Sample records for african craton wac

  1. Structures of the West African Craton Margin across southern Mauritania inferred from a 450-km geoelectrical profile

    NASA Astrophysics Data System (ADS)

    Ritz, M.; Robineau, B.; Vassal, J.; Bellion, Y.; Dukhan, M.

    1989-04-01

    Magnetotelluric (MT) measurements were carried out at 20 sites, extending 450 km across southern Mauritania in order to study lithospheric structures related to the West African craton (WAC) margin. The MT profile starts to the west on the Senegal-Mauritania basin (S-M basin), traverses across the Mauritanides orogenic belt, and terminates on the western border of the WAC (Taoudeni basin). Distortion effects due to local shallow inhomogeneities are present in nearly all of the basin data. In such a situation, the preliminary interpretation of the data was done by using 1D inversions based upon rotationally invariant parameters. Such distortion is not apparent for the belt and craton sites, and 1D inversions were followed by 2D modeling. The models produced reveal a clear crustal subdivision into a resistive upper crust underlain by a two-layer lower crust with two conductors, one at mid-crustal depths (supposed fluid-produced) beneath the S-M basin and the second at the base of the crust beneath the WAC. The 14-km-thick conductive material below the Mauritanides belt is interpreted as large imbricated thrusts representing the deep roots of the Mauritanides nappes. The models also show that significant contrasts in resistivity extend deep in the lithosphere between the cratonic area and the Senegal microplate.

  2. African hot spot volcanism: small-scale convection in the upper mantle beneath cratons.

    PubMed

    King, S D; Ritsema, J

    2000-11-10

    Numerical models demonstrate that small-scale convection develops in the upper mantle beneath the transition of thick cratonic lithosphere and thin oceanic lithosphere. These models explain the location and geochemical characteristics of intraplate volcanos on the African and South American plates. They also explain the presence of relatively high seismic shear wave velocities (cold downwellings) in the mantle transition zone beneath the western margin of African cratons and the eastern margin of South American cratons. Small-scale, edge-driven convection is an alternative to plumes for explaining intraplate African and South American hot spot volcanism, and small-scale convection is consistent with mantle downwellings beneath the African and South American lithosphere.

  3. A historical overview of Moroccan magmatic events along northwest edge of the West African Craton

    NASA Astrophysics Data System (ADS)

    Ikenne, Moha; Souhassou, Mustapha; Arai, Shoji; Soulaimani, Abderrahmane

    2017-03-01

    Located along the northwestern edge of the West African Craton, Morocco exhibits a wide variety of magmatic events from Archean to Quaternary. The oldest magmatic rocks belong to the Archean Reguibat Shield outcrops in the Moroccan Sahara. Paleoproterozoic magmatism, known as the Anti-Atlas granitoids, is related to the Eburnean orogeny and initial cratonization of the WAC. Mesoproterozoic magmatism is represented by a small number of mafic dykes known henceforth as the Taghdout mafic volcanism. Massive Neoproterozoic magmatic activity, related to the Pan-African cycle, consists of rift-related Tonian magmatism associated with the Rodinia breakup, an Early Cryogenian convergent margin event (760-700 Ma), syn-collisional Bou-Azzer magmatism (680-640 Ma), followed by widespread Ediacaran magmatism (620-555 Ma). Each magmatic episode corresponded to a different geodynamic environment and produced different types of magma. Phanerozoic magmatism began with Early Cambrian basaltic (rift?) volcanism, which persisted during the Middle Cambrian, and into the Early Ordovician. This was succeeded by massive Late Devonian and Carboniferous, pre-Variscan tholeiitic and calc-alkaline (Central Morocco) volcanic flows in basins of the Moroccan Meseta. North of the Atlas Paleozoic Transform Zone, the Late Carboniferous Variscan event was accompanied by the emplacement of 330-300 Ma calc-alkaline granitoids in upper crustal shear zones. Post-Variscan alkaline magmatism was associated with the opening of the Permian basins. Mesozoic magmatism began with the huge volumes of magma emplaced around 200 Ma in the Central Atlantic Magmatic Province (CAMP) which was associated with the fragmentation of Pangea and the subsequent rifting of Central Atlantic. CAMP volcanism occurs in all structural domains of Morocco, from the Anti-Atlas to the External Rif domain with a peak activity around 199 Ma. A second Mesozoic magmatic event is represented by mafic lava flows and gabbroic intrusions in

  4. Palaeomagnetism of the Palaeoproterozoic Boonadgin Dyke Suite, Yilgarn Craton: Possible connection with India

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Li, Z. X.; Pisarevsky, S.; Kirscher, U.; Mitchell, R.; Stark, J. C.

    2017-12-01

    A palaeomagnetic study was carried out on the newly identified 1.9 Ga Boonadgin dyke swarm in the Yilgarn Craton, Western Australia. Ten dykes revealed a high-temperature characteristic remanent magnetisation (ChRM) with dual polarities, directing either SW shallow downward (4 sites) or NE shallow upward (6 sites). Our results reveal that the Yilgarn Craton was at an equatorial palaeolatitude at 1.9 Ga. Meanwhile, a paleopole from the ca. 1.9 Ga Dharwar dykes of South India, supported by a positive baked-contact test, puts India at a similar paleolatitude. The Boonadgin dyke swarm can be interpreted to represent an arm of a radiating dyke swarm that shared the same plume centre with coeval mafic dykes in the Dharwar and Bastar cratons of southern India. We therefore propose that the Western Australia Craton (WAC, consisting of the the Yilgarn and Pilbara cratons) and South India were connected at ca. 1.89 Ga.

  5. Upper mantle structure beneath southern African cratons from seismic finite-frequency P- and S-body wave tomography

    NASA Astrophysics Data System (ADS)

    Youssof, M.; Thybo, H.; Artemieva, I. M.; Levander, A.

    2015-06-01

    We present a 3D high-resolution seismic model of the southern African cratonic region from teleseismic tomographic inversion of the P- and S-body wave dataset recorded by the Southern African Seismic Experiment (SASE). Utilizing 3D sensitivity kernels, we invert traveltime residuals of teleseismic body waves to calculate velocity anomalies in the upper mantle down to a 700 km depth with respect to the ak135 reference model. Various resolution tests allow evaluation of the extent of smearing effects and help defining the optimum inversion parameters (i.e., damping and smoothness) for regularizing the inversion calculations. The fast lithospheric keels of the Kaapvaal and Zimbabwe cratons reach depths of 300-350 km and 200-250 km, respectively. The paleo-orogenic Limpopo Belt is represented by negative velocity perturbations down to a depth of ˜ 250 km, implying the presence of chemically fertile material with anomalously low wave speeds. The Bushveld Complex has low velocity down to ˜ 150 km, which is attributed to chemical modification of the cratonic mantle. In the present model, the finite-frequency sensitivity kernels allow to resolve relatively small-scale anomalies, such as the Colesberg Magnetic Lineament in the suture zone between the eastern and western blocks of the Kaapvaal Craton, and a small northern block of the Kaapvaal Craton, located between the Limpopo Belt and the Bushveld Complex.

  6. Tectonic evolution of the Oudalan-Gorouol greenstone belt in NE Burkina Faso and Niger, West African craton.

    NASA Astrophysics Data System (ADS)

    Tshibubudze, Asinne; Hein, Kim A. A.

    2010-05-01

    The Oudalan-Gorouol Greenstone Belt (OGGB) forms part of the Palaeoproterozoic as the Baoulé-Mossi domain of the West African Craton (WAC) and hosts gold deposits at Essakane, Gossey, Korizena, and Falagountou in NE Burkina Faso, and Kossa goldfield in Niger. The Birimian supracrustal sequences in the OGGB are dominated by meta-volcanoclastic greywacke intercalated meta-conglomerate, siltstone and shale, carbonate (dolomite) and volcanic units pillow basalts). The belt is surrounded by plutonic rocks including granite, TTG suite granitoids and granite gneiss. The sequences where subjected to two phases of deformation, and several phases of contact metamorphosed to hornblende-hornfels facies during emplacement of pyroxenite-gabbro-norite, granodiorite-tonalite and gabbro dykes and porphyritic sills. The OGGB is bounded and/or crosscut by several major NNE to NE-trending shear zones including the steeply east-dipping Markoye Shear Zone (western margin of the OGGB), Tin Takanet-Bellekcire Shear Zone, Dori Shear Zone, Kargouna Shear Zone, Takabougou Shear Zone, and Bom Kodjelé Shear Zone (transects the centre of the OGGB). The structures were readily identified using LANDSAT, Aster, aeromagnetic and RTP magnetic data, with follow-up strategic mapping, highlighting the value of interpreting geophysical and remotely sensed data in regional mapping in Burkina Faso and Niger. Structural studies completed in 2007 adjacent to the Essakane gold mine indicated that the NE-trending, first-order crustal-scale Markoye Shear Zone (MSZ) has undergone at least two phases of reactivation concomitant to two phases of regional deformation (Tshibubudze et al., 2009). The first phase of deformation, D1, resulted in the formation of NNW-NW trending folds and thrusts during dextral-reverse displacement on the MSZ. The deformation predates the Eburnean Orogeny is termed the Tangaean Event (meaning low hills in the Moré language of Burkina Faso) and is tentatively dated at ca. 2170

  7. Turning WAC Skeptics into WAC Participants on 55 Cents/Day.

    ERIC Educational Resources Information Center

    Smith, Barbara

    This paper focuses on some of the strategies that were crucial to the eventual success of Writing across the Curriculum (WAC), or, as it is called at the College of Mount Saint Vincent, WTL, Writing to Learn. The paper also mentions some of the pitfalls. According to the paper, the budget for WAC is $100 annually--when divided by the number of…

  8. Probing the edge of the West African Craton: A first seismic glimpse from Niger

    NASA Astrophysics Data System (ADS)

    Di Leo, Jeanette F.; Wookey, James; Kendall, J.-Michael; Selby, Neil D.

    2015-03-01

    Constraints on crustal and mantle structure of the Eastern part of the West African Craton have to date been scarce. Here we present results of P receiver function and SK(K)S wave splitting analyses of data recorded at International Monitoring System array TORD in SW Niger. Despite lacking in lateral coverage, our measurements sharply constrain crustal thickness (˜41 km), VP/VS ratio (1.69 ± 0.03), mantle transition zone (MTZ) thickness (˜247 km), and a midlithospheric discontinuity at ˜67 km depth. Splitting delay times are low with an average of 0.63 ± 0.01 s. Fast directions follow the regional surface geological trend with an average of 57 ± 1°. We suggest that splitting is due to fossil anisotropic fabrics in the crust and lithosphere, incurred during the Paleoproterozoic Eburnean Orogeny, with possible contributions from the later Pan-African Orogeny and present-day mantle flow. The MTZ appears to be unperturbed, despite the proximity of the sampled region to the deep cratonic root.

  9. Le craton ouest-africain et le bouclier guyanais: un seul craton au Protérozoïque inférieur?

    NASA Astrophysics Data System (ADS)

    Caen-Vachette, Michelle

    Geochronological and paleomagnetism data for southern West African craton and Guyana shield in South America, are concordant and suggest the existence of a large unit grouping them during Archean and Lower Proterozoic times. The paleomagnetism data allow to put on a single line, the Zednes (Mauritania), Sassandra (Ivory Coast) and Guri (Venezuela) fault zones, the mylonites of which were dated 1670 Ma. This age reflects the end of the eburnean-transamazonian shearing tectonic, which affected the large West Africa-Guyana unit. This line separates the western Archean domain from the eastern lower Proterozoic one; thence it is possible to correlate the Sasca (Ivory Coast) and Pastora (Venezuela) areas. Archean relics have been found in mobile pan-african-bresiliano zones which surround the Precambrian cratons; this fact suggests the existence of still more extended Archean craton than defined above.

  10. Evidence for a Neoproterozoic carbonate ramp on the northern edge of the Central African craton: relations with late Proterozoic intracratonic troughs

    NASA Astrophysics Data System (ADS)

    Alvarez, Philippe

    1995-09-01

    During Late Proterozoic times, the Archaean Central African craton was affected by trough faulting which led to the formation of grabens, the Sangha aulacogen being the main structure of this type in the studied area. This transverse basin connects with other basins on the northern and south-western borders of the craton. During the Cryogenian, this network of basins was filled with fluvio-deltaic and lacustrine periglacial deposits. The glacio-eustatic transgression in Neoproterozoic III (end-Proterozoic) times flooded extensive areas of shelf on the northern edge of the craton, leading to the development of carbonate sedimentation in a broad outer shelf environment associated with nearshore barriers and evaporitic lagoons. These facies are similar to those developed in the West Congolian Schisto-calcaire (shale-limestone) ramp succession. The North-Central African ramp succession (sediment slope) contains an example of tidal rhythmites in vertical accretion, which occurs beneath the barrier deposits on the subtidal outer shelf. Mathematical analysis of the bedding pattern yields a period of 29 30 days for the lunar month, a result which is in agreement with astrophysical evidence for this epoch (i.e. 650 Ma ago). Major subsidence and seismic activity on this gently sloping platform, associated with the proximity of the Sangha aulacogen, caused the triggering of carbonate turbidites and mass flow deposits. The proliferation of microbial mats under euphotic conditions on an extensive shelf led to the build-up of a carbonate platform. During early Neoproterozoic III times, the West Congolian and North-Central African ramps prograded northwards and southwards, respectively, into the Sangha aulacogen. The sea at that time was restricted to a long graben-like basin, while a remaining area of marine sedimentation persisted into the Palaeozoic. Thus the pattern of end-Proterozoic carbonate sedimentation on the borders of the Central African craton can be interpreted in

  11. Evidence for a Neoproterozoic carbonate ramp on the northern edge of the Central African craton: relations with Late Proterozoic intracratonic troughs

    NASA Astrophysics Data System (ADS)

    Alvarez, Philippe

    During Late Proterozoic times, the Archaean Central African craton was affected by trough faulting which led to the formation of grabens, the Sangha aulacogen being the main structure of this type in the studied area. This transverse basin connects with other basins on the northern and south-western borders of the craton. During the Cryogenian, this network of basins was filled with fluvio-deltaic and lacustrine periglacial deposits. The glacio-eustatic transgression in Neoproterozoic III (end-Proterozoic) times flooded extensive areas of shelf on the northern edge of the craton, leading to the development of carbonate sedimentation in a broad outer shelf environment associated with nearshore barriers and evaporitic lagoons. These facies are similar to those developed in the West Congolian Schisto-calcaire (shale-limestone) ramp succession.The North-Central African ramp succession (sediment slope) contains an example of tidal rhythmites in vertical accretion, which occurs beneath the barrier deposits on the subtidal outer shelf. Mathematical analysis of the bedding pattern yields a period of 29-30 days for the lunar month, a result which is in agreement with astrophysical evidence for this epoch (i.e. 650Ma ago). Major subsidence and seismic activity on this gently sloping platform, associated with the proximity of the Sangha aulacogen, caused the triggering of carbonate turbidites and mass flow deposits. The proliferation of microbial mats under euphotic conditions on an extensive shelf led to the build-up of a carbonate platform. During early Neoproterozoic III times, the West Congolian and North-Central African ramps prograded northwards and southwards, respectively, into the Sangha aulacogen. The sea at that time was restricted to a long graben-like basin, while a remaining area of marine sedimentation persisted into the Palaeozoic. Thus the pattern of end-Proterozoic carbonate sedimentation on the borders of the Central African craton can be interpreted in

  12. When Rifts Meet Cratons

    NASA Astrophysics Data System (ADS)

    Chen, W. P.; Ning, J.

    2017-12-01

    The longevity of cratons and the evolution of rifts are two outstanding issues in continental dynamics. Intriguingly, there are several active cases where the two seemingly antithetical tectonic settings abut each other. In most instances, rifting is not accompanied by widespread destruction of adjacent cratons. In the case of the East African rift system (EARS), the most prominent active rift system in the world, its western branch clearly circumvents the Tanzania craton and continues southward along the narrow Malawi rift. Meanwhile, a broad zone of scattered seismicity associated with normal faulting extends westward for about 1,000 km, as accentuated by the recent earthquake of Mw 6.8 in Botswana. Along the eastern branch of the EARS, the well-defined Kenya rift terminates against the Tanzania craton as a diffuse zone of extension (the northern Tanzania divergence.) Yet, farther southward, a band of concentrated seismicity follows the trace of the Davie ridge off the east coast of Africa for another 1,300 km. Similarly, the Ordos plateau (the western portion of the north China craton, NCC), comparable in size to the Tanzania craton, is straddled by the active Yinchuan and Shanxi rifts on its western and eastern flanks, respectively. Along the edges of the Colorado plateau, the very broad Basin and Range province of extension and the narrow Rio Grande rift surround the stable plateau. Therefore, it seems that rifting is not an effective process to destabilize cratons en masse. Widespread, low-angle detachment faulting and the intrusion of Mesozoic granitic plutons characterize the eastern portion of the NCC, an often-cited example of a craton's demise. Here we propose that these features are the consequence, not the cause of the destruction of the NCC. The exact cause(s) of this destruction process remain enigmatic, as the spatial extent of this event apparently reaches as far north as Lake Baikal.

  13. Geochemistry of Archean Mafic Amphibolites from the Amsaga Area, West African Craton, Mauritania: Occurrence of Archean oceanic plateau

    NASA Astrophysics Data System (ADS)

    El Atrassi, Fatima; Debaille, Vinciane; Mattielli, Nadine; Berger, Julien

    2015-04-01

    While Archean terrains are mainly composed of a TTG (Tonalite-trondhjemite-granodiorite) suite, more mafic lithologies such as amphibolites are also a typical component of those ancient terrains. Although mafic rocks represent only ~10% of the Archean cratons, they may provide key evidence of the role and nature of basaltic magmatism in the formation of the Archean crust as well as the evolution of the Archean mantle. This study focuses on the Archean crust from the West African craton in Mauritania (Amsaga area). The Amsaga Archean crust mainly consists of TTG and thrust-imbricated slices of mafic volcanic rocks, which have been affected by polymetamorphic events from the amphibolite to granulite facies. We report the results of a combined petrologic, Sm-Nd isotopic, major element and rare earth element (REE) study of the Archean amphibolites in the West African craton. This study was conducted in order to characterize these rocks, to constrain the time of their formation and to evaluate their tectonic setting and their possible mantle source. Our petrological observations show that these amphibolites have fine to medium granoblastic and nematoblastic textures. They are dominated by amphibolite-facies mineral assemblages (mainly amphibole and plagioclase), but garnet and clinopyroxene occur in a few samples. These amphibolites have tholeiitic basalt composition. On a primitive mantle-normalized diagram, they display fairly flat patterns without negative anomalies for either Eu or Nb-Ta. We have shown using Sm-Nd whole rock isotopic data that these amphibolites formed at 3.3 ±0.075 Ga. They have positive ɛNdi values (+5.2 ± 1.6). These samples show isotopically juvenile features, which rule out the possibility of significant contamination of the protolith magmas by ancient continental crust. Based on these geochemical data we propose that the tholeiitic basalts were formed in an oceanic plateau tectonic setting from a mantle plume source and that they have a

  14. Late Pan-African and early Mesozoic brittle compressions in East and Central Africa: lithospheric deformation within the Congo-Tanzania Cratonic area

    NASA Astrophysics Data System (ADS)

    Delvaux, D.; Kipata, M. L.; Macheyeki, A. S.

    2012-04-01

    Tectonic reconstructions leading to the formation of the Central-African part of Gondwana have so far not much taken into account constraints provided by the evolution of brittle structures and related stress field. This is largely because little is known on continental brittle deformation in Equatorial Africa before the onset of the Mesozoic Central-African and Late Cenozoic East-African rifts. We present a synthesis of fault-kinematic data and paleostress inversion results from field surveys covering parts of Tanzania, Zambia and the Democratic Republic of Congo. It is based on investigations along the eastern margin of the Tanzanian craton, in the Ubendian belt between the Tanzanian craton and Bangweulu block, in the Lufilian Arc between the Kalahari and Congo cratons and along the Congo intracratonic basin. Paleostress tensors were computed for a substantial database by interactive stress tensor inversion and data subset separation, and the relative succession of major brittle events established. Two of them appear to be of regional importance and could be traced from one region to the other. The oldest one is the first brittle event recorded after the paroxysm of the Terminal Pan-African event that led to the amalgamation Gondwana at the Precambrian-Cambrian transition. It is related to compressional deformation with horizontal stress trajectories fluctuating from an E-W compression in Central Tanzania to NE-SW in the Ubende belt and Lufilian Arc. The second event is a transpressional inversion with a consistent NW-SE compression that we relate to the far-field effects of the active margin south of Gondwana during the late Triassic - early Jurassic.

  15. Assessing WAC Elements in Business Syllabi

    ERIC Educational Resources Information Center

    Nicolas, Maureen O’Day; Annous, Samer

    2013-01-01

    This study investigates syllabi for evidence of the principles of writing across the curriculum (WAC) in courses offered by the Faculty of Business (FOB) at a university operating in a non–English-speaking country. The research analyzed all syllabi of FOB courses offered in the spring 2010 semester for evidence of WAC looking for indications of…

  16. Reliving the History of WAC--Every Day.

    ERIC Educational Resources Information Center

    Thaiss, Chris

    1997-01-01

    In 1978, when writing across the curriculum (WAC) workshops began at George Mason University, some things were very different from today: (1) an outside speaker who had worked with educators in England testified to the fact that WAC was not just a "whim"; (2) session presentations were made by local high school English teachers who had…

  17. WAC: Closing Doors or Opening Doors for Second Language Writers?

    ERIC Educational Resources Information Center

    Cox, Michelle

    2011-01-01

    Written by a WAC program director and second language writing studies scholar, this article raises questions about how second language writers are faring in WAC programs and the extent to which the fields of second language writing and WAC are informed by each other's scholarship. In this article, Cox draws from her review of 26 journal articles…

  18. A Writing Retreat at the Intersection of WAC and Civic Engagement

    ERIC Educational Resources Information Center

    Savini, Catherine

    2016-01-01

    Partnerships between writing across the curriculum (WAC) and civic engagement (CE) programs are not given much attention but these partnerships improve each program significantly. CE programs can borrow models from WAC for professional development and obtain support for specific kinds of writing assignments; WAC programs can find among CE…

  19. U-Pb dating and isotopic signature of the alkaline ring complexes of Bou Naga (Mauritania): its bearing on late proterozoic plate tectonics around the West African craton

    NASA Astrophysics Data System (ADS)

    Blanc, A.; Bernard-Griffiths, J.; Caby, R.; Caruba, C.; Caruba, R.; Dars, R.; Fourcade, S.; Peucat, J. J.

    1992-04-01

    In the West African fold belt of Mauritania, high-grade metamorphic series, similar to those of Amsaga (Reguibat shield-West African Craton), are exposed in a window. At Bou Naga-Mauritania (19° N, 13° 15' W) in the South of this window, an alkaline ring complex has intruded the metamorphic country rocks. This complex consists of two geological formations: the Eastern formation is mainly composed of red rhyolite sills, whereas the Western formation is made up of several kinds of alkaline rocks both saturated and under-saturated which cross cut the earlier saturated units. Three U-Pb zircon age measurements have been made on the alkaline complex, and one on an orthogneiss from the metamorphic country rocks. The syenite and the alkaline granite of the Western block are 676 ± 8 and 687 ± 5 Ma old. The orthogneiss is Archaean with an age of 2709 ± 136 Ma, but the lower intercept of discordia on concordia, shows an age of 756 ± 25 Ma linked with the genesis of the alkaline complex. A major crustal contribution is recorded by Nd and O isotopes in the SiO 2-saturated rocks. These results provide evidence for the correlation of the metamorphic country rocks with the Reguibat Archaean basement and for an early Pan-African continental rifting phase in this area before the tectonometamorphic events in the Mauritanide belt. Furthermore, with regards with previous geodynamic works of the West African Craton, our results leads us to suggest a significant diachronism between late Proterozoic crustal evolution to the West and to the East of the West African Craton. This is a further evidence for modern-type plate tectonics at this time.

  20. Craton stability and continental lithosphere dynamics during plume-plate interaction

    NASA Astrophysics Data System (ADS)

    Wang, H.; Van Hunen, J.; Pearson, D.

    2013-12-01

    the craton itself. Given the considerable debate on the uplift history of southern African plateau (Nyblade and Sleep, 2003), our numerical models that encompass lithospheric heterogeneity within cratons could help to achieve a better understanding of this issue.

  1. Kimberlites of the Man craton, West Africa

    NASA Astrophysics Data System (ADS)

    Skinner, E. M. W.; Apter, D. B.; Morelli, C.; Smithson, N. K.

    2004-09-01

    The Man craton in West Africa is an Archaean craton formerly joined to the Guyana craton (South America) that was rifted apart in the Mesozoic. Kimberlites of the Man craton include three Jurassic-aged clusters in Guinea, two Jurassic-aged clusters in Sierra Leone, and in Liberia two clusters of unknown age and one Neoproterozoic cluster recently dated at ∼800 Ma. All of the kimberlites irrespective of age occur as small pipes and prolific dykes. Some of the Banankoro cluster pipes in Guinea, the Koidu pipes in Sierra Leone and small pipes in the Weasua cluster in Liberia contain hypabyssal-facies kimberlite and remnants of the so-called transitional-facies and diatreme-facies kimberlite. Most of the Man craton kimberlites are mineralogically classified as phlogopite kimberlites, although potassium contents are relatively low. They are chemically similar to mica-poor Group 1A Southern African examples. The Jurassic kimberlites are considered to represent one province of kimberlites that track from older bodies in Guinea (Droujba 153 Ma) to progressively younger kimberlites in Sierra Leone (Koidu, 146 Ma and Tongo, 140 Ma). The scarcity of diatreme-facies kimberlites relative to hypabyssal-facies kimberlites and the presence of the so-called transitional-facies indicate that the pipes have been eroded down to the interface between the root and diatreme zones. From this observation, it is concluded that extensive erosion (1-2 km) has occurred since the Jurassic. In addition to erosion, the presence of abundant early crystallizing phlogopite is considered to have had an effect on the relatively small sizes of the Man craton kimberlites.

  2. Is cratonic sedimentation consistent with available models? An example from the Upper Proterozoic of the West African craton

    NASA Astrophysics Data System (ADS)

    Bertrand-Sarfati, Janine; Moussine-Pouchkine, Alexis

    1988-08-01

    The Atar Group, part of the Upper Proterozoic sequence covering the West African craton, stable since 2000 Ma, is characterized by an alternation of extensive carbonate beds and mixed siliciclastic and carbonate facies. The carbonate beds comprise essentially columnar stromatolite biostromes and bioherms which reflect sublittoral environments. The mixed facies contain a variety of laterally discontinuous facies which imply more variable environmental conditions. The settings of the mixed facies are not always clear but they do not contain thick sequences of high-energy facies. Few obvious facies sequences are discernable; those that are present are considered to be punctuated aggradational cycles (PACs) and they always start with biostromes of columnar stromatolites with very few sediments. Composite sequences are interpreted as due to shallowing upward or increasing energy environments that may be laterally contiguous, despite the fact that the contacts are not gradational. However, much of the stratigraphic sequence cannot be subdivided into cycles and seems to consist of unrelated individual facies, bound by sharp boundaries. The basin analysis reveals that biostromes of columnar stromatolites start after an instantaneous geological event corresponding to a sea-level rise. Consequently, their appearance can be considered as a time-line. We describe, in the Atar Group and its equivalents, three sedimentation trends, all of which are interpreted to be of shallowing upward character. The Atar Group appears to have been deposited in an epeiric sea (i.e. an extremely flat ramp). There are two contrasting styles of sedimentation: (1) after the submergence of the whole area, columnar stromatolites built extensive biostromes; (2) during the stable phase, sediments are deposited in a mosaic of laterally-discontinuous facies. Tidal influence cannot be recognized in the sequence, neither can a salinity increase toward the land; both common features in published epeiric sea

  3. The African Lithosphere

    NASA Astrophysics Data System (ADS)

    Priestley, K.; Debayle, E.; McKenzie, D.; Pilidou, S.

    2007-12-01

    There have been a number of prior, large scale surface wave studies of Africa, the majority of which rely on fundamental mode observations. In this study we use a large data set of multi-mode surface waves recorded over epicentral distances most of which are shorter than 6000 km, to investigate the Sv wave speed heterogeneity of the upper mantle beneath Africa. The inclusion of the higher mode data allow us to build an upper mantle model for the African plate with a horizontal resolution of a few hundred kilometers and a vertical resolution of a few tens of kilometers extending to about 400 km depth. Our tomographic images of the upper mantle beneath Africa displays significant shear velocity features, much of which correlate with surface geology. High velocity mantle persists beneath the West African and Congo cratons to 225-250 km depth, but the high velocity root beneath Kalahari Craton extends to only about 175 km depth. Low velocity upper mantle underlies the Pan- African terranes of Africa with the exception of the Damara mobile belt separating the Congo and Kalahari Cratons. The Damara mobile belt is underlain by a thick high velocity upper mantle lid which is indistinguishable from that beneath the Congo Craton to the north and the Kalahari Craton to the south. Low velocity upper mantle underlie the Hoggar, Tebesti and Darfur volcanic areas of northern Africa, and very low velocities underlie the Afar region to at least 400 km depth. We use the relationship between shear velocity and temperature of Priestley & McKenzie (2006) to derive a model for the African thermal lithosphere. Two types of lithosphere underlie Africa. Thick lithosphere underlies most of western Africa and all of southern Africa; in the latter the extent of the thick lithosphere is significantly different from the distribution of Archean crust mapped at the surface. Thick lithosphere forms one continuous structure beneath the Congo and Kalahari Cratons. Other than the Pan-African Damara

  4. The State of WAC/WID in 2010: Methods and Results of the U.S. Survey of the International WAC/WID Mapping Project

    ERIC Educational Resources Information Center

    Thaiss, Chris; Porter, Tara

    2010-01-01

    As writing across the curriculum (WAC) has matured and diversified as a concept and as an organizational structure in U.S. higher education, there has arisen a need for accurate, up-to-date information on the presence and characteristics of WAC and writing-in-the-disciplines (WID) programs. Following on the only previous nationwide survey of…

  5. Geological evolution of the Antongil Craton, NE Madagascar

    USGS Publications Warehouse

    Schofield, D.I.; Thomas, Ronald J.; Goodenough, K.M.; De Waele, B.; Pitfield, P.E.J.; Key, R.M.; Bauer, W.; Walsh, G.J.; Lidke, D.J.; Ralison, A.V.; Rabarimanana, M.; Rafahatelo, J.-M.; Randriamananjara, T.

    2010-01-01

    interpreted as being the only manifestation of the Pan-African orogeny seen in the craton, which led to the assembly of the tectonic blocks that comprise the island. ?? 2010 NERC.

  6. A remanent and induced magnetization model of Magsat vector anomalies over the west African craton

    NASA Technical Reports Server (NTRS)

    Toft, P. B.; Haggerty, S. E.

    1986-01-01

    Scalar and vector Magsat anomalies over the west African craton are analyzed by forward and inverse models. A forward model of the Man shield is based on Liberia. Induced magnetization contrasts due to sporadic iron-formations and to regional metamorphic rocks, and a contrast in remanent magnetization within the lower crust are included. This combination reproduces the location, magnitude and adopted local zero level of anomalies in the initial Magsat maps. An inverse model of the Reguibat shield estimates the magnetization contrast of its lithosphere, and when magnetism is restricted to shallower than 75 km both shields can be represented by a susceptibility contrast of +0.02. A residual anomaly between the shields involves a relative deficiency of induced magnetization along with other causes.

  7. A remanent and induced magnetization model of Magsat vector anomalies over the west African craton

    NASA Astrophysics Data System (ADS)

    Toft, P. B.; Haggerty, S. E.

    1986-04-01

    Scalar and vector Magsat anomalies over the west African craton are analyzed by forward and inverse models. A forward model of the Man shield is based on Liberia. Induced magnetization contrasts due to sporadic iron-formations and to regional metamorphic rocks, and a contrast in remanent magnetization within the lower crust are included. This combination reproduces the location, magnitude and adopted local zero level of anomalies in the initial Magsat maps. An inverse model of the Reguibat shield estimates the magnetization contrast of its lithosphere, and when magnetism is restricted to shallower than 75 km both shields can be represented by a susceptibility contrast of +0.02. A residual anomaly between the shields involves a relative deficiency of induced magnetization along with other causes.

  8. Metasomatism and the Weakening of Cratons: A Mechanism to Rift Cratons

    NASA Astrophysics Data System (ADS)

    Wenker, Stefanie; Beaumont, Christopher

    2016-04-01

    The preservation of cratons is a demonstration of their strength and resistance to deformation. However, several cratons are rifting now (e.g. Tanzania and North China Craton) or have rifted in the past (e.g. North Atlantic Craton). To explain this paradox, we suggest that widespread metasomatism of the originally cold depleted dehydrated craton mantle lithosphere root can act as a potential weakening mechanism. This process, particularly melt metasomatism, increases root density through a melt-peridotite reaction, and reduces root viscosity by increasing the temperature and rehydrating the cratonic mantle lithosphere. Using 2D numerical models, we model silicate-melt metasomatism and rehydration of cold cratonic mantle lithosphere that is positioned beside standard Phanerozoic lithosphere. The models are designed to investigate when a craton is sufficiently weakened to undergo rifting and is no longer protected by the initially weaker adjacent standard Phanerozoic lithosphere. Melt is added to specified layers in the cratonic mantle lithosphere at a uniform volumetric rate determined by the duration of metasomatism (3 Myr, 10 Myr or 30 Myr), until a total of ~30% by volume of melt has been added. During melt addition heat and mass are properly conserved and the density and volume increase by the respective amounts required by the reaction with the peridotite. No extensional boundary conditions are applied to the models during the metasomatism process. As expected, significant refertilization leads to removal and thinning of progressively more gravitationally unstable cratonic mantle lithosphere. We show that the duration of metasomatism dictates the final temperature in the cratonic upper mantle lithosphere. Consequently, when extensional boundary conditions are applied in our rifting tests in most cases the Phanerozoic lithosphere rifts. The craton rifts only in the models with the hottest cratonic upper mantle lithosphere. Our results indicate rifting of cratons

  9. Report on Analyses of WAC Samples of Evaporator Overheads - 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OJI, LAWRENCE

    2004-08-16

    All water received into ETF requires characterization versus the defined Waste Acceptance Criteria. Currently much of the water received by ETF comes from the F and H Evaporator Overheads. Concentration, Storage and Transfer Engineering issued a modified list of species to be determined. In March of 2004, the Tank Farm submitted annual samples from 2F, 2H and 3H Evaporator Overhead streams for characterization to verify compliance with the Effluent Treatment Facility (ETF) Waste Acceptance Criteria (WAC) and to look for organic species. With the exception of high silicon in the 2H and slightly high tritium in 2F evaporator overheads, allmore » the overheads samples were found to be in compliance with the Effluent Treatment Facility WAC. The silicon concentration in the 2H-evaporator overhead, at 44 mg/L, was above the ETF WAC limit of 5 mg/L and tritium at 2.11E+05 dpm/mL in 2F overhead sample was above the ETF WAC limit of 1.2E+05 dpm/mL.« less

  10. Fragment screening for drug leads by weak affinity chromatography (WAC-MS).

    PubMed

    Ohlson, Sten; Duong-Thi, Minh-Dao

    2018-02-23

    Fragment-based drug discovery is an important tool for design of small molecule hit-to-lead compounds against various biological targets. Several approved drugs have been derived from an initial fragment screen and many such candidates are in various stages of clinical trials. Finding fragment hits, that are suitable for optimisation by medicinal chemists, is still a challenge as the binding between the small fragment and its target is weak in the range of mM to µM of K d and irrelevant non-specific interactions are abundant in this area of transient interactions. Fortunately, there are methods that can study weak interactions quite efficiently of which NMR, surface plasmon resonance (SPR) and X-ray crystallography are the most prominent. Now, a new technology based on zonal affinity chromatography, weak affinity chromatography (WAC), has been introduced which has remedied many of the problems with other technologies. By combining WAC with mass spectrometry (WAC-MS), it is a powerful tool to identify binders quantitatively in terms of affinity and kinetics either from fragment libraries or from complex mixtures of biological extracts. As WAC-MS can be multiplexed by analysing mixtures of fragments (20-100 fragments) in one sample, this approach yields high throughput, where a whole library of e.g. >2000 fragments can be analysed quantitatively within a day. WAC-MS is easy to perform, where the robustness and quality of HPLC is fully utilized. This review will highlight the rationale behind the application of WAC-MS for fragment screening in drug discovery. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Superposition de la tectonique éburnéenne et panafricaine dans les granitoïdes de la bordure nord du craton ouest africain, boutonniére de Zenaga, Anti-Atlas central, Maroc(Pan-african overprint on Eburnian granitoids at the northern boundary of the West African Craton, Zenaga Inlier, central Anti-Atlas, Morocco)

    NASA Astrophysics Data System (ADS)

    Ennih, N.; Laduron, D.; Greiling, R. O.; Errami, E.; de Wall, H.; Boutaleb, M.

    2001-05-01

    The Zenaga Inlier shows a comprehensive record of the Eburnian and Pan-African Orogenies. The Eburnian is characterised by high-temperature regional metamorphism and complex magmatism. The early (Azguemerzi) granodiorite has an isotopic mantle signature and was emplaced diapirically during the Eburnian Orogeny causing local thermal metamorphism. The foliation observed in this granitoid is a result of the interference between its primary syn-emplacement foliation and the regional foliation under amphibolite-facies conditions. The northern part of Zenaga has been intruded by the leucocratic granites of Tazenakht. These granites are cut by mylonites and phyllonites, corresponding to the Pan-African shear zones and accompanied with sub-greenschist-facies metamorphism during the Pan-African Orogeny. The deformation was the result of a regional sinistral transpressive event. This study in the northern part of the West African Craton shows the superposition of the Pan-African on the Eburnian Orogeny and the presence of a major fault in the Anti-Atlas.

  12. Destroying a Craton by Plate Subduction, Small-scale Convection, and Mantle Plume: Comparison of the Wyoming Craton and the North China Craton

    NASA Astrophysics Data System (ADS)

    Li, A.; Dave, R.

    2016-12-01

    A typical craton has a thick, strong, and neutrally buoyant lithosphere that protects it from being destructed by mantle convection. The Wyoming craton and the North China craton are two rare representatives, where the thick Archean lithosphere has been significantly thinned and partially removed as revealed in seismic tomography models. The Wyoming craton in the west-central US experienced pervasive deformation 80-55 Ma during the Laramide orogeny. It has been subsequently encroached upon by the Yellowstone hotspot since 2.0 Ma. Recent seismic models agree that the northern cratonic root in eastern Montana has been broadly removed while the thick root is still present in Wyoming. Our radial anisotropy model images a VSV>VSH anomaly associated with the deep fast anomaly in central Wyoming, indicating mantle downwelling. Continuous low velocities are observed beneath the Yellowstone hotspot and the Cheyenne belt at the craton's southern margin, suggesting mantle upwelling in the sub-lithosphere mantle. These observations evidence for small-scale mantle convection beneath the south-central Wyoming craton, which probably has been actively eroding the cratonic lithosphere. The small-scale mantle convection is probably also responsible for the observed, localized lithosphere delamination beneath the eastern North China craton. In addition, a plume-like, low-velocity feature is imaged beneath the central block of the North China craton and is suggested as the driving force for destructing the cratonic root. Like the Wyoming craton that was subducted by the Farallon plate during the Laramide orogeny, the North China craton was underlined by the ancient Pacific plate before the root destruction in Late Jurassic. In both cases, the subducted slab helped to hydrate and weaken the cratonic lithosphere above it, initiate local metasomatism and partial melting, and promote small-scale convection. The craton's interaction with a mantle plume could further strengthen the small

  13. Photometric normalization of LROC WAC images

    NASA Astrophysics Data System (ADS)

    Sato, H.; Denevi, B.; Robinson, M. S.; Hapke, B. W.; McEwen, A. S.; LROC Science Team

    2010-12-01

    The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) acquires near global coverage on a monthly basis. The WAC is a push frame sensor with a 90° field of view (FOV) in BW mode and 60° FOV in 7-color mode (320 nm to 689 nm). WAC images are acquired during each orbit in 10° latitude segments with cross track coverage of ~50 km. Before mosaicking, WAC images are radiometrically calibrated to remove instrumental artifacts and to convert at sensor radiance to I/F. Images are also photometrically normalized to common viewing and illumination angles (30° phase), a challenge due to the wide angle nature of the WAC where large differences in phase angle are observed in a single image line (±30°). During a single month the equatorial incidence angle drifts about 28° and over the course of ~1 year the lighting completes a 360° cycle. The light scattering properties of the lunar surface depend on incidence(i), emission(e), and phase(p) angles as well as soil properties such as single-scattering albedo and roughness that vary with terrain type and state of maturity [1]. We first tested a Lommel-Seeliger Correction (LSC) [cos(i)/(cos(i) + cos(e))] [2] with a phase function defined by an exponential decay plus 4th order polynomial term [3] which did not provide an adequate solution. Next we employed a LSC with an exponential 2nd order decay phase correction that was an improvement, but still exhibited unacceptable frame-to-frame residuals. In both cases we fitted the LSC I/F vs. phase angle to derive the phase corrections. To date, the best results are with a lunar-lambert function [4] with exponential 2nd order decay phase correction (LLEXP2) [(A1exp(B1p)+A2exp(B2p)+A3) * cos(i)/(cos(e) + cos(i)) + B3cos(i)]. We derived the parameters for the LLEXP2 from repeat imaging of a small region and then corrected that region with excellent results. When this correction was applied to the whole Moon the results were less than optimal - no surprise given the

  14. Quantifying denudation of the West African passive-transform margin: implications for Cenozoic erosion budget of cratons and source-to-sink systems

    NASA Astrophysics Data System (ADS)

    Grimaud, Jean-Louis; Chardon, Dominique; Rouby, Delphine; Beauvais, Anicet

    2014-05-01

    We develop an approach based on the differential elevation of dated successive topographies of the onshore part of the West African margin to calibrate in-situ volumetric denudation over a 3.9 million km2 cratonic surface for the past 45 Ma. We obtain a regionally averaged volumetric erosion rate of 5 x 10-3 km3/km2/m.y. corresponding to a total average denudation of 300 m and a denudation rate of 6 m/m.y., which remained nearly constant over the three time spans (45- 24, 24-11 and 11-0 Ma) despite spatial variations related to epeirogenic movements. Denudation is converted into a minimum yield of 12 +/- 2 t/km2/yr with a minimum solute component of 4 +/- 2 t/km2/yr accounting for the porosity of the eroded regoliths. Our results would imply a minimum contribution of 1.6 +/- 0.4 Gt/yr of the non-orogenic landmass to the global continental yield since the last peak greenhouse. Reconstruction of two incision stages of West Africa landscape from the reconstructed topographies combined with paleogeographic data shows that the current river catchments of the sub region have acquired their current configuration by the end of the Oligocene at the latest (24 Ma ago). The fairly steady geometry of the West African drainage since then offers the opportunity to effectively link the inland geomorphic record to offshore sedimentation. Volumetric denudation analysis applied to West African sub-drainage areas attests to the role of drainage reorganization and epeirogenic mouvements (flexural growth of the marginal upwarp and amplification of the Hoggar intraplate swell) on the spatial and temporal distribution of continental denudation and yield. Onshore denudation and clastic sediments accumulation in the post-24 Ma Niger catchment - delta system are within the same order of magnitude. These results suggest that cratonic-type erosion fluxes estimated from the West African margin may be used to estimate the size of drainage basins from the fossil sedimentary record.

  15. A Qualitative Approach to Integrative WAC.

    ERIC Educational Resources Information Center

    Siebert, Debbie L.

    Many educators and researchers are discussing a shift in national education from an "instruction" paradigm emphasizing measuring inputs and providing instruction to a "learning" paradigm emphasizing outputs and producing learning. The question is how can Writing Across the Curriculum (WAC) smoothly shift educational paradigms.…

  16. Notes from the Margins: WAC, WID, and the Politics of Place(ment)

    ERIC Educational Resources Information Center

    Cook, Paul G.

    2014-01-01

    This institutional autoethnography (IAE) explores the political and pedagogical dynamics of WPA and WAC/WID work within an exceedingly small, resolutely single-sex, and assuredly rural liberal arts campus ecology. Working within a theoretical framework informed by WAC/WID's historical commitment to increasing literacy in students from diverse…

  17. Opposition effect of the Moon from LROC WAC data

    NASA Astrophysics Data System (ADS)

    Velikodsky, Yu. I.; Korokhin, V. V.; Shkuratov, Yu. G.; Kaydash, V. G.; Videen, Gorden

    2016-09-01

    LROC WAC images acquired in 5 bands of the visible spectral range were used to study the opposition effect for two mare and two highland regions near the lunar equator. Opposition phase curves were extracted from the images containing the opposition by separating the phase-curve effect from the albedo pattern by comparing WAC images at different phase angles (from 0° to 30°). Akimov's photometric function and the NASA Digital Terrain Model GLD100 were used in the processing. It was found that phase-curve slopes at small phase angles directly correlate with albedo, while at larger phase angles, they are anti-correlated. We suggest a parameter to characterize the coherent-backscattering component of the lunar opposition surge, which is defined as the maximum phase angle for which the opposition-surge slope increases with growing albedo. The width of the coherent-backscattering opposition effect varies from approximately 1.2° for highlands in red light to 3.9° for maria in blue light. The parameter depends on albedo, which is in agreement with the coherent-backscattering theory. The maximum amplitude of the coherent opposition effect is estimated to be near 8%. Maps of albedo and phase-curve slope at phase angles larger than those, at which the coherent-backscattering occurs, were built for the areas under study. Absolute calibration of WAC images was compared with Earth-based observations: the WAC-determined albedo is very close to the mean lunar albedo calculated using available Earth-based observations.

  18. 3D Numerical Model of Continental Breakup via Plume Lithosphere Interaction Near Cratonic Blocks: Implications for the Tanzanian Craton

    NASA Astrophysics Data System (ADS)

    Koptev, A.; Calais, E.; Burov, E. B.; Leroy, S. D.; Gerya, T.

    2014-12-01

    Although many continental rift basins and their successfully rifted counterparts at passive continental margins are magmatic, some are not. This dichotomy prompted end-member views of the mechanism driving continental rifting, deep-seated and mantle plume-driven for some, owing to shallow lithospheric stretching for others. In that regard, the East African Rift (EAR), the 3000 km-long divergent boundary between the Nubian and Somalian plates, provides a unique setting with the juxtaposition of the eastern, magma-rich, and western, magma-poor, branches on either sides of the 250-km thick Tanzanian craton. Here we implement high-resolution rheologically realistic 3D numerical model of plume-lithosphere interactions in extensional far-field settings to explain this contrasted behaviour in a unified framework starting from simple, symmetrical initial conditions with an isolated mantle plume rising beneath a craton in an east-west tensional far field stress. The upwelling mantle plume is deflected by the cratonic keel and preferentially channelled along one of its sides. This leads to the coeval development of a magma-rich branch above the plume head and a magma-poor one along the opposite side of the craton, the formation of a rotating microplate between the two rift branches, and the feeding of melt to both branches form a single mantle source. The model bears strong similarities with the evolution of the eastern and western branches of the central EAR and the geodetically observed rotation of the Victoria microplate. This result reconciles the passive (plume-activated) versus active (far-field tectonic stresses) rift models as our experiments shows both processes in action and demonstrate the possibility of developing both magmatic and amagmatic rifts in identical geotectonic environments.

  19. De novo loss-of-function mutations in WAC cause a recognizable intellectual disability syndrome and learning deficits in Drosophila

    PubMed Central

    Lugtenberg, Dorien; Reijnders, Margot R F; Fenckova, Michaela; Bijlsma, Emilia K; Bernier, Raphael; van Bon, Bregje W M; Smeets, Eric; Vulto-van Silfhout, Anneke T; Bosch, Danielle; Eichler, Evan E; Mefford, Heather C; Carvill, Gemma L; Bongers, Ernie M H F; Schuurs-Hoeijmakers, Janneke HM; Ruivenkamp, Claudia A; Santen, Gijs W E; van den Maagdenberg, Arn M J M; Peeters-Scholte, Cacha M P C D; Kuenen, Sabine; Verstreken, Patrik; Pfundt, Rolph; Yntema, Helger G; de Vries, Petra F; Veltman, Joris A; Hoischen, Alexander; Gilissen, Christian; de Vries, Bert B A; Schenck, Annette; Kleefstra, Tjitske; Vissers, Lisenka E L M

    2016-01-01

    Recently WAC was reported as a candidate gene for intellectual disability (ID) based on the identification of a de novo mutation in an individual with severe ID. WAC regulates transcription-coupled histone H2B ubiquitination and has previously been implicated in the 10p12p11 contiguous gene deletion syndrome. In this study, we report on 10 individuals with de novo WAC mutations which we identified through routine (diagnostic) exome sequencing and targeted resequencing of WAC in 2326 individuals with unexplained ID. All but one mutation was expected to lead to a loss-of-function of WAC. Clinical evaluation of all individuals revealed phenotypic overlap for mild ID, hypotonia, behavioral problems and distinctive facial dysmorphisms, including a square-shaped face, deep set eyes, long palpebral fissures, and a broad mouth and chin. These clinical features were also previously reported in individuals with 10p12p11 microdeletion syndrome. To investigate the role of WAC in ID, we studied the importance of the Drosophila WAC orthologue (CG8949) in habituation, a non-associative learning paradigm. Neuronal knockdown of Drosophila CG8949 resulted in impaired learning, suggesting that WAC is required in neurons for normal cognitive performance. In conclusion, we defined a clinically recognizable ID syndrome, caused by de novo loss-of-function mutations in WAC. Independent functional evidence in Drosophila further supported the role of WAC in ID. On the basis of our data WAC can be added to the list of ID genes with a role in transcription regulation through histone modification. PMID:26757981

  20. De novo loss-of-function mutations in WAC cause a recognizable intellectual disability syndrome and learning deficits in Drosophila.

    PubMed

    Lugtenberg, Dorien; Reijnders, Margot R F; Fenckova, Michaela; Bijlsma, Emilia K; Bernier, Raphael; van Bon, Bregje W M; Smeets, Eric; Vulto-van Silfhout, Anneke T; Bosch, Danielle; Eichler, Evan E; Mefford, Heather C; Carvill, Gemma L; Bongers, Ernie M H F; Schuurs-Hoeijmakers, Janneke Hm; Ruivenkamp, Claudia A; Santen, Gijs W E; van den Maagdenberg, Arn M J M; Peeters-Scholte, Cacha M P C D; Kuenen, Sabine; Verstreken, Patrik; Pfundt, Rolph; Yntema, Helger G; de Vries, Petra F; Veltman, Joris A; Hoischen, Alexander; Gilissen, Christian; de Vries, Bert B A; Schenck, Annette; Kleefstra, Tjitske; Vissers, Lisenka E L M

    2016-08-01

    Recently WAC was reported as a candidate gene for intellectual disability (ID) based on the identification of a de novo mutation in an individual with severe ID. WAC regulates transcription-coupled histone H2B ubiquitination and has previously been implicated in the 10p12p11 contiguous gene deletion syndrome. In this study, we report on 10 individuals with de novo WAC mutations which we identified through routine (diagnostic) exome sequencing and targeted resequencing of WAC in 2326 individuals with unexplained ID. All but one mutation was expected to lead to a loss-of-function of WAC. Clinical evaluation of all individuals revealed phenotypic overlap for mild ID, hypotonia, behavioral problems and distinctive facial dysmorphisms, including a square-shaped face, deep set eyes, long palpebral fissures, and a broad mouth and chin. These clinical features were also previously reported in individuals with 10p12p11 microdeletion syndrome. To investigate the role of WAC in ID, we studied the importance of the Drosophila WAC orthologue (CG8949) in habituation, a non-associative learning paradigm. Neuronal knockdown of Drosophila CG8949 resulted in impaired learning, suggesting that WAC is required in neurons for normal cognitive performance. In conclusion, we defined a clinically recognizable ID syndrome, caused by de novo loss-of-function mutations in WAC. Independent functional evidence in Drosophila further supported the role of WAC in ID. On the basis of our data WAC can be added to the list of ID genes with a role in transcription regulation through histone modification.

  1. Is Nubia plate rigid? A geodetic study of the relative motion of different cratonic areas within Africa.

    NASA Astrophysics Data System (ADS)

    Njoroge, M. W.; Malservisi, R.; Hugentobler, U.; Mokhtari, M.; Voytenko, D.

    2014-12-01

    Plate rigidity is one of the main paradigms of plate tectonics and a fundamental assumption in the definition of a global reference frame as ITRF. Although still far for optimal, the increased GPS instrumentation of the African region can allow us to understand how rigid one of the major plate can be. The presence of diffused band of seismicity, the Cameroon volcanic line, Pan African Kalahari orogenic belt and East Africa Rift suggest the possibility of relative motion among the different regions within the Nubia. The study focuses on the rigidity of Nubia plate. We divide the plate into three regions: Western (West Africa craton plus Nigeria), Central (approximately the region of the Congo craton) and Southern (Kalahari craton plus South Africa) and we utilize Euler Vector formulation to study internal rigidity and eventual relative motion. Developing five different reference frames with different combinations of the 3 regions, we try to understand the presence of the relative motion between the 3 cratons thus the stability of the Nubia plate as a whole. All available GPS stations from the regions are used separately or combined in creation of the reference frames. We utilize continuous stations with at least 2.5 years of data between 1994 and 2014. Given the small relative velocity, it is important to eliminate eventual biases in the analysis and to have a good estimation in the uncertainties of the observed velocities. For this reason we perform our analysis using both Bernese and Gipsy-oasis codes to generate time series for each station. Velocities and relative uncertainties are analyzed using the Allan variance of rate technique, taking in account for colored noise. An analysis of the color of the noise as function of latitude and climatic region is also performed to each time series. Preliminary results indicate a slight counter clockwise motion of West Africa craton with respect to South Africa Kalahari, and South Africa Kalahari-Congo Cratons. In addition

  2. Improving Success, Increasing Access: Bringing HIPs to Open Enrollment Institutions through WAC/WID

    ERIC Educational Resources Information Center

    Kester, Jessica; Block, Rebecca; Karda, Margaret Reinfeld; Orndoff, Harold, III

    2016-01-01

    Today, and historically, the presence of WAC/WID programs in the community college setting remains anemic when compared to Ph.D.-granting institutions. This fact is particularly troubling considering the AAC&U's research on high-impact practices and its correlation with WAC/WID theory and practice. This article empirically investigates the…

  3. Widespread refertilization of cratonic and circum-cratonic lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Tang, Yan-Jie; Zhang, Hong-Fu; Ying, Ji-Feng; Su, Ben-Xun

    2013-03-01

    Studies of mantle xenoliths have confirmed that Archean subcontinental lithospheric mantle (SCLM) is highly depleted in basaltic components (such as Al, Ca and Na) due to high-degree extraction of mafic and ultramafic melts and thus is refractory and buoyant, which made it chronically stable as tectonically independent units. However, increasing studies show that ancient SCLM can be refertilized by episodic rejuvenation events like infiltration of upwelling fertile material. The North China Craton is one of the most typical cases for relatively complete destruction of its Archean keel since the eruption of Paleozoic kimberlites, as is evidenced by a dramatic change in the compositions of mantle xenoliths sampled by Paleozoic to Cenozoic magmas, reflecting significant lithospheric thinning and the change in the character of the SCLM. The compositional change has been interpreted as the result of refertilization of Archean SCLM via multiple-stage peridotite-melt reactions, suggested by linear correlations between MgO and indices of fertility, covariations of Al2O3 with CaO, La/Yb, 87Sr/86Sr, 143Nd/144Nd, 187Os/188Os and Re-depletion ages (TRD), high Re abundances, scatter in Re-Os isotopic plot, variable in situ TRD ages of sulfides, and correlation between TRD ages and olivine Fo of peridotite xenoliths in Paleozoic kimberlites and Cenozoic basalts on the craton. By integrating major and trace element, Sr, Nd and Os isotopic compositions of peridotite xenoliths and orogenic massif peridotites from the continents of Europe, Asia, America, Africa and Australia, together with previous studies of petrology and geochemistry of global peridotites, we suggest that (1) refertilization of cratonic and circum-cratonic lithospheric mantle is widespread; (2) Archean SCLM worldwide has experienced a multi-stage history of melt depletion and refertilization since segregation from the convecting mantle; (3) cratonic SCLM may be more susceptible to compositional change caused by

  4. Petrochemical and petrophysical characterization of the lower crust and the Moho beneath the West African Craton, based on Xenoliths from Kimberlites

    NASA Technical Reports Server (NTRS)

    Haggerty, Stephen E.; Toft, Paul B.

    1988-01-01

    Additional evidence to the composition of the lower crust and uppermost mantle was presented in the form of xenolith data. Xenoliths from the 2.7-Ga West African Craton indicate that the Moho beneath this shield is a chemically and physically gradational boundary, with intercalations of garnet granulite and garnet eclogite. Inclusions in diamonds indicate a depleted upper mantle source, and zenolith barometry and thermometry data suggest a high mantle geotherm with a kink near the Moho. Metallic iron in the xenoliths indicates that the uppermost mantle has a significant magnetization, and that the depth to the Curie isotherm, which is usually considered to be at or above the Moho, may be deeper than the Moho.

  5. Craton destruction by subduction, collision or plume impingement? Comparisons of some representative cratons in the world

    NASA Astrophysics Data System (ADS)

    Wang, Zhensheng; Kusky, Timothy; Li, Xiaoyong; Wang, Xu; Fu, Jianmin; Yuan, Yuefeng; Zhu, Peimin

    2015-04-01

    The fact that cratonic lithosphere can be destructed has been demonstrated by numerous studies. However, the driving force of craton destruction and its mechanism are still unclear1,2. Subduction, collision and mantle plumes, the most important driving forces for most geological events, may also be responsible for craton destruction. However, their relationship in the destruction process including which of them is the major driving force and how they interact with each other is not understood sufficiently1,2. In this article, the North China Craton, North Atlantic Craton, Tanzania Craton, Wyoming Craton, Kaapvaal Craton, Yangtze Craton, Yilgarn Craton and Superior Craton are used as examples to study their difference and similarities during subduction, collision, or mantle plume impingement. The work is mainly based on comparison of their tectonic history, geophysical data, as well as xenolith chronology. It is suggested that large-scale craton destruction can be influenced by the interaction of subduction, collision and mantle plumes, acting to different degrees in different examples. Mantle plume related thermal action enhances the chemical stratification or layering of subcontinental lithospheric mantle (SCLM), which can form a weak-coupling mid lithosphere discontinuity (MLD) 3,4,5 and a lower denser SCLM below the MLD. Convergence (subduction and collision), especially when associated with slab rollback 6, leads to the regional thinning of the cratonic margin, which is subsequently linked by extension (mantle plume or slab rollback) related discontinuities. Continuous extension-related discontinuities extend upward to the MLD depth and cut off the shearing resistance from adjacent blocks. Next, the lower part of the chemically stratified SCLM in the cratonic interior is decoupled along the weakly coupled MLD and founders into the deep asthenosphere 7. Then the destruction of the rest of the lithosphere can be affected by upwelling related decompression melting

  6. Craton destruction and related resources

    NASA Astrophysics Data System (ADS)

    Zhu, Rixiang; Zhang, Hongfu; Zhu, Guang; Meng, Qingren; Fan, Hongrui; Yang, Jinhui; Wu, Fuyuan; Zhang, Zhiyong; Zheng, Tianyu

    2017-10-01

    Craton destruction is a dynamic event that plays an important role in Earth's evolution. Based on comprehensive observations of many studies on the North China Craton (NCC) and correlations with the evolution histories of other cratons around the world, craton destruction has be defined as a geological process that results in the total loss of craton stability due to changes in the physical and chemical properties of the involved craton. The mechanisms responsible for craton destruction would be as the follows: (1) oceanic plate subduction; (2) rollback and retreat of a subducting oceanic plate; (3) stagnation and dehydration of a subducting plate in the mantle transition zone; (4) melting of the mantle above the mantle transition zone caused by dehydration of a stagnant slab; (5) non-steady flow in the upper mantle induced by melting, and/or (6) changes in the nature of the lithospheric mantle and consequent craton destruction caused by non-steady flow. Oceanic plate subduction itself does not result in craton destruction. For the NCC, it is documented that westward subduction of the paleo-Pacific plate should have initiated at the transition from the Middle-to-Late Jurassic, and resulted in the change of tectonic regime of eastern China. We propose that subduction, rollback and retreat of oceanic plates and dehydration of stagnant slabs are the main dynamic factors responsible for both craton destruction and concentration of mineral deposits, such as gold, in the overriding continental plate. Based on global distribution of gold deposits, we suggest that convergent plate margins are the most important setting for large gold concentrations. Therefore, decratonic gold deposits appear to occur preferentially in regions with oceanic subduction and overlying continental lithospheric destruction/modification/growth.

  7. LROC WAC Ultraviolet Reflectance of the Moon

    NASA Astrophysics Data System (ADS)

    Robinson, M. S.; Denevi, B. W.; Sato, H.; Hapke, B. W.; Hawke, B. R.

    2011-10-01

    (LROC) Wide Angle Camera (WAC) provides the first global lunar ultraviolet through visible (321 nm to 689 nm) multispectral observations [12]. The WAC is a sevencolor push-frame imager with nominal resolutions of 400 m (321, 360 nm) and 100 m (415, 566, 604, 643, 689 nm). Due to its wide field-of-view (60° in color mode) the phase angle within a single line varies ±30°, thus requiring the derivation of a precise photometric characterization [13] before any interpretations of lunar reflectance properties can be made. The current WAC photometric correction relies on multiple WAC observations of the same area over a broad range of phase angles and typically results in relative corrections good to a few percent [13].

  8. WAC Revisited: You Get What You Pay for

    ERIC Educational Resources Information Center

    Perelman, Les

    2011-01-01

    In 1982, the author wrote an essay for the second issue of "The Writing Instructor," "Approaches to Comprehensive Writing: Integrating Writing into the College Curriculum," reviewing the early stages of the modern Writing Across the Curriculum (WAC)/Writing in the Disciplines (WID) movement. In this article, the author revisits…

  9. How to make a craton

    NASA Astrophysics Data System (ADS)

    Lee, C.; Chin, E. J.; Erdman, M.; Gaschnig, R. M.; Lederer, G. W.; Savage, P. S.; Zhong, S.; Zincone, S.

    2013-12-01

    Most Archean cratons are underlain by long-lived 200-300 km thick thermal boundary layers, significantly thicker than oceanic boundary layers, which eventually subduct. The longevity of cratons is perplexing because cold thermal boundary layers should be gravitationally unstable or should thermally erode with time. However, it is agreed that thermal contraction of the cratonic root is compensated by intrinsic compositional buoyancy due to extreme melt depletion. This melt depletion is also thought to have dehydrated the peridotitic residue, strengthening the cratonic mantle, making it resistant to thermo-mechanical erosion. Exactly how cratonic mantle arrives at this chemically buoyant and dehydrated state is unknown. Possible scenarios include formation by melting within a large plume head, accretion of oceanic lithosphere, and accretion of sub-arc mantle. The high degrees of melting would seem to imply formation in hot plume heads, but low Al and heavy rare earth element contents suggest formation in the spinel stability field, implying formation at shallower depths than their current equilibration pressures. We present a new thermobarometer designed to estimate the average melting pressures and temperatures of residual peridotites using whole rock major element compositions. We find that the average melting pressures and temperatures of cratonic peridotites range between 3-4 GPa and 1600 °C. If cratonic peridotites melted via adiabatic decompression, these average pressures represent maximum bounds on the final pressures of melt extraction. Currently, cratonic peridotites derive from 4-7 GPa, implying that the building blocks of peridotites experienced an increase of 1-3 GPa, equivalent to 30-90 km of overburden. Our results thus imply that cratonic mantle most likely formed by tectonic thickening of oceanic or arc lithospheres. But because both arc and oceanic lithospheres might be expected to be wet due to hydrous flux melting and serpentinization

  10. WAC: A Point of Departure to Full Literacy.

    ERIC Educational Resources Information Center

    Flanigan, Michael C.

    The problem with various versions of Writing across the Curriculum (WAC) that have emerged since the turn of the century is that they are not self sustaining--they seemed unable to overcome the destructive forces of departmentalization and the entrenched attitudes in the university both toward writing and toward interdepartmental programs. If WAC…

  11. Geochemistry of Archean Mafic Amphibolites from the Amsaga Area, West African Craton, Mauritania: What Is the Message?

    NASA Astrophysics Data System (ADS)

    El Atrassi, F.; Debaille, V.; Mattielli, N. D. C.; Berger, J.

    2014-12-01

    While Archean terrains are mainly composed of a TTG (Tonalite-trondhjemite-granodiorite) suite, more mafic lithologies such as amphibolites are also a typical component of those ancient terrains. Although mafic rocks represent only ~10% of the Archean cratons, they may provide key evidence of the role and nature of basaltic magmatism in the formation of the Archean crust as well as the evolution of the Archean mantle. This study focuses on the Archean crust from the West African Craton in Mauritania (Amsaga area). The Amsaga Archean Crust mainly consists of TTG and thrust-imbricated slices of mafic volcanic rocks, which have been affected by polymetamorphic events from the amphibolite to granulite facies. Our main objectives aim to the identification of the mafic lithology origin and a better understanding of their role in the continental crust emplacement. Our petrological observations show that these amphibolites have fine to medium granoblastic and nematoblastic textures. The amphibolites are dominated by amphibolite-facies mineral assemblages (mainly amphibole and plagioclase), but garnet and clinopyroxene occur in a few samples. Two groups are distinct in their geochemical characteristics (major and trace elements), although both have tholeiitic basalt composition. The first group show LREE-enriched patterns and negative Nb-Ta anomalies. The second group is characterized by near-flat LREE patterns and flat HREE patterns. This second group clearly shows no Nb-Ta anomalies. The first group could be related to arc-like basalts, as it is many similarities with some Archean amphibolites probably formed in a supra-subduction zone, for instance the volcanic rocks from the southern edge of the Isua Supracrustal Belt. On the contrary, the second group has a MORB-like signature which is more unusual during the Archean. Different scenarios will be discussed regards to the Archean geodynamics.

  12. Rifting an Archaean Craton: Insights from Seismic Anisotropy Patterns in E. Africa

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Tiberi, C.; Currie, C. A.; van Wijk, J.; Albaric, J.

    2016-12-01

    Few places worldwide offer opportunities to study active deformation of deeply-keeled cratonic lithosphere. The magma-rich Eastern rift transects the eastern edge of the Archaean Tanzania craton in northeastern Tanzania, which has been affected by a large-scale mantle upwelling. Abundant xenolith locales offer constraints on mantle age, composition, and physical properties. Our aim is to evaluate models for magmatic fluid-alteration (metasomatism) and deformation of mantle lithosphere along the edge of cratons by considering spatial variations in the direction and magnitude of seismic anisotropy, which is strongly influenced by mantle flow patterns along lithosphere-asthenosphere topography, fluid-filled cracks (e.g., dikes), and pre-existing mantle lithosphere strain fabrics. Waveforms of teleseismic earthquakes (SKS, SKKS) recorded on the 39-station CRAFTI-CoLiBREA broadband array in southern Kenya and northern Tanzania are used to determine the azimuth and amount of shear-wave splitting accrued as seismic waves pass through the uppermost mantle and lithosphere at the craton edge. Lower crustal earthquakes enable evaluation of seismic anisotropy throughout the crust along the rift flanks and beneath the heavily intruded Magadi and Natron basins, and the weakly intruded Manyara basin. Our results and those of earlier studies show a consistent N50E splitting direction within the craton, with delay times of ca. 1.5 s, and similar direction east of the rift in thinner Pan-African lithosphere. Stations within the rift zone are rotated to a N15-35E splitting, with the largest delay times of 2.5 s at the margin of the heavily intruded Magadi basin. The short length scale of variations and rift-parallel splitting directions are similar to patterns in the Main Ethiopian rift attributed to melt-filled cracks or oriented pockets rising from the base of the lithosphere. The widespread evidence for mantle metasomatism and magma intrusion to mid-crustal levels suggests that

  13. Lithospheric magnetic field modelling of the African continent

    NASA Astrophysics Data System (ADS)

    Hemant, K.; Maus, S.

    2003-04-01

    New magnetic satellite missions in low-earth orbit are providing increasingly accurate maps of the lithospheric magnetic field. These maps can be used to infer the geological structure of regions hidden by Phanerozoic cover, taking into account our knowledge of crustal structure from surface geology and seismic methods. A GIS based modelling technique has been developed to model the various geological units of the continents using the UNESCO geological map of the world, supported by background geological information from various sources. Geological units of each region are assigned a susceptibility value based on laboratory values of the constituent rock types. Then, using the 3SMAC seismic crustal structure, a vertically integrated susceptibility (VIS) model is computed at each point of the region. Starting with this VIS model, the total field anomaly is computed at an altitude of 400 km and compared with the MF2 lithospheric magnetic field model derived from CHAMP data. The modelling results of the Precambrian units of the West African cratons agree well with MF2. The anomaly in the Central African cratonic region also correlates well, although part of it is unaccounted for as yet. Furthermore, the anomalies over the Tanzanian craton and surrounding region agree very well. Most of the regions around the South African cratons are hidden by Phanerozoic cover, yet the results above the Kaapvaal craton and the southern Zimbabwe craton around the Limpopo belt show good correspondence with the observed anomaly map. The results also suggest a probable extension of the Precambrian units below the sediments of younger age. In general, the lower crust is likely to be more mafic than presumed in our current understanding of Central Africa. Deviations in the magnitude of the anomalies in some regions are likely to be due to incomplete seismic information in those regions. Thus, the thickness of crustal layers derived from magnetic anomalies for these locations may help to

  14. Change Agent Research for Windsor Aquatic Club (CAR/WAC).

    ERIC Educational Resources Information Center

    Moriarty, Dick; Olafson, Gord

    This study of the Windsor Aquatic Club (WAC) was undertaken to investigate the following problems and questions: (a) identification of goals; (b) conflict in the interface of age class and school class swimming, as well as the interface of municipal, regional, provincial, federal, and international organizations; (c) identification of task,…

  15. Shear wave velocity and radial anisotropy beneath the Wyoming craton: craton destruction and lithospheric layering

    NASA Astrophysics Data System (ADS)

    Dave, R.; Li, A.

    2016-12-01

    The Wyoming craton has evolved under an intriguing geological history with suture zones, accreted margins, flat-slab subduction, orogeny and an encroaching hotspot. Whether and how the cratonic root has been widely destroyed by the series of tectonic events remain controversial. Aiming to address these questions using a craton-wide model, we have analyzed Rayleigh and Love wave data from 75 earthquakes recorded by 103 USArray TA stations in the Wyoming craton. 2-D phase velocity maps are constructed for 18 periods from 20 s to 166 s using the two-plane-wave tomography. The Yellowstone hotspot and the Cheyenne belt are characterized by low velocity anomalies at all periods in both Rayleigh and Love wave models. The northern craton in Montana is broadly fast at periods < 70 s and is relatively slow at longer periods, suggesting a shallower lithosphere. The fast anomaly in Wyoming has a NE-SW trend and extends to more than 200 km in the VSV model. However, such a fast anomaly is largely absent in the Love wave images at long periods. The association of VSV>VSH with this deep fast anomaly indicates mantle downwelling beneath south-central Wyoming. Mantle upwelling likely happens in slow regions at the hotspot, the Cheyenne belt, and the northeastern craton. The overall pattern of velocity anomaly and radial anisotropy suggests that small-scale mantle convection is vigorously acting beneath the Wyoming craton and continuously destructing the cratonic lithosphere. In addition, the average VSV and VSH models show a strong positive radial anisotropy of 5% (VSH>VSV) above 100 km and a weak negative anisotropy (VSV>VSH) below 120 km. Such a significant change in radial anisotropy could contribute to the observed mid-lithosphere discontinuity (MLD) from receiver functions. Both VSV and VSH reveal a fast lid above 100 km and a large velocity reduction at the depths of 115-190 km, corresponding with a lithosphere-asthenosphere boundary (LAB) at 150 km. These observations

  16. Origin of cratonic lithospheric mantle roots: A geochemical study of peridotites from the North Atlantic Craton, West Greenland

    NASA Astrophysics Data System (ADS)

    Wittig, N.; Pearson, D. G.; Webb, M.; Ottley, C. J.; Irvine, G. J.; Kopylova, M.; Jensen, S. M.; Nowell, G. M.

    2008-09-01

    A critical examination of the extent to which geodynamic information on the initial mantle depletion and accretion event(s) is preserved in kimberlite-borne cratonic SCLM peridotite xenoliths is attempted by using new major and trace element data of whole-rock peridotites ( n = 55) sampled across the North Atlantic Craton (NAC; West Greenland). We also present additional whole-rock trace element data of mantle xenoliths from Somerset Island, the Slave and Kaapvaal cratons for comparison. Peridotites comprising the West Greenland SCLM are distinctly more olivine-rich and orthopyroxene-poor than most other cratonic peridotites, in particular those from the Kaapvaal craton. The West Greenland peridotites have higher Mg/Si but lower Al/Si, Al 2O 3 and CaO than cratonic mantle from the Kaapvaal Craton. We suggest that the more orthopyroxene depleted, harzburgite to dunite character of the NAC peridotites reflects more of the original melting history than peridotites from other cratons and in that sense may be more typical of cratonic lithosphere compositions prior to extensive modification. Despite this, some modal and cryptic metasomatism has clearly taken place in the West Greenland lithosphere. The insensitivity of major elements to pressure of melting at high degrees of melt extraction combined with the ease with which these elements may be changed by modal metasomatism mean that we cannot confidently constrain the depth of melting of peridotites using this approach. Mildly incompatible trace elements offer much more promise in terms of providing geodynamic information about the original Archean melting regime. The very low, systematically varying heavy REE abundances in NAC whole-rock peridotites and in peridotites from all other cratons where high-quality data are available provide ubiquitous evidence for a shallow melting regime in the absence of, or to the exhaustion of garnet. This finding explicitly excludes large extents of deep (iso- and polybaric) melting

  17. Origin and evolution of the Amazonian craton

    NASA Technical Reports Server (NTRS)

    Gibbs, A. K.; Wirth, K. R.

    1986-01-01

    The Amazonian craton appears to be formed and modifed by processes much like those of the better-known Precambrian cratons, but the major events did not always follow conventional sequences nor did they occur synchronously with those of other cratons. Much of the craton's Archean style continental crust formation, recorded in granite-greenstone and high-grade terranes, occurred in the Early Proterozoic: a period of relative quiescence in many other Precambrian regions. The common Archean to Proterozoic transition in geological style did not occur here, but an analogous change from abundant marine volcanism to dominantly continental sedimentary and eruptive styles occurred later. Amazonian geology is summarized, explaining the evolution of the craton.

  18. Asymmetry and polarity of the South Atlantic conjugated margins related to the presence of cratons: a numerical study

    NASA Astrophysics Data System (ADS)

    Andrés-Martínez, Miguel; Pérez-Gussinyé, Marta; de Monserrat Navarro, Albert; Morgan, Jason P.

    2015-04-01

    Tectonic asymmetry of conjugated passive margins, where one margin is much narrower than the conjugate one, is commonly observed at many passive margins world-wide. Conjugate margin asymmetry has been suggested to be a consequence of lateral changes in rheology, composition, temperature gradient or geometries of the crust and lithosphere. Here we use the South Atlantic margins (from Camamu/Gabon to North Santos/South Kwanza) as a natural laboratory to understand conjugate margin asymmetry. Along this margin sector the polarity of the asymmetry changes. To the North, the Brazilian margin developed in the strong Sao Francisco craton, and this constitutes the narrow side of the conjugate pair. To the South, the Brazilian margin developed in the Ribeira fold belt, and the margin is wide. The opposite is true for the African side. We have thus numerically analysed how the relative distance between the initial location of extension and the craton influences the symmetry/asymmetry and polarity of the conjugate margin system. Our numerical model is 2D visco-elasto-plastic and has a free surface, strain weakening and shear heating. The initial set-up includes a cratonic domain, a mobile belt and a transition area between both. We have run tests with different rheologies, thickness of the lithosphere, and weak seeds at different distances from the craton. Results show asymmetric conjugated margins, where the narrower margin is generally the closest to the craton. Our models also allow us to study how the polarity is controlled by the distance between the initial weakness and the craton, and help to understand how the presence of cratonic domains affects the final architecture of the conjugated margins.

  19. Implementation of Writing Across the Curriculum (WAC) learning approaches in social work and sociology gerontology courses.

    PubMed

    Kolb, Patricia

    2013-01-01

    This article describes the goals and methods of the international Writing Across the Curriculum (WAC) movement in higher education, and WAC-enriched learning approaches that the author used in teaching a social work gerontology practice course and a sociological theories of aging course. The author's in-class, low-stakes, nongraded writing assignments facilitated students' development of knowledge about gerontological practice and sociological theories, as well as analytical thinking. The assignments are influenced by WAC's perspective that when students write their reactions to information, their understanding and retention of information improves; that writing can facilitate the application of new content to students' own lives and interests; and that increased frequency of writing increases writing comfort and maintenance and can result in the improvement of writing skills. The students' reactions to the assignments have been very positive.

  20. The basement of the Punta del Este Terrane (Uruguay): an African Mesoproterozoic fragment at the eastern border of the South American Río de La Plata craton

    NASA Astrophysics Data System (ADS)

    Basei, Miguel A. S.; Peel, Elena; Sánchez Bettucci, Leda; Preciozzi, Fernando; Nutman, Allen P.

    2011-04-01

    The Punta del Este Terrane (eastern Uruguay) lies in a complex Neoproterozoic (Brasiliano/Pan-African) orogenic zone considered to contain a suture between South American terranes to the west of Major Gercino-Sierra Ballena Suture Zone and eastern African affinities terranes. Zircon cores from Punta del Este Terrane basement orthogneisses have U-Pb ages of ca. 1,000 Ma, which indicate an lineage with the Namaqua Belt in Southwestern Africa. U-Pb zircon ages also provide the following information on the Punta del Este terrane: the orthogneisses containing the ca. 1,000 Ma inheritance formed at ca. 750 Ma; in contrast to the related terranes now in Africa, reworking of the Punta del Este Terrane during Brasiliano/Pan-African orogenesis was very intense, reaching granulite facies at ca. 640 Ma. The termination of the Brasiliano/Pan-African orogeny is marked by formation of acid volcanic and volcanoclastic rocks at ca. 570 Ma (Sierra de Aguirre Formation), formation of late sedimentary basins (San Carlos Formation) and then intrusion at ca. 535 Ma of post-tectonic granitoids (Santa Teresa and José Ignacio batholiths). The Punta del Este Terrane and unrelated western terranes represented by the Dom Feliciano Belt and the Río de La Plata Craton were in their present positions by ca. 535 Ma.

  1. Water in the Cratonic Mantle: Insights from FTIR Data on Lac De Gras Xenoliths (Slave Craton, Canada)

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Brandon, Alan D.; Schaffer, Lillian Aurora; O'Reilly, Suzanne Yvette; Griffin, William L.; Morris, Richard V.; Graff, Trevor G.; Agresti, David G.

    2014-01-01

    The mantle lithosphere beneath the cratonic part of continents is the deepest (> 200 km) and oldest (>2-3 Ga) on Earth, remaining a conundrum as to how these cratonic roots could have resisted delamination by asthenospheric convection over time. Water, or trace H incorporated in mineral defects, could be a key player in the evolution of continental lithosphere because it influences melting and rheology of the mantle. Mantle xenoliths from the Lac de Gras kimberlite in the Slave craton were analyzed by FTIR. The cratonic mantle beneath Lac de Gras is stratified with shallow (<145 km) oxidized ultradepleted peridotites and pyroxenites with evidence for carbonatitic metasomatism, underlain by reduced and less depleted peridotites metasomatized by kimberlite melts. Peridotites analyzed so far have H O contents in ppm weight of 7-100 in their olivines, 58 to 255 in their orthopyroxenes (opx), 11 to 84 in their garnet, and 139 in one clinopyroxene. A pyroxenite contains 58 ppm H2O in opx and 5 ppm H2O in its olivine and garnet. Olivine and garnet from the deep peridotites have a range of water contents extending to higher values than those from the shallow ones. The FTIR spectra of olivines from the shallow samples have more prominent Group II OH bands compared to the olivines from the deep samples, consistent with a more oxidized mantle environment. The range of olivine water content is similar to that observed in Kaapvaal craton peridotites at the same depths (129-184 km) but does not extend to as high values as those from Udachnaya (Siberian craton). The Slave, Kaapvaal and Siberian cratons will be compared in terms of water content distribution, controls and role in cratonic root longevity.

  2. Dynamics of cratons in an evolving mantle

    NASA Astrophysics Data System (ADS)

    O'Neill, C. J.; Lenardic, A.; Griffin, W. L.; O'Reilly, Suzanne Y.

    2008-04-01

    The tectonic quiescence of cratons on a tectonically active planet has been attributed to their physical properties such as buoyancy, viscosity, and yield strength. Previous modelling has shown the conditions under which cratons may be stable for the present, but cast doubt on how they survived in a more energetic mantle of the past. Here we incorporate an endothermic phase change at 670 km, and a depth-dependent viscosity structure consistent with post-glacial rebound and geoid modelling, to simulate the dynamics of cratons in an "Earth-like" convecting system. We find that cratons are unconditionally stable in such systems for plausible ranges of viscosity ratios between the root and asthenosphere (50-150) and the root/oceanic lithosphere yield strength ratio (5-30). Realistic mantle viscosity structures have limited effect on the average background cratonic stress state, but do buffer cratons from extreme stress excursions. An endothermic phase change at 670 km introduces an additional time-dependence into the system, with slab breakthrough into the lower mantle associated with 2-3 fold stress increases at the surface. Under Precambrian mantle conditions, however, the dominant effect is not more violent mantle avalanches, or faster mantle/plate velocities, but rather the drastic viscosity drop which results from hotter mantle conditions in the past. This results in a large decrease in the cratonic stress field, and promotes craton survival under the evolving mantle conditions of the early Earth.

  3. The Future of WAC-Plenary Address, International Writing across the Curriculum Conference, (Ninth, Austin, Texas, May 2008 )

    ERIC Educational Resources Information Center

    McLeod, Susan H.

    2008-01-01

    In this Plenary Address given at the 9th IWAC Conference in 2008, Susan McLeod (who started her first WAC program in 1982) speculates about the future of the WAC movement. She focuses on four issues: The changing nature of communication and the cultural lag in assignment design, the question of who is in charge of the program, the ascendancy of…

  4. Water in the Cratonic Mantle Lithosphere

    NASA Technical Reports Server (NTRS)

    Peslier, A. H.

    2016-01-01

    The fact that Archean and Proterozoic cratons are underlain by the thickest (>200 km) lithosphere on Earth has always puzzled scientists because the dynamic convection of the surrounding asthenosphere would be expected to delaminate and erode these mantle lithospheric "keels" over time. Although density and temperature of the cratonic lithosphere certainly play a role in its strength and longevity, the role of water has only been recently addressed with data on actual mantle samples. Water in mantle lithologies (primarily peridotites and pyroxenites) is mainly stored in nominally anhydrous minerals (olivine, pyroxene, garnet) where it is incorporated as hydrogen bonded to structural oxygen in lattice defects. The property of hydrolytic weakening of olivine [4] has generated the hypothesis that olivine, the main mineral of the upper mantle, may be dehydrated in cratonic mantle lithospheres, contributing to its strength. This presentation will review the distribution of water concentrations in four cratonic lithospheres. The distribution of water contents in olivine from peridotite xenoliths found in kimberlites is different in each craton (Figure 1). The range of water contents of olivine, pyroxene and garnet at each xenolith location appears linked to local metasomatic events, some of which occurred later then the Archean and Proterozoic when these peridotites initially formed via melting. Although the low olivine water contents (<10 ppm wt H2O) at > 6 GPa at the base of the Kaapvaal cratonic lithosphere may contribute to its strength, and prevent its delamination, the wide range of those from Siberian xenoliths is not compatible with providing a high enough viscosity contrast with the asthenophere. The water content in olivine inclusions from Siberian diamonds, on the other hand, have systematically low water contents (<20 ppm wt H2O). The xenoliths may represent a biased sample of the cratonic lithosphere with an over-­abundance of metasomatized peridotites with

  5. Cold cratonic roots and thermal blankets: How continents affect mantle convection

    USGS Publications Warehouse

    Trubitsyn, V.P.; Mooney, W.D.; Abbott, D.H.

    2003-01-01

    Two-dimensional convection models with moving continents show that continents profoundly affect the pattern of mantle convection. If the continents are wider than the wavelength of the convection cells (???3000 km, the thickness of the mantle), they cause neighboring deep mantle thermal upwellings to coalesce into a single focused upwelling. This focused upwelling zone will have a potential temperature anomaly of about 200??C, much higher than the 100??C temperature anomaly of upwelling zones generated beneath typical oceanic lithosphere. Extensive high-temperature melts (including flood basalts and late potassic granites) will be produced, and the excess temperature anomaly will induce continental uplift (as revealed in sea level changes) and the eventual breakup of the supercontinent. The mantle thermal anomaly will persist for several hundred million years after such a breakup. In contrast, small continental blocks (<1000 km diameter) do not induce focused mantle upwelling zones. Instead, small continental blocks are dragged to mantle downwelling zones, where they spend most of their time, and will migrate laterally with the downwelling. As a result of sitting over relatively cold mantle (downwellings), small continental blocks are favored to keep their cratonic roots. This may explain the long-term survival of small cratonic blocks (e.g., the Yilgarn and Pilbara cratons of western Australia, and the West African craton). The optimum size for long-term stability of a continental block is <3000 km. These results show that continents profoundly affect the pattern of mantle convection. These effects are illustrated in terms of the timing and history of supercontinent breakup, the production of high-temperature melts, and sea level changes. Such two-dimensional calculations can be further refined and tested by three-dimensional numerical simulations of mantle convection with moving continental and oceanic plates.

  6. Chemical stratification of cratonic lithosphere: constraints from the Northern Slave craton, Canada

    NASA Astrophysics Data System (ADS)

    Kopylova, Maya G.; Russell, James K.

    2000-08-01

    We describe the mineralogical and chemical composition of the Northern Slave mantle as deduced from xenoliths of peridotite within the Jericho kimberlite, Northwest Territories. Our data set includes modal, major, trace and rare earth element compositions of bulk samples of spinel peridotite, low-T and high-T garnet peridotite and minor pyroxenite. Compared to primitive upper mantle, Jericho peridotite shows depletion in the major elements and enrichment in incompatible elements (except for HREE). The Slave mantle is also uniquely stratified. Older, depleted spinel peridotite extends to a depth of 80-100 km and is underlain by garnet peridotite which shows a gradual decrease in Mg# with depth to 200 km. The youngest layer of fertile garnet peridotite, enriched in clinopyroxene and garnet, is underlain by a pyroxenite-rich horizon at the base of the petrological lithosphere. The Northern Slave is further distinguished from the Kaapvaal and Siberian upper mantle by a marked vertical stratification in Mg#, lower abundances of orthopyroxene and higher abundances of clinopyroxene. In addition, a deeper layer of garnet peridotite below Jericho shows less depletion than low-T peridotite from other cratons. The Northern Slave peridotite results from a series of chemical events that include: (i) high-degree melting of pyrolite at P>3 Gpa for low-T peridotite and lower pressure melting for high-T peridotite, (ii) enrichment of low-T spinel peridotite in orthopyroxene, and (iii) pervasive metasomatic enrichment in alkali and LREE's by kimberlite-related fluids. The chemical stratification described for two of the three lithospheric domains of the Slave craton makes this craton an exception among cratons with commonly unstratified lithospheres. The gradual increase in fertility with depth below the Slave craton is related to age stratification and may have formed by incremental downward growth of mantle lithosphere with time, and/or later re-fertilization of deeper mantle

  7. Empowering Student Writing Tutors as WAC Liaisons in Secondary Schools

    ERIC Educational Resources Information Center

    Jensen, Amber

    2012-01-01

    A pilot program in a public high school positions experienced student writing center tutors to become WAC liaisons who foster writing across the curriculum by raising questions, identifying needs, and providing support to their teachers with the goal of strengthening writing instruction school-wide. This article discusses the background and…

  8. Les granitoïdes de la couverture protérozoïque de la bordure nord du craton du Congo (Sud-Est du Cameroun et Sud-Ouest de la République centrafricaine), témoins d'une activité magmatique post-kibarienne à pré-panafricaineGranitoids of the Proterozoic cover of the Congo craton northern edge (South-East of Cameroon and South-West of the Central African Republic), witnesses of a post-Kibarian to pre-Pan-African magmatic activity

    NASA Astrophysics Data System (ADS)

    Vicat, Jean-Paul; Moloto-A-Kenguemba, Gaétan; Pouclet, André

    2001-02-01

    Granitoid bodies dated from the Late Mesoproterozoic intrude the Palaeoproterozoic cover of the northern edge of the Congo craton. They line up a north-south left-lateral shear zone related to the Late Kibaran tectonics. They originated from crustal melting, may be due to the thermal anomalies, that were responsible of the large basaltic production during the pre-Pan-African extension of the Central Africa rift system.

  9. Deciphering the post-cratonization history of the Kaapvaal craton, South Africa from titanite and zircon (U-Th)/He thermochronology

    NASA Astrophysics Data System (ADS)

    Baughman, J. S.; Flowers, R. M.

    2017-12-01

    Cratons are the most stable portions of continents, but the degree to which they are affected by post-cratonization tectonic and magmatic processes is unclear. Complete time-temperature (t-T) histories are necessary to understand the timing, extent, and characteristics of post-cratonization events that disrupted these regions. However, deciphering extended cratonic t-T records is difficult owing to the incomplete stratigraphic records of continental interior settings, and the challenge of accessing the appropriate thermal history range with conventional thermochronometers. The Kaapvaal craton in South Africa is an archetypal craton that initially stabilized in the Archean and was subsequently affected by magmatic and marginal accretionary events. Here we exploit titanite and zircon (U-Th)/He (THe, ZHe) thermochronology to better decipher the somewhat cryptic Proterozoic through early Paleozoic history of the craton. Radiation damage effects on the He diffusivity of these two minerals provides the potential to access a wide temperature window from 200°C to near surface conditions. Existing low-temperature apatite (U-Th)/He and fission-track results constrain Late Paleozoic to Mesozoic burial of the Karoo basin and subsequent Cretaceous unroofing, while 40Ar/39Ar and Rb-Sr data document cooling through temperatures of 300°C by 2 Ga. We obtained THe and ZHe dates from across the northern Kaapvaal craton to fill in the thermal history gap between these constraints. THe and ZHe dates range from 1200 to 200 Ma, and 1000 to 30 Ma, respectively. Both sets of dates are negatively correlated with effective uranium concentration (eU), manifesting the effect of radiation damage on the He retentivity, and therefore closure temperature, of these minerals. The results allow us to assess the Mesoproterozoic through present day thermal history of the northern Kaapvaal craton. The THe data suggest that Mesoproterozoic exhumation and large-scale reheating associated with Namaqua

  10. Pairing WAC and Quantitative Reasoning through Portfolio Assessment and Faculty Development

    ERIC Educational Resources Information Center

    Rutz, Carol; Grawe, Nathan D.

    2009-01-01

    Writing across the curriculum has been a pedagogy associated with faculty development since the earliest days of the movement. Carleton College, an early adopter of WAC pedagogy and faculty development, has, in the last decade, added portfolio assessment to the combination with positive results. Among the unexpected consequences has been a…

  11. U-Pb baddeleyite ages and geochemistry of dolerite dykes in the Bas Drâa Inlier of the Anti-Atlas of Morocco: Newly identified 1380 Ma event in the West African Craton

    NASA Astrophysics Data System (ADS)

    El Bahat, Abdelhakim; Ikenne, Moha; Söderlund, Ulf; Cousens, Brian; Youbi, Nasrrddine; Ernst, Richard; Soulaimani, Abderrahmane; El Janati, M'hamed; Hafid, Ahmid

    2013-08-01

    Atlas region of the West African Craton, WAC) into a single Large Igneous Province (LIP) extending over an area of > 1 million km2, and associated with the final fragmentation of the Columbia (Nuna) supercontinent.

  12. Limiting depth of magnetization in cratonic lithosphere

    NASA Technical Reports Server (NTRS)

    Toft, Paul B.; Haggerty, Stephen E.

    1988-01-01

    Values of magnetic susceptibility and natural remanent magnetization (NRM) of clino-pyroxene-garnet-plagioclase granulite facies lower crustal xenoliths from a kimberlite in west Africa are correlated to bulk geochemistry and specific gravity. Thermomagnetic and alternating-field demagnetization analyses identify magnetite (Mt) and native iron as the dominant magnetic phases (totaling not more than 0.1 vol pct of the rocks) along with subsidiary sulfides. Oxidation states of the granulites are not greater than MW, observed Mt occurs as rims on coarse (about 1 micron) Fe particles, and inferred single domain-pseudosingle domain Mt may be a result of oxidation of fine-grained Fe. The deepest limit of lithospheric ferromagnetism is 95 km, but a limit of 70 km is most reasonable for the West African Craton and for modeling Magsat anomalies over exposed Precambrian shields.

  13. Report on Analyses of WAC Samples of Evaporator Overheads - 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L

    2005-03-18

    In November and December of 2004, the Tank Farm submitted annual samples from 2F, 2H and 3H Evaporator Overhead streams for characterization to verify compliance with the new Effluent Treatment Facility (ETF) Waste Acceptance Criteria (WAC) and to look for organic species. With the exception of slightly high ammonia in the 2F evaporator overheads and high radiation control guide number for the 3H and 2F evaporator overhead samples, all the overheads samples were found to be in compliance with the Effluent Treatment Facility WAC. The ammonium concentration in the 2F-evaporator overhead, at 33 mg/L, was above the ETF waste watermore » collection tank (WWCT) limits of 28 mg/L. The RCG Number for the 3H and 2F evaporator samples at, respectively, 1.38E-02 and 8.24E-03 were higher than the WWCT limit of 7.69E-03. The analytical detection limits for americium-241 and radium-226 in the evaporator samples were not consistently met because of low WWCT detection limits and insufficient evaporator samples.« less

  14. Construction and destruction of some North American cratons

    NASA Astrophysics Data System (ADS)

    Snyder, D. B.; Humphreys, G.

    2015-12-01

    Construction histories of Archean cratons remain poorly understood; their destruction is even less clear because of, by definition, its rarity. By assembling geophysical and geochemical data in 3-D lithosphere models, a clearer understanding of the geometry of major structures within the Rae, Slave and Wyoming cratons of central North America is now possible. Little evidence exists of subducted slabs similar to modern oceanic lithosphere in these construction histories whereas underthrusting and wedging of proto-continental lithosphere is inferred from multiple dipping discontinuities. Archean continental building blocks may resemble the modern lithosphere of Ontong-Java-Hikurangi oceanic plateau. Radiometric dating of xenoliths provides estimates of rock types and ages at depth beneath sparse kimberlite occurrences. These ages can be correlated to surface rocks. The 3.6-2.6 Ga Rae, Slave and Wyoming cratons comprise smaller continental terranes that 'cratonized' during a granitic bloom at 2.61-2.55 ga. Cratonization probably represents the final differentiation of early crust into a relatively homogeneous, uniformly thin (35-42 km), tonalite-trondhjemite-granodiorite crust with pyroxenite layers near the Moho atop depleted lithospheric mantle. Peak thermo-tectonic events at 1.86-1.7 Ga broadly metasomatized, mineralized and recrystallized mantle and lower crustal rocks, apparently making mantle peridotite more 'fertile' and conductive by introducing or concentrating sulfides or graphite throughout the lithosphere at 80-120 km depths. This metasomatism may have also weakened the lithosphere or made it more susceptible to tectonic or chemical erosion. The arrival of the subducted Shatsky Rise conjugate at the Wyoming craton at 65-75 Ma appears to have eroded and displaced the thus weakened base of the craton below 140-160 km. This replaced old refertilized continental mantle with new depleted oceanic mantle. Is this the same craton?

  15. Southern hemisphere craton modification by plume-lithosphere interaction

    NASA Astrophysics Data System (ADS)

    Hu, J.; Liu, L.; Faccenda, M.; Zhou, Q.; Fischer, K. M.; Marshak, S.; Lundstrom, C.

    2017-12-01

    The longevity of cratons is generally attributed to neutrally-to-positively buoyant and mechanically strong lithosphere that shields the cratonic crust from underlying mantle dynamics. Large portions of the cratonic lithospheres in South America and Africa, however, have experienced significant modification since the Mesozoic, as demonstrated by widespread Cretaceous uplift and volcanism, present-day high topography, thin crust, and the presence of seismically fast but neutrally buoyant upper-mantle anomalies. We show that these observations reflect a permanent increase in lithospheric buoyancy due to plume-triggered lithosphere deformation and deep lithospheric loss during Late Cretaceous to early Tertiary, as further evidenced by positive lithosphere residual topography, negative lithosphere residual gravity and the realignment of seismic anisotropy in the cratonic roots. Lithosphere in these regions has been thermally reestablished since then, as confirmed by its present-day low heat flow and high seismic velocities. We conclude that lowermost cratonic lithospheres is compositionally denser than the asthenospheric mantle and can be episodically removed when perturbed by underlying mantle dynamics, while the shallower buoyant lithosphere helps to stabilize cratonic crust over billions of years. We further propose that zones where lithosphere was lost would take tens of millions of years to recover thermally, but the density of the new thermal root would remain less than that of the intact root.

  16. Neoproterozoic tectonic evolution of the Jebel Saghro and Bou Azzer - El Graara inliers, eastern and central Anti-Atlas, Morocco

    USGS Publications Warehouse

    Walsh, Gregory J.; Aleinikoff, John N.; Harrison, Richard W.; Burton, William C.; Quick, James E.; Benziane, Foudad; Yazidi, Abdelaziz; Saadane, Abderrahim

    2012-01-01

    New mapping, geochemistry, and 17 U–Pb SHRIMP zircon ages from rocks of the Sirwa, Bou Azzer–El Graara, and Jebel Saghro inliers constrain the Neoproterozoic evolution of the eastern Anti-Atlas during Pan-African orogenesis. In the Sirwa inlier, Tonian quartzite from the pre Pan-African passive margin deposits of the Mimount Formation contains detrital zircon derived entirely from the West African Craton (WAC), with most grains yielding Eburnean Paleoproterozoic ages of about 2050 Ma. Cryogenian Pan-African orogenic activity (PA1) from about 760 to 660 Ma included northward-dipping subduction to produce a volcanic arc, followed by ophiolite obduction onto the WAC. In the Bou Azzer–El Graara inlier, calc-alkaline granodiorite and quartz diorite, dated at 650–646 Ma, are syn- to post-tectonic with respect to the second period of Pan-African orogenesis (PA2), arc-continent accretion, and related greenschist facies metamorphism. Slab break-off and lithospheric delimination may have provided the source for the supra-subduction calc-alkaline plutons. At about 646 Ma, quartz diorite intruded the Tiddiline formation placing an upper limit on molassic deposition. Widespread Ediacaran high-K calc-alkaline to shoshonitic plutonism and volcanism during the final stage of Pan-African orogenesis (PA3) occurred in a setting related to either modification of the margin of the WAC or formation of a continental volcanic arc above a short-lived southward-dipping subduction zone. In the Saghro inlier, eight plutonic rocks yield ages ranging from about 588 to 556 Ma. Sampled plutonic rocks previously considered to be Cryogenian yielded Ediacaran ages. Peraluminous rhyolitic volcanic rocks in the lower part of the Ouarzazate Supergroup, including ash-flow tuffs of the Oued Dar’a caldera, yield ages between about 574 and 571 Ma. The Oued Dar’a caldera developed in a pull-apart graben produced by a left-step in a northeast-trending, left-lateral strike-slip fault zone, and

  17. Diamond exploration and regional prospectivity of Western Australia

    NASA Astrophysics Data System (ADS)

    Hutchison, Mark T.

    2018-06-01

    Pre-1.6 Ga rocks comprise around 45% of the onshore area of Western Australia (WA), constituting the West Australian Craton (WAC) (including the Archean Yilgarn and Pilbara Cratons) and the western part of the North Australian Craton (NAC). These areas provide the conditions suitable for diamond formation at depth, and numerous diamondiferous lamproite and kimberlite fields are known. As emplacement ages span close to 2500 Ma, there are significant opportunities for diamond-affinity rocks being present near-surface in much of the State, including amongst Phanerozoic rocks. WA's size, terrain, infrastructure and climate, mean that many areas remain underexplored. However, continuous diamond exploration since the 1970s has resulted in abundant data. In order to advance future exploration, a comprehensive database of results of diamond exploration sampling (Geological Survey of Western Australia 2018) has been assessed. The Yilgarn and Pilbara Cratons have spinel indicators almost exclusively dominated by chromite (>90% of grains), whereas (Mg,Fe,Ti)-bearing Al-chromites account for more of the indicator spinels in the NAC, up to 50% of grains at the Northern Territory (NT) border. Increasing dominance of Al in chromites is interpreted as a sign of weathering or a shallower source than Al-depleted Mg-chromites. Garnet compositions across the State also correlate with geological subdivisions, with lherzolitic garnets showing more prospective compositions (Ca-depleted) in WAC samples compared to the NAC. WAC samples also show a much broader scatter into strongly diamond-prospective G10 and G10D compositions. Ilmenites from the NAC show Mg-enriched compositions (consistent with kimberlites), over and above those present in NT data. However, ilmenites from the WAC again show the most diamond-prospective trends. Numerous indicator mineral concentrations throughout the State have unknown sources. Due in part to the presence of diamondiferous lamproites, it is cautioned that

  18. Portfolio Partnerships between Faculty and WAC: Lessons from Disciplinary Practice, Reflection, and Transformation

    ERIC Educational Resources Information Center

    Peters, Brad; Robertson, Julie Fisher

    2007-01-01

    In portfolio assessment, WAC helps other disciplines increase programmatic integrity and accountability. This analysis of a portfolio partnership also shows composition faculty how a dynamic culture of assessment helps us protect what we do well, improve what we need to do better, and solve problems as writing instruction keeps pace with…

  19. Seismic evidence for depth-dependent metasomatism in cratons

    NASA Astrophysics Data System (ADS)

    Eeken, Thomas; Goes, Saskia; Pedersen, Helle A.; Arndt, Nicholas T.; Bouilhol, Pierre

    2018-06-01

    The long-term stability of cratons has been attributed to low temperatures and depletion in iron and water, which decrease density and increase viscosity. However, steady-state thermal models based on heat flow and xenolith constraints systematically overpredict the seismic velocity-depth gradients in cratonic lithospheric mantle. Here we invert for the 1-D thermal structure and a depth distribution of metasomatic minerals that fit average Rayleigh-wave dispersion curves for the Archean Kaapvaal, Yilgarn and Slave cratons and the Proterozoic Baltic Shield below Finland. To match the seismic profiles, we need a significant amount of hydrous and/or carbonate minerals in the shallow lithospheric mantle, starting between the Moho and 70 km depth and extending down to at least 100-150 km. The metasomatic component can consist of 0.5-1 wt% water bound in amphibole, antigorite and chlorite, ∼0.2 wt% water plus potassium to form phlogopite, or ∼5 wt% CO2 plus Ca for carbonate, or a combination of these. Lithospheric temperatures that fit the seismic data are consistent with heat flow constraints, but most are lower than those inferred from xenolith geothermobarometry. The dispersion data require differences in Moho heat flux between individual cratons, and sublithospheric mantle temperatures that are 100-200 °C less beneath Yilgarn, Slave and Finland than beneath Kaapvaal. Significant upward-increasing metasomatism by water and CO2-rich fluids is not only a plausible mechanism to explain the average seismic structure of cratonic lithosphere but such metasomatism may also lead to the formation of mid-lithospheric discontinuities and would contribute to the positive chemical buoyancy of cratonic roots.

  20. Modification of the Western Gondwana craton by plume-lithosphere interaction

    NASA Astrophysics Data System (ADS)

    Hu, Jiashun; Liu, Lijun; Faccenda, Manuele; Zhou, Quan; Fischer, Karen M.; Marshak, Stephen; Lundstrom, Craig

    2018-03-01

    The longevity of cratons is generally attributed to persistence of neutrally-to-positively buoyant and mechanically strong lithosphere that shields the cratonic crust from underlying mantle dynamics. Here we show that large portions of the cratonic lithosphere in South America and Africa, however, experienced significant modification during and since the Mesozoic era, as demonstrated by widespread Cretaceous uplift and volcanism, present-day high topography, thin crust, and the presence of seismically fast but neutrally buoyant upper-mantle anomalies. We suggest that these observations reflect a permanent increase in lithospheric buoyancy due to plume-triggered delamination of deep lithospheric roots during the Late Cretaceous and early Cenozoic periods. Lithosphere in these regions has been thermally reestablished since then, as confirmed by its present-day low heat flow, high seismic velocities and realigned seismic anisotropy. We conclude that the original lowermost cratonic lithosphere is compositionally denser than the asthenospheric mantle and can be removed when perturbed by underlying mantle upwelling. Therefore, it is the buoyancy of the upper lithosphere that perpetuates stabilization of cratons.

  1. The Role of Water in the Stability of Cratonic Keels

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Woodland, Alan B.; Bell, David R.; Lazarov, Marina

    2011-01-01

    Cratons are typically underlain by large, deep, and old lithospheric keels (to greater than 200 km depth, greater than 2.5 Ga old) projecting into the asthenosphere (e.g., Jordan, 1978; Richardson et al., 1984). This has mystified Earth scientists as the dynamic and relatively hot asthenosphere should have eroded away these keels over time (e.g., Sleep, 2003; O'Neill et al., 2008; Karato, 2010). Three key factors have been invoked to explain cratonic root survival: 1) Low density makes the cratonic mantle buoyant (e.g., Poudjom Djomani et al., 2001). 2) Low temperatures (e.g., Pollack, 1986; Boyd, 1987), and 3) low water contents (e.g., Pollack, 1986), would make cratonic roots mechanically strong. Here we address the mechanism of the longevity of continental mantle lithosphere by focusing on the water parameter. Although nominally anhydrous , olivine, pyroxene and garnet can accommodate trace amounts of water in the form of H bonded to structural O in mineral defects (e.g., Bell and Rossman, 1992). Olivine softens by orders of magnitude if water (1-1000 ppm H2O) is added to its structure (e.g., Mackwell et al., 1985). Our recent work has placed constraints on the distribution of water measured in peridotite minerals in the cratonic root beneath the Kaapvaal in southern Africa (Peslier et al., 2010). At P greater than 5 GPa, the water contents of pyroxene remain relatively constant while those of olivine systematically decrease from 50 to less than 10 ppm H2O at 6.4 GPa. We hypothesized that at P greater than 6.4 GPa, i.e. at the bottom of the cratonic lithosphere, olivines are essentially dry (greater than 10 ppm H2O). As olivine likely controls the rheology of the mantle, we calculated that the dry olivines could be responsible for a contrast in viscosity between cratonic lithosphere and surrounding asthenosphere large enough to explain the resistance of cratonic root to asthenospheric delamination.

  2. Formation of cratonic lithosphere: An integrated thermal and petrological model

    NASA Astrophysics Data System (ADS)

    Herzberg, Claude; Rudnick, Roberta

    2012-09-01

    The formation of cratonic mantle peridotite of Archean age is examined within the time frame of Earth's thermal history, and how it was expressed by temporal variations in magma and residue petrology. Peridotite residues that occupy the lithospheric mantle are rare owing to the effects of melt-rock reaction, metasomatism, and refertilization. Where they are identified, they are very similar to the predicted harzburgite residues of primary magmas of the dominant basalts in greenstone belts, which formed in a non-arc setting (referred to here as "non-arc basalts"). The compositions of these basalts indicate high temperatures of formation that are well-described by the thermal history model of Korenaga. In this model, peridotite residues of extensive ambient mantle melting had the highest Mg-numbers, lowest FeO contents, and lowest densities at ~ 2.5-3.5 Ga. These results are in good agreement with Re-Os ages of kimberlite-hosted cratonic mantle xenoliths and enclosed sulfides, and provide support for the hypothesis of Jordan that low densities of cratonic mantle are a measure of their high preservation potential. Cratonization of the Earth reached its zenith at ~ 2.5-3.5 Ga when ambient mantle was hot and extensive melting produced oceanic crust 30-45 km thick. However, there is a mass imbalance exhibited by the craton-wide distribution of harzburgite residues and the paucity of their complementary magmas that had compositions like the non-arc basalts. We suggest that the problem of the missing basaltic oceanic crust can be resolved by its hydration, cooling and partial transformation to eclogite, which caused foundering of the entire lithosphere. Some of the oceanic crust partially melted during foundering to produce continental crust composed of tonalite-trondhjemite-granodiorite (TTG). The remaining lithosphere gravitationally separated into 1) residual eclogite that continued its descent, and 2) buoyant harzburgite diapirs that rose to underplate cratonic nuclei

  3. GLD100 - Lunar topography from LROC WAC stereo

    NASA Astrophysics Data System (ADS)

    Scholten, F.; Oberst, J.; Robinson, M. S.

    2011-10-01

    The LROC WAC instrument of the LRO mission comprises substantial stereo image data from adjacent orbits. Multiple coverage of the entire surface of the Moon at a mean ground scale of 75 m/pxl has already been achieved within the first two years of the mission. We applied photogrammetric stereo processing methods for the derivation of a 100 m raster DTM (digital terrain model), called GLD100, from several tens of thousands stereo models. The GLD100 covers the lunar surface between 80° northern and southern latitude. Polar regions are excluded because of poor illumination and stereo conditions. Vertical differences of the GLD100 to altimetry data from the LRO LOLA instrument are small, the mean deviation is typically about 20 m, without systematic lateral or vertical offsets.

  4. Formation of cratonic lithosphere during the initiation of plate tectonics

    NASA Astrophysics Data System (ADS)

    Moresi, L. N.; Beall, A.; Cooper, C. M.

    2017-12-01

    The Earth's oldest near-surface material, the cratonic crust, is typically underlain by unusually thick Archean lithosphere (<300 km). This cratonic lithosphere likely thickened in a high compressional stress environment. Mantle convection in the hotter Archean Earth would have imparted relatively low stresses on the lithosphere, whether or not tectonics was operating, so a high stress signal from the early Earth is paradoxical. We propose that a rapid transition, from a stagnant lid Earth to the onset of plate tectonics, generated the high stresses required to thicken the cratonic lithosphere. Numerical calculations are used to demonstrate that an existing buoyant and strong layer, representing harzburgite and felsic crust, can thicken and stabilize during the lid-breaking event. The peak compressional stress experienced by lithosphere is 3-4 higher than for the stagnant lid or mobile lid regimes immediately before and after. It is plausible that the cratonic lithosphere has still not returned to this high stress-state, explaining its stability. The lid-breaking thickening event reproduces craton features previously attributed to subduction: thrust structures, assembled crustal fragments and transport of basaltic upper crust to depths required to generate felsic melt. Palaeoarchean `pre-tectonic' structures can also survive the lid-breaking event, acting as strong crustal rafts. Together, the results indicate that the signature of a catastrophic switch, from a stagnant lid Earth to the initiation of plate tectonics, has been captured and preserved in the unusual characteristics of cratonic crust and lithosphere.

  5. Nouveau pôle paléomagnétique Stephanien inférieur pour le craton saharien (formation de Merkala, bassin de Tindouf, Algérie). New Lower Stephanian palaeomagnetic pole for the Sabaran craton (Merkala formation, Tindouf basin, Algeria)

    NASA Astrophysics Data System (ADS)

    Henry, Bernard; Merabet, Nacer-Eddine; Bouabdallah, Hamza; Maouche, Said

    1999-08-01

    A palaeomagnetic study carried out in the Lower Stephanian Merkala formation (Tindouf basin) pointed out two juxtaposed neighbouring components of the magnetization. The oldest one allowed a new Stephanian pole located at 32.4°S and 56.6°E ( K= 399, A9.5 = 2.3°) to be obtained. The other one results from the superimposition of this old component on a Permian remagnetization. The new Stephanian pole, associated with the previous data from the Saharan craton, allows the Stephano-Autunian segment of the African apparent polar wander path to be specified.

  6. On the relations between cratonic lithosphere thickness, plate motions, and basal drag

    USGS Publications Warehouse

    Artemieva, I.M.; Mooney, W.D.

    2002-01-01

    An overview of seismic, thermal, and petrological evidence on the structure of Precambrian lithosphere suggests that its local maximum thickness is highly variable (140-350 km), with a bimodal distribution for Archean cratons (200-220 km and 300-350 km). We discuss the origin of such large differences in lithospheric thickness, and propose that the lithospheric base can have large depth variations over short distances. The topography of Bryce Canyon (western USA) is proposed as an inverted analog of the base of the lithosphere. The horizontal and vertical dimensions of Archean cratons are strongly correlated: larger cratons have thicker lithosphere. Analysis of the bimodal distribution of lithospheric thickness in Archean cratons shows that the "critical" surface area for cratons to have thick (>300 km) keels is >6-8 ?? 106 km2 . Extrapolation of the linear trend between Archean lithospheric thickness and cratonic area to zero area yields a thickness of 180 km. This implies that the reworking of Archean crust should be accompanied by thinning and reworking of the entire lithospheric column to a thickness of 180 km in accord with thickness estimates for Proterozoic lithosphere. Likewise, extrapolation of the same trend to the size equal to the total area of all Archean cratons implies that the lithospheric thickness of a hypothesized early Archean supercontinent could have been 350-450 km decreasing to 280-400 km for Gondwanaland. We evaluate the basal drag model as a possible mechanism that may thin the cratonic lithosphere. Inverse correlations are found between lithospheric thickness and (a) fractional subduction length and (b) the effective ridge length. In agreement with theoretical predictions, lithospheric thickness of Archean keels is proportional to the square root of the ratio of the craton length (along the direction of plate motion) to the plate velocity. Large cratons with thick keels and low plate velocities are less eroded by basal drag than small

  7. The 3-dimensional construction of the Rae craton, central Canada

    NASA Astrophysics Data System (ADS)

    Snyder, David B.; Craven, James A.; Pilkington, Mark; Hillier, Michael J.

    2015-10-01

    Reconstruction of the 3-dimensional tectonic assembly of early continents, first as Archean cratons and then Proterozoic shields, remains poorly understood. In this paper, all readily available geophysical and geochemical data are assembled in a 3-D model with the most accurate bedrock geology in order to understand better the geometry of major structures within the Rae craton of central Canada. Analysis of geophysical observations of gravity and seismic wave speed variations revealed several lithospheric-scale discontinuities in physical properties. Where these discontinuities project upward to correlate with mapped upper crustal geological structures, the discontinuities can be interpreted as shear zones. Radiometric dating of xenoliths provides estimates of rock types and ages at depth beneath sparse kimberlite occurrences. These ages can also be correlated to surface rocks. The 3.6-2.6 Ga Rae craton comprises at least three smaller continental terranes, which "cratonized" during a granitic bloom. Cratonization probably represents final differentiation of early crust into a relatively homogeneous, uniformly thin (35-42 km), tonalite-trondhjemite-granodiorite crust with pyroxenite layers near the Moho. The peak thermotectonic event at 1.86-1.7 Ga was associated with the Hudsonian orogeny that assembled several cratons and lesser continental blocks into the Canadian Shield using a number of southeast-dipping megathrusts. This orogeny metasomatized, mineralized, and recrystallized mantle and lower crustal rocks, apparently making them more conductive by introducing or concentrating sulfides or graphite. Little evidence exists of thin slabs similar to modern oceanic lithosphere in this Precambrian construction history whereas underthrusting and wedging of continental lithosphere is inferred from multiple dipping discontinuities.

  8. Destruction of the North China Craton: Lithosphere folding-induced removal of lithospheric mantle?

    NASA Astrophysics Data System (ADS)

    Zhang, Kai-Jun

    2012-01-01

    High heat flow, high surface topography, and widespread volcanism indicate that the lithospheric mantle of typical cratonic character of the North China Craton has been seriously destroyed in its eastern half. However, the mechanism of this process remains open to intense debate. Here lithosphere folding-induced lithospheric mantle removal is proposed as a new mechanism for the destruction of the craton. Four main NNE-SSW-striking lithospheric-scale anticlines and synclines are recognized within North China east of the Helan fold-and-thrust belt. The lithosphere folding occurred possibly during the Late Triassic through Jurassic when the Yangzi Craton collided with the North China Craton. It was accompanied or followed by lithospheric dripping, and could have possibly induced the lithosphere foundering of the North China Craton. The lithosphere folding would have modified the lithosphere morphology, creating significant undulation in the lithospheric base and thus causing variations of the patterns of the small-scale convection. It also could have provoked the formation of new shear zones liable to impregnation of magma, producing linear incisions at the cratonic base and resulting in foundering of lithospheric mantle blocks. Furthermore, it generated thickening of the lithosphere or the lower crust and initiated the destabilization and subsequent removal of the lithospheric mantle.

  9. Origins of cratonic mantle discontinuities: A view from petrology, geochemistry and thermodynamic models

    NASA Astrophysics Data System (ADS)

    Aulbach, Sonja; Massuyeau, Malcolm; Gaillard, Fabrice

    2017-01-01

    Geophysically detectible mid-lithospheric discontinuities (MLD) and lithosphere-asthenosphere boundaries (LAB) beneath cratons have received much attention over recent years, but a consensus on their origin has not yet emerged. Cratonic lithosphere composition and origin is peculiar due to its ultra-depletion during plume or accretionary tectonics, cool present-day geothermal gradients, compositional and rheological stratification and multiple metasomatic overprints. Bearing this in mind, we integrate current knowledge on the physical properties, chemical composition, mineralogy and fabric of cratonic mantle with experimental and thermodynamic constraints on the formation and migration of melts, both below and within cratonic lithosphere, in order to find petrologically viable explanations for cratonic mantle discontinuities. LABs characterised by strong seismic velocity gradients and increased conductivity require the presence of melts, which can form beneath intact cratonic roots reaching to 200-250 km depth only in exceptionally warm and/or volatile-rich mantle, thus explaining the paucity of seismical LAB observations beneath cratons. When present, pervasive interaction of these - typically carbonated - melts with the deep lithosphere leads to densification and thermochemical erosion, which generates topography at the LAB and results in intermittent seismic LAB signals or conflicting seismic, petrologic and thermal LAB depths. In rare cases (e.g. Tanzanian craton), the tops of live melt percolation fronts may appear as MLDs and, after complete lithosphere rejuvenation, may be sites of future, shallower LABs (e.g. North China craton). Since intact cratons are presently tectonomagmatically quiescent, and since MLDs produce both positive and negative velocity gradients, in some cases with anisotropy, most MLDs may be best explained by accumulations (metasomes) of seismically slow minerals (pyroxenes, phlogopite, amphibole, carbonates) deposited during past

  10. The Application of Writing across the Curriculum (WAC) Techniques in a Systems Analysis & Design Flipped Classroom

    ERIC Educational Resources Information Center

    Saulnier, Bruce

    2016-01-01

    To more effectively meet the expectations of industry for entry-level IT employees, a case is made for the inclusion of writing throughout the Computer Information Systems (CIS) curriculum. "Writing Across the Curriculum" ("WAC") principles are explained, and it is opined that both Writing to Learn (WTL) and Writing in the…

  11. Reconciling Electromagnetic and Seismic Constraints on Lithospheric Thickness and Composition of the Kaapvaal Craton, South Africa

    NASA Astrophysics Data System (ADS)

    Muller, M. R.; Fullea, J.; Jones, A. G.

    2010-12-01

    Much of the long-running debate regarding the depth extent of the continental lithosphere beneath Archean shield areas has focussed on the Kaapvaal Craton of South Africa. Our recent magnetotelluric surveys across the Kaapvaal Craton, as part of the Southern African Magnetotelluric Experiment (SAMTEX), indicate a lithospheric thickness of the order of 220 km or greater for the central core of the craton. In contrast, a recently published S-wave receiver function study and several surface wave studies suggest that the Kaapvaal lithosphere is characterized by an approximately 160 km thick high-velocity “lid” underlain by a low-velocity layer that is between 65 - 150 km thick, with the base of the high-velocity lid inferred to represent the “lithosphere-asthenosphere boundary”. Other body-wave, surface wave and S-wave receiver function studies in the area suggest that the (high-velocity) lithosphere is substantially thicker, in excess of 250 km for the most part. Evidence from mantle xenolith pressure-temperature arrays derived from Mesozoic kimberlites found across the Kaapvaal Craton requires that the base of the lithosphere (i.e., the base of the thermal boundary layer above which a conductive geotherm is maintained) be at least 220 km deep, if observed mantle geotherms in the range 35 - 38 mWm-2 are to be accounted for. The presence of richly diamondiferous kimberlites across the Kaapvaal Craton is also impossible to reconcile with a 160 km lithospheric thickness: the top of the diamond (pressure-temperature) stability field is deeper than 160 km for the mantle geotherm associated with a 160 km lithospheric thickness. In the work presented here, we use the recently developed LitMOD software package to derive both seismic velocity and electrical resistivity models for the lithosphere that are fully chemically, petrologically and thermodynamically consistent, and assess whether these apparently disparate views of the Kaapvaal lithosphere - provided by

  12. Paleomagnetism of the 765 Ma Luakela Volcanics in NW Zambia and Implications for Neoproterozoic Positions of the Congo Craton

    NASA Astrophysics Data System (ADS)

    Wingate, M. T.; Pisarevsky, S. A.; de Waele, B.

    2004-12-01

    Owing to the scarcity of reliable paleopoles, the Neoproterozoic position of the Congo craton (incorporating the Sao Francisco, Tanzania, and Bangweulu blocks) is very poorly known. We report new paleomagnetic data for the 765 ± 5 Ma Luakela volcanics, a NE-trending belt of basaltic to andesitic flows in NW Zambia (Key et al., 2001, J. Afr. Earth Sci., 33, 503-528). The volcanics are up to 0.8 km thick and occur within a 2 km thick succession of siliciclastic rocks that unconformably overlies Neoarchean and Paleoproterozoic rocks of the Congo craton margin, and is correlated with the Roan and Mwashia Groups of the Katanga Supergroup (Key et al., 2001). The strata are essentially undeformed, and either subhorizontal or dip shallowly to the SE. Although no metamorphic mineral growth is observed in fine-grained sedimentary rocks, alteration has strongly affected plagioclase and pyroxene in the volcanic rocks, and magnetite has been partially altered to hematite (Key et al., 2001). AF and thermal analysis of 65 samples from nine sites isolated three magnetisation components. Component A, carried mainly by SD magnetite, is directed very shallowly to the SE. Component B, carried mainly by hematite, is oriented shallowly SW-up. A low stability component C is directed very steeply downward. Some samples contain only component A, others only component B, and some contain both A and B. Component A is likely to be primary, because it is carried by SD magnetite (which petrography indicates is primary), does not resemble younger magnetisations from the Congo craton, and because the rocks have not been thermally metamorphosed. Component B, carried by hematite, we consider to be an overprint, possibly acquired during Pan-African deformation in the Lufilian Arc. Component C is similar to Permo-Carboniferous paleodirections from the region, and may have been acquired at that time. Paleopoles for components A and B (LVA and LVB) are about 90° apart, and similar to those from the

  13. Paleomagnetism of the Wyoming Craton: A Pre-Laurentian Puzzle

    NASA Astrophysics Data System (ADS)

    Kilian, T.; Chamberlain, K.; Mitchell, R. N.; Evans, D. A.; Bleeker, W.; Lecheminant, A. N.

    2010-12-01

    The Archean Wyoming craton is mostly buried beneath Phanerozoic sediments in the Rocky Mountains of the west central United States. Exposures of the craton are entirely in thrust-bounded Laramide uplifts and contain numerous swarms of Neoarchean-Proterozoic mafic dikes. U-Pb ages from these dikes include ~2685 Ma from a dike in the Owl Creek Mountains (Frost et al., 2006) as well as another in the Bald Mountain region of the Bighorn Mountains (this study), ~2170 Ma from the Wind River Mountain quartz diorite (Harlan et al., 2003), ~2110 Ma from a dike in the Granite Mountains (Bowers and Chamberlain, 2006), ~2010 Ma from a Kennedy dike in the Laramie Range (Cox et al., 2000), and ~780 Ma for dikes in the Beartooth and Teton Mountains (Harlan et al., 1997). These possible age ranges of magmatic events will allow a detailed comparison with other cratons, especially Superior and Slave. Prior to the assembly of Laurentia, Wyoming may have been connected with Slave in supercraton Sclavia (Bleeker, 2003; Frost et al., 2007), or alternatively, Wyoming may have been attached to the present southern margin of Superior in the supercraton Superia, as judged by similarities of the thrice-glaciated Huronian and Snowy Pass sedimentary successions (Roscoe and Card, 1993). Paleomagnetic results will be presented from over 150 dikes in the Wyoming craton. All dikes were from the basement uplifts of the Beartooth Mountains, Bighorn Mountains, Owl Creek Mountains, Granite Mountains, Ferris Mountains and Laramie Range. Dikes range in widths from 1 to >100 meters, and trends vary across all orientations. Stable remanence is observed in majority of sites with at least 8 different directions from the various uplifts. Structural corrections are applied when necessary to restore shallowly dipping Cambrian strata to horizontal. The paleomagnetic study is being integrated with precise U-Pb geochronology of dikes that bear stable remanence directions. Results will eventually allow a

  14. Towards a Holistic Model for the Tectonic Evolution of the North China Craton

    NASA Astrophysics Data System (ADS)

    Kusky, T. M.; Polat, A.; Windley, B. F.; Wang, J.; Deng, H.

    2016-12-01

    The North China Craton (NCC) consists of distinctly different tectonic elements assembled during the late Archean - early Proterozoic. We propose a new tectonic evolution of the NCC. The Eastern Block (EB) consists of small microblocks that resemble a collage of accreted arc-rocks from a sutured archipelago similar to the SW Pacific, accreted between 2.6 and 2.7 Ga. An Atlantic-type margin developed on the western side of the EB by 2.5 Ga, and a >1,300 km long arc/accretionary prism collided with this passive margin at 2.5 Ga, obducting ophiolites and ophiolitic mélanges, and forming a foreland basin. This was followed by arc-polarity reversal, and injection of mantle wedge-derived melts. By 2.43 Ga, the ocean behind the accreted arc closed through the collision of an oceanic plateau. Rifting of the amalgamated craton followed at 2.4-2.35 Ga, with a failed rift arm preserved in the center of the craton, and two that successfully made an ocean along the northern margin. By 2.3 Ga an arc built on older cratonic material collided with this passive margin which soon converted to an Andean-type margin. Andean margin tectonics affected much of the craton from 2.3-1.9 Ga, forming a broad E-W swath of continental margin magmas, and retro-arc sedimentary basins including a superimposed basin over the passive margin on the northern margin. From 1.88-1.79 Ga the craton experienced a craton-wide granulite facies metamorphism and basement reactivation event with high-pressure granulites and eclogites in the north, and medium-pressure granulites across the craton. Early Proterozoic granulites and anatectic melts were generated by high-grade metamorphism and partial melting at mid-crustal levels beneath a collisionally-thickened plateau. This collision of the NCC on its northern margin was with the Columbia (Nuna) Continent. The NCC broke out in the period 1753-1673 Ma, as indicated by the formation of a suite of anorthosite, mangerite, charnockite, and alkali-feldspar granites

  15. Recycling lower continental crust in the North China craton.

    PubMed

    Gao, Shan; Rudnick, Roberta L; Yuan, Hong-Ling; Liu, Xiao-Ming; Liu, Yong-Sheng; Xu, Wen-Liang; Ling, Wen-Li; Ayers, John; Wang, Xuan-Che; Wang, Qing-Hai

    2004-12-16

    Foundering of mafic lower continental crust into underlying convecting mantle has been proposed as one means to explain the unusually evolved chemical composition of Earth's continental crust, yet direct evidence of this process has been scarce. Here we report that Late Jurassic high-magnesium andesites, dacites and adakites (siliceous lavas with high strontium and low heavy-rare-earth element and yttrium contents) from the North China craton have chemical and petrographic features consistent with their origin as partial melts of eclogite that subsequently interacted with mantle peridotite. Similar features observed in adakites and some Archaean sodium-rich granitoids of the tonalite-trondhjemite-granodiorite series have been interpreted to result from interaction of slab melts with the mantle wedge. Unlike their arc-related counterparts, however, the Chinese magmas carry inherited Archaean zircons and have neodymium and strontium isotopic compositions overlapping those of eclogite xenoliths derived from the lower crust of the North China craton. Such features cannot be produced by crustal assimilation of slab melts, given the high Mg#, nickel and chromium contents of the lavas. We infer that the Chinese lavas derive from ancient mafic lower crust that foundered into the convecting mantle and subsequently melted and interacted with peridotite. We suggest that lower crustal foundering occurred within the North China craton during the Late Jurassic, and thus provides constraints on the timing of lithosphere removal beneath the North China craton.

  16. Spatial distribution of eclogite in the Slave cratonic mantle: The role of subduction

    NASA Astrophysics Data System (ADS)

    Kopylova, Maya G.; Beausoleil, Yvette; Goncharov, Alexey; Burgess, Jennifer; Strand, Pamela

    2016-03-01

    We reconstructed the spatial distribution of eclogites in the cratonic mantle based on thermobarometry for 240 xenoliths in 4 kimberlite pipes from different parts of the Slave craton (Canada). The accuracy of depth estimates is ensured by the use of a recently calibrated thermometer, projection of temperatures onto well-constrained local peridotitic geotherms, petrological screening for unrealistic temperature estimates, and internal consistency of all data. The depth estimates are based on new data on mineral chemistry and petrography of 148 eclogite xenoliths from the Jericho and Muskox kimberlites of the northern Slave craton and previously reported analyses of 95 eclogites from Diavik and Ekati kimberlites (Central Slave). The majority of Northern Slave eclogites of the crustal, subduction origin occurs at 110-170 km, shallower than in the majority of the Central Slave crustal eclogites (120-210 km). The identical geochronological history of these eclogite populations and the absence of steep suture boundaries between the central and northern Slave craton suggest the lateral continuity of the mantle layer relatively rich in eclogites. We explain the distribution of eclogites by partial preservation of an imbricated and plastically dispersed oceanic slab formed by easterly dipping Proterozoic subduction. The depths of eclogite localization do not correlate with geophysically mapped discontinuities. The base of the depleted lithosphere of the Slave craton constrained by thermobarometry of peridotite xenoliths coincides with the base of the thickened lithospheric slab, which supports contribution of the recycled oceanic lithosphere to formation of the cratonic root. Its architecture may have been protected by circum-cratonic subduction and shielding of the shallow Archean lithosphere from the destructive asthenospheric metasomatism.

  17. Baffling system for the Wide Angle Camera (WAC) of ROSETTA mission

    NASA Astrophysics Data System (ADS)

    Brunello, Pierfrancesco; Peron, Fabio; Barbieri, Cesare; Fornasier, Sonia

    2000-10-01

    After the experience of GIOTTO fly-by to comet Halley in 1986, the European Space Agency planned to improve the scientific knowledge of these astronomical objects by means of an even more ambitious rendezvous mission with another comet (P/Wirtanen). This mission, named ROSETTA, will go on from 2003 to 2013, ending after the comet perihelion phase and including also the fly-by with two asteroids of the main belt (140 Siwa and 4979 Otawara). Scientific priority of the mission is the in situ investigation of the cometary nucleus, with the aim of better understanding the formation and the composition of planetesimals and their evolution over the last 4.5 billions of years. In this context, the Authors were involved in the design of the baffling for the Wide Angle Camera (WAC) of the imaging system (OSIRIS) carried on board of the spacecraft. Scientific requirements for the WAC are : a large field of view (FOV) of 12 degree(s) x 12 degree(s) with a resolution of 100 (mu) rad per pixel, UV response, and a contrast ratio of 10-4 in order to detect gaseous and dusty features close to the nucleus of the comet. TO achieve these performances, a fairly novel class of optical solutions employing off-axis sections of concentric mirrors was explored. Regarding baffling, the peculiar demand was the rejection of stray-light generated by the optics for sources within the FOV, since the optical entrance aperture is located at the level of the secondary mirror (instead of the primary as usual). This paper describes the baffle design and analyzes its performances, calculated by numerical simulation with ray tracing methods, at different angles of incidence of the light, for sources both outside and inside the field of view.

  18. Results for the First, Second, and Third Quarter Calendar Year 2015 Tank 50H WAC slurry samples chemical and radionuclide contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.

    2016-02-18

    This report details the chemical and radionuclide contaminant results for the characterization of the Calendar Year (CY) 2015 First, Second, and Third Quarter sampling of Tank 50H for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by Defense Waste Processing Facility (DWPF) & Saltstone Facility Engineering (D&S-FE) to support the transfer of low-level aqueous waste from Tank 50H to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50H Waste Characterization System. Previous memorandamore » documenting the WAC analyses results have been issued for these three samples.« less

  19. Mid-lithospheric discontinuity and its roles in the dynamic evolution of the craton-example from the North China Craton

    NASA Astrophysics Data System (ADS)

    Chen, Ling; Wei, Zigen; Jiang, Mingming; Ling, Yuan

    2016-04-01

    Mid-lithospheric discontinuity and its roles in the dynamic evolution of the craton - example from the North China Craton Ling Chen1,2, Zigen Wei3, Mingming Jiang1, Yuan Ling1 1. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China 2. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing100101, China 3. State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China Detailed knowledge of lithospheric structure is essential for understanding the long-term evolution and dynamics of continents. We present an integrated lithospheric structural image along an E-W profile across the North China Craton (NCC) derived from the teleseismic data recorded at two dense seismic arrays in combination with other geophysical and geological observations. Our S- and P-receiver function images show substantial undulations of the lithosphere-asthenosphere boundary (LAB), from 60-100 km in the eastern NCC to ~160-200 km in the central-western NCC, and <150-km in the Qilian orogenic belt further to the west, accompanying marked lithospheric structural variations. This agrees with previous studies that suggest the occurrence of fundamental destruction in the eastern NCC but localized lithospheric thinning and modifications in the central-western NCC. A negative velocity discontinuity is identified at the depth of ~80-100 km within the thick lithosphere of the central-western NCC, spatially coincident with the top interface of a relatively low velocity layer in the overall high velocity mantle root imaged by surface wave tomography. Detailed data analyses show that this mid- or intra-lithospheric discontinuity has considerably larger S-to-P and P-to-S conversion amplitudes than the LAB below, which provides observational constraints to further decipher the origin of the discontinuity. Our imaging results corroborate

  20. Synchroneity of cratonic burial phases and gaps in the kimberlite record: Episodic magmatism or preservational bias?

    NASA Astrophysics Data System (ADS)

    Ault, Alexis K.; Flowers, Rebecca M.; Bowring, Samuel A.

    2015-01-01

    A variety of models are used to explain an apparent episodicity in kimberlite emplacement. Implicit in these models is the assumption that the preserved kimberlite record is largely complete. However, some cratons now mostly devoid of Phanerozoic cover underwent substantial Phanerozoic burial and erosion episodes that should be considered when evaluating models for global kimberlite distributions. Here we show a broad temporal coincidence between regional burial phases inferred from thermochronology and gaps in the kimberlite record in the Slave craton, Superior craton, and cratonic western Australia. A similar pattern exists in the Kaapvaal craton, although its magmatic, deposition, and erosion history differs in key ways from the other localities. One explanation for these observations is that there is a common cause of cratonic subsidence and suppression of kimberlite magmatism. Another possibility is that some apparent gaps in kimberlite magmatism are preservational artifacts. Even if kimberlites occurred during cratonic burial phases, the largest uppermost portions of the pipes would have been subsequently eroded along with the sedimentary rocks into which they were emplaced. In this model, kimberlite magmatism was more continuous than the preserved record suggests, implying that evidence for episodicity in kimberlite genesis should be carefully evaluated in light of potential preservational bias effects. Either way, the correlation between burial and kimberlite gaps suggests that cratonic surface histories are important for understanding global kimberlite patterns.

  1. Evidence for Depth-Dependent Metasomatism in Cratonic Lithosphere

    NASA Astrophysics Data System (ADS)

    Eeken, T.; Goes, S. D. B.; Pedersen, H.; Arndt, N. T.; Bouilhol, P.

    2017-12-01

    The long-term stability of the cratonic cores of continents has been attributed to low temperatures and depletion in iron and water. However, a long-standing enigma is that steady-state thermal models based on heat flow measurements and xenoliths systematically overpredict the seismic velocities in Archean lithospheric mantle. We perform a Monte-Carlo inversion for thermal parameters and water content (leading to metasomatism) to fit 1-D geotherms to average Rayleigh-wave dispersion curves for the Archean Kaapvaal, Yilgarn and Slave cratons and the Proterozoic Baltic Shield below Finland. To satisfactorily match the seismic profiles, we need a significant amount of hydrous and/or carbonated minerals starting between the Moho and 70 km depth and extending down to at least 100-150 km depth (if distributed over this depth range, this requires 0.5 and 1 wt% water for amphiboles, or 0.2 wt% water plus sufficient potassium to form phlogopites or 5 wt% CO2 and sufficient Ca to make carbonate, or a combination thereof). Lithospheric temperatures that lead to a good fit of the seismic constraints are commonly lower than those inferred from xenoliths, but consistent with heat flow constraints. The dispersion data also require differences in Moho heatflux between regions and 100-200°C lower sublithospheric mantle temperatures below Yilgarn, Slave and Finland than below Kaapvaal, consistent with regional tectonic settings inferred from global tomography. Thus, significant upward-increasing metasomatism by water and CO2-rich fluids is a plausible mechanism to explain the average seismic structure of cratonic lithosphere. Such metasomatism would also contribute to the positive chemical buoyancy of cratonic roots.

  2. Coeval large-scale magmatism in the Kalahari and Laurentian cratons during Rodinia assembly.

    PubMed

    Hanson, Richard E; Crowley, James L; Bowring, Samuel A; Ramezani, Jahandar; Gose, Wulf A; Dalziel, Ian W D; Pancake, James A; Seidel, Emily K; Blenkinsop, Thomas G; Mukwakwami, Joshua

    2004-05-21

    We show that intraplate magmatism occurred 1106 to 1112 million years ago over an area of two million square kilometers within the Kalahari craton of southern Africa, during the same magnetic polarity chron as voluminous magmatism within the cratonic core of North America. These contemporaneous magmatic events occurred while the Rodinia supercontinent was being assembled and are inferred to be parts of a single large igneous province emplaced across the two cratons. Widespread intraplate magmatism during Rodinia assembly shows that mantle upwellings required to generate such provinces may occur independently of the supercontinent cycle.

  3. The Archean kalsilite-nepheline syenites of the Awsard intrusive massif (Reguibat Shield, West African Craton, Morocco) and its relationship to the alkaline magmatism of Africa

    NASA Astrophysics Data System (ADS)

    Haissen, Faouziya; Cambeses, Aitor; Montero, Pilar; Bea, Fernando; Dilek, Yildirim; Mouttaqi, Abdellah

    2017-03-01

    More than 40% of the known alkaline complexes are reported from Africa. Most are ring complexes composed of syenites and associated or not, lithotypes as carbonatites, granites and mafic rocks. Radiometric dating indicates the presence of alkaline complexes with ages spanning from Precambrian to the present. In terms of outcrops, alkaline complexes are reported from cratonic zones and from belts embedded between cratonic areas. Because of the high economic potential for associated REE deposits, these alkaline complexes have received much attention from Earth scientists. These studies aim mainly to constrain the role of the mantle and the crust (and the interaction between them) in the genesis of this peculiar magmatism, and also to explain the variability observed in lithotypes and geotectonic settings. Among those alkaline complexes, Precambrian occurrences are rare. Up-to-date only a few Proterozoic examples were cited in Africa. The recently studied Awsard complex in Southern Morocco is a peculiar one with a crystallization age of 2.46 Ga and an unusual rock assemblages. This paper is a first approximation to a comparison of geochemical and isotopic fingerprints of the Awsard magmatism (as the oldest one) with other known different ages African complexes from different geotectonic settings, aiming to detect if there is any evolution in this alkaline magmatism through time. A first conclusion is that magma sources for this alkaline magmatism has been probably evaluating over geological time, from parental magmas compositions close to that of primitive mantle in these early geological time to compositions holding more and more depleted mantle and continental crust components. However, to go further in this debate more modern isotopic, geochemical and geochronological data from all these complexes are needed. Nevertheless, this comparison highlighted the peculiar character of the Awsard magmatism with an isotopic composition very close to that of Primitive mantle

  4. Construction and destruction of some North American cratons

    NASA Astrophysics Data System (ADS)

    Snyder, David B.; Humphreys, Eugene; Pearson, D. Graham

    2017-01-01

    Construction histories of Archean cratons remain poorly understood; their destruction is even less clear because of its rarity, but metasomatic weakening is an essential precursor. By assembling geophysical and geochemical data in 3-D lithosphere models, a clearer understanding of the geometry of major structures within the Rae, Slave and Wyoming cratons of central North America is now possible. Little evidence exists of subducted slab-like geometries similar to modern oceanic lithosphere in these construction histories. Underthrusting and wedging of proto-continental lithosphere is inferred from multiple dipping discontinuities, emphasizing the role of lateral accretion. Archean continental building blocks may resemble the modern lithosphere of oceanic plateau, but they better match the sort of refractory crust expected to have formed at Archean ocean spreading centres. Radiometric dating of mantle xenoliths provides estimates of rock types and ages at depth beneath sparse kimberlite occurrences, and these ages can be correlated to surface rocks. The 3.6-2.6 Ga Rae, Slave and Wyoming cratons stabilized during a granitic bloom at 2.61-2.55 Ga. This stabilization probably represents the final differentiation of early crust into a relatively homogeneous, uniformly thin (35-42 km), tonalite-trondhjemite-granodiorite crust with pyroxenite layers near the Moho atop depleted lithospheric mantle. Peak thermo-tectonic events at 1.86-1.7 Ga broadly metasomatized, mineralized and recrystallized mantle and lower crustal rocks, apparently making mantle peridotite more 'fertile' and more conductive by introducing or concentrating sulfides or graphite at 80-120 km depths. This metasomatism may have also weakened the lithosphere or made it more susceptible to tectonic or chemical erosion. Late Cretaceous flattening of Farallon lithosphere that included the Shatsky Rise conjugate appears to have weakened, eroded and displaced the base of the Wyoming craton below 140-160 km. This

  5. Magnetotelluric characterization of the northern margin of the Yilgarn Craton (Western Australia)

    NASA Astrophysics Data System (ADS)

    Piña-Varas, Perla; Dentith, Michael

    2017-04-01

    The northern margin of the Yilgarn Craton (Western Australia) was deformed during the convergence and collision with the Pilbara Craton and the intervening Glenburgh Terrain that created the Capricorn Orogen. The Yilgarn Craton is one of the most intensively mineralised areas of continental crust with world class deposits of gold and nickel. However, the region to its north has surprisingly few deposits. Cratonic margins are considered to be key indicators of prospectivity at a regional scale. The northern limit of the Yilgarn Craton within the Capricorn Orogen is not well resolved at date because of overlying Proterozoic sedimentary basins. We present here some of the results of an extensive magnetotelluric (MT) study that is being performed in the area. This study is a component of large multi-disciplinary geoscience project on the 'Distal Footprints of Giant Ore Systems' in the Capricorn Orogen. The MT dataset consists of a total of 240 broadband magnetotelluric stations (BBMT) and 84 long period stations (LMT). Analysis of the dataset reveals a clear 3-D geoelectrical behaviour and extreme complexity for most of the sites, including an extremely high number of sites with phases out-of-quadrant at long periods. 3-D inverse modelling of the MT data shows high resistivity Archean units and low resistivity Paleoproterozoic basins, including very low resistivity structures at depth. These strong resistivity contrasts allow us to successfully map northern margin of the Yilgarn Craton beneath basin cover, as well as identifying major lateral conductivity changes in the deep crust suggestive of different tectonic blocks. Upper crustal conductive zones can be correlated with faults on seismic reflection data. Our results suggest MT surveys are a useful tool for regional-scale exploration in the study area and in area of thick cover in general.

  6. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction

    NASA Astrophysics Data System (ADS)

    Pilet, S.; Müntener, O.; Jean, G.; Schoene, B.; Schaltegger, U.

    2016-12-01

    The temporal coincidence between LIPs and mass extinctions has led many to pose a causal relationship between the two. However, there is still no consensus on a mechanistic model that explains how magmatism leads to the turnover of terrestrial and marine plants, invertebrates and vertebrates. Here, we present a synthesis of stratigraphic constraints on the Triassic-Jurassic and Pliensbachian-Toarcian boundaries combined with geochronological data demonstrating that these biotic crises are both associated with rapid change from an initial cool period to greenhouse conditions. As current hypothesis for LIPs seems unable to produce these successive climatic changes, we evaluate an alternative suggesting that the initial cooling could be due to gas release during the initial thermal erosion of the cratonic lithosphere due to emplacement of the CAMP and Karoo-Ferrar volcanic provinces. Karoo and CAMP areas were underlain by thick lithosphere (>200 km) prior to continental break up. Even in presence of abnormal potential mantle temperature, the presence of thick lithosphere excludes significant melting of the asthenospheric mantle without initial stage of thermal erosion of the cratonic lithosphere. Various studies on Kaapvaal craton have shown that sulfide minerals are enclosed in the basal part of the cratonic lithosphere. We argue that initial gas emission was dominated by sulfur liberated from sulfide-bearing cratonic lithosphere causing global cooling and eustatic regression, which was followed by warming/transgression associated with the progressive increase of CO2 in the atmosphere associated to LIPs emission. We suggest that the nature of the underlying lithosphere during large LIP eruption exerts an important control on the consequences at the Earth's surface. This model offers an explanation for why LIPs erupted through oceanic lithosphere are not associated with climatic and biotic crises comparable to LIPs emitted through cratonic lithosphere.

  7. Building Archean Cratons From Hadean Crust

    NASA Astrophysics Data System (ADS)

    O'Neil, J.; Carlson, R.

    2016-12-01

    Geologic processing of Earth's surface has removed most of the evidence concerning the nature of Earth's first crust. The largest volumes of ancient crust, the so-called Archean cratons, are dominated by felsic Tonalite-Trondhjemite-Granodiorite (TTG) rocks. These felsic rocks, however, are most likely derived by melting of an older mafic precursor. Although in part dictated by survivability, the scarcity of Hadean zircons also suggests that felsic rocks may have not been a prominent component of the earliest crust. Both points raise questions about the nature of the primordial crust and how, or if, it was involved in the formation of stable Archean cratons. The Hudson Bay Terrane of the Northeastern Superior Province is one of such Archean cratons, mainly composed of 2.88 to 2.69 Ga TTG. New data show these Neoarchean granitoids to be the youngest to yield significantly low 142Nd/144Nd, down to 15 ppm lower than that of the terrestrial Nd standard. 142Nd is the decay product of short-lived radioactive 146Sm and because of the short 103 Ma half-life of 146Sm, deviations in 142Nd/144Nd ratio can only be produced by Sm-Nd fractionation prior to 4 Ga. The variability in 142Nd/144Nd ratios in 2.7 Ga felsic rocks from the Hudson Bay Terrane shows conclusively that this large block of Archean crust was formed by reworking of much older > 4.2 Ga crust over a 1.5 billion year interval of early Earth history. Reworking of pre-existing crust likely is an important mechanism contributing to the stabilization of Earth's first continents.

  8. Water and Metasomatism in the Slave Cratonic Lithosphere (Canada): An FTIR Study

    NASA Technical Reports Server (NTRS)

    Kilgore, McKensie; Peslier, Anne H.; Brandon, Alan D.; Schaffer, Lillian Aurora; Pearson, D. Graham; O'Reilly, Suzanne Yvette; Kopylova, Maya G.; Griffin, William L.

    2017-01-01

    Water in the mantle influences melting, viscosity, seismic velocity, and electrical conductivity. The role played by water in the long-term stabilization of cratonic roots is currently being debated. This study focuses on water contents of mantle minerals (olivine, pyroxene and garnet) from xenoliths found in kimberlites of the Archean Slave craton. 19 mantle xenoliths from central Lac de Gras, and 10 from northern Jericho were analyzed by FTIR for water, and their equilibration depths span the several compositional layers identified beneath the region. At both locations, the shallow peridotites have lower water contents in their olivines (11-30 ppm H2O) than those from the deeper layers (28-300 ppm H2O). The driest olivines, however, are not at the base of the cratonic lithosphere (>6 GPa) as in the Kaapvaal craton. Instead, the deepest olivines are hydrous (31-72 ppm H2O at Lac de Gras and 275 ppm H2O at Jericho). Correlations of water in clinopyroxene and garnet with their other trace element contents are consistent with water being added by metasomatism by melts resembling kimberlite precursors in the mantle approx.0.35 Ga ago beneath Lac de Gras. The northern Jericho xenoliths are derived from a region of the Slave craton that is even more chemically stratified, and was affected at depth by the 1.27 Ga Mackenzie igneous events. Metasomatism at Jericho may be responsible for the particularly high olivine water contents (up to 300 ppm H2O) compared to those at Lac de Gras, which will be investigated by acquiring trace-element data on these xenoliths. These data indicate that several episodes of metasomatic rehydration occurred in the deep part of the Slave craton mantle lithosphere, with the process being more intense in the northern part beneath Jericho, likely related to a translithospheric suture serving as a channel to introduce fluids and/or melts in the northern region. Consequently, rehydration of the lithosphere does not necessarily cause cratonic root

  9. Craton Heterogeneity in the South American Lithosphere

    NASA Astrophysics Data System (ADS)

    Lloyd, S.; Van der Lee, S.; Assumpcao, M.; Feng, M.; Franca, G. S.

    2012-04-01

    We investigate structure of the lithosphere beneath South America using receiver functions, surface wave dispersion analysis, and seismic tomography. The data used include recordings from 20 temporary broadband seismic stations deployed across eastern Brazil (BLSP02) and from the Chile Ridge Subduction Project seismic array in southern Chile (CRSP). By jointly inverting Moho point constraints, Rayleigh wave group velocities, and regional S and Rayleigh wave forms we obtain a continuous map of Moho depth. The new tomographic Moho map suggests that Moho depth and Moho relief vary slightly with age within the Precambrian crust. Whether or not a correlation between crustal thickness and geologic age can be derived from the pre-interpolation point constraints depends strongly on the selected subset of receiver functions. This implies that using only pre-interpolation point constraints (receiver functions) inadequately samples the spatial variation in geologic age. We also invert for S velocity structure and estimate the depth of the lithosphere-asthenosphere boundary (LAB) in Precambrian South America. The new model reveals a relatively thin lithosphere throughout most of Precambrian South America (< 140 km). Comparing LAB depth with lithospheric age shows they are overall positively correlated, whereby the thickest lithosphere occurs in the relatively small Saõ Francisco craton (200 km). However, within the larger Amazonian craton the younger lithosphere is thicker, indicating that locally even larger cratons are not protected from erosion or reworking of the lithosphere.

  10. Numerical modeling of continental rifting: Implications for the East African Rift system

    NASA Astrophysics Data System (ADS)

    Koptev, Alexander; Burov, Evgueni; Calais, Eric; Leroy, Sylvie; Gerya, Taras; Guillou-Frottier, Laurent; Cloetingh, Sierd

    2016-04-01

    The East African Rift system (EARS) provides a unique system with juxtaposition of two contrasting yet simultaneously formed rift branches, the eastern, magma-rich, and the western, magma-poor, on either side of the old thick Tanzanian craton embedded into younger lithosphere. Here we take advantage of the improvements in our understanding of deep structures, geological evolution and recent kinematics, together with new cutting edge numerical modeling techniques to design a three-dimensional ultra-high resolution viscous plastic thermo-mechanical numerical model that accounts for thermo-rheological structure of the lithosphere and hence captures the essential geophysical features of the central EARS. Based on our experiments, we show that in case of the mantle plume seeded slightly to the northeast of the craton center, the ascending plume material is deflected by the cratonic keel and preferentially channeled along the eastern side of the craton, leading to formation of a large rift zone characterized by important magmatic activity with substantial amounts of melts derived from mantle plume material. This model is in good agreement with the observations in the EARS, as it reproduces the magmatic eastern branch and at the same time, anticlockwise rotation of the craton. However, this experiment does not reproduce the observed strain localization along the western margin of the cratonic bloc. To explain the formation of contrasting magmatic and amagmatic rift branches initiating simultaneously on either side of a non-deforming block as observed in the central EARS, we experimentally explored several scenarios of which three can be retained as specifically pertaining to the EARS: (1) The most trivial first scenario assumes rheologically weak vertical interface simulating the suture zone observed in the geological structure along the western border of the craton; (2) The second scenario involves a second smaller plume initially shifted in SW direction; (3) Finally, a

  11. The Victor Mine (Superior Craton, Canada): Neoproterozoic lherzolitic diamonds from a thermally-modified cratonic root

    NASA Astrophysics Data System (ADS)

    Stachel, Thomas; Banas, Anetta; Aulbach, Sonja; Smit, Karen V.; Wescott, Pamela; Chinn, Ingrid L.; Kong, Julie

    2018-05-01

    The Jurassic Victor kimberlite (Attawapiskat Field) was emplaced into an area of the central Superior Craton that was affected by a lithosphere-scale thermal event at 1.1 Ga. Victor diamonds formed ca. 400 million years after this event, in a lithospheric mantle characterized by an unusually cool model geotherm (37-38 mW/m2; Hasterok and Chapman 2011). The bulk of Victor diamonds derives from a thin (<10 km thick) layer that is located at about 180 km depth and represents lherzolitic substrates (for 85% of diamonds). Geothermobarometric calculations (average pressure and temperature at the 1 sigma level are 57 ± 2 kbar and 1129 ± 16 °C) coupled with typical fluid metasomatism-associated trace element patterns for garnet inclusions indicate diamond precipitation under sub-solidus (lherzolite + H2O) conditions. This conclusion links the presence of a diamond-rich lherzolitic layer in the lithospheric mantle, just above the depth where ascending melts would freeze, to the unusually low paleogeotherm beneath Attawapiskat, because along an average cratonic geotherm (40 mW/m2) lherzolite in the presence of hydrous fluid would melt at depths >140 km.

  12. Long wavelength magnetic anomalies over continental rifts in cratonic region

    NASA Astrophysics Data System (ADS)

    Friedman, S. A.; Persaud, P.; Ferre, E. C.; Martín-Hernández, F.; Feinberg, J. M.

    2017-12-01

    New collections of unaltered mantle xenoliths shed light on potential upper mantle contributions to long wavelength magnetic anomalies (LWMA) in continental rifts in cratonic / shield areas. The new material originates from the East African Rift (Tanzania), the Rio Grande Rift (U.S.A.), the Rhine Rift (Germany), and the West Antarctic Rift (Antarctica). The xenoliths sample the uppermost (<80 km depth) lithospheric mantle in these regions in the spinel-peridotite and plagioclase-peridotite stability fields. The most common lithology by far (95% of samples) is a spinel-lherzolite indicating relatively low oxygen fugacities (FMQ -1). Chrome spinel in these peridotites is non-magnetic (Al + Mg > 0.2 or Fe < 0.3) and primary magnetite (Fe3O4) occurs only in trace amounts, typically yielding low natural remanent magnetizations (NRM < 10-2 A/m). The low Koenigsberger ratios (Qn < 1) of these materials, combined with high geotherms (>60ºC/km) that are characteristic of rifted regions preclude any contribution to LWMA at depths >10 km. Hence, only upper basalts and hypovolcanic mafic sills would constitute potential magnetic sources. In contrast, the margins of these rifted regions consist of refractory cratonic domains, often characterized by oxidized sublithospheric mantle that host significant concentrations of primary magnetite. The higher NRMs of these peridotites (up to 15 A/m, Qn > 2.5) combined with much lower geotherms (as low as 15ºC/km) allows for a 5 to 10 km layer of uppermost mantle to potentially contribute to LWMA. Assuming that Qn values in rift margins are also <1, the new data presented here suggests that relatively young rifts would display a central negative magnetic anomaly surrounded by two broad positive anomalies. The latitude of the rift is predicted to exert a primary control on the magnitude of such anomalies, while the steepness of the magnetic gradient across the rift would primarily reflect thermal equilibration over time.

  13. Water and metasomatism in the Slave cratonic lithosphere (Canada): an FTIR study

    NASA Astrophysics Data System (ADS)

    Kilgore, M.; Peslier, A. H.; Brandon, A. D.; Schaffer, L. A.; Pearson, D. G.; O'Reilly, S. Y.; Kopylova, M. G.; Griffin, W. L.

    2017-12-01

    Water in the mantle influences melting, viscosity, seismic velocity, and electrical conductivity. The role played by water in the long-term stabilization of cratonic roots is currently being debated [1]. This study focuses on water contents of mantle minerals (olivine, pyroxene and garnet) from xenoliths found in kimberlites of the Archean Slave craton. 19 mantle xenoliths from central Lac de Gras, and 10 from northern Jericho were analyzed by FTIR for water, and their equilibration depths span the several compositional layers identified beneath the region [2]. At both locations, the shallow peridotites have lower water contents in their olivines (11-30 ppm H2O) than those from the deeper layers (28-300 ppm H2O). The driest olivines, however, are not at the base of the cratonic lithosphere (>6 GPa) as in the Kaapvaal craton [1]. Instead, the deepest olivines are hydrous (31-72 ppm H2O at Lac de Gras and 275 ppm H2O at Jericho). Correlations of water in clinopyroxene and garnet with their other trace element contents are consistent with water being added by metasomatism by melts resembling kimberlite precursors in the mantle 0.35 Ga ago beneath Lac de Gras [1]. The northern Jericho xenoliths are derived from a region of the Slave craton that is even more chemically stratified, and was affected at depth by the 1.27 Ga Mackenzie igneous events [3,4]. Metasomatism at Jericho may be responsible for the particularly high olivine water contents (up to 300 ppm H2O) compared to those at Lac de Gras, which will be investigated by acquiring trace-element data on these xenoliths. These data indicate that several episodes of metasomatic rehydration occurred in the deep part of the Slave craton mantle lithosphere, with the process being more intense in the northern part beneath Jericho, likely related to a translithospheric suture serving as a channel to introduce fluids and/or melts in the northern region [5]. Consequently, rehydration of the lithosphere does not necessarily

  14. Cyclic Cratonic Carbonates and Phanerozoic Calcite Seas.

    ERIC Educational Resources Information Center

    Wilkinson, Bruce H.

    1982-01-01

    Discusses causes of cyclicity in cratonic carbonate sequences and evidence for and potential significance of postulated primary calcite sediment components in past Paleozoic seas, outlining problems, focusing on models explaining existing data, and identifying background. Future sedimentary geologists will need to address these and related areas…

  15. New constraints on the upper mantle structure of the Slave craton from Rayleigh wave inversion

    NASA Astrophysics Data System (ADS)

    Chen, Chin-Wu; Rondenay, Stéphane; Weeraratne, Dayanthie S.; Snyder, David B.

    2007-05-01

    Rayleigh wave phase and amplitude data are analyzed to provide new insight into the velocity structure of the upper mantle beneath the Slave craton, in the northwestern Canadian Shield. We invert for phase velocities at periods between 20 s-142 s (with greatest sensitivity at depths of 28-200 km) using crossing ray paths from events recorded by the POLARIS broadband seismic network and the Yellowknife array. Phase velocities obtained for the Slave province are comparable to those from other cratons at shorter periods, but exceed the global average by ~2% at periods above 60 s, suggesting that the Slave craton may be an end member in terms of its high degree of mantle depletion. The one-dimensional inversion of phase velocities yields high upper-mantle S-wave velocities of 4.7 +/- 0.2 km/s that persist to 220 +/- 65 km depth and thus define the cratonic lithosphere. Azimuthal anisotropy is well resolved at all periods with a dominant fast direction of N59°E +/- 20°, suggesting that upper mantle anisotropy beneath the Slave craton is influenced by both lithospheric fabric and sub-lithospheric flow.

  16. "A Way to Talk about the Institution as Opposed to Just My Field": WAC Fellowships and Graduate Student Professional Development

    ERIC Educational Resources Information Center

    Cripps, Michael J.; Hall, Jonathan; Robinson, Heather M.

    2016-01-01

    The teaching assistantship is a venerable model for funding graduate studies, staffing undergraduate courses, and providing pedagogical support for emerging college and university instructors. In this article, we present a variation of this model of graduate student support: the WAC Fellowship at the City University of New York. Using survey data…

  17. Upper-mantle tectonic compartmentalization beneath Amazonian Craton from P-wave seismic tomography

    NASA Astrophysics Data System (ADS)

    Rocha, M. P.; Azevedo, P. A. D.

    2017-12-01

    The Amazonian Craton (AC) is one of the largest cratonic areas in the world, with more than 4.4 million square meters, defined as a cratonic nucleus composed of Archean to Mesoproterozoic provinces. Among the questions that remain open about AC, is that of its formation. Geochronological studies suggest that smaller blocks would have assembled in successive collisions until they stabilize in the current configuration, being AC formed by six provinces with different ages. Recent results using the P-wave seismic tomography method suggest that the geochronological boundaries between the Archean blocks exist and reach the upper mantle. These limits appear as low-velocity anomalies with NW-SE direction inside AC, differently from the expected velocity signatures for cratonic regions (high-velocities). The Archean blocks can be interpreted as high-velocity anomalies between the low-velocity anomalies, and are consistent with previous geochronological models. These results were achieved mainly by the installation of the stations of the Brazilian Seismographic Network in recent years, improving coverage especially in the northern region of Brazil. However, they are still preliminary since the seismographic stations in AC region are very distant from each other, which impairs the resolution of such structures. New stations would need to be installed in the region to confirm these results.

  18. Cratonic roots and lower crustal seismicity: Investigating the role of deep intrusion in the Western rift, Africa

    NASA Astrophysics Data System (ADS)

    Drooff, C.; Ebinger, C. J.; Lavayssiere, A.; Keir, D.; Oliva, S. J.; Tepp, G.; Gallacher, R. J.

    2017-12-01

    Improved seismic imaging beneath the African continent reveals lateral variations in lithospheric thickness, and crustal structure, complementing a growing crust and mantle xenolith data base. Border fault systems in the active cratonic rifts of East Africa are characterized by lower crustal seismicity, both in magmatic sectors and weakly magmatic sectors, providing constraints on crustal rheology and, in some areas, magmatic fluid migration. We report new seismicity data from magmatic and weakly magmatic sectors of the East African rift zone, and place the work in the context of independent geophysical and geochemical studies to models for strain localization during early rifting stages. Specifically, multidisciplinary studies in the Magadi Natron rift sectors reveal volumetrically large magmatic CO2 degassing along border faults with seismicity along projections of surface dips to the lower crust. The magmatic CO2 degassing and high Vp/Vs ratios and reflectivity of the lower crust implies that the border fault serves a conduit between the lower crustal underplating and the atmospheric. Crustal xenoliths in the Eastern rift sector indicate a granulitic lower crust, which is relatively weak in the presence of fluids, arguing against a strong lower crust. Within magmatic sectors, seismic, structural, and geochemistry results indicate that frequent lower crustal earthquakes are promoted by elevated pore pressures from volatile degassing along border faults, and hydraulic fracture around the margins of magma bodies. Within some weakly magmatic sectors, lower crustal earthquakes also occur along projections of border faults to the lower crust (>30 km), and they are prevalent in areas with high Vp/Vs in the lower crust. Within the southern Tanganyika rift, focal mechanisms are predominantly normal with steep nodal planes. Our comparative studies suggest that pervasive metasomatism above a mantle plume, and melt extraction in thin zones between cratonic roots, lead to

  19. Seismic anisotropy in eastern Africa, mantle flow, and the African superplume

    NASA Astrophysics Data System (ADS)

    Bagley, Brian; Nyblade, Andrew A.

    2013-04-01

    New estimates of seismic anisotropy from shear wave splitting measurements in eastern Africa reveal a pattern of seismic anisotropy dominated by a NE alignment of fast polarization directions with local changes around the thick Archean lithosphere of the Tanzania craton. The overall pattern is consistent with mantle flow from the African superplume but not with absolute plate motion, a plume head, or fossil anisotropy in the lithosphere. In combination with tomographic images of the African superplume, this finding suggests that plateau uplift, volcanism, and continental breakup along the Afro-Arabian rift system is strongly influenced by flow from the lower mantle and indicates a connection between lower mantle processes and the tectonic deformation of the Earth's surface.

  20. [Professor Wacław Kuśnierczyk (1908-1997)--Pro Memoria in the century of birthday].

    PubMed

    Brozek, Krzysztof; Kozakiewicz, Jacek; Kierzek, Andrzej

    2009-01-01

    Wacław Kuśnierczyk was born in 1908 in Sniatyń. He received the degree in medicine at Jan Kazimierz University in Lwów in 1932. He did his PhD degree under Professor Zaleski supervision in 1938 at Jan Kazimierz University. At that time he concentrated his scientific activity on research on tuberculosis. In 1953 he obtained the title of second degree specialist in ear, nose and throat diseases. He became a chief of Otolaryngology at Urban Hospital No 4 in Katowice in 1960. Since then this eminent physician was working on tumours located in upper respiratory tract and the possibility of its endoscopic diagnosis at Silesian Academy of Medicine in Katowice. As one of the first he pointed out the negative influence of smoking cigarettes on cancer of larynx. It was Wacław Kuśnierczyk who implemented new priorities for integrated programs in patient care, research, education and cancer prevention. He has published widely in peer reviewed journals and has edited or contributed to many books. He has given many major lectures and is the recipient of numerous prestigious awards for his scientific accomplishments. The achievement of Professor Kuśnierczyk were the valuable source of information for the physicians. In 1997, on the 31st of January he died in Katowice.

  1. On the origin of cratonic `high-mu' isotopic signatures

    NASA Astrophysics Data System (ADS)

    Reimink, J. R.; Carlson, R.; Shirey, S. B.; Pearson, D. G.; Kamber, B. S.

    2017-12-01

    Some Archean cratons (i.e. Slave, Wyoming) contain Neoarchean granitoids with initial Pb isotopic compositions indicative of derivation from sources characterized by high time-integrated U/Pb ratios (high-mu [1]). Single-stage high-m precursor source reservoir separation from the depleted mantle occurred no later than 3.9 Ga [2]. However, multi-stage separation could have occurred in the Hadean, suggesting that recycling or reworking of Eoarchean/Hadean crust played a significant role in the generation of Neoarchean granitic crust in many cratons. The Sm-Nd system is similar to the U-Pb system in that it has a short-lived parent-daughter pair (146Sm-142Nd) that is sensitive to very early differentiation events, as well as a long-lived parent-daughter pair (147Sm-143Nd) that is sensitive to differentiation throughout all of Earth history. The 103 Ma half-life of 146Sm makes it sensitive only to Sm/Nd fractionation that occurred in the Hadean, providing a useful tracker for very early differentiation events. Indeed, evidence for Neoarchean remelting of ancient crust in another craton has come from analyses of the paired Sm-Nd isotope systems from the Hudson Bay terrane of the northeastern Superior Province. These results indicate that the source of 2.7 Ga Hudson Bay terrane granitoids was Hadean mafic crust, and not Eoarchean felsic crust [3]. Here, we present new data from Neoarchean granites located in the Slave and Wyoming cratons, along with modeling of the dual paired-isotope systems of U-Pb and Sm-Nd to achieve a tighter constraint on the composition of the precursors and the timing of their melting. Combining our newly collected 142Nd data with the high-m signature of these Neoarchean rocks, we evaluate precursor source separation ages along with the source Sm/Nd and U/Pb compositions. In the simplest end-member scenarios, use of the 142Nd system allows us to test whether the cratonic high-mu signature was created by melting of Hadean mafic crust or Eoarchean

  2. Proterozoic deformation of the East Saharan Craton in Southeast Libya, South Egypt and North Sudan

    NASA Astrophysics Data System (ADS)

    Schandelmeier, H.; Richter, A.; Harms, U.

    1987-09-01

    The basement areas in Southeast Libya, South Egypt and North Sudan, west of the Nile, between Gebel Uweinat and the Bayuda Desert, are part of an approximately 1000-km-wide, complexly folded, polymetamorphic zone with a regional N-NNE-NE-ENE trend of foliation and fold axis. Since this belt extends southwestward into the area of Zalingei in the southern Darfur block (West Sudan), it is named the Northern Zalingei fold zone. Sr and Nd isotopic studies suggest that this zone is older than Pan-African and further indicate that, apart from Archean rocks in the Gebel Uweinat area, this belt is of Early-Middle Proterozoic age. An Early-Middle Proterozoic three-stage deformational and anatectic event established the present-day fold and fault geometry in the western parts of this zone in the Gebel Uweinat—Gebel Kamil area. The Pan-African tectono-thermal episode was most effective in the eastern part of the belt, near the boundary with the Nubian Shield volcano-sedimentary-ophiolite-granitoid assemblages. It caused migmatization, granite emplacement, mylonitization and large-scale wrench faulting which was related to Late Proterozoic accretionary and collisional events of the Arabian-Nubian Shield with the margin of the East Saharan Craton.

  3. Results For The Fourth Quarter 2014 Tank 50 WAC Slurry Sample: Chemical And Radionuclide Contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.

    2015-09-30

    This report details the chemical and radionuclide contaminant results for the characterization of the Calendar Year (CY) 2014 Fourth Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  4. Paleomagnetic study of 1765 Ma dyke swarm from the Singhbhum Craton: Implications to the paleogeography of India

    NASA Astrophysics Data System (ADS)

    Shankar, Ravi; Srinivasa Sarma, D.; Ramesh Babu, N.; Parashuramulu, V.

    2018-05-01

    We report the first key paleopole as a result of paleomagnetic study on a precisely dated 1765.3 ± 1.0 Ma WNW-ESE trending dyke swarm from Singhbhum Craton. This pole has been used in this study to propose the paleogeographic reconstruction of India with Baltica Craton and North China Craton. Incremental alternating field (AF) and thermal demagnetization, isolated high coercivity components with north to north-westerly declination and shallow negative inclination from 9 sampling sites which are representing different individual dykes. The primary origin of the ChRM is supported by the positive baked contact test. The WNW-ESE trending dykes yield a mean paleomagnetic direction with a declination = 329.2° and an inclination = -22.8° (k = 31.6; α95 = 9.3°). The positive bake contact test proves the primary nature of remanence. The pole position of Singhbhum Craton at 1765 Ma is 45°N, 311°E (dp = 5.2 and dm = 9.9). Paleogeographic reconstruction at ca. 1770 Ma, supported by geological, tectonic and metallogenic evidences indicate that the Baltica Craton and India linkage can be stable for at least ∼370 Ma (∼1770-1400 Ma). There is also reasonable evidence in support of India-North China Craton spatial proximity at ∼1770 Ma.

  5. Water transportation ability of flat-lying slabs in the mantle transition zone and implications for craton destruction

    NASA Astrophysics Data System (ADS)

    Wang, Zhensheng; Kusky, Timothy M.; Capitanio, Fabio A.

    2018-01-01

    Water transported by deep subduction to the mantle transition zone (MTZ) that is eventually released and migrates upwards is invoked as a likely cause for hydroweakening and cratonic lithosphere destruction. The destruction of the North China Craton (NCC) during the Mesozoic has been proposed to be related to hydroweakening. However, the source of water related to large-scale craton destruction in the NCC is poorly constrained. Some suggest that the water was mainly released from a flat-lying (or stagnating) slab in the MTZ, whereas others posit that most water was released from a previously existing strongly hydrous MTZ then perturbed by the stagnating subduction in the MTZ layer. In this study, we use numerical modeling to evaluate the water carrying ability of flat-lying slabs in the MTZ with different slab ages and water contents to simulate its maximum value and discuss its potential role on large-scale hydroweakening and craton destruction. Our results reveal that a single flat-lying slab in the MTZ cannot provide enough water for large-scale cratonic lithosphere hydroweakening and thinning. Water estimates invoked for craton destruction as experienced by the NCC can only be the result of long-term piling of multiple slabs in the MTZ or penetrating deeper into the lower mantle.

  6. Anisotropic structure of the African upper mantle from Rayleigh and Love wave tomography

    NASA Astrophysics Data System (ADS)

    Sebai, Amal; Stutzmann, Eléonore; Montagner, Jean-Paul; Sicilia, Déborah; Beucler, Eric

    2006-04-01

    The geodynamics of the mantle below Africa is not well understood and anisotropy tomography can provide new insight into the coupling between the African plate and the underlying mantle convection. In order to study the anisotropic structure of the upper mantle beneath Africa, we have measured phase velocities of 2900 Rayleigh and 1050 Love waves using the roller-coaster algorithm [Beucler, E., Stutzmann, E., Montagner, J.-P., 2003. Surface-wave higher mode phase velocity measurments, using a roller-coaster type algorithm. Geophys. J. Int. 155 (1), 289-307]. These phase velocities have been inverted to obtain a new tomographic model that gives access to isotropic S V-wave velocity perturbations, azimuthal and radial anisotropies. Isotropic S V-wave velocity maps have a lateral resolution of 500 km. Anisotropy parameters have a lateral resolution of 1000 km which is uniform over Africa for azimuthal anisotropy but decreases at the West and South of Africa for radial anisotropy. At shallow depth, azimuthal anisotropy varies over horizontal distances much smaller than the continent scale. At 280 km depth, azimuthal anisotropy is roughly N-S, except in the Afar area, which might indicate differential motion between the African plate and the underlying mantle. The three cratons of West Africa, Congo and Kalahari are associated with fast velocities and transverse anisotropy that decrease very gradually down to 300 km depth. On the other hand, we observe a significant change in the direction and amplitude of azimuthal anisotropy at about 180 km depth, which could be the signature of the root of these cratons. The Tanzania craton is a shallower structure than the other African cratons and the slow velocities (-2%) observed on the maps at 180 and 280 km depth could be the signature of hot material such as a plume head below the craton. This slow velocity anomaly extends toward the Afar and azimuthal anisotropy fast directions are N-S at 180 km depth, indicating a possible

  7. The Río de la Plata Craton: a review of units, boundaries, ages and isotopic signature

    NASA Astrophysics Data System (ADS)

    Oyhantçabal, Pedro; Siegesmund, Siegfried; Wemmer, Klaus

    2011-04-01

    A review of the lithostratigraphic units in the Río de la Plata Craton and of new and previously published geochronological, isotopic and geophysical data is presented. Sm-Nd TDM model ages between 2.6 and 2.2 Ga characterize the Piedra Alta Terrane of this craton. Crystallization ages between 2.2 and 2.1 Ga for the metamorphic protoliths and 2.1-2.0 Ga for the post-orogenic granitoids indicate juvenile crust, followed by a short period of crustal recycling. Cratonization of this terrane occurred during the late Paleoproterozoic. Younger overprinting is not observed, suggesting it had a thick and strong lithosphere in the Neoproterozoic. A similar scenario is indicated for the Tandilia Belt of Argentina. Sm-Nd TDM model ages for the Nico Pérez Terrane show two main events of crustal growth (3.0-2.6 and 2.3-1.6 Ga). The crystallization ages on zircon ranges between 3.1 and 0.57 Ga, which is evidence for long-lived crustal reworking. The age for cratonization is still uncertain. In the Taquarembó Block, which is considered the prolongation of the Nico Pérez Terrane in southern Brazil, a similar scenario can be observed. These differences together with contrasting geophysical signatures support the redefinition of the Río de la Plata Craton comprising only the Piedra Alta Terrane and the Tandilia Belt. The Sarandí del Yí Shear Zone is regarded as the eastern margin of this Craton.

  8. Magmatic zircon Lu-Hf isotopic record of juvenile addition and crustal reworking in the Gawler Craton, Australia

    NASA Astrophysics Data System (ADS)

    Reid, Anthony J.; Payne, Justin L.

    2017-11-01

    New in situ zircon Lu-Hf isotopic data are presented from magmatic rocks distributed across the Gawler Craton, Australia. These rocks range in composition from granite to gabbro, with the majority being granite or granodiorite and moderately peraluminous in composition. The new Lu-Hf isotopic data, together with previously published data, provide insight into the magmatic evolution of the craton and crust and mantle interaction through time. Increased juvenile content of magmatic rocks correlate with periods of extensional tectonism, in particular basin formation and associated magmatism during the Neoarchean to earliest Paleoproterozoic (c. 2555-2480 Ma), Middle Paleoproterozoic (c. 2020-1710 Ma) and Late Paleoproterozoic (c. 1630-160 Ma). In contrast, magmatic rocks associated with periods of orogenic activity show greater proportions of crustal derivation, particularly the magmatic rocks generated during the c. 1730-1690 Ma Kimban Orogeny. The final two major magmatic events of the Gawler Craton at c. 1630-1604 Ma and c. 1595-1575 Ma both represent periods of juvenile input into the Gawler Craton, with εHf(t) values extending to as positive as + 8. However, widespread crustal melting at this time is also indicated by the presence of more evolved εHf(t) values to - 6.5. The mixing between crust and mantle sources during these two youngest magmatic events is also indicated by the range in two stage depleted mantle model ages (TDMc) between 1.76 Ga and 2.51 Ga. Significant mantle input into the crust, particularly during formation of the c. 1595-1575 Ma Hiltaba Suite and Gawler Range Volcanics, likely facilitated the widespread crustal magmatism of this time period. Viewed spatially, average εHf(t) and TDMc values highlight three of the major shear zones within the Gawler Craton as potentially being isotopic as well as structural boundaries. Differences in isotopic composition across the Coorabbie Shear Zone in the western Gawler Craton, the Middle Bore Fault in

  9. Geology of the Terre Adélie Craton (135 – 146˚ E)

    USGS Publications Warehouse

    Ménot, R.P.; Duclaux, G.; Peucat, J.J.; Rolland, Y.; Guillot, S.; Fanning, M.; Bascou, J.; Gapais, D.; Pêcher, A.

    2007-01-01

    More than 15 years of field and laboratory investigations on samples from Terre Adélie to the western part of George Vth Land (135 to 146°E) during the GEOLETA program allow a reassessment of the Terre Adélie Craton (TAC) geology. The TAC represents the largest exposed fragment of the East Antarctic Shield preserved from both Grenville and Ross tectono-metamorphic events. Therefore it corresponds to a well-preserved continental segment that developed from the Neoarchean to the Paleoproterozoic. Together with the Gawler Craton in South Australia, the TAC is considered as part of the Mawson continent, i.e. a striking piece of the Rodinia Supercontinent. However, this craton represents one of the less studied parts of the East Antarctic Shield. The three maps presented here clearly point out the extent of two distinct domains within the Terre Adélie Craton and suggest that the TAC was built up through a polyphased evolution during the Neoarchean-Siderian (c.a. 2.5Ga) and the Statherian (c.a. 1.7Ga) periods. These data support a complete re-assessment of the TAC geology and represent a valuable base for the understanding of global geodynamics changes during Paleoproterozoic times.

  10. Small-scale upper mantle flow during the initiation of craton destruction

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Wang, Kun; Xu, Xiaobing

    2017-04-01

    The North China Craton (NCC) is an old craton which has experienced multi-episodic tectonism with surrounding plates. Bordered to the north by Xing'an-Mongolian Orogenic Belt, to the south by Qingling-Dabie-Sulu Orogen and to the far-east by (Paleo-) Pacific plate, the NCC has lost the cratonic properties within its eastern part. Evidently, the initiation and mechanism of craton destruction attract tremendous attention and remain hot debated. During the Mesozoic to the Cenozoic, the northeastern part of the NCC has been intensively revoked, along with the transition from NE shortening to NW-SE extension. The subduction of Paleo-Pacific plate becomes the prime suspect due to the same kinematic direction. Here we present a hybrid shear wave splitting measurement to investigate the mantle deformation of the NCC, and intend to constrain geodynamic process during the initiation of craton destruction. The SKS waveform data is recorded from 60 broadband stations with an average spacing of 15 km. We employ the traditional routine method to obtain fast polarization directions (FPDs, Φ) and delay times (δt) for the teleseismic events with epicenter range in 85°-115°. One may often have troubles in delimiting SKS and S wave with regard to the events at distances <85°. Waveform modeling has the advantages through repeated compatibility tests which thus can help us acquire more accurate Φ and δt. Combining these two methods, we depict the major FPDs overlapping on the geological map. Three segments along the profile exhibit NW-SE trending, which are parallel to the extension direction recorded in Erlian Basin, Songliao Basin and metamorphic core complex in Liaoning Peninsula. However, the in-between E-W trending FPDs cannot be neglected. Our previous tomography results show a high-velocity anomaly extend to the depth greater than 200 km beneath the Yanshan belt (118°-120°E). In comparison with other SKS observations in the NCC, the east-end nearly E-W FPD is possibly

  11. Cratons are from Earth, Planum are from Venus

    NASA Astrophysics Data System (ADS)

    Cooper, C. M.; Lenardic, A.; Moresi, L.

    2004-12-01

    Both the Earth and Venus exhibit ancient features that are associated with long-term stability from deformation after their initial formation. On the Earth, these features are referred to as cratons. On Venus, a classic example of such a feature is Lakshmi Planum, a large plateau that sits 4 km above the surface. Both cratons and the Lakshmi Planum have been proposed to form through some form of crustal thickening over mantle downwellings, though the physical viability of these models have not been tested. Here we present the work of numerical simulations and scaling analysis, which suggest that the formation and preservation of such features can be achieved through crustal thickening via localized deformation (i.e., thrust stacking) even in the presence of a high viscosity crust, which would inhibit viscous deformation. We choose to present this work in such a way that will highlight the similarities and differences between the two formation histories using an alternative poster format.

  12. 3D Fault Network of the Murchison Domain, Yilgarn Craton

    NASA Astrophysics Data System (ADS)

    Murdie, Ruth; Gessner, Klaus

    2014-05-01

    The architecture of Archean granite-greenstone terranes is often controlled by networks of 10 km to 100 km-scale shear zones that record displacement under amphibolite facies to greenschist facies metamorphic conditions. The geometry of such crustal scale 'fault networks' has been shown to be highly relevant to understand the tectonic and metamorphic history of granite-greenstone terranes, as well as the availability of structural controlled fluid pathways related to magmatic and hydrothermal mineralization. The Neoarchean Yilgarn Craton and the Proterozoic orogens around its margins constitute one of Earth's greatest mineral treasure troves, including iron, gold, copper and nickel mineral deposits. Whereas the Yilgarn Craton is one of the best studied Archean cratons, its enormous size and limited outcrop are detrimental to the better understanding of what controls the distribution of these vast resources and what geodynamic processes were involved the tectonic assembly of this part of the Australian continent. Here we present a network of the major faults of the NW Yilgarn Craton between the Yalgar Fault, Murchison's NW contact with the Narryer Terrane to the Ida Fault, its boundary with the Eastern Goldfields Superterrane. The model has been constructed from various geophysical and geological data, including potential field grids, Geological Survey of Western Australia map sheets, seismic reflection surveys and magnetotelluric traverses. The northern extremity of the modelled area is bounded by the Proterozoic cover and the southern limit has been arbitrarily chosen to include various greenstone belts. In the west, the major faults in the upper crust, such as the Carbar and Chundaloo Shear Zones, dip steeply towards the west and then flatten off at depth. They form complex branching fault systems that bound the greenstone belts in a series of stacked faults. East of the Ida, the far east of the model, the faults have been integrated with Geoscience Australia

  13. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction

    PubMed Central

    Guex, Jean; Pilet, Sebastien; Müntener, Othmar; Bartolini, Annachiara; Spangenberg, Jorge; Schoene, Blair; Sell, Bryan; Schaltegger, Urs

    2016-01-01

    The temporal coincidence between large igneous provinces (LIPs) and mass extinctions has led many to pose a causal relationship between the two. However, there is still no consensus on a mechanistic model that explains how magmatism leads to the turnover of terrestrial and marine plants, invertebrates and vertebrates. Here we present a synthesis of ammonite biostratigraphy, isotopic data and high precision U-Pb zircon dates from the Triassic-Jurassic (T-J) and Pliensbachian-Toarcian (Pl-To) boundaries demonstrating that these biotic crises are both associated with rapid change from an initial cool period to greenhouse conditions. We explain these transitions as a result of changing gas species emitted during the progressive thermal erosion of cratonic lithosphere by plume activity or internal heating of the lithosphere. Our petrological model for LIP magmatism argues that initial gas emission was dominated by sulfur liberated from sulfide-bearing cratonic lithosphere before CO2 became the dominant gas. This model offers an explanation of why LIPs erupted through oceanic lithosphere are not associated with climatic and biotic crises comparable to LIPs emitted through cratonic lithosphere. PMID:27009463

  14. Lunar textural analysis based on WAC-derived kilometer-scale roughness and entropy maps

    NASA Astrophysics Data System (ADS)

    Li, Bo; Wang, XueQiang; Zhang, Jiang; Chen, Jian; Ling, Zongcheng

    2016-06-01

    In general, textures are thought to be some complicated repeated patterns formed by elements, or primitives which are sorted in certain rules. Lunar surfaces record the interactions between its outside environment and itself, thus, based on high-resolution DEM model or image data, there are some topographic features which have different roughness and entropy values or signatures on lunar surfaces. Textures of lunar surfaces can help us to concentrate on typical topographic and photometric variations and reveal the relationships between obvious features (craters, impact basins, sinuous rilles (SRs) and ridges) with resurfacing processes on the Moon. In this paper, the term surface roughness is an expression of the variability of a topographic or photometric surface at kilometer scale, and the term entropy can characterize the variability inherent in a geological and topographic unit and evaluate the uncertainty of predictions made by a given geological process. We use the statistical moments of gray-level histograms in different-sized neighborhoods (e.g., 3, 5, 10, 20, 40 and 80 pixels) to compute the kilometer-scale roughness and entropy values, using the mosaic image from 70°N to 70°S obtained by Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC). Large roughness and entropy signatures were only found in the larger scale maps, while the smallest 3-pixel scale map had more disorderly and unsystematic textures. According to the entropy values in 10-pixel scale entropy map, we made a frequency curve and categorized lunar surfaces into three types, shadow effects, maria and highlands. A 2D scatter plot of entropy versus roughness values was produced and we found that there were two point clusters corresponding to the highlands and maria, respectively. In the last, we compared the topographic and photometric signatures derived from Lunar Orbiter Laser Altimeter (LOLA) data and WAC mosaic image. On the lunar surfaces, the ridges have obvious multilevel

  15. Dating Kimberlite Eruption and Erosion Phases Using Perovskite, Zircon, and Apatite (U-Th)/He Geochronology to Link Cratonic Lithosphere Evolution and Surface Processes

    NASA Astrophysics Data System (ADS)

    Stanley, J. R.; Flowers, R. M.

    2015-12-01

    In many cases it is difficult to evaluate the synchronicity and thus potential connections between disparate geologic events, such as the links between processes in the mantle lithosphere and at the surface. Developing new geochronologic tools and strategies for integrating existing chronologic data with other information is essential for addressing these problems. Here we use (U-Th)/He dating of multiple kimberlitic minerals to date kimberlite eruption and cratonic erosion phases. This approach permits us to more directly assess the link between unroofing and thermomodification of the lithosphere by tying our results to information obtained from mantle-derived clasts in the same pipes. Kimberlites are rich sources of information about the composition of the cratonic lithosphere and its evolution over time. Their xenoliths and xenocrysts can preserve a snapshot of the entire lithosphere and its sedimentary cover at the time of eruption. Accurate geochronology of these eruptions is crucial for interpreting spatiotemporal trends, but kimberlites can be difficult to date using standard techniques. Here we show that the mid-temperature thermochonometers of the zircon and perovskite (U-Th)/He (ZHe, PHe) systems can be viable tools for dating kimberlite eruption. When combined with the low temperature sensitivity of (U-Th)/He in apatite (AHe), the (U-Th)/He system can be used to date both the emplacement and the erosional cooling history of kimberlites. The southern African shield is an ideal location to test the utility of this approach because the region was repeatedly intruded by kimberlites in the Cretaceous, with two major pulses at ~200-110 Ma and ~100-80 Ma. These kimberlites contain a well-studied suite of mantle xenoliths and xenocrysts that document lithospheric heating and metasomatism over this interval. Our ZHe and PHe dates overlap with published eruption ages and add new ages for undated pipes. Our AHe dates constrain the spatial patterns of Cretaceous

  16. New Constraints on Upper Mantle Structure Underlying the Diamondiferous Central Slave Craton, Canada, from Teleseismic Body Wave Tomography

    NASA Astrophysics Data System (ADS)

    Esteve, C.; Schaeffer, A. J.; Audet, P.

    2017-12-01

    Over the past number of decades, the Slave Craton (Canada) has been extensively studied for its diamondiferous kimberlites. Not only are diamonds a valuable resource, but their kimberlitic host rocks provide an otherwise unique direct source of information on the deep upper mantle (and potentially transition zone). Many of the Canadian Diamond mines are located within the Slave Craton. As a result of the propensity for diamondiferous kimberlites, it is imperative to probe the deep mantle structure beneath the Slave Craton. This work is further motivated by the increase in high-quality broadband seismic data across the Northern Canadian Cordillera over the past decade. To this end we have generated a P and S body wave tomography model of the Slave Craton and its surroundings. Furthermore, tomographic inversion techniques are growing ever more capable of producing high resolution Earth models which capture detailed structure and dynamics across a range of scale lengths. Here, we present preliminary results on the structure of the upper mantle underlying the Slave Craton. These results are generated using data from eight different seismic networks such as the Canadian National Seismic Network (CNSN), Yukon Northwest Seismic Network (YNSN), older Portable Observatories for Lithospheric Analysis and Reseach Investigating Seismicity (POLARIS), Regional Alberta Observatory for Earthquake Studies Network (RV), USArray Transportable Array (TA), older Canadian Northwest Experiment (CANOE), Batholith Broadband (XY) and the Yukon Observatory (YO). This regional model brings new insights about the upper mantle structure beneath the Slave Craton, Canada.

  17. Updating the Geologic Barcodes for South China: Discovery of Late Archean Banded Iron Formations in the Yangtze Craton.

    PubMed

    Ye, Hui; Wu, Chang-Zhi; Yang, Tao; Santosh, M; Yao, Xi-Zhu; Gao, Bing-Fei; Wang, Xiao-Lei; Li, Weiqiang

    2017-11-08

    Banded iron formations (BIFs) in Archean cratons provide important "geologic barcodes" for the global correlation of Precambrian sedimentary records. Here we report the first finding of late Archean BIFs from the Yangtze Craton, one of largest Precambrian blocks in East Asia with an evolutionary history of over 3.3 Ga. The Yingshan iron deposit at the northeastern margin of the Yangtze Craton, displays typical features of BIF, including: (i) alternating Si-rich and Fe-rich bands at sub-mm to meter scales; (ii) high SiO 2  + Fe 2 O 3total contents (average 90.6 wt.%) and Fe/Ti ratios (average 489); (iii) relative enrichment of heavy rare earth elements and positive Eu anomalies (average 1.42); (iv) and sedimentary Fe isotope compositions (δ 56 Fe IRMM-014 as low as -0.36‰). The depositional age of the BIF is constrained at ~2464 ± 24 Ma based on U-Pb dating of zircon grains from a migmatite sample of a volcanic protolith that conformably overlied the Yingshan BIF. The BIF was intruded by Neoproterozoic (805.9 ± 4.7 Ma) granitoids that are unique in the Yangtze Craton but absent in the North China Craton to the north. The discovery of the Yingshan BIF provides new constraints for the tectonic evolution of the Yangtze Craton and has important implications in the reconstruction of Pre-Nuna/Columbia supercontinent configurations.

  18. Neoarchean Subduction Recorded in the Northern Margin of the Yangtze Craton, South China

    NASA Astrophysics Data System (ADS)

    Zhang, S. B.; Zheng, Y. F.

    2016-12-01

    The Neoarchean is an important era during which plate tectonics began to operate widely on the earth and the continental crust compositions changed dramatically. However, reliable record of plate subduction has never been reported yet in the Yangtze Craton. Here we report geochemical studies on gneissic tonalite, trondhjemite and amphibolite in the Yudongzi Complex in the northern margin of the Yangtze Craton, which suggests that there is a plate subduction recorded in this area at about 2.7 Ga.The rocks in the Yudongzi Complex are gneissic granite, gneissic tonalite, amphibolite gneiss and magnetite quartzite. Most rocks are enriched in sodic. The gneissic granites show positive Eu anomalies, high (La/Yb)cn and Sr/Y ratios, low Ybcn and Y, resembling typical TTG. The amphibolite and tonalite gneiss show less fractionated REE patterns. SHRIMP zircon U-Pb dating on one gneissic trondhjemite, one amphibolite and one tonalite gave crystallization ages of 2667±21 Ma, 2701±10 Ma and 2697±9 Ma, respectively. They all recorded a metamorphic event at about 2.48 Ga. The SHRIMP zircon oxygen isotope analysis for a trondhjemite and an amphibolite gave δ18O values of 6.2±0.3‰ and 6.3±0.4‰, respectively. The oxygen isotope ratios higher than normal mantle values suggest a source experienced low temperature alteration. The laser fluoration analysis of bulk minerals gave δ18O values of 6.4-8.8‰ for zircon and 12.5-15.2‰ for quartz. The zircon Lu-Hf isotope analysis on the trondhjemite and amphibolite gave similar ɛHf(t) values of 0.08±0.48 and 0.07±0.63, respectively. Whole-rock ɛNd(t) values range from -1.5 to +1.0. These trondhjemite and tonalite can be interpreted as derivation from partial melting of subducted oceanic slab with a garnet-amphibolite residue.Considering the 2.67 Ga A-type granitic rocks at Huji in the interior of the craton, plate subduction took place in the northern edge of the Yangtze Craton. The Yudongzi trondhjemite and tonalite were

  19. Mg-Fe Isotope Systems of Mantle Xenoliths: Constrains on the Evolution of Siberian Craton

    NASA Astrophysics Data System (ADS)

    An, Y.; Kiseeva, E. S.; Sobolev, N. V.; Zhang, Z.

    2017-12-01

    Mantle xenoliths bring to the surface a variety of lithologies (dunites, lherzolites, harzburgites, wehrlites, eclogites, pyroxenites, and websterites) and represent snapshots of the geochemical processes that occur deep within the Earth. Recent improvements in the precision of the MC-ICP-MS measurements have allowed us to expand the amount of data on Mg and Fe isotopes for mantle-derived samples. For instance, to constrain the isotopic composition of the Earth based on the study of spinel and garnet peridotites (An et al., 2017; Teng et al., 2010), to trace the origin and to investigate the isotopic fractionation mechanism during metamorphic process using cratonic or orogenic eclogites (Li et al., 2011; Wang et al., 2012) and to reveal the metasomatism-induced mantle heterogeneity by pyroxenites (Hu et al., 2016). Numerous multi-stage modification events and mantle layering are detected in the subcontinental lithospheric mantle under the Siberian craton (Ashchepkov et al., 2008a; Sobolev et al., 1975, etc). Combined analyses of Mg and Fe isotopic systems could provide new constraints on the formation and evolution of the ancient cratonic mantle. In order to better constrain the magnitude and mechanism of inter-mineral Mg and Fe isotopic fractionations at high temperatures, systematic studies of mantle xenoliths are needed. For example, theoretical calculations and natural samples measurements have shown that large equilibrium Mg isotope fractionations controlled by the difference in coordination number of Mg among minerals could exist (Huang et al., 2013; Li et al., 2011). Thus, the Mg isotope geothermometer could help us trace the evolution history of ancient cratons. In this study we present Mg and Fe isotopic data for whole rocks and separated minerals (clinopyroxene (cpx) and garnet (grt)) from different types of mantle xenoliths (garnet pyroxenites, eclogites, grospydites and garnet peridotites) from a number of kimberlite pipes in Siberian craton (Udachnaya

  20. Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution.

    PubMed

    Fritz, H; Abdelsalam, M; Ali, K A; Bingen, B; Collins, A S; Fowler, A R; Ghebreab, W; Hauzenberger, C A; Johnson, P R; Kusky, T M; Macey, P; Muhongo, S; Stern, R J; Viola, G

    2013-10-01

    The East African Orogen, extending from southern Israel, Sinai and Jordan in the north to Mozambique and Madagascar in the south, is the world́s largest Neoproterozoic to Cambrian orogenic complex. It comprises a collage of individual oceanic domains and continental fragments between the Archean Sahara-Congo-Kalahari Cratons in the west and Neoproterozoic India in the east. Orogen consolidation was achieved during distinct phases of orogeny between ∼850 and 550 Ma. The northern part of the orogen, the Arabian-Nubian Shield, is predominantly juvenile Neoproterozoic crust that formed in and adjacent to the Mozambique Ocean. The ocean closed during a protracted period of island-arc and microcontinent accretion between ∼850 and 620 Ma. To the south of the Arabian Nubian Shield, the Eastern Granulite-Cabo Delgado Nappe Complex of southern Kenya, Tanzania and Mozambique was an extended crust that formed adjacent to theMozambique Ocean and experienced a ∼650-620 Ma granulite-facies metamorphism. Completion of the nappe assembly around 620 Ma is defined as the East African Orogeny and was related to closure of the Mozambique Ocean. Oceans persisted after 620 Ma between East Antarctica, India, southern parts of the Congo-Tanzania-Bangweulu Cratons and the Zimbabwe-Kalahari Craton. They closed during the ∼600-500 Ma Kuungan or Malagasy Orogeny, a tectonothermal event that affected large portions of southern Tanzania, Zambia, Malawi, Mozambique, Madagascar and Antarctica. The East African and Kuungan Orogenies were followed by phases of post-orogenic extension. Early ∼600-550 Ma extension is recorded in the Arabian-Nubian Shield and the Eastern Granulite-Cabo Delgado Nappe Complex. Later ∼550-480 Ma extension affected Mozambique and southern Madagascar. Both extension phases, although diachronous,are interpreted as the result of lithospheric delamination. Along the strike of the East African Orogen, different geodynamic settings resulted in the evolution

  1. Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution

    NASA Astrophysics Data System (ADS)

    Fritz, H.; Abdelsalam, M.; Ali, K. A.; Bingen, B.; Collins, A. S.; Fowler, A. R.; Ghebreab, W.; Hauzenberger, C. A.; Johnson, P. R.; Kusky, T. M.; Macey, P.; Muhongo, S.; Stern, R. J.; Viola, G.

    2013-10-01

    The East African Orogen, extending from southern Israel, Sinai and Jordan in the north to Mozambique and Madagascar in the south, is the world´s largest Neoproterozoic to Cambrian orogenic complex. It comprises a collage of individual oceanic domains and continental fragments between the Archean Sahara-Congo-Kalahari Cratons in the west and Neoproterozoic India in the east. Orogen consolidation was achieved during distinct phases of orogeny between ∼850 and 550 Ma. The northern part of the orogen, the Arabian-Nubian Shield, is predominantly juvenile Neoproterozoic crust that formed in and adjacent to the Mozambique Ocean. The ocean closed during a protracted period of island-arc and microcontinent accretion between ∼850 and 620 Ma. To the south of the Arabian Nubian Shield, the Eastern Granulite-Cabo Delgado Nappe Complex of southern Kenya, Tanzania and Mozambique was an extended crust that formed adjacent to theMozambique Ocean and experienced a ∼650-620 Ma granulite-facies metamorphism. Completion of the nappe assembly around 620 Ma is defined as the East African Orogeny and was related to closure of the Mozambique Ocean. Oceans persisted after 620 Ma between East Antarctica, India, southern parts of the Congo-Tanzania-Bangweulu Cratons and the Zimbabwe-Kalahari Craton. They closed during the ∼600-500 Ma Kuungan or Malagasy Orogeny, a tectonothermal event that affected large portions of southern Tanzania, Zambia, Malawi, Mozambique, Madagascar and Antarctica. The East African and Kuungan Orogenies were followed by phases of post-orogenic extension. Early ∼600-550 Ma extension is recorded in the Arabian-Nubian Shield and the Eastern Granulite-Cabo Delgado Nappe Complex. Later ∼550-480 Ma extension affected Mozambique and southern Madagascar. Both extension phases, although diachronous,are interpreted as the result of lithospheric delamination. Along the strike of the East African Orogen, different geodynamic settings resulted in the evolution of

  2. Receiver function imaging of mantle transition zone discontinuities beneath the Tanzania Craton and the Eastern and Western Branches of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Sun, M.; Liu, K. H.; Fu, X.; Gao, S. S.

    2017-12-01

    To investigate the mechanism of initiation and development of the Eastern African Rifting System (EARS) circumfluent the Tanzania Craton (TC), over 7,100 P-to-S radial receiver functions (RFs) recorded by 87 broadband seismic stations are stacked to map the topography of mantle transition zone (MTZ) discontinuities beneath the TC and the Eastern and Western Branches of the EARS. After time-depth conversion using the 1-D IASP91 Earth model, the resulting 410 km (d410) and 660 km (d660) discontinuity apparent depths are found to be greater than the global averages beneath the whole study area, implying slower than normal upper mantle velocities. The mean thickness of the MTZ beneath the Western Branch and TC is about 252 km, which is comparable to the global average and is inconsistent with the existence of present-day thermal upwelling originating from the lower mantle. In contrast, beneath the Eastern Branch, an 30 km thinning of the MTZ is observed from an up to 50 km and 20 km apparent depression of the d410 and d660, respectively. On the basis of previous seismic tomographic results and empirical relationships between velocity and thermal anomalies, we propose that the most plausible explanation for the observations beneath the volcanic Eastern Branch is the existence of a low-velocity layer extending from the surface to the upper MTZ, probably caused by decompression partial melting associated with continental rifting. The observations are in general agreement with an upper mantle origin for the initiation and development of both the Western and Eastern Branches of the EARS beneath the study area.

  3. Olivine water contents in the continental lithosphere and the longevity of cratons.

    PubMed

    Peslier, Anne H; Woodland, Alan B; Bell, David R; Lazarov, Marina

    2010-09-02

    Cratons, the ancient cores of continents, contain the oldest crust and mantle on the Earth (>2 Gyr old). They extend laterally for hundreds of kilometres, and are underlain to depths of 180-250 km by mantle roots that are chemically and physically distinct from the surrounding mantle. Forming the thickest lithosphere on our planet, they act as rigid keels isolated from the flowing asthenosphere; however, it has remained an open question how these large portions of the mantle can stay isolated for so long from mantle convection. Key physical properties thought to contribute to this longevity include chemical buoyancy due to high degrees of melt-depletion and the stiffness imparted by the low temperatures of a conductive thermal gradient. Geodynamic calculations, however, suggest that these characteristics are not sufficient to prevent the lithospheric mantle from being entrained during mantle convection over billions of years. Differences in water content are a potential source of additional viscosity contrast between cratonic roots and ambient mantle owing to the well-established hydrolytic weakening effect in olivine, the most abundant mineral of the upper mantle. However, the water contents of cratonic mantle roots have to date been poorly constrained. Here we show that olivine in peridotite xenoliths from the lithosphere-asthenosphere boundary region of the Kaapvaal craton mantle root are water-poor and provide sufficient viscosity contrast with underlying asthenosphere to satisfy the stability criteria required by geodynamic calculations. Our results provide a solution to a puzzling mystery of plate tectonics, namely why the oldest continents, in contrast to short-lived oceanic plates, have resisted recycling into the interior of our tectonically dynamic planet.

  4. How to Create High-Impact Writing Assignments That Enhance Learning and Development and Reinvigorate WAC/WID Programs: What Almost 72,000 Undergraduates Taught Us

    ERIC Educational Resources Information Center

    Anderson, Paul; Anson, Chris M.; Gonyea, Robert M.; Paine, Charles

    2016-01-01

    This article reports on a study that suggests ways that Writing Across the Curriculum/Writing in the Disciplines (WAC/WID) programs can increase the effectiveness of their efforts, including implementation of writingintensive courses, which are one of the Association of American Colleges and Universities' High-Impact Educational Practices. The…

  5. Application of multi-dimensional discrimination diagrams and probability calculations to Paleoproterozoic acid rocks from Brazilian cratons and provinces to infer tectonic settings

    NASA Astrophysics Data System (ADS)

    Verma, Sanjeet K.; Oliveira, Elson P.

    2013-08-01

    In present work, we applied two sets of new multi-dimensional geochemical diagrams (Verma et al., 2013) obtained from linear discriminant analysis (LDA) of natural logarithm-transformed ratios of major elements and immobile major and trace elements in acid magmas to decipher plate tectonic settings and corresponding probability estimates for Paleoproterozoic rocks from Amazonian craton, São Francisco craton, São Luís craton, and Borborema province of Brazil. The robustness of LDA minimizes the effects of petrogenetic processes and maximizes the separation among the different tectonic groups. The probability based boundaries further provide a better objective statistical method in comparison to the commonly used subjective method of determining the boundaries by eye judgment. The use of readjusted major element data to 100% on an anhydrous basis from SINCLAS computer program, also helps to minimize the effects of post-emplacement compositional changes and analytical errors on these tectonic discrimination diagrams. Fifteen case studies of acid suites highlighted the application of these diagrams and probability calculations. The first case study on Jamon and Musa granites, Carajás area (Central Amazonian Province, Amazonian craton) shows a collision setting (previously thought anorogenic). A collision setting was clearly inferred for Bom Jardim granite, Xingú area (Central Amazonian Province, Amazonian craton) The third case study on Older São Jorge, Younger São Jorge and Maloquinha granites Tapajós area (Ventuari-Tapajós Province, Amazonian craton) indicated a within-plate setting (previously transitional between volcanic arc and within-plate). We also recognized a within-plate setting for the next three case studies on Aripuanã and Teles Pires granites (SW Amazonian craton), and Pitinga area granites (Mapuera Suite, NW Amazonian craton), which were all previously suggested to have been emplaced in post-collision to within-plate settings. The seventh case

  6. Cenozoic Source-to-Sink of the African margin of the Equatorial Atlantic

    NASA Astrophysics Data System (ADS)

    Rouby, Delphine; Chardon, Dominique; Huyghe, Damien; Guillocheau, François; Robin, Cecile; Loparev, Artiom; Ye, Jing; Dall'Asta, Massimo; Grimaud, Jean-Louis

    2016-04-01

    The objective of the Transform Source to Sink Project (TS2P) is to link the dynamics of the erosion of the West African Craton to the offshore sedimentary basins of the African margin of the Equatorial Atlantic at geological time scales. This margin, alternating transform and oblique segments from Guinea to Nigeria, shows a strong structural variability in the margin width, continental geology and relief, drainage networks and subsidence/accumulation patterns. We analyzed this system combining onshore geology and geomorphology as well as offshore sub-surface data. Mapping and regional correlation of dated lateritic paleo-landscape remnants allows us to reconstruct two physiographic configurations of West Africa during the Cenozoic. We corrected those reconstitutions from flexural isostasy related to the subsequent erosion. These geometries show that the present-day drainage organization stabilized by at least 29 Myrs ago (probably by 34 Myr) revealing the antiquity of the Senegambia, Niger and Volta catchments toward the Atlantic as well as of the marginal upwarp currently forming a continental divide. The drainage rearrangement that lead to this drainage organization was primarily enhanced by the topographic growth of the Hoggar swell and caused a major stratigraphic turnover along the Equatorial margin of West Africa. Elevation differences between paleo-landscape remnants give access to the spatial and temporal distribution of denudation for 3 time-increments since 45 Myrs. From this, we estimate the volumes of sediments and associated lithologies exported by the West African Craton toward different segments of the margin, taking into account the type of eroded bedrock and the successive drainage reorganizations. We compare these data to Cenozoic accumulation histories in the basins and discuss their stratigraphic expression according to the type of margin segment they are preserved in.

  7. Constant average olivine Mg# in cratonic mantle reflects Archaean mantle melting to the exhaustion of orthopyroxene

    NASA Astrophysics Data System (ADS)

    Bernstein, S.; Kelemen, P. B.; Hanghoj, K.

    2006-12-01

    Shallow (garnet-free) cratonic mantle, occurring as xenoliths in kimberlites and alkaline basaltic lavas, has high Mg# (100x Mg/(Mg+Fe)>92) and is poor in Al and Ca compared to off-cratonic mantle. Many xenoliths show rhenium-depletion age of > 3 Ga, and are thus representative of depleted mantle peridotite that form an integral part of the stable nuclei of Archaean (2.5-3.8 Ga) cratons. Accordingly, the depleted composition of the xenolith suites is linked to Archaean melt extraction events. We have compiled data for many suites of shallow cratonic mantle xenoliths worldwide, including samples from cratons of Kaapvaal, Tanzania, Siberia, Slave, North China and Greenland, and encompassing both the classic orthopyroxene-rich peridotites of Kaapvaal and orthopyroxene-poor peridotites from Greenland. The suites show a remarkably small range in average olivine Mg# of 92.8 +/- 0.2. Via comparison with data for experimental melting of mantle peridotite compositions, we explain consistent olivine Mg# in the shallow cratonic mantle as the result of mantle melting and melt extraction to the point of orthopyroxene exhaustion, leaving a nearly monomineralic olivine, or dunitic, residue. Experimental data for peridotite melting at pressures less than 4 GPa and data on natural rocks suggest that mantle olivine has a Mg# of about 92.8 at the point of orthopyroxene exhaustion. If the melt extraction was efficient, no further melting could take place without a considerable temperature increase or melt/fluid flux through the dunite residue at high temperatures. While the high Mg#, dunite-dominated xenolith suites from e.g. Greenland represent simple residues from mantle melting, the orthopyroxene-rich xenolith suites with identical Mg# as known from e. g. Kaapvaal must reflect some additional processes. We envisage their derivation from dunite protoliths via subsequent melt/rock reaction with silica-rich melts or, in some cases, possibly as residues at higher average melting

  8. Phanerozoic burial and unroofing history of the western Slave craton and Wopmay orogen from apatite (U-Th)/He thermochronometry

    NASA Astrophysics Data System (ADS)

    Ault, Alexis K.; Flowers, Rebecca M.; Bowring, Samuel A.

    2009-06-01

    Low temperature thermochronometry of cratonic regions can illuminate relationships among burial and unroofing patterns, surface subsidence and uplift, and lithosphere-asthenosphere interactions. The Slave craton, initially stabilized by the development of a thick lithospheric mantle root in late Archean time, is an excellent location in which to examine these connections. Although the Slave craton currently lacks Phanerozoic cover, Phanerozoic sedimentary xenoliths entrained in ca. 610 to 45 Ma kimberlites indicate that the region underwent a more dynamic history of burial and unroofing than widely recognized. We report new apatite (U-Th)/He thermochronometry data along a southeast to northwest transect from the interior of the Slave craton into the adjacent Paleoproterozoic Wopmay orogen to resolve the region's depositional and denudational history. Six samples from the western Slave craton and three samples from Wopmay orogen yield mean dates from 296 ± 41 Ma to 212 ± 39 Ma. Individual apatite dates are broadly uniform over a wide span of apatite [eU], and this pattern can be used to more tightly restrict the spectrum of viable temperature-time paths that can explain the dataset. When coupled with geologic and stratigraphic information, temperature-time simulations of the thermochronometry results suggest complete He loss from the apatites at minimum peak temperatures of ~ 88 °C in Devonian-Pennsylvanian time, cooling to near-surface conditions by the Early Cretaceous, followed by reheating to ≤ 72 °C during Cretaceous-Early Tertiary time. Consideration of modern and ancient geotherm constraints implies ≥ 3.3 km of burial during the first Phanerozoic heating phase, with an ancillary phase of reburial in late Mesozoic-Cenozoic time. The uniformity of the apatite (U-Th)/He dates indicates that the rocks encompassed by our > 250 km-long sample transect experienced similar Phanerozoic thermal histories. Despite the distinctly different lithospheric

  9. The geological record of base metal sulfides in the cratonic mantle: A microscale 187Os/188Os study of peridotite xenoliths from Somerset Island, Rae Craton (Canada)

    NASA Astrophysics Data System (ADS)

    Bragagni, A.; Luguet, A.; Fonseca, R. O. C.; Pearson, D. G.; Lorand, J.-P.; Nowell, G. M.; Kjarsgaard, B. A.

    2017-11-01

    We report detailed petrographic investigations along with 187Os/188Os data in Base Metal Sulfide (BMS) on four cratonic mantle xenoliths from Somerset Island (Rae Craton, Canada). The results shed light on the processes affecting the Re-Os systematics and provide time constraints on the formation and evolution of the cratonic lithospheric mantle beneath the Rae craton. When devoid of alteration, BMS grains mainly consist of pentlandite + pyrrhotite ± chalcopyrite. The relatively high BMS modal abundance of the four investigated xenoliths cannot be reconciled with the residual nature of these peridotites, but requires addition of metasomatic BMS. This is especially evident in the two peridotites with the highest bulk Pd/Ir and Pd/Pt. Metasomatic BMS likely formed during melt/fluid percolation in the Sub Continental Lithospheric Mantle (SCLM) as well as during infiltration of the host kimberlite magma, when djerfisherite crystallized around older Fe-Ni-sulfides. On the whole-rock scale, kimberlite metasomatism is visible in a subset of bulk xenoliths, which defines a Re-Os errorchron that dates the host magma emplacement. The 187Os/188Os measured in the twenty analysed BMS grains vary from 0.1084 to >0.17 and it shows no systematic variation depending on the sulfide mineralogical assemblage. The largest range in 187Os/188Os is observed in BMS grains from the two xenoliths with the highest Pd/Ir, Pd/Pt, and sulfide modal abundance. The whole-rock TRD ages of these two samples underestimate the melting age obtained from BMS, demonstrating that bulk Re-Os model ages from peridotites with clear evidence of metasomatism should be treated with caution. The TRD ages determined in BMS grains are clustered around 2.8-2.7, ∼2.2 and ∼1.9 Ga. The 2.8-2.7 Ga TRD ages document the main SCLM building event in the Rae craton, which is likely related to the formation of the local greenstone belts in a continental rift setting. The Paleoproterozoic TRD ages can be explained by

  10. Moho Depth Variations in the Northeastern North China Craton Revealed by Receiver Function Imaging

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Chen, L.; Yao, H.; Fang, L.

    2016-12-01

    The North China Craton (NCC), one of the oldest cratons in the world, has attracted wide attention in Earth Science for decades because of the unusual Mesozoic destruction of its cratonic lithosphere. Understanding the deep processes and mechanism of this craton destruction demands detailed knowledge about the deep structure of the region. In this study, we used two-year teleseismic receiver function data from the North China Seismic Array consisting of 200 broadband stations deployed in the northeastern NCC to image the Moho undulation of the region. A 2-D wave equation-based poststack depth migration method was employed to construct the structural images along 19 profiles, and a pseudo 3D crustal velocity model of the region based on previous ambient noise tomography and receiver function study was adopted in the migration. We considered both the Ps and PpPs phases, but in some cases we also conducted PpSs+PsPs migration using different back azimuth ranges of the data, and calculated the travel times of all the considered phases to constrain the Moho depths. By combining the structure images along the 19 profiles, we got a high-resolution Moho depth map beneath the northeastern NCC. Our results broadly consist with the results of previous active source studies [http://www.craton.cn/data], and show a good correlation of the Moho depths with geological and tectonic features. Generally, the Moho depths are distinctly different on the opposite sides of the North-South Gravity Lineament. The Moho in the west are deeper than 40 km and shows a rapid uplift from 40 km to 30 km beneath the Taihang Mountain Range in the middle. To the east in the Bohai Bay Basin, the Moho further shallows to 30-26 km depth and undulates by 3 km, coinciding well with the depressions and uplifts inside the basin. The Moho depth beneath the Yin-Yan Mountains in the north gradually decreases from 42 km in the west to 25 km in the east, varying much smoother than that to the south.

  11. Magnetotelluric investigations of the lithosphere beneath the central Rae craton, mainland Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Spratt, Jessica E.; Skulski, Thomas; Craven, James A.; Jones, Alan G.; Snyder, David B.; Kiyan, Duygu

    2014-03-01

    New magnetotelluric soundings at 64 locations throughout the central Rae craton on mainland Nunavut constrain 2-D resistivity models of the crust and lithospheric mantle beneath three regional transects. Responses determined from colocated broadband and long-period magnetotelluric recording instruments enabled resistivity imaging to depths of > 300 km. Strike analysis and distortion decomposition on all data reveal a regional trend of 45-53°, but locally the geoelectric strike angle varies laterally and with depth. The 2-D models reveal a resistive upper crust to depths of 15-35 km that is underlain by a conductive layer that appears to be discontinuous at or near major mapped geological boundaries. Surface projections of the conductive layer coincide with areas of high grade, Archean metasedimentary rocks. Tectonic burial of these rocks and thickening of the crust occurred during the Paleoproterozoic Arrowsmith (2.3 Ga) and Trans-Hudson orogenies (1.85 Ga). Overall, the uppermost mantle of the Rae craton shows resistivity values that range from 3000 Ω m in the northeast (beneath Baffin Island and the Melville Peninsula) to 10,000 Ω m beneath the central Rae craton, to >50,000 Ω m in the south near the Hearne Domain. Near-vertical zones of reduced resistivity are identified within the uppermost mantle lithosphere that may be related to areas affected by mantle melt or metasomatism associated with emplacement of Hudsonian granites. A regional decrease in resistivities to values of 500 Ω m at depths of 180-220 km, increasing to 300 km near the southern margin of the Rae craton, is interpreted as the lithosphere-asthenosphere boundary.

  12. LA-SF-ICP-MS zircon U-Pb geochronology of granitic rocks from the central Bundelkhand greenstone complex, Bundelkhand craton, India

    NASA Astrophysics Data System (ADS)

    Verma, Sanjeet K.; Verma, Surendra P.; Oliveira, Elson P.; Singh, Vinod K.; Moreno, Juan A.

    2016-03-01

    The central Bundelkhand greenstone complex in Bundelkhand craton, northern India is one of the well exposed Archaean supracrustal amphibolite, banded iron formation (BIF) and felsic volcanic rocks (FV) and associated with grey and pink porphyritic granite, tonalite-trondhjemite-granodiorite (TTG). Here we present high precision zircon U-Pb geochronological data for the pinkish porphyritic granites and TTG. The zircons from the grey-pinkish porphyritic granite show three different concordia ages of 2531 ± 21 Ma, 2516 ± 38 Ma, and 2514 ± 13 Ma, which are interpreted as the best estimate of the magmatic crystallization age for the studied granites. We also report the concordia age of 2669 ± 7.4 Ma for a trondhjemite gneiss sample, which is so far the youngest U-Pb geochronological data for a TTG rock suite in the Bundelkhand craton. This TTG formation at 2669 Ma is also more similar to Precambrian basement TTG gneisses of the Aravalli Craton of north western India and suggests that crust formation in the Bundelkhand Craton occurred in a similar time-frame to that recorded from the Aravalli craton of the North-western India.

  13. Lower Devonian paleomagnetic dating of a large mafic sill along the western border of the Murzuq cratonic basin (Saharan metacraton, SE Algeria).

    NASA Astrophysics Data System (ADS)

    El-M. Derder, Mohamed; Maouche, Said; Liégeois, Jean-Paul; Henry, Bernard; Amenna, Mohamed; Ouabadi, Aziouz; Bellon, Hervé; Bruguier, Olivier; Bayou, Boualem; Bestandji, Rafik; Nouar, Omar; Bouabdallah, Hamza; Ayache, Mohamed; Beddiaf, Mohamed

    2017-04-01

    The Murzuq basin located in central North Africa, in Algeria, Libya and Niger is a key area, delineating a relictual cratonic area within the Saharan metacraton (Liégeois et al., 2013). On its western border, we discovered a very large sill ("Arrikine" sill), with a thickness up to 250m and a minimum length of 35 km. It is made of mafic rocks and is interbedded within the Silurian sediments of the Tassilis series. In the vicinity, the only known post-Pan-African magmatism is the Cenozoic volcanism in the In Ezzane area. Further south in Niger, also along the SW border of the Murzuq basin, large Paleozoic dolerite (Carte géologique du Sahara central, 1962) are probably related to the "Arrikine" sill magmatism, as they are in the same stratigraphical position. Several hundred kilometers westward and southwestward of Arrikine, Paleozoic magmatic products are known: Carboniferous basic intrusives (346 Ma; Djellit et al., 2006) are located in the Tin Serririne basin and Devonian ring complexes (407 Ma; Moreau et al, 1994) in the Aïr Mountains. For the Arrikine sill, K/Ar data gave a rejuvenation age (326 Ma) related to a K-rich aplitic phase and the LA-ICP-MS U-Pb method on zircon showed that only inherited zircons are present (0.6 to 0.7, 2.0 and 2.7 Ga ages), pointing to ages from the underlying basement corresponding to the Murzuq craton covered by Pan-African sediments (Derder et al., 2016). By contrast, a well-defined paleomagnetic pole yielded an age of 410-400 Ma by comparison with the Gondwana Apparent Polar Wander Path (APWP). This age, similar to that reported for the Aïr complexes (Moreau et al., 1994), can be correlated with the deep phreatic eruption before Pragian time thought to be at the origin of sand injections, which gave circular structures observed on different borders of the Murzuq basin (Moreau et al,. 2012). This Lower Devonian magmatism had therefore a regional extension and can be related to a "Caledonian" transtensive reactivation of the

  14. A Sm-Nd and Pb isotope study of Archaean greenstone belts in the southern Kaapvaal Craton, South Africa

    NASA Technical Reports Server (NTRS)

    Wilson, A. H.; Carlson, R. W.

    1989-01-01

    An Sm-Nd and Pb study on a wide variety of lithologies in Archaean greenstone belt fragments in the southern Kaapvaal Craton reveals a complex petrogenetic history. The fragments are important because they represent a 350 km transect through the craton south of Barberton to its southern margin. The Commondale greenstone belt yields a precise Sm-Nd age of 3334 + or - 18 Ma on an exceptionally well preserved peridotite suite of komatiitic affinity. The wide range of Sm/Nd from 0.6 to 1.0 is attributed to the unusual occurrence of orthopyroxene in the spinifex-bearing rocks. A considerably younger age of about 3.2 Ga is suggested for the Nondweni greenstone belt close to the southern margin of the craton on the basis of separate Sm-Nd isochrons on individual lithologies ranging from komatiite, through komatiitic basalt and basalt to felsic volcanic rocks. On the basis of the present study the greenstone belts appear to have been emplaced at progressively younger ages toward the southern margin of the craton.

  15. Petrology of Teofilândia granitoids: An example of 2.1 Ga crustal accretion in the São Francisco Craton (Bahia, Brazil)

    NASA Astrophysics Data System (ADS)

    Nascimento, H. S.; Nédélec, Anne; Bouchez, Jean-Luc

    2017-07-01

    Teofilândia granitoids are representative of the Paleoproterozoic plutonic rocks, which intruded the Serrinha block, an Archean crustal fragment of the Sao Francisco Craton (Bahia, Brazil). Three plutons were emplaced, the Teofilândia granodiorite, the Barrocas trondhjemite and the Santa Rosa granite, respectively dated at 2130, 2127 and 2073 Ma. The two first plutons are calc-alkaline rocks following a trondhjemitic trend. They resemble Archean TTGs (tonalites-trondhjemites-granodiorites) by their major and trace element compositions and especially by their fractionated REE patterns, with very low HREE contents. These juvenile magmas resulted from partial melting of a young mafic protolith, likely represented by the nearby Rio Itapicuru greenstone belt. Barrocas trondhjemite and Teofilândia granodiorite derive from similar sources, possibly at different depths and with a different degree of melting. The rocks were deformed at high temperature during the Trans-Amazonian collision and are therefore pre-collisional and ascribed to a subduction stage. The younger Santa Rosa pluton is a small, syn-to post-collisional granite that derived from anatexis of the Archean crust. It is representative of a second, volumetrically minor, plutonic episode of potassic, shoshonitic or alkaline affinities. The large amount of 2.1 Ga granitoids emplaced in Brazil as well as in the West African craton, suggests that, at that time, a global event of possible mantle origin was responsible for the intense magmatic activity that involved both crustal accretion and crustal reworking in many places of the world.

  16. Neoproterozoic stratigraphic framework of the Tarim Craton in NW China: Implications for rift evolution

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Guan, Shuwei; Zhang, Shuichang; Yang, Haijun; Jin, Jiuqiang; Zhang, Xiaodan; Zhang, Chunyu

    2018-06-01

    The Tarim Craton is overlain by thick Neoproterozoic sedimentary successions in rift tectonic setting. This study examines the latest outcrop, seismic, and drilling core data with the objective of investigating the regional stratigraphy to deeply recognize the evolution of rifting in the craton. Cryogenian to Lower Ediacaran successions are mainly composed of clastic rocks with thicknesses of 2000-3000 m, and the Upper Ediacaran successions are composed of carbonate rocks with thicknesses of 500-800 m. The rift basins and stratigraphic zones are divided into northern and southern parts by a central paleo-uplift. The northern rift basin extends through the northern Tarim Craton in an E-W direction with two depocenters (Aksu and Kuruktag). The southern rift basin is oriented NE-SW. There are three or four phases of tillites in the northern zone, while there are two in the southern zone. Given the north-south difference of the stratigraphic framework, the northern rift basin initiated at ca. 740 Ma and the southern rift basin initiated at ca. 780 Ma. During the Cryogenian and Ediacaran, the northern and southern rift basins were separated by the central paleo-uplift, finally connecting with each other in the early Cambrian. Tectonic deformation in the Late Ediacaran led to the formation of a parallel unconformity in the rift basins and an angular unconformity in the central paleo-uplift. The Neoproterozoic rift basins continued to affect the distribution of Lower Cambrian hydrocarbon source rocks. The north-south distribution and evolution of the rift basins in the Tarim Craton have implications for reconstructions of the Rodinia supercontinent.

  17. An evaluation of the zircon method of isotopic dating in the Southern Arabian Craton

    USGS Publications Warehouse

    Cooper, J.A.; Stacey, J.S.; Stoeser, D.G.; Fleck, R.J.

    1979-01-01

    A zircon study has been made on eleven samples of igneous rocks from the Saudi Arabian Craton. Ages of sized and magnetic fractions of zircon concentrates show variable degrees of discordance which seem to result from a very young disturbance that produces linear arrays in the Concordia plot. Model age calculations based on a statistically and geologically reasonable lower intercept produce very consistent internal relationships. The Pan African Orogeny, considered to be responsible for loss of radiogenic argon and strontium from minerals of many rocks, does not appear to have affected the zircon data, even though uplift had exposed the rocks of the Arabian Shield at that time. Tonalite, granodiorite, and crosscutting leucoadamellite bodies in the southern part of the An Nimas Bathylith yield ages in the time range 820-760 Ma. A narrow time range of 660 to 665 million years was indicated for ages of widely separated and compositionally different intrusive bodies all to the east of the An Nimas Bathylith. This work suggests that the younger end of the age spectrum established from regional K-Ar and Rb-Sr measurements may be underestimated, and that magmatic activity could be more episodic than previously assumed.

  18. Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution☆

    PubMed Central

    Fritz, H.; Abdelsalam, M.; Ali, K.A.; Bingen, B.; Collins, A.S.; Fowler, A.R.; Ghebreab, W.; Hauzenberger, C.A.; Johnson, P.R.; Kusky, T.M.; Macey, P.; Muhongo, S.; Stern, R.J.; Viola, G.

    2013-01-01

    The East African Orogen, extending from southern Israel, Sinai and Jordan in the north to Mozambique and Madagascar in the south, is the world́s largest Neoproterozoic to Cambrian orogenic complex. It comprises a collage of individual oceanic domains and continental fragments between the Archean Sahara–Congo–Kalahari Cratons in the west and Neoproterozoic India in the east. Orogen consolidation was achieved during distinct phases of orogeny between ∼850 and 550 Ma. The northern part of the orogen, the Arabian–Nubian Shield, is predominantly juvenile Neoproterozoic crust that formed in and adjacent to the Mozambique Ocean. The ocean closed during a protracted period of island-arc and microcontinent accretion between ∼850 and 620 Ma. To the south of the Arabian Nubian Shield, the Eastern Granulite–Cabo Delgado Nappe Complex of southern Kenya, Tanzania and Mozambique was an extended crust that formed adjacent to theMozambique Ocean and experienced a ∼650–620 Ma granulite-facies metamorphism. Completion of the nappe assembly around 620 Ma is defined as the East African Orogeny and was related to closure of the Mozambique Ocean. Oceans persisted after 620 Ma between East Antarctica, India, southern parts of the Congo–Tanzania–Bangweulu Cratons and the Zimbabwe–Kalahari Craton. They closed during the ∼600–500 Ma Kuungan or Malagasy Orogeny, a tectonothermal event that affected large portions of southern Tanzania, Zambia, Malawi, Mozambique, Madagascar and Antarctica. The East African and Kuungan Orogenies were followed by phases of post-orogenic extension. Early ∼600–550 Ma extension is recorded in the Arabian–Nubian Shield and the Eastern Granulite–Cabo Delgado Nappe Complex. Later ∼550–480 Ma extension affected Mozambique and southern Madagascar. Both extension phases, although diachronous,are interpreted as the result of lithospheric delamination. Along the strike of the East African Orogen, different geodynamic settings

  19. Mesozoic crustal thickening of the eastern North China craton: Evidence from eclogite xenoliths and petrologic implications

    NASA Astrophysics Data System (ADS)

    Xu, Wenliang; Gao, Shan; Wang, Qinghai; Wang, Dongyan; Liu, Yongsheng

    2006-09-01

    A suite of xenoliths of eclogite, garnet clinopyroxenite, and felsic gneiss is found in Early Cretaceous high-Mg [Mg# >45, where Mg# = molar 100 × Mg/(Mg + Fetotal)] adakitic intrusions from the Xuzhou-Huaibei (Xu-Huai) region along the southeastern margin of the North China craton. The primary mineral assemblage of garnet + omphacite/augite + quartz + rutile ± pargasite of the eclogite and garnet clinopyroxenite xenoliths defines a minimum pressure of >1.5 GPa, while the estimated peak metamorphic temperatures range from 800 to 1060 °C. An Sm-Nd whole-rock garnet isochron and zircon U-Pb dates show that timing of the eclogite facies metamorphism took place ca. 220 Ma. This Triassic age agrees with the age of eclogites from the Dabie-Sulu ultrahigh-pressure metamorphic (UHPM) belt. The ages of abundant Late Archean to early Paleoproterozoic (2.3 2.6Ga) inherited zircons correspond to the most prominent crustal growth event in the North China craton. In addition, these xenoliths and their host high-Mg adakitic intrusions have complementary major and trace element compositions, suggesting that the adakites formed by partial melting of Archean metabasalts that were the protoliths of the Xu-Huai eclogite and garnet clinopyroxenite xenoliths. Trace element and Sr-Nd isotopic modeling shows that the high-Mg adakitic intrusions can be modeled as melts from ˜40% partial melting of the metabasalts in the eclogite facies, followed by interaction with the convecting mantle and variable degrees of crustal assimilation. Together with the similar zircon age populations between the xenoliths and the host rocks, these lines of evidence strongly suggest their genetic link via thickening, foundering, and partial melting of the Archean North China craton mafic lower crust, followed by adakitic melt-mantle interaction. The crustal thickening resulted from Triassic collision between the Yangtze craton and the North China craton, which produced the Dabie-Sulu UHPM belt in the

  20. Results of paleomagnetic study of Early Proterozoic rocks in the Baikal Range of the Siberian craton

    NASA Astrophysics Data System (ADS)

    Vodovozov, V. Yu.; Didenko, A. N.; Gladkochub, D. P.; Mazukabzov, A. M.; Donskaya, T. V.

    2007-10-01

    This paper presents paleomagnetic results obtained from the study of Early Proterozoic rocks in the Baikal Range of the Siberian craton, namely, the 1850 1880-Ma volcanicalstic rocks of the Akitkanskian series of the North Baikal volcanic-plutonic belt) and 1674-Ma basic dikes of the Chaya complex within the massif. The data of this work are used to reconstruct the development of the Siberian craton structure in the Early Precambrian. The projections of the inferred paleomagnetic directions onto a sphere form S (southern) and W (western) groups of vectors of characteristic magnetization components. The S group consists of three clusters representing primary magnetization components belonging to different time levels of the end of the Early Proterozoic. The W group is represented by directions associated with a metachronous magnetization probably acquired during the Riphean. Four paleomagnetic poles are obtained. Two of them that can be regarded as key poles correspond to time levels of 1875 and 1670 Ma (the Early Proterozoic). The two other poles can be used for a detailed reconstruction of the Proterozoic segment of the Siberian apparent polar wander path. The data presented in the paper indicate that the formation of the southern Siberian craton structure was accomplished at the end of the Early Proterozoic, which resulted in a synchronous motion of different blocks composing the southern flank of the craton (in particular, the Sharyzhalgai and Baikal Ranges).

  1. Composition of the lithospheric mantle in the northern part of Siberian craton: Constraints from peridotites in the Obnazhennaya kimberlite

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Liu, Chuan-Zhou; Kostrovisky, Sergey I.; Wu, Fu-Yuan; Yang, Jin-Hui; Chu, Zhu-Yin; Yang, Yue-Heng; Kalashnikova, Tatiana; Fan, Sheng

    2017-12-01

    The character of the lithospheric mantle of the northern Siberian craton is not well established; nearly all published data are for mantle xenoliths from a single kimberlite in the center of the craton (Udachnaya). We report major elements of the whole rock, trace elements data of clinopyroxene and Re-Os isotope and PGE concentration of mantle xenoliths from the Obnazhennaya kimberlite pipe (160 Ma) in the northern part of Siberian craton. The Obnazhennaya mantle xenoliths include spinel harzburgites, spinel dunites, spinel lherzolites and spinel-garnet lherzolite. The spinel harzburgites and dunites have refractory compositions, with 0.23-1.35 wt% Al2O3, 0.41-3.11 wt% CaO and 0.00-0.09 wt% TiO2, whereas the lherzolites (both spinel- and spinel-garnet-) have more fertile compositions, containing 2.16-6.55 wt% Al2O3, 2.91-7.55 wt% CaO and 0.04-0.15 wt% TiO2. The trace element compositions and mineralogical textures of the Obnazhennaya xenoliths indicate the occurrence of metasomatic enrichments, including carbonatite melts, basaltic melts from Siberian Trap and kimberlitic melts. The spinel harzburgites and dunites have 187Os/188Os of 0.11227-0.11637, giving a TRD age of 1.6-2.2 Ga. This suggests that old cratonic mantle still existed beneath the Obnazhennaya. In contrast, both spinel and spinel-garnet lherzolites have more radiogenic 187Os/188Os ratios (0.11931-0.17627), enriched P-PGEs. But the higher Al2O3 and Os character of these lherzolites suggest that they were not juvenile mantle but the refertilized ancient mantle. Therefore, our results suggest that the cratonic mantle beneath the northern part of Siberian craton contain both ancient and reworked lithospheric mantle, and the metasomatism may not be effective at overprinting/eroding the pre-existing lithosphere.

  2. 207Pb-206Pb zircon ages of eastern and western Dharwar craton, southern India : Evidence for contemporaneous Archaean crust

    NASA Astrophysics Data System (ADS)

    Maibam, B.; Goswami, J. N.; Srinivasan, R.

    2009-04-01

    Dharwar craton is one of the major Archaean crustal blocks in the Indian subcontinent. The craton is comprised of two blocks, western and eastern. The western domain is underlain by orthogneisses and granodiorites (ca. 2.9-3.3 Ga) collectively termed as Peninsular Gneiss [e.g., 1] interspersed with older tracts of metasedimentary and metamorphosed igneous suites (Sargur Group and Dharwar Group; [2]). The eastern part of the craton is dominated by Late Archaean (2.50-2.75 Ga) granitoids and their gneissic equivalents. They are interspersed with schist belts (also of Sargur Group and Dharwar Group), which are lithologically similar to the Dharwar Supergroup in the western block, but are in different metamorphic dress. Here we report 207Pb-206Pb age of zircons separated from the metasedimentary and gneissic samples from the two blocks to constrain the evolution of the Dharwar craton during the early Archaean. Detrital zircons of the metasedimentary rocks from both the blocks show a wide range of overlapping ages between ~2.9 to >3.5 Ga. Zircon ages of the orthogneisses from the two blocks showed that most of the analysed grains of the eastern Dharwar block are found to be of the age as old as the western Dharwar gneisses. Imprints of younger events could be discerned from the presence of overgrowths in zircons from the studied samples throughout the craton. Our data suggest that crust forming cycles in the two blocks of the Dharwar craton occurred contemporaneously during the Archaean. References [1] Beckinsale, R.D., Drury, S.A., Holt, R.W. (1980) Nature 283, 469-470. [2] Swami Nath J., Ramakrishnan M., Viswanatha M.N. (1976) Rec. Geol. Surv. Ind., 107, 149-175.

  3. Crustal development of the North China Craton constrained by geochemical and isotopic data on Neoarchean and Paleoproterozoic granitoids, Inner Mongolia

    NASA Astrophysics Data System (ADS)

    Hui-Chun Chen, Nancy; Zhao, Guochun; Cawood, Peter A.

    2017-04-01

    The North China Craton is the oldest continental fragment in China. It contains magmatic rocks as old as 3.8 Ga, but is dominated by crustal components that formed in the Neoarchean at ca. 2.7 and 2.5 Ga, and also includes Paleoproterozoic rocks dated at 1.9-1.8 Ga. The craton has been incorporated into Precambrian supercontinents, although it's exact position within, as well as the overall configuration of, these supercontinents is poorly understood. New geochemical and geochronological data on granitoids from the northern margin of the craton at Siziwangqi in central Inner Mongolia further constrain craton evolution with respect to Neoarchean and Paleoproterozoic supercontinent cycles. The granitoids comprise a tonalite-trondhjemite-granodiorite (TTG) association with crystallization ages of 2.52-2.49 Ga and inherited zircon crystals as old 2.7 Ga, and alkali feldspar granites with ages of 2.47 and 1.87 Ga. Geochemically, the rocks are metaluminous to peraluminous and belong to the calc-alkaline (TTG) and subalkaline to alkaline (alkali feldspar granite) series. The TTG granitoids are characterized by light LREE enrichment, a weak positive Eu anomaly, and flat heavy HREE profiles. The alkali granite is also enriched in the LREE but has a strong positive chondrite-normalized Eu anomaly and displays weak HREE enrichment. Our compositional and geochronological data, integrated with regional data, indicate that in the Neoarchean the North China Craton constituted part of an accretionary convergent plate margin that lay on the edge of a an older continental mass (possibly within the Kenor supercraton). The Paleoproterozoic alkali feldspar granite was associated with collisional assembly of the craton into the Nuna (Columbia) supercontinent.

  4. Iron formations as the source of the West African magnetic crustal anomaly

    NASA Astrophysics Data System (ADS)

    Launay, Nicolas; Quesnel, Yoann; Rochette, Pierre; Demory, François

    2018-04-01

    The geological sources of major magnetic field anomalies are still poorly constrained, in terms of nature, geometry and vertical position. A common feature of several anomalies is their spatial correlation with cratonic shields and, for the largest anomalies, with Banded Iron Formations (BIF). This study first unveils the magnetic properties of some BIF samples from Mauritania, where the main part of the West African magnetic anomaly is observed. It shows how strong the magnetic susceptibility and natural remanent magnetization for such rocks are. High Koenigsberger ratios imply that the remanent magnetization should be taken into account to explain the anomaly. A numerical modeling of the crust beneath this anomaly is performed using these constraints and both gravity and magnetic field data. A forward approach is used, investigating the depth, thickness and magnetization intensity of all possible crustal lithologies. Our results show that BIF slices can be the only magnetized crustal sources needed to explain the anomaly, and that they could be buried several kilometers deep. The results of this study provide a new perspective to address the investigation of magnetic field anomaly sources in other cratonic regions with BIF outcrops.

  5. Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation

    NASA Astrophysics Data System (ADS)

    Tappe, Sebastian; Romer, Rolf L.; Stracke, Andreas; Steenfelt, Agnete; Smart, Katie A.; Muehlenbachs, Karlis; Torsvik, Trond H.

    2017-05-01

    Kimberlite and carbonatite magmas that intrude cratonic lithosphere are among the deepest probes of the terrestrial carbon cycle. Their co-existence on thick continental shields is commonly attributed to continuous partial melting sequences of carbonated peridotite at >150 km depths, possibly as deep as the mantle transition zone. At Tikiusaaq on the North Atlantic craton in West Greenland, approximately 160 Ma old ultrafresh kimberlite dykes and carbonatite sheets provide a rare opportunity to study the origin and evolution of carbonate-rich melts beneath cratons. Although their Sr-Nd-Hf-Pb-Li isotopic compositions suggest a common convecting upper mantle source that includes depleted and recycled oceanic crust components (e.g., negative ΔεHf coupled with > + 5 ‰ δ7Li), incompatible trace element modelling identifies only the kimberlites as near-primary low-degree partial melts (0.05-3%) of carbonated peridotite. In contrast, the trace element systematics of the carbonatites are difficult to reproduce by partial melting of carbonated peridotite, and the heavy carbon isotopic signatures (-3.6 to - 2.4 ‰ δ13C for carbonatites versus -5.7 to - 3.6 ‰ δ13C for kimberlites) require open-system fractionation at magmatic temperatures. Given that the oxidation state of Earth's mantle at >150 km depth is too reduced to enable larger volumes of 'pure' carbonate melt to migrate, it is reasonable to speculate that percolating near-solidus melts of carbonated peridotite must be silicate-dominated with only dilute carbonate contents, similar to the Tikiusaaq kimberlite compositions (e.g., 16-33 wt.% SiO2). This concept is supported by our findings from the North Atlantic craton where kimberlite and other deeply derived carbonated silicate melts, such as aillikites, exsolve their carbonate components within the shallow lithosphere en route to the Earth's surface, thereby producing carbonatite magmas. The relative abundances of trace elements of such highly

  6. Shear-Velocity Structure and Azimuthal and Radial Anisotropy Beneath the Kaapvaal Craton From Bayesian Inversion of Surface-Wave Data: Inferences for the Architecture and Early Evolution of Cratons

    NASA Astrophysics Data System (ADS)

    Lebedev, S.; Ravenna, M.; Adam, J.

    2017-12-01

    Seismic anisotropy provides essential information on the deformation of the lithosphere. Knowledge of anisotropy also allows us to isolate the isotropic-average seismic velocities, relatable to the lithospheric temperature and composition. We use Rayleigh and Love-wave phase velocities and their azimuthal anisotropy measured in broad period ranges across the footprint of the Southern Africa Seismic Experiment (SASE), from the Kaapvaal Craton to the Limpopo Belt. We invert the data using our recently developed, fully non-linear Markov Chain Monte Carlo method and determine, for the first time, both the isotropic-average S velocity and its radial and azimuthal anisotropy as a function of depth from the upper crust down to the asthenosphere. The probabilistic inversion provides a way to quantify non-uniqueness, using direct parameter-space sampling, and assess model uncertainties. The high-velocity anomaly indicative of the cold cratonic lithosphere bottoms at 200-250 km beneath the central and western Kaapvaal Craton, underlain by a low-velocity zone. Beneath northern Kaapvaal and Limpopo, by contrast, high velocities extend down to 300-350 km. Although this does not require a lithosphere that has maintained this thickness over a geologically long time, the data does require the mantle to be anomalously cold down to 300-350 km. Interestingly, topography correlates with the thickness of this high-velocity layer, with lower elevations where the lid is thicker. Radial shear-wave anisotropy is in the 2-5 percent range (Vsh > Vsv) from the lower crust down to 200 km, below which depth it decreases gradually. Radial variations in the amplitude of radial anisotropy show no clear relationship with those in the amplitude of azimuthal anisotropy or isotropic-average Vs anomalies. Azimuthal anisotropy changes the fast-propagation direction near the base of the lithosphere (200-300 km depth), from the laterally varying fast azimuths in the lower lithosphere to a spatially

  7. The Yilgarn Craton western Australia: A tectonic synthesis

    NASA Technical Reports Server (NTRS)

    Fripp, R. E. P.

    1986-01-01

    The Yilgarn Craton in Western Australia is one of the larger contiguous preserved Archaean crustal fragments, with an area of about 650,000 square kilometres. Of this, by area, about 70% is granitoid and 30% greenstone. The Craton is defined by the Darling Fault on its western margin, by Proterozoic deformation belts on its southern and northwestern margins, and by unconformable younger sediments on its eastern and northeastern margins. A regional geotectonic synthesis at a scale of 1:500,000 is being prepared. This is based largely upon the 1:250,000 scale mapping of the Geological Survey of Western Australia together with interpretation using geophysical data, mainly airborne magnetic surveys. On a regional basis the granitoids are classied as pre-, syn- and post-tectonic with respect to greenstone belt deformation. The post-tectonic granitoids yield Rb-Sr isochrons of about 2.6 b.y., close to Rb-Sr ages for the greenstones themselves which are up to about 2.8 b.y. old, although data for the latter is sparse. Contacts between earlier granitoids and greenstones which are not obscured by the post-tectonic granitoids are most commonly tectonic contacts, intensely deformed and with mylonitic fabrics. The general concensus however is that there is a pre-tectonic, pre-greenhouse sialic gneiss preserved in places. A discussion follows.

  8. Ambient noise tomography of the East African Rift in Mozambique

    NASA Astrophysics Data System (ADS)

    Domingues, Ana; Silveira, Graça; Ferreira, Ana M. G.; Chang, Sung-Joon; Custódio, Susana; Fonseca, João F. B. D.

    2016-03-01

    Seismic ambient noise tomography is applied to central and southern Mozambique, located in the tip of the East African Rift (EAR). The deployment of MOZART seismic network, with a total of 30 broad-band stations continuously recording for 26 months, allowed us to carry out the first tomographic study of the crust under this region, which until now remained largely unexplored at this scale. From cross-correlations extracted from coherent noise we obtained Rayleigh wave group velocity dispersion curves for the period range 5-40 s. These dispersion relations were inverted to produce group velocity maps, and 1-D shear wave velocity profiles at selected points. High group velocities are observed at all periods on the eastern edge of the Kaapvaal and Zimbabwe cratons, in agreement with the findings of previous studies. Further east, a pronounced slow anomaly is observed in central and southern Mozambique, where the rifting between southern Africa and Antarctica created a passive margin in the Mesozoic, and further rifting is currently happening as a result of the southward propagation of the EAR. In this study, we also addressed the question concerning the nature of the crust (continental versus oceanic) in the Mozambique Coastal Plains (MCP), still in debate. Our data do not support previous suggestions that the MCP are floored by oceanic crust since a shallow Moho could not be detected, and we discuss an alternative explanation for its ocean-like magnetic signature. Our velocity maps suggest that the crystalline basement of the Zimbabwe craton may extend further east well into Mozambique underneath the sediment cover, contrary to what is usually assumed, while further south the Kaapval craton passes into slow rifted crust at the Lebombo monocline as expected. The sharp passage from fast crust to slow crust on the northern part of the study area coincides with the seismically active NNE-SSW Urema rift, while further south the Mazenga graben adopts an N-S direction

  9. Subduction beneath Laurentia modified the eastern North American cratonic edge: Evidence from P wave and S wave tomography

    NASA Astrophysics Data System (ADS)

    Boyce, A.; Bastow, I. D.; Darbyshire, F. A.; Ellwood, A. G.; Gilligan, A.; Levin, V.; Menke, W.

    2016-07-01

    The cratonic cores of the continents are remarkably stable and long-lived features. Their ability to resist destructive tectonic processes is associated with their thick (˜250 km), cold, chemically depleted, buoyant lithospheric keels that isolate the cratons from the convecting mantle. The formation mechanism and tectonic stability of cratonic keels remains under debate. To address this issue, we use P wave and S wave relative arrival-time tomography to constrain upper mantle structure beneath southeast Canada and the northeast USA, a region spanning three quarters of Earth's geological history. Our models show three distinct, broad zones: Seismic wave speeds increase systematically from the Phanerozoic coastal domains, through the Proterozoic Grenville Province, and to the Archean Superior craton in central Québec. We also recover the NW-SE trending track of the Great Meteor hot spot that crosscuts the major tectonic domains. The decrease in seismic wave speed from Archean to Proterozoic domains across the Grenville Front is consistent with predictions from models of two-stage keel formation, supporting the idea that keel growth may not have been restricted to Archean times. However, while crustal structure studies suggest that Archean Superior material underlies Grenvillian age rocks up to ˜300 km SE of the Grenville Front, our tomographic models show a near-vertical boundary in mantle wave speed directly beneath the Grenville Front. We interpret this as evidence for subduction-driven metasomatic enrichment of the Laurentian cratonic margin, prior to keel stabilization. Variable chemical depletion levels across Archean-Proterozoic boundaries worldwide may thus be better explained by metasomatic enrichment than inherently less depleted Proterozoic composition at formation.

  10. Accretionary Tectonics of Rock Complexes in the Western Margin of the Siberian Craton

    NASA Astrophysics Data System (ADS)

    Likhanov, I. I.; Nozhkin, A. D.; Savko, K. A.

    2018-01-01

    The geological, geochemical, and isotope-geochronological evidence of the events at the final stage of the Neoproterozoic history of the Yenisei Range is considered (beginning from the formation of fragments of the oceanic crust in the region and their accretion to the Siberian Craton until the postaccretionary stage of crustal tension and onset of the Caledonian orogeny). Based on an analysis of new data on the petrogeochemical composition, age, and geodynamic nature of the formation of contrasting rocks in the composition of tectonic mélange of the Near-Yenisei (Prieniseiskaya) regional shear zone, we have found the chronological sequence of events that marks the early stages of the Paleoasian Ocean evolution in the zone of its junction with the Siberian Craton. These events are documented by the continental marginal, ophiolitic, and island-arc geological complexes, each of which has different geochemical features. The most ancient structures are represented by fragments of oceanic crust and island arcs from the Isakovka terrane (700-620 Ma). The age of glaucophane-schist metamorphic units that formed in the paleosubduction zone corresponds to the time interval of 640-620 Ma. The formation of high-pressure tectonites in the suture zone, about 600 Ma in age, marks the finishing stage of accretion of the Isakovka block to the western margin of the Siberian Craton. The final events in the early history of the Asian Paleoocean were related to the formation of Late Vendian riftogenic amygdaloidal basalts (572 ± 6.5 Ma) and intrusion of postcollisional leucogranites of the Osinovka massif (550-540 Ma), which intruded earlier fragments of the oceanic crust in the Isakovka terrane. These data allow us to refine the Late Precambrian stratigraphic scheme in the northwestern Trans-Angarian part of the Yenisei Range and the evolutionary features of the Sayan-Yenisei accretionary belt. The revealed Late Neoproterozoic landmarks of the evolution of the Isakovka terrane are

  11. Paleomagnetism of Neoproterozoic cap carbonates of the Sao Francisco and Amazonian cratons, Brazil

    NASA Astrophysics Data System (ADS)

    Trindade, R. I. F.; Dagrella-Filho, M. S.; Figueiredo, F. T.; Font, E.; Babinski, M.; Nogueira, A. C. R.; Riccomini, C.

    2003-04-01

    The low-latitude paleomagnetic record of some Neoproterozoic glacial successions has long been used as an evidence for dramatic changes in Earth climate (Snowball Earth events). But the test for such events demands a global-scale paleomagnetic database in the Neoproterozoic glacial/carbonate successions. In order to better constrain these extreme climatic events, an extensive paleomagnetic survey has been conducted in carbonates that cap the Neoproterozoic glacial rocks of the Sao Francisco (SFC) and Amazonian (AMC) cratons, Brazil. In the SFC, sampling was performed at 104 sites (horizontal beds) distributed at two sectors (north and south), about 1.000 km apart, within the stable area of the craton. In the AMC, sampling included 15 sites in undeformed, sub-horizontal beds, and 25 sites along the limbs of regional folds in the margin of the craton. After paleomagnetic cleaning, most samples from both SFC and AMC yielded similar PGVs (mean SFC: 32°N, 322°E (A95=2.8, K=65.3); mean AMC: 31°N, 336°E (A95=6.8, K=46.2)). Pb-Pb ages around 520 Ma for SFC samples, a negative fold-test for AMC samples, and the coincidence of these poles with 520 Ma Gondwanan reference poles after rotation of South America to Africa, suggest a continental-scale remagnetization by this time. Some sites from both cratons, however, seem to have not been affected by the Cambrian remagnetization. Two mean poles were calculated for SFC and AMC for which consistent reversals could be recorded, suggesting a primary nature for the characteristic magnetization (mean SFC pole: 66°S, 198°E (A95=5.4, K=47.5); mean AMC pole: 77°S, 66°E (A95=8.8, K=47.7)). These results indicate a moderate latitude (51°) for the SFC Bebedouro (Sturtian) glaciation and a low latitude (24°) for the AMC Puga (Varanger) glaciation, and reinforces the hypothesis of Neoproterozoic global-scale ice-ages.

  12. An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Simon P.; Korhonen, Fawna J.; Kirkland, Christopher L.

    The in situ chemical differentiation of continental crust ultimately leads to the long-term stability of the continents. This process, more commonly known as ‘cratonization’, is driven by deep crustal melting with the transfer of those melts to shallower regions resulting in a strongly chemically stratified crust, with a refractory, dehydrated lower portion overlain by a complementary enriched upper portion. Since the lower to mid portions of continental crust are rarely exposed, investigation of the cratonization process must be through indirect methods. In this study we use in situ Hf and O isotope compositions of both magmatic and inherited zircons frommore » several felsic magmatic suites in the Capricorn Orogen of Western Australia to highlight the differentiation history (i.e. cratonization) of this portion of late Archean to Proterozoic orogenic crust. The Capricorn Orogen shows a distinct tectonomagmatic history that evolves from an active continental margin through to intracratonic reworking, ultimately leading to thermally stable crust that responds similarly to the bounding Archean Pilbara and Yilgarn Cratons.« less

  13. An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization

    NASA Astrophysics Data System (ADS)

    Johnson, Simon P.; Korhonen, Fawna J.; Kirkland, Christopher L.; Cliff, John B.; Belousova, Elena A.; Sheppard, Stephen

    2017-01-01

    The in situ chemical differentiation of continental crust ultimately leads to the long-term stability of the continents. This process, more commonly known as 'cratonization', is driven by deep crustal melting with the transfer of those melts to shallower regions resulting in a strongly chemically stratified crust, with a refractory, dehydrated lower portion overlain by a complementary enriched upper portion. Since the lower to mid portions of continental crust are rarely exposed, investigation of the cratonization process must be through indirect methods. In this study we use in situ Hf and O isotope compositions of both magmatic and inherited zircons from several felsic magmatic suites in the Capricorn Orogen of Western Australia to highlight the differentiation history (i.e. cratonization) of this portion of late Archean to Proterozoic orogenic crust. The Capricorn Orogen shows a distinct tectonomagmatic history that evolves from an active continental margin through to intracratonic reworking, ultimately leading to thermally stable crust that responds similarly to the bounding Archean Pilbara and Yilgarn Cratons. The majority of magmatic zircons from the main magmatic cycles have Hf isotopic compositions that are generally more evolved than CHUR, forming vertical arrays that extend to moderately radiogenic compositions. Complimentary O isotope data, also show a significant variation in composition. However, combined, these data define not only the source components from which the magmas were derived, but also a range of physio-chemical processes that operated during magma transport and emplacement. These data also identify a previously unknown crustal reservoir in the Capricorn Orogen.

  14. Uniformity in sulfur isotope composition in the orogenic gold deposits from the Dharwar Craton, southern India

    NASA Astrophysics Data System (ADS)

    Sakthi Saravanan, C.; Mishra, B.

    2009-07-01

    The sulfur isotope composition of sulfides (mainly pyrite and arsenopyrite) from gold deposits/prospects of the Dharwar Craton such as Hutti, Hira-Buddini, Uti, Kolar (Chigargunta), Ajjanahalli, and Jonnagiri has a narrow range (δ34S = +1.1 to +7.1‰). Such craton-scale uniformity of the above gold camps is noteworthy, in spite of the wide diversity in host rock compositions and their metamorphic conditions, and suggests a magmatic or average crustal source of sulfur for all deposits studied. In addition, our study points towards gold precipitation from reduced ore fluids, with near-homogeneous sulfur isotope compositions.

  15. Sr-Nd-Hf isotopic fingerprinting of transatlantic dust derived from North Africa

    NASA Astrophysics Data System (ADS)

    Zhao, Wancang; Balsam, William; Williams, Earle; Long, Xiaoyong; Ji, Junfeng

    2018-03-01

    Long-range transport of African dust plays an important role in understanding dust-climate relationships including dust source areas, dust pathways and associated atmospheric and/or oceanic processes. Clay-sized Sr-Nd-Hf isotopic compositions can be used as geochemical fingerprints to constrain dust provenance and the pathways of long-range transported mineral dust. We investigated the clay-sized Sr-Nd-Hf isotopic composition of surface samples along four transects bordering the Sahara Desert. The transects are from Mali, Niger/Benin/Togo, Egypt and Morocco. Our results show that the Mali transect on the West African Craton (WAC) produces lower εNd (εNd-mean = -16.38) and εHf (εHf-mean = -9.59) values than the other three transects. The Egyptian transect exhibits the lowest 87Sr/86Sr ratios (87Sr/86Srmean = 0.709842), the highest εHf (εHf-mean = -0.34) and εNd values of the four transects. Comparison of the clay-sized Sr-Nd-Hf isotopic values from our North African samples to transatlantic African dust collected in Barbados demonstrates that the dust's provenance is primarily the western Sahel and Sahara as well as the central Sahel. Summer emission dust is derived mainly from the western Sahel and Sahara regions. The source of transatlantic dust in spring and autumn is more varied than in the summer and includes dust not only from western areas, but also south central areas. Comparison of the Sr-Nd-Hf isotopic fingerprints between the source and sink of transatlantic dust also suggests that a northwestward shift in dust source occurs from the winter, through the spring and into the summer. The isotopic data we develop here provide another tool for discriminating changes in dust archives resulting from paleoenvironmental evolution of source regions.

  16. New paleomagnetic results on ˜ ˜2367 Ma Dharwar giant dyke swarm, Dharwar craton, southern India: implications for Paleoproterozoic continental reconstruction

    NASA Astrophysics Data System (ADS)

    Babu, N. Ramesh; Venkateshwarlu, M.; Shankar, Ravi; Nagaraju, E.; Parashuramulu, V.

    2018-02-01

    Here we report new paleomagnetic results and precise paleopole position of the extensional study on ˜ 2367 Ma mafic giant radiating dyke swarm in the Dharwar craton, southern India. We have sampled 29 sites on 12 dykes from NE-SW Karimnagar-Hyderabad dykes and Dhone-Gooty sector dykes, eastern Dharwar craton to provide unambiguous paleomagnetism evidence on the spectacular radiating dyke swarm and thereby strengthening the presence of single magmatic event at ˜ 2367 Ma. A total of 158 samples were subjected to detailed alternating field and thermal demagnetization techniques and the results are presented here along with previously reported data on the same dyke swarm. The remanent magnetic directions are showing two components, viz., seven sites representing four dykes show component (A) with mean declination of 94{{}°} and mean inclination of - 70{{}°} (k=87, α_{95}=10{{}°}) and corresponding paleopole at 16{{}°}N, 41{{}°}E (dp=15{{}°} and dm=17{{}°}) and 22 sites representing 8 dykes yielded a component (B) with mean declination of 41{{}°} and mean inclination of - 21{{}°} (k=41, α_{95}=9{{}°}) with a paleopole at 41{{}°}N, 200{{}°}E (dp=5{{}°} and dm=10{{}°}). Component (A) results are similar to the previously reported directions from the ˜ 2367 Ma dyke swarm, which have been confirmed fairly reliably to be of primary origin. The component (B) directions appear to be strongly overprinted by the 2080 Ma event. The grand mean for the primary component (A) combined with earlier reported studies gives mean declination of 97{{}°} and mean inclination of - 79{{}°} (k=55, α_{95}=3{{}°}) with a paleopole at 15{{}°}N, 57{{}°}E (dp=5{{}°}, dm=6{{}°}). Paleogeographical position for the Dharwar craton at ˜ 2367 Ma suggests that there may be a chance to possible spatial link between Dharwar dykes of Dharwar craton (India), Widgemooltha and Erayinia dykes of Yilgarn craton (Australia), Sebanga Poort Dykes of Zimbabwe craton (Africa) and Karelian

  17. Peering into the deep: Illuminating the crustal evolution of the Eucla basement and its relationship to the Albany-Fraser Orogen of southwest Australia.

    NASA Astrophysics Data System (ADS)

    Hartnady, Michael; Kirkland, Chris; Clark, Chris; Spaggiari, Catherine; Smithies, Hugh

    2017-04-01

    The Albany-Fraser Orogen is a 1200 km long east to northeasterly trending Palaeoproterozoic to Mesoproterozoic orogenic belt that defines the southern to southeastern margin of the West Australian Craton (WAC). The belt records a long and complex geological history spanning the break-up of Nuna between 2000 and 1700 Ma and amalgamation of Rodinia between 1300 and 1000 Ma. Recent geochronological, geochemical and isotopic work has shown that the Albany-Fraser Orogen formed through a protracted period of reworking of the margin of the Archean Yilgarn Craton (part of the WAC) with various additions of mantle-derived material. The Cretaceous Bight and Cenozoic Eucla Basins partially overlie the northeastern part of the Albany-Fraser Orogen and completely cover 1000 km of crystalline basement (the Eucla basement) that separates the belt from the South Australian Craton. This basement constitutes the glue between the major building blocks of Proterozoic Australia, yet, its geological history is poorly understood. New drill cores penetrating the basement have intersected interlayered granitic and gabbroic rocks that yield U-Pb zircon dates that are dissimilar to any magmatic ages from units within the adjoining Albany-Fraser Orogen, with the exception of the youngest, 1190-1125 Ma magmatic suite. In addition, mantle-like hafnium and neodymium isotopic signatures indicate that the rocks of the Eucla basement are dominated by new juvenile addition, and may represent an allochthonous terrane of oceanic heritage. New ɛHf contour maps for the Albany-Fraser Orogen and Eucla basement highlight this difference. Time-slicing the isotopic dataset reveals a pattern of Palaeoproterozoic juvenile magmatism sub-perpendicular to the present day structural grain in the belt. If this marks the presence of an older lithospheric structure then it demonstrates the power that time-constrained isotopic mapping provides for illuminating lithospheric architecture through time. This may be

  18. Exploring Moho sharpness in Northeastern North China Craton with frequency-dependence analysis of Ps receiver function

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Yao, H.; Chen, L.; WANG, X.; Fang, L.

    2017-12-01

    The North China Craton (NCC), one of the oldest cratons in the world, has attracted wide attention in Earth Science for decades because of the unusual Mesozoic destruction of its cratonic lithosphere. Understanding the deep processes and mechanism of this craton destruction demands detailed knowledge about the deep structure of this region. In this study, we calculate P-wave receiver functions (RFs) with two-year teleseismic records from the North China Seismic Array ( 200 stations) deployed in the northeastern NCC. We observe both diffused and concentered PpPs signals from the Moho in RF waveforms, which indicates heterogeneous Moho sharpness variations in the study region. Synthetic Ps phases generated from broad positive velocity gradients at the depth of the Moho (referred as Pms) show a clear frequency dependence nature, which in turn is required to constrain the sharpness of the velocity gradient. Practically, characterizing such a frequency dependence feature in real data is challenging, because of low signal-to-noise ratio, contaminations by multiples generated from shallow structure, distorted signal stacking especially in double-peak Pms signals, etc. We attempt to address these issues by, firstly, utilizing a high-resolution Moho depth model of this region to predict theoretical delay times of Pms that facilitate more accurate Pms identifications. The Moho depth model is derived by wave-equation based poststack depth migration on both Ps phase and surface-reflected multiples in RFs in our previous study (Zhang et al., submitted to JGR). Second, we select data from a major back azimuth range of 100° - 220° that includes 70% teleseismic events due to the uneven data coverage and to avoid azimuthal influence as well. Finally, we apply an adaptive cross-correlation stacking of Pms signals in RFs for each station within different frequency bands. High-quality Pms signals at different frequencies will be selected after careful visual inspection and adaptive

  19. Mechanisms for strain localization within Archaean craton: A structural study from the Bundelkhand Tectonic Zone, north-central India

    NASA Astrophysics Data System (ADS)

    Sarkar, Saheli; Patole, Vishal; Saha, Lopamudra; Pati, Jayanta Kumar; Nasipuri, Pritam

    2015-04-01

    The transformation of palaeo-continents involve breakup, dispersal and reassembly of cratonic blocks by collisional suturing that develop a network of orogenic (mobile) belts around the periphery of the stable cratons. The nature of deformation in the orogenic belt depends on the complex interaction of fracturing, plastic deformation and diffusive mass transfer. Additionally, the degree and amount of melting during regional deformation is critical as the presence of melt facilitates the rate of diffusive mass transfer and weakens the rock by reducing the effective viscosity of the deformed zone. The nature of strain localization and formation of ductile shear zones surrounding the cratonic blocks have been correlated with Proterozoic-Palaeozoic supercontinent assembly (Columbia, Rodinia and Gondwana reconstruction). Although, a pre-Columbia supercontinent termed as Kenorland has been postulated, there is no evidence that supports the notion due to lack of the presence of shear zones within the Archaean cratonic blocks. In this contribution, we present the detailed structural analysis of ductile shear zones within the Bundelkhand craton. The ductlile shear zone is termed as Bundelkhand Tectonic Zone (BTZ) that extends east-west for nearly 300 km throughout the craton with a width of two-three kilometer . In the north-central India, the Bundelkhand craton is exposed over an area of 26,000 sq. The craton is bounded by Central Indian Tectonic zone in the south, the Great Boundary fault in the west and by the rocks of Lesser Himalaya in the north. A series of tonalite-trondjhemite-granodiorite gneiss are the oldest rocks of the Bundelkhand craton that also contains a succession of metamorphosed supracrustal rocks comprising of banded iron formation, quartzite, calc-silicate and ultramafic rocks. K-feldspar bearing granites intrude the tonalite-trondjhemite-granodiorite and the supracrustal rocks during the time span of 2.1 to 2.5 Ga. The TTGs near Babina, in central

  20. Geochemical fingerprinting of ∼2.5 Ga forearc-arc-backarc related magmatic suites in the Bastar Craton, central India

    NASA Astrophysics Data System (ADS)

    Asthana, Deepanker; Kumar, Sirish; Vind, Aditya Kumar; Zehra, Fatima; Kumar, Harshavardhan; Pophare, Anil M.

    2018-05-01

    The Pitepani volcanic suite of the Dongargarh Supergroup, central India comprises of a calc-alkaline suite and a tholeiitic suite, respectively. The rare earth element (REE) patterns, mantle normalized plots and relict clinopyroxene chemistry of the Pitepani calc-alkaline suite are akin to high-Mg andesites (HMA) and reveal remarkable similarity to the Cenozoic Setouchi HMA from Japan. The Pitepani HMAs are geochemically correlated with similar rocks in the Kotri-Dongargarh mobile belt (KDMB) and in the mafic dykes of the Bastar Craton. The rationale behind lithogeochemical correlations are that sanukitic HMAs represent fore-arc volcanism over a very limited period of time, under abnormally high temperature conditions and are excellent regional and tectonic time markers. Furthermore, the tholeiitic suites that are temporally and spatially associated with the HMAs in the KDMB and in the mafic dykes of the Bastar Craton are classified into: (a) a continental back-arc suite that are depleted in incompatible elements, and (b) a continental arc suite that are more depleted in incompatible elements, respectively. The HMA suite, the continental back-arc and continental arc suites are lithogeochemically correlated in the KDMB and in the mafic dykes of the Bastar Craton. The three geochemically distinct Neoarchaean magmatic suites are temporally and spatially related to each other and to an active continental margin. The identification of three active continental margin magmatic suites for the first time, provides a robust conceptual framework to unravel the Neoarchaean geodynamic evolution of the Bastar Craton. We propose an active continental margin along the Neoarchaen KDMB with eastward subduction coupled with slab roll back or preferably, ridge-subduction along the Central Indian Tectonic Zone (CITZ) to account for the three distinct magmatic suites and the Neoarchean geodynamic evolution of the Bastar Craton.

  1. Intraplate deformation on north-dipping basement structures in the Northern Gawler Craton, Australia: reactivation of original terrane boundaries or later intra-cratonic thrusts?

    NASA Astrophysics Data System (ADS)

    Baines, G.; Giles, D.; Betts, P. G.; Backé, G.

    2007-12-01

    Multiple intraplate orogenic events have deformed Neoproterozoic to Carboniferous sedimentary sequences that cover the Archean to Mesoproterozoic basement of the northern Gawler Craton, Australia. These intraplate orogenies reactivated north-dipping basement penetrating faults that are imaged on seismic reflection profiles. These north-dipping structures pre-date Neoproterozoic deposition but their relationships to significant linear magnetic and gravity anomalies that delineate unexposed Archean to Early Mesoproterozoic basement terranes are unclear. The north-dipping structures are either terrane boundaries that formed during continental amalgamation or later faults, which formed during a mid- to late-Mesoproterozoic transpressional orogeny and cross-cut the original lithological terrane boundaries. We model magnetic and gravity data to determine the 3D structure of the unexposed basement of the northern Gawler Craton. These models are constrained by drill hole and surface observations, seismic reflection profiles and petrophysical data, such that geologically reasonable models that can satisfy the data are limited. The basement structures revealed by this modelling approach constrain the origin and significance of the north-dipping structures that were active during the later intraplate Petermann, Delamerian and Alice Springs Orogenies. These results have bearing on which structures are likely to be active during present-day intraplate deformation in other areas, including, for example, current seismic activity along similar basement structures in the Adelaide "Geosyncline".

  2. SKS Anisotropy Measurements in Mid-Plate South America: a Test of Subduction-Induced Upper Mantle Flow and the Effect of Cratonic Keels

    NASA Astrophysics Data System (ADS)

    Assumpcao, M.; Melo, B. C.

    2017-12-01

    Shear-wave splitting from core-refracted (SKS) waves indicates the amount and orientation of seismic anisotropy in the upper mantle, and is used to infer past and present mantle dynamics and continental evolution. Previous SKS studies in South America concentrated mainly in the Andes and in SE Brazil. Although effects of frozen anisotropy in the lithospheric mantle were suggested in some parts of SE Brazil, the main contribution to the orientation of the fast polarization directions have been attributed to asthenospheric flow around cratonic keels, especially around the São Francisco craton in eastern Brazil (Assumpção et al., 2006,2011). We added extra SKS splitting measurements in the area of the Pantanal and Paraná-Chaco basins (FAPESP-funded "3-Basins" Project). Results from 47 new stations will be presented, both from the temporary deployments and from the Brazilian permanent net. This data set partly fills the gap in SKS measurements between the Andes and SE Brazil, providing a more complete and robust anisotropy map of the S. American stable platform. On average, over most of the mid-continent, the fast polarization orientation tends to be close to the absolute plate motion given by the hotspot reference frame HS3-NUVEL-1A. Nevertheless, the new and previously published fast polarizations results suggest mantle flow around the Amazon and São Francisco cratons. A comparison with recent modeling of upper mantle flow induced by the Nazca plate subduction (Hu et al., 2017) shows good agreement with the predictions of mantle flow around the Amazon craton. Further south, however, especially in the Pantanal Basin, the observed SKS fast orientations are ENE-WSW, deviating from the general ESE-WNW predicted orientations. We propose that the observed ENE-WSW orientation may be due to flow around a possible cratonic nucleus beneath the northern part of the Paraná Basin ("Paranapanema block"). This cratonic block (inferred from geological observations) is also

  3. Regional Variations in Composition of Cr-spinel Xenocrysts From Kimberlite

    NASA Astrophysics Data System (ADS)

    Schulze, D. J.

    2001-05-01

    Important information on the composition of the upper mantle can be obtained by studying mantle xenocrysts in kimberlite, especially in situations in which intact mantle xenoliths are rare to absent. Spinel-group minerals are especially useful as they can coexist with garnet or represent regions of the mantle shallower than garnet-facies rocks, and chromites can exist in rocks too Al-depleted to form garnet. Xenolith studies have shown that along most typical cratonic geothermal gradients, the maximum Cr/(Cr+Al) (cr#) of spinel coexisting with garnet is 0.88. Cr-spinels with cr# > 0.88 are from Al-depleted rocks or from assemblages in which Al is partitioned into another phase (e.g., metasomatic phlogopite). Approximately 2500 Cr-spinel xenocrysts from 36 kimberlites in southern Africa and North America have been analysed (and some published data used) and evaluated, primarily in terms of cr# and Fe2/(Fe2+Mg) (fe#). Differences from pipe to pipe within and between cratons reflect variations in geologic history and fertility/depletion, only some of which can be related to mantle age. Within southern Africa, pipe average values of spinel xenocryst cr# are highest on the Kaapvaal Craton (0.80-0.89) where fe# varies from 0.36 to 0.47. Suites from the craton margin (e.g., in Lesotho) indicate a less depleted mantle (cr# = 0.75-0.80), similar to those from the Zimbabwe Craton (Orapa and Letlhakane, cr# = 0.80-0.81). Jwaneng (Kaapvaal Craton) is similar to the Zimbabwe Craton pipes (cr# = 0.83). Off-craton South African suites (Kalkput and Rietfontein) have lower cr# (0.72-0.75). Most southern African suites contain a significant population of Cr-spinel with cr# > 0.88 (including off-craton Rietfontein) except Liqhobong on the craton margin in Lesotho. Cr-spinel suites from North American kimberlites are quite different, with most suites being significantly more aluminous than African populations. Most Kirkland Lake kimberlites on the Superior Craton have a very

  4. Seismic structure of the Slave craton crust

    NASA Astrophysics Data System (ADS)

    Barantseva, O.; Vinnik, L. P.; Farra, V.; van der Hilst, R. D.; Artemieva, I. M.; Montagner, J. P.

    2017-12-01

    We present P- and S-receiver functions for 20 stations along a 200-km-long NNW-SSE seismological profile across the Slave craton, and estimate the average crustal Vp/Vs ratio which is indicative of rock composition. We observe high Vp/Vs ratio ( 1.85-2.00) for the bulk crust and elevated Vp values at a depth range from 20-30 km to 40 km. High Vp values (>7.0 km/s) suggest mafic composition of the lower crust. In case of dry lower crustal rocks, the Vp/Vs ratio is expected to range from 1.6 to 1.8, which is lower than the observed values of 1.9-2.0. Laboratory studies show that Vp/Vs 1.9-2.0 can be explained by the presence of numerous cracks saturated with an incompressible fluid. Our results are at odds with the structure of the cratonic crust in many regions worldwide, and may suggest a unique geodynamic evolution of the Slave crust. Possible explanations for the observed crustal structure include the presence of an underplated mafic material, possibly related to intraplate magmatism or paleosubduction. Receiver functions are highly sensitive to the change of acoustic impedance and S-wave velocities, but do not resolve the internal seismic structure with a high precision. We extend our study of the crustal structure by using ambient noise tomography (ANT). We measure Rayleigh wave dispersion from Green's functions that are estimated from one-year noise cross-correlation (NCF). The phase velocity maps are inverted for 1D wave speed profiles which are then combined to form 2D and 3D models of the crust of the Slave Province. The combined results of RF analyses and ANT are interpreted in terms of crustal structure, composition, and evolution.

  5. Wacław Szybalski's contribution to immunotherapy: HGPRT mutation & HAT selection as first steps to gene therapy and hybrid techniques in mammalian cells.

    PubMed

    Bigda, Jacek J; Koszałka, Patrycja

    2013-08-10

    In this report we describe Wacław Szybalski's fundamental contribution to gene therapy and immunotherapy. His 1962 PNAS paper (Szybalska and Szybalski, 1962) documented the first successful gene repair in mammalian cells. Furthermore, this was also the first report on the HAT selection method used later in many applications. Most importantly, somatic cell fusion and HAT selection were subsequently used to develop monoclonal antibody technology, which contributed significantly to the progress of today's medicine. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Magmatism during the accretion of the late Archaean Dharwar Craton (South India): sanukitoids and related rocks in their geological context.

    NASA Astrophysics Data System (ADS)

    Moyen, J.-F.; Martin, H.; Jayananda, M.; Peucat, J.-J.

    2003-04-01

    The South Indian Dharwar Craton assembled during the late-Archaean (ca. 2.5 Ga). This event was associated with intense granite genesis and emplacement. Based on petrography and geochemistry, 4 main types of late Archaean granitoids were distinguished: (1) Anatectic granites (and diatexites), formed by partial melting of TTG gneisses; (2) Classical TTGs; (3) Sanukitoids, generated by interaction between slab melts (TTG) and mantle peridotite; (4) The high HFSE Closepet granite, interpreted as derived from partial melting of a mantle metasomatized by slab melts (TTG). While the 3 later groups all are interpreted as resulting from slab melt/mantle wedge interactions, their differences are related to decreasing felsic melt/peridotite ratios during the ascent “slab melts” in the mantle wedge above an active subduction zone. Field data together with geochronology and isotope geochemistry allow to subdivide the Dharwar craton into three main domains: (1) The Western Dharwar Craton (WDC) is an old (3.3 2.9 Ga ), stable continental block with limited amounts of 2.5 Ga old anatectic granites. (2) The Eastern Dharwar Craton (EDC) is subdivided into two parts: (2a) West of Kolar Schist Belt, a region of 3.0-2.7 Ga old basement intruded by 2.5 Ga old anatectic granites; (2b) East of Kolar, an area featuring mainly 2.5 Ga old diatexites and granites, derived of partial melting of a newly accreted TTG crust. Anatectic granites are ubiquitous, and late in the cratonic evolution; they witnessed generalized melting of a juvenile crust. In contrast, deep-originated granites emplaced before this melting and are restricted to the boundaries between the blocks. This structure of distinct terranes separated by narrow bands operating as channels for deep-originated magmas provides independent evidences for a two-stage evolution: an arc accretion context for the TTG, sanukitoids and related rocks, immediately followed by high temperature reworking of the newly accreted craton

  7. Lithospheric mantle beneath the south-eastern Siberian craton: petrology of peridotite xenoliths in basalts from the Tokinsky Stanovik

    NASA Astrophysics Data System (ADS)

    Ionov, Dmitri A.; Prikhodko, Vladimir S.; Bodinier, Jean-Louis; Sobolev, Alexander V.; Weis, Dominique

    2005-08-01

    We provide petrographic, major and trace element data for over 30 spinel peridotite xenoliths from the Tokinsky Stanovik (Tok) volcanic field on the Aldan shield to characterize the lithospheric mantle beneath the south-eastern margin of the Siberian craton, which formed in the Mesoproterozoic. High equilibration temperatures (870 1,010°C) of the xenoliths and the absence of garnet-bearing peridotites indicate a much thinner lithosphere than in the central craton. Most common among the xenoliths are clinopyroxene-poor lherzolites and harzburgites with Al2O3 and CaO contents nearly as low as in refractory xenoliths from kimberlite pipes (Mir, Udachnaya) in the central and northern Siberian craton. By contrast, the Tok peridotites have higher FeO, lower Mg-numbers and lower modal orthopyroxene and are apparently formed by shallow partial melting (≤3 GPa). Nearly all Tok xenoliths yield petrographic and chemical evidence for metasomatism: accessory phlogopite, amphibole, phosphates, feldspar and Ti-rich oxides, very high Na2O (2 3.1%) in clinopyroxene, LREE enrichments in whole-rocks.

  8. Laboratory derived constraints on electrical conductivity beneath Slave craton

    NASA Astrophysics Data System (ADS)

    Bagdassarov, Nikolai S.; Kopylova, Maya G.; Eichert, Sandrine

    2007-04-01

    The depth profile of the electrical conductivity, σ(d), beneath the Central Slave craton (Canada) has been reconstructed with the help of laboratory measurements carried out on peridotite xenoliths. σ(T) of xenoliths was determined in the piston-cylinder apparatus at 1 and 2 GPa and from 600 to 1150 °C. σ(T) of xenoliths follows the Arrhenius dependence with the activation energy, E, varying from 2.10 to 1.44 eV depending on temperature range and the Mg-number. The calculated xenolith geotherm and the suggested lithology beneath the Central Slave have been used to constrain σ(d) as follows: σ(d) in the crust varies between 0.5×10-5 and 10-3 S/m; the lithospheric σ(d) sharply decreases below the Moho at 39.4 km to 0.5×10-8 S/m, which corresponds to 460 °C, and then gradually increases with the depth d to 0.5×10-2 S/m. The modeled MT-response of the constrained σ(d) profile has been compared with MT-observations [Jones, A.G., Lezaeta, P., Ferguson, I.J., Chave, A.D., Evans, R.L., Garcia, X., Spratt J., 2003. The electrical structure of the Slave craton. Lithos, 71, 505-527]. The general trend of the calculated MT-response based on the σ(d) model mimics the MT-inversion of the field data from the Central Slave.

  9. An Integrated Geochronological, Petrological, Geochemical and Paleomagnetic Study of Paleoproterozoic and Mesoproterozoic Mafic Dyke Swarms in the Nain Craton, Labrador

    NASA Astrophysics Data System (ADS)

    Sahin, Tugce

    The Nain craton comprises the western, Labrador segment of the larger North Atlantic craton (NAC) which exposes Early through Late Archean gneisses. The NAC is bounded on all sides by Paleoproterozoic collisional orogens that involved either considerable structural reworking (Torngat-Nagssugtoqidian-Lewisian) or the accretion of juvenile arc magmas (Ketilidian-Makkovik). The NAC remains poorly understood compared to other Archean crustal blocks now dispersed globally. Compounding this problem is a lack of reliable paleomagnetic poles for NAC units that predate its assembly into the supercontinent Laurentia by ca. 1800 Ma, which could be used to test neighboring relationships with other cratonic fragments. In order to understand the history of the NAC as part of a possible, larger supercontinent, the record of mafic dyke swarms affecting the craton, particularly those that postdate the Late Archean terrane assembly, were examined in this study. Diabase or gabbroic dyke swarms are invaluable in such studies because their geometries offer possible locus points, they often have a punctuated emplacement and precisely datable crystallization histories, and they have cooling histories and oxide mineralogy amenable to recovering robust paleopoles. Coastal Labrador exposes a number of mafic dykes, some of which are demonstrably Paleoproterozoic (e.g. 2235 Ma Kikkertavak dykes; 2121 Ma Tikkigatsiagak dykes) or Mesoproterozoic (e.g. 1280-1270 Ma Nain and Harp dykes) in age (U-Pb; baddeleyite or zircon). The southern half of the Nain craton (Hopedale block) in particular preserves a rich array of mafic dykes. Dyke cross-cutting relationships are numerous and relatively well exposed, permitting multiple opportunities for paleomagnetic field tests (e.g. baked contact). The results presented here allow understanding of the tectonic evolution of the NAC with implications for strengthened Labrador-Greenland correlations, and testing possible Paleoproterozoic supercontinent

  10. Isotopic composition of Mg and Fe in garnet peridotites from the Kaapvaal and Siberian cratons

    NASA Astrophysics Data System (ADS)

    An, Yajun; Huang, Jin-Xiang; Griffin, W. L.; Liu, Chuanzhou; Huang, Fang

    2017-03-01

    We present Mg and Fe isotopic data for whole rocks and separated minerals (olivine, clinopyroxene, orthopyroxene, garnet, and phlogopite) of garnet peridotites that equilibrated at depths of 134-186 km beneath the Kaapvaal and Siberian cratons. There is no clear difference in δ26Mg and δ56Fe of garnet peridotites from these two cratons. δ26Mg of whole rocks varies from -0.243‰ to -0.204‰ with an average of -0.225 ± 0.037‰ (2σ, n = 19), and δ56Fe from -0.038‰ to 0.060‰ with an average of -0.003 ± 0.068‰ (2σ, n = 19). Both values are indistinguishable from the fertile upper mantle, indicating that there is no significant Mg-Fe isotopic difference between the shallow and deep upper mantle. The garnet peridotites from ancient cratons show δ26Mg similar to komatiites and basalts, further suggesting that there is no obvious Mg isotopic fractionation during different degrees of partial melting of deep mantle peridotites and komatiite formation. The precision of the Mg and Fe isotope data (⩽±0.05‰ for δ26Mg and δ56Fe, 2σ) allows us to distinguish inter-mineral isotopic fractionations. Olivines are in equilibrium with opx in terms of Mg and Fe isotopes. Garnets have the lowest δ26Mg and δ56Fe among the coexisting mantle minerals, suggesting the dominant control of crystal structure on the Mg-Fe isotopic compositions of garnets. Elemental compositions and mineralogy suggest that clinopyroxene and garnet were produced by later metasomatic processes as they are not in chemical equilibrium with olivine or orthopyroxene. This is consistent with the isotopic disequilibrium of Mg and Fe isotopes between orthopyroxene/olivine and garnet/clinopyroxene. Combined with one sample showing slightly heavy δ26Mg and much lighter δ56Fe, these disequilibrium features in the garnet peridotites reveal kinetic isotopic fractionation due to Fe-Mg inter-diffusion during reaction between peridotites and percolating melts in the Kaapvaal craton.

  11. The oldest rock of Ivory Coast

    NASA Astrophysics Data System (ADS)

    Kouamelan, Alain Nicaise; Djro, Sagbrou Chérubin; Allialy, Marc Ephrem; Paquette, Jean-Louis; Peucat, Jean-Jacques

    2015-03-01

    The tonalitic gneiss of Balmer (TGB), in the SASCA area of south-western Ivory Coast, previously dated at 3141 ± 2 Ma using the single zircon evaporation method, is regarded as a relic of Archean rock within the Paleoproterozoic (Birimian) formation of the West African Craton (WAC). We present new geochronological data for the TGB using the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method. We obtain a U-Pb age of 3207 ± 7 Ma for abundant zircons extracted from the tonalitic gneiss, and interpret this age as that of the magmatic protolith because of the igneous-type homogeneous zircon population. Certain magmatic zircon edges and some round zircons define an upper intercept age of 3155 ± 17 Ma which could represent overgrowths during gneissification. It appears that the TGB was not affected by the events posterior to its genesis, i.e. the Liberian (2.9-2.7 Ga) and Eburnean (2.4-2.0 Ga) events. Additionally, the TGB proves to be a juvenile Leonian rock, as indicated by the Nd model age of 3456 Ma, and could also constitute the protolith of the granulitic grey gneisses and charnockites of the Man area, which are 150-400 Ma younger.

  12. Early Archean sialic crust of the Siberian craton: Its composition and origin of magmatic protoliths

    NASA Astrophysics Data System (ADS)

    Vovna, G. M.; Mishkin, M. A.; Sakhno, V. G.; Zarubina, N. V.

    2009-12-01

    This study demonstrates that the base of the Archean deep-seated granulite complexes within the Siberian craton consists of a metabasite-enderbite association. The major and trace element distribution patterns revealed that the protoliths of this association are represented by calc-alkaline andesites and dacites, containing several minor sequences of komatiitic-tholeiitic volcanic rocks. The origin of the primary volcanic rocks of the metabasite-enderbite association is inferred on the basis of a model of mantle plume magmatism, which postulates that both andesitic and dacitic melts were derived from the primary basitic crust at the expense of heat generated by ascending mantle plumes. The formation of the protoliths of the Archen metabasite-enderbite association of the Siberian craton began at 3.4 Ga and continued until the late Archean.

  13. Chapter 27: Geology and petroleum potential of the north and east margins of the Siberian Craton, north of the Arctic Circle

    USGS Publications Warehouse

    Klett, T.R.; Wandrey, C.J.; Pitman, Janet K.

    2011-01-01

    The Siberian Craton consists of crystalline rocks and superimposed Precambrian sedimentary rocks deposited in rift basins. Palaeozoic rocks, mainly carbonates, were deposited along the margins of the craton to form an outwardly younger concentric pattern that underlies an outward-thickening Mesozoic sedimentary section. The north and east margins of the Siberian Craton subsequently became foreland basins created by compressional deformation during collision with other tectonic plates. The Tunguska Basin developed as a Palaeozoic rift/sag basin over Proterozoic rifts. The geological provinces along the north and east margins of the Siberian Craton are immature with respect to exploration, so exploration-history analysis alone cannot be used for assessing undiscovered petroleum resources. Therefore, other areas from around the world having greater petroleum exploration maturity and similar geological characteristics, and which have been previously assessed, were used as analogues to aid in this assessment. The analogues included those of foreland basins and rift/sag basins that were later subjected to compression. The US Geological Survey estimated the mean undiscovered, technically recoverable conventional petroleum resources to be approximately 28 billion barrels of oil equivalent, including approximately 8 billion barrels of crude oil, 103 trillion cubic feet of natural gas and 3 billion barrels of natural gas liquids. ?? 2011 The Geological Society of London.

  14. Paleomagnetic Results of the 925 Ma Mafic Dykes From the North China Craton: Implications for the Neoproterozoic Paleogeography of Rodinia

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Peng, P.

    2017-12-01

    Precambrian mafic dyke swarms are useful geologic records for Neoproterozoic paleogeographic reconstruction. We present a paleomagnetic study of the 925 Ma Dashigou dyke swarm from 3 widely separated locations in the central and northern parts of the North China Craton, which are previously unsampled regions. Stepwise thermal and alternating field demagnetizations were successful in isolating two magnetic components. The lower unblocking temperature component represents the recent Earth magnetic field. The higher unblocking temperature component is the characteristic remanent magnetization and yields positive baked contact test. Results from detailed rock magnetic measurements corroborate the demagnetization behavior and show that titanomagnetites are the main magnetic carrier in these rocks. There was no regional event that has reset the remanent magnetization of all the dyke sites, as indicated by the magnetization directions of both overlying and underlying strata. The similarity of the virtual paleomagnetic poles for the 3 sampled regions also argues that the characteristic remanent magnetizations are primary magnetization when the dykes were emplaced. The paleomagnetic poles from the Dashigou dyke swarm of the North China Craton are not similar to those of the identical aged Bahia dykes from the São Francisco Craton, Brazil, indicating that these mafic dykes may be not parts of a common regional magmatic event that affected North China Craton and NE Brazil at about 925 Ma.

  15. Cratonic roots under North America are shifted by basal drag: new evidence from gravity and geodynamic modeling

    NASA Astrophysics Data System (ADS)

    Kaban, M. K.; Petrunin, A.; Mooney, W. D.

    2013-12-01

    The impact of basal drag on the long-lived cratonic roots has been debated since the discovering of plate tectonics. Previously, evidence for a shifted mantle structure under North America was postulated from a comparison of the surface expression of the Great Meteor hotspot track versus its location at 200 km depth as inferred from seismic tomography (Eaton and Frederiksen, 2007). We present new results that are based on the integrative modeling of gravity and seismic data. The starting point is the residual gravity anomaly and residual topography, which are computed by removing of the crustal effect and of the effect of temperature variations in the upper mantle from the observed fields (Mooney and Kaban, 2010). After the temperature correction both residual fields chiefly reflect compositional density heterogeneity of the upper mantle. The residual gravity and topography are jointly inverted to determine the 3D density structure of the upper mantle. The inversion technique accounts for the fact that although these parameters are controlled by the same factors, the effect depends on depth and wavelength. Therefore, we can resolve the vertical distribution of density more reliable than by interpreting only one parameter. We found a strong negative anomaly under the North American craton, as expected for a depleted mantle. However, starting from a depth of about 200 km the depleted root is shifted west-southwest. The maximal shift reaches about 1000 km at a depth of 300 km. The direction agrees with the North American plate movement and with the anisotropy pattern in the upper mantle (e.g. Bokelmann, 2002). The results of the gravity modeling are confirmed by geodynamic modeling. The mantle flow is estimated from the density and temperature distribution derived from seismic tomography models. A 3D viscosity model is supplemented with weak boundaries based on an integrated model of plate boundary deformations. The calculated plate velocities are in a good agreement

  16. The ambient noise and earthquake surface wave tomography of the North China Craton

    NASA Astrophysics Data System (ADS)

    Pan, J.; Obrebski, M. J.; Wu, Q.; Li, Y.

    2010-12-01

    The North China Craton (NCC) is unique for its unusual Phanerozoic tectonic activity. The NCC was internally tectonically stable until Jurassic when its southern margin collided with the Yangzte Craton. Subsequently, the eastern and central part of the NCC underwent distinctive evolutions during the Late Mesozoic and Cenozoic. In contrast to the Erdos block located in the western part of NCC and that seems to have preserved the typical features of a stable craton, the eastern NCC has experienced significant lithospheric thinning as evidenced by widespread magmatism activity and normal faulting, among other manifestations. The eastern part of the NCC is also one of the most seismically active intracontinental regions in the world. Here we focus on the region that comprises the North China Basin and the Yanshan-Taihang Mountains, two major tectonic units located to the east and in the center of the NCC, respectively. We combine ambient noise data and ballistic surface wave data recorded by the dense temporary seismic array deployed in the North China to obtain phase velocity maps at periods ranging from 5s to 60s. 1587 and 3667 ray paths were obtained from earthquake surface waves and ambient noise correlations, respectively. The phase velocity distribution was reconstructed with grid size 0.25x0.25 degrees and 0.5x0.5 degrees from ambient noise tomography and earthquake surface wave tomography. For periods shorter than 15s, the phase velocity variations are well correlated with the principal geological units in the NCC, with low-speed anomalies corresponding to the major sedimentary basins and high-speed anomalies coinciding with the main mountain ranges. Within the period range from 20s to 30s, the phase velocity variations seem to be related to the local variations of the crustal thickness. For the periods above 30s, the strength of the phase velocity variations decreases with increasing periods, which may imply that the uppermost mantle is much more homogeneous

  17. Diachronous evolution of volcano-sedimentary basins north of the Congo craton: Insights from U Pb ion microprobe dating of zircons from the Poli, Lom and Yaoundé Groups (Cameroon)

    NASA Astrophysics Data System (ADS)

    Toteu, Sadrack Félix; Penaye, Joseph; Deloule, Etienne; Van Schmus, William Randall; Tchameni, Rigobert

    2006-04-01

    Ion microprobe U-Pb dating of zircons from Neoproterozoic volcano-sedimentary sequences in Cameroon north of the Congo craton is presented. For the Poli basin, the depositional age is constrained between 700-665 Ma; detrital sources comprise ca. 920, 830, 780 and 736 Ma magmatic zircons. In the Lom basin, the depositional age is constrained between 613 and 600 Ma, and detrital sources include Archaean to Palaeoproterozoic, late Mesoproterozoic to early Neoproterozoic (1100-950 Ma), and Neoproterozoic (735, 644 and 613 Ma) zircons. The Yaoundé Group is probably younger than 625 Ma, and detrital sources include Palaeoproterozoic and Neoproterozoic zircons. The depositional age of the Mahan metavolcano-sedimentary sequence is post-820 Ma, and detrital sources include late Mesoproterozoic (1070 Ma) and early Neoproterozoic volcanic rocks (824 Ma). The following conclusions can be made from these data. (1) The three basins evolved during the Pan-African event but are significantly different in age and tectonic setting; the Poli is a pre- to syn-collisional basin developed upon, or in the vicinity of young magmatic arcs; the Lom basin is post-collisional and intracontinental and developed on old crust; the tectono-metamorphic evolution of the Yaoundé Group resulted from rapid tectonic burial and subsequent collision between the Congo craton and the Adamawa-Yade block. (2) Late Mesoproterozoic to early Neoproterozoic inheritance reflects the presence of magmatic event(s) of this age in west-central Africa.

  18. Imaging the lithosphere-asthenosphere boundary across the transition from Phanerozoic Europe to the East-European Craton with S-receiver functions

    NASA Astrophysics Data System (ADS)

    Knapmeyer-Endrun, Brigitte; Krüger, Frank

    2013-04-01

    Cratons are characterized by their thick lithospheric roots. In the case of the Eastern European Craton, high seismic velocities have been imaged tomographically to more than 200 km depth. However, the exact depth extent of the cratonic lithosphere and especially the properties of the transition to a much thinner lithosphere beneath Phanerozoic central Europe still remain under discussion. Whereas a number of recent seismic campaigns has significantly increased the knowledge about crustal structure and Moho topography in central Europe, comparably detailed, 3-D information on upper mantle structure, e.g. the lithosphere-asthenosphere boundary (LAB), is yet missing. The international PASSEQ experiment, which was conducted from 2006 to 2008, strived to fill this gap with the deployment of 196 seismological stations, roughly a quarter of which were equipped with broad-band sensors, between eastern Germany and Lithuania. With a mean inter-station distance of 60 km, reduced to about 20 km along the central profile, PASSEQ offers the densest coverage for a passive experiment in this region yet. Here, we present first S-receiver function results for this data set, complemented by additional data from national and regional networks and other temporary deployments. This increases the number of available broad-band stations to almost 300, though mostly located to the west of the Trans-European Suture Zone (TESZ). Besides, we also process data from short-period (1 s and 5 s) sensors. The visibility of mantle-transition zone phases, even in single-station data, provides confidence in the quality of the obtained S-receiver functions. Moho conversions can be confidently identified for all stations. In case of a low-velocity sedimentary cover, as found for example in the Polish Basin, the S-receiver functions even provide clearer information on Moho depth than the P-receiver functions, which are heavily disturbed by shallow reverberations. For stations west of the TESZ, a clear

  19. APW path traced for the Guiana Shield (2070-1960 Ma) and Paleogeographic Implications: Paleomagnetic data from the 1.98-1.96 Ga Surumu Group (Northern Amazonian Craton)

    NASA Astrophysics Data System (ADS)

    Bispo-Santos, F.; Dagrella Filho, M. S.; Reis, N. J.; Trindade, R. I.

    2013-05-01

    Definition of continental paleogeography for times prior to formation of Columbia Supercontinent (1900-1850 Ma) is very complex, since amalgamation of some continental blocks of Earth was still in progress, as in the case of Laurentia, Baltica and Amazonian Craton. So, paleogeographic models proposed for this time are still very speculative and/or subjective. The use of the paleomagnetic technique tracing apparent polar wander (APW) paths for the various cratonic blocks can contribute to understand the continental amalgamation and breakup, especially for times where all created oceanic lithosphere was fully consumed. In this study, we present the paleomagnetic data obtained for samples collected from 39 sites from the well-dated 1980-1960 Ma (U-Pb) volcanic rocks belonging to the Surumu Group, cropping out in the northern Roraima State (Guiana Shield, Amazonian Craton). AF and thermal treatment revealed northwestern directions with moderate downward inclinations on samples from 20 out of the 39 analyzed sites. Site mean directions cluster around the mean, Dm = 298.6°; Im = 39.4° (N = 20; α95 = 10.1°), which yielded a key paleomagnetic pole (SG) for the Guiana Shield, located at 234.8°E, 27.4°N (A95 = 9.8°). Magnetic mineralogy experiments show that the magnetization of these rocks, probably of primary origin, is carried by magnetite and/or hematite. The SG pole contributes to a better fit of the APW path traced for Guiana Shield during the Paleoproterozoic (2070-1960 Ma). Comparison with the APW path traced for the West-Africa Craton for the same time interval suggests that these cratonic blocks were linked at 2000-1960 Ma ago, forming a paleogeography in which the Guri (Guiana Shield) and Sassandra (West-Africa Craton) shear zones were aligned as suggested in previous geologic models. KEYWORDS: Paleoproterozoic, Paleomagnetism, APWP, Amazonian Craton, Surumu Group.

  20. Interaction of the Siberian craton and Central Asian Orogenic Belt (CAOB) recorded by detrital zircons from Transbaikalia

    NASA Astrophysics Data System (ADS)

    Powerman, V.; Shatsillo, A.; Chumakov, N.; Kapitonov, I.; Hourigan, J. K.

    2015-12-01

    The goal of this study is to pinpoint the beginning of interaction of two gigantic crustal structures: the Siberian Craton and the Central Asian Orogenic Belt (CAOB). We hypothesize that the beginning of convergence should be recorded in the Neoproterozoic passive margin strata of Siberian Craton by the first appearance of extraregional Neoproterozoic zircons. In order to test this hypothesis, we have acquired U-Pb zircon age distributions from twelve Neoproterozoic clastic rocks from the Baikal-Patom margin of Siberia and one sample from the volcaniclastic Padrinsky Group that was deposited atop accreted CAOB crust. Stratigraphically lower strata from the Siberian margin yield Archean - Paleoproterozoic detrital zircon ages, which are similar to, and probably derived from the Siberian Precambrian craton. A few extra-regional Mesoproterozoic grains are also present. The provenance shift happens in the upper portion of the section and is marked by a strong influx of extra-regional Neoproterozoic sediments. The youngest grains of 610 Ma constrain the sedimentation age and confine the timing of interaction between CAOB and Siberia in this region. Neoproterozoic zircons also dominate the overlying sedimentary unit, suggesting the continuance of the convergence. The coeval volcanoclastic unit on the CAOB side has a similar U-Pb detrital age distribution, strengthening the provenance link. Analysis of the local tectonics suggests that the beginning of accretion might have started even before the first appearance of Neoproterozoic zircon: during the development of a regional unconformity, capped by 635 Ma (?) "Snowball Earth" tillites of Dzhemkukan Fm. The absence of Neoproterozoic zircons in Dzhemkukan Fm. is probably explained by a thin-skinned tectonics that did not result in massive orogenesis . Our data are in good correlation with other Neoproterozoic sedimentary basins of southern Siberian Craton, including Cisbaikalia and Bodaibo Synclinorium.

  1. Is the Ventersdorp rift system of southern Africa related to a continental collision between the Kaapvaal and Zimbabwe Cratons at 2.64 Ga AGO?

    NASA Technical Reports Server (NTRS)

    Burke, K.; Kidd, W. S. F.; Kusky, T.

    1985-01-01

    Rocks of the Ventersdorp Supergroup were deposited in a system of northeast trending grabens on the Kaapvaal Craton approximately 2.64 Ga ago contemporary with a continental collision between the Kaapvaal and Zimbabwe Cratons. It is suggested that it was this collision that initiated the Ventersdorp rifting. Individual grabens strike at high angles toward the continental collision zone now exposed in the Limpopo Province where late orogenic left-lateral strike-slip faulting and anatectic granites are recognized. The Ventersdorp rift province is related to extension in the Kaapvaal Craton associated with the collision, and some analogy is seen with such rifts as the Shansi and Baikal Systems associated with the current India-Asia continental collision.

  2. Heat flow, heat generation and crustal thermal structure of the northern block of the South Indian Craton

    NASA Astrophysics Data System (ADS)

    Gupta, Mohan L.; Sharma, S. R.; Sundar, A.

    Heat flow values and heat generation data calculated from the concentration of heat producing radioactive elements, U, Th and K in surface rocks were analyzed. The South Indian Craton according to Drury et al., can be divided into various blocks, separated by late Proterozoic shear belts. The northern block comprises Eastern and Western Dharwar Cratons of Rogers (1986), Naqvi and Rogers (1987) and a part of the South Indian granulite terrain up to a shear system occupying the Palghat-Cauvery low lands. The geothermal data analysis clearly demonstrates that the present thermal characteristics of the above two Archaean terrains of the Indian and Australian Shields are quite similar. Their crustal thermal structures are likely to be similar also.

  3. Heat flow, heat generation and crustal thermal structure of the northern block of the South Indian Craton

    NASA Technical Reports Server (NTRS)

    Gupta, Mohan L.; Sharma, S. R.; Sundar, A.

    1988-01-01

    Heat flow values and heat generation data calculated from the concentration of heat producing radioactive elements, U, Th and K in surface rocks were analyzed. The South Indian Craton according to Drury et al., can be divided into various blocks, separated by late Proterozoic shear belts. The northern block comprises Eastern and Western Dharwar Cratons of Rogers (1986), Naqvi and Rogers (1987) and a part of the South Indian granulite terrain up to a shear system occupying the Palghat-Cauvery low lands. The geothermal data analysis clearly demonstrates that the present thermal characteristics of the above two Archaean terrains of the Indian and Australian Shields are quite similar. Their crustal thermal structures are likely to be similar also.

  4. High-resolution sequence stratigraphy of lower Paleozoic sheet sandstones in central North America: The role of special conditions of cratonic interiors in development of stratal architecture

    USGS Publications Warehouse

    Runkel, Anthony C.; Miller, J.F.; McKay, R.M.; Palmer, A.R.; Taylor, John F.

    2007-01-01

    Well-known difficulties in applying sequence stratigraphic concepts to deposits that accumulated across slowly subsiding cratonic interior regions have limited our ability to interpret the history of continental-scale tectonism, oceanographic dynamics of epeiric seas, and eustasy. We used a multi-disciplinary approach to construct a high-resolution stratigraphic framework for lower Paleozoic strata in the cratonic interior of North America. Within this framework, these strata proved readily amenable to modern sequence stratigraphic techniques that were formulated based on successions along passive margins and in foreland basins, settings markedly different from the cratonic interior. Parasequences, parasequence stacking patterns, systems tracts, maximum flooding intervals, and sequence-bounding unconformities can be confidently recognized in the cratonic interior using mostly standard criteria for identification. The similarity of cratonic interior and foreland basin successions in size, geometry, constituent facies, and local stacking patterns of nearshore parasequences is especially striking. This similarity indicates that the fundamental processes that establish shoreface morphology and determine the stratal expression of retreat and progradation were likewise generally the same, despite marked differences in tectonism, physiography, and bathymetry between the two settings. Our results do not support the widespread perception that Paleozoic cratonic interior successions are so anomalous in stratal geometries, and constitute such a poor record of time, that they are poorly suited for modern sequence stratigraphic analyses. The particular arrangement of stratal elements in the cratonic interior succession we studied is no more anomalous or enigmatic than the variability in architecture that sets all sedimentary successions apart from one another. Thus, Paleozoic strata of the cratonic interior are most appropriately considered as a package that belongs in a

  5. Cover sequences at the northern margin of the Antongil Craton, NE Madagascar

    USGS Publications Warehouse

    Bauer, W.; Walsh, G.J.; De Waele, B.; Thomas, Ronald J.; Horstwood, M.S.A.; Bracciali, L.; Schofield, D.I.; Wollenberg, U.; Lidke, D.J.; Rasaona, I.T.; Rabarimanana, M.H.

    2011-01-01

    The island of Madagascar is a collage of Precambrian, generally high-grade metamorphic basement domains, that are locally overlain by unmetamorphosed sedimentary rocks and poorly understood low-grade metasediments. In the Antalaha area of NE Madagascar, two distinct cover sequences rest on high-grade metamorphic and igneous basement rocks of the Archaean Antongil craton and the Neoproterozoic Bemarivo belt. The older of these two cover sequences, the Andrarona Group, consists of low-grade metasedimentary rocks. The younger sequence, the newly defined Ampohafana Formation, consists of unmetamorphosed sedimentary rocks. The Andrarona Group rests on Neoarchaean granites and monzogranites of the Antongil craton and consists of a basal metagreywacke, thick quartzites and an upper sequence of sericite-chlorite meta-mudstones, meta-sandstones and a volcaniclastic meta-sandstone. The depositional age of the volcaniclastic meta-sandstone is constrained in age by U–Pb laser-ablation ICP-MS analyses of euhedral zircons to 1875 ± 8 Ma (2σ). Detrital zircons of Archaean and Palaeoproterozoic age represent an input from the Antongil craton and a newly defined Palaeoproterozoic igneous unit, the Masindray tonalite, which underlies the Andrarona Group, and yielded a U–Pb zircon age of 2355 ± 11 Ma (2σ), thus constraining the maximum age of deposition of the basal part of the Andrarona Group. The Andrarona Group shows a low-grade metamorphic overprint in the area near Antalaha; illite crystallinity values scatter around 0.17°Δ2Θ CuKα, which is within the epizone. The Ampohafana Formation consists of undeformed, polymict conglomerate, cross-bedded sandstone, and red mudstone. An illite crystallinity value of >0.25°Δ2Θ CuKα obtained from the rocks is typical of the diagenetic zone. Occurrences of rhyodacite pebbles in the Ampohafana Formation and the intrusion of a basaltic dyke suggest a deposition in a WSW-ENE-trending graben system during the opening of the Indian

  6. Petrophysical constraints on the seismic properties of the Kaapvaal craton mantle root

    NASA Astrophysics Data System (ADS)

    Virginie, Baptiste; Andrea, Tommasi

    2014-05-01

    We calculated the seismic properties of 47 mantle xenoliths from 9 kimberlitic pipes in the Kaapvaal craton based on their modal composition, the crystal preferred orientations (CPO) of olivine, ortho- and clinopyroxene, and garnet, the Fe content of olivine, and the pressures and temperatures at which the rocks were equilibrated. These data allow constraining the variation of seismic anisotropy and velocities within the cratonic mantle. The fastest P and S2 waves propagation direction and the polarization of fast split shear wave (S1) are always subparallel to olivine [100] axes maximum concentration, which marks the lineation (fossil flow direction). Seismic anisotropy is higher for high olivine contents and stronger CPO. Maximum P-wave azimuthal anisotropy (AVp) ranges between 2.5 and 10.2% and the maximum S-wave polarization anisotropy (AVs), between 2.7 and 8%. Changes in olivine CPO symmetry result in minor variations in the seismic anisotropy patterns, mainly in the apparent isotropy directions for shear wave splitting. Seismic properties averaged over 20 km thick depth sections are, therefore, very homogeneous. Based on these data, we predict the anisotropy that would be measured by SKS, Rayleigh (SV) and Love (SH) waves for 5 end-member orientations of the foliation and lineation. Comparison to seismic anisotropy data in the Kaapvaal shows that the coherent fast directions, but low delay times imaged by SKS studies and the low azimuthal anisotropy with SH faster than SV measured using surface waves are best explained by a homogeneously dipping (45°) foliation and lineation in the cratonic mantle lithosphere. Laterally or vertically varying foliation and lineation orientations with a dominantly NW-SE trend might also explain the low measured anisotropies, but this model should also result in backazimuthal variability of the SKS splitting data, not reported in the seismological data. The strong compositional heterogeneity of the Kaapvaal peridotite

  7. Paleomagnetism and geochronological studies on a 450 km long 2216 Ma dyke from the Dharwar craton, southern India

    NASA Astrophysics Data System (ADS)

    Nagaraju, E.; Parashuramulu, V.; Kumar, Anil; Srinivas Sarma, D.

    2018-01-01

    Paleomagnetic and geochronological studies were carried out on a ∼ 450 km long (from 17 sites) N-S striking Paleoproterozoic dyke swarm exposed along a natural crustal cross section of about 10 km (increasing from North to South) in the Dharwar Craton, to study the characteristics of paleomagnetism and geochronology in vertical dimension. U-Pb/Pb-Pb dating on baddeleyite gives a crystallisation age of 2216.0 ± 0.9 Ma for long dyke AKLD. Paleomagnetic data from this well dated ∼ 2216 Ma dyke swarm in Dharwar Craton are of excellent quality. High coercivity and high blocking temperature components are carried by single domain magnetite and show dual polarity remanence directions. Combined normal and reverse polarity remanences on AKLD and other N-S dykes define the most reliable paleomagnetic pole for ∼ 2216 Ma at latitude 36°S and longitude 312°E (A95 = 7°). Though paleomagnetic data is unavailable on other N-S dykes below the Cuddapah basin, high precision geochronology suggest that they are of similar age within errors. Though there is a variation in the crustal depth of Dharwar craton from north to south, consistent Pb-Pb/U-Pb baddeleyite geochronology and paleomagnetic studies along the AKLD established its continuity and preservation along its entire strike length. The virtual geomagnetic poles of these sites confirm a stable remanence and are almost identical to the previously reported paleomagnetic pole and also supported by positive reversal test. Positive paleomagnetic reversal test on these dykes signify that the remanent magnetization is primary and formed during initial cooling of the intrusions. Updated apparent polar wander path of Dharwar craton indicates relatively low drift rate during 2.21-2.08 Ga interval. Magnetogranulometry and SEM studies show that remanent magnetization in this dyke was carried by single domain magnetite residing within silicate minerals.

  8. Provenance analysis and tectonic setting of the Neoproterozoic sediments within the Taoudeni Basin, Northern Mauritania

    NASA Astrophysics Data System (ADS)

    Nicoll, Graeme; Straathof, Gijs; Tait, Jenny; Lo, Khalidou; Ousmane, N'diaye; El Moctar Dahmada, Mohamed; Berndt, Jasper; Key, Roger

    2010-05-01

    We have dated over 800 detrital zircon grains from the Neoproterozoic sediments within the Taoudeni Basin of Mauritania on the West African craton. This sequence of sediments preserves a relatively condensed mixed continental and marine succession as well as Neoproterozoic glacial and glacially influenced deposits. The underlying Archaean and Birimian basement of the West African craton is exposed on the Reguibat shield in the north, and on the Leo shield in the south although smaller inliers occur scattered along the Bassaride and Mauritanide belts, as well as in the core of the Anti-Atlas belt. The large West African craton is totally surrounded by Pan-African fold belts. Sedimentation within the Taoudeni basin started around 1000Ma and lasted until the end of the Carboniferous. The basin is 1000-1500 km in diameter and the sedimentary pile is on average 3000 m thick. All dated zircons in the stratigraphically lowest Char and Atar Groups are older than ~1800Ma. These groups show a strong input of 2950 and 2075Ma ages, indicating sourcing from the local underlying granitic and gneissic basement. These basal sediments also include a large input from a rare 2475Ma source. Samples from the upper Assebet El Hassiane Group contain numerous zircons of 2000-900Ma. While the Neoproterozoic Marinoan glaciogenic "Triad" Jbeliat Group and stratigraphically above formations show a large range of 3200-595Ma ages. We have also undertaken a detailed Carbon isotope profile study through the carbonates which cap the Glacial Jbeliat Group. The upper part of the Jbeliat cap carbonate displays a distinct and pronounced rise from -4.3 to +3.8 13C, followed by the final demise of carbonate productivity. This positive trend is consistent with the upper part of the globally extensive Ghaub/Nantuo/Marinoan cap carbonate sequences. This world-wide sequence is characterized by composite negative-to-positive trends up section and so this isotope stratigraphy along with the zircon data helps

  9. Proterozoic evolution of the western margin of the Wyoming craton: Implications for the tectonic and magmatic evolution of the northern Rocky Mountains

    USGS Publications Warehouse

    Foster, D.A.; Mueller, P.A.; Mogk, D.W.; Wooden, J.L.; Vogl, J.J.

    2006-01-01

    Defining the extent and age of basement provinces west of the exposed western margin of the Archean Wyoming craton has been elusive because of thick sedimentary cover and voluminous Cretaceous-Tertiary magmatism. U-Pb zircon geochronological data from small exposures of pre-Belt supergroup basement along the western side of the Wyoming craton, in southwestern Montana, reveal crystallization ages ranging from ???2.4 to ???1.8 Ga. Rock-forming events in the area as young as ???1.6 Ga are also indicated by isotopic (Nd, Pb, Sr) signatures and xenocrystic zircon populations in Cretaceous-Eocene granitoids. Most of this lithosphere is primitive, gives ages ???1.7-1.86 Ga, and occurs in a zone that extends west to the Neoproterozoic rifted margin of Laurentia. These data suggest that the basement west of the exposed Archean Wyoming craton contains accreted juvenile Paleoproterozoic arc-like terranes, along with a possible mafic underplate of similar age. This area is largely under the Mesoproterozoic Belt basin and intruded by the Idaho batholith. We refer to this Paleoproterozoic crust herein as the Selway terrane. The Selway terrane has been more easily reactivated and much more fertile for magma production and mineralization than the thick lithosphere of the Wyoming craton, and is of prime importance for evaluating Neoproterozoic continental reconstructions. ?? 2006 NRC Canada.

  10. Archaean ultra-depleted komatiites formed by hydrous melting of cratonic mantle.

    PubMed

    Wilson, A H; Shirey, S B; Carlson, R W

    2003-06-19

    Komatiites are ultramafic volcanic rocks containing more than 18 per cent MgO (ref. 1) that erupted mainly in the Archaean era (more than 2.5 gigayears ago). Although such compositions occur in later periods of Earth history (for example, the Cretaceous komatiites of Gorgona Island), the more recent examples tend to have lower MgO content than their Archaean equivalents. Komatiites are also characterized by their low incompatible-element content, which is most consistent with their generation by high degrees of partial melting (30-50 per cent). Current models for komatiite genesis include the melting of rock at great depth in plumes of hot, diapirically rising mantle or the melting of relatively shallow mantle rocks at less extreme, but still high, temperatures caused by fluxing with water. Here we report a suite of ultramafic lava flows from the Commondale greenstone belt, in the southern part of the Kaapvaal Craton, which represents a previously unrecognized type of komatiite with exceptionally high forsterite content of its igneous olivines, low TiO(2)/Al(2)O(3) ratio, high silica content, extreme depletion in rare-earth elements and low Re/Os ratio. We suggest a model for their formation in which a garnet-enriched residue left by earlier cratonic volcanism was melted by hydration from a subducting slab.

  11. Heat flow, heat production, and crustal temperatures in the Archaean Bundelkhand craton, north-central India: Implications for thermal regime beneath the Indian shield

    NASA Astrophysics Data System (ADS)

    Podugu, Nagaraju; Ray, Labani; Singh, S. P.; Roy, Sukanta

    2017-07-01

    Heat flow and heat production data sets constrain the crustal thermal structure in the 2.5-3.5 Ga Bundelkhand craton, the oldest cratonic core in northern Indian shield, for the first time and allow comparisons with the southern Indian shield. Temperature measurements carried out in 10 boreholes at five sites in the craton, combined with systematic thermal conductivity measurements on major rock types, yield low heat flow in the range of 32-41 mW m-2, which is distinct from the generally high heat flow reported from other parts of the northern Indian shield. Radioelemental measurements on 243 samples of drill cores and outcrops reveal both large variability and high average heat production for the Neo-Archaean to Palaeo-Proterozoic granites (4.0 ± 2.1 (SD) μW m-3) relative to the Meso-Archaean tonalite-trondhjemite-granodiorite (TTG) gneisses (2.0 ± 1.0 (SD) μW m-3). On the basis of new heat flow and heat production data sets combined with available geological and geophysical information, a set of steady state, heat flow-crustal heat production models representative of varying crustal scenarios in the craton are envisaged. Mantle heat flow and Moho temperatures are found to be in the range of 12-22 mW m-2 and 290-420°C, respectively, not much different from those reported for the similar age Dharwar craton in southern India. This study reveals similar mantle thermal regimes across the northern and southern parts of the Indian shield, in spite of varying surface heat flow regimes, implying that much of the intraprovince and interprovince variations in the Indian shield are explained by variations in upper crustal heat production.

  12. The Carrancas Formation, Bambuí Group: A record of pre-Marinoan sedimentation on the southern São Francisco craton, Brazil

    NASA Astrophysics Data System (ADS)

    Uhlein, Gabriel J.; Uhlein, Alexandre; Halverson, Galen P.; Stevenson, Ross; Caxito, Fabrício A.; Cox, Grant M.; Carvalho, Jorge F. M. G.

    2016-11-01

    The Carrancas Formation outcrops in east-central Brazil on the southern margin of the São Francisco craton where it comprises the base of the late Neoproterozoic Bambuí Group. It is overlain by the basal Ediacaran cap carbonate Sete Lagoas Formation and was for a long time considered to be glacially influenced and correlative with the glaciogenic Jequitaí Formation. New stratigraphic, isotopic and geochronologic data imply that the Carrancas Formation was instead formed by the shedding of debris from basement highs uplifted during an episode of minor continental rifting. Reddish dolostones in the upper Carrancas Formation have δ13C values ranging from +7.1 to +9.6‰, which is a unique C isotopic composition for the lowermost Bambuí Group but similar to values found in the Tijucuçu sequence, a pre-glacial unit in the Araçuaí fold belt on the eastern margin of the São Francisco craton. The stratigraphic position below basal Ediacaran cap carbonates and the highly positive δ13C values together indicate a Cryogenian interglacial age for the Carrancas Formation, with the high δ13C values representing the so-called Keele peak, which precedes the pre-Marinoan Trezona negative δ13C excursion in other well characterized Cryogenian sequences. Hence, The Carrancas Formation pre-dates de Marinoan Jequitaí Formation and represents an interval of Cryogenian stratigraphy not previously known to occur on the southern margin of São Francicso craton. Documentation of Cryogenian interglacial strata on the São Francisco craton reinforces recent revisions to the age of Bambuí Group strata and has implications for the development of the Bambuí basin.

  13. Petrophysical constraints on the seismic properties of the Kaapvaal craton mantle root

    NASA Astrophysics Data System (ADS)

    Baptiste, V.; Tommasi, A.

    2014-01-01

    We calculated the seismic properties of 47 mantle xenoliths from 9 kimberlitic pipes in the Kaapvaal craton based on their modal composition, the crystal-preferred orientations (CPO) of olivine, ortho- and clinopyroxene, and garnet, the Fe content of olivine, and the pressures and temperatures at which the rocks were equilibrated. These data allow constraining the variation of seismic anisotropy and velocities within the cratonic mantle. The fastest P and S2 wave propagation directions and the polarization of fast split shear waves (S1) are always subparallel to olivine [100] axes of maximum concentration, which marks the lineation (fossil flow direction). Seismic anisotropy is higher for high olivine contents and stronger CPO. Maximum P wave azimuthal anisotropy (AVp) ranges between 2.5 and 10.2% and the maximum S wave polarization anisotropy (AVs), between 2.7 and 8%. Changes in olivine CPO symmetry result in minor variations in the seismic anisotropy patterns, mainly in the apparent isotropy directions for shear wave splitting. Seismic properties averaged over 20 km-thick depth sections are, therefore, very homogeneous. Based on these data, we predict the anisotropy that would be measured by SKS, Rayleigh (SV) and Love (SH) waves for five endmember orientations of the foliation and lineation. Comparison to seismic anisotropy data from the Kaapvaal shows that the coherent fast directions, but low delay times imaged by SKS studies, and the low azimuthal anisotropy with with the horizontally polarized S waves (SH) faster than the vertically polarized S wave (SV) measured using surface waves are best explained by homogeneously dipping (45°) foliations and lineations in the cratonic mantle lithosphere. Laterally or vertically varying foliation and lineation orientations with a dominantly NW-SE trend might also explain the low measured anisotropies, but this model should also result in backazimuthal variability of the SKS splitting data, not reported in the

  14. Palaeointensity determinations on rocks from the Achaean- Paleoproterozoic dykes from the Karelian craton

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Valera; Shcherbakova, Valentina; Lubnina, Natalia; Zhidkov, Grigory; Tsel'movich, Vladimir

    2017-04-01

    The Karelian craton was a fragment of either an earlier late Archean supercontinent, sometimes referred to as Kenorland. Now the craton is a large Archean composite granite-greenstone terrane in the eastern part of the Fennoscandian Shield bounded by Paleoproterozoic Svecofennian orogen in the south-west and by Lapland-Kola orogen in the north-east and Belomorian province in the east-north-east. Mafic dykes, volcanic rocks, sills, and layered intrusions with ages of ca. 2.51-2.45 Ga and ca. 2.06-1.95 Ga are widespread and well-studied in the Karelian Craton. Paleointensity (Banc) results obtained on the Shala dike (age of 2504 Ma by U-Pb, ID TIMS) tracked near vl. Shala and on the Deda island are discussed here. Eighteen block samples of gabbronotires were collected in two sites in the Shala quarry. Stepwise thermal demagnetization (≤ 20 steps, up to 600 C) and stepwise AF demagnetization were done. To monitor possible mineralogical changes during thermal cleaning, magnetic susceptibility was measured after each heating step. Intensive rock magnetic investigations and thermal palaeointensity experiments using the Thellier-Coe (with check-points) and Wilson procedures were carried out. Electronic microscopy study of two samples was made too. For the exception of a viscous component some specimens from the contact zone of the gabbronorite dyke with thin dolerite dyke show two distinct components. The first E-NE intermediate-down direction component was separated at fields up to 50-60 mT and unblocking temperatures up to 520-540 C. The other S-SE low-down direction component is separated at fields from 60 to 100 mT and unblocking temperatures from 540 to 590-600 C. Based on the positive contact tests for the gabbronorite dyke, the S-SE shallow inclination remanence (I = -5.7 degrees) is interpreted to be of primary origin. Reliable palaeointensity determinations Banc fitting a set of selection criteria were determined on 13 samples from 2 sites carrying

  15. The Chara-Sina dyke swarm in the structure of the Middle Paleozoic Vilyui rift system (Siberian Craton)

    NASA Astrophysics Data System (ADS)

    Kiselev, A. I.; Konstantinov, K. M.; Yarmolyuk, V. V.; Ivanov, A. V.

    2016-11-01

    The formation of the Vilyui rift system in the eastern Siberian Craton was finished with breakdown of the continent and formation of its eastern margin. A characteristic feature of this rift system is the radial distribution of dyke swarms of basic rocks. This peculiarity allows us to relate it to the breaking processes above the mantle plume, the center of which was located in the region overlain in the modern structure by the foreland of the Verkhoyan folded-thrust belt. The Chara-Sina dyke swarm is the southern part of a large area of Middle Paleozoic basaltic magmatism in the eastern Siberian Craton. The OIB-like geochemical characteristics of dolerite allow us to suggest that the melting substrate for Middle Paleozoic basaltic magmatism was represented by a relatively homogeneous, mid-depleted mantle of the plume with geochemical parameters similar to those of OIB.

  16. Géochimie et cadre géodynamique du volcanisme néoprotérozoïque terminal (vendien) du Haut Atlas occidental, Maroc(Geochemical features and tectonic setting of late Neoproterozoic Vendian volcanism in the western High Atlas, Morocco)

    NASA Astrophysics Data System (ADS)

    Jouhari, A.; El-Archi, A.; Aarab, M.; El-Attari, A.; Ennih, N.; Laduron, D.

    2001-05-01

    Late Neoproterozoic Vendian volcanic and volcaniclastic rocks are widely distributed in the western High Atlas. They are located north of the Tizi n'Test Fault, separating the West African Craton from a northerly adjacent craton. These volcanic rocks overlie a semipelitic formation, which represents the equivalent of the Tidilline and Anzi Formations of the Anti-Atlas. The geochemical characteristics of these volcanic rocks suggest a calc-alkaline active margine environment associated with the post Pan-African tectonics. They differ from those of the Anti-Atlas by their lower content of K 2O. The later rock type was generated by a melting process of the crust subducted beneath the northern craton. A carbonate-shale unit, which contains examples of interstratified calc-alkaline dacite, overlies the volcanic succession, demonstrating that the volcanic activity continued sporadically until Early Cambrian times.

  17. Geodynamics of the East African Rift System ∼30 Ma ago: A stress field model

    NASA Astrophysics Data System (ADS)

    Min, Ge; Hou, Guiting

    2018-06-01

    The East African Rift System (EARS) is thought to be an intra-continental ridge that meets the Red Sea and the Gulf of Aden at the Ethiopian Afar as the failed arm of the Afar triple junction. The geodynamics of EARS is still unclear even though several models have been proposed. One model proposes that the EARS developed in a local tensile stress field derived from far-field loads because of the pushing of oceanic ridges. Alternatively, some scientists suggest that the formation of the EARS can be explained by upwelling mantle plumes beneath the lithospheric weak zone (e.g., the Pan-African suture zone). In our study, a shell model is established to consider the Earth's spherical curvature, the lithospheric heterogeneity of the African continent, and the coupling between the mantle plumes and the mid-ocean ridge. The results are calculated via the finite element method using ANSYS software and fit the geological evidence well. To discuss the effects of the different rock mechanical parameters and the boundary conditions, four comparative models are established with different parameters or boundary conditions. Model I ignores the heterogeneity of the African continent, Model II ignores mid-ocean spreading, Model III ignores the upwelling mantle plumes, and Model IV ignores both the heterogeneity of the African continent and the upwelling mantle plumes. Compared to these models is the original model that shows the best-fit results; this model indicates that the coupling of the upwelling mantle plumes and the mid-ocean ridge spreading causes the initial lithospheric breakup in Afar and East Africa. The extension direction and the separation of the EARS around the Tanzanian craton are attributed to the heterogeneity of the East African basement.

  18. Paleogeography of the Amazon craton at 1.2 Ga: early Grenvillian collision with the Llano segment of Laurentia

    NASA Astrophysics Data System (ADS)

    Tohver, Eric; van der Pluijm, B. A.; Van der Voo, R.; Rizzotto, G.; Scandolara, J. E.

    2002-05-01

    A paleomagnetic, geochronologic and petrographic study was undertaken on the flat-lying gabbros and basalts of the Nova Floresta Formation of Rondônia state, western Brazil in order to constrain the Mesoproterozoic paleogeography of the Amazon craton. Measurement of the anisotropy of magnetic susceptibility on the gabbroic samples reveals a flat-lying foliation with a radiating pattern of lineations, supporting the field evidence that the gabbros are part of a large, undeformed sill. Petrographic observations of oxides in the gabbros reveals two populations of magnetite grains produced during the original cooling of the sill: large, oxyexsolved titanomagnetite grains and fine-grained magnetite in igneous reaction rims. New 40Ar/39Ar age dating of biotite and plagioclase yield ages of ∼1.2 Ga, which represent the rapid cooling following emplacement of the mafic magma. Whole rock dating of basalt samples yields total gas ages of 1062±3 Ma, similar to the ∼1.0 Ga K/Ar ages reported by previous workers. However, the strong compositional dependence of the age spectrum renders this younger whole rock age unreliable except as a minimum constraint. A single magnetic component is found in the basalts, indistinguishable from the characteristic remanence found in the gabbros that is oriented WNW and steeply upward. This magnetization is considered to be primary and was acquired during the cooling of the sill and associated lavas. A paleomagnetic pole calculated from the Nova Floresta Formation (n=16 sites, Plat.=24.6°N, Plong.=164.6°E, A95=5.5°, Q=5), the first reported pole for the Amazon craton for the 1200-600 Ma Rodinia time period, constrains the paleogeographic position of Amazonia at ∼1.2 Ga. Juxtaposition of the western Amazon craton with the Llano segment of the Laurentia's Grenville margin causes the NF pole to lie on the 1.2 Ga portion of the combined APWP for Laurentia and Greenland, which indicates that a collision with the Amazon craton could have

  19. Integrated Numerical Model for the East African Rift System: Plume-induced Rifting and Continental Break-up from Lake Malawi to Red Sea

    NASA Astrophysics Data System (ADS)

    Koptev, A.; Leroy, S. D.; Calais, E.; Gerya, T.

    2016-12-01

    We present numerical experiments that target to reveal the role of active mantle plume, far-field tectonic forces and pre-existing lithospheric heterogeneities in structural development of the East African Rift system (EARS). Starting with models capturing the essential geophysical features of the central and southern parts of the EARS (two «cratonic» bodies (Tanzanian craton and Bangweulu block) embedded into a «normal» surrounding lithosphere) we show that development of the magmatic Eastern branch, the amagmatic Western branch and its southern prolongation (Malawi rift) can be the result of non-uniform splitting of some hot plume material that has been initially seeded underneath the southern part of Tanzanian craton. The second series of experiments has been designed in order to investigate northern segment of the EARS where Afro-Arabian plate separation is supposed to be related with the impact of Afar mantle plume. These models permit us to reproduce observed orientation and relative position of two spreading axes (Red Sea, Gulf of Aden) and rifting (Main Ethiopian rift) one. All are joining at Afar triple junction. Finally, for laterally extended experiment we have used parameters of the best-fit models for the southern and northern segments of the EARS in order to define the position of Kenyan plume and the velocity boundary conditions. This model cover all rifting and spreading structure associated with both Afar and Kenyan plumes: Red Sea Rift and the Aden Ridge to the north of the Afar Triple Junction; Main Ethiopian Rift running to the south that continues as the Kenyan Rift; Western Rift and its southern prolongation corresponding to Malawi rift.We argue that main features of the EARS can be reproduced in a relatively simple context of the interaction between two mantle anomalies corresponding to Afar and Kenyan plumes and pre-stressed rheologically stratified continental lithosphere containing only first-order structural heterogeneities (such as

  20. Timing of mafic magmatism in the Tapajós Province (Brazil) and implications for the evolution of the Amazon Craton: evidence from baddeleyite and zircon U Pb SHRIMP geochronology

    NASA Astrophysics Data System (ADS)

    Santos, João Orestes Schneider; Hartmann, Léo Afraneo; McNaughton, Neal Jesse; Fletcher, Ian Robert

    2002-09-01

    The precise timing and possible sources of the mafic rocks in the Amazon craton are critical for reconstruction of the Atlantica supercontinent and correlation of mafic magmatism worldwide. New SHRIMP U-Pb baddeleyite and zircon ages and the reinterpretation of 207 existing dates indicate one orogenic (Ingarana) and four postorogenic (Crepori, Cachoeira Seca, Piranhas, and Periquito) basaltic events in the Tapajós Province, south central Amazon craton. Orogenic gabbro dikes that host gold mineralization are 1893 Ma and interpreted as associated with the Ingarana gabbro intrusions of the bimodal calk-alkalic Parauari intrusive suite. The age of 1893 Ma can be used as a guide to discriminate older and mineralized orogenic dikes from younger and nonmineralized Crepori- and Cachoeira Seca-related mafic dikes. The baddeleyite U-Pb age of the postorogenic Crepori dolerite (gabbro-dolerite sills and dikes) is 1780±9 Ma, ˜150 my older than the ages provided by K-Ar. This value correlates well with the Avanavero tholeiitic intrusions in the Roraima group, in the northern part of the craton in Guyana, Venezuela, and Roraima in Brazil. Early Statherian tholeiitic magmatism was widespread not only in the Amazon craton, but also in the La Plata craton of southern South America, where it is known as the giant Piedra Alta swarm of Uruguay and the post-Trans-Amazonian dikes of Tandil in Argentina. The Cachoeira Seca troctolite represents laccoliths, Feixes, and São Domingos, whose baddeleyite U-Pb age is 1186±12 Ma, 120-150 my older than the known K-Ar ages. This age is comparable to other Stenian gabbroic rocks with alkalic affinity in the craton, such as the Seringa Formation in NE Amazonas and the basaltic flows of the Nova Floresta formation in Rondônia. Dolerite from the giant Piranhas dike swarm in the western Tapajós Province has a Middle Cambrian age (507±4 Ma, baddeleyite) and inherited zircons in the 2238-1229 Ma range. The Piranhas dikes fill extensional NNE and

  1. Electrical Conductivity Model of the Mantle Lithosphere of the Slave Craton (NW Canada) and its tectonic interpretation in the context of Geochemical Results

    NASA Astrophysics Data System (ADS)

    Lezaeta, P.; Chave, A.; Evans, R.; Jones, A. G.; Ferguson, I.

    2002-12-01

    The Slave Craton, northwestern Canada, contains the oldest known rocks on Earth, with exposed outcrop over an area of about 600x400 km2. The discovery of economic diamondiferous kimberlite pipes during the early 1990s motivated extensive research in the region. Over the last six years, four types of deep-probing magnetotelluric (MT) surveys were conducted within the framework of diverse geoscientific programs, aimed at determining the regional-scale electrical structures of the craton. Two of the surveys involved novel acquisition; one through frozen lake ice along ice roads during winter, and the second deploying ocean-bottom instrumentation from float planes during summer. The latter surveys required one year of recording between summers, thus allowing long period transfer functions that lead to mantle penetration depths of over 300 km. Two-dimensional modeling of the MT data from along the winter road showed the existence of a high conductivity zone at depths of 80-120 km beneath the central Slave craton. This anomalous region is spatially coincident with an ultradepleted harzburgitic layer in the upper mantle that was interpreted by others to be related to a subducted slab emplaced during the mid-Archean. A 3-D electrical conductivity model of the Slave lithosphere has been obtained, by trial and error, to fit the magnetic transfer and MT response functions from the lake experiments. This 3-D model traces the central Slave conductor as a NE-SW oriented mantle structure. Its NE-SW orientation coincides with that of a late fold belt system, with the first phase of craton-wide plutonism at ca 2630-2590 Ma, three-part subdivision of the craton based on SKS results, and with a G10 (garnet) geochemical mantle boundaries. All of these highlight a NE-SW structural grain to the lithospheric mantle of the craton, in sharp contrast to the N-S grain of the crust. Constraints on the depth range and lateral extension of the electrical conductive structure are obtained

  2. Extensive crustal melting during craton destruction: Evidence from the Mesozoic magmatic suite of Junan, eastern North China Craton

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Santosh, M.; Tang, Li

    2018-05-01

    The cratonic destruction associated with the Pacific plate subduction beneath the eastern North China Craton (NCC) shows a close relationship with the widespread magmatism during the Late Mesozoic. Here we investigate a suite of intrusive and extrusive magmatic rocks from the Junan region of the eastern NCC in order to evaluate the role of extensive crustal melting related to decratonization. We present petrological, geochemical, zircon U-Pb geochronological and Lu-Hf isotopic data to evaluate the petrogenesis, timing and tectonic significance of the Early Cretaceous magmatism. Zircon grains in the basalt from the extrusive suite of Junan show multiple populations with Neoproterozoic and Early Paleozoic xenocrystic grains ranging in age from 764 Ma to 495 Ma as well as Jurassic grains with an age range of 189-165 Ma. The dominant population of magmatic zircon grains in the syenite defines three major age peaks of 772 Ma, 132 Ma and 126 Ma. Zircons in the granitoids including alkali syenite, monzonite and granodiorite yield a tightly restricted age range of 124-130 Ma representing their emplacement ages. The Neoproterozoic (841-547 Ma) zircon grains from the basalt and the syenite possess εHf(t) values of -22.9 to -8.4 and from -18.8 to -17.3, respectively. The Early Paleozoic (523-494 Ma) zircons from the basalt and the syenite also show markedly negative εHf(t) values of -22.7 to -18.0. The dominant population of Early Cretaceous (134-121 Ma) zircon grains presented in all the samples also displays negative εHf(t) values range from -31.7 to -21.1, with TDM of 1653-2017 Ma and TDMC in the range of 2193-3187 Ma. Accordingly, the Lu-Hf data suggest that the parent magma was sourced through melting of Mesoarchean to Paleoproterozoic basement rocks. Geochemical data on the Junan magmatic suite display features similar to those associated with the arc magmatic rocks involving subduction-related components, with interaction of fluids and melts in the suprasubduction

  3. Identifying the Transition Zone Between East and West Dharwar Craton by Seismic Imaging

    NASA Astrophysics Data System (ADS)

    Ashish; Parvez, Imtiyaz A.

    2018-01-01

    The data from 12 temporary broadband seismic stations operated across east-west corridor in Dharwar region of Indian Peninsula along with ten other seismic stations operated by CSIR National Geophysical Research Institute (NGRI) in the region have been analysed that provide high-resolution image of southern Dharwar crust. Crust along the corridor is imaged by receiver function H-k stacking, common conversion point stacking using data from 22 sites in combination with joint inversion modeling of receiver functions and Rayleigh wave group velocity dispersion curves. The velocity image reveals thinner crust (36-38 km) except one site (coinciding with Cuddapah basin on the surface) in East Dharwar Craton (EDC), while crust beneath the West Dharwar Craton (WDC) is thicker (46-50 km). This study also observed a transition zone between EDC and WDC starting west of Closepet granite to the east of Chitradurga Schist Belt (CSB), which shows diffused Moho with a thickness of 40-44 km. Chitradurga Schist Belt is identified as the contact between Mesoarchean (WDC) and Neoarchean (EDC) crustal blocks. The lowermost part of the crust (V_s > 4.0) is thin (2-6 km) beneath EDC, intermediate (6-8 km) beneath transition zone and thicker (14-30 km) beneath WDC across the profile.

  4. Early Neoarchaean A-type granitic magmatism by crustal reworking in Singhbhum craton: Evidence from Pala Lahara area, Orissa

    NASA Astrophysics Data System (ADS)

    Topno, Abhishek; Dey, Sukanta; Liu, Yongsheng; Zong, Keqing

    2018-04-01

    Several volumetrically minor ˜ 2.8 Ga anorogenic granites and rhyolites occur along the marginal part of the Singhbhum craton whose origin and role in crustal evolution are poorly constrained. This contribution presents petrographic, geochemical, zircon U-Pb and trace element, and mineral chemical data on such granites exposed in the Pala Lahara area to understand their petrogenesis and tectonic setting. The Pala Lahara granites are calc-alkaline, high-silica rocks and define a zircon U-Pb age of 2.79 Ga. These granites are ferroan, weakly metaluminous, depleted in Al, Ca and Mg and rich in LILE and HFSE. They are classified as A2-type granites with high Y/Nb ratios. Geochemical characteristics (high SiO2 and K2O, very low MgO, Mg#, Cr, Ni and V, negative Eu anomaly, flat HREE and low Sr/Y) and comparison with melts reported by published experimental studies suggest an origin through high-temperature, shallow crustal melting of tonalitic/granodioritic source similar to the ˜ 3.3 Ga Singhbhum Granite. Intrusion of the Pala Lahara granites was coeval with prominent mafic magmatism in the Singhbhum craton (e.g., the Dhanjori mafic volcanic rocks and NNE-SSW trending mafic dyke swarm). It is suggested that the ˜ 2.8 Ga A-type granites in the Singhbhum craton mark a significant crustal reworking event attendant to mantle-derived mafic magmatism in an extensional tectonic setting.

  5. East-China Geochemistry Database (ECGD):A New Networking Database for North China Craton

    NASA Astrophysics Data System (ADS)

    Wang, X.; Ma, W.

    2010-12-01

    North China Craton is one of the best natural laboratories that research some Earth Dynamic questions[1]. Scientists made much progress in research on this area, and got vast geochemistry data, which are essential for answering many fundamental questions about the age, composition, structure, and evolution of the East China area. But the geochemical data have long been accessible only through the scientific literature and theses where they have been widely dispersed, making it difficult for the broad Geosciences community to find, access and efficiently use the full range of available data[2]. How to effectively store, manage, share and reuse the existing geochemical data in the North China Craton area? East-China Geochemistry Database(ECGD) is a networking geochemical scientific database system that has been designed based on WebGIS and relational database for the structured storage and retrieval of geochemical data and geological map information. It is integrated the functions of data retrieval, spatial visualization and online analysis. ECGD focus on three areas: 1.Storage and retrieval of geochemical data and geological map information. Research on the characters of geochemical data, including its composing and connecting of each other, we designed a relational database, which based on geochemical relational data model, to store a variety of geological sample information such as sampling locality, age, sample characteristics, reference, major elements, rare earth elements, trace elements and isotope system et al. And a web-based user-friendly interface is provided for constructing queries. 2.Data view. ECGD is committed to online data visualization by different ways, especially to view data in digital map with dynamic way. Because ECGD was integrated WebGIS technology, the query results can be mapped on digital map, which can be zoomed, translation and dot selection. Besides of view and output query results data by html, txt or xls formats, researchers also can

  6. From Texas to the Northwest Territories: Low temperature history of the North American craton using a radiation damage model for apatite He diffusion

    NASA Astrophysics Data System (ADS)

    Flowers, R. M.; Ault, A. K.; Wolin, E.; Kelley, S.; Bowring, S. A.

    2009-12-01

    The radiation damage accumulation and annealing model (RDAAM) for apatite He diffusion helps resolve previously enigmatic characteristics of apatite (U-Th)/He data in cratonic regions. First, nonlinear positive date-eU correlations are predicted for many T-t paths, thus explaining excessive scatter in some (U-Th)/He datasets. Second, under common circumstances, the RDAAM predicts (U-Th)/He dates that are older than corresponding apatite fission-track (AFT) dates, helping reconcile previous data in which (U-Th)/He dates were older than expected using Durango He diffusion kinetics. We present five apatite (U-Th)/He datasets, three with co-existing AFT data, from the North American craton that can quantitatively be explained by the RDAAM. These datasets include three from the Canadian shield (Trans-Hudson Orogen, Lake Athabasca region, Slave Craton) and two from the U.S. midcontinent (Kansas, Texas panhandle). All samples are Precambrian (4.0-1.6 Ga) basement, except for Triassic-Jurassic sandstones analyzed in the Texas study. We use the results of these studies to evaluate broad thermal history patterns across the North American craton. Although each dataset yields a distinct thermal history, all can be accounted for by varying the magnitudes of two well-documented episodes of burial and unroofing in Paleozoic-Mesozoic and Cretaceous-Tertiary times. The oldest consistent (U-Th)/He and AFT dates of these studies are early Paleozoic and are preserved in the Trans-Hudson Orogen. Together with a strong (U-Th)/He date-eU correlation and dates as young as Jurassic in the Lake Athabasca region, as well as widespread Permo-Triassic dates from the Slave craton, the three Canadian shield datasets are most simply explained by increased magnitudes of burial toward the northwest in Paleozoic-Mesozoic time, with less significant burial in the Cretaceous. In contrast, (U-Th)/He data from Kansas yield a date-eU correlation and a cluster of Cretaceous dates, (U-Th)/He dates from the

  7. Large-scale removal of lithosphere underneath the North China Craton in the Early Cretaceous: Geochemical constraints from volcanic lavas in the Bohai Bay Basin

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Liu, Zheng; Zhang, Shuai; Li, Xiaoguang; Qi, Jiafu

    2017-11-01

    Cratons are generally considered as the most stable tectonic units on the Earth. Rare magmatism, seismic activity, and intracrustal ductile deformation occur in them. However, several cratons experienced entirely different fates, including the North China Craton (NCC), and were subsequently destroyed. Geodynamic mechanisms and timing of the cratonic destruction are strongly debated. In this paper, we investigate a suite of Mesozoic intermediate to felsic volcanic rocks which are collected from boreholes in the Liaohe Depression of the Bohai Bay Basin the eastern NCC. These volcanic rocks have Precambrian basement-like Sr-Nd isotopic characteristics, consistent with derivation from the lower continental crust underneath the NCC. The Late Jurassic ( 165 Ma) intermediate volcanic rocks don't exhibit markedly negative Eu anomalies, which require a source beyond the plagioclase stability field. And the low heavy rare earth elements (HREEs) contents of these samples indicate that their source has garnet as residue. The Early Cretaceous ( 122 Ma) felsic volcanic rocks are depleted in HREEs but with remarkable Eu anomalies, suggesting that their source have both garnet and plagioclase. The crust thicknesses, estimated from the geochemistry of the intermediate and felsic rocks, are ≥ 50 km at 165 Ma and 30-50 km at 122 Ma, respectively. The crustal thinning is attributed to lithospheric delamination beneath the NCC. Our results combined with previous studies imply that the large-scale lithospheric removal occurred in the Early Cretaceous, between 140 and 120 Ma.

  8. Terrestrial heat flow in east and southern Africa

    NASA Astrophysics Data System (ADS)

    Nyblade, Andrew A.; Pollack, Henry N.; Jones, D. L.; Podmore, Francis; Mushayandebvu, Martin

    1990-10-01

    We report 26 new heat flow and 13 radiogenic heat production measurements from Zimbabwe, Zambia and Tanzania, together with details and some revisions of 18 previous heat flow measurements by other investigators from Kenya and Tanzania. These measurements come from Archean cratons, Proterozoic mobile belts, and Mesozoic and Cenozoic rifts. Heat flow data from eight new sites in the Archean Zimbabwe Craton are consistent with previous measurements in the Archean Kaapvaal-Zimbabwe Craton and Limpopo Belt (Kalahari Craton) and do not change the mean heat flow of 47±2 mW m-2 (standard error of the mean) in the Kalahari Craton based on 53 previous measurements. Eight new sites in the Archean Tanzania Craton give a mean heat flow of 34±4 mW m-2. The mean heat flow from nine sites in the Proterozoic Mozambique Belt to the east of the Tanzania Craton in Kenya and Tanzania is 47±4 mW m-2. Twelve measurements in the Mesozoic rifted continental margin in east Africa give a mean heat flow of 68±4 mW m-2; four measurements in the Mesozoic Luangwa and Zambezi Rifts range from 44 to 110 mW m-2 with a mean of 76±14 mW m-2. In comparing heat flow in east and southern Africa, we observe a common heat flow pattern of increasing heat flow away from the centers of the Archean cratons. This pattern suggests a fundamental difference in lithospheric thermal structure between the Archean cratons and the Proterozoic and early Paleozoic mobile belts which surround them. Superimposed on this common pattern are two regional variations in heat flow. Heat flow in the Tanzania Craton is lower by about 13 mW m-2 than in the Kalahari Craton, and in the Mozambique Belt in east Africa heat flow is somewhat lower than in the southern African mobile belts at similar distances from the Archean cratonic margin. The two regional variations can be explained in several ways, none of which can as yet be elevated to a preferred status: (1) by variations in crustal heat production, (2) by thin

  9. Late orogenic processes between Baltica and Siberia cratons during the building of Pangea

    NASA Astrophysics Data System (ADS)

    Puchkov, V.

    2003-04-01

    Since the Middle Carboniferous, the territory between the Baltica, Kazakhstania and Siberia plates have been part of the continental crust, the last oceanic crust having by then been subducted. At this time continent-continent collision started and proceeded until the latest epochs of the Paleozoic, forming the Uralide orogen. Two features of this collision standout: 1) The northward movement of the Kazakhstanian block between the Baltica and Siberia plates resulted in a large-scale oroclinal bend of structures in West Siberia, which is well expressed in the magnetic field, as well as in the exposed Kazakhstanian structures, and 2) The orogenic event affected the whole territory between the Baltica and Siberia cratons, including the Kazakhstanian continent. A series of intermontane molasse basins are distributed throughout the orogen and in some places, like Bolshoi Karatau, are affected by Late Paleozoic deformation. Continent-continent collision had ceased by the end of the Permian, and in many places Triassic sediments unconformably overly the orogen. Triassic sedimentary sequences are typically coarse-grained (eventually proluvial), evidencing a new stage of mountain building, though many researchers have attributed this to a superplume event. The reason being the widespread flood basalt eruptions that took place not only between, but also on the cratons under discussion. There is a point of view that the break-up of the supercontinents (e.g., Pangea and Rodinia) was preceded by such a superplume event, passing to formation of linear graben systems and then to oceanic spreading. In the case under discussion, the process was arrested (the West Siberian basin with its grabens is often called a "failed ocean"). There is reason to suspect that the Paleozoic collision that led to formation of the Uralides left an enclosed ocean basin in the North, between the Baltica and Siberia plates. Only in the Early Jurassic, with the advent of the Old Kimmerian collision did

  10. The 3.26-3.24 Ga Barberton asteroid impact cluster: Tests of tectonic and magmatic consequences, Pilbara Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Glikson, Andrew; Vickers, John

    2006-01-01

    The location in the Barberton Greenstone Belt (Kaapvaal Craton) of ∼3.26-3.24 Ga asteroid impact ejecta units at, and immediately above, a sharp break between a > 12 km-thick mafic-ultramafic volcanic crust (Onverwacht Group ∼3.55-3.26 Ga, including the ∼3.298 > 3.258 Ga Mendon Formation) and a turbidite-felsic volcanic rift-facies association (Fig Tree Group ∼3.258-3.225 Ga), potentially represents the first documented example of cause-effect relations between extraterrestrial bombardment and major tectonic and igneous events [D.R. Lowe, G.R. Byerly, F. Asaro, F.T. Kyte, Geological and geochemical record of 3400 Ma old terrestrial meteorite impacts, Science 245 (1989) 959-962; D.R. Lowe, G.R. Byerly, F.T. Kyte, A. Shukolyukov, F. Asaro, A. Krull, Spherule beds 3.47-3.34 Ga-old in the Barberton greenstone belt, South Africa: a record of large meteorite impacts and their influence on early crustal and biological evolution, Astrobiology 3 (2003) 7-48; A.Y. Glikson, The astronomical connection of terrestrial evolution: crustal effects of post-3.8 Ga mega-impact clusters and evidence for major 3.2 ± 0.1 Ga bombardment of the Earth-Moon system, J. Geodyn. 32 (2001) 205-229]. Here we correlate this boundary with a contemporaneous break and peak magmatic and faulting events in the Pilbara Craton, represented by the truncation of a 3.255-3.235 Ga-old volcanic sequence (Sulphur Springs Group-SSG) by a turbidite-banded iron formation-felsic volcanic association (Pincunah Hill Formation, basal Gorge Creek Group). These events are accompanied by ∼3.252-3.235 Ga granitoids (Cleland plutonic suite). The top of the komatiite-tholeiite-rhyolite sequence of the SSG is associated with a marker chert defined at 3.238 ± 3-3.235 ± 3 Ga, abruptly overlain by an olistostrome consisting of mega-clasts of felsic volcanics, chert and siltstone up to 250 × 150 m-large, intercalated with siliciclastic sedimentary rocks and felsic volcanics (Pincunah Hill Formation-basal Gorge

  11. Anisotropic Lithospheric layering in the North American craton, revealed by Bayesian inversion of short and long period data

    NASA Astrophysics Data System (ADS)

    Roy, C.; Calo, M.; Bodin, T.; Romanowicz, B. A.

    2016-12-01

    Competing hypotheses for the formation and evolution of continents are highly under debate, including the theory of underplating by hot plumes or accretion by shallow subduction in continental or arc settings. In order to support these hypotheses, documenting structural layering in the cratonic lithosphere becomes especially important. Studies of seismic-wave receiver function data have detected a structural boundary under continental cratons at 100-140 km depths, which is too shallow to be consistent with the lithosphere-asthenosphere boundary, as inferred from seismic tomography and other geophysical studies. This leads to the conclusion that 1) the cratonic lithosphere may be thinner than expected, contradicting tomographic and other geophysical or geochemical inferences, or 2) that the receiver function studies detect a mid-lithospheric discontinuity rather than the LAB. Recent studies (Bodin et al., 2015, Calo et al. 2016) confirmed the presence of a structural boundary under the north American craton at 100-140 km depths by taking advantage of the power of a trans-dimensional Monte Carlo Markov chain (TMCMC). They generated probabilistic 1D radially shear wave velocity profiles for selected stations in North America by jointly inverting 2 different data types (PS Receiver Functions, surface wave dispersion for Love and Rayleigh waves), which sample different volumes of the Earth and have different sensitivities to structure. The resulting 1D profiles include both isotropic and anisotropic discontinuities in the upper mantle (above 350 km depth). Here we extend this approach and include the vp/vs ratio as an unknown in the TMCMC algorithm to avoid artificial layers induced by multiples of the receiver functions. Additionally, we include SKS waveforms in the joint inversion and invert for azimuthal anisotropy to verify if layering in the anisotropic structure of the stable part of the North American continent involves significant changes in the direction of

  12. Sequence stratigraphy of the Upper Cambrian (Furongian; Jiangshanian and Sunwaptan) Tunnel City Group, Upper Mississippi Valley: Transgressing assumptions of cratonic flooding

    USGS Publications Warehouse

    Eoff, Jennifer D.

    2014-01-01

    New data from detailed measured sections permit comprehensive analysis of the sequence framework of the Furongian (Upper Cambrian; Jiangshanian and Sunwaptan stages) Tunnel City Group (Lone Rock Formation and Mazomanie Formation) of Wisconsin and Minnesota. The sequence-stratigraphic architecture of the lower part of the Sunwaptan Stage at the base of the Tunnel City Group, at the contact between the Wonewoc Formation and Lone Rock Formation, records the first part of complex polyphase flooding (Sauk III) of the Laurentian craton, at a scale smaller than most events recorded by global sea-level curves. Flat-pebble conglomerate and glauconite document transgressive ravinement and development of a condensed section when creation of accommodation exceeded its consumption by sedimentation. Thinly-bedded, fossiliferous sandstone represents the most distal setting during earliest highstand. Subsequent deposition of sandstone characterized by hummocky or trough cross-stratification records progradational pulses of shallower, storm- and wave-dominated environments across the craton before final flooding of Sauk III commenced with carbonate deposition during the middle part of the Sunwaptan Stage. Comparison of early Sunwaptan flooding of the inner Laurentian craton to published interpretations from other parts of North America suggests that Sauk III was not a single, long-term accommodation event as previously proposed.

  13. Paleoproterozoic high-pressure metamorphism in the northern North China Craton and implications for the Nuna supercontinent

    PubMed Central

    Wan, Bo; Windley, Brian F.; Xiao, Wenjiao; Feng, Jianyun; Zhang, Ji'en

    2015-01-01

    The connection between the North China Craton (NCC) and contiguous cratons is important for the configuration of the Nuna supercontinent. Here we document a new Paleoproterozoic high-pressure (HP) complex dominated by garnet websterite on the northern margin of the NCC. The peak metamorphism of the garnet websterite was after ∼1.90 Ga when it was subducted to eclogite facies at ∼2.4 GPa, then exhumed back to granulite facies at ∼0.9 GPa before ∼1.82 Ga. The rock associations with their structural relationships and geochemical affinities are comparable to those of supra-subduction zone ophiolites, and supported by subduction-related signatures of gabbros and basalts. We propose that a ∼1.90 Ga oceanic fragment was subducted and exhumed into an accretionary complex along the northern margin of the NCC. Presence of the coeval Sharyzhalgai complex with comparable HP garnet websterites in the southern Siberian active margin favours juxtaposition against the NCC in the Paleoproterozoic. PMID:26388458

  14. Intraplate Earthquakes and Deformation within the East Antarctic Craton

    NASA Astrophysics Data System (ADS)

    Lough, A. C.; Wiens, D.; Nyblade, A.

    2017-12-01

    The apparent lack of tectonic seismicity within Antarctica has long been discussed. Explanations have ranged from a lack of intraplate stress due to the surrounding spreading ridges and low absolute plate velocity (Sykes, 1978), to the weight of ice sheets increasing the vertical normal stress (Johnston, 1987). The 26 station GAMSEIS/AGAP array deployed in East Antarctica from late 2008 to early 2010 provides the first opportunity to study the intraplate seismicity of the Antarctic interior using regional data. Here we report 27 intraplate tectonic earthquakes that occurred during 2009. Depth determination together with their corresponding uncertainty estimates, show that most events originate in the shallow to middle crust, indicating a tectonic and not a cryoseismic origin. The earthquakes are primarily located beneath linear alignments of basins adjacent to the Gamburtsev Subglacial Mountains (GSM) that have been denoted as the East Antarctic rift system (Ferraccioli et al, 2011). The geophysical properties of the `rift' system contrast sharply with those of the GSM and Vostok Subglacial Highlands on either side. Crustal thickness, seismic velocity, and gravity anomalies all indicate large lateral variation in lithospheric properties. We propose the events outline an ancient continental rift, a terrain boundary feature, or a combination of the two where rifting exploited pre-existing weakness. It is natural to draw parallels between East Antarctica and the St. Lawrence depression where rifting and a collisional suture focus intraplate earthquakes within a craton (Schulte and Mooney, 2005). We quantify the East Antarctic seismicity by developing a frequency-magnitude relation, constraining the lower magnitudes with the 2009 results and the larger magnitudes with 1982-2012 teleseismic seismicity. East Antarctica and the Canadian Shield show statistically indistinguishable b-values (near 1) and seismicity rates as expressed as the number of events with mb > 4 per

  15. New igneous zircon Pb/Pb and metamorphic Rb/Sr ages in the Yaounde Group (Cameroon, Central Africa): implications for the Central African fold belt evolution close to the Congo Craton

    NASA Astrophysics Data System (ADS)

    Owona, Sébastien; Tichomirowa, Marion; Ratschbacher, Lothar; Ondoa, Joseph Mvondo; Youmen, Dieudonné; Pfänder, Jörg; Tchoua, Félix M.; Affaton, Pascal; Ekodeck, Georges Emmanuel

    2012-10-01

    Three meta-igneous bodies from the Yaounde Group have been analyzed for their petrography, geochemistry, and 207Pb/206Pb zircon ages. According to their geochemical patterns, they represent meta-diorites. The meta-plutonites yielded identical zircon ages with a mean of 624 ± 2 Ma interpreted as their intrusion age. This age is in agreement with previously published zircon ages of meta-diorites from the Yaounde Group. The meta-diorites derived mainly from crustal rocks with minor contribution from mantle material. The 87Rb/86Sr isochron ages of one meta-diorite sample and three meta-sedimentary host rocks are significantly younger than the obtained intrusion age. Therefore, they are not related to igneous processes. 87Rb/86Sr isochron ages differ from sample to sample (599 ± 3, 572 ± 4, 554 ± 5, 540 ± 5 Ma) yielding the oldest Neoproterozoic age (~600 Ma) for a paragneiss sample at a more northern location. The youngest Rb/Sr isochron age (~540 Ma) was obtained for a mica schist sample at a more southern location closer to the border of the Congo Craton. The 87Rb/86Sr whole rock-biotite ages are interpreted as cooling ages related to transpressional processes during exhumation. Therefore, several discrete metamorphic events related to the exhumation of the Yaounde Group were dated. It could be shown by Rb/Sr dating for the first time that these late tectonic processes occurred earlier at more distant northern locations of the Yaounde Group and lasted at least until early Cambrian (~540 Ma) more closely to the border of the Congo Craton.

  16. Management of split skin graft donor site in the West African sub region: survey of plastic surgeons' practice.

    PubMed

    Olawoye, O A; Ademola, S A; Iyun, A O; Michael, A I; Oluwatosin, O M

    2017-06-30

    Split skin graft (SSG) is one of the most commonly performed operations on any Plastic Surgery service. Rate of donor site healing is affected by various factors including the type of dressing applied. The aim of this study was to survey the practice of plastic surgeons in the sub region with respect to management of SSG donor site and see how it conforms to international standards. Structured questionnaires on various aspects of the harvest and management of SSG donor sites were administered to plastic surgeons during the 53rd annual conference of the West African College of Surgeons (WACS) at Lome, Togo in March 2013. The data were analyzed using descriptive statistics. There were 47 respondents out of 55 plastic surgeons from four West African countries, which represented 85.4% of registered participants at the plastic surgery section of the conference. All the respondents performed SSG regularly, and the thigh was the most commonly used donor site. Different types of paraffin gauze remained the most commonly used primary donor site dressing. Only 17% of the respondents apply a topical local anaesthetic agent on the donor site. The choice of SSG donor site dressing in the sub region was driven mainly by availability. Concerted efforts must be made to access newer wound care products for optimum management of this commonly performed operation.

  17. The African Plate: A history of oceanic crust accretion and subduction since the Jurassic

    NASA Astrophysics Data System (ADS)

    Gaina, C.; Torsvik, T. H.; Labails, C.; van Hinsbergen, D.; Werner, S.; Medvedev, S.

    2012-04-01

    Initially part of Gondwana and Pangea, and now surrounded almost entirely by spreading centres, the African plate moved relatively slowly for the last 200 million years. Yet both Africa's cratons and passive margins were affected by tectonic stresses developed at distant plate boundaries. Moreover, the African plate was partly underlain by hot mantle (at least for the last 300 Ma) - either a series of hotspots or a superswell, or both - that contributed to episodic volcanism, basin-swell topography, and consequent sediment deposition, erosion, and structural deformation. A systematic study of the African plate boundaries since the opening of surrounding oceanic basins is presently lacking. This is mainly because geophysical data are sparse and there are still controversies regarding the ages of oceanic crust. The publication of individual geophysical datasets and more recently, global Digital Map of Magnetic Anomalies (WDMAM, EMAG2) prompted us to systematically reconstruct the ages and extent of oceanic crust around Africa for the last 200 Ma. Location of Continent Ocean Boundary/Continent Ocean Transition and older oceanic crust (Jurassic and Cretaceous) are updates in the light of gravity, magnetic and seismic data and models of passive margin formation. Reconstructed NeoTethys oceanic crust is based on a new model of microcontinent and intr-oceanic subduction zone evolution in this area.The new set of oceanic palaeo-age grid models constitutes the basis for estimating the dynamics of oceanic crust through time and will be used as input for quantifying the paleo-ridge push and slab pull that contributed to the African plate palaeo-stresses and had the potential to influence the formation of sedimentary basins.

  18. Deciphering the role of fluids in early stage rifting from full moment tensor inversion of East African earthquakes

    NASA Astrophysics Data System (ADS)

    Oliva, S. J. C.; Ebinger, C. J.; Keir, D.; Shillington, D. J.; Chindandali, P. R. N.

    2016-12-01

    The East African Rift splits around the Archaean Tanzania craton into the magmatic Eastern branch and the mostly amagmatic Western branch, which continues south of the craton. Temporary seismic networks recently deployed in three rift sectors allow for comparison and insights into the early stages of rifting, including areas with lower crustal earthquakes. We analyze earthquakes with ML > 3.5 in the area recorded by CRAFTI (northern Tanzania/Kenya), TANGA (Tanganyika rift), and/or SEGMeNT (Malawi rift) networks. For events not well enclosed by these arrays, nearby permanent stations are used to improve azimuthal coverage when possible. We present source mechanisms as well as better-constrained source depth estimates from moment tensor inversion using Dreger and Ford TDMT algorithm (Dreger, 2003; Minson & Dreger, 2008). Data and synthetic waveforms are bandpass filtered between 0.02 to 0.10 Hz, or a narrower frequency band within this range, depending on lake noise, which can interfere strongly on the lower end of this frequency range. Results suggest local stress reorientations as well as significant dilatation components on some events within magmatic rift sectors. The implications of these results for crustal rheology and magmatic modification will be discussed in light of the growing complementary data sets from the three projects to inform our understanding of early rifting as a whole.

  19. Sands of West Gondwana: An archive of secular magmatism and plate interactions — A case study from the Cambro-Ordovician section of the Tassili Ouan Ahaggar (Algerian Sahara) using U-Pb-LA-ICP-MS detrital zircon ages

    NASA Astrophysics Data System (ADS)

    Linnemann, Ulf; Ouzegane, Khadidja; Drareni, Amar; Hofmann, Mandy; Becker, Sindy; Gärtner, Andreas; Sagawe, Anja

    2011-04-01

    Enormous masses of highly mature quartz sands were deposited in Western Gondwana during the Cambrian-Ordovician time, and provide a wide range of information concerning magmatic events through time, provenance, paleoclimate, and basin history. We present a provenance study based on 630 U-Pb (LA-ICP-MS) ages of detrital zircon from the latest Cambrian to Ordovician siliciclastic rocks of the Tassili Ouan Ahaggar basin situated in the Algerian Sahara. Most authors suggest local sources only for the sandstones. Instead, we demonstrate that the detritus is derived from different cratons and terranes which contributed to the deposition of a Cambrian-Ordovician overstep sequence covering western and northern Africa. Most zircon ages (61.0%) fall in the range of ~ 540 to 740 Ma and are interpreted to have been derived from Pan-African orogenic belts such as the Trans-Saharan Belt of NW Africa and previously from the Brazila belt of South America. Other potential sources for this zircon population are terranes of Cadomian affinity situated marginal to West Africa. The second-largest zircon population (20.2%) is 2.0 to 2.2 Ga, and is attributed to sources in the West African craton, such as the Birimian basement and the Eburnean orogenic belt, with possible partial input from the Amazonian craton. A zircon population of 7.1% yields Mesoproterozoic and early Paleoproterozoic ages in the range of ~ 1.3 to ~ 1.8 Ga and was probably derived from source rocks outside of the West African basement, the Tuareg shield and other adjoining areas. The Amazonian craton is a potential source region. A population of 6.7% of all zircon ages scatter from ~ 750 Ma to ~ 980 Ma and may reflect input from latest stages of the formation of Rodinia and its subsequent dispersal. A smaller population (3.2%) of zircon ages lie between ~ 2.3 and 2.65 Ga, and may be derived from late Paleoproterozoic to early Archaean rocks from the West African craton and possibly from Amazonia. Less than 1% of all

  20. The Rae craton of Laurentia/Nuna: a tectonically unique entity providing critical insights into the concept of Precambrian supercontinental cyclicity

    NASA Astrophysics Data System (ADS)

    Bethune, K. M.

    2015-12-01

    Forming the nucleus of Laurentia/Nuna, the Rae craton contains rocks and structures ranging from Paleo/Mesoarchean to Mesoproterozoic in age and has long been known for a high degree of tectonic complexity. Recent work strongly supports the notion that the Rae developed independently from the Hearne; however, while the Hearne appears to have been affiliated with the Superior craton and related blocks of 'Superia', the genealogy of Rae is far less clear. A diagnostic feature of the Rae, setting it apart from both Hearne and Slave, is the high degree of late Neoarchean to early Paleoproterozoic reworking. Indeed, following a widespread 2.62-2.58 Ga granite bloom, the margins of Rae were subjected to seemingly continuous tectonism, with 2.55-2.50 Ga MacQuoid orogenesis in the east superseded by 2.50 to 2.28 Ga Arrowsmith orogenesis in the west. A recent wide-ranging survey of Hf isotopic ratios in detrital and magmatic zircons across Rae has demonstrated significant juvenile, subduction-related crustal production in this period. Following break-up at ca. 2.1 Ga, the Rae later became a tectonic aggregation point as the western and eastern margins transitioned back to convergent plate boundaries (Thelon-Taltson and Snowbird orogens) marking onset of the 2.0-1.8 Ga assembly of Nuna. The distinctive features of Rae, including orogenic imprints of MacQuoid and Arrowsmith vintage have now been identified in about two dozen cratonic blocks world-wide, substantiating the idea that the Rae cratonic family spawned from an independent earliest Paleoproterozoic landmass before its incorportation in Nuna. While critical tests remain to be made, including more reliable ground-truthing of proposed global correlations, these relationships strongly support the notion of supercontinental cyclicity in the Precambrian, including the Archean. They also challenge the idea of a globally quiescent period in the early Paleoproterozoic (2.45-2.2 Ga) in which plate tectonics slowed or shut down.

  1. Cretaceous potassic intrusives with affinities to aillikites from Jharia area: Magmatic expression of metasomatically veined and thinned lithospheric mantle beneath Singhbhum Craton, Eastern India

    NASA Astrophysics Data System (ADS)

    Srivastava, Rajesh K.; Chalapathi Rao, N. V.; Sinha, Anup K.

    2009-11-01

    Cretaceous potassic dykes and sills at the Jharia area intrude the Permo-carboniferous coal-bearing Gondwana sediments of the Eastern Damodar Valley, Singhbhum craton. These intrusives are widely regarded as a part of the Mesozoic alkaline and Rajmahal flood basalt magmatism in the Eastern Indian shield. Jharia intrusives display a wide petrographic diversity; olivine, phlogopite and carbonate are the predominant phases whereas apatite and rutile constitute important accessories. Impoverishment in sodium, silica and alumina and enrichment in potassium, titanium and phosphorous are the hallmark of these rocks and in this aspect they are strikingly similar to the rift-related aillikites (ultramafic lamprophyres) of Aillik Bay, Labrador. Crustal contamination of the Jharia magmas is minimal and the incompatible trace element ratios demonstrate (i) their generation by greater degrees of partial melting of a sub-continental lithospheric mantle (SCLM) source similar to that of the kimberlites of Dharwar craton, southern India, and (ii) retention of long-term memories of ancient (Archaean) subduction experienced by their source regions. We infer that a metasomatically veined and thinned lithosphere located at the margin of the Singhbhum craton and the inheritance of an ancient (Archaean) subducted component has played a significant role in deciding the diverging petrological and geochemical characters displayed by the Jharia potassic intrusives: those of kimberlites (orangeites) and lamproites (cratonic signature) and those of aillikites (rift-related signature). A substantial melt component of Jharia potassic intrusives was derived from the SCLM and the melt contribution of the Kerguelen plume is inferred to be minimal.

  2. Rayleigh Wave Phase Velocities Beneath the Central and Southern East African Rift System

    NASA Astrophysics Data System (ADS)

    Adams, A. N.; Miller, J. C.

    2017-12-01

    This study uses the Automated Generalized Seismological Data Function (AGSDF) method to develop a model of Rayleigh wave phase velocities in the central and southern portions of the East African Rift System (EARS). These phase velocity models at periods of 20-100s lend insight into the lithospheric structures associated with surficial rifting and volcanism, as well as basement structures that pre-date and affect the course of rifting. A large dataset of >700 earthquakes is used, comprised of Mw=6.0+ events that occurred between the years 1995 and 2016. These events were recorded by a composite array of 176 stations from twelve non-contemporaneous seismic networks, each with a distinctive array geometry and station spacing. Several first-order features are resolved in this phase velocity model, confirming findings from previous studies. (1) Low velocities are observed in isolated regions along the Western Rift Branch and across the Eastern Rift Branch, corresponding to areas of active volcanism. (2) Two linear low velocity zones are imaged trending southeast and southwest from the Eastern Rift Branch in Tanzania, corresponding with areas of seismic activity and indicating possible incipient rifting. (3) High velocity regions are observed beneath both the Tanzania Craton and the Bangweulu Block. Furthermore, this model indicates several new findings. (1) High velocities beneath the Bangweulu Block extend to longer periods than those found beneath the Tanzania Craton, perhaps indicating that rifting processes have not altered the Bangweulu Block as extensively as the Tanzania Craton. (2) At long periods, the fast velocities beneath the Bangweulu Block extend eastwards beyond the surficial boundaries, to and possibly across the Malawi Rift. This may suggest the presence of older, thick blocks of lithosphere in regions where they are not exposed at the surface. (3) Finally, while the findings of this study correspond well with previous studies in regions of overlapping

  3. The Western Edge of Cratonic North America and Topography of the Northern U.S. Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Foster, D. A.; Russo, R. M.; van der Lee, S.; Mueller, P. A.

    2009-12-01

    We used seismic structure of the upper mantle determined via waveform inversions of surface and regional shear waves (Beadle and van der Lee, 2007) to examine the 3-D geometry of the base of North American lithosphere at the junction between thick, stable cratonic eastern North America and the thinner, recently tectonized western part of the continent. This boundary has been affected by long-term subduction beneath North America. Variability in convergence rates and directions, and especially in slab dip, have been postulated as important controls on the configuration of the transition from thick to thin lithosphere, and on the distribution and degree of crustal deformation and volcanism in the western U.S. We show that the lithospheric thickness transition at depths of 70-130 km - defined as contours of zero shear velocity anomaly - correlates strongly with the high topography of Laramide uplifts in the northern Rockies, which lie west of this seismically defined craton edge. The transition from thick to thin lithosphere also includes an embayment symmetrically centered on the Yellowstone hotspot, offset cratonward from the surface position of the hotspot by ca. 140-180 km at depths of 130-150 km. We interpret this structure as a reduction of cratonic seismic velocities reflecting the thermal halo around the hotspot, and perhaps associated with the separation of the lower lithosphere. The steep velocity gradient (boundary) east of the hotspot occurs along the Big Horn Mountains, and distributed mountain ranges of southwestern Montana. The steep transition between thin and thick lithosphere turns sharply west along the northern margin of the Helena thrust salient-Lewis and Clark fault zone, where it may reflect the edge of the Archean Medicine Hat Block and/or the northern termination of the influence shallow Farallon slab subduction the during Laramide time. Laramide-style basement uplifts are absent north of this zone and the eastern front ranges of the Rockies

  4. Nature, geochemistry and petrogenesis of the syn-tectonic Amspoort suite (Pan-African Boundary Igneous Complex, Kaoko Belt, NW Namibia)

    NASA Astrophysics Data System (ADS)

    Janousek, Vojtech; Konopasek, Jiri; Ulrich, Stanislav

    2010-05-01

    Crucial information on the Neoproterozoic-Cambrian amalgamation of Western Gondwana is provided by studies of the large Pan-African collisional belt in central-northern Namibia. This so-called Damara Orogen (Miller, 1983) can be subdivided into two branches, the SW-NE trending Damara Belt and a roughly perpendicular, NNW-SSE trending Kaoko Belt further north. The Kaoko Belt consists of two principal crustal units. The easterly part has a Congo Craton affinity (a basement built mostly by ≥ 1.5 Ga granitic gneisses with Neoproterozoic metasedimentary cover), whereas the westerly Coastal Terrane consists of Neoproterozoic (c.850-650 Ma) metapsammites and minor metabasic bodies; no exposures of the basement were found. The at least 180 km long, NNW-SSE trending suture between both units was intruded by numerous syn-tectonic magmatic bodies with ages spanning the interval 580-550 Ma (Seth et al., 1998; Kröner et al., 2004) designated as the Boundary Igneous Complex by Konopásek et al. (2008). The most typical representatives of this syn-collision igneous association are c.550 Ma old K-feldspar-phyric, Bt ± Cam granites-granodiorites of the Amspoort suite, with minor Cpx gabbro and rare two-pyroxene dolerite bodies. The petrological character, whole-rock geochemistry and Sr-Nd isotopic signatures of the scarce Opx-Cpx-Bt dolerites indicate an origin from a CHUR-like mantle-derived melts (87Sr/86Sr550 ~ 0.7045, ɛNd550 ~ 0) modified by extensive (?Ol-) Cpx fractionation. The rest of the suite is interpreted as a product of a high-temperature anatexis of a heterogeneous lower crust, built mainly by immature metapsammites - rich in arc-derived detritus - with minor metabasite and intermediate metaigneous bodies. The most likely source appears to be the anatectic Coastal Terrane gneisses. Yet, partial melting of the so far little constrained Congo Craton cover, if formed by immature and youthful detritus unrelated to the basement, cannot be discounted. In any case, the

  5. Bouguer images of the North American craton and its structural evolution

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Bowring, S.; Eddy, M.; Guinness, E.; Leff, C.; Bindschadler, D.

    1984-01-01

    Digital image processing techniques have been used to generate Bouguer images of the North American craton that diplay more of the granularity inherent in the data as compared with existing contour maps. A dominant NW-SE linear trend of highs and lows can be seen extending from South Dakota, through Nebraska, and into Missouri. The structural trend cuts across the major Precambrian boundary in Missouri, separating younger granites and rhyolites from older sheared granites and gneisses. This trend is probably related to features created during an early and perhaps initial episode of crustal assembly by collisional processes. The younger granitic materials are probably a thin cover over an older crust.

  6. FACTORS DETERMINING THE RESULTS OF THE EXAMINATION OF THE WEST AFRICAN COLLEGE OF SURGEONS IN GENERAL SURGERY.

    PubMed

    Ajao, O G; Ajao, O O; Ugwu, B T; Yawe, Kdt; Ezeome, E R

    2014-01-01

    The general surgery results of the West African College of Surgeons (WACS) post-graduate fellowship examination could not be regarded as satisfactory when compared with the results of similar post-graduate examinations in some developed countries. For example the pass rate of the West African College of Surgeons examination was usually under 40% whereas the pass rate in oral examination in a similar post-graduate examination, the American Board of Surgery was 84% in 2006, 73% in 2012. The first time pass rate in general surgery of final year general surgery residents at the American Board of Surgery qualifying and certifying examinations were 74% - 78% between 2000 and 2007. To identify the factors responsible for the high failure rate at the general surgery fellowship examinations of the West African College of Surgeons. Descriptive study .We studied and analyzed the West African College of Surgeons examination results for April 2012, October 2012, April 2013 and October 2013 with emphasis on the results, the conduct of the examination and the opinion from fellows about the examiners. Well structured questionnaires were sent to fellows who had passed all the various fellowship examinations of the West African College of Surgeons in general surgery to indicate their opinion about the examination, and the examiners. University College Hospital, Ibadan, and Jos University Teaching Hospital, Jos, Nigeria. The first part of the study dealt with an analysis of each section of the examination prospectively studied over a 2-year period. This consisted of four sets of examination results. The second part was a questionnaire-based study administered to Fellows who had passed the WACS final fellowship examination in general surgery. The questionnaire had three sections: primary, part 1 and part 2 and included basic demographics, date at attempts in each grade of the examinations and the outcome. It also included the views of the respondents on the conduct of the examination

  7. The Acasta Gneiss - a Hadean cratonic nucleus

    NASA Astrophysics Data System (ADS)

    Sprung, P.; Scherer, E. E.; Maltese, A.; Bast, R.; Bleeker, W.; Mezger, K.

    2016-12-01

    The known terrestrial rock record lacks undisputed, chemically intact Hadean crust. Direct evidence from this eon has been restricted to zircon grains within younger rocks [1]. The Acasta Gneiss Complex (AGC; NT, CA) has yielded zircon with Hadean domains [e.g., 2,3], but the time at which AGC rocks became closed chemical systems is unclear [4,5]. Determining this `time of last disturbance' (tld) would provide a minimum protolith age, and is crucial for using radiogenic isotope compositions of bulk rocks to trace crust-mantle evolution. Recent studies mostly focused on the `low-strain' eastern AGC [e.g., 6, 7], which records an evolving, early-mid Archean cratonic nucleus [7]. We also studied the `high-strain' banded gneiss in the western AGC, which hosts >4 Ga zircon domains [2,3], too. Our focusing lay on adjoining, lithologically distinct bands [8] of two distinct chemical groups: A) Mafic, chondrite-normalized LaN/YbN ≦20, slightly HFSE- depleted, and B) TTG-like, LaN/YbN up to 145, markedly HFSE-depleted. Six adjacent bands yield a well-defined 4 Ga Sm-Nd isochron with a ɛNd4Ga of +2 and ɛHf4Ga values from +1 to +6. Within-band Sm-Nd and Lu-Hf systematics imply younger mineral re-equilibration [9]. We interpret the 4 Ga Sm-Nd isochron to date the physical juxtaposition of bands in the gneiss unit and to define tld among bands for elements less mobile and diffusive than Sm and Nd. Contrasting Sm-Nd results from the same unit [10] likely are due to sampling at too fine a scale. Digestion of metamict pre-tld zircon likely caused the scatter in Lu-Hf. Both decay systems hint at the existence of a possibly local, strongly depleted Hadean mantle domain. The TTG-like bands are 0.4 Gyr older than similar rocks in the `low-strain' eastern AGC [7]. The AGC was thus an evolved cratonic nucleus already at 4 Ga, possibly with a depleted lithospheric keel. [1] Cavosie et al. (2004) Prec. Res. 135, 251-279 [2] Bowring & Williams (1999) CMP 134, 3-16 [3] Iizuka et al

  8. The joint inversion of phase dispersion curves and receiver functions at the margin of East European Craton

    NASA Astrophysics Data System (ADS)

    Chrapkiewicz, Kajetan; Wilde-Piórko, Monika; Polkowski, Marcin

    2017-04-01

    For the first time a joint inversion of Rayleigh-wave phase velocity dispersion curves and P receiver functions has been applied to study the south-western margin of East European Craton (EEC) in Poland. The area of investigation lies in the vicinity of Trans-European Suture Zone (TESZ) regarded as the most prominent lithospheric boundary in Europe separating the Precambrian EEC from assemblage of Phanerozoic-accreted terranes (e.g. Pharaoh, 1999). While the sedimentary and crystalline crust of EEC's margin has been precisely recognized with the borehole and refraction data compilation (Grad et al., 2016), the structure of lithosphere-asthenosphere boundary (LAB) underneath remains poorly understood. To address this issue, the passive seismic experiment „13 BB Star" (2013-2016) was carried out in northern Poland - just at the margin of EEC. For each station of „13 BB Star" network we obtained a credible 1-D shear-wave velocity model with linearized damped least-squares inversion (Herrmann, 2013) down to the depth of 250 km. The joint inversion of receiver functions and surface-wave dispersion curves has proved to be a natural approach when inferring the nature of cratonic LAB (e.g. Bodin et al., 2014). It's sensitive to both absolute velocities and sharp discontinuities and thus provides a better vertical resolution compared to surface wave data alone. The results indicate the presence of steady 4 per cent grow in the shear-wave velocity between 120 and 180 km depth and gradual 6 per cent drop over 180-220 km depth range. The latter may be interpreted as the LAB with depth and absolute-velocity change similar to those reported for other cratons (Kind et al., 2012). National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.

  9. A precisely dated Proterozoic palaeomagnetic pole from the North China craton, and its relevance to palaeocontinental reconstruction

    NASA Astrophysics Data System (ADS)

    Halls, Henry C.; Li, Jianghai; Davis, Don; Hou, Guiting; Zhang, Baoxing; Qian, Xianglin

    2000-10-01

    A palaeomagnetic pole position, derived from a precisely dated primary remanence, with minimal uncertainties due to secular variation and structural correction, has been obtained for China's largest dyke swarm, which trends for about 1000km in a NNW direction across the North China craton. Positive palaeomagnetic contact tests on two dykes signify that the remanent magnetization is primary and formed during initial cooling of the intrusions. The age of one of these dykes, based on U-Pb dating of primary zircon, is 1769.1+/-2.5Ma. The mean palaeomagnetic direction for 19 dykes, after structural correction, is D=36°, I=-5°, k=63, α95=4°, yielding a palaeomagnetic pole at Plat=36°N, Plong=247°E, dp=2°, dm=4° and a palaeolatitude of 2.6°S. Comparison of this pole position with others of similar age from the Canadian Shield allows a continental reconstruction that is compatible with a more or less unchanged configuration of Laurentia, Siberia and the North China craton since about 1800Ma

  10. Lithosphere mantle density of the North China Craton based on gravity data

    NASA Astrophysics Data System (ADS)

    Xia, B.; Artemieva, I. M.; Thybo, H.

    2017-12-01

    Based on gravity, seismic and thermal data we constrained the lithospheric mantle density at in-situ and STP condition. The gravity effect of topography, sedimentary cover, Moho and Lithosphere-Asthenosphere Boundary variation were removed from free-air gravity anomaly model. The sedimentary covers with density range from 1.80 g/cm3 with soft sediments to 2.40 g/cm3 with sandstone and limestone sediments. The average crustal density with values of 2.70 - 2.78 g/cm3 which corresponds the thickness and density of the sedimentary cover. Based on the new thermal model, the surface heat flow in original the North China Craton including western block is > 60 mW/m2. Moho temperature ranges from 450 - 600 OC in the eastern block and in the western block is 550 - 650 OC. The thermal lithosphere is 100 -140 km thick where have the surface heat flow of 60 - 70 mW/m2. The gravity effect of surface topography, sedimentary cover, Moho depth are 0 to +150 mGal, - 20 to -120 mGal and +50 to -200 mGal, respectively. By driving the thermal lithosphere, the gravity effect of the lithosphere-asthenosphere boundary ranges from 20 mGal to +200 mGal which shows strong correction with the thickness of the lithosphere. The relationship between the gravity effect of the lithosphere-asthenosphere boundary and the lithosphere thickness also for the seismic lithosphere, and the value of gravity effect is 0 to +220 mGal. The lithospheric mantle residual gravity which caused by lithospheric density variation range from -200 to +50 mGal by using the thermal lithosphere and from -250 to +100 mGal by driving the seismic lithosphere. For thermal lithosphere, the lithospheric mantle density with values of 3.21- 3.26 g/cm3 at in-situ condition and 3.33 - 3.38 g/cm3 at STP condition. Using seismic lithosphere, density of lithosphere ranges from 3.20 - 3.26 g/cm3 at in-situ condition and 3.31 - 3.41 g/cm3 at STP condition. The subcontinental lithosphere of the North China Craton is highly heterogeneous

  11. Fluid Characteristics in the Giant Quartz Reef System of the Bundelkhand Craton, India: Constraints from Fluid Inclusion Study

    NASA Astrophysics Data System (ADS)

    Rout, D.; Panigrahi, M. K.; Pati, J. K.

    2017-12-01

    Giant quartz reefs are anomalous features indicating extensive mobilization of silica in the crust. Such reefs in the Abitibi belt, Canada and elsewhere are believed to be the result of activity of fluid of diverse sources on terrain boundaries. The Bundelkhand granitoid complex constituting a major part of the Bundelkhnad Craton in north-Central India is traversed by numerous such quartz reefs all across for a length of about 500 km. There are about 20 major reefs having dimensions of 35 to 40 km in length, 50 to 60 m in width standing out as prominent ridges in the region. Almost all are aligned parallel to each other in a sub-vertical to vertical manner following the NE-SW to NNE-SSW trend. Fluid inclusion petrography in quartz from these reefs reveal four types of inclusions viz. aqueous biphase (type-I), pure carbonic (type-II), aqueous carbonic (type-III) and polyphase (type-IV) inclusions. The type-I aqueous biphase inclusions are the dominant type in all the samples studied so far. Salinities calculated from temperature of melting of last ice (Tm) values are low to moderate, ranging from 0.18 to 18.19 wt% NaCl equivalents. Temperature of liquid-vapor homogenization (Th) values of these inclusions show a wide range from 101 ºC to 386 ºC (cluster around 150-250 ºC) essentially into liquid phase ruling out boiling during its course of evolution. Besides, aqueous Biphase inclusions, some data on pure CO2 inclusions furnish a near constant value of TmCO2 at -56.6 ºC in the Bundelkhand Craton indicating absence of CH4. Bivariate plot between Th and salinity suggest three possible water types which are controlling the overall activity of fluid in quartz reefs of Bundelkhand Craton viz. low-T low saline, high-T low saline and moderate-T and moderate saline. A low saline and CO2-bearing and higher temperature nature resembles a metamorphic fluid that may be a source for these giant quartz reefs. The low temperature low-salinity component could be a meteoric

  12. Crustal accretion and exhumation of the Rio de la Plata Craton

    NASA Astrophysics Data System (ADS)

    Girelli, T. J.; Chemale, F., Jr.; Lavina, E.; Laux, J. H.; Bongiolo, E.; Lana, C.

    2017-12-01

    The Rio de la Plata is one key area for the reconstruction of the Paleoproterozoic Supercontinent in Western Gondwana. We present U-Pb-Hf isotopes, chemistry on minerals and whole-rock geochemistry from para and orthogneisses of the Santa Maria Chico Granulite Complex, one of the Rio de la Plata fragments partially affected by the Brasiliano Orogeny. U-Pb and Lu-Hf isotopes allowed the characterization of two main events: an oceanic juvenile crustal accretion (i) 2430 - 2290 Ma (ɛHf(t) -3.17 to +7.00); a continental arc (ii) 2240 - 2120 Ma (ɛHf(t)= -4 to +2.4). We recognized two main high-grade metamorphic events in the region linked to an arc volcanic setting (830 - 870 °C - 6.7 - 7.2 kbar, 2.3 Ga) and later to continent-continent collision (770 - 790 °C and 8.7 - 9.1 kbar, 2.1 - 2.0 Ga). The development of orogenic sedimentary basins (fore-arc and intra-arc) occurred during the last cycle with the maximum depositional age of 2.12 Ga and were metamorphosed during 2.06 Ga main granulitic event. The granulitic rocks were cut by 1.8 Ga alkaline granitic dikes related to crustal extension recognized in the different segments of the craton and widespread in the adjacent paleoplates at the time. The present data point to that Paleoproterozoic granulitic rocks of the Santa Maria Chico Granulite Complex and adjacent Nico Pérez and Rivera terranes, formed in a multi-stage volcanic arc to continental collision environment along 370 Ma (2430 to 2060 Ma). These terranes were amalgamated during the Paleoproterozoic to the core of the Rio de la Plata Craton as part of Columbia Supercontinent and later partially reworked during the amalgamation of Western Gondwana in the Neoproterozoic.

  13. Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: Evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton

    USGS Publications Warehouse

    Downes, H.; Macdonald, R.; Upton, B.G.J.; Cox, K.G.; Bodinier, J.-L.; Mason, P.R.D.; James, D.; Hill, P.G.; Hearn, B.C.

    2004-01-01

    Ultramafic xenoliths in Eocene minettes of the Bearpaw Mountains volcanic field (Montana, USA), derived from the lower lithosphere of the Wyoming craton, can be divided based on textural criteria into tectonite and cumulate groups. The tectonites consist of strongly depleted spinel lherzolites, harzbugites and dunites. Although their mineralogical compositions are generally similar to those of spinel peridotites in off-craton settings, some contain pyroxenes and spinels that have unusually low Al2O3 contents more akin to those found in cratonic spinel peridotites. Furthermore, the tectonite peridotites have whole-rock major element compositions that tend to be significantly more depleted than non-cratonic mantle spinel peridotites (high MgO, low CaO, Al2O3 and TiO2) and resemble those of cratonic mantle. These compositions could have been generated by up to 30% partial melting of an undepleted mantle source. Petrographic evidence suggests that the mantle beneath the Wyoming craton was re-enriched in three ways: (1) by silicate melts that formed mica websterite and clinopyroxenite veins; (2) by growth of phlogopite from K-rich hydrous fluids; (3) by interaction with aqueous fluids to form orthopyroxene porphyroblasts and orthopyroxenite veins. In contrast to their depleted major element compositions, the tectonite peridotites are mostly light rare earth element (LREE)-enriched and show enrichment in fluid-mobile elements such as Cs, Rb, U and Pb on mantle-normalized diagrams. Lack of enrichment in high field strength elements (HFSE; e.g. Nb, Ta, Zr and Hf) suggests that the tectonite peridotites have been metasomatized by a subduction-related fluid. Clinopyroxenes from the tectonite peridotites have distinct U-shaped REE patterns with strong LREE enrichment. They have 143Nd/144Nd values that range from 0??5121 (close to the host minette values) to 0??5107, similar to those of xenoliths from the nearby Highwood Mountains. Foliated mica websterites also have low 143Nd

  14. Crustal evolution and the granulite to eclogite transition in xenoliths from kimberlites in the West African Craton

    NASA Astrophysics Data System (ADS)

    Toft, Paul B.; Hills, Doris V.; Haggerty, Stephen E.

    1989-04-01

    A petrographic, mineral and bulk chemical study of a xenolith suite of granulites and eclogites from Sample Creek, Liberia and Koidu, Sierra Leone, has been undertaken with a view to determining the nature of the crust-upper mantle interface. A broad range of xenolith compositions is present (from high-MgO eclogites to garnet-anorthosites) and a systematic AFM trend is established, consistent with mafic and ultramafic melt fractionation at moderate pressures (10-20 kbar). A trend is established for the entire xenolith suite among bulk chemistry, seismic P-wave velocity and a crust/mantle (C/M) bulk chemical ratio defined as Na 2O + K 2O + SiO 2/FeO + MgO mole %. Three populations are present: a granulitic crustal group ( SG < 3.0; VP = 6.6-7.2 km/ s; C/ M > 3.0); a granulite and eclogite transitional group ( SG 3.0-3.3; VP = 7.2-8.0 km/ s; C/ M 1.5-3.0); andanexclusivelyuppermantleeclogiticgroup ( ifSG > 3.3; VP = 8.2-8.7 km/ s; C/ M ~ 1.5). From these data and coupled with garnet-clinopyroxene mineral thermometry and accessory phases (e.g., diamond, graphite, coesite, kyanite) or the presence of plagioclase, a xenolith geotherm is established based on stratigraphic sequencing and phase transition boundaries. Diamond and coesite-bearing eclogites conform to the 40 mW/m 2 standard cratonic low heat flow geotherm, whereas the plagioclase granulites at lower pressures correspond to an average rift geotherm of 90 mW/m 2. The latter is ascribed to igneous underplating onto the lower crust or to thermal perturbations from an earlier tectonic event. Graphite and kyanite eclogites and the transitional group (in SG, VP and C/M ratio) of eclogites and granulites fall between the 40 and 90 mW/m 2 reference geotherms. The xenoliths are meta-igneous, the lower crust and uppermost mantle are mafic in composition and the petrologic Moho is an intercalated, interstratified horizon of eclogite and garnet granulite. Growth of the early crust was largely a consequence of

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasyanos, M

    We study the lithospheric structure of Africa, Arabia and adjacent oceanic regions with fundamental-mode surface waves over a wide period range. Including short period group velocities allows us to examine shallower features than previous studies of the whole continent. In the process, we have developed a crustal thickness map of Africa. Main features include crustal thickness increases under the West African, Congo, and Kalahari cratons. We find crustal thinning under Mesozoic and Cenozoic rifts, including the Benue Trough, Red Sea, and East, Central, and West African rift systems. Crustal shear wave velocities are generally faster in oceanic regions and cratons,more » and slower in more recent crust and in active and formerly active orogenic regions. Deeper structure, related to the thickness of cratons and modern rifting, is generally consistent with previous work. Under cratons we find thick lithosphere and fast upper mantle velocities, while under rifts we find thinned lithosphere and slower upper mantle velocities. There are no consistent effects in areas classified as hotspots, indicating that there seem to be numerous origins for these features. Finally, it appears that the African Superswell has had a significantly different impact in the north and the south, indicating specifics of the feature (temperature, time of influence, etc.) to be dissimilar between the two regions. Factoring in other information, it is likely that the southern portion has been active in the past, but that shallow activity is currently limited to the northern portion of the superswell.« less

  16. Brittle Deformation in the Ordos Basin in response to the Mesozoic destruction of the North China Craton

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Jiang, L.

    2012-12-01

    Craton is continental block that has been tectonically stable since at least Proterozoic. Some cratons, however, become unstable for some geodynamic reasons. The North China Craton (NCC) is an example. Structure geological, geochemical, and geophysical works have revealed that the NCC was destructed in Cretaceous and that lithosphere thickness beneath the eastern NCC were thinned by 120 km. The present study will focus on deformation of the western NCC, and to understand the effect of the Mesozoic destruction of the North China Craton (NCC). Structural partitioning of the Ordos Basin, which is located in the western NCC, from the eastern NCC occurred during the Mesozoic. Unlike the eastern NCC where many Cretaceous metamorphic core complexes developed, sedimentary cover of the NCC remains nearly horizontal and deformation is manifested by joint. We visited 216 sites of outcrops and got 1928 joints measurements, among which 270 from Jurassic sandstones, 1378 from the Upper Triassic sandstones, 124 from the Middle and Lower Triassic sandstones, and 156 from Paleozoic sandstones. In the interior of the Ordos Basin, joints developed quite well in the Triassic strata, while joints in the Jurassic stata developed weakly and no joint in the Cretaceous strata. The Mesozoic stratigraphic thickness are: 1000 meters for the Lower Triassic, the Middle Triassic sandstone with thickness of 800 meters, 3000 meters for the Upper Triassic, 4000 meters for the Jurassic, and 1100 meters for the Lower Cretaceous. The vertical difference in joint development might be related to the burying depth of the strata: the higher the strata, the smaller the lithostatic stress, and then the weaker the joint. Joints in all stratigraphic levels showed a similar strain direction with the sigma 1 (the maximum pressure stress) vertical and the sigma 3 (the minimum pressure stress) horizontal and running N-S. The unconformity below the Cretaceous further indicates that joints in Jurassic and Triassic

  17. Ancient Continental Lithosphere Dislocated Beneath Ocean Basins Along the Mid-Lithosphere Discontinuity: A Hypothesis

    NASA Astrophysics Data System (ADS)

    Wang, Zhensheng; Kusky, Timothy M.; Capitanio, Fabio A.

    2017-09-01

    The documented occurrence of ancient continental cratonic roots beneath several oceanic basins remains poorly explained by the plate tectonic paradigm. These roots are found beneath some ocean-continent boundaries, on the trailing sides of some continents, extending for hundreds of kilometers or farther into oceanic basins. We postulate that these cratonic roots were left behind during plate motion, by differential shearing along the seismically imaged mid-lithosphere discontinuity (MLD), and then emplaced beneath the ocean-continent boundary. Here we use numerical models of cratons with realistic crustal rheologies drifting at observed plate velocities to support the idea that the mid-lithosphere weak layer fostered the decoupling and offset of the African continent's buoyant cratonic root, which was left behind during Meso-Cenozoic continental drift and emplaced beneath the Atlantic Ocean. We show that in some cratonic areas, the MLD plays a similar role as the lithosphere-asthenosphere boundary for accommodating lateral plate tectonic displacements.

  18. U-Pb thermochronology of the lower crust: producing a long-term record of craton thermal evolution

    NASA Astrophysics Data System (ADS)

    Blackburn, T.; Bowring, S. A.; Mahan, K. H.; Perron, T.; Schoene, B.; Dudas, F. O.

    2010-12-01

    The EarthScope initiative is focused on providing an enhanced view of the North American lithosphere and the present day stress field of the North American continent. Of key interest is the interaction between convecting asthenosphere and the conducting lithospheric mantle that underlie the continents, especially the cold ‘keels’ that underlie Archean domains. Cratonic regions are in general characterized by minimal erosion and or sediment accumulation. The Integration of seismic tomography, and mantle xenolith studies reveal a keel of seismically fast and relatively buoyant and viscous mantle; physical properties that are intimately linked with the long-term stability and topographic expression of the region. Missing from this model of the continental lithosphere is the 4th dimension--time--and along with it our understanding of the long-term evolution of these stable continental interiors. Here we present a thermal record from the North American craton using U-Pb thermochronology of lower crustal xenoliths. The use of temperature sensitive dates on lower crustal samples can produce a unique time-temperature record for a well-insulated and slowly cooling lithosphere. The base of the crust is insulated enough to remain unperturbed by any plausible changes to surface topography, yet unlike the subadjacent lithospheric mantle, contains accessory phases amenable to U-Pb dating (rutile, apatite, titanite). With near steady state temperatures in the lower crust between 400-600 °C, U-Pb thermochronometers with similar average closure temperatures for Pb are perfectly suited to record the long-term cooling of the lithosphere. Xenoliths from multiple depths, and across the craton yield time-temperature paths produced from U-Pb thermochronometers that record extremely slow cooling (<0.25 °C/Ma) over time scales of billions of years. Combining these data with numerical thermal modeling allow constraints to be placed on the dominant heat transfer mechanisms operating

  19. U-Pb ID-TIMS zircon ages of TTG gneisses of the Aravalli Craton of India

    NASA Astrophysics Data System (ADS)

    Chauhan, Hiredya; Saikia, Ashima; Kaulina, Tatiana; Bayanova, Tamara; Ahmad, Talat

    2015-04-01

    The crystalline basement of the Aravalli Craton is a heterogeneous assemblage dominated by granitic gneisses and granites with sporadic occurrences of amphibolites and dismembered sedimentary enclaves (Upadhyaya et al., 1992). This assemblage is known to have experienced multiple deformation and metamorphic events followed by emplacement of voluminous granites and basaltic dykes. Based on Sm-Nd whole rock data on the basement Mewar orthogneisses of Jhamarkotra region (Gopalan et al., 1990) and Pb/Pb ages of zircon from Gingla Granites which intrudes the basement (Wiedenbeck et al., 1996), it has been inferred that the whole magmatic episode leading to the formation of the basement spanned from 3300 to 2400 Ma and that the Aravalli cratonic block had broadly stabilized by 2500 Ma on which the younger Aravalli and Delhi Supergroup unconformably deposited. However, no comprehensive age data on the basement gneisses from the study area spanning the entire magmatic episode is available. This work attempts to provide a time frame work for evolution of the basement gneisses of the Aravalli Craton. We present here U-Pb zircon ages from the Precambrian basement TTG gneisses of the Aravalli Craton of north western India. Pb and U were measured on multicollector Finnigan-MAT 262 mass spectrometer. The temperatures of measurements were 1300°C for Pb and 1500°C for U. Pb isotope ratios were corrected for mass fractionation with a factor of 0.10% per amu, based on repeat analyses of the standard NBS SRM 982. The U analyses were corrected for mass fractionation with a factor of 0.003% per amu, based on repeat analyses of the NBS U 500 standard. Reproducibility of the U-Pb ratios was determined from the repeated analysis of standard zircon IGFM-87 (Ukraine) and taken as 0.5% for 207Pb/235U and 206Pb/238U ratios, respectively, at 95% confidence level. All calculations were done using the programs PBDAT and ISOPLOT (Ludwig 1991, 2008). Four zircon fractions corresponding to four

  20. Juvenile crust formation in the Zimbabwe Craton deduced from the O-Hf isotopic record of 3.8-3.1 Ga detrital zircons

    NASA Astrophysics Data System (ADS)

    Bolhar, Robert; Hofmann, Axel; Kemp, Anthony I. S.; Whitehouse, Martin J.; Wind, Sandra; Kamber, Balz S.

    2017-10-01

    Hafnium and oxygen isotopic compositions measured in-situ on U-Pb dated zircon from Archaean sedimentary successions belonging to the 2.9-2.8 Ga Belingwean/Bulawayan groups and previously undated Sebakwian Group are used to characterize the crustal evolution of the Zimbabwe Craton prior to 3.0 Ga. Microstructural and compositional criteria were used to minimize effects arising from Pb loss due to metamorphic overprinting and interaction with low-temperature fluids. 207Pb/206Pb age spectra (concordance >90%) reveal prominent peaks at 3.8, 3.6, 3.5, and 3.35 Ga, corresponding to documented geological events, both globally and within the Zimbabwe Craton. Zircon δ18O values from +4 to +10‰ point to both derivation from magmas in equilibrium with mantle oxygen and the incorporation of material that had previously interacted with water in near-surface environments. In εHf-time space, 3.8-3.6 Ga grains define an array consistent with reworking of a mafic reservoir (176Lu/177Hf ∼0.015) that separated from chondritic mantle at ∼3.9 Ga. Crustal domains formed after 3.6 Ga depict a more complex evolution, involving contribution from chondritic mantle sources and, to a lesser extent, reworking of pre-existing crust. Protracted remelting was not accompanied by significant mantle depletion prior to 3.35 Ga. This implies that early crust production in the Zimbabwe Craton did not cause complementary enriched and depleted reservoirs that were tapped by later magmas, possibly because the volume of crust extracted and stabilised was too small to influence (asthenospheric) mantle isotopic evolution. Growth of continental crust through pulsed emplacement of juvenile (chondritic mantle-derived) melts, into and onto the existing cratonic nucleus, however, involved formation of complementary depleted subcontinental lithospheric mantle since the early Archaean, indicative of strongly coupled evolutionary histories of both reservoirs, with limited evidence for recycling and lateral

  1. Adjudication Decision Support (ADS) System Automated Approval Estimates for NACLC Investigations

    DTIC Science & Technology

    2007-05-01

    each less than 1 week • Credit status: 21 open accounts Case 459 • Child born abroad of U.S. parents • Parent-in-law born in Hungary, said to...WAC attorney WAC chat room FAC account FAC authenticat FAC child custody WAC accus FAC avenge FAC child endangerment WAC addict FAC B&E WAC Child ...enforcement WAC adjournment WAC bad WAC child support WAC adjudicat FAC bail WAC chronic WAC advers FAC balance WAC civil case WAC advis WAC

  2. Inclusions in diamonds constrain thermo-chemical conditions during Mesozoic metasomatism of the Kaapvaal cratonic mantle

    NASA Astrophysics Data System (ADS)

    Weiss, Yaakov; Navon, Oded; Goldstein, Steven L.; Harris, Jeff W.

    2018-06-01

    Fluid/melt inclusions in diamonds, which were encapsulated during a metasomatic event and over a short period of time, are isolated from their surrounding mantle, offering the opportunity to constrain changes in the sub-continental lithospheric mantle (SCLM) that occurred during individual thermo-chemical events, as well as the composition of the fluids involved and their sources. We have analyzed a suite of 8 microinclusion-bearing diamonds from the Group I De Beers Pool kimberlites, South Africa, using FTIR, EPMA and LA-ICP-MS. Seven of the diamonds trapped incompatible-element-enriched saline high density fluids (HDFs), carry peridotitic mineral microinclusions, and substitutional nitrogen almost exclusively in A-centers. This low-aggregation state of nitrogen indicates a short mantle residence times and/or low mantle ambient temperature for these diamonds. A short residence time is favored because, elevated thermal conditions prevailed in the South African lithosphere during and following the Karoo flood basalt volcanism at ∼180 Ma, thus the saline metasomatism must have occurred close to the time of kimberlite eruptions at ∼85 Ma. Another diamond encapsulated incompatible-element-enriched silicic HDFs and has 25% of its nitrogen content residing in B-centers, implying formation during an earlier and different metasomatic event that likely relates to the Karoo magmatism at ca. 180 Ma. Thermometry of mineral microinclusions in the diamonds carrying saline HDFs, based on Mg-Fe exchange between garnet-orthopyroxene (Opx)/clinopyroxene (Cpx)/olivine and the Opx-Cpx thermometer, yield temperatures between 875-1080 °C at 5 GPa. These temperatures overlap with conditions recorded by touching inclusion pairs in diamonds from the De Beers Pool kimberlites, which represent the mantle ambient conditions just before eruption, and are altogether lower by 150-250 °C compared to P-T gradients recorded by peridotite xenoliths from the same locality. Oxygen fugacity (fO2

  3. Composition of the lithospheric mantle in the Siberian craton : New constraints from fresh peridotites from the Udachnaya-East Kimberlite

    NASA Astrophysics Data System (ADS)

    Doucet, Luc-Serge; Ionov, Dmitri A.; Ashchepkov, Igor

    2010-05-01

    Peridotite xenoliths from the Udachnaya kimberlite pipe represent the major source of lithospheric mantle samples beneath central Siberian craton. An important problem with the availble data [1], however, is that the Udachnaya xenoliths, like many other kimberlite-hosted peridotite suites worldwide, are extensively altered due to interaction with host magma and post-eruption alteration. This alteration causes particular dificulties for whole-rock studies including microstructures, modal estimates and chemical compositions. We report petrographic data and major and trace element compositions for whole-rocks and minerals of some 30 unusually fresh peridotite xenolith from the Udachnaya-East kimberlite. Our study has two goals. The first is to present and discuss trace element data on rocks and minerals from Udachnaya, whose composition remains little known. The other one is to explore how the availability of the fresh peridotites improves our knowledge of petrology and geochemistry of cratonic mantle in relation to published data on altered samples [1]. The xenoliths are spinel, garnet-spinel and garnet facies peridotites including garnet- and cpx-rich lherzolites, garnet and spinel harzburgites and dunites. Thermobarometric estimates for garnet bearing rocks yield T = 800-1350°C and P = 20-70 kbar, low-T spinel facies rocks may originate from shallower levels. Thus, the suite represents a lithospheric profile from the sub-Moho mantle down to ~210 km. The deeper peridotites commonly have porphyroclastic microstructures with mainly neoblast olivine, opx porphyroclasts and cpx and garnet with broadly variable morphologies whereas rocks of shallow origin are commonly protogranular. Trace element compositions in bulk rocks appear to be affected by host magma contamination with enrichments in highly to moderately incompatible elements as well as in alkalis. Nevertheless, the kimberlite-related contamination cannot explain a combination of low Th and U and high Sr

  4. Paleoproterozoic volcanic centers of the São Félix do Xingu region, Amazonian craton, Brazil: Hydrothermal alteration and metallogenetic potential

    NASA Astrophysics Data System (ADS)

    da Cruz, Raquel Souza; Fernandes, Carlos Marcello Dias; Villas, Raimundo Netuno Nobre; Juliani, Caetano; Monteiro, Lena Virgínia Soares; Lagler, Bruno; Misas, Carlos Mario Echeverri

    2016-06-01

    Geological, petrographic, scanning electron microscopy, and X-ray diffraction studies revealed hydrothermalized lithotypes evidenced by overprinted zones of potassic, propylitic, sericitic, and intermediate argillic alterations types, with pervasive and fracture-controlled styles, in Paleoproterozoic volcano-plutonic units of the São Félix do Xingu region, Amazonian craton, northern Brazil. The Sobreiro Formation presents propylitic (epidote + chlorite + carbonate + clinozoisite + sericite + quartz ± albite ± hematite ± pyrite), sericitic (sericite + quartz + carbonate), and potassic (potassic feldspar + hematite) alterations. The prehnite-pumpellyite pair that is common in geothermal fields also occurs in this unit. The Santa Rosa Formation shows mainly potassic (biotite + microcline ± magnetite), sericitic (sericite + quartz + carbonate ± chlorite ± gold), and intermediate argillic (montmorillonite + kaolinite/halloysite + illite) alterations. These findings strongly suggest the involvement of magma-sourced and meteoric fluids and draw attention to the metallogenetic potential of these volcanic units for Paleoproterozoic epithermal and rare and base metal porphyry-type mineralizations, similar to those already identified in other portions of the Amazonian craton.

  5. Predicting and testing continental vertical motion histories since the Paleozoic

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Zhong, Shijie; Flowers, Rebecca M.

    2012-02-01

    Dynamic topography at the Earth's surface caused by mantle convection can affect a range of geophysical and geological observations including bathymetry, sea-level change, continental flooding, sedimentation and erosion. These observations provide important constraints on and test of mantle dynamic models. Based on global mantle convection models coupled with the surface plate motion history, we compute dynamic topography and its history for the last 400 Ma associated with Pangea assembly and breakup, with particular focus on cratonic regions. We propose that burial-unroofing histories of cratons inferred from thermochronology data can be used as a new diagnostic to test dynamic topography and mantle dynamic models. Our models show that there are currently two broad dynamic topography highs in the Pacific and Africa for the present-day Earth that are associated with the broad, warm structures (i.e., superplumes) in the deep mantle, consistent with previous proposals of dynamical support for the Pacific and African superswells. Our models reveal that Pangea assembly and breakup, by affecting subduction and mantle upwelling processes, have significant effects on continental vertical motions. Our models predict that the Slave craton in North America subsides before Pangea assembly at 330 Ma but uplifts significantly from 330 Ma to 240 Ma in response to pre-Pangea subduction and post-assembly mantle warming. The Kaapvaal craton of Africa is predicted to undergo uplift from ~180 Ma to 90 Ma after Pangea breakup, but its dynamic topography remains stable for the last 90 Ma. The predicted histories of elevation change for the Slave and Kaapvaal cratons compare well with the burial-unroofing histories inferred from thermochronology studies, thus supporting our dynamic models including the development of the African superplume mantle structure. The vertical motion histories for other cratons can provide further tests of and constraints on our mantle dynamic models.

  6. Predicting and testing continental vertical motion histories since the Paleozoic

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Zhong, S.; Flowers, R. M.

    2011-12-01

    Dynamic topography at the Earth's surface caused by mantle convection can affect a range of geophysical and geological observations including bathymetry, sea-level change, continental flooding, sedimentation and erosion. These observations provide important constraints on and test of mantle dynamic models. Based on global mantle convection models coupled with the surface plate motion history, we compute dynamic topography and its history for the last 400 Ma associated with Pangea assembly and breakup, with particular focus on continental cratonic regions. We propose that burial-unroofing histories of continental cratons inferred from thermochronology data can be used as a new diagnostic to test dynamic topography and mantle dynamic models. Our models show that there are currently two broad dynamic topography highs in the Pacific and Africa for the present-day Earth that are associated with the broad, warm structures (i.e., superplumes) in the deep mantle, consistent with previous proposals of dynamical support for the Pacific and African superswells. Our models reveal that Pangea assembly and breakup, by affecting subduction and mantle upwelling processes, have significant effects on continental vertical motions. Our models predict that the Slave craton in North America subsides before Pangea assembly at 330 Ma but uplifts significantly from 330 Ma to 240 Ma in response to pre-Pangea subduction and post-assembly mantle warming. The Kaapvaal craton of Africa is predicted to undergo uplift from ~180 Ma to 90 Ma after Pangea breakup, but its dynamic topography remains stable for the last 90 Ma. The predicted histories of elevation change for the Slave and Kaapvaal cratons compare well with the burial-unroofing histories inferred from thermochronology studies, thus supporting our dynamic models including the development of the African superplume mantle structure. The vertical motion histories for other cratons can provide further tests and constraints on our mantle

  7. Petrochemical evolution of the White Mfolozi Granite pluton: Evidence for a late Palaeoarchaean A-type granite from the SE Kaapvaal Craton, South Africa

    NASA Astrophysics Data System (ADS)

    Misra, Saumitra; Reinhardt, Jürgen; Wilson, Allan H.

    2017-08-01

    One of the major limitations in understanding the geochemical evolution of the Kaapvaal Craton, South Africa, is the scarcity of whole rock trace element data of the granitoid and other rocks compared to the vastness of this cratonic block. Here we present new XRF major oxide and ICP-MS trace element analyses of the White Mfolozi Granitoid (WMG) pluton, SE Kaapvaal Craton, which suggest that the 3.25 Ga (U-Pb zircon age) old WMG pluton is a peraluminous A-type granite and could be equivalent to the intrusive potassic granite phase of the Anhalt Granitoid suite, occurring to the North of the WMG pluton. The pluton was generated by batch partial melting of a pre-existing TTG source in two major phases under relatively anhydrous conditions, and the heat of partial melting could have been provided by a voluminous mantle-derived mafic magma, which intruded into mid-crustal levels (c. 17 km), perhaps during a period of crustal extension. The estimated pressure and temperature of generation of the WMG parent magma with average molar [or/(or + ab)] 0.48 could be 500 MPa and close to 1000 °C, respectively, when compared with the results of experimental petrology. Interstitial occurrence of relatively iron-rich biotite [Mg/(Mg + Fe) 0.41-0.45] suggests that the final temperature of crystallization of the pluton was close to 800 °C. An important magmatic event following the main phase of partial melting was limited mixing between the intrusive mafic magma and co-existing newly generated granitic melt. This magma mixing resulted in distinct variations in SiO2 and a low initial Sr isotopic ratio (0.7013) of the WMG pluton. Although both the models of partial melting of quartzo-feldspathic sources and fractional crystallization of basaltic magmas with or without crustal assimilation have been proposed for the origin of A-type granites, the model of magmatic evolution of the WMG pluton presented here can also be an alternative model for the generation of A-type granites. In

  8. Origin of the mysterious Yin-Shang bronzes in China indicated by lead isotopes.

    PubMed

    Sun, Wei-dong; Zhang, Li-peng; Guo, Jia; Li, Cong-ying; Jiang, Yu-hang; Zartman, Robert E; Zhang, Zhao-feng

    2016-03-18

    Fine Yin-Shang bronzes containing lead with puzzlingly highly radiogenic isotopic compositions appeared suddenly in the alluvial plain of the Yellow River around 1400 BC. The Tongkuangyu copper deposit in central China is known to have lead isotopic compositions even more radiogenic and scattered than those of the Yin-Shang bronzes. Most of the Yin-Shang bronzes are tin-copper alloys with high lead contents. The low lead and tin concentrations, together with the less radiogenic lead isotopes of bronzes in an ancient smelting site nearby, however, exclude Tongkuangyu as the sole supplier of the Yin-Shang bronzes. Interestingly, tin ingots/prills and bronzes found in Africa also have highly radiogenic lead isotopes, but it remains mysterious as to how such African bronzes may have been transported to China. Nevertheless, these African bronzes are the only bronzes outside China so far reported that have lead isotopes similar to those of the Yin-Shang bronzes. All these radiogenic lead isotopes plot along ~2.0-2.5 Ga isochron lines, implying that deposits around Archean cratons are the most likely candidates for the sources. African cratons along the Nile and even micro-cratons in the Sahara desert may have similar lead signatures. These places were probably accessible by ancient civilizations, and thus are the most favorable suppliers of the bronzes.

  9. Origin of the mysterious Yin-Shang bronzes in China indicated by lead isotopes

    PubMed Central

    Sun, Wei-dong; Zhang, Li-peng; Guo, Jia; Li, Cong-ying; Jiang, Yu-hang; Zartman, Robert E.; Zhang, Zhao-feng

    2016-01-01

    Fine Yin-Shang bronzes containing lead with puzzlingly highly radiogenic isotopic compositions appeared suddenly in the alluvial plain of the Yellow River around 1400 BC. The Tongkuangyu copper deposit in central China is known to have lead isotopic compositions even more radiogenic and scattered than those of the Yin-Shang bronzes. Most of the Yin-Shang bronzes are tin-copper alloys with high lead contents. The low lead and tin concentrations, together with the less radiogenic lead isotopes of bronzes in an ancient smelting site nearby, however, exclude Tongkuangyu as the sole supplier of the Yin-Shang bronzes. Interestingly, tin ingots/prills and bronzes found in Africa also have highly radiogenic lead isotopes, but it remains mysterious as to how such African bronzes may have been transported to China. Nevertheless, these African bronzes are the only bronzes outside China so far reported that have lead isotopes similar to those of the Yin-Shang bronzes. All these radiogenic lead isotopes plot along ~2.0–2.5 Ga isochron lines, implying that deposits around Archean cratons are the most likely candidates for the sources. African cratons along the Nile and even micro-cratons in the Sahara desert may have similar lead signatures. These places were probably accessible by ancient civilizations, and thus are the most favorable suppliers of the bronzes. PMID:26988425

  10. Silurian sequence stratigraphy in the North American craton, Great Lakes area

    USGS Publications Warehouse

    Shaver, R.H.; ,

    1996-01-01

    A notable circumstance of late Early through Late Silurian sedimentation on the Great Lakes area craton is that at least two and possibly three cycles of third-order duration (if eustatically considered) are recognized in basin and shallow-platform settings alike. Both virtually pure and siliciclastic-rich carbonate rocks exist in parts of platform-situated sections in contrast to siliciclastic-rich to evaporite-dominated basin sections. Knowledge of the reef history, together with evidence of incidental periodic incursions of siliciclastic sediments, permitted understanding of a regional event or sequence stratigraphy more than 15 years ago before conventional biostratigraphic and physical stratigraphic evidence became adequate to corroborate. This midwestern US and Ontario Silurian record has become strategic for testing different schools of thought that champion either tectonism or eustasy to explain cyclical sequences.

  11. Seismic crustal structure of the North China Craton and surrounding area: Synthesis and analysis

    NASA Astrophysics Data System (ADS)

    Xia, B.; Thybo, H.; Artemieva, I. M.

    2017-07-01

    We present a new digital model (NCcrust) of the seismic crustal structure of the Neoarchean North China Craton (NCC) and its surrounding Paleozoic-Mesozoic orogenic belts (30°-45°N, 100°-130°E). All available seismic profiles, complemented by receiver function interpretations of crustal thickness, are used to constrain a new comprehensive crustal model NCcrust. The model, presented on a 0.25° × 0.25°grid, includes the Moho depth and the internal structure (thickness and velocity) of the crust specified for four layers (the sedimentary cover, upper, middle, and lower crust) and the Pn velocity in the uppermost mantle. The crust is thin (30-32 km) in the east, while the Moho depth in the western part of the NCC is 38-44 km. The Moho depth of the Sulu-Dabie-Qinling-Qilian orogenic belt ranges from 31 km to 51 km, with a general westward increase in crustal thickness. The sedimentary cover is 2-5 km thick in most of the region, and typical thicknesses of the upper crust, middle crust, and lower crust are 16-24 km, 6-24 km, and 0-6 km, respectively. We document a general trend of westward increase in the thickness of all crustal layers of the crystalline basement and as a consequence, the depth of the Moho. There is no systematic regional pattern in the average crustal Vp velocity and the Pn velocity. We examine correlation between the Moho depth and topography for seven tectonic provinces in the North China Craton and speculate on mechanisms of isostatic compensation.

  12. Blueschist facies fault tectonites from the western margin of the Siberian Craton: Implications for subduction and exhumation associated with early stages of the Paleo-Asian Ocean

    NASA Astrophysics Data System (ADS)

    Likhanov, Igor I.; Régnier, Jean-Luc; Santosh, M.

    2018-04-01

    The tectonic evolution of the Siberian Cratonic margins offers important clues for global paleogeographic reconstructions, particularly with regard to the complex geological history of Central Asia. The Yenisey Ridge fold-and-thrust belt at the western margin of the Siberian Craton forms part of the Central Asian Orogenic Belt (CAOB) and is a key to understand the Precambrian tectonic evolution of the Siberian Craton and crustal growth in the CAOB, the world's largest Phanerozoic accretionary orogenic belt. Here we report for the first time, the occurrence of glaucophane schist relics in tectonites within the Yenisey shear zone which provides insights on Chilean-type convergent boundary. We present results from isotope geochronology (SHRIMP zircon analysis and mica 40Ar/39Ar dating), coupled with P-T calculations derived from conventional geothermobarometry and pseudosections in the system NCKFMASH that suggest two superimposed metamorphic events. During the first stage, glaucophane schists formed at around 640-620 Ma at P-T conditions of 8-10 kbar and 400-450 °C. In the second stage, the rocks experienced dynamic metamorphism (c. 600 Ma) at 11-15 kbar/550-640 °C. The differences in P-T parameters between weakly deformed rocks and intensely deformed tectonites and P-T paths suggest distinct tectonic processes. Geochemical features of the mafic tectonites suggest N-MORB and E-MORB affinity, and the zircon U-Pb ages suggest formation of the protoliths at 701.6 ± 8.4. The sequence of spreading, subduction and shear deformation identified in our study correlate with the early stages of development of the Paleo-Asian Ocean at the western margin of the Siberian Craton and supports the spatial proximity of Siberia and Laurentia at 700-600 Ma, as proposed for the Late Neoproterozoic paleogeographic reconstructions and as robustly constrained from large igneous province (LIP) record.

  13. At the Cratonic Crossroads: A geochronologic and geochemical perspective on the Little Rocky Mountains, Montana

    NASA Astrophysics Data System (ADS)

    Gifford, J. N.; Mueller, P. A.; Foster, D. A.; Mogk, D. W.

    2012-12-01

    The Medicine Hat Block (MHB) is a poorly constrained structural element in the Paleoproterozoic amalgamation of Laurentia. It lies between the Wyoming and Hearne cratons along the northern margin of the Great Falls Tectonic Zone. The block was caught between the Hearne and Wyoming cratons during the Paleoproterozoic closure of an ocean and subsequent continental collision. The majority of the MHB is concealed by younger material, and it is recognized primarily by its seismic signature and its influence on the geochemistry of younger igneous rocks. The MHB appears to be composed of Archean (2.6-3.1 Ga) and Proterozoic (1.75 Ga) continental crust based on limited data from drill holes and xenoliths. The Little Rocky Mountains (LRM) are the only potential exposure of Precambrian basement rocks in the northeastern GFTZ, and represent unique surface exposure of the MHB. The LRM is cored by a dome-shaped Tertiary syenite intrusion, with Precambrian metamorphic units exposed along the margins of the dome. Limited previous geochronology from the LRM includes K/Ar ages of 1.7-1.75 Ga and a Rb/Sr age of c. 2.55 Ga from a quartzofeldspathic paragneisses. These data leave the affinity of the LRM uncertain, either representing reworked Archean crust and/or Paleoproterozoic material generated during the subduction of oceanic lithosphere and formation of the GFTZ. New U/Pb ages of zircons from the Precambrian meta-igneous rocks in the LRM range from 2.2 - 3.3 Ga, with prominent peaks between 2.6 - 2.8 Ga. Outliers clustering around 1.7 - 1.8 Ga are rare and likely reflect Paleoproterozoic reworking of older material. These ages are consistent with a MHB affinity for the LRM. Pb-isotope data define a 3.1 Ga model age, which suggests some influence of older Wyoming Craton or MHB crust. The dominance of 2.6-2.8 Ga U/Pb ages suggests that the Paleoproterozoic igneous arc was constructed on pre-existing MHB crust. Models for reconciling the high angle junction between the GFTZ and

  14. Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: Evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite

    NASA Astrophysics Data System (ADS)

    Ionov, Dmitri A.; Doucet, Luc S.; Xu, Yigang; Golovin, Alexander V.; Oleinikov, Oleg B.

    2018-03-01

    The Obnazhennaya kimberlite in the NE Siberian craton hosts a most unusual cratonic xenolith suite, with common rocks rich in pyroxenes and garnet, and no sheared peridotites. We report petrographic and chemical data for whole rocks (WR) and minerals of 20 spinel and garnet peridotites from Obnazhennaya with Re-depletion Os isotope ages of 1.8-2.9 Ga (Ionov et al., 2015a) as well as 2 pyroxenites. The garnet-bearing rocks equilibrated at 1.6-2.8 GPa and 710-1050 °C. Some xenoliths contain vermicular spinel-pyroxene aggregates with REE patterns in clinopyroxene mimicking those of garnet. The peridotites show significant scatter of Mg# (0.888-0.924), Cr2O3 (0.2-1.4 wt.%) and high NiO (0.3-0.4 wt.%). None are pristine melting residues. Low-CaO-Al2O3 (≤0.9 wt.%) dunites and harzburgites are melt-channel materials. Peridotites with low to moderate Al2O3 (0.4-1.8 wt.%) usually have CaO > Al2O3, and some have pockets of calcite texturally equilibrated with olivine and garnet. Such carbonates, exceptional in mantle xenoliths and reported here for the first time for the Siberian mantle, provide direct evidence for modal makeover and Ca and LREE enrichments by ephemeral carbonate-rich melts. Peridotites rich in CaO and Al2O3 (2.7-8.0 wt.%) formed by reaction with silicate melts. We infer that the mantle lithosphere beneath Obnazhennaya, initially formed in the Mesoarchean, has been profoundly modified. Pervasive inter-granular percolation of highly mobile and reactive carbonate-rich liquids may have reduced the strength of the mantle lithosphere leading the way for reworking by silicate melts. The latest events before the kimberlite eruption were the formation of the carbonate-phlogopite pockets, fine-grained pyroxenite veins and spinel-pyroxene symplectites. The reworked lithospheric sections are preserved at Obnazhennaya, but similar processes could erode lithospheric roots in the SE Siberian craton (Tok) and the North China craton, where ancient melting residues and

  15. Evolution of the Mount Woods Inlier, northern Gawler Craton, Southern Australia: an integrated structural and aeromagnetic analysis

    NASA Astrophysics Data System (ADS)

    Betts, Peter G.; Valenta, Rick K.; Finlay, Jim

    2003-05-01

    Structural mapping integrated with interpretation and forward modelling of aeromagnetic data form complimentary and powerful tools for regional structural analysis because both techniques focus on architecture and overprinting relationships. This approach is used to constrain the geometry and evolution of the sparsely exposed Mount Woods Inlier in the northern Gawler Craton. The Mount Woods Inlier records a history of poly-phase deformation, high-temperature metamorphism, and syn- and post-orogenic magmatism between ca. 1736 and 1584 Ma. The earliest deformation involved isoclinal folding, and the development of bedding parallel and axial planar gneissic foliation (S 1). This was accompanied by high-temperature, upper amphibolite to granulite facies metamorphism at ca. 1736 Ma. During subsequent north-south shortening (D 2), open to isoclinal south-southeast-oriented F 2 folds developed as the Palaeoproterozoic successions of the inlier were thrust over the Archaean nuclei of the Gawler Craton. The syn-D 2 Engenina Adamellite was emplaced at ca. 1692 Ma. The post-D 2 history involved shear zone development and localised folding, exhumation of metamorphic rocks, and deposition of clastic sediments prior to the emplacement of the ca. 1584 Ma Granite Balta Suite. The Mount Woods Inlier is interpreted as the northern continuation of the Kimban Orogen.

  16. Granite-hosted molybdenite mineralization from Archean Bundelkhand craton-molybdenite characterization, host rock mineralogy, petrology, and fluid inclusion characteristics of Mo-bearing quartz

    NASA Astrophysics Data System (ADS)

    Pati, J. K.; Panigrahi, M. K.; Chakarborty, M.

    2014-06-01

    The dominantly high-K, moderate to high SiO2 containing, variably fractionated, volcanic-arc granitoids (± sheared) from parts of Bundelkhand craton, northcentral India are observed to contain molybdenite (Mo) in widely separated 23 locations in the form of specks, pockets, clots and stringers along with quartz ± pyrite ± arsenopyrite ± chalcopyrite ± bornite ± covellite ± galena ± sphalerite and in invisible form as well. The molybdenite mineralization is predominantly associated with Bundelkhand Tectonic Zone, Raksa Shear Zone, and localized shear zones. The incidence of molybdenite is also observed within sheared quartz and tonalite-trondhjemite-granodiorite (TTG) gneisses. The fluid inclusion data show the presence of bi-phase (H2O-CO2), hypersaline and moderate temperature (100°-300°C) primary stretched fluid inclusions suggesting a possible hydrothermal origin for the Mo-bearing quartz occurring within variably deformed different granitoids variants of Archean Bundelkhand craton.

  17. Localized collision vs regional heating: the paradoxical aspects of 2720-2670 Ma geological evolution in the Kaapvaal craton, southern Africa.

    NASA Astrophysics Data System (ADS)

    Vezinet, Adrien; Nicoli, Gautier; Moyen, Jean-François; Laurent, Oscar; Stevens, Gary

    2014-05-01

    The Kaapvaal craton (KC) in South Africa, one of the oldest cratonic nuclei on Earth, is bounded to the North by the Limpopo belt, whose Southern Marginal Zone (SMZ) is regarded as a ca. 2.7Ga collisional orogeny. This is substantiated by structural data, such as the south verging thrust system that bounds the SMZ to the South (HRSZ); metamorphic data, demonstrating that metapelites from the SMZ underwent a very fast (˜40Ma) clockwise PTt loop at ca. 2.7Ga, with a peak of metamorphism dated at 2713±8Ma. The SMZ is therefore interpreted as representing a partially molten orogenic channel behaving like modern Himalaya. However, a review of geochronological data of Limpopo Belt, KC and Zimbabwean Craton shows that geological activity at around 2.7Ga was not restricted to the Limpopo belt, but was instead scattered throughout the KC. That is not in agreement with a Himalayan model but could be a response to a general thermal event, which is recorded by: 1) The massive flood basalts of the Vendersdorp Supergroup in central South Africa. This supergroup crops out from Johannesburg in the North to Prieska in the South and records the most widespread sequence of volcanic rocks of the KC. This massive basaltic extrusion occurs between 2714±8Ma (Klipriviersberg Group) and ˜2650Ma (Transvaal Supergroup lower limit). 2) A series of granitic plutons immediately south of the HRSZ, emplaced at 2670-2680Ma; all of them include a mantle-derived component whose composition is similar to the Ventersdorp basalts. A similar and synchronous pluton, the Mashishimale, emplaces South-East of the HRSZ. 3) Further afield, in the Eastern KC, slightly older plutons (I-type (high-Ca) granitoids) emplace in Swaziland between 2720 and 2700Ma. 4) Granulite-facies metamorphism in Swaziland at ca. 2.7Ga. 5) Finally, in the Zimbabwe Craton intermediate to felsic lavas erupted at the same time as well as gneisses and granitoids from northern Botswawa However, interactions of Zimbabwe craton with

  18. African and Non-African Admixture Components in African Americans and An African Caribbean Population

    PubMed Central

    Murray, Tanda; Beaty, Terri H.; Mathias, Rasika A.; Rafaels, Nicholas; Grant, Audrey Virginia; Faruque, Mezbah U.; Watson, Harold R.; Ruczinski, Ingo; Dunston, Georgia M.; Barnes, Kathleen C.

    2013-01-01

    Admixture is a potential source of confounding in genetic association studies, so it becomes important to detect and estimate admixture in a sample of unrelated individuals. Populations of African descent in the US and the Caribbean share similar historical backgrounds but the distributions of African admixture may differ. We selected 416 ancestry informative markers (AIMs) to estimate and compare admixture proportions using STRUCTURE in 906 unrelated African Americans (AAs) and 294 Barbadians (ACs) from a study of asthma. This analysis showed AAs on average were 72.5% African, 19.6% European and 8% Asian, while ACs were 77.4% African, 15.9% European, and 6.7% Asian which were significantly different. A principal components analysis based on these AIMs yielded one primary eigenvector that explained 54.04% of the variation and captured a gradient from West African to European admixture. This principal component was highly correlated with African vs. European ancestry as estimated by STRUCTURE (r2 = 0.992, r2 = 0.912, respectively). To investigate other African contributions to African American and Barbadian admixture, we performed PCA on ~14,000 (14k) genome-wide SNPs in AAs, ACs, Yorubans, Luhya and Maasai African groups, and estimated genetic distances (FST). We found AAs and ACs were closest genetically (FST = 0.008), and both were closer to the Yorubans than the other East African populations. In our sample of individuals of African descent, ~400 well-defined AIMs were just as good for detecting substructure as ~14,000 random SNPs drawn from a genome-wide panel of markers. PMID:20717976

  19. Gravity and magnetic modelling in the Vrancea Zone, south-eastern Carpathians: Redefinition of the edge of the East European Craton beneath the south-eastern Carpathians

    NASA Astrophysics Data System (ADS)

    Bocin, A.; Stephenson, R.; Matenco, L.; Mocanu, V.

    2013-11-01

    A 2D gravity and magnetic data model has been constructed along a 71 km densely observed profile, called DACIA PLAN GRAV MAN's. The profile crosses part of the nappe pile of the south-eastern Carpathians and includes the seismically active Vrancea Zone and was acquired with the objective to illuminate the basement structure and affinity in this area. The modelling approach was to create an initial model from well constrained geological information, integrate it with previous seismic ray tracing and tomographic models and then alter it outside the a priori constraints in order to reach the best fit between observed and calculated potential field anomalies. The results support a realignment of the position of the TTZ (Tornquist-Teisseyre Zone), the profound tectonic boundary within Europe that separates Precambrian cratonic lithosphere of the East European Craton (EEC) from younger accreted lithosphere of Phanerozoic mobile belts to its west. The TTZ is shown to lie further to the south-west than was previously inferred within Romania, where it is largely obscured by the Carpathian nappes. The crust of the EEC beneath the south-eastern Carpathians is inferred to terminate along a major crustal structure lying just west of the Vrancea seismogenic zone. The intermediate depth seismicity of the Vrancea Zone therefore lies within the EEC lithosphere, generally supporting previously proposed models invoking delamination of cratonic lithosphere as the responsible mechanism.

  20. Cordilleran hingeline: Late Precambrian rifted margin of the North American craton and its impact on the depositional and structural history, Utah and Nevada

    NASA Astrophysics Data System (ADS)

    Picha, Frank; Gibson, Richard I.

    1985-07-01

    The structural pattern set by late Precambrian rifting and fragmentation of the North American continent is apparent in both sedimentary and tectonic trends in western Utah and eastern Nevada. The late Precambrian cratonic margin (Cordilleran hingeline) displays several prominent structural features, such as the Wasatch and Ancient Ephraim faults, Fillmore arch and northeast-trending lineaments, which were repeatedly reactivated as structural uplifts, ramps, strike-slip faults, and extensional detachments. The renewed activity affected, among others, the geometry of the late Paleozoic Ancestral Rocky Mountain uplifts and basins, the extent of the Jurassic Arapien basin, the sedimentary pattern of the Cretaceous foreland basin, the geometry of the Sevier orogenic belt, and the extent and type of Basin-and-Range extensional tectonics. The rifted cratonic margin has thus remained a major influence on regional structures long after rifting has ceased. *Present address: Everest Geotech, 10101 Southwest Freeway, Houston, Texas 77074

  1. A magnetotelluric study from over Dharwar cratonic nucleus into Billigiri Rangan charnockitic massif, India

    NASA Astrophysics Data System (ADS)

    Pratap, A.; Kusham; Pradeep Naick, B.; Naganjaneyulu, K.

    2018-07-01

    The electrical resistivity structure of the crust beneath the Dharwar craton in southern India was investigated by magnetotelluric method. In the present study, a northwest-southeast oriented 220 km long profile of 18 stations with a station spacing of ∼10-15 km is used. The profile extends from Dharwar cratonic nucleus in the north to Billigiri Rangan charnockitic massifs in the south. Time series data are processed to get the apparent resistivity and phase. The dominant geoelectric strike direction (75°) was calculated in a period range of 0.01-1000 s. The data are rotated to 75° strike direction. Two-dimensional inversion is carried out by using the non-linear conjugate gradient scheme for both apparent resistivity and phase. Our inversion results show a conductor in the northern side of the profile and two distinct prominent conductors in southern part of the profile. The mid-lower crust in southern part of the profile shows less resistive (<300 ohm-m) nature in the depth range of 20-50 km and is related with the Chitradurga shear zone and Billigiri Rangan charnockite massif. These zones were interpreted as CO2 flushed terranes. Regional-scale carbonation occurred in Late Archaean is associated with Chitradurga shear zone and in Late Proterozoic is associated with Salem-Attur shear zone. The CO2 rich fluids derived during that time might have exhausted in dehydration reactions. Later events such as the Indian plate passing over several hotspots and the metasomatized fluids associated with the Cretaceous-Tertiary magmatism in the region is the reason for observed low resistivity near Billigiri Rangan massif and surrounding regions in the south.

  2. Contrasting cratonal provenances for upper Cretaceous Valle Group quartzite clasts, Baja California

    USGS Publications Warehouse

    Kimbrough, D.L.; Abbott, G.; Smith, D.P.; Mahoney, J.B.; Moore, Thomas E.; Gehrels, G.E.; Girty, G.H.; Cooper, John D.

    2006-01-01

    Late Cretaceous Valle Group forearcbasin deposits on the Vizcaino Peninsula of Baja California Sur are dominated by firstcycle arc-derived volcanic-plutonic detritus derived from the adjacent Peninsular Ranges batholith. Craton-derived quartzite clasts are a minor but ubiquitous component in Valle Group conglomerates. The source of these clasts has implications for tectonic reconstructions and sediment-dispersal paths along the paleo-North American margin. Three strongly contrasting types of quartzite are recognized based on petrology and detrital zircon U-Pb geochronology. The first type is ultramature quartz arenite with well-rounded, highly spherical zircon grains. Detrital zircon ages from this type are nearly all >1.8 Ga with age distributions that closely match the distinctive Middle-Late Ordovician Peace River arch detrital signature of the Cordilleran margin. This type has been previously recognized from prebatholithic rocks in northeast Baja California (San Felipe quartzite). A second quartzite type is subarkosic sandstone with strong affinity to southwestern North America; important features of the age spectra are ~1.0-1.2 Ga, 1.42 and 1.66 Ga peaks representing cratonal basement, 500-300 Ma grains interpreted as recycled Appalachian-derived grains, and 284- 232 Ma zircon potentially derived from the Early Permian-Middle Triassic east Mexico arc. This quartzite type could have been carried to the continental margin during Jurassic time as outboard equivalents of Colorado Plateau eolianites. The third quartzite type is quartz pebble conglomerate with significant ~900- 1400 Ma and ~450-650 Ma zircon components, as well as mid- and late Paleozoic grains. The source of this type of quartzite is more problematic but could match either upper Paleozoic strata in the Oaxaca terrane of southern Mexico or a southwestern North America source. The similarity of detrital 98 zircon spectra in all three Valle Group quartzite types to rocks of the adjacent Cordilleran

  3. Interaction of coeval felsic and mafic magmas from the Kanker granite, Pithora region, Bastar Craton, Central India

    NASA Astrophysics Data System (ADS)

    Elangovan, R.; Krishna, Kumar; Vishwakarma, Neeraj; Hari, K. R.; Ram Mohan, M.

    2017-10-01

    Field and petrographic studies are carried out to characterize the interactions of mafic and felsic magmas from Pithora region of the northeastern part of the Bastar Craton. The MMEs, syn-plutonic mafic dykes, cuspate contacts, magmatic flow textures, mingling and hybridization suggest the coeval emplacement of end member magmas. Petrographic evidences such as disequilibrium assemblages, resorption textures, quartz ocelli, rapakivi and poikilitic textures suggest magma mingling and mixing phenomena. Such features of mingling and mixing of the felsic and mafic magma manifest the magma chamber processes. Introduction of mafic magmas into the felsic magmas before initiation of crystallization of the latter, results in hybrid magmas under the influence of thermal and chemical exchange. The mechanical exchange occurs between the coexisting magmas due to viscosity contrast, if the mafic magma enters slightly later into the magma chamber, then the felsic magma starts to crystallize. Blobs of mafic magma form as MMEs in the felsic magma and they scatter throughout the pluton due to convection. At a later stage, if mafic magma enters the system after partial crystallization of felsic phase, mechanical interaction between the magmas leads to the formation of fragmented dyke or syn-plutonic mafic dyke. All these features are well-documented in the study area. Field and petrographic evidences suggest that the textural variations from Pithora region of Bastar Craton are the outcome of magma mingling, mixing and hybridization processes.

  4. Archean crustal evolution in the Southern São Francisco craton, Brazil: Constraints from U-Pb, Lu-Hf and O isotope analyses

    NASA Astrophysics Data System (ADS)

    Albert, Capucine; Farina, Federico; Lana, Cristiano; Stevens, Gary; Storey, Craig; Gerdes, Axel; Dopico, Carmen Martínez

    2016-12-01

    In this study we present U-Pb and Hf isotope data combined with O isotopes in zircon from Neoarchean granitoids and gneisses of the southern São Francisco craton in Brazil. The basement rocks record three distinct magmatic events: Rio das Velhas I (2920-2850 Ma), Rio das Velhas II (2800-2760 Ma) and Mamona (2750-2680 Ma). The three sampled metamorphic complexes (Bação, Bonfim and Belo Horizonte) have distinct εHf vs. time arrays, indicating that they grew as separate terranes. Paleoarchean crust is identified as a source which has been incorporated into younger magmatic rocks via melting and mixing with younger juvenile material, assimilation and/or source contamination processes. The continental crust in the southern São Francisco craton underwent a change in magmatic composition from medium- to high-K granitoids in the latest stages, indicating a progressive HFSE enrichment of the sources that underwent anatexis in the different stages and possibly shallowing of the melting depth. Oxygen isotope data shows a secular trend towards high δ18O (up to 7.79‰) indicating the involvement of metasediments in the petrogenesis of the high potassium granitoids during the Mamona event. In addition, low δ18O values (down to 2.50‰) throughout the Meso- and Neoarchean emphasize the importance of meteoritic fluids in intra-crustal magmatism. We used hafnium isotope modelling from a compilation of detrital zircon compositions to constrain crustal growth rates and geodynamics from 3.50 to 2.65 Ga. The modelling points to a change in geodynamic process in the southern São Francisco craton at 2.9 Ga, from a regime dominated by net crustal growth in the Paleoarchean to a Neoarchean regime marked by crustal reworking. The reworking processes account for the wide variety of granitoid magmatism and are attributed to the onset of continental collision.

  5. Lithospheric structure of the Northern Ordos and adjacent regions from surface wave tomography: implications to the tectonics of the North China Craton

    NASA Astrophysics Data System (ADS)

    LI, S.; Guo, Z.; Chen, Y. J.

    2017-12-01

    We present a high-resolution upper mantle S velocity model of the northern Ordos block using ambient noise tomography and two-plane-wave tomography between 8 and 143 s. The Ordos block, regarded as the nuclei of the Archean craton of North China Craton, is underlain by high velocity down to 200 km, indicating the preservation of cratonic root at the interior. However, thick lithospheric keel (≥ 200 km) is not observed outside the Ordos, suggesting craton reworking around the Ordos. The most important findings is the prominent low velocity shown beneath the Datong volcano that migrates westward with depth. At 200 km depth, the low velocity locates almost 500 km west to the leading edge of the flat-lying Pacific slab in the mantle transition zone. This observation is in conflict with the previous interpretation that the Datong volcano is fed by the deep upwelling related to the subduction of the Pacific plate. The westward tilted low velocity beneath the Datong volcano, however, is in agreement with the predominant NW-SE trending alignment of fast direction revealed by SKS splitting in this area, suggesting the Datong volcano is likely due to the asthenospheric mantle flow from west. Two possible scenarios could be related to this mantle process. First, the low velocity beneath the Datong volcano may link to the large-scale, deep-rooted mantle upwelling beneath the Mongolia, northwest to the Datong volcano at deeper depth revealed by Zhang et al. (2016). We postulate that when the raising mantle materials reaches the shallow depth, it would be forced bent by the thick lithosphere beneath the Gobi in Mongolia and flow southeastward to Datong volcano. Second, it is also worth noting that the low velocity beneath the Datong volcano connects to the low velocity zone (LVZ) beneath the Ordos block below 200km, which further links the LVZ beneath the northeastern Tibet to the west. Therefore, the Datong volcano could be fed by the mantle flow from northeastern Tibet. The

  6. Between carbonatite and lamproite—Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes

    NASA Astrophysics Data System (ADS)

    Tappe, Sebastian; Foley, Stephen F.; Kjarsgaard, Bruce A.; Romer, Rolf L.; Heaman, Larry M.; Stracke, Andreas; Jenner, George A.

    2008-07-01

    New U-Pb perovskite ages reveal that diamondiferous ultramafic lamprophyre magmas erupted through the Archean crust of northern Labrador and Quebec (eastern Canada) between ca. 610 and 565 Ma, a period of strong rifting activity throughout contiguous Laurentia and Baltica. The observed Torngat carbonate-rich aillikite/carbonatite and carbonate-poor mela-aillikite dyke varieties show a large spread in Sr-Nd-Hf-Pb isotope ratios with pronounced correlations between isotope systems. An isotopically depleted component is identified solely within aillikites ( 87Sr/ 86Sr i = 0.70323-0.70377; ɛNd i = +1.2-+1.8; ɛHf i = +1.4-+3.5; 206Pb/ 204Pb i = 18.2-18.5), whereas some aillikites and all mela-aillikites range to more enriched isotope signatures ( 87Sr/ 86Sr i = 0.70388-0.70523; ɛNd i = -0.5 to -3.9; ɛHf i = -0.6 to -6.0; 206Pb/ 204Pb i = 17.8-18.2). These contrasting isotopic characteristics of aillikites/carbonatites and mela-aillikites, along with subtle differences in their modal carbonate, SiO 2, Al 2O 3, Na 2O, Cs-Rb, and Zr-Hf contents, are consistent with two distinctive metasomatic assemblages of different age in the mantle magma source region. Integration of petrologic, geochemical, and isotopic information leads us to propose that the isotopically enriched component originated from a reduced phlogopite-richterite-Ti-oxide dominated source assemblage that is reminiscent of MARID suite xenoliths. In contrast, the isotopically depleted component was derived from a more oxidized phlogopite-carbonate dominated source assemblage. We argue that low-degree CO 2-rich potassic silicate melts from the convective upper mantle were preferentially channelled into an older, pre-existing MARID-type vein network at the base of the North Atlantic craton lithosphere, where they froze to form new phlogopite-carbonate dominated veins. Continued stretching and thinning of the cratonic lithosphere during the Late Neoproterozoic remobilized the carbonate-rich vein material and

  7. Direct dating of paleomagnetic results from Precambrian sediments in the Amazon craton: Evidence for Grenvillian emplacement of exotic crust in SE Appalachians of North America

    NASA Astrophysics Data System (ADS)

    D'Agrella-Filho, Manoel S.; Tohver, Eric; Santos, João O. S.; Elming, Sten-Åke; Trindade, Ricardo I. F.; Pacca, Igor I. G.; Geraldes, Mauro C.

    2008-03-01

    We apply a new diagenetic dating technique to determine the age of magnetization for Precambrian sedimentary rocks in the SW Amazon craton. Two new paleomagnetic poles are reported from the rocks of the Aguapeí Gp.: red beds of the Fortuna Fm. (Plat = 59.8°N, Plon = 155.9°E, A95 = 9.5, K = 14, 18 sites, N/n 128/115, Q = 5) and the reverse-polarity mudstones of the overlying Vale da Promissão Formation (Plat = 49.5°N, Plon = 89.3°E, A95 = 12.5, K = 30, 6 sites, N/n = 94/80, Q = 4). The Fortuna Fm. magnetization is hosted by massive, interstitial hematite cement and constitutes a post-depositional remanence. The age of diagenesis of the red beds is well-constrained by the 1149 ± 7 Ma U-Pb age of authigenic xenotime rims on detrital zircons determined by SHRIMP analysis. The magnetite-hosted remanence of the Vale da Promissão Fm. may be detrital in origin, but the age of deposition is poorly constrained. The reliable and precisely-dated Fortuna Fm. paleomagnetic pole fixes the paleogeographic position of the Amazon craton near the SE Appalachians portion of North America at 1.15 Ga. These data demonstrate a mobile Grenvillian link between these two cratons, and support the recent identification of Amazon crust in the Blue Ridge province region of North America.

  8. Modelling the possible interaction between edge-driven convection and the Canary Islands mantle plume

    NASA Astrophysics Data System (ADS)

    Negredo, A. M.; Rodríguez-González, J.; Fullea, J.; Van Hunen, J.

    2017-12-01

    The close location between many hotspots and the edges of cratonic lithosphere has led to the hypothesis that these hotspots could be explained by small-scale mantle convection at the edge of cratons (Edge Driven Convection, EDC). The Canary Volcanic Province hotspot represents a paradigmatic example of this situation due to its close location to the NW edge of the African Craton. Geochemical evidence, prominent low seismic velocity anomalies in the upper and lower mantle, and the rough NE-SW age-progression of volcanic centers consistently point out to a deep-seated mantle plume as the origin of the Canary Volcanic Province. It has been hypothesized that the plume material could be affected by upper mantle convection caused by the thermal contrast between thin oceanic lithosphere and thick (cold) African craton. Deflection of upwelling blobs due to convection currents would be responsible for the broader and more irregular pattern of volcanism in the Canary Province compared to the Madeira Province. In this study we design a model setup inspired on this scenario to investigate the consequences of possible interaction between ascending mantle plumes and EDC. The Finite Element code ASPECT is used to solve convection in a 2D box. The compositional field and melt fraction distribution are also computed. Free slip along all boundaries and constant temperature at top and bottom boundaries are assumed. The initial temperature distribution assumes a small long-wavelength perturbation. The viscosity structure is based on a thick cratonic lithosphere progressively varying to a thin, or initially inexistent, oceanic lithosphere. The effects of assuming different rheologies, as well as steep or gradual changes in lithospheric thickness are tested. Modelling results show that a very thin oceanic lithosphere (< 30 km) is needed to generate partial melting by EDC. In this case partial melting can occur as far as 700 km away from the edge of the craton. The size of EDC cells is

  9. A review of structural patterns and melting processes in the Archean craton of West Greenland: Evidence for crustal growth at convergent plate margins as opposed to non-uniformitarian models

    NASA Astrophysics Data System (ADS)

    Polat, Ali; Wang, Lu; Appel, Peter W. U.

    2015-11-01

    The Archean craton of West Greenland consists of many fault-bounded Eoarchean to Neoarchean tectonic terranes (crustal blocks). These tectonic terranes are composed mainly of tonalite-trondhjemite-granodiorite (TTG) gneisses, granitic gneisses, metavolcanic-dominated supracrustal belts, layered anorthositic complexes, and late- to post-tectonic granites. Rock assemblages and geochemical signatures in these terranes suggest that they represent fragments of dismembered oceanic island arcs, consisting mainly of TTG plutons, tholeiitic to calc-alkaline basalts, boninites, picrites, and cumulate layers of ultramafic rocks, gabbros, leucogabbros and anorthosites, with minor sedimentary rocks. The structural characteristics of the terrane boundaries are consistent with the assembly of these island arcs through modern style of horizontal tectonics, suggesting that the Archean craton of West Greenland grew at convergent plate margins. Several supracrustal belts that occur at or near the terrane boundaries are interpreted as relict accretionary prisms. The terranes display fold and thrust structures and contain numerous 10 cm to 20 m wide bifurcating, ductile shear zones that are characterized by a variety of structures including transposed and redistributed isoclinal folds. Geometrically these structures are similar to those occurring on regional scales, suggesting that the Archean craton of West Greenland can be interpreted as a continental scale accretionary complex, such as the Paleozoic Altaids. Melting of metavolcanic rocks during tectonic thickening in the arcs played an important role in the generation of TTGs. Non-uniformitarian models proposed for the origin of Archean terranes have no analogs in the geologic record and are inconsistent with structural, lithological, petrological and geochemical data collected from Archean terranes over the last four decades. The style of deformation and generation of felsic rocks on outcrop scales in the Archean craton of West

  10. Quantum phases and phase transitions in disordered low-dimensional systems: thin film superconductors, bilayer two-dimensional electron systems, and one-dimensional optical lattices

    NASA Astrophysics Data System (ADS)

    Zhang, Nan

    -spatial evolutions of the surface and CMB heat fluxes, and the dynamic topography since the Paleozoic. My result shows that the surface heat flux increases by ~16% from 200 to 120 Ma ago as a result of Pangea breakup and the equatorial CMB heat flux has two minima that coincide with the Kiaman (316-262 Ma) and Cretaceous (118-83 Ma) Superchrons, respectively, and may be responsible for the Superchrons. My results of the dynamic topography show that the Slave Craton subsided when the major downwelling occupied the mantle beneath North America, while Sao Francisco Craton, Kaapvaal Craton, and Yilgarn Craton were supported by the large scale upwellings in the mantle beneath the very south of Pangea around 330 Ma during Pangea formation. After Pangea formed, Slave Craton started to uplift as the major downwelling heated up with time and were controlled by the subductions close to it. Sao Francisco Craton and Kaapvaal Craton kept uplifting due to the returning African Superplume. My reconstructed dynamic topography history compares well with the vertical motion history of Slave Craton indicated by the thermochronometry study.

  11. Did the circum-Rodinia subduction trigger the Neoproterozoic rifting along the Congo-Kalahari Craton margin?

    NASA Astrophysics Data System (ADS)

    Konopásek, Jiří; Janoušek, Vojtěch; Oyhantçabal, Pedro; Sláma, Jiří; Ulrich, Stanislav

    2017-12-01

    Early Neoproterozoic metaigneous rocks occur in the central part of the Kaoko-Dom Feliciano-Gariep orogenic system along the coasts of the southern Atlantic Ocean. In the Coastal Terrane (Kaoko Belt, Namibia), the bimodal character of the ca. 820-785 Ma magmatic suite and associated sedimentation sourced in the neighbouring pre-Neoproterozoic crust are taken as evidence that the Coastal Terrane formed as the shallow part of a developing back arc/rift. The arc-like chemistry of the bimodal magmas is interpreted as inherited from crustal and/or lithospheric mantle sources that have retained geochemical signature acquired during an older (Mesoproterozoic) subduction-related episode. In contrast, the mantle contribution was small in ca. 800-770 Ma plutonic suites in the Punta del Este Terrane (Dom Feliciano Belt, Uruguay) and in southern Brazil; still, the arc-like geochemistry of the prevalent felsic rocks seems inherited from their crustal sources. The within-plate geochemistry of a subsequent, ca. 740-710 Ma syn-sedimentary volcanism reflects the ongoing crustal stretching and sedimentation on top of the Congo and Kalahari cratons. The Punta del Este-Coastal Terrane is interpreted as an axial part of a Neoproterozoic "Adamastor Rift". Its opening started in a back-arc position of a long-lasting subduction system at the edge of a continent that fragmented into the Nico Pérez-Luís Alves Terrane and the Congo and Kalahari cratons. The continent had to be facing an open ocean and consequently could not be located in the interior of the Rodinia. Nevertheless, the early opening of the Adamastor Rift coincided with the lifetime of the circum-Rodinia subduction system.

  12. Petroleum geology and resources of the Nepa-Botuoba High, Angara-Lena Terrace, and Cis-Patom Foredeep, southeastern Siberian Craton, Russia

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2001-01-01

    Three structural provinces of this report, the Nepa-Botuoba High, the Angara-Lena Terrace, and the Cis-Patom Foredeep, occupy the southeastern part of the Siberian craton northwest of the Baikal-Patom folded region (fig. 1). The provinces are similar in many aspects of their history of development, stratigraphic composition, and petroleum geology characteristics. The sedimentary cover of the provinces overlies the Archean?Lower Proterozoic basement of the Siberian craton. Over most of the area of the provinces, the basement is covered by Vendian (uppermost Proterozoic, 650?570 Ma) clastic and carbonate rocks. Unlike the case in the more northwestern areas of the craton, older Riphean sedimentary rocks here are largely absent and they appear in the stratigraphic sequence only in parts of the Cis-Patom Foredeep province. Most of the overlying sedimentary section consists of Cambrian and Ordovician carbonate and clastic rocks, and it includes a thick Lower Cambrian salt-bearing formation. Younger rocks are thin and are present only in marginal areas. 1 A single total petroleum system (TPS) embraces all three provinces. The TPS is unique in two aspects: (1) its rich hydro-carbon reserves are derived from Precambrian source rocks and (2) preservation of oil and gas fields is extremely long owing to the presence of the Lower Cambrian undeformed salt seal. Discovered reserves of the TPS are about 2 billion barrels of oil and more than 30 trillion cubic feet of gas. The stratigraphic distribution of oil and gas reserves is narrow; all fields are in Vendian to lowermost Cambrian clastic and carbonate reservoirs that occur below Lower Cambrian salt. Both structural and stratigraphic traps are known. Source rocks are absent in the sedimentary cover of the provinces, with the possible exception of a narrow zone on the margin of the Cis-Patom Foredeep province. Source rocks are interpreted here to be Riphean and Vendian organic-rich shales of the Baikal-Patom folded region

  13. Satellite Gravity Transforms Unmask Tectonic Pattern of Arabian-African Region

    NASA Astrophysics Data System (ADS)

    Eppelbaum, Lev; Katz, Youri

    2017-04-01

    tectonic structures: (1) stable zones of continental and oceanic crust, and (2) mobile geotectonic belts. First type is characterized by homogeneous character of gravity field pattern (for instance, East Arabian Craton), whereas second type is characterized by mosaic and variable behavior of gravity field (especially, active rift zones). It should be noted that 'youngest' mobile structure (Alpine-Himalayan orogenic belt and active rift systems of the Red Sea - East Africa) significantly differs in the gravity field pattern from the Mesozoic terrane belt and Neoproterozoic belt. In this investigation six satellite gravity transforms (SGT) are described: multidimensional statistical analysis (MSA) by the use of sliding window, low-pass filtering, informational approach, gradient operator, entropy processing by sliding window of adaptive form, and 3D inverse methods. Application of the MSA enabled not only to delineate geodynamical parameters of the studied region (collision zone at the boundary between the Arabian and Eurasian Plates, and active rift zones between the Arabian, Nubian and Somalian Plates, etc.), but also to estimate generalized properties of the Earth's crust. Results of MSA employment clearly show zone of development of the oceanic crust of the Easternmost Mediterranean and zone of oceanic crust of the Gulf of Aden and eastern (oceanic) part of the Somalian Plate. Besides this, in this map the Arabian and East African active rift zones and collision zone between the Arabian and Eurasian Plates are visibly traced. Applied low-pass gravity field filtering enabled to recognize the most contrast crust-mantle structures. For example, the Afar triangle zone is clearly detected. Zones of the Neotethys closing Eastern Mediterranean, Persian Gulf, Zagros Fault Zone and South Caspian Basin can be easily identified. Subduction zones associated with the plate boundaries are reflected by elongated gradient pattern. These nonstable zones are conjugated with large mobile

  14. Archean Isotope Anomalies as a Window into the Differentiation History of the Earth

    NASA Astrophysics Data System (ADS)

    Wainwright, A. N.; Debaille, V.; Zincone, S. A.

    2018-05-01

    No resolvable µ142Nd anomaly was detected in Paleo- Mesoarchean rocks of São Francisco and West African cratons. The lack of µ142Nd anomalies outside of North America and Greenland implies the Earth differentiated into at least two distinct domains.

  15. Paleointensity determination on Neoarchaean dikes within the Vodlozerskii terrane of the Karelian craton

    NASA Astrophysics Data System (ADS)

    Shcherbakova, V. V.; Lubnina, N. V.; Shcherbakov, V. P.; Zhidkov, G. V.; Tsel'movich, V. A.

    2017-09-01

    The results of paleomagnetic studies and paleointensity determinations from two Neoarchaean Shala dikes with an age of 2504 Ma, located within the Vodlozerskii terrane of the Karelian craton, are presented. The characteristic components of primary magnetization with shallow inclinations I = -5.7 and 1.9 are revealed; the reliability of the determinations is supported by two contact tests. High paleointensity values are obtained by the Thellier-Coe and Wilson techniques. The calculated values of the virtual dipole moment (11.5 and 13.8) × 1022 A m2 are noticeably higher than the present value of 7.8 × 1022 A m2. Our results, in combination with the previous data presented in the world database, support the hypothesized existence of a period of high paleointensity in the Late Archaean-Early Proterozoic.

  16. 2.6-2.7 Ga continental crust growth in Yangtze craton, South China

    NASA Astrophysics Data System (ADS)

    Chen, K.; Gao, S.; Wu, Y.

    2013-12-01

    A combined study of zircon U-Pb and Lu-Hf isotopes and whole rock major and trace elements and Sr-Nd isotopes has been conducted for 10 granitic and tonalitic-trondhjemitic-granodioritic (TTG) gneisses from the Kongling terrain, the only known Archean microcontinent in the Yangtze craton, South China. The results reveal a significant magmatic event at ~2.6-2.7 Ga (Fig. 1), in addition to the previously reported ~2.9 Ga and ~3.2-3.3 Ga magmatism (Zhang et al., 2006; Jiao et al., 2009; Gao et al., 2011). The ~2.6-2.7 Ga rocks show relatively high REE (530-1074 ppm), apparently negative Eu anomaly (Eu/Eu* = 0.22-0.35), low #Mg (19.51-22.63) and low LaN/YbN (10.3-24.2). Besides, they have high K-feldspar proportion and relatively evaluated (K2O+Na2O)/CaO, TFeO/MgO, Zr, Nb, Ce and Y contents. Their 10000 × Ga/Al ratios range between 3.00 and 3.54. All these features suggest that the protoliths of these gneisses are A-type granites. Most of the ~2.6-2.7 Ga zircon grains have ɛHf(t) values >0 (up to 7.93, close to the depleted mantle value). This clearly indicates a considerably higher proportion of new crustal components in the ~2.6-2.7 Ga granitoids compared to the ~3.2-3.3 Ga and ~2.9 Ga TTGs. Our results support the conclusion of worldwide studies of igneous and detrital zircons that age peaks at 2.65-2.76 Ga represent increases in the volume of juvenile continental crust. The present study also confirms the existence of the two older magmatic events in the Kongling terrain. Both whole rock ɛNd(t) values (-3.74 to 1.59) and the zircon ɛHf(t) values (-11.18 to 3.55) for the ~2.9 Ga TTG and the Hf isotopes of ~3.2-3.3 Ga igneous zircons (-7.37 to 3.12) are chondritic or subchondritic, suggesting that they were mainly generated by reworking of older rocks with a small amount of new crustal additions. References Gao, S., Yang, J., Zhou, L., Li, M., Hu, Z.C., Guo, J.L., Yuan, H.L., Gong, H.J., Xiao, G.Q., Wei, J.Q., 2011. Age and growth of the Archean Kongling terrain

  17. Lithospheric structure, composition, and thermal regime of the East European Craton: Implications for the subsidence of the Russian platform

    USGS Publications Warehouse

    Artemieva, I.M.

    2003-01-01

    A new mechanism for Paleozoic subsidence of the Russian, or East European, platform is suggested, since a model of lithosphere tilting during the Uralian subduction does not explain the post-Uralian sedimentation record. Alternatively, I propose that the Proterozoic and Paleozoic rifting (when a platform-scale Central Russia rift system and a set of Paleozoic rifts were formed) modified the structure and composition of cratonic lithosphere, and these tectono-magmatic events are responsible for the post-Uralian subsidence of the Russian platform. To support this hypothesis, (a) the thermal regime and the thickness of the lithosphere are analyzed, and (b) lithospheric density variations of non-thermal origin are calculated from free-board constraints. The results indicate that Proterozoic and Paleozoic rifting had different effects on the lithospheric structure and composition. (1) Proterozoic rifting is not reflected in the present thermal regime and did not cause significant lithosphere thinning (most of the Russian platform has lithospheric thickness of 150-180 km and the lithosphere of the NE Baltic Shield is 250-300 km thick). Paleozoic rifting resulted in pronounced lithospheric thinning (to 120-140 km) in the southern parts of the Russian platform. (2) Lithospheric density anomalies suggest that Proterozoic-Paleozoic rifting played an important role in the platform subsidence. The lithospheric mantle of the Archean-early Proterozoic part of the Baltic Shield is ??? 1.4 ?? 0.2% less dense than the typical Phanerozoic upper mantle. However, the density deficit in the subcrustal lithosphere of most of the Russian platform is only about (0.4-0.8) ?? 0.2% and decreases southwards to ???0%. Increased densities (likely associated with low depletion values) in the Russian platform suggest strong metasomatism of the cratonic lithosphere during rifting events, which led to its subsidence. It is proposed that only the lower part of the cratonic lithosphere was

  18. The nature and location of the suture zone in the Rokelide orogen, Sierra Leone: Geochemical evidence

    NASA Astrophysics Data System (ADS)

    Lytwyn, Jennifer; Burke, Kevin; Culver, Stephen

    2006-12-01

    The boundaries of the West African Craton mark the location of a continuous suture zone that records Neoproterozoic to Early Cambrian oceanic closure. The western part of the circum-West African suture zone extends through the line of outcrop of the Mauritanide, Bassaride and Rokelide mountain belts. Our geochemical analyses are consistent with the idea that igneous and metamorphic rocks of the Rokelide and Southern Mauritanide mountain belts of West Africa occupy a suture zone that records the closing of a Neoproterozoic to Early Cambrian ocean basin during the Pan-African orogeny and final assembly of Gondwana. The closing of that basin was marked by the collision between Archean rocks of the Leo massif of the West African Craton and reactivated Archean and Paleoproterozoic rocks that now outcrop nearer to the coast of Africa in Sierra Leone and Liberia. Within the Rokelides, the geochemistry of the Kasewe Hills volcanic rocks and Marampa amphibolite indicate that remnants of an arc system are caught up in the suture zone. The geochemistry of Guingan schists that outcrop along strike of the Rokelides is compatible with the idea that the metamorphosed equivalents of the Marampa and Kasewe Hills arc volcanic rocks extend through the Bassarides and into the Southern Mauritanides.

  19. Emplacement and deformation of the A-type Madeira granite (Amazonian Craton, Brazil)

    NASA Astrophysics Data System (ADS)

    Siachoque, Astrid; Salazar, Carlos Alejandro; Trindade, Ricardo

    2017-04-01

    The Madeira granite is one of the Paleoproterozoic (1.82 Ga) A-type granite intrusions in the Amazonian Craton. It is elongated in the NE-SW direction and is composed of four facies. Classical structural techniques and the anisotropy of magnetic susceptibility (AMS) method were applied to the study of its internal fabric. Magnetic susceptibility measurements, thermomagnetic curves, remanent coercivity spectra, optical microscopy and SEM (scanning electron microscopy) analyses were carried out on the earlier and later facies of the Madeira granite: the rapakivi granite (RG) and the albite granite (AG) respectively. The last one is subdivided into the border albite granite (BAG) and the core albite granite (CAG) subfacies. AMS fabric pattern is controlled by pure magnetite in all facies, despite significant amounts of hematite in the BAG subfacies. Microstructural observations show that in almost all sites, magnetic fabric correlates to magmatic state fabrics that are defined by a weak NE-SW orientation of mafic and felsic silicates. However, strain mechanisms in both subfacies of AG also exhibit evidence for solid-state deformation at high to moderate temperatures. Pegmatite dyke, strike slip fault (SFA-B-C), hydrothermal vein, normal fault (F1-2) and joint (J) structures were observed and their orientation and kinematics is consistent with the magmatic and solid-state structures. Dykes, SFA-C and F1, are usually orientated along the N70°E/40°N plane, which is nearly parallel to the strike of AMS and magmatic foliations. In contrast, veins, SFB, F2 and some J are oriented perpendicular to the N70°E trend. Kinematic analysis in these structures shows evidence for a dextral sense of movement in the system in the brittle regime. The coherent structural pattern for the three facies of Madeira granite suggests that the different facies form a nested pluton. The coherence in orientation and kinematics from magmatic to high-temperature solid-state, and into the brittle

  20. Numerical validation of the 'Pop-Down tectonics' as a structural frame for hot lithospheres with particular reference to the Hearne craton (Canadian Shield)

    NASA Astrophysics Data System (ADS)

    Poh, Jonathan; Yamato, Philippe; Gapais, Denis; Duretz, Thibault; Ledru, Patrick

    2017-04-01

    The formation of the architecture of the main cratons of the Canadian Shield has been debated over the past three decades. Understanding the role of tangential Vs. vertical tectonics in the Rae craton is of great interest as the role of inherited structure is fundamental for the subsequent drainage of fluids and the formation of high to ultra-high grade unconformity-type uranium deposits. These deposits are located in the vicinity of the intersection between the unconformity at the base of the Paleoproterozoic Athabasca sedimentary basin (1.75-1.5 Ga) and the graphite-rich metasediments of the Wollaston-Mudjatik transition zone, one of the main fault system of the Rae Craton related to the Trans-Hudson orogeny (1.82-1.78 Ga). A new tectonic model, Pop-down tectonics, was proposed as the primary driving process to concentrate supracrustal materials, strains, fluid transfers and metal transport in permeability enhanced deformation zones. The sub-vertical structural patterns with regional horizontal shortening seen in the tectonic model appear to be consistent with field evidences and has the potential for sustaining strong fluid-rock interactions. In the light of previous analogue modelling studies, we test the viability of the Pop-down tectonics model in a thermo-mechanical framework. The numerical experiments are based on a series of 2D visco-elasto-plastic thermo-mechanical models. We employ various thermal and rheological parameters derived from laboratory experiments. The geometry, thermicity and kinematics of the models are further constrained by applying existing geophysical and geological data. We impose a fixed upper mantle temperature of 1330 °C and a thin crust ranging from 30 - 40 km. The outcome of the models will provide insights into the mechanical processes controlling the deformation of hot lithospheres in convergent settings.

  1. Pn wave velocities beneath the Tanzania Craton and adjacent rifted mobile belts, east Africa

    NASA Astrophysics Data System (ADS)

    Brazier, Richard A.; Nyblade, Andrew A.; Langston, Charles A.; Owens, Thomas J.

    2000-08-01

    P wave travel times from regional earthquakes recorded by the Tanzania Broadband Seismic Experiment have been inverted for long wavelength (>100 km) Pn velocity variations beneath Tanzania using a generalized inverse algorithm. Pn velocities, on average, are 8.40 to 8.45 km/s beneath the center of the Tanzania Craton, 8.30-8.35 km/s beneath the terminus of the Eastern Branch of the rift system, and 8.35-8.40 km/s beneath the Western Branch. These velocities indicate that there are no broad (>100 km wide) thermal anomalies in the uppermost mantle beneath areas of rifting in Tanzania, and suggest that thermal anomalies present deeper in the mantle have not yet reached the base of the crust.

  2. Black versus Black: The Relationship among African, African American, and African Caribbean Persons.

    ERIC Educational Resources Information Center

    Jackson, Jennifer V.; Cothran, Mary E.

    2003-01-01

    Surveyed people of African descent regarding relationships among African, African-American, and African-Caribbean persons, focusing on contact and friendship, travel to countries of the diaspora, cross-cultural communication, thoughts and stereotypes, and education. Most respondents had contacts with the other groups, but groups had preconceived…

  3. Low water contents in diamond mineral inclusions: Proto-genetic origin in a dry cratonic lithosphere

    NASA Astrophysics Data System (ADS)

    Taylor, Lawrence A.; Logvinova, Alla M.; Howarth, Geoffrey H.; Liu, Yang; Peslier, Anne H.; Rossman, George R.; Guan, Yunbin; Chen, Yang; Sobolev, Nikolay V.

    2016-01-01

    The mantle is the major reservoir of Earth's water, hosted within Nominally Anhydrous Minerals (NAMs) (e.g., Bell and Rossman, 1992; Peslier et al., 2010; Peslier, 2010; Nestola and Smyth, 2015), in the form of hydrogen bonded to the silicate's structural oxygen. From whence cometh this water? Is the water in these minerals representative of the Earth's primitive upper mantle or did it come from melting events linked to crustal formation or to more recent metasomatic/re-fertilization events? During diamond formation, NAMs are encapsulated at hundreds of kilometers depth within the mantle, thereby possibly shielding and preserving their pristine water contents from re-equilibrating with fluids and melts percolating through the lithospheric mantle. Here we show that the NAMs included in diamonds from six locales on the Siberian Craton contain measurable and variable H2O concentrations from 2 to 34 parts per million by weight (ppmw) in olivine, 7 to 276 ppmw in clinopyroxene, and 11-17 ppmw in garnets. Our results suggest that if the inclusions were in equilibrium with the diamond-forming fluid, the water fugacity would have been unrealistically low. Instead, we consider the H2O contents of the inclusions, shielded by diamonds, as pristine representatives of the residual mantle prior to encapsulation, and indicative of a protogenetic origin for the inclusions. Hydrogen diffusion in the diamond does not appear to have modified these values significantly. The H2O contents of NAMs in mantle xenoliths may represent some later metasomatic event(s), and are not always representative of most of the continental lithospheric mantle. Results from the present study also support the conclusions of Peslier et al. (2010) and Novella et al. (2015) that the dry nature of the SCLM of a craton may provide stabilization of its thickened continental roots.

  4. The Niassa Gold Belt, northern Mozambique - A segment of a continental-scale Pan-African gold-bearing structure?

    NASA Astrophysics Data System (ADS)

    Bjerkgard, T.; Stein, H. J.; Bingen, B.; Henderson, I. H. C.; Sandstad, J. S.; Moniz, A.

    2009-01-01

    The Niassa Gold Belt, in northernmost Mozambique, is hosted in the Txitonga Group, a Neoproterozoic rift sequence overlying Paleoproterozoic crust of the Congo-Tanzania Craton and deformed during the Pan-African Orogeny. The Txitonga Group is made up of greenschist-facies greywacke and schist and is characterized by bimodal, mainly mafic, magmatism. A zircon U-Pb age for a felsic volcanite dates deposition of the sequence at 714 ± 17 Ma. Gold is mined artisanally from alluvial deposits and primary chalcopyrite-pyrite-bearing quartz veins containing up to 19 ppm Au have been analyzed. In the Cagurué and M'Papa gold fields, dominantly N-S trending quartz veins, hosted in metagabbro and schist, are regarded as tension gashes related to regional strike-slip NE-SW-trending Pan-African shear zones. These gold deposits have been classified as mesozonal and metamorphic in origin. Re-Os isotopic data on sulfides suggest two periods of gold deposition for the Cagurué Gold Field. A coarse-crystalline pyrite-chalcopyrite assemblage yields an imprecise Pan-African age of 483 ± 72 Ma, dating deposition of the quartz veins. Remobilization of early-formed sulfides, particularly chalcopyrite, took place at 112 ± 14 Ma, during Lower Cretaceous Gondwana dispersal. The ˜483 Ma assemblage yields a chondritic initial 187Os/ 188Os ratio of 0.123 ± 0.058. This implies a juvenile source for the ore fluids, possibly involving the hosting Neoproterozoic metagabbro. The Niassa Gold Belt is situated at the eastern end of a SW-NE trending continental-scale lineament defined by the Mwembeshi Shear Zone and the southern end of a NW-SE trending lineament defined by the Rukwa Shear Zone. We offer a review of gold deposits in Zambia and Tanzania associated with these polyphase lineaments and speculate on their interrelation.

  5. Comparative geochemistry of West African kimberlites: Evidence for a micaceous kimberlite endmember of sublithospheric origin

    NASA Astrophysics Data System (ADS)

    Taylor, Wayne R.; Tompkins, Linda A.; Haggerty, Stephen E.

    1994-10-01

    A suite of largely unaltered, aphanitic, mica-bearing hypabyssal kimberlites from the Koidu kimberlite complex of the West African Craton have been investigated to determine their geochemical affinity relative to Group I (nonmicaceous) and Group II (micaceous) kimberlites of southern Africa. Comparison is made with altered kimberlites from Liberia, other West African and global kimberlites. Based on major element oxides, the Koidu kimberlites, though mica-bearing, show closest compositional similarity with the Group IA kimberlites of southern Africa. Based on major and trace elements, the Koidu kimberlites show an unusual geochemical signature. This signature is similar to that of the distinctive, micaceous Aries kimberlite of northwest Australia, and includes high Nb/U (most samples > 46), Ce/Sr(>0.4), Ta/Hf(>2), and Nb/Zr(>1) ratios and low P 2O 5/Ce ∗10 4(<27), Ba/Rb(<32), and U/Th(<0.2) ratios compared with Group I kimberlites. Koidu kimberlites can be readily discriminated from Group II kimberlites by their higher Ti/K(>0.4) and Mb/La(>1) ratios and lower Ba/Nb(<10) and Pb/Ce(<0.06) ratios. The compositions of Liberian kimberlites are leached of mobile incompatible elements, but least affected samples show affinity to Group I. Guinea kimberlites appear to be of two types: one having affinity with Group IA and the other, micaceous variety, having affinity with the Aries kimberlite. Kimberlites with an Aries geochemical signature appear to exist on some other cratons, e.g., the Kundelungu kimberlites (Zaire) and two mica-bearing Group I kimberlites (S. Africa). The Koidu kimberlites exhibit compositionally-dependent isotopic heterogeneity though initial ɛNd and ɛSr values are broadly asthenospheric (i.e., near bulk earth) similar to Group I and Aries. A compositional spectrum appears to exist between nonmicaceous Group I kimberlites through mica-bearing Koidu kimberlites to extreme endmembers of the Aries type. This spectrum can be modelled as partial melts

  6. Lithospheric structure of Africa: insights from its effective elastic thickness variations.

    NASA Astrophysics Data System (ADS)

    Pérez-Gussinyé, M.; Metois, M.; Fernández, M.; Vergés, J.; Fullea, J.

    2009-04-01

    Detailed images of lithospheric structure can help understand how surface deformation is related to Earth's deep structure. A proxy for lithospheric structure is its effective elastic thickness, Te, which mainly depends on its thermal state and composition. We present a new effective elastic thickness, Te, map of the African lithosphere estimated using the coherence function between topography and Bouguer anomaly. The Bouguer anomaly used in this study derives from the EGM 2008 model, which constitutes the highest resolution gravity database over Africa, allowing a significant improvement on lateral resolution in Te. Our map shows that Te is high > 100 km, in the West African, Congo, Kalahari and Tanzania cratons. Of these, the Kalahari presents the thinnest elastic thicknesses and, based on additional seismic and mineral physics studies, we suggest this may reflect modification of the lithosphere by anomalously hot mantle beneath the lithosphere. The effective elastic thickness is lowest beneath the Afar and Main Ethiopian rifts, where the maximum extension and thinnest lithosphere of Africa occur. The Tanzania craton appears as two rigid blocks separated by a relatively low Te area located southwest of lake Victoria. This coincides with the centre of seismic radial anisotropy beneath the craton, suggested to be the Victoria plume head by Weertrane et al. [2003]. Along the eastern branch of the East African rift Te is low and increases abruptly at 2 to 3 degrees South, coinciding with a deepening of earthquake depocenter and a change from narrow to wide rifting. These and other considerations suggest that the southern part of the eastern branch is underlain by thick, rigid cratonic lithosphere. Finally, the northern part of Africa is characterised by low Te on the Darfur, Tibesti, Hoggar and Cameroon line volcanic provinces, suggesting that the underlying lithospheric mantle has been thermally thinned. Corridors of low Te connect these volcanic provinces

  7. U-Pb geochronology of Martín García, Sola, and Dos Hermanas Islands (Argentina and Uruguay): Unveiling Rhyacian, Statherian, Ectasian, and Stenian of a forgotten area of the Río de la Plata Craton

    NASA Astrophysics Data System (ADS)

    Santos, João O. S.; Chernicoff, Carlos J.; Zappettini, Eduardo O.; McNaughton, Neal J.; Greau, Y.

    2017-12-01

    The Río de la Plata Craton is one of the three major cratons of South America. The craton is largely covered by sedimentary basins where its most exposed area is Buenos Aires-Piedra Alta Province (Chernicoff et al., 2014). This province includes the Martín García Island in the confluence of Uruguay River and the Río de la Plata estuary. Despite to be a reference area for the craton the Martín García Island lacks modern geological investigation. We present U-Pb SIMS (secondary ion mass spectrometer) geochronological data on zircon and titanite, as well as Hf isotope determinations on zircon, from rocks of Martín García Island (Argentina), Sola and Dos Hermanas Islands (Uruguay) and from Paso Severino Formation (Uruguay). We investigated: 1) Rhyacian intermediate-to acidic plutonic, arc-type rocks of the Florida Belt dated between 2090 Ma and 2115 Ma, derived from juvenile Neoarchean crust (TDMHf: 2.52 Ga; average εHf: +3.62); 2) Rhyacian metadacite (San José metamorphic belt) of 2127 Ma; 3) Statherian metagabbros of 1724-1734 Ma, with Transplatense inheritance; 4) Early Ectasian metagabbro of 1392 Ma, with Rhyacian inheritance; and 5) Stenian metagabbros of 1193 Ma (TDMHf: 2.00 Ga, εHf: 0.1). Most of the dated orthogneisses show Brasilian-age (from 778 to 550 Ma) Pb loss in the zircons, interpreted to be caused by shearing or uplifting during Neoproterozoic. The results show that the area is not exclusively Rhyacian in age but encompasses Statherian, Ectasian, and Stenian gabbros. The last two are interpreted as distal intrusions associated to the Sunsás Orogen. All post-Transplatense metagabbros have geochemical signature of island arc basalt derived from primitive mantle with enrichment of LILE and depletion of HFSE. These characteristics point to the recurrence of magma chambers intermittently active during the Rhyacian, Statherian, Ectasian, and Stenian, all with a similar source. The term "Transplatense" is used to replace "Trans-Amazonian" events

  8. Mesoproterozoic rapakivi granites of the Rondonia Tin Province, southwestern border of the Amazonian craton, Brazil-I. Reconnaissance U-Pb geochronology and regional implications

    USGS Publications Warehouse

    Bettencourt, Jorge S.; Tosdal, R.M.; Leite, W.B.; Payolla, B.L.

    1999-01-01

    Rapakivi granites and associated mafic and ultramafic rocks in the Rondonia Tin Province, southwestern Amazonian craton, Brazil were emplaced during six discrete episodes of magmatism between ca 1600 and 970 Ma. The seven rapakivi granite suites emplaced at this time were the Serra da Providencia Intrusive Suite (U-Pb ages between 1606 and 1532 Ma); Santo Antonio Intrusive Suite (U-Pb age 1406 Ma); Teotonio Intrusive Suite (U-Pb age 1387 Ma); Alto Candeias Intrusive Suite (U-Pb ages between 1346 and 1338 Ma); Sao Lourenco-Caripunas Intrusive Suite (U-Pb ages between 1314 and 1309 Ma); Santa Clara Intrusive Suite (U-Pb ages between 1082 and 1074 Ma); and Younger Granites of Rondonia (U-Pb ages between 998 and 974 Ma). The Serra da Providencia Intrusive Suite intruded the Paleoproterozoic (1.80 to 1.70 Ga) Rio Negro-Juruena crust whereas the other suites were emplaced into the 1.50 to 1.30 Ga Rondonia-San Ignacio crust. Their intrusion was contemporaneous with orogenic activity in other parts of the southwestern Amazonian craton, except for the oldest, Serra da Providencia Intrusive Suite. Orogenic events coeval with emplacement of the Serra da Providencia Intrusive Suite are not clearly recognized in the region. The Santo Antonio, Teotonio, Alto Candeias and Sao Lourenco-Caripunas Intrusive Suites are interpreted to represent extensional anorogenic magmatism associated with the terminal stages of the Rondonian-San Ignacio orogeny. At least the Sao Lourenco-Caripunas rapakivi granites and coeval intra-continental rift sedimentary rocks may, in contrast, represent the products of extensional tectonics and rifting preceding the Sunsas/Aguapei orogeny (1.25 to 1.0 Ga). The two youngest rapakivi suites, the Santa Clara Intrusive Suite and Younger Granites of Rondonia, seemingly represent inboard magmatism in the Rondonian-San Ignacio Province during a younger episode of reworking in the Rio Negro-Juruena Province during the waning stages of the collisional 1.1 to 1.0 Ga

  9. Disclosing the Paleoarchean to Ediacaran history of the São Francisco craton basement: The Porteirinha domain (northern Araçuaí orogen, Brazil)

    NASA Astrophysics Data System (ADS)

    Silva, Luiz Carlos da; Pedrosa-Soares, Antonio Carlos; Armstrong, Richard; Pinto, Claiton Piva; Magalhães, Joana Tiago Reis; Pinheiro, Marco Aurélio Piacentini; Santos, Gabriella Galliac

    2016-07-01

    This geochronological and isotopic study focuses on one of the Archean-Paleoproterozoic basement domains of the São Francisco craton reworked in the Araçuaí orogen, the Porteirinha domain, Brazil. It also includes a thorough compilation of the U-Pb geochronological data related to the adjacent Archean and Rhyacian terranes from the São Francisco craton and Araçuaí orogen. The main target of this study is the TTG gneisses of the Porteirinha complex (Sample 1). The gneiss dated at 3371 ± 6 Ma unraveled a polycyclic evolution characterized by two metamorphic overprinting episodes, dated at 3146 ± 24 Ma (M1) and ca. 600 Ma (M2). The former (M1) is so far the most reliable evidence of the oldest metamorphic episode ever dated in Brazil. The latter (M2), in turn, is endemic in most of the exposed eastern cratonic margin within the Araçuaí orogen. Whole-rock Sm-Nd analysis from the gneiss provided a slightly negative εNd(t3370) = - 0.78 value, and a depleted mantle model (TDM) age of 3.5 Ga, indicating derivation mainly from the melting of a ca. 3.5 Ga tholeiitic source. Sample 2, a K-rich leuco-orthogneiss from the Rio Itacambiriçu Complex, was dated at 2657 ± 25 Ma and also presents a ca. 600 Ma M2 overprinting M2 age. The other two analyses were obtained from Rhyacian granitoids. Sample 3 is syn-collisional, peraluminous leucogranite from the Tingui granitic complex, showing a crystallization age of 2140 ± 14 Ma and strong post-crystallization Pb*-loss, also ascribed to the Ediacaran overprinting. Accordingly, it is interpreted as a correlative of the late Rhyacian (ca. 2150-2050 Ma) collisional stage of the Mantiqueira orogenic system/belt (ca. 2220-2000 Ma), overprinted by the Ediacaran collage. Sample 4 is a Rhyacian post-orogenic (post-collisional), mixed-source, peralkaline, A1-type suite, with a crystallization age of 2050 ± 10 Ma, presenting an important post-crystallization Pb*-loss related to Ediacaran collision. The focused region records some

  10. Negro, Black, Black African, African Caribbean, African American or what? Labelling African origin populations in the health arena in the 21st century

    PubMed Central

    Agyemang, C.; Bhopal, R.; Bruijnzeels, M.

    2005-01-01

    Broad terms such as Black, African, or Black African are entrenched in scientific writings although there is considerable diversity within African descent populations and such terms may be both offensive and inaccurate. This paper outlines the heterogeneity within African populations, and discusses the strengths and limitations of the term Black and related labels from epidemiological and public health perspectives in Europe and the USA. This paper calls for debate on appropriate terminologies for African descent populations and concludes with the proposals that (1) describing the population under consideration is of paramount importance (2) the word African origin or simply African is an appropriate and necessary prefix for an ethnic label, for example, African Caribbean or African Kenyan or African Surinamese (3) documents should define the ethnic labels (4) the label Black should be phased out except when used in political contexts. PMID:16286485

  11. The 1.33-1.30 Ga Yanliao large igneous province in the North China Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton

    NASA Astrophysics Data System (ADS)

    Zhang, Shuan-Hong; Zhao, Yue; Li, Xian-Hua; Ernst, Richard E.; Yang, Zhen-Yu

    2017-05-01

    The Yanliao rift zone in the northern North China Craton (NCC) is the location of the standard section for late Paleoproterozoic-Mesoproterozoic stratigraphy in China and is associated with the emplacement of large volumes of diabase sills. Detailed field investigations show that the sills are distributed over a region that is >600 km long and >200 km wide, with areal extent > 1.2 ×105 km2 and cumulative thickness of the sills in any one area ranging from 50 m to >1800 m. High-resolution secondary ion mass spectrometry (SIMS) baddeleyite dating shows that emplacement of these sills occurred between about 1330 and 1305 Ma with a peak age of 1323 Ma. Emplacement of these diabase sills was accompanied by pre-magmatic uplift that started at about 1.35-1.34 Ga as indicated by the disconformity between the Changlongshan and Xiamaling formations and absence of sedimentation after the Xiamaling Formation in some areas. All the diabase sills exhibit similar geochemical features of tholeiitic compositions with intraplate characteristics. Given a relatively short duration of emplacement at 1.33-1.30 Ga, along with the large areal extent and volume, as well as intraplate character, this magmatic province constitutes a large igneous province (LIP). This Yanliao LIP and the accompanying pre-magmatic uplift were related either to a mantle plume and/or continental rifting during breakup of the NCC from the Nuna (Columbia) supercontinent. Paleomagnetic, ash bed and LIP data and other geological constraints suggest that the NCC had a close connection with Siberia, Laurentia, Baltica, North Australia and India crustal blocks. In particular, the most direct age match between the 1.33-1.30 Ga Yanliao LIP and the 1.33-1.30 Ga Derim Derim-Galiwinku LIP of the North Australian Craton (NAC), as well as the similarities between the late Paleoproterozoic-Mesoproterozoic stratigraphic units of the Yanliao rift in the NCC with the southeastern McArthur Basin in the NAC, indicate that the

  12. Seismically imaged shallow and deep crustal structure and potential field anomalies across the Eastern Dharwar Craton, south Indian shield: Possible geodynamical implications

    NASA Astrophysics Data System (ADS)

    Pandey, O. P.; Chandrakala, K.; Vasanthi, A.; Kumar, K. Satish

    2018-05-01

    The time-bound crustal evolution and subsequent deformation of the Cuddapah basin, Nellore Schist Belt and Eastern Ghats terrain of Eastern Dharwar Craton, which have undergone sustained geodynamic upheavals since almost 2.0 billion years, remain enigmatic. An attempt is made here to integrate newly available potential field data and other geophysical anomalies with deep seismic structure, to examine the generative mechanism of major crustal features, associated with this sector. Our study indicates that the initial extent of the Cuddapah basin sedimentation may have been much larger, extending by almost 50-60 km west of Tadipatri during Paleoproterozoic period, which subsequently shrank due to massive erosion following thermal uplift, caused by SW Cuddapah mantle plume. Below this region, crust is still quite warm with Moho temperatures exceeding 500 °C. Similarly, Nallamalai Fold Belt rocks, bounded by two major faults and extremely low gravity, may have occupied a large terrain in western Cuddapah basin also, before their abrasion. No geophysical signatures of thrusting are presently seen below this region, and thus it could not be an alien terrain either. In contrast, Nellore Schist Belt is associated with strikingly high positive gravity, possibly caused by a conspicuous horst structure and up dipping mafic crustal layers underneath, that resulted due to India-east Antarctica collision after the cessation of prolonged subduction (1.6-0.95 Ga). Further, the crustal seismic and gravity signatures would confirm presence of a totally distinct geological terrain east of the Cuddapah basin, but the trace of Eastern Ghats Belt is all together missing. Instead, all the geophysical signatures, point out to presence of a Proterozoic sedimentary terrain, east of Nellore Schist Belt. It is likely that the extent of Prorerozoic sedimentation was much larger than thought today. In addition, presence of a seismically detected Gondwana basin over Nellore Schist Belt, apart

  13. Field evidence of Eros-scale asteroids and impact-forcing of Precambrian geodynamic episodes, Kaapvaal (South Africa) and Pilbara (Western Australia) Cratons

    NASA Astrophysics Data System (ADS)

    Glikson, Andrew Y.

    2008-03-01

    The role of asteroid and comet impacts as triggers of mantle-crust processes poses one of the fundamental questions in Earth science. I present direct field evidence for close associations between impact ejecta/fallout units, major unconformities and lithostratigraphic boundaries in Archaean and early Proterozoic terrains, including abrupt changes in the composition of volcanic and sedimentary assemblages across stratigraphic impact boundaries, with implications for the nature and composition of their provenance terrains. As originally observed by D.R. Lowe and G.R. Byerly, in the Barberton Greenstone Belt, eastern Kaapvaal Craton, South Africa, 3.26-3.24 Ga asteroid mega-impact units are closely associated with the abrupt break between an underlying simatic mafic-ultramafic volcanic crust and an overlying association of turbidites, banded iron formations, felsic tuff and conglomerates of continental affinities. Contemporaneous stratigraphic relationships are identified in the Pilbara Craton, Western Australia. Evidence for enrichment of seawater in ferrous iron in the wake of major asteroid impacts reflects emergence of new source terrains, likely dominated by mafic compositions, attributed to impact-triggered oceanic volcanic activity. Relationships between impact and volcanic activity are supported by the onset of major mafic dyke systems associated with ~ 2.48 Ga and possibly the 2.56 Ga mega-impact events.

  14. Did clockwise rotation of Antarctica cause the break-up of Gondwanaland? An investigation in the 'deep-keeled cratons' frame for global dynamics

    NASA Astrophysics Data System (ADS)

    Osmaston, M. F.

    2012-04-01

    Introduction. The 'deep-keeled cratons' frame for global dynamics is the result of seeking Earth-behaviour answers to the following outside-the-box proposition:- "If cratons have tectospheric keels that reach or approach the 660 km discontinuity, AND the 660 level is an effective barrier to mantle circulation, then obviously (i) when two cratons separate, the upper mantle to put under the nascent ocean must arrive by a circuitous route and, conversely, (ii) if they approach one another, the mantle volume that was in between them must get extruded sideways." Surprisingly it has turned out [1 - 4] that Earth dynamical behaviour for at least the past 150 Ma provides persuasive affirmation of both these expectations and that there is a rational petrological explanation for the otherwise-unexpected immobility of subcratonic material to such depths [5 - 7]. Clockwise rotation of Antarctica? This contribution greatly amplifies my original plate dynamical arguments for suggesting [8] that such rotation is ongoing. Convection is unsuited to causing rotation about a pole within the plate so, as noted then, a gearwheel-like linkage to Africa at the SWIR would provide its clearly CCW (Biscay-Caucasus) relationship to the Mediterranean belt for the past 100 Ma, also seen in its separation from South America. Gearwheel-like linkage of motion requires the presence of some kind of E-W restraint further north. In that case it was the N Africa/Arabia involvement in the Alpide belt, but the earlier opening of the central Atlantic by the eastward motion of Africa, suggests its rigid Gondwanan attachment to Antarctica rotation at that time, with little constraint in the north. Further east, the seafloor data show that Australia-Antarctica separation involved no such opposite rotational linkage, so, with no E-W mechanical constraint in the north by Indonesia, they must have rotated together, as is recorded by Australia's eastward motion to generate the Mesozoic seafloor at its western

  15. Late Triassic (Carnian) lamproites from Noril'sk, polar Siberia: Evidence for melting of the recycled Archean crust and the question of lamproite source for some placer diamond deposits of the Siberian Craton

    NASA Astrophysics Data System (ADS)

    Ivanov, Alexei V.; Demonterova, Elena I.; Savatenkov, Valery M.; Perepelov, Alexander B.; Ryabov, Viktor V.; Shevko, Artem Y.

    2018-01-01

    Two typical lamproitic dykes were found in Noril'sk region of the north-western Siberian Craton, which according to mineralogical, geochemical and isotopic criteria belong to anorogenic, non-diamondiferous type of lamproites. According to the geologic relationships, they cut through the Noril'sk-1 intrusion of the Siberian flood basalt province and thus are younger than 251 Ma. 40Ar/39Ar dating of the two dykes yielded ages of 235.24 ± 0.19 Ma and 233.96 ± 0.19 Ma, showing that they were emplaced in Carnian of the Late Triassic, about 16 Ma after the flood basalt event. There are some indications that there were multiple lamproitic dyke emplacements, including probably emplacement of diamondiferous lamproites, which produced Carnian-age diamond-rich placer deposits in other parts of the Siberian Craton and in adjacent regions. Lead isotope modelling shows that the source of the studied lamproites was formed with participation of recycled crust, which underwent modification of its U/Pb ratio as early as 2.5 Ga. However, the exact mechanism of the recycling cannot be deciphered now. It could be either through delamination of the cratonic crust or subduction of a mix of ancient terrigenous sediments into the mantle transition zone.

  16. Supercontinents, True Polar Wander, and Paleogeography of the Slave Craton

    NASA Astrophysics Data System (ADS)

    Mitchell, Ross Nelson

    evidence in support of a long-lived, Ediacaran-aged hotspot. The consistency of paleocurrent directions derived from the Great Slave Supergroup argues against significant regional vertical-axis rotations and for large and rapid TPW to explain discordant paleomagnetic directions observed within section. The last frontier for paleomagnetic constraints on supercontinents, TPW, and the antiquity of plate tectonics is earliest Proterozoic time. Laurentia, one of Earth's oldest continents that formed at the core supercontinent Nuna, contains several cratons that have adequate paleomagnetic and geochronologic data with which to test for evidence of early TPW and relative plate motion, the hallmark of tectonics. Although past comparisons have been made between the Slave and Superior cratons at each "bookend" of Laurentia, new paleomagnetic data supported by baked contact tests allow for conclusive early Proterozoic reconstructions. Similar to periods following Proterozoic supercontinents Nuna and Rodinia, early Proterozoic time is characterized by large TPW oscillations and large-scale plate reorganizations prior to amalgamation, possibly indicating the presence of `Kenorland', an Archean supercontinent.

  17. Lithospheric thermal evolution and dynamic mechanism of destruction of the North China Craton

    NASA Astrophysics Data System (ADS)

    Li, Zian; Zhang, Lu; Lin, Ge; Zhao, Chongbin; Liang, Yingjie

    2018-06-01

    The dynamic mechanism for destruction of the North China Craton (NCC) has been extensively discussed. Numerical simulation is used in this paper to discuss the effect of mantle upward throughflow (MUT) on the lithospheric heat flux of the NCC. Our results yield a three-stage destruction of the NCC lithosphere as a consequence of MUT variation. (1) In Late Paleozoic, the elevation of MUT, which was probably caused by southward and northward subduction of the paleo-Asian and paleo-Tethyan oceans, respectively, became a prelude to the NCC destruction. The geological consequences include a limited decrease of the lithospheric thickness, an increase of heat flux, and a gradual enhancement of the crustal activity. But the tectonic attribute of the NCC maintained a stable craton. (2) During Late Jurassic-Early Cretaceous, the initial velocity of the MUT became much faster probably in response to subduction of the Pacific Ocean; the conductive heat flux at the base of the NCC lithosphere gradually increased from west to east; and the lithospheric thickness was significantly decreased. During this stage, the heat flux distribution was characterized by zonation and partition, with nearly horizontal layering in the lithosphere and vertical layering in the underlying asthenosphere. Continuous destruction of the NCC lithosphere was associated with the intense tectono-magmatic activity. (3) From Late Cretaceous to Paleogene, the velocity of MUT became slower due to the retreat of the subducting Pacific slab; the conductive heat flux at the base of lithosphere was increased from west to east; the distribution of heat flux was no longer layered. The crust of the western NCC is relatively hotter than the mantle, so-called as a `hot crust but cold mantle' structure. At the eastern NCC, the crust and the mantle characterized by a `cold crust but hot mantle.' The western NCC (e.g., the Ordos Basin) had a tectonically stable crust with low thermal gradients in the lithosphere; whereas

  18. Metasomatic Control of Water in Garnet and Pyroxene from Kaapvaal Craton Mantle Xenoliths

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Woodland, Alan B.; Bell, David R.; Lazarov, Marina; Lapen, Thomas J.

    2012-01-01

    Fourier transform infrared spectrometry (FTIR) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) were used to determine water, rare earth (REE), lithophile (LILE), and high field strength (HFSE) element contents in garnet and pyroxene from mantle xenoliths, Kaapvaal craton, southern Africa. Water enters these nominally anhydrous minerals as protons bonded to structural oxygen in lattice defects. Pyroxene water contents (150-400 ppm in clinopyroxene; 40-250 ppm in orthopyroxene) correlate with their Al, Fe, Ca and Na and are homogeneous within a mineral grains and a xenolith. Garnets from Jagersfontein are chemically zoned for Cr, Ca, Ti and water contents. Garnets contain 0 to 20 ppm H2 Despite the fast diffusion rate of H in mantle m inerals, the observations above indicate that the water contents of mantle xenolith minerals were not disturbed during kimberlite entrainment and that the measured water data represent mantle values. Trace elements in all minerals show various degrees of light REE and LILE enrichments indicative of minimal to strong metasomatism. Water contents of peridotite minerals from the Kaapvaal lithosphere are not related to the degree of depletion of the peridotites. Instead, metasomatism exerts a clear control on the amount of water of mantle minerals. Xenoliths from each location record specific types of metasomatism with different outcomes for the water contents of mantle minerals. At pressures . 5.5 GPa, highly alkaline melts metasomatized Liqhobong and Kimberley peridotites, and increased the water contents of their olivine, pyroxenes and garnet. At higher pressures, the circulation of ultramafic melts reacting with peridotite resulted in co-variation of Ca, Ti and water at the edge of garnets at Jagersfontein, overall decreasing their water content, and lowered the water content of olivines at Finsch Mine. The calculated water content of these melts varies depending on whether the water content of the peridotite

  19. Lithospheric thermal evolution and dynamic mechanism of destruction of the North China Craton

    NASA Astrophysics Data System (ADS)

    Li, Zian; Zhang, Lu; Lin, Ge; Zhao, Chongbin; Liang, Yingjie

    2017-09-01

    The dynamic mechanism for destruction of the North China Craton (NCC) has been extensively discussed. Numerical simulation is used in this paper to discuss the effect of mantle upward throughflow (MUT) on the lithospheric heat flux of the NCC. Our results yield a three-stage destruction of the NCC lithosphere as a consequence of MUT variation. (1) In Late Paleozoic, the elevation of MUT, which was probably caused by southward and northward subduction of the paleo-Asian and paleo-Tethyan oceans, respectively, became a prelude to the NCC destruction. The geological consequences include a limited decrease of the lithospheric thickness, an increase of heat flux, and a gradual enhancement of the crustal activity. But the tectonic attribute of the NCC maintained a stable craton. (2) During Late Jurassic-Early Cretaceous, the initial velocity of the MUT became much faster probably in response to subduction of the Pacific Ocean; the conductive heat flux at the base of the NCC lithosphere gradually increased from west to east; and the lithospheric thickness was significantly decreased. During this stage, the heat flux distribution was characterized by zonation and partition, with nearly horizontal layering in the lithosphere and vertical layering in the underlying asthenosphere. Continuous destruction of the NCC lithosphere was associated with the intense tectono-magmatic activity. (3) From Late Cretaceous to Paleogene, the velocity of MUT became slower due to the retreat of the subducting Pacific slab; the conductive heat flux at the base of lithosphere was increased from west to east; the distribution of heat flux was no longer layered. The crust of the western NCC is relatively hotter than the mantle, so-called as a `hot crust but cold mantle' structure. At the eastern NCC, the crust and the mantle characterized by a `cold crust but hot mantle.' The western NCC (e.g., the Ordos Basin) had a tectonically stable crust with low thermal gradients in the lithosphere; whereas

  20. 3D Crustal Velocity Structure Model of the Middle-eastern North China Craton

    NASA Astrophysics Data System (ADS)

    Duan, Y.; Wang, F.; Lin, J.; Wei, Y.

    2017-12-01

    Lithosphere thinning and destruction in the middle-eastern North China Craton (NCC), a region susceptible to strong earthquakes, is one of the research hotspots in solid earth science. Up to 42 wide-angle reflection/refraction deep seismic sounding (DSS) profiles have been completed in the middle-eastern NCC, we collect all the 2D profiling results and perform gridding of the velocity and interface depth data, and build a 3D crustal velocity structure model for the middle-eastern NCC, named HBCrust1.0, using the Kriging interpolation method. In this model, four layers are divided by three interfaces: G is the interface between the sedimentary cover and crystalline crust, with velocities of 5.0-5.5 km/s above and 5.8-6.0 km/s below. C is the interface of the upper and lower crust, with velocity jump from 6.2-6.4 km/s to 6.5-6.6 km/s. M is the interface between the crust and upper mantle, with velocity 6.7-7.0 km/s at the crust bottom and 7.9-8.0 km/s on mantle top. Our results show that the first arrival time calculated from HBCust1.0 fit well with the observation. It also demonstrates that the upper crust is the main seismogenic layer, and the brittle-ductile transition occurs at depths near interface C. The depth of interface Moho varies beneath the source area of the Tangshan earth-quake, and a low-velocity structure is found to extend from the source area to the lower crust. Based on these observations, it can be inferred that stress accumulation responsible for the Tangshan earthquake may have been closely related to the migration and deformation of the mantle materials. Comparisons of the average velocities of the whole crust, the upper and the lower crust show that the average velocity of the lower crust under the central part of the North China Basin (NCB) in the east of the craton is obviously higher than the regional average, this high-velocity probably results from longterm underplating of the mantle magma. This research is founded by the Natural Science

  1. The Presence of a Stable Block bounded by Active Zones (Mobile Belts) in the southwestern North American Proterozoic craton

    NASA Astrophysics Data System (ADS)

    Goodell, P.; Martinez P, C.; Mahar, M. A.

    2014-12-01

    Bouguer gravity data, initial Sr isotope values, zircon U-Pb, and multiple occurrences of felsic Proterozoic rocks, have revealed an elevated, less deformed, felsic cratonic block in the northern Mexico. The block is situated in western Chihuahua and is bounded by active zones or mobile belts on three sides, and is here referred to as the Western Chihuahua Cratonic Block (WCCB). Bouguer gravity data clearly indicate a region of a highly negative anomaly (< -200 mgal) in contrast to adjoining areas. The region is large and the anomaly is relatively smooth over broad areas; the WCCB appears as a smaller version of the Colorado Plateau. The block is characterized by high initial Sr isotope ratios (<0.706). Several occurrences of Proterozoic rocks are located within or next to the WCCB, and they reveal the character of the Bouguer anomaly. On the east, at Los Filtros, Proterozoic rocks crop out in a basement cored uplift interpreted to having been derived from the WCCB during the Ouachita orogeny. At Sierra La Mojina boulders of 1.1 Ga granites are found in Permian conglomerates. And at Basasiachic, xenoliths of 1.1 Ga granites are present in ash flow tuffs. Establishment of the Precambrian character of the WCCB is of importance, and these multiple occurrences are evidence. Prior studies of the Sierra Madre Occidental suggest that the region was uplifted because of a vast Cenozoic batholith presumed to lie under the SLIP (Silicic Large Igneous Province), the Upper Volcanic Series. The present study challenges that conclusion and maintains the SMO is underlain by Proterozoic silicic crust. The geology of age dated samples supports this. The WCCB is surrounded on three sides by Active Zones or Mobile Belts, which have been active extensional and translational zones periodically over a long period of time. On the east are the Paleozoic Pedrogosa Basin, Mesozoic Chihuahua Trough and Cenozoic Rio Grande Rift, the first two of which also continue around the northern border

  2. A modern analogue for tectonic, eustatic, and climatic processes in cratonic basins: Gulf of Carpentaria, northern Australia

    USGS Publications Warehouse

    Edgar, N. Terence; Cecil, C. Blaine; Mattick, R.E.; de Deckker, Patrick; Djajadihardja, Yusuf S.

    2003-01-01

    The Gulf of Carpentaria is a tropical, silled epicontinental sea and may be a modern analogue for ancient cratonic basins. For the purpose of this study, the Gulf of Carpentaria is compared to Pennsylvanian cratonic basins of the United States. During the Pennsylvanian, the North American continent moved from the Southern Hemisphere, through the Equator, into the Northern Hemisphere. Today, the Gulf of Carpentaria–New Guinea region is a few degrees south of the Equator and is moving towards it. During the Pennsylvanian, the world was subjected to major glaciations and associated sea-level changes. The island of New Guinea and the Gulf of Carpentaria have undergone similar processes during the Quaternary. A reconnaissance seismic survey of the gulf conducted by the USGS and the Australian National University (ANU), combined with oil-exploration well data, provided the first step in a systematic evaluation of a modern tropical epicontinental system. During the Cenozoic, the region was dominated by terrestrial sedimentation in a temperate climate. At the same time, carbonates were being deposited on the northern shelf edge of the Australian Plate. During the Miocene, carbonate deposition expanded southward into the gulf region. Then in the Late Miocene, carbonate sedimentation was replaced by terrigenous clastics derived from the developing Central Range of the island of New Guinea, which developed a wetter climate while moving northwards into the tropics. At least 14 basin-wide transgressive–regressive cycles are identified by channels that were eroded under subaerial conditions since about the Miocene. Comparison of the modern Gulf of Carpentaria sequences with those of the Pennsylvanian reveals many similarities.

  3. Granulite sulphides as tracers of lower crustal origin and evolution: An example from the Slave craton, Canada

    NASA Astrophysics Data System (ADS)

    Aulbach, Sonja; Krauss, Cristen; Creaser, Robert A.; Stachel, Thomas; Heaman, Larry M.; Matveev, Sergei; Chacko, Thomas

    2010-09-01

    We carried out a detailed study of sulphide minerals, a ubiquitous mineral group in lower crustal mafic to peraluminous granulite xenoliths from the Diavik kimberlites, to assess their use in constraining the origin and tectonothermal evolution of the deep crust, and to obtain additional data on the composition of lower crust beneath ancient continents. Sulphides are overwhelmingly pyrrhotite with minor Ni (0.7-3.9 at.%), Co (0.1-0.7 at.%), and Cu contents (0.4-3.9 at.%). Sulphide modes in mafic granulites range from 0.14 to 0.55 vol%, translating into bulk rock S contents from ˜600 to 2000 ppm, similar to S contents in other mafic igneous rocks and indicating preservation of primary igneous S contents. In mafic granulites, Re and Os abundances in sulphides range from 42.5 to 726 ppb and 3.2 to 180 ppb, respectively, whereas those in peraluminous granulites are distinctly lower (36.1-282 ppb and 1.8-7.2 ppb, respectively), suggestive of Re and Os loss to fractionating sulphides in the more evolved precursors of these rocks. The significant within-sample variability of 187Os/ 188Os and correlation with 187Re/ 188Os indicates the preservation of primary Re-Os isotope systematics and time-integrated decay of the measured 187Re. Within the large uncertainties inherent in the nature of the samples and technique, sulphides in some granulites may record major tectonothermal events in the central Slave craton spanning several billion years of evolution. Multiple generations of sulphide can occur in a single sample. These data attest to the heterogeneous composition and complex history of the Slave craton lower crust.

  4. High-quality heat flow determination from the crystalline basement of the south-east margin of North China Craton

    NASA Astrophysics Data System (ADS)

    Jiang, Guangzheng; Tang, Xiaoyin; Rao, Song; Gao, Peng; Zhang, Linyou; Zhao, Ping; Hu, Shengbiao

    2016-03-01

    Very few of heat flow data have come from the crystalline basement in the North China Craton but rather from boreholes in the sedimentary cover of oil-gas basins. Explorations for hot dry rock (HDR) geothermal resources and porphyry gold deposits in eastern China offer now valuable opportunities to study the terrestrial heat flow in the crystalline basement. In this study, we obtained continuous temperature logs from two boreholes (the LZ borehole with a depth of 3471 m and the DR borehole with a depth of 2179 m) located in the south-east margin of the North China Craton. The boreholes have experienced long shut-in times (442 days and 261 days for the LZ borehole and DR borehole, respectively); thus, it can be expected that the temperature conditions have re-equilibrated after drilling and drill-mud circulation. Rock thermal conductivity and radiogenic heat production were measured for 68 crystalline rock samples from these two boreholes. The measured heat-flow density was determined to be 71.8 ± 2.3 mW m-2 (for the LZ borehole) and 91.5 ± 1.2 mW m-2 (for the DR borehole). The heat flow for the LZ borehole is close to the value of 75 mW m-2 determined in the Chinese Continental Scientific Drilling main hole (CCSD MH), both being in the Sulu-Dabie orogenic belt and thus able to verify each other. The value for the DR borehole is higher than the above two values, which supports former high heat-flow values determined in the Bohai Bay Basin.

  5. Effective elastic thickness of Africa and its relationship to other proxies for lithospheric structure and surface tectonics

    NASA Astrophysics Data System (ADS)

    Pérez-Gussinyé, M.; Metois, M.; Fernández, M.; Vergés, J.; Fullea, J.; Lowry, A. R.

    2009-09-01

    Detailed information on lateral variations in lithospheric properties can aid in understanding how surface deformation relates to deep Earth processes. The effective elastic thickness, Te, of the lithosphere is a proxy for lithospheric strength. Here, we present a new Te map of the African lithosphere estimated from coherence analysis of topography and Bouguer anomaly data. The latter data set derives from the EGM 2008 model, the highest resolution gravity database over Africa, enabling a significant improvement in lateral resolution of Te. The methodology used for Te estimation improves upon earlier approaches by optimally combining estimates from several different window sizes and correcting for an estimation bias term. Our analysis finds that Te is high, ~ 100 km, in the West African, Congo, Kalahari and Tanzania cratons. Of these, the Kalahari exhibits the lowest Te. Based in part on published seismic and mineral physics constraints, we suggest this may reflect modification of Kalahari lithosphere by anomalously hot asthenospheric mantle. Similarly, the Tanzania craton exhibits relatively lower Te east of Lake Victoria, where a centre of seismic radial anisotropy beneath the craton has been located and identified with a plume head, thus suggesting that here too, low Te reflects modification of cratonic lithosphere by an underlying hot mantle. The lowest Te in Africa occurs in the Afar and Main Ethiopian rifts, where lithospheric extension is maximum. In the western Ethiopian plateau a local Te minimum coincides with published images of a low P and S seismic velocity anomaly extending to ~ 400 km depth. Finally, the Darfur, Tibesti, Hoggar and Cameroon line volcanic provinces are characterised by low Te and no deep-seated seismic anomalies in the mantle. Corridors of relatively low Te connect these volcanic provinces to the local Te minima within the western Ethiopian plateau. We interpret the low Te to indicate thinner lithosphere within the corridors than in

  6. Effective elastic thickness of Africa and its relationship to other proxies for lithospheric structure and surface tectonics

    NASA Astrophysics Data System (ADS)

    Perez-Gussinye, M.; Metois, M.; Fernandez, M.; Verges, J.; Fullea, J.; Lowry, A. R.

    2009-12-01

    Detailed information on lateral variations in lithospheric properties can aid in understanding how surface deformation relates to deep Earth processes. The effective elastic thickness, Te, of the lithosphere is a proxy for lithospheric strength. Here, we present a new Te map of the African lithosphere estimated from coherence analysis of topography and Bouguer anomaly data. The latter data set derives from the EGM 2008 model, the highest resolution gravity database over Africa, enabling a significant improvement in lateral resolution of Te. The methodology used for Te estimation improves upon earlier approaches by optimally combining estimates from several different window sizes and correcting for an estimation bias term. Our analysis finds that Te is high, ~ 100 km, in the West African, Congo, Kalahari and Tanzania cratons. Of these, the Kalahari exhibits the lowest Te. Based in part on published seismic and mineral physics constraints, we suggest this may reflect modification of Kalahari lithosphere by anomalously hot asthenospheric mantle. Similarly, the Tanzania craton exhibits relatively lower Te east of Lake Victoria, where a centre of seismic radial anisotropy beneath the craton has been located and identified with a plume head, thus suggesting that here too, low Te reflects modification of cratonic lithosphere by an underlying hot mantle. The lowest Te in Africa occurs in the Afar and Main Ethiopian rifts, where lithospheric extension is maximum. In the western Ethiopian plateau a local Te minimum coincides with published images of a low P and S seismic velocity anomaly extending to ~400 km depth. Finally, the Darfur, Tibesti, Hoggar and Cameroon line vo provinces lcanic are characterised by low Te and no deep-seated seismic anomalies in the mantle. Corridors of relatively low Te connect these volcanic provinces to the local Te minima within the western Ethiopian plateau. We interpret the low Te to indicate thinner lithosphere within the corridors than in

  7. Crustal and mantle structure beneath the Terre Adélie Craton, East Antarctica: insights from receiver function and seismic anisotropy measurements

    NASA Astrophysics Data System (ADS)

    Lamarque, Gaëlle; Barruol, Guilhem; Fontaine, Fabrice R.; Bascou, Jérôme; Ménot, René-Pierre

    2015-02-01

    The Terre Adélie and George V Land (East Antarctica) represent key areas for understanding tectonic relationships between terranes forming the Neoarchean-Palaeoproterozoic Terre Adélie Craton (TAC) and the neighbouring lithospheric blocks, together with the nature of its boundary. This region that represents the eastern border of the TAC is limited on its eastern side by the Mertz shear zone (MSZ) separating more recent Palaeozoic units from the craton. The MSZ, that recorded dextral strike-slip movement at 1.7 and 1.5 Ga, is likely correlated with the Kalinjala or Coorong shear zone in South Australia, east of the Gawler Craton and may therefore represent a frozen lithospheric-scale structure. In order to investigate the lithospheric structure of the TAC and the MSZ, we deployed from 2009 October to 2011 October four temporary seismic stations, which sampled the various lithospheric units of the TAC and of the neighbouring Palaeozoic block, together with the MSZ. We used receiver function method to deduce Moho depths and seismic anisotropy technique to infer the upper mantle deformation. Results from receiver functions analysis reveal Moho at 40-44 km depth beneath the TAC, at 36 km under the MSZ and at 28 km beneath the eastern Palaeozoic domain. The MSZ therefore delimits two crustal blocks of different thicknesses with a vertical offset of the Moho of 12 km. Seismic anisotropy deduced from SKS splitting at stations on the TAC shows fast polarisation directions (Φ) trending E-W, that is, parallel to the continental margin, and delay times (δt) ranging from 0.8 to 1.6 s. These results are similar to the splitting parameters observed at the permanent GEOSCOPE Dumont D'Urville station (DRV: Φ 95°N, δt 1.1 s) located in the Palaeoproterozoic domain of TAC. On the MSZ, the small number of good quality measurements limits the investigation of the deep signature of the shear zone. However, the station in the Palaeozoic domain shows Φ trending N60°E, which is

  8. Anisotropic Lithospheric layering in the North American craton, revealed by Bayesian inversion of short and long period data

    NASA Astrophysics Data System (ADS)

    Roy, Corinna; Calo, Marco; Bodin, Thomas; Romanowicz, Barbara

    2016-04-01

    Competing hypotheses for the formation and evolution of continents are highly under debate, including the theory of underplating by hot plumes or accretion by shallow subduction in continental or arc settings. In order to support these hypotheses, documenting structural layering in the cratonic lithosphere becomes especially important. Recent studies of seismic-wave receiver function data have detected a structural boundary under continental cratons at 100-140 km depths, which is too shallow to be consistent with the lithosphere-asthenosphere boundary, as inferred from seismic tomography and other geophysical studies. This leads to the conclusion that 1) the cratonic lithosphere may be thinner than expected, contradicting tomographic and other geophysical or geochemical inferences, or 2) that the receiver function studies detect a mid-lithospheric discontinuity rather than the LAB. On the other hand, several recent studies documented significant changes in the direction of azimuthal anisotropy with depth that suggest layering in the anisotropic structure of the stable part of the North American continent. In particular, Yuan and Romanowicz (2010) combined long period surface wave and overtone data with core refracted shear wave (SKS) splitting measurements in a joint tomographic inversion. A question that arises is whether the anisotropic layering observed coincides with that obtained from receiver function studies. To address this question, we use a trans-dimensional Markov-chain Monte Carlo (MCMC) algorithm to generate probabilistic 1D radially and azimuthal anisotropic shear wave velocity profiles for selected stations in North America. In the algorithm we jointly invert short period (Ps Receiver Functions, surface wave dispersion for Love and Rayleigh waves) and long period data (SKS waveforms). By including three different data types, which sample different volumes of the Earth and have different sensitivities to 
structure, we overcome the problem of

  9. The formation and rejuvenation of continental crust in the central North China Craton: Evidence from zircon U-Pb geochronology and Hf isotope

    NASA Astrophysics Data System (ADS)

    Li, Qing; Santosh, M.; Li, Sheng-Rong; Guo, Pu

    2014-12-01

    The Trans-North China Orogen (TNCO) along the central part of the North China Craton (NCC) is considered as a Paleoproterozoic suture along which the Eastern and Western Blocks of the NCC were amalgamated. Here we investigate the Precambrian crustal evolution history in the Fuping segment of the TNCO and the subsequent reactivation associated with extensive craton destruction during Mesozoic. We present zircon LA-ICP-MS U-Pb and Lu-Hf data on TTG (tonalite-trondhjemite-granodiorite) gneiss, felsic orthogneiss, amphibolite and granite from the Paleoproterozoic suite which show magmatic ages in the range of 2450-1900 Ma suggesting a long-lived convergent margin. The εHf(t) values of these zircons range from -11.9 to 12 and their model ages suggest magma derivation from both juvenile components and reworked Archean crust. The Mesozoic magmatic units in the Fuping area includes granite, diorite and mafic microgranular enclaves, the zircons from which define a tight range of 120-130 Ma ages suggesting a prominent Early Cretaceous magmatic event. However, the εHf(t) values of these zircons show wide a range from -30.3 to 0.2, indicating that the magmatic activity involved extensive rejuvenation of the older continental crust.

  10. Refined Proterozoic evolution of the Gawler Craton, South Australia, through U-Pb zircon geochronology

    USGS Publications Warehouse

    Fanning, C.M.; Flint, R.B.; Parker, A.J.; Ludwig, K. R.; Blissett, A.H.

    1988-01-01

    Through the application of both conventional U-Pb zircon analyses and small-sample U-Pb isotopic analyses, the nature and timing of tectonic events leading to the formation of the Gawler Craton have been defined more precisely. Constraints on deposition of Early Proterozoic iron formation-bearing sediments have been narrowed down to the period 1960-1847 Ma. Deformed acid volcanics, including the economically important Moonta Porphyry, have zircon ages of ??? 1790 and 1740 Ma. The voluminous acid Gawler Range Volcanics and correlatives to the east were erupted over a short interval at 1592 ?? 2 Ma, and were intruded by anorogenic granites at ??? 1575 Ma. Small-sample zircon analyses proved to be an extremely valuable adjunct to conventional analyses, generally yielding more-concordant data which forced a curved discordia through an upper intercept slightly younger than from a conventional straight-line discordia. ?? 1988.

  11. Linking craton stability and deep earth processes using thermochronology; a case study in the Superior Province of the Canadian Shield.

    NASA Astrophysics Data System (ADS)

    Sturrock, C. P.; Flowers, R. M.; Zhong, S.; Metcalf, J. R.; Kohn, B. P.

    2017-12-01

    Ancient, cratonic continental interiors are often presumed to be stable in the long term, neither accumulating nor shedding significant amounts of overlying sediment. However, recent low-temperature thermochronologic work suggests that such long term stability is an overly simplistic view and that forces besides plate tectonics, such as dynamic topography, may play a significant role. New apatite (U-Th)/He (AHe) and apatite fission track (AFT) data from Archean-Proterozoic basement rocks along a 1400km NW-SE transect in the Superior Province of the Canadian Shield record a spatially variable thermal history for the craton in Paleozoic through the end of Mesozoic time. Dates range from 600­­­­­­±60 Ma (AHe) and 529­±48 Ma (AFT) in the west to 184±14 Ma (AHe) and 174±9 Ma (AFT) in the east. Tectonic activity within the Superior Province ceased by 1.8 Ga, with the latest activity at the margins ending at 1 Ga. Widespread resetting of both AHe and AFT systems post 1 Ga is most likely due to regional scale burial at one or more times since the Cambrian. The temperature sensitivity of the AHe and AFT systems (30-90°C and 60-120°C, respectively) require at least a few km of burial across the craton that has since been stripped away. Preliminary inverse thermal history models, utilizing geologic constraints and radiation damage effects on He diffusion in apatite, indicate significant reheating in the Paleozoic-early Mesozoic (37 to >120°C) and a possible lesser reheating event since the mid Mesozoic (<100°C). Making the simplified assumption of a 25°C/km geothermal gradient and 0°C surface temperature, burial in some areas must have been at least 2-5km in the Paleozoic and was <4km in the Mesozoic. These burial and denudation patterns do not correlate with global sea level changes, making dynamic topography a good candidate for a driving mechanism. New AHe data from kimberlites emplaced in the early to mid-Jurassic will provide an important new constraint

  12. Seismic Refraction & Wide-angle Reflection Experiment on the Northern Margin of North China Craton -Data Acquisition and Preliminary Processing Result

    NASA Astrophysics Data System (ADS)

    Li, W.; Gao, R.; Keller, G. R.; Hou, H.; Li, Q.; Cox, C. M.; Chang, J. C.; Zhang, J.; Guan, Y.

    2010-12-01

    The evolution history of Central Asian Orogen Belt (CAOB) is still the main tectonic problems in northeastern Asia. The Siberia Craton (NC), North China Craton (NCC) and several blocks collided, and the resulting tectonic collage formed as the Paleo-Asian Ocean disappeared. Concerning the northern margin of North China Craton, many different geological questions remain unanswered, such as: the intracontinental orogenic process in the Yanshan orogen and the nature and location of the suture between the southern NC and the northern NCC. In Dec 2009, a 400 km long seismic refraction and wide-angle reflection profile was completed jointly by Institute of Geology, CAGS and University of Oklahoma. The survey line extended from the west end of the Yanshan orogen, across a granitoid belt to the Solonker suture zone. The recording of seismic waves from 8 explosions (500~1500 kg each) was conducted in four deployments of 300 Reftek125 (Texan) seismic recorders, with an average spacing of 1 km. For the calculations, we used the Rayinvr, Vmed and Zplot programs for ray tracing, model modification and phase picking. The initial result show that: 1)the depth of low velocity sediment cover ranges from 0.6 to 2.7 km (velocity: 2.8~5.6 km/s); 2)the depth of basement is 5.6~10 km (the depth of basement under the granitoid belt deepens to 10 km and velocity increases to 6.2 km/s); 3)the upper crust extends to a depth of 15.5~21 km and has the P-wave velocities between 5.6 and 6.4 km/s; 4)the thickness of the lower crust ranges from 22~28 km(velocity: 6.4~6.9 km/s); and 5)the depth of Moho varies from 39.5 km under the granitoid belt to 49 km under the Yanshan orogen. Based on these results, we can preliminarily deduce that: 1) the concave depression of the Moho observed represents the root of the Yanshan orogen, and it may prove that the orogen is dominated by thick-skinned tectonics; 2) the shape of velocity variations under the granitoid belt is suggestive of a magma conduit. It

  13. The peculiar case of Marosticano xenoliths: a cratonic mantle fragment affected by carbonatite metasomatism in the Veneto Volcanic Province (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Brombin, Valentina; Bonadiman, Costanza; Coltorti, Massimo; Florencia Fahnestock, M.; Bryce, Julia G.; Marzoli, Andrea

    2017-04-01

    The Tertiary Magmatic Province of Veneto, known as Veneto Volcanic Province (VVP), in the Northern Italy, represents one of the most important volcanic provinces of the Adria Plate. It is composed by five volcanic districts: Val d'Adige, Marosticano, Mts. Lessini, Berici Hills and Euganean Hills. Most of the volcanic products are relatively undifferentiated lavas, from nephelinites to tholeiites in composition. Commonly VVP nephelinites and basanites carry mantle xenoliths. This study presents a petrological characterization of the new xenolith occurrence of Marosticano and comparison with previously studied VVP xenolith populations (i.e. from the Lessinean and Val d'Adige areas), which represent off-craton lithospheric mantle fragment affected by Na-alkaline silicate metasomatism (Siena & Coltorti 1989; Beccaluva et al., 2001; Gasperini et al., 2006). Marosticano (MA) peridotites are anhydrous spinel-bearing lherzolites and harzburgites, which are geochemically well distinguishible from the other VVP mantle xenoliths. Primary minerals record the "most restitic" composition of the VVP sampled mantle, even calling the geochemical features of a sub-cratonic mantle. Olivines in both lherzolites and harzburgites show high Ni contents compared with the Fo values (Ni→ lherzolite: 2600-3620 ppm; harzburgite: 2600-3540 ppm; Fo → lh: 91-92; hz: 90-93) that follow the trend of olivine from a cratonic area (Kelemen, 1998). Orthopyroxenes have mg# values with 1:1 ratio with coexisting olivines and Al2O3 contents always <4 wt%, even for the most fertile lherzolite. Low Al2O3 (<5 wt%) associated with high Cr2O3 (>0.5 wt%) contents are also the chemical characteristics of the clinopyroxenes. On the whole both MA pyroxenes show major element contents that recall the characteristics of those from cratonic (sp-bearing) peridotites (e.g. from Greenland, South Africa and Tanzania; Downes et al., 2004). In addition, the relationship between the high Fo content of olivine and the

  14. Timing of Precambrian melt depletion and Phanerozoic refertilization events in the lithospheric mantle of the Wyoming Craton and adjacent Central Plains Orogen

    USGS Publications Warehouse

    Carlson, R.W.; Irving, A.J.; Schulze, D.J.; Hearn, B.C.

    2004-01-01

    Garnet peridotite xenoliths from the Sloan kimberlite (Colorado) are variably depleted in their major magmaphile (Ca, Al) element compositions with whole rock Re-depletion model ages generally consistent with this depletion occurring in the mid-Proterozoic. Unlike many lithospheric peridotites, the Sloan samples are also depleted in incompatible trace elements, as shown by the composition of separated garnet and clinopyroxene. Most of the Sloan peridotites have intermineral Sm-Nd and Lu-Hf isotope systematics consistent with this depletion occurring in the mid-Proterozoic, though the precise age of this event is poorly defined. Thus, when sampled by the Devonian Sloan kimberlite, the compositional characteristics of the lithospheric mantle in this area primarily reflected the initial melt extraction event that presumably is associated with crust formation in the Proterozoic-a relatively simple history that may also explain the cold geotherm measured for the Sloan xenoliths. The Williams and Homestead kimberlites erupted through the Wyoming Craton in the Eocene, near the end of the Laramide Orogeny, the major tectonomagmatic event responsible for the formation of the Rocky Mountains in the late Cretaceous-early Tertiary. Rhenium-depletion model ages for the Homestead peridotites are mostly Archean, consistent with their origin in the Archean lithospheric mantle of the Wyoming Craton. Both the Williams and Homestead peridotites, however, clearly show the consequences of metasomatism by incompatible-element-rich melts. Intermineral isotope systematics in both the Homestead and Williams peridotites are highly disturbed with the Sr and Nd isotopic compositions of the minerals being dominated by the metasomatic component. Some Homestead samples preserve an incompatible element depleted signature in their radiogenic Hf isotopic compositions. Sm-Nd tie lines for garnet and clinopyroxene separates from most Homestead samples provide Mesozoic or younger "ages" suggesting

  15. Cenozoic extension, volcanism and plateau uplift in eastern Africa and the African Superplume

    NASA Astrophysics Data System (ADS)

    Nyblade, A.; O'Donnell, J.; Mulibo, G. D.; Adams, A. N.

    2013-12-01

    Recent body and surface wave studies combine to image mantle velocity structure to a depth of 1200 km beneath eastern Africa using teleseismic earthquake data recorded by the AfricaArray East African Seismic Experiment in conjunction with permanent stations and previously deployed temporary stations. The combined network spans Kenya, Uganda, Tanzania, Zambia and Malawi. The 3-D shear wave velocity structure of the uppermost mantle was imaged using fundamental-mode Rayleigh wave phase velocities measured at periods ranging from 20 to 182 s, subsequently inverted for shear velocity structure. When considered in conjunction with mapped seismicity, the shear velocity model supports a secondary western rift branch striking southwestwards from Lake Tanganyika, likely exploiting the relatively weak lithosphere of the southern Kibaran Belt between the Bangweulu Block and the Congo Craton. In eastern Tanzania a low-velocity region suggests that the eastern rift branch trends southeastwards offshore eastern Tanzania coincident with the purported location of the northern margin of the proposed Ruvuma microplate. The results suggest that existing lithospheric structures exert a significant governing influence on rift development. Sub-lithospheric mantle wave speed variations extending to a depth of 1200 km were tomographically imaged from the inversion of P and S wave relative arrival time residuals. The images shows a low wave speed anomaly (LWA) well developed at shallow depths (100-200 km) beneath the Eastern and Western branches of the rift system and northwestern Zambia, and a fast wave speed anomaly at depths greater than 350 km beneath the central and northern parts of the East African Plateau and the eastern and central parts of Zambia. At depths below 350 km the LWA is most prominent under the central and southern parts of the East African Plateau and dips to the southwest beneath northern Zambia, extending to a depth of at least 900 km. The amplitude of the LWA is

  16. Re-Os geochronology of a Mesoproterozoic sedimentary succession, Taoudeni basin, Mauritania: Implications for basin-wide correlations and Re-Os organic-rich sediments systematics

    NASA Astrophysics Data System (ADS)

    Rooney, Alan D.; Selby, David; Houzay, Jean-Pierre; Renne, Paul R.

    2010-01-01

    The exceptionally well-preserved sedimentary rocks of the Taoudeni basin, NW Africa represent one of the world's most widespread (> 1 M km 2) Proterozoic successions. Hitherto, the sedimentary rocks were considered to be Mid Tonian based on Rb-Sr illite and glauconite geochronology of the Atar Group. However, new Re-Os organic-rich sediment (ORS) geochronology from two drill cores indicates that the Proterozoic Atar Group is ˜ 200 Ma older (1107 ± 12 Ma, 1109 ± 22 Ma and 1105 ± 37 Ma). The Re-Os geochronology suggests that the Rb-Sr geochronology records the age of diagenetic events possibly associated with the Pan African collision. The new Re-Os geochronology data provide absolute age constraints for recent carbon isotope chemostratigraphy which suggests that the Atar Group is Mesoproterozoic and not Neoproterozoic. The new Re-Os ORS geochronology supports previous studies that suggest that rapid hydrocarbon generation (flash pyrolysis) from contact metamorphism of a dolerite sill does not significantly disturb the Re-Os ORS systematics. Modelled contact conditions suggest that the Re-Os ORS systematics remain undisturbed at ˜ 650 °C at the sill/shale contact and ≥ 280 °C 20 m from the sill/shale contact. Moreover, the Re-Os geochronology indicates that the West African craton has a depositional history that predates 1100 Ma and that ORS can be correlated on a basin-wide scale. In addition, the Re-Os depositional ages for the ORS of the Taoudeni basin are comparable to those of ORS from the São Francisco craton, suggesting that these cratons are correlatable. This postulate is further supported by identical Os i values for the Atar Group and the Vazante Group of the São Francisco craton.

  17. African Ancestry Is Associated with Asthma Risk in African Americans

    PubMed Central

    Pino-Yanes, María; Wade, Michael S.; Pérez-Méndez, Lina; Kittles, Rick A.; Wang, Deli; Papaiahgari, Srinivas; Ford, Jean G.; Kumar, Rajesh; Garcia, Joe G. N.

    2012-01-01

    Background Asthma is a common complex condition with clear racial and ethnic differences in both prevalence and severity. Asthma consultation rates, mortality, and severe symptoms are greatly increased in African descent populations of developed countries. African ancestry has been associated with asthma, total serum IgE and lower pulmonary function in African-admixed populations. To replicate previous findings, here we aimed to examine whether African ancestry was associated with asthma susceptibility in African Americans. In addition, we examined for the first time whether African ancestry was associated with asthma exacerbations. Methodology/Principal Findings After filtering for self-reported ancestry and genotype data quality, samples from 1,117 self-reported African-American individuals from New York and Baltimore (394 cases, 481 controls), and Chicago (321 cases followed for asthma exacerbations) were analyzed. Genetic ancestry was estimated based on ancestry informative markers (AIMs) selected for being highly divergent among European and West African populations (95 AIMs for New York and Baltimore, and 66 independent AIMs for Chicago). Among case-control samples, the mean African ancestry was significantly higher in asthmatics than in non-asthmatics (82.0±14.0% vs. 77.8±18.1%, mean difference 4.2% [95% confidence interval (CI):2.0–6.4], p<0.0001). This association remained significant after adjusting for potential confounders (odds ratio: 4.55, 95% CI: 1.69–12.29, p = 0.003). African ancestry failed to show an association with asthma exacerbations (p = 0.965) using a model based on longitudinal data of the number of exacerbations followed over 1.5 years. Conclusions/Significance These data replicate previous findings indicating that African ancestry constitutes a risk factor for asthma and suggest that elevated asthma rates in African Americans can be partially attributed to African genetic ancestry. PMID:22235241

  18. Origin of a classic cratonic sheet sandstone: Stratigraphy across the Sauk II-Sauk III boundary in the Upper Mississippi Valley

    USGS Publications Warehouse

    Runkel, Anthony C.; McKay, R.M.; Palmer, A.R.

    1998-01-01

    The origin of cratonic sheet sandstones of Proterozoic and early Paleozoic age has been a long-standing problem for sedimentologists. Lower Paleozoic strata in the Upper Mississippi Valley are best known for several such sandstone bodies, the regional depositional histories of which are poorly understood. We have combined outcrop and subsurface data from six states to place the Upper Cambrian Wonewoc (Ironton and Galesville) Sandstone in a well-constrained stratigraphic framework across thousands of square kilometers. This framework makes it possible for the first time to construct a regional-scale depositional model that explains the origin of this and other cratonic sheet sandstones. The Wonewoc Sandstone, although mapped as a single contiguous sheet, is a stratigraphically complex unit that was deposited during three distinct conditions of relative sea level that span parts of four trilobite zones. During a relative highstand of sea level in Crepicephalus Zone time, quartzose sandstone lithofacies aggraded more or less vertically in nearshore-marine and terrestrial environments across much of the present-day out-crop belt around the Wisconsin arch. At the same time, finer grained, feldspathic sandstone, siltstone, and shale aggraded in deeper water immediately seaward of the quartzose sand, and shale and carbonate sediment accumulated in the most distal areas. During Aphelaspis and Dunderbergia Zones time a relative fall in sea level led to the dispersal of quartzose sand into a basinward-tapering, sheet-like body across much of the Upper Mississippi Valley. During early Elvinia Zone time a major transgression led to deposition of a second sheet sandstone that is generally similar to the underlying regressive sheet. The results of this investigation also demonstrate how subtle sequence-bounding unconformities may be recognized in mature, cratonic siliciclastics. We place the Sauk II-Sauk III subsequence boundary at the base of the coarsest bed in the Wonewoc

  19. Petrophysical constraints on the seismic properties of the Kaapvaal craton mantle root

    NASA Astrophysics Data System (ADS)

    Baptiste, V.; Tommasi, A.

    2013-07-01

    We calculated the seismic properties of 47 mantle xenoliths from 9 kimberlitic pipes in the Kaapvaal craton based on their modal composition, the crystal preferred orientations (CPO) of olivine, ortho- and clinopyroxene, and garnet, the Fe content of olivine, and the pressures and temperatures at which the rocks were equilibrated. These data allow constraining the variation of seismic anisotropy and velocities with depth. The fastest P wave and fast split shear wave (S1) polarization direction is always close to olivine [100] maximum. Changes in olivine CPO symmetry result in minor variations in the seismic anisotropy patterns. Seismic anisotropy is higher for high olivine contents and stronger CPO. Maximum P waves azimuthal anisotropy (AVp) ranges between 2.5 and 10.2% and S waves polarization anisotropy (AVs) between 2.7 and 8%. Seismic properties averaged in 20 km thick intervals depth are, however, very homogeneous. Based on these data, we predict the anisotropy that would be measured by SKS, Rayleigh (SV) and Love (SH) waves for 5 end-member orientations of the foliation and lineation. Comparison to seismic anisotropy data in the Kaapvaal shows that the coherent fast directions, but low delay times imaged by SKS studies and the low azimuthal anisotropy and SH faster than SV measured using surface waves may only be consistently explained by dipping foliations and lineations. The strong compositional heterogeneity of the Kaapvaal peridotite xenoliths results in up to 3% variation in density and in up to 2.3% of variation Vp, Vs and the Vp/Vs ratio. Fe depletion by melt extraction increases Vp and Vs, but decreases the Vp/Vs ratio and density. Orthopyroxene enrichment decreases the density and Vp, but increases Vs, strongly reducing the Vp/Vs ratio. Garnet enrichment increases the density, and in a lesser manner Vp and the Vp/Vs ratio, but it has little to no effect on Vs. These compositionally-induced variations are slightly higher than the velocity

  20. Modélisation magnétique de la suture ophiolitique de Bou Azzer El Graara (Anti-Atlas central, Maroc). Implications sur la reconstitution géodynamique panafricaine

    NASA Astrophysics Data System (ADS)

    Soulaimani, Abderrahmane; Jaffal, Mohammed; Maacha, Lhou; Kchikach, Azzouz; Najine, Abdessamad; Saidi, Abdellatif

    2006-02-01

    Aeromagnetic data of the Anti-Atlas Mountains show an important magnetic anomaly along the 'Major Anti-Atlas Fault', produced by different mafic and ultramafic rocks of a Neoproterozoic ophiolite complex. The magnetic modelling of Bou Azzer-El Graara ophiolitic suture shows a deep-seated anomaly through the upper continental crust corresponding to a north-dipping subduction. The polarity of the Pan-African subduction in the Anti-Atlas is therefore compatible with the contemporaneous Pan-African orogenic belts, where polarity of subduction dipped away from the West African Craton during the amalgamation of Western Gondwana. To cite this article: A. Soulaimani et al., C. R. Geoscience 338 (2006).

  1. Surface Curvature in Island Groups and Discontinuous Cratonic Structures

    NASA Astrophysics Data System (ADS)

    McDowell, M. S.

    2002-05-01

    The Canadian Archipelago includes eight major islands and a host of smaller ones. They are separated by water bodies, of varying widths attributable to glacial activity and ocean currents. Land form varies from relatively rugged mountains (~2000 m) in eastern, glacial, islands, to low lying western, similar to the continental topography adjacent. The Arctic region is thought to have been low average elevation before the Pleistocene. To a picture puzzler, it all looks like it fit together. Experimentally cutting apart the islands from large scale maps shows that the rough edges match fairly well. However, when those independent pieces are sutured together, without restraint, as in free air, the fit is far better. Far more importantly, they consistently form a noticeably concave surface. This tendency is not at all apparent in flat surface or computer screen manipulation; the pieces need to be "hand joined" or on a molded surface to allow the assembly to freely form as it will. Fitting together the coastlines above 60 \\deg north, from 120 \\deg west to 45 \\deg east, and comparing the resulting contracted area to the original, obtains an 8 percent area reduction. The curvature "humps" a trial planar section of 15 cms by 1.6 cm, a substantial difference in the radius of curvature. If you rashly suggest applying that formula globally, the resulting sphere would have a surface area of 4.7 x108,(down from 5 x108), and therefore radius of 6117 km, down from 6400, which is a rather preposterous conclusion. As nobody would believe it, I tested the idea elsewhere. The Huronian succession of six named cratons is adjacent on the south. I cut this map apart, too, and fit it together, once again getting a curvature, this time more pronounced. I am trying it with the Indonesian Archipelago, although this area has volcanic complications, and with Precambrian Basins in western Australia and Nimibia, Africa. Indications are - an essentially similar pattern of fit, but non uniform

  2. Geochemical provenance of Florida basement components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heatherington, A.L.; Mueller, P.A.; Dallmeyer, R.D.

    1993-03-01

    The pre-Cretaceous basement of Florida is generally considered to be exotic with respect to Proterozoic Laurentia. Paleontologic and paleomagnetic evidence have suggested a Gondwanan provenance for the Floridan basement, as either a peri-Gondwanide terrane or as a rifted block of the West African craton. The report of generally similar lithologic sequences and a record of similar Ar-Ar cooling ages in some Floridan and West African lithologic units has led to very specific correlations between these units. U-Pb, Sm-Nd, and Rb-Sr geochronologic studies as well as isotopic and elemental abundance data have been used to evaluate the validity of these correlations.more » Results indicate: (1) geochemical similarities between volcanic rocks of northeastern Florida and a Pan-African metavolcanic sequence (Niokola-Koba group) exposed in Senegal; (2) an absence of a Grenvillian-age (i.e., Laurentian) component in zircons separated from a Paleozoic Suwanee basin sandstone; and (3) whole-rock Sm-Nd and U-Pb zircon evidence for an Archean ([approximately]3.0 Ga) component in the neo-Proterozoic Osceola granitoid(s). Although silicic rocks from throughout Florida have Nd model ages (T[sub DM]) that are predominantly Grenvillian (1.1--1.4 Ga), the absence of a Grenvillian component in zircons separated from granite and sandstone suggests that the model ages represent a mixture of older and younger components. Overall, the evidence for Birimian ([approximately]2.1 Ga) and Liberian ([approximately]3.0 Ga) age components in the Florida basement are consistent with its origin as a rifted block of cratonic Gondwana. In addition to demonstrating a strong affinity between the Florida basement and cratonic West Africa/northern South America, these data provide a basis for comparison with other circum-Atlantic terranes traditionally described as Avalonian/Cadomian, etc.« less

  3. Constraining the Composition of the Subcontinental Lithospheric Mantle Beneath the East African Rift: FTIR Analysis of Water in Spinel Peridotite Mantle Xenoliths

    NASA Technical Reports Server (NTRS)

    Erickson, Stephanie Gwen; Nelson, Wendy R.; Peslier, Anne H.; Snow, Jonathan E.

    2014-01-01

    The East African Rift System was initiated by the impingement of the Afar mantle plume on the base of the non-cratonic continental lithosphere (assembled during the Pan-African Orogeny), producing over 300,000 kmof continental flood basalts approx.30 Ma ago. The contribution of the subcontinental lithospheric mantle (SCLM) to this voluminous period of volcanism is implied based on basaltic geochemical and isotopic data. However, the role of percolating melts on the SCLM composition is less clear. Metasomatism is capable of hybridizing or overprinting the geochemical signature of the SCLM. In addition, models suggest that adding fluids to lithospheric mantle affects its stability. We investigated the nature of the SCLM using Fourier transform infrared spectrometry (FTIR) to measure water content in mantle xenoliths entrained in young (1 Ma) basaltic lavas from the Ethiopian volcanic province. The mantle xenoliths consist dominantly of spinel lherzolites and are composed of nominally anhydrous minerals, which can contain trace water as H in mineral defects. Eleven mantle xenoliths come from the Injibara-Gojam region and two from the Mega-Sidamo region. Water abundances of olivines in six samples are 1-5ppm H2O while the rest are below the limit of detection (<0.5 ppm H2O); orthopyroxene and clinopyroxene contain 80-238 and 111-340 ppm wt H2O, respectively. Two xenoliths have higher water contents - a websterite (470 ppm) and dunite (229 ppm), consistent with involvement of ascending melts. The low water content of the upper SCLM beneath Ethiopia is as dry as the oceanic mantle except for small domains represented by percolating melts. Consequently, rifting of the East African lithosphere may not have been facilitated by a hydrated upper mantle.

  4. Assessment of undiscovered oil and gas resources of the southern Siberian craton (Baykit High, Nepa--Botuoba High, Angara--Lena Terrace, and Cis--Patom Foredeep Provinces), Russia, 2011

    USGS Publications Warehouse

    Klett, T.R.; Schenk, Christopher J.; Wandrey, Craig J.; Charpentier, Ronald R.; Brownfield, Michael E.; Pitman, Janet K.; Pollastro, Richard M.; Cook, Troy A.; Tennyson, Marilyn E.

    2012-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated volumes of undiscovered, technically recoverable, conventional petroleum resources for the southern Siberian craton provinces of Russia. The mean volumes were estimated at 3.0 billion barrels of crude oil, 63.3 trillion cubic feet of natural gas, and 1.2 billion barrels of natural gas liquids.

  5. The Ufa indenter: stratigraphic and geophysic evidences for an actual indentation of the Southern Urals by the East European craton

    NASA Astrophysics Data System (ADS)

    Lefort, Jean-Pierre; Danukalova, Guzel

    2014-07-01

    Study of the altitudes of the lowest part of the Upper Cretaceous-Eocene and Aktschagylian-Quaternary stratigraphic ensembles known on the western slope of the Southern Urals evidences the existence of an East-West elongated dome which follows the N53° latitude. This ridge is superimposed at depth with the remnants of the Sernovodsk-Abdulino Aulacogen and with the Belaya tear fault, which support the existence of a recent rejuvenation of these old structures. North of these disruptions the Southern Urals display a clear bent towards the East. Detailed microstructural studies show that this curvature is associated with a typical stress pattern which suggests the existence of an indentation of the fold belt by the East European craton. The hypothesis of an Ufa indenter is not supported by an equivalent East-West deep fault north of the bend. However, a long N100° magnetic anomaly, interpreted as a shear zone, suggests that the indenter is a reality. Quaternary uplift and crustal thickening at its front as well as seismological data support our interpretation. It is not stressed that the curvature of the Urals observed at 56° latitude results solely from this recent indentation. It is only assumed that the actual indentation is rejuvenating a former unevenness which existed before in the East European craton. Study of the inner part of the indenter shows that this type of structure is not necessarily rigid and undeformed. Some of the structures described on the URSEIS deep seismic line could be much younger than previously expected.

  6. Crust structure of the Northern Margin of North China Craton and adjacent region from Sinoprobe-02 North China seismic WAR/R experiment

    NASA Astrophysics Data System (ADS)

    Li, W.; Gao, R.; Keller, G. R.; Li, Q.; Cox, C. M.; Hou, H.; Guan, Y.

    2011-12-01

    The Central Asian Orogen Belt (CAOB) or Altaids, situated between the Siberian craton(SC) to the north and north China craton (NCC) with tarim to the south, is one of the world's largest accretionary orogens formed by subduction and accretion of juvenile material from the Neoproterozoic through the Paleozoic. The NCC is the oldest craton in China, which suffered Yanshan intercontinental orogenic process and lithosphere thinning in Mesozoic. In the past 20 years, remarkable studies about this region have been carried out and different tectonic models were proposed, however, some crucial geologic problems remain controversial. In order to obtain better knowledge of deep structure and properties of crust on the northern margin of north China craton, a 450 km long WAR/R section was completed jointly by Institute of Geology, CAGS and University of Oklahoma. Our 450 km long NW-SE WAR/R line extends from west end of the Yanshan orogen, across the Bainaimiao arc, Ondor sum subduction accretion complex to the Solonker suture zone. The recording of seismic waves from 8 explorations was conducted in 4 deployments of 300 reftek-125A records and single-channel 4.5Hz geophones with station spacing of 1km. The shooting procedure was employ 500 or 1500kg explosives in 4-5 or 15-23 boreholes at 40-45m depth. The sampling rate was 100 HZ, and recording time window was 1200s. The P wave field on the sections got high quality data for most part of the profile, but have low signal-to-noise for the south end, where closed to Beijing with a lot of ambient noise from traffic, industry and human activity. Arrivals from of refracted and reflected waves from sediments and basement (Pg), intracrust (Pcp, Plp) and Moho (Pmp) were typically observed, but Pn phase through the upper most mantle was only observed for 2 shots. Identification and correlation of seismic phases was done manually on computer screen Zplot software. Each trace has been bandpass filtered (1-20Hz) and normalized with AGC

  7. Polyphase Neoproterozoic orogenesis within the east Africa- Antarctica orogenic belt in central and northern Madagascar

    USGS Publications Warehouse

    Key, R.M.; Pitfield, P.E.J.; Thomas, Ronald J.; Goodenough, K.M.; Waele, D.; Schofield, D.I.; Bauer, W.; Horstwood, M.S.A.; Styles, M.T.; Conrad, J.; Encarnacion, J.; Lidke, D.J.; O'connor, E. A.; Potter, C.; Smith, R.A.; Walsh, G.J.; Ralison, A.V.; Randriamananjara, T.; Rafahatelo, J.-M.; Rabarimanana, M.

    2011-01-01

    Our recent geological survey of the basement of central and northern Madagascar allowed us to re-evaluate the evolution of this part of the East Africa-Antarctica Orogen (EAAO). Five crustal domains are recognized, characterized by distinctive lithologies and histories of sedimentation, magmatism, deformation and metamorphism, and separated by tectonic and/or unconformable contacts. Four consist largely of Archaean metamorphic rocks (Antongil, Masora and Antananarivo Cratons, Tsaratanana Complex). The fifth (Bemarivo Belt) comprises Proterozoic meta-igneous rocks. The older rocks were intruded by plutonic suites at c. 1000 Ma, 820-760 Ma, 630-595 Ma and 560-520 Ma. The evolution of the four Archaean domains and their boundaries remains contentious, with two end-member interpretations evaluated: (1) all five crustal domains are separate tectonic elements, juxtaposed along Neoproterozoic sutures and (2) the four Archaean domains are segments of an older Archaean craton, which was sutured against the Bemarivo Belt in the Neoproterozoic. Rodinia fragmented during the early Neoproterozoic with intracratonic rifts that sometimes developed into oceanic basins. Subsequent Mid- Neoproterozoic collision of smaller cratonic blocks was followed by renewed extension and magmatism. The global 'Terminal Pan-African' event (560-490 Ma) finally stitched together the Mid-Neoproterozoic cratons to form Gondwana. ?? The Geological Society of London 2011.

  8. The Genetic Structure and History of Africans and African Americans

    PubMed Central

    Tishkoff, Sarah A.; Reed, Floyd A.; Friedlaender, Françoise R.; Ehret, Christopher; Ranciaro, Alessia; Froment, Alain; Hirbo, Jibril B.; Awomoyi, Agnes A.; Bodo, Jean-Marie; Doumbo, Ogobara; Ibrahim, Muntaser; Juma, Abdalla T.; Kotze, Maritha J.; Lema, Godfrey; Moore, Jason H.; Mortensen, Holly; Nyambo, Thomas B.; Omar, Sabah A.; Powell, Kweli; Pretorius, Gideon S.; Smith, Michael W.; Thera, Mahamadou A.; Wambebe, Charles; Weber, James L.; Williams, Scott M.

    2010-01-01

    Africa is the source of all modern humans, but characterization of genetic variation and of relationships among populations across the continent has been enigmatic. We studied 121 African populations, four African American populations, and 60 non-African populations for patterns of variation at 1327 nuclear microsatellite and insertion/deletion markers. We identified 14 ancestral population clusters in Africa that correlate with self-described ethnicity and shared cultural and/or linguistic properties. We observed high levels of mixed ancestry in most populations, reflecting historical migration events across the continent. Our data also provide evidence for shared ancestry among geographically diverse hunter-gatherer populations (Khoesan speakers and Pygmies). The ancestry of African Americans is predominantly from Niger-Kordofanian (~71%), European (~13%), and other African (~8%) populations, although admixture levels varied considerably among individuals. This study helps tease apart the complex evolutionary history of Africans and African Americans, aiding both anthropological and genetic epidemiologic studies. PMID:19407144

  9. Significance of the whole rock Re-Os ages in cryptically and modally metasomatised cratonic peridotites: Constraints from HSE-Se-Te systematics

    NASA Astrophysics Data System (ADS)

    Luguet, Ambre; Behrens, Melanie; Pearson, D. Graham; König, Stephan; Herwartz, Daniel

    2015-09-01

    The Re-Os isotopic system is the geochronometer of choice to constrain the timing of lithospheric mantle root formation and reconstruct the evolution of Earth's dynamics from the "mantle" perspective. In order to constrain the effects of metasomatic processes on the Re-Os isotopic system, eleven peridotites from the Letlhakane kimberlite pipe were investigated for whole rock major and trace elements, highly siderophile elements (HSE), Se, Te and 187Os/188Os signatures. These spinel peridotites (SP), garnet peridotites (GP), garnet-phlogopite peridotites (GPP) and phlogopite peridotites (PP) experienced cryptic metasomatism and the GP-GPP-PP additionally constitute a sequence of increasing modal metasomatism. The cryptically metasomatised SP appear devoid of base metal sulphides (BMS) and show suprachondritic Se/Te ratios (15-40) and extremely Pd- and Pt-depleted HSE patterns. These features are characteristic of high-degree partial melting residues. Their 187Os/188Os signatures are thus considered to be inherited from the partial melting event. This implies a Neoarchean (2.5-2.8 Ga, TRD eruption) stabilisation of the Letlhakane mantle root and supports the Letlhakane mantle root being a westerly extension of the Zimbabwe cratonic root. The modally metasomatised peridotites contain BMS whose abundance significantly increases from the GPP to the GP and PP. The BMS-poor GPP are only slightly richer in Pt and Pd than the BMS-free SP but have similarly high Se/Te ratios. The BMS-rich GP and PP exhibit significant enrichments in Pt, Pd, Se, Te resulting in HSE-Se-Te signatures similar to that of the Primitive Upper Mantle (PUM). Addition of 0.001-0.05 wt.% metasomatic BMS ± PGM (platinum group minerals, i.e., Pt-tellurides) to highly refractory residues, such as the Letlhakane SP, reproduce well the HSE-Se-Te systematics observed in the BMS-poor and BMS-rich modally metasomatised peridotites. In the GPP, the negligible addition of metasomatic BMS ± PGM did not disturb

  10. African American Males. A Critical Link in the African American Family.

    ERIC Educational Resources Information Center

    Jones, Dionne J., Ed.

    African Americans are experiencing extreme stress in the United States, and African-American males appear to suffer the most. The chapters in this volume examine some of the issues confronting African-American men today. They include: (1) "Introduction" (Dionne J. Jones); (2) "Reaffirming Young African American Males: Mentoring and…

  11. The TG/HDL-C ratio does not predict insulin resistance in overweight women of African descent: a study of South African, African American and West African women.

    PubMed

    Knight, Michael G; Goedecke, Julia H; Ricks, Madia; Evans, Juliet; Levitt, Naomi S; Tulloch-Reid, Marshall K; Sumner, Anne E

    2011-01-01

    Women of African descent have a high prevalence of diseases caused by insulin resistance. To positively impact cardiometabolic health in Black women, effective screening tests for insulin resistance must be identified. Recently, the TG/HDL-C ratio has been recommended as a tool to predict insulin resistance in overweight people. While the ratio predicts insulin resistance in White women, it is ineffective in African American women. As there are no data for African women, we tested the ability of the TG/HDL-C ratio to predict insulin resistance in Black women from South Africa, West Africa and the United States. For comparison, the ratio was also tested in White women from South Africa. Participants were 801 women (157 Black South African, 382 African American, 119 West African, 143 White South African, age 36 +/- 9y [mean +/- SD]). Standardized scores were created from log-transformed homeostasis model assessment-insulin resistance values from each population. Participants in the upper third of their population distribution were classified as insulin-resistant. To predict insulin resistance by the TC/HDL-C ratio, area under the receiver operating characteristic (AUC-ROC) curve was used and criteria were: 0.50 for no discrimination and > or = 0.70 for acceptable. Seventy-one percent of the Black women were overweight vs 51% of White women (P<.01). In overweight White women, AUC-ROC curve for prediction of insulin resistance by TG/HDL-C was 0.76 +/- 0.06, but below the 0.70 threshold in each group of overweight Black women (Black South African: 0.64 +/- 0.06, African American: 0.66 +/- 0.03, and West African: 0.63 +/- 0.07). Therefore, TG/HDL-C does not predict insulin resistance in overweight African American women and this investigation extends that finding to overweight Black South African and West African women. Resources to identify effective markers of insulin resistance are needed to improve cardiometabolic health in women of African descent.

  12. Africans in America.

    ERIC Educational Resources Information Center

    Hart, Ayanna; Spangler, Earl

    This book introduces African-American history and culture to children. The first Africans in America came from many different regions and cultures, but became united in this country by being black, African, and slaves. Once in America, Africans began a long struggle for freedom which still continues. Slavery, the Civil War, emancipation, and the…

  13. Planation surfaces as a record of medium to large wavelength deformation: the example of the Lake Albert Rift (Uganda) on the East African Dome

    NASA Astrophysics Data System (ADS)

    Brendan, Simon; François, Guillocheau; Cécile, Robin; Jean, Braun; Olivier, Dauteuil; Massimo, Dall'Asta

    2016-04-01

    African relief is characterized by planation surfaces, some of them of continental scale. These surfaces are slightly deformed according to different wavelengths (x10 km; x100 km, x1000 km) which record both mantle dynamics (very long wavelength, x 1000 km) and lithosphere deformation (long wavelength deformation, x 100 km). Different types of these planation surfaces are recognized: - Etchplains capped by iron-duricrust which correspond to erosional nearly flat weathered surfaces resulting from the growth of laterites under warm and humid conditions. - Pediments which define mechanical erosional surfaces with concave or rectilinear profiles delimited by upslope scarps connected upstream with the upper landforms. We here focused on the Lake Albert Rift at the northern termination of the western branch of the East African Rift System of which the two branches are surimposed on the East-African Dome. Different wavelengths of deformation were characterized based on the 3D mapping of stepped planation surfaces: (1) very long wavelength deformations resulting from the uplift of the East African Dome; (2) long wavelength deformations resulting from the opening of the eastern branch and (3) medium wavelength deformations represented by the uplift of rift shoulders like the Rwenzori Mountains. The paleo-landscape reconstruction of Uganda shows the existence of four generations of landforms dated according to their geometrical relationships with volcanic rocks. A four stepped evolution of the Ugandan landforms is proposed: • 70 - 22 Ma: generation of two weathered planation surfaces (etchplain Uw and Iw). The upper one (Uw) records a very humid period culminating at time of the Early Eocene Climatic Optimum (70-45 Ma). It corresponds to the African Surface. A first uplift of the East African Dome generates a second lower planation surface (Iw) connected to the Atlantic Ocean base level; • 17-2.7 Ma: planation of large pediplains connected to the local base level induced

  14. Petrology, geochemistry and zirconology of impure calcite marbles from the Precambrian metamorphic basement at the southeastern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Can; Zhang, Pin-Gang; Wang, Cheng-Cheng; Groppo, Chiara; Rolfo, Franco; Yang, Yang; Li, Yuan; Deng, Liang-Peng; Song, Biao

    2017-10-01

    Impure calcite marbles from the Precambrian metamorphic basement of the Wuhe Complex, southeastern margin of the North China Craton, provide an exceptional opportunity to understand the depositional processes during the Late Archean and the subsequent Palaeoproterozoic metamorphic evolution of one of the oldest cratons in the world. The studied marbles are characterized by the assemblage calcite + clinopyroxene + plagioclase + K-feldspar + quartz + rutile ± biotite ± white mica. Based on petrography and geochemistry, the marbles can be broadly divided into two main types. The first type (type 1) is rich in REE with a negative Eu anomaly, whereas the second type (type 2) is relatively poor in REE with a positive Eu anomaly. Notably, all marbles exhibit remarkably uniform REE patterns with moderate LREE/HREE fractionation, suggesting a close genetic relationship. Cathodoluminescence imaging, trace elements and mineral inclusions reveal that most zircons from two dated samples display distinct core-rim structures. Zircon cores show typical igneous features with oscillatory growth zoning and high Th/U ratios (mostly in the range 0.3-0.7) and give ages of 2.53 - 2.48 Ga, thus dating the maximum age of deposition of the protolith. Zircon rims overgrew during granulite-facies metamorphism, as evidenced by calcite + clinopyroxene + rutile + plagioclase + quartz inclusions, by Ti-in-zircon temperatures in the range 660-743 °C and by the low Th/U (mostly < 0.1) and Lu/Hf (< 0.001) ratios. Zircon rims from two dated samples yield ages of 1839 ± 7 Ma and 1848 ± 23 Ma, respectively, suggesting a Palaeoproterozoic age for the granulite-facies metamorphic event. These ages are consistent with those found in other Precambrian basement rocks and lower-crustal xenoliths in the region, and are critical for the understanding of the tectonic history of the Wuhe Complex. Positive Eu anomalies and high Sr and Ba contents in type 2 marbles are ascribed to syn-depositional felsic

  15. Timing and implications for the late Mesozoic geodynamic settings of eastern North China Craton: Evidences from K-Ar dating age and sedimentary-structural characteristics records of Lingshan Island, Shandong Province

    NASA Astrophysics Data System (ADS)

    Li, Jie; Jin, Aiwen; Hou, Guiting

    2017-12-01

    The Lingshan Island in Shandong Province in the eastern North China Craton, well known for the Late Mesozoic multi-scale slide-slump structures is related to paleo-earthquake. Terrigenous clastic rocks, volcanic clastic rocks and volcanic lavas are extensively exposed in the Lingshan Island and its adjacent regions of the Shandong Province, which led to fierce debates on their ages, sedimentary characteristics and tectono-sedimentary evolution. In this contribution, we present the characteristics of the Late Mesozoic stratigraphy in the Lingshan Island. Whole-rock K-Ar dating of dyke at Beilaishi and rhyolites at Laohuzui of the Lingshan Island yielded ages of 159 Ma and 106-92 Ma which coincides with the Laiyang Period rifting and the Qingshan Period rifting in the Jiaolai Basin, respectively. On the basis of the analysis to the Late Mesozoic sedimentary environment of `flysch' and `molasse'-like formations as well as tectonic stress fields reconstruction, four episodes of the tectono-sedimentary evolution were established in the Lingshan Island and its adjacent regions in the eastern North China Craton. They consist of two episodes of extensional events for the syn-rift, and two episodes of compression events for the inversion of the post-rift. The entire episodes can be summarized as follows: (1) the first syn-rift NW-SE extension in Laiyang Period can be identified by the `flysch' formation (Unit 1) and by emplacement of the NE-trending dyke in the Laiyang Group. This syn-rift episode can be related to the NW-SE post-orogenic extension resulted from the gravity collapse of the thickened lithosphere along the Sulu Orogen. (2) The first post-rift NW-SE inversion, which was caused by the NW-directed subduction of Izanaqi Plate, can be well documented by the `X' type conjugate joints as well as slide slump folds in Unit 1. (3) The second syn-rift NW-SE extension in Qingshan Period is characterized by rhyolite rocks (Unit 2). This syn-rift episode can be considered

  16. Thermal state, oxygen fugacity and COH fluid speciation in cratonic lithospheric mantle: New data on peridotite xenoliths from the Udachnaya kimberlite, Siberia

    NASA Astrophysics Data System (ADS)

    Goncharov, A. G.; Ionov, D. A.; Doucet, L. S.; Pokhilenko, L. N.

    2012-12-01

    Oxygen fugacity (fO2) and temperature variations in a complete lithospheric mantle section (70-220 km) of the central Siberian craton are estimated based on 42 peridotite xenoliths in the Udachnaya kimberlite. Pressure and temperature (P-T) estimates for the 70-140 km depth range closely follow the 40 mW/m2 model conductive geotherm but show a bimodal distribution at greater depths. A subset of coarse garnet peridotites at 145-180 km plots near the "cold" 35 mW/m2 geotherm whereas the majority of coarse and sheared rocks at ≥145 km scatter between the 40 and 45 mW/m2 geotherms. This P-T profile may reflect a perturbation of an initially "cold" lithospheric mantle through a combination of (1) magmatic under-plating close to the crust-mantle boundary and (2) intrusion of melts/fluids in the lower lithosphere accompanied by shearing. fO2 values estimated from Fe3+/∑Fe in spinel and/or garnet obtained by Mössbauer spectroscopy decrease from +1 to -4 Δlog fO2 (FMQ) from the top to the bottom of the lithospheric mantle (˜0.25 log units per 10 km) due to pressure effects on Fe2+-Fe3+ equilibria in garnet. Garnet peridotites from Udachnaya appear to be more oxidized than those from the Kaapvaal craton but show fO2 distribution with depth similar to those in the Slave craton. Published fO2 estimates for Udachnaya xenoliths based on C-O-H fluid speciation in inclusions in minerals from gas chromatography are similar to our results at ≤120 km, but are 1-2 orders of magnitude higher for the deeper mantle, possibly due to uncertainties of fO2 estimates based on experimental calibrations at ≤3.5 GPa. Sheared peridotites containing garnets with u-shaped, sinusoidal and humped REE patterns are usually more oxidized than Yb, Lu-rich, melt-equilibrated garnets, which show a continuous decrease from heavy to light REE. This further indicates that mantle redox state may be related to sources and modes of metasomatism.

  17. Insights Into Layering in the Cratonic Lithosphere Beneath Western Australia

    NASA Astrophysics Data System (ADS)

    Sun, Weijia; Fu, Li-Yun; Saygin, Erdinc; Zhao, Liang

    2018-02-01

    The characteristics of internal lithospheric discontinuities carry crucial information regarding the origin and evolution of the lithosphere. However, the formation and mechanisms of the midlithosphere discontinuity (MLD) are still enigmatic and controversial. We investigate the midlithospheric discontinuities beneath the Archean Western Australian Craton, which represents one of the oldest continents on the globe, using a novel receiver-based reflectivity approach combined with other geophysical information comprising tomographic P and S wave velocity, radial anisotropy, electrical resistivity, and heat flow data. The MLD is rather shallow with a depth of 68-82 km. Multiple prominent discontinuities are observed in the lithospheric mantle using constructed high-frequency (0.5-4 Hz) P wave reflectivities. These multiple discontinuities coincide well with the broad-scale reduction of relative P and SV wave velocities at the top of the graded transition zone from the lithosphere to the asthenosphere. Strong radial anisotropy in the upper lithosphere mantle tends to be weak across the MLD, which might reflect quasi-laminar lithospheric heterogeneity behavior with a horizontal correlation length that is greater than its vertical correlation length. Broad-scale electrical resistivity variations show little coherence with the MLD. Given these various geophysical observations, the upper lithosphere exhibits rigid and elastic properties above the MLD, while the lower lithosphere tends to be ductile and rheological or viscous. A model comprising quasi-laminar lithospheric heterogeneity could effectively represent the MLD characteristics beneath the Archean continent.

  18. African American and Black Caribbean Feelings of Closeness to Africans

    PubMed Central

    Thornton, Michael C.; Taylor, Robert Joseph; Chatters, Linda M.; Forsythe-Brown, Ivy

    2016-01-01

    African American and Black Caribbean relations dominate research on interactions across black ethnic divides. Using National Survey of American Life data, we explore a different aspect of black interethnic attitudes: how close these groups feel toward Africans. African Americans and Black Caribbeans were largely similar in their feelings of closeness to Africans. For Black Caribbeans, younger and male respondents, those reporting higher levels of financial strain, living in the northeast and persons who immigrated to the United States at least 11 years ago, report feeling especially close to Africans. Being male was the only significant correlate among African Americans. The findings are discussed in relation to how race, ethnicity and national origin shape personal identities within the U.S. and their significance for intergroup perceptions. These broader issues warrant further consideration in light of assertions that race as a defining feature of American life and intergroup relations is obsolete. PMID:28943747

  19. Structural mapping from MSS-LANDSAT imagery: A proposed methodology for international geological correlation studies

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Crepani, E.; Martini, P. R.

    1980-01-01

    A methodology is proposed for international geological correlation studies based on LANDSAT-MSS imagery, Bullard's model of continental fit and compatible structural trends between Northeast Brazil and the West African counterpart. Six extensive lineaments in the Brazilian study area are mapped and discussed according to their regional behavior and in relation to the adjacent continental margin. Among the first conclusions, correlations were found between the Sobral Pedro II Lineament and the megafaults that surround the West African craton; and the Pernambuco Lineament with the Ngaurandere Linemanet in Cameroon. Ongoing research to complete the methodological stages includes the mapping of the West African structural framework, reconstruction of the pre-drift puzzle, and an analysis of the counterpart correlations.

  20. Upper mantle Q and thermal structure beneath Tanzania, East Africa from teleseismic P wave spectra

    NASA Astrophysics Data System (ADS)

    Venkataraman, Anupama; Nyblade, Andrew A.; Ritsema, Jeroen

    2004-08-01

    We measure P wave spectral amplitude ratios from deep-focus earthquakes recorded at broadband seismic stations of the Tanzania network to estimate regional variation of sublithospheric mantle attenuation beneath the Tanzania craton and the eastern branch of the East African Rift. One-dimensional profiles of QP adequately explain the systematic variation of P wave attenuation in the sublithospheric upper mantle: QP ~ 175 beneath the cratonic lithosphere, while it is ~ 80 beneath the rifted lithosphere. By combining the QP values and a model of P wave velocity perturbations, we estimate that the temperature beneath the rifted lithosphere (100-400 km depth) is 140-280 K higher than ambient mantle temperatures, consistent with the observation that the 410 km discontinuity in this region is depressed by 30-40 km.

  1. Mesoproterozoic evolution of the Río de la Plata Craton in Uruguay: at the heart of Rodinia?

    NASA Astrophysics Data System (ADS)

    Gaucher, Claudio; Frei, Robert; Chemale, Farid; Frei, Dirk; Bossi, Jorge; Martínez, Gabriela; Chiglino, Leticia; Cernuschi, Federico

    2011-04-01

    Mesoproterozoic volcanosedimentary units and tectonic events occurring in the Río de la Plata Craton (RPC) are reviewed. A belt consisting of volcanosedimentary successions exhibiting greenschist-facies metamorphism is exposed in the eastern RPC (Nico Pérez Terrane) in Uruguay. The Parque UTE Group consists of basic volcanics and gabbros at the base (1,492 ± 4 Ma, U-Pb on zircon), carbonates in its middle part and interbedded carbonates, shales and acid volcanics (1,429 ± 21 Ma, U-Pb on zircon) at the top. The Mina Verdún Group is made up of rhyolites and acid pyroclastics at its base and top, and Conophyton-bearing limestones and massive dolostones in the middle. A U-Pb LA-ICP MS zircon age of 1,433 ± 6 Ma is reported here for lapilli-tuffs at the base of the Mina Verdún Group (Cerro de las Víboras Formation). This age shows that the Mina Verdún Group immediately postdates the Parque UTE Group, a fact supported by carbon isotope chemostratigraphy. Both units were deformed and metamorphosed between 1.25 and 1.20 Ga, as shown by K-Ar and Ar-Ar ages. This tectonic event affected most of the RPC and led to the accretion of the Nico Pérez Terrane to the remainder of the RPC along the Sarandí del Yí megashear. We report a U-Pb LA-ICP MS zircon age (upper intercept) of 3,096 ± 45 Ma for metatonalites of the La China Complex (Nico Pérez Terrane), which yield a lower intercept age of 1,252 Ma. A proto-Andean, Mesoproterozoic belt is envisaged to account for abundant Mesoproterozoic detrital zircon ages occurring in Ediacaran sandstones of the RPC. If the RPC is fringed at both sides by Mesoproterozoic, Grenville-aged belts it is likely that it occupied a rather central position in Rodinia. A possible location between Laurentia and the Kalahari Craton, and to the south of Amazonia, is suggested.

  2. The Diversity and Evolution of Different type Granitoids in Eastern Dharwar Craton: Evidence from "Arc-Plume" Collision in Neoarchaean

    NASA Astrophysics Data System (ADS)

    Nandy, J.; Dey, S.

    2017-12-01

    Neoarchaean crustal growth, role of plate tectonics and potential secular changes is still disoriented in Dharwar craton. To provide constraints on these questions, geochronological and geochemical data are presented on the unstudied granitoids associated with Kadiri greenstone belt, eastern Dharwar craton. Five diverse type of granitoids suites are identified in that area. Field setting, petrography, whole rock geochemistry study with Sm-Nd isotopes and zircon dates help to identify their source and petrogenesis. Along the eastern margin of the Kadiri belt a sanukitoid-like granitoid body is exposed which was probably derived from a metasomatised mantle wedge above a subduction zone followed by some older crustal contamination. Along the western margin transitional TTG is exposed displaying an intrusive relation with Kadiri dacite-rhyolite. This suite is interpreted to be derived from a mafic source with some enriched crustal component. Further east and west vast area is occupied highly silicic biotite monzogranite which is enriched in LILE, high K2O/Na2O. These granitoids are product of intracrustal shallow melting. At the south-eastern tip of the Kadiri belt occurs a well-foliated and banded transitional TTG which was probably derived from melting of mafic source with some contribution of felsic crustal material. At the north-eastern tip of the belt a highly silicic ferroan granitoid is exposed. Geochemical characteristics indicate that it is A-type granite, produced from shallow melting of a felsic crustal source. The basalt in greenstone belt is generated in oceanic plateau setting and granitoids in arc setting in different time. A tectonic scenario envisaging collision between an arc and oceanic plateau followed by repeated slab break-off and crustal recycling is proposed to explain the evolution of the terrain.

  3. Velocity Structures underneath NRIL seismic station, Russia: Imaging the difference between the Siberian Craton and the West Siberian Basin

    NASA Astrophysics Data System (ADS)

    Youssof, M.; Thybo, H.; Artemieva, I. M.; Vinnik, L. P.

    2016-12-01

    This study discusses analysis of seismic P- and S-wave receiver functions (RFs). We construct RFs using records from NRIL seismic station, which is located between the northwestern edge of the Siberian Craton and the northeastern corner of the West Siberian Basin. We select 511 P- and S-RFs during a span of 7 years of recordings. Analysis of these records is very important as it might reveal the structural difference between these two tectonic settings at the crustal and lithospheric mantle scales as we split the analysis of arrivals from the east and west. The crust seems on average felsic, as concluded by Poisson's rations of 0.25 - 0.27, from the surface to the shallow Moho signal at 32 km. A prominent doublet Moho-like signal is seen in the observation as well as the inversion results. This might be a suggestive of a zone of underplating signature. The inversion evidences some lithospheric mantle stratifications within a frequency of 50 km thickness, in the range from 80 to 240 km depth. These layers observed beneath the region at depths of 85, 130 and 180 and 230 km. The observation images the deep discontinuities within the transition zone (410, 520 and 660 km). We find these converted phases are relatively shallower than the standard timing with earlier signals by 1.5 and 4.5 s, for P and S relative residuals respectively. We present here an extra interpretation based on dividing the directionality of rays into two clusters. This division simulates the present topographic/tectonic division exposed on the surface of Norilsk, due to the major NNW-SSE (150° azimuth from North) main divide. From this analysis, we find that the western division (West Basin mantle) has more distinct mantle discontinuities than the case in the eastern side (Cratonic mantle).

  4. Episodic diamond growth beneath the Kaapvaal Craton at Jwaneng Mine, Botswana

    NASA Astrophysics Data System (ADS)

    Gress, Michael U.; Howell, Daniel; Chinn, Ingrid L.; Speich, Laura; Kohn, Simon C.; van den Heuvel, Quint; Schulten, Ellen; Pals, Anna S. M.; Davies, Gareth R.

    2018-05-01

    Important implications for the interior workings of the Earth can be drawn by studying diamonds and their inclusions. To better understand the timing and number of diamond forming events beneath the NW margin of the Kaapvaal Craton, a comprehensive reassessment of Jwaneng's diamond populations has been undertaken. We report new inclusion abundance data from the visual examination of 130,000 diamonds that validate the predominance of an eclogitic diamond suite (up to 88%) with on average 5% inclusion-bearing diamonds (with inclusions >10 μm in size). From this population, polished plates from 79 diamonds of eclogitic and peridotitic paragenesis have been studied with cathodoluminescence (CL) imaging and infrared spectroscopy (FTIR) traverses. The majority (80%) record major changes in N concentration and aggregation states, as well as sharp boundaries in the CL images of individual plates that are interpreted to demarcate discrete diamond growth events. In addition, bulk FTIR data have been acquired for 373 unpolished diamonds. Silicate inclusions sampled from distinct growth zones define 2 compositional groups of omphacites and pyrope-almandines associated with different N contents in their diamond hosts. These findings reinforce previous observations that at Jwaneng at least seven individual diamond forming events can be identified - 3 peridotitic and 4 eclogitic. The results demonstrate that detailed examination of diamond plates by CL imaging and FTIR traverses is necessary to unveil the complex history recorded in diamonds.

  5. Identifying tagging SNPs for African specific genetic variation from the African Diaspora Genome

    PubMed Central

    Johnston, Henry Richard; Hu, Yi-Juan; Gao, Jingjing; O’Connor, Timothy D.; Abecasis, Gonçalo R.; Wojcik, Genevieve L; Gignoux, Christopher R.; Gourraud, Pierre-Antoine; Lizee, Antoine; Hansen, Mark; Genuario, Rob; Bullis, Dave; Lawley, Cindy; Kenny, Eimear E.; Bustamante, Carlos; Beaty, Terri H.; Mathias, Rasika A.; Barnes, Kathleen C.; Qin, Zhaohui S.; Preethi Boorgula, Meher; Campbell, Monica; Chavan, Sameer; Ford, Jean G.; Foster, Cassandra; Gao, Li; Hansel, Nadia N.; Horowitz, Edward; Huang, Lili; Ortiz, Romina; Potee, Joseph; Rafaels, Nicholas; Ruczinski, Ingo; Scott, Alan F.; Taub, Margaret A.; Vergara, Candelaria; Levin, Albert M.; Padhukasahasram, Badri; Williams, L. Keoki; Dunston, Georgia M.; Faruque, Mezbah U.; Gietzen, Kimberly; Deshpande, Aniket; Grus, Wendy E.; Locke, Devin P.; Foreman, Marilyn G.; Avila, Pedro C.; Grammer, Leslie; Kim, Kwang-Youn A.; Kumar, Rajesh; Schleimer, Robert; De La Vega, Francisco M.; Shringarpure, Suyash S.; Musharoff, Shaila; Burchard, Esteban G.; Eng, Celeste; Hernandez, Ryan D.; Pino-Yanes, Maria; Torgerson, Dara G.; Szpiech, Zachary A.; Torres, Raul; Nicolae, Dan L.; Ober, Carole; Olopade, Christopher O; Olopade, Olufunmilayo; Oluwole, Oluwafemi; Arinola, Ganiyu; Song, Wei; Correa, Adolfo; Musani, Solomon; Wilson, James G.; Lange, Leslie A.; Akey, Joshua; Bamshad, Michael; Chong, Jessica; Fu, Wenqing; Nickerson, Deborah; Reiner, Alexander; Hartert, Tina; Ware, Lorraine B.; Bleecker, Eugene; Meyers, Deborah; Ortega, Victor E.; Maul, Pissamai; Maul, Trevor; Watson, Harold; Ilma Araujo, Maria; Riccio Oliveira, Ricardo; Caraballo, Luis; Marrugo, Javier; Martinez, Beatriz; Meza, Catherine; Ayestas, Gerardo; Francisco Herrera-Paz, Edwin; Landaverde-Torres, Pamela; Erazo, Said Omar Leiva; Martinez, Rosella; Mayorga, Alvaro; Mayorga, Luis F.; Mejia-Mejia, Delmy-Aracely; Ramos, Hector; Saenz, Allan; Varela, Gloria; Marina Vasquez, Olga; Ferguson, Trevor; Knight-Madden, Jennifer; Samms-Vaughan, Maureen; Wilks, Rainford J.; Adegnika, Akim; Ateba-Ngoa, Ulysse; Yazdanbakhsh, Maria

    2017-01-01

    A primary goal of The Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) is to develop an ‘African Diaspora Power Chip’ (ADPC), a genotyping array consisting of tagging SNPs, useful in comprehensively identifying African specific genetic variation. This array is designed based on the novel variation identified in 642 CAAPA samples of African ancestry with high coverage whole genome sequence data (~30× depth). This novel variation extends the pattern of variation catalogued in the 1000 Genomes and Exome Sequencing Projects to a spectrum of populations representing the wide range of West African genomic diversity. These individuals from CAAPA also comprise a large swath of the African Diaspora population and incorporate historical genetic diversity covering nearly the entire Atlantic coast of the Americas. Here we show the results of designing and producing such a microchip array. This novel array covers African specific variation far better than other commercially available arrays, and will enable better GWAS analyses for researchers with individuals of African descent in their study populations. A recent study cataloging variation in continental African populations suggests this type of African-specific genotyping array is both necessary and valuable for facilitating large-scale GWAS in populations of African ancestry. PMID:28429804

  6. Geodynamic Setting of Proterozoic Dyke Swarms of the Leo-Man Craton, West Africa, Based on New U-Pb Dating and Geochemistry

    NASA Astrophysics Data System (ADS)

    Baratoux, L.; Jessell, M.; Söderlund, U.; Ernst, R. E.; Benoit, M.; Naba, S.; Cournede, C.; Perrouty, S.; Metelka, V.; Yatte, D.; Diallo, D. P.; Ndiaye, P. M.; Dioh, E.; Baratoux, D.

    2016-12-01

    Over 20 sets of dolerite dykes crosscutting Paleoproterozoic basement in West Africa were distinguished via the interpretation of regional and high-resolution airborne magnetic data available over the West African Craton. Some of the dykes reach over 300 km in length and are considered parts of much larger systems of mafic dyke swarms which form the plumbing system of Large Igneous Provinces (LIPs). Five different dyke swarms in Burkina Faso, Niger, Ghana and Senegal were investigated. In terms of petrography and composition, the mafic dykes correspond to tholeiitic basalts and are typically composed of plagioclase + clinopyroxene ± orthopyroxene ± olivine. They display a doleritic texture of variable grain size. Eleven ID-TIMS U-Pb ages obtained on baddeleyite define five generations of Proterozoic age. The N10 Libiri dyke swarm, found in western Niger, yielded an age of ca. 1790 Ma. The N40 Bassari swarm in Senegal was dated at ca. 1764 Ma, and is potentially linked to the 1790 Ma Libiri swarm, 1400 km away. The 300 by 400 km Korsimoro N100 dyke swarm transects central Burkina Faso and was dated at ca. 1575 Ma. Five ca. 1520 Ma ages were obtained for dykes of the Essakane swarm, three in Burkina Faso, one from Ghana (N130 orientation) and one from Senegal (E-W orientation), and document a large extent (600 km wide and 1500 km long) and short duration of dyke emplacement. The Manso N350 dyke swarm in southern Ghana, which is about 400 km long and about 200 km wide, yields a preliminary age of ca 870 Ma. A mantle plume origin is suggested for these swarms, especially the 1790-1765 Ma Libiri-Bassari swarm and the 1520 Ma Essakane swarms (which have lithosphere-contaminated E-MORB chemistry), whose scale is similar to largest giant radiating swarms (e.g. CAMP and Mackenzie). The 870 Ma Manso swarm has composition closer to OIB, consistent with a plume/hotspot origin. The 1575 Ma Korsimoro swarm has composition between EMORB and NMORB, which suggests a rift setting.

  7. Conversation on African Music.

    ERIC Educational Resources Information Center

    Saunders, Leslie R.

    1985-01-01

    A voice and music education teacher at the University of Lagos, Nigeria, talks about African music in this interview. Topics discussed include differences between African and Western music, African melody, rules for composing African music, the theory of counterpoint, and the popularity of classical composers in Nigeria. (RM)

  8. The African Connection

    ERIC Educational Resources Information Center

    Oguntoyinbo, Lekan

    2012-01-01

    From student and faculty exchanges to joint research projects, U.S. universities maintain a broad spectrum of collaborative relationships with African universities. It's unclear how many U.S. colleges and universities have partnerships with African universities. The African Studies Association, an organization of scholars, doesn't keep that kind…

  9. The Mackenzie River magnetic anomaly, Yukon and Northwest Territories, Canada-Evidence for Early Proterozoic magmatic arc crust at the edge of the North American craton

    USGS Publications Warehouse

    Pilkington, M.; Saltus, R.W.

    2009-01-01

    We characterize the nature of the source of the high-amplitude, long-wavelength, Mackenzie River magnetic anomaly (MRA), Yukon and Northwest Territories, Canada, based on magnetic field data collected at three different altitudes: 300??m, 3.5??km and 400??km. The MRA is the largest amplitude (13??nT) satellite magnetic anomaly over Canada. Within the extent of the MRA, source depth estimates (8-12??km) from Euler deconvolution of low-altitude aeromagnetic data show coincidence with basement depths interpreted from reflection seismic data. Inversion of high-altitude (3.5??km) aeromagnetic data produces an average magnetization of 2.5??A/m within a 15- to 35-km deep layer, a value typical of magmatic arc complexes. Early Proterozoic magmatic arc rocks have been sampled to the southeast of the MRA, within the Fort Simpson magnetic anomaly. The MRA is one of several broad-scale magnetic highs that occur along the inboard margin of the Cordillera in Canada and Alaska, which are coincident with geometric changes in the thrust front transition from the mobile belt to stable cratonic North America. The inferred early Proterozoic magmatic arc complex along the western edge of the North American craton likely influenced later tectonic evolution, by acting as a buttress along the inboard margin of the Cordilleran fold-and-thrust belt. Crown Copyright ?? 2008.

  10. Tectonic evolution of greenstone-Gneiss association in Dharwar Craton, South India: Problems and perspectives for future research

    NASA Technical Reports Server (NTRS)

    Rao, Y. J. B.

    1986-01-01

    The two fold stratigraphic subdivision of the Archean-Proterozoic greenstone-gneiss association of Dharwar craton into an older Sargur group (older than 2.9 Ga.) and a younger Dharwar Supergroup serves as an a priori stratigraphic model. The concordant greenstone (schist)-gneiss (Peninsular gneiss) relationships, ambiguities in stratigraphic correlations of the schist belts assigned to Sargur group and difficulties in deciphering the older gneiss units can be best appreciated if the Sargur group be regarded as a trimodal association of: (1) ultrabasic-mafic metavolcanics (including komatiites), (2) clastic and nonclastic metasediments and paragneisses and (3) mainly tonalite/trondhemite gneisses and migmatites of diverse ages which could be as old as c. 3.4 ga. or even older. The extensive occurrence of this greenstone-gneiss complex is evident from recent mapping in many areas of central and southern Karnataka State.

  11. Looking for the Edge: Does Lateral Change in Azimuthal Anisotropy Mark the Limit of the North American Craton?

    NASA Astrophysics Data System (ADS)

    Chen, X.; Levin, V. L.; Li, Y.; Yuan, H.

    2017-12-01

    Thickness of the lithosphere in eastern North America decreases from nearly 250 km beneath the central craton to 90 - 110 km at the coast. The rapid thinning suggested by tomographic images of shear wave velocity takes place beneath the Proterozoic Grenville province. Shear wave splitting measurements of core refracted waves on a 1300 km long array from James Bay to the Fundy Basin show that the average delay time increases from 0.5 s in the Superior Province to 1 s in the Appalachians. Also, azimuthal anisotropy constrained by the joint inversion of surface and body waves (Yuan and Romanowicz, 2011) has smaller amplitude under the older Superior Province than the younger Appalachians. Significantly, the increases in anisotropy amplitude and the splitting delay times happen at nearly the same place, beneath the Grenville Province. Due to the limited lateral resolution of 500 km of the tomographic model, it is difficult to relate changes in seismic wave speed and anisotropy to tectonic boundaries on the surface. On the other hand, our new measurements of shear wave splitting are done with lateral step of 50 km or less, and thus offer us a way to detect the exact location where upper mantle fabric changes. We carry out forward modeling using a 1D anisotropic layered reflectivity method of Levin and Park (1997) and taking Yuan and Romanowicz (2011) model as a starting point. Our working hypothesis is that the upper mantle volume characterized by high seismic velocity and small amplitude of anisotropy represents old cratonic lithosphere of North America. Through our detailed modeling of closely spaced observations we seek to delineate its southern edge, and to characterize its internal structure. Figure Caption: All splitting results plotted on a background of distribution of shear wave velocity and contour map of azimuthal anisotropy amplitude at 160 km depth. Orientations of sticks which are centered at the stations represent fast polarizations, while the lengths are

  12. Petrogenesis of the middle Jurassic appinite and coeval granitoids in the Eastern Hebei area of North China Craton

    NASA Astrophysics Data System (ADS)

    Fan, Wenbo; Jiang, Neng; Xu, Xiyang; Hu, Jun; Zong, Keqing

    2017-05-01

    An integrated study of zircon U-Pb ages and Hf-O isotopic compositions, whole rock elemental and Sr-Nd isotope geochemistry was conducted on three lithologically diverse middle Jurassic plutons from the Eastern Hebei area of the North China Craton (NCC), in order to reveal both their petrogenesis and possible tectonic affinity. The three plutons have consistent magmatic zircon U-Pb ages from 167 ± 1 Ma to 173 ± 1 Ma. The Nianziyu pluton has typical characteristics of appinite with low SiO2 (43.7-52.6%), high Ca, Mg, Fe and H2O contents. It possesses subduction-related trace element patterns, enriched Nd-Hf isotopic signatures as well as elevated zircon δ18O values (6.2-7.2‰), arguing for an enriched mantle source metasomatized by fluids related to subduction. The Shuihutong monzogranites have high silica (SiO2 = 75.4-75.9%) and alkali contents, low Ca contents and striking negative Ba, Sr and Eu anomalies. Samples from the pluton have more evolved Nd-Hf isotopic values and are considered to be most likely derived from anatexis of ancient lower continental crust. Hybridization between mantle- and ancient lower crust-derived magmas is proposed for the mafic microgranular enclave-bearing Baijiadian granitoids, which are characterized by variable εNd (t) and εHf(t) values. Integrated with the regional geologic history, we suggest that the formation of the three middle Jurassic plutons were related to the subduction of the Paleo-Pacific ocean plate beneath the NCC. Their petrogenetic differences reflect complex magmatic processes in subduction settings involving melting of multiple sources, possible partly facilitated by fluid metasomatism and water-rich magma injection, accompanied with various degrees of magma mixing. The appearance of middle Jurassic appinitic rocks leads us to propose that the NCC destruction and lithosphere thinning were facilitated and controlled by the weakening of the lithospheric mantle after hydration because of the subduction of the

  13. Data science implications in diamond formation and craton evolution

    NASA Astrophysics Data System (ADS)

    Pan, F.; Huang, F.; Fox, P. A.

    2017-12-01

    Diamonds are so-called "messengers" from the deep Earth. Fluid and mineral inclusions in diamonds could reflect the compositions of fluids/melts and wall-rocks in which diamond formed. Recently many diamond samples are examined to study the water content in the mantle transition zone1, the mechanism of diamond formation2 and the mantle evolution history3. However, most of the studies can only explain local activities. Therefore, an overall project of data grouping, comparison and correlation is needed, but limited progress has been made due to a lack of benchmark datasets on diamond formation and effective computing algorithms. In this study, we start by proposing the very first complete and easily-accessible dataset on mineral and fluid inclusions in diamonds. We rescue, collect and organize the data available from papers, journals and other publications resources ([2-4] and more), and then apply several state-of-the-art machine learning methods to tackle this earth science problem by clustering diamond formation process into distinct groups primarily based on the compositions, the formation temperature and pressure, the age and so on. Our ongoing work includes further data exploration and training existing models. Our preliminary results show that diamonds formed from older cratons usually have higher formation temperature. Also peridotitic diamonds take a much larger population than the ecologitic ones. More details are being discovered when we finish constructing the database and training our model. We expect the result to demonstrate the advantages of using machine learning and data science in earth science research problems. Our methodology for knowledge discovery are very general and can be broadly applied to other earth science research problems under the same framework.[1] Pearson et al, Nature (2014); [2] Tomlinson et al, EPSL (2006); [3] Weiss et al, Nature (2016); [4] Stachel and Harris, Ore Geology Reviews (2008); Weiss et al, EPSL (2013)

  14. Heap/stack guard pages using a wakeup unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gooding, Thomas M; Satterfield, David L; Steinmacher-Burow, Burkhard

    A method and system for providing a memory access check on a processor including the steps of detecting accesses to a memory device including level-1 cache using a wakeup unit. The method includes invalidating level-1 cache ranges corresponding to a guard page, and configuring a plurality of wakeup address compare (WAC) registers to allow access to selected WAC registers. The method selects one of the plurality of WAC registers, and sets up a WAC register related to the guard page. The method configures the wakeup unit to interrupt on access of the selected WAC register. The method detects access ofmore » the memory device using the wakeup unit when a guard page is violated. The method generates an interrupt to the core using the wakeup unit, and determines the source of the interrupt. The method detects the activated WAC registers assigned to the violated guard page, and initiates a response.« less

  15. African Music in the Americas

    ERIC Educational Resources Information Center

    Goines, Leonard

    1977-01-01

    Discusses African music, how it survived slavery, why it manifests itself in specific forms, why some of these forms are almost purely African today while others are very European, the specific characteristics of African music that permeate all African-American music, and why African derived religions are flourishing in the black communities of…

  16. Plume-induced continental break-up from Red Sea to Lake Malawi: 3D numerical models of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Koptev, Alexander; Burov, Evgueni; Calais, Eric; Leroy, Sylvie; Gerya, Taras; Cloetingh, Sierd; Guillou-Frottier, Laurent

    2017-04-01

    We use numerical thermo-mechanical experiments in order to analyze the role of active mantle plume, far-field tectonic stresses and pre-existing lithospheric heterogeneities in structural development of the East African Rift system (EARS). It is commonly assumed that the Cenozoic rifts have avoided the cratons and follow the mobile belts which serve as the weakest pathways within the non-uniform material structured during pre-rift stages. Structural control of the pre-existing heterogeneities within the Proterozoic belts at the scale of individual faults or rifts has been demonstrated as well. However, the results of our numerical experiments show that the formation of two rift zones on opposite sides of a thick lithosphere segment can be explained without appealing to pre-imposed heterogeneities at the crustal level. These models have provided a unified physical framework to understand the development of the Eastern branch, the Western branch and its southern prolongation by the Malawi rift around thicker lithosphere of the Tanzanian and Bangweulu cratons as a result of the interaction between pre-stressed continental lithosphere and single mantle plume anomaly corresponding to the Kenyan plume. The second series of experiments has been designed in order to investigate northern segment of the EARS where Afro-Arabian plate separation is supposed to be related with the impact of Afar mantle plume. We demonstrate that whereas relatively simple linear rift structures are preferred in case of uni-directional extension, more complex rifting patterns combining one or several ridge-ridge-ridge triple junctions can form in response to bi-directional extensional far-field stresses. In particular, our models suggest that Afar triple junction represents an end-member mode of plume-induced bi-directional rifting combining asymmetrical northward traction and symmetrical EW extension of similar magnitudes. The presence of pre-existing linear weak zones appears to be not

  17. Constraining the Composition of the Subcontinental Lithospheric Mantle Beneath the East African Rift: FTIR Analysis of Water in Spinel Peridotite Mantle Xenoliths

    NASA Astrophysics Data System (ADS)

    Erickson, S. G.; Nelson, W. R.; Peslier, A. H.; Snow, J. E.

    2014-12-01

    The East African Rift System was initiated by the impingement of the Afar mantle plume on the base of the non-cratonic continental lithosphere (assembled during the Pan-African Orogeny), producing over 300,000 km3 [1] of continental flood basalts ~30 Ma ago. The contribution of the subcontinental lithospheric mantle (SCLM) to this voluminous period of volcanism is implied based on basaltic geochemical and isotopic data. However, the role of percolating melts on the SCLM composition is less clear. Metasomatism is capable of hybridizing or overprinting the geochemical signature of the SCLM. In addition, models suggest that adding fluids to lithospheric mantle affects its stability [e.g. 2, 3]. We investigated the nature of the SCLM using Fourier transform infrared spectrometry (FTIR) to measure water content in mantle xenoliths entrained in young (1 Ma) basaltic lavas from the Ethiopian volcanic province. The mantle xenoliths consist dominantly of spinel lherzolites and are composed of nominally anhydrous minerals, which can contain trace water as H in mineral defects. Eleven mantle xenoliths come from the Injibara-Gojam region and two from the Mega-Sidamo region. Water abundances of olivines in six samples are 1-5ppm H2O while the rest are below the limit of detection (<0.5 ppm H2O); orthopyroxene and clinopyroxene contain 80-238 and 111-340 ppm wt H2O, respectively. Two xenoliths have higher water contents - a websterite (470 ppm) and dunite (229 ppm), consistent with involvement of ascending melts. The low water content of the upper SCLM beneath Ethiopia is as dry as the oceanic mantle [2] except for small domains represented by percolating melts. Consequently, rifting of the East African lithosphere may not have been facilitated by a hydrated upper mantle. [1] Hoffman et al., 1997 Nature 389, 838-841. [2] Peslier et al., 2010 Nature 467, 78-81. [3] Lee et al., 2011 AREPS 39, 59-90.

  18. Structure and petrology of Pan-African nepheline syenites from the South West Cameroon; Implications for their emplacement mode, petrogenesis and geodynamic significance

    NASA Astrophysics Data System (ADS)

    Emmanuel, Nsifa Nkonguin; Rigobert, Tchameni; Anne, Nédélec; Roberto, Siqueira; André, Pouclet; Jérôme, Bascou

    2013-11-01

    Three late-Neoproterozoic nepheline syenite intrusions crop out close to the late-Pan-African SW Cameroon shear zone, namely the Mont des Eléphants, Eboundja and Rocher du Loup intrusions. They are characterized by magmatic to solid-state deformation structures and microstructures. Their magmas were mainly derived from partial melting of the subcontinental lithospheric mantle. Magmatic differentiation may have occurred through fractionation of clinopyroxene, amphibole, plagioclase and accessory minerals (apatite, sphene, magnetite and zircon). Bulk magnetic susceptibilities are variable in intensity depending of the magnetite content. Their magnetic anisotropies are unusally high, especially in the Rocher du Loup intrusion. The trajectories of magnetic foliations and lineations display an arcuate shape from an E-W direction in the easternmost Mont des Eléphants to a N-S direction in the Rocher du Loup intrusion. These features are consistent with a synkinematic emplacement in relation with the sinistral motion along the SW Cameroon shear zone, whose age is therefore dated by the age of the syenites, i.e. 590 Ma. Magma genesis and ascent was likely favored by a large gradient in lithospheric thickness along the western margin of the Congo craton.

  19. In-situ trace element and Sr isotopic compositions of mantle xenoliths constrain two-stage metasomatism beneath the northern North China Craton

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Liu, Yongsheng; Chen, Chunfei; Xu, Rong; Ducea, Mihai N.; Hu, Zhaochu; Zong, Keqing

    2017-09-01

    Subduction and collision are the key processes triggering geochemical refertilization of the lithospheric mantle beneath cratons. However, the way that the subducted plate influences the cratonic lithospheric mantle remains unclear. Here, in-situ major and trace-element and Sr isotopic compositions of peridotite and pyroxenite xenoliths carried by the Dongbahao Cenozoic basalts, located close to the northern margin of North China Craton (NCC), were examined to investigate the effects of the subducted Paleo-Asian oceanic plate on the lithospheric mantle of the NCC. Based on petrographic and geochemical features, peridotites were subdivided into two types recording two-stage metasomatism. Clinopyroxene (Cpx) in both types of peridotites show chemical zoning. In those peridotites we refer to as Type 1 peridotites, Cpx exhibit uniform convex-upward rare earth element (REE) patterns but core-rim variations in 87Sr/86Sr ratios (0.7065-0.7082 in the cores and 0.7043-0.7059 in the spongy rims), and have high (La/Yb)N ratios (> 1.12) (N means normalized to chondrite), relatively low Ti/Eu ratios (< 3756) and negative high field strength element (HFSE) (Nb, Ta, Zr, Hf and Ti) anomalies in the cores, indicating early-stage metasomatism by carbonatitic melts derived from the subducted sedimentary carbonate rocks. Cpx in the Type 2 peridotites have highly variable REE patterns (from light rare earth element (LREE)-depleted to LREE-enriched) and feature zoned Sr isotopic compositions contrasting to those in Type 1, i.e., increasing 87Sr/86Sr ratios from the cores (0.7020-0.7031) to the spongy rims (0.7035-0.7041). Accompanying variations of 87Sr/86Sr ratios, Cpx in both types of peridotites display increasing Nb/La ratios from the cores to the spongy rims. In addition, Cpx in the Type 2 peridotites show remarkably increased (La/Yb)N, Ca/Al, Sm/Hf and Zr/Hf ratios but decreased Ti/Eu and Ti/Nb ratios from the cores to the spongy rims. These features imply a later

  20. Obesity and African Americans

    MedlinePlus

    ... Data > Minority Population Profiles > Black/African American > Obesity Obesity and African Americans African American women have the ... youthonline . [Accessed 08/18/2017] HEALTH IMPACT OF OBESITY People who are overweight are more likely to ...

  1. Lithospheric layering in the North American craton revealed by including Short Period Constraints in Full Waveform Tomography

    NASA Astrophysics Data System (ADS)

    Roy, C.; Calo, M.; Bodin, T.; Romanowicz, B. A.

    2017-12-01

    Recent receiver function studies of the North American craton suggest the presence of significant layering within the cratonic lithosphere, with significant lateral variations in the depth of the velocity discontinuities. These structural boundaries have been confirmed recently using a transdimensional Markov Chain Monte Carlo approach (TMCMC), inverting surface wave dispersion data and converted phases simultaneously (Calò et al., 2016; Roy and Romanowicz 2017). The lateral resolution of upper mantle structure can be improved with a high density of broadband seismic stations, or with a sparse network using full waveform inversion based on numerical wavefield computation methods such as the Spectral Element Method (SEM). However, inverting for discontinuities with strong topography such as MLDS's or LAB, presents challenges in an inversion framework, both computationally, due to the short periods required, and from the point of view of stability of the inversion. To overcome these limitations, and to improve resolution of layering in the upper mantle, we are developing a methodology that combines full waveform inversion tomography and information provided by short period seismic observables. We have extended the 30 1D radially anisotropic shear velocity profiles of Calò et al. 2016 to several other stations, for which we used a recent shear velocity model (Clouzet et al., 2017) as constraint in the modeling. These 1D profiles, including both isotropic and anisotropic discontinuities in the upper mantle (above 300 km depth) are then used to build a 3D starting model for the full waveform tomographic inversion. This model is built after 1) homogenization of the layered 1D models and 2) interpolation between the 1D smooth profiles and the model of Clouzet et al. 2017, resulting in a smooth 3D starting model. Waveforms used in the inversion are filtered at periods longer than 30s. We use the SEM code "RegSEM" for forward computations and a quasi-Newton inversion

  2. A SNP test to identify Africanized honeybees via proportion of 'African' ancestry.

    PubMed

    Chapman, Nadine C; Harpur, Brock A; Lim, Julianne; Rinderer, Thomas E; Allsopp, Michael H; Zayed, Amro; Oldroyd, Benjamin P

    2015-11-01

    The honeybee, Apis mellifera, is the world's most important pollinator and is ubiquitous in most agricultural ecosystems. Four major evolutionary lineages and at least 24 subspecies are recognized. Commercial populations are mainly derived from subspecies originating in Europe (75-95%). The Africanized honeybee is a New World hybrid of A. m. scutellata from Africa and European subspecies, with the African component making up 50-90% of the genome. Africanized honeybees are considered undesirable for bee-keeping in most countries, due to their extreme defensiveness and poor honey production. The international trade in honeybees is restricted, due in part to bans on the importation of queens (and semen) from countries where Africanized honeybees are extant. Some desirable strains from the United States of America that have been bred for traits such as resistance to the mite Varroa destructor are unfortunately excluded from export to countries such as Australia due to the presence of Africanized honeybees in the USA. This study shows that a panel of 95 single nucleotide polymorphisms, chosen to differentiate between the African, Eastern European and Western European lineages, can detect Africanized honeybees with a high degree of confidence via ancestry assignment. Our panel therefore offers a valuable tool to mitigate the risks of spreading Africanized honeybees across the globe and may enable the resumption of queen and bee semen imports from the Americas. © 2015 John Wiley & Sons Ltd.

  3. The Effects of Environmental Factors on Marine Micro-Phytoplankton Community Composition in the Summertime Western North Atlantic Ocean During WACS II.

    NASA Astrophysics Data System (ADS)

    Stone, J. T.; Vaillancourt, R. D.

    2016-02-01

    Micro-phytoplankton community composition was determined along a section in the western North Atlantic Ocean between waters near Bermuda and the New England continental shelf during the Western Atlantic Climate Study II (WACS II) from May 18, 2014 to June 6, 2014. Seawater samples were collected from the underway line (z = 5 meters) of the RV Knorr and preserved in both Lugol's and formalin preservatives. The concentrations of centric diatoms, pennate diatoms, dinoflagellates and dictyophytes were determined using light microscopy of preserved samples settled in Utermöhl chambers. Cell abundance data were compared with the temperature and salinity of the surface seawater to determine statistical relationships between environmental factors and phytoplankton community composition. The micro-phytoplankton concentrations were lowest around the Sargasso Sea. Diatom concentrations varied along the transect from the Sargasso Sea. Dinoflagellates were the only group of micro-phytoplankton in this study to have a clear pattern in their distribution. Dinoflagellates were most numerous in the northern-most waters and were absent in the southern-most point of the study, in the Sargasso Sea. The most abundant species of diatoms observed were in the genera Pseudo-Nitzschia and Leptocylindrus. The most abundant species of dinoflagellate were of the genus Protoperidinium. Many of the samples with the highest species richness were closer to the coast and more northern than the samples with low species richness, however the Simpson's diversity indices varied amongst regions. While many of the samples were diverse, the lowest of which was in the Sargasso Sea, there was no clear pattern of species diversity with respect to the distance from the coast. Dinoflagellates, centric diatoms, pennate diatoms, dictyophytes and diversity indices were significantly weakly correlated with temperature, while dinoflagellates were significantly strongly correlated with salinity.

  4. Very early Archean crustal-accretion complexes preserved in the North Atlantic craton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutman, A.P.; Collerson, K.D.

    1991-08-01

    The North Atlantic craton contains very early Archean supracrustal rocks, orthogneisses, and massive ultramafic rocks. Most units of supracrustal rocks are dominated by mafic volcanic rocks, layered gabbros, and banded iron formations, bust some also contain abundant felsic volcanic-sedimentary rocks, quartzites, and marbles. Some quartzites contain detrital zircons derived from rocks identical in age to felsic volcanic-sedimentary rocks in these sequences (ca. 3800 Ma) and also from older (ca. 3850 Ma) sources. The presence of the ca. 3850 Ma detrital zircons suggests that the supracrustal units containing them were deposited on, or close to, ca. 3850 Ma sialic crust. Themore » massive ultramafic rocks have chemical affinities to upper mantle rocks. The voluminous suites of tonalitic gneisses are dominated by 3700-3730 Ma bodies that intrude the supracrustal sequences, but they also locally contain components with ages between 3820 and 3920 Ma. The diverse supracrustal units, upper mantle rocks, and {ge} 3820 Ma components in the gneisses were tectonically interleaved in very early Archean convergent plate boundaries, giving rise to accretion complexes. In the period 3700-3730 Ma, voluminous tonalitic magmas produced by partial melting of predominantly mafic rocks in the base of the accretion complexes were emplaced at higher levels, forming juvenile continental crust and leaving behind a refractory lower crustal to upper mantle substrate.« less

  5. Integrated Analysis of Airborne Geophysical Data to Understand the Extent, Kinematics and Tectonic Evolution of the Precambrian Aswa Shear Zone in East Africa.

    NASA Astrophysics Data System (ADS)

    Katumwehe, A. B.; Atekwana, E. A.; Abdelsalam, M. G.; Laó-Dávila, D. A.

    2014-12-01

    The Aswa Shear zone (ASZ) is a Precambrian lithospheric structure which forms the western margin of the East African Orogeny (EAO) that influenced the evolution of many tectonic events in Eastern Africa including the East African Rift System. It separates the cratonic entities of Saharan Metacraton in the northeast from the Congo craton and the Tanzanian craton and the Kibaran orogenic belt to the southwest. However little is known about its kinematics and the extent and tectonic origin are not fully understood. We developed a new technique based on the tilt method to extract kinematic information from high-resolution airborne magnetic data. We also used radiometric data over Uganda integrated with Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) in South Sudan to understand the extent, kinematics and define the tectonic origin of ASZ. (1) Our results suggest that the ASZ extends in a NW-SE for ~550 km in Uganda and South Sudan. (2) The airborne magnetic and radiometric data revealed a much wider (~50 km) deformation belt than the mapped 5-10 km of exposed surface expression of the ASZ. The deformation belt associated with the shear is defined by three NW-trending sinistral strike-slip shear zones bounding structural domains with magnetic fabrics showing splays of secondary shear zones and shear-related folds. These folds are tighter close to the discrete shear zones with their axial traces becoming sub-parallel to the shear zones. Similar fold patterns are observed from South Sudan in the SRTM DEM. We interpret these folds as due to ENE-WSW shortening associated with the sinistral strike-slip movement. (3) To the northeast of the shear zone, the magnetic patterns suggest a series of W-verging nappes indicative of strong E-W oriented shortening. Based on the above observations, we relate the evolution of the ASZ to Neoproterozoic E-W collision between East and West Gondwana. This collision produced E-W contraction resulting in W-verging thrusts

  6. Select Components and Finish System Design of a Window Air Conditioner with Propane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Abdelaziz, Omar

    This report describes the technical targets for developing a high efficiency window air conditioner (WAC) using propane (R-290). The baseline unit selected for this activity is a GE R-410A WAC. We established collaboration with a Chinese rotary compressor manufacturer, to select an R-290 compressor. We first modelled and calibrated the WAC system model using R-410A. Next, we applied the calibrated system model to design the R-290 WAC, and decided the strategies to reduce the system charge below 260 grams and achieve the capacity and efficiency targets.

  7. Lithospheric Delamination or Relict Slab Beneath the Former North American Cratonic Margin in Idaho and Oregon? New Constraints From Seismic Tomography.

    NASA Astrophysics Data System (ADS)

    Stanciu, A. C.; Russo, R. M.; Mocanu, V. I.; VanDecar, J. C.; Hongsresawat, S.; Bremner, P. M.; Torpey, M. E.; Panning, M. P.

    2016-12-01

    We present a new high-resolution P-wave velocity model of the upper mantle beneath the former passive margin of the North American craton in Oregon and Idaho. We identify high velocity anomalies in the central part of the model and low velocity anomalies to the northwest and southeast. Our results derive from an integrated data set of teleseismic P waves recorded at 145 broadband stations, 85 deployed between 2011 and 2013 as part of the IDOR Passive experiment, and 60 USArray-TA stations. We determined 15,000 travel-times using multi-channel cross-correlation (VanDecar and Crosson, 1990). Phanerozoic tectonic events that affected upper mantle seismic structure here include subduction of Farallon and Juan de Fuca lithosphere, accretion of Blue Mountains terranes, Sevier and Laramide orogenies, Idaho batholith formation, Yellowstone and Columbia River volcanism, and Basin and Range extension. Our results indicate a high P-wave velocity anomaly located beneath the Idaho Batholith in west-central Idaho traceable down to 150-200 km depth. A similar anomaly identified by Schmandt and Humphrey (2011) beneath Washington and Montana was interpreted as a slab remnant from the accretion of Siletzia to North America. Alternatively, the fast Vp anomalies are delaminated North American craton lithosphere. Thickened lithosphere may have formed during Farallon subduction, terrane collision and accretion. Crust as much as 55 km thick present during Late Cretaceous (Foster et al., 2001; Gaschnig et al., 2011) is potentially indicative of lithospheric thickening leading to delamination. To the southeast, upper mantle low velocity anomalies occur beneath the Western Snake River Plain. We associate these low velocities with high temperatures generated by the Yellowstone mantle plume system. We observe a low velocity anomaly beneath the Wallowa Mountains starting at 150-200 km extending to depths below the resolution of our model.

  8. Three-Dimensional Rheological Structure of North China Craton Determined by Integration of Multiple observations: Controlling Role for Lithospheric Rifting

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Shan, B.; Li, Y.

    2017-12-01

    The North China Craton (NCC) has undergone significant lithospheric rejuvenation in late Mesozoic and Cenozoic, one feature of which is the widespread extension and rifting. The extension is distinct between the two parts of NCC: widespread rifting in the eastern NCC and localized narrow rifting in the west. The mechanism being responsible for this difference is uncertain and highly debated. Since lithospheric deformation can be regarded as the response of lithosphere to various dynamic actions, the rheological properties of lithosphere must have a fundamental influence on its tectonics and deformation behavior. In this study, we investigated the 3D thermal and rheological structure of NCC by developing a model integrating several geophysical observables (such as surface heatflow, regional elevation, gravity and geoid anomalies, and seismic tomography models). The results exhibit obvious lateral variation in rheological structure between the eastern and western NCC. The overall lithospheric strength is higher in the western NCC than in the east. Despite of such difference in rheology, both parts of NCC are characterized by mantle dominated strength regime, which facilitates the development of narrow rifting. Using ancient heatflow derived from mantle xenoliths studies, and taking the subduction-related dehydration reactions during Mesozoic into account, we constructed the thermal and rheological structure of NCC in Ordovician, early Cretaceous and early Cenozoic. Combining the evidence from numerical simulations, we proposed an evolution path of the rifting in NCC. The lithosphere of NCC in Ordovician was characterized by a normal craton features: low geotherm, high strength and mantle dominated regime. During Jurassic and Cretaceous, the mantle lithosphere in the eastern NCC was hydrated by fluid released by the suduction of the Pacific plate, resulting in weakening of the lithosphere and a transition from mantle dominated to crust dominated regime, which

  9. Geochemistry and mineralogy of sediments from the Ventersdorp and Transvaal Supergroups, South Africa: Cratonic evolution during the early Proterozoic

    NASA Astrophysics Data System (ADS)

    Wronkiewicz, David J.; Condie, Kent C.

    1990-02-01

    Approximately 100 pelite and 12 quartzite samples from the Ventersdorp (~2.7 Ga) and Transvaal Supergroups (~2.6-2.1 Ga) have been analyzed to monitor the early Proterozoic evolution of the Kaapvaal Craton, southern Africa. From oldest to youngest, pelites were sampled from the Ventersdorp-Bothaville (BOT), Transvaal-Selati (SEL), Black Reef (BR), Timeball Hill (TH), Strubenkop (STR), and Silverton (SIL) Formations. Paleocurrent measurements in Transvaal quartzites indicate sources lying predominantly to the north and east. Relative to the BOT-SEL-BR, pelites from the TH-STR-SIL are enriched in heavy-REE, LILE, Zr, Hf, Nb, and Ta, depleted in K 2O, MgO, Ni, and Cr, and have lower Cr/Zr, Sc/Th, K 2O/Na 2O, and K/ Rb ratios. Compared to SEL-BR, BOT-TH-STR-SIL pelites have higher light-REE contents and La/Yb ratios, and lower Eu/Eu∗ ratios (0.61-0.66). Relative to NASC (North American Shale Composite), THSTR-SIL pelites are enriched in light-REE, Th, U, Ta, Nb, Sc, Cs, have higher La/Yb ratios, and are depleted in K 2O and MgO. BOT-SEL-BR pelites are enriched in K 2O, MgO, Cr, and Ni, have higher K 2O/Na 2O, Sc/Th, and Eu/Eu∗ ratios, and are depleted in Th, U, heavy-REE, and High Field Strength Elements (HFSE) relative to NASC. Compositions of TH-STR-SIL pelites suggest a provenance similar to average Phanerozoic uppercontinental crust. This source is more evolved than that of BOT-SEL-BR pelites, indicating a transformation from primitive (mafic-rich) to evolved (felsic-rich) upper-crust at 2.2 Ga. This transition follows earlier primitive to evolved trends in Moodies-Pongola (3.3-3.0 Ga) and Witwatersrand (~2.8 Ga) successions. These data suggest that several cycles of changing upper-continental crust occurred in the Kaapvaal craton between 3.3-2.1 Ga.

  10. First U-Pb geochronology on detrital zircons from Early-Middle Cambrian strata of the Torgau-Doberlug Syncline (eastern Germany) and palaeogeographic implications

    NASA Astrophysics Data System (ADS)

    Abubaker, Atnisha; Hofmann, Mandy; Gärtner, Andreas; Linnemann, Ulf; Elicki, Olaf

    2017-10-01

    LA-ICP-MS U-Pb data from detrital zircons of the Ediacaran to Cambrian siliciclastic sequence of the Torgau-Doberlug Syncline (TDS, Saxo-Thuringia, Germany) are reported for the first time. The majority of 203 analysed zircon grains is Proterozoic with minor amount of Archean and Palaeozoic grains. The U-Pb ages fall into three groups: 2.8-2.4 Ga (3%), Neoarchean to earliest Palaeoproterozoic; 2.3-1.6 Ga (46%), early to late Palaeoproterozoic; 1.0-0.5 Ga (47%), Neoproterozoic to Cambrian. This age distribution is typical for the West African Craton as the source area and for Cadomian orogenic events in northwestern Gondwana. The samples show an age gap between 1.6 and 1.0 Ga, which is characteristic for West African provenance and diagnostic in distinguishing this unit from East Avalonia and Baltica. The dataset shows clusters of Palaeoproterozoic ages at 2.2-1.7 Ga, that is typical for western Gondwana, which was affected by abundant magmatic intrusions (ca. 2.2-1.8 Ga) during the Eburnean orogeny (West African craton). Neoarchean zircon ages (3%) point to recycling of magmatic rocks formed during the Liberian and Leonian orogenies. Ediacaran to earliest Cambrian rocks of the TDS originated in an active margin regime of the Gondwanan shelf. The following early Palaeozoic overstep sequence was deposited within rift settings that reflects instability of the West-Gondwanan shelf and the separation of terranes from Ordovician onward. The results of this study demonstrate distinct northwestern African provenance of the Cambrian siliciclastics of the TDS. Due to Th-U ratios from concordant zircon analysis, igneous origin from felsic melts is concluded as the source of these grains.

  11. FTO Genetic Variation and Association With Obesity in West Africans and African Americans

    PubMed Central

    Adeyemo, Adebowale; Chen, Guanjie; Zhou, Jie; Shriner, Daniel; Doumatey, Ayo; Huang, Hanxia; Rotimi, Charles

    2010-01-01

    OBJECTIVE The FTO gene is one of the most consistently replicated loci for obesity. However, data from populations of African ancestry are limited. We evaluated genetic variation in the FTO gene and investigated associations with obesity in West Africans and African Americans. RESEARCH DESIGN AND METHODS The study samples comprised 968 African Americans (59% female, mean age 49 years, mean BMI 30.8 kg/m2) and 517 West Africans (58% female, mean age 54 years, mean BMI 25.5 kg/m2). FTO genetic variation was evaluated by genotyping 262 tag single nucleotide polymorphisms (SNPs) across the entire gene. Association of each SNP with BMI, waist circumference, and percent fat mass was investigated under an additive model. RESULTS As expected, both African-ancestry samples showed weaker linkage disequilibrium (LD) patterns compared with other continental (e.g., European) populations. Several intron 8 SNPs, in addition to intron 1 SNPs, showed significant associations in both study samples. The combined effect size for BMI for the top SNPs from meta-analysis was 0.77 kg/m2 (P = 0.009, rs9932411) and 0.70 kg/m2 (P = 0.006, rs7191513). Two previously reported associations with intron 1 SNPs (rs1121980 and rs7204609, r2 = 0.001) were replicated among the West Africans. CONCLUSIONS The FTO gene shows significant differences in allele frequency and LD patterns in populations of African ancestry compared with other continental populations. Despite these differences, we observed evidence of associations with obesity in African Americans and West Africans, as well as evidence of heterogeneity in association. More studies of FTO in multiple ethnic groups are needed. PMID:20299471

  12. Group velocity dispersion characteristics and one-dimensional regional shear velocity structure of the eastern Indian craton

    NASA Astrophysics Data System (ADS)

    Mandal, Prantik

    2017-02-01

    In the past three years, a semi-permanent network of fifteen 3-component broadband seismographs has become operational in the eastern Indian shield region occupying the Archean (∼2.5-3.6 Ga) Singhbhum-Odisha craton (SOC) and the Proterozoic (∼1.0-2.5 Ga) Chotanagpur Granitic Gneissic terrane (CGGT). The reliable and accurate broadband data for the recent 2015 Nepal earthquake sequence from 10 broadband stations of this network enabled us to estimate the group velocity dispersion characteristics and one-dimensional regional shear velocity structure of the region. First, we measure fundamental mode Rayleigh- and Love-wave group velocity dispersion curves in the period range of 7-70 s and then invert these curves to estimate the crustal and upper mantle structure below the eastern Indian craton (EIC). We observe that group velocities of Rayleigh and Love waves in SOC are relatively high in comparison to those of CGGT. This could be attributed to a relatively mafic-rich crust-mantle structure in SOC resulting from two episodes of magmatism associated with the 1.6 Ga Dalma and ∼117 Ma Rajmahal volcanisms. The best model for the EIC from the present study is found to be a two-layered crust, with a 14-km thick upper-crust (UC) of average shear velocity (Vs) of 3.0 km/s and a 26-km thick lower-crust (LC) of average Vs of 3.6 km/s. The present study detects a sharp drop in Vs (∼-2 to 3%) at 120-260 km depths, underlying the EIC, representing the probable seismic lithosphere-asthenosphere boundary (LAB) at 120 km depth. Such sharp fall in Vs below the LAB indicates a partially molten layer. Further, a geothermal gradient extrapolated from the surface heat flow shows that such a gradient would intercept the wet basalt solidus at 88-103 km depths, suggesting a 88-103 km thick thermal lithosphere below the EIC. This could also signal the presence of small amounts of partial melts. Thus, this 2-3% drop in Vs could be attributed to the presence of partial melts in the

  13. Geological and Geophysical Integration Regarding a Structural Evolution Modelling of a Suture Zone Controlled by a Cratonic Buttress - The Case of Dom Feliciano Orogenic Belt, SSE Brazil, Implications for Western Gondwana Assembly

    NASA Astrophysics Data System (ADS)

    Bruno, H.; Almeida, J.; Heilbron, M. C. P. L.; Salomão, M.

    2017-12-01

    The matters surrounding the amalgamation of tectonic blocks during the Brasiliano / Pan-African orogeny have been the main subject of study of several works in recent years. The main objective of this work is the hierarchy and discrimination of the boundaries between the known tectonic blocks, integrating geological and geophysical data. The geology of the study area is dominated by Precambrian terranes; Luís Alves Terrane, the vulcanosedimentary sequences of the Itajaí and Campo Alegre Basins, the metasedimentary sequences of the Brusque and Paranaguá Terranes and their granitic suites besides the granitoids of the Florianópolis Terrane. The shear zones and faults that separate these crustal blocks were developed during the Brasiliano / Pan-African orogenic cycle that led to the formation of the supercontinent Gondwana. These tectonic boundaries generally separate blocks of different rheology and crustal thickness. The integration of geological and geophysical data allowed the identification of important structural lineaments and crustal boundaries. The presented geodynamic model suggests that the suture between the block composed of the Brusque, Paranaguá and Florianópolis Terranes and the block composed by the Luís Alves Terrane is the Itajaí Perimbó Shear Zone, and not the Major Gercino Shear Zone as previously suggested. Considering the Itajaí Perimbó Shear Zone as the suture zone, the metassediments of the Brusque Terrane were deposited on the basement of the Florianópolis Terrane, hereby declared as part of the Angola Craton, and are correlated to the metassediments of the Paranaguá Terrane as a passive margin that in approximately ca. 650 My became active margin, functioning as a forearc basin. The oblique collision between the blocks would have occurred with the development of a dextral transpression in the Itajaí Perimbó Shear Zone, separating the Luís Alves Terrane from the Brusque Terrane, a sinistral transcurrence represented by the

  14. Lu-Hf isotope constraints on plume-lithosphere interaction during emplacement of the Bushveld Large Igneous Province at 2.06 Ga: Implications for the structure and evolution of the Kaapvaal Craton's lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Zirakparvar, N. A.; Mathez, E. A.; Rajesh, H.; Vervoort, J. D.; Choe, S.

    2016-12-01

    The Bushveld Large Igneous Province (B-LIP) comprises a diverse array of >30 magma bodies that intruded the Kaapvaal Craton at 2.06 Ga. In this talk we use zircon and bulk-rock Lu-Hf isotope data to show that the B-LIP formed in response to the arrival of a plume(s) from the deep mantle. New zircon Hf isotope compositions for four B-LIP bodies yield intrusion-specific average ɛHf (2.06 Ga) values that range from -20.7 ± 2.8 to -2.7 ± 2.8, largely consistent with literature zircon data for other B-LIP intrusions. Bulk-rock solution ɛHf (2.06 Ga) values for a variety of B-LIP intrusions range from -2.1 ± 0.2 to -10.6 ± 0.2. Because the most radiogenic Hf isotope compositions across the entire B-LIP are nearly primordial with an ɛHf (2.06 Ga) close to 0, it is likely that the heat source of the B-LIP was a plume(s) from deep mantle. The Hf isotope data further suggests that individual intrusions in the B-LIP can be grouped into four categories based on their ultimate sources: 1) melts generated in subduction and plume modified continental lithospheric mantle; 2) melts generated by melting of a mafic-ultramafic reservoir composed of older ( 2.7 Ga) plume-related material trapped in the Kaapvaal lithosphere; 3) melts generated in the mid- to upper crust; and 4) melts generated from the 2.06 Ga mantle plume itself. The presence of 2.7 Ga mafic-ultramafic material in the Kaapvaal lithosphere may have acted to strengthen the lithosphere so that it was able to resist being dispered by the arrival of the B-LIP plume at 2.06 Ga. Because the B-LIP extends into a 2.7 Ga aged suture zone between the Kaapvaal and Zimbabwe cratons, it is also possible to understand the role of the lithospheric mantle in producing the Lu-Hf signatures observed in the various B-LIP intrusions as a function of two different types of the continental lithosphere: The very old lithosphere comprising the Kaapvaal Craton and the somewhat younger lithosphere comprising the suture zone. A basic

  15. Triple junction orogeny: tectonic evolution of the Pan-African Northern Damara Belt, Namibia

    NASA Astrophysics Data System (ADS)

    Lehmann, Jérémie; Saalmann, Kerstin; Naydenov, Kalin V.; Milani, Lorenzo; Charlesworth, Eugene G.; Kinnaird, Judith A.; Frei, Dirk; Kramers, Jan D.; Zwingmann, Horst

    2014-05-01

    Trench-trench-trench triple junctions are generally geometrically and kinematically unstable and therefore can result at the latest stages in complicated collisional orogenic belts. In such geodynamic sites, mechanism and timescale of deformations that accommodate convergence and final assembly of the three colliding continental plates are poorly studied. In western Namibia, Pan-African convergence of three cratonic blocks led to pene-contemporaneous closure of two highly oblique oceanic domains and formation of the triple junction Damara Orogen where the NE-striking Damara Belt abuts to the west against the NNW-striking Kaoko-Gariep Belt. Detailed description of structures and microstructures associated with remote sensing analysis, and dating of individual deformation events by means of K-Ar, Ar-Ar (micas) and U-Pb (zircon) isotopic studies from the Northern Damara Belt provide robust constraints on the tectonic evolution of this palaeo-triple junction orogeny. There, passive margin sequences of the Neoproterozoic ocean were polydeformed and polymetamorphosed to the biotite zone of the greenschist facies to up to granulite facies and anatexis towards the southern migmatitic core of the Central Damara Belt. Subtle relict structures and fold pattern analyses reveal the existence of an early D1 N-S shortening event, tentatively dated between ~635 Ma and ~580 Ma using published data. D1 structures were almost obliterated by pervasive and major D2 E-W coaxial shortening, related to the closure of the Kaoko-Gariep oceanic domain and subsequent formation of the NNW-striking Kaoko-Gariep Belt to the west of the study area. Early, km-scale D1 E-W trending steep folds were refolded during this D2 event, producing either Type I or Type II fold interference patterns visible from space. The D2 E-W convergence could have lasted until ~533 Ma based on published and new U-Pb ages. The final D3 NW-SE convergence in the northernmost Damara Belt produced a NE-striking deformation

  16. Lithospheric-Mantle Structure of the Kaapvaal Craton, South Africa, Derived from Thermodynamically Self-Consistent Modelling of Magnetotelluric, Surface-Wave Dispersion, S-wave Receiver Function, Heat-flow, Elevation and Xenolith Observations

    NASA Astrophysics Data System (ADS)

    Muller, Mark; Fullea, Javier; Jones, Alan G.; Adam, Joanne; Lebedev, Sergei; Piana Agostinetti, Nicola

    2013-04-01

    Results from recent geophysical and mantle-xenolith geochemistry studies of the Kaapvaal Craton appear, at times, to provide disparate views of the physical, chemical and thermal structure of the lithosphere. Models from our recent SAMTEX magnetotelluric (MT) surveys across the Kaapvaal Craton indicate a resistive, 220-240 km thick lithosphere for the central core of the craton. One published S-wave receiver function (SRF) study and other surface-wave studies suggest a thinner lithosphere characterised by a ~160 km thick high-velocity "lid" underlain by a low-velocity zone (LVZ) of between 65-150 km in thickness. Other seismic studies suggest that the (high-velocity) lithosphere is thicker, in excess of 220 km. Mantle xenolith pressure-temperature arrays from Mesozoic kimberlites require that the base of the "thermal" lithosphere (i.e., the depth above which a conductive geotherm is maintained - the tLAB) is at least 220 km deep, to account for mantle geotherms in the range 35-38 mWm-2. Richly diamondiferous kimberlites across the Kaapvaal Craton require a lithospheric thickness substantially greater than 160 km - the depth of the top of the diamond stability field. In this paper we use the recently developed LitMod software code to derive, thermodynamically consistently, a range of 1-D electrical resistivity, seismic velocity, density and temperature models from layered geochemical models of the lithosphere based on mantle xenolith compositions. In our work, the "petrological" lithosphere-asthenosphere boundary (pLAB) (i.e., the top of the fertile asthenospheric-mantle) and the "thermal" LAB (tLAB) are coincident. Lithospheric-mantle models are found simultaneously satisfying all geophysical observables: MT responses, new surface-wave dispersion data, published SRFs, surface elevation and heat-flow. Our results show: 1. All lithospheric-mantle models are characterised by a seismic LVZ with a minimum velocity at the depth of the petrological/thermal LAB. The top of

  17. The Diamondiferous Lithospheric Mantle Underlying the Eastern Superior Craton: Evidence From Mantle Xenoliths From the Renard Kimberlites, Quebec

    NASA Astrophysics Data System (ADS)

    Hunt, L.; Stachel, T.; Armstrong, J. P.; Simonetti, A.

    2009-05-01

    The Renard kimberlite cluster consists of nine pipes located within a 2km2 area in the northern Otish Mountains of Quebec. The pipes are named Renards 1 to 10, with subsequent investigation revealing Renards 5 and 6 to join at depth (now Renard 65). The pipes are located within the eastern portion of the Superior craton, emplaced into Archean granitic and gneissic host rocks of the Opinica Subprovince (Percival, 2007). Amphibolite grade metamorphism, locally passing into the granulite facies (Percival et al., 1994) occurred in late Archean time (Moorhead et al., 2003). Radiometric dating of the hypabyssal Renard 1 kimberlite indicates Neoproterozoic emplacement, with a 206Pb/238U model age of 631.6±3.5 Ma (2σ) (Birkett et al., 2004). A later study on the main phases in Renard 2 and 3 gave a similar emplacement, with a 206Pb/238U model age of 640.5±2.8Ma (Fitzgerald et al., 2008). This makes this kimberlite district one of the oldest in Canada, similar in eruption age to the Wemindji kimberlites (629±29Ma: Letendre et al., 2003). These events are broadly coeval with the conversion from subduction magmatism to rifting in northern Laurentia (Birkett et al., 2004). The bodies are part of a late Neoproterozoic to Cambrian kimberlite field in eastern Canada (Girard, 2001; Moorhead et al, 2002; Letendre et al., 2003) and fit into the north-east of the Eocambrian/Cambrian Labrador Sea Province of Heaman et al. (2004). To better understand the diamondiferous lithospheric mantle beneath the Renard kimberlites, 116 microxenoliths and xenocrysts were analysed. The samples were dominantly peridotitic, composed primarily of purple garnet, emerald green clinopyroxene and olivine, with a few pink and red garnets. A minor eclogitic component comprises predominantly orange garnets and lesser amounts of clinopyroxene. A detailed study on the major, minor and trace element composition of xenolith minerals is currently underway. All but three of the clinopyroxenes analysed to date

  18. Geochronological and sedimentological evidences of Panyangshan foreland basin for tectonic control on the Late Paleozoic plate marginal orogenic belt along the northern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei

    2017-08-01

    There is a wide support that the Inner Mongolia Palaeo-uplift on the northern margin of the North China Craton has undergone an uplifting history. However, when and how did the uplift occurred keeps controversial. Extensive field-based structural, metamorphic, geochemical, geochronological and geophysical investigations on the Inner Mongolia Palaeo-uplift, which suggested that the Inner Mongolia Palaeo-uplift was an uplifted region since the Early Precambrian or range from Late Carboniferous-Early Jurassic. The geochemical characteristics of the Late Paleozoic to Early Mesozoic intrusive rocks indicated that the Inner Mongolia Palaeo-uplift was an Andean-type continental margin that is the extensional tectonic setting. To address the spatial and temporal development of the Inner Mongolia Palaeo-uplift, we have carried out provenance analysis of Permian sedimentary rocks which collected from the Panyangshan basin along the northern margin of the North China Craton. The QFL diagram revealed a dissected arc-recycled orogenic tectonic setting. Moreover, the framework grains are abundant with feldspar (36-50%), indicating the short transport distance and unstable tectonic setting. Detrital zircon U-Pb analysis ascertained possible provenance information: the Precambrian basement ( 2490 and 1840 Ma) and continental arc magmatic action ( 279 and 295 Ma) along the northern margin of the North China Craton. The projection in rose diagrams of the mean palaeocurrent direction, revealing the SSW and SSE palaeoflow direction, also shows the provenance of the Panyangshan basin sources mainly from the Inner Mongolia Palaeo-uplift. The andesite overlying the Naobaogou Formation has yielded U-Pb age of 277.3 ± 1.4 Ma. The additional dioritic porphyry dike intruded the Naobaogou and Laowopu Formations, which has an emplacement age of 236 ± 1 Ma. The above data identify that the basin formed ranges from Early Permian to Middle Triassic (277-236 Ma). Accordingly, the Inner Mongolia

  19. Geochronological and sedimentological evidences of Panyangshan foreland basin for tectonic control on the Late Paleozoic plate marginal orogenic belt along the northern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei

    2018-06-01

    There is a wide support that the Inner Mongolia Palaeo-uplift on the northern margin of the North China Craton has undergone an uplifting history. However, when and how did the uplift occurred keeps controversial. Extensive field-based structural, metamorphic, geochemical, geochronological and geophysical investigations on the Inner Mongolia Palaeo-uplift, which suggested that the Inner Mongolia Palaeo-uplift was an uplifted region since the Early Precambrian or range from Late Carboniferous-Early Jurassic. The geochemical characteristics of the Late Paleozoic to Early Mesozoic intrusive rocks indicated that the Inner Mongolia Palaeo-uplift was an Andean-type continental margin that is the extensional tectonic setting. To address the spatial and temporal development of the Inner Mongolia Palaeo-uplift, we have carried out provenance analysis of Permian sedimentary rocks which collected from the Panyangshan basin along the northern margin of the North China Craton. The QFL diagram revealed a dissected arc-recycled orogenic tectonic setting. Moreover, the framework grains are abundant with feldspar (36-50%), indicating the short transport distance and unstable tectonic setting. Detrital zircon U-Pb analysis ascertained possible provenance information: the Precambrian basement ( 2490 and 1840 Ma) and continental arc magmatic action ( 279 and 295 Ma) along the northern margin of the North China Craton. The projection in rose diagrams of the mean palaeocurrent direction, revealing the SSW and SSE palaeoflow direction, also shows the provenance of the Panyangshan basin sources mainly from the Inner Mongolia Palaeo-uplift. The andesite overlying the Naobaogou Formation has yielded U-Pb age of 277.3 ± 1.4 Ma. The additional dioritic porphyry dike intruded the Naobaogou and Laowopu Formations, which has an emplacement age of 236 ± 1 Ma. The above data identify that the basin formed ranges from Early Permian to Middle Triassic (277-236 Ma). Accordingly, the Inner Mongolia

  20. Origin and tectonic evolution of early Paleozoic arc terranes abutting the northern margin of North China Craton

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Pei, Fu-Ping; Zhang, Ying; Zhou, Zhong-Biao; Xu, Wen-Liang; Wang, Zhi-Wei; Cao, Hua-Hua; Yang, Chuan

    2017-12-01

    The origin and tectonic evolution of the early Paleozoic arc terranes abutting the northern margin of the North China Craton (NCC) are widely debated. This paper presents detrital zircon U-Pb and Hf isotopic data of early Paleozoic strata in the Zhangjiatun arc terrane of central Jilin Province, northeast (NE) China, and compares them with the Bainaimiao and Jiangyu arc terranes abutting the northern margin of the NCC. Detrital zircons from early Paleozoic strata in three arc terranes exhibit comparable age groupings of 539-430, 1250-577, and 2800-1600 Ma. The Paleoproterozoic to Neoarchean ages and Hf isotopic composition of the detrital zircons imply the existence of the Precambrian fragments beneath the arc terranes. Given the evidences from geology, igneous rocks, and detrital zircons, we proposed that the early Paleozoic arc terranes abutting the northern margin of the NCC are a united arc terrane including the exotic Precambrian fragments, and these fragments shared a common evolutionary history from Neoproterozoic to early-middle Paleozoic.

  1. Lithospheric structure beneath the central and western North China Craton and adjacent regions from S-receiver function imaging

    NASA Astrophysics Data System (ADS)

    Yinshuang, A.; Zhang, Y.; Chen, L.

    2016-12-01

    The central and western NCC(CWNCC) only experienced localized lithospheric modification and has remained relatively stable since the Pre-Cambrian in contrast to the fundamental destruction in the east. For better unraveling the tectonic evolution and dynamics of CWNCC, detailed knowledge of lithospheric structure is thus important. However, most of the available seismological observations are dominated by regional seismic tomography and the resolutions are rather low due to the limited data coverage or intrinsic limitation of the methods. S receiver function(RF) contains information from deep velocity discontinuities and is free from the interference of crustal multiples, so it is widely used in subcontinental lithospheric structural studies. We collected teleseismic data from 340 broadband stations in CWNCC, and adopted 2-D wave equation-based poststack migration method to do S-receiver function CCP imaging. Finally, we get 8 migrated profile images in CWNCC and adjacent areas and integrate them for an overview. The most prominent feature of the LAB beneath central NCC is an sudden subsidence to 160km in the southern portion, and the dimension and extension of this deep anomaly is correlated to the lithosphere in Ordos, so we interpret it as a remnant cratonic mantle root. The LAB beneath western NCC can extend to the depth of 150-180 km but appears laterally variable. Western Ordos becomes shallower than its eastern counterpart and there are two obvious deep anomalies beneath the eastern Ordos, divided by a geological boundary at 37°N, which reflects that the lithosphere of Ordos is not so homogeneous or rigid as people thought before. Furthermore, a negative velocity discontinuity is widely identified at the depth of 80- 110 km within the thick lithosphere of CWNCC, and the location is spatially coincide with the modified LAB in ENCC. Although the cause of this mid-lithospheric discontinuity(MLD) is still controversial, mechanically, it may indicate an ancient

  2. Eclogite formation beneath the northern Slave craton constrained by diamond inclusions: Oceanic lithosphere origin without a crustal signature

    NASA Astrophysics Data System (ADS)

    Smart, Katie A.; Chacko, Thomas; Stachel, Thomas; Tappe, Sebastian; Stern, Richard A.; Ickert, Ryan B.; EIMF

    2012-02-01

    craton. Hence, the Jericho DIs and host high-MgO eclogites may represent an example of eclogite formation in an oceanic setting without the diagnostic 'crustal signatures' that are typically observed in cratonic eclogite xenolith suites worldwide.

  3. Teaching African-American Children.

    ERIC Educational Resources Information Center

    Horton, Harold

    1994-01-01

    Examines the historical blighting of African-American slaves' minds, which stripped them of their African culture. Examines the effect on African-American children, as well as other children of color. Offers suggestions for coping with the problems of modern schools in terms of respecting and teaching these children that the system is the problem,…

  4. Lithospheric-Mantle Structure of the Kaapvaal Craton, South Africa, Derived From Thermodynamically Self-Consistent Modelling of Seismic Surface-Wave and S-wave Receiver Function, Heat-flow, Elevation, Xenolith and Magnetotelluric Observations

    NASA Astrophysics Data System (ADS)

    Muller, M. R.; Fullea, J.; Jones, A. G.; Adam, J.; Lebedev, S.; Piana Agostinetti, N.

    2012-12-01

    Results from recent geophysical and mantle-xenolith geochemistry studies of the Kaapvaal Craton appear, at times, to provide disparate views of the physical, chemical and thermal structure of the lithosphere. Models from our recent SAMTEX magnetotelluric (MT) surveys across the Kaapvaal Craton indicate a resistive, 220-240 km thick lithosphere for the central core of the craton. One published S-wave receiver function (SRF) study and other surface-wave studies suggest a thinner lithosphere characterised by a ~160 km thick high-velocity "lid" underlain by a low-velocity zone (LVZ) of between 65-150 km in thickness. Other seismic studies suggest that the (high-velocity) lithosphere is thicker, in excess of 220 km. Mantle xenolith pressure-temperature arrays from Mesozoic kimberlites require that the base of the "thermal" lithosphere (i.e., the depth above which a conductive geotherm is maintained) is at least 220 km deep, to account for mantle geotherms in the range 35-38 mWm-2. Richly diamondiferous kimberlites across the Kaapvaal Craton require a lithospheric thickness substantially greater than 160 km - the depth of the top of the diamond stability field. In this paper we use the recently developed LitMod software code to derive, thermodynamically consistently, a range of 1-D seismic velocity, density, electrical resistivity and temperature models from layered geochemical models of the lithosphere based on mantle xenolith compositions. In our work, the "petrological" lithosphere-asthenosphere boundary (pLAB) (i.e., the top of the fertile asthenospheric-mantle) and the "thermal" LAB (tLAB as defined above) are coincident. Lithospheric-mantle models are found simultaneously satisfying all geophysical observables: new surface-wave dispersion data, published SRFs, MT responses, surface elevation and heat-flow. Our results show: 1. All lithospheric-mantle models are characterised by a seismic LVZ with a minimum velocity at the depth of the petrological/thermal LAB. The

  5. Population Genomics of Sub-Saharan Drosophila melanogaster: African Diversity and Non-African Admixture

    PubMed Central

    Pool, John E.; Corbett-Detig, Russell B.; Sugino, Ryuichi P.; Stevens, Kristian A.; Cardeno, Charis M.; Crepeau, Marc W.; Duchen, Pablo; Emerson, J. J.; Saelao, Perot; Begun, David J.; Langley, Charles H.

    2012-01-01

    Drosophila melanogaster has played a pivotal role in the development of modern population genetics. However, many basic questions regarding the demographic and adaptive history of this species remain unresolved. We report the genome sequencing of 139 wild-derived strains of D. melanogaster, representing 22 population samples from the sub-Saharan ancestral range of this species, along with one European population. Most genomes were sequenced above 25X depth from haploid embryos. Results indicated a pervasive influence of non-African admixture in many African populations, motivating the development and application of a novel admixture detection method. Admixture proportions varied among populations, with greater admixture in urban locations. Admixture levels also varied across the genome, with localized peaks and valleys suggestive of a non-neutral introgression process. Genomes from the same location differed starkly in ancestry, suggesting that isolation mechanisms may exist within African populations. After removing putatively admixed genomic segments, the greatest genetic diversity was observed in southern Africa (e.g. Zambia), while diversity in other populations was largely consistent with a geographic expansion from this potentially ancestral region. The European population showed different levels of diversity reduction on each chromosome arm, and some African populations displayed chromosome arm-specific diversity reductions. Inversions in the European sample were associated with strong elevations in diversity across chromosome arms. Genomic scans were conducted to identify loci that may represent targets of positive selection within an African population, between African populations, and between European and African populations. A disproportionate number of candidate selective sweep regions were located near genes with varied roles in gene regulation. Outliers for Europe-Africa FST were found to be enriched in genomic regions of locally elevated cosmopolitan

  6. Mental Health and African Americans

    MedlinePlus

    ... than Non-Hispanic whites. The death rate from suicide for African American men was more than four ... for African American women, in 2014. However, the suicide rate for African Americans is 70% lower than ...

  7. Restitic or not? Insights from trace element content and crystal - Structure of spinels in African mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Lenaz, Davide; Musco, Maria Elena; Petrelli, Maurizio; Caldeira, Rita; De Min, Angelo; Marzoli, Andrea; Mata, Joao; Perugini, Diego; Princivalle, Francesco; Boumehdi, Moulay Ahmed; Bensaid, Idris Ali Ahmadi; Youbi, Nasrrddine

    2017-05-01

    The lithospheric architecture of Africa consists of several Archean cratons and smaller cratonic fragments, stitched together and flanked by polycyclic fold belts. Here we investigate the structure and chemistry of spinels from lithospheric mantle xenoliths from distinct tectonic settings, i.e. from the Saharan metacraton in Libya (Waw-En-Namus) which could show archaic chemical features, Cameroon (Barombi Koto and Nyos Lakes) where the Sub Continental Lithospheric Mantle was modified during the Pan-African event and fluxed by asthenospheric melts of the Tertiary Cameroon Volcanic Line and Morocco (Tafraoute, Bou-Ibalrhatene maars) in the Middle Atlas where different metasomatic events have been recorded. From a structural point of view it is to notice that the Libyan spinels can be divided into two groups having different oxygen positional parameter (u > 0.2632 and u < 0.2627, respectively), while those from Cameroon are in between those values as the Moroccan ones already studied by other authors. The intracrystalline closure temperature (Tc) of the here studied spinels is different among the different samples with one Libyan group (LB I) showing Tc in the range 490-640 °C and the other 680-950 °C (LB II). Cameroon and Morocco spinels show a Tc in the range 630-760 °C. About 150 different spinels have been studied for their trace element content and it can be seen that many of them are related to Cr content, while Zn and Co are not and clearly distinguish the occurrences. Differences in the trace element chemistry, in the structural parameters and in the intracrystalline closure temperatures suggest that a different history should be considered for Cameroon, Morocco and LB I and LB II spinels. Even if it was not considered for this purpose, we tentatively used the Fe2 +/Fe3 + vs. TiO2 diagram that discriminate between peridotitic and the so-called "magmatic" spinels, i.e. spinel crystallized from melts. LB I and LB II spinels plot in the peridotitic field

  8. Diamond ages from Victor (Superior Craton): Intra-mantle cycling of volatiles (C, N, S) during supercontinent reorganisation

    NASA Astrophysics Data System (ADS)

    Aulbach, S.; Creaser, Robert A.; Stachel, Thomas; Heaman, Larry M.; Chinn, Ingrid L.; Kong, Julie

    2018-05-01

    The central Superior Craton hosts both the diamondiferous 1.1 Ga Kyle Lake and Jurassic Attawapiskat kimberlites. A major thermal event related to the Midcontinent Rift at ca. 1.1 Ga induced an elevated geothermal gradient that largely destroyed an older generation of diamonds, raising the question of when, and how, the diamond inventory beneath Attawapiskat was formed. We determined Re-Os isotope systematics of sulphides included in diamonds from Victor by isotope dilution negative thermal ionisation mass spectrometry in order to obtain insights into the age and nature of the diamond source in the context of regional tectonothermal evolution. Regression of the peridotitic inclusion data (n = 14 of 16) yields a 718 ± 49 Ma age, with an initial 187Os/188Os ratio of 0.1177 ± 0.0016, i.e. depleted at the time of formation (γOs -3.7 ± 1.3). Consequently, Re depletion model ages calculated for these samples are systematically overestimated. Given that reported 187Os/188Os in olivine from Attawapiskat xenoliths varies strongly (0.1012-0.1821), the low and nearly identical initial Os of sulphide inclusions combined with their high 187Re/188Os (median 0.34) suggest metasomatic formation from a mixed source. This was likely facilitated by percolation of amounts of melt sufficient to homogenise Os, (re)crystallise sulphide and (co)precipitate diamond; that is, the sulphide inclusions and their diamond host are synchronous if not syngenetic. The ∼720 Ma age corresponds to rifting beyond the northern craton margin during Rodinia break-up. This suggests mobilisation of volatiles (C, N, S) and Os due to attendant mantle stretching and metasomatism by initially oxidising and S-undersaturated melts, which ultimately produced lherzolitic diamonds with high N contents compared to older Kyle Lake diamonds. Thus, some rift-influenced settings are prospective with respect to diamond formation. They are also important sites of hidden, intra-lithospheric volatile redistribution

  9. The Teacher-Student Interactions and Academic Achievement of African American and African Immigrant Males

    ERIC Educational Resources Information Center

    Hussein, Hassen

    2017-01-01

    This quantitative survey questionnaires study compared the teacher-student interactions (TSI) and academic achievement of African-American and African immigrant undergraduate males. The academic achievement gap between different population groups provided the impetus for the study. While African Americans have been described as under-achievers in…

  10. A Teacher's Guide to African Narratives. Studies in African Literature.

    ERIC Educational Resources Information Center

    O'Brien, Sara Talis

    This guide is designed to help secondary school teachers include African literature in their classes. It furnishes English and social studies teachers with a foundation for teaching African literature by offering critical commentary on the texts themselves. A synthesis of anthropological and historical material is presented to help both teachers…

  11. The ''Taourirt'' magmatic province, a marker of the closing stage of the Pan-African orogeny in the Tuareg Shield: review of available data and Sr-Nd isotope evidence

    NASA Astrophysics Data System (ADS)

    Azzouni-Sekkal, Abla; Liégeois, Jean-Paul; Bechiri-Benmerzoug, Faten; Belaidi-Zinet, Safia; Bonin, Bernard

    2003-10-01

    The Tuareg Shield, located between the Archaean to Palaeoproterozoic Saharan metacraton and the West African craton, is composed of 23 recognized terranes that welded together during the Neoproterozoic Pan-African orogeny (750-520 Ma). Final convergence occurred mainly during the 620-580 Ma period with the emplacement of high-K calc-alkaline batholiths, but continued until 520 Ma with the emplacement of alkali-calcic and alkaline high-level complexes. The last plutons emplaced in central Hoggar at 539-523 Ma are known as the "Taourirt" province. This expression is redefined and three geographical groups are identified: the Silet-, Laouni- and Tamanrasset-Taourirts. The Silet-Taourirts are cross-cutting Pan-African island arc assemblages while the two others intrude the Archaean-Palaeoproterozoic LATEA metacraton. The Taourirts are high-level subcircular often nested alkali-calcic, sometimes alkaline, complexes. They are aligned along mega-shear zones often delimiting terranes. Mainly granitic, they comprise highly differentiated varieties such as alaskite (Silet-Taourirts) and topaz-albite leucogranite (Tamanrasset-Taourirts). Different subgroups were defined on the basis of REE patterns and major and other trace elements. The Taourirt province displays a wide transition from dominant alkali-calcic to minor alkaline granite varieties. Sr isotopes indicate that these complexes were affected by fluid circulation during the Ordovician along shear zones probably contemporaneous to the beginning of the Tassilis sandstone deposition. Nd isotope systematic indicates a major interaction with the upper crust during the emplacement of highly differentiated melts, particularly in samples showing seagull wing-shaped REE patterns. On the other hand, all Taourirt plutons are strongly contaminated by the lower crust: ɛNd vary from -2 to -8 and TDM from 1200 to 1700 Ma. This implies the presence of an old crust at depth, also below the Silet-Taourirts, which are emplaced within

  12. The Fazenda Largo off-craton kimberlites of Piauí State, Brazil

    NASA Astrophysics Data System (ADS)

    Kaminsky, Felix V.; Sablukov, Sergei M.; Sablukova, Ludmila I.; Zakharchenko, Olga D.

    2009-10-01

    In the late 1990s, the Fazenda Largo kimberlite cluster was discovered in the Piauí State of Brazil. As with earlier known kimberlites in this area - Redondão, Santa Filomena-Bom Jesus (Gilbues) and Picos - this cluster is located within the Palaeozoic Parnaiba Sedimentary Basin that separates the São Francisco and the Amazonian Precambrian cratons. Locations of kimberlites are controlled by the 'Transbrasiliano Lineament'. The Fazenda Largo kimberlites are intensely weathered, almost completely altered rocks with a fine-grained clastic structure, and contain variable amounts of terrigene admixture (quartz sand). These rocks represent near-surface volcano-sedimentary deposits of the crater parts of kimberlite pipes. By petrographic, mineralogical and chemical features, the Fazenda Largo kimberlites are similar to average kimberlite. The composition of the deep-seated material in the Fazenda Largo kimberlites is quite diverse: among mantle microxenoliths are amphibolitised pyrope peridotites, garnetised spinel peridotites, ilmenite peridotites, chromian spinel + chromian diopside + pyrope intergrowths, and large xenoliths of pyrope dunite. High-pressure minerals are predominantly of the ultramafic suite, Cr-association minerals (purplish-red and violet pyrope, chromian spinel, chromian diopside, Cr-pargasite and orthopyroxene). The Ti-association minerals of the ultramafic suite (picroilmenite and orange pyrope), as well as rare grains of orange pyrope-almandine of the eclogite association, are subordinate. Kimberlites from all four pipes contain rare grains of G10 pyrope of the diamond association, but chromian spinel of the diamond association was not encountered. By their tectonic position, by geochemical characteristics, and by the composition of kimberlite indicator minerals, the Fazenda Largo kimberlites, like the others of such type, are unlikely to be economic.

  13. The South African Navy and African Maritime Security

    DTIC Science & Technology

    2012-01-01

    under a new name, the South African Sea- ward Defence Force (SDF).8 The service experienced rapid growth , and by 1945 B A K E R 147 the authorized...1,553,000 square kilometers) exclu- sive economic zone (EEZ).42 Exacerbating the situation is a much-eroded South African Air Force maritime patrol...addressed by the government on a very small tax base) and must be set against a realistic assessment of the threat environment that South Africa is

  14. 'Walk with your head high': African and African-Caribbean fatherhood, children's mental well-being and social capital.

    PubMed

    Williams, Robert; Hewison, Alistair; Wagstaff, Chris; Randall, Duncan

    2012-01-01

    The findings presented in this article were unanticipated and came to light during a study which investigated African and African-Caribbean fathers' views about preventive primary care services. This article reports findings which indicate that African and African-Caribbean fathers strive to enable and protect children's mental well-being and create social, cultural and symbolic forms of capital. It also seeks to identify implications for health and social care policy and practice in England. There is limited literature examining African and African-Caribbean fathers' health experiences in England. Consequently an exploratory research approach was required. This involved nine, in-depth, semi-structured qualitative group interviews undertaken with 46 African and African-Caribbean fathers. The data were analysed thematically using abductive reasoning, informed by Bourdieu's theoretical work. Fathers were striving to enable and protect children's mental well-being through providing authoritative, loving, affectionate fatherhood involving reasoning, good communication and promoting self-esteem. These practices were seen to be necessary if children were to prosper in a harsh social world characterised by structural hazards including racism, negative stereotypes and limited opportunities. The fathers reported their efforts to develop what Bourdieu has termed symbolic, cultural and social capital as means of promoting the mental well-being of their children and the children of others. The implications for theory, future research, public health policy and practice, in relation to the needs of African and African-Caribbean fathers and families, are also discussed, with specific focus on how to realise the potential of African and African-Caribbean fathers' positive contributions to family and community health.

  15. Psychological Misdiagnosis of African Americans.

    ERIC Educational Resources Information Center

    Garretson, Deborah J.

    1993-01-01

    Reviews historical and current problems with making accurate psychological diagnoses of African Americans. Suggests that misdiagnosis is strongly related to pathologization of African-American culture itself. Explores diagnostic process, stereotypes of African-American psychopathology, cultural differences in values and life stressors, and…

  16. Geochronology and nature of the Palaeoproterozoic basement in the Central African Copperbelt (Zambia and the Democratic Republic of Congo), with regional implications

    NASA Astrophysics Data System (ADS)

    Rainaud, C.; Master, S.; Armstrong, R. A.; Robb, L. J.

    2005-07-01

    U-Pb SHRIMP zircon age data, together with geochemical analyses, from the basement to the Katanga Supergroup in the Central African Copperbelt reveal the existence of a widespread Palaeoproterozoic magmatic arc terrane. The Lufubu schists represent a long-lived calc-alkaline volcanic arc sequence and, where dated in both Zambia and the Democratic Republic of Congo (DRC), yield ages of 1980 ± 7, 1968 ± 9, 1964 ± 12 and 1874 ± 8 Ma. The oldest dated unit from the region, the Mkushi granitic gneiss from south-east of the Zambian Copperbelt, has an age of 2049 ± 6 Ma. The copper-mineralized Mtuga aplites, which crosscut the foliation in the Mkushi gneisses, have mainly xenocrystic, zoned zircons with cores dated at ca. 2.07-2.00 Ga. Overgrowths on these cores are dated at 1059 ± 26 Ma, which is interpreted as the intrusive age of the aplites. An augen gneiss from the Mulungushi Bridge locality yielded an emplacement age of 1976 ± 5 Ma. The Mufulira Pink Granite has an age of 1994 ± 7 Ma, while the Chambishi granite has been dated at 1983 ± 5 Ma, an age within error of Lufubu schist metavolcanics from elsewhere in the Chambishi basin. The gneisses, granitoids and acid-intermediate calc-alkaline metavolcanics are considered to represent stages in the evolution of one or more magmatic arcs that formed episodically over a 200 million year period between 2050 and 1850 Ma. We suggest naming this assemblage of rocks the "Lufubu Metamorphic Complex". The rocks of the Lufubu Metamorphic Complex are interpreted to be part of a regionally extensive Palaeoproterozoic magmatic arc terrane stretching from northern Namibia to northern Zambia and the DRC. This terrane is termed the Kamanjab-Bangweulu arc and is inferred to have collided with the Archaean Tanzanian craton during the ca. 2.0-1.9 Ga Ubendian orogeny, to produce a new composite minicontinental entity that we term the "Kambantan" terrane. The Kambantan terrane was accreted onto the southern margin of the Congo

  17. Infrared spectral and carbon isotopic characteristics of micro- and macro-diamonds from the Panda kimberlite (Central Slave Craton, Canada)

    NASA Astrophysics Data System (ADS)

    Melton, G. L.; Stachel, T.; Stern, R. A.; Carlson, J.; Harris, J. W.

    2013-09-01

    One hundred and twenty-one micro-diamonds (< 1 mm) and 90 macro-diamonds (2.5 mm to 3.4 mm) from the Panda kimberlite (Ekati mine, Central Slave Craton, Canada) were analyzed for nitrogen content, nitrogen aggregation state (%B) and platelet and hydrogen peak areas (cm- 2). Micro-diamond nitrogen concentrations range from < 10 at. ppm to 1696 at. ppm (median = 805 at. ppm) and the median aggregation state is 23%B. Macro-diamonds range from < 10 at. ppm to 1260 at. ppm (median = 187 at. ppm) nitrogen and have a median nitrogen aggregation of 26%B. Platelet and hydrogen peaks were observed in 37% and 79% of the micro-diamonds and 79% and 56% of the macro-diamonds, respectively. Nitrogen based time averaged residence temperatures indicate that micro- and macro-diamonds experienced similar thermal mantle residence histories, both populations displaying bimodal residence temperature distributions with a gap between 1130 °C and 1160 °C (at 3.5 Ga residence). In addition, SIMS carbon isotopic analyses for the micro-diamonds were obtained: δ13C compositions range from - 6.9‰ to + 1.8‰ (median = - 4.3‰). CL imaging reveals distinct growth layers that in some samples differ by > 2‰, but mostly vary by < 0.5‰. Comparison of only the “gem-quality” samples (n = 49 micro- and 90 macro-diamonds) between the two diamond sets, indicates a statistically significant shift of + 1.3‰ in average δ13C from macro- to micro-diamonds and this shift documents distinct diamond forming fluids, fractionation process or growth histories. A broad transition to heavier isotopic values is also observed in connection to decreasing mantle residence temperatures. The bimodal mantle residence temperature distribution may coincide with the transition from highly depleted shallow to more fertile deep lithospheric mantle observed beneath the Central Slave Craton. The increase in δ13C with decreasing residence temperature (proxy for decreasing depth) is interpreted to reflect diamond

  18. Recognized Multiple Rifts of the Neoproterozoic in the Initiation of the Tarim Craton (NW China) and Their Tectonic Implications

    NASA Astrophysics Data System (ADS)

    He, B.; Jiao, C.; Huang, T.; Zhou, X.; Cai, Z.; Cao, Z.; Jiang, Z.; Cui, J.; Yu, Z.; Chen, W.

    2017-12-01

    The Tarim Basin is the largest, oil-bearing and superimposed basin in the northwest of China. The development and tectonic property of the initial Tarim basin have been acutely disputed and remain enigmatic. Urgently need to reveal the origin and formation dynamics of the Tarim Carton and evaluate the potential of the deep energy resources. However, covered by vast desert and huge-thickness sedimentary strata, suffered by multiple tectonic movements, seismic data with low signal- to- noise ratio in the deep are the critical difficulties. We analyse 4 field outcrops, 18 wells, 27 reprocessed seismic reflection profiles with high SNR across the basin and many ancillary ones and aeromagnetic data. We find about 20 normal fault-controlled rift depressions of the Cryogenian and Ediacaran scattered in the Tarim basin, which developed on the Precambrian metamorphic and crystalline basements and covered by the epeiric sea and basin facies sediments of the Lower Cambrian. The structural styles of the rifts are mainly half grabens, symmetrical troughs and horst-grabens. The regional differences exist obviously in spatial and temporal. The WNW-ESE-trending faults occur in the central part and northern of the basin and the NE, and the NEE-trending faults occur in the southern parts, which response with the anomaly of aeromagnetic. Some main faults of the Ediacaran inherited from the Cryogenian and some occurred newly, the more rifting depressions occurred during the Ediacaran. The extensional NNW-SSE-oriented and NNE-SSW-oriented paleostress field occurred simultaneously during rifting, and accompanied with the clockwise shearing. According to the activities of syn-sedimentary faults, magmatic events and sediments, the tectonic properties of the rifts are different depending on their locations in the Tarim craton. The rifting phases mainly occurred from 780 Ma to 615 Ma. The formation of rifts were associated with the opening of the South Tianshan Ocean and the South Altun

  19. African-American mitochondrial DNAs often match mtDNAs found in multiple African ethnic groups

    PubMed Central

    Ely, Bert; Wilson, Jamie Lee; Jackson, Fatimah; Jackson, Bruce A

    2006-01-01

    Background Mitochondrial DNA (mtDNA) haplotypes have become popular tools for tracing maternal ancestry, and several companies offer this service to the general public. Numerous studies have demonstrated that human mtDNA haplotypes can be used with confidence to identify the continent where the haplotype originated. Ideally, mtDNA haplotypes could also be used to identify a particular country or ethnic group from which the maternal ancestor emanated. However, the geographic distribution of mtDNA haplotypes is greatly influenced by the movement of both individuals and population groups. Consequently, common mtDNA haplotypes are shared among multiple ethnic groups. We have studied the distribution of mtDNA haplotypes among West African ethnic groups to determine how often mtDNA haplotypes can be used to reconnect Americans of African descent to a country or ethnic group of a maternal African ancestor. The nucleotide sequence of the mtDNA hypervariable segment I (HVS-I) usually provides sufficient information to assign a particular mtDNA to the proper haplogroup, and it contains most of the variation that is available to distinguish a particular mtDNA haplotype from closely related haplotypes. In this study, samples of general African-American and specific Gullah/Geechee HVS-I haplotypes were compared with two databases of HVS-I haplotypes from sub-Saharan Africa, and the incidence of perfect matches recorded for each sample. Results When two independent African-American samples were analyzed, more than half of the sampled HVS-I mtDNA haplotypes exactly matched common haplotypes that were shared among multiple African ethnic groups. Another 40% did not match any sequence in the database, and fewer than 10% were an exact match to a sequence from a single African ethnic group. Differences in the regional distribution of haplotypes were observed in the African database, and the African-American haplotypes were more likely to match haplotypes found in ethnic groups from

  20. African American Suicide

    MedlinePlus

    African American Suicide Fact Sheet Based on 2012 Data (2014) Overview • In 2012, 2,357 African Americans completed suicide in the U.S. Of these, 1,908 (80. ... rate of 9.23 per 100,000). The suicide rate for females was 1.99 per 100, ...

  1. Successfully Educating Our African-American Students

    ERIC Educational Resources Information Center

    Moncree-Moffett, Kareem

    2013-01-01

    The purpose of this empirical study was to explore the lived experiences of African American retired female teachers who have prior experience with educating urban African American students in public schools. Also explored are the experiences of active African American female teachers of urban African American students and comparisons are…

  2. Early Rockets

    NASA Image and Video Library

    1950-02-24

    Bumper Wac liftoff at the Long Range Proving Ground located at Cape Canaveral, Florida. At White Sands, New Mexico, the German rocket team experimented with a two-stage rocket called Bumper Wac, which intended to provide data for upper atmospheric research. On February 24, 1950, the Bumper, which employed a V-2 as the first stage with a Wac Corporal upper stage, obtained a peak altitude of more than 240 miles.

  3. Differential effects of the classroom on African American and non-African American's mathematics achievement.

    PubMed

    Schenke, Katerina; Nguyen, Tutrang; Watts, Tyler W; Sarama, Julie H; Clements, Douglas H

    2017-08-01

    We examined whether African American students differentially responded to dimensions of the observed classroom-learning environment compared with non-African American students. Further, we examined whether these dimensions of the classroom mediated treatment effects of a preschool mathematics intervention targeted at students from low-income families. Three observed dimensions of the classroom (teacher expectations and developmental appropriateness; teacher confidence and enthusiasm; and support for mathematical discourse) were evaluated in a sample of 1,238 preschool students in 101 classrooms. Using multigroup multilevel mediation where African American students were compared to non-African American students, we found that teachers in the intervention condition had higher ratings on the observed dimensions of the classroom compared with teachers in the control condition. Further, ratings on teacher expectations and developmental appropriateness had larger associations with the achievement of African American students than for non-African Americans. Findings suggest that students within the same classroom may react differently to that learning environment and that classroom learning environments could be structured in ways that are beneficial for students who need the most support.

  4. The significance of 24-norcholestanes, triaromatic steroids and dinosteroids in oils and Cambrian-Ordovician source rocks from the cratonic region of the Tarim Basin, NW China

    USGS Publications Warehouse

    Li, Meijun; Wang, T.-G.; Lillis, Paul G.; Wang, Chunjiang; Shi, Shengbao

    2012-01-01

    Two oil families in Ordovician reservoirs from the cratonic region of the Tarim Basin are distinguished by the distribution of regular steranes, triaromatic steroids, norcholestanes and dinosteroids. Oils with relatively lower contents of C28 regular steranes, C26 20S, C26 20R + C27 20S and C27 20R regular triaromatic steroids, dinosteranes, 24-norcholestanes and triaromatic dinosteroids originated from Middle–Upper Ordovician source rocks. In contrast, oils with abnormally high abundances of the above compounds are derived from Cambrian and Lower Ordovician source rocks. Only a few oils have previously been reported to be of Cambrian and Lower Ordovician origin, especially in the east region of the Tarim Basin. This study further reports the discovery of oil accumulations of Cambrian and Lower Ordovician origin in the Tabei and Tazhong Uplifts, which indicates a potential for further discoveries involving Cambrian and Lower Ordovician sourced oils in the Tarim Basin. Dinosteroids in petroleum and ancient sediments are generally thought to be biomarkers for dinoflagellates and 24-norcholestanes for dinoflagellates and diatoms. Therefore, the abnormally high abundance of these compounds in extracts from the organic-rich sediments in the Cambrian and Lower Ordovician and related oils in the cratonic region of the Tarim Basin suggests that phytoplankton algae related to dinoflagellates have appeared and might have flourished in the Tarim Basin during the Cambrian Period. Steroids with less common structural configurations are underutilized and can expand understanding of the early development history of organisms, as well as define petroleum systems.

  5. African bees to control African elephants

    NASA Astrophysics Data System (ADS)

    Vollrath, Fritz; Douglas-Hamilton, Iain

    2002-11-01

    Numbers of elephants have declined in Africa and Asia over the past 30 years while numbers of humans have increased, both substantially. Friction between these two keystone species is reaching levels which are worryingly high from an ecological as well as a political viewpoint. Ways and means must be found to keep the two apart, at least in areas sensitive to each species' survival. The aggressive African bee might be one such method. Here we demonstrate that African bees deter elephants from damaging the vegetation and trees which house their hives. We argue that bees can be employed profitably to protect not only selected trees, but also selected areas, from elephant damage.

  6. African bees to control African elephants.

    PubMed

    Vollrath, Fritz; Douglas-Hamilton, Iain

    2002-11-01

    Numbers of elephants have declined in Africa and Asia over the past 30 years while numbers of humans have increased, both substantially. Friction between these two keystone species is reaching levels which are worryingly high from an ecological as well as a political viewpoint. Ways and means must be found to keep the two apart, at least in areas sensitive to each species' survival. The aggressive African bee might be one such method. Here we demonstrate that African bees deter elephants from damaging the vegetation and trees which house their hives. We argue that bees can be employed profitably to protect not only selected trees, but also selected areas, from elephant damage.

  7. Magnetic susceptibility of the South African Agouron scientific drillcores quantifies iron and sulfur alteration relevant to geochemical oxygenation proxies

    NASA Astrophysics Data System (ADS)

    Raub, T. D.; Nayak, P. M.; Tikoo, S. M.; Johnson, J. E.; Peek, S.; Fischer, W. W.; Kirschvink, J. L.

    2010-12-01

    Various geochemical characteristics of sedimentary iron- and sulfur-bearing minerals motivate early- to late-oxygenation hypotheses from South African and Australian scientific drillcores. Most intervals of these drillcores appear to be remagnetized (in some cases multiple times); and ~2.0 Ga magnetic sulfide crystallization is particularly pervasive in carbonaceous siltstones of the ca. 2.7-2.2 Ga Griqualand margin of Kaapvaal craton. Robust interpretation of trace element abundances suggesting “whiffs” to “pervasive” levels of late Archean oxygen depends upon systematics of presumed depositional iron speciation; so multiple iron- and sulfur-mineral-altering events affecting existing drillcore records call straightforward interpretations into question. We report ca. 10,000 magnetic susceptibility measurements and associated detailed rock-magnetic results from all lithologies of Archean basinal and slope facies in drillcores GKP and GKF and relatively younger and shallower facies in Paleoproterozoic drillcores GEC and GTF. Specific carbonaceous siltstone and carbonate intervals are less-altered as revealed by coherent and relatively low magnetic susceptibilities: geochemical and biomarker interpretations based upon data from these intervals should be preferred to those from others. Magnetic susceptibility tracks subtle facies variation in drillcore GTF diamictite and suggests highly-structured Paleoproterozoic glacioeustatic sequence architecture consistent with assignment of Makganyene glaciation and its associated geochemical signature to a ca. 2.2 Ga “Snowball Earth” ice age.

  8. Integrated elemental and Sr-Nd-Pb-Hf isotopic studies of Mesozoic mafic dykes from the eastern North China Craton: implications for the dramatic transformation of lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Liu, Shen; Feng, Caixia; Santosh, M.; Feng, Guangying; Coulson, Ian M.; Xu, Mengjing; Guo, Zhuang; Guo, Xiaolei; Peng, Hao; Feng, Qiang

    2018-02-01

    Evolution of the lithospheric mantle beneath the North China Craton (NCC) from its Precambrian cratonic architecture until Paleozoic, and the transformation to an oceanic realm during Mesozoic, with implications on the destruction of cratonic root have attracted global attention. Here we present geochemical and isotopic data on a suite of newly identified Mesozoic mafic dyke swarms from the Longwangmiao, Weijiazhuang, Mengjiazhuang, Jiayou, Huangmi, and Xiahonghe areas (Qianhuai Block) along the eastern NCC with an attempt to gain further insights on the lithospheric evolution of the region. The Longwangmiao dykes are alkaline with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 4.3) and EM1-like Sr-Nd-Pb-Hf isotopic signature ((87Sr/86Sr) i > 0.706; ε Nd (t) < -6.3, (206Pb/204Pb) i > 16.6, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.8, ε Hf (t) < -22.4). The Weijiazhuang dykes are sub-alkaline with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 3.7), and display similar EM1-like isotopic features ((87Sr/86Sr) i > 0.706; ε Nd (t) < -7.0, (206Pb/204Pb) i > 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) < -23.3). The Mengjiazhuang dykes are also sub-alkaline with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 2.4) and EM1-like isotopic features((87Sr/86Sr) i > 0.706; ε Nd (t) < -18.4, (206Pb/204Pb) i > 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) < -8.6). The Jiayou dykes also display sub-alkaline affinity with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 3.7) and EM1-like Sr-Nd-Pb-Hf isotopic features ((87Sr/86Sr) i > 0.706; ε Nd(t) < -15.3, (206Pb/204Pb) i > 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) < -18.4). The Huangmi dykes are alkaline (with Na2O + K2O ranging to more than 5.9 wt.%)) with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 9.3) and EM1-like isotopic composition ((87Sr/86Sr) i > 0.705; ε Nd (t) < -15.1, (206Pb/204Pb) i > 16.9, (207Pb/204Pb) i > 15.5, (208Pb/204Pb) i > 36

  9. Evidence of early Archean crust in northwest Gondwana, from U-Pb and Hf isotope analysis of detrital zircon, in Ediacaran surpacrustal rocks of northern Spain

    NASA Astrophysics Data System (ADS)

    Naidoo, Thanusha; Zimmermann, Udo; Vervoort, Jeff; Tait, Jenny

    2018-03-01

    The Mora Formation (Narcea Group) is one of the oldest Precambrian supracrustal successions in northern Spain. Here, we use U-Pb and in situ Hf isotope analysis on detrital zircon to determine its age and provenance. The youngest U-Pb dates constrain the maximum depositional age of the Mora Formation at 565 ± 11 Ma. Results indicate: (1) a dominant Ediacaran zircon population (33%; 565-633 Ma, Cadomian) within a spectrum of Neoproterozoic ages (40%; 636-996 Ma); and (2) smaller Mesoproterozoic (5%; 1004-1240 Ma), Palaeoproterozoic (11%; 1890-2476 Ma) and Archean (11%; 2519-3550 Ma) populations. Results here do not point to one specific cratonic source area; instead, detritus may have been derived from the West African craton and Amazonia, or even the concealed Iberian basement. The lack of 1.3-1.8 Ga grains suggests exclusion of the Sahara Craton as a major source, but this is not certain. This mixed composition favours a complex source history with reworking of detritus across terrane/craton boundaries. Hafnium isotope compositions indicate a range of crustal and juvenile sources, with initial ɛHf values between -15.8 and 11.1, and Hf model ages from 0.8 to 3.7 Ga. For Neoproterozoic zircons (80%), juvenile components (ɛHf(i) +10) may be related to Rodinia fragmentation and the onset of an active margin setting leading to the Cadomian orogeny. Palaeoproterozoic to Paleoarchean grains (20%) all have negative ɛHf values and Meso- to Eoarchean Hf model ages. This indicates an early (Archean) sialic crustal component for northwestern Gondwana.

  10. The White Nile as a source for Nile sediments: Assessment using U-Pb geochronology of detrital rutile and monazite

    NASA Astrophysics Data System (ADS)

    Be'eri-Shlevin, Yaron; Avigad, Dov; Gerdes, Axel

    2018-04-01

    Basement terranes exposed at the headwaters of the White Nile include Archean-Paleoproterozoic rocks of the Congo Craton, whose northern sectors were severely reworked during Neoproterozoic orogeny. New U-Pb analyses of detrital rutile and monazite from early Quaternary to Recent coastal quartz sands of Israel, at the northeast extension of the Nile sedimentary system, yield mostly late Neoproterozoic ages, with a dominant peak at ca. 600 Ma. While derivation from the reworked sectors of the Craton cannot be negated, the absence of pre-Neoproterozoic rutile and monazite indicates that the detrital contribution from the Congo cratonic nuclei into the main Nile was insignificant. The near absence of White Nile basement-derived heavy minerals from the Nile sands arriving at the Eastern Mediterranean may be explained by a number of factors such as relatively minor erosion of the Cratonic basement nuclei during the Quaternary, late connection of the White Nile to the main Nile system with a possibility that northern segments connected prior to more southerly ones, and a long-term effective sediment blockage mechanism at the mouth of White Nile. Likewise, our previous study demonstrated that Nile sands display a detrital zircon U-Pb-Hf pattern consistent with significant recycling of NE African Paleozoic sediments. It is thus plausible that any detrital contribution from White Nile basement rocks was thoroughly diluted by eroded Paleozoic sediments, or their recycled products, which were likely the greatest sand reservoir in the region. This study adds to previous studies showing the advantage of a multi mineral U-Pb geochronology strategy in constraining sediment provenance patterns.

  11. African American Women’s Preparation for Childbirth From the Perspective of African American Health-Care Providers

    PubMed Central

    Abbyad, Christine; Robertson, Trina Reed

    2011-01-01

    Preparation for birthing has focused primarily on Caucasian women. No studies have explored African American women’s birth preparation. From the perceptions of 12 African American maternity health-care providers, this study elicited perceptions of the ways in which pregnant African American women prepare for childbirth. Focus group participants answered seven semistructured questions. Four themes emerged: connecting with nurturers, traversing an unresponsive system, the need to be strong, and childbirth classes not a priority. Recommendations for nurses and childbirth educators include: (a) self-awareness of attitudes toward African Americans, (b) empowering of clients for birthing, (c) recognition of the role that pregnant women’s mothers play, (d) tailoring of childbirth classes for African American women, and (e) research on how racism influences pregnant African American women’s preparation for birthing. PMID:22211059

  12. Controls on gold deposits in Hoggar, Tuareg Shield (Southern Algeria)

    NASA Astrophysics Data System (ADS)

    Aissa, Djamal-Eddine; Marignac, Christian

    2017-03-01

    The Hoggar shield belongs to the 3000 km-long Pan-African Trans-Saharan belt that was formed in the Neoproterozoic, between 750 and 500 Ma by continental collision between the converging West African craton, Congo craton and Saharan Metacraton. More than 600 gold occurrences have been identified by ORGM, which are confined along North-South Pan-African megashear zones stretching some hundreds of kilometres long. Until now, no global classification and mineral paragenesis characterisation have been proposed for the Hoggar's gold mineralization. In this paper, we briefly review the main gold mineralization, in order to classify them and to highlight their characteristics and controls. According to field work, spectral, microscopic and microthermometric studies, these mineralization can be globally classified asorogenic type shear zone, which can subdivided into three main sub-types according to the degree of their relationships with the major Pan-African shear zones: (i) Ultramylonite-mylonite hosted including Tirek and Amesmessa, world class deposits; (ii) Granite hosted, including Tekouyat occurrence (iii) Volcano-sediment hosted including Tiririne and In Abbegui deposits. All the deposits are coeval and were formed at the end of the post-collisional stage (530-520 Ma). InHoggar, gold mineralization depend on a double control, first order giant sub-meridian shear zone control and the gold districts disposed in N40°-50°E corridors that may be interpreted as extensional. Indeed, the Hoggar gold province appears to have been controlled at all scales by the late transtensive reactivation of the Pan-African mega-shear zones, and by the correlative heat flux associated with the linear lithospheric delamination processes accompanying this reactivation; which are also responsible for the very lateHoggar magmatic events. At Amesmessa, gold deposition was promoted by the mixing of metamorphic fluids issued from the In Ouzzal Archean-Proterozoic basement with magmatic

  13. Seismicity and lithospheric structure of Central Mozambique: implications for the southward propagation of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Fonseca, J. F. B. D.; Domingues, A.

    2017-12-01

    South of latitude 5ºS, there is scarce support for a single preferred location of continental rifting in SE Africa. Building on the complexity already displayed further north around the Victoria microplate, the structures associated with rifting activity are now distributed over three branches: one directed towards the SW through Zambia and into the Okawango rift in Botswana; one running offshore along the Mozambique Channel; and a central rift system through lake Malawi and Central Mozambique. Our investigation focuses on this central branch, whose tectonic relevance was highlighted by the M7 Machaze earthquake in 2006. Through the temporary deployment of 30 broadband stations in central Mozambique we were able to document that the Shire and Urema grabens linking the Malawi rift to the Machaze epicentral area are seismically active, correlating with a 300 km long narrow band of seismicity reaching the lower crust. No significant seismicity was recorded along the Mazenga graben, south of the Machaze epicentral area. A tomographic model derived from ambient noise analysis showed a strong correlation between the seismicity and a sharp NNE-SSW boundary between the fast crust of the Zimbabwe and Kaapvaal cratons and slower crust underneath the Mozambique Coastal Plains. The seismicity shuts down were this trend rotates to a more N-S direction as the Lebombo monocline is approached. 20th Century seismicity of SE Africa shows a clear cluster in time, with five M>6 earthquakes concentrated in the 1950's, distributed along the edges of the Zimbabwe craton and spanning distances of 600 km. Spatial correlation with such range is hard to reconcile with stress transmission in the crust and may point to the interaction of the cratonic root with asthenospheric flow. Under this light, the M6.5 Central Botswana earthquake of April 2017 and the M7 Machaze earthquake of 2006, both located in the vicinity of the borders of the Kaapvaal craton, may bear a similar correlation. The

  14. Diseases that turn African hair silky.

    PubMed

    Ajose, Frances O A

    2012-11-01

    African hair in its natural state poses tenacious grooming challenges; consequently a large portion of the African cosmetic industry is focused on means to relax the tight curls of African hair to make the hair more manageable. In malnourished and hypoproteinemic states, African hair straightens in an uncomplimentary manner. Recently, we observed that in certain diseases African hair changes to a desirable silky wavy texture. To identify the diseases that turn African hair silky and their parameters we examined 5612 dermatology patients at a tertiary hospital in Nigeria. We then studied the clinical and basic laboratory parameters of those patients whose diseases were accompanied by the silky hair change. Silky hair change similar to the hair of the African neonatal child was observed in five diseases, namely AIDS, rheumatoid arthritis, systemic lupus erythematosus, pulmonary tuberculosis with cachexia, and Behçet's disease. Our study identified retrogression of African hair to the neonatal structure in five diseases. Anemia of chronic illness, high erythrocyte sedimentation rate, and mild hypocalcemia were significant laboratory parameters. This is an important observation, which should excite and advance research into the nature and structure of African hair. The causes of structural hair changes should include these five diseases. © 2012 The International Society of Dermatology.

  15. Embracing an "African Ethos" to facilitate African immigrants participation in medical genetics and genomics research.

    PubMed

    Buseh, Aaron G; Stevens, Patricia E; Millon-Underwood, Sandra; Kelber, Sheryl T; Townsend, Leolia

    Limited published research exists on perceptions and potentials for black African immigrants' participation in medical genetics and genomics research. This study explores the inclination and disinclination of African immigrants to be involved in genetics and genomics research. In-depth qualitative interviews were employed in which a sample of black African immigrants 18 years and older (n = 34) were interviewed. Barriers included contrary beliefs and customs about disease and the human body that differs from Western conceptions, and lack of genuine connection to the health care system. Facilitators included promotion of an "African ethos," wherein Africans unite with one another in a communal extension of self and robust community involvement across the life span of genetic studies. It is important for researchers and genetic counselors to understand the sociocultural underpinnings of African immigrants about genetics and genomics research as an initial step to encouraging their participation. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The Struggles over African Languages

    ERIC Educational Resources Information Center

    Maseko, Pam; Vale, Peter

    2016-01-01

    In this interview, African Language expert Pam Maseko speaks of her own background and her first encounter with culture outside of her mother tongue, isiXhosa. A statistical breakdown of South African languages is provided as background. She discusses Western (originally missionary) codification of African languages and suggests that this approach…

  17. Lung cancer disparities and African-Americans.

    PubMed

    Sin, Mo-Kyung

    2017-07-01

    African-Americans, as historically disadvantaged minorities, have more advanced stages of cancer when diagnosed, lower survival rates, and lower rates of accessing timely care than do Caucasians. Lung cancer incidence and mortality, in particular, are high among African-Americans. The U.S. Preventive Services Task Force recently released an evidence-based lung cancer screening technology called low-dose computerized tomography. High-risk African-Americans might benefit greatly from such screening but not many are aware of this technology. Public health nurses can play a key role in increasing awareness of the technology among African-American communities and encouraging qualified African-Americans to obtain screening. This study discusses issues with lung cancer and smoking among African-Americans, a recently released evidence-based lung cancer screening technology, and implications for public health nurses to enhance uptake of the new screening technology among high-risk African-Americans. © 2017 Wiley Periodicals, Inc.

  18. The Education of African-Americans.

    ERIC Educational Resources Information Center

    Willie, Charles V., Ed.; And Others

    The 17 papers in this volume are products of a study group on the education of African Americans that was part of a national project, "The Assessment of the Status of African-Americans." The volume takes a comprehensive look at the education of African Americans, specifically early childhood through postsecondary education, and relevant…

  19. Development Priorities for African Universities

    ERIC Educational Resources Information Center

    Baijnath, Narend; James, Genevieve

    2015-01-01

    African knowledge remains at best on the margins, struggling for an epistemological foothold in the face of an ever dominant Western canon. At worst, African knowledge is disparaged, depreciated, and dismissed. It is often ignored even by African scholars who, having gained control of the academy in the postcolonial context, seemingly remain…

  20. Gout in African Americans.

    PubMed

    Krishnan, Eswar

    2014-09-01

    African Americans have a substantially higher prevalence of risk factors for gout than Caucasians. The aim of the present study was to compare the risk for incident gout among African Americans and Caucasians. Incidence rates of physician-diagnosed gout among 11,559 Caucasian men and 931 African American men aged 35 to 57 years and at high cardiovascular risk, observed for 7 years as a part of the Multiple Risk Factor Intervention Trial, were analyzed. Cox regression models were used to account for potential confounding by age, body mass index, diuretic use, hypertension and diabetes status, aspirin and alcohol consumption, and kidney disease. At baseline, after accounting for risk factors, African Americans had a 14% lower prevalence of hyperuricemia than Caucasians. Incidence of gout increased with increasing prevalence of risk factors in both Caucasians and African Americans. Ethnic disparities in incidence rates were most apparent among those without other risk factors for gout. In separate Cox regression models, after accounting for risk factors, African American ethnicity was associated with a hazard ratio of 0.78 (95% confidence interval [CI], 0.66-0.93) for physician-diagnosed gout and 0.88 (95% CI, 0.85-0.90) for incident hyperuricemia. Significant interactions were observed; the association was the strongest (hazard ratio 0.47; 0.37-0.60). These associations were unaffected by addition of serum urate as a covariate or by using alternate case definitions for gout. After accounting for the higher prevalence of risk factors, African American ethnicity is associated with a significantly lower risk for gout and hyperuricemia compared with Caucasian ethnicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. OH Fluorescence and Prompt Emission in comet 103P/Hartley 2 observed by EPOXI mission and expected results for comet 67P/Churyumov-Gerasimenko observed by Rosetta/OSIRIS WAC camera

    NASA Astrophysics Data System (ADS)

    La Forgia, F.; A'Hearn, M. F.; Lazzarin, M.; Magrin, S.; Bodewits, D.; Bertini, I.; Pajola, M.; Barbier, C.; Sierks, H.

    2014-04-01

    possibility that this OH structure could be partially associated with OH PE has been performed. This is strongly supported by the agreement of the OH spatial distribution with the water spatial distribution derived from HRI IR spectrometer observations (A'Hearn et al. 2011). Given the results on comet Hartley 2, we present our expectations and preliminary analysis of OH fluorescence and prompt emission mechanisms in the coma of 67P/Churyumov-Gerasimenko, target of the Rosetta mission. The OSIRIS WAC camera on board Rosetta is equipped with 7 narrowband filters centered on molecular emission bands, including the OH gas filter. This will enable us to investigate OH fluorescence and PE at increasing resolution as Rosetta will approach the comet. This analysis, supported by accompanying observations acquired by OSIRIS WAC camera in the forbidden OI band at 630 nm, will help in further constrain the water photochemistry and the fluorescence and PE processes occurring in the cometary comae.

  2. Narcolepsy in African Americans

    PubMed Central

    Kawai, Makoto; O'Hara, Ruth; Einen, Mali; Lin, Ling; Mignot, Emmanuel

    2015-01-01

    Study Objectives: Although narcolepsy affects 0.02–0.05% of individuals in various ethnic groups, clinical presentation in different ethnicities has never been fully characterized. Our goal was to study phenotypic expression across ethnicities in the United States. Design/Setting: Cases of narcolepsy from 1992 to 2013 were identified from searches of the Stanford Center for Narcolepsy Research database. International Classification of Sleep Disorders, Third Edition diagnosis criteria for type 1 and type 2 narcolepsy were used for inclusion, but subjects were separated as with and without cataplexy for the purpose of data presentation. Information extracted included demographics, ethnicity and clinical data, HLA-DQB1*06:02, polysomnography (PSG), multiple sleep latency test (MSLT) data, and cerebrospinal fluid (CSF) hypocretin-1 level. Patients: 182 African-Americans, 839 Caucasians, 35 Asians, and 41 Latinos with narcolepsy. Results: Sex ratio, PSG, and MSLT findings did not differ across ethnicities. Epworth Sleepiness Scale (ESS) score was higher and age of onset of sleepiness earlier in African Americans compared with other ethnicities. HLA-DQB1*06:02 positivity was higher in African Americans (91.0%) versus others (76.6% in Caucasians, 80.0% in Asians, and 65.0% in Latinos). CSF hypocretin-1 level, obtained in 222 patients, was more frequently low (≤ 110 pg/ml) in African Americans (93.9%) versus Caucasians (61.5%), Asians (85.7%) and Latinos (75.0%). In subjects with low CSF hypocretin-1, African Americans (28.3%) were 4.5 fold more likely to be without cataplexy when compared with Caucasians (8.1%). Conclusions: Narcolepsy in African Americans is characterized by earlier symptom onset, higher Epworth Sleepiness Scale score, higher HLA-DQB1*06:02 positivity, and low cerebrospinal fluid hypocretin-1 level in the absence of cataplexy. In African Americans, more subjects without cataplexy have type 1 narcolepsy. Citation: Kawai M, O'Hara R, Einen M, Lin L

  3. South African-ness Among Adolescents: The Emergence of a Collective Identity within the Birth to Twenty Cohort Study

    PubMed Central

    Norris, Shane A; Roeser, Robert W.; Richter, Linda M; Lewin, Nina; Ginsburg, Carren; Fleetwood, Stella A; Taole, Elizabeth; van der Wolf, Kees

    2009-01-01

    We assessed the emergence of a South African identity among Black, Colored (mixed ancestral origin), White (predominantly English speaking), and Indian adolescents participating in a birth cohort study called “Birth to Twenty” in Johannesburg, South Africa. We examined young people's certainty of their self-categorization as South African, the centrality of their personal, racial and linguistic, and South African identities in their self-definition, and their perceptions of South African life and society today. These results reflect a historical opportunity for full citizenship and national enfranchisement that the end of Apartheid heralded for Black and Colored individuals. Black and Colored youth tend to be more certain about their South African-ness, have a more collective identity, and have a more positive perception around South Africa. In contrast, White and Indian youth are less certain about their South African-ness, have a more individualistic identity, and have a less positive perception about South Africa today. PMID:19461896

  4. African-Americans and Alzheimer's

    MedlinePlus

    ... Share Plus on Google Plus African-Americans and Alzheimer's alz.org | IHaveAlz Introduction 10 Warning Signs Brain ... African-Americans are at a higher risk for Alzheimer's disease. Many Americans dismiss the warning signs of ...

  5. Liberalism and African Culture.

    ERIC Educational Resources Information Center

    Sindima, Harvey

    1990-01-01

    Discusses the effect of liberalism on the African understanding of education, community, and religion. Describes ways in which the European intrusion, that is, colonial governments, schools, and churches, undermined traditional African life and thought. (DM)

  6. An African Ancestry-Specific Allele of CTLA4 Confers Protection against Rheumatoid Arthritis in African Americans

    PubMed Central

    Kelley, James M.; Hughes, Laura B.; Faggard, Jeffrey D.; Danila, Maria I.; Crawford, Monica H.; Edberg, Yuanqing; Padilla, Miguel A.; Tiwari, Hemant K.; Westfall, Andrew O.; Alarcón, Graciela S.; Conn, Doyt L.; Jonas, Beth L.; Callahan, Leigh F.; Smith, Edwin A.; Brasington, Richard D.; Allison, David B.; Kimberly, Robert P.; Moreland, Larry W.; Edberg, Jeffrey C.; Bridges, S. Louis

    2009-01-01

    Cytotoxic T-lymphocyte associated protein 4 (CTLA4) is a negative regulator of T-cell proliferation. Polymorphisms in CTLA4 have been inconsistently associated with susceptibility to rheumatoid arthritis (RA) in populations of European ancestry but have not been examined in African Americans. The prevalence of RA in most populations of European and Asian ancestry is ∼1.0%; RA is purportedly less common in black Africans, with little known about its prevalence in African Americans. We sought to determine if CTLA4 polymorphisms are associated with RA in African Americans. We performed a 2-stage analysis of 12 haplotype tagging single nucleotide polymorphisms (SNPs) across CTLA4 in a total of 505 African American RA patients and 712 African American controls using Illumina and TaqMan platforms. The minor allele (G) of the rs231778 SNP was 0.054 in RA patients, compared to 0.209 in controls (4.462×10−26, Fisher's exact). The presence of the G allele was associated with a substantially reduced odds ratio (OR) of having RA (AG+GG genotypes vs. AA genotype, OR 0.19, 95% CI: 0.13–0.26, p = 2.4×10−28, Fisher's exact), suggesting a protective effect. This SNP is polymorphic in the African population (minor allele frequency [MAF] 0.09 in the Yoruba population), but is very rare in other groups (MAF = 0.002 in 530 Caucasians genotyped for this study). Markers associated with RA in populations of European ancestry (rs3087243 [+60C/T] and rs231775 [+49A/G]) were not replicated in African Americans. We found no confounding of association for rs231778 after stratifying for the HLA-DRB1 shared epitope, presence of anti-cyclic citrullinated peptide antibody, or degree of admixture from the European population. An African ancestry-specific genetic variant of CTLA4 appears to be associated with protection from RA in African Americans. This finding may explain, in part, the relatively low prevalence of RA in black African populations. PMID:19300490

  7. Source field effects in the auroral zone: Evidence from the Slave craton (NW Canada)

    NASA Astrophysics Data System (ADS)

    Lezaeta, Pamela; Chave, Alan; Jones, Alan G.; Evans, Rob

    2007-09-01

    We present an investigation of source field effects on the magnetic fields from multiple long period magnetotelluric (MT) data collected on the floors of lakes throughout the Slave craton (NW Canada) from 1998 to 2000. Monthly and daily power spectra of the magnetic fields suggest a dynamic and seasonally varying source, with atypical geomagnetic activity in year 2000. Bounded influence MT and GDS responses were obtained for periods ranging between 80 and 25,000 s over selected monthly time segments. The responses at periods over 4000 s vary, suggesting source field effects. A frequency domain principal component (PC) method was applied to the array to investigate the spatial form of the source field variations. The PC analysis was tested with synthetic data from a regional 3D model with a uniform external source to study the sensitivity of the eigenvectors to conductivity structure, demonstrating a negligible influence with increasing penetration depth. We conclude that magnetic fields at periods near one half day are subject to a 1D polarized source of relatively homogeneous morphology over the survey area during any month recorded, except for the summer month of July 2000 that had particularly high geomagnetic activity. In general, the source space approaches two polarizations at periods below one half day, with the dominant NS component seen quasi-homogeneous over the survey area at periods over 1000 s.

  8. Ambient Noise Tomography of the East African Rift System in Mozambique

    NASA Astrophysics Data System (ADS)

    Domingues, Ana; Custódio, Susana; Chamussa, José; Silveira, Graça; Chang, Sung-Joon; Lebedev, Sergei; Ferreira, Ana; Fonseca, João

    2014-05-01

    Project MOZART - MOZAmbique Rift Tomography (funded by FCT, Lisbon) deployed a total of 30 temporary broadband seismic stations from the SEIS-UK Pool in central and south Mozambique and in NE South Africa. The purpose of this project is the study of the East African Rift System (EARS) in Mozambique. We estimated preliminary locations with the data recorded from April 2011 to July 2012. A total of 307 earthquakes were located, with ML magnitudes ranging from 0.9 to 3.9. We observe a linear northeast-southwest distribution of the seismicity that seems associated to the Inhaminga fault. The seismicity in the northeast sector correlates well with the topography, tracing the Urema rift valley. The seismicity extends to ~300km, reaching the M7 2006 Machaze earthquake area. In order to obtain an initial velocity model of the region, we applied the ambient noise method to the MOZART data and two additional stations from AfricaARRAY. Cross-correlations were computed between all pairs of stations, and we obtained Rayleigh wave group velocity dispersion curves for all interstation paths, in the period range from 3 to 50 seconds. The geographical distribution of the group velocity anomalies is in good agreement with the geology map of Mozambique, having lower group velocities in sedimentary basins areas and higher velocities in cratonic regions. We also observe two main regions with different velocities that may indicate a structure not proposed in previous studies. We perform a three-dimensional inversion to obtain the S-wave velocity of the crust and upper mantle, and in order to extend the investigation to longer periods we apply a recent implementation of the surface-wave two-station method (teleseismic interferometry), while augmenting our dataset with Rayleigh wave phase velocities curves in broad period ranges. In this way we expect to be able to look into the lithosphere-asthenosphere depth range.

  9. Seismic crustal structure of the Limpopo mobile belt, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Stuart, G. W.; Zengeni, T. G.

    1987-12-01

    A 145 km N-S seismic traverse was deployed to determine the crustal structure of the Limpopo mobile belt in southern Zimbabwe and the nature of its northern boundary with the Zimbabwean craton. Rockbursts from South African gold mines to the south and regional seismicity from the Kariba-South Zambia belt to the north were used as seismic sources. P-wave relative teleseismic residuals were also measured to assess whether any velocity contrast between the craton and the mobile belt extended into the upper mantle. Interpretation of reduced travel times from the local Buchwa iron-ore mine blasts, which were broadside to the traverse, revealed an upper crustal interface in the Limpopo mobile belt at a depth of 5.8 ± 0.6 km, dividing material with a velocity of about 5.8 km/s from that of about 6.4 km/s. On the craton, arrivals from the same source showed a 4.4 ± 0.5 km thick 5.5 km/s layer overlying crust of about velocity 6.5 km/s. P-wave arrivals from the regional seismicity were used to construct a crustal cross-section. Absolute crustal thickness was tentatively estimated from the identification of a Moho reflection on the mine blast recordings. To the south of Rutenga, the crust thins from around 34 km to 29 km in association with a positive gravity anomaly centred over the late-Karoo Nuanetsi Igneous Province and Karoo Tuli Syncline. North of Rutenga to the boundary with the Zimbabwean craton, the crust is about 34 km thick. The craton boundary was found to be a steeply southerly dipping zone associated with high-velocity material, which could either be deep-seated greenstones or mafic material associated with the margin in the region studied. This zone divides cratonic crust, which was found to be about 40 km thick, from that typical of the mobile belt and implies a step in the Moho of around 6 km. Analysis of relative teleseismic residuals showed that the velocity contrasts are not confined to the crust but extend into the uppermost upper mantle with the

  10. Radiation damage-He diffusivity models applied to deep-time thermochronology: Zircon and titanite (U-Th)/He datasets from cratonic settings

    NASA Astrophysics Data System (ADS)

    Guenthner, W.; DeLucia, M. S.; Marshak, S.; Reiners, P. W.; Drake, H.; Thomson, S.; Ault, A. K.; Tillberg, M.

    2017-12-01

    Advances in understanding the effects of radiation damage on He diffusion in uranium-bearing accessory minerals have shown the utility of damage-diffusivity models for interpreting datasets from geologic settings with long-term, low-temperature thermal histories. Craton interiors preserve a billion-year record of long-term, long-wavelength vertical motions of the lithosphere. Prior thermochronologic work in these settings has focused on radiation damage models used in conjunction with apatite (U-Th)/He dates to constrain Phanerozoic thermal histories. Owing to the more complex damage-diffusivity relationship in zircon, the zircon (U-Th)/He system yields both higher and, in some cases, lower temperature sensitivities than the apatite system, and this greater range in turn allows researchers to access deeper time (i.e., Proterozoic) segments of craton time-temperature histories. Here, we show two examples of this approach by focusing on zircon (U-Th)/He datasets from 1.8 Ga granitoids of the Fennoscandian Shield in southeastern Sweden, and 1.4 Ga granites and rhyolites of the Ozark Plateau in southeastern Missouri. In the Ozark dataset, the zircon (U-Th)/He data, combined with a damage-diffusivity model, predict negative correlations between date and effective uranium (eU) concentration (a measurement proportional to radiation damage) from thermal histories that include an episode of Proterozoic cooling (interpreted as exhumation) following reheating (interpreted as burial) to temperature of 260°C at 850-680 Ma. In the Fennoscandian Shield, a similar damage model-based approach yields time-temperature constraints with burial to 217°C between 944 Ma and 851 Ma, followed by exhumation from 850 to 500 Ma, and burial to 154°C between 366 Ma and 224 Ma. Our Fennoscandian Shield samples also include titanite (U-Th)/He dates that span a wide range (945-160 Ma) and are negatively correlated with eU concentration, analogous to our zircon He dataset. These results support

  11. Timescales of Crustal Cooling of the Superior Craton near Attawapiskat, Ontario, Canada, and Implications for Extent of Keweenawan Plume Heating.

    NASA Astrophysics Data System (ADS)

    Edwards, G. H.; Blackburn, T.; Smit, K.

    2017-12-01

    The thermal history of the Superior Craton was punctuated by a period of mantle plume heating at 1.1 Ga associated with the Keweenawan Rift, though the plume's spatial extent, temperature, and duration of heating remain unresolved. Kimberlites of Mesoproterozoic and Jurassic age in the Attawapiskat area, Northern Ontario contain lithospheric mantle and lower crustal xenoliths that record the thermal history 600km to the north of exposed 1.1 Ga Keweenawan volcanics and the topographically and gravimetrically defined plume center. Previous work on Attawapiskat kimberlites identified two populations of diamonds with differing thermal histories, suggesting two distinct phases of diamond growth. Corresponding geothermobarometric data indicate geotherm relaxation and broadening of the diamond stability field between the Mesoproterozoic and Jurassic. These data, however, do not uniquely resolve whether the region experienced significant heating coincident with Keweenawan rifting ( 1.1 Ga) or prolonged, unperturbed cooling since amalgamation of the Superior Craton ( 2.6 Ga). To discern between these two possible histories, we use accessory phase U-Pb thermochronology to construct a continuous thermal record of the lower crust. Here we present a dataset of U-Pb ID-TIMS measurements of rutile and apatite from xenoliths (n=8) sourced from the Jurassic age Victor Kimberlite. The U/Pb and Pb isotopic compositions of rutile and apatite from shallow-residing amphibolite xenoliths exhibit Proterozoic dates with a high degree of U-Pb discordance, reflecting slow cooling of the middle crust prior to 1.1 Ga. Granulite and eclogite xenoliths record younger dates consistent with their deeper sample residence, but with a high degree of U-Pb concordance that is inconsistent with continuous cooling through the Proterozoic. Reproducing the measured trend with numerical models requires a reheating event at 1.1 Ga. Imposing a 60-70mW/m2 geotherm at 1.1 Ga is high enough to replicate the

  12. Narcolepsy in African Americans.

    PubMed

    Kawai, Makoto; O'Hara, Ruth; Einen, Mali; Lin, Ling; Mignot, Emmanuel

    2015-11-01

    Although narcolepsy affects 0.02-0.05% of individuals in various ethnic groups, clinical presentation in different ethnicities has never been fully characterized. Our goal was to study phenotypic expression across ethnicities in the United States. Cases of narcolepsy from 1992 to 2013 were identified from searches of the Stanford Center for Narcolepsy Research database. International Classification of Sleep Disorders, Third Edition diagnosis criteria for type 1 and type 2 narcolepsy were used for inclusion, but subjects were separated as with and without cataplexy for the purpose of data presentation. Information extracted included demographics, ethnicity and clinical data, HLA-DQB1*06:02, polysomnography (PSG), multiple sleep latency test (MSLT) data, and cerebrospinal fluid (CSF) hypocretin-1 level. 182 African-Americans, 839 Caucasians, 35 Asians, and 41 Latinos with narcolepsy. Sex ratio, PSG, and MSLT findings did not differ across ethnicities. Epworth Sleepiness Scale (ESS) score was higher and age of onset of sleepiness earlier in African Americans compared with other ethnicities. HLA-DQB1*06:02 positivity was higher in African Americans (91.0%) versus others (76.6% in Caucasians, 80.0% in Asians, and 65.0% in Latinos). CSF hypocretin-1 level, obtained in 222 patients, was more frequently low (≤ 110 pg/ml) in African Americans (93.9%) versus Caucasians (61.5%), Asians (85.7%) and Latinos (75.0%). In subjects with low CSF hypocretin-1, African Americans (28.3%) were 4.5 fold more likely to be without cataplexy when compared with Caucasians (8.1%). Narcolepsy in African Americans is characterized by earlier symptom onset, higher Epworth Sleepiness Scale score, higher HLA-DQB1*06:02 positivity, and low cerebrospinal fluid hypocretin-1 level in the absence of cataplexy. In African Americans, more subjects without cataplexy have type 1 narcolepsy. © 2015 Associated Professional Sleep Societies, LLC.

  13. Gold deposits of the northern margin of the North China craton: Multiple late Paleozoic-Mesozoic mineralizing events

    USGS Publications Warehouse

    Hart, C.J.R.; Goldfarb, R.J.; Qiu, Yumin; Snee, L.; Miller, L.D.; Miller, M.L.

    2002-01-01

    The northern margin of the North China craton is well-endowed with lode gold deposits hosting a resource of approximately 900 tonnes (t) of gold. The ???1,500-km-long region is characterized by east-trending blocks of metamorphosed Archean and Proterozoic strata that were episodically uplifted during Variscan, Indosinian, and Yanshanian deformational and magmatic events. At least 12 gold deposits from the Daqinshan, Yan-Liao (includes the Zhangjiakou, Yanshan, and Chifeng gold districts), and Changbaishan gold provinces contain resources of 20-100 t Au each. Most deposits are hosted in uplifted blocks of Precambrian metamorphic rocks, although felsic Paleozoic and Mesozoic plutons are typically proximal and host ???30% of the deposits. The lodes are characterized by sulfide-poor quartz veins in brittle structures with low base metal values and high Au:Ag ratios. Although phyllic alteration is most common, intensive alkali feldspar metasomatism characterizes the Wulashan, Dongping, and Zhongshangou deposits, but is apparently coeval with Variscan alkalic magmatism only at Wulashan. Stepwise 40Ar-39Ar geochronology on 16 samples from gangue and alteration phases, combined with unpublished SHRIMP U-Pb dates on associated granitoids, suggest that gold mineralizing events occured during Variscan, Indosinian, and Yanshanian orogenies at circa 350, 250, 200, 180, 150, and 129 Ma. However, widespread Permo-Triassic (???250 Ma) and Early Jurassic (???180 Ma) thermal events caused variable resetting of most of the white mica and K-feldspar argon spectra, as well as previously reported K-Ar determinations. Compiled and new stable isotope and fluid inclusion data show that most ??18O values for ore-stage veins range from 8 to 14???, indicating a fluid in equilibrium with the Precambrian metamorphic basement rocks; ??D values from fluid inclysions range widely from -64 to -154???, which is indicative of a local meteoric component in some veins; and highly variable ??34S data

  14. Crustal and uppermost mantle S-wave velocity below the East European Craton in northern Poland from the inversion of ambient-noise records

    NASA Astrophysics Data System (ADS)

    Lepore, Simone; Polkowski, Marcin; Grad, Marek

    2018-02-01

    The P-wave velocities (V p) within the East European Craton in Poland are well known through several seismic experiments which permitted to build a high-resolution 3D model down to 60 km depth. However, these seismic data do not provide sufficient information about the S-wave velocities (V s). For this reason, this paper presents the values of lithospheric V s and P-wave-to-S-wave velocity ratios (V p/V s) calculated from the ambient noise recorded during 2014 at "13 BB star" seismic array (13 stations, 78 midpoints) located in northern Poland. The 3D V p model in the area of the array consists of six sedimentary layers having total thickness within 3-7 km and V p in the range 1.85.3 km/s, a three-layer crystalline crust of total thickness 40 km and V p within 6.15-7.15 km/s, and the uppermost mantle, where V p is about 8.25 km/s. The V s and V p/V s values are calculated by the inversion of the surface-wave dispersion curves extracted from the noise cross correlation between all the station pairs. Due to the strong velocity differences among the layers, several modes are recognized in the 0.021 Hz frequency band: therefore, multimodal Monte Carlo inversions are applied. The calculated V s and V p/V s values in the sedimentary cover range within 0.992.66 km/s and 1.751.97 as expected. In the upper crust, the V s value (3.48 ± 0.10 km/s) is very low compared to the starting value of 3.75 ± 0.10 km/s. Consequently, the V p/V s value is very large (1.81 ± 0.03). To explain that the calculated values are compared with the ones for other old cratonic areas.

  15. African-American Academic Nurse Leader's Role in Persistence of African-American Baccalaureate Nursing Students

    ERIC Educational Resources Information Center

    Nelson, Kesha Marie

    2017-01-01

    African-American baccalaureate nursing students have a limited persistence to graduation. This constructivist grounded theory study was designed to generate a substantive theory, emerged from these data, that explained and provided insight the African-American academic nurse leader's role in the persistence to graduation of African-American…

  16. African Games of Strategy: A Teaching Manual. African Outreach Series, No. 2.

    ERIC Educational Resources Information Center

    Crane, Louise

    Appreciation of African games has increased in this country; especially board games which have been popularized through commercial versions. African games are invaluable resources for studying subjects requiring mathematical concepts, as well as social studies, history, geography, and languages. This manual presents some of the better known…

  17. African Ancestry is a Risk Factor for Asthma and High Total IgE Levels in African Admixed Populations

    PubMed Central

    Vergara, Candelaria; Murray, Tanda; Rafaels, Nicholas; Lewis, Rachel; Campbell, Monica; Foster, Cassandra; Gao, Li; Faruque, Mezbah; Oliveira, Ricardo Riccio; Carvalho, Edgar; Araujo, Maria Ilma; Cruz, Alvaro A.; Watson, Harold; Mercado, Dilia; Knight-Madden, Jennifer; Ruczinski, Ingo; Dunston, Georgia; Ford, Jean; Caraballo, Luis; Beaty, Terri H.; Mathias, Rasika A.; Barnes, Kathleen C.

    2014-01-01

    Characterization of genetic admixture of populations in the Americas and the Caribbean is of interest for anthropological, epidemiological, and historical reasons. Asthma has a higher prevalence and is more severe in populations with a high African component. Association of African ancestry with asthma has been demonstrated. We estimated admixture proportions of samples from six trihybrid populations of African descent and determined the relationship between African ancestry and asthma and total serum IgE levels (tIgE). We genotyped 237 ancestry informative markers in asthmatics and nonasthmatic controls from Barbados (190/277), Jamaica (177/529), Brazil (40/220), Colombia (508/625), African Americans from New York (207/171), and African Americans from Baltimore/Washington, D.C. (625/757). We estimated individual ancestries and evaluated genetic stratification using Structure and principal component analysis. Association of African ancestry and asthma and tIgE was evaluated by regression analysis. Mean SD African ancestry ranged from 0.76 ± 0.10 among Barbadians to 0.33 ± 0.13 in Colombians. The European component varied from 0.14 ± 0.05 among Jamaicans and Barbadians to 0.26 ± 0.08 among Colombians. African ancestry was associated with risk for asthma in Colombians (odds ratio (OR) = 4.5, P = 0.001) Brazilians (OR = 136.5, P = 0.003), and African Americans of New York (OR: 4.7; P = 0.040). African ancestry was also associated with higher tIgE levels among Colombians (β = 1.3, P = 0.04), Barbadians (β = 3.8, P = 0.03), and Brazilians (β = 1.6, P = 0.03). Our findings indicate that African ancestry can account for, at least in part, the association between asthma and its associated trait, tIgE levels. PMID:23554133

  18. Heat flow from the Liberian Precambrian Shield

    NASA Astrophysics Data System (ADS)

    Sass, J. H.; Behrendt, J. C.

    1980-06-01

    Uncorrected heat flow in iron formation rocks from three areas within the Liberian part of the West African Shield ranges from 50 to more than 80 mW m-2. When corrections are applied for topography and refraction, the range of heat flow is narrowed to between 38 and 42 mW m-2. In comparison with heat flows from other parts of the West African Craton, these values are consistent with preliminary results from Ghana (42±8 mW m-2) and Nigeria (38±2 mW m-2) but are somewhat higher than values from Niger (20 mW m-2) and neighboring Sierra Leone (26 mW m-2). The Liberian values are significantly lower than the heat flow offshore in the equatorial Atlantic Ocean (58±8 m W m-2), suggesting large lateral temperature gradients within the lithosphere near the coast. Values of heat production from outcrops of crystalline basement rocks near the holes are between 2 and 2.3 /μW m-3. A heat-flow/heat-production relation cannot be established because of the small range of values; however, assuming a `characteristic depth' of 8 km (similar to the North American Craton) the reduced heat flow of from 20 to 25 mW m-2 is consistent with that from other Precambrian shields.

  19. African American Therapists Working with African American Families: An Exploration of the Strengths Perspective in Treatment

    ERIC Educational Resources Information Center

    Bell-Tolliver, Laverne; Burgess, Ruby; Brock, Linda J.

    2009-01-01

    With the exception of Hill's (1971, 1999) work, historically much of the literature on African American families has focused more on pathology than strengths. This study used interviews with 30 African American psychotherapists, self-identified as employing a strengths perspective with African American families, to investigate which strengths they…

  20. Investigating Instructional Practices of an African American Male Mathematics Teacher with Underachieving African American Male Students

    ERIC Educational Resources Information Center

    Muhammad, Rhonda K.

    2012-01-01

    This qualitative study examined the instructional practices of an experienced African American mathematics teacher to determine his perceived capabilities in augmenting academic proficiency for his African American male students. Provided in this descriptive case study are the lived experiences of an African American male teacher working to move…

  1. Pan-African Genetic Structure in the African Buffalo (Syncerus caffer): Investigating Intraspecific Divergence

    PubMed Central

    Smitz, Nathalie; Berthouly, Cécile; Cornélis, Daniel; Heller, Rasmus; Van Hooft, Pim; Chardonnet, Philippe; Caron, Alexandre; Prins, Herbert; van Vuuren, Bettine Jansen; De Iongh, Hans; Michaux, Johan

    2013-01-01

    The African buffalo (Syncerus caffer) exhibits extreme morphological variability, which has led to controversies about the validity and taxonomic status of the various recognized subspecies. The present study aims to clarify these by inferring the pan-African spatial distribution of genetic diversity, using a comprehensive set of mitochondrial D-loop sequences from across the entire range of the species. All analyses converged on the existence of two distinct lineages, corresponding to a group encompassing West and Central African populations and a group encompassing East and Southern African populations. The former is currently assigned to two to three subspecies (S. c. nanus, S. c. brachyceros, S. c. aequinoctialis) and the latter to a separate subspecies (S. c. caffer). Forty-two per cent of the total amount of genetic diversity is explained by the between-lineage component, with one to seventeen female migrants per generation inferred as consistent with the isolation-with-migration model. The two lineages diverged between 145 000 to 449 000 years ago, with strong indications for a population expansion in both lineages, as revealed by coalescent-based analyses, summary statistics and a star-like topology of the haplotype network for the S. c. caffer lineage. A Bayesian analysis identified the most probable historical migration routes, with the Cape buffalo undertaking successive colonization events from Eastern toward Southern Africa. Furthermore, our analyses indicate that, in the West-Central African lineage, the forest ecophenotype may be a derived form of the savanna ecophenotype and not vice versa, as has previously been proposed. The African buffalo most likely expanded and diverged in the late to middle Pleistocene from an ancestral population located around the current-day Central African Republic, adapting morphologically to colonize new habitats, hence developing the variety of ecophenotypes observed today. PMID:23437100

  2. A comparison of nephron number, glomerular volume and kidney weight in Senegalese Africans and African Americans

    PubMed Central

    McNamara, Bridgette J.; Diouf, Boucar; Douglas-Denton, Rebecca N.; Hughson, Michael D.; Hoy, Wendy E.; Bertram, John F.

    2010-01-01

    Background. Low nephron number is determined in utero and is a proposed risk for essential hypertension. Glomerular volume is inversely correlated with nephron number, and genetic and environmental factors that determine nephron number are thought to determine glomerular volume. This study compared total glomerular (nephron) number (Nglom), mean glomerular volume (Vglom) and kidney weight in two geographically separated black populations with significant common genetic ancestry. Methods. Unbiased stereology was used to determine Nglom and Vglom in kidneys collected at coronial autopsy in an age- and sex-matched sample of 39 adult Africans from Dakar in Senegal, West Africa and 39 African Americans from Mississippi in the USA. Results. African Americans were taller and heavier than their Senegalese counterparts. Nglom was remarkably similar—with a geometric mean of 937 967 in Senegalese and 904 412 in African Americans (P = 0.62). Vglom was correlated inversely with Nglom and directly with body surface area in both groups, but Vglom was 54% greater in African Americans than in Senegalese Africans [8.30 ± 2.92 (SD) and 5.38 ± 1.25  μm3 × 106, respectively] and remained significantly larger (38%) after adjustment for body size. Vglom increased with age in African Americans, but not in the Senegalese. Kidney weight was larger in African Americans (P < 0.0001), but kidney-to-body weight ratio was not different between groups. Conclusions. Despite similar nephron numbers, a common genetic constitution, and even in relation to current body size, African Americans have larger Vglom than Senegalese subjects. This may mark exposure to environmental stressors or hereditary traits concentrated in the population's relocation to North America. PMID:20154008

  3. A comparison of nephron number, glomerular volume and kidney weight in Senegalese Africans and African Americans.

    PubMed

    McNamara, Bridgette J; Diouf, Boucar; Douglas-Denton, Rebecca N; Hughson, Michael D; Hoy, Wendy E; Bertram, John F

    2010-05-01

    Low nephron number is determined in utero and is a proposed risk for essential hypertension. Glomerular volume is inversely correlated with nephron number, and genetic and environmental factors that determine nephron number are thought to determine glomerular volume. This study compared total glomerular (nephron) number (N(glom)), mean glomerular volume (V(glom)) and kidney weight in two geographically separated black populations with significant common genetic ancestry. Unbiased stereology was used to determine N(glom) and V(glom) in kidneys collected at coronial autopsy in an age- and sex-matched sample of 39 adult Africans from Dakar in Senegal, West Africa and 39 African Americans from Mississippi in the USA. African Americans were taller and heavier than their Senegalese counterparts. N(glom) was remarkably similar-with a geometric mean of 937 967 in Senegalese and 904 412 in African Americans (P = 0.62). V(glom) was correlated inversely with N(glom) and directly with body surface area in both groups, but V(glom) was 54% greater in African Americans than in Senegalese Africans [8.30 +/- 2.92 (SD) and 5.38 +/- 1.25 microm(3) x 10(6), respectively] and remained significantly larger (38%) after adjustment for body size. V(glom) increased with age in African Americans, but not in the Senegalese. Kidney weight was larger in African Americans (P < 0.0001), but kidney-to-body weight ratio was not different between groups. Despite similar nephron numbers, a common genetic constitution, and even in relation to current body size, African Americans have larger V(glom) than Senegalese subjects. This may mark exposure to environmental stressors or hereditary traits concentrated in the population's relocation to North America.

  4. Rubidium-strontium geochronology and plate-tectonic evolution of the southern part of the Arabian Shield

    USGS Publications Warehouse

    Fleck, Robert J.; Greenwood, W.R.; Hadley, D.G.; Anderson, R.E.; Schmidt, D.L.

    1980-01-01

    Rubidium-strontium studies of Precambrian volcanic and plutonic rocks of the Arabian Shield document an early development of the Arabian craton between 900 and 680 m.y. (million years) ago. Geologic studies indicate an island-arc environment characterized by andesitic (dioritic) magmas, volcaniclastic sedimentation, rapid deposition, and contemporaneous deformation along north or northwest-trending axes. Magmatic trends show consistent variation in both composition and geographic location as a function of age. The oldest units belong to an assemblage of basaltic strata exposed in western Saudi Arabia that yield an age of 1165:!:110 m.y. The oldest andesitic strata studied yield an age of 912:!:76 m.y. The earliest plutonic units are diorite to trondhjemite batholiths that range from 800 to 9,00 m.y. in age and ,occur along the western and southern parts of Saudi Arabia. Younger plutonic units, 680 to 750 m.y. in age, range from quartz diorite to granodiodte and become more abundant in the central and northeastern parts of the Arabian Shield. Initial 'Sr/ 86 Sr ratios for both dioritic groups range from 0.7023 to 0.7030 and average 0.7027. The absence of sialic detritus in sedimentary units and the evidence for an island-arc environment suggest the early development of the Arabian craton at a convergent plate margin between plates of oceanic lithosphere. Active subduction apparently extended from at least 900 m.y. to about 680 m.y. Subsequent to this subduction-related magmatism and tectonism, called the Hijaz tectonic cycle, the Arabian craton was sutured to the late Precambrian African plate in a collisional event. This period of orogeny, represented in Arabia and eastern Africa by the Mozambiquian or Pan-African event, extended from some time before 650 m.y. to at least 540 m.y. and perhaps 520 m.y. B.P. Although the tectonic processes of subduction and continental collision during the 900+ to 500-m.y. period require similar directions of plate convergence, the

  5. Predicting Non-African American Lesbian and Heterosexual Preadoptive Couples' Openness to Adopting an African American Child

    ERIC Educational Resources Information Center

    Goldberg, Abbie E.; Smith, JuliAnna Z.

    2009-01-01

    Despite increases in transracial adoption, African American children remain the least likely to be adopted. No research has examined the factors that predict prospective adopters' willingness to adopt an African American child. This study used multilevel modeling to examine predictors of willingness to adopt an African American child in a sample…

  6. South Africans Speak: Discussion Forum Presentations 1987-1989. South African Information Exchange Working Paper Number 12.

    ERIC Educational Resources Information Center

    Micou, Ann M., Ed.

    Ten informal papers given at Discussion Forums to U.S. groups are provided which address current South African related issues as they touch upon the South African Information Exchange (SAIE) initiative. Papers have the following titles and authors: "Is There Space for American Involvement in South African Education?" (Merlyn C. Mehl);…

  7. Triglyceride-based screening tests fail to recognize cardiometabolic disease in African immigrant and African-American men.

    PubMed

    Yu, Sophia S K; Ramsey, Natalie L M; Castillo, Darleen C; Ricks, Madia; Sumner, Anne E

    2013-02-01

    The prevalence of cardiometabolic disease in Africa now rivals that of Western nations. Therefore, screening programs that lead to effective prevention of cardiometabolic disease in Africans is imperative. Most screening tests for cardiometabolic disease use triglyceride (TG) levels as a criterion. However, the failure rate of TG-based screening tests in African Americans is high. In Africans, the efficacy of TG-based screening tests is unknown. Our goal was to determine the association between hypertriglyceridemia (TG ≥150 mg/dL) and cardiometabolic disease in African and African-American men. This was a cross-sectional study of 155 men (80 African immigrants, 75 African Americans) [age, 35±9 years, mean±standard deviation (SD), body mass index (BMI) 28.5±5.2 kg/m(2)] who self-identified as healthy. Lipid profiles were performed. Glucose tolerance and insulin resistance was determined by oral glucose tolerance tests (OGTT) and the insulin sensitivity index (S(I)), respectively. Cardiometabolic disease was defined by four possible subtypes--prediabetes, diabetes, insulin resistance, or metabolic triad [hyperinsulinemia, hyperapolipoprotein B, small low-density lipoprotein (LDL) particles]. TG levels were higher in men with cardiometabolic disease than without (88±43 versus 61±26 mg/dL, P<0.01). However, <10% of men with cardiometabolic disease had TG ≥150 mg/dL. Even within each cardiometabolic disease subtype, the prevalence of TG ≥150 mg/dL was <10%. Furthermore, TG levels in the 5% of men identified by OGTT as diabetic were ≤100 mg/dL (mean 71±24, range 45-100 mg/dL). Hypertriglyceridemia is a poor marker of cardiometabolic disease in men of African descent. Therefore TG-based screening tests fail to identify both African immigrants and African-American men with cardiometabolic disease. As a consequence, the opportunity for early intervention and prevention is lost.

  8. Differences in HIV natural history among African and non-African seroconverters in Europe and seroconverters in sub-Saharan Africa.

    PubMed

    Pantazis, Nikos; Morrison, Charles; Amornkul, Pauli N; Lewden, Charlotte; Salata, Robert A; Minga, Albert; Chipato, Tsungai; Jaffe, Harold; Lakhi, Shabir; Karita, Etienne; Porter, Kholoud; Meyer, Laurence; Touloumi, Giota

    2012-01-01

    It is unknown whether HIV treatment guidelines, based on resource-rich country cohorts, are applicable to African populations. We estimated CD4 cell loss in ART-naïve, AIDS-free individuals using mixed models allowing for random intercept and slope, and time from seroconversion to clinical AIDS, death and antiretroviral therapy (ART) initiation by survival methods. Using CASCADE data from 20 European and 3 sub-Saharan African (SSA) cohorts of heterosexually-infected individuals, aged ≥15 years, infected ≥2000, we compared estimates between non-African Europeans, Africans in Europe, and Africans in SSA. Of 1,959 (913 non-Africans, 302 Europeans-African origin, 744 SSA), two-thirds were female; median age at seroconversion was 31 years. Individuals in SSA progressed faster to clinical AIDS but not to death or non-TB AIDS. They also initiated ART later than Europeans and at lower CD4 cell counts. In adjusted models, Africans (especially from Europe) had lower CD4 counts at seroconversion and slower CD4 decline than non-African Europeans. Median (95% CI) CD4 count at seroconversion for a 15-29 year old woman was 607 (588-627) (non-African European), 469 (442-497) (European-African origin) and 570 (551-589) (SSA) cells/µL with respective CD4 decline during the first 4 years of 259 (228-289), 155 (110-200), and 199 (174-224) cells/µL (p<0.01). Despite differences in CD4 cell count evolution, death and non-TB AIDS rates were similar across study groups. It is therefore prudent to apply current ART guidelines from resource-rich countries to African populations.

  9. Africanization in the United States: replacement of feral European honeybees (Apis mellifera L.) by an African hybrid swarm.

    PubMed

    Pinto, M Alice; Rubink, William L; Patton, John C; Coulson, Robert N; Johnston, J Spencer

    2005-08-01

    The expansion of Africanized honeybees from South America to the southwestern United States in <50 years is considered one of the most spectacular biological invasions yet documented. In the American tropics, it has been shown that during their expansion Africanized honeybees have low levels of introgressed alleles from resident European populations. In the United States, it has been speculated, but not shown, that Africanized honeybees would hybridize extensively with European honeybees. Here we report a continuous 11-year study investigating temporal changes in the genetic structure of a feral population from the southern United States undergoing Africanization. Our microsatellite data showed that (1) the process of Africanization involved both maternal and paternal bidirectional gene flow between European and Africanized honeybees and (2) the panmitic European population was replaced by panmitic mixtures of A. m. scutellata and European genes within 5 years after Africanization. The post-Africanization gene pool (1998-2001) was composed of a diverse array of recombinant classes with a substantial European genetic contribution (mean 25-37%). Therefore, the resulting feral honeybee population of south Texas was best viewed as a hybrid swarm.

  10. Mechanisms of Vowel Variation in African American English.

    PubMed

    Holt, Yolanda Feimster

    2018-02-15

    This research explored mechanisms of vowel variation in African American English by comparing 2 geographically distant groups of African American and White American English speakers for participation in the African American Shift and the Southern Vowel Shift. Thirty-two male (African American: n = 16, White American controls: n = 16) lifelong residents of cities in eastern and western North Carolina produced heed,hid,heyd,head,had,hod,hawed,whod,hood,hoed,hide,howed,hoyd, and heard 3 times each in random order. Formant frequency, duration, and acoustic analyses were completed for the vowels /i, ɪ, e, ɛ, æ, ɑ, ɔ, u, ʊ, o, aɪ, aʊ, oɪ, ɝ/ produced in the listed words. African American English speakers show vowel variation. In the west, the African American English speakers are participating in the Southern Vowel Shift and hod fronting of the African American Shift. In the east, neither the African American English speakers nor their White peers are participating in the Southern Vowel Shift. The African American English speakers show limited participation in the African American Shift. The results provide evidence of regional and socio-ethnic variation in African American English in North Carolina.

  11. The ethics of improving African traditional medical practice: scientific or African traditional research methods?

    PubMed

    Nyika, Aceme

    2009-11-01

    The disease burden in Africa, which is relatively very large compared with developed countries, has been attributed to various factors that include poverty, food shortages, inadequate access to health care and unaffordability of Western medicines to the majority of African populations. Although for 'old diseases' knowledge about the right African traditional medicines to treat or cure the diseases has been passed from generation to generation, knowledge about traditional medicines to treat newly emerging diseases has to be generated in one way or another. In addition, the existing traditional medicines have to be continuously improved, which is also the case with Western scientific medicines. Whereas one school of thought supports the idea of improving medicines, be they traditional or Western, through scientific research, an opposing school of thought argues that subjecting African traditional medicines to scientific research would be tantamount to some form of colonization and imperialism. This paper argues that continuing to use African traditional medicines for old and new diseases without making concerted efforts to improve their efficacy and safety is unethical since the disease burden affecting Africa may continue to rise in spite of the availability and accessibility of the traditional medicines. Most importantly, the paper commends efforts being made in some African countries to improve African traditional medicine through a combination of different mechanisms that include the controversial approach of scientific research on traditional medicines.

  12. African Retentions in Blues and Jazz.

    ERIC Educational Resources Information Center

    Meadows, Eddie S.

    1979-01-01

    The perseverance of African musical characteristics among American Blacks is an historic reality. African retentions have been recorded in Black music of the antebellum period. Various African scales and rhythms permeate Black American music today as evidenced in the retentions found in blues and jazz. (RLV)

  13. Teacher Education from an African American Perspective.

    ERIC Educational Resources Information Center

    Hilliard, Asa G., III

    This paper focuses on African education and socialization processes and how these have evolved and spread through the African cultural diaspora to other parts of the world, before, during, and after the slave trade and the colonial period. The history of education on the African continent is explored, followed by African American education, and…

  14. Cenozoic East African Magmatism and the African LLSVP

    NASA Astrophysics Data System (ADS)

    Rooney, T. O.

    2017-12-01

    The Ethiopian-Arabian Large Igneous Province preserves a 45 Ma record of mantle-lithosphere interaction, manifesting as flood basalts, shield volcanoes, silicic eruptions, and monogenetic magmatic events. During the Cenozoic, magmatism in in this region has resulted from the interplay between lithospheric extension and material upwelling from the African large low-velocity shear velocity province (LLSVP). Consequently, the study of magmatism in East Africa provides a complement to investigations of the Pacific LLSVP. The volumetrically significant flood basalt events of the Eocene to Early Miocene suggest a role for material upwelling from the African LLSVP, however the modern focusing of East African magmatism into oceanic spreading centers and continental rifts also highlights the control of lithospheric thinning in magma generation processes. The study of the mantle reservoirs derived from the African LLSVP is complicated by the slow relative motion of the African plate during the Cenozoic, resulting in significant spatial overlap in lavas derived from different magmatic events. This complexity is being resolved with enhanced geochronological precision and a focus on the geochemical characteristics of the volcanic products. It is now apparent that there are three distinct pulses of basaltic volcanism, followed by either by bimodal or silicic volcanism, totaling ca. 720,000 km3 of magmatism: (A) Eocene Initial Phase from 45-34 Ma, which is dominated by basaltic volcanism and focused on Southern Ethiopia and Northern Kenya (Turkana). (B) Oligocene Traps phase from 33.9-27 Ma, which coincides with a significant increase in the aerial extent of volcanism. Broadly age equivalent 1 to 2 km thick sequences of dominantly basalt are centered on the NW Ethiopian Plateau and Yemen, but also Turkana during this period. (C) Early Miocene resurgence phase from 26.9-22 Ma, where basaltic volcanism is seen throughout the region but is less volumetrically significant than the

  15. Transition Metal Systematics of Opx-Enriched Harzburgites From the Cascades Arc With Implications for the Origin of Cratonic Peridotites

    NASA Astrophysics Data System (ADS)

    Turner, S. J.

    2007-12-01

    A number of peridotite xenoliths collected from the Simcoe volcanic field region of the Cascades arc exhibit notable enrichment of modal orthopyroxene. The process driving this enrichment is most likely metasomatism of the mantle wedge by Si-rich fluids derived ultimately from the underlying slab. By investigating the resultant elemental systematics associated with subduction zone metasomatism of this type, we hope to shed light on the origin of other opx-rich peridotites, such as those seen in many cratonic xenolith suites. The xenoliths found in the Simcoe volcanic field provide a rare opportunity to examine the composition of sub arc mantle, as it is unusual to find mantle xenoliths in volcanic arc lavas. The samples were analyzed using laser ablation ICPMS and their bulk compositions were reconstructed from point-counted mineral modes. Two-pyroxene mineral thermometry of the samples yield temperatures of approximately 1000 degrees C, corresponding to a depth of origin at uppermost mantle pressures if typical arc geotherms are assumed. Most of the peridotites are harzburgites or olivine-orthopyroxenites (Mg#s 0.88-0.9; opx mode 0.15-0.9), with small amounts of clinopyroxene (<0.02). Clinopyroxenes are significantly enriched in the light rare earths, consistent with a metasomatic origin for these opx-rich harzburgites. Of note is the counterintuitive systematics of Zn. Whole-rock Zn decreases with opx, but Zn in olivine also decreases with opx mode while Zn in opx increases with opx mode, hence the decrease in whole- rock Zn is not simply due to mechanical segregation of harzburgite into opx- and ol-rich zones. In summary, the REE signatures suggest the subducting slab as the most likely candidate for the source of the fluids that caused the opx enrichment. The opx-enrichment itself and the unusual trends in Zn suggest a reaction between a silicic fluid and normal harzburgite. Moreover, the concomitant decrease in olivine and whole-rock Zn with opx mode suggests

  16. "Women...mourn and men carry on": African women storying mourning practices: a South African example.

    PubMed

    Kotzé, Elmarie; Els, Lishje; Rajuili-Masilo, Ntsiki

    2012-09-01

    African mourning of loss of lives in South Africa has been shaped by discursive practices of both traditional African cultures and the sociopolitical developments under apartheid and in post-apartheid South Africa. This article reports on changes in mourning practices on the basis of a literature review and uses a collection of examples to highlight the navigation of some cultural and gendered issues relating to mourning, against the backdrop of the everyday experiences of loss of life in South Africa due to violence and HIV/AIDS. The article draws on African womanist and feminist scholarship and focuses on the intersections between cultural and gender practices of bereavement in the lives of professional urban African women. The authors argue for the use of positioning theory and witnessing practices to honor and story the ongoing struggle of African women as these women take different agentic positions by accepting, questioning, resisting, and/or changing cultural mourning practices while they compassionately witness the self and others in the narratives they live.

  17. Tracking the Progress of EarthScope/USArray: The crust and upper mantle beneath the transition region between tectonic western US and cratonic eastern US

    NASA Astrophysics Data System (ADS)

    Shen, W.; Lin, F.; Ritzwoller, M. H.

    2010-12-01

    The transition region between the tectonic western US and the cratonic eastern US contains numerous significant geological regions (e.g., the Rocky Mountains, the Colorado Plateau, and the Rio Grande Rift), and also, unknowns (e.g, the location or extent of the east-west US dichotomy, the compensation of the high topography of the western Great Plains, the extensional mechanics of the Rio Grande Rift, and the structure of the mantle beneath the Colorado Plateau). The answers to these questions and others are critical to an understanding of the tectonics and tectonic history of this region and its impact on the cratonic eastern US. The recent deployments of seismic stations, particularly the EarthScope USArray Transportable Array (TA), provide an opportunity to construct a detailed 3-D structural model of the crust and upper mantle beneath this transition region, and thus allow us to address some of the questions listed above. We present results from ambient noise tomography (ANT) and teleseismic earthquake tomography by using data from TA stations within the western and central US. We processed continuous seismic noise data from ~600 TA stations from August 2008 to March 2010, which after data selection produces a data set with ~100,000 inter-station paths. Rayleigh wave phase speed maps between 6 and 40 sec period and Love wave phase speed maps between 8 and 30 sec with a resolution of ~60 km are constructed using eikonal tomography. In addition, we applied eikonal tomography (ET) to about 300 teleseismic earthquakes to obtain long-period (30 - 100 sec) Rayleigh wave phase speed maps and Love wave phase speeds maps (30 - 60 sec). By jointly inverting Rayleigh and Love phase speeds maps from ANT and earthquake tomography, we constructed a 3-D isotropic and radially anisotropic shear velocity model of the crust and upper mantle to ~150 km depth together with model uncertainties constrained by a Monte-Carlo inversion. The 3-D isotropic model reveals a variety of

  18. Gentle Africanized bees on an oceanic island

    PubMed Central

    Rivera-Marchand, Bert; Oskay, Devrim; Giray, Tugrul

    2012-01-01

    Oceanic islands have reduced resources and natural enemies and potentially affect life history traits of arriving organisms. Among the most spectacular invasions in the Western hemisphere is that of the Africanized honeybee. We hypothesized that in the oceanic island Puerto Rico, Africanized bees will exhibit differences from the mainland population such as for defensiveness and other linked traits. We evaluated the extent of Africanization through three typical Africanized traits: wing size, defensive behavior, and resistance to Varroa destructor mites. All sampled colonies were Africanized by maternal descent, with over 65% presence of European alleles at the S-3 nuclear locus. In two assays evaluating defense, Puerto Rican bees showed low defensiveness similar to European bees. In morphology and resistance to mites, Africanized bees from Puerto Rico are similar to other Africanized bees. In behavioral assays on mechanisms of resistance to Varroa, we directly observed that Puerto Rican Africanized bees groomed-off and bit the mites as been observed in other studies. In no other location, Africanized bees have reduced defensiveness while retaining typical traits such as wing size and mite resistance. This mosaic of traits that has resulted during the invasion of an oceanic island has implications for behavior, evolution, and agriculture. PMID:23144660

  19. Intraseasonal variability of the West African monsoon and African easterly waves during boreal summer

    NASA Astrophysics Data System (ADS)

    Alaka, Ghassan J., Jr.

    Substantial subseasonal variability in African easterly wave (AEW) activity and cyclogenesis frequency occurs in the main hurricane development region of the Atlantic during boreal summer. A complete understanding of intraseasonal variability in the Atlantic and west Africa during boreal summer requires analysis of how the Madden-Julian Oscillation (MJO) modulates the west African monsoon and consequently AEWs. Because the MJO is predictable a few weeks in advance, understanding how and why the MJO impacts the west African monsoon may have a profound influence on Atlantic tropical cyclone prediction. This study documents the MJO influence on the west African monsoon system during boreal summer using a variety of reanalysis and satellite datasets. This study aims to identify and explain the MJO teleconnection to the west African monsoon, and the processes that induce precipitation and AEW variability in this region. Intraseasonal west African and Atlantic convective anomalies on 30-90 day timescales are likely induced by equatorial Kelvin and Rossby waves generated in the Indian Ocean and west Pacific by the MJO. Previous studies have hypothesized that an area including the Darfur mountains and the Ethiopian highlands is an initiation region for AEWs. It is shown here that the initial MJO influence on precipitation and AEW activity in the African monsoon appears to occur in these regions, where eddy kinetic energy (EKE) anomalies first appear in advance of MJO-induced periods of enhanced and suppressed AEW activity. In the initiation region, upper tropospheric temperature anomalies are reduced, the atmosphere moistens by horizontal advection, and an eastward extension of the African easterly jet occurs in advance of the MJO wet phase of the African monsoon, when AEW activity is also enhanced. These factors all support strong precursor disturbances in the initiation region that seed the African easterly jet and contribute to downstream development of AEWs. Opposite

  20. Survival Disparity of African American Versus Non-African American Patients With ESRD Due to SLE.

    PubMed

    Nee, Robert; Martinez-Osorio, Jorge; Yuan, Christina M; Little, Dustin J; Watson, Maura A; Agodoa, Lawrence; Abbott, Kevin C

    2015-10-01

    A recent study showed an increased risk of death in African Americans compared with whites with end-stage renal disease (ESRD) due to lupus nephritis (LN). We assessed the impact of age stratification, socioeconomic factors, and kidney transplantation on the disparity in patient survival among African American versus non-African American patients with LN-caused ESRD, compared with other causes. Retrospective cohort study. Using the US Renal Data System database, we identified 12,352 patients with LN-caused ESRD among 1,132,202 patients who initiated maintenance dialysis therapy from January 1, 1995, through December 31, 2006, and were followed up until December 31, 2010. Baseline demographics and comorbid conditions, Hispanic ethnicity, socioeconomic factors (employment status, Medicare/Medicaid insurance, and area-level median household income based on zip code as obtained from the 2000 US census), and kidney transplantation as a time-dependent variable. All-cause mortality. Multivariable Cox and competing-risk regressions. Mean duration of follow-up in the LN-caused ESRD and other-cause ESRD cohorts were 6.24±4.20 (SD) and 4.06±3.61 years, respectively. 6,106 patients with LN-caused ESRD (49.43%) and 853,762 patients with other-cause ESRD (76.24%) died during the study period (P<0.001). Patients with LN-caused ESRD were significantly younger (mean age, 39.92 years) and more likely women (81.65%) and African American (48.13%) than those with other-cause ESRD. In the fully adjusted multivariable Cox regression model, African American (vs non-African American) patients with LN-caused ESRD had significantly increased risk of death at age 18 to 30 years (adjusted HR, 1.43; 95% CI, 1.24-1.65) and at age 31 to 40 years (adjusted HR, 1.17; 95% CI, 1.02-1.34). Among patients with other-cause ESRD, African Americans were at significantly increased risk at age 18 to 30 years (adjusted HR, 1.17; 95% CI, 1.11-1.22). We used zip code-based median household income as a

  1. African Genetic Ancestry is Associated with Sleep Depth in Older African Americans

    PubMed Central

    Halder, Indrani; Matthews, Karen A.; Buysse, Daniel J.; Strollo, Patrick J.; Causer, Victoria; Reis, Steven E.; Hall, Martica H.

    2015-01-01

    Study Objectives: The mechanisms that underlie differences in sleep characteristics between European Americans (EA) and African Americans (AA) are not fully known. Although social and psychological processes that differ by race are possible mediators, the substantial heritability of sleep characteristics also suggests genetic underpinnings of race differences. We hypothesized that racial differences in sleep phenotypes would show an association with objectively measured individual genetic ancestry in AAs. Design: Cross sectional. Setting: Community-based study. Participants: Seventy AA adults (mean age 59.5 ± 6.7 y; 62% female) and 101 EAs (mean age 60.5 ± 7 y, 39% female). Measurements and Results: Multivariate tests were used to compare the Pittsburgh Sleep Quality Index (PSQI) and in-home polysomnographic measures of sleep duration, sleep efficiency, apnea-hypopnea index (AHI), and indices of sleep depth including percent visually scored slow wave sleep (SWS) and delta EEG power of EAs and AAs. Sleep duration, efficiency, and sleep depth differed significantly by race. Individual % African ancestry (%AF) was measured in AA subjects using a panel of 1698 ancestry informative genetic markers and ranged from 10% to 88% (mean 67%). Hierarchical linear regression showed that higher %AF was associated with lower percent SWS in AAs (β (standard error) = −4.6 (1.5); P = 0.002), and explained 11% of the variation in SWS after covariate adjustment. A similar association was observed for delta power. No association was observed for sleep duration and efficiency. Conclusion: African genetic ancestry is associated with indices of sleep depth in African Americans. Such an association suggests that part of the racial differences in slow-wave sleep may have genetic underpinnings. Citation: Halder I, Matthews KA, Buysse DJ, Strollo PJ, Causer V, Reis SE, Hall MH. African genetic ancestry is associated with sleep depth in older African Americans. SLEEP 2015;38(8):1185–1193

  2. Adakite-gabbro-anorthosite magmatism at the final (576-546 Ma) development stage of the Neoproterozoic active margin in the south-west of the Siberian craton

    NASA Astrophysics Data System (ADS)

    Vernikovskaya, A. E.; Vernikovsky, V. A.; Matushkin, N. Yu.; Kadilnikov, P. I.; Romanova, I. V.; Larionov, A. N.

    2017-12-01

    In the late Neoproterozoic a prolonged active continental margin mode dominated the southwestern margin of the Siberian craton. Based on results of geological, petrological-geochemical, U-Th-Pb and Sm-Nd, Rb-Sr isotope investigations, for the first time we established that on the final evolution stage of this margin 576-546 Ma, intrusions of adakites and gabbro-anorthosites of the Zimoveyniy massif were emplaced in the South Yenisei Ridge. These new data indicate genetic relationships of the studied adakites and host NEB-metabasites. The formation of adakites could have been due to a crustal or a mantle-crustal source in a setting of transform sliding of lithospheric plates after the subduction stopped.

  3. Understanding African American Males

    ERIC Educational Resources Information Center

    Bell, Edward Earl

    2010-01-01

    The purpose of this study was to assess the socialization skills, self-esteem, and academic readiness of African American males in a school environment. Discussions with students and the School Perceptions Questionnaire provided data for this investigation. The intended targets for this investigation were African American students; however, there…

  4. Inclusions of crichtonite-group minerals in Cr-pyropes from the Internatsionalnaya kimberlite pipe, Siberian Craton: Crystal chemistry, parageneses and relationships to mantle metasomatism

    NASA Astrophysics Data System (ADS)

    Rezvukhin, Dmitriy I.; Malkovets, Vladimir G.; Sharygin, Igor S.; Tretiakova, Irina G.; Griffin, William L.; O'Reilly, Suzanne Y.

    2018-05-01

    Cr-pyrope xenocrysts and associated inclusions of crichtonite-group minerals from the Internatsionalnaya kimberlite pipe were studied to provide new insights into processes in the lithospheric mantle beneath the Mirny kimberlite field, Siberian craton. Pyropes are predominantly of lherzolitic paragenesis (Cr2O3 2-6 wt%) and have trace-element spectra typical for garnets from fertile mantle (gradual increase in chondrite-normalized values from LREE to MREE-HREE). Crichtonite-group minerals commonly occur as monomineralic elongated inclusions, mostly in association with rutile, Mg-ilmenite and Cr-spinel within individual grains of pyrope. Sample INT-266 hosts intergrowth of crichtonite-group mineral and Cl-apatite, while sample INT-324 contains polymineralic apatite- and dolomite-bearing assemblages. Crichtonite-group minerals are Al-rich (1.1-4.5 wt% Al2O3), moderately Zr-enriched (1.3-4.3 wt% ZrO2), and are Ca-, Sr-, and occasionally Ba-dominant in terms of A-site occupancy; they also contain significant amounts of Na and LREE. T-estimates and chemical composition of Cr-pyropes imply that samples represent relatively low-T peridotite assemblages with ambient T ranging from 720 to 820°С. Projected onto the 35 mW/m2 cratonic paleogeotherm for the Mirny kimberlite field (Griffin et al., 1999b. Tectonophysics 310, 1-35), temperature estimates yield a P range of 34-42 kbar ( 110-130 km), which corresponds to a mantle domain in the uppermost part of the diamond stability field. The presence of crichtonite-group minerals in Cr-pyropes has petrological and geochemical implications as evidence for metasomatic enrichment of some incompatible elements in the lithospheric mantle beneath the Mirny kimberlite field. The genesis of Cr-pyropes with inclusions of crichtonite-group minerals is attributed to the percolation of Ca-Sr-Na-LREE-Zr-bearing carbonate-silicate metasomatic agents through Mg- and Cr-rich depleted peridotite protoliths. The findings of several potentially

  5. New U-Pb zircon geochronology of the Choma-Kalomo Block (Zambia) and the Dete-Kamativi Inlier (Zimbabwe), with implications for the extent of the Zimbabwe Craton.

    NASA Astrophysics Data System (ADS)

    Glynn, Sarah; Wiedenbeck, Michael; Master, Sharad; Frei, Dirk

    2015-04-01

    The Choma-Kalomo Block is a north-east trending, Mesoproterozoic terrane located in southern Zambia. It is composed of as yet undated gneissic basement with a high-grade metamorphosed supracrustal metasedimentary sequence, which is intruded by hornblende granites and gneisses of the Choma-Kalomo Batholith, that is dated between ca. 1.37 and 1.18 Ga. Our new zircon U-Pb age data on metasedimentary rocks of the Choma-Kalomo Block identifies samples of different ages, with slightly different provenances. The oldest metasedimentary rock is a muscovite-biotite schist, which has only Palaeoproterozoic detrital zircons, the two age clusters around 2.03-2.02 Ga and 1.8-1.9 Ga, correspond to the ages of granitic intrusion, and metamorphism, in the Magondi Mobile Belt on the western side of the Archaean Zimbabwe Craton. The second sample is a garnetiferous paragneiss, which contains both Palaeoproterozoic (2.04 Ga), and Mesoproterozoic zircons, ca. 1.36 Ga, derived from the granites of the Choma-Kalomo Batholith. The third sample is a biotite-muscovite schist, in which the detrital zircon ages fall into four separate clusters: ca. 3.39 Ga, ca. 2.7-2.6 Ga, ca. 2.1-1.7 Ga (with a peak at ca. 1.18 Ga), and 1.55 - 1.28 Ga. The Archaean zircons in this sample are derived from the Zimbabwe Craton, while the Palaeoproterozoic samples come from the Magondi belt, and the youngest zircons come from both phases of the Choma-Kalomo Batholith. A possible connection between the Choma-Kalomo Block and the Dete-Kamativi Inlier - some 150 km to the south-east in western Zimbabwe - has been proposed on the basis of similarities in the nature of their Sn-Ta-muscovite pegmatite mineralisation. The Dete-Kamativi Inlier, which is part of the Magondi Mobile Belt, is a window into Palaeoproterozoic north-east trending belts of deformed and metamorphosed supracrustal rocks. By dating localities which we suspect form the basement to the surrounding younger sediments, along with selected pegmatites

  6. [The role of Wacława Moszyński in the development of the Polish School of Machine and Mechanism Theory].

    PubMed

    Kisiel, Janusz; Pylak, Konrad; Schabowska, Krystyna

    2005-01-01

    The end of the 19th and the first half of the 20th centuries saw the emergence and intensive development of many disciplines in the technical sciences, and the laying of a groundwork for those disciplines in their current form. In Poland, a country deprived of independent statehood until 1918, this was additionally a period when native research centres and scientific schools came into being, and when Polish-language specialist literatures emerged as well. Many of the eminent personages whose activities contributed to those trends have already been described in biographical notes and articles. There are still, however, not enough studies dealing with the substance of their scientific and professional achievements. One of the personages in question was Wacława Moszyński, professor of the Warsaw Technical University, a pioneer of machine construction and mechanism theory, author of the first academic textbook in the field to be published in Poland. The current article discusses Moszyński's contribution to the development of mechanism and machine theory. The first part of the article gives an outline of the history of the discipline until 1945, presents the context of the after-war activities of the author, and evaluates his influence on the development of machine and mechanism theory in Poland; it also carries a short biography of Moszyński. The rest of the article is devoted to Moszyński's scientific achievements, and describes his approach to matters of structure, kinematics and dynamics, with special focus on those of his formulations and solution to problems that appear particularly innovative and original. The article also points out those proposals by Moszyński which made him a precursor of other disciplines, such as vibroacoustics, biomechanics and ergonomics. The paper also presents the role of Moszyński's work as a foundation for the development of the Warsaw research-and-teching centre in the field. The achievements and methods of the Warsaw school

  7. Who Will Teach African American Youth?

    ERIC Educational Resources Information Center

    Gill, Wali

    Disparities between Whites and African Americans exist in many areas in U.S. society. These disparities are exacerbated by social ills, including the Persian Gulf conflict. Positive change on the part of African American educators is required to combat these problems. The following four postulates for teaching African American youth are provided:…

  8. Ichnologic evidence of a Cambrian age in the southern Amazon Craton: Implications for the onset of the Western Gondwana history

    NASA Astrophysics Data System (ADS)

    Santos, Hudson P.; Mángano, M. Gabriela; Soares, Joelson L.; Nogueira, Afonso C. R.; Bandeira, José; Rudnitzki, Isaac D.

    2017-07-01

    Colonization of the infaunal ecospace by burrowing bilaterians is one of the most important behavioral innovations during the Ediacaran-Cambrian transition. The establishment of vertical burrows by suspension feeders in high-energy nearshore settings during Cambrian Age 2 is reflected by the appearance of the Skolithos Ichnofacies. For the first time, unquestionable vertical burrows typical of the Skolithos Ichnofacies, such as Skolithos linearis, Diplocraterion parallelum and Arenicolites isp., are recorded from nearshore siliciclastic deposits of the Raizama Formation, southeastern Amazon Craton, Brazil. Integration of ichnologic and sedimentologic datasets suggests that these trace fossils record colonization of high-energy and well-oxygenated nearshore sandy environments. Chronostratigraphically, the presence of these vertical burrows indicates an age not older than early Cambrian for the Raizama Formation, which traditionally has been regarded as Ediacaran. Therefore, the Raizama ichnofauna illustrates the advent of modern Phanerozoic ecology marked by the Agronomic Revolution. The discovery of the Skolithos Ichnofacies in these shallow-marine strata suggests possible connections between some central Western Gondwana basins.

  9. East African Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This rare, cloud free view of the East African Rift Valley, Kenya (1.5N, 35.5E) shows a clear view of the Turkwell River Valley, an offshoot of the African REift System. The East African Rift is part of a vast plate fracture which extends from southern Turkey, through the Red Sea, East Africa and into Mozambique. Dark green patches of forests are seen along the rift margin and tea plantations occupy the cooler higher ground.

  10. Educating African American Males

    ERIC Educational Resources Information Center

    Bell, Edward E.

    2010-01-01

    Background: Schools across America spend money, invest in programs, and sponsor workshops, offer teacher incentives, raise accountability standards, and even evoke the name of Obama in efforts to raise the academic achievement of African American males. Incarceration and college retention rates point to a dismal plight for many African American…

  11. African-American Sacred Music.

    ERIC Educational Resources Information Center

    Bailey, A. Peter

    1991-01-01

    The history of African-American sacred music is traced from the time of slavery to the present interest in gospel music. The religious music of African Americans is geared toward liberation themes. It is important that this music does not dilute its power through cross-over with other music forms. (SLD)

  12. Keeping African Masks Real

    ERIC Educational Resources Information Center

    Waddington, Susan

    2012-01-01

    Art is a good place to learn about our multicultural planet, and African masks are prized throughout the world as powerfully expressive artistic images. Unfortunately, multicultural education, especially for young children, can perpetuate stereotypes. Masks taken out of context lose their meaning and the term "African masks" suggests that there is…

  13. Implications of new ^{40}Ar/^{39}Ar age of Mallapur Intrusives on the chronology and evolution of the Kaladgi Basin, Dharwar Craton, India

    NASA Astrophysics Data System (ADS)

    Pillai, Shilpa Patil; Pande, Kanchan; Kale, Vivek S.

    2018-04-01

    The Kaladgi Basin on the northern edge of the Dharwar craton has characters diverse from the other epicratonic Purana basins of Peninsular India. Sedimentological studies in the basin have established the presence of three cycles of flooding separated by an event of intra-basinal deformation accompanied by low grade incipient metamorphism. The overall structural configuration of the basin indicates its development by supracrustal extension accompanied by shearing in a trans-tensional regime during the Mesoproterozoic. This was followed by sagging that yielded Neoproterozoic sedimentation in a successor nested basin. ^{40}Ar/^{39}Ar dating of an intrusive mafic dyke along the axial plane of a fold has yielded a plateau age of 1154{± }4 Ma. This helps constraint the age of the various events during the evolution of this basin.

  14. An Ambivalent Community: International African Students in Residence at a South African University

    ERIC Educational Resources Information Center

    Weber, Everard

    2016-01-01

    This is a qualitative case study of the experiences and perceptions of South African and especially international, African students living in university residences in South Africa. The concept, community, is used to interpret interview data. This community was characterised by ambivalent social relations: There was discrimination by South Africans…

  15. P-T-t paths from polyphased garnets of the Yenisey Ridge: evidence for three tectonothermal events along the western margin of Siberian craton

    NASA Astrophysics Data System (ADS)

    Likhanov, Igor

    2015-04-01

    Studies of pelitic gneisses and schists within the Yenisey regional shear zone (Garevka complex) at the western margin of the Siberian craton provide important constraints on the tectonothermal events and geodynamic processes in the Yenisey Ridge. In situ U-Th-Pb geochronology of monazite and xenotime from different growth zones of the garnet porphyroblasts coupled with P-T path calculations derived from garnet zoning patterns records three superimposed metamorphic event [1]. The different field gradients reflect contrasting tectonic settings. The first stage occurred as a result of the Grenville-age orogeny during late Meso-early Neoproterozoic (1050-850 Ma) and was marked by low-pressure zoned metamorphism at c. 4.8-5.0 kbar and 565-580 °C with a metamorphic field gradient of dT/dZ = 20-30 °C/km. At the second stage, the rocks experienced middle Neoproterozoic (801-793 Ma) collision-related medium-pressure metamorphism at c. 7.7-7.9 kbar and 630 °C with dT/dZ < 10 °C/km. The final stage evolved as a synexhumation retrograde metamorphism (785-776 Ma) at c. 4.8-5.4 kbar and 500 °C with dT/dZ < 14 °C/km and recorded uplift of the rocks to upper crustal levels in shear zones. The duration of post-collisional thrust exhumation does not exceed 16 Myr, which gives an exhumation rate of the metamorphic rocks of about 500-700 m/Myr [2]. This is in good agreement with the rate of exhumation (400 m/Myr) calculated for coeval collision-related metamorphic events in the Teya complex of the Yenisey Ridge [3] resulted from crustal thickening due to overthrusting [4] and also agrees with the results of thermomechanical numerical modeling (350 m/Myr) [5]. The final stages of collisional orogeny were followed by the development of rift-related bimodal dyke swarms of the Baikal-Yenisey belt, resulting from Neoproterozoic (790-780 Ma) extensional processes along the western margin of the Siberian craton and the onset of Rodinia's breakup [6]. Post-Grenville metamorphic

  16. 16 Extraordinary African Americans.

    ERIC Educational Resources Information Center

    Lobb, Nancy

    This collection for children tells the stories of 16 African Americans who helped make America what it is today. African Americans can take pride in the heritage of these contributors to society. Biographies are given for the following: (1) Sojourner Truth, preacher and abolitionist; (2) Frederick Douglass, abolitionist; (3) Harriet Tubman, leader…

  17. African Heritage Curriculum Materials. Teacher's Manual.

    ERIC Educational Resources Information Center

    Museum of African Art, Washington, DC.

    This guide for secondary teachers focuses on sub-Saharan (Black) African history and culture. Although the guide is intended to be used in conjunction with the audiovisual materials on African heritage produced by the Museum of African Art, it can also be used as a source of background reading for teachers and as a guide to additional…

  18. An Introduction to West African Literature.

    ERIC Educational Resources Information Center

    Taiwo, Oladele

    Intended to provide help for those interested in studying West African literature, this book is divided into three parts. Part One provides background information: the various African oral traditions are discussed, related to the way of life of the people, and examined for the extent to which they form the basis of present West African literary…

  19. Association of substance use disorders with childhood trauma but not African genetic heritage in an African American cohort.

    PubMed

    Ducci, Francesca; Roy, Alec; Shen, Pei-Hong; Yuan, Qiaoping; Yuan, Nicole P; Hodgkinson, Colin A; Goldman, Lynn R; Goldman, David

    2009-09-01

    Genetic variation influences differential vulnerability to addiction within populations. However, it remains unclear whether differences in frequencies of vulnerability alleles contribute to disparities between populations and to what extent ancestry correlates with differential exposure to environmental risk factors, including poverty and trauma. The authors used 186 ancestry-informative markers to measure African ancestry in 407 addicts and 457 comparison subjects self-identified as African Americans. The reference group was 1,051 individuals from the Human Genome Diversity Cell Line Panel, which includes 51 diverse populations representing most worldwide genetic diversity. African Americans varied in degrees of African, European, Middle Eastern, and Central Asian genetic heritage. The overall level of African ancestry was actually smaller among cocaine, opiate, and alcohol addicts (proportion=0.76-0.78) than nonaddicted African American comparison subjects (proportion=0.81). African ancestry was associated with living in impoverished neighborhoods, a factor previously associated with risk. There was no association between African ancestry and exposure to childhood abuse or neglect, a factor that strongly predicted all types of addictions. These results suggest that African genetic heritage does not increase the likelihood of genetic risk for addictions. They highlight the complex interrelation between genetic ancestry and social, economic, and environmental conditions and the strong relation of those factors to addiction. Studies of epidemiological samples characterized for genetic ancestry and social, psychological, demographic, economic, cultural, and historical factors are needed to better disentangle the effects of genetic and environmental factors underlying interpopulation differences in vulnerability to addiction and other health disparities.

  20. Association of Substance Use Disorders With Childhood Trauma but not African Genetic Heritage in an African American Cohort

    PubMed Central

    Ducci, Francesca; Roy, Alec; Shen, Pei-Hong; Yuan, Qiaoping; Yuan, Nicole P.; Hodgkinson, Colin A.; Goldman, Lynn R.; Goldman, David

    2009-01-01

    Objective Genetic variation influences differential vulnerability to addiction within populations. However, it remains unclear whether differences in frequencies of vulnerability alleles contribute to disparities between populations and to what extent ancestry correlates with differential exposure to environmental risk factors, including poverty and trauma. Method The authors used 186 ancestry-informative markers to measure African ancestry in 407 addicts and 457 comparison subjects self-identified as African Americans. The reference group was 1,051 individuals from the Human Genome Diversity Cell Line Panel, which includes 51 diverse populations representing most worldwide genetic diversity. Results African Americans varied in degrees of African, European, Middle Eastern, and Central Asian genetic heritage. The overall level of African ancestry was actually smaller among cocaine, opiate, and alcohol addicts (proportion=0.76–0.78) than nonaddicted African American comparison subjects (proportion=0.81). African ancestry was associated with living in impoverished neighborhoods, a factor previously associated with risk. There was no association between African ancestry and exposure to childhood abuse or neglect, a factor that strongly predicted all types of addictions. Conclusions These results suggest that African genetic heritage does not increase the likelihood of genetic risk for addictions. They highlight the complex interrelation between genetic ancestry and social, economic, and environmental conditions and the strong relation of those factors to addiction. Studies of epidemiological samples characterized for genetic ancestry and social, psychological, demographic, economic, cultural, and historical factors are needed to better disentangle the effects of genetic and environmental factors underlying interpopulation differences in vulnerability to addiction and other health disparities. PMID:19605534