMed

    Santos, Sergio; Lai, Chia-Yun; Olukan, Tuza; Chiesa, Matteo

    2017-04-20

    Since the inception of the atomic force microscope (AFM) in 1986, influential papers have been presented by the community and tremendous advances have been reported. Being able to routinely image conductive and non-conductive surfaces in air, liquid and vacuum environments with nanoscale, and sometimes atomic, resolution, the AFM has long been perceived by many as the instrument to unlock the nanoscale. From exploiting a basic form of Hooke's law to interpret AFM data to interpreting a seeming zoo of maps in the more advanced multifrequency methods however, an inflection point has been reached. Here, we discuss this evolution, from the fundamental dilemmas that arose in the beginning, to the exploitation of computer sciences, from machine learning to big data, hoping to guide the newcomer and inspire the experimenter.

  6. Structure and photoluminescence studies of CeO2·CuAlO2 mixed metal oxide fabricated by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Subhan, Md Abdus; Ahmed, Tanzir; Awal, M. R.; Kim, B. Moon

    2015-01-01

    A novel mixed metal oxide, CeO2·CuAlO2 was fabricated by co-precipitation method in aqueous medium. CeO2·CuAlO2 was characterized by XRD, SEM, EDS, TEM, FTIR and PL spectra. The optical properties of the nanoparticles were studied by photoluminescence (PL) spectra. PL spectra at different excitations were recorded. The composite showed emission in UV, visible and NIR region depending on the excitation wavelength. The special spectral feature observed for this composite is that it showed six emission bands at 364, 409, 434, 448, 465 and 481 nm when excited at 298 nm. The green and red emissions observed at 512 and 669 nm are originated from cubic CeO2 phase when excited at 450 nm. The PL spectra were found to be dependent on excitation wavelength violating Kasha's rule. The X-ray diffraction reveals a cubic CeO2 phase and hexagonal CuAlO2 phase. EDS spectra revealed the presence of cerium (Ce), copper (Cu), aluminum (Al) and oxygen (O) elements. The particle size of the CeO2·CuAlO2 mixed oxide was estimated using Scherrer's formula, which was found to be in the range of 17.2-34.2 nm. The TEM image showed particles are almost uniform size of approximately 15-50 nm with spherical morphology.

  7. MetaRep, an extended CMAS 3D program to visualize mafic (CMAS, ACF-S, ACF-N) and pelitic (AFM-K, AFM-S, AKF-S) projections

    NASA Astrophysics Data System (ADS)

    France, Lydéric; Nicollet, Christian

    2010-06-01

    MetaRep is a program based on our earlier program CMAS 3D. It is developed in MATLAB ® script. MetaRep objectives are to visualize and project major element compositions of mafic and pelitic rocks and their minerals in the pseudo-quaternary projections of the ACF-S, ACF-N, CMAS, AFM-K, AFM-S and AKF-S systems. These six systems are commonly used to describe metamorphic mineral assemblages and magmatic evolutions. Each system, made of four apices, can be represented in a tetrahedron that can be visualized in three dimensions with MetaRep; the four tetrahedron apices represent oxides or combination of oxides that define the composition of the projected rock or mineral. The three-dimensional representation allows one to obtain a better understanding of the topology of the relationships between the rocks and minerals and relations. From these systems, MetaRep can also project data in ternary plots (for example, the ACF, AFM and AKF ternary projections can be generated). A functional interface makes it easy to use and does not require any knowledge of MATLAB ® programming. To facilitate the use, MetaRep loads, from the main interface, data compiled in a Microsoft Excel ™ spreadsheet. Although useful for scientific research, the program is also a powerful tool for teaching. We propose an application example that, by using two combined systems (ACF-S and ACF-N), provides strong confirmation in the petrological interpretation.

  8. Effect of solvent volume on the physical properties of aluminium doped nanocrystalline zinc oxide thin films deposited using a simplified spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Jabena Begum, N.; Mohan, R.; Ravichandran, K.

    2013-01-01

    Aluminium doped zinc oxide (AZO) thin films were deposited by employing a low cost and simplified spray technique using a perfume atomizer from starting solutions having different volumes (10, 20, … , 50 mL) of solvent. The effect of solvent volume on the structural, electrical, optical, photoluminescence (PL) and surface morphological properties was studied. The electrical resistivity of the AZO films is remarkably influenced by the variation in the solvent volume. The X-ray diffraction profiles clearly showed that all the films have preferential orientation along the (0 0 2) plane irrespective of the solvent volume. The crystallite size was found to be in the nano range of 35-46 nm. The optical transmittance in the visible region is desirably high (>85%). The AFM images show columnar morphology with varying grain size. The PL studies revealed that the AZO film deposited from 50 mL of solvent volume has good quality with lesser defect density.

  9. Photoluminescence of epoxy resin modified by carbazole and its halogen derivative at 82 K

    NASA Astrophysics Data System (ADS)

    Mandowska, E.; Mandowski, A.; Tsvirko, M.

    2009-10-01

    The spectra and relative quantum yield of fluorescence and phosphorescence were measured for 9-(2,3-epoxypropyl)carbazole (EPK) added to epoxy resin (R) (R 5EPK - 5% weight content of the carbazole group in a polymer) and its mono and dihalogen derivative (Cl and Br). The materials under study have excellent mechanical properties. At 82 K photoluminescence (PL) spectra of these materials are composed of fluorescence (FL) and phosphorescence (PH) components while at 280 K, PH component is not observed. The vibrational frequencies of fluorescence and phosphorescence for R 5EPK were determined using Gaussian deconvolution. A decrease in the fluorescence and an increase in the phosphorescence quantum efficiency were observed after chemical bonding of heavy atoms Cl and Br.

  10. Porous nC-Si/SiOx nanostructured layer on Si substrate with tunable photoluminescent properties fabricated by direct, precursor-free microplasma irradiation in air

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Hu, Mingshan; Yang, Bin; Wang, Xiaolin; Liu, Jingquan

    2018-03-01

    Porous nC-Si/SiOx photoluminescent nanostructured layer is fabricated by direct, precursor-free microplasma irradiation on Si substrate in air. It is confirmed that the deposited layer has porous and cluster-like structures by scanning electron microscopy (SEM) and profile scanning. Fourier transform infrared transmission (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectrum (XPS) results indicate the produced layer is actually composed of nanocrystalline silicon (nC-Si) embedded in SiOx matrix. Transmission electron microscopy (TEM) and Raman results show the mean particle size of nC-Si is mainly between 2 and 4 nm and the highest crystalline volume fraction reaches 86.9%. The photoluminescence (PL) measurement of nC-Si/SiOx layer exhibited a broad band centered at 1.7-1.9 eV, ranging from 1.2-2.4 eV, and could be tuned by varying the applied voltage. The synthetical mechanisms are discussed to explain the PL properties of the layers. We propose that the energetic ions bombing induced by high compressed electric field near the Si surface is the main reason for porous nC-Si/SiOx formation. Maskless deposition of the line pattern of nC-Si/SiOx layer was also successfully fabricated. This simple, maskless, vacuum-free and precursor-free technique could be used in various potential optoelectronics and biological applications in the future.

  11. Tough photoluminescent hydrogels doped with lanthanide.

    PubMed

    Wang, Mei Xiang; Yang, Can Hui; Liu, Zhen Qi; Zhou, Jinxiong; Xu, Feng; Suo, Zhigang; Yang, Jian Hai; Chen, Yong Mei

    2015-03-01

    Photoluminescent hydrogels have emerged as novel soft materials with potential applications in many fields. Although many photoluminescent hydrogels have been fabricated, their scope of usage has been severely limited by their poor mechanical performance. Here, a facile strategy is reported for preparing lanthanide (Ln)-alginate/polyacrylamide (PAAm) hydrogels with both high toughness and photoluminescence, which has been achieved by doping Ln(3+) ions (Ln = Eu, Tb, Eu/Tb) into alginate/PAAm hydrogel networks, where Ln(3+) ions serve as both photoluminescent emitters and physical cross-linkers. The resulting hydrogels exhibit versatile advantages including excellent mechanical properties (∼ MPa strength, ≈ 20 tensile strains, ≈ 10(4) kJ m(-3) energy dissipation), good photoluminescent performance, tunable emission color, excellent processability, and cytocompatibility. The developed tough photoluminescent hydrogels hold great promises for expanding the usage scope of hydrogels. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. AFM 4.0: a toolbox for DNA microarray analysis

    PubMed Central

    Breitkreutz, Bobby-Joe; Jorgensen, Paul; Breitkreutz, Ashton; Tyers, Mike

    2001-01-01

    We have developed a series of programs, collectively packaged as Array File Maker 4.0 (AFM), that manipulate and manage DNA microarray data. AFM 4.0 is simple to use, applicable to any organism or microarray, and operates within the familiar confines of Microsoft Excel. Given a database of expression ratios, AFM 4.0 generates input files for clustering, helps prepare colored figures and Venn diagrams, and can uncover aneuploidy in yeast microarray data. AFM 4.0 should be especially useful to laboratories that do not have access to specialized commercial or in-house software. PMID:11532221

  13. Multiple approaches for enhancing all-organic electronics photoluminescent sensors: simultaneous oxygen and pH monitoring.

    PubMed

    Liu, Rui; Xiao, Teng; Cui, Weipan; Shinar, Joseph; Shinar, Ruth

    2013-05-17

    Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs' broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ~20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ0/τ100 (PL decay time τ at 0% O2/τ at 100% O2) that is often used to express S increases ×1.9 to 20.7 relative to the lower molecular weight PS, where this ratio is 11.0. This increase reduces to ×1.7 when the PEG is added (τ0/τ100=18.2), but the latter results in an increase ×2.7 in the PL intensity. The sensor's response time is <10s in all cases. The microporous structure of these blended films, with PEG decorating PS pores, serves a dual purpose. It results in light scattering that reduces the EL that is waveguided in the substrate of the OLEDs and

  14. Effect of variable cerium concentration on photoluminescence behaviour in ZrO2 phosphor synthesized by combustion synthesis method

    NASA Astrophysics Data System (ADS)

    Dubey, Vikas; Kaur, Jagjeet

    2016-05-01

    Present paper reports synthesis and characterization of trivalent cerium (Ce3+) doped zirconium dioxide (ZrO2) phosphors. Effect of variable concentration of cerium on photoluminescence (PL) is studied. Samples were prepared by combustion synthesis technique which is suitable for less time taking techniques also for large scale production for phosphors. Starting material used for sample preparation are Zr(NO3)3 and Ce(NO3)3 and urea used as a fuel. All prepared phosphor with variable concentration of Ce3+ (0.1 to 2mol%) was studied by photoluminescence analysis it is found that the excitation spectra of prepared phosphor shows broad excitation centred at 390nm. The excitation spectra with variable concentration of Ce3+ show strong peaks at 447nm. Spectrophotometric determinations of peaks are evaluated by Commission Internationale de I'Eclairage technique. Using this phosphor, the desired CIE values including emissions throughout the violet (390 nm) and blue (427 nm) of the spectra were achieved. Efficient blue light emitting diodes were fabricated using Ce3+ doped phosphor based on near ultraviolet (NUV) excited LED lights.

  15. Nano-SiC region formation in (100) Si-on-insulator substrate: Optimization of hot-C+-ion implantation process to improve photoluminescence intensity

    NASA Astrophysics Data System (ADS)

    Mizuno, Tomohisa; Omata, Yuhsuke; Kanazawa, Rikito; Iguchi, Yusuke; Nakada, Shinji; Aoki, Takashi; Sasaki, Tomokazu

    2018-04-01

    We experimentally studied the optimization of the hot-C+-ion implantation process for forming nano-SiC (silicon carbide) regions in a (100) Si-on-insulator substrate at various hot-C+-ion implantation temperatures and C+ ion doses to improve photoluminescence (PL) intensity for future Si-based photonic devices. We successfully optimized the process by hot-C+-ion implantation at a temperature of about 700 °C and a C+ ion dose of approximately 4 × 1016 cm-2 to realize a high intensity of PL emitted from an approximately 1.5-nm-thick C atom segregation layer near the surface-oxide/Si interface. Moreover, atom probe tomography showed that implanted C atoms cluster in the Si layer and near the oxide/Si interface; thus, the C content locally condenses even in the C atom segregation layer, which leads to SiC formation. Corrector-spherical aberration transmission electron microscopy also showed that both 4H-SiC and 3C-SiC nanoareas near both the surface-oxide/Si and buried-oxide/Si interfaces partially grow into the oxide layer, and the observed PL photons are mainly emitted from the surface SiC nano areas.

  16. AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging.

    PubMed

    Dazzi, Alexandre; Prater, Craig B

    2016-12-13

    Atomic force microscopy-based infrared spectroscopy (AFM-IR) is a rapidly emerging technique that provides chemical analysis and compositional mapping with spatial resolution far below conventional optical diffraction limits. AFM-IR works by using the tip of an AFM probe to locally detect thermal expansion in a sample resulting from absorption of infrared radiation. AFM-IR thus can provide the spatial resolution of AFM in combination with the chemical analysis and compositional imaging capabilities of infrared spectroscopy. This article briefly reviews the development and underlying technology of AFM-IR, including recent advances, and then surveys a wide range of applications and investigations using AFM-IR. AFM-IR applications that will be discussed include those in polymers, life sciences, photonics, solar cells, semiconductors, pharmaceuticals, and cultural heritage. In the Supporting Information , the authors provide a theoretical section that reviews the physics underlying the AFM-IR measurement and detection mechanisms.

  17. Structure, morphology, and photoluminescence of porous Si nanowires: effect of different chemical treatments

    PubMed Central

    2013-01-01

    The structure and light-emitting properties of Si nanowires (SiNWs) fabricated by a single-step metal-assisted chemical etching (MACE) process on highly boron-doped Si were investigated after different chemical treatments. The Si nanowires that result from the etching of a highly doped p-type Si wafer by MACE are fully porous, and as a result, they show intense photoluminescence (PL) at room temperature, the characteristics of which depend on the surface passivation of the Si nanocrystals composing the nanowires. SiNWs with a hydrogen-terminated nanostructured surface resulting from a chemical treatment with a hydrofluoric acid (HF) solution show red PL, the maximum of which is blueshifted when the samples are further chemically oxidized in a piranha solution. This blueshift of PL is attributed to localized states at the Si/SiO2 interface at the shell of Si nanocrystals composing the porous SiNWs, which induce an important pinning of the electronic bandgap of the Si material and are involved in the recombination mechanism. After a sequence of HF/piranha/HF treatment, the SiNWs are almost fully dissolved in the chemical solution, which is indicative of their fully porous structure, verified also by transmission electron microscopy investigations. It was also found that a continuous porous Si layer is formed underneath the SiNWs during the MACE process, the thickness of which increases with the increase of etching time. This supports the idea that porous Si formation precedes nanowire formation. The origin of this effect is the increased etching rate at sites with high dopant concentration in the highly doped Si material. PMID:24025542

  18. Bright photoluminescence from ordered arrays of SiGe nanowires grown on Si(111)

    PubMed Central

    Rowell, N L; Benkouider, A; Ronda, A; Favre, L; Berbezier, I

    2014-01-01

    Summary We report on the optical properties of SiGe nanowires (NWs) grown by molecular beam epitaxy (MBE) in ordered arrays on SiO2/Si(111) substrates. The production method employs Au catalysts with self-limited sizes deposited in SiO2-free sites opened-up in the substrate by focused ion beam patterning for the preferential nucleation and growth of these well-organized NWs. The NWs thus produced have a diameter of 200 nm, a length of 200 nm, and a Ge concentration x = 0.15. Their photoluminescence (PL) spectra were measured at low temperatures (from 6 to 25 K) with excitation at 405 and 458 nm. There are four major features in the energy range of interest (980–1120 meV) at energies of 1040.7, 1082.8, 1092.5, and 1098.5 meV, which are assigned to the NW-transverse optic (TO) Si–Si mode, NW-transverse acoustic (TA), Si–substrate–TO and NW-no-phonon (NP) lines, respectively. From these results the NW TA and TO phonon energies are found to be 15.7 and 57.8 meV, respectively, which agree very well with the values expected for bulk Si1− xGex with x = 0.15, while the measured NW NP energy of 1099 meV would indicate a bulk-like Ge concentration of x = 0.14. Both of these concentrations values, as determined from PL, are in agreement with the target value. The NWs are too large in diameter for a quantum confinement induced energy shift in the band gap. Nevertheless, NW PL is readily observed, indicating that efficient carrier recombination is occurring within the NWs. PMID:25671145

  19. Contact nanomechanical measurements with the AFM

    NASA Astrophysics Data System (ADS)

    Geisse, Nicholas

    2013-03-01

    The atomic force microscope (AFM) has found broad use in the biological sciences largely due to its ability to make measurements on unfixed and unstained samples under liquid. In addition to imaging at multiple spatial scales ranging from micro- to nanometer, AFMs are commonly used as nanomechanical probes. This is pertinent for cell biology, as it has been demonstrated that the geometrical and mechanical properties of the extracellular microenvironment are important in such processes as cancer, cardiovascular disease, muscular dystrophy, and even the control of cell life and death. Indeed, the ability to control and quantify these external geometrical and mechanical parameters arises as a key issue in the field. Because AFM can quantitatively measure the mechanical properties of various biological samples, novel insights to cell function and to cell-substrate interactions are now possible. As the application of AFM to these types of problems is widened, it is important to understand the performance envelope of the technique and its associated data analyses. This talk will discuss the important issues that must be considered when mechanical models are applied to real-world data. Examples of the effect of different model assumptions on our understanding of the measured material properties will be shown. Furthermore, specific examples of the importance of mechanical stimuli and the micromechanical environment to the structure and function of biological materials will be presented.

  20. The influence of conjugated alkynyl(aryl) surface groups on the optical properties of silicon nanocrystals: photoluminescence through in-gap states.

    PubMed

    Angı, Arzu; Sinelnikov, Regina; Heenen, Hendrik H; Meldrum, Al; Veinot, Jonathan G C; Scheurer, Christoph; Reuter, Karsten; Ashkenazy, Or; Azulay, Doron; Balberg, Isaac; Millo, Oded; Rieger, Bernhard

    2018-08-31

    Developing new methods, other than size and shape, for controlling the optoelectronic properties of semiconductor nanocrystals is a highly desired target. Here we demonstrate that the photoluminescence (PL) of silicon nanocrystals (SiNCs) can be tuned in the range 685-800 nm solely via surface functionalization with alkynyl(aryl) (phenylacetylene, 2-ethynylnaphthalene, 2-ethynyl-5-hexylthiophene) surface groups. Scanning tunneling microscopy/spectroscopy on single nanocrystals revealed the formation of new in-gap states adjacent to the conduction band edge of the functionalized SiNCs. PL red-shifts were attributed to emission through these in-gap states, which reduce the effective band gap for the electron-hole recombination process. The observed in-gap states can be associated with new interface states formed via (-Si-C≡C-) bonds in combination with conjugated molecules as indicated by ab initio calculations. In contrast to alkynyl(aryl)s, the formation of in-gap states and shifts in PL maximum of the SiNCs were not observed with aryl (phenyl, naphthalene, 2-hexylthiophene) and alkynyl (1-dodecyne) surface groups. These outcomes show that surface functionalization with alkynyl(aryl) molecules is a valuable tool to control the electronic structure and optical properties of SiNCs via tuneable interface states, which may enhance the performance of SiNCs in semiconductor devices.

  1. Photoluminescence and charge-transport characteristics of nano-columnar titanium dioxide films prepared by rf-sputtering on alumina templates

    NASA Astrophysics Data System (ADS)

    Kheirandish, E.; Hosseini, T.; Yavarishad, N.; King, S.; Kouklin, N.

    2018-02-01

    The current study presents the synthesis and characterization of poly-crystalline TiO2 thin-film prepared by rf-sputtering on top of a highly regimented nanoporous Au-coated Al2O3 substrate. The film’s physical and electronic properties were characterized via SEM, EDS, x-ray diffraction and RAMAN spectroscopy as well as temperature dependent photoluminescence (PL) and I-V measurements. The films feature a 1D, columnar-like structure and exhibit a medium strength, spectrally-broad light emission in the UV-visible range. PL emission shows a weak T-dependence and is attributed to interband electronic transitions and defect-assisted radiative recombinations. The charge transport is confirmed to be polaronic in nature with both thermally-assisted hopping and quantum mechanical tunneling regulating a charge flow within the columns in the intermediate temperature regime of ˜200-320 K. These results open a door to utilizing nano-textured substrates/scaffolds to produce electronic-grade anatase TiO2 by sputtering for advanced opto-electronic device applications.

  2. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges

    NASA Astrophysics Data System (ADS)

    Gan, Zhixing; Xu, Hao; Hao, Yanling

    2016-04-01

    Luminescent nanomaterials, with wide applications in biosensing, bioimaging, illumination and display techniques, have been consistently garnering enormous research attention. In particular, those with wavelength-controllable emissions could be highly beneficial. Carbon nanostructures, including graphene quantum dots (GQDs) and other graphene oxide derivates (GODs), with excitation-dependent photoluminescence (PL), which means their fluorescence color could be tuned simply by changing the excitation wavelength, have attracted lots of interest. However the intrinsic mechanism for the excitation-dependent PL is still obscure and fiercely debated presently. In this review, we attempt to summarize the latest efforts to explore the mechanism, including the quantum confinement effect, surface traps model, giant red-edge effect, edge states model and electronegativity of heteroatom model, as well as the newly developed synergistic model, to seek some clues to unravel the mechanism. Meanwhile the controversial difficulties for each model are further discussed. Besides this, the challenges and potential influences of the synthetic methodology and development of the materials are illustrated extensively to elicit more thought and constructive attempts toward their application.

  3. Synthesis, second-harmonic generation (SHG), and photoluminescence (PL) properties of noncentrosymmetric bismuth selenite solid solutions, Bi2-xLnxSeO5 (Ln = La and Eu; x = 0-0.3)

    NASA Astrophysics Data System (ADS)

    Qi, Hai-Xin; Jo, Hongil; Oh, Seung-Jin; Ok, Kang Min

    2018-02-01

    A series of La3+ or Eu3+-doped noncentrosymmetric (NCS) bismuth selenite solid solutions, Bi2-xLnxSeO5 (x = 0.1, 0.2, and 0.3), have been successfully synthesized via standard solid-state reactions under vacuum with Bi2O3, La2O3 (or Eu2O3), and SeO2 as starting materials. Crystal structures and phase purities of the resultant materials were thoroughly characterized by powder X-ray diffraction using the Rietveld method. The results clearly show that the reported materials crystallize in the orthorhombic space group, Abm2 (No. 39), and exhibit pseudo-three-dimensional frameworks consisting of BiO3, BiO5, and SeO3 polyhedra that share edges and corners. Detailed diffraction studies indicate that the cell volume of Bi2-xLnxSeO5 decreases with an increasing amount of Ln3+ on the Bi3+ sites. However, no ordering between Ln3+ and Bi3+ was observed in the Bi2-xLnxSeO5 solid solutions. Powder second-harmonic generation (SHG) measurements, using 1064 nm radiation, reveal that SHG efficiencies of Bi2-xLnxSeO5 solid solutions continuously decrease as more Ln3+ cations are added to the sites of polarizable Bi3+ cations. Photoluminescence (PL) measurements on Bi2-xEuxSeO5 exhibit three specific emission peaks at 592, 613, and 702 nm (5D0 → 7F1, 2, 4) owing to the 4f-4f intrashell transitions of Eu3+ ions.

  4. Polarization-selective three-photon absorption and subsequent photoluminescence in CsPbBr3 single crystal at room temperature

    NASA Astrophysics Data System (ADS)

    Clark, D. J.; Stoumpos, C. C.; Saouma, F. O.; Kanatzidis, M. G.; Jang, J. I.

    2016-05-01

    We report on highly polarization-selective three-photon absorption (3PA) in a Bridgman-grown single crystal of CsPbBr3 oriented along the (112) direction, which is an inorganic counterpart to emerging organic-inorganic hybrid halide perovskites for solar-cell and optoelectronic applications. The crystal exhibits strong photoluminescence (PL) at room temperature as a direct consequence of 3PA of fundamental radiation. Interestingly, 3PA disappears when the input polarization is parallel to the (-110 ) direction. This 3PA effect is strongest when orthogonal to (-110 ) and the corresponding 3PA coefficient was measured to be γ =0.14 ±0.03 cm3/GW2 under picosecond-pulse excitation at the fundamental wavelength of λ =1200 nm. The laser-induced damage threshold was also determined to be about 20 GW/cm2 at the same wavelength. Based on relative PL intensities upon λ tuning over the entire 3PA range (1100 -1700 nm), we determined the nonlinear optical dispersion of the 3PA coefficient for CsPbBr3, which is consistent with a theoretical prediction. Experimentally observed significant polarization dependence of γ was explained by relevant selection rules. The perovskite is potentially important for nonlinear optical applications owing to its highly efficient 3PA-induced PL response with a sharp on/off ratio by active polarization control.

  5. The photoluminescent properties of Y2O3:Bi3+, Eu3+, Dy3+ phosphors for white-light-emitting diodes.

    PubMed

    Han, Xiumei; Feng, Xu; Qi, Xiwei; Wang, Xiaoqiang; Li, Mingya

    2014-05-01

    Bi3+, Eu3+, Dy3+ activated Y2O3 phosphors were prepared through the sol-gel process. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, and photoluminescence (PL) spectra were used to characterize the resulting phosphors. The XRD patterns show the refined crystal structure of Y2O3. The energy transfer processes of Bi(3+)-Eu3+ occurred in the host lattices. The thermal stability of Y2O3:Bi3+, Eu3+, Dy3+ phosphors was studied. Under short wavelength UV excitation, the phosphors show excellent characteristic red, blue, and yellow emission with medium intensity.

  6. Cognitive dysfunction in antiphospholipid antibody (aPL)-negative systemic lupus erythematosus (SLE) versus aPL-positive non-SLE patients.

    PubMed

    Kozora, Elizabeth; Erkan, Doruk; Zhang, Lening; Zimmerman, Robert; Ramon, Glendalee; Ulug, Aziz M; Lockshin, Michael D

    2014-01-01

    The aim of this study was to compare the cognitive function of antiphospholipid antibody (aPL)-negative systemic lupus erythematosus (SLE) and aPL-positive non-SLE patients. Twenty aPL-negative SLE and 20 aPL-positive non-SLE female patients with no history of overt neuropsychiatric manifestations took standardised cognitive tests of learning and memory, attention and working memory, executive functions, verbal fluency, visuoconstruction, and motor function. The primary outcome measure was an established global cognitive impairment index (CII). Cranial magnetic resonance imaging (MRI) was also obtained on all patients. Twelve of 20 (60%) of the SLE and 8/20 (40%) of the aPL-positive patients had global cognitive impairment on CII; there were no group differences on CII or on individual measures. Cognitive impairment was not associated with duration of disease, level of disease activity, or prednisone use. No correlations were found between clinical disease factors and cognitive impairment, and neither group showed an association between incidental or major MRI abnormalities and cognitive dysfunction. Both aPL-negative SLE and aPL-positive non-SLE patients, without other overt neuropsychiatric disease, demonstrated high levels of cognitive impairment. No clinical, serologic, or radiologic characteristics were associated with cognitive impairment. Cognitive dysfunction is common in APS and in SLE, but its mechanisms remain unknown.

  7. Photoluminescent and Thermoluminescent Studies of Dy3+ and Eu3+ Doped Y2O3 Phosphors.

    PubMed

    Verma, Tarkeshwari; Agrawal, Sadhana

    2018-01-01

    Eu 3+ doped and Dy 3+ codoped yttrium oxide (Y 2 O 3 ) phosphors have been prepared using solid-state reaction technique (SSR). The prepared phosphors were characterized by X-ray diffractometer (XRD), energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR) techniques. Photoluminescence (PL) and Thermoluminescence (TL) properties were studied in detail. PL emission spectra were recorded for prepared phosphors under excitation wavelength 254 nm, which show a high intense peak at 613 nm for Y 2 O 3 :Dy 3+ , Eu 3+ (1:1.5 mol %) phosphor. The correlated color temperature (CCT) and CIE analysis have been performed for the synthesized phosphors. TL glow curves were recorded for Eu 3+ doped and Dy 3+ codoped phosphors to study the heating rate effect and dose response. The kinetic parameters were calculated using peak shape method for UV and γ exposures through computerized glow curve deconvolution (CGCD) technique. The phosphors show second order kinetics and activation energies varying from 5.823 × 10 - 1 to 18.608 × 10 - 1  eV.

  8. Asymmetry between absorption and photoluminescence line shapes of TPD: spectroscopic fingerprint of the twisted biphenyl core.

    PubMed

    Scholz, Reinhard; Gisslén, Linus; Himcinschi, Cameliu; Vragović, Igor; Calzado, Eva M; Louis, Enrique; San Fabián Maroto, Emilio; Díaz-García, María A

    2009-01-08

    We analyze absorption, photoluminescence (PL), and resonant Raman spectra of N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD), with the aim of providing a microscopic interpretation of a significant Stokes shift of about 0.5 eV that makes this material suitable for stimulated emission. The optical spectra were measured for TPD dissolved in toluene and chloroform, as well as for polystyrene films doped with varying amounts of TPD. In addition, we measured preresonant and resonant Raman spectra, giving direct access to the vibrational modes elongated in the relaxed excited geometry of the molecule. The experimental data are interpreted with calculations of the molecular geometry in the electronic ground state and the optically excited state using density functional theory. Several strongly elongated high-frequency modes within the carbon rings results in a vibronic progression with a calculated spacing of 158 meV, corroborated by the observation of vibrational sidebands in the PL spectra. The peculiarities of the potential energy surfaces related to a twisting around the central bond in the biphenyl core of TPD allow to quantify the asymmetry between the line shapes observed in absorption and emission.

  9. Growth and photoluminescence study of several single crystal segments relevant to monolithic semiconductor cascade solar cells

    NASA Astrophysics Data System (ADS)

    Sillmon, Roger S.; Schreiner, Anton F.; Timmons, Michael

    1983-09-01

    Several representative single crystal stacked layers of III-V compound and alloy semiconductors were grown which are spatial regions relevant to a monolithic cascade solar cell, including the substrate, n-GaAs(Si), which was pre-growth heat treated in H 2(g) prior to its use. These structures were then studied by cryogenic laser excited photoluminescence (PL), and the substrate portion was explored in a depth profiling mode. Within the forbidden band gap region up to seven recombinations were observed and identified for undoped GaAs layers or the GaAs(Si) substrate, and several other PL recombinations were observed for undoped Al xGa 1- xAs and Al yGa 1- ySb zAs 1- z layers. In addition to the valence and conduction bands, these optical bands are also associa ted with the presence of C Ga, Si Ga, Si As, Cu Ga, V As, V Ga and vacancy-impurity complexes involving several of these defect types even in the absence of intentional doping. The findings also relate to problems of self-compensation and type inversion, so that the need for growth modifications is indicated.

  10. Influence of growth temperature on laser molecular beam epitaxy and properties of GaN layers grown on c-plane sapphire

    NASA Astrophysics Data System (ADS)

    Dixit, Ripudaman; Tyagi, Prashant; Kushvaha, Sunil Singh; Chockalingam, Sreekumar; Yadav, Brajesh Singh; Sharma, Nita Dilawar; Kumar, M. Senthil

    2017-04-01

    We have investigated the influence of growth temperature on the in-plane strain, structural, optical and mechanical properties of heteroepitaxially grown GaN layers on sapphire (0001) substrate by laser molecular beam epitaxy (LMBE) technique in the temperature range 500-700 °C. The GaN epitaxial layers are found to have a large in-plane compressive stress of about 1 GPa for low growth temperatures but the strain drastically reduced in the layer grown at 700 °C. The nature of the in-plane strain has been analyzed using high resolution x-ray diffraction, atomic force microscopy (AFM), Raman spectroscopy and photoluminescence (PL) measurements. From AFM, a change in GaN growth mode from grain to island is observed at the high growth temperature above 600 °C. A blue shift of 20-30 meV in near band edge PL emission line has been noticed for the GaN layers containing the large in-plane strain. These observations indicate that the in-plane strain in the GaN layers is dominated by a biaxial strain. Using nanoindentation, it is found that the indentation hardness and Young's modulus of the GaN layers increases with increasing growth temperature. The results disclose the critical role of growth mode in determining the in-plane strain and mechanical properties of the GaN layers grown by LMBE technique.

  11. Structure and photoluminescence studies of CeO2·CuAlO2 mixed metal oxide fabricated by co-precipitation method.

    PubMed

    Subhan, Md Abdus; Ahmed, Tanzir; Awal, M R; Kim, B Moon

    2015-01-25

    A novel mixed metal oxide, CeO2·CuAlO2 was fabricated by co-precipitation method in aqueous medium. CeO2·CuAlO2 was characterized by XRD, SEM, EDS, TEM, FTIR and PL spectra. The optical properties of the nanoparticles were studied by photoluminescence (PL) spectra. PL spectra at different excitations were recorded. The composite showed emission in UV, visible and NIR region depending on the excitation wavelength. The special spectral feature observed for this composite is that it showed six emission bands at 364, 409, 434, 448, 465 and 481 nm when excited at 298 nm. The green and red emissions observed at 512 and 669 nm are originated from cubic CeO2 phase when excited at 450 nm. The PL spectra were found to be dependent on excitation wavelength violating Kasha's rule. The X-ray diffraction reveals a cubic CeO2 phase and hexagonal CuAlO2 phase. EDS spectra revealed the presence of cerium (Ce), copper (Cu), aluminum (Al) and oxygen (O) elements. The particle size of the CeO2·CuAlO2 mixed oxide was estimated using Scherrer's formula, which was found to be in the range of 17.2-34.2 nm. The TEM image showed particles are almost uniform size of approximately 15-50 nm with spherical morphology. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Simultaneous AFM and fluorescence imaging: A method for aligning an AFM-tip with an excitation beam using a 2D galvanometer

    NASA Astrophysics Data System (ADS)

    Moores, A. N.; Cadby, A. J.

    2018-02-01

    Correlative fluorescence and atomic force microscopy (AFM) imaging is a highly attractive technique for use in biological imaging, enabling force and mechanical measurements of particular structures whose locations are known due to the specificity of fluorescence imaging. The ability to perform these two measurements simultaneously (rather than consecutively with post-processing correlation) is highly valuable because it would allow the mechanical properties of a structure to be tracked over time as changes in the sample occur. We present an instrument which allows simultaneous AFM and fluorescence imaging by aligning an incident fluorescence excitation beam with an AFM-tip. Alignment was performed by calibrating a 2D galvanometer present in the excitation beam path and using it to reposition the incident beam. Two programs were developed (one manual and one automated) which correlate sample features between the AFM and fluorescence images, calculating the distance required to translate the incident beam towards the AFM-tip. Using this method, we were able to obtain beam-tip alignment (and therefore field-of-view alignment) from an offset of >15 μm to within one micron in two iterations of the program. With the program running alongside data acquisition for real-time feedback between AFM and optical images, this offset was maintained over a time period of several hours. Not only does this eliminate the need to image large areas with both techniques to ensure that fields-of-view overlap, but it also raises the possibility of using this instrument for tip-enhanced fluorescence applications, a technique in which super-resolution images have previously been achieved.

  13. Combustion synthesis of MgO nanoparticles using plant extract: Structural characterization and photoluminescence studies

    NASA Astrophysics Data System (ADS)

    Kumar, Danith; Yadav, L. S. Reddy; Lingaraju, K.; Manjunath, K.; Suresh, D.; Prasad, Daruka; Nagabhushana, H.; Sharma, S. C.; Naika, H. Raja; Chikkahanumantharayappa, Nagaraju, G.

    2015-06-01

    Magnesium oxide nanoparticles (MgO Nps) have been successfully synthesized via solution combustion method using Parthenium plant extract as fuel for the first time. Powder X-ray diffraction (PXRD) pattern reveal that product belongs to the cubic phase (Periclase). FTIR spectrum shows the band at 822 cm-1 indicates the formation of cubic periclase MgO. The optical band gap of MgO Nps estimated from UV -Vis spectrum was found to be in the range 5.40-5.45 eV. SEM images showed that, the product is agglomerated and particle in nature. Photoluminescence (PL) studies shows violet emission at 390 nm, blue emission at 470 nm and green emission at 550 nm. MgO Nps shows good photocatalytic activity for the degradation of methylene blue (MB) dye under UV/Sun light irradiation.

  14. An AFM-SIMS Nano Tomography Acquisition System

    NASA Astrophysics Data System (ADS)

    Swinford, Richard William

    An instrument, adding the capability to measure 3D volumetric chemical composition, has been constructed by me as a member of the Sanchez Nano Laboratory. The laboratory's in situ atomic force microscope (AFM) and secondary ion mass spectrometry systems (SIMS) are functional and integrated as one instrument. The SIMS utilizes a Ga focused ion beam (FIB) combined with a quadrupole mass analyzer. The AFM is comprised of a 6-axis stage, three coarse axes and three fine. The coarse stage is used for placing the AFM tip anywhere inside a (13x13x5 mm3) (xyz) volume. Thus the tip can be moved in and out of the FIB processing region with ease. The planned range for the Z-axis piezo was 60 microm, but was reduced after it was damaged from arc events. The repaired Z-axis piezo is now operated at a smaller nominal range of 18 microm (16.7 microm after pre-loading), still quite respectable for an AFM. The noise floor of the AFM is approximately 0.4 nm Rq. The voxel size for the combined instrument is targeted at 50 nm or larger. Thus 0.4 nm of xyz uncertainty is acceptable. The instrument has been used for analyzing samples using FIB beam currents of 250 pA and 5.75 nA. Coarse tip approaches can take a long time so an abbreviated technique is employed. Because of the relatively long thro of the Z piezo, the tip can be disengaged by deactivating the servo PID. Once disengaged, it can be moved laterally out of the way of the FIB-SIMS using the coarse stage. This instrument has been used to acquire volumetric data on AlTiC using AFM tip diameters of 18.9 nm and 30.6 nm. Acquisition times are very long, requiring multiple days to acquire a 50-image stack. New features to be added include auto stigmation, auto beam shift, more software automation, etc. Longer term upgrades to include a new lower voltage Z-piezo with strain-gauge feedback and a new design to extend the life for the coarse XY nano-positioners. This AFM-SIMS instrument, as constructed, has proven to be a great proof

  15. Probing cellular uptake and tracking of differently shaped gelatin-coated gold nanoparticles inside of ovarian cancer cells by two-photon excited photoluminescence analyzed by fluorescence lifetime imaging (FLIM).

    PubMed

    Suarasan, Sorina; Licarete, Emilia; Astilean, Simion; Craciun, Ana-Maria

    2018-06-01

    Nowadays, the non-linear optical effect of two-photon excited (TPE) fluorescence has recently grown in interest in recent years over other optical imaging method, due to improved 3D spatial resolution, deep penetrability and less photodamage of living organism owing to the excitation in near-infrared region (NIR). In parallel, gold nanoparticles (AuNPs) have gain considerable attention for NIR TPE bio-imaging applications due to their appealing ability to generate strong intrinsic photoluminescence (PL). Here, we demonstrate the capability of differently shaped gelatin-coated AuNPs to perform as reliable label-free contrast agents for the non-invasive NIR imaging of NIH:OVCAR-3 ovary cancer cells via TPE Fluorescence Lifetime Imaging Microscopy (FLIM). Examination of the spectroscopic profile of the intrinsic signals exhibited by AuNPs inside cells confirm the plasmonic nature of the emitted PL, while the evaluation of time-dependent profile of the TPE PL signal under continuous irradiation indicates the photo-stability of the signal revealing simultaneously a photo-blinking behavior. Finally, we assess the dependence of the TPE PL signal on laser excitation power and wavelength in view of contributing to a better understanding of plasmonic TPE PL in biological media towards the improvement of TPE FLIM imaging applications based on AuNPs. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation

    NASA Astrophysics Data System (ADS)

    Biroju, Ravi K.; Giri, P. K.

    2017-07-01

    Fabrication and optoelectronic applications of graphene based hybrid 2D-1D semiconductor nanostructures have gained tremendous research interest in recent times. Herein, we present a systematic study on the origin and evolution of strong broad band visible and near infrared (NIR) photoluminescence (PL) from vertical ZnO nanorods (NRs) and nanowires (NWs) grown on single layer graphene using both above band gap and sub-band gap optical excitations. High resolution field emission scanning electron microscopy and X-ray diffraction studies are carried out to reveal the morphology and crystalline quality of as-grown and annealed ZnO NRs/NWs on graphene. Room temperature PL studies reveal that besides the UV and visible PL bands, a new near-infrared (NIR) PL emission band appears in the range between 815 nm and 886 nm (1.40-1.52 eV). X-ray photoelectron spectroscopy studies revealed excess oxygen content and unreacted metallic Zn in the as-grown ZnO nanostructures, owing to the low temperature growth by a physical vapor deposition method. Post-growth annealing at 700 °C in the Ar gas ambient results in the enhanced intensity of both visible and NIR PL bands. On the other hand, subsequent high vacuum annealing at 700 °C results in a drastic reduction in the visible PL band and complete suppression of the NIR PL band. PL decay dynamics of green emission in Ar annealed samples show tri-exponential decay on the nanosecond timescale including a very slow decay component (time constant ˜604.5 ns). Based on these results, the NIR PL band comprising two peaks centered at ˜820 nm and ˜860 nm is tentatively assigned to neutral and negatively charged oxygen interstitial (Oi) defects in ZnO, detected experimentally for the first time. The evidence for oxygen induced trap states on the ZnO NW surface is further substantiated by the slow photocurrent response of graphene-ZnO NRs/NWs. These results are important for tunable light emission, photodetection, and other cutting edge

  17. Photoluminescence enhancement through vertical stacking of defect-engineered Ge on Si quantum dots

    NASA Astrophysics Data System (ADS)

    Groiss, Heiko; Spindlberger, Lukas; Oberhumer, Peter; Schäffler, Friedrich; Fromherz, Thomas; Grydlik, Martyna; Brehm, Moritz

    2017-02-01

    In this work, we show that the room-temperature photoluminescence intensity from Ge ion-bombarded (GIB) epitaxial Ge on Si quantum dots (QD) can be improved by their vertical stacking. We stress that the growth of GIB-QD multilayers is more demanding compared to all-crystalline epitaxial QDs, as a consequence of local amorphous regions within the GIB-QDs required during their genesis. We show that in spite of those amorphous regions, for accurately chosen growth temperatures of the Si spacer layers separating the GIB-QD layers, multiple GIB-QD layers can be stacked without detrimental break-down of epitaxial growth. Compared to a single GIB-QD layer, we observe a 650% increase in PL intensity for an eleven-layer GIB-QD stack, indicating that such multilayers are promising candidates as gain material for all-group-IV nano-photonic lasers.

  18. Microwave-assisted hydrothermal synthesis of Ag₂(W(1-x)Mox)O₄ heterostructures: Nucleation of Ag, morphology, and photoluminescence properties.

    PubMed

    Silva, M D P; Gonçalves, R F; Nogueira, I C; Longo, V M; Mondoni, L; Moron, M G; Santana, Y V; Longo, E

    2016-01-15

    Ag2W(1-x)MoxO4 (x=0.0 and 0.50) powders were synthesized by the co-precipitation (drop-by-drop) method and processed using a microwave-assisted hydrothermal method. We report the real-time in situ formation and growth of Ag filaments on the Ag2W(1-x)MoxO4 crystals using an accelerated electron beam under high vacuum. Various techniques were used to evaluate the influence of the network-former substitution on the structural and optical properties, including photoluminescence (PL) emission, of these materials. X-ray diffraction results confirmed the phases obtained by the synthesis methods. Raman spectroscopy revealed significant changes in local order-disorder as a function of the network-former substitution. Field-emission scanning electron microscopy was used to determine the shape as well as dimensions of the Ag2W(1-x)MoxO4 heterostructures. The PL spectra showed that the PL-emission intensities of Ag2W(1-x)MoxO4 were greater than those of pure Ag2WO4, probably because of the increase of intermediary energy levels within the band gap of the Ag2W(1-x)MoxO4 heterostructures, as evidenced by the decrease in the band-gap values measured by ultraviolet-visible spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Structure and photoluminescence properties of ZnS films grown on porous Si substrates

    NASA Astrophysics Data System (ADS)

    Wang, Cai-feng; Hu, Bo; Yi, Hou-hui; Li, Wei-bing

    2011-11-01

    ZnS films were deposited on porous silicon (PS) substrates with different porosities. With the increase of PS substrate porosity, the XRD diffraction peak intensity decreases and the surface morphology of the ZnS films becomes rougher. Voids appear in the films, due to the increased roughness of PS structure. The photoluminescence (PL) spectra of the samples before and after deposition of ZnS were measured to study the effect of substrate porosity on the luminescence properties of ZnS/PS composites. As-prepared PS substrates emit strong red light. The red PL peak of PS after deposition of ZnS shows an obvious blueshift. As PS substrate porosity increases, the trend of blueshift increases. A green emission at about 550 nm was also observed when the porosity of PS increased, which is ascribed to the defect-center luminescence of ZnS. The effect of annealing time on the structural and luminescence properties of ZnS/PS composites were also studied. With the increase of annealing time, the XRD diffraction peak intensity and the self-activated luminescence intensity of ZnS increase, and, the surface morphology of the ZnS films becomes smooth and compact. However, the red emission intensity of PS decreases, which was associated with a redshift. White light emission was obtained by combining the luminescence of ZnS with the luminescence of PS.

  20. Tip Characterization Method using Multi-feature Characterizer for CD-AFM

    PubMed Central

    Orji, Ndubuisi G.; Itoh, Hiroshi; Wang, Chumei; Dixson, Ronald G.; Walecki, Peter S.; Schmidt, Sebastian W.; Irmer, Bernd

    2016-01-01

    In atomic force microscopy (AFM) metrology, the tip is a key source of uncertainty. Images taken with an AFM show a change in feature width and shape that depends on tip geometry. This geometric dilation is more pronounced when measuring features with high aspect ratios, and makes it difficult to obtain absolute dimensions. In order to accurately measure nanoscale features using an AFM, the tip dimensions should be known with a high degree of precision. We evaluate a new AFM tip characterizer, and apply it to critical dimension AFM (CD-AFM) tips used for high aspect ratio features. The characterizer is made up of comb-shaped lines and spaces, and includes a series of gratings that could be used as an integrated nanoscale length reference. We also demonstrate a simulation method that could be used to specify what range of tip sizes and shapes the characterizer can measure. Our experiments show that for non re-entrant features, the results obtained with this characterizer are consistent to 1 nm with the results obtained by using widely accepted but slower methods that are common practice in CD-AFM metrology. A validation of the integrated length standard using displacement interferometry indicates a uniformity of better than 0.75%, suggesting that the sample could be used as highly accurate and SI traceable lateral scale for the whole evaluation process. PMID:26720439

  1. Application of focused ion beam for the fabrication of AFM probes

    NASA Astrophysics Data System (ADS)

    Kolomiytsev, A. S.; Lisitsyn, S. A.; Smirnov, V. A.; Fedotov, A. A.; Varzarev, Yu N.

    2017-10-01

    The results of an experimental study of the probe tips fabrication for critical-dimension atomic force microscopy (CD-AFM) using the focused ion beam (FIB) induced deposition are presented. Methods of the FIB-induced deposition of tungsten and carbon onto the tip of an AFM probe are studied. Based on the results obtained in the study, probes for the CD-AFM technique with a tip height about 1 μm and radius of 20 nm were created. The formation of CD-AFM probes by FIB-induced deposition allows creating a high efficiency tool for nanotechnology and nanodiagnostics. The use of modified cantilevers allows minimizing the artefacts of AFM images and increasing the accuracy of the relief measurement. The obtained results can be used for fabrication of AFM probes for express monitoring of the technological process in the manufacturing of the elements for micro- and nanoelectronics.

  2. University of Maryland MRSEC - Facilities: SEM/STM/AFM

    Science.gov Websites

    MRSEC Templates Opportunities Search Home » Facilities » SEM/STM/AFM Shared Experimental Facilities conducting and non conducting samples. The sample stage permits electronic device imaging under operational Specifications: Image Modes - STM, STS, MFM, EFM, SKPM, contact- and non-contact AFM Three Sample Contacts 0.1 nm

  3. Functional Exploration of the Polysaccharide Lyase Family PL6

    PubMed Central

    Mathieu, Sophie; Henrissat, Bernard; Labre, Flavien; Skjåk-Bræk, Gudmund; Helbert, William

    2016-01-01

    Alginate, the main cell-wall polysaccharide of brown algae, is composed of two residues: mannuronic acid (M-residues) and, its C5-epimer, guluronic acid (G-residues). Alginate lyases define a class of enzymes that cleave the glycosidic bond of alginate by β-elimination. They are classified according to their ability to recognize the distribution of M- and G-residues and are named M-, G- or MG-lyases. In the CAZy database, alginate lyases have been grouped by sequence similarity into seven distinct polysaccharide lyase families. The polysaccharide lyase family PL6 is subdivided into three subfamilies. Subfamily PL6_1 includes three biochemically characterized enzymes (two alginate lyases and one dermatan sulfatase lyase). No characterized enzymes have been described in the two other subfamilies (PL6_2 and PL6_3). To improve the prediction of polysaccharide-lyase activity in the PL6 family, we re-examined the classification of the PL6 family and biochemically characterized a set of enzymes reflecting the diversity of the protein sequences. Our results show that subfamily PL6_1 includes two dermatan sulfates lyases and several alginate lyases that have various substrate specificities and modes of action. In contrast, subfamilies PL6_2 and PL6_3 were found to contain only endo-poly-MG-lyases. PMID:27438604

  4. Photoluminescent Au-Ge composite nanodots formation on SiO2 surface by ion induced dewetting

    NASA Astrophysics Data System (ADS)

    Datta, D. P.; Siva, V.; Singh, A.; Kanjilal, D.; Sahoo, P. K.

    2017-09-01

    Medium energy ion irradiation on a bilayer of Au and Ge on SiO2 is observed to result in gradual morphological evolution from an interconnected network to a nanodot array on the insulator surface. Structural and compositional analyses reveal composite nature of the nanodots, comprising of both Au and Ge. The growing nanostructures are found to be photoluminescent at room temperature where the emission intensity and wavelengths vary with morphology. The growth of such nanostructures can be understood in terms of dewetting of the metal layer under ion irradiation due to ion-induced melting along the ion tracks. The visible PL emission is found to be related with evolution of the Au-Ge nanodots. The study indicates a route towards single step synthesis of metal-semiconductor nanodots on insulator surface.

  5. Characterization of the interaction between AFM tips and surface nanobubbles.

    PubMed

    Walczyk, Wiktoria; Schönherr, Holger

    2014-06-24

    While the presence of gaseous enclosures observed at various solid-water interfaces, the so-called "surface nanobubles", has been confirmed by many groups in recent years, their formation, properties, and stability have not been convincingly and exhaustively explained. Here we report on an atomic force microscopy (AFM) study of argon nanobubbles on highly oriented pyrolitic graphite (HOPG) in water to elucidate the properties of nanobubble surfaces and the mechanism of AFM tip-nanobubble interaction. In particular, the deformation of the nanobubble-water interface by the AFM tip and the question whether the AFM tip penetrates the nanobubble during scanning were addressed by this combined intermittent contact (tapping) mode and force volume AFM study. We found that the stiffness of nanobubbles was smaller than the cantilever spring constant and comparable with the surface tension of water. The interaction with the AFM tip resulted in severe quasi-linear deformation of the bubbles; however, in the case of tip-bubble attraction, the interface deformed toward the tip. We tested two models of tip-bubble interaction, namely, the capillary force and the dynamic interaction model, and found, depending on the tip properties, good agreement with experimental data. The results showed that the tip-bubble interaction strength and the magnitude of the bubble deformation depend strongly on tip and bubble geometry and on tip and substrate material, and are very sensitive to the presence of contaminations that alter the interfacial tension. In particular, nanobubbles interacted differently with hydrophilic and hydrophobic AFM tips, which resulted in qualitatively and quantitatively different force curves measured on the bubbles in the experiments. To minimize bubble deformation and obtain reliable AFM results, nanobubbles must be measured with a sharp hydrophilic tip and with a cantilever having a very low spring constant in a contamination-free system.

  6. A versatile phenomenological model for the S-shaped temperature dependence of photoluminescence energy for an accurate determination of the exciton localization energy in bulk and quantum well structures

    NASA Astrophysics Data System (ADS)

    Dixit, V. K.; Porwal, S.; Singh, S. D.; Sharma, T. K.; Ghosh, Sandip; Oak, S. M.

    2014-02-01

    Temperature dependence of the photoluminescence (PL) peak energy of bulk and quantum well (QW) structures is studied by using a new phenomenological model for including the effect of localized states. In general an anomalous S-shaped temperature dependence of the PL peak energy is observed for many materials which is usually associated with the localization of excitons in band-tail states that are formed due to potential fluctuations. Under such conditions, the conventional models of Varshni, Viña and Passler fail to replicate the S-shaped temperature dependence of the PL peak energy and provide inconsistent and unrealistic values of the fitting parameters. The proposed formalism persuasively reproduces the S-shaped temperature dependence of the PL peak energy and provides an accurate determination of the exciton localization energy in bulk and QW structures along with the appropriate values of material parameters. An example of a strained InAs0.38P0.62/InP QW is presented by performing detailed temperature and excitation intensity dependent PL measurements and subsequent in-depth analysis using the proposed model. Versatility of the new formalism is tested on a few other semiconductor materials, e.g. GaN, nanotextured GaN, AlGaN and InGaN, which are known to have a significant contribution from the localized states. A quantitative evaluation of the fractional contribution of the localized states is essential for understanding the temperature dependence of the PL peak energy of bulk and QW well structures having a large contribution of the band-tail states.

  7. A green synthesis method for large area silver thin film containing nanoparticles.

    PubMed

    Shinde, N M; Lokhande, A C; Lokhande, C D

    2014-07-05

    The green synthesis method is inexpensive and convenient for large area deposition of thin films. For the first time, a green synthesis method for large area silver thin film containing nanoparticles is reported. Silver nanostructured films are deposited using silver nitrate solution and guava leaves extract. The study confirmed that the reaction time plays a key role in the growth and shape/size control of silver nanoparticles. The properties of silver films are studied using UV-visible spectrophotometer, scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), contact angle, Fourier-transform Raman (FT-Raman) spectroscopy and Photoluminescence (PL) techniques. Finally, as an application, these films are used effectively in antibacterial activity study. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Pressure-Photoluminescence Study of the Zn Vacancy and Donor Zn-Vacancy Complexes in ZnSe

    NASA Astrophysics Data System (ADS)

    Iota, V.; Weinstein, B. A.

    1997-03-01

    We report photoluminescence (PL) results to 65kbar (at 8K) on n-type electron irradiated ZnSe containing high densities of isolated Zn vacancies (V_Zn) and donor-V_Zn complexes (A-centers).^1 Isotropic pressure is applied using a diamond-anvil cell with He medium, and laser excitations above and below the ZnSe bandgap (2.82eV) are employed. The 1 atm. spectra exhibit excitonic lines, shallow donor-acceptor pair (DAP) peaks, and two broad bands due to DAP transitions between shallow donors and deep acceptor states at A-centers (2.07eV) or V_Zn (1.72eV). At all pressures, these broad bands are prominent only for sub-gap excitation, which results in: i) A-center PL at energies above the laser line, and ii) strong enhancement of the first LO-replica in the shallow DAP series compared to 3.41eV UV excitation. This suggests that sub-gap excitation produces long-lived metastable acceptor states. The broad PL bands shift to higher energy with pressure faster than the ZnSe direct gap, indicating that compression causes the A-center and V_Zn deep acceptor levels to approach the hole continuum. This behavior is similar to that found by our group for P and As deep acceptor levels in ZnSe, supporting the view that deep substitutional defects often resemble the limiting case of a vacancy. ^1D. Y. Jeon, H. P. Gislason, G. D. Watkins Phys. Rev. B 48, 7872 (1993); we thank G. D. Watkins for providing the samples. (figures)

  9. In-Process Atomic-Force Microscopy (AFM) Based Inspection

    PubMed Central

    Mekid, Samir

    2017-01-01

    A new in-process atomic-force microscopy (AFM) based inspection is presented for nanolithography to compensate for any deviation such as instantaneous degradation of the lithography probe tip. Traditional method used the AFM probes for lithography work and retract to inspect the obtained feature but this practice degrades the probe tip shape and hence, affects the measurement quality. This paper suggests a second dedicated lithography probe that is positioned back-to-back to the AFM probe under two synchronized controllers to correct any deviation in the process compared to specifications. This method shows that the quality improvement of the nanomachining, in progress probe tip wear, and better understanding of nanomachining. The system is hosted in a recently developed nanomanipulator for educational and research purposes. PMID:28561747

  10. Recent developments in dimensional nanometrology using AFMs

    NASA Astrophysics Data System (ADS)

    Yacoot, Andrew; Koenders, Ludger

    2011-12-01

    Scanning probe microscopes, in particular the atomic force microscope (AFM), have developed into sophisticated instruments that, throughout the world, are no longer used just for imaging, but for quantitative measurements. A role of the national measurement institutes has been to provide traceable metrology for these instruments. This paper presents a brief overview as to how this has been achieved, highlights the future requirements for metrology to support developments in AFM technology and describes work in progress to meet this need.

  11. Suppression effect of silicon (Si) on Er{sup 3+} 1.54μm excitation in ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Bo; Lu, Fei, E-mail: lufei@sdu.edu.cn; Fan, Ranran

    2016-08-15

    We have investigated the photoluminescence (PL) characteristics of ZnO:Er thin films on Si (100) single crystal and SiO{sub 2}-on-silicon (SiO{sub 2}) substrates, synthesized by radio frequency magnetron sputtering. Rutherford backscattering/channeling spectrometry (RBS), X-ray diffraction (XRD) and atomic force microscope (AFM) were used to analyze the properties of thin films. The diffusion depth profiles of Si were determined by second ion mass spectrometry (SIMS). Infrared spectra were obtained from the spectrometer and related instruments. Compared with the results at room temperature (RT), PL (1.54μm) intensity increased when samples were annealed at 250°C and decreased when at 550°C. A new peak atmore » 1.15μm from silicon (Si) appeared in 550°C samples. The Si dopants in ZnO film, either through the diffusion of Si from the substrate or ambient, directly absorbed the energy of pumping light and resulted in the suppression of Er{sup 3+} 1.54μm excitation. Furthermore, the energy transmission efficiency between Si and Er{sup 3+} was very low when compared with silicon nanocrystal (Si-NC). Both made the PL (1.54μm) intensity decrease. All the data in experiments proved the negative effects of Si dopants on PL at 1.54μm. And further research is going on.« less

  12. Sub-diffraction nano manipulation using STED AFM.

    PubMed

    Chacko, Jenu Varghese; Canale, Claudio; Harke, Benjamin; Diaspro, Alberto

    2013-01-01

    In the last two decades, nano manipulation has been recognized as a potential tool of scientific interest especially in nanotechnology and nano-robotics. Contemporary optical microscopy (super resolution) techniques have also reached the nanometer scale resolution to visualize this and hence a combination of super resolution aided nano manipulation ineluctably gives a new perspective to the scenario. Here we demonstrate how specificity and rapid determination of structures provided by stimulated emission depletion (STED) microscope can aid another microscopic tool with capability of mechanical manoeuvring, like an atomic force microscope (AFM) to get topological information or to target nano scaled materials. We also give proof of principle on how high-resolution real time visualization can improve nano manipulation capability within a dense sample, and how STED-AFM is an optimal combination for this job. With these evidences, this article points to future precise nano dissections and maybe even to a nano-snooker game with an AFM tip and fluorospheres.

  13. Design and Realization of 3D Printed AFM Probes.

    PubMed

    Alsharif, Nourin; Burkatovsky, Anna; Lissandrello, Charles; Jones, Keith M; White, Alice E; Brown, Keith A

    2018-05-01

    Atomic force microscope (AFM) probes and AFM imaging by extension are the product of exceptionally refined silicon micromachining, but are also restricted by the limitations of these fabrication techniques. Here, the nanoscale additive manufacturing technique direct laser writing is explored as a method to print monolithic cantilevered probes for AFM. Not only are 3D printed probes found to function effectively for AFM, but they also confer several advantages, most notably the ability to image in intermittent contact mode with a bandwidth approximately ten times larger than analogous silicon probes. In addition, the arbitrary structural control afforded by 3D printing is found to enable programming the modal structure of the probe, a capability that can be useful in the context of resonantly amplifying nonlinear tip-sample interactions. Collectively, these results show that 3D printed probes complement those produced using conventional silicon micromachining and open the door to new imaging techniques. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Preparation and characterization of PVP-PVA–ZnO blend polymer nano composite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divya, S., E-mail: divi.fysics@gmail.com; Saipriya, G.; Hemalatha, J., E-mail: hemalatha@nitt.edu

    Flexible self-standing films of PVP-PVA blend composites are prepared by using ZnO as a nano filler at different concentrations. The structural, compositional, morphological and optical studies made with the help of X-ray diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Scanning electron microscope (SEM), Atomic Force Microscopy (AFM), Ultraviolet-visible spectroscopy (UV-vis) and Photoluminescence (PL) spectra are presented in this paper. The results of XRD indicate that ZnO nanoparticles are formed with hexagonal phase in the polymeric matrix. SEM images show the dispersion of ZnO nano filler in the polymer matrix. UV–vis spectra reveal that the absorption peak is centered around 235more » nm and 370 nm for the nano composite films. The blue shift is observed with decrease in the concentration of the nano filler. PL spectra shows the excitation wavelength is given at 320 nm.The emission peaks were observed at 383 nm ascribing to the electronic transitions between valence band and conduction band and the peak at 430 nm.« less

  15. Highly Luminescent Hybrid SiO2-Coated CdTe Quantum Dots Retained Initial Photoluminescence Efficiency in Sol-Gel SiO2 Film.

    PubMed

    Sun, Hongsheng; Xing, Yugui; Wu, Qinan; Yang, Ping

    2015-02-01

    A highly luminescent silica film was fabricated using tetraethyl orthosilicate (TEOS) and 3-aminopropyltrimethoxysilane (APS) through a controlled sol-gel reaction. The pre-hydrolysis of TEOS and APS which resulted in the mixture of TEOS and APS in a molecular level is a key for the formation of homogenous films. The aminopropyl groups in APS play an important role for obtaining homogeneous film with high photoluminescence (PL). Red-emitting hybrid SiO2-coated CdTe nano-crystals (NCs) were fabricated by a two-step synthesis including a thin SiO2 coating via a sol-gel process and a subsequent refluxing using green-emitting CdTe NCs. The hybrid SiO2-coated CdTe NCs were embedded in a functional SiO2 film via a two-step process including adding the NCs in SiO2 sol with a high viscosity and almost without ethanol and a subsequent spinning coating. The hybrid SiO2-coated CdTe NCs retained their initial PL efficiency (54%) in the film. Being encapsulated with the hybrid NCs in the film, no change on the absorption and PL spectra of red-emitting CdTe NCs (632 nm) was observed. This indicates the hybrid NCs is stable enough during preparation. This phenomenon is ascribed to the controlled sol-gel process and a hybrid SiO2 shell on CdTe NCs. Because these films exhibited high PL efficiency and stability, they will be utilizable for potential applications in many fields.

  16. Temperature dependent optical properties of ZnO thin film using ellipsometry and photoluminescence

    NASA Astrophysics Data System (ADS)

    Bouzourâa, M.-B.; Battie, Y.; Dalmasso, S.; Zaïbi, M.-A.; Oueslati, M.; En Naciri, A.

    2018-05-01

    We report the temperature dependence of the dielectric function, the exciton binding energy and the electronic transitions of crystallized ZnO thin film using spectroscopic ellipsometry (SE) and photoluminescence (PL). ZnO layers were prepared by sol-gel method and deposited on crystalline silicon (Si) by spin coating technique. The ZnO optical properties were determined between 300 K and 620 K. Rigorous study of optical responses was achieved in order to demonstrate the quenching exciton of ZnO as a function of temperature. Numerical technique named constrained cubic splines approximation (CCS), Tauc-Lorentz (TL) and Tanguy dispersion models were selected for the ellipsometry data modeling in order to obtain the dielectric function of ZnO. The results reveals that the exciton bound becomes widely flattening at 470 K on the one hand, and on the other that the Tanguy dispersion law is more appropriate for determining the optical responses of ZnO thin film in the temperature range of 300 K-420 K. The Tauc-Lorentz, for its part, reproduces correctly the ZnO dielectric function in 470 K-620 K temperature range. The temperature dependence of the electronic transition given by SE and PL shows that the exciton quenching was observed in 420 K-∼520 K temperature range. This quenching effect can be explained by the equilibrium between the Coulomb force of exciton and its kinetic energy in the film. The kinetic energy was found to induce three degrees of freedom of the exciton.

  17. Identification of point defects in HVPE-grown GaN by steady-state and time-resolved photoluminescence

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Demchenko, D. O.; Usikov, A.; Helava, H.; Makarov, Yu.

    2015-03-01

    We have investigated point defects in GaN grown by HVPE by using steady-state and time-resolved photoluminescence (PL). Among the most common PL bands in this material are the red luminescence band with a maximum at 1.8 eV and a zero-phonon line (ZPL) at 2.36 eV (attributed to an unknown acceptor having an energy level 1.130 eV above the valence band), the blue luminescence band with a maximum at 2.9 eV (attributed to ZnGa), and the ultraviolet luminescence band with the main peak at 3.27 eV (related to an unknown shallow acceptor). In GaN with the highest quality, the dominant defect-related PL band at high excitation intensity is the green luminescence band with a maximum at about 2.4 eV. We attribute this band to transitions of electrons from the conduction band to the 0/+ level of the isolated CN defect. The yellow luminescence (YL) band, related to transitions via the -/0 level of the same defect, has a maximum at 2.1 eV. Another yellow luminescence band, which has similar shape but peaks at about 2.2 eV, is observed in less pure GaN samples and is attributed to the CNON complex. In semi-insulating GaN, the GL2 band with a maximum at 2.35 eV (attributed to VN) and the BL2 band with a maximum at 3.0 eV and the ZPL at 3.33 eV (attributed to a defect complex involving hydrogen) are observed. We also conclude that the gallium vacancy-related defects act as centers of nonradiative recombination.

  18. Active region dimensionality and quantum efficiencies of InGaN LEDs from temperature dependent photoluminescence transients

    NASA Astrophysics Data System (ADS)

    Can, Nuri; Okur, Serdal; Monavarian, Morteza; Zhang, Fan; Avrutin, Vitaliy; Morkoç, Hadis; Teke, Ali; Özgür, Ümit

    2015-03-01

    Temperature dependent recombination dynamics in c-plane InGaN light emitting diodes (LEDs) with different well thicknesses, 1.5, 2, and 3 nm, were investigated to determine the active region dimensionality and its effect on the internal quantum efficiencies. It was confirmed for all LEDs that the photoluminescence (PL) transients are governed by radiative recombination at low temperatures while nonradiative recombination dominates at room temperature. At photoexcited carrier densities of 3 - 4.5 x 1016 cm-3 , the room-temperature Shockley-Read-Hall (A) and the bimolecular (B) recombination coefficients (A, B) were deduced to be (9.2x107 s-1, 8.8x10-10 cm3s-1), (8.5x107 s-1, 6.6x10-10 cm3s-1), and (6.5x107 s-1, 1.4x10-10 cm3s-1) for the six period 1.5, 2, and 3 nm well-width LEDs, respectively. From the temperature dependence of the radiative lifetimes, τrad α Tn/2, the dimensionality n of the active region was found to decrease consistently with decreasing well width. The 3 nm wide wells exhibited ~T1.5 dependence, suggesting a three-dimensional nature, whereas the 1.5 nm wells were confirmed to be two-dimensional (~T1) and the 2 nm wells close to being two-dimensional. We demonstrate that a combination of temperature dependent PL and time-resolved PL techniques can be used to evaluate the dimensionality as well as the quantum efficiencies of the LED active regions for a better understanding of the relationship between active-region design and the efficiency limiting processes in InGaN LEDs.

  19. Growth Mechanisms of Inductively-Coupled Plasma Torch Synthesized Silicon Nanowires and their associated photoluminescence properties

    PubMed Central

    Agati, M.; Amiard, G.; Le Borgne, V.; Castrucci, P.; Dolbec, R.; De Crescenzi, M.; El Khakani, M. A.; Boninelli, S.

    2016-01-01

    Ultra-thin Silicon Nanowires (SiNWs) were produced by means of an industrial inductively-coupled plasma (ICP) based process. Two families of SiNWs have been identified, namely long SiNWs (up to 2–3 micron in length) and shorter ones (~100 nm). SiNWs were found to consist of a Si core (with diameter as thin as 2 nm) and a silica shell, of which the thickness varies from 5 to 20 nm. By combining advanced transmission electron microscopy (TEM) techniques, we demonstrate that the growth of the long SiNWs occurred via the Oxide Assisted Growth (OAG) mechanism, while the Vapor Liquid Solid (VLS) mechanism is responsible for the growth of shorter ones. Energy filtered TEM analyses revealed, in some cases, the existence of chapelet-like Si nanocrystals embedded in an otherwise silica nanowire. Such nanostructures are believed to result from the exposure of some OAG SiNWs to high temperatures prevailing inside the reactor. Finally, the intense photoluminescence (PL) of these ICP-grown SiNWs in the 620–950 nm spectral range is a clear indication of the occurrence of quantum confinement. Such a PL emission is in accordance with the TEM results which revealed that the size of nanostructures are indeed below the exciton Bohr radius of silicon. PMID:27874057

  20. Pressure Study of Photoluminescence in GaN/InGaN/ AlGaN Quantum Wells

    NASA Astrophysics Data System (ADS)

    Perlin, Piotr; Iota, V.; Weinstein, B. A.; Wisniewski, P.; Osinski, M.; Eliseev, P. G.

    1997-03-01

    We have studied the photoluminescence (PL) from two commercial high brightness single quantum well light emitting diodes (Nichia Chem. Industs.) with In_xGa_1-x N (x=0.45 and 0.2) as the active layers under hydrostatic pressures up to 7 GPa. These diodes are the best existing light emitters at short wavelengths, having the emission wavelengths of 430 nm and 530 nm depending on the content of indium in the 30 Åthick quantum wells. Although these devices show a remarkable quality and efficiency (luminosity as high as 12 cd), the mechanism of recombination remains obscure. We discovered that the pressure coefficient for each of the observed PL peaks is dramatically (2-3 times) lower than that of the energy gap of its InGaN active layer. These observations, in conjunction with the fact that the observed emission occurs below the energy gap of the quantum well material, and also considering the anomalous temperature behavior of the emission (peak energy increasing with temperature) suggest the involvement of localized states and exclude a simple band-to-band recombination picture. These localized states may be tentatively attributed to the presence of band tails in the gap which stem from composition fluctuations in the InGaN alloy. (figures)

  1. Growth Mechanisms of Inductively-Coupled Plasma Torch Synthesized Silicon Nanowires and their associated photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Agati, M.; Amiard, G.; Le Borgne, V.; Castrucci, P.; Dolbec, R.; de Crescenzi, M.; El Khakani, M. A.; Boninelli, S.

    2016-11-01

    Ultra-thin Silicon Nanowires (SiNWs) were produced by means of an industrial inductively-coupled plasma (ICP) based process. Two families of SiNWs have been identified, namely long SiNWs (up to 2-3 micron in length) and shorter ones (~100 nm). SiNWs were found to consist of a Si core (with diameter as thin as 2 nm) and a silica shell, of which the thickness varies from 5 to 20 nm. By combining advanced transmission electron microscopy (TEM) techniques, we demonstrate that the growth of the long SiNWs occurred via the Oxide Assisted Growth (OAG) mechanism, while the Vapor Liquid Solid (VLS) mechanism is responsible for the growth of shorter ones. Energy filtered TEM analyses revealed, in some cases, the existence of chapelet-like Si nanocrystals embedded in an otherwise silica nanowire. Such nanostructures are believed to result from the exposure of some OAG SiNWs to high temperatures prevailing inside the reactor. Finally, the intense photoluminescence (PL) of these ICP-grown SiNWs in the 620-950 nm spectral range is a clear indication of the occurrence of quantum confinement. Such a PL emission is in accordance with the TEM results which revealed that the size of nanostructures are indeed below the exciton Bohr radius of silicon.

  2. Photo-stability and time-resolved photoluminescence study of colloidal CdSe/ZnS quantum dots passivated in Al{sub 2}O{sub 3} using atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chih-Yi; Mao, Ming-Hua, E-mail: mhmao@ntu.edu.tw; Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan

    2016-08-28

    We report photo-stability enhancement of colloidal CdSe/ZnS quantum dots (QDs) passivated in Al{sub 2}O{sub 3} thin film using the atomic layer deposition (ALD) technique. 62% of the original peak photoluminescence (PL) intensity remained after ALD. The photo-oxidation and photo-induced fluorescence enhancement effects of both the unpassivated and passivated QDs were studied under various conditions, including different excitation sources, power densities, and environment. The unpassivated QDs showed rapid PL degradation under high excitation due to strong photo-oxidation in air while the PL intensity of Al{sub 2}O{sub 3} passivated QDs was found to remain stable. Furthermore, recombination dynamics of the unpassivated andmore » passivated QDs were investigated by time-resolved measurements. The average lifetime of the unpassivated QDs decreases with laser irradiation time due to photo-oxidation. Photo-oxidation creates surface defects which reduces the QD emission intensity and enhances the non-radiative recombination rate. From the comparison of PL decay profiles of the unpassivated and passivated QDs, photo-oxidation-induced surface defects unexpectedly also reduce the radiative recombination rate. The ALD passivation of Al{sub 2}O{sub 3} protects QDs from photo-oxidation and therefore avoids the reduction of radiative recombination rate. Our experimental results demonstrated that passivation of colloidal QDs by ALD is a promising method to well encapsulate QDs to prevent gas permeation and to enhance photo-stability, including the PL intensity and carrier lifetime in air. This is essential for the applications of colloidal QDs in light-emitting devices.« less

  3. The deep levels in InGaAlP epilayers grown by metalorganic chemical vapor deposition using tertiarybutylphosphine

    NASA Astrophysics Data System (ADS)

    Izumiya, T.; Ishikawa, H.; Mashita, M.

    1994-12-01

    InGaAlP epilayers and double-hetero structure light emitting diodes (LEDs) were grown by metalorganic chemical vapor deposition (MOCVD) using tertiarybutylphosphine (TBP). The photoluminescence (PL) intensities were low compared with the epilayer grown using PH 3, and depended markedly on the TBP synthesis lots. Deep levels, were studied and two oxygen related levels were observed in the epilayers with small PL intensities. An intimate relation between the deep levels and the photoluminescence (PL) intensity has been found. A larger TBP flow rate reduced the deep level concentrations and improved the PL intensity.

  4. Aligned silica nanowires on the inner wall of bubble-like silica film: the growth mechanism and photoluminescence.

    PubMed

    Chen, Yiqing; Zhou, Qingtao; Jiang, Haifeng; Su, Yong; Xiao, Haihua; Zhu, Li-Ang; Xu, Liang

    2006-02-28

    Large area, aligned amorphous silica nanowires grow on the inner wall of bubble-like silica film, which is prepared by thermal evaporation of a molten gallium-silicon alloy in a flow of ammonia. These nanowires are 10-20 nm in diameter and 0.5-1.5 µm in length. The bubble-like silica film functions as a substrate, guiding the growth of silica nanowires by a vapour-solid process. This work helps us to clearly elucidate the growth mechanism of aligned amorphous silica nanowires, ruling out the possibility of liquid gallium acting as a nucleation substrate for the growth of the aligned silica nanowires. A broad emission band from 290 to 600 nm is observed in the photoluminescence (PL) spectrum of these nanowires. There are seven PL peaks: two blue emission peaks at 430 nm (2.88 eV) and 475 nm (2.61 eV); and five ultraviolet emission peaks at 325 nm (3.82 eV), 350 nm (3.54 eV), 365 nm (3.40 eV), 385 nm (3.22 eV) and 390 nm (3.18 eV), which may be related to various oxygen defects.

  5. Combustion synthesis of MgO nanoparticles using plant extract: Structural characterization and photoluminescence studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Danith; Chikkahanumantharayappa; Yadav, L. S. Reddy

    Magnesium oxide nanoparticles (MgO Nps) have been successfully synthesized via solution combustion method using Parthenium plant extract as fuel for the first time. Powder X-ray diffraction (PXRD) pattern reveal that product belongs to the cubic phase (Periclase). FTIR spectrum shows the band at 822 cm{sup −1} indicates the formation of cubic periclase MgO. The optical band gap of MgO Nps estimated from UV –Vis spectrum was found to be in the range 5.40–5.45 eV. SEM images showed that, the product is agglomerated and particle in nature. Photoluminescence (PL) studies shows violet emission at 390 nm, blue emission at 470 nm and green emissionmore » at 550 nm. MgO Nps shows good photocatalytic activity for the degradation of methylene blue (MB) dye under UV/Sun light irradiation.« less

  6. Molecular dynamics simulations and photoluminescence measurements of annealed ZnO surfaces

    NASA Astrophysics Data System (ADS)

    Min, Tjun Kit; Yoon, Tiem Leong; Ling, Chuo Ann; Mahmud, Shahrom; Lim, Thong Leng; Saw, Kim Guan

    2017-06-01

    The effect of thermal annealing on wurtzite ZnO, terminated by two surfaces, (000 1 bar) (which is oxygen-terminated) and (0 0 0 1) (which is Zn-terminated), is investigated via molecular dynamics simulation using reactive force field (ReaxFF). As a result of annealing at a threshold temperature range of 700 K photoluminescence (PL) spectra, interpreted as a measurement of amount of vacancies on the sample surfaces, qualitatively agrees with the threshold behavior as found in the MD simulations. Our simulations have also revealed the formation of oxygen dimers on the surface and evolution of partial charge distribution during the annealing process. Our MD simulation based on the ReaxFF is consistent with experimental observations.

  7. Title VI in '76: Review of Projects Funded Under P.L. 91-230 Title VI-B, Education of the Handicapped Act, as Amended by P.L. 93-380 and P.L. 94-142. Fiscal Year 1976.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee.

    Summarized are 89 projects which served exceptional students in all 67 Florida school districts and were funded during the 1975-76 school year under P.L. 91-230 Title VI B (Education of the Handicapped Act) as ammended by P.L. 93-380 and P.L. 94-142. Projects are divided into the following major areas; Florida Learning Resources System,…

  8. Excitation intensity dependence of photoluminescence from monolayers of MoS2 and WS2/MoS2 heterostructures

    NASA Astrophysics Data System (ADS)

    Kaplan, D.; Gong, Y.; Mills, K.; Swaminathan, V.; Ajayan, P. M.; Shirodkar, S.; Kaxiras, E.

    2016-03-01

    A detailed study of the excitation dependence of the photoluminescence (PL) from monolayers of MoS2 and WS2/MoS2 heterostructures grown by chemical vapor deposition on Si substrates has revealed that the luminescence from band edge excitons from MoS2 monolayers shows a linear dependence on excitation intensity for both above band gap and resonant excitation conditions. In particular, a band separated by ∼55 meV from the A exciton, referred to as the C band, shows the same linear dependence on excitation intensity as the band edge excitons. A band similar to the C band has been previously ascribed to a trion, a charged, three-particle exciton. However, in our study the C band does not show the 3/2 power dependence on excitation intensity as would be expected for a three-particle exciton. Further, the PL from the MoS2 monolayer in a bilayer WS2/MoS2 heterostructure, under resonant excitation conditions where only the MoS2 absorbs the laser energy, also revealed a linear dependence on excitation intensity for the C band, confirming that its origin is not due to a trion but instead a bound exciton, presumably of an unintentional impurity or a native point defect such as a sulfur vacancy. The PL from the WS2/MoS2 heterostructure, under resonant excitation conditions also showed additional features which are suggested to arise from the interface states at the heteroboundary. Further studies are required to clearly identify the origin of these features.

  9. Synthesis and effect of Ce and Mn co-doping on photoluminescence characteristics of Ca6AlP5O20:Eu novel phosphors.

    PubMed

    Shinde, K N; Dhoble, S J

    2013-01-01

    A series of Ca6AlP5O20 doped with rare earths (Eu and Ce) and co-doped (Eu, Ce and Eu,Mn) were prepared by combustion synthesis. Under Hg-free excitation, Ca6AlP5O20:Eu exhibited Eu(2+) (486 nm) emission in the blue region of the spectrum and under near Hg excitation (245 nm), Ca6AlP5O20:Ce phosphor exhibited Ce(3+) emission (357 nm) in the UV range. Photoluminescence (PL) peak intensity increased in Ca6AlP5O20:Eu,Ce and Ca6AlP5O20:Eu, Mn phosphors due to co-activators of Ce(3+) and Mn(2+) ions. As a result, these ions played an important role in PL emission in the present matrix. Ca6AlP5O20:Eu, Ce and Ca6AlP5O20:Eu, Mn phosphors provided energy transfer mechanisms via Ce(3+) → Eu(2+) and Eu(2+) → Mn(2+), respectively. Eu ions acted as activators and Ce ions acted as sensitizers. Ce emission energy was well matched with Eu excitation energy in the case of Ca6AlP5O20:Eu, Ce and Eu ions acted as activators and Mn ions acted as sensitizers in Ca6AlP5O20:Eu, Mn. This study included synthesis of new and efficient phosphate phosphors. The impact of doping and co-doping on photoluminescence properties and energy transfer mechanisms were investigated and we propose a feasible interpretation. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Modeling the Interaction between AFM Tips and Pinned Surface Nanobubbles.

    PubMed

    Guo, Zhenjiang; Liu, Yawei; Xiao, Qianxiang; Schönherr, Holger; Zhang, Xianren

    2016-01-26

    Although the morphology of surface nanobubbles has been studied widely with different AFM modes, AFM images may not reflect the real shapes of the nanobubbles due to AFM tip-nanobubble interactions. In addition, the interplay between surface nanobubble deformation and induced capillary force has not been well understood in this context. In our work we used constraint lattice density functional theory to investigate the interaction between AFM tips and pinned surface nanobubbles systematically, especially concentrating on the effects of tip hydrophilicity and shape. For a hydrophilic tip contacting a nanobubble, its hydrophilic nature facilitates its departure from the bubble surface, displaying a weak and intermediate-range attraction. However, when the tip squeezes the nanobubble during the approach process, the nanobubble shows an elastic effect that prevents the tip from penetrating the bubble, leading to a strong nanobubble deformation and repulsive interactions. On the contrary, a hydrophobic tip can easily pierce the vapor-liquid interface of the nanobubble during the approach process, leading to the disappearance of the repulsive force. In the retraction process, however, the adhesion between the tip and the nanobubble leads to a much stronger lengthening effect on nanobubble deformation and a strong long-range attractive force. The trends of force evolution from our simulations agree qualitatively well with recent experimental AFM observations. This favorable agreement demonstrates that our model catches the main intergradient of tip-nanobubble interactions for pinned surface nanobubbles and may therefore provide important insight into how to design minimally invasive AFM experiments.

  11. Power and temperature dependent photoluminescence investigation of the linear polarization at normal and inverted interface transitions in InP/InAlAs and InGaAsP/InAlAs QW structures

    NASA Astrophysics Data System (ADS)

    Esmaielpour, Hamidreza; Whiteside, Vincent R.; Hirst, Louise C.; Forbes, David V.; Walters, Robert J.; Sellers, Ian R.

    We present an investigation of the interface effects for InGaAsP/InAlAs QW and InP/InAlAs QW structures capped with an InP layer. Continuous wave photoluminescence (PL) spectroscopy of these samples at 4 K shows features associated with the interfaces of an InAlAs layer grown on an InP layer (normal interface) and an InP layer grown on an InAlAs material (inverted interface). Power dependent PL of the InGaAsP QW indicates that there are two features related to the inverted interface, whereby the linear polarization of one increases and for the other decreases. In addition, a temperature dependent study of this sample shows that as the temperature increases: the linear polarization for both features decreases; at room temperature, there is negligible polarization effect. A power dependent PL study of the InP QW structure shows both normal and inverted interface transitions have opposing trends in linear polarization. Notably, the temperature dependent PL investigation displays a reduction of polarization degree for the inverted interface: as expected; while an increase of polarization for the normal interface was observed. In addition, power and temperature dependence of peak energy of the interface transitions for both samples will be presented.

  12. Noise in NC-AFM measurements with significant tip–sample interaction

    PubMed Central

    Lübbe, Jannis; Temmen, Matthias

    2016-01-01

    The frequency shift noise in non-contact atomic force microscopy (NC-AFM) imaging and spectroscopy consists of thermal noise and detection system noise with an additional contribution from amplitude noise if there are significant tip–sample interactions. The total noise power spectral density D Δ f(f m) is, however, not just the sum of these noise contributions. Instead its magnitude and spectral characteristics are determined by the strongly non-linear tip–sample interaction, by the coupling between the amplitude and tip–sample distance control loops of the NC-AFM system as well as by the characteristics of the phase locked loop (PLL) detector used for frequency demodulation. Here, we measure D Δ f(f m) for various NC-AFM parameter settings representing realistic measurement conditions and compare experimental data to simulations based on a model of the NC-AFM system that includes the tip–sample interaction. The good agreement between predicted and measured noise spectra confirms that the model covers the relevant noise contributions and interactions. Results yield a general understanding of noise generation and propagation in the NC-AFM and provide a quantitative prediction of noise for given experimental parameters. We derive strategies for noise-optimised imaging and spectroscopy and outline a full optimisation procedure for the instrumentation and control loops. PMID:28144538

  13. Noise in NC-AFM measurements with significant tip-sample interaction.

    PubMed

    Lübbe, Jannis; Temmen, Matthias; Rahe, Philipp; Reichling, Michael

    2016-01-01

    The frequency shift noise in non-contact atomic force microscopy (NC-AFM) imaging and spectroscopy consists of thermal noise and detection system noise with an additional contribution from amplitude noise if there are significant tip-sample interactions. The total noise power spectral density D Δ f ( f m ) is, however, not just the sum of these noise contributions. Instead its magnitude and spectral characteristics are determined by the strongly non-linear tip-sample interaction, by the coupling between the amplitude and tip-sample distance control loops of the NC-AFM system as well as by the characteristics of the phase locked loop (PLL) detector used for frequency demodulation. Here, we measure D Δ f ( f m ) for various NC-AFM parameter settings representing realistic measurement conditions and compare experimental data to simulations based on a model of the NC-AFM system that includes the tip-sample interaction. The good agreement between predicted and measured noise spectra confirms that the model covers the relevant noise contributions and interactions. Results yield a general understanding of noise generation and propagation in the NC-AFM and provide a quantitative prediction of noise for given experimental parameters. We derive strategies for noise-optimised imaging and spectroscopy and outline a full optimisation procedure for the instrumentation and control loops.

  14. Wettability of AFM tip influences the profile of interfacial nanobubbles

    NASA Astrophysics Data System (ADS)

    Teshima, Hideaki; Takahashi, Koji; Takata, Yasuyuki; Nishiyama, Takashi

    2018-02-01

    To accurately characterize the shape of interfacial nanobubbles using atomic force microscopy (AFM), we investigated the effect of wettability of the AFM tip while operating in the peak force tapping (PFT) mode. The AFM tips were made hydrophobic and hydrophilic by Teflon AF coating and oxygen plasma treatment, respectively. It was found that the measured base radius of nanobubbles differed between AFM height images and adhesion images, and that this difference depended on the tip wettability. The force curves obtained during the measurements were also different depending on the wettability, especially in the range of the tip/nanobubble interaction and in the magnitude of the maximum attractive force in the retraction period. The difference suggests that hydrophobic tips penetrate the gas/liquid interface of the nanobubbles, with the three phase contact line being pinned on the tip surface; hydrophilic tips on the other hand do not penetrate the interface. We then quantitatively estimated the pinning position and recalculated the true profiles of the nanobubbles by comparing the height images and adhesion images. As the AFM tip was made more hydrophilic, the penetration depth decreased and eventually approached zero. This result suggests that the PFT measurement using a hydrophilic tip is vital for the acquisition of reliable nanobubble profiles.

  15. Estimation of free carrier concentrations in high-quality heavily doped GaN:Si micro-rods by photoluminescence and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Mohajerani, M. S.; Khachadorian, S.; Nenstiel, C.; Schimpke, T.; Avramescu, A.; Strassburg, M.; Hoffmann, A.; Waag, A.

    2016-03-01

    The controlled growth of highly n-doped GaN micro rods is one of the major challenges in the fabrication of recently developed three-dimensional (3D) core-shell light emitting diodes (LEDs). In such structures with a large active area, higher electrical conductivity is needed to achieve higher current density. In this contribution, we introduce high quality heavily-doped GaN:Si micro-rods which are key elements of the newly developed 3D core-shell LEDs. These structures were grown by metal-organic vapor phase epitaxy (MOVPE) using selective area growth (SAG). We employed spatially resolved micro-Raman and micro-photoluminescence (PL) in order to directly determine a free-carrier concentration profile in individual GaN micro-rods. By Raman spectroscopy, we analyze the low-frequency branch of the longitudinal optical (LO)-phonon-plasmon coupled modes and estimate free carrier concentrations from ≍ 2.4 × 1019 cm-3 up to ≍ 1.5 × 1020 cm-3. Furthermore, free carrier concentrations are determined by estimating Fermi energy level from the near band edge emission measured by low-temperature PL. The results from both methods reveal a good consistency.

  16. Electro-optic investigation of the n-alkanethiol GaAs(001) interface: Surface phenomena and applications to photoluminescence-based biosensing

    NASA Astrophysics Data System (ADS)

    Marshall, Gregory M.

    Semiconductor surfaces coupled to molecular structures derived from organic chemistry form the basis of an emerging class of field-effect devices. In addition to molecular electronics research, these interfaces are developed for a variety of sensor applications in the electronic and optical domains. Of practical interest are self-assembled monolayers (SAMs) comprised of n-alkanethiols [HS(CH2)n], which couple to the GaAs(001) surface through S-GaAs covalent bond formation. These SAMs offer potential functionality in terms of the requisite sensor chemistry and the passivation effect such coupling is known to afford. In this thesis, the SAM-GaAs interface is investigated in the context of a photonic biosensor based on photoluminescence (PL) variation. The scope of the work is categorized into three parts: i) the structural and compositional analysis of the surface using X-ray photoelectron spectroscopy (XPS), ii) the investigation of electronic properties at the interface under equilibrium conditions using infrared (IR) spectroscopy, the Kelvin probe method, and XPS, and iii) the analysis of the electro-optic response under steady-state photonic excitation, specifically, the surface photovoltage (SPV) and PL intensity. Using a partial overlayer model of angle-resolved XPS spectra in which the component assignments are shown to be quantitatively valid, the coverage fraction of methyl-terminated SAMs is shown to exceed 90%. Notable among the findings are a low-oxide, Ga-rich surface with elemental As present in sub-monolayer quantities consistent with theoretical surface morphologies. Modal analysis of transmission IR spectra show that the SAM molecular order is sufficient to support a Beer-Lambert determination of the IR optical constants, which yields the observation of a SAM-specific absorbance enhancement. By correlation of the IR absorbance with the SAM dipole layer potential, the enhancement mechanism is attributed to the vibrational moments added by the

  17. Synthesis, physicochemical and optical properties of bis-thiosemicarbazone functionalized graphene oxide

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Wani, Mohmmad Y.; Arranja, Claudia T.; Castro, Ricardo A. E.; Paixão, José A.; Sobral, Abilio J. F. N.

    2018-01-01

    Fluorescent materials are important for low-cost opto-electronic and biomedical sensor devices. In this study we present the synthesis and characterization of graphene modified with bis-thiosemicarbazone (BTS). This new material was characterized using Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible (UV-Vis) and Raman spectroscopy techniques. Further evaluation by X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and atomic-force microscopy (AFM) allowed us to fully characterize the morphology of the fabricated material. The average height of the BTSGO sheet is around 10 nm. Optical properties of BTSGO evaluated by photoluminescence (PL) spectroscopy showed red shift at different excitation wavelength compared to graphene oxide or bisthiosemicarbazide alone. These results strongly suggest that BTSGO material could find potential applications in graphene based optoelectronic devices.

  18. Carrier localization in In0.21Ga0.79As/GaAs multiple quantum wells: A modified Pässler model for the S-shaped temperature dependence of photoluminescence energy

    NASA Astrophysics Data System (ADS)

    Fraj, Ibtissem; Hidouri, Tarek; Saidi, Faouzi; Maaref, Hassen

    2017-02-01

    The optical properties of In0.21Ga0.79As/GaAs MQWs, with triple unequal layer thickness NW (3 nm), MW (6 nm) and WW (9 nm) grown on (001) and (113) GaAs substrates, is studied by using continuous wave photoluminescence (cw-PL) spectroscopy. A comparative study has been performed to demonstrate the influence of electric field and QW thickness on the exciton localization. An S-shaped form in temperature-dependent PL peak energy has been observed in polar middle QW (MW (113)) but not seen in non-polar ones (MW (001)). This behavior is linked to carrier localization in triangular potential and polarity. We have observed also this atypical evolution in non-polar wide QW (WW (001)) but not in non-polar middle QW (MW (001)), which is attributed to potential fluctuation in larger ones. With the aid of modified Pässler model for including the effect of localized states, we can persuasively reproduce the S-shaped temperature dependence of PL band gap energy and contribute to the estimated value of exciton localization energy. The values of σ are obtained from adjustment of experimental points, which indicate the degree of localization in QW layer.

  19. Photoluminescence and applications of Ni:ZnS in photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Kalya Tulasidas, Vadiraj; Belagali, Shiddappa L.; Palakkandy, Arun; Kumar, Kuldeep

    2018-05-01

    An enormous amount of development has been made in the field of photovoltaics in the last 50 odd years. In recent years, the uses of semiconductor nanoparticles have given a new impetus and direction to research in the field of solar cells. This is due to the excellent photoemission properties shown by semiconductors in the quantum dot (QD) state. ZnS QDs show a further interesting feature where their photoemission properties show perceivable changes on adding dopants such as nickel. In the present work, we describe the characterization studies made on Ni:ZnS thin films using photoluminescence (PL), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), and further reports their performance as an absorbing layer in a hybrid solar cell along with poly(3-hexylthiophene) (P3HT). Fabricated Ni:ZnS cell showed a conversion efficiency of 0.25 ± 0.05% with V OC and J SC of 560 mV and 0.11 mA/cm2, respectively. Although the absolute conversion efficiency appears low (only 0.25%), the addition of nickel was found to have improved the efficiency by a hundredfold compared with undoped ZnS.

  20. GPIM AF-M315E Propulsion System

    NASA Technical Reports Server (NTRS)

    Spores, Ronald A.; Masse, Robert; Kimbrel, Scott; McLean, Chris

    2014-01-01

    The NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) will demonstrate an operational AF-M315E green propellant propulsion system. Aerojet-Rocketdyne is responsible for the development of the propulsion system payload. This paper statuses the propulsion system module development, including thruster design and system design; Initial test results for the 1N engineering model thruster are presented. The culmination of this program will be high-performance, green AF-M315E propulsion system technology at TRL 7+, with components demonstrated to TRL 9, ready for direct infusion to a wide range of applications for the space user community.

  1. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    PubMed Central

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-01-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation. PMID:27452115

  2. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-07-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation.

  3. In situ etching WO{sub 3} nanoplates: Hydrothermal synthesis, photoluminescence and gas sensor properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Xintai, E-mail: suxintai827@163.com; Li, Yani; Jian, Jikang

    2010-12-15

    A novel hydrothermal process using p-nitrobenzoic acid as structure-directing agent has been employed to synthesize plate-shaped WO{sub 3} nanostructures containing holes. The p-nitrobenzoic acid plays a critical role in the synthesis of such novel WO{sub 3} nanoplates. The morphology, structure and optical property of the WO{sub 3} nanoplates have been characterized by transmission electron microcopy (TEM), scanning electron microcopy (SEM), X-ray diffraction (XRD) and photoluminescence (PL). The lateral size of the nanoplates is 500-1000 nm, and the thickness is about 80 nm. The formation mechanism of WO{sub 3} nanoplates is discussed briefly. The gas sensitivity of WO{sub 3} nanoplates wasmore » studied to ethanol and acetone at different operation temperatures and concentrations. Furthermore, the WO{sub 3} nanoplate-based gas sensor exhibits high sensitivity for ethanol and acetone as well as quick response and recovery time at low temperature.« less

  4. Development and dissection of diagnostic SNP markers for the downy mildew resistance genes Pl Arg and Pl 8 and maker-assisted gene pyramiding in sunflower (Helianthus annuus L.).

    PubMed

    Qi, L L; Talukder, Z I; Hulke, B S; Foley, M E

    2017-06-01

    Diagnostic DNA markers are an invaluable resource in breeding programs for successful introgression and pyramiding of disease resistance genes. Resistance to downy mildew (DM) disease in sunflower is mediated by Pl genes which are known to be effective against the causal fungus, Plasmopara halstedii. Two DM resistance genes, Pl Arg and Pl 8 , are highly effective against P. halstedii races in the USA, and have been previously mapped to the sunflower linkage groups (LGs) 1 and 13, respectively, using simple sequence repeat (SSR) markers. In this study, we developed high-density single nucleotide polymorphism (SNP) maps encompassing the Pl arg and Pl 8 genes and identified diagnostic SNP markers closely linked to these genes. The specificity of the diagnostic markers was validated in a highly diverse panel of 548 sunflower lines. Dissection of a large marker cluster co-segregated with Pl Arg revealed that the closest SNP markers NSA_007595 and NSA_001835 delimited Pl Arg to an interval of 2.83 Mb on the LG1 physical map. The SNP markers SFW01497 and SFW06597 delimited Pl 8 to an interval of 2.85 Mb on the LG13 physical map. We also developed sunflower lines with homozygous, three gene pyramids carrying Pl Arg , Pl 8 , and the sunflower rust resistance gene R 12 using the linked SNP markers from a segregating F 2 population of RHA 340 (carrying Pl 8 )/RHA 464 (carrying Pl Arg and R 12 ). The high-throughput diagnostic SNP markers developed in this study will facilitate marker-assisted selection breeding, and the pyramided sunflower lines will provide durable resistance to downy mildew and rust diseases.

  5. Long-wavelength shift and enhanced room temperature photoluminescence efficiency in GaAsSb/InGaAs/GaAs-based heterostructures emitting in the spectral range of 1.0–1.2 μm due to increased charge carrier's localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryzhkov, D. I., E-mail: krizh@ipmras.ru; Yablonsky, A. N.; Morozov, S. V.

    2014-11-28

    In this work, a study of the photoluminescence (PL) temperature dependence in quantum well GaAs/GaAsSb and double quantum well InGaAs/GaAsSb/GaAs heterostructures grown by metalorganic chemical vapor deposition with different parameters of GaAsSb and InGaAs layers has been performed. It has been demonstrated that in double quantum well InGaAs/GaAsSb/GaAs heterostructures, a significant shift of the PL peak to a longer-wavelength region (up to 1.2 μm) and a considerable reduction in the PL thermal quenching in comparison with GaAs/GaAsSb structures can be obtained due to better localization of charge carriers in the double quantum well. For InGaAs/GaAsSb/GaAs heterostructures, an additional channel of radiativemore » recombination with participation of the excited energy states in the quantum well, competing with the main ground-state radiative transition, has been revealed.« less

  6. Optical absorption and photoluminescence study of nanocrystalline Zn0.92M0.08O (M: Li & Gd)

    NASA Astrophysics Data System (ADS)

    Punia, Khushboo; Lal, Ganesh; Kumar, Sudhish

    2018-05-01

    Nanocrystalline samples of Zn0.92Li0.08O and Zn0.92Gd0.08O have been synthesized using citrate sol-gel route without post synthesis annealing and characterized using powder X-ray diffraction (XRD), UV-Vis-NIR and Photoluminescence spectroscopic measurements. Analysis of XRD pattern and PL spectra revealed single phase formation of the nanocrystalline Zn0.92Li0.08O and Zn0.92Gd0.08O in the wurtzite type hexagonal structure with intrinsic crystal and surface defects. UV-Vis-NIR optical absorption measurements show that the maximum photo absorption occurs below 600nm in the UV& visible band. The estimated values of band gap energy were found to be 2.53eV and 2.73eV for Zn0.92Li0.08O and Zn0.92Gd0.08O respectively. The photoluminescence spectra excited at the wavelength 325nm displays two broad peaks in the UV and visible bands centered at ˜416 nm & ˜602 nm for Zn0.92Gd0.08O and ˜406nm & ˜598nm for Zn0.92Li0.08O. Both Gd and Li doping in ZnO leads to considerable decrease in the optical band gap energy and red shifting of the UV emission band towards the visible band.

  7. Role of Eu{sup 2+} on the blue‐green photoluminescence of In{sub 2}O{sub 3}:Eu{sup 2+} nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devi, Konsam Reenabati, E-mail: reena.kay14@manipuruniv.ac.in; Meetei, Sanoujam Dhiren, E-mail: sdmdhiren@gmail.com; Department of Physics, North Eastern Regional Institute of Science & Technology, Nirjuli, Itanagar 791109, Arunachal Pradesh

    Blue‐green light emitting undoped and europium doped indium oxide nanocrystal were synthesized by simple precipitation method. X-ray diffraction (XRD) pattern confirmed the cubic phase of undoped and europium doped samples. Further, transmission electron microscopy (TEM), scanning electron microscopy (SEM) , energy dispersive analysis of X-rays (EDAX), Fourier transform infra-red (FT-IR), photoluminescence (PL), electron paramagnetic resonance (EPR) studies were performed to characterise the samples. PL analysis of the samples is the core of the present research. It includes excitation, emission and CIE (Commission Internationale de l’e´ clairage) studies of the samples. On doping europium to In{sub 2}O{sub 3} lattice, ln{sup 3+}more » site is substituted by Eu{sup 2+} thereby increasing the concentration of singly ionized oxygen vacancy and hence blue–green emission from the host is found to increase. Further, this increase in blue–green emission after doping may also be attributed to 4f → 5d transitions of Eu{sup 2+}. However, the blue–green PL emission is found to decrease after an optimum dopant concentration (Eu{sup 2+} = 4%) due to luminescence and size quenching. CIE co-ordinates of the samples are calculated to know colour of light emitted from the samples. It suggests that this blue–green light emitting In{sub 2}O{sub 3}: Eu{sup 2+} nanocrystals may find application in lighting such as in generation of white light. - Highlight: • XRD and TEM study confirms the synthesis of cubic doped and europium doped nanocrystals. • EPR study reveals the doped europium is in + 2 oxidation state. • Enhance PL emission intensity of host material due to increase in singly ionized oxygen vacancy and 4f–5d transitions of Eu{sup 2+} • CIE co-ordinates suggest the blue–green colour of the samples.« less

  8. Membrane-based actuation for high-speed single molecule force spectroscopy studies using AFM.

    PubMed

    Sarangapani, Krishna; Torun, Hamdi; Finkler, Ofer; Zhu, Cheng; Degertekin, Levent

    2010-07-01

    Atomic force microscopy (AFM)-based dynamic force spectroscopy of single molecular interactions involves characterizing unbinding/unfolding force distributions over a range of pulling speeds. Owing to their size and stiffness, AFM cantilevers are adversely affected by hydrodynamic forces, especially at pulling speeds >10 microm/s, when the viscous drag becomes comparable to the unbinding/unfolding forces. To circumvent these adverse effects, we have fabricated polymer-based membranes capable of actuating commercial AFM cantilevers at speeds >or=100 microm/s with minimal viscous drag effects. We have used FLUENT, a computational fluid dynamics (CFD) software, to simulate high-speed pulling and fast actuation of AFM cantilevers and membranes in different experimental configurations. The simulation results support the experimental findings on a variety of commercial AFM cantilevers and predict significant reduction in drag forces when membrane actuators are used. Unbinding force experiments involving human antibodies using these membranes demonstrate that it is possible to achieve bond loading rates >or=10(6) pN/s, an order of magnitude greater than that reported with commercial AFM cantilevers and systems.

  9. Origin of the positive spin- 1 2 photoluminescence-detected magnetic resonance in π-conjugated materials and devices

    DOE PAGES

    Chen, Ying; Cai, Min; Hellerich, Emily; ...

    2015-09-02

    The spin-1/2 single-modulation (SM) and double-modulation (DM) photoluminescence (PL) detected magnetic resonance (PLDMR) in poly(2-methoxy-5-(2'-ethyl)–hexoxy-1,4- phenylene vinylene) (MEH-PPV) films and poly(3-hexylthiophene) (P3HT) films is described, analyzed, and discussed. In particular, the models based on spin-dependent recombination of charge pairs (SDR) and triplet-polaron quenching (TPQ) are evaluated. By analyzing the dependence of the resonance amplitude on the microwave chopping (modulation) frequency using rate equations, it is demonstrated that the TPQ model can well explain the observed resonance behavior, while SDR model cannot reproduce the results of the observed DM-PLDMR. As a result, the observed spin-1/2 PLDMR is assigned to TPQ rathermore » than SDR, even though the latter may also be present.« less

  10. Dopant concentration dependent optical and X-Ray induced photoluminescence in Eu3+ doped La2Zr2O7

    NASA Astrophysics Data System (ADS)

    Pokhrel, Madhab; Brik, Mikhail; Mao, Yuanbing

    2015-03-01

    Herein, we will be presenting the dopant (Eu) concentration dependent high density La2Zr2O7 nanoparticles for optical and X-ray scintillation applications by use of X - ray diffraction, Raman, FTIR, scanning electron microscope (SEM), transmission electron microscopy (TEM), optically and X-ray excited photoluminescence (PL). Several theoretical methods have been used in order to investigate the structural, electronic, optical, elastic, dynamic properties of Eu doped La2Zr2O7. It is observed that Eu: La2Zr2O7 shows an intense red luminescence under 258, 322, 394 and 465 nm excitation. The optical intensity of Eu: La2Zr2O7 depends on the dopant concentration of Eu3+. Following high energy excitation with X-rays, Eu: La2Zr2O7 shows an atypical Eu PL response (scintillation) with a red emission. The intense color emission of Eu obtained under 258 nm excitation, the X-ray induced luminescence property along with reportedly high density of La2Zr2O7, makes these nanomaterials attractive for optical and X-ray applications. The authors thank the support from the Defense Threat Reduction Agency (DTRA) of the U.S. Department of Defense (Award #HDTRA1-10-1-0114).

  11. PlGF gene knockdown in human retinal pigment epithelial cells.

    PubMed

    Akrami, Hassan; Soheili, Zahra-Soheila; Sadeghizadeh, Majid; Ahmadieh, Hamid; Rezaeikanavi, Mozhgan; Samiei, Shahram; Khalooghi, Keynoush

    2011-04-01

    To evaluate the knockdown of placental growth factor (PlGF) gene expression in human retinal pigment epithelium (RPE) cells and its effect on cell proliferation, apoptosis and angiogenic potential of RPE cells. Human RPE cells were isolated by dispase I solution and cultured in DMEM/F12 supplemented with 10% fetal calf serum (FCS). A small interfering RNA (siRNA) corresponding to PlGF mRNA and a scrambled siRNA (scRNA) were introduced into the cells. Cell proliferation and cell death were examined by ELISA. PlGF mRNA and protein were quantified by real-time polymerase chain reaction (PCR) and western blot. The levels of gene expression for human retinal pigment epithelium-specific protein 65 kDa (RPE65), cellular retinaldehyde-binding protein (CRALBP) and tyrosinase were examined by real-time PCR. The angiogenic activity of RPE cell-derived conditioned media was assayed by a tube formation assay using human umbilical vein endothelial cells (HUVECs). At a final siRNA concentration of 20 pmol/ml, the transfection efficiency was about 80%. The amount of PlGF transcripts was reduced to 10% after 36 h of incubation, and the amount of PlGF protein in culture supernatant was significantly decreased. Suppression of PlGF gene had no effect on RPE cell proliferation and survival, and there were no notable changes in the transcript levels of RPE65, CRALBP or tyrosinase for the cultures treated by siRNA cognate to PlGF. Vascular tube formation was efficiently reduced in HUVECs. Our findings present PlGF as a key modulator of angiogenic potential in RPE cells of the human retina.

  12. Preparation of thin hexagonal highly-ordered anodic aluminum oxide (AAO) template onto silicon substrate and growth ZnO nanorod arrays by electrodeposition

    NASA Astrophysics Data System (ADS)

    Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Qaeed, M. A.; Bououdina, M.

    2014-12-01

    In this study, anodic aluminum oxide (AAO) templates of Aluminum thin films onto Ti-coated silicon substrates were prepared for growth of nanostructure materials. Hexagonally highly ordered thin AAO templates were fabricated under controllable conditions by using a two-step anodization. The obtained thin AAO templates were approximately 70 nm in pore diameter and 250 nm in length with 110 nm interpore distances within an area of 3 cm2. The difference between first and second anodization was investigated in details by in situ monitoring of current-time curve. A bottom barrier layer of the AAO templates was removed during dropping the voltage in the last period of the anodization process followed by a wet etching using phosphoric acid (5 wt%) for several minutes at ambient temperature. As an application, Zn nanorod arrays embedded in anodic alumina (AAO) template were fabricated by electrodeposition. Oxygen was used to oxidize the electrodeposited Zn nanorods in the AAO template at 700 °C. The morphology, structure and photoluminescence properties of ZnO/AAO assembly were analyzed using Field-emission scanning electron microscope (FESEM), Energy dispersive X-ray spectroscopy (EDX), Atomic force microscope (AFM), X-ray diffraction (XRD) and photoluminescence (PL).

  13. Investigation of structural, morphological, luminescent and thermal properties of combusted aluminium-based iron oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinde, S.S.; Rajpure, K.Y., E-mail: rajpure@yahoo.co

    Nanocomposites of aluminium integrated hematite {alpha}-Fe{sub 2}O{sub 3} are synthesized by combustion route using aqueous solutions of AR grade ferric trichloride and aluminium nitrate as precursors. The influence of aluminium incorporation on to the morphology, XPS, photoluminescence and thermal properties has been investigated. The FESEM and AFM micrographs depict that the samples are compact and have homogeneously distributed grains of varying sizes ({approx}20-60 nm). Chemical composition and valence states of constituent elements in hematite are analyzed by XPS. In room temperature photoluminescence (PL) study, we observed strong violet emission around 436 nm without any deep-level emission and a small PLmore » FWHM indicating that the concentrations of defects are responsible for deep-level emissions. The specific heat and thermal conductivity study shows the phonon conduction behavior is dominant. We studied interparticle interactions using complex impedance spectroscopy. We report a new potential candidate for its possible applications in optoelectronics and magnetic devices. -- Graphical abstract: Frequency and temperature dependent interparticle interactions like grains, grain boundary effects using complex impedance spectroscopy of pure and 10 at% Al:Fe{sub 2}O{sub 3} have been studied. Display Omitted« less

  14. Synthesis and photoluminescence properties of europium(III) complexes sensitized with β-diketonato and N, N-donors ancillary ligands

    NASA Astrophysics Data System (ADS)

    Bala, Manju; Kumar, Satish; Devi, Rekha; Taxak, V. B.; Boora, Priti; Khatkar, S. P.

    2018-05-01

    Synthesis of three new europium(III) complexes with 1,3-[bis(4-methoxyphenyl)]propane-1,3-dionato (HBMPD) ligand and ancillary ligands such as 2,2‧-biquinoline (biq) or neocuproine (neo) has been reported in this report. The synthesized complexes were characterized by IR (infrared), 1H and 13C NMR (nuclear magnetic resonance) spectroscopy, CHN (carbon, hydrogen and nitrogen) elemental analysis, XRD (X-ray diffraction), TGA (thermogravimetric analysis) and photoluminescence (PL) spectroscopy. The emission spectra of europium(III) complexes displayed both the low intensity 5D1-3 → 7F0-3 transitions in 410-560 nm blue-green region and high intensity characteristic 5D0 → 7F0-3 transitions in 575-640 nm orange-red region correspond to the emission of ancillary ligands and europium ion respectively, which can lead to white luminescence due to integration of blue, green and red color emissions. The photoluminescence investigations indicate that the absorbed energy of the HBMPD ligand transferred to the central europium(III) ion in an efficient manner, which clearly explained by antenna effect. The excellent results of thermal behavior and photophysical properties like luminescence spectra, CIE (Commission Internationale Eclairage) chromaticity coordinates, luminescence decay curves and high quantum efficiency of the complexes make them a promising component of the white light-emitting diodes in display devices.

  15. Photoluminescence properties and structure of double perovskite Ba2ZnWO6:Eu3+, Li+ as a novel red emitting phosphor

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Yang, Dingming; Hu, Wenyuan; Zhang, Jing; Wu, Yadong

    2017-12-01

    Novel red-emitting Ba2Zn1-x-yWO6:xEu3+, yLi+ phosphors were prepared using a high-temperature solid-state method, and the crystal structure, the photoluminescence properties and the doping concentrations of Eu3+ and Li+ were investigated. The results show that these phosphors can be excited by near-ultraviolet light (250-400 nm) and co-doped Li+ can significantly enhance their PL performance. An intense red emission peak at 598 nm (5D0-7F1 transitions) was observed with an excitation wavelength of 316 nm. The CIE chromaticity coordinates of the phosphors are located in the red region, indicating that the BZW:Eu3+, Li+ phosphor holds promise as a red phosphor for near-ultraviolet excited WLEDs.

  16. Precision Landing and Hazard Avoidance (PL&HA) Domain

    NASA Technical Reports Server (NTRS)

    Robertson, Edward A.; Carson, John M., III

    2016-01-01

    The Precision Landing and Hazard Avoidance (PL&HA) domain addresses the development, integration, testing, and spaceflight infusion of sensing, processing, and GN&C (Guidance, Navigation and Control) functions critical to the success and safety of future human and robotic exploration missions. PL&HA sensors also have applications to other mission events, such as rendezvous and docking.

  17. Impact of varying buffer thickness generated strain and threading dislocations on the formation of plasma assisted MBE grown ultra-thin AlGaN/GaN heterostructure on silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Subhra, E-mail: subhra1109@gmail.com; Biswas, Dhrubes; Department of E and E C E, Indian Institute of Technology Kharagpur, Kharagpur 721302

    2015-05-15

    Plasma-assisted molecular beam epitaxy (PAMBE) growth of ultra-thin Al{sub 0.2}Ga{sub 0.8}N/GaN heterostructures on Si(111) substrate with three buffer thickness (600 nm/400 nm/200 nm) have been reported. An unique growth process has been developed that supports lower temperature epitaxy of GaN buffer which minimizes thermally generated tensile strain through appropriate nitridation and AlN initiated epitaxy for achieving high quality GaN buffer which supports such ultra-thin heterostructures in the range of 10-15Å. It is followed by investigations of role of buffer thickness on formation of ultra-thin Al{sub 0.2}Ga{sub 0.8}N/GaN heterostructure, in terms of stress-strain and threading dislocation (TD). Structural characterization were performedmore » by High-Resolution X-Ray Diffraction (HRXRD), room-temperature Photoluminescence (RT-PL), High Resolution Transmission Electron Microscopy (HRTEM) and Atomic Force Microscopy (AFM). Analysis revealed increasing biaxial tensile stress of 0.6918 ± 0.04, 1.1084, 1.1814 GPa in heterostructures with decreasing buffer thickness of 600, 400, 200 nm respectively which are summed up with residual tensile strain causing red-shift in RT-PL peak. Also, increasing buffer thickness drastically reduced TD density from the order 10{sup 10} cm{sup −2} to 10{sup 8} cm{sup −2}. Surface morphology through AFM leads to decrease of pits and root mean square value with increasing buffer thickness which are resulted due to reduction of combined effect of strain and TDs.« less

  18. Conductance of AFM Deformed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Maiti, Amitesh; Anatram, M. P.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the electrical conductivity of carbon nanotubes upon deformation by atomic force microscopy (AFM). The density of states and conductance were computed using four orbital tight-binding method with various parameterizations. Different chiralities develop bandgap that varies with chirality.

  19. Aptamer and 5-fluorouracil dual-loading Ag2S quantum dots used as a sensitive label-free probe for near-infrared photoluminescence turn-on detection of CA125 antigen.

    PubMed

    Jin, Hui; Gui, Rijun; Gong, Jun; Huang, Wenxue

    2017-06-15

    In this article, Ag 2 S quantum dots (QDs) were prepared by a facile aqueous synthesis method, using thiourea as a new sulfur precursor. Based on electrostatic interactions, 5-fluorouracil (5-Fu) was combined with the aptamer of CA125 antigen to fabricate aptamer/5-Fu complex. The surface of as-prepared Ag 2 S QDs was modified with polyethylenimine, followed by combination with the aptamer/5-Fu complex to form Ag 2 S QDs/aptamer/5-Fu hybrids. During the combination of Ag 2 S QDs with aptamer/5-Fu complex, near-infrared (NIR) photoluminescence (PL) of QDs (peaked at 850nm) was markedly reduced under excitation at 625nm, attributed to photo-induced electron transfer from QDs to 5-Fu. However, the addition of CA125 induced obvious NIR PL recovery, which was ascribed to the strong binding affinity of CA125 with its aptamer, and the separation of aptamer/5-Fu complex from the surface of QDs. Hence, the Ag 2 S QDs/aptamer/5-Fu hybrids were developed as a novel NIR PL turn-on probe of CA125. In the concentration range of [CA125] from 0.1 to 10 6 ngmL -1 , there were a good linear relationship between NIR PL intensities of Ag 2 S QDs and Log[CA125], and a low limit of detection of 0.07ngmL -1 . Experimental results revealed the highly selective and sensitive NIR PL responses of this probe to CA125, over other potential interferences. In real human body fluids, this probe also exhibited superior analytical performance, together with high detection recoveries. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Design And Ground Testing For The Expert PL4/PL5 'Natural And Roughness Induced Transition'

    NASA Astrophysics Data System (ADS)

    Masutti, Davie; Chazot, Olivier; Donelli, Raffaele; de Rosa, Donato

    2011-05-01

    Unpredicted boundary layer transition can impact dramatically the stability of the vehicle, its aerodynamic coefficients and reduce the efficiency of the thermal protection system. In this frame, ESA started the EXPERT (European eXPErimental Reentry Testbed) program to pro- vide and perform in-flight experiments in order to obtain aerothermodynamic data for the validation of numerical models and of ground-to-flight extrapolation methodologies. Considering the boundary layer transition investigation, the EXPERT vehicle is equipped with two specific payloads, PL4 and PL5, concerning respectively the study of the natural and roughness induced transition. The paper is a survey on the design process of these two in-flight experiments and it covers the major analyses and findings encountered during the development of the payloads. A large amount of transition criteria have been investigated and used to estimate either the dangerousness of the height of the distributed roughness, arising due to nose erosion, or the effectiveness of height of the isolated roughness element forcing the boundary layer transition. Supporting the PL4 design, linear stability computations and CFD analyses have been performed by CIRA on the EXPERT flight vehicle to determine the amplification factor of the boundary layer instabilities at different point of the re-entry trajectory. Ground test experiments regarding the PL5 are carried on in the Mach 6 VKI H3 Hypersonic Wind Tunnel with a Reynolds numbers ranging from 18E6/m to 26E6/m. Infrared measurements (Stanton number) and flow visualization are used on a 1/16 scaled model of the EXPERT vehicle and a flat plate to validate the Potter and Whitfield criterion as a suitable methodology for ground-to-flight extrapolation and the payload design.

  1. Cloning of ε-poly-L-lysine (ε-PL) synthetase gene from a newly isolated ε-PL-producing Streptomyces albulus NK660 and its heterologous expression in Streptomyces lividans

    PubMed Central

    Geng, Weitao; Yang, Chao; Gu, Yanyan; Liu, Ruihua; Guo, Wenbin; Wang, Xiaomeng; Song, Cunjiang; Wang, Shufang

    2014-01-01

    ε-Poly-L-lysine (ε-PL), showing a wide range of antimicrobial activity, is now industrially produced as a food additive by a fermentation process. A new strain capable of producing ε-PL was isolated from a soil sample collected from Gutian, Fujian Province, China. Based on its morphological and biochemical features and phylogenetic similarity with 16S rRNA gene, the strain was identified as Streptomyces albulus and named NK660. The yield of ε-PL in 30 l fed-batch fermentation with pH control was 4.2 g l−1 when using glycerol as the carbon source. The structure of ε-PL was determined by nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionization–time of flight mass spectrometry (MALDI-TOF MS). Previous studies have shown that the antimicrobial activity of ε-PL is dependent on its molecular size. In this study, the polymerization degree of the ε-PL produced by strain NK660 ranged from 19 to 33 L-lysine monomers, with the main component consisting of 24–30 L-lysine monomers, which implied that the ε-PL might have higher antimicrobial activity. Furthermore, the ε-PL synthetase gene (pls) was cloned from strain NK660 by genome walking. The pls gene with its native promoter was heterologously expressed in Streptomyces lividans ZX7, and the recombinant strain was capable of synthesizing ε-PL. Here, we demonstrated for the first time heterologous expression of the pls gene in S. lividans. The heterologous expression of pls gene in S. lividans will open new avenues for elucidating the molecular mechanisms of ε-PL synthesis. PMID:24423427

  2. Electrochemical synthesis of MoS2 quantum dots embedded nanostructured porous silicon with enhanced electroluminescence property

    NASA Astrophysics Data System (ADS)

    Shrivastava, Megha; Kumari, Reeta; Parra, Mohammad Ramzan; Pandey, Padmini; Siddiqui, Hafsa; Haque, Fozia Z.

    2017-11-01

    In this report we present the successful enhancement in electroluminescence (EL) in nanostructured n-type porous silicon (PS) with an idea of embedding luminophorous Molybdenum disulfide (MoS2) quantum dots (QD's). Electrochemical anodization technique was used for the formation of PS surface and MoS2 QD's were prepared using the electrochemical route. Spin coating technique was employed for the proper incorporation of MoS2 QD's within the PS nanostructures. The crystallographic analysis was performed using X-ray diffraction (XRD), Raman and Fourier transform infrared (FT-IR) spectroscopy techniques. However, surface morphology was determined using Transmission electron microscopy (TEM) and Atomic force microscopy (AFM). The optical measurements were performed on photoluminescence (PL) spectrophotometer; additionally for electroluminescence (EL) study special arrangement of instrumental setup was made at laboratory level which provides novelty to this work. A diode prototype was made comprising Ag/MoS2:PS/Silicon/Ag for EL study. The MoS2:PS shows a remarkable concentration dependent enhancement in PL as well as in EL intensities, which paves a way to better utilize this strategy in optoelectronic device applications.

  3. Nanomechanics of Yeast Surfaces Revealed by AFM

    NASA Astrophysics Data System (ADS)

    Dague, Etienne; Beaussart, Audrey; Alsteens, David

    Despite the large and well-documented characterization of the microbial cell wall in terms of chemical composition, the determination of the mechanical properties of surface molecules in relation to their function remains a key challenge in cell biology.The emergence of powerful tools allowing molecular manipulations has already revolutionized our understanding of the surface properties of fungal cells. At the frontier between nanophysics and molecular biology, atomic force microscopy (AFM), and more specifically single-molecule force spectroscopy (SMFS), has strongly contributed to our current knowledge of the cell wall organization and nanomechanical properties. However, due to the complexity of the technique, measurements on live cells are still at their infancy.In this chapter, we describe the cell wall composition and recapitulate the principles of AFM as well as the main current methodologies used to perform AFM measurements on live cells, including sample immobilization and tip functionalization.The current status of the progress in probing nanomechanics of the yeast surface is illustrated through three recent breakthrough studies. Determination of the cell wall nanostructure and elasticity is presented through two examples: the mechanical response of mannoproteins from brewing yeasts and elasticity measurements on lacking polysaccharide mutant strains. Additionally, an elegant study on force-induced unfolding and clustering of adhesion proteins located at the cell surface is also presented.

  4. In situ X-ray measurements of MOVPE growth of InxGa1-xN single quantum wells

    NASA Astrophysics Data System (ADS)

    Ju, Guangxu; Fuchi, Shingo; Tabuchi, Masao; Takeda, Yoshikazu

    2013-05-01

    GaN/InxGa1-xN/GaN single quantum wells (SQWs) have been grown on c-plane GaN/sapphire substrates using MOVPE system. PL (photoluminescence) and AFM (atomic force microscope) measurements demonstrate good quality of after-growth thermal-annealed SQWs. In situ XRD (X-ray diffraction), XRR (X-ray reflectivity), and X-ray CTR (crystal truncation rod) scattering measurements were successfully conducted on the SQWs under the NH3+N2 ambient at 1103 K. The analysis results of the XRR and the X-ray CTR spectra at 1103 K and at 300 K on the same sample matched well. It demonstrated that In0.09Ga0.91N SQW structure with several ML (monolayer) InGaN thicknesses was successfully investigated using the XRR and CTR scattering measurements at 1103 K.

  5. AFM feature definition for neural cells on nanofibrillar tissue scaffolds.

    PubMed

    Tiryaki, Volkan M; Khan, Adeel A; Ayres, Virginia M

    2012-01-01

    A diagnostic approach is developed and implemented that provides clear feature definition in atomic force microscopy (AFM) images of neural cells on nanofibrillar tissue scaffolds. Because the cellular edges and processes are on the same order as the background nanofibers, this imaging situation presents a feature definition problem. The diagnostic approach is based on analysis of discrete Fourier transforms of standard AFM section measurements. The diagnostic conclusion that the combination of dynamic range enhancement with low-frequency component suppression enhances feature definition is shown to be correct and to lead to clear-featured images that could change previously held assumptions about the cell-cell interactions present. Clear feature definition of cells on scaffolds extends the usefulness of AFM imaging for use in regenerative medicine. © Wiley Periodicals, Inc.

  6. On CD-AFM bias related to probe bending

    NASA Astrophysics Data System (ADS)

    Ukraintsev, V. A.; Orji, N. G.; Vorburger, T. V.; Dixson, R. G.; Fu, J.; Silver, R. M.

    2012-03-01

    Critical Dimension AFM (CD-AFM) is a widely used reference metrology. To characterize modern semiconductor devices, very small and flexible probes, often 15 nm to 20 nm in diameter, are now frequently used. Several recent publications have reported on uncontrolled and significant probe-to-probe bias variation during linewidth and sidewall angle measurements [1,2]. Results obtained in this work suggest that probe bending can be on the order of several nanometers and thus potentially can explain much of the observed CD-AFM probe-to-probe bias variation. We have developed and experimentally tested one-dimensional (1D) and two-dimensional (2D) models to describe the bending of cylindrical probes. An earlier 1D bending model reported by Watanabe et al. [3] was refined. Contributions from several new phenomena were considered, including: probe misalignment, diameter variation near the carbon nanotube tip (CNT) apex, probe bending before snapping, distributed van der Waals-London force, etc. The methodology for extraction of the Hamaker probe-surface interaction energy from experimental probe bending data was developed. To overcome limitations of the 1D model, a new 2D distributed force (DF) model was developed. Comparison of the new model with the 1D single point force (SPF) model revealed about 27 % difference in probe bending bias between the two. A simple linear relation between biases predicted by the 1D SPF and 2D DF models was found. This finding simplifies use of the advanced 2D DF model of probe bending in various CD-AFM applications. New 2D and three-dimensional (3D) CDAFM data analysis software is needed to take full advantage of the new bias correction modeling capabilities.

  7. AFM nanoscale indentation in air of polymeric and hybrid materials with highly different stiffness

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Credi, Caterina; Levi, Marinella; Turri, Stefano

    2014-08-01

    In this study, nanomechanical properties of a variety of polymeric materials was investigated by means of AFM. In particular, selecting different AFM probes, poly(methyl methacrylate) (PMMA), polydimethylsiloxane (PDMS) bulk samples, sol-gel hybrid thin films and hydrated hyaluronic acid hydrogels were indented in air to determine the elastic modulus. The force-distance curves and the indentation data were found to be greatly affected by the cantilever stiffness and by tip geometry. AFM indentation tests show that the choice of the cantilever spring constant and of tip shape is crucially influenced by elastic properties of samples. When adhesion-dominated interactions occur between the tip and the surface of samples, force-displacement curves reveal that a suitable functionalization of AFM probes allows the control of such interactions and the extraction of Young' modulus from AFM curves that would be otherwise unfeasible. By applying different mathematical models depending on AFM probes and materials under investigation, the values of Young's modulus were obtained and compared to those measured by rheological and dynamic mechanical analysis or to literature data. Our results show that a wide range of elastic moduli (10 kPa-10 GPa) can be determined by AFM in good agreement with those measured by conventional macroscopic measurements.

  8. Hydration states of AFm cement phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com; Matschei, Thomas; Scrivener, Karen L.

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFmmore » phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.« less

  9. μ-Rainbow: CdSe Nanocrystal Photoluminescence Gradients via Laser Spike Annealing for Kinetic Investigations and Tunable Device Design.

    PubMed

    Treml, Benjamin E; Jacobs, Alan G; Bell, Robert T; Thompson, Michael O; Hanrath, Tobias

    2016-02-10

    Much of the promise of nanomaterials derives from their size-dependent, and hence tunable, properties. Impressive advances have been made in the synthesis of nanoscale building blocks with precisely tailored size, shape and composition. Significant attention is now turning toward creating thin film structures in which size-dependent properties can be spatially programmed with high fidelity. Nonequilibrium processing techniques present exciting opportunities to create nanostructured thin films with unprecedented spatial control over their optical and electronic properties. Here, we demonstrate single scan laser spike annealing (ssLSA) on CdSe nanocrystal (NC) thin films as an experimental test bed to illustrate how the size-dependent photoluminescence (PL) emission can be tuned throughout the visible range and in spatially defined profiles during a single annealing step. Through control of the annealing temperature and time, we discovered that NC fusion is a kinetically limited process with a constant activation energy in over 2 orders of magnitude of NC growth rate. To underscore the broader technological implications of this work, we demonstrate the scalability of LSA to process large area NC films with periodically modulated PL emission, resulting in tunable emission properties of a large area film. New insights into the processing-structure-property relationships presented here offer significant advances in our fundamental understanding of kinetics of nanomaterials as well as technological implications for the production of nanomaterial films.

  10. Formation and photoluminescence of GaAs{sub 1−x}N{sub x} dilute nitride achieved by N-implantation and flash lamp annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kun, E-mail: k.gao@hzdr.de; Helm, M.; Technische Universität Dresden, 01062 Dresden

    2014-07-07

    In this paper, we present the fabrication of dilute nitride semiconductor GaAs{sub 1−x}N{sub x} by nitrogen-ion-implantation and flash lamp annealing (FLA). N was implanted into the GaAs wafers with atomic concentration of about x{sub imp1} = 0.38% and x{sub imp2} = 0.76%. The GaAs{sub 1−x}N{sub x} layer is regrown on GaAs during FLA treatment in a solid phase epitaxy process. Room temperature near band-edge photoluminescence (PL) has been observed from the FLA treated GaAs{sub 1−x}N{sub x} samples. According to the redshift of the near band-edge PL peak, up to 80% and 44% of the implanted N atoms have been incorporated into the lattice bymore » FLA for x{sub imp1} = 0.38% and x{sub imp2} = 0.76%, respectively. Our investigation shows that ion implantation followed by ultrashort flash lamp treatment, which allows for large scale production, exhibits a promising prospect on bandgap engineering of GaAs based semiconductors.« less

  11. Near-Field Spectroscopy with Nanoparticles Deposited by AFM

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.

    2008-01-01

    An alternative approach to apertureless near-field optical spectroscopy involving an atomic-force microscope (AFM) entails less complexity of equipment than does a prior approach. The alternative approach has been demonstrated to be applicable to apertureless near-field optical spectroscopy of the type using an AFM and surface enhanced Raman scattering (SERS), and is expected to be equally applicable in cases in which infrared or fluorescence spectroscopy is used. Apertureless near-field optical spectroscopy is a means of performing spatially resolved analyses of chemical compositions of surface regions of nanostructured materials. In apertureless near-field spectroscopy, it is common practice to utilize nanostructured probe tips or nanoparticles (usually of gold) having shapes and dimensions chosen to exploit plasmon resonances so as to increase spectroscopic-signal strengths. To implement the particular prior approach to which the present approach is an alternative, it is necessary to integrate a Raman spectrometer with an AFM and to utilize a special SERS-active probe tip. The resulting instrumentation system is complex, and the tasks of designing and constructing the system and using the system to acquire spectro-chemical information from nanometer-scale regions on a surface are correspondingly demanding.

  12. Probing ternary solvent effect in high V oc polymer solar cells using advanced AFM techniques

    DOE PAGES

    Li, Chao; Soleman, Mikhael; Lorenzo, Josie; ...

    2016-01-25

    This work describes a simple method to develop a high V oc low band gap PSCs. In addition, two new atomic force microscopy (AFM)-based nanoscale characterization techniques to study the surface morphology and physical properties of the structured active layer are introduced. With the help of ternary solvent processing of the active layer and C 60 buffer layer, a bulk heterojunction PSC with V oc more than 0.9 V and conversion efficiency 7.5% is developed. In order to understand the fundamental properties of the materials ruling the performance of the PSCs tested, AFM-based nanoscale characterization techniques including Pulsed-Force-Mode AFM (PFM-AFM)more » and Mode-Synthesizing AFM (MSAFM) are introduced. Interestingly, MSAFM exhibits high sensitivity for direct visualization of the donor–acceptor phases in the active layer of the PSCs. Lastly, conductive-AFM (cAFM) studies reveal local variations in conductivity in the donor and acceptor phases as well as a significant increase in photocurrent in the PTB7:ICBA sample obtained with the ternary solvent processing.« less

  13. BOREAS AFM-04 Twin Otter Aircraft Flux Data

    NASA Technical Reports Server (NTRS)

    MacPherson, J. Ian; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Desjardins, Raymond L.; Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing AES aerological network, both temporally and spatially. This data set includes basic upper-air parameters collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  14. Fluorescence and multilayer structure of the scorpion cuticle

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jen; Chiu, Pei-Ju; Lee, Cheng-Chung

    2015-09-01

    We collect the scorpions, Isometrus maculates, in different instars to analyze the photoluminescence (PL), micro-structure of cuticles and their correlation. The photoluminescence is excited by 405 nm solid laser in room temperature and detected by BWtek BRC 112E spectrometer. The result shows that the intensity of photoluminescence positively correlate to instars of scorpion. The images of micro-structures of cuticles captured by scanning electron microscope (SEM) present the multilayer structure in detail. The samples are prepared in small piece to ensure that the PL and SEM data are caught from the same area. The correlation between instars and intensity of photoluminescence is explained according to micro-structures via the thin-film optics theory.

  15. 3D Color Digital Elevation Map of AFM Sample

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This color image is a three dimensional (3D) view of a digital elevation map of a sample collected by NASA's Phoenix Mars Lander's Atomic Force Microscope (AFM).

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate, which is the background plane shown in red. This image has been processed to reflect the levelness of the substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The particle was part of a sample informally called 'Sorceress' delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008). The AFM is part of Phoenix's microscopic station called MECA, or the Microscopy, Electrochemistry, and Conductivity Analyzer.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Optical properties of graphene nanoribbons encapsulated in single-walled carbon nanotubes.

    PubMed

    Chernov, Alexander I; Fedotov, Pavel V; Talyzin, Alexandr V; Suarez Lopez, Inma; Anoshkin, Ilya V; Nasibulin, Albert G; Kauppinen, Esko I; Obraztsova, Elena D

    2013-07-23

    We report the photoluminescence (PL) from graphene nanoribbons (GNRs) encapsulated in single-walled carbon nanotubes (SWCNTs). New PL spectral features originating from GNRs have been detected in the visible spectral range. PL peaks from GNRs have resonant character, and their positions depend on the ribbon geometrical structure in accordance with the theoretical predictions. GNRs were synthesized using confined polymerization and fusion of coronene molecules. GNR@SWCNTs material demonstrates a bright photoluminescence both in infrared (IR) and visible regions. The photoluminescence excitation mapping in the near-IR spectral range has revealed the geometry-dependent shifts of the SWCNT peaks (up to 11 meV in excitation and emission) after the process of polymerization of coronene molecules inside the nanotubes. This behavior has been attributed to the strain of SWCNTs induced by insertion of the coronene molecules.

  17. Scanning hall probe microscopy (SHPM) using quartz crystal AFM feedback.

    PubMed

    Dede, M; Urkmen, K; Girişen, O; Atabak, M; Oral, A; Farrer, I; Ritchie, D

    2008-02-01

    Scanning Hall Probe Microscopy (SHPM) is a quantitative and non-invasive technique for imaging localized surface magnetic field fluctuations such as ferromagnetic domains with high spatial and magnetic field resolution of approximately 50 nm and 7 mG/Hz(1/2) at room temperature. In the SHPM technique, scanning tunneling microscope (STM) or atomic force microscope (AFM) feedback is used to keep the Hall sensor in close proximity of the sample surface. However, STM tracking SHPM requires conductive samples; therefore the insulating substrates have to be coated with a thin layer of gold. This constraint can be eliminated with the AFM feedback using sophisticated Hall probes that are integrated with AFM cantilevers. However it is very difficult to micro fabricate these sensors. In this work, we have eliminated the difficulty in the cantilever-Hall probe integration process, just by gluing a Hall Probe chip to a quartz crystal tuning fork force sensor. The Hall sensor chip is simply glued at the end of a 32.768 kHz or 100 kHz Quartz crystal, which is used as force sensor. An LT-SHPM system is used to scan the samples. The sensor assembly is dithered at the resonance frequency using a digital Phase Locked Loop circuit and frequency shifts are used for AFM tracking. SHPM electronics is modified to detect AFM topography and the frequency shift, along with the magnetic field image. Magnetic domains and topography of an Iron Garnet thin film crystal, NdFeB demagnetised magnet and hard disk samples are presented at room temperature. The performance is found to be comparable with the SHPM using STM feedback.

  18. Characterization of Weissella kimchii PL9023 as a potential probiotic for women.

    PubMed

    Lee, Yeonhee

    2005-09-01

    From more than 100 lactic acid bacteria, Weissella kimchii PL9023 was selected as producing the most hydrogen peroxide and was characterized as a probiotic for women. W. kimchii PL9023 inhibited the growth and adherence of vaginal isolates of Candida albicans, Escherichia coli, Staphylococcus aureus and Streptococcus agalactiae. The surface components involved in adherence of W. kimchii PL9023 to vaginal epithelial cells appeared to be glycoproteins, as determined by susceptibility to proteinase K, heat, or periodate. W. kimchii PL9023 did not produce harmful metabolites or enzymes. The results of this study suggest that W. kimchii PL9023 is a potential probiotic for vaginal health.

  19. Beyond topography - enhanced imaging of cometary dust with the MIDAS AFM

    NASA Astrophysics Data System (ADS)

    Bentley, M. S.; Torkar, K.; Jeszenszky, H.; Romstedt, J.

    2013-09-01

    The MIDAS atomic force microscope (AFM) onboard the Rosetta spacecraft is primarily designed to return the 3D shape and structure of cometary dust particles collected at comet 67P/Churyumov-Gerasimenko [1]. Commercial AFMs have, however, been further developed to measure many other sample properties. The possibilities to make such measurements with MIDAS are explored here.

  20. Blue photoluminescent carbon nanodots from limeade.

    PubMed

    Suvarnaphaet, Phitsini; Tiwary, Chandra Sekhar; Wetcharungsri, Jutaphet; Porntheeraphat, Supanit; Hoonsawat, Rassmidara; Ajayan, Pulickel Madhavapanicker; Tang, I-Ming; Asanithi, Piyapong

    2016-12-01

    Carbon-based photoluminescent nanodot has currently been one of the promising materials for various applications. The remaining challenges are the carbon sources and the simple synthetic processes that enhance the quantum yield, photostability and biocompatibility of the nanodots. In this work, the synthesis of blue photoluminescent carbon nanodots from limeade via a single-step hydrothermal carbonization process is presented. Lime carbon nanodot (L-CnD), whose the quantum yield exceeding 50% for the 490nm emission in gram-scale amounts, has the structure of graphene core functionalized with the oxygen functional groups. The micron-sized flake of the as-prepared L-CnD powder exhibits multicolor emission depending on an excitation wavelength. The L-CnDs are demonstrated for rapidly ferric-ion (Fe(3+)) detection in water compared to Fe(2+), Cu(2+), Co(2+), Zn(2+), Mn(2+) and Ni(2+) ions. The photoluminescence quenching of L-CnD solution under UV light is used to distinguish the Fe(3+) ions from others by naked eyes as low concentration as 100μM. Additionally, L-CnDs provide exceptional photostability and biocompatibility for imaging yeast cell morphology. Changes in morphology of living yeast cells, i.e. cell shape variation, and budding, can be observed in a minute-period until more than an hour without the photoluminescent intensity loss. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Development and dissection of diagnostic SNP markers for the downy mildew resistance genes PlArg and Pl8 and maker-assisted gene pyramiding in sunflower (Helianthus annuus L.)

    USDA-ARS?s Scientific Manuscript database

    Downy mildew, which is caused by fungus Plasmopara halstedii (Farl.) Berlese & de Toni, is one of the most important diseases that affect sunflower production globally. Two downy mildew resistance genes, PlArg and Pl8, were discovered in the late 1980s. Over two decades, PlArg is still effective aga...

  2. Detecting Spatially Localized Exciton in Self-Organized InAs/InGaAs Quantum Dot Superlattices: a Way to Improve the Photovoltaic Efficiency.

    PubMed

    Ezzedini, Maher; Hidouri, Tarek; Alouane, Mohamed Helmi Hadj; Sayari, Amor; Shalaan, Elsayed; Chauvin, Nicolas; Sfaxi, Larbi; Saidi, Faouzi; Al-Ghamdi, Ahmed; Bru-Chevallier, Catherine; Maaref, Hassen

    2017-12-01

    This paper reports on experimental and theoretical investigations of atypical temperature-dependent photoluminescence properties of multi-stacked InAs quantum dots in close proximity to InGaAs strain-relief underlying quantum well. The InAs/InGaAs/GaAs QD heterostructure was grown by solid-source molecular beam epitaxy (SS-MBE) and investigated via photoluminescence (PL), spectroscopic ellipsometry (SE), and picosecond time-resolved photoluminescence. Distinctive double-emission peaks are observed in the PL spectra of the sample. From the excitation power-dependent and temperature-dependent PL measurements, these emission peaks are associated with the ground-state transition from InAs QDs with two different size populations. Luminescence measurements were carried out as function of temperature in the range of 10-300 K by the PL technique. The low temperature PL has shown an abnormal emission which appeared at the low energy side and is attributed to the recombination through the deep levels. The PL peak energy presents an anomalous behavior as a result of the competition process between localized and delocalized carriers. We propose the localized-state ensemble model to explain the usual photoluminescence behaviors. The quantitative study shows that the quantum well continuum states act as a transit channel for the redistribution of thermally activated carriers. We have determined the localization depth and its effect on the application of the investigated heterostructure for photovoltaic cells. The model gives an overview to a possible amelioration of the InAs/InGaAs/GaAs QDs SCs properties based on the theoretical calculations.

  3. Molecular characterization of the pL40 protein in Leptospira interrogans.

    PubMed

    Zhao, Wei; Chen, Chun-Yan; Zhang, Xiang-Yan; Lai, Wei-Qiang; Hu, Bao-Yu; Zhao, Guo-Ping; Qin, Jin-Hong; Guo, Xiao-Kui

    2009-06-01

    Leptospirosis is a widespread zoonotic disease caused by pathogenic leptospires. The identification of outer membrane proteins (OMPs) conserved among pathogenic leptospires, which are exposed on the leptospiral surface and expressed during mammalian infection, has become a major focus of leptospirosis research. pL40, a 40 kDa protein coded by the LA3744 gene in Leptospira interrogans, was found to be unique to Leptospira. Triton X-114 fractionation and flow cytometry analyses indicate that pL40 is a component of the leptospiral outer membrane. The conservation of pL40 among Leptospira strains prevalent in China was confirmed by both Western blotting and PCR screening. Furthermore, the pL40 antigen could be recognized by sera from guinea pigs and mice infected with low-passage L. interrogans. These findings indicate that pL40 may serve as a useful serodiagnostic antigen and vaccine candidate for L. interrogans.

  4. On the photo-luminescence properties of sol–gel derived undoped and Dy{sup 3+} ion doped nanocrystalline Scheelite type AMoO{sub 4} (A = Ca, Sr and Ba)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jena, Paramananda; Gupta, Santosh K., E-mail: santufrnd@gmail.com; Natarajan, V.

    2015-04-15

    Nanocrystalline Scheelite type Dy doped AMoO{sub 4} [where A = Ba, Sr and Ca] samples were prepared by acrylamide assisted sol–gel process and characterized by XRD, FT-Raman, FTIR, SEM and photoluminescence (PL). PL of undoped sample shows blue/green emission in CaMoO{sub 4} and SrMoO{sub 4} but multicolour visible emission leading to near white light in BaMoO{sub 4} nanoparticles; the origin of which is explained. It was observed that on doping 0.5 mol% of Dy{sup 3+} in molybdate samples complete energy transfer takes place in case of SrMoO{sub 4} and BaMoO{sub 4}, but host contributed substantially in Dy doped BaMoO{sub 4}more » sample, resulting in biexponential decay. It was also observed that symmetry around Dy{sup 3+} decreases as the size of alkaline earth ion increases. Due to combined blue, yellow and red colour emission in dysprosium doped sample; all samples showed near white light emission under UV and near UV excitation.« less

  5. Photoluminescence study of as-grown vertically standing wurtzite InP nanowire ensembles.

    PubMed

    Iqbal, Azhar; Beech, Jason P; Anttu, Nicklas; Pistol, Mats-Erik; Samuelson, Lars; Borgström, Magnus T; Yartsev, Arkady

    2013-03-22

    We demonstrate a method that enables the study of photoluminescence of as-grown nanowires on a native substrate by non-destructively suppressing the contribution of substrate photoluminescence. This is achieved by using polarized photo-excitation and photoluminescence and by making an appropriate choice of incident angle of both excitation beam and photoluminescence collection direction. Using TE-polarized excitation at a wavelength of 488 nm at an incident angle of ∼70° we suppress the InP substrate photoluminescence relative to that of the InP nanowires by about 80 times. Consequently, the photoluminescence originating from the nanowires becomes comparable to and easily distinguishable from the substrate photoluminescence. The measured photoluminescence, which peaks at photon energies of ∼1.35 eV and ∼1.49 eV, corresponds to the InP substrate with zinc-blende crystal structure and to the InP nanowires with wurtzite crystal structure, respectively. The photoluminescence quantum yield of the nanowires was found to be ∼20 times lower than that of the InP substrate. The nanowires, grown vertically in a random ensemble, neither exhibit substantial emission polarization selectivity to the axis of the nanowires nor follow excitation polarization preferences observed previously for a single nanowire.

  6. Polarization-resolved micro-photoluminescence investigation of InGaN/GaN core-shell microrods

    NASA Astrophysics Data System (ADS)

    Mounir, Christian; Schimpke, Tilman; Rossbach, Georg; Avramescu, Adrian; Strassburg, Martin; Schwarz, Ulrich T.

    2017-01-01

    We investigate the optical emission properties of the active InGaN shell of high aspect-ratio InGaN/GaN core-shell microrods (μRods) by confocal quasi-resonant polarization-resolved and excitation density dependent micro-photoluminescencePL). The active shell, multiple thin InGaN/GaN quantum wells (MQWs), was deposited on GaN μRods selectively grown by metal organic vapor phase epitaxy on patterned SiO2/n-GaN/sapphire template. High spatial resolution mappings reveal a very homogeneous emission intensity along the whole μRods including the tip despite a red-shift of 30 nm from the base to the tip along the 8.6 μm-long m-plane sidewalls. Looking at the Fabry-Perot interference fringes superimposed on the μPL spectra, we get structural information on the μRods. A high degree of linear polarization (DLP) of 0.6-0.66 is measured on the lower half of the m-plane side facets with a slight decrease toward the tip. We observe the typical drop of the DLP with an excitation density caused by degenerate filling of valence bands (Fermi regime). Local internal quantum efficiencies (IQEs) of 55 ±11 % up to 73 ±7 % are estimated on the m-plane facet from measurements at low temperature. Finally, simultaneously fitting the DLP and IQE as a function of the excitation density, we determine the carrier density inside the active region and the recombination rate coefficients of the m-plane MQWs. We show that phase-space filling and the background carrier density have to be included in the recombination rate model.

  7. Pinning effects from substrate and AFM tip surfaces on interfacial nanobubbles

    NASA Astrophysics Data System (ADS)

    Teshima, Hideaki; Takahashi, Koji; Takata, Yasuyuki; Nishiyama, Takashi

    2017-11-01

    Measurement accuracy of atomic force microscopy (AFM) is vital to understand the mechanism of interfacial nanobubbles. In this study, we report the influence of pinning derived from both substrate and AFM tip surfaces on the measured shape of interfacial nanobubbles in peak force tapping mode. First, we pushed the nanobubbles using the AFM tip with high peak force setpoint. As a result, the deformed nanobubbles kept their flat shape for several tens of minutes. We quantitatively discuss the pinning force from substrate surface, which retains the flat shape enhancing the stability of nanobubbles. Next, we prepared three AFM tips with different wettability and measured the nanobubbles with an identical setpoint. By comparing the force curves obtained during the measurements, it seems that the (middle-)hydrophobic tips penetrated the liquid/gas interface and received repulsive force resulting from positive meniscus formed by pinning at the tip surface. In contrast, hydrophilic tip didn't penetrate the interface and received the force from the deformation of the interface of the nanobubbles. In addition, the measurements using the (middle-)hydrophobic tips led to the underestimation of the nanobubbles profile corresponding to the pinning position at the tip surfaces.

  8. The Atomic Force Microscopic (AFM) Characterization of Nanomaterials

    DTIC Science & Technology

    2009-06-01

    Several Types of Microscopes ..................................................................................................7 8 OM on Mica Surface...12 9 AFM on Mica Surface...12 10 OM Images SWNTs on Mica After 1) 30 Minutes, b) 60

  9. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaojun; Department of Biotechnology, Nanchang University, Nanchang, Jiangxi 330031; Chen, Yuan

    2014-03-28

    Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM)more » has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release.« less

  10. Complementary roles of benzylpiperazine and iodine 'vapor' in the strong enhancement of orange photoluminescence from CuI(1 1 1) thin film.

    PubMed

    Rawal, Takat B; Turkowski, Volodymyr; Rahman, Talat S

    2014-05-07

    We have employed density functional theory, corrected by the on-site electron-electron repulsion energy U, to clarify the mechanism behind the enhanced orange photoluminescence (PL) of a CuI(1 1 1) thin film conjugated with a benzylpiperazine (BZP) molecule in the presence of an iodine 'vapor' atom. Our results demonstrated that the adsorbed molecule and the 'vapor' atom play complementary roles in producing the PL. The latter, in attaching to the film surface, creates a hole-trapping surface state located ~0.25 eV above the valence band-edge of the film, in good agreement with ~0.2 eV reported in experiments. Upon photo-excitation of the BZP/CuI(1 1 1) system in the presence of surface iodine 'vapor' atoms, excited electrons are transferred into the conduction band of CuI, and holes are trapped by the 'vapor' atoms. These holes, in turn, quickly relax into the HOMO state of the BZP molecule, owing to the fact that the molecule adsorbs on the film surface in the immediate vicinity of a 'vapor' atom. Relaxed holes subsequently recombine with excited electrons in the conduction band of the CuI film, thereby producing a luminescence peak at ~2.1 eV, in qualitative agreement with experimental findings.

  11. Application of Contact Mode AFM to Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Giordano, Michael A.; Schmid, Steven R.

    A review of the application of contact mode atomic force microscopy (AFM) to manufacturing processes is presented. A brief introduction to common experimental techniques including hardness, scratch, and wear testing is presented, with a discussion of challenges in the extension of manufacturing scale investigations to the AFM. Differences between the macro- and nanoscales tests are discussed, including indentation size effects and their importance in the simulation of processes such as grinding. The basics of lubrication theory are presented and friction force microscopy is introduced as a method of investigating metal forming lubrication on the nano- and microscales that directly simulates tooling/workpiece asperity interactions. These concepts are followed by a discussion of their application to macroscale industrial manufacturing processes and direct correlations are made.

  12. Placental growth factor (PlGF) is a surrogate marker in preeclamptic hypertension.

    PubMed

    Teixeira, Patrícia Gonçalves; Cabral, Antônio Carlos Vieira; Andrade, Silvia Passos; Reis, Zilma Silveira Nogueira; da Cruz, Lívia Pieroni Barroso; Pereira, Jacqueline Braga; Martins, Breno Oliveira de Barcelos; Rezende, Cezar Alencar de Lima

    2008-01-01

    To evaluate plasma levels of angiogenic factors and their association with preeclampsia. Twenty-three women with preeclampsia and nine normotensive pregnant women from the Maternity of Hospital das Clínicas of Belo Horizonte/MG-Brazil were assessed by National High Blood Pressure Education Program Working Group Creteria (NHBPEPWG). The plasma levels of vascular endothelial growth factor (VEGF) and Placental growth factor (PlGF) were determined by ELISA assay. Plasma concentration of PlGF was 12-fold lower in preeclampsia versus non preeclampsia pregnancies. An inverse correlation was observed between PlGF plasma levels and mean arterial pressure (MAP); a decrease in 1pg/mL of PlGF resulted in 6.18 mm Hg increase in MAP. These results indicate that PlGF is related to MAP in pregnant women.

  13. Study of photoluminescence properties of CaAl{sub 2}O{sub 4}: Eu{sup 2+} prepared by combustion synthesis method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hingwe, V. S., E-mail: vishwas.hingwe@yahoo.in; Omanwar, S. K.; Bajaj, N. S.

    2016-05-06

    Eu{sup 2+} doped alkaline earth metals such as strontium aluminate, calcium aluminate and barium aluminate prepared by using modified combustion synthesis method at 600°C with Urea as fuel. Crystal structure is determined by using XRD and the sample confirmation by using the FTIR. The effect of the host material on the photoluminescence (PL) and phosphorescence properties were studied by using the Hitachi F-7000 spectrofluorimeter equipped with a 450W Xenon lamp, in the range 200-650 nm. The emission spectra of Eu{sup 2+} range from 450 to 500 nm in the Blue to aqua region and the transition 4f{sup 7}-4f{sup 6} 5d{sup 1}.more » The observed emission in CaAl{sub 2}O{sub 4} is 440 nm.« less

  14. School Counselors and PL 94-142

    ERIC Educational Resources Information Center

    Humes II, Charles W.

    1978-01-01

    Discusses the specifics of PL 94-142 (which guarantees the right of all children, regardless of severity of handicap, to a free, public education) implications for counselors and problems regarding implementation. (Author/HMV)

  15. Mimosa pudica (L.) assisted green synthesis and photoluminescence studies of Y2O3:Mg2+ nanophosphor for display applications

    NASA Astrophysics Data System (ADS)

    Venkatachalaiah, KN; Venkataravanappa, M.; Nagabhushana, H.; Basavaraj, R. B.

    2016-09-01

    For the first time green route method was used to synthesize pure and Mg2+(1-11 mol %) doped Y2O3 nanophosphors by using Mimosa pudica leaves extract as a fuel. The final product was well characterized by powder x-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS) and photoluminescence (PL).The PXRD result shows the formation of single phase, cubic structure of Y2O3 with crystallite sizes ∼25 nm. The SEM results showed porous and agglomerated structures, TEM images showed the crystallite size of the material and was found to be around ∼ 25 nm. PL emission spectra show the blue light emission under the excitation wavelength of 315 nm. The emission peaks of Mg2+were observed at 428 nm, 515 nm and 600 nm corresponding to the transitions of 4F9/2 → 6Hi7/2 (violet), 4F9/2 → 6Hi5/2 (blue), 4F9/2 → 6HJ3/2 (yellow) respectively. The estimated CIE chromaticity co-ordinate was very close to the national television standard committee value of blue emission. CCT was found to be ∼ 6891 K as a result the present phosphor was potential to be used for warm white light emitting display applications.

  16. Thermally enhanced photoluminescence for heat harvesting in photovoltaics

    PubMed Central

    Manor, Assaf; Kruger, Nimrod; Sabapathy, Tamilarasan; Rotschild, Carmel

    2016-01-01

    The maximal Shockley–Queisser efficiency limit of 41% for single-junction photovoltaics is primarily caused by heat dissipation following energetic-photon absorption. Solar-thermophotovoltaics concepts attempt to harvest this heat loss, but the required high temperatures (T>2,000 K) hinder device realization. Conversely, we have recently demonstrated how thermally enhanced photoluminescence is an efficient optical heat-pump that operates in comparably low temperatures. Here we theoretically and experimentally demonstrate such a thermally enhanced photoluminescence based solar-energy converter. Here heat is harvested by a low bandgap photoluminescent absorber that emits thermally enhanced photoluminescence towards a higher bandgap photovoltaic cell, resulting in a maximum theoretical efficiency of 70% at a temperature of 1,140 K. We experimentally demonstrate the key feature of sub-bandgap photon thermal upconversion with an efficiency of 1.4% at only 600 K. Experiments on white light excitation of a tailored Cr:Nd:Yb glass absorber suggest that conversion efficiencies as high as 48% at 1,500 K are in reach. PMID:27762271

  17. Estimation of polymer-surface interfacial interaction strength by a contact AFM technique.

    PubMed

    Dvir, H; Jopp, J; Gottlieb, M

    2006-12-01

    Atomic force microscopy (AFM) measurements were employed to assess polymer-surface interfacial interaction strength. The main feature of the measurement is the use of contact-mode AFM as a tool to scratch off the polymer monolayer adsorbed on the solid surface. Tapping-mode AFM was used to determine the depth of the scraped recess. Independent determination of the layer thickness obtained from optical phase interference microscopy (OPIM) confirmed the depth of the AFM scratch. The force required for the complete removal of the polymer layer with no apparent damage to the substrate surface was determined. Polypropylene (PP), low-density polyethylene (PE), and PP-grafted-maleic anhydride (PP-g-ma) were scraped off silane-treated glass slabs, and the strength of surface interaction of the polymer layer was determined. In all cases it was determined that the magnitude of surface interaction force is of the order of van der Waals (VDW) interactions. The interaction strength is influenced either by polymer ability to wet the surface (hydrophobic or hydrophilic interactions) or by hydrogen bonding between the polymer and the surface treatment.

  18. Investigating Oil-Prone Kerogen Conversion to Hydrocarbons Using AFM-based Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Eoghan, D.; Cook, D.; Hackley, P. C.; Kjoller, K.; Dawson, D.; Shetty, R.

    2016-12-01

    Understanding in situ chemical changes occurring during thermal conversion of oil-prone kerogen to hydrocarbons can provide fundamental information regarding the origin of the earth's fossil fuel endowment and reduce uncertainty in hydrocarbon prospecting and resource assessment. Tasmanites algal bodies were studied using an Atomic Force Microscope-based IR spectroscopy technique (AFM-IR) that offers chemical characterization of organic materials with spatial resolution below the diffraction limit. The AFM allows precise positioning within the algal bodies. A tunable IR laser irradiates the sample under the AFM probe. At absorbing wavenumbers, the sample heats up and expands. The AFM detects the expansion of the material under the probe tip to generate local IR spectra. The Tasmanites algal bodies from the Devonian-Mississippian Woodford Shale were contained in two polished rock fragment pellets. To simulate maturation, one was subjected to isothermal hydrous pyrolysis at 320 °C for 72 hours. AFM-IR spectra were collected at multiple sites on algal bodies in both samples (Figure 1). The aromatic C=C ring stretching at 1600 cm-1 (unheated) shifted to 1606 cm-1 with increased absorption in the heated algal bodies, indicating development of increased aromaticity with thermal maturation. The ratio of the 1606 cm-1 peak to peaks at 1708 cm-1 (C=O stretching) and 1460 cm-1 (CH2 wag) was higher in the heated sample, indicating loss of oxygenated functional groups and aliphatic components with thermal advance. A shift of the 1372 cm-1 peak to 1376 cm-1 with lower absorption in the heated samples suggests reduction in the abundance of methyl substituents and development of preferred localization. These results are consistent with extant information from FTIR analysis and demonstrate the ability of AFM-IR to provide in situ characterization of organic matter with respect to thermal maturity advance, and its application to understanding conversion of oil-prone kerogen to

  19. Finite element modeling of trolling-mode AFM.

    PubMed

    Sajjadi, Mohammadreza; Pishkenari, Hossein Nejat; Vossoughi, Gholamreza

    2018-06-01

    Trolling mode atomic force microscopy (TR-AFM) has overcome many imaging problems in liquid environments by considerably reducing the liquid-resonator interaction forces. The finite element model of the TR-AFM resonator considering the effects of fluid and nanoneedle flexibility is presented in this research, for the first time. The model is verified by ABAQUS software. The effect of installation angle of the microbeam relative to the horizon and the effect of fluid on the system behavior are investigated. Using the finite element model, frequency response curve of the system is obtained and validated around the frequency of the operating mode by the available experimental results, in air and liquid. The changes in the natural frequencies in the presence of liquid are studied. The effects of tip-sample interaction on the excitation of higher order modes of the system are also investigated in air and liquid environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Enhanced photoluminescence and Raman properties of Al-Doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass.

    PubMed

    Thandavan, Tamil Many K; Gani, Siti Meriam Abdul; San Wong, Chiow; Md Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs.